US 20020184610A1

a2 Patent Application Publication (o) Pub. No.: US 2002/0184610 A1

a9 United States

Chong et al.

43) Pub. Date: Dec. 5, 2002

(54) SYSTEM AND METHOD FOR BUILDING
MULTI-MODAL AND MULTI-CHANNEL

Publication Classification

APPLICATIONS (51) Int. CL7 o GO6F 9/44
(52) US. Cli e eveevecenses 717/109
(76) Inventors: Kelvin Chong, Sunnyvale, CA (US);
Srinivas Mandyam, San Jose, CA
(US); Krishna Vedati, Sunnyvale, CA &) ABSTRACT
(US); Vikranth Katpally Reddy,
gerlt%rrSé}i,;chC(IAJS(%S‘;YI?ZS;g?h;V?E(’) The present invention provides a system and method for
Mountain Vie\,v CA (US,) ’ visually building multi-channel and multi-modal applica-
’ tions. The system 100 includes a process design module 12
Correspondence Address: for designing application workflow, an integration design
GARY CARY WARE & FREIDENRICH module 14 for integrating data sources into the application;
1755 EMBARCADERO a presentation design module 16 for designing application
PALO ALTO, CA 94303-3340 (US) views; a media library 18; and a componentization module
’ 20, for packaging designed workflow into reusable compo-
(21) Appl. No.: 10/054,623 nents. The system 100 further includes an interactive devel-
opment/design environment (IDE) 500. The IDE 500 pro-
(22) Filed: Jan. 18, 2002 vides a graphical user interface for allowing a developer to
visually interact with and operate modules 12-20. The
Related U.S. Application Data system 100 allows a developer to design a single application
that can operate across multiple network standards, devices,
(60) Provisional application No. 60/263,574, filed on Jan. browsers and languages, and that operate in one or more

22, 2001. modes, such as real-time, off-line and asynchronous modes.

Creates a gingle
instance of tha
manager

crepte()
252

Piugs the manager into
1he IDE {so that the IDE
manager can manage It

The manager should
start Rs function and
accept requests

Manager is about to stop
Gives manager a chance
to veto the request

The manager
should stop
functioning

Tho manager cleans up
and considers itself
detached from the IDE

All Managers
Indiatized

All Managers
Agreed to Stop

stop()

stopping()
558 580

V{/

Restart Marager

destroy()
502

Capital One
Exhibit 1012

US 2002/0184610 A1

Dec. 5,2002 Sheet 1 of 97

Patent Application Publication

(1 101d) 7 2131
a0l
143
081 [suogeoydde]
\\m oo sweiskg JoIndwo) 9L gusIy
g0l
[1ax] weysAs awinuny adeosjaN
mwv\m oo ’ aueD
Vol
suopeoiddy J9l0{dx3 JoUIR)U
V8l [eseqeje(q] [dX3 18uUisiy|
UOIBULIOjU| Busig
14 2 \
uoEuLIoul astidsajuz (44 Jouei} sIomjeN aljand SJ9SMOJF QB
snoauaboJa)sH HIOM]ON 9JBALId SiEUIWIE) $5800Y
(v souy) | omSig
141 SWaisAS Jendwo)

2/ 9l N

X \
19)nduwio) [_uoSId,
¢l lm WweysAg awipuny w di/doL A _mcw:_._m 1 <
1900 +
eeg {(*dLLH) sioo0j04d Josmoug
[ane uohedlddy +
zZL suojjeolddy UBWNH
UORIBUUOY HIOMIBN Walo

US 2002/0184610 A1

Dec. 5,2002 Sheet 2 of 97

Patent Application Publication

J8L

ast

\£:14

[suopeojdde}
uoljewIo|

SW9SAG soyndwon

[wx]
uonewsoN|

wejsAg swjuny

[eseqereql
UOHRULION]

suoneatjddy

UL

jouenu)

S N1Sd
J91

O¢ ‘052 '92
SHIOMIBN
SSORIIM

a9

(vry zouq) ¢ 2an3ny

swip-jeay

ﬂ 8010/ Bojeuy u
auoyd
_._Swﬂ\
auoyd ejeq yewsg
ououyd
901

WRID TWLH 19edwod
(wied ‘Odiexood ‘WId)

101 vad

ﬂ 18I BOIABG G, _
moLq dvos

syJomieN 21qnd

\ Ew__on_m; u
nSV\\ >

SjeulWwIs] SSe2dyY

US 2002/0184610 A1

Dec. 5, 2002 Sheet 3 of 97

Patent Application Publication

0s

ElEQ

ve

196614
AudAg

i
N A A

8y

iy

weysAs Jeyndwon

waysAg auwiguny

nd—
uoneoyddy :o_usc_ﬁozq\\%

)4

11€2-3010A
sws ‘dem ‘|lewa
SHIOMIBN

h/ wasAg sendwon

WeISAS swpuny aulu

o}

uopeo|ddy
UONBZIUOIYDUAS
ya

i

)
;
b

4

o

pasely| -
SSBjUIM -
a|peIn -

/

0e

SUlBIM -
spoys N
UORBZIUOIYOUAS
aduing

8c

(1y J011g) § omB1g

lcw:n_lvm ao1Aa(] JusyD
p

e

N.v\

oy
(v 10U4) ¥ 314
ve N
~
m ao1ne(Q Jueld p
%Emggw awipuny aullyO
92 1 UOBZIUCIYOUAS ‘ ’
WTV yim uogeo)ddy
uspisey soraQ /eullO
0e
[44

abesn {AllA))o9UL0D
-ou) aulyo

US 2002/0184610 A1

Dec. 5,2002 Sheet 4 of 97

Patent Application Publication

9 Q31
[74%
nun nduy Jesn
;14" f449
nun nun Aowsiy
Aeyds|q jensip pue [01JU0D) \ 007
[x4%
Hn
3T SUOHBDIUNWILOD =T
Se)S JauIsu| auibug

e

$8|i4 Sj0Wey

StT
seseqeleq

US 2002/0184610 A1

Dec. 5, 2002 Sheet 5 of 97

Patent Application Publication

L 23y
.ﬁ (24 o o 23 143
apopy BINPoAY SINPON a|n
sopel euso! A
Helan 3 t h uoneznusuodion Kieiqr epay ubisag uoneyuasald uBiseg uoneiBaju) uBisaqy ssed0ud
\ sulbn|d
@ _ \ 602
805
\
\ ldv 3G
3
J
Jafeuep Jateuew JoBeueyy JaBeuepy Wwie)SAg ._m>w_m Joaug
dopiseqg Jeqoo| Jegnuamw nding 214 Pwa mc___“um«m, WANSAS 214
1 /. r] r 1. 4. L
A [[} b 5
[3
Jabeuepyy JoBeuew Jabeuep Jabeuspy Jabeuepy Jabeuey JaBeuepy Jabeuepy
uibnid yalag S[00) preoqdd MOPUIM BANCSIY Byuon woisAs a4
L / y / : / y _ / 1 7
Y [
onm\ ﬁﬂ\ u«m\ m«w.\ «Nw.\ q«m\ w.ﬂ\ ﬁ qﬁn\
[y
Bbeuen leg as— u
3al Al sueis EN
. Vi
; wra/ o/ 2409 30
«qn\

US 2002/0184610 A1

Dec. 5,2002 Sheet 6 of 97

Patent Application Publication

g aIndrg

sjusuodwio)

pajealo-iasn

sjusuodwon
paulapaid

sjusuodwon

$9|I4 Jewwels

sa|l4 abew)

xe] / sbuyg

Sejid olpny

Aseagr elpan
/Sa0Inosay

:

S80IN0S dLiH

$204n0g TOS

$90Jn0S 3|i4

$30IN0g J9JJIsig

S80|A13G qoM

sInpo
uBisag uoneiBaju|

N°pPoN

SMBIA
abenbuen aAleN

(sayy ener)
SMOIA BABT

(sel TALHX)
SMAIA TWLHX

(soly 11n)
SMBIA 010/ pidey

(sa)y 1dl)
SMalA ejeq pidey

alnpo
uBisag uopejuesaid
JM3IA

(saly WD)

SI19]j104U0D)

ajnpow
uBisaq ss9204d
j19j|onuog

US 2002/0184610 A1

Dec. 5,2002 Sheet 7 of 97

Patent Application Publication

saBeuep persey

—

705

Ohansap ()Buiddors

doig @ pasifiy
siabeuep Iy

pazjenpy|
iaBeuew IV

01 2mnS1g

L<i3
(Jowan

31 9Y) Wy p3YIERP Buwopauny 1sanbai ay) ojaA 0} sysanbai ydedoe
Jesy ssopjsuod pue dois pinoys 80UBLD B J30BUBW SEAID pue uopouny sy uels
dn sueap 1abBeuew sy JaBeurw ayy dos o 1noqe) JaBeuepy pinoys Jafeuew ey

s

3 abeuew ued Jebguew

30l oy 18y} 08) 301 9Y)
o saBevew auy sBnig

Jpbeuew
3y Jo adue)su|
ajBujs e se1zRID

\

[

Aojdeqg dojarag

6 231

ﬁ $60IN0S E1B(Q

T vogl S|y MOIA
B so|ly BONOSEY
ddv:slmos s9ly TNO

wojsAs

uopeoliddy

00g)

US 2002/0184610 A1

Dec. 5,2002 Sheet 8 of 97

Patent Application Publication

11 31

ujbn|d yesay

\

(Jouddoys

pallEIsv)
subnid iy
Eh]EN] Buiuogouny dojs enbay dogs &4y 0jaA suibn|d oy OO UanB
woJj payorIsp Josy pineys uBnyy wBnid ued ubn)g "uBnjd 40 (1@ Buieisur saysjuy ay) yum 391 8w
13p15U00 pinoys ujBnid oy dos @1 pajeD aly dais & payieD T Ul Uaym paAED CjU| Jasy =Sy
715

US 2002/0184610 A1

Dec. 5,2002 Sheet 9 of 97

Patent Application Publication

1 21m31y

] ; |]]
| I 1 |]
] I 1]]
"/. T T T 1
| | (peieAovIoelold ! !
1 i | 1
! ! ! (oeloigusnnoyaes A
1 _ ' i
1 | | 1 |
I 1 1 t |
) T] T 1
"\ “ ()peyeAnoeagioafosd “ “
) | 1] I
“ “n {)pajesinioafoid _ "

1]
“ “ ()s108elo1d usamaq youms ueo $18Sh 65 NUSW 0} Joafoud 03 ppe "
| | e e e e e e ———— e
i |] ’ Iwﬂ
1 “ I (hoefosd) winjay i
I [} |
| m | (hooloigeyeaid !
I 1 '
! ! ! | aweNyosloscab ﬂ
) I t |
t 1 I) !
I ! | N |
t | 1 [1
| ! ! “ (psezIpoIRaID !

SISUBIST T JoReuE N 799101d L= =L T ET T UBNBPoN TSBEUENFOPUTAR TSOEUBISo0Id
] l | l l
[g S

US 2002/0184610 A1

Dec. 5,2002 Sheet 10 of 97

Patent Application Publication

€1 23y

| | | 1 1 |
i i | 1 1 1
I | | 1 1 |
r i | i i "
| h) Opeyespoviefaid)] |
I I | ! 1
!] ! ' (rosfosdiueuncyes A
| 1 i | i
1 1 I ¢ ' I
e ! I i | t
y ! | : : M
“,\ “ “ ()pe1eAnIEaQ1I9[0) “ “ “
! "u ¢ (peuadoioaloid “ ! i
] 1
m m _Eumﬁoa USeMIB] Y)IMS UBD 818N 0S NUewW o) Joefoid 0y ppe L
m m i | Owalosd] wries m
et {]
| m m Osapgoslasgpeo; | | “
1] +
__ “ “ " (welodusdo i
i] L g 1 1
" “ “ “ {Juoisien 108102 10U J 10(0Id PEAUOD “
1 1 1 I T 1
_ ! “ ! (JuoisisplaLODS| !
1) i N T]
! ! ! ! (}edALideuogs| !
“ m m “_ m (yoweNps(oigied &
]
1 1 1 | | [
] 1 i | i |
! I | | ¢)
! 1 I I))
! ! ! ! | Osoegeiess |
J BTEUEHIEGNUSH TEOEUERIEISASAN MENIBPoN TOBEUEAOPUIRA TSOeUeHSIOId
! 1] 1 1]
Lﬂ bt a.r b4:1 k144 14

US 2002/0184610 A1

Dec. 5,2002 Sheet 11 of 97

Patent Application Publication

14

[231

US 2002/0184610 A1

Dec. 5,2002 Sheet 12 of 97

Patent Application Publication

1
|
|

GT aIn3tyg

Avum>mmgumqoha

| (hsyi swsloud adas o} ppe
*

| ()asie} 0} paiipoIes

—‘

(ysuonejuawadw| }51siad| (g 83m

— e =] -

)

(JwaysAsa|y g0 usdo

IS S S

(Jaloigvafoldiuslngases

i Subahn R N

e T D Sl ety

b = ——

szsmwﬁm_oa

%

|

TSOEUEWSTSASANT

3

3

159

s

US 2002/0184610 A1

Dec. 5,2002 Sheet 13 of 97

Patent Application Publication

91 am31g

'
1
t
t
1,

| | _
| i _
| | |
I | |
™ 1]
d b

" m (pareanovidefo:d i
| '

" | m _cuom_o_%:mt:ogmm ﬂ
| " | i |
i ! ! ! _
“L ! Opasojsoafosd “ !
| " ()peeanseaqiaeloid ! “
| ¢ T T 1
" “ (nuew sjosjoid papeO| WL AOWR) "

1
“ | m (aiogpaloidancwal ﬂ
| | _ | _
| i | 1 |
la |] | |
I | 1 | |
“ " Omc_mg_n:oo_oa T !
" " “ I ()ao8foid e Bujaeg, 988 _
1 | ¢ 1 i
| “ | ()BorRIgWIBUODMOYS !
| ; “ T T —
| “ | _ ()patiposaly |
| _ ' " _
| “ | | Qpeypopsejjare |
TSoeuepmeqnus i TSOEUBNAOPUIAR BBEINISTORI0Id TeBeueiTaoId

i il Il I

Patent Application Publication Dec. 5,2002 Sheet 14 of 97 US 2002/0184610 A1

. g

~T)

AN

e T Swoes oweow pee g b e e s - - C e saves g g d

B MRt S o e L e A S LR e
a Rt

N &
T

i g M i il S,

et N
A, s <\,§:§?§§§>JQ%&‘§{\Q§A§,~wg\>s‘:’f‘2‘$‘~j§«>;u ity gy
o S U o il TR ok T

N e e ™ 1 o]

1o, 2% . HhG HaR :

S X 3 UL

o i Hphai i,

oo
aig
00 1 ey

i

. Y
e

2

47 B

N3

WhichDattarz
S SR

i s Sy

]

BelToCurrency’ Yﬂ\

,,,
AL

%

i

ok
%
LT

ey
iy

y

®© .

.

i3 e e b 3¢ T,
RN
YRS

.

‘et Convarion iefe

T St
2 L PR

g
]
& atFiomCumenyTyp

/
MR

Y

o

i

S E
/55 AR
3 1E

L
2%

2
.
#

G T
A «*fg SRy gy
v A

3

t

o

il
i

P

m: i

5 i e
G > g SO B G R 5 e

{80 Rapia_Froccayper, _Caaat tpt

> i) Raplt_Provayper_ Ozt spt
R oaa woset

402 404 40
' wm."‘ﬂw‘_.h“ﬂ
23] Man Topios
§- vl
- B Resaurces

Figure 17

US 2002/0184610 A1

Dec. 5,2002 Sheet 15 of 97

Patent Application Publication

81 am31yg

s (B

P L i
awwegd §§ G,
sarunsp [r.w
soopnyan BB R °
opny B2 @

1B RUBAUOD E s
dnoup ¥R B 1]
duqronno g 1 f
duqn avoauno | « m
dnaxgateuiyy B8 0 i
svdawy @ Gl

420¥

RSO ZRICOYSM 52
Wr3TIsK woorm 73
9030 18x swooem fif -

1% 15X vwoolen B
42 19X wuiooien {77
Al s sorn B
¥ maegawiootem (B
woasign"opey B
Krewanox e {1
i aansy [-
a0 15K sunswy f3)
g ownswy G
W 3o s minding ()
K1 eug™dey {IF)
I o "adA L kovaungoLin) -
1d3 £3xg"wdA) Koummgo g @
1A 30N HIALACUINI W RG (B -
1 g wdAL AuounJwas I wn B
0 gedAy koununguiasging (B
1 ol wnownrio B
163 megwnowy o [
A SoATURBgYog [¢,
TN @ m.._
W RPANIRIS nn -
RpanvEg K55 €
Reanis (B &)
sapaneg 8% £
vrave) fovaung L

T TNUEVPF JYUE FEEEUIUNEOUURSUSR U RSN

US 2002/0184610 A1

Dec. 5,2002 Sheet 16 of 97

Patent Application Publication

8OY 61 a3y

EIEETENTY

A

wa%hbcwtzqui«a@ Y
LY
3

A3

4’{

i

™ opy

n Tser

144% e '

m:
T

{Eng

Ll

ity e TR

.3. }m\}\ By m» 2 :A % . s &»% 7 ‘ R
ol 1% nx. ey 1 i Mw B0 J
% S e

Patent Application Publication Dec. 5,2002 Sheet 17 of 97 US 2002/0184610 A1

110

4Figure 20

Patent Application Publication Dec. 5,2002 Sheet 18 of 97 US 2002/0184610 A1

412

Figure 21

482A
482B
482C ..
482D
482E ..

Patent Application Publication Dec. 5,2002 Sheet 19 of 97 US 2002/0184610 A1

<

-—

<
%

Figure 22

484A
484B
484C .
484D
484E
484F ..

US 2002/0184610 A1

Dec. 5, 2002 Sheet 20 of 97

Patent Application Publication

oly

€T 2Ingig

<ajerduey : TaKf >
<TUEY £
<&Lpoqy>
< fsajyetdumy-f1dde - Tsx)
L FIUBIUOD INOA WATA BUTT HUWLNOTTOF 2YI 228TAdeY —-ix
<Apoq>
<penf>
<IBTITH/ >IUBWN00J PITITIUNCITITE>
<pean>
<TUIY>
< fo=YoFew SqeTduDy : TEX)

< fw=009T98 , TANE TP, =dueu weaed: TSKy>

<fu f y=909138 , TAN\5eq, =Jew ueged: T

<f o TUNpe S ag =adij-erpau |, WP, =poyY3au mdyno 15>
<, WoD " 0B TA0D “saaaf f 1 AP, =TUED : SUTWR
ST Swe XY S ASKF 66 6T fDX0 - goa-suaf f 1 A3 =T HK I SUTWK

W0 " F =UOTSaaA JRaysaTiys: 1sx

g-3n,=butpooua ,0 T,<UOTSIAA TUKE

US 2002/0184610 A1

Dec. 5,2002 Sheet 21 of 97

Patent Application Publication

8Ly

g 23y

{
} (ymoys proa oTTqRd
I«
cagerdusy STYY MOYs o} SJPUER ROTININ IY) U partred siab sTyl .

wxd

{
} {3T9Tis BUTIAE)aTATIASS Proa orrand

{
} ()spry proa arrand

{
} {isseToAn arrand

} 3begqaoealSqY "nITA IUITTD "OSTAO0D "WOD spudqgxa sSseTQA sseTd orgged

e auane “ame “eael axodwr
e e teas(agxodmt

¢saaeTdusy s3Heydwd

US 2002/0184610 A1

Dec. 5, 2002 Sheet 22 of 97

Patent Application Publication

0C

14

§T 231y

US 2002/0184610 A1

Dec. 5,2002 Sheet 23 of 97

Patent Application Publication

(3ry JoL) 97 2In31q

I9pON

009 -» Nom\m

y09

ndug Jesn

M

1

A D3OS

US 2002/0184610 A1

Dec. 5,2002 Sheet 24 of 97

Patent Application Publication

039
Jsubisaq
Is|jonuo) Buisn
slied Bupoauuo)
Ag uopeoyddy
gpe|dwo)

LT 2In31g

959
8%o $824N0G
uonejuasald ubiseq ejeq dojareq

JoubBisaq malA JouBjsag |opon

¥59
uoneolddy
JO uopejuasalday
|ensiA s1eald

JauBisaq Jejjonuon

omm\

759
uojeoijddy aupno

sued uopedddy

US 2002/0184610 A1

Dec. 5, 2002 Sheet 25 of 97

Patent Application Publication

SUCTRY 1804 "0

474

SUOIISUBIL 'S suopoy 'y SUORDE-81d |
/ sy \w?,
S~ — 20L” |

\i \;...q /. m\
wE \

\ -/vE

wdu| sesn g node Jepuey 7

87 an3ig

N0AB" /M BRI

US 2002/0184610 A1

Dec. 5,2002 Sheet 26 of 97

Patent Application Publication

/

Jake| aanoe yuauno ayy
U| MOYHOM BU) O} JBI0JILOD
U} s|[ed jeu) 81els ppy

wNa\

!

|

ayoes

WUy JB{0UOD SABUIY

/

wojsAs
Bl WoJJ JB|[04U0D PeoTy

ku\
Sjse

/
Nﬂm\

I|I—||~w_xw },usaop

1.

8Loed WoJy JBHI0IUCD PEDT}

0z8

\\
ruougq 48]|10QU00aANS —————

ooc\

6¢ 231y

Molpom JahE) 1004 BU} LI MO|SIOM
94} 0} uonisuRs ppy 2y} 0} IIxaA0US ppy
/ /.
4 J
[:12 v_.n\
uonIsuRI) 8y} J0) Solels Jake| BAROE JuauINo By}
UOHBUSep pue 8dJnos 199 Ul MO|JXIOM BY) 0} BJE]S PPY
/ /
1%} w_.n\
PIpPY uonIsues |
pappy x3g ‘Ajug
[BPOW MO|PUOM
Aq poAiadal Juana pappy Pappy a1gs
/
3
acu\

uou\ 1

208

JuaA@ pappe a4y 0S ‘(MmalA)
weibe|p moppom
8Y) UO paAIgdal Juaae doig

peddosp usym
waAa doip ey ‘wesbep
MoppoMm 0} sBeup sesn

/
voc\ *

Beup uiaq
‘ajialed ey Lo 108(q0 uB
10 pezBosayanseobep

US 2002/0184610 A1

Dec. 5,2002 Sheet 27 of 97

Patent Application Publication

|opow
MO[YIOM WOY BAOWBY

/
' .vow\
SICTe)

omw\

c98/

098

Ja|jouoagnsixs/Aus/ees
ay Jo 1no pue o} Buipes|
suojjisuel) jjie aAoway

A

|Jepows
MOYMJOM LLOJY SAOWY

Jsjjosuoogng I3 ‘Anug ‘eieis

ys8

es8

(maln)
welbep mopsom Ut ()o1ejep

X

uonoe ajeeQg

|

pepsies
(sNhos{qO (LMoo
uj palfqo Buyosleg, 2as)

858

958

0€ 9InTry

uolisued} 8y} 0) soudlayal
aA0Wal 0} J8jjonuodgNs
Axej/Anua/sare;s Jsnlpy

A

lJopow
MO[YIOM WIOLY BAOWIDY

UORISUEI ._.L

US 2002/0184610 A1

Dec. 5,2002 Sheet 28 of 97

Patent Application Publication

selpedosd
oy) Aejdsip pue {)Joyp33e8
LA) 11eD ‘uonoe 1xeu JyBiybiy

15!| ucpoe
104 10}1pa Apsdoud Jea

1if Uonoe By} Ul uolsod
eselIp e Ul yoeq paddoiq

1€ aIn31g

loype ay Ae|ds|p pue uonoe
ey} 10j (Jioyp3yeb |leD

/ /7
996" ﬂ e % zi6 [096/]
suopoe suoyoe doug
2J0W ON a10N |
}Si§ uonoe’ 181 voyoe
aU] WoJy uoKoe ejejeq 8y Uy }98[qo Beup 180 s uoyde Uy pedda.g
Z y P4 i ya
Sm\ Em\ wmm\ Q+
aplRg _ e o_._o
1 AB|dSIP pUE UOKOE BU 10}
(Moup=zpeB 11e 3 JuBIYBIY sowzww_a Soohoe
,"109[00 pejoeles 160 Py 419010 beup 309
4 A
«om\ Sm\
099G

omm\

.vmm\

Nmm\

_ Beuq

Joype sy Aeydsip pue
L (103p=1e6 s 08lq0 sy} |IBD

A

peAejds|p s| Jojpe pue
Pejo8|es J98{qO (MOPMOM
L ul38lq0 Bugoees, 99g)

US 2002/0184610 A1

Dec. 5, 2002 Sheet 29 of 97

Patent Application Publication

(340eqAUOY) OF DAOW
‘uawiuBjle ‘s1sed/idoo
AMd) SUOUNG 30| ajepdn

Zlok \ A

violk

olok

/

3 MOYS pue
Joype Auadad 129lqo 199
/
0zoL
W MOYS 198[qo uonsues
PuE (1S1] ONjEA-BLUEU) JOIPD ‘Ja(joNuoagNs
sapedold uesq yneyap asn 11xa ‘AljUL ‘ele1s

NNo_.\

11 MOYS pue Aejdsip
0} JD1OIJUOD pUE B)ES 189

A

(orqista 1) Aeydsip
MOYLOM 1UI Bjepdn
'JUBAS UOHID9IOS SAR09Y

i

#lcﬂmg BAB[UMOUNUN ———

7¢ 2m3yg

JUBLIWCD DY} Uf SBIOU MOUS
/

mror\

Joj sajuadosd
Ae|dsip 0} 03(q0 199

I
9loi \ 4

(aigisin
1) y98ys Auedoud eepdn

"UBAD PBIIBIAS BAIRIDY
,

moo_.\ %

0001 \

_

peuy St JUBAS LOJOBISS
© '}03(q0 ay) ud SHI12 Jasn

3001 [
SBYIO uomsuel) JyBybiH
/
Y00l \
uofisues L,
walgo
JOAO BSNOW SIAOW JBS
zool

100lq0 EmEEooL

Patent Application Publication Dec. 5,2002 Sheet 30 of 97 US 2002/0184610 A1

State2
State2

This is a notes object
44

- b =S
]

-

E o

Stant

Figure 33
Figure 34

US 2002/0184610 A1

Dec. 5,2002 Sheet 31 of 97

Patent Application Publication

uopisues] —

uopoy |

sjelg |

<JBfanuodunejaass
<ALY3dOUd>

|

. <uooyuOSuEI > ¢
I </ 1onbguxgionby |
. == JUNOU!YO BIEP,=3P03 ,ZQ}, =P} W3 UCIOYIOISND> «
[<0A Yuey |, =jebie}
T B, =194E] , €.,=P} IUID UDOYUORSUELL> |

[<UCROVIIGEUBAIRS/>
b <LOLE9I (WO JBAISP,=OWEY (WD ALYIdOHd> |
A <JUNOLW YO L BIBP,=/BADIS 0N}, =[Buondo
| _ J3UIOUY,=BNIEANNEBD ,09},=P |WI UO(IOYBIQELEAIBS> _
| <,58,=Pf (WO
b UOHOYISIT,=$5E0 WD UOIPR, =3B, |W3 AL HAJOHD>

. <uLu=PE WD SYNSOY,=ILUBU UD JO|IONUTINNEIOT>

e ~ I_

.
'

S9lld TWD

UoRoY

uopisues]

SlelS

¢ a3y

zomg |

uBisaq [ensiA - SMO[4 UoRYRIO|

US 2002/0184610 A1

9¢ am31g

|BPOW MOHOM
oyy ui (*o}@ ‘ojnu Bupepued)
» sBumes o) sabBueyd
zzLL ~1__2iepdn ‘ajy mels saeg

i

MOPUIM JOIPB MBIA 85010

Dec. 5,2002 Sheet 32 of 97

Patent Application Publication

O — 8|l} |9POW MOLIOM 8|y jopow MOPUIM
Mo u oww._o n m__ﬁmhw aA0 L~ 8y} u Aqua sAowas MOIOM By} ut ARue ppe mal e u Aejdstp pue
b] A W | zL ~T oy mein pejeoosse e1ojeq |81y matn pajeroosse ppy |_Joups main 108100 osleS
\ Y A gk /'y ozLr Fy
8011
Aljue pejoales
MBIA BAOW MalA 9812 MB1A PPY Pre 8} 40} JOJIPB MBIlA BU)
L~ :199¢ UOUNE] 0] JUSAD UB JO i3
\ kb yhLL
901} r:o_yum gj9jeQ —Uuonoe uu<L
uofoe umop/dn aaop Aijue ue uo yo12-8jqnoQ

SMBIA JO JsI[AgjdsIq

y

qE} MIIA, $179(85 J8s)

_

peAeidsip st Joypa pue
pajosies 108{q0 (,MOIPHOM
- uwelao Bupssies, ees)
coLl

0okl el voLl ~

US 2002/0184610 A1

Dec. 5,2002 Sheet 33 of 97

Patent Application Publication

aoty

8¢ 231y

L€ 231y

US 2002/0184610 A1

Dec. 5,2002 Sheet 34 of 97

Patent Application Publication

alqeL

18 uondo

8|Ny |BUOZLOH

induy

ydeiBeied

<8GR 1/>

<%0 L/>SEFIEETSI001 CIEBLOINOL> “

<.0.=109 ,.0.5MOJ MOMOICY [> 1

(
: <moHeIuL> ¢
'
'
.

<

«ON{RA NRJOP,=enRA L0LLPZESE81 LIETII. = 3

'

" <WSNISY> YL S L LELZIB) 56105 I L=ENIRAING QS| | .
' U HNDSRq0B1AGO}S, =150 Welis| >
T 18),518)| 7011018 T4ARIASIP L2118)8. =0POURSH ,95(9).<U0NEURSED R G0IETBPLBAD 1

s> <
<WeIYISTI/>906PEEDL0SE961STE<. N5 L= SN AIMJeCE] |
ASTIBA UNGJOP,=ONWA LGZPEI|PEELEEL=IOQRILONNG ,[|1N958Q"0BIACOS, =189p WosTl> 1

)21 N Avds|p 1S, =PoWS! 65)9), =UONRUISID [NGOIE TepIeAD ¢

1
'
'
1
T
" ~OWRUTHQRIRATING) AP, 20WRLIRA Uoldo, =adANsi ,0519),zR1ep|agqe|q _=eneAneep ST |
.
T
'

; anduys
! <IXOL/> [B6IISEFOGSITOIGINOL> |

- - <.LEBSEYFESZEPEPEL bu=EnpPANRjep !
19218419 6P z0WILIRA JX8),=BPOL ., 21O} ,=0WBU ,G6H00TCOSI4ZIEDT,=ON INdUl>

<IOYDUY>SADGHZ L, L STEBZAG/uINIAL=ONTA ,0LIOU,= 0L S8 Q}SO> |
<w=he4EFe000 {Unacuq 0BlA0al§,=ISOp 80,5 POWIOW (5L YAZSHTEBOCZLESY,

<oBew/>
<l=180P FEILOGITBELSLEOE=ONN SR Qebow> |

<.@ppiw,cubv . wAey 05aw| “
' apeeig> 1
' <P L/>3555L8596V2IFTLI 00N L> !
'

< yeluBe demzduim eirgs “

<ISTU0OYUONYBIARN/>

<Uoliavrs

< {eWRUue|qRIZAT}INGJ0P)S, =8N [RA _&1UB LT B[qULIATINR}EP, =8 LR BIRQISO>

(WL O[EB1OAT MY JOP)§cUNITA LGLIZ LTO[GRLG A I|NE 5P, BB BIRQISO>

<Jdaov,z9dA] MO.=1eqeuTHNg

1504,=pOYIOW 9310 L=IR GOIBOPLIOAD HO, =8 WY {INISVY CB|ACO)S, =1SBP |@a0],=6d008 UOHIY>
<18UONOYUOIRBIATN

asreeanens

<SR GRLON>

<ISIIePUSHesUOdSOY/>

<8 19pUOHOBUOIERY >

<9 T,=UOISIOA £OLUTU S WO W BEZE0LEQOSL HLEER=ON MBIN><L,OU=OUOIRPURIZ L0 | SUCIBIRA WX

cstiL

6€ 931

oy ot [

el @

0y oy B

ﬁm

:
i
__EF_E - iy

US 2002/0184610 A1

Dec. 5,2002 Sheet 35 of 97

Patent Application Publication

118D Jofjonuod

suonoy

SMAIA

|

sBujpuig eIA
so|qeueA sosn

$19([04JU02 JBLJ0 0}
sanjea ssed o0} pesn

Aljo2.1p sa|qeleA asn ueo pue
18j|03U0d 8L} Jo Hed ale suonoy

A J

—

siajaweied

SWeN
POYIaiN

SweN
a|qeueA

sBuipuig

so|qeleA pue
Lt— SMBIA Uoamjag —m|
RIS

sepiedoid

SPOYBW

so|qeleA

18)|0U0D

Of 2In31g

sesse|d Jo
I SUOHEIEIOBP
aJe so|qeueA

sse|D Wojsny

Jaydepy eo1AI8g oA

Iojdepy o4

Jeydepy d1IH

Jeydepy TOS

sasse|) J91depy ejeq (epadsg

sossen

US 2002/0184610 A1

Dec. 5,2002 Sheet 36 of 97

Patent Application Publication

g¢coy

veoy

404

acoy
0140} 4

Yoy

9" ayo)eoe|das Bupsg Buereaef Bupng Bue) eaef ojiqnd
Drsegsamen oy Bupis Bueenef Bumg:bueleaef ojqnd
sesemor oy Buplg Gueyenef Buulg Buey eAef agnd
ase)seddp 03 Bupng Bue) enef Bupig Bue) enef o)qnd
T v topTstv effomsOu mnd
Quiuy Buwyg’ Buey 2aef Bupis Bur| enef o)jqnd
QAruyrey] ov Buusg Bue) eaef [Jueyo oqnd

AOwawy Bupis bue] el Buuig Buereael 2aney olignd

Bupg buey enef
Bumg‘bueyenef

Bumng Guerenef

[231

A4

UONESHRIT)

co_sa,_Suoim i
aneng 102190
VLR T §

sy Qe |

o
suepyeiguneyeg 8 <M

T

sorjda P
osegancyes
asegiamo) o} V«
asegteddney vﬂ
asen.addnoy

wpy P
fewyieyyor P
wawi P

i
Aowangor § ﬂ_

BUNISTOUET ERE]

uebe l

By BuBr eAe]

FousanIwory B l

US 2002/0184610 A1

Dec. 5,2002 Sheet 37 of 97

Patent Application Publication

Th 2an3ig
alqeLea
|9POW Y} BAOWIBL O} aelep Aueq
9|l |9poW Mo|ptiom ayepdn 4
zizb iz
h pasn JoN Jlumm:L
MO[POM BY) Ul abesn
az v\ 9|qeUBA [9pOW JO} ¥O9YD
A
MONIOM MOYSIOM Ul BCEUEA [BPOU
sy} Ui Buipuiq e ajeald pue 9} 0} 8oUBLE}8) BST pue
‘ejep 106 sioydaooe Heiqg eiep o6 sioidesoe Beiq ~|
2z » » ~giz1
ejep Beip o) sweu B
poyjew pue aweu ajqerea Smuo BIP O} SLEL J|qEpEA
\ {OPOU 19]|0ALO0D PPY |BpoW pue J8j|oJ)uod ppy
0Zel apleq /a
¥43
108[q0 ay 6 6 8[qeuea
Joj Joyps Auedoud Aejdsiq Poqieul Beig T SlqRLes DeIg Lmuﬂﬁoﬁmﬁwﬂ ..Mﬂﬁrm__vw_:
8021~ » 90Z1L” %
sepadoid 1p3g 1essd
Joypa pakedsip sy
Jcj sa|qeiea |apow Ae|dsiq
»
voz1~" \
PoAR|dSIP JOJIPD MO|SHOA
L
i z0z1”"

Patent Application Publication Dec. 5,2002 Sheet 38 of 97 US 2002/0184610 A1

410

Figure 43

Figure 44

s
o
—
<

US 2002/0184610 A1

Dec. 5, 2002 Sheet 39 of 97

Patent Application Publication

S omB1g

Patent Application Publication Dec. 5,2002 Sheet 40 of 97 US 2002/0184610 A1

-
o
2
&
=
E 4
o
-
)
1
B
=
5
8
o
Tom.
a
2'.
et
2
-
T
e

Figure 46

Patent Application Publication Dec. 5,2002 Sheet 41 of 97 US 2002/0184610 A1

.
.
.

3

o
EE
z
o
H
=
&% 3
=
=
&=
&=
f=3
=
=
i
E:
%,
>

Figure 47

US 2002/0184610 A1

Dec. 5,2002 Sheet 42 of 97

Patent Application Publication

g1alqn

8

t 2In31]

US 2002/0184610 A1

Dec. 5,2002 Sheet 43 of 97

Patent Application Publication

Zioslqman - sangadosd sgeue s B

6

{ 231y

US 2002/0184610 A1

Dec. 5,2002 Sheet 44 of 97

Patent Application Publication

0§ 231y

Patent Application Publication Dec. 5,2002 Sheet 45 of 97 US 2002/0184610 A1

Figure 51

US 2002/0184610 A1

7S 2131y

2 5
7 e S

\M{m W e
2 \
.

&

M.}’;E.Z;j

Dec. 5,2002 Sheet 46 of 97

0
Ft

a3

-

ERY aporyis
S Pt

216077 ssauisn Jn
07 SSLisng ¥ aIemalppI asuodsay JAX

S T B

>

5

Patent Application Publication

i
e
=

4{@
S
e
1SRN
TR E e

&
it

/
wom\ ¥06

&ﬁ“
b

\w‘éﬁ
&
O
o

SO E R

Y

i TR E

J1aua)sI -

1senbay AX

Bt e il
006 Nom\ TR e e R T

R I S ot SO

shisi

Patent Application Publication Dec. 5,2002 Sheet 47 of 97 US 2002/0184610 A1

T

BT s s

=
6
iiﬁ
&
=
T
=
=
&

e properte

[1l7

Y
Figure 53

US 2002/0184610 A1

Dec. 5,2002 Sheet 48 of 97

Patent Application Publication

14

G 9an3rg

Patent Application Publication Dec. 5,2002 Sheet 49 of 97 US 2002/0184610 A1

462 464

466 468 470

Figure 55

Patent Application Publication Dec. 5,2002 Sheet 50 of 97 US 2002/0184610 A1

E—
=
&
g.,
=
&

w
i

=

Eo
o

=

-
ol
&
o

=

Figure 56

Patent Application Publication Dec. 5,2002 Sheet 51 of 97 US 2002/0184610 Al

z
5
Tt
EL)
=
£
=
Fe
Hw
-
o
=
i
=
c
:
=1
=
&
£
|

Selec
Figure 57

US 2002/0184610 A1

Dec. 5,2002 Sheet 52 of 97

Patent Application Publication

80¥

FAXAS 1o

el
B .

Buiddeey

.0
&

RTETEEE

ioREQ

8

G oIn31g

US 2002/0184610 A1

Dec. 5,2002 Sheet 53 of 97

Patent Application Publication

welsAs 8y Hvr
ay} 0} a|puey ay} ui Buissed
._szme (Joum a8y} |1ED

4
pivl

(ejep s,joelosd
ay} salo)s) soepsju abeloys
gjep sjosfoid sy 199
/

/
t454}

uo3| pue ‘dnoib ‘uopduosap
‘awieu Jusuodwod
, 186 0} N Aeidsig

P

6S gty

jusuodwod
pappe Ajmau ayy Lejdsip 0}
ozmwa jusuodwiod ysaioy

/ i
1523

8|y 8y} 8sojo pue s1ayNng
8U) ysn|j 0} WaYsAs o\l
YV 8y} uo (hunowun e

/
£152%

——— 108[01d JUa.LIND BY) SABLIY

/

OTET 4

JoBeuew

7
05T

(Wsiueydsw
abeios u} palojs sabueyd)
$J0)Ipd pauado Ajusund
0] sabueyd JIWwon

| waysAs ayl ayy Buisn

Em\um\nm 9|y MV B aeal)

Z
BoPT

paay

-

/
ol

o

[[1i2%

S} JUaAD Jusuodwiod ajealn
/

/
ovT

US 2002/0184610 A1

Dec. 5,2002 Sheet 54 of 97

Patent Application Publication

sauu3
2101 0q)

SIS
d

(ebewy Juasayip waes _uxmu\
mau Jojue '6'9) anunosal

09 231

oyoads-e|eo0| sy} osn o} -
Aiue JeU) S)pe pue saujua
B} JO BUO §108)9S JasM)

{2511
Y 4
7
3[qe} 3|B00| N8P BYI WO 81200
$A9) POAOWIDI/PIPPE AIMaU [t Bugnsixg

ayy yum a)gey auy erepdn

saue fay
feIpawl JO 3|Ge} mau a1edld

\

by O

9je307 MON

|

15| POZ1JEO0] JUBLND
oy sheids|p 10 0} 9Zije00}
0} 9]B20| MaU & 3Jeald
0} SJUBM 195N JI $HSB PIBZIAN

N\

8(200] JououE oo\\\l\\\\\\\\ uﬂw.n

Aeyf anbjun
€ UliM PSJBIJOSSE Pue
3(e20] Yneyep 8y} Ul alqey
e Ul pauo}s si elpaul ey

A

05

("x9 ‘oipne
‘sabeun ‘xa) "6°8) ajejdwa)
B 0] 30IN0SAI B SPPE J8sM

\

pIEZIM LOKEZI[ELOHEUaIY
sayoune) i8S

-

ep

Ul YI0M 0} 8|200}
UNEJ3P B Sauyap Jasn

\

2

Patent Application Publication Dec. 5,2002 Sheet 55 of 97 US 2002/0184610 A1

Figure 61

Patent Application Publication Dec. 5,2002 Sheet 56 of 97 US 2002/0184610 A1

P
R
o
L=
et
E
=
T
=
i
z
-
¥
2

Patent Application Publication Dec. 5,2002 Sheet 57 of 97 US 2002/0184610 A1

Patent Application Publication Dec. 5,2002 Sheet 58 of 97 US 2002/0184610 A1

US 2002/0184610 A1

Dec. 5, 2002 Sheet 59 of 97

Patent Application Publication

$9 SIn3L]

e

207

US 2002/0184610 A1

Dec. 5, 2002 Sheet 60 of 97

Patent Application Publication

dwg

ugag 994407

9

9 3In31

US 2002/0184610 A1

Dec. 5,2002 Sheet 61 of 97

Patent Application Publication

AR AR

i

i

i

it
el

Patent Application Publication Dec. 5,2002 Sheet 62 of 97 US 2002/0184610 Al

ARG SN Y s &
mﬁx’{’%%ﬁﬁm& s

FOELE L A
NG il
T

Y
A e
i
R

o
FE) 7 ?1%‘&'»*.
SR
S e
e

Trar o
st
E i

i %&, T

T

2 §9‘R§§

45

LR
2y 'r

5
Boaiics

Figure 69

(ne Groups

ata Model
art Topics
ss0Urces

US 2002/0184610 A1

Dec. 5,2002 Sheet 63 of 97

Patent Application Publication

0} suibu3

01 daw™oalo
0 | Laay

0

0

w..:...:nm_ 1o9loiy

L 23y

i

£

US 2002/0184610 A1

Dec. 5,2002 Sheet 64 of 97

Patent Application Publication

mmwn_x

UjWpE

soday

fuoysodau Aojdap|

1888 Aojdap)

U

1L 9an31q

US 2002/0184610 A1

Dec. 5,2002 Sheet 65 of 97

Patent Application Publication

swawwo) | |

woy | |

[SpooLE
SWauey

100y

L 231y

Patent Application Publication Dec. 5,2002 Sheet 66 of 97 US 2002/0184610 A1

libsdata jar

Figure 73

US 2002/0184610 A1

Dec. 5,2002 Sheet 67 of 97

Patent Application Publication

saiusdoid

Eipaw

EIpaL

Jsebew|

elpaw

,‘,__m,__mEEE_wHm

JUAS

suss|y

saE|dwa)

suale

saleduway

$3p’jeqolB

48|1s1p

Be

aidwoa ol sasseD

eaef b

S9SSE[D

SSEJO",

safewuesq

JsaBewueag

Patent Application Publication Dec. 5,2002 Sheet 68 of 97 US 2002/0184610 A1

= S & ERe Ry
G iR SR SRR 3

i
4 g

Hangup

]
Figure 75

US 2002/0184610 A1

Dec. 5,2002 Sheet 69 of 97

Patent Application Publication

[2oue)

fojdaq

9/ 2131

disH

Lo

PIOMSSE

LiLpe

SLIRUIaSY)

sodal

awieN Aloysoday

f08083s0yIeI0|:dyu

TN 1anJas

8yl ss8ld "‘MOU I Uels pINOYS NOA 'auliug oflA00 syl pauels Apealie 10U SAEY NOA J|

m:_mcm om;cu mp_“_ 3 mho_nmn_

~
|
"S1Y] 0p 0] MOY U0 sjlelap Joj uoyng disH, w

Patent Application Publication Dec. 5,2002 Sheet 70 of 97 US 2002/0184610 A1

t
>
i
W
b33
=
£
&
k. kS
E
=
E=
£
Gt

Figure 77

US 2002/0184610 A1

Dec. 5,2002 Sheet 71 of 97

Patent Application Publication

8, 9InS1yg

Patent Application Publication Dec. 5,2002 Sheet 72 of 97 US 2002/0184610 A1

Figure 79

US 2002/0184610 A1

Dec. 5,2002 Sheet 73 of 97

Patent Application Publication

. 3

8oy

s

08 2031

- AN 4
SAMN
| ObP
W\
H Prai
[#potigng 9ey
o
- vEY

axg
% 7

US 2002/0184610 A1

Dec. 5,2002 Sheet 74 of 97

Patent Application Publication

S SEE S ey ——m——y

g gnsey

e e e A AN ek e mmm e mmmmm e, b————. , e e

weyg

18 21n31

FEETen]

e
vog

¥

japowigng

Patent Application Publication Dec. 5,2002 Sheet 75 of 97 US 2002/0184610 A1

Thank You

Patent Application Publication Dec. 5,2002 Sheet 76 of 97 US 2002/0184610 A1

Thank You

Submadel
|
Exn
-
Notes

US 2002/0184610 A1

Dec. 5,2002 Sheet 77 of 97

Patent Application Publication

80%

DIU) UQUBAG D) PO e

-

04u] UOINBAUO] 2O

¢8 231y

o
e

fepoung

&

US 2002/0184610 A1

Dec. 5,2002 Sheet 78 of 97

Patent Application Publication

",
o,
[

., O] UOBIOAUOT 108
4 -

L8 31

PrROWAg

US 2002/0184610 A1

Dec. 5,2002 Sheet 79 of 97

Patent Application Publication

LiFloqyalum sualm

unowya g / \
3dALAuoungwordie o

woojm

3dALAuaNWory:

68 I3y

Rpowgng

US 2002/0184610 A1

Dec. 5,2002 Sheet 80 of 97

Patent Application Publication

ZRNogwIum

&

*

16 281y

VFjloguetym
E:eESu“\ v/ \ A
ahffumnguoifiee |

dA1&uenn)o ¥

oFl . DS

ppowng

LITELITE

L
E;oES-“\ 7//«,%, ._.>=u==052m¢ko o
G @

A0S

US 2002/0184610 A1

Dec. 5,2002 Sheet 81 of 97

Patent Application Publication

EAL LA L CNT

2eliegyoym

unymo._a::oo.:-o

S

»

s

pY oy

E:cES~W\
28ATUNNI0 11D %
, R

—

_.::.ES-“\

d

et

wWejeaya e

4
4!!.!!.{1.!.“

ey

PEjoQWIym |

L

VL

V/um\:.?.::uEE.« o

/an&?-::o&&&

£6 91314

Ppouqng

US 2002/0184610 A1

Dec. 5,2002 Sheet 82 of 97

Patent Application Publication

6 93y

/.

R . , 3 . JUnowyRg ,
1
: !

wna;:a:muEE\bwo 7
3 A - \ N
4 ; .f
e . T N\gms G
[Bpowgng

WM“

US 2002/0184610 A1

Dec. 5,2002 Sheet 83 of 97

Patent Application Publication

Hxg ROANUEY]

lake 100y

uEis

6 oInS1y

US 2002/0184610 A1

Dec. 5,2002 Sheet 84 of 97

Patent Application Publication

JakeT [ensip

o

OJU| UMSIBAID] 1R g T
»

R xAX& '

™~
T,
S

9

6 231y

US 2002/0184610 A1

Dec. 5,2002 Sheet 85 of 97

Patent Application Publication

J9Ae @910/

yw dAjAbuanny

. Junounses V/ .
ma;k;cmh_suemi«w@

01339

«

LEIIOQY2IYM,

Y

5
Sty
b

L6 231

53100

g

[epouqng

o

B1e1g

Patent Application Publication Dec. 5,2002 Sheet 86 of 97 US 2002/0184610 A1

404

Figure 98

US 2002/0184610 A1

Dec. 5,2002 Sheet 87 of 97

Patent Application Publication

Buuig Guerenel
Buwig Guey enel
Buug ‘Buey enel
Buwyg Guey enel
Buwig Gueyenel

66 I3

Aouaungo:

wnowy ol §

wnoukswoy) ¥
Aouawng wouy

US 2002/0184610 A1

Dec. 5,2002 Sheet 88 of 97

Patent Application Publication

101 IS

noj yuery o8

wed u viefie s ()

s

4 g,
B
R

VOLy

US 2002/0184610 A1

701 2m31g

e L AU NS R S S ML A BN el beeeir, N NS edendd sansari g " D e -

S i R At S o
e gy 4 &4
L a8 s

Dec. 5,2002 Sheet 89 of 97

Patent Application Publication

{

\PWip,,

ER R ETETILE NTY

RN

vralayng b

[

11eRgYeNm of ¢

2] ¢ T v R R e

SOuR N2bAYL w AT Y BG {]

US 2002/0184610 A1

Dec. 5, 2002 Sheet 90 of 97

Patent Application Publication

€01 21031y

530IN05AY @ -[@
sdnaig SuAg t
soidoy Many E —
" - .

EAE[JBLBAUOL[BOT n@
eAe[BuddeyAouaunyg n%

EAB[JalanU07) ,@ .

lepowy 20 % &)

A B3I el QYO ['

RA'92I0A” LiEllog Yol ()

Is*307 15K dwosm, [

93] 18X Awodpa, I

[5X"18% awoo3An @

915X awoop, [

|y 3ion” Bwoajay, B
19v B SWoa[Rn, m
(LT VETT m

dyeiegTno) suRyL m -

1sX1gX” sunsay

qo'18X sunsay {3 -

|dveg ey [-

| 30107 "9d AL Aouaunsop 180G m .
R 201 adA L Asusung wiieg m -
qogadAj Asuaungwos 18 B
|d¥ojujuoisianue) 189

(M 320N WnoWNy 139

Raoga"ynsaginding R -

SIajjoume) @ =
20 Latn

40} 4

US 2002/0184610 A1

Dec. 5,2002 Sheet 91 of 97

Patent Application Publication

SO1 a3y

R L

$01 2131

Y

2

td

suondo

10} Asuauny
H...u

Junowy

[asn]

‘way Adusung
19U OAUO D)=

US 2002/0184610 A1

Dec. 5,2002 Sheet 92 of 97

Patent Application Publication

LOT 231y

EEBIRE

LS
wamgrd g, 0%

901 21031y

US 2002/0184610 A1

Dec. 5,2002 Sheet 93 of 97

Patent Application Publication

801 2131y

sdnug ouAsg m H
soido] uaps H
EAR[IAUINUO] [E00] nww @ W
eaefBuddepAouaning _nﬂ.w m
engfuouaaved m
19pow B1EQ @ Tw.“
e son”eloqyorin B |
1201 LEoq Yol [M
1sX'30TISK 2woolan mw
90’33 15X ewoojemy, @ .
[ER T LT @]
901X swooren 35
[oG “BUNORAN mﬁ
141 B1Rg T BWO0| @ o
[T 321GA” SHUBYL E -
(dreeqnoy, eyl 77
IsxsX"sunswy {2
605X synsey 35 -
|dyeieg T synsay H
| 39107 HRsay nding @ :
drewgTdRy @ m
(so"adf Aousung oyieg B m
[901G ad AL ASUALINT Wod 4 15 m._u ;
qo gadALAsuaungwouywg @ W
1
|
W

SVUNOFIY E
H
H
H
4

194 0ju|UOjSIBAUO D 1BE) (TR
B BOJN "oy R0 B -
20107 uizByyog 58} ;
sman, B _mu
L' [spoppionry MM;M W
sipjuwog B =

700 L&)

Patent Application Publication Dec. 5,2002 Sheet 94 of 97 US 2002/0184610 A1

]
=
=
"
&
%
L
=
T
E
@
=
=
=
i
=
=
=
E
3%
&
i

Figure 109

US 2002/0184610 A1

Dec. 5, 2002 Sheet 95 of 97

Patent Application Publication

011 2an31g

ma._..a Aousung WAIRFHP Ul Ynss sIndino BdAy }o:m.::a E pUE Junowe ue indu; se sayg| - ..w:u,._.:ou ...mo:u._._zu

WIOTR IS

| . . WEIOgyoiyan

‘ . . E:oEﬂva\
\

Ardouanngojlas
e

U Ay
L
*

...EQU .&E

US 2002/0184610 A1

Dec. 5,2002 Sheet 96 of 97

Patent Application Publication

i

=g

jusuodw o JsPaaL0) Aauauny

abed |ppod uiey

elg

I

I In3L]

TNy

|

"oy Ay

US 2002/0184610 A1

Dec. 5, 2002 Sheet 97 of 97

Patent Application Publication

I

I

AdUaN W)

WNOUkFWOI}

WnoursOY

US 2002/0184610 Al

SYSTEM AND METHOD FOR BUILDING
MULTI-MODAL AND MULTI-CHANNEL
APPLICATIONS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims priority from U.S. Provi-
sional Patent Application No. 60/263,574, filed on Jan. 22,
2001, entitled “SYSTEM AND METHOD FOR DESIGN-
ING, DEPLOYING AND MANAGING MOBILE APPLI-
CATIONS.”

FIELD OF THE INVENTION

[0002] The present invention generally relates to a system
and method for visually building applications and more
particularly, to a system and method that enables the rapid
development of scalable, multi-channel workflow-based
applications that may operate in a multi-modal environment.

BACKGROUND OF THE INVENTION

[0003] Computing models have changed dramatically
over the last two decades. The paradigm shifts from main-
frames to personal computing to pervasive computing drive
the need for significantly different programming models.
Today we are in the era of personal computing, where a
desktop computer is the primary computing device. FIG. 1
illustrates the current paradigm of connecting to the Internet
using a personal computer. As shown in FIG. 1, clients 10
(ic., a user and access terminal) may utilize or interact with
applications 12 (and the application run-time system 13
needed to support the applications) stored on remote com-
puter systems 14 over a network 16, such as the internet. The
application 12 and run-time system 13 may access, utilize
and communicate data 18 that is stored within local or
remote locations or databases. As we move to the pervasive
computing era of “anytime, anywhere access,” access to
information from different terminals in a variety of different
channels and modes becomes important. In the following
discussion, the terms terminal, channel, mode, multi-chan-
nel application, and multi-modal application are defined as
follows:

[0004] 1. A terminal refers to the device that is
operated by the user. It generally comprises an input
device, such as a keyboard, a processing unit such as
a CPU, a computer program such as a browser and
an output device, such as a display screen or printer.
In addition to the traditional networked desktop, a
terminal can refer to devices such as PDAs, Internet-
enabled phones, handheld pads, 2-way pagers and
voice recognition terminals. FIG. 2 illustrates how
different access terminals 10a-c (e.g., web browsers)
can be used to access the same applications 12 over
a network 16. FIG. 2 further illustrates how appli-
cations 12 may access different types of data 18a-c
stored at various remote locations.

[0005] 2. A channel refers to the medium, or the
“pipe” over which the interaction takes place. The
main channels of access are: wireline access over the
Internet using physical connection cables or tele-
phone cables; wireless access over cellular and other
over-the-air networks such as satellite links, radio
frequency waves, or infrared connections; and voice

Dec. 5, 2002

access over analog PSTN networks. FIG. 3 illus-
trates how different access terminals 10d-4 can use
different channels 16a-c to access the same applica-
tions 12.

[0006] 3. A mode refers to the way a user interacts
with the application. For example, the present inven-
tion offers development of applications that can be
operated in three modes by the end users: real-time,
disconnected, and asynchronous. In real-time mode,
shown in FIG. 1, users request information from an
online, server-side application run-time system 12
over the network 16. In disconnected mode, users 20
may interact with an offline application 22 and
offline run-time system 26 stored on a client device
24, as shown in FIG. 4. The user 20 may also
connect to a synchronization application 30 (and
online run-time system 31) on a remote computer
system 32 through a conventional network 28 in
order to update or synchronize data 34 by various
methods. In asynchronous mode, the application
may notify users of an event, pushing real-time data
via alerts, and the users may choose to respond when
they are available. FIG. 5 illustrates how alerts are
pushed to a user 40. The alerts are triggered by an
external event 50 that is detected by an alert man-
agement system 46 (and run-time system 47) on a
remote computer 48, and are pushed over a network
44 to the user’s client device 42.

[0007] 4. A multi-channel application is an applica-
tion that can be accessed via two or more channels,
including but not limited to wireline access by web
browser, wireless access by internet-enabled phone,
wireless access by PDA (Personal Digital Assistant),
and voice access by telephone. The content and
functionality may be the same or differ across chan-
nels.

[0008] 5. A multi-modal application is an application
that can be operated via two or more modes, includ-
ing but not limited to real-time, disconnected, and
asynchronous access.

[0009] The use of multiple modes and channels is desir-
able for mobile business users. For example, suppose a
salesperson needs to access corporate information while
traveling. The salesperson makes a voice call into the
company’s enterprise voice portal. He quickly gets to his
personalized menu, and asks for the status on a specific
customer account. Instead of listening to all the information,
he asks that the information be sent to his WAP phone
(changing channels). He hangs up, and immediately receives
a WAP alert on his phone (changing modes). He continues
to interact from the WAP channel of his phone. He quickly
scans the information and forwards the relevant information
to the customer as an e-mail summary, and also as an SMS
message.

[0010] With the growing popularity of cellular devices,
personal digital assistants, voice technologies and the Inter-
net, there is a need for developing software applications that
support operation in multiple modes over multiple channels.
Developing an application that is capable of providing the
seamless user experience described above requires a highly
integrated application that supports interaction in multiple
modes and channels.

US 2002/0184610 Al

[0011] Current approaches involve developing separate
custom applications for each variation in mode, channel,
browser, and/or device. This approach is expensive and time
intensive, as the developer is essentially building the appli-
cation multiple times, rather than once. Maintenance
becomes cumbersome; one change necessitates making
changes in multiple locations. In addition, it is impossible to
deliver a seamless user experience.

[0012] Conventional approaches also include several
visual or graphical techniques that allow programmers to
build applications rapidly. With tools such as Microsoft
Visual Basic™, visual programming paradigm has entered
mainstream programming. The goal of such environments is
to make programming in various languages easier for devel-
opers, and sometimes, accessible to non-programmers.
However, the resulting programs built using such develop-
ment environments are typically single-channel or single-
mode.

[0013] The task of developing highly usable multi-chan-
nel, multi-modal applications becomes more daunting with
the constant emergence of new technologies. To create a
multi-channel multi-modal application that delivers optimal
user experience in all modes and channels, developers have
to learn and use diverse technologies and standards includ-
ing XHTML, WAP, WML, XSLT, HTTP, WSDL, SOAP,
location-based computing, SMS messaging, 3G, speech
recognition, and Web Services.

SUMMARY OF THE INVENTION

[0014] The present invention provides a system and
method for design and development of multi-channel appli-
cations using a Model-View-Controller paradigm.

[0015] The present invention provides a visual develop-
ment tool for rapidly building voice and data applications
that may operate across multiple network standards, devices,
browsers and languages. The present invention may be part
of an overall system for developing, running and analyzing
multi-modal applications that includes a development plat-
form, run-time engine, and data-mining module.

[0016] Furthermore, the present invention provides a sys-
tem and method for building scalable, object-oriented type
applications for use in a multi-channel environment. In view
of the unique needs of multi-channel applications, the
present invention provides the basis for a simplified devel-
opment environment that specifically allows the rapid build-
ing of multi-channel, multi-modal applications. This sim-
plified environment allows a developer to consolidate the
design of various custom applications into a single applica-
tion that can handle multiple modes, channels, and device
capabilities. As such, the present invention eliminates the
need to design separate custom applications for each varia-
tion in mode, channel, browser, and/or device.

[0017] Inone embodiment, the development system of the
present invention generates an application descriptor for a
run-time engine that provides a robust environment designed
for executing multi-channel multi-modal applications. The
application descriptors are preferably based on the “Model-
View-Controller” (MVC) standard, as enforced by the
development system. The run-time engine may provide a
single, comprehensive architecture for delivering such appli-
cations and services over multiple channels and modes of

Dec. 5, 2002

operation. The run-time engine may based on standards and
preferable implemented using XML (eXtensible Markup
Language) and Java Programming Language in computer
software executing on a desktop, network server computer
or pervasive computing system. However, alternative
embodiments may be based on differing standards without
departing from the invention. The preferred run-time engine
is described in detail in United States patent application of
Kelvin Chong et al., entitled “Efficient System and Method
for Running and Analyzing Multi-Channel, Multi-Modal
Applications”, filed on Jan. 18, 2002, which is assigned to
the present assignee, and which is fully and completely
incorporated herein by reference (hereinafter referred to as
“Chong et al.”).

[0018] The process of building multi-modal, multi-chan-
nel applications using the development environment of the
present invention provides many advantages including but
not limited to the ones listed below:

[0019] 1. One application development environment
can be used to create real-time, disconnected, and
asynchronous applications for various channels.

[0020] 2. The environment shields developers from
having to learn every technology thoroughly.

[0021] 3. The environment allows developers to
build, evolve, extend, and maintain multi-channel
applications easily and quickly.

[0022] 4. The environment allows developers to
incorporate new technologies, while easily integrat-
ing legacy technologies as well.

[0023] 5. The behavior of applications created in this
environment may differ, depending on the needs of
the channel, mode, device, or user.

[0024] 6. The environment allows for building easily
interuationalizable applications.

[0025] 7. The environment facilitates the develop-
ment of object-oriented, highly modular applica-
tions. These modules allow for reuse of work and for
easy modifications.

[0026] 8. The method of the present invention allows
for selective deployment of certain functionalities of
the applications created in various channels, or
modes.

[0027] 9. Applications created in the environment are
able to maintain state and context information. This
information is used to transfer the user between
channels or modes as required during the running of
the application.

[0028] According to one aspect of this invention, a unified
visual environment is provided for building applications
using a model-view-controller programming paradigm.
These applications are preferably state-based multi-channel,
multi-modal applications that are transactional in nature.

[0029] According to another aspect of the present inven-
tion, a system for visually building applications is provided.
The system includes a first module adapted to allow a
developer to visually design workflow for an application; a
second module adapted to allow a developer to design views

US 2002/0184610 Al

for the application; and a third module adapted to allow a
developer to integrate data sources within the application.

[0030] According to a another aspect of the present inven-
tion, a system for visually building multi-channel applica-
tions is provided. The system includes an interactive devel-
opment environment for visually designing workflow for a
multi-channel application, the environment being adapted to
allow a developer to independently design the workflow in
a plurality of layers, each of the layers corresponding to at
least one channel of the application.

[0031] According to another aspect of the present inven-
tion, a system for visually building applications is provided.
The system includes a graphical user interface adapted to
allow a user to visually build a workflow for an application;
and a module for converting the visually built workflow into
a markup language (e.g., an XML-based markup language).

[0032] According to another aspect of the present inven-
tion, a method of building an application is provided. The
method includes the steps of: providing a visual develop-
ment environment; designing an application workflow
within the visual development environment, the application
workflow describing certain business logic and comprising
a plurality of states and a plurality of transitions, linking the
states; and converting the application workflow into an
application descriptor.

[0033] According to another aspect of this invention, a
system and method is provided for the internationalization
of such multi-channel applications. Multi-channel applica-
tions have a variety of resources such as strings, images,
voice grammar files, audio files that may be international-
ized.

[0034] Another aspect of this invention is to provide
techniques that help building and maintaining applications
hundreds of business processes with thousands of steps.
Specifically, a technique is presented to support a hierarchi-
cal state based visual programming model with the intro-
duction of the sub-model concept. Further, a method of
encapsulating these multi-channel, multi-modal applica-
tions, which will hereinafter be referred to as “componen-
tization” is also presented. A system and method for encap-
sulating and packaging entire applications, including
presentation, business logic and workflow is provided.
Another such technique that helps building large application
is the concept of n-dimensional process planes, hereinafter
referred to as “layers.” Programming using layers allows
developers to create different experiences for different
devices for the same business process.

[0035] Still another aspect is to provide a system for
persisting such application designs into a project and pro-
viding a method to deploy such ready-to-run application
projects preferably to a runtime system over a computer
network.

[0036] These and other features and advantages of the
invention will become apparent by reference to the follow-
ing specification and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0037] FIG. 1 is a flow diagram illustrating the current
client-server computing paradigm in real-time mode in
accordance with the prior art.

Dec. 5, 2002

[0038] FIG. 2 is a flow diagram illustrating the use of
different terminals by clients to access the same application,
in real-time mode, along wireline channels in accordance
with the prior art.

[0039] FIG. 3 is a flow diagram illustrating the use of
multiple terminals to access the same application via mul-
tiple channels, all in real-time mode in accordance with the
prior art.

[0040] FIG. 4 is a flow diagram illustrating client-server
interactions when users access an application in discon-
nected mode, using offline client devices in accordance with
the prior art.

[0041] FIG. 5 is a flow diagram illustrating how alerts are
pushed to users in asynchronous mode in accordance with
the prior art.

[0042] FIG. 6 is a block diagram illustrating a system for
building and deploying applications implemented within a
computer system in accordance with a preferred embodi-
ment of the present invention.

[0043] FIG. 7 is a block diagram illustrating the Interac-
tive Design/Development Environment (IDE) and func-
tional modules of the system shown in FIG. 6.

[0044] FIG. 8 is a block diagram illustrating possible
outputs of the present invention for each application/module
designed using the invention. The combination of these
outputs is called an application descriptor or a project

[0045] FIG. 9 is a flow diagram illustrating the develop-
ment and deployment of applications using the present
invention. The current invention can be part of a over-all
system of developing, deploying and running multi-channel,
multi-modal applications.

[0046] FIG. 10 is a flow diagram describing the lifecycle
of the IDE managers involved in the current invention.

[0047] FIG. 11 is a flow diagram describing the lifecycles
of IDE plug-ins involved in the current invention.

[0048] FIG. 12 is a sequence diagram detailing the pro-
cess used by the current invention in creating a new project
in the IDE.

[0049] FIG. 13 is a sequence diagram illustrating the
process used by the current invention to open an existing
project in the IDE.

[0050] FIG. 14 is an embodiment of a dialog box used by
the IDE to select a file for opening a project in the current
invention.

[0051] FIG. 15 is a sequence diagram illustrating the
process used by the current invention to save a project in the
IDE.

[0052] FIG. 16 is a sequence diagram illustrating the
process used by the current invention to close a project in the
IDE.

[0053] FIG. 17 illustrates an embodiment of a graphical
interface for the IDE of the present invention.

[0054] FIG. 18 illustrates an embodiment of a graphical
interface for a project tree of the IDE associated with the
current invention.

US 2002/0184610 Al

[0055] FIG. 19 illustrates an embodiment of a graphical
interface for the interaction flow editor of the IDE associated
with the present invention.

[0056] FIG. 20 illustrates an embodiment of a graphical
interface for the actions editor, which is linked to the
interaction flow editor shown in FIG. 17, associated with the
present invention.

[0057] FIG. 21 illustrates an embodiment of a graphical
interface for an editor to create and modify rapid visual user
interfaces inside the IDE associated with the current inven-
tion.

[0058] FIG. 22 illustrates an embodiment of a graphical
interface for an editor to create and modify rapid voice user
interfaces inside the IDE associated with the current inven-
tion.

[0059] FIG. 23 illustrates an embodiment of a graphical
interface for an editor to create and edit XHTML user
interfaces inside the IDE associated with the current inven-
tion.

[0060] FIG. 24 illustrates an embodiment of a graphical
interface for an editor to create and edit Java language user
interfaces inside the IDE associated with the current inven-
tion.

[0061] FIG. 25 illustrates an embodiment of a graphical
interface for an editor to create and edit native user inter-
faces inside the IDE associated with the current invention.
Native user interfaces are developed in the native markup
language of the device or browser that is connecting to use
the application being designed in the IDE.

[0062] FIG. 26 is a flow diagram illustrating the run-time
interactions between the Model, View, and Controller mod-
ules in the MVC (Model-View-Controller) programming
paradigm of the prior art.

[0063] FIG. 27 is a flow diagram illustrating a preferred
design time method using Model View Controller (MVC)
architecture for developing applications using the present
invention.

[0064] FIG. 28 is a flow diagram illustrating the order in
which the components (actions, transitions, views) of a state
are executed during run-time.

[0065] FIG. 29 is a flow diagram illustrating how objects
are added to the interaction flow editor associated with the
IDE of the current invention.

[0066] FIG. 30 is a flow diagram illustrating how objects
are removed from the interaction flow editor associated with
the IDE of the current invention.

[0067] FIG. 31 is a flow diagram illustrating how select-
ing an object in the interaction flow editor of the IDE brings
up property editors inside the IDE associated with the
current invention.

[0068] FIG. 32 is a flow diagram illustrating how an
object is selected in the interaction flow editor associated
with the IDE of the current invention..

[0069] FIG. 33 is an embodiment of a notes object in the
controller editor of the IDE described by the current inven-
tion.

Dec. 5, 2002

[0070] FIG. 34 is an embodiment of a graphical interface
for editing the content of the notes object inside the IDE
described by the current invention.

[0071] FIG. 35 illustrates the relationship between a visu-
ally developed interaction flow inside the IDE associated
with current invention and Controller Markup Language
(CML) files that are output by the same IDE.

[0072] FIG. 36 is a flow diagram illustrating the under-
lying processes of the view property editors associated with
the IDE of the current invention.

[0073] FIG. 37 illustrates a palette for creating a data view
template associated with the IDE described by the current
invention.

[0074] FIG. 38 is an example of a dialog box associated
with the IDE of current invention for creating a data view
template.

[0075] FIG. 39 illustrates how user interfaces built using
the rapid visual view editor inside the IDE associated with
the current invention, shown in FIG. 21, correspond to
Template Markup Language (TPL) files that are output by
the same IDE.

[0076] FIG. 40 is a flow diagram documenting the role of
variables associated with data-integration in the present
invention.

[0077] FIG. 41 illustrates the addition of a data source in
the objects tree associated with the IDE described by the
current invention.

[0078] FIG. 42 is a flow diagram illustrating the under-
lying processes behind manipulating model variables asso-
ciated with data-integration in the present invention.

[0079] FIG. 43 is an embodiment of the actions palette
with a set action inside the IDE described in the present
invention.

[0080] FIG. 44 is an embodiment of the actions palette
with a do action inside the IDE described in the present
invention.

[0081] FIG. 45 illustrates an embodiment of a graphical
interface for configuring a data source inside the IDE
described in the present invention.

[0082] FIG. 46 illustrates a non-limiting embodiment of a
graphical interface for providing a description of an object
inside the IDE described in the present invention.

[0083] FIGS. 47-48 illustrate non-limiting embodiments
of graphical interfaces for configuring a data source object
of the HTTP type inside the IDE described in the present
invention.

[0084] FIG. 49 illustrates an embodiment of a graphical
interface for configuring a data source object of the SQL
type inside the IDE described in the present invention.

[0085] FIG. 50 illustrates an embodiment of a graphical
interface for configuring a data source object of the File type
inside the IDE described in the present invention.

[0086] FIG. 51 illustrates an embodiment of a graphical
interface for configuring a data source object of the web
repurposer type inside the IDE described in the present
invention.

US 2002/0184610 Al

[0087] FIG. 52 illustrates the general architecture of a web
service.

[0088] FIGS. 53-54 illustrate non-limiting embodiments
of graphical interfaces for configuring an adapter object for
web services inside the IDE described in the present inven-
tion.

[0089] FIG. 55 illustrates an embodiment of a graphical
interface for creating, using, and managing layers in the
interaction flow inside the IDE described in the present
invention.

[0090] FIGS. 56-57 illustrate non-limiting embodiments
of graphical interfaces for a wizard to componentize the
current interaction flow inside the IDE described in the
present invention.

[0091] FIG. 58 illustrates a non-limiting embodiment of
multiple palettes available to the developer inside the IDE
described in the present invention to use in building an
interaction flow, in the editor shown in FIG. 19.

[0092] FIG. 59 is a flow diagram documenting the pro-
cesses called by one of the plug-ins associated the IDE
described in the current invention during the componenti-
zation of a controller.

[0093] FIG. 60 is a flow diagram illustrating the process
of internationalization called by one of the plug-ins associ-
ated with the IDE described in the current invention during
the internationalization of an application or component
designed using the current invention.

[0094] FIG. 61 shows a non-limiting embodiment of a
view that contains internationalizable resources: a string of
text and an image inside the IDE described in the current
invention.

[0095] FIGS. 62-64 are non-limiting embodiments of
graphical interfaces used in a wizard inside the IDE
described in the current invention to guide IDE-users
through application internationalization process.

[0096] FIG. 65 is an embodiment of a graphical interface
used to enter localized text during intermationalization pro-
cess inside the IDE described in the current invention.

[0097] FIG. 66 is an embodiment of a graphical interface
used to select localized images during internationalization
process inside the IDE described in the current invention.

[0098] FIG. 67 is an embodiment of a graphical interface
used in a wizard that allows users to localize to multiple
locales during the internationalization process inside the
IDE described in the current invention.

[0099] FIG. 68 is an embodiment of a set of toolbar
buttons associated with the IDE described in the current
invention for application deployment.

[0100] FIG. 69 is an embodiment of a set of menu
commands associated with the IDE described in the current
invention for application deployment.

[0101] FIG. 70 illustrates an embodiment of a graphical
interface associated with the IDE described in the current
invention for adding, managing, and configuring deploy-
ment targets.

Dec. 5, 2002

[0102] FIG. 71 illustrates an embodiment of a graphical
interface associated with the IDE described in the current
invention for configuring deployment targets.

[0103] FIG. 72 illustrates an embodiment of a graphical
interface associated with the IDE described in the current
invention for configuring an application’s controllers and
their associated layers.

[0104] FIG. 73 illustrates an embodiment of an graphical
interface associated with the IDE described in the current
invention for configuring the classpaths to deploy with the
application.

[0105] FIG. 74 illustrates an example of a graphical
interface associated with the IDE described in the current
invention for configuring the files that are to be deployed to
the server.

[0106] FIG. 75 illustrates an embodiment of a configura-
tion panel or interface associated with the IDE described in
the current invention that displays the components that are
used in the project.

[0107] FIG. 76 illustrates an embodiment of a graphical
interface associated with the IDE described in the current
invention for initiating deployment of an application
designed inside the IDE.

[0108] FIGS. 77-79 illustrate some non-limiting embodi-
ments of preliminary user interface screens associated with
the IDE described in the current invention when a developer
creates a new project for a currency converter application.

[0109] FIGS. 80-97 illustrate the interaction flow diagram
created in the editor window associated with the IDE
described in the current invention during various stages of
the application building process for the currency converter
example.

[0110] FIG. 98 illustrates an example of a graphical
interface for the objects tree associated with the IDE
described in the current invention.

[0111] FIG. 99 illustrates an example of model variables
that must be declared in the currency converter application.

[0112] FIG. 100 illustrates an embodiment of the actions
palette user interface with a ‘set’ action.

[0113] FIG. 101 illustrates an embodiment of the actions
palette user interface with an ‘if” action.

[0114] FIG. 102 illustrates an embodiment of the actions
palette user interface with a ‘transition’ action.

[0115] FIG. 103 is an embodiment of the project tree user
interface illustrating a plurality of views for the currency
converter application.

[0116] FIG. 104 illustrates an embodiment of a view that
would be rendered on a WAP device in the currency con-
verter application.

[0117] FIG. 105 illustrates an embodiment of user inter-
face palette for creating a voice view template.

[0118] FIG. 106 illustrates an embodiment of how the
view list user interface of the “Results” state will appear in
the currency converter example.

US 2002/0184610 Al

[0119] FIG. 107 illustrates an embodiment of user inter-
face for configuring a data source in the currency converter
application.

[0120] FIG. 108 embodiment of user interface listing all
the controller, view, and model elements of the currency
converter application that comprise the currency converter
component.

[0121] FIG. 109 is an embodiment of a graphical interface
for selecting the desired icon for a component during the
componentization process.

[0122] FIG. 110 an user interface embodiment illustrating
how the selected icon for a component appears in the
components palette of the controller editor after componen-
tization process has been completed.

[0123] FIG. 111 an user interface embodiment illustrating
how a component’s icon appears in the controller editor for
use.

[0124] FIG. 112 is an embodiment of a graphical interface
for specifying the variables that will be passed in and out of
a component during a component use.

DETAILED DESCRIPTION OF A PREFERRED
EMBODIMENT OF THE INVENTION

[0125] The present invention provides a system and
method for building applications. In the preferred embodi-
ment, the system and method are implemented on a com-
puter system and are designed to rapidly develop multi-
channel and multi-modal applications that operate over a
multitude of network standards, devices, languages and
browsers. Particularly, the system and method may comprise
software components that may be implemented by at least
one computer system or network (e.g., a plurality of coop-
eratively linked computers). The present invention provides
a software development environment that allows a developer
to consolidate the design of various custom applications into
a single application that can handle multiple modes, chan-
nels, and device capabilities. As such, the present invention
eliminates the need to design separate custom applications
for each variation in mode, channel, browser, and/or device.

[0126] The discussion below describes the present inven-
tion in the following manner: (i) Section I provides a
glossary of terms that are used throughout the discussion;
(i) Section II describes the general architecture of a pre-
ferred embodiment of the present invention, as implemented
on a computer system; (iii) Section III describes the Inter-
active Design Environment and Plug-ins provided by the
present invention; (iv) Section IV describes the a preferred
embodiment of the graphical user interface (GUI) provided
by the present invention; (v) Section V describes the
“Model-View-Controller” programming architecture in
which applications may be designed using the present inven-
tion; (vi) Section VI describes a preferred method of creating
applications by use of the present invention; (vii) Section
VII describes how the present invention may be employed to
build scalable (e.g., layered and componentized) applica-
tions; (viii) Section VIII describes how the present invention
may be used to create internationalized applications; (ix)
Section IX describes how applications created by the present
invention may be deployed; and (x) Section X provides an
example of how the present invention may be utilized to
create a currency converter application; (ix) Section XI is a

Dec. 5, 2002

schema definition file (CML1.xsd) used within a preferred
embodiment of the present invention; (xii) Section XII is a
schema definition file (CML.xsd) used within a preferred
embodiment of the present invention; (xiii) Section XIII is
a document type definition file (TPL.dtd) used within a
preferred embodiment of the present invention; and (xiv)
Section XIV is a document type definition (VTL.dtd) used
within a preferred embodiment of the present invention.

I. GLOSSARY OF TERMS

[0127] Action: An action is a reusable logic element that
may perform operations on data, i.e., it is a unit of process-
ing that may be required in any application. The preferred
embodiment affords several types of commonly used actions
that the developer may use to build lists of actions to specify
the processing associated with each state.

[0128] Applications: Software that performs a specific
task or function and manifests itself for end-users to interact
with. The present discussion will also generally refer to
applications that deliver services over multiple channels and
support multiple modes of operation. The invention offers a
method of building such applications using a framework
including controllers, views, data and resources.

[0129] Application developers: Application developers
are persons who may interact with the IDE (see ‘IDE’) to
create applications using the framework afforded by the
present invention.

[0130] Channel: A channel refers to the medium, or the
“pipe” over which user interaction takes place. The main
channels of access are: “wire-line” access over the Internet;
“wireless” data access over cellular and other over-the-air
networks; and voice access over analog PSTN networks.

[0131] Class: A class is an encapsulated set of program
statements and methods that specify the data and behavior of
an object.

[0132] Controller: A controller is a deterministic, finite
automaton, illustrating all possible states, transitions and
user interaction paths allowed by an application. In the
present invention, it takes form as a visual diagram that links
end-user interactions and server side processing.

[0133] Data adapter: A data adapter is a pre-built class (see
‘Class’) that provides a mechanism for instantiation of user
objects for each particular type of object such as Java Bean,
or EJB, and encapsulates their details from their usage. In
the preferred embodiment of the current invention, data
adapters are implemented using Java Programming Lan-

guage.

[0134] Data binding: A data binding is a parameterized
method call on a variable/object. Every variable/object has
methods that can be called. Some methods require param-
eters to be passed to those methods. Many of these methods
may often be reused with the same parameters—it is con-
venient to have a mechanism to call such methods by the use
of read-to-run parameterized methods. The use of data
bindings provides this mechanism.

[0135] Data model. A data model is a formalized repre-
sentation of facts, concepts, or instructions in a suitable for
communication, interpretation, or processing by the inven-
tion. The data model preferably includes external data

US 2002/0184610 Al

integration using data adapters (See ‘data adapter’), and
internal user-defined variable data that is persisted across
requests during a transaction.

[0136] Data sources: Data sources is the general term used
to group all information sources from which data can be
retrieved. Some non-limiting examples of data sources
include relational databases, flat files, and RMI (remote-
method invocation) calls. In accordance with the present
invention, data sources are preferably accessed using data
adapters (see ‘data adapter’): there are pre-built data adapt-
ers for various types of data sources.

[0137] DTD: ADTD (Document Type Definition) defines
the legal building blocks of an XML document. It defines the
document structure and relationships between various build-
ing blocks of the DTD with a list of legal elements.

[0138] End user: Users or end-users are the person(s) that
interact with a developed application preferably using a
client device.

[0139] IDE: Integrated Development Environment. Pro-
vides a developer with a visual environment to design
applications.

[0140]
[0141]

[0142] Internationalization: Internationalization (il18n) is
the process of designing an application so that it can be
adapted to various locales.

IDE users: See ‘application developers’.

Interaction flow: See ‘controller’.

[0143] Tocale: Alocale is a combination of a language and
a region.

[0144] TLocalization: Localization (110n) is the process of
adapting software for a specific locale by adding locale-
specific components and translating media.

[0145] Mode: The way an end-user interacts with the
application. For example, the present invention offers devel-
opment of applications that can operate in three modes in
which users can operate: real-time, disconnected, and asyn-
chronous.

[0146] Model: See ‘data model’.

[0147] Multi-channel application: An application that can
be accessed via two or more channels.

[0148] Multi-modal application: An application that can
be accessed via two or more modes, including but not
limited to real-time, disconnected, and asynchronous access.

[0149] Object: An object is a passive entity containing or
receiving information. Objects are instantiations of classes.

[0150] Plug-in: A software component that integrates with
the IDE (see ‘IDE’) and provides additional functionality in
the IDE.

[0151] Pre-action: A list of actions (see ‘Action’) that are
executed before a view (see ‘View’) is displayed in a state.
Pre-actions are a property of states (see ‘State’) .

[0152] Presentation: See ‘View’.

[0153] Post-action: A list of actions (see ‘Action’) that are
executed when control is transferred out of the state via a
transition (see ‘Transition’) .

Dec. 5, 2002

[0154] Rendering Rule: A Rendering rule determines the
view type to be displayed based on the type of client device
capabilities and the channel through which the client device
is connected to the application.

[0155] View Type: The term view types generally refers to
the various ways that view templates may be defined by the
developer. View types may include but are not limited to an
XHTML view, XSL View, and Native View—all of which
are processed by the run-time system to generate presenta-
tion specific for a client device.

[0156] Scoping Rules: See ‘Variable Scope’.

[0157] Session management: The process of persisting
user and system information into a context such that sub-
sequent requests from the same user are re-associated with
the same context.

[0158] State-based Session management: Session man-
agement, with the additional information of application
controller state, that is used to handle interrupted transac-
tions across channels.

[0159] State: The condition of a controller at a given
instance in time, including its configurations, attributes,
and/or information content. Attributes of a state include a list
of actions to perform (see ‘Action’) and views (see ‘View’)
to display.

[0160] Sub-controller: A sub-controller encapsulates a
controller and associates it with a name, such that it may be
“called” from other controllers much like a sub-routine is
called from a main program.

[0161] Sub-model: Same as ‘sub-controller’.

[0162] Terminal: The device that is operated by an end-
user. It generally consists of an input device, such as a
keyboard, a processing unit such as a CPU, a computer
program such as a browser and an output device, such as a
display screen or printer.

[0163] Transition: A special case of an action (see
‘Action’) . A transition is an action that transfers control
from one state to another state. In the present invention, a
transition is also a container of additional actions (i.e., when
a transition action is executed, any actions that have been
assigned to the transition will also execute). A transition
action cannot contain another transition actions.

[0164] Variable: A variable is a runtime/design time iden-
tifier to reference an object or instance of a class. See
‘object’.

[0165] Variable lifetime: Refers to how long a variable’s
value is held in memory. See also ‘Variable scope’.

[0166] Variable scope: Variable scope is a variable’s vis-
ibility in relation to states, controllers, and actions. In the
present invention, there may be four defined scopes includ-
ing request scope, controller scope, application scope, and
global scope. This is not only useful in partitioning and
encapsulating user objects, but also enhances memory uti-
lization, since objects are instantiated only in the contexts in
which they are allocated.

[0167] Request Scope: See ‘Variable scope’.
“Request” scope applies to variables that exist only
during the processing of the current request. Request
variables are automatically created when users inter-

US 2002/0184610 Al

act with a view and send data back to the controller.
This data is in the form of name-value pairs. Once
the execution ends with another view, the “request”
variables will be released and will no longer be
accessible.

[0168] Controller Scope: See ¢ Variable scope’. “Con-
troller” scope applies to variables that have been
declared for a controller. These variables are only
visible while control is within the controller and will
be deemed nonexistent when this Controller is exit.

[0169] Application Scope: See ‘Variable scope’.
“Application” scope applies to variables that have
been declared for an application. These variables are
visible by all controllers in the application. Applica-
tion variables exist on a per-user basis. Once a user
terminates her session with the application, the appli-
cation variables will be released.

[0170] Global Scope: See Variable scope’. “Global”
scope applies to variables that have been declared for
multiple applications across multiple users. These
variables are visible by all controllers in all applica-
tions by all users.

[0171] Users: Users or end-users are the person(s) that
interact with a developed application.

[0172] View: A user interface that is presented to the end
user. A view allows a user to interact with that user interface.
A view might take the form of visual, audio, tactile feed-
back. Views are assigned as properties of a state. When
control is transferred to a state that has a view associated
with it, the view is presented to the user.

[0173] Wireline Connection: Connections requiring a
physical wire to be attached to the client device that allows
end-users to interact with the application.

[0174] Wireless Connection: Connections that do not
require a physical wire (e.g., over-the-air via radio) to be
attached to the client device that allows end-users to interact
with the application.

[0175] Workflow: See ‘controller’/‘interaction’ flow.

[0176] XML: Is extended Markup Language. A known
method of representing data structures in a hierarchical
format with concepts such as parent/child/sibling relation-
ships.

II. GENERAL ARCHITECTURE

[0177] FIG. 6 shows an application development system
100 which is implemented on a computer system in accor-
dance with the present invention. System 100 may represent
a conventional and commercially available computer system
or an independent microprocessor-based system built spe-
cifically for use with the present invention. System 100 may
comprise a control and memory unit 122, a user input unit
124, a visual display unit 126, and a communications unit
128.

[0178] Control and memory unit 122 may be a conven-
tional and commercially available processor-based system
or network server including a microprocessor, volatile and
non-volatile memory, and one or more persistent storage
devices. In the preferred embodiment, control and memory
unit 122 may adapted to and may store at least a portion of

Dec. 5, 2002

the operating software that directs the operation of system
100. Particularly, control and memory unit 122 may store
and operate an Integrated Development Environment (IDE)
and other functional modules and portions of the present
invention, which may be cooperatively used to design and
develop multi-modal, multi-channel applications. Alterna-
tively, the IDE may be partially or wholly stored on a remote
or disparate system, device or network, and may be accessed
and loaded into control and memory unit 122 by way of user
input unit 124 and/or communications unit 128.

[0179] User input unit 124 may include one or more
conventional and commercially available devices adapted to
allow a user to provide data to, and access data from, control
and memory unit 122, and may comprise without limitation
a user input assembly such as a keyboard, mouse, or touch
pad. User input unit 124 may further include other conven-
tional peripheral devices such as disk drives, printers, scan-
ners and the like. Display unit 126 may be a conventional
and commercially available device for allowing system 100
to display visual data to a user, such as a computer monitor,
a flat panel display or other conventional display device
which is suitable to display output generated by computer
system 100. It should be appreciated that user input unit 124
and display unit 126 cooperatively permit a system user or
operator to enter and/or modify data within system 100, to
visually develop application with system 100, to access data
from system 100, and to perform system maintenance,
management and modification.

[0180] Communications unit 128 may be a suitable and
commercially available device or a combination of devices
for transferring data over global communications network
(e.g., the internet) or computer network 130. Unit 128 allows
system 100 remotely deploy applications created by system
100 onto an application-running engine 132 (e.g., the engine
described in Chong, et al., supra, which is incorporated
herein by reference), and to access data from conventional
remotely located files 134, databases 136 and internet sites
138 for use in the application building process.

III. INTERACTIVE DESIGN ENVIRONMENT
AND PLUG-INS

[0181] FIG. 7 illustrates the Interactive Design Environ-
ment (IDE) 500 and the various functional modules or
plug-ins 200 of system 100. In the preferred embodiment,
IDE 500 and plug-ins 200 may be stored within control and
memory unit 122.

A. PLUG-INS

[0182] In the preferred embodiment, the application
design system 100 includes the following functional mod-
ules or plug-ins 200: a process design module 12, an
integration design module 14, a presentation design module
16, a media library module 18, and a componentization
module 20. In the preferred embodiment, modules 12-20
may stored within and/or comprise conventional software
and/or hardware components. The operation of each of these
modules will be described in detail in the following discus-
sion. It should be appreciated that the plug-ins 200 may
further include other types of plug-ins, adapted to perform
conventional functions. Plug-ins 200 may also communicate
with conventional external libraries, as shown in FIG. 7.

[0183] The output of application design system 100 for
each created application or component is an application

US 2002/0184610 Al

descriptor or project 300, as shown in FIG. 8. The terms
“application”, “application descriptor” and “project” will be
used interchangeably hereinafter. The output of system 100
includes the contents of a project. In the preferred embodi-
ment a project will comprise: controllers 302, which may be
produced by the process design module 12; various types of
views 304, which may be produced by the presentation
design module 16; data adapters and data bindings 306,
which may be produced by the integration module 14;
resources 308, which may be produced by the media library
18, and components 310 which may be produced by the
componentization module 20.

[0184] In the preferred embodiment, the output generated
by system 100 does not necessarily include the entire
run-time environment that runs the application descriptor.
Rather, as discussed more fully and completely in Section IX
and shown in FIG. 9, the deployment and application
run-time may be managed by a separate subsystem. This
subsystem is a specialized run-time engine that implements
all the features required by multi-modal, multi-channel
applications, e.g., workflow/interaction-flow control-
lers(runners), context and session management containers,
the ability to switch between modes and channels, under-
standing various application protocols, dynamically apply-
ing different presentation systems based on client capabili-
ties, and the ability to integrate with legacy systems. This
subsystem or run-time engine is described in detail in
Chong, et al., which is incorporated herein by reference.

B. INTEGRATED DEVELOPMENT
ENVIRONMENT

[0185] Referring back to FIG. 7, the integrated develop-
ment environment (IDE) 500 interacts with plug-ins 200,
and comprises an IDE core 502 and an IDE application
program interface (API) 508. The IDE core 502 comprises
of a series of managers and drivers that exposes operating
system resources to plug-ins 200 through API 508. In the
preferred embodiment, IDE core 502 includes the following:

[0186] Main Module 512, which activates or starts
the IDE.

[0187] IDE Manager 514, which manages the other
managers in the IDE.

[0188] File System Manager 516, which abstracts the
file system API to plug-ins, and which controls
conventional file system drivers, such as file system
driver 540, java archive (JAR) file system driver 542,
and internet file system driver 544. The “file system”
is an abstraction of the concept of files in a file
cabinet. It exposes functions to determine what files
are available, to add or remove files, and to modify
the files. This abstraction eventually translates to
calls on associated physical file system drivers. For
example, the file system driver allows the file system
to modify files on a local storage device such as a
disk drive.

[0189] Configuration Manager 518, which provides
global APIs to store project configuration data.

[0190] Resource Manager 520, which provides APIs
to retrieve GUI data such as images and strings.

[0191] Window Manager 522, which handles win-
dowing and provides a consistent look-and-feel, and

Dec. 5, 2002

which may include other conventional managers
such as an output manager 532, a menubar manager
534, a toolbar manager 536, and a desktop manager
538.

[0192] Clipboard Manager 524, which handles cut/
copy/paste actions of IDE.

[0193] Tools Manager 526, which handles the
launching of external tools such as compilers and
emulators.

[0194] Project Manager 528, which handles issues
dealing with projects, such as opening, saving, and
closing projects.

[0195] Plug-in Manager 530, which handles the vari-
ous plug-ins 510 that implement the functionality of
system 100.

[0196] File System Driver 540, which implements
the file system interface 516 to access files on a local
disk.

[0197] JAR File System Driver 542, which imple-
ments the file system interface 516 to access files that

have been archived in a JAR (Java Application
aRchive) file.

[0198] Internet File System Driver 544, which imple-
ments the file system interface 516 to access files
remotely via various internet protocols such as
HTTP (hyper text transfer protocol), SMTP (simple
mail transfer protocol), NNTP (network news trans-
fer protocol) and the FTP (file transfer protocol)
protocol, and other suitable protocols.

[0199] Output Manager 532, which manages a text
window where status messages from various man-
agers and plug-ins of the IDE 500 will appear.

[0200] Menubar Manager 534, which manages the
menu bar that appears at the top of the IDE window.

[0201] Toolbar Manager 536, which manages the
toolbars that is displayed underneath the menu bar
and displays a series of buttons.

[0202] Desktop Manager 538, which manages the
windows on a desktop and includes mechanisms to
save/restore window sizes and positions.

[0203] The IDE core 502 abstracts the operating system
resources for the plug-ins 200 so that the plug-ins 200 can
later be ported to other IDE cores more easily. Essentially,
as should be appreciated by one of ordinary skill in the art,
the IDE core 502 is simply an abstraction of the operating
system API. The plug-ins 200 may be implemented through
the graphical user interface (GUI) provided by IDE 500, as
described in Sections IV and VI. The managers and drivers
may comprise conventional manager and driver software
and hardware components. The operation of these managers
and drives is discussed below.

C. OPERATION OF THE IDE MANAGERS

[0204] FIG. 10 describes the lifecycle 550 of the various
managers of the IDE 502 and how they are initialized and
started. Each manager in the EDE core 502 has a manager
lifetime. When the IDE 500 first starts, it invokes the IDE
manager 514, which manages the other IDE managers. The

US 2002/0184610 Al

IDE manager 514 controls which managers will get initial-
ized and in which order. First, the various managers are
created in step 552. This involves loading the managers’
code into memory. Then, the manager is initialized in step
554. During this step, the managers initialize any variables
or other properties they need to function. At this point, the
managers cannot assume anything about other managers.
After all managers have been initialized, each manager is
started in step 556. During this step, managers can assume
that all other managers have been initialized. This allows
managers that depend on other managers to do additional
work. For example, the configuration manager 518 relies on
the file system manager 516 to be initialized before it can
load settings from a file. The IDE manager 514 will start all
managers, after which the IDE will be running. When the
IDE is to be shutdown (i.e. exit the IDE), the IDE manager
514 will again be called to shutdown each manager. During
the shutdown process, the IDE manager 514 will signal to
each manager that the managers are “stopping”. The “stop-
ping” step 558 allows any manager one chance to abort the
shutdown sequence. For example, if a file was not saved in
an open project, the project manager can veto the “stopping”
event if the user chooses to abort the exit request. If a veto
was returned to the IDE manager 514, then it will stop
sending the “stopping” event to the other managers and will
continue running. Otherwise, after all the managers agree to
the “stopping” event (e.g., no veto was returned), then the
IDE manager 514 will continue with the shutdown. The next
step in the shutdown is to tell the managers to “stop” in step
560. Here, the managers should perform any cleanup code
with the assumption that the other managers have not been
unloaded from memory yet. So, for example, the configu-
ration manager 518 can save a settings file during this step.
After all managers have been stopped, the IDE manager 514
will send a “destroy” event, in step 562, to let the managers
perform one final cleanup with the knowledge that all other
managers have been stopped. The IDE manager 514 will
then execute a system “exit” that will tell the operating
system to stop the IDE 500 and release the memory it used.

[0205] FIG. 11 describes the lifecycle 570 of a plug-in.
Plug-ins include the various editors that appear in the IDE
500 (e.g., process design module 12, integration design
module 14, presentation design module 16, media library 18,
componentization module 20). Plug-ins are managed by the
plug-in manager 530. The plug-in manager is controlled by
the IDE manager 514. During the “start” stage of the IDE
manager 514, the plug-in manager 530 will begin the
initialization code for the plug-ins. Plug-ins follow a similar
life-cycle pattern as managers within the IDE. First, the
plug-in manager 530 will create each plug-in via the
“install” event in step 572. The plug-ins will be loaded into
memory at this point. Plug-ins can also perform any initial-
ization code such as loading settings from files. After all
plug-ins have been “installed”, the plug-in manager 530 will
send the “start” event in step 574. At this point, the plug-ins
can assume that all of the other plug-ins that will be loaded
into the IDE 500 have already been initialized. This is useful
when certain plug-ins depend on the fimctionality of other
plug-ins.

[0206] When the user is about to shutdown the IDE 500
(e.g., by use of an exit command), the “stopping” event is
fired by the plug-in manager 530 in step 576. Like their IDE
manager counterparts, each plug-in should determine if it is
ready to be stopped or not. If not (e.g. still compiling files),

Dec. 5, 2002

then a veto is returned to the plug-in manager 530. At this
point, the plug-in manager 530 will abort the shutdown
process by returning its own veto event to the IDE manager
514. Otherwise, the shutdown continues. After all plug-ins
agree to be stopped, a “stop” event is fired in step 578, at
which point all plug-ins should execute code to “cleanup
after themselves.” Note that unlike the managers in the IDE,
plug-ins can be restarted if the plug-in manager 530 fires a
“start” event again. After all plug-ins have been stopped and
no “start” event is fired, then an “uninstall” event is fired in
step 579. At this step, the plug-ins are given the opportunity
to perform any other cleanup with the knowledge that all
other plug-ins have been stopped.

[0207] FIG. 12 describes the interaction process 580
occurring between various IDE managers in order to create
a new project. When the project manager 528 is installed in
the IDE 500, it installs several commands to the menu and
toolbar. One of these commands is the “New Project”
command. When IDE-users select this command, the “Cre-
ate” finction of the project manager 528 is executed. The first
thing it will do is bring up a project creation wizard. This
wizard will be installed by a plug-in during the plug-in
manager 530 initialization code. The reason for this is to
allow the IDE 500 to be able to handle more than one
predetermined type of project. So, it will be up to the
plug-ins to determine what type of project to create (which
is more flexible since any user-defined plug-in can define
their own project parameters). The IDE user interacts with
the wizard to enter preliminary information about the project
(see FIGS. 77, 78, 79, which are described later). One of the
standard prompts is a location of where to store the project.
The project manager 528 will then take this information and
call the plug-in’s implementation of the “createProject” call.
Note that part of the process of a plug-in (e.g., ModelPlugin
582, shown in FIG. 12) installing a project creation wizard
is also to register a “createProject” finction so that the
project manager 528 can call this function to create a project.
The plug-in will handle all the details of creating a project,
which will involve creating a directory to store project files
and setting the project parameters (like project name, ver-
sion number, comments). After the project is created, the
project manager 528 will then fire off a “Project Created”
event so that all interested “parties” or managers (e.g.,
“listeners”584) interested in whether a project was created
will be notified as such. After that, if a project was already
being edited while a new project is created, a “Project
Deactivated” event is fired to tell listeners 584 that the
currently edited project will be put on the sidelines while the
new project will become the “active” project. After the
newly created project becomes the “active” project (the
project to which users can make modifications), the “Project
Activated” event is fired.

[0208] FIG. 13 describes the process 590 when a project
is “opened” or loaded for users to edit. The project manager
528 will first open up a dialog to allow users to select the
project to load, as shown in FIG. 14. The project manager
528 will get the project name and then ask the plug-in
whether it can correctly load the project. Again, plug-ins can
install themselves into the IDE 500 and register themselves
to be able to handle project calls. One of these calls is the
“createProject” (as described above). If the plug-in deter-
mines that the project can be loaded, it tells the project
manager 528 than it is ready to load the files. The project
manager 528 will then call the “openProject” call for the

US 2002/0184610 Al

plug-in to load all the files needed from disk. Once success-
fully loaded, the project manager 528 will fire the “projec-
topened” event to all interested “parties” or managers. After
that, if a project was already being edited while a new
project is created, a “Project Deactivated” event is fired to
tell listeners that the currently edited project will be “side-
lined” while the new project will become the “active”
project. After the opened project becomes the “active”
project (the project where users can make modifications to),
the “Project Activated” event is fired.

[0209] FIG. 15 describes the process 592 when a user
chooses to save the project. First, the project manager 528
will fire a “projectSaving” event to tell interested “parties™
or managers that it is about to save a project. This gives
various other plug-ins a chance to setup additional files and
commit changes to get saved. The “saveCurrentProject-
Store” is then called, at which point the files will be saved
within a conventional storage device or location 594. After
files are saved, we also reset the “modified” flag to false.
This flag is used to determine which files were modified and
hence needs to be saved. So, files that have not been
modified will not get re-written to disk. After the project has
been saved, a “projectSaved” event gets fired to all inter-
ested parties.

[0210] FIG. 16 describes the process 596 when a user
chooses to “close” a project. Closing a project involves
removing all editors from memory and stops the editing of
the files in a project. Before a project is closed, the project
manager 528 will ask whether the project files have been
modified or not. If files have been modified, project manager
528 will ask whether the user wants to save the project first.
If so, then the project saving process 592 described above
will be executed. If files have been modified and the user
chooses to cancel the “close” operation, then the project
manager 528 will stop the close finction. Otherwise, if the
project was successfully saved (if modified) or files have not
been modified, then project manager 528 continues the close
operation. A “projectClosing” event is fired to let interested
parties know that the manager 528 is about to close the
project. The project manager 528 will then release the
memory that the editors used and close the various editor
windows (by making a call to the window manager 522).
When the project is “closed”, a “projectDeactivated” event
is fired to tell interested parties that the project is no longer
active. Then a “projectClosed” event is fired to say that the
project has been closed. Finally, if another project was being
edited and was deactivated (because the closed project was
previously being edited), that project will become activated.
After the project is activated so that the user can edit the
project, a “projectActivated” event is fired to let registered
listeners 584 that this project is now the active project to be
edited. It will be apparent to those skilled in the are that the
rest of the mangers may function using events with the IDE
core 502 to accomplish or participate in many functions of
the IDE.

IV. GRAPHICAL USER INTERFACE

[0211] IDE 500 provides a graphical user interface (GUI)
that allows a developer to operate the various functional
modules or plug-ins 200 of system 100. The graphical user
interface of the preferred embodiment is designed to encour-
age the development of multi-modal, multi-channel appli-
cations using the MVC architecture below in Section V.

Dec. 5, 2002

FIG. 17 illustrates one non-limiting embodiment of a
graphical user interface (GUI) 400 for system 100. The
graphical interface 400 provides a facility to create and
manage the files and objects in an application or project
created by system 100. The project tree 402 lists all the files
associated with the current project. As seen in FIG. 18, there
are several types of files that may be displayed in the project
tree 402. These file types will be described as the invention
is further explained below. The objects tree 404 contains all
the data sources and model variables instantiated in the
current, selected “controller”. The bindings list 406 contains
the all methods of the objects in tree 404 that have been used
in the current controller. Objects, bindings, and controllers
are more fully and completely explained below.

[0212] Interface 400 further includes editors 408 and 410,
illustrated in FIGS. 19 and 20. Editors 408 and 410 provide
interfaces for configuring the interaction flow and applica-
tion logic. The user interfaces of the application may be
developed in the appropriate editors 412, 414, 416, 418 and
420, which are illustrated in FIGS. 21, 22, 23, 24, and 25,
respectively. Each of these editors will be explained more
fully below in Section VI.

V. MVC DESIGN ARCHITECTURE

[0213] The preferred embodiment of system 100 enforces
applications development using a “Model-View-Controller”
(MVC) design architecture. MVC is a known, object-ori-
ented design pattern. MVC was designed to reduce coding
effort required to build large multi-user systems where
different simultaneous views of the same data are required.
The Model-View-Controller design approach separates the
application data from the user interface and application
behavior. This separation increases reusability and flexibility
of the overall solution. It also provides a powerful way to
organize systems that support multiple presentations of the
same information. As shown in FIG. 26, the MVC archi-
tecture 600 is composed of three design component types:
the model 602, the view 604, and the controller 606.

[0214] The model 602 represents the data in the applica-
tion. It manages all transformations of data. The model 602
does not need to know about specifics of the view 604 and
controller 606. The model 602 can be queried by all the
views 604 associated with it through the controller 606. The
model 602 sends notifications to all the views 604 through
the controller 606 when there are relevant changes to the
data.

[0215] The view 604 represents the output of the applica-
tion. The view 604 maintains the look of the application and
presents the data to the user. The view 604 does not act on
the data or change it. The view 604 forwards user input to
the controller 606. The view 604 further updates the output
display when it receives notifications from the controller that
the data has changed.

[0216] The controller 606 represents a mapping between
the user interaction from the view 604 and application
actions and business logic. The controller 606 is typically
specialized and is designed to work with interactions from a
particular view 604. The controller 606 translates the user
input into operations on the model data. The controller 606
also selects which view to display based on user input and
actions on the model 602.

US 2002/0184610 Al

VI. METHOD FOR DEVELOPING
APPLICATIONS

[0217] As will become apparent in the following discus-
sion, there is one-to-one correlation between MVC and the
programming model for multi-modal, multi-channel appli-
cations implemented by the present invention. Thus, appli-
cations developed using the present invention are designed
to leverage the benefits afforded by the MVC design archi-
tecture.

[0218] In the present invention, the controller designer
preferably takes form as an interaction flow editor. The
interaction flow editor or “workflow editor” is represented
by a visual diagram (e.g., a workflow diagram) that maps the
paths that an end user can take through an application. The
path an end user takes is generally determined by what the
user inputs at specified points in the user interface. The
interaction flow design also contains the logic that ties the
application together. It is composed of basic units called
states, which are linked together by transitions. These states
will be explained in more detail later.

[0219] In the present invention, a view designer may be
used to create a specific user interface that displays data to
and possibly accepts input from an end user. A view is
associated with a state in the interaction flow. One state may
be associated with many or no views. Each channel on
which an application may operate generally requires its own
view. Thus, in many multi-channel applications, each state
may contain multiple views.

[0220] The model designer in the MVC architecture
design of the present invention is referred to as data inte-
gration. Data integration entails retrieving the data for an
application from various sources. In the preferred embodi-
ment, the present invention converts all data sources into
Java objects to provide a common interface for placing data
in views. The java objects can in turn be instantiated into
variables or model-variables and used as references in
control and view design.

[0221] FIG. 27 illustrates the method 650 of designing
and deploying a multi-channel according to a preferred
embodiment of the present invention and using the MVC
paradigm. Briefly, a developer will use system 100 to
perform the method 650 by completing the following steps:
(i) design an outline of the application, as shown in func-
tional block or step 652; (ii) design a visual representation
of the application interaction (e.g., by use of the process
design module 12), as shown in functional block or step 654;
(iii) design or integrate data sources within the application
(e.g., by use of the integration design module 14), as shown
in functional block or step 656; (iv) design the presentation
of the application (e.g., by use of the presentation design
module 16), as shown in functional block or step 658; and
(v) complete the application by updating the controller
design with views and data elements if required (e.g.,
connecting the various application parts). The IDE 500 may
then output a persistent representation of the above designs
developed in steps 654, 656 and 658 and including various
resources (such strings, images, class libraries) used by the
designs to a manifest called project. (Note that steps 654,
656, and 658 and 660 may occur in any order, or even
simultaneously, and represent the creation of the controller,
model, and view of the MVC design paradigm, respec-
tively.) The foregoing steps will be described more fully and
completely below.

Dec. 5, 2002

A. OUTLINING THE APPLICATION

[0222] Before creating the various parts of an application,
a developer will outline the functionality of the application,
as indicated in step 652 of FIG. 27. The outline may
generally be created by performing the following tasks and
considering the following factors:

[0223] a) The developer will divide the application
into logical, sequential steps. Each step will repre-
sent one state, transition or sub-controller.

[0224] b) The developer will expand the outline as
necessary to account for “worst case scenarios” (this
may be especially important for multi-channel appli-
cations).

[0225] c¢) The developer will consider which steps or
series of steps should be broken out into sub-con-
trollers. This object-oriented approach encourages
reuse and maintenance.

[0226] An example of how the foregoing process of out-
lining an application is performed is provided in Section X
below with reference to a currency converter application.

B. CONTROLLER: INTERACTION FLOW
DESIGN

[0227] Once an outline has been developed, the developer
may visually design the interaction flow of the application,
as indicated in step 654 of FIG. 27. The interaction flow
defines the application concepts and logical flow of the
application in the form of a state diagram. These concepts
and ideas include all interactions between the application
and the end user, as well as all the back-end resources and
processes. The user designs the interaction flow by creating
a visual representation using a few simple building blocks:
states, sub-controllers or sub-models, transitions, and
actions. States, sub-controllers and actions are defined as
follows:

[0228] State: The condition of the controller at a
given instance in time, including its configurations,
attributes, and/or information content.

[0229] Sub-controller or Sub-model: A controller
which can be called by another controller.

[0230] Transition: The change from one state to
another.

[0231] Action: A process that takes place when
called. Each action may be categorized as a pre-
action, action, or post-action. States have pre-ac-
tions, actions, and post-actions. Transitions only
have actions. Actions may be used to execute a
transition, or to store and retrieve data.

[0232] Pre-action: An action executed as soon as
the state is entered (via a transition) from a dif-
ferent state. When views are associated with the
state, the pre-action is always executed before a
view is rendered to the end user.

[0233] Action: When views are associated with the
state, the action is executed after a view has been
rendered. Otherwise, the action is executed after
any and all pre-actions have been executed. Note
that calling a transition (from a state) is an action.

US 2002/0184610 Al

If there are transitions from the current state to
other states, each transition will have its own
action.

[0234] Post-action: A post-action is executed only
if a transition is taken from a state to a different
state. If no transition is taken, the post-action will
not be executed. The post-action is executed after
any actions on the transition are executed and
before the pre-actions of the next state are
executed.

[0235] FIG. 28 illustrates an order in which the foregoing
application elements are preferably executed by a run-time
system implementing a state controller. As shown in FIG.
28, a run-time implementation of a state 700 may perform
certain pre-actions 702, which generate an interactive
graphical layout 704 that appears on a client device. A user
may then provide input 706 through the layout 704. The state
700 will then perform certain actions 708 that may trigger
one or more transitions 710 (e.g., to one or more different
states). After the transition 710, the state will perform certain
post actions 712.

[0236] States, transitions, actions and controllers can be
combined together to form a complete and functional appli-
cation. In the preferred embodiment of the invention, a
developer will adhere to the following rules and conventions
when forming an application:

[0237] 1. An application is composed of one or more
controllers.

[0238] 2. The first controller in an application is
referred to as the “StartModel.”

[0239] 3. A controller is composed of a set of states
and sub-controllers, tied together by transitions.

[0240] 4. The first state in a controller is called a
“start” state. Each controller requires a start state. A
start state will not have any views.

[0241] 5. Transitions cannot transfer to start states.

[0242] 6. The last state(s) in a controller is called an
“exit” state. Exit states are optional within control-
lers. Transitions cannot leave “exit” states. If a
sub-controller contains an “exit” state and the appli-
cation reaches this state, several things can happen:

[0243] (i) The application can return from the
sub-controller to the controller that called it.

[0244] (ii) If there is no controller that called the
sub-controller, the run-time engine implementing
the controller may decide among the following
actions:

[0245] a. In real-time mode, the application will
be restarted for the user;

[0246] b. In offline mode, the application will
return back to the operating system that invoked
the application.

[0247] 7. Each controller will only have one “start”
state, but can have any number of “exit” states.
Multiple “exit” states can be used to reduce visual
clutter among transition lines. However, all “exit”
states have the same functionality.

13

Dec. 5, 2002

[0248] 8. Each state contains a set of pre-actions, a
set of actions, and a set of post-actions.

[0249] 9. Each transition contains a set of actions.

[0250] 10. Each sub-controller call contains a set of
actions.

[0251] 11. Sub-controller calls behave like states in
the current controller. However, once the start state
of the sub-controller has been called, the application
does not come out of the sub-controller until some
exit state of the sub-controller is reached.

[0252] 12. Actions in each set are executed sequen-
tially (from first to last), and may appear in any order.

[0253] 13. A transition is called from one of the
actions in the originating state.

[0254] 14. If a state has multiple transitions, each
transition can have a condition associated with it, so
that the transition is only taken when the condition is
satisfied.

[0255] 15. The first transition whose condition (if
any) is satisfied will be taken, and the actions fol-
lowing the ftransition in that state will not be
executed.

[0256] 16.When an action (including pre-actions and
post-actions) in an action list fails to be executed, the
remaining actions in that list will be skipped and if
a view exists then that view will be displayed. In the
case of pre-actions, if an action fails, the rest of the
actions in the pre-actions list are skipped and the
controller will display the view (if one is present).
For post-actions, if an action fails, the rest of the
actions in the post-actions list are skipped and the
controller will transfer control to another state (since
post-actions only occur when a transition is to be
taken).

(1) CREATING A WORKFLOW DIAGRAM

[0257] Following the above-delineated rules and conven-
tions, a developer creates a workflow diagram that visually
represents the interaction flow, in functional block or step
654 of FIG. 27. The developer creates the workflow diagram
by use of process design module or plug-in 12 of system 100
(see FIG. 7). The GUI 400 provided by IDE 500 includes a
workflow editor 408 (see FIGS. 17, 19), which serves a
graphical interface for the process design module 12 with
“drag-and-drop” functionality and a set of toolbars that
allow application developers to rapidly model a complete
multi-channel application. By providing a separate work-
flow editor 408, the GUI 400 allows a developer to separate
interaction flow modeling from presentation design, which
is performed by use of module 16, and data source integra-
tion, which is performed by use of module 14. The workflow
editor 408 (i.c., the graphical interface for the process design
module 12) allows application developers to globally view
the application and to visually diagram the interaction flow
of the application (controller by controller). Each state of the
application flow can then be connected with supporting
application process logic. Particularly, the workflow editor
408 allows a developer to define the individual states of an
application, and control logic for directing transition flow
between states. The editor 408 also allows developers to

US 2002/0184610 Al

specify procedures and rules to fully define complex busi-
ness processes. Developers can then componentize and store
an entire state flow or parts of a state flow describing a
business process for future reuse (e.g., by use of compo-
nentization module 20).

[0258] The GUI 400 includes a visual design interface or
editor 408 that relates iconographic symbols to functional
states, components and transitions of the application that is
being developed. FIGS. 17 and 19 illustrate a non-limiting
embodiment of a graphical interface for editor 408, which
represents the process design module 12. As shown best in
FIG. 19, the design editor 408 includes an editor window
430, and a menu or palette 432 of standard drag-and-drop
visual components 434-440 with which a user may create a
visual representation or interaction workflow diagram 442
for each controller of an application. The interaction work-
flow diagram 442 defines the user interaction flow for the
application between the client device and the server or the
client device and the device local server (application) gen-
erated out of GUI 400.

[0259] As shown in FIG. 19, an interaction workflow
diagram 442 may include components 432-440 (which rep-
resent states) and transitions 444 that cooperatively and
visually describe the logical process flow of an application
or controller. Each state represents a complete transaction
that begins with the user requesting some piece of informa-
tion; proceeds with the server delivering a client-specific
presentation on the target device; and ends with the receipt
of the end-user’s response. The start state 437 and end state
438 of the process flow each have their own special repre-
sentations.

[0260] The palette 432 includes visual icons or compo-
nents 434-440 that are used to represent various types of
states. The workflow diagram 442 shown in FIG. 19 begins
with a start state component 437, which indicates the begin-
ning of the process flow, and terminates with an exit state
component 438, which indicates the completion of the
process flow. The remaining states of the process flow are
depicted using either state components 434 or sub-model
components 436.

[0261] A state component 434 is used to define a set of
actions, pre-actions and post-actions where no user interac-
tion is required for that state. A state component 434
represents a logical decision point within the workflow
diagram 442 that does not render data to the end user. A state
with layout component 435 is the same as the state compo-
nent 434 with the additional capability of interfacing with
the end user. A sub-model component 436 represents a
sub-controller and is a collection of the other states, transi-
tions and components. Particularly, a sub-model component
436 is a high level depiction of the process flow for a
sub-controller. Only actions and a parameters list are defined
for a sub-model component 436. The parameters list
describes inputs to the sub-model component 436.

[0262] A developer uses the process design module inter-
face 408 to create a workflow diagram 442. A developer may
construct a workflow diagram 442 by identifying the states
that the application or controller requires (e.g., according the
outline and the above-delineated rules and conventions), and
dragging the representative components 434-440 into editor
portion 430 from the standard component palette 432 in a
conventional manner (e.g., by use of a mouse or touch pad).

Dec. 5, 2002

The developer may then link the components 434-440
together by use of the transition tool 446. Particularly, a
developer may create a transition 444 between two states
(e.g., between states 437 and 435) by selecting the transition
tool 446, selecting the state that will be “transitioned from”
(e.g., state 437), then moving the cursor to the state that will
be “transitioned to” (e.g., state 435). The foregoing steps are
effective to create a visual depiction of the transition and to
functionally link the states within the interaction workflow
diagram 442. System 100, by use of IDE 500, may store the
visually created interaction flow for each controller in the
XML/CML format as described below.

[0263] FIG. 29 is a flow diagram 800 illustrating how the
IDE 500 internally adds objects to a controller’s workflow
by use of editor 408. The mechanism to edit an application’s
workflow contents may involve the workflow editor 408 and
property inspection plug-ins. Property inspection plug-ins
expose a user interface that allows users to edit the proper-
ties of an object. Each object has its own set of properties
that it exposes. The property inspector reads these properties
and displays the values in a two-column table. Each property
has a name and a value associated with that name. Thus, the
property name will be the first column in a table and the
value will be displayed on the second column. Only the
second column (values) can be edited by the user. In some
instances, an object might reveal its own property inspector.
In such cases, the IDE 500 will display the object’s editor
rather than provide an editor through the generic property
inspector plug-in. As previously discussed, objects or com-
ponents (such as states and sub-controllers) exist on the
object palette 432. When a user drags components from this
palette in step 802 in FIG. 29 (e.g., using a mouse pointer),
information about the component being dragged is stored in
a temporary storage medium. In step 804, the user drags the
component into the workflow diagram 442. When the user
drops the component (e.g., releasing the mouse pointer
button), an event is triggered on the workflow editor 408
under the object drop location. (Software process for per-
forming “drag and drop,”“clicking,” and “double-clicking”
functions, such as in the Windows Operating System™ are
well known in the art.) The component is then added to the
workflow diagram as shown in steps 806, 808. The workflow
editor 408 then determine what type of object was dropped
and determines the appropriate action.

[0264] 1If a state is added, the IDE 500 adds the state to the
workflow model (i.e., the workflow editor data structure) in
the current active layer (layers are explained below in
Section VII), as shown in step 810. If an entry or exit state
is added, the IDE 500 adds the state to the generated
workflow model in a root layer, as shown in step 812. If a
transition is added, the IDE 500 retrieves source and desti-
nation states for the transition in step 816, and then adds the
transition to the workflow in step 818. If a sub-controller is
added, the IDE 500 loads the sub-controller from the
memory cache in step 820. If the sub-controller does not
exist in the cache, it is loaded from the file system. By
default, the file system manager will use the local disk drive
to read and moditfy files. If the sub-controller does exist, it
is received from the cache in step 824. Finally, in step 826,
the IDE 500 adds a state that calls the sub-controller to the
workflow model in the current active layer.

[0265] FIG. 30 is a diagram 850 illustrating how an object
or component is removed from the workflow editor 408. The

US 2002/0184610 Al

appropriate object(s) are first selected using the mouse
pointer, as shown in step 852. The user then executes a
delete action. The delete action could come from a variety of
different sources, including pressing a ‘delete’ key on the
keyboard or pressing the delete button in the toolbar. In step
854, removal of the object is shown in the workflow diagram
442. If the removed component is a transition, the IDE 500
further removes the transition from the created workflow
model (i.e., the workflow editor internal data structure) in
step 856, which will update the views appropriately. In step
858, the IDE 500 adjusts all states, entries, exits, and
sub-controllers to remove reference to the transition. If the
removed component is a state, entry, exit or sub-controller,
the IDE 500 removes the component from the workflow
model in step 860. IDE 500 then proceeds to step 862, and
removes all transitions leading to and out of the removed
component (i.e., the state, entry, exit or sub-controller). For
any other type of removed component, IDE 500 removes the
component from the workflow model in step 864.

[0266] By creating the visual workflow diagram(s) 442,
the developer has laid the application foundation. Next, the
separate pieces of the application need to be created: the
views and the data sources. (See the View and Model
sections below for a full and complete explanation.) After
creating or importing the views and data sources, the devel-
oper then connects them together in the application flow.
This is done using actions.

(2) CREATING ACTIONS

[0267] System 100 allows a developer to create various
actions by use of the actions editor 410 (see FIGS. 17 and
20). In the preferred embodiment, system 100 allows a
developer to create the following predefined actions: Set, If,
Do, XML, Log, Auth, WS, XSL, Send, and Code. Further-
more, developers can also create custom actions and add
them to the palette. The predefined actions are defined as
follows:

[0268] 1. The Set action sets the value of a controller
variable to the value of an input returned from the
end user (in a “request” variable). This is the primary
interface to retrieve values entered by a user. The
“Set” action can operate in three different modes:

[0269] a. Input required-requires the specified
“request” variable to exist. If it does not, then the
controller fails the action and proceeds as defined
in the rules above.

[0270] b. Input optional-the specified “request”
variable does not have to exist. If it does not, then
the controller continues to the next action.

[0271] c. Input option with default value—the
specified “request” variable does not have to exist.
If it does not exist, then the controller variable is
set to the specified default value.

[0272] 2. The If action contains a condition entered
by the developer. If the condition is satisfied, the
following action will be executed. If it is not satis-
fied, the following action is skipped. The user can
enter any expression to be evaluated. Inequality
operators include “=" (equals), “!=" (not equal), “<”
(less than), “>” (greater than), “<=" (less than or
equal), and “>=" (greater than or equal). It will be

Dec. 5, 2002

apparent to those skilled in the art of programming
that the any Boolean condition can be used inside the
If action.

[0273] 3. The Do action calls a method on a control-
ler object. The user enters the method name on the
object on which to act in the form <object
name>.<method name>. A table with the return value
and parameters is shown for that particular method in
which the user may pass controller variables. It will
be apparent to those skilled in the art of object
oriented programming on how objects and methods
are used. Methods and objects are also further
explained below in the data integration part of this
section.

[0274] 4. The XML action maps the value of tree
nodes in an XML data source to the values of model
variables.

[0275] 5. The Log action writes a line in the engine
log. The engine log is a file that resides in an
application repository. While the application runs,
any errors or other messages can be written to this
file. This file can then be used to debug errors, to
determine logging, or for any other suitable function.
The Log action may print a string and/or the value of
any model variables. Running of the application is
discussed within Chong, et al.

[0276] 6. The Auth action is used for user authenti-
cation. The Auth action allows the developer to set
when the user has been authorized or unauthorized.

[0277] 7. The WS action allows the developer to call
a web service. Web services are a new breed of Web
applications. They are self-contained, self-describ-
ing, modular applications that can be published,
located, and invoked across the Web. Web services
perform functions, which can be anything from
simple requests to complicated business processes.
Once a Web service is deployed, other applications
(and other Web services) can discover and invoke the
deployed service.

[0278] 8. The XSL action applies a XSL stylesheet to
a XML data source and stores the output in a given
model variable. It will be apparent to those skilled in
the art of internet standards to appreciate XML and
XSL actions and their use cases.

[0279] 9. The Send action is used to send alerts to
subscribed users.

[0280] 10. The Code action is used to write language-
specific code that gets executed as an action. This
allows developers to write custom code when the
above actions (1-9) are not sufficient. Developers are
provided with a text editor into which they can add
any arbitrary code. During deployment (see Section
IX, infra), this code is compiled by a code compiler
to generate code that will run on platform supporting
the language-specific code. In the preferred embodi-
ment, the IDE 500 provides provisions for writing
Java Language code. Alternative embodiments may
be based on differing technologies without departing
from the scope of the present invention.

US 2002/0184610 Al

[0281] FIG. 31 is a flow diagram 950 demonstrating the
various operations available through the actions editor 410,
shown in FIGS. 17 and 20. The actions editor 410 is
embodied within the property editor plug-in. When an object
is selected in the workflow editor (see FIG. 32 discussed
below), an editor that is associated with the selected object
will be displayed, as shown in steps 952, 954. Users interact
with this editor. The actions editor 410 is one of the types of
editors that the property editor plug-in will display. The
actions editor is a hierarchical editor. One action editor 410
may actually bring up another action editor. For example, a
transition can contain a list of more actions. A transition is
an editor (determines the target state) and is also an editor for
other actions. There are four primary actions that can be
performed in the action editor. A drag event from the actions
palette to the actions list (steps 956, 958) adds an action to
a list of actions for a selected object, and calls and displays
the editor for that action, as shown in step 960. A select event
on an action in the actions list will bring up an editor for that
action, as shown in step 962. A delete event on a selected
action in the actions list will delete the action, as shown in
step 964. If no more actions exist, the IDE 500 will clear the
property editor in step 966. If more actions do exist, the IDE
500 will highlight the next action and call its editor in step
968. A drag event on an action in the actions list will reorder
the action, as shown in steps 970 and 972.

[0282] FIG. 32 is a diagram 1000, illustrating the opera-
tion of the IDE 500 in response to a user selecting a
component on the workflow editor 408. In order to select a
transition, a developer moves the cursor over the transition,
as shown in step 1002. Once the cursor is over the transition,
the transition is highlighted to provide visual feedback to the
developer that the transition is ready to be “clicked” on to be
selected, as shown in step 1004. Developers can then click
on the transition, as shown in step 1006 to sclect that
transition object. For other types of components (such as
states), the developer moves the cursor over the component,
as shown in step 1002 and clicks on the component, as
shown in step 1006. After the object (e.g. transition, state) is
selected, the IDE 500 will determine what type of compo-
nent or object was first selected. The IDE 500 will receive
the selection event, and will update the property sheet to
show the settings for the selected object in step 1008, update
the mini workflow diagram to show the selected object in a
controller viewer that displays the entire diagram in steps
1010 and 1014, and update the displayed IDE buttons such
as the “cut” and “copy” buttons to allow developers to delete
or make copies of the selected object in step 1012.

[0283] Instep 1016, the IDE 500 retrieves the component
to display properties. If the component has a special editor,
the IDE 500 will display that editor, as shown in step 1018.
For example, the ‘state’ component or object has an action
editor. The selection code will determine this and display the
state’s editor. Otherwise, if the selected component or object
implements a standard property inspector (e.g. JavaBean),
then the IDE 500 may use an inspector mechanism to display
a generic editor that would edit that object’s property, as
shown in step 1022. One example of this editor is a table of

Dec. 5, 2002

name-value pairs in which the name describes the property
and the value column is where users could enter its value. If
the component or object is a “notes object,” IDE 500 will
display any associated text in the notes, as shown in step
1018. A notes object is an object that serves no function in
the running application. This object is to serve as documen-
tation for the application. This object exposes a text area
where users can enter any text to describe the various aspects
of the application. The notes object 440 appears as a yellow
“sticky” note icon in the component palette, as seen in FIG.
19. When dragged into the workflow editor, it appears as a
yellow box with text in it, as seen in FIG. 33. Users can click
on the box to put it in “edit” mode where users can enter text
in the notes object, as seen in FIG. 34.

(3) STORING WORKFLOW

[0284] In the preferred embodiment, system 10 stores the
created interaction flow is stored in an XML format
(although it need not be), which will be referred to as CML
(Controller Markup Language). In alternate embodiments,
the interaction flow may be stored in any other suitable
manner such as programming language constructs. As the
interaction flow defines the logical progression of the appli-
cation, CML is the language that joins the views and data
together. CML is designed according to the following
abstract rules:

[0285] 1. Everything is an object.

[0286] 2. Any object can be a simple object or a
container object.

[0287] 3. A simple object can be represented as a
String.

[0288] 4. A container object contains other objects,
which are one of the three following types: property,
collection member, or map.

[0289] 5. A property describes the current object. It
can be represented in CML in one of two ways:

[0290] a) If the property is a container object, the
property is represented as a child tag of the current
tag.

0291] b) If the property is a simple object, the
property p]
property is represented as an attribute inside the
current tag.

[0292] 6. Acollection member is represented as a tag,
whose name is the class name (of the collection
member) itself.

[0293] 7. Amap is a key-value pair, where the key is
a String and the value is an object. It is represented
as a tag, whose name is the class name of the map
itself.

[0294] 8. If an object is contained within another
object, that child object is represented by a child tag
of the parent object’s tag.

[0295] The following table contains a list of each major
CML tag used within the preferred embodiment of the
present invention, along with a description of each tag’s
function.

US 2002/0184610 Al

17

Dec. 5, 2002

CML Tag

Description

<Model>

<Modellnterface>

<ModelVarDef>

<DataBindingInterface>

Represents a controller. Everything contained
or used by the model (views, variables, etc.) is a
child tag of the model.

A list of declared objects - data sources as well
as model variables. It defines how the current
controller interfaces with external services or
parent controllers.

Represents a model variable. Includes
information about the name of the object, the
object’s type, and whether or not the object can
be accessed by parent controllers or external
services.

Contains a list of data bindings used in the
model. Data bindings associate a name with a
method call where all the parameters of the
method have been specified by the binding.

<DataBinding> Represents a data binding. Contains several
properties as children, including a reference to
the affected object, and the parameters passed
in.

<PROPERTY> Represents a property of the parent tag. The
type of property being expressed depends on the
attributes.

<ListView> A list of views associated with a particular state.
The state name is contained in the cml:name
attribute.

<DeviceBased View> Represents one view (of type rapid voice, rapid
data, XHTML, etc.). Child properties include
the criteria with which the view will be selected
for rendering at run time, (e.g., view file name)

<DefaultController> Represents a state. Contains as child properties
pre-actions, actions, and post-actions.

<SetVariableAction> Represents Set action.

<CustomAction> Represents If action.

<BindingAction> Represents Do action.

<TransformAction> Represents XML action.

<LogAction> Represents Log action.

<AuthAction> Represents Auth action.

<XSLAction> Represents XSL action.

<OperationAction> Represents WS action.

<AlertAction> Represents Send Alert action.

<TransitionAction> Signals that a transition will be taken.

<SubmodelController> A reference to a sub-controller. The sub-

controller will be defined in another CML file.

[0296] The structure/rules of CML are embodied in a
schema definition files CML1.XSD, which is included in
Section XI of this application and CML.XSD, which is
included in Section XII of this application, as may be
appreciated by one of ordinary skill in the art.

[0297] FIG. 35 shows one example of the relationship
between a visually developed interaction flow and the asso-
ciated CML files that are generated by system 100. The
creation and use of CML in connection with the interaction
flow of an application is described in further detail in Section
X, infra.

C. VIEW/PRESENTATION DESIGN

[0298] Referring back to FIG. 27, after creating the visual
representation of the application (e.g., the interaction flow),
the user may proceed by designing the presentation of the
application, as indicated in functional block or step 656.
Presentation design is the creation of views with which the
end user will interact. A view is an interface that may take
different forms on different modes, channels, or devices. A
developer designs the application views by use of the
presentation design module 16. The presentation design

module 16 provides design elements and editors that define
how end users interact with the multi-channel applications.
Module 16 allows applications to be delivered to a multitude
of multi-channel devices, such as a personal digital assistant
(PDA), a cell phone or a pager, without having to create
multiple visual templates for each channel and device.
Module 16 allows developers to create a single set of visual
templates for a specific application that may be accessed
using though multiple channels using multiple devices.
Module 16 also allows developers the ability to define
individual visual templates in various formats and languages
that can be used for defining information as data input/
output, voice input/output or any combination. Through the
presentation design module 16, the presentation layer is
completely separated from the process layer.

[0299] Different channels often require different views; for
example, one may rely on visual cues, such as text, and the
other on different sensory cues, such as audio files. There
can also be several visual views; the application developer
can create a special view for a specific device or browser.
(For example, a developer may want to take advantage of the
larger screen size on a more capable device by displaying

US 2002/0184610 Al

more information or images. This may warrant creating a
separate template for the more capable device from that of
the generic visual view.) The developer will add all neces-
sary templates to the state. The workflow engine 132 will
select the appropriate view at run-time.

[0300] In the preferred embodiment, there are five differ-
ent methods with which the developer can create views:

[0301] 1. Rapid visual

[0302] 2. Rapid voice
[0303] 3. XHTML
[0304] 4. Java

[0305] 5. Native language

[0306] Each of these methods and view types will be more
filly and completely described in the following discussion.

[0307] An application can consist of any combination of
view types. Even for the same channel, view types can be
mixed and matched between states. Each view type may be
stored in a separate file. However, references to the view are
preferably stored in the controller file (e.g., in CML).

[0308] Editing (e.g., adding/deleting) of the views first
occurs in the workflow editor 408 (see FIG. 19). FIG. 36
illustrates a method 1100 for editing views according to a
preferred embodiment of the invention. The user may first
select a state object (states may contain views), in step 1102.
The property editor will display an editor for referring to the
view type to display only if a state was selected. At that
point, the user will be presented with a list of views
associated with the state, including some basic information
about the each of the views, in step 1104. This may be
represented as a table with three columns. The first column
displays the rendering rule (rendering rules determine which
view type to display based on the type of device that is
requesting that view) from which the server will use to
determine if the view type is appropriate for a connecting
device. The second column displays the type of view it is
(e.g., rapid visual, rapid voice, XHTML, java, native). The
third column displays the view name (filename). The runt-
ime-server described in Chong, et al. evaluates the rendering
rules from top to bottom, so order is imported. Hence, users
can move view entries up or down the list, as shown in steps
1106 and 1108. In addition, users can add new views (steps
1110, 1112) or remove existing view references in the list
(steps 1114, 1116). To edit the views, users can either
double-click on the appropriate list entry or double-click on
the view entry in the project tree (step 1118). Depending on
the view type, an appropriate editor will appear (step 1120),
allowing users to edit that view. After the developer com-
pletes the editing process, the developer will close the view
editor window, and system 100 will save the view file and
update any changes in the workflow model, as shown in step
1122. The process of creating and editing views for each
view type (e.g., rapid visual, rapid voice, XHTML, java,
native) is described in more detail in the following discus-
sion.

(1) PRESENTATION DESIGN-RAPID
VISUAL/RAPID VOICE

[0309] The rapid data and voice editors enable fast, simple
development of data and voice views, respectively. They

Dec. 5, 2002

allow the developer to create a “bare bones,” fuinctional
application quickly. Rapid data and voice editors are best
suited for “prototyping” an application. (In the process of
prototyping, a functioning application is generated without
delving too deeply into the details of how precisely the
templates are displayed. Once the application is working,
users can go back and add the final presentation elements to
make the application templates more polished.)

[0310] Rapid data view primitives are designed with one
for all data media devices. Which means that once the view
is created with rapid data primitives, the runtime engine
(described in Chong, et al.) will automatically translate these
views to the appropriate data markup/presentation languages
formats suitable for the connected device using the appli-
cation. Similarly the Rapid voice primitives are designed for
one for all voice media devices.

[0311] Content Primitives are used for the construction of
both visual and voice user interfaces. Content primitives are
the basic user interface widgets that can be added to a
template. In the preferred embodiment, the following six
basic primitive types for rapid visual development are
provided:

[0312] 1.Paragraph: The Paragraph primitive is used
to display text, images and hyperlinks.

[0313] 2. Input: The Input primitive provides a text
input field.

[0314] 3. Horizontal Rule: The Horizontal Rule
primitive breaks the flow of the page to signal a
conceptual shift in content.

[0315] 4. Option List: The Option List primitive
provides for a selection from a list but that does not
call for an instant transition to another state. An
HTML analogy would be a drop-down list that
allows for a choice to be made but that does not
function as instant navigation. Thus, multiple option
lists can be inserted into one interface.

[0316] 5. Transition List: A transition list is used for
navigation through a menu with instant transition to
another state. Typically only one will be used per
user interface of a state.

[0317] 6. Table: The table primitive provides a struc-
ture with columns and rows in which text, images or
links can be placed.

[0318] Similar to rapid visual primitives, the six rapid
voice primitives are provided in the preferred embodiment
of the invention as follows:

[0319] 1. Play: The Play primitive provides a sound
clip, which does not accept input (similar to the rapid
visual Paragraph primitive).

[0320] 2. Input: The Input primitive asks the user a
question and interprets the answer (similar to the
rapid visual Input primitive).

[0321] 3.Menu: The Menu primitive presents a list of
choices and interprets the answer (similar to rapid
visual Option List and Transition List primitives).

[0322] 4. Import: The Import primitive loads a
speech object (e.g., a Java object for building speech
applications).

US 2002/0184610 Al

[0323] 5. Pause: The Pause primitive plays no sound
(e.g., inserts a pause). This primitive is analogous to
rapid visual Horizontal Rule primitive.

[0324] 6. Confirm: The Confirm primitive confirms
that the information entered earlier in the state was
correctly recognized, and corrects any misrecogni-
tions if necessary. A misrecognition can occur if the
voice engine “heard” something other than what the
speaker intended. The confirm primitive repeats
what the voice engine though the user said for the
user to confirm whether it was indeed the correct
word or phrase.

[0325] In the preferred embodiment, the rapid visual
primitives are stored in an XML format, which will be
referred to as TPL. In alternate embodiments, the rapid

19

Dec. 5, 2002

visual primitives may be stored in any other suitable format.
The following table outlines some non-limiting examples of
tags in TPL, with a description of the tags’ functions and
their legal “child tags.” XML is a convenient way to
represent a hierarchy of “nodes” where a “node” is a tag, the
tag’s attributes, and the tag’s data. Essentially, XML will
describe a tree of nodes. In this tree, there will be nodes
(tags) that will have parent-child relationships. So, a child
tag will be contained within a parent tag. (Note: (None)
means the tag has no valid children; a tag name followed by
‘+’ means there must be one or more instances of this child
tag; a tag name followed by ‘*’ means there must be zero or
more instances of this child tag; and a tag name followed by
?” means there can be zero or one instances of this child tag.
In addition, two or more tags separated by ‘|” means that
either tag may appear as a child.)

Tag Description Children
View Top-level element for TPL; Everything contained in the Timer?, Para*, Input*,
view is a child of this element List*, Table*, Action*,
NavigationActionList,
MetaDatal ist,
ResponseHeaderList
NavigationActionList Used for GUI - when Studio needs to show actions Action+
MetaDataList Like HTML <meta>, contains commands for the gateway MetaData+
or device for cache expiration (how long until), specifying
tags for gateway, etc.
Can be used to send proprietary information
To device
MetaData One particular instance of <meta> information (None)
ResponseHeaderList When sending a name-value pair back to server, the ResponseHeader+
developer may want to send the version number, character
set, locale information, etc.
Any HTTP response header can be sent using
<ResponseHeaderList>
<!To server-->
ResponseHeader Collection member in <ResponseHeaderList> (None)
Timer Translates to the <timer> tag in WML (None)
Para Container for all text, image, anchors, breaks, etc. (Text | Anchor | Image |
Defines text & styles for text, defines links, creates lists Break)+
Used by the Paragraph primitive
Input User interface component that accepts textual input from Text*, Image*, Break*
end user
Used by the Input primitive
List Wrapper for both option & navigation lists ListItem+
Like HTML <select>
Used by the Option List and Navigation List primitives
ListItem -List item, like HTML <1i> (None)
Table Table which can contain images or text TableRow+
Like HTML <table>
Used by the Table primitive
TableRow Specifies contents of a table cell (Text | Image | Break |
Like HTML <td>, except using attributes to specify row Anchor)+
& col numbers
Action Element to say which action needs to happen when the PostData*
end user
presses a button or a page expires
Text Text with style formatting #PCDATA
Anchor List HTML <a> (#PCDATA | PostData)*
Image Displays image to the end user; Like HTML ImageData+
ImageData Contains information about an image (None)
Break List HTML <hr> (None)
Used by the Horizontal Rule primitive
PostData Specifies which name-value pairs gathered in the current (None)

view
to post back to the server

US 2002/0184610 Al

[0326] The structure/rules of TPL are embodied in the
document type definition (DTD) file called TPL.DTD
included in Section XIII of this application, as may be
appreciated by one of ordinary skill in the art.

[0327] Inthe preferred embodiment, the rapid voice primi-
tives are stored in an XML format, which will be referred to
as VTL. In alternate embodiments, the rapid voice primi-
tives can be stored in any other suitable format. The fol-
lowing table outlines some non-limiting tags in VIL, with a
description of the tags’ functions and their legal child tags.

Dec. 5, 2002

[0330] A developer may use editors 412, 414 to create and
edit rapid visual and voice presentations through the fol-
lowing steps:

[0331] 1. The developer creates a template. This can
be done in several ways. One is to right-click in the
project tree 402, shown in FIG. 18, on the “Views”
node. A popup menu will appear with a “Create New
View” option. Another way is to select a state. That
action will display a properties inspector as shown in
FIG. 37. When the “Templates” tab is selected, it

Tag Description Children
VoiceDoc Top level element VoiceDoeGlobals?
VoiceTemplate+
VoiceDocGlobals -Project level settings, to be used for providing
generic error handling or help throughout the
application
VoiceTemplate Top level element for current view (Input | Play |
Confirmation | Object |
Menu | Pause)*
Input Input primitive Prompt?, Prompt?,
Error*, Event*
Play Play primitive Prompt?, Error*,
Event*
Confirmation Confirmation primitive Prompt?, Prompt?,
Prompt?,
Confirmingltem+,
Error*, Event*
Confirmingltem -Used for Confirmation primitive Prompt?
Specifies which items (preceding primitives) a
user wants to confirm
Menu Menu primitive Prompt?, Menultem*,
Error*, Event*
Menultem Menu item used in Menu primitive Prompt?
Object Importing Speech Objects Param*, Error*,
Import primitive Event*
Param Used by Import primitive Param*
Parameter for a speech object
Can be any object
Prompt In Play, Input, Menu - wherever a prompt is (Audio? | TTS? |
played Break?)*
Audio Audio file (None)
Break Creates a pause in a prompt (None)
Pause Pause primitive (None)
Error Prompt to play in the event of an error (Prompt)?
Event Plays a prompt for any event, but generally (Prompt?)
used for Help
DefaultAttributes For setting top-level attribute values for (None)

prompts

[0328] The structure/rules of VIL are embodied in the
document type definition (DTD) VTL.DTD included in
Section XIV of this application, as may be appreciated by
one of ordinary skill in the art.

[0329] A developer can use the presentation design mod-
ule 16 to create a presentation design through the rapid
visual editor 412 (FIG. 21), and the rapid voice editor 414
(FIG. 22). As shown in FIG. 21, the rapid visual editor 412
has a palette of rapid visual primitive icons 482, including
icons 482A, 482B, 482C, 482D, 482E, and 482F, which
represent Paragraph, Input, Horizontal Data, Option List,
Transition List and Table primitives, respectively. As shown
in FIG. 22, the rapid voice editor 414 has a palette of rapid
voice primitive icons 484, including icons 484A, 484B,
484C, 484D, 484E, and 484F, which represent Play, Input,
Menu, Inport, Pause, and Confirm primitives, respectively.

shows a list of templates assigned to the state. Users
can then press button 410 D to create a new view.
Part of creating a new view will display a dialog box,
shown in FIG. 38, where users can select the type of
view and assign a name to that template.

[0332] 2. The developer calls up the template in the
presentation design module 16. This can be done in
several ways. First is to select a state. That state will
display a properties inspector, as shown in FIG. 37.
Users can then double-click on the items in the list to
launch the editor. Alternatively, users can select a
template in the project tree 402 (FIG. 17). Expand
the “Views” node to display a list of templates. Users
can then double-click on a template name to launch
an associated editor. Alternatively, users can right-
click to activate a popup menu where users can select
the “Edit” option to edit the template.

US 2002/0184610 Al

[0333] 3. The developer drags and drops any desired
primitives 482 A-482F or 484 A-484F into the respec-
tive adjacent layout table 483.

[0334] 4. The developer configures each primitive.
This may be performed as follows:

[0335] a. The presentation primitives are config-
ured using a combination of static, dynamic data
sources or media elements. Developers will add
presentation primitives (e.g., primitives 482A,
4828, 482C) to the presentation. Then, as the
developer selects the added primitive by clicking
on the added primitive, a property panel for that
primitive will appear (e.g. FIG. 39-Panel 1150).
Within the various fields of that property panel,
developers can then drag variables or methods in
or enter text into those fields. In addition, devel-
opers can drag various media types (see FIG. 18).

[0336] b. Static data source elements are those that
the user enters data at design time, for example
simple text strings, copying and pasting images,
and other elements. This primarily applies to the
paragraph element where developers can enter
text. Developers can also drag and drop images
from tree 402 (FIG. 18) into the property panel to
add images or image groups (see Section VIIL. D,
infra, on image groups). This represents static data
as the content will not change while the applica-
tion runs.

[0337] c. Dynamic data sources are those whose
value is determined by the run-time engine
(described in Chong, et al.) at application usage
time. These resources are referenced using a
model variables, objects and bindings using the
integration design module see e.g., Section
VI.D(7), infra). These model variables are incor-
porated into primitives by reference. To incorpo-
rate dynamic data source, a user may simply drag
and drop the model variables from objects 404 and
bindings 406 sections of the project tree 402 (FIG.
17) into the primitives and by configuring the
corresponding property editors associated with
bindings.

[0338] d. Primitives can also be configured using
media elements such as images, audio files, gram-
mars. They are also incorporated by reference by
dragging dropping them from resource section of
project tree 402 onto the primitives section. The
developer can bring in media (images, sound clips,
grammars) as necessary. This can be done by

21

Dec. 5, 2002

using the import mechanism under the
“Resources” node in the project tree 402. The
developer expands the “Resources” node to reveal
other nodes like “Strings”, “Images”, “Audio”,
“Grammars”, and “Scripts” (see Section VIILD,
infra), and right-clicks on one of these nodes to
display a popup menu that will allow developers
to bring in (import) the media files.

[0339] e. The developer creates data sources as
necessary (see e.g., Section VI.D.(7), infra).

[0340] The process for building an application using rapid
voice primitives is virtually same as for rapid visual primi-
tives. In visual applications, however, presentation design
entails creating a layout for the screen; in voice applications,
presentation design is less visual. The voice presentation
design involves bringing together a series of prompts that
interact with the user. Because the interaction paradigm is
different across channels, developers often create com-
pletely separate views for different channels. However,
developers can use the same data sources for all channels,
despite the use of different views. For example, input from
the end user may be assigned to the same objects, or data
presented to the user may come from the same data sources.

[0341] The presentations or views that are designed in
rapid visual and rapid voice technologies are stored in XML
formats, TPL and VTL, respectively. FIG. 39 illustrates how
one non-limiting example of a rapid visual presentation or
view shown in screen 1150 may be represented in TPL 1152.

(2) PRESENTATION DESIGN-XHTML

[0342] Extensivle Hypertext Markup Language
(XHTML) is the known modularized, XML-compliant, next
generation of HTML 4.0. The system 100 extends XHTML
by adding an additional module to the ones it currently
supports. Developers use XHTML (and optionally, the
XHTML extension) in order to obtain more control over the
presentation of a view than rapid editors can offer, or in order
to allow a view to be available across multiple modes,
markup languages, devices, and browsers.

[0343] The XHTML extension provided by system 100
adds the ability to generate different views for different
devices, channels, browsers, and capabilities using one
document. The XHTML extension allows the developer to
reorder or reposition content, dictate specific rendering
behaviors for a given tag, transform tables with different
subsets of content or into different orientations, and trans-
form lists into other types of lists.

[0344] The following tables describes the additional (new)
tags in the XHTML extension:

Child tag Parent tag
Tag Description of of
Layout For a given terminal type, renders what is enclosed Head section

in <div> tags with the matching id attribute values.

<div> blocks whose ids are not listed will not be

rendered. Anything not enclosed in <div> will not

be rendered either. If the id attribute of section lists

an id that is not found, it will be ignored.

US 2002/0184610 Al

22

-continued
Child tag Parent tag
Tag Description of of
Section The id attribute of section should match the id Layout (None)
attribute of a div tag in the body of the document.
When it does, the contents of the div block will be
rendered.
overrideset Contains terminal-specific information about Whichever override
rendering preferences. Overrides any default tags can be
rendering behavior that already exists. rendered in
multiple
ways: abbr,
acronym,
div, ol, ul,
select
Override Used to specify rendering behavior for a given tag overrideset row, col,
or widget. Each terminal rule requires its own delimiter
instance of override (if needed); in other words,
there can only be one terminal per override, and
there can be multiple override instances per tag or
widget.
Col Appears only when nested inside a table (i.e. override (None)
<table><terminal><swap><col>. . .). Used to
specify a column in the table to be used for
rendering. Multiple columns can be used at a time,
but columns and rows cannot be mixed.
Row Appears only when nested inside a table (i.e. override (None)
<table><terminal><swap><rows. . .). Used to
specify a row in the table to be used for rendering.
Multiple rows can be used at a time, but columns
and rows cannot be mixed.
delimiter Used to separate two table columns or rows that are override (None)
being combined into one. Used only when a table is
being transformed into a list.
Timer Specifies the length of time to remain on a view. Head (None)

There can only be one timer element per document.
The unit of time specified in the value attribute is
Yo of a second.

[0345] The additional tags comprise only a portion of the
extension module. The following tag attributes were added

as well:

Tag

Attribute Description

Values (* is default)

div

div

div

span

type

name

multiple

Used to specify when the div grouping is used

for defining a section in a layout, defining a

“smart list,” or for style.

When type = “section” the id attribute needs to
be defined, for the id attribute of <section> to

match.

When type = “list”, the contents need to match
one the predefined list formats. These formats

are:
brlist: text/image, followed by

plist: <p>text</p>

bulletlist: an unordered () list
numberedlist: an ordered () list
selectlist: a selection list (<select>)
any of the above, wrapped in

When type = “normal”, the div works as it does

in regular XHTML.

will be transformed into

single item or can select multiple items

listitem Wraps a list item in a “smart list.” Can be
combined with any other span attribute (e.g.,

value, href).

Used to specify the name of a list that this list

If this list is transformed into a selection list,
specifies whether the use can select only a

section, list, normal*

Name used for list

true, false*

true, false*

Dec. 5, 2002

US 2002/0184610 Al

23

Dec. 5, 2002

-continued
Tag Attribute Description Values (* is default)
span value Used to define the value that is to be returned if Value to be used if
the current list item is selected. For example, selected in form-type
this would be the value attribute in a selection element
list. Only needed if the list is being transformed
into a selection list, and it is not a selection list
in its current form.
span href Used to define the URI the application will URI
move to if the current list item is selected. Only
needed if the list is being transformed into a
form that requires hyperlinks, and the list items
currently do not have links.
noscript type The value of this type should match the value of Media types defined
the type attribute in the script element it by W3, WMLScript
follows. Used to identify which no script
blocks should be rendered for a particular
device.
input format Specifies format mask for WML view Format mask for
WML
input emptyok Indicates whether leaving the text entry field is true*, false

acceptable. Browser will not let user move on
if emptyok = “false” and the input is empty.

[0346] The presentation module 16 provides an XHTML
editor 416, shown in FIG. 23, for creating and editing
XHTML views. To use the extension effectively, the devel-
oper should first create a XHTML page for the richest device
targeted in the XHTML editor 416. The design should be
modularized, using <div> or <table> tags to group key
pieces of content. This modularizationn will allow the
developer to specify which groupings to keep or drop per
view. After developing the XHTML template, the developer
simply saves the page, and the view will be added to the state
and the project tree 402 will be accordingly updated.

(3) PRESENTATION DESIGN JAVA

[0347] Java views are pieces of GUI code implemented in
the native language of a device’s Virtual Machine, i.e. Java.
Java views enable developers to (i) use more active user
interface components, when those offered in HTML are not
enough; (ii) present a GUI on Mobile Information Device
Profile (MIDP) and PersonalJava devices, even when there
is no browser present on the device; and (iii) reuse existing,
legacy code rather than porting the code to HTML. For
example, HTML may not be sufficient if a browser does not
support newer technologies (e.g., Flash) that allow more
interactive elements, such as mouse-over animations.

[0348] The presentation module 16 provides a Java view
editor 418, shown in FIG. 24, for creating and editing Java
views. There are many types of Java views (e.g., Abstract
Windowing Toolkit (AWT) and MIDP) that developers may
create in the Java view editor 418. AWT is part of the
standard Java (J2SE) API. AWT is a known type view that
allows developers to create GUIs for Java programs by
entering code that will render the view directly. MIDP is a
known set of APIs (not a subset of AWT) targeted at more
limited mobile information devices, such as mobile phones
and entry level PDAs. Other APIs may also be created in the
future to address different devices. These APIs can manifest
themselves as “Profiles” as described by Sun Microsystems
of Palo Alto, Calif. As such, in the preferred embodiment,
presentation module 16 does not provide a fixed set of Java

view types that can be used. Rather, editor 418 is essentially
be a blank editor onto which users can enter custom code to
render the views for applications that run on devices sup-
porting the natively rendered view. When the application is
packaged, the application runs the code through a compiler
associated with the language in which the view is created.
This compiled code is then a part of the application. This is
different from the other rendering types in which the view is
specified in an XML language. In those cases, a separate
viewer or browser will read the XML language and render
the appropriate output. It will be apparent to those skilled in
the art ofjava programming on how to create java language
user interfaces. Alternative embodiments may be based on
differing languages other than Java without departing from
scope of the present invention.

(4) PRESENTATION DESIGN-NATIVE
LANGUAGE

[0349] Native language views are those who have been
developed in a specific language for a particular device,
browser, screen size, capability, or channel. Native language
views may be created and implemented when a developer
wants complete control over the presentation of the view or
when the view has already been developed beforehand. To
develop a view in a native language, the developer simply
creates code in the target markup language, or in the
preferred embodiment Java. The native language editor 420
is shown in FIG. 25. Alternative language embodiments
may be based different languages other than java without
departing from the scope of the present invention.

D. DATA MODELING/INTEGRATION DESIGN

(1) DATA INTEGRATION

[0350] Referring back to FIG. 27, after creating the pre-
sentation or views of the application, the developer may
proceed by developing the data sources (i.e., data integra-
tion), as indicated in functional block or step 658. The data
integration design module 14 (FIG. 7) is used to define
methods that can be used by controllers and views to access
data. Within the MVC (model-view-controller) paradigm,

US 2002/0184610 Al

the data integration module represents the “model”. Views
interact with the controller and controllers interact with
models. Views interact with models only through the con-
troller, which, as will be seen later, is called a data binding.

[0351] Data integration involves the creation of variables,
whose type corresponds with a data adapter type. Variables
are design-time definitions of run-time objects that are to be
instantiated (become active participants in the controller). In
other words, these objects are “active” elements in an
application that participate in the control of the application.
Variables are defined and associated with a type. This type
is called a “class” in object-oriented terminology. A class is
a definition of the properties (data) and methods that an
instantiated object can have. Properties are attributes or
states that a class is defined to have. Methods are function
calls that can manipulate the properties and return values to
the caller. Special versions of these “classes” exist and form
what will be called the data adapters. Hence, data adapters
are pre-built classes. FIG. 40 illustrates the relationship
between these various elements.

[0352] Data adapters are essentially “classes” that can
interface with various internal and external data sources.
Internal data sources are those that reside on the same
computer as system 100. External data sources are the data
elements that do not reside on the computer system 100, but
instead are accessible through network connection. Data
sources are entities that contain data to be used or manipu-
lated by the controller. Data sources and their associated data
adapters are the “model” of the MVC paradigm. In the IDE
500, there are several data integration interfaces by which an
application developer can use to design and configure data
adapters. For variables of other types (e.g., classes), the IDE
500 will provide a generic property inspector that displays
the name-value pairs of the various defined class properties.

(2) VARIABLES USED BY THE CONTROLLER

[0353] As previously mentioned, variables are design-
time definitions of the run-time objects that are to be
instantiated. Variables are also called model variables in this
document. Variables can be used by the controller. Control-
lers will use variables by assigning/retrieving variable val-
ues or by making method calls that the variable contains.
This is done by using actions. For example, if a variable
property is to be manipulated, application designers can use
the “set” action. If a method is to be invoked, application
designers can use the “method” action.

[0354] Variables are declared and are associated with a
particular controller In the IDE 500, when the controller
editor has focus, a list of variables that are associated with
that controller will be displayed in a tree (see e.g., objects
tree 404 in FIG. 41). Application developers can add
variable declarations by using the class tree (steps detailed
below). To add more class definitions, developers can import
additional classes.

[0355] 1t should be appreciated that views do not have
direct access to the variables. However, for a view to be
useful, they must access some data to present to the end user.
In keeping with the MVC paradigm, views access model
data through controllers. This may be done by use of two
methods. First, if a view needs to access a particular variable
value, this access may be accomplished with a call to the
controller. The controller will expose a special interface by

Dec. 5, 2002

which model data can be accessed. The second is if a view
needs to access data returned from a method call. This can
actually be accomplished by performing a method call in an
action, assigning the return value to a variable, and then
using that variable in the view. However, the controller may
further expose another construct called a data binding.

(3) DATA BINDINGS

[0356] A data binding associates a name to a method call
on a variable. This way, views can make method calls
indirectly by using data bindings. Using data bindings in
views are no different than using variables. For variables, the
application designer identifies the variable name by special
markers (markers are dependent on the rendering technology
used for each view). In the case of bindings, instead of using
variable names, binding names are used. In XSL, both cases
may appear like <xsl:value-of select=*/root/my Variable-
OrBinding”/>. However, it is up to the implementation to
decide how to determine when to replace the text with the
data.

[0357] Bindings have four properties that need to be
configured. The first property is the name of the binding.
This is the name by which views will reference the bindings.
The second property is the variable name on which the
binding will reference. The third property is the method
name to invoke on the variable. The final property is a list
of parameters to set for the method call (if a method call
requires parameters to be passed to it).

(4) VARIABLES AS CONTROLLER
INTERFACES

[0358] Variables are also used as interfaces between con-
trollers. To promote re-use, controllers can make calls to
other controllers. That way, controllers can be reused in
different places without redefining a controller. However, for
controllers to be even more flexible, there should be a
mechanism by which application designers can pass inputs
to and receive outputs from. This mechanism may reuse the
variables mechanism.

[0359] There are two additional properties that can be set
when the user declares a variable. They are the “accepts
value” and “returns value” flags. In the IDE 500, when the
“accepts value” flag is checked, the associated variable will
be exposed as one of the properties of the controller to which
other controllers can pass values. When the “returns value”
flag is checked, the associated variable will be exposed as
one of the properties of the controller from which other
controllers can receive values. Variable values passed
between controllers are passed by reference. That is, instead
of making a copy of the variable value to pass to the
controller, a reference to the variable value is passed instead.
So, if the variable was a complex data type that contained
several properties, those properties could be modified when
passed into a controller. However, the reference to the
variable itself cannot be modified. In other words, the
variable cannot be assigned to a different object in the
controller that was called and have that new value be
reflected in the calling controller.

(5) VARIABLE SCOPES AND LIFETIMES

[0360] A variable scope defines a variable’s visibility in
relation to states, controllers, and actions. In the preferred

US 2002/0184610 Al

embodiment, there are four scopes defined, including
“request”, “controller”, “application”, and “global”. A vari-
able lifetime defines how long an instantiated variable (i.e.

object) is “active”.

(a) REQUEST SCOPE

[0361] The “request” scope applies to variables that are
visible only during the time that the controller is processing
a request. A request occurs when an end-user (ie., an
application user not the IDE developer) submits (e.g., posts
back to the server) some data in the presentation. When the
end-user data reaches the controller, the request scope will
begin. Request variables are automatically created when
end-users interact with a view and send data back to the
controller. This data is in the form of name-value pairs.
Actions in the controller, such as the “set” action, can use
these “request” variables. Request processing is finished
when another view is presented to the user. At that point, the
request variable is no longer accessible. That is, the request
variable’s lifetime comes to an end and its scope will be
closed (no longer a visible variable).

(b) CONTROLLER SCOPE

[0362] The “controller” scope applies to variables that
have been declared for a controller. These variables are only
visible within the controller in which the variable was
defined. So, for example, if a controller contains a controller
call where control is transferred to a different controller, then
the calling controller’s variables are not visible to the
controller being called.

[0363] When controllers contain calls to other controllers,
the call will create a new stack frame for the variables of the
controller being called. That way, when control is returned
back to the calling controller, the calling controller’s vari-
able values will still exist. The stack is a data structure that
allows values to be added and then removed in first-in,
last-out order. Hence, when control is transferred to a
controller, the controller’s variables are saved on the stack.
When control leaves the controller, the controller’s variables
are removed from the stack and the stack will point to the
previous controller’s variables, hence preserving the state of
a controller’s variables. Therefore, a “controller” variable
lifetime exists between the start and the end (e.g., the “exit”
state) of the controller.

[0364] Because the scope of “controller” variables only
exist within the controller defining those variables, there
exists a mechanism by which to pass variables to controllers
that are being called. This mechanism is performed through
variable mapping where variables are used to transfer data
between controllers. (See Section VI.D.(4), supra). This is
actually variable passing and is not considered as a break in
scope rules.

(c) APPLICATION SCOPE

[0365] The “application” scope applies to variables that
have been declared for an application. These variables are
visible by all controllers in the application. At run time,
application variables are visible and exist on a per-user
basis. Once an end-user terminates her session with the
application, the application variables will be released. Vari-
ables defined as having “application” scope can be accessed
by all controllers within an application, but only by a

Dec. 5, 2002

particular end-user. That is, the values of the “application”
scoped variables will be different between end-users. One
end-user cannot retrieve the values of “application” scoped
variables of another end-user.

(d) GLOBAL SCOPE

[0366] The “global” scope applies to variables that have
been declared for multiple applications across multiple
end-users. During application run-time these variables are
visible by all controllers in all applications by all end-users.

(6) DESIGNING WITH VARIABLES IN THE IDE

[0367] The integration design module provides a rich
framework for tying the front-end interaction to a variety of
data sources. The integration module 14 can integrate with
a wide range of data sources including XML, HTTP, EJB,
JDBC, FTP, and flat files. In addition, developers can build
custom adapters to other data sources or applications. By
binding dynamic data sources to the presentation, the inte-
gration design module enables dynamic rendering of content
to a specific requesting multi-channel device “on the fly”
rather than simply presenting static pages. Thus, developers
can choose to either configure direct backend integration
with a data source, or dynamically harvest the information
from an existing website. Both data abstraction methods
enable real-time, transactional functionality for business-
critical applications and services. The integration design
module 14 allows developers to construct data bindings with
supporting methods and variable definitions to manipulate
data sources.

[0368] A list of all variables used in the project will be
displayed in the project tree 402 (FIG. 18). The project tree
402 provides a portion of the graphical interface for the
integration design module 14, which allows developers to
manipulate the variable entries.

[0369] FIG. 42 is a flow chart, illustrating a method 1200
of performing various manipulations of variable entries. The
method begins with steps 1202 and 1204, where a developer
displays the workflow editor (e.g., editor 408, FIG. 19) and
model variables within the editor (e.g., the variables within
the model tree shown in FIG. 41). Users can create new
variables, which will be displayed in the project tree 402. To
create variables, users will be presented with a list of
possible variable types (i.e., classes) from which users can
create variables, as shown in the bottom half of FIG. 41.
There are two ways of creating variables. The first is to
browse through the list in the tree and select an object type.
Once selected, users can right-click to bring up a context-
sensitive popup menu. When users select the “Create object”
option, the new variable will be created and added to the list
of variables for the workflow. Alternatively, users can create
objects by typing in the variable type and a name to assign
the variable in the input field labeled by “Enter class name
to create object” (field 402 A in FIG. 41). In the preferred
embodiment, the format is <variable type>[<names>[,
<name>]*]. This resembles the method by which users
would declare variables in the “Java” or “C” programming
language. If a name is not specified (e.g., variable created by
specifying variable type only or by right-clicking to create a
variable), then a unique name will be assigned to the
variable and added to the list of variables for the workflow.
When a new variable is created, the system 100 will update
the workflow model to include the new variable, as shown
in step 1206 of FIG. 42.

US 2002/0184610 Al

[0370] There are additional actions that can be performed
on a variable. Developers can edit the properties of a
variable, such as by modifying the variable name. This is
accomplished through a property editor, as shown in step
1208. If the variable is an object that contains properties,
then the properties are displayed for the user to edit. Users
can also delete the variable by a delete action (e.g., by
right-clicking on the variable to delete and selecting the
“delete” option, or by pressing a “delete” key). When a
variable is deleted, system 100 checks for any usage of the
model variable in the workflow, as shown in step 1210. If the
variable is not used within the workflow, system 100 updates
the workflow model file to remove the model variable, as
shown in step 1212. If the variable is used within the
workflow, system 100 does not delete the variable and issues
a corresponding message to the developer, in step 1214.

[0371] There are also drag and drop mechanisms for the
variable and any methods that the variables might contain.
Variables are essentially objects that may or may not contain
methods. These methods enable users to modify the behav-
ior of the object. For example, a TextField object (variable)
might have a method called “setText” that, when called, will
set the text of that object. Dragging these methods into
various editors that accept these methods will essentially
make a call to that method. Variables can be dragged into
any editor that accepts a variable (e.g., the action editor or
the view editor).

[0372] As mentioned above, one method by which vari-
ables are used in the editors is through dragging either the
variable or a variable’s method to an editor that accepts the
variable or variable method. In the IDE 500, there are “drag
sources” and “drop targets.” Drag sources are user interface
widgets (such as a tree node) that can be dragged by a user
(e.g., by using a mouse, pointing to the widget, pressing and
holding the mouse button, and moving the mouse). Drop
targets are user interface widgets (such as text fields) that
have been specified to accept drag sources of specific
type(s). There are two elements that can be dragged from a
variable. The first is the variable 402D itself. The variable
itself is usually dragged into an editor that uses the variable
(e.g., either by assigning a value to the variable or retrieving
the variable’s value). Examples of this include dragging the
variable into a template editor 416 (FIG. 23) or dragging
into a “set” action editor 410B (FIG. 43). The second is to
drag a variable’s method 402E. If the variable has methods,
the variable node in the variable tree 402C (FIG. 41) will be
expandable to expose a list of methods that can be called.
The method nodes 402E can be dragged into the “do™ action
as seen in FIG. 44. When dragged into the “do” action
editor, the variable’s return as well as parameter list is
shown. The list is formatted into a name-value pair table
where users can edit the value by typing in a value or by
dragging a variable into the value field.

(7) INTEGRATION DESIGN IN THE IDE

[0373] Integration design involves the following aspects
of application development: (i) gathering information from
various resources such as databases, web sites, files, to name
a few; (ii) storing or submitting data in any of the above
sources; (iii) resolving model variables; and (iv) using the
information to do any necessary transactions or calculations.

[0374] Adeveloper may use the integration design module
14 to perform all of the foregoing data integration functions.

Dec. 5, 2002

The general steps taken by a developer to integrate back-end
data with an application in system 100 is as follows:

[0375] 1. Determine where the data originates such

as:
[0376] SQL.: data stored in any relational database
[0377] HTTP: data retrieved from a URL

[0378] File: data stored in a flat file

[0379] Data gleaned from an existing web site

accessible from a browser.

[0380] 2. Add a new data source in the integration
design module

[0381] 3. Configure the data source

[0382] 4. Creating variables of certain data-source
types
[0383] These steps are more fully described below:
[0384] Step 1 - Determine Data Sources

[0385] Depending on where the data resides, the applica-
tion developer selects the appropriate data source. Various
pre-determined data sources exist, as seen in region 402B of
FIG. 41. These include:

[0386] HTTP - data in a document retrieved using the
HTTP protocol at the location specified by a URL;

[0387] SQL - data stored in a relational database;
[0388] File-data stored in a flat file;

[0389] Web repurposer - data gleaned from an exist-
ing web site accessible from a browser;

[0390] Web Service - data received as a result of a
web service invocation (e.g., a remote procedure
call); and

[0391] Custom - user writes their own code to
retrieve data that is not one of the preconfigured data
sources.

[0392] After determining where the data will come from,
the designer may create instances of the data sources in the
integration design module.

[0393] Step 2 - Adding Data Sources

[0394] The nodes in the tree table widget 402C as shown
in FIG. 41 are visual representations of declared objects.
The nodes are displayed in a two-column tree table with the
first column displaying the name of the variable and the
second column displaying its type. Developers can fuirther
expand these nodes to reveal the methods that can be called
on these objects. These methods appear as nodes that appear
underneath the variable node. Again, there will be two-
columns for these method nodes. The first column displays
the name of the method. The second column displays the
method signature (i.e. the parameters that can be passed to
the method). These are the objects that are declared to be
created when the controller runs. The objects shown are
associated only with the corresponding controller. Thus,
declared controller objects have associated scopes. In this
case, the controller objects shown on the tree will have
“controller” scope. In other words, the declared object, when
used, will only reside within the associated controller. Once

US 2002/0184610 Al

the control leaves the controller to a different sub-controller,
then the object will be destroyed. Other scopes include the
“request” scope in which the object is only “visible” in one
state, an “application” scope in which the object is visible
throughout the application, and a “global” scope in which
the object is visible across all users of the application.

[0395] To declare a controller object, developers can view
another tree called a class tree in region 402B (FIG. 41).
This tree contains a hierarchical view of the classes and
packages of the libraries in the project. This tree may be
preceded with the system libraries. In the case of Java, the
system libraries include “com.sun.*”, “java.*”, “javax.*”,
and “org.omg.*”. When developers add additional libraries
through the configuration panel (e.g., by adding a classpath),
this tree will be refreshed to reflect the additional libraries.
The example embodiment of FIG. 41 shows Java class
libraries. Adding Classes

[0396] Additionally, developers can add classes to the
project. Classes are definitions that objects can take. For
example, a “TextField” class will create objects of the type
“TextField”. Classes can be added by simply copying a class
file into the project directory. Alternatively, developers can
create classes within the IDE 500 by selecting the “Create
new Java class” option from a context-sensitive menu,
accessed by right-clicking on the “Data Model” node 402F
in the project tree 402 of FIG. 18. This will launch a text
editor wherein users can enter code to define the class. Once
completed, the class source file is compiled into a class file
and placed into the project directory. The classes can be any
custom user class. The classes will typically be used to
provide data to the controller. These classes appear in the
same class tree as the other libraries, shown in region 402B
of FIG. 41, allowing users to create declarations of these
classes as well. When declared, these classes have the same
behavior as the system libraries.

[0397] Step 3 - Configuring data sources

[0398] A sct of special classes also exists to help users
integrate with data (see step 1). Users have the option of
using these special classes or extending the special classes
with their own extensions. The special classes have special
icons in the class tree so as to distinguish them from standard
libraries or user classes. (See region 402B in FIG. 41, there
is “HTTP”, “SQL”, “File”, “Web repurposer”, “Web Ser-
vice”, “XML Buffer”, “Object Queue”, “Sync Connection”,
and “DefaultDataAdapter” special classes). These special
classes have their own set of methods that operate on the
data as described below. When declared, the special classes
have the same behavior as the system libraries. System
libraries are standard classes that are bundled with the
run-time environment. For example, the Java libraries
include packages to manipulate strings and perform other
conventional tasks. The main difference is that there are
special configuration dialogs that are geared specifically to
configure these data integration classes.

[0399] Extending Data Adapters

[0400] Sometimes, the pre-built data adapters are not
enough to extract the data from a data source. However, it
might be the case that an application developer might want
to re-use the basic functionality provided by the data source
object but also to extend it with his or her own functionality.
So, as part of configuring the data adapter, developers can

Dec. 5, 2002

add code to extend the data source functionality. Data
(model) integration can be accomplished through use of
code (either user-defined, user-extended, or system-defined).
In object-oriented programming, this is done through class
extension or class inheritance. In one non-limiting imple-
mentation, the code used by system 100 is Java code. System
100 uses the code to perform data collection, filtration
(selecting only desired pieces of data), and collation (gath-
ering data from different data sources). This provides flex-
ibility. For commonly used integration sources, a set of
predefined adapters is available. These predefined adapters
can be used “as-is”, or with class extension.

[0401] Data Adapter Details

[0402] Each data source adapter has an associated inter-
face or panel including a text field where developers can
enter the name of the declared controller variable. An
embodiment of such as panel is shown in FIG. 45. The
“Accepts value” and “Returns value” checkboxes are related
to data passing for sub-controllers. If the checkbox is
checked, then the controller variable can be used to accept
a value (have a value passed in) or to return a value (have
a value be passed out of the sub-controller). So, the name
and the accepts/returns checkboxes will be common for all
model variables. In addition, each panel has a “Description”
tab, as shown in FIG. 46. This allows developers to enter
some text that describes the controller variable.

[0403] HTTP Data Source

[0404] FIG. 47 illustrates a graphical interface for con-
figuring a data source object of the HTTP type. The HTTP
source shown in FIG. 47 is used to retrieve data using the
HTTP protocol. It is similar to the File source that is
described below. The difference is that instead of reading
from the local file system, a URL to the file is specified. The
“Timeout” field is used to specify how long to wait for data
to be returned until the connection is deemed invalid. The
“Input encoding” field specifies the encoding format of the
data being returned.

[0405] There are three return types for the data, as shown
in FIG. 47. The first is an “InputStream”. This means that
the data will not be interpreted. The stream of data retrieved
will be passed back to the developer. Users can access the
stream using the “getInputStream()” method call. The
second return type is a “DOM Tree”. The structure and
function of a “DOM Tree” will be apparent to those ordi-
narily skilled in the art of internet standards (e.g., a DOM
representation is tree-like hierarchical representation of
data.) The third return type is “Delimited Data”. For this
option, the File source will retrieve the data and then parse
it using a conventional parser. Depending on what the user
selected, the token separators will be the character chosen.
In the drop-down, a list of token separators might include
comma (,), tab (\t), space (). There is a “Custom” item in the
drop-down that allows the user to enter the character that the
user wishes to use to separate the fields. When the data is
ready to be used, users can use the “getRowByindex()”,
“getColurnnBylndex()”, “getRows()”, “getcolumns()”
methods, which will return Collection objects.

[0406] The panel or interface of FIG. 48 allows a devel-
oper to enter any additional HTTP variables to pass in the
request to retrieve the data. These variables can be static text
or the name-value pairs can come from a controller variable.

US 2002/0184610 Al

Developers can specify either “GET” or “POST” for the
HTTP request type. The significance of these parameters
will be apparent to those of ordinary skill in the art of
internet standards, such as HTTP.

[0407] SQL Data Source

[0408] FIG. 49 displays a configuration panel or interface
for an SQL source. The interface of FIG. 49 contains several
text fields to configure a connection to a database via the
known JDBC (Java Database Connectivity) API. In the
preferred embodiment, the specific implementation is for a
Java platform, which has JDBC for database connectivity.
However, in other alternate embodiments, the implementa-
tion could be easily extended to use other APIs such as the
known ODBC (Open Database Connectivity) API.

[0409] The “Driver Name” is the fully-qualified class
name that implements the JDBC driver interface. In this
example, it is “org.gjt.mm.mysql”’, which is a publicly
available database. The GUI implements an editable combo-
box widget that displays a set of widely used driver names
(such as Oracle™ and Sybase™). If a new database driver
becomes available and it is not in the drop-down list, then
the developer can enter the driver name in the field. The
“URL” is a driver-specific text string that gets passed. JDBC
database drivers have their own URL formats that include
the machine name, port numbers, and others. Developers
may consult conventional database documentation for
details on what to specify. The “User Name” and “Pass-
word” fields specifies the login information to connect to the
database (if security is enabled on the database). The “Tim-
eout” field specifies the number for a session to hold on to
the database connection. It should be appreciated that when
the timeout expires, the database connection is not closed.
On the server, there is a pool of database connections that
maintains a constant connection to the database. The “Tim-
eout” field only specifies when to return the session’s
database connection back to the database connection pool.
The SQL data adapter includes methods such as “execute-
Query()", “executeUpdate()”, “getRowByIndex()”, “get-
ColumnByIndex()”, “getRows()”, and “getcolumns()” that
can be used to retrieve the data.

[0410] File Data Source

[0411] FIG. 50 shows an example of the configuration
panel or interface for a File source adapter. In addition to the
standard name and accepts/returns checkboxes, there are
additional fields to configure the adapter. This configuration
panel looks very similar to the HTTP source adapter. The
main difference lies in the mechanism used to retrieve the
data. The “Import source file” field specifies a file to read.
Developers can press the “Browse” button to browse on the
local file system for a file to import. A valid file entered in
this field will be copied into the project (reference by copy).
Otherwise, when the application is deployed to different
systems, the same file and directory structure in the servers
are most likely different. As a consequence, the file is copied
locally into the same directory of the application to ensure
that the file will exist.

[0412] Like the HTTP source, the file source adapter has
three return types for the data. The first is an “InputStream”.
This means that the data will not be interpreted. The stream
of data retrieve will be passed back to the user. Developers
can access the stream using the “getInputStream()” method

Dec. 5, 2002

call. The second return type is a “DOM Tree” The third
return type is “Delimited Data”. For this option, the File
source will retrieve the data and then parse it using a simple
parser. Depending on what the user selected, the token
separators will be the character chosen. In the drop-down, a
list of token separators might include comma (,), tab (\t),
space (). There is a “Custom” in the drop-down that allows
the user to enter the character that they wish to use to
separate the fields. When the data is ready to be used, users
can use the “getRowBylIndex()”, “getColumnByIndex()”,
“getRows()7, “getcolumns()” methods, which will return
Collection objects. The “Input encoding” field specifies how
the file was encoded so that the system 100 can retrieve the
data correctly from the file.

[0413] Web Page Scraping Data Source

[0414] FIG. 51 shows the configuration panel for a Web
Page source adapter. This adapter allows application devel-
opers to gather data from web pages. Additional fields to
configure are the script and the input encoding. The “Script”
field specifies the script to use to retrieve data. Users can opt
to create a new script, import an existing script, or edit an
existing script.

[0415] Web Services

[0416] FIG. 52 describes a web service 900. Viewed from
an n-tier application architecture perspective, the web ser-
vice is a veneer for programmatic access to a service which
is then implemented by other kinds of middleware. Access
consists of service-agnostic request handling (a listener) 902
in FIG. 52 and a facade 904 that exposes the operations
supported by the business logic 906. The logic itself is
implemented by a traditional middleware platform and will
be apparent to those skilled in internet standards such as Web
Service Description Language (WSDL). A client can read a
WSDL description of a service published by a server and
will automatically know how to invoke a service (e.g.,
parameters, invocation type) and what kind of a response to
expect. Essentially Web service is a remote procedure call.
A request is sent a server and response is received. In the
case of web-service adapter, FIG. 53 shows the configura-
tion panel for entering the name of the web service adapter
and where to obtain the service description (URL for WSDL
file). The IDE 500 will automatically fetches the service
description file from the given URL and parses and show the
user the available services from the service as shown in
sample embodiment in FIG. 54. This panel shows the
parameters that the service will accept. These parameters
can be configured manually or through the use of variables
form Project tree 402.

[0417] Step 4 - Creating Variables

[0418] Developers can then navigate through class tree
402B (FIG. 41) tree to select the class type of the object to
declare. At that point, developers can then press the “Create”
button (FIG. 41) to create the object. Alternatively, the
interface may include a context-sensitive menu option with
a “Create object” option 402B that users can access via a
secondary input button to create the object. Once created,
the object will appear in the declared objects tree 402C.

[0419] In a preferred embodiment, system 100 also pro-
vides a feature to help more advanced users to create object
declarations more quickly. If a developer does not want to
navigate the declared objects tree, system 100 provides a

US 2002/0184610 Al

text field 402A (FIG. 41) where developers can specify the
name of the object and its type to create in the form of
<object type>[<object name>[,<object name>]*]. If the
object name is not specified at all, then a unique name will
automatically be assigned to the object. Developers can later
go back to edit the declared object name.

VII. TECHNIQUES FOR BUILDING SCALABLE
APPLICATIONS

A. LAYERS

[0420] The IDE 500 allows for the creation of applications
and controllers in multiple layers. These layers allow the
developer to organize a program into separate functional
portions. The layers are represented visually on the interac-
tion workflow diagram 442 of FIG. 19 using different
colors. That is, each layer is mapped to a different color. To
aid in the visualization of the program, the developer can
filter out one or more layers to examine a program’s com-
ponent(s), using the layer palette 460, shown in FIGS. 19
and 55. Layers are finctional as well—if a layer is hidden
during deployment, its states is not deployed to the engine
132 and are unable to be used by end users.

[0421] Layers facilitate the development of multi-channel
applications by providing a method to isolate channel-
specific application behavior. When multiple channels
behave in the same manner, their views may all be associ-
ated with the same state. If one channel requires different or
additional interactions with the user, the developer may
separate its states onto a different layer. This provides
several advantages, including:

[0422] a. making it easy to isolate one channel for
development, debugging, and maintenance;

[0423] b. making it easy to deploy or hold back
specific channels; and

[0424] c. providing visualization of where and how
applications differ.

[0425] Referring now to FIG. 55, buttons 462 and 464
allow the developer to add and delete layers, respectively.
Column 466 indicates the color associated with each layer.
Column 468 indicates whether the layer is visible or not in
the interaction flow diagram 442—the developer can toggle
the visibility on or off by clicking on the corresponding icon.
Column 470 allows the developer to describe the function of
the layer (e.g., comments, data, voice, root).

[0426] The color affects the workflow diagram visually by
altering the color of transitions and states on the associated
layer. For all states in a particular layer, the text color that
describes the state will be the color specified in the layers
panel. For transitions that occur between states that are in the
same layer, the color of the transition will be the color of that
layer. However, if a transition occurs between two states in
different layers, the transition will take the color of the target
layer.

[0427] The visibility layer visually toggles a layer on or
off. When toggled off, all states in that layer are hidden from
view. Transitions follow a slightly different rule. For tran-
sitions that occur between states on the same layer, if the
layer is toggled off, then that transition will also be hidden.

Dec. 5, 2002

For transitions that occur between states on different layers,
if either of the two layers are disabled, then the transition
will also be hidden.

[0428] When the user highlights a particular layer using
the layers palette 460, then that layer becomes “active”. That
is, an “active” layer is the layer on which dropped states will
be added to that layer. There are two special layers called
“Root” and “Comments”. The “Root” layer can never be
disabled. The default layer of the application is the ‘Root’
layer. The “Start” and “Exit” states of an application or
controller are always added to the “Root” layer. If the user
highlights the “Root” layer, then all layers become visible.
However, if a user highlights a different layer (other than
“Root”), then only that layer will be visible (other layers
become semi-transparent). At this point, when developers
add states and other objects to the controller, that object will
be added to the selected layer. Users can never highlight the
“Comments” layer. That is, users can never add states to the
“Comments” layer. If a user adds a comment object to the
workflow diagram, then that comment object is added to the
“Comments” layer automatically. In the preferred embodi-
ment, the editor 408 is further adapted to independently
display one or more voice and visual layers, representing
voice and visual channels, respectively. In this manner, a
developer can interact with and design voice and visual
channels of an application separately.

[0429] The “active” layer affects where components are
placed in the workflow. The workflow editor will determine
which layer is active. Then, as objects are dropped onto the
editor, that object will be added to the active layer. An
example of how foregoing layering process is implemented
is provided in Section X below.

B. COMPONENTIZATION

[0430] Developers can use the componentization module
20 to define certain sub-controllers that are created into
components that can be re-used. Developers should compo-
nentize a created sub-controller when it contains code that is
used repeatedly across many different applications or when
it needs to be integrated as a part of a larger application.

[0431] Each component created by system 100 is com-
prised of the following: (i) an interaction process model
defined by process design module 12, which sets forth the
user interaction flow between the client device and the
server; (ii) back-end data adapters and bindings in terms of
model variables defined using the integration design module
14; (iii) the presentation layer defined by the presentation
design module 16; (iv) all media imported into the compo-
nent including strings, images, audio files, and speech rec-
ognition grammars; (v) a visual icon representing the com-
ponent; (vi) a description that defines the behavior of the
component; (vii) a functional “black-box” interface that
allows variables to be passed in and out of the component;
and (viii) instructions on how to assemble the resources in
the component into the application using that component.
Items (i)-(viii) may be stored in any archive file format. The
archive file format used in preferred embodiment of the
invention is a Java JAR file.

[0432] To create a component, the user selects the Com-
ponentize tool, which may be located within the Tools menu
480 of interface 400 (see FIG. 17), and which activates the
componentization module 20. The componentization mod-

US 2002/0184610 Al

ule 20 generates a wizard that guides the developer through
configuring the component, as shown in FIGS. 56-57. The
wizard allows a developer to enter a name for the component
as well as various other meta-level properties to be embed-
ded with the component, as shown in FIG. 56. These
properties can then be used by the IDE 500 to display more
information about the component (e.g., the component
description in a “tooltip”450A could appear when the mouse
pointer hovers above a component). The properties selected
in FIG. 57 specify what the component will look like on the
workflow diagram. Additional icons can be added to the IDE
500 by copying icon files into a directory defined by the user
(e.g., default can be in “components/img”). Components can
also be categorized into different palettes. This allows users
to organize components into meaningful categories, defin-
able by the user. These categories appear as different palette
panels that the user can switch between in palette 450,
shown in FIG. 58.

[0433] Once created, the component appears in the com-
ponents palette 450, shown in FIG. 58. Components may be
incorporated into any application built using the present
invention simply by dragging the visual icon (v) into the
editor window 430 of the editor 408, as previously described
in reference to FIG. 19. When the components are used in
an application in the system 100, all the items that are part
of the component (i.e., items (i)-(viii)) become referenceable
by the application. Users are able to view the contents of the
component (i.e. items (i)-(viii)) if the component has been
marked as “viewable”. However, users cannot edit the
component contents. If a component has been marked as
“viewable”, users can edit the component contents through
a merging mechanism. This mechanism involves copying all
of the component resources into the application using that
component. So, the component becomes part of the appli-
cation and can be safely edited at that point. Editing com-
ponent resources at this point will not change the component
itself because users will now be editing a copy of the
component’s resources. p Properties of a component are
exposed the outside world by way of “controller variables.”
Variables passed between sub-controllers can be passed by
value or passed by reference, by manipulating the IN/OUT
fields during componentization, using the componentization
module 20. These variables follow the previously described
scoping rules. Note that the call to components and sub-
controllers are the same. For a given application, there exists
various scopes in which a variable will be valid. Scopes
define the “lifetime” of a variable. That is, scopes define how
long a variable will be accessible in the application. The
“request” scope defines variables that exist only between
when data on a form in a template is submitted to the next
template that is displayed. The “controller” scope allows
variables to exist only between when control is passed to the
controller (e.g. “Start” state) and when control returns to the
calling controller (e.g. “Exit” state). The “application” scope
defines variables that will be visible and will exist through-
out the application for a particular user (e.g., the variable is
not destroyed between sub-controllers). The “global” scope
defines variables that are visible across all users of the
application (e.g., multiple users in the same application can
access the same variable).

[0434] To share a component with another developer, the
developer simply copies the archive containing the compo-
nent contents (e.g., the JAR file) created by the componen-
tization process from his components directory into the other

Dec. 5, 2002

developer’s components directory. This components direc-
tory is a fixed location in the IDE installation directory
where the IDE 500 is assured of being able to find the
components.

[0435] The componentization module 20 takes a devel-
oper through the componentizatoin process. FIG. 59 is a
flow diagram 1400 representing the componentization pro-
cess. The componentization module 20 allows a developer to
encapsulate an entire process model into a single compo-
nent. After a create component event is selected or “fired”
(step 1402), module 20 commits any changes made in the
opened editors to the project storage mechanism (step 1404).
This project storage mechanism is a data structure that holds
all of the project’s data in a convenient data structure. The
storage mechanism is like a virtual file system that exists in
memory. It is implemented as a file cache that stores the
parsed versions of the files for convenient access. For
example, an XML text file exists as bytes on disk. However,
when read by the plug-ins, it will be parsed into some data
structure and stored in the project storage.

[0436] Componentization is actually an extension of the
system’s save command. Instead of saving to a series of files
in the file system, the system 100 saves into a single archive
file (e.g. JAR file). The writes are done through the file
system manager, which abstracts the details of the file
system from the plug-in. In componentization, the mecha-
nism will use the JAR file system. Thus, the write mecha-
nism is the same, but the destination will be to a JAR file.
This JAR file becomes the component that is placed in a
location where the IDE can read the file and display in the
component palette for users to use.

[0437] The componentization process, as shown in step
1406FIG. 59, includes prompting a user for various prop-
erties of the component (such as name, category, description,
version, and a visual icon that will be displayed when the
component is dragged into a workflow editor). After the
prompt, the componentization module 20 will call the “File
System Manager” to create a JAR file in step 1408. A JAR
file is a single file on disk. This JAR file format is defined
by Sun Microsystems™ of Palo Alto, Calif. and will be used
to store additional files in this one file (i.e. JAR file is a
collection of multiple files that have been concatenated and
indexed so that the files can be later extracted into individual
files). Once the JAR file is opened for writing, module
retrieves the current project in step 1410, and calls the
“Project Manager’s” save function to save all the files in step
1412. This is the same as having the user select the “Save
Project” command from the menu. The only difference is the
target “file system”. In this case, the target file system is a
JAR file where file data gets written one by one into a single
file. This is in contrast to a local file system where files get
written to disk. In step 1414, the module 20 calls the write
method, passing in the handle to the JAR file system. Note
that the calls to write the file data remains the same. The only
difference is in the destination of the files. This component
JAR file is stored in a specific directory within the IDE
installation directory so that the IDE can determine where to
load up a list of components to display in the component
palette. Once the storing is complete, in step 1416 Compo-
nentization process will ask the “File System Manager” to
un-mount the Jar File. Un-mounting the Jar file commits the
changes so that the component can be read. Once
unmounted, the componentization module 20 will signal the

US 2002/0184610 Al

components palette, shown in FIG. 58, to refresh its list by
re-reading all components from the components repository
again (step 1418).

[0438] In addition to the standard components and user-
defined components, the system 100 includes a plurality of
predefined component objects that may be viewed and
accessed through the IDE graphical interface 400, and more
particularly, through the component palette 450, shown in
FIG. 58. The component palette consists of two parts, a
component category selector 452 and a component list 450.
Developers can specify the category in which a component
should be created to better organize sets of related compo-
nents. Once categorized, developers can use selector 452 to
select the set of components to display. There is one “inter-
nal” category that developers cannot add components to
called “Standard”. The “Standard” component category dis-
plays the list of basic controller primitives from which
components are built. The components in the other catego-
ries are developer-defined components. To use the compo-
nents, developers drag an object from portion 450 and drops
into the controller editor 408.

[0439] The components are sub-controllers that are self-
contained, reusable units. A component repository with a
number of predefined components is shown in palette por-
tion 450 of FIG. 58. By selecting region 452 of palette
portion 450, a developer may select to view various pre-
defined components, as illustrated in FIG. 58. The pre-
defined components may be stored within the media library
18, which contains an extensive selection of ready-to-use
components that are reusable and easily configurable to
enable device-, language-, and network-independent multi-
channel applications. The media library 18 contains business
logic, interface standards, service functionality, and network
intelligence components that eliminate the need to build
multi-channel applications “from scratch” each time. Spe-
cific components include but are not limited to common
visual controls, data control adapters, transaction blocks,
Protocol Independent Multicast (PIM) applications (e.g.,
e-mail and instant messaging, address books, calendaring,
to-do lists), and commerce applications such as (login,
shopping carts, product catalogs, and search).

[0440] Components may be customized after they are
incorporated into the application. If a developer chooses to
modify and customize the component, the component is
merged into the current project as a sub-controller, and all its
internals are merged with the current project. The merging
process involves performing a copy of the component’s
resources into the application. (Note that modifying the
component resources at this point does not modify the
component itself. Rather, users will be modifying a copy of
the component of which the application will be using.)

[0441] At run-time, components used in a project are
instantiated as required by the engine 132. The engine 132
reads the storage manifest of the component and determines
how to instantiate the component. The run-time behavior of
the component is defined by the sum of all it is comprised
of, and obeys the following principles: (a) the component
provides a black-box interface to the outside world that may
be used to configure the component at instantiation; and (b)
a component has a single entry point, and may have any
number of exit points.

Dec. 5, 2002

VIII. INTERNATIONALIZATION

[0442] Internationalization is the process of designing an
application so that it can be adapted to various locales. A
locale is a combination of a language and a region. For
instance, US English is different (albeit subtly) from UK
English. Part of the internationalization process involves
localization. Localization is the process of adapting software
for a specific locale by adding locale-specific components
and translating media (e.g., strings, images, voice-files,
grammar definitions). When performing application inter-
nationalization, it is desirable that localizing to a different
locale should not require additional engineering/recompila-
tion efforts.

[0443] The IDE 500 allows application developers to
create internationalized applications from the onset. In order
for this to occur, the application must have internationaliza-
tion constructs built-in. This includes separating the media
from the presentation. That is, text, images, audio files, and
other media must not be “hard-coded” into the application.
In fact, the IDE 500 will create separate resource reference
files for each locale added to the system. When the appli-
cation runs, the run-time environment that implements the
interfaces outputted by the IDE 500 determines which media
to return to the end-user based on their user profile (e.g.,
what locale the end-users connect from).

[0444] In addition to separating the media from the pre-
sentation, the IDE 500 automatically tracks the resources
that are used in the application. This is done by trapping
media insertion events and updating an internal store of
media as described below.

[0445] IDE 500 may be developed in such a way that the
plug-in manager 530 and API 508 mandate that the plug-ins
follow strict rules of internationalization. For example, if the
one of the plug-in modules such as presentation designer 16
has constraints such as paragraphs and images, the associ-
ated save command is mandated to detect the resources used
by the primitives and catalogue them into appropriate
resource bundles. When a user first creates an application,
system 100 creates a data store called a resource bundle.
Resource bundles store the media that is added to the
presentation. FIG. 60 illustrates a preferred embodiment of
the internationalization process 1500. The first resource
bundle created by a user will be of the “default locale” (step
1502). The default locale is the application designer-defined
locale that the designer will work with while developing the
application. So, as developers create content (step 1504), the
various media will be added to the default locale’s resource
bundle (step 1506). After the application is finished, a
translator can come in and use the IDE 500 to translate (i.e.,
localize) the media. This translator will be able to do this
without modifying the application (using the international-
ization wizard of system 100 as described below).

[0446] As illustrated in step 1506, the IDE 500 will
automatically add resources (such as text and images) to a
table to ease the task of internationalization. When the
application is first created, a set of tables will be created and
associated with a default locale. Developers can optionally
modify this default locale. The default locale specifies the
tables into which all resources that are added to the project
will go to. So, for example, while developers enter text in the
template editor, an entry in the text table will be created.
FIG. 61 shows an example of two media types added to a

US 2002/0184610 Al

template, a block of text (“Hello”) and an image. When the
developer added the text, the text is automatically associated
with a key and placed into the text table. For the image, an
image was imported and as a result is automatically assigned
a key and put into an images table.

[0447] The format of the tables depends on the type of data
that is stored. For text data, the table will consist of a key and
the text. The key is a unique identifier that uniquely iden-
tifies the block of text for the particular locale. When
developers switch locales, the keys in the different tables
will remain the same while the text will change to the
appropriate locale. For other media types, the storage is
similar. There will be a unique key that will identify the
resources in a particular locale.

[0448] For example, the developer starts a project and
enters some text and adds an image into a presentation
template (FIG. 61). The entered text will be stored in the
default locale table for text and will have a unique identifier
associated with that block of text. Similarly, the image will
have a key associated with the image and will be stored in
an image table.

A. INTERNATIONALIZATION WIZARD

[0449] Referring back to FIG. 60, when the application
developer is ready to localize the application to a different
language, the developer will launch the internationalization
wizard, as indicated in step 1508. FIG. 62 illustrates an
example of an internationalization wizard interface or screen
generated by system 100. Developers specify the view of the
locale from which they wish to translate. At the next step, the
developer has the option of either creating a new locale
(proceeding to step 1512 of FIG. 60) or editing an existing
one proceeding to step 1514 of FIG. 60). Since there is only
one locale, the developer can create a new one (Chinese-
China in the interface example of FIG. 63). In step 1512 of
FIG. 60, the wizard creates a new table of media and key
entries. In step 1514, the wizard updates the table form the
default locale table. In this step, the wizard may also display
the media types that are localizable in the project, as shown
in the interface example of FIG. 64. Since a text block and
an image was placed in the template, the list contains the
“Strings” and “mnages” entry. Both of the entries in the list
were “checked”, which means that the text and the images
will be presented to be localized.

[0450] FIG. 65 shows a subsequent interface that may be
generated by the wizard, displaying a list of all the text
blocks entered by the developer. In the preferred embodi-
ment, this information may be presented in a table of two
columns. The first column shows the text in the default
locale (e.g., US-English). The second column shows the text
in the locale to be translated to (e.g., China-Chinese).
Developers can then edit that text.

[0451] FIG. 66 shows a subsequent interface of the wiz-
ard, which displays a list of all the images used by the
application. The interface includes a list for the default and
the “target” locale. The default locale list includes the
images in the default locale (e.g., US-English). The “target”
locale allows developers to specify localized images for that
locale (e.g., China-Chinese). As indicated in step 1516 of
FIG. 60, developers are able to modify the target locale’s
images by selecting the image to change and pressing the
“Change” button. (Note that the entries in the default and

Dec. 5, 2002

target locale lists correspond with each other line-by-line.)
Once finished with the locale, the wizard may prompt the
developer to either start over and perform translation on
another locale or finish the internationalization session (see
FIG. 67).

[0452] Note that as the developer edits media in the
templates, the media might be added or deleted. The IDE
500 handles both cases by updating the tables consistently
across all the different locales (e.g., the keys will be updated
consistently across the locale tables).

B. IMPLEMENTATION

[0453] To ensure that the application can be used by
different locales, in the preferred embodiment, all files are
stored in the known UTF- 8 format, since it is a convenient
and space-efficient encoding scheme to persist localized data
in files on a disk. In alternate embodiments, other encoding
schemes can be used. Internally, all text is stored in a format
that can represent the character set of different languages
(for Java, this will be in the known UNICODE format).

[0454] Tocales are described as a pair of letters indicating
the language (e.g., pursuant to the known ISO-639 standard)
and an optional pair of letters describing the country (e.g.,
pursuant to the known ISO-3166 standard). The format is
<language>[<country>]. One non-limiting embodiment of
the implementation may store the media in separate files
with their filenames identifying their locale. Here are some
examples:

[0455] 1. text.properties—a file containing the text
strings for the default locale

[0456] 2. text_en.properties—a file containing the
text strings for English

[0457] 3. text_en_US.properties—a file containing
the text strings for US-English

[0458] 4. images.properties—a file containing the
image filenames for the default locale

[0459] 5.images_en.properties—a file containing the
image filenames for English

[0460] 6. images_en_US.properties—a file contain-
ing the image filenames for US-English

[0461] At run-time, the selected locale may be matched
against the correct locale file containing the media. Imple-
mentations of the run-time should attempt to load the most
specific locale first before resorting to the default one. So, if
a media file can be located by identifying the locale by
language and country, then that should be used first (e.g., 3.).
If not, then if a media file can be located by identifying the
language, then that file will be used (e.g., 2.). If the locale
cannot be determined, the default locale will be used (e.g.,

1).

[0462] The files themselves may contain some method of
associating a key with the text. In one example, this could be
as follows: <key>=<text string>. For keys associated with
files (e.g., images.properties), an example of how the data
could be stored might be as follows: <key>=<filename>.
This could apply to localized image files, audio files, and
grammar files.

US 2002/0184610 Al

C. KEEPING TRACK OF TEXT

[0463] The presentation design module 16 may be adapted
to accept text in manner that simplifies localization. In the
preferred embodiment, the presentation module 16 manages
the entry of text in the following manner:

[0464] a) As a developer enters text in the presenta-
tion editor, the text is automatically broken into
blocks of text that are placed into a lookup table for
purposes of localization.

[0465] b) Individual text entries created in the lookup
table have unique identifiers associated them. The
unique identifiers can be generated by any method as
long as the identifiers are unique and are alphanu-
meric.

[0466] c)If a non-text component is inserted between
the text (e.g., an image), the text block will auto-
matically be broken into two parts, the text appearing
before the non-text element, and the text appearing
after the element. (Note that if the text has already
been localized to another locale, automatic splitting
may not occur with the localized text block.)

[0467] d) Textstyles (e.g. bold, italics) are performed
on an entire block of text.

D. KEEPING TRACK OF IMPORTED MEDIA

[0468] Other media types that can be used include gram-
mars, images, audio, and script files. These media types are
represented as files that are used by the application. For
example, grammars are specifications in grammar files that
describe acceptable spoken text for a voice engine. Image
files contain data about a visual picture to display. Audio
files contain data to reproduce some sound.

[0469] This media is imported into the IDE 500 by using
the project tree 402 in FIG. 18. There are several sub-nodes
under the “Resources” node that shows the types of
resources that can be imported. Developers will right-click
on the appropriate node to reveal a menu that shows an
import option.

[0470] For the “Strings” node, developers can “right-
click” on the node to reveal a menu with an “Edit” option.
Since text is not imported into the IDE 500 (e.g., the IDE
500 keeps track of text as described in section C, supra),
developers will only be editing the text. Selecting the option
will display a text strings editor (See FIG. 65 - described in
section A, supra). Strings are important in localization since
the content must change for different locales.

[0471] For the “Images” node, developers can right-click
on the node to reveal a menu with a “Create new image
group” option. Images are organized into groups where a
group represents a reference to a set of related images.
Developers should use image groups to organize images by
size and type. For example, a developer could create an
image group called “Ball”. Within this “Ball” group, devel-
opers should add images of a ball that is represented in
different image formats (e.g., BMP, WBMP, GIF, JPG,
PNG), different sizes (e.g., 32x32, 64x64, 128x128), differ-
ent color depths (e.g., 1-bit black & white, 8-bit 256 color),
or any other characteristics. So, when used, developers can
reference the image group rather than the image itself. That
way, as the application runs, a presentation engine has the

Dec. 5, 2002

option of selecting an image in the image group that would
render the best based on the connecting device. Once an
image group is added, a node appears. Developers can
right-click on this image group node to reveal another menu
with an “Import image file” option. If selected, the IDE will
prompt the developer for an image file to import. This import
will copy the specified source file into the project to be used.
Images are potentially important in localization since dif-
ferent locales could have different cultural symbols. For
example, in one locale, a “thumbs up” image could be used
to indicate that something was “OK”, where in a different
locale, this would not make sense. So, in that other locale,
a “green light” image could be used instead. So, developers
would localize this by providing different image files for the
different locales.

[0472] The “Audio” node has a similar function as the
“Images” node. Developers create audio groups by right-
clicking on the “Audio” node and selecting the “Create new
audio group” option. Developers can then add different types
of audio files (e.g., AU, WAV, SND, MP 3) with the same
content. This is obviously important during localization if
the content contained a spoken language. Developers would
localize this by providing different audio files for the dif-
ferent locales.

[0473] The “Grammars” node has a similar function as the
“Images” node. Developers create grammar groups by right-
clicking on the “Grammars” node and selecting the “Create
new grammar group” option. Developers can then add
different types of grammar files into the group. Grammars
must be localized for different locales since grammars
contain information about the spoken language that will be
specific to each locale. Developers would localize this by
providing different grammar files for the different locales.

[0474] The “Scripts” node allows developers to import
other resource files. This is intended for the user to be able
to import external script files that can be used by various
views. For example, an HTML document could be created
in a view that references an external script file. That external
script file would be added to this node. Scripts could be
important for localization if the scripts contained locale-
specific content. For example, if a script had some text
embedded into it that would be eventually displayed, that
text may be localized by creating a different script and
changing the text in that script. Then, developers would
import the different script for the different locale.

IX. DEPLOYMENT OF THE APPLICATION

[0475] FIG. 9 illustrates the process of deploying an
application. In order to deploy an application (e.g., an
application descriptor) created by system 100, all files
associated with the application may be collected into a
package to be sent over to a server containing the deploy-
ment manager 1304 in FIG. 9. The process of packaging the
application can be handled in many ways. The method used
within the preferred embodiment is to delegate file-level
tasks to an external tool. The system 100 uses external build
tools to process the files and place them into a package.
Within the IDE 500, the user will be presented with a GUI
to configure how the tools work. (See FIGS. 72 through 75,
described below). The IDE 500 will take all this information
and generate an external file (a build script) that can be
understood by the build tool. When the user is ready to

US 2002/0184610 Al

deploy the project, the user will execute a “deploy” com-
mand that manifests itself as a toolbar button or in the menu.
(See e.g., FIGS. 68 and 69). This command call will then be
delegated to the build tool, which then executes the created
build script.

[0476] FIG. 70 shows a graphical interface for adding,
managing and configuring deployment targets. In this case,
the developer defines the targets for a build script. The
deployment is handled by running a build script that pack-
ages the files. The build script can be implemented by any
conventional build system, such as make, nmake, imake,
ant, or any other suitable build system. The build scripts
contain “targets” that define the process of steps to perform
for a particular “target”. By default, there should always be
one “target” in the project that should deploy to the server.
There are various other fields for configuring the build
script, including specifying directories of intermediate files
and specifying log levels. Other options can also exist,
depending on the level of sophistication that is to be exposed
to the user. The exact commands that are to be executed
behind each target are described in the generated build
script.

[0477] FIG. 71 shows the options to configure a particular
target. For deployment to the server, there are four param-
eters that need to be set:

[0478] 1. deploy.server—the URL on which the
project will be deployed to;

[0479] 2. deploy.repository—the name of the reposi-
tory on which the project will be deployed to;

[0480] 3. deploy.username—username for authenti-
cation of permission to deploy to the server; and

[0481] 4. deploy.password—associated password for
authentication of permission to deploy to the server.

[0482] As shown above, the parameter names follow a
naming convention of {system name}. {parameter} rather
than just a {parameter}. This is to allow for a heterogeneous
set of parameters (not just deployment settings) to be entered
without having parameter names clash.

[0483] FIG. 72 shows a non-limiting embodiment of a
graphical interface for configuring the application’s control-
lers and their associated layers. By use of this interface,
developers can enable or disable certain layers within the
controller or enable/disable an entire controller from being
deployed to the server. The layers panel 460, shown in FIG.
55, is a Ul-only panel. That is, enabling/disabling the layers
on panel 460 does not affect what gets deployed to the
server. It is through the Configuration/Deployment inter-
faces (see e.g., FIGS. 70-75 respectively) that deployment is
determined. This is primarily to separate the design aspects
of the IDE 500 from the deployment aspects.

[0484] This particular implementation for the panel of
FIG. 72 involves three types of checkboxes that have been
placed into a tree. The nodes of the tree are expandable/
collapsible to show/hide detail about the layers. Checking a
checkbox on a layer under a named controller will enable the
layer in that controller to be deployed. Similarly, “uncheck-
ing” the same checkbox will disable it from being deployed.
If a checkbox is checked next to a controller name, then the
controller will determine which layers to deploy based on
the checks next to its layers. However, in the checkbox is

Dec. 5, 2002

unchecked next to a controller name, then the entire con-
troller will not be deployed. Finally, there is a node called
“All Models”. The checkboxes under this node control the
deployment of layers of all the controllers. So, if a checkbox
is checked for a layer under “All Models”, then all of the
controllers that have that particular layer will be deployed.
Similarly, if the user “unchecks” the checkbox, then all of
the controllers that have that layer will not be deployed.
Note that this change only happens on a toggle between
check/uncheck states. That is, when the layer under “All
Models” is unchecked, it means that there might still be
layers in some controllers that have been marked for deploy-
ment. If it is checked, then definitely the layer in all
controllers are checked. Only on the change from checked to
unchecked will the layer in all the targets become
unchecked.

[0485] FIG. 73 shows a non-limiting embodiment of an
interface for configuring the classpaths to deploy with the
application. A classpath is a method to specify the locations
of where to find object definitions (classes). A developer
may specify the libraries (classpaths) that are used in the
project. During deployment, these libraries might already
exist on the server. In such cases, the user would “uncheck”
the checkbox next to the library name to deploy. Otherwise,
a check means that the library will be deployed along with
the application to the server.

[0486] FIG. 74 shows a non-limiting example of a panel
for configuring the files that are to be deployed to the server.
The entries in this panel can be thought of as a copy
command that copies the specified file to the specified
directory. Note that this implementation allows regular
expressions to be defined for the “File” column. That is, any
file in the project directory that matches the expression will
be deployed to the server under a directory named in the
“Destination” column.

[0487] The system 100 may also include interfaces for
allowing developers to add their own pre-build and post-
build commands into the build process. This allows devel-
opers to more easily add simple commands without having
to modify a potentially complex build script. The commands
can execute shell commands in the system. In the pre-build
dialog, users can add commands that are executed before the
main build begins. The main build is essentially all the
commands required to generate an application. For example,
in the pre-build dialog, users can add a command to log the
date and time that the build started. Similarly, the post-build
dialog allows users to add commands to be executed after
the main build has completed. For example, users can add
commands to copy the built files to a different directory.

[0488] FIG. 75 shows one non-limiting embodiment of a
configuration panel or interface that displays the compo-
nents that are used in the project. The checkbox next to the
component indicates whether the component should be
bundled with the deployment or not. In cases when the
component already exists on the server, users can opt not to
deploy the component along with the project. Otherwise, the
component will be bundled with the application to be sent to
the server.

[0489] The dialog shown in FIG. 76 represents a non-
limiting example of a user interface for initiating deploy-
ment. System 100 may include both an interactive and a
non-interactive mode for deployment. During non-interac-

US 2002/0184610 Al

tive mode, all of the settings as defined in the interfaces
above (and as subsequently stored in the build script) will be
used. However, during interactive mode, when appropriate,
prompts will appear where it is appropriate for the user to
enter information (e.g., to ask for deployment parameters).

[0490] Referring back to FIG. 9, the application 1302 is
stored in a series of files 1303 (e.g., a set of CML files stores
the interaction flow, the actions and the integration between
all pieces of the application; a set of view files details the
user interfaces; a set of resource files contains the resources
needed in the application, such as strings, images, audio
files, grammars, and any other applicable resources; and a
set of data sources contains all the user-defined classes for
the application). After a developer 1300 completes the
application 1302 on system 100, the system 100 deploys the
application by sending the files created during development
to a deployment manager 1304. The deployment manager
1304 selects the appropriate rendering engine, depending on
the desired modality. For example, for real-time mode,
application 1302 would be sent to a real-time engine 1306 to
output a real-time application 1308. Similarly, disconnected
applications would be processed by an offline compiler 1310
to produce a disconnected/oftline application 1312, and an
asynchronous application would be sent through a messag-
ing engine 1314 to send alerts 1316.

[0491] The applications developed based on the specified
method and apparatus described above may be deployed not
only to a run-time system executing in a computer server
system, but also on a run-time system that is executing on a
mobile computer such as a handheld PC, or cellular phone
with a capable operating system, in the same way. This
deployment on an offline embodiment of the run-time sys-
tem enables the application to be accessed locally without
the need for any remote access using a browser or other
client applications. Such use of applications is referred to as
the offline mode of operation, where the overall user inter-
action is limited to the mobile computer, without any exter-
nal network access.

[0492] One skilled in the art may appreciate that “offline”
applications may not need to support multiple channels of
presentation since it is also possible for the application to be
built specifically for the mobile computer. Additionally, for
example, if the application thus deployed needs to commu-
nicate with a back end remote server system, some external
method and system of synchronization may be desirable, so
that the application is aware of changes on a centralized
server system. Suitable external methods and systems are
known to those of ordinary skill in the art. Furthermore,
offline and realtime embodiments of a preferred runtime
system are described more fuilly and completely in Chong
et al.

[0493] Thus the present invention allows for developing
applications that may be used in multiple modes such as
offline on a mobile computer and online on a backend server
system.

X. AN EXAMPLE OF THE OPERATION OF
SYSTEM 100

[0494] In operation, system 100, as shown in FIGS. 6 and
7, may be used to rapidly develop and deploy applications
that may operate in a multi-modal environment. The fol-
lowing example, a currency converter, demonstrates the

Dec. 5, 2002

process of creating a multi-channel and multi-modal appli-
cation using system 100. It should be appreciated that the
following non-limiting example in no way limits the scope
of system 100 and that system 100 may be used to develop
virtually any other type of application.

[0495] In the currency conversion example, the applica-
tion converts a certain amount of currency to its equivalent
in another currency. The user inputs the amount and cur-
rency to be converted along with the currency type to which
the amount will be converted. The application outputs, to the
user, the equivalent amount in the requested currency. The
converter application supports users through multiple chan-
nels, including wireless web and voice through PSTN. The
application also operates through multiple modes, including
real-time and asynchronous, offline access.

[0496] The process of developing an application is out-
lined in FIG. 27. As previously discussed, because of the
separation between Model, View, and Controller elements,
the three corresponding steps 656, 658 and 654 can take
place in any order or even simultaneously.

A. CONTROLLER: BUILDING THE
INTERACTION FLOW

[0497] Referring back to FIG. 27, in order to properly
design the interaction flow model or diagram, a developer
must first outline the basic functionality of the application,
as indicated in step 652. This is an opportunity for the
developer to clarify and visualize ideas and functional
requirements. The next step is to visually transform the
outline into a state or workflow diagram, by use of the
process design module 12, shown in FIG. 7.

[0498] One non-limiting example of an outline for a
currency converter application is as follows:

[0499] 1.Prompt the user for conversion information

as follows:

[0500] a. Currency to convert from (‘input cur-
rency’)

[0501] b. Amount of currency to convert (‘input
amount’)

[0502] c. Currency to convert to (‘output cur-

rency’)

[0503] 2. Convert ‘input amount’ from ‘input cur-
rency’ to ‘output currency’ to get the ‘output amount’

[0504] 3. Output result and ask user if she would like
to do another conversion or quit application.

[0505] 4. If the user wants to do another conversion,
then start over.

[0506] 5.If the user wants to quit, then thank the user
and exit.

[0507] It should be noted that steps 1la, b, and ¢ could be
combined into one state or divided into three different states.
In a data application, there is no reason why each piece of
data needs to be sent back to the server before proceeding to
the next step. The “round trip” would be costly in terms of
time. Thus, it would be most efficient to combine steps 1a,
b, and c into one state in a data application. However, in a
voice application, such a combination might not be desir-
able. There are an unlimited number of things that a user

US 2002/0184610 Al

could say. Suppose the application asks from which currency
the user would like to convert. If the user answers “dollars,”
an ambiguity arises. Particularly, it is uncertain to what type
of dollar is the user referring (e.g., U.S. dollars, Euro-
dollars, Hong Kong dollars, Canadian dollars, Australian
dollars). Since the meaning of ‘dollars’ is unclear, this
response is considered ambiguous and requires further pro-
cessing.

[0508] A developer should always consider such ambigu-
ities that may arise, especially when developing multi-modal
applications, and revise the outline accordingly. In addition,

Dec. 5, 2002

when a developer creates a new project. The developer
assigns the project a name and description as shown in
FIGS. 77 and 78. The developer then selects the default
templates that will be created for each state of the applica-
tion in the screen of FIG. 79. The new project provides (by
default) an empty controller, called StartModel, to begin
building the application. (The StartModel controller is illus-
trated in the editor 408, shown in FIG. 80.) Every controller
has one start state and at least one end state as represented
in FIG. 80. The internal notation for a start state is repre-
sented using Control Markup Language (CML) as below:

<?xml version=“1.0"7>

<?covigoml version=“1.0">
<Model xmlns:cml=“http://www.covigo.com”name="“StartModel” type=“Default”>
<DefaultController cml:name="Start” cml:id=“1">

<PROPERTY cml:name=“preAction” cml:class=“ListAction”cml:id="64"/>

<PROPERTY cml:name=“action” cml:class=“ListAction”’cml:id=“65"/>

<PROPERTY cml:name=“postAction”cml:class="“ListAction”cml:id=“66"/>
</DefaultController>

</Model><DefaultController cml:name=*“Start”cml:id=“1"/>

<Model>

because voice applications emulate phone conversations, it
is standard convention to greet the user, while a greeting
may be unnecessary for visual applications. A revised out-
line that addresses the foregoing ambiguities is shown
below.

[0509] 1. The voice application welcomes the user.

[0510] 2. The user will be prompted for conversion
information as follows:

[0511] a. Currency to convert from (‘input cur-
rency’)
[0512] a) Address/remove ambiguity if neces-
sary
[0513] b. Amount of currency to convert (‘input
amount’)
[0514] c. Currency to convert to (‘output cur-
rency’)
[0515] a) Address/remove ambiguity if neces-
sary

[0516] 3. Convert ‘input amount’ from ‘input cur-
rency’ to ‘output currency’ to get the ‘output amount’

[0517] 4. Output result and ask user if she would like
to do another conversion or quit application.

[0518] 5. If the user wants to do another conversion,
then start over.

[0519] a. Address/remove ambiguity if necessary
[0520] 6. If the user wants to quit, then thank user and

exit.

[0521] a. Address/remove ambiguity if necessary

[0522] Once the developer has completed the outline,
system 100 may be used to create a visual representation of
the interaction process model. FIGS. 77 through 79 show
some examples of preliminary screens that may be generated

[0523] The <Model></Model> element denotes that a
controller has been created. The code is at the root of the
XML document. As indicated by the “name™ attribute, this
controller is the “StartModel”, which holds special signifi-
cance. The “StartModel” is the first controller that the
run-time system will use while running the application. In
other words, the controller is the beginning of the applica-
tion. Note, however, that this can be overridden within the
system settings to use any other named controller to be the
beginning of the application. Also shown in the above code,
is the creation of an XML namespace called “cml”. This is
used to distinguish the attributes of the elements between
other commonly named attribute names such as “name” and
“id”. Note that each of the objects in the CML file has a
“cml:id” attribute associated with the element. This is a
unique identifier for the element within the CML file, used
when there are references to objects. This is analogous to the
“pointer” in the “C” language. (This will be described in
more detail in relation to the use of model variables.) The
<DefaultController> element represents one state in the
application. When a new controller is created, a “Start” state
may automatically added to the application, as controllers
will typically need a single entry-point. Like all states, the
start state contains pre-actions, actions, and post-actions,
which are all represented by the <PROPERTY> element.
These actions will be described more fully below. Note that
there is no “Exit” state in the CML file. The “Exit” state is
a pseudo-state that only manifests itself in the user interface.
In the CML file, transitions to any “Exit” state will essen-
tially add an action to that state.

[0524] The first state common to both voice and data
mediums in the converter example is the “Results” state. To
add a state, the developer drags one state component 434
into the editor window 430 of editor 408. (See FIG. 81).
This state is configured into a “Results” state within editor
window 430, as shown in FIG. 81. Dragging a state 434 out
into editor window 430 generates more XML code in the
CML file as follows (changes are italicized):

US 2002/0184610 Al

37

Dec. 5, 2002

<?xml version="1.0"7>
<?covigoml version="1.0"7>

<Model xmlns:cml=“http://www.covigo.com”name=“StartModel”type=“Default”>

<DefaultController cml:name=“Start”cml:id=“1">

<PROPERTY cml:name=“preAction”cml:class=“ListAction”cml:id=“64""/>
<PROPERTY cml:name=“action”cml:class=“ListAction”’cml:id=“65"/>
<PROPERTY cml:name=“postAction”cml:class="ListAction”cml:id=“66"/>

</DefaultController>
<DefaultController cml:name=“Results”cml:id=“4">

<PROPERTY cml:name=“preAction”cml:class=“ListAction”cml:id=“41"/>
<PROPERTY cml:name=“action”cml:class=“ListAction”’cml:id=“42""/>
<PROPERTY cml:name=“postAction”cml:class="ListAction”cml:id=“43"/>

</DefaultController>
</Model>

[0525] Like the “Start” state, the “Results” state is repre-
sented by the <DefaultController> element. As additional
states are added, the entries in the CML file will generate
similar outputs. The next comrnon state in any medium for
the application is the “Thank You” state, which thanks the
user before exiting the application. Dragging another state
component 434 into editor window 430, as shown in FIG.
82, generates the following output in the above CML file:

B. CREATING TRANSITIONS

[0526] The next step is to connect the states with a
transition. The user changes the current tool from the
selection tool to the transition tool 446 (FIG. 83). To draw
the transition, the user clicks on the starting (Results) state,
holds down the mouse button, and releases it over the target
(Thank You) state, as shown in FIG. 83.

[0527] This CML generated thus far appears as follows
(with changes in italics):

<DefaultController cml:name=“Thank You”cml:id=“5">
<PROPERTY cml:name=“preAction”cml:class=“ListAction”cml:id=“37"/>
<PROPERTY cml:name=“action”’cml:class=“ListAction”cml:id=“38"/>
<PROPERTY cml:name=“postAction”cml:class=“ListAction”cml:id=“39"/>
</DefaultController>

<?covigoml version="1.0"7>
<Model xmlns:cml=“http://www.covigo.com”name=“StartModel”type=“Default”>
<DefaultController cml:name=“Start”cml:id=“1">
<PROPERTY cml:name=“preAction”cml:class=“ListAction”cml:id="“64"/>
<PROPERTY cml:name=“action”cml:class=“ListAction”’cml:id=“65""/>
<PROPERTY cml:name=“postAction”cml:class=“ListAction”cml:id=“66"/>
</DefaultController>
<DefaultController cml:name=“Results”cml:id=“4">
<PROPERTY cml:name=“preAction”cml:class=“ListAction”cml:id=“41"/>
<PROPERTY cml:name=“action”cml:class=“ListAction”cml:id=“42">

<TransitionAction cml:id=“14"target =“Thank You”/>

</PROPERTY>
<PROPERTY cml:name=“postAction”cml:class="“ListAction”cml:id=“43"/>
</DefaultController>
<DefaultController cml:name=“Thank You”cml:id=“5">
<PROPERTY cml:name=“preAction”cml:class=“ListAction”cml:id=“37"/>
<PROPERTY cml:name=“action”’cml:class=“ListAction”cml:id=“38"/>
<PROPERTY cml:name=“postAction”cml:class="“ListAction”cml:id=“39"/>
</DefaultController>

</Model>

US 2002/0184610 Al

[0528] When the transition was added, it added a property
called “action” to the <DefaultController> element. The
implementation of the “action” containers are “ListAction”
types. Each action section has its own property containers.
Transitions are only added to the “action” section of the
state. There are two other sections in a state, the “pre Action”
and the “postAction”. The execution order of these actions
is demonstrated in FIG. 28. When a transition transfers
control to this state from a different state, the “preAction” is
performed. After that, the view is shown to the user. The user
interacts with the view and then comes back to the workflow.
At this point, the “action” section is executed. If a transition
is taken to a different state, then the “postAction” section is
executed after the transition finishes (but before the “pre-
Action” of the next state is executed).

Dec. 5, 2002

[0531] The developer creates a new layer, the Visual layer,
by selecting button 462 in layer palette 460, shown in FIG.
55. When the developer selects the visual layer, editor 408
will display only the states that are unique to that layer. The
states and transitions in the other layers become semi-
transparent to aid in the graphical layout of the diagram.
Once in the visual layer, the developer may add a state to
gather the three needed pieces of information from the user.
The layer must be selected in order for a state to be added
to that layer.

[0532] The “Get Conversion Info” state is created, like the
root states, by dragging a state component 434 into editor
window 430. The resulting controller, shown in FIG. 84,
generates the following code:

<DefaultController cml:name=“Get Conversion Info”cml:id=“3">
<PROPERTY cml:name=“preAction”cml:class=“ListAction”cml:id=“49"/>
<PROPERTY cml:name=“action”’cml:class=“ListAction”cml:id=“50"/>
<PROPERTY cml:name=“postAction”cml:class="“ListAction”cml:id=“51"/>
</DefaultController>

[0529] The developer continues to drag and drop states
into the controller editor as necessary, and connects them
with transitions. Note the remaining states in the application
are visual (web, wireless-data and other data centric chan-
nels)- or voice-channel specific. For modularization pur-
poses, channel-specific states are isolated on different layers
in the application.

[0533] The format is identical to that of a state in the root
layer. Since “Get Conversion Info” is the first state with
which the end user interacts, the developer draws a transition
from the ‘Start’ state to it. Transitions may be drawn between
states on different layers, as shown in FIG. 85. The transi-
tion appears in the Start state code as follows (with new code
in italics):

<DefaultController cml:name=“Start” cml:id=“1">
<PROPERTY cml:name=“preAction” cml:class=“ListAction” cml:id=“64"/>

<PROPERTY cml:name=“action” cml:class=“ListAction” cml:id=“65">

<TransitionAction cml:id=“12" layer="Visual” target="Get Conversion Info”/>

</PROPERTY>
<PROPERTY cml:name=“postAction” cml:class="“ListAction” cml:id=“66"/>
</DefaultController>

C. CREATING LAYERS

[0530] The layering function of the process design module
12 will be utilized for the currency converter application.
This entails building a workflow diagram that is common for
all channels, and that is referred to as the “root” layer. This
“root” layer exists for all controllers. The “root” layer cannot
be disabled. The “Start” state is placed in the “root” layer.
The other voice and data layers will be built on top of the
root layer. To finish the root layer, the developer adds all
states that are shared by both the voice and visual layer of
the application, as described above. These common states
are shown in FIG. 82 and include: a start state, an end state,
a state that returns the conversion results, and a state that
thanks the user.

[0534] The “layer” attribute in a <TransitionAction> ele-
ment is set to the layer of the target’s state. In the current
example, the “Start” state is in the “root” layer, and the “Get
Conversion Info” state is in the “Visual” layer. Since the
target layer for transition in FIG. 85 is the “Visual” layer, the
“layer” attribute is the Start state’s transition is set to
“Visual.”

[0535] After receiving the end user’s input, the application
will display the results of the conversion. In order to achieve
this functionality, the developer draws another transition
from the “Get Conversion Info” state to the “Results” state
created in the root layer. After viewing the conversion result
in the “Results” state, the user may choose to repeat the
exercise. Thus, the developer draws a transition from the
“Results™ state back to “Get Conversion Info”. The result is
shown in FIG. 86, and corresponds to the following CML
(with new code in italics):

US 2002/0184610 Al
39

<?covigoml version="1.0"7>
<Model xmlns:cml=“http://www.covigo.com” name="StartModel” type=“Default”>
<DefaultController cml:name=“Start” cml:id=“1">
<PROPERTY cml:name=“preAction” cml:class="“ListAction” cml:id=“64"/>
<PROPERTY cml:name=“action” cml:class=“ListAction” cml:id=“65">
<TransitionAction cml:id=“12" layer=“Visual” target="Get Conversion Info”/>
</PROPERTY>
<PROPERTY cml:name=“postAction” cml:class="ListAction” cml:id="66"/>
</DefaultController>
<DefaultController cml:name=“Results” cml:id=“4">
<PROPERTY cml:name=“preAction” cml:class="“ListAction” cml:id=“41"/>
<PROPERTY cml:name=“action” cml:class=“ListAction” cml:id=“42">
<TransitionAction cml:id=“88" layer=“Visual” target="Get Conversion Info”/>
<TransitionAction cml:id=“14" target="Thank You”/>
</PROPERTY>
<PROPERTY cml:name=“postAction” cml:class="ListAction” cml:id="43"/>
</DefaultController>
<DefaultController cml:name=“Thank You” cml:id=“5">
<PROPERTY cml:name=“preAction” cml:class="“ListAction” cml:id=“37"/>
<PROPERTY cml:name=“action” cml:class=“ListAction” cml:id=“38""/>
<PROPERTY cml:name=“postAction” cml:class="ListAction” cml:id=“39"/>
</DefaultController>
<DefaultController cml:name=“Get Conversion Info” cml:id=“3">
<PROPERTY cml:name=“preAction” cml:class="“ListAction” cml:id=“49"/>
<PROPERTY cml:name=“action” cml:class=“ListAction” cml:id=“50">
<TransitionAction cml:id=“13" target=“Results”/>

</PROPERTY>
<PROPERTY cml:name=“postAction” cml:class="ListAction” cml:id=“51"/>
</DefaultController>
</Model>
[0536] In the “Get Conversion Info” state’s transition to

the “Results” state, the “layer™ attribute was omitted because -continued

Dec. 5, 2002

the target layer is the root layer (“root” is the default value

: jid==39"
that is assigned when the “layer” attribute is omitted). s P

</DefaultController>

[0537] To complete the flow of the visual application, the
developer draws a transition from the “Thank You” state to

the “Exit” state, as shown in FIG. 87. This generates the [0538] Now that the visual application has been

com-

following (with new code in italics):

<DefaultController cml:name=“Thank You” cml:id=“5">

<PROPERTY cml:name=“preAction” cml:class=“ListAction” cml:id
=“37"/>
<PROPERTY cml:name=“action” cml:class=“ListAction” cml:
id="38">

<TransitionAction cml:id=“15" target="ExitFromModel”/>
</PROPERTY>
<PROPERTY cml:name=“postAction” cml:class=“ListAction” cml:

pleted, the developer may create a voice layer for voice
channel-specific states, by pressing button 462 in layer
palette 460 in FIG. 88. Returning to the application flow
outlined above, the voice application begins by welcoming
the end user. It then asks for the first piece of required
information, the currency type from which the user would
like to convert. The developer creates these two states and
connects them using transitions, using the methods
described above, as shown in FIG. 88. As a result, the
following code is added to the CML file (with new code in
italics):

<?covigoml version="1.0"7>
<Model xmlns:ecml=“http://www.covigo.com” name=“StartModel” type=“Default”>
<DefaultController cml:name=“Start” cml:id=“1">
<PROPERTY cml:name=“preAction” cml:class=“ListAction” cml:id=“64"/>
<PROPERTY cml:name=“action” cml:class=“ListAction” cml:id=“65">

<TransitionAction cml:id=“12" layer="Visual” target="Get Conversion Info”/>

<TransitionAction cml:id=“120" layer=“Voice” target="“Welcome”/>
</PROPERTY>
<PROPERTY cml:name=“postAction” cml:class="ListAction” cml:id="66"/>
</DefaultController>
<DefaultController cml:name=“Results” cml:id=“4">
<PROPERTY cml:name="preAction” cml:class=“ListAction” cml:id=“41"/>
<PROPERTY cml:name=“action” cml:class=“ListAction” cml:id=“42">
<TransitionAction cml:id=“88" layer=“Visual” target="Get Conversion Info”/>
<TransitionAction cml:id=“14" target=“Thank You”/>

US 2002/0184610 Al

40

-continued

<PROPERTY>
<PROPERTY cml:name=“postAction” cml:class="ListAction” cml:id="43"/>
</DefaultController>
<DefaultController cml:name=“Thank You” cml:id=“5">
<PROPERTY cml:name=“preAction” cml:class="“ListAction” cml:id=“37"/>
<PROPERTY cml:name=“action” cml:class=“ListAction” cml:id=“38""/>
<PROPERTY cml:name=“postAction” cml:class="ListAction” cml:id=“39"/>
</DefaultController>
<DefaultController cml:name=“Get Conversion Info” cml:id=“3">
<PROPERTY cml:name=“preAction” cml:class="“ListAction” cml:id=“49"/>
<PROPERTY cml:name=“action” cml:class=“ListAction” cml:id=“50">
<TransitionAction cml:id=“13" target=“Results”/>
</PROPERTY>
<PROPERTY cml:name=“postAction” cml:class="ListAction” cml:id=“51"/>
</DefaultController>
<Default Controller cml:name=“Welcome” cml:id=“119">
<PROPERTY cml:name=“preAction” cml:class=“ListAction” cml:id="125"/>
<PROPERTY cml:name=“action” cml:class=“ListAction” cml:id=“126">
<TransitionAction cml:id=“121" layer="Voice” target="GetFromCurrencyType”/>

Dec. 5, 2002

</PROPERTY>

<PROPERTY cml:name=“postAction” cml:class=“ListAction” cml:id="127"/>

</Default Controller>
<Default Controller cml:name=“GetFromCurrencyType” cml:id="6">

<PROPERTY cml:name=“preAction” cml:class="“ListAction” cml:id=“33"/>
<PROPERTY cml:name=“action” cml:class=“ListAction” cml:id=“34"/>
<PROPERTY cml:name=“postAction” cml:class="ListAction” cml:id=“35"/>

</DefaultController>
</Model>

[0539] As detailed in the outline, the user’s response to the
“GetFromCurrencyType™ state should be carefully consid-
ered. If the user answers “dollars,” it is uncertain to what
type of dollar is the user referring (see above). Thus, an extra
state is necessary to clarify the user’s intent behind the
ambiguous response. Thus, the “GetFromCurrencyType”
state has two transitions: one to the “GetAmount” state if the
response is clear, and one to the “WhichDollarl” state if the
response is ambiguous. FIG. 89 illustrates the additions to
the workflow diagram. The generated CML code appears as
follows (with additions in italics):

-continued
id=“61"/>
<PROPERTY cml:name=“action” cml:class=“ListAction” cml:id=
“§27s
<TransitionAction cml:id=“20" layer=“Voice” target="Get
Amount”/>
</PROPERTY>

<PROPERTY cml:name=“postAction” cml:class=“ListAction” cml:
id=“63"/>
</DefaultController>

<DefaultController cml:name=“GetFromCurrencyType” cml:id=“6">

<PROPERTY cml:name=“preAction” cml:class="ListAction” cml:id=“33"/>

<PROPERTY cml:name=“action” cml:class=“ListAction” cml:id=“34">

<TransitionAction cml:id=“19" layer="Voice™ target=“WhichDollarl”/>

<TransitionAction cml:id=“16" layer="Voice” target="“GetAmount”/>

</PROPERTY>

<PROPERTY cml:name=“postAction” cml:class="“ListAction” cml:id=“35"/>

</DefaultController>

[0540] Once the application enters the “WhichDollarl”
state and disambiguates the user’s response, it will move
back to the original path of the application flow. The
developer draws a transition from “WhichDollarl” to
“GetAmount.”FIG. 90 illustrates the addition. The CML
code generated appears as follows (with additions in italics):

<DefaultController cml:name=“WhichDollar1” cml:id=“9">
<PROPERTY cml:mame=“preAction” cml:class=“ListAction” cml:

[0541] The next step in the voice application is to ask the
user to which currency to convert. This state, “GetToCur-
rencyType,” is similar to the “GetFromCurrencyType” state.
It will also need a state, “WhichDollar2, * to handle possible
ambiguous responses. Once the currency is known, the
application will converge back to the “Results” state in the
root layer. The developer connects the states as shown in
FIG. 91. The affected states in the CML file appear as
follows:

US 2002/0184610 Al
41

Dec. 5, 2002

<DefaultController cml:name=“GetAmount” cml:id=“7">
<PROPERTY cml:name=“preAction” cml:class=“ListAction” cml:id=“45"/>
<PROPERTY cml:name=“action” cml:class=“ListAction” cml:id=“46">

<TransitionAction cml:id=“17" layer="Voice” target=“GetToCurrencyType”/>

</PROPERTY>

<PROPERTY cml:name=“postAction” cml:class="“ListAction” cml:id=“47"/>

</DefaultController>
<DefaultController cml:name=“GetToCurrencyType” cml:id=“8">
<PROPERTY cml:name=“preAction” cml:class=“ListAction” cml:id=“57"/>
<PROPERTY cml:name=“action” cml:class=“ListAction” cml:id=“58">
<TransitionAction cml:id=“21" layer="Voice” target=“WhichDollar2”/>
<TransitionAction cml:id=“18" target=“Results”/>
</PROPERTY>

<PROPERTY cml:name=“postAction” cml:class="“ListAction” cml:id=“59"/>

</DefaultController>
<DefaultController cml:name=“WhichDollar2” cml:id=“10">
<PROPERTY cml:name=“preAction” cml:class=“ListAction” cml:id=“53"/>
<PROPERTY cml:name=“action” cml:class=“ListAction” cml:id=“54">
<TransitionAction cml:id=“22" target=“Results”/>
</PROPERTY>

<PROPERTY cml:name=“postAction” cml:class="“ListAction” cml:id="“55"/>

</DefaultController>

[0542] At the “Results” state, the user has the option to
start over and begin another transaction. The developer
draws a transition back to the “GetFromCurrencyType”
state, as shown in FIG. 92. The affected states in the CML
file appear as follows:

[0545] Now that the controller is complete, the developer
creates the views displayed to the end user and the data
model necessary to run the application. These processes will
be described fully in the View and Data Model sections
below, respectively.

<DefaultController cml:name=“Results” cml:id=“4">

<PROPERTY cml:name=“preAction” cml:class="ListAction” cml:id="4/>

<PROPERTY cml:name=“action” cml:class=“ListAction” cml:id=“42">

<TransitionAction cml:id=“87” layer="Voice™ target=“GetFromCurrencyType”/>
<TransitionAction cml:id=“88” layer="Visual” target="Get Conversion Info”/>

<TransitionAction cml:id=“14" target=“Thank You”/>
</PROPERTY>

<PROPERTY cml:name=“postAction” cml:class="ListAction” cml:id="43"/>

<DefaultController>

[0543] Lastly, to finish the voice application, the developer
adds a preconfigured “Hangup” component. The “Hangup”
component is needed to exit the application; reaching the
“Exit” state merely starts the application over from the
beginning. FIG. 93 illustrates how the developer would add
the component into the interaction flow. The CML generated
appears as follows:

[0546] The completed controller is shown in FIGS. 80
through 93. FIG. 94 shows the complete controller, with all
layers activated. FIG. 95 shows the root layer. FIG. 96
shows the Visual layer. FIG. 97 shows the Voice layer. In the
preferred embodiment, a unique color is assigned to each
layer. For example, for the “root” layer, the color may be
“black”; for the “Voice™ layer, the color may be red; and for

<SubmodelController cml:name=“Hangup” cml:id=*23" modelName=“Hangup__StartModel”>
<PROPERTY cml:name=“preAction” cml:class="ListAction” cml:id="“29"/>

<PROPERTY cml:name=“action” cml:class=“ListAction” cml:id=“30">
<TransitionAction cml:id=“25" target="ExitFromModel”/>
</PROPERTY>

<PROPERTY cml:name=“postAction” cml:class="ListAction” cml:id="31"/>

</SubmodelController>

[0544] The palette of components shown in FIG. 93 is
essentially filled with pre-built, preconfigured controllers
that have been componentized for generic reuse.

the “Visual” layer, the color may be green. Only the tran-
sitions and the text underneath the states are assigned the
colors. For transitions that occur between states in the same

US 2002/0184610 Al

layer, the transition is drawn as a solid line. For transitions
that occur between states in different layers, the transition is
drawn as a dotted line.

D. VARIABLES AND ACTIONS (TYING THE
APPLICATION TOGETHER)

[0547] As the pieces of the application flow (i.e. views,
interaction flows, and data sources) are developed, they
should be integrated to form a coherent application. Inte-
gration involves the following steps:

[0548] 1. Assigning end user input to model variables

[0549] 2. Invoking methods to store, retrieve, or
transform data

[0550] 3. Configuring transitions
0551] Step 1. Assigning end-user input to model variables
p gning p

[0552] When an end-user provides information to an
application, the input is stored in a local variable. Variables
returned by a view are local in scope, and inaccessible
outside the state. Thus, the controller may need to store the
local variable so that other states in the controller can access
the response. Assigning the value of the local variable to a
model variable is called “posting.” To post a variable, the
developer first creates a model variable by selecting the
objects tree 404, as shown in FIG. 98. A variable is created
by typing the name of the variable type (the class) into the
text entry field 402A and pressing the “Create” button.
Variables of the types provided by the system 100 may be
created by right clicking on the class name in region 402B
of FIG. 98.

[0553] In the currency conversion example, there are five
total variables that have been declared for the application:

[0554] (1) fromCurrency—the input currency;
[0555] (2) toCurrency—the output currency;

[0556] (3) fromAmount—the input amount;

[0557] (4) toAmount—the output amount; and
[0558] (5) again—do another conversion or exit the

application.

[0559] As shown in FIG. 99, these model variables should
be declared because they may need to be accessed between
states.

[0560] These variables are represented in CML as follows
(in italics):

Dec. 5, 2002

[0561] The <Modellnterface> element describes the
model variables that have been defined for this controller.
For each model variable that was created, a <Model VarDef>
element was added. The <ModelVarDef> takes four
attributes. The “name” attribute defines the name of the
model variable. The “comment™ attribute is used to store
information about the variable. This becomes important for
sub-controllers because model variables are how different
sub-controllers communicate with one another. During the
call to a sub-controller, the GUI can display information held
in the “comment” attribute during variable mapping (this
will be discussed in greater detail below). Finally, there are
the “in” and “out” attributes, which are also used in con-
junction with sub-controller calls. It specifies the direction
of data flow (i.e., whether data can flow into/out of the model
via the model variable).

[0562] To set a declared model variable equal to the input,
the developer uses a “Set” action. Like all actions, a “Set”
action is associated with a state or transition—in this case,
a state. For example, in the visual “Get Conversion Info”
state, the view (user-interaction) returns three items: from-
Currency, toCurrency, and fromAmount. Each item requires
a “Set” action to set its value to a model variable. The
developer selects the state in editor 408 and drags the “Set”
button from the actions palette 410A into the actions list
410C (sce FIG. 43). While the “Set” action is selected, the
developer configures it in the properties panel 410B. FIG.
43 illustrates how to set the Model object (fromCurrency) to
the user’s HTTP input (fromCurrency).

[0563] This action would be reflected in CML as follows
(additions in italics):

<DefaultController cml:name = “Get Conversion Info” eml:id = “3”>
<PROPERTY cml:name = “preAction” cml:class = “ListAction”

cml:id = “497/>
<PROPERTY cml:name = “action” cml:class = “ListAction”
cmlid = “507>

<Set Variable Action cml:id = “107” srcVar =
“from Currency”>
<PROPERTY cml:name = “dstVar” cml:ref = “917/>

</Set VariableAction>

<TransitionAction cml:id = “13” target = “Results”/>
</PROPERTY>
<PROPERTY cml:name = “postAction” cml:class = “ListAction”
cml:id = “517/>

</DefaultController>

<Model xmlns:cml=“http://www.covigo.com” name="StartModel” type=“Default”>

<Modellnterface cml:id=“26">

<ModelVarDef cml:id=“91" name=“fromCurrency” comment="“From Currency

Type”/>

<ModelVarDef cml:id=“92" name=“toCurrency” comment=“To Currency Type”/>

<ModelVarDef cml:id=“93" name=“again” comment="Variable to hold

user’s choice of again or exit”/>

<ModelVarDef cml:id=“94" name=“fromAmount” comment=“Amount to convert”/>

<ModelVarDef cml:id=*“135" name=“toAmount” comment=“""/>

</Modellnterface>
</Model>

US 2002/0184610 Al

[0564] The <SetVariableAction> is the element that
defines the set action. It takes on three attributes. The
“defaultValue” attribute specifies the default value that the
model variable will take in the event that the source variable
is undefined. The “optional” attribute is a true/false value to
specify whether it is required that the action fail in the event
that a source variable is defined. The “optional” and the
“defaultValue” attributes work together. The three scenarios
are as follows:

[0565] 1. If “optional” is “true” and there is no
“defaultValue” specified, then run-time skips the set
action and continue with the next action.

[0566] 2. If “optional” is “true” and there is a
“defaultValue” specified, then run-time assigns the
specified model variable with the value in “default-
Value”.

[0567] 3.If “optional” is “false”, then “defaultValue”
is ignored and the set action will fail if the source
variable is undefined. In this case, it also skips the
succeeding actions.

[0568] Finally, there is the “srcVar” attribute. The value of
this attribute is the name of the variable that exists in the
view. For example, in HTML, this would be the name of a
request variable that gets posted back to the workflow when
the user presses a “submit” button.

[0569] There is also a property called “destVar”. It is
specified by the <PROPERTY cml:name=“destVar’> ele-
ment. This will be a reference to the model variable in which
to store the value of the set action (if the set action is

Dec. 5, 2002

43

performed). In the above example, the “cml:ref” attribute
specifies an “id” of “91”. So now, the developer may look
for the object in the CML file that has a “cml:id” of “91”.
This happens to be a <ModelVarDef> whose variable name
is “fromCurrency”. Thus, developer assigns the view vari-
able called “fromCurrency” to the model variable called
“fromCurrency”.

[0570] Similarly, the developer adds the set actions for
toCurrency and fromAmount. This adds the following code:

[0571] <SetVariableAction cml:id=“108" srcVar=
“fromAmount”> <PROPERTY cml:name=*“dstVar”
cml:ref-“947/>

[0572] </SetVariableAction>

[0573] <SetVariableAction cml:id=“109" srcVar=
“toCurrency”> <PROPERTY cml:name="“dstVar”
cml:ref-“927/>

[0574] </SetVariableAction>

[0575] In the voice application, the three items above are
collected in five possible states: “GetFromCurrencyType,
”“WhichDollar1,”“GetToCurrency Type,”WhichDollar2, ~
and “GetAmount.” Like the visual application, the voice
application returns the input currency in a variable called
“fromCurrency.” This HTTP input will also be set to the
model variable “fromCurrency.” Note that it is acceptable
(and more efficient) to use the same model variable to store
input from different channels and modes.

[0576] Thus, the following “Set” actions are added into
the list of actions in the appropriate state:

<DefaultController cml:name = “GetFromCurrencyType” cml:id = “6”>

<Set VariableAction cml:id = “103” srcVar = “from Currency”>

<PROPERTY cml:name = “dstVar” cml.ref = “91 />
</Set VariableAction>

</DefaultController>
<DefaultController cml:name = “GetAmount” cml:id = “7”>

<Set VariableAction cml:id = “106” defaultValue = “1” optional = “True”

srcVar = “amount”>

<PROPERTY cml:name = “dstVar” cml:ref = “947/>
</Set VariableAction>

</DefaultController>
<DefaultController cml:name = “GetToCurrencyType” cml:id = “8”>

<Set VariableAction cml:id = “111” srcVar = “to Currency”>

<PROPERTY cml:name = “dstVar” cml:ref = “927/>
</Set VariableAction>

</DefaultController>
<DefaultController cml:name = “WhichDollar1” cml:id = “9”>

<Set VariableAction cml:id = “113” defaultValue = “usd” optional = “True”
srcVar = “dollar”>

<PROPERTY cml:name = “dstVar” cml:ref = “917/>
</SetVariable Action>

</DefaultController>
<DefaultController cml:name = “WhichDollar2” cml:id = “10”>

<SetVariableAction cml:id = “110” srcVar = “dollar”>

US 2002/0184610 Al

-continued

44

Dec. 5, 2002

<PROPERTY cml:name = “dstVar” cml:ref = “927/>
</Set VariableAction>

</DefaultController>

[0577] The last state that asks the end user for input is the
“Results” state. This state has both visual and voice tem-
plates, and both templates return the HTTP user input in a
variable named “again.” This means the state requires only
one “Set” action for both channels, as shown in FIG. 100.
This corresponds to the following code (in italics):

<DefaultController cml:name = “Results” cml:id = “4”>
<SetVariableAction cml:id = “105”
default Value = “quit” optional = “True”
srcVar = “again”>
<PROPERTY cml:name = “dstVar”
cml:ref = “937/>
</SetVariable Action>
</DefaultController>

[0578] Step 2. Invoking methods to store, retrieve, or
transform data The developer next integrates the data
source/object and the flow together. This integration is
achieved by selecting the state in which the data is neces-
sary. In the currency conversion example, the state requiring

the integrated data is the “Results” state. The data conver-
sion is added to the pre-actions of the “Results” state. This
means that when the state is entered, the data will first be
converted so that the conversion result will be displayed to
the user. The developer adds a “Do” action to call a data
object’s method. This is achieved by dragging the “Do”
button from actions palette 410A into the list 410 C and
configuring its properties in panel 410B. To configure the
properties, the developer selects the converter data object in
the object tree. This object handles the conversion into the
output currency, and its creation is described in the Data
Model section below. The developer drags the object’s
getToAmount method from the tree into the “Do” field of the
properties panel. This brings up a list of parameters to the
method and a field for the return type. The developer then
drags the appropriate model variables into these fields, as
shown in FIG. 44.

[0579] This would be represented in CML as the following
(in italics):

<DefaultController cml:name = “Results” cml:id = “4”>
<PROPERTY cml:name = “preAction” cml:class = “ListAction” cml:id = “41”>
<BindingAction cml:id = “100” methodName = “getToAmount”>
<PROPERTY cml:name = “retVar” cml:ref = “1357/>
<PROPERTY cml:name = “paramTypes” cml:class = “java.util. ArrayList”

cmlid = “1017>

</java.lang.String>
</java.lang.String>
</java.lang.String>

</java.lang.String>

<java.lang.String cml:value = java.lang.String”>java.lang.String

<java.lang.String cml:value = java.lang.String”>java.lang.String

<java.lang.String cml:value = java.lang.String”>java.lang.String

<java.lang.String cml:value = SQLSource”>SQLSource”> SQLSource

</PROPERTY>
<PROPERTY cml:name = “params” cml:class = ParameterList” cml:id = “102”>

</java.lang.String>

</java.lang.String>

</java.lang.String>

<java.lang.String cml:value = “from Currency”>from Currency

<java.lang.String cml:value = “to Currency”>toCurrency

<java.lang.String cml:value = “fromAmount”>fromAmount

<Model VarDef cml:ref = “897/>
</PROPERTY>

<PROPERTY cml:name = “objRef” cml:ref = “98”/>

</BindingAction>
<PROPERTY>

<DefaultController>

US 2002/0184610 Al

[0580] The action is expressed as a <BindingAction>
element. Because it is a pre-action, it is a “child” of the
“preAction” <PROPERTY>. The <BindingAction> contains
four major objects (expressed as <PROPERTY> elements):
the return value, the parameter types, the parameters them-
selves, and the object on which to operate. The first has an
attribute cml:name=“retVar” and a cml:ref attribute whose
value matches the cml:id attribute of a model variable. The
second has an attribute cml:name="“paramTypes” and a list
of children enumerating the types of parameters which are
expected. Since this particular system operates using Java,
the parameter types are all Java objects; this may not be the
case for other implementations. The list of parameters
passed into the object’s method is denoted by the cml:name=
“params” attribute. It contains a list of children that refer to
declared model variables. Lastly, the object contains an
cml:name=“objRef” attribute and a reference to the declared
object (i.e., the model variable).

[0581] The developer may then configure the service by
calling the data object. Data sources are implemented as

Dec. 5, 2002
45

method of a Java object. The back-end integration with the
controller is now complete.

[0582] Step 3. Configuring transitions

[0583] To complete the application flow, the developer
may now configure the transitions. Many states, such as the
“Results™ state, have multiple transitions leaving the state.
The developer may specify logic for the controller so that it
knows which transition to take. For the majority of cases the
logic comprises a simple conditional. For example, the
“Results™ state has three transitions to: GetFromCurrency-
Type (voice), Get Conversion Info (visual), and Thank You
(voice and visual). Transitions can also have other actions.
In this example, the developer adds an “If” action into the
GetFromCurrencyType transition’s action list, as seen in
FIG. 101. This transition should be taken only if, in the
voice application, the end user says he would like to do
another conversion. If this is the case, the value of the
“again” variable will be “again.” This is expressed in the “If”
action as a Java expression. The conditional is represented in
state’s actions as a <Custom Action> as follows (in italics):

<PROPERTY cml:iname = “action” cml:class = “ListAction” cml:id = “42”>

<SetVariableAction cml:id = “105” defaultValue = “quit” optional = “True”

srcVar = “again”>

<PROPERTY cml:name = “dstVar” cml:ref = “93 />
</SetVariable Action>
<TransitionAction cml:id = “87” layer = “Voice” target =
“GetFromCurrencyType”>

<CustomAction cml:id = “114” code = “again == "again" />
<fTransitionAction>
<TransitionAction cml:id = “88” layer = “Visual” target =
“Get Conversion Info”/>
<TransitionAction cml:id = “14” target = “Thank You”/>

</PROPERTY >

Java classes, and data objects are implemented as Java
methods. The CML generated for calling the data sources is
similar to that of the action above, as both are calls to a

[0584] The same process is repeated for the “Get Conver-
sion Info” and “Thank You” transitions, with the following
result (in italics):

<PROPERTY cml:iname = “action” cml:class = “ListAction” cml:id = “42”>

srcVar = ¢

<SetVariableAction cml:id = “105” defaultValue = “quit” optional = “True”

‘again”>

<PROPERTY cml:name = “dstVar” cml:ref = “93"/>
</SetVariable Action>
<TransitionAction cml:id = “87” layer = “Voice” target =

“GetFromCurrencyType”>

<CustomAction cml:id = “114” code = “again =="again" />
<fTransitionAction>
<TransitionAction cml:id = “88” layer = “Visual”

target = “Get Conversion Info”>

<CustomAction cml:id = “115” code = “again == "Back"”/>
<fTransitionAction>
<TransitionAction cml:id = “14” target = “Thank You™>

<CustomAction cml:id = “116” code = “again == "quit"”/>
<fTransitionAction>

</PROPERTY>

US 2002/0184610 Al

46

[0585] The <CustomAction> element takes an attribute
called “code™ that contains an expression to evaluate. The
order of execution is from first to last. If any of the actions
fail, then the next block of actions in the state will get
executed. So, in this example, the application first executes
the transition to the “GetFromCurrencyType” state. In that
transition, there is a conditional action. If this action evalu-
ates to “true”, then the transition finishes and control is
transferred to the “GetFromCurrencyType” state. If the
condition fails, then the application returns control back to
the “Results” state and executes the next action in the list,
which is a transition action to the “Get Conversion Info”
state. The process continues through each transition until
one is taken.

[0586] The other four states that need conditions on the
transitions are: Start, GetFromCurrencyType, GetToCurren-
cyType, and Thank You. GetFromCurrencyType and Get-
ToCurrencyType both check if the user responded with the
ambiguous “dollar” response, on the transitions to Which-
Dollarl and WhichDollar2. The condition for GetFromCur-
rencylype is shown in FIG. 102. If the response is not
ambiguous, the application always takes the following tran-
sition; that transition does not need a conditional. Because
the actions are executed in order, the transitions to Which-
Dollarl and WhichDollar2 need to appear first, as demon-
strated in FIG. 102. The finished CML for these states (with
additions in italics):

Dec. 5, 2002

[0587] The real-time application flow is now completed,
and the applications views may be created.

E. CREATING VIEWS

[0588] Views are the interface between the user and the
application. They are associated with states in the applica-
tion. One view is associated with one state, although one
state may be associated with zero or more views. A view
may be associated with a state in one of three ways: by
configuring the environment settings to automatically add a
view(s) when a state is created, by manually creating a view,
or by associating an existing view. This is accomplished
using the view list as shown in FIG. 37. To manually create
a view, the developer presses button 410D in FIG. 37. A
dialog box appears to configure the type of view needed, as
shown in FIG. 38. The “Rendering Type” is the type of
rendering technology used. The “Template Name” is the
user-defined name for the view. The “Rendering Rule” is a
rule which must be satisfied in order for this view to be
rendered to the end user. To associate an existing view with
a state, the developer places the existing views into the
“Templates™ directory of the current project. These views
will then appear in the project tree 402, as shown in FIG.
103. Then the developer drags and drops the desired view
into the view list area of the state. The same dialog box in
FIG. 38 will appear so that the view can be configured.

[0589] In the currency converter example, the first visual
state that requires a view is the “Get Conversion Info” state.
The added view is called “GetConversionlnfo.tpl”. The
additions to the CML file are shown below:

DefaultController cml:name = “GetFromCurrencyType” cml:id = “6”>

<PROPERTY cml:name = “preAction” cml:class = “ListAction” cml:id = “33”/>

<PROPERTY cml:iname = “action” cml:class = “ListAction” cml:id = “34”>

<SetVariableAction cml:id = “103” srcVar = “fromCurrency”>
<PROPERTY cml:name = “dstVar” cml:ref = “917/>
</SetVariable Action>

<TransitionAction cml:id = “19” layer = “Voice” target = “WhichDollarl”>

<CustomAction cml:id = “104” code = “from Currency == "dollar" />

</TransitionAction>

<TransitionAction cml:id = “16” layer = “Voice” target = “GetAmount”/>

</PROPERTY>

<PROPERTY cml:name = “postAction” cml:class = “ListAction” cml:id = “35”/>

</DefaultController>

<DefaultController cml:name = “GetToCurrencyType” cml:id = “8”>

<PROPERTY cml:name = “preAction” cml:class = “ListAction” cml:id = “577/>

<PROPERTY cml:name = “action” cml:class = “ListAction” cml:id = “58”>

<SetVariableAction cml:id = “111” srcVar = “toCurrency”>
<PROPERTY cml:name = “dstVar” cml:ref = “927/>
</SetVariable Action>

<TransitionAction cml:id = “21” layer = “Voice” target = “WhichDollar2”>
<CustomAction cml:id = “112” code = “toCurrency == "dollar" />

</TransitionAction>
<TransitionAction cml:id = “18” target = “Results”/>

<PROPERTY>

<PROPERTY cml:name = “postAction” cml:class = “ListAction” cml:id = “59”/>

</DefaultController>

US 2002/0184610 Al Dec. 5, 2002

47

<ListView cml:mame = “Get Conversion Info” ecml:id = “48”>
<DeviceBasedView cml:id = “85” template = “GetConversionInfo.tpl”>
<PROPERTY cml:name = “view” cml:class = “DefaultView” cml:id = “86”
template = “GetConversionInfo.tpl”/>
<PROPERTY cml:name = “deviceType” cml:class = “DeviceTypeLocator”

ruleName = “All Devices”/>
</DeviceBased View>
</ListView>

[0590] As shown above, a <ListView> element is added.
Note that the name of this view represented by the “cml-
:name” attribute matches the state’s view in the <Default-
Controller> element. This is how views are associated with
the target view. In this case, we added a view to the “Get
Conversion Info” state, so the “cml:name” value for <List-
View> will also be “Get Conversion Info”. The <ListView>
element itself is a collection of views. Otherwise, the

tifies the rule, by name, by which to determine whether the
view is the correct one to display. The rule can evaluate
many different factors such as the type of device connecting.
In this case, the rule name is “All Devices”. There is a
corresponding file that will contain information about what
this rule means (i.c., how the rule should be evaluated). This
file is the “global.def™ file. An example file is shown below.

<?xml version = “1.0”?>
<?covigoml version = “1.0”7>
<java.util. HashMap cml:id = “1”>
<java.util. TreeMap cml:name = “Template Rules” cml:id = “2”>
<AnyDevice cml:name = “All Devices” cml:id = “37/>
<CodeGeneratedClientDevice cml:id = “4”
cml:name = “CLDC-MIDP Code Generator” targetType = “text/java-midp”/>
<CustomDevice cml:name = “Custom Device”
cml:id = “5” userAgent = “Custom Device”/>
<HtmlDevice cml:name = “Html Devices” cml:id = “67/>
<CustomDevice cml:name = “Nokia Browser”
cml:id = “7” userAgent = “Nokia”/>
<CodeGeneratedClientDevice cml:id = “8”
cml:name = “PJava Code Generator” targetType = “text/java-awt”/>
<CustonDevice cml:name = “UP Browser” cml:id = “9”
userAgent = “UP”/>
<VoiceDevice cml:name = “Voice Devices” cml:id = “107/>
</java.util. TreeMap>

</java.util. HashMap>

application can output the <DeviceBasedView> in place of
the <ListView> element. However, the <ListView> element
is added in order to have a collection of views, with each
view having a detection rule.

[0591] The <DeviceBasedView> element represents one
single view. The <DeviceBased View> takes two properties,
a “view” and a “deviceType”. This is represented as addi-
tional <PROPERTY> elements under the <DeviceBased-
View> element. An unlimited number of views may be
associated with a state. Each additional view will be a new
<DeviceBasedView> entry under the <ListView> element.

[0592] The “view” property takes two attributes, “tem-
plate” and “cml:class”. The “template” attribute specifies the
name of the template. In this case, it is “Welcome.tpl”. For
this type of view, this name is a filename that exists on the
file system. For other types of views, it might identify some
other resource by name. The “cml:class” attribute identifies
the type of view this is. For this particular state, the type is
“DefaultView”. “DefaultView” is the “Rapid Prototype”
view in the user-interface.

[0593] The “deviceType” property has one important
attribute called “ruleName”. The “ruleName” attribute iden-

[0594] The file contains a set of Java class implementa-
tions that execute the code to determine whether the rule is
satisfied or not. The other attributes are parameters that can
modify the behavior of the rule implementation. The “cml-
:name” attribute describes the name of the rule by which the
views in the CML file reference. So, for example, a rule
name of “All Devices” would refer to the “cml:name” of
“All Devices” in this “global.def” file. The associated Java
class that executes the code is AnyDevice. For this class, the
implementation would succeed in execution, resulting in the
engine choosing the template.

[0595] For the views having behavior that can be modified
with properties, those properties will be found in the
attributes. For example, the CustomDevice tag includes a
property called “userAgent”. As a result, there is a corre-
sponding “userAgent” attribute in the element. Hence, there
can be multiple rules that use the same element tag. In the
above example, the “Nokia Browser” and “UP Browser”
rules use the same “CustomDevice” element tag. The dif-
ference between the two is that one has “Nokia” for the
“userAgent” attribute and the other has “UP” for the value
of the “userAgent” attribute.

US 2002/0184610 Al

[0596] For each state, the developer will add all necessary
templates. FIG. 38 illustrates a data template added to the
state. Once the templates are created, they can be configured
in the rapid data view editor 412, shown in FIG. 21. The
developer will drag in and configure the appropriate primi-
tives. Primitives are the basic building blocks of the user
interface. Whatever will be displayed or played to the user
will be fit into the appropriate primitive.

[0597] Inthe “Get Conversion Info” state, the file contents
(GetConversionInfo.tpl) are generated in TPL as follows:

[0598] <?xml version=“1.0" standalone=
“no”?><View title=9577329894233965 ” max-

items="“" name=“" version=“2.61">

[0599] <List defaultvalue=*" listtype=“option” var-
name="fromCurrency” overide_global_destination=
“false” listmode=“dynamic” display_static_list=
“true” title=“5361492279974671">

[0600] <Listltem dest="$ {baseurl}” buttonlabel=

“~currencyList"” value=“"currencyList"”>" visible-
CurrencyList"</ListItem>

[0601] </List>

[0602] <ResponseHeaderList>

[0603] </ResponseHeaderList>

[0604] <MetaDatalist>

[0605] </MetaDatalist>

[0606] <NavigationActionList>

[0607] <Action scope=“local” name=“OK” dest=
“${baseurl}” overrideglobal=*“false” method="post”
buttonlabel=“415746435947454" type=“accept”>

[0608] <PostData name=*“dataSessionState” value=

“main”>

[0609] <PostData name=“fromCurrency” value=
“$(fromCurrency)”/>

[0610] <PostData name=“fromAmount” value-
“$(fromAmount)”/>

[0611] <PostData name=“toCurrency” value=
“$(toCurrency)”/>

[0612] </Action>

[0613] </NavigationActionList>

[0614] <Input title=*9714909659225” name=

“Amount” format=“N*" mode=“text” varname=
“fromAmount” defaultvalue=
“2798152269586387>

Dec. 5, 2002

[0615] <Text>34542647762854994</Text>
[0616] </Input>

[0617] <List defaultvalue=*" listtype=“option” var-
name="toCurrency” overide_global_destination=
“false” listmode="“dynamic” display_static_list=
“true” title=7755028846727147">

[0618] <Listltem dest=*$ {baseurl}” buttonlabel=
“~currencyList"” value=“*currencyList"”>" visible-
CurrencyList"</Listltem>

[0619] </List>
[0620] </View>

[0621] This view would be rendered on a WAP device
having an interface similar to that shown in FIG. 104.

[0622] The first voice view appears in the “Welcome”
state. The voice view is added to the state’s list of templates,
similar to how the rapid data template above. This is shown
in FIG. 105. The voice template is developed in the rapid
voice view editor 414, shown in FIG. 22. The view is stored
in a file with a *.vtl extension. The finished view for the
Welcome state is stored as a VIL file, Welcome_Voice.vtl,
as follows:

[0623] <?xml version="“1.0" encoding=“UTF-8”7>
[0624] <VoiceDoc version=“2.6">
[0625] <VoiceTemplate next=“SERVER” id=“Wel-

come”>
[0626] <Play>
[0627] <Prompt promptType=“initial”>
[0628] <Audio prompt=“change.wav”>
[0629] </Audio>
[0630] <Audio prompt=“welcome_currency.wav”>
[0631] </Audio>
[0632] </Prompt>
[0633] </Play>
[0634] </VoiceTemplate>
[0635] <VoiceTemplate id=“SERVER”>
[0636] </VoiceTemplate>
[0637] </VoiceDoc>

[0638] This view is linked to the Welcome state in the
CML file, as follows:

<ListView cml:name = “Welcome” cml:id = “1227>
<DeviceBased View cml:id = “123” template = “Welcome__Voice.vtl”>

<PROPERTY cml:name = “view” cml:class = “VoiceView” cml:id = “124”

template = “Welcome__Voice.vtl”/>

<PROPERTY cml:name = “deviceType” cml:class = “DeviceTypeLocator”

ruleName = “Voice Devices”/>
</DeviceBased View>

</ListView>

US 2002/0184610 Al

[0639] The output of this view is the contents of the audio
files change.wav and welcome_currency.wav. In this case,
the end user will hear “[sound of jingling change] Welcome
to the Currency Converter! You can say ‘Help’ at any time
for assistance.”

[0640] The process of developing the views for the
remaining voice-only states is similar to that of the Welcome
state. The next state, the “Results” state, is used for both
visual and voice applications. Visual and voice applications
require different views, since one relies on text and the other
relies on audio files. This means that the “Results” state must
have multiple views. There can also be several visual views;
the application developer can create a special visual view for
a specific device or browser. (For example, a PDA, such as
a Palm Pilot, is capable of more sophisticated information
display than a current Internet-enabled cell phone. A devel-
oper may want to take advantage of the larger screen size
and display more information on the PDA than on the phone.
This would warrant a different view for the PDA.) The
run-time engine implementing CML processor will select
the appropriate template at run-time.

[0641] FIG. 106 illustrates how the view list in the
“Results™ state will appear. Like transitions, the order of the
views determines how the workflow engine 132 will decide
which view to render. The engine checks if the rendering
rule of the first view in the list has been satisfied. If it has,
it renders the view and moves onto executing the actions in
the state. If the rule has not been satisfied, the engine moves
to the next view, checks if the view’s rendering rule has been
satisfied, and so on.

F. DATA MODELING

[0642] After the visually creating the interaction flow
diagram and views, a developer may integrate the necessary
data resources for the application. In the currency converter
example, the application gathers conversion information
(input currency, amount, output currency) as input and
processes the data accordingly. This requires integration
with a back-end database. The application needs to (1) find
out the conversion rate between the two currencies and (2)
calculate the conversion.

[0643] In this non-limiting example, the conversion rate
table is stored in an Oracle™ database. The table uses U.S.
dollars as a base currency. The table contains the conversion
rates from U.S. dollars to other currencies. To make the
conversion, the application first retrieves the conversion rate
between the input currency and the base currency. Next, the
application converts the input currency amount into the base
currency. The application then retrieves the conversion rate
between the base currency and the output currency, and
calculates the amount in the output currency. The calculation
can be represented as follows:

[0644] (Input amount) * (Base ->Input currency
rate)/(Base ->Output currency rate)

[0645] The developer will begin integration design by
adding a data source in the objects tree 404, as shown in
FIG. 41. The data source is then configured in the interface
shown in FIG. 107. Configuring the data source includes
providing the following information: (i) “Name”—the name
of the data source; (ii) “Driver Name”—the Java Database
Connectivity (JDBC) driver used to connect to the database;
(iii) “URL”—the location of database; (iv) “User Name”
and “Password”—the user access information for the data-
base; and (v) “Timeout”—how long to keep the connection
to the database.

Dec. 5, 2002

[0646] The “Driver Name” is the class that implements the
JDBC driver interface. In this example, it is “oraclejdb-
c.driver.OracleDriver”, which is the JDBC driver to an
Oracle™ database. The “URL” is a driver-specific text string
that gets passed to the JDBC driver. It describes specifics on
how to connect to a database (such as machine names and
port numbers). The “User Name” and “Password” pair
specifies the login information to connect to the database (if
security is enabled on the database). The “Timeout” field
specifies the number for a session to hold on to the database
connection. Note that when the timeout expires, the database
connection is not closed. On the server, there is a pool of
database connections that maintains a constant connection to
the database. The “Timeout” field only specifies when to
return the session’s database connection back to the database
connection pool.

[0647] The data adapter is essentially a Java class whose
interface is exposed in the GUI. When a developer declares
such a data adapter, it shows up in the project tree 402, as
shown in FIG. 103. When that data adapter node is
expanded, there is a list of Java methods. These methods can
then be used in conjunction with the “method call” action.
If a method in the built-in adapters is not enough, then
developers can extend the class using Java’s “extend” key-
word. In the extended class, developers can override meth-
ods to perform more sophisticated data manipulation than
the standard data adapters provide. In this example, the class
has not been extended. The SQL data adapter includes
methods such as “executeQuery()”, “executeUpdate()”,
“getRowBylndex()”, “getColumnBylndex()”, “getRows(
)”, and “getcolumns()”.

[0648] So, for example, a developer could execute a query
by creating an “execute method” action and then dragging
the “executeQuery()” method in the tree into the “execute
method” action. Then, as one of the parameters, the devel-
oper could pass “select USD_RATE from CURRENCIES
where SYMBOL =‘JPY”’ as the query to perform. The
results will be cached for later retrieval by a “getRows()”
that returns a collection of rows, with each row having a
collection of column entries.

[0649] In this example application, an external class was
created that calls the “executeQuery()” directly. The devel-
oper creates a method that accepts a “SQLSource” object.
This object’s “executeQuery()” method is then called with
the appropriate query. Then, a “getltemAt(0, 0)” call is
performed to retrieve the first item in the first row. The item
is converted by a “Double” since it was returned as a
“String”. At that point, it is multiplied with the dollar value
to return the dollar amount of the conversion. Finally, this
method is used via the “execute method” action. An
“execute method” action is dropped into the actions panel.
Then, the “getToAmount()” method, which does the query
and the post-processing, is dragged into the panel. The
developer may then specify the parameters, including the
“SQLSource” object, can by dragging them into the fields.
So, when the “execute method” action executes, the query
will be performed.

[0650] The code executes all the steps necessary for the
conversion. The code also sets the value of a model variable
to the conversion result. One non-limiting example of Java
code that may be used for this currency conversion example
appears below:

US 2002/0184610 Al
50

Dec. 5, 2002

import java.io.*;
import SQLSource;
/fimport java.sql.*;
public class Converter implements Serializable{
/**
* Default Constructor
*/
public Converter(){
super();

// Add your methods here
public String getToAmount(String fromCurr, String toCurr, String
fromAmt, SQLSource dbAccess) {

System.out.println(“dbAccess: “+dbAccess+” fromCurr: “+fromCurr+” toCurr:

“+toCurr+” fromAmt: ”+fromAmt);
if(fromCurr == null || fromCurr.equals(“”) |
toCurr == null || toCurr.equals(“”) ||
fromAmt == null || fromAmt.equals(<”) |
dbAccess == null)
return “07;
double USDRateFrom = 0.0;
double USDRateTo = 0.0;

String sqlRateFrom = “select USD__RATE from CURRENCIES where SYMBOL

wns,

+ fromCurr.toUpperCase() + “”;
System.out.println(sqlRateFrom);

String sqlRateTo = “select USD__RATE from CURRENCIES where SYMBOL =

wns,

+ toCurr.toUpperCase() + “;
System.out.println(sqlRateTo);
try {
dbAccess.executeQuery(sqlRateFrom);
if (dbAccess.getltemAt(0,0) != null) {
USDRateFrom = Double.parseDouble(dbAccess.getltemAt(0,0));
System.out.println(“USDRateFrom: ” + USDRateFrom);

dbAccess.executeQuery(sqlRateTo);

if (dbAccess.getltemAt(0,0) != null) {
USDRateTo = Double.parseDouble(dbAccess.getItemAt(0,0));
System.out.println(“USDRateTo: ” + USDRateTo);

¥
double result = (USDRateFrom * Double.parseDouble(fromAmt)) /

USDRateTo;

java.text.DecimalFormat format = new java.text.DecimalFormat(“#.#7);

/*format.setMaximumFractionDigits(2);*/
String res = format.format(result);
return res;

} catch(Exception e){

System.out.println(“Error Encountered while retrieving conversion rates.

Look at the stack trace”);
e.printStackTrace();
return “07;

G. COMPONENTIZATION

[0651] If the currency converter is needed as part of a
larger travel portal, the developer of the converter can
componentize the application before integrating it into the
portal.

[0652] The currency converter component would be com-
prised of the following, as shown in FIG. 108:

[0653] (i) the interaction flow for the converter, i.c.,
the StartModel controller of the application, as seen
under the “Controllers” folder;

[0654] (ii) back-end data adapters and bindings, i.e.
the SQL adapter and Java classes used for perform-
ing the conversion, as seen under the “Data Model”
folder;

[0655] (iii) the presentation layer, i.e. all the views in
the project, as seen under the “Views” folder;

[0656] (iv) all media in the component, i.. strings
and images used in the visual application interface,
as well as audio files and speech recognition gram-
mars used in the voice application, all under the
“Resources” folder;

[0657] (v) a visual icon representing the component,
selected in the componentization wizard;

[0658] (vi) a description that defines the behavior of
the component;

[0659] (vii) a functional black-box interface that
allows variables to be passed in and out of the
component; and

US 2002/0184610 Al

[0660] (vii) instructions on how to assemble the
resources in the component into the application using
that component.

[0661] Items (i)-(viii) are stored in any suitable archive file
format. The archive file format used in the present imple-
mentation is a Java JAR file.

[0662] To componentize the application, the developer
selects the Componentization option in the Tools menu on
the application menu bar. A wizard appears to guide the
developer through the process, as shown in FIGS. 56 and
57. The developer first enters high-level information about
the component, as seen in FIG. 56, and then selects a visual
icon for the component, as seen in FIG. 109. When created,
the component appears in the “Components” palette, in the
interaction flow editor, as seen in FIG. 110. The archive
(JAR file) for the component is stored in known location
where the IDE looks for all components. In this case, the
component can be found in a “components” subdirectory
where the IDE was installed.

[0663] To use the currency converter component, the
portal developer must first have the archive file for the
component available for his particular instance of the IDE.
This is the same location as where newly created compo-
nents appear. The component will appear in the developer’s
interaction flow palette, as shown in FIG. 111. The devel-
oper can then drag in and connect the component in the
interaction flow like any other state. The developer may then
configure which variables from the current controller will be
passed in to the component and which variables from the
component will be passed to the current controller, as seen
in FIG. 112. The Mapping panel lists all the variables in the
component. Passing a variable into the component assigns
its current value to that of the component’s variable. The
value of a component’s variable can also be assigned to one
of the current component’s variables when the component
exits.

[0664] As should be appreciated by one of ordinary skill
in the art, the above-described invention provides a system
and method for the rapid, visual development of applications
which may operate in a multi-channel environment in mul-
tiple modes. The system 100 provides a visual development
tool for rapidly building voice and data applications that
may operate across multiple network standards, devices,
browsers and languages. The system 100 satisfies the unique
needs of multi-channel and multi-modal applications, and
provides a simplified development environment that specifi-
cally allows the rapid building of such applications.

[0665] 1t should be understood that the inventions
described herein are provided by way of example only and
that numerous changes, alterations, modifications, and sub-
stitutions may be made without departing from the spirit and
scope of the inventions as delineated within the following
claims.

XI. SCHEMA DEFINITION FILE: CML1.XSD

<?xml version="1.0" encoding=“UTF-8"7>

<xs:schema xmlns:cml="http://www.covigo.com” xmlns:xs=
“http://www.w3.0rg/2001/XMLSchema” elementFormDefault=
“unqualified” attributeFormDefault="qualified”targetNamespace=

Dec. 5, 2002

-continued

“http://www.covigo.com™>
<xs:element name= “CMLType”>
<xs:complexType>
<xs:annotation>
<xs:documentation>Define internal attributes used by
cml</xs:documentation>
</xs:annotation>
<xs:attribute name=“cml:id” type="“xs:byte”
use="“required”/>
<xs:attribute name=“cml:ref” type=“xs:byte”
use=“optional”/>
<xs:attribute name=“cml:name” type="xs:string”
use=“optional”/>
<xs:attribute name="cml:class” type="xs:string”
use=“optional”/>
</xs:complexType>
</xs:element>
</xs:schema>

XII. SCHEMA DEFIINITION FILE: CML.XSD

<?xml version=“1.0" encoding=“UTF-8"7>
<!-- edited with XML Spy v4.1 U (http://www.xmlspy.com) by Paul
Syrtsov (Covigo Inc.) -->
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema”
xmlns:cml="http://www.covigo.com” elementFormDefault=
“unqualified”>
<xs:import namespace="http://www.w3.org/XML/1998/
namespace”schemal.ocation="cml1.xsd”/>
<xs:element name="Model”>
<xs:complexType>
<xs:all minOccurs=“1" maxOccurs=“unbounded”>
<xs:element name=“Modellnterface”
type=“ModellnterfaceType”/>
<xs:element name=“DataBindingInterface”
type=“DataBindingInterfaceType”/>
<xs:element name=“PROPERTY”
type="PROPERT YType”/>
<xs:element name=“ListView” type=“ListViewType”/>
<xs:element name=“DefaultController”
type=“DefaultControllerType”/>
</xs:all>
<xs:attribute name=“name” type="“xs:string” use=“required”/>
<xs:attribute name=“type” type="xs:string” use="“required”’/>
</xs:complexType>
</xs:element>
<xs:complexType name=“ModelInterfaceType”>
<xs:sequence>
<xs:element name=“ModelVarDef” type=
“ModelVarDefType” minOccurs=“0" maxOccurs=“unbounded”/>
</Xs:sequence>
<xs:attribute name=“cml:id” type="“xs:byte”/>
</xs:complexType>
<xs:complexType name=“ModelVarDefType”>
<xs:attribute name=“cml:id” type="“xs:byte” use=“required”/>
<xs:attribute name=“name” type="“xs:string” use=“required”/>
<xs:attribute name=“scope” type="“xs:string”/>
<xs:attribute name=“comment” type="xs:string”/>
<xs:attribute name=“className” type="xs:string”/>
</xs:complexType>
<xs:complexType name=“DataBindingInterfaceType”>
<xs:sequence>
<xs:element name="“DataBinding” type=“DataBindingType”/>
</Xs:sequence>
<xs:attribute name=“cml:id” type="“xs:byte” use=“required”/>
</xs:complexType>
<xs:complexType name=“DataBindingType”>
<xs:sequence>
<xs:element name=“PROPERTY” type=“PROPERTYType”
minOccurs=“1" maxQOccurs=“unbounded”/>

US 2002/0184610 Al

-continued

52

Dec. 5, 2002

-continued

</Xs:sequence>
<xs:attribute name=“cml:name” type="xs:string”
use=“required”/>
<xs:attribute name=“cml:id” type="xs:byte” use=“required”/>
<xs:attribute name=“methodName” type="“xs:string”
use=“required”/>
</xs:complexType>
<xs:complexType name=“PROPERTYType”>
<xs:sequence>
<xs:any namespace="“http://www.w3.0rg/1999/xhtml”
processContents="skip” minOccurs="“0" maxOccurs=“unbounded”/>
</Xs:sequence>
<xs:attribute name=“cml:name” type="xs:string”
use=“required”/>
<xs:attribute name=“cml:class” type="“xs:string”
use=“required”/>
<xs:attribute name=“cml:id” type="xs:byte”/>
<xs:attribute name=“cml:ref” type=“xs:byte”/>
</xs:complexType>
<xs:complexType name=“ListViewType”>
<xs:sequence>
<xs:element name=“DeviceBased View”
type=“DeviceBased ViewType”/>
</Xs:sequence>
<xs:attribute name=“cml:name” type="xs:string”
use=“required”/>
<xs:attribute name=“cml:id” type="xs:byte” use=“required”/>
</xs:complexType>
<xs:complexType name=“DeviceBased ViewType”>
<xs:sequence>
<xs:element name=“"PROPERTY” type=“PROPERTYType”/>
</Xs:sequence>
<xs:attribute name=“cml:id” type="xs:byte” use=“required”/>
<xs:attribute name="“template” type="xs:string”
use=“required”/>
</xs:complexType>
<xs:complexType name=“DefaultControllerType”>
<xs:sequence>
<xs:element name=“PROPERTY” type=“PROPERTYType”
minOccurs=“1" maxQOccurs=“unbounded”/>
</Xs:sequence>
<xs:attribute name=“cml:name” type="xs:string”
use=“required”/>
<xs:attribute name=“cml:id” type="xs:byte” use=“required”/>
</xs:complexType>
<xs:complexType name=“BindingActionType”>
<xs:sequence>
<xs:element name=“PROPERTY” type=“PROPERTYType”
minOccurs=“1" maxQOccurs=“unbounded”/>
</Xs:sequence>
<xs:attribute name=“cml:id” type="xs:byte” use=“required”/>
<xs:attribute name=“methodName” type="“xs:string”
use=“required”/>
</xs:complexType>
<xs:complexType name=“CustomActionType”>
<xs:attribute name=“cml:id” type="xs:byte” use=“required”/>
<xs:attribute name=“code” type="“xs:string” use=“required”/>
</xs:complexType>
<xs:complexType name="SetVariableActionType”>
<xs:sequence>
<xs:element name=“"PROPERTY” type=“PROPERTYType”/>
</Xs:sequence>
<xs:attribute name=“cml:id” type="xs:byte” use=“required”/>
<xs:attribute name="“srcVar” type="xs:string”
use=“required”/>
</xs:complexType>
<xs:complexType name="TransitionActionType”>
<xs:choice>
<xs:element name="CustomAction” type=
“CustomActionType” minOccurs=“0" maxOccurs=“1"/>
<xs:element name=“BindingAction” type=
“BindingActionType” minOccurs=“0" maxOccurs=“1"/>
</xs:choice>
<xs:attribute name=“cml:id” type="xs:byte” use=“required”/>
<xs:attribute name="target” type="xs:string” use="“required”’/>
</xs:complexType>

<xs:complexType name="StringType”>
<xs:attribute name="cml:value” type="xs:string”
use="“required”/>
</xs:complexType>
</xs:schema>

3

XIII. DOCUMENT TYPE DEFINITION: TPL.DTD

<?xml version=“1.0" encoding=“UTF-8"7>

<!--Used for GUI - when Studio needs to show actions-->
<!ELEMENT NavigationActionList (Action+)>
<!-- This is used for GUI as a wrapper for all Actions -->
<!ATTLIST NavigationActionList
overrideglobal CDATA #IMPLIED
>
<!--Element to say which action needs to happen when the end user
presses a button or a page expires-->
<!ELEMENT Action (PostData*)>
<!ATTLIST Action
name CDATA #IMPLIED
method (get | post) #IMPLIED
type (accept | help | prev | softl | soft2 | send | delete | options |
reset) #IMPLIED
buttonlabel CDATA #IMPLIED
dest CDATA #REQUIRIED
scope (global | local) #REQUIRED
>
<!--Like HTML <a>-->
<!ELEMENT Anchor (#PCDATA | PostData)*>
<!ATTLIST Anchor
title CDATA #IMPLIED
method (get | post) #IMPLIED
dest CDATA #REQUIRED
>
<!--Like HTML <hr>-->
<!ELEMENT Break EMPTY >
<!ELEMENT Image (ImageData+)>
<!ATTLIST Image
align (none | top | middle | bottom) #IMPLIED
family CDATA #IMPLIED
<!--Contains information about an image-->
<!ELEMENT ImageData EMPTY>
<!ATTLIST ImageData
title CDATA #IMPLIED
type (bmp | wbmp | gif | jpg) #REQUIRED
dest CDATA #REQUIRED
height CDATA #IMPLIED
width CDATA #IMPLIED
>
<!--Widget that accepts textual input from end user-->
<!-- ICONs for HDML not added - not common across all languages -->
<!ELEMENT Input (Text*, Image*, Break*)>
<!ATTLIST Input
name CDATA #IMPLIED
title CDATA #IMPLIED
varname CDATA #REQUIRED
format CDATA #IMPLIED
defaultvalue CDATA #IMPLIED
>
<!--Wrapper for both option & navigation lists-->
<!--Like HTML <select>-->
<!ELEMENT List (ListItem+)>
<!ATTLIST List
defaultvalue CDATA #IMPLIED
varname CDATA #REQUIRED
title CDATA #IMPLIED
listtype (navigation | option) #IMPLIED
blabeldata CDATA #IMPLIED
overridedest CDATA #IMPLIED
display__static__list CDATA #IMPLIED
>
<!--List item, like HTML -->
<!ELEMENT Listltem (#PCDATA)>
<!ATTLIST ListItem
value CDATA #REQUIRED

US 2002/0184610 Al

-continued

53

Dec. 5, 2002

-continued

buttonlabel CDATA #IMPLIED
dest CDATA #REQUIRED
dynamicdata CDATA #REQUIRED
blabeldata CDATA #REQUIRED
>
<!--Container for all text, image, anchors, breaks, etc.-->
<!--Defines text & styles for text, defines links, creates lists-->
<!ELEMENT Para (Text | Anchor | Image | Break)+>
<!ATTLIST Para
align (center | left | right | none) #IMPLIED
wrap (wrap | nowrap | none) #IMPLIED
paratype (hrule | regular) #iIMPLIED
>
<!--Specifies which name-value pairs gathered in the current view
to post back to the server-->
<!ELEMENT PostData EMPTY>
<!ATTLIST PostData
name CDATA #REQUIRED
value CDATA #REQUIRED
>
<!--Table which can contain images or text-->
<!--Like HTML <table>-->
<!ELEMENT Table (TableRow+)>
<!ATTLIST Table
title CDATA #IMPLIED
colcount CDATA #REQUIRED
align (center| left | right | none) #IMPLIED
>
<!--Specifies contents of a table cell-->
<!--Like HTML <td>, except using attributes to specify
row & col numbers-->
<!ELEMENT TableRow (Text | Image | Break | Anchor)+>
<!ATTLIST TableRow
col CDATA #REQUIRED
row CDATA #REQUIRED
>
<!--Text with style formatting-->
<!ELEMENT Text (#PCDATA)>
<!ATTLIST Text
style (bold | italic | small | big | strong | emphasis | underline)
#IMPLIED
>
<!--Timer - for <timer> in WML-->
<!ELEMENT Timer EMPTY>
<!ATTLIST Timer
name CDATA #IMPLIED
value CDATA #REQUIRED
dest CDATA #REQUIRED
>
<!--Like HTML <meta>-->
<!--Contains commands for the gateway or device for cache expiration
(how long until), specifying tags for gateway, etc.-->
<!--Can be used to send proprietary information-->
<!--To device-->
<!ELEMENT MetaDataList (MetaData+)>
<!ELEMENT MetaData EMPTY>
<!ATTLIST MetaData
type (name | http-equiv) #IMPLIED
value CDATA #REQUIRED
content CDATA #REQUIRED
forua (true | false) #IMPLIED
>
<--When sending a name-value pair back to server, the developer may

want to send the version number, character set, locale information, etc.-->

<!--Any HTTP response header can be sent using
<ResponseHeaderList>-->
<!--To server-->
<!ELEMENT ResponseHeaderList (ResponseHeader+)>
<!--Collection member in <ResponseHeaderList>-->
<!ELEMENT ResponseHeader EMPTY>
<!ATTLIST ResponseHeader

name CDATA #REQUIRED

value CDATA #REQUIRED
>
<!--Container for all types of elements-->
<!--Top-level element for TPL-->

<!ELEMENT View (Timer?, Para*, Input*, List*, Table*, Action*)>
<!ATTLIST View

name CDATA #IMPLIED

title CDATA #IMPLIED

layout CDATA #IMPLIED

class CDATA #IMPLIED

newcontext (true | false) #IMPLIED

maxitems CDATA #IMPLIED
>

XIV. DOCUMENT TYPE DEFINITION: VIL.DTD

<?xml version=“1.0" encoding=“UTF-8"7>
<!--Top level element-->
<!ELEMENT VoiceDoc (VoiceDocGlobals?, VoiceTemplate+)>
<!--Project level settings, to be used for providing generic error
handling or help throughout the application-->
<!ELEMENT VoiceDocGlobals ANY>
<!ATTLIST VoiceDoc
xmins CDATA #REQUIRED
>
<!--Top level element for current view-->
<!ELEMENT VoiceTemplate (Input | Play | Confirmation | Object |
Menu | Pause)*>
<!ATTLIST VoiceTemplate
id ID #REQUIRED
next IDREF #IMPLIED
>
<!--Input primitive-->
<!ELEMENT Input (Prompt?, Prompt?, Error*, Event*)>
<!ATTLIST Input
name CDATA #REQUIRED
grammar CDATA #REQUIRED
>
<!--Play primitive-->
<!ELEMENT Play (Prompt?, Error*, Event*)>
<!--Confirmation primitive-->
<!ELEMENT Confirmation (Prompt?, Prompt?, Prompt?,
Confirmingltem+, Error*, Event*)>
<!ATTLIST Confirmation
name CDATA #REQUIRED
confirmGrammar CDATA #REQUIRED
confirmGrammarSlot CDATA #REQUIRED
confirmPositiveAnswer CDATA #REQUIRED
identifyGrammar CDATA #REQUIRED
identifyGrammarSlot CDATA #REQUIRED
>
<!--Used for Confirmation primitive-->
<!--Specifies which items (preceding primitives) you want to confirm--»
<!ELEMENT Confirmingltem (Prompt?)>
<!ATTLIST Confirmingltem
formID IDREF #REQUIRED
answer CDATA #REQUIRED
resultAudioFormat (audio | tts) #REQUIRED
>
<--Menu primitive-->
<!ELEMENT Menu (Prompt?, Menultem*, Error*, Event*)>
<!ATTLIST Menu
name CDATA #REQUIRED
grammar CDATA #REQUIRED
>
<!--Menu item used in Menu primitive-->
<!ELEMENT Menultem (Prompt?)>
<!ATTLIST Menultem
answer CDATA #REQUIRED
next IDREF #REQUIRED
>
<--Importing Speech Objects-->
<--Import primitive-->
<!ELEMENT Object (Param*, Error*, Event*)>
<!ATTLIST Object
name CDATA #REQUIRED
classid CDATA #REQUIRED
data CDATA #IMPLIED
>
<!--Used by Import primitive-->

US 2002/0184610 Al

-continued

<!--Parameter for a speech object-->
<!--Can be any object-->
<!ELEMENT Param (Param*)>
<!ATTLIST Param
name CDATA #REQUIRED
type CDATA #IMPLIED
expr CDATA #IMPLIED
>
<--In Play, Input, Menu - wherever a prompt is played-->
<ELEMENT Prompt (Audio? | TTS? | Break?)*>
<!ATTLIST Prompt
bargein (true | false) #IMPLIED
promptType (initial | confirm | result | correction | identify |choice |
reentry | event | error) #REQUIRED
>
<!--Audio file->
<!ELEMENT Audio EMPTY>
<!ATTLIST Audio
prompt CDATA #REQUIRED
transcription CDATA #IMPLIED
>
<!--TTS identified by the prompt attribute-->
<!IELEMENT TTS EMPTY>
<!ATTLIST TTS
prompt CDATA #REQUIRED
>
<!--Pause-->
<!--In a prompt-->
<!ELEMENT Break EMPTY>
<!ATTLIST Break
time CDATA #REQUIRED
>
<!--Pause-->
<!--Is an element-->
<!ELEMENT Pause EMPTY>
<!ATTLIST Pause
duration CDATA #REQUIRED
>
<--Prompt to play in the event of an error-->
<!ELEMENT Error (Prompt)?>
<!ATTLIST Error
errorType (noinput | nomatch) #REQUIRED
count CDATA #IMPLIED
>
<--Plays a prompt for any event, but generally used for Help-->
<!ELEMENT Event (Prompt?)?>
<!ATTLIST Event
eventType CDATA #REQUIRED
next IDREF #IMPLIED
stateName CDATA #IMPLIED
>
<!--For setting top-level attribute values for prompts-->
<!ELEMENT DefaultAttributes EMPTY>
<!ATTLIST DefaultAttributes
bargein (true | false) #IMPLIED
>

What is claimed is:
1. Asystem for visually building applications, said system
comprising:

a first module adapted to allow a developer to visually
design workflow for an application;

a second module adapted to allow a developer to design
views for said application; and

a third module adapted to allow a developer to integrate

data sources within said application.

2. The system of claim 1 further comprising an interactive
development environment for allowing a developer to inter-
act with said first, second and third modules to design said
application.

Dec. 5, 2002

3. The system of claim 2 wherein said interactive devel-
opment environment comprises a graphical user interface for
allowing a developer to visually interact with said first,
second and third module.

4. The system of claim 1 wherein said system is adapted
to allow a developer to design multi-modal applications.

5. The system of claim 1 wherein said system is adapted
to allow a developer to design multi-channel applications.

6. The system of claim 5 wherein said system is adapted
to allow a developer to design multi-channel applications
including at least one channel selected from the group
comprising voice channels, web channels, and wireless web
channels.

7. A system for visually building multi-channel applica-
tions, comprising:

an interactive development environment for visually
designing workflow for a multi-channel application,
said environment being adapted to allow a developer to
independently design said workflow in a plurality of
layers, each of said layers corresponding to at least one
channel of said application.

8. The system of claim 7 wherein said interactive devel-
opment environment provides a graphical interface for inde-
pendently displaying and designing said plurality of layers.

9. The system of claim 8 wherein said interface is adapted
to independently display a root layer including states com-
mon to each of said channels of said application, and to
allow a developer to visually design said root layer.

10. The system of claim 9 wherein said graphical interface
is further adapted to independently display a voice layer
including states common to a voice channel of said appli-
cation, and to allow a developer to visually design said voice
layer.

11. The system of claim 10 wherein said graphical inter-
face is further adapted to independently display a visual
layer including states common to a visual channel of said
application, and to allow a developer to visually design said
visual layer.

12. The system of claim 11 wherein said graphical inter-
face is further adapted to display combinations of said root,
voice and visual layers.

13. A system for visually building applications, compris-
ing:

a graphical user interface adapted to allow a user to
visually build a workflow for an application; and

a module for converting said visually built workflow into
a markup language.

14. The system of claim 13 wherein said markup language
comprises an XML-based language.

15. The system of claim 14 wherein said graphical user
interface is adapted to allow a user to visually build a single
workflow for an application capable of operating over a
plurality of channels.

16. The system of claim 13 wherein said graphical user
interface is adapted to allow a user to visually build a single
workflow for an application capable of operating in a
plurality of modes.

17. The system of claim 13 further comprising:

a second graphical user interface adapted to allow a
developer to build views of an application; and

a second module adapted to convert said built views into
a markup language.

US 2002/0184610 Al

18. The system of claim 17 wherein said markup language
comprises an XML-based language.

19. A method of building an application, comprising the
steps of:

providing a visual development environment;

designing an application workflow within said visual
development environment, said application workflow
describing certain business logic and comprising a
plurality of states and a plurality of transitions, linking
said states; and

converting said application workflow into an application
descriptor.
20. The method of claim 19 further comprising the step of:

designing a presentation of said application within said
visual development environment.
21. The method of claim 20 further comprising the step of:

internationalizing said presentation of said application
within said visual development environment.

Dec. 5, 2002

22. The method of claim 21 further comprising the step of:

integrating data sources into said application by use of

said visual development environment.

23. The method of claim 19 wherein said application
workflow describes a multi-channel application.

24. The method of claim 20 wherein said application
workflow is designed in a plurality of layers, each layer
including states and transitions common to at least one
channel of said application.

25. The method of claim 19 further comprising the step of:

componentizing a plurality of said states and transitions
into a reusable sub-model within said visual develop-
ment environment.

26. The method of claim 21 further comprising the step of:

packaging said application workflow into a reusable com-
ponent within said visual development environment.

