
(19) United States
US 20040192277A1

(12) Patent Application Publication (10) Pub. No.: US 2004/0192277A1
Pakarinen et al. (43) Pub. Date: Sep. 30, 2004

(54) SOFTWARE DEVELOPMENT
ENVIRONMENT

(76) Inventors: Kari Pakarinen, Pirkkala (FI); Juha
Torkkeli, Tampere (FI)

Correspondence Address:
Crawford Maunu PLLC
1270 Northland Drive, Suite 390
St. Paul, MN 55120 (US)

(21) Appl. No.: 10/779,127

(22) Filed: Feb. 16, 2004

(30) Foreign Application Priority Data

Feb. 17, 2003 (FI)... 2003O240

Publication Classification

(51) Int. Cl." H04Q 7/20, H04B 1/38;
HO4M 1/00

TE 2

TE

(52) U.S. Cl. .. 455/418; 455/557

(57) ABSTRACT

The invention relates to arranging data transfer in a data
System between Software components implementing mobile
communication applications in a Software development
environment. The data System comprises adapters for the
different Software components and for transferring data of a
broker component between different adapters, wherein the
adapter provides an interface to the broker component for at
least one Software component connected thereto. Addressing
information is maintained in the broker component about the
adapters in the data System. A first adapter in the data System
is activated for a first Software component and a Second
adapter for a Second Software component in response to a
need for data transfer between the first Software component
and the Second Software component. Data is transferred in
the broker component between the first adapter and the
Second adapter in accordance with the addressing informa
tion.

Capital One
Exhibit 1015

Patent Application Publication Sep. 30, 2004 Sheet 1 of 3 US 2004/0192277 A1

TE)

". –3 ses. 3)

-)-
. Software Daemon

Component component
201 2O7

Adapter 203

Broker component 202 - -

Filter Adapter 203 Adapter 203 adapter 205 Adapter 20

Software Filter Console
component Component component
201 206 208

Software
component
|201

Fig. 2

Patent Application Publication Sep. 30, 2004 Sheet 2 of 3 US 2004/0192277 A1

MEM 302

Sender 408 ||Receiver 409
Content Handler 410

FrameWOrk IF 407 Service IF 406 P2P F 405

203 Framework Service AP 403 P2P AP 404
API 402

Communication AP 401

Fig. 4

Broker Event Callback
IF 502 IF 503 P2P Pipe IF 504

Broker 501
reass-rosseoesorrocassesse-essesssssroo-sassesserror o ----- --------

Connected adapters 507

2O2

templates 506

Patent Application Publication Sep. 30, 2004 Sheet 3 of 3 US 2004/0192277 A1

601

New template is installed

603 602 New adapter is configured
based on template

Configuration is stored

605 Adapter configuration is
retrieved

Adapter is connected to
broker component

608 Adapter is activated

Data is transferred via adapter

604

606

6O7

609

610

Fig. 6

US 2004/0192277 A1

SOFTWARE DEVELOPMENT ENVIRONMENT

FIELD OF THE INVENTION

0001. The invention relates to software development
environments and particularly to Software development
environments for Software related to mobile communication.

BACKGROUND OF THE INVENTION

0002 AS FIG. 1 illustrates, a mobile communication
environment includes Several different parties between
which data is transferred. Terminals TE represent users of
services. Services are provided by service providers SP and
a network MNW, for instance a mobile network. The envi
ronment may also include content providers CP, the content
provided by which is supplied to the terminals TE by the
service providers SP or the network MNW. For example, for
obtaining news, a short message is transmitted from the
terminal TE to the mobile network MNW, which forwards it
to a weather service provider SP. The service provider SP
creates a multimedia message based on weather data
obtained from a content provider CP providing weather
forecasts. The multi-media message is forwarded to the
mobile network MNW, which forwards it to the terminal TE.
If no connection can be made to the mobile station TE, the
mobile network can Store the multimedia message in a
message centre and transmit it immediately when the TE
again connects to the network. The function of Software
components developed needs to be tested when new Services
are developed for the terminalsTE, when new terminals TE
or network elements are developed, and when new functions
are developed for the terminals TE or the network elements.
0.003 Software components can be tested at the devel
opment Stage in a Software development environment,
whereby no actual equipment is needed, but the testing can
be performed fully by Software by means of one computer,
for example. Terminal emulators have been developed,
which totally or partly model the operation of a terminal.
The advantage of application development environments of
this kind is that the applications do not have to be loaded in
actual devices for testing the functioning of an application.
An application development environment utilizing emula
tors is illustrated in U.S. published patent application no.
20020169591. A terminal emulator can be loaded in a
Software development environment and it can be used to test
the operation of an application, e.g. for testing what a
message transmitted by a Service looks like in a terminal.
Typically, Special Software development environments are
tailored for different technologies, and it has been impos
sible to connect the environments to each other. For
example, there are special Software development environ
ments for different communication applications, and Special
Software development environments for Internet browser
applications. Even though Several different terminal emula
tors could be loaded in a Software development environ
ment, the Software component being developed has to be
tested also in Separate test processes for each terminal
emulator. An example of this is that the application devel
oper has to load an emulator Separately for each telephone
model and transmit the multimedia message created by the
application Separately to each of these emulators.

BRIEF DESCRIPTION OF THE INVENTION

0004. The object of the invention is thus to improve the
connectivity of software components. The object of the

Sep. 30, 2004

invention is achieved by a method, data System, data pro
cessing device, Software product, data Storage medium and
Signal, which are characterized by what is Stated in the
independent claims. The preferred embodiments of the
invention are described in the dependent claims.
0005 The invention is based on the data system com
prising adapters for the different Software components and a
broker component for transferring data between different
adapters, wherein the adapter provides an interface to the
broker component for at least one Software component
connected to the adapter, and wherein addressing informa
tion is maintained in the broker component about the adapt
erS in the data System. In the data System, a first adapter in
the data System is activated for a first Software component
and a Second adapter for a Second Software component in
response to a need for data transfer between the first Soft
ware component and the Second Software component. Data
is transferred in the broker component between the first
adapter and the Second adapter in accordance with the
addressing information. An adapter generally refers to a
functionality enabling data transfer between a Software
component and a broker component.
0006 An advantage of the arrangement of the invention
is that a general communication platform is provided, to
which Software components Supporting very many different
kinds of technologies can be connected and between which
data transfer can be arranged. The adapters allow the data
transfer functionality provided by the broker component to
be hidden from the Software components, and, on the other
hand, Software components Supporting different technolo
gies to be connected to the broker component. Only one
adapter is required for each Software component. This
allows for instance a content provider to test its content in
various terminal emulators by using only one interface to the
broker component. The invention enables easier and faster
testing of the operation of mobile communication applica
tions, Since all data transfer to the required Software com
ponents can be arranged in the same Software development
environment via the broker component and the adapters.
0007. In accordance with a preferred embodiment of the
invention, the adapter provides an interface to a data transfer
application of a mobile System, the application enabling the
transfer a message received from the broker component and
the adapter further to a Second mobile Station or mobile
network. This embodiment provides the advantage that for
instance testing can be arranged by using an actual device or
data transfer can be arranged for instance to an actual
element in a mobile network from the Software development
environment. Several Software components can be tested
Simultaneously, and they can reside both in actual terminals
and in terminal emulators.

BRIEF DESCRIPTION OF THE FIGURES

0008. In the following, preferred embodiments of the
invention will be described in detail with reference to
Appendix 1 and the accompanying drawings, in which
0009 FIG. 1 generally shows different parties in a
mobile communication environment;
0010 FIG.2 shows a software development environment
of a preferred embodiment of the invention;
0011 FIG. 3 illustrates a data processing device;

US 2004/0192277 A1

0012 FIG. 4 illustrates layers in an adapter of a preferred
embodiment of the invention;
0013 FIG. 5 illustrates layers in a broker component of
a preferred embodiment of the invention; and
0.014 FIG. 6 illustrates a method according to a preferred
embodiment of the invention.

DETAILED DESCRIPTION OF THE
INVENTION

0.015 FIG. 2 illustrates a data system 200 according to a
preferred embodiment of the invention. The data system 200
may operate as a Software development environment,
enabling at least the testing of different Software components
201. A Software component 201 may be for instance a
mobile communication application Software development
tool, terminal, System or Service emulator, content develop
ment tool, testing tool, or an application program of an
external system or device. The data system 200 comprises
Several adapters 203 providing an interface for at least one
Software component 201 connected thereto. Particularly, the
adapter 203 connects (an external) software component 201
to a broker component 202, which acts as a data transfer
gateway between the adapters. The broker component 202
attends to all data transfer between the adapters 203 and,
consequently, between the software components 201. The
broker component 202 is a communication centre of the data
system 200 and attends to all data transfer between the
adapters 203. The adapters 203 and the broker component
202 constitute a broker functionality for external Software
components 201.
0016. The data system 200 also comprises a daemon
component 207, a console component 208, and preferably a
filter component 206 and a filter adapter 205 associated
therewith. The daemon component 207 manages the soft
ware components 201, 206 executable in a local worksta
tion, the broker component 202, the filters 203, 205, the
console components 208, and maintains a local log file. The
console component 208 is a graphical user interface tool
(GUI Tool), by means of which a user is able to obtain
information about the System 200 and manage its functions,
such as the adapters 203, 205 and the data transfer via the
broker component 202. The filter adapter 205 enables moni
toring, analyzing and possibly modifying the data trans
ferred in the broker component 202. The broker component
202 may transfer traffic between given adapters 203 via the
filter adapter 205 for analysis in the filter component 206.
The data System 200 can be executed in one data processing
device or in Several data processing devices connected to
each other for instance via a TCP/IP network. It is to be
noted that the system shown in FIG. 2 is only one manner
of implementing the invention, e.g. the functions of the
console component 208 and the daemon component 207 can
be implemented in one component.
0017 FIG. 3 illustrates a data processing device 301,
wherein at least part of the data system 200 is implemented.
The data processing device 301 comprises memory 302, a
user interface 304, I/O means 305 for arranging external data
transfer, and a central processing unit 303 CPU comprising
one or more processors. The memory 302 comprises a
non-volatile portion for Storing applications controlling the
central processing unit 303 and other data to be Stored, and
a volatile portion for use for temporary data processing.

Sep. 30, 2004

Computer program codes executed in the central processing
unit 303 can cause the data processing device 301 to
implement functions illustrated in FIG. 2 and later in FIGS.
3, 4, 5 and 6, such as one or more software components 201,
adapters 203, 205, the daemon component 207, the console
component 208 and the broker component 202. Computer
program code may be Stored in any one or more memory
means, e.g. a hard disk in a PC, a memory card, or a CD
ROM, from where they can be loaded in the memory 302 of
the device 301. executing them. Computer program code
may also be loaded via a network using the TCP/IP protocol
stack (Transport Control Protocol/Internet Protocol), for
example. The inventive means can also be implemented at
least partly by utilizing hardware Solutions.
0018. It is to be noted that the functions illustrated in
FIG. 2 can be executed in Several data processing devices
301 communicating with each other. In this case, the data
system 200 can be distributed, and development and testing
of mobile applications, for instance, can be carried out in
several separate devices 301. In this case, the broker com
ponent 202 can be implemented by entities in different
devices, the entities communicating using any data transfer
protocol, e.g. the TCP/IP protocol stack. In a distributed data
System, remote use can be arranged, whereby Software
components 201 of the Second data processing device can be
activated from the software component 201, 207,208 of the
first data processing device. The data processing device 301
may be any device capable of executing Several possibly
even large Software components. In accordance with a
preferred embodiment, the system 200 utilizes Java-based
functions, the JavaTM Runtime Environment being executed
in the device 301. In the following, reference is made to this
embodiment; it should, however, be noted that the invention
can be implemented also using other programming tech
niques.

0019 FIG. 4 illustrates layers of an adapter 203, 205
according to a preferred embodiment. The adapter 203,205
is a component that connects (external) Software compo
nents 201, 206 to the broker component 202. The adapter
203,205 is composed of an application program interface to
Software components 201, an adaptation code for data
transfer between the Software component 201 and the appli
cation program interface, and a part executing the adaptation
code. The adapter 203, 205 publishes interfaces for speci
fying an adaptation code between the different Software
components 201 and the broker component 202, publishes
System interfaces for connecting the daemon component 207
and the console component 208 to the broker component
202, and maintains a connection to the broker component
202. The adapter 203, 205 hides the functionality of the
broker component 202 from the software component 201,
207 and 208. The adapters 203,205 can be implemented by
using reusable components to enable adaptation to different
adaptation types. In this case, adapters generated for differ
ent platforms, for example, can utilize the same components.
0020. The adapter 203 comprises an adaptation layer
composed of a framework interface (Framework IF) 407, a
service interface (Service IF) 406 and a point-to-point
interface (P2P IF) 405. Under the adaptation layer is an
implementation layer including a framework application
program interface (Framework API) 402, a service applica
tion program interface (Service API) 403, and a point-to
point application program interface (Point to Point API) 404.

US 2004/0192277 A1

Under the implementation layer is a transport layer includ
ing a communication application program interface (Com
munication API) 401. The adaptation layer 405, 406, 407 is
a basic adaptation interface for connecting external Software
to the broker component 202; it connects the implementation
layer 402, 403, 404 to the technology concerned. The
adaptation layer is the only layer that has to be modified
when an adapter 203 is developed for a new technology. The
framework interface 407 is the main interface for connecting
the adapter 203 to the broker component 202, and it includes
general adapter-related functions, Such as point-to-point
registering. The service interface 406 attends to the synchro
nous and asynchronous transfer and reception of event
based data, i.e. events. The point-to-point interface 405
includes functions associated with the management of point
to-point connections, i.e. P2P connections. It informs the
adapter 203 when another adapter 203 wants to open a
connection, it enables the opening and closing of incoming
and outgoing flows to an adapter 203 connected to the broker
component 202. Similarly, the adaptation layer blocks 405,
406 and 407 use the application program interfaces 404,
403, 402 of the implementation layer. In accordance with a
preferred embodiment, the adaptation layer 405, 406, 407 is
a platform-independent Java implementation. The transport
layer, i.e. the communication application program interface
401 connects the adapter 203 to the broker component 202.
It attends to connections, connection errors and automatic
connection reestablishments. In accordance with a preferred
embodiment, data transfer between the adapter 203 and the
broker component 202 is RMI-based (Remote Method Invo
cation), the transport layer hiding the RMI functionality
from the other blocks.

0021. There are two different ways to implement the
adaptation between the Software component 201, 206 and
the broker component 202: by software adaptation or com
munication adaptation. In Software adaptation, the Software
components 201 are integrated directly to the adaptation
interfaces by software 401 to 407 using API calls (applica
tion program interface calls). Consequently, the adaptation
logics of the adapter 203 and the functions illustrated in
FIG. 4 can be executed in a software component 201
process. This embodiment provides the advantage that the
Software component 201 can also be managed from the data
system 200 (from the daemon component 207).
0022. In the communication adaptation, the software
component 201 communicates with the adapter 203 using
Some data transfer protocol. The adapter 203 and the soft
ware component 201 are Separate processes completely
Separate from each other. The transport protocol may be any
protocol Supported by the underlying operating System and
programming language, e.g. a TCP/IP-based protocol or file
transfer. For the communication adaptation, various general
data transfer components can be specified in the adapters
203, such as a sender component 408 and a receiver com
ponent 409, which attend to data transfer between the
Software component 201 and the adapter 203 based on their
address data. Examples are a receiver component for receiv
ing data from a specified TCP/IP port and a sender compo
nent 408 for writing in a specified directory and file. In
addition to data transfer components, the communication
adaptation also uses a content handler component 410,
which correctly interprets the Specified content and attends
to content transmission, e.g. transfer of HTTP commands.
The communication adaptation enables the implementation

Sep. 30, 2004

of the adapter 203 by utilizing existing components for the
Software components 201 So that the code of the software
components does not have to be modified.

0023 For different software components 201 that can be
called products, configured adapters 203 are Specified based
on templates. A template represents an installed (external)
Software component 201 and includes information about its
properties required for arranging data transfer. For integrat
ing the Software component 201, the template includes a
general Specification that can be used for configuring the
adapter 203 exactly for the Software component 201 con
cerned. The template particularly Specifies elements for
identifying the adapter and for Specifying its properties, Such
as Service type identifier. The template preferably also
includes an element for Specifying a host address, which can
be used for instance for activating an adapter in a different
device. The template may also include elements associated
with the management of the adapter, and elements associ
ated with the communication adaptation, e.g. elements for
transmitter and receiver class names. Each configured
adapter 203 is identified based on an identifier stored in the
adapter configuration. This identifier is a character String,
e.g. a telephone number. The configured adapter is con
nected to the broker component 202, after which data can be
transferred via it. The template can also be used in the
console component 208 to represent the Software compo
nents 201 installed in the system for the user. In accordance
with a preferred embodiment, the template includes one or
more XML files including information and a JAR file
including adapter-specific Java classes and resources. Sepa
rate templates are created for different Software components,
e.g. each mobile Station emulator has a Special mobile
Station model-Specific template. Appendix 1 illustrates a
DTD definition (Document Type Definition) for the tem
plate, i.e. it illustrates elements that may be included in a
template according to an embodiment and in the configu
ration defined thereof. In accordance with a preferred
embodiment, the same template can be used to configure
several adapters 203 in the data system 200, enabling for
instance the arrangement of Several identical parallel mobile
station emulators in the system 200.

0024. The creation of a template is easy once the prop
erties of the Software component 201 are known. An adap
tation mechanism is Specified first, i.e. whether a Software
adaptation or a communication adaptation is concerned.
Based on this, a template is created, i.e. the elements to be
used are specified and they are given default values. In a
communication adaptation different elements are required
than in a Software adaptation, particularly the Settings of the
components 408, 409 and 410 enabling the arrangement of
data transfer are required in addition. In the Software adap
tation, the template is integrated into the Software compo
nent 201. The template created is used to create installation
files for installing the template in the data system 200. The
elements illustrated in Appendix 1, for example, can be used,
for which default values are specified.

0025 FIG. 5 illustrates layers of a broker component 202
according to a preferred embodiment. The broker compo
nent 202 operates as a communication platform in the
Software development system 200. It carries out the follow
ing functions:

US 2004/0192277 A1

0026
0027) manages a list 507 of adapters 203, 205 connected
thereto and their properties,
0028 manages the addressing information of the adapters
203, 205,

maintains a list 506 of installed templates,

002.9 manages event-based and stream-based data trans
fer between the adapters 203,205,
0030) provides a command interface for the adapters 203,
205 for implementing commands e.g. for disconnecting the
adapter 203, 205 or for obtaining a list of connected adapt
ers, and

0.031 informs the adapters 203, 205 of changes in avail
able templates, configurations and adapter States.

0.032 The broker component 202 includes an interface
layer including the interfaces and a broker interface (Broker
IF) 502, an event callback interface 503, and a point-to-point
pipe interface (P2P Pipe IF) 504. The interface 502 includes
general functions associated with the broker component 202,
e.g. a transmission function. The interface 503 includes
event-based data transfer functions for arranging event
based data transfer with the adapters 203,305. The interface
504 includes functions for processing incoming and outgo
ing Streams. In accordance with a preferred embodiment, the
implantation layer of the broker component 202 includes
broker implementation classes; a broker 501 and a point-to
point pipe functionality (P2PPipe) 505. The configuration of
the broker component 202 is preferably stored in an XML
file. The configuration includes general Settings of the broker
component 202, such as broadcast numbers and RMI ports.
0.033 Typically, the broker component 202 routes mes
Sages directly from one adapter 203 to another. Messages
may also be transferred via the filter adapter 205 and the
filter component 206. This allows the filter component 206
to intervene in the messages and e.g. Simulate data transfer
errors to the messages to be transferred. The transmitting
and receiving adapters 203 do not detect the intervening
filter adapter 205. Static routing may also be used in the
broker component 202. In this case, the broker component
202 Sets, e.g. for a testing situation, an entry in a routing
table, in accordance with which the messages from the first
adapter 203 are automatically forwarded to the specified
second adapter 203, whereby the packets to be transferred do
not even require a destination address.
0034) The identifiers specified for the adapters 203,205
can be used as communication addresses in the broker
component 202. When a P2P connection is being activated,
this allows the first adapter 203,205 to indicate the identifier
of the second adapter 203, 205, with which communication
is to take place. In the broker component 202, the destination
adapter can also be specified from the data entity to be
transferred. For example, the adapter 203 specifies the
destination telephone number from the destination number
field of the short message to be transmitted. This destination
telephone number is set for the broker component 202 as the
destination address for the data packet including the short
message to be transmitted, and, on the basis of this, the
broker component 202 transfers the data packet to the
adapter 203, 205 whose specified identifier (in list 507) is
Said telephone number. AS was mentioned, in accordance
with an embodiment, data transfer between the adapters 203,

Sep. 30, 2004

205 and the broker component 202 is implemented using
general RMI functions, whereby the adapters 203,205 have
Special RMI interfaces (logical ports) to the broker compo
nent 202.

0035. The system 200 may also comprise broadcast or
multicast addresses. If the message is transmitted to a
broadcast address, the broker component 202 transmits
copies of the message to all operating adapters 203. In
accordance with a preferred embodiment, the broker com
ponent 202 also maintains, in the list 507, information about
the properties of the connected adapters 203 (i.e. the prop
erties of the software components 201 represented by them)
and checks the properties of the software component 201
when an event is being transmitted or a connection being Set
up to it. This allows the broker component to arrange data
transfer only between adapters 203 and correspondingly
Software components 201 capable of data transfer with each
other. For example, when desired, a message can be trans
mitted in the system to all software components 201 Sup
porting the MMS technology (Multimedia Messaging Ser
vice). For this kind of a group transmission, e.g. a special
Service type-specific address can be used, on the basis of
which the broker component 202 knows that a group trans
mission directed to Software components of a given Service
type is concerned. In this case, the broker component 202
checks, on the basis of the list 507 of connected adapters, the
Service type of which adapters 203 in the adapter configu
ration is defined to be MMS. The broker component 202
then transmits the message to all adapters 203 Supporting the
MMS Service.

0036. It is to be noted that the functions of the adapter
202 and the broker component 203 illustrated in FIGS. 4
and 5 are one way to implement them in the data System
200. Not all functions shown in FIGS. 4 and 5 are necessary
and, on the other hand, new functions can be added to the
adapter 202 and/or the broker component 203.

0037. In the following, the connection of a new software
component 201 to a data System in a Software development
environment e.g. for testing it is illustrated with reference to
FIG. 6. When the new software component 201 is to be
connected to the system 200, a configured adapter 203 is
created for it on the basis of a template. In the system 200,
an installation program can be activated via the console
component 208 for installing the new software component
201 and a template 601 created for it, in the system 200. The
daemon 207 detects the new template and notifies it to the
broker component 202. The broker component 202 broad
casts information about the new template to the console
components 208, if required.

0038 An input 602 received from a user via the console
component 208 can be used to create a configured adapter
203 from the template by appending 603 the user's settings
to a copy taken of the template, at least by Setting an
identifier for the adapter 203. Any settings given by the user
replace the default Settings obtained from the template. The
configured adapter 203 gives the identifier to the software
component 201 in the system 200; it may include various
Specified parameters associated with the Software compo
nent 201, such as file names and directory paths. The broker
component 202 stores 604 the configuration for later use. In
accordance with a preferred embodiment, the configuration
is stored as an XML file (from an XML-form template). An

US 2004/0192277 A1

adapter 202 is now specified for the new software compo
nent, and it can be used to arrange a data transfer connection
for the component via the broker component to other Soft
ware components.

0039 The configured adapter 203 (and the software com
ponent 201 specified by it) becomes part of the data system
200 when the adapter 203 is connected to the broker
component 202, particularly to the list 507 maintained by it
over connected adapters. In this case, run-time Settings, Such
as its host, can also be associated with the adapter 203. Via
the console component 208, the user is able to activate the
Software component 201 on the basis of an identifier 1111
associated therewith, for example, whereby a command 605
is forwarded to the daemon component 207 for also con
necting the adapter 203. The daemon component 207 acti
vates the Software component 201 and the adapter 203. A
request can then be transmitted from the adapter 203 to the
broker component 202 for connecting the adapter identified
by the identifier 1111, whereby the broker component 202
(broker 501) retrieves 606 the configuration of the adapter
on the basis of the identifier 1111. The broker component
202 forwards the configuration associated with the identifier
1111 to the adapters 203 and adds the adapter 203 to the list
507 it maintains over connected adapters, i.e. connects 607
the adapter 203 to the broker component 202.
0040 Data transfer can then be arranged via the con
nected adapter 203 to/from the software component 201.
When data need to be transferred via the connected adapter
203 in response to a command 608 received from the
Software component 201 connected thereto or from the
broker component 202, the adapter 203 is activated 609. The
adapter 203 is typically activated when the user selects data
transfer in a user interface provided by the Software com
ponent 201 to another Software component. In the activation
609 of the adapter 203, the required resources are set, e.g.
the P2P interface 405 to receive/transmit data. Data can then
be transferred 610 between the adapter 203 and another
adapter 203 via the broker component 202.
0041. A user of the system 202 is able to trace the
operating adapters 203,205 via the console component 208
and the framework interface 407 of the adapter 203. In this
case, a notification is given of the available adapters (and/or
particularly the Software components 201 connected thereto)
on the basis of the list 507 maintained by the broker
component 202 over the adapters connected to the System.
0042. In the following, different ways to arrange data
transfer via the adapters 203 and the broker component 202,
i.e. steps 609 and 610 of FIG. 6, are described in detail. As
was stated before, data transfer between the adapters 203,
205 may be connection-oriented or event-based, i.e. con
nectionless.

0043. In event-based data transfer, the adapter 203, 205
obtains the service interface instance 403, 406 via the
framework interface 407. The transmitting adapter also
obtains the service interface instance 403, 406 if it does not
yet exist. Both adapters 203, 205 add a listener for future
events to the service interface 403, 406. The adapter 203
packs the content to be transmitted, received from the
Software component 201, as an event having a transmission
identifier and the identifier of the receiving adapter 203,205.
The event is transmitted to the broker component 202, which
searches the list 507 it maintains for the receiving adapter

Sep. 30, 2004

203 to find out if the receiving adapter is active and able to
process an event of this kind. If So, the broker component
202 transmits the event to the addressed receiving adapter
203. The addressed receiving adapter 203 receives the event
via the listener and forwards the content of the event to the
Software component 201. In the case of a Synchronous event,
the receiving adapter 203 transmits a response event to the
transmitting adapter 203.
0044) For P2P data transfer, the initiating adapter 203
transmits, via the interface 407, a request for opening a
connection. A P2P interface 405 is arranged for the connec
tion and it represents the connection to the Second end point
of the connection, i.e. the called adapter 203. The broker
component 202 forwards a request to the second adapter 203
for opening a P2P connection, which receives it via a
listening interface. The interfaces 405 of both adapters 203
are set to transmit and/or receive a data Stream. In accor
dance with a preferred embodiment, the data Streams may be
usual java.io Streams; any data Stream per Se can be con
veyed via the P2P connection provided by the broker com
ponent 202.
0045. In accordance with an embodiment, a detection
function is implemented in the data system 200, preferably
in the daemon component 207, the function automatically
detecting a new Software component 201, e.g. a terminal
emulator installed in the data processing device 301. Having
detected a new Software component, this detection function
may perform the functions illustrated in FIG. 6, and connect
the Software component to the data System 200, i.e. arrange
an adapter 203 for it for connecting to the broker component
2O2.

0046. In accordance with still another embodiment, a
visual view of the topology of the data system 200, particu
larly of the software components 201, is provided to the user
in the data system 200 via the console component 208.
Herein, the user obtains an illustrative total view of the data
system 200 by using graphic icons. The user may be offered
the chance to Specify new components and interfaces
between existing components by drawing. For example, if
the user draws a line between two software components 201,
their adapters 203 can be automatically activated, and a data
transfer connection may be arranged between them. When
the user adds a new software component 201 to the data
system 200 by adding its icon to the picture, all functions
asSociated with the configuration and connection of the
Software component 201 and its adapter 203 can be per
formed, i.e. steps 601 to 607 in FIG. 6 can be executed. This
embodiment further improves the usability of the software
development environment, Since the addition and modifica
tion of new component is easy for the user.
0047 Accordingly, in a data system 200 according to a
preferred embodiment, very different Software components
201 can be interconnected via the adapters 203 and the
broker component 202. In the following, examples are
presented of arranging data transfer in different topologies
and of how the data system 200 illustrated above can be
utilized in different software development situations.
0048. In a first example, data transfer is arranged for
providing the testing of the Software development of a Server
in the SMS/MMS environment (Short Message Service).
Herein, the application developer developing the MMS
application for the Server can easily test the functioning of

US 2004/0192277 A1

an application via different terminal emulators. A short
message is transmitted from the terminal emulator via the
adapter 203 to the broker component 202. The broker
component 202 detects that the SMS server emulation
environment is connected to the broker component 202 via
an adapter 203 connected to the SMS server emulator, and
routes the message to it. The broker component 202 for
wards the short message to the SMS server emulator (SMSC
emulator; Short Message Service Centre), i.e. to a function
emulating the network short message service. The SMS
Server emulator forwards the short message to an external
MMS application to be tested, e.g. using the CIMD protocol
(Computer Interface to Message Distribution). The MMS
application receives an indication of the Short message. In
this example, the application logics create an MMS message
and transmit it back to the terminal emulator transmitting the
short message. The MMS application transmits the MMS
message to the MMS server emulator, i.e. the software
component emulating the MMS function, by using e.g. the
EAIF protocol (External Application Interface). The MMS
server emulator forwards the message via the adapter 203
connected thereto to the broker component 202. The broker
component 202 forwards the message on the basis of
addressing data maintained by it to the correct terminal
emulator via the adapter 203 connected thereto. The adapter
203 (which may be the same as or a different adapter than
in the transmission of the short message) forwards the MMS
message to the terminal emulator 201, wherein the MMS
message can be viewed and checked if it conforms to what
was intended. In this embodiment, the software developer
can test the operation of the application developed and look
for errors therein on the one hand and, on the other hand, test
the correctness of the message created by the application in
different terminals in the same Software development envi
rOnment.

0049. In a second example, the content developer can
easily forward a content to different terminal emulators
and/or an actual terminal and find out how the content is
presented in different terminals. The content, e.g. an MMS
message, of the content development Software component
(201) of the content provider is forwarded using only one
interface, i.e. via the adapter 203 connected to the content
development Software component to different terminal emu
lators via the broker component 202 and the adapters 203
connected to the terminal emulators. The content may also
be forwarded to an actual wireleSS terminal e.g. via an
adapter 203 providing an interface to the Bluetooth envi
ronment (Bluetooth application). This kind of an adapter
adapts the MMS message into a form transmittable via a
Bluetooth connection, after which the Bluetooth application
of the data processing device that developed the content is
able to transfer the message to an actual terminal. This
enables the Simultaneous testing of Several Software com
ponents, which may be in both actual terminals and in
terminal emulators. An adapter 203 can also be connected to
the broker component 202, and via the adapter an interface
to a network of a teleoperator is arranged, e.g. to the MMS
relay functionality of the 3GPP system (Third Generation
Partnership Project), via which the content can be relayed to
an actual terminal TE or to the mobile network MNW.

0050. In a third example, the application developer can
test and/or Simulate a Bluetooth application in one data
processing device by using a terminal emulator, the adapters
203, the broker component 202 and a Bluetooth environ

Sep. 30, 2004

ment Simulator. The Bluetooth application is developed in
the software development component (201). The software of
the application being developed can be transferred via the
adapter 203 of the application development component, the
broker component 202 and the adapter 203 of the terminal
emulator to the terminal emulator. The received application
can be executed in the terminal emulator and tested with the
simulator of the Bluetooth environment and/or an actual
Bluetooth environment by using the adapters 203 arranged
for them.

0051. In a fourth example, an end-to-end short messaging
application is developed in a Software development envi
ronment, via whose adapter 203 and broker component 202
the application is transferred to a terminal emulator and a
Short message centre emulator (or a server emulator). Mes
Sages can then be relayed between the terminal emulator
(client) and the short message centre emulator or server
emulator in accordance with the application logics trans
ferred, allowing the functioning of the application logicS to
be tested even using one data processing device.
0052 AS can be seen on the basis of the above examples,
the Solution of the invention enables testing of end-to-end
applications irrespective of available technologies. For
example, an application executed in a Java emulator (201)
transmits, via a Java interface (java API), a short message
SMS that is transferred via the adapters (203) and the broker
component (202) to a service (201) in the system. This
Service listens to SMS messages and, having received an
SMS message, creates an MMS message, which is trans
mitted via the adapter 203 connected to the service and the
broker component 202 to the MMS software components
(e.g. emulators, MMSC, MMSC simulator) in the environ
ment. In other words, the Solution of the present invention
allows applications to be chained for easy testing of their
operation. The application may naturally be implemented
using any other programming language, Such as the C, C++
or Pascal languages. Instead of a short message, IP-form
messageS, MMS messages or messages according to the
HTTP protocol can be transmitted, i.e. the transfer protocol
may be any existing one or one developed in the future.
Available transfer channels include short-range radio con
nections, cellular connections, such as GPRS or UMTS
connections or optical connections, Such as infrared.
0053. It is obvious to a person skilled in the art that as
technology advances, the basic idea of the invention can be
implemented in a variety of ways. The invention and its
embodiments are thus not limited to the above examples, but
may vary within the claims.
0054) Appendix 1: DTD Definition

<?xml version="1.0” encoding="ISO-8859-12s
<! ELEMENT Property EMPTY
<!ATTLIST Property

Id ID #IMPLIED
Name CDATA #REQUIRED
Value CDATA #REQUIRED

>

<!ELEMENT ClassName (#PCDATA)>
<!ELEMENT Description (#PCDATA)>
<!ELEMENT FrameworkConfiguration (AdapterConfiguration
AdapterUI-Configuration)>
<!ELEMENT AdapterConfiguration (ClassName?, AdapterHosting,

US 2004/0192277 A1

-continued

Adapter-dentification, InstanceSettings?, ServiceSupports,
ProductManage-ment?, Property)>
<!ELEMENT AdapterHosting EMPTYs
<!ATTLIST AdapterHosting

HostAddress CDATA #IMPLIED
Autostart (TRUE FALSE) #REQUIRED

>

<!ELEMENT InstanceSettings EMPTYs
<!ATTLIST InstanceSettings

MaxCount CDATA #REOUIRED
ActionWhenViolated (NONE KILL) #REQUIRED

>

<!ELEMENT ServiceSupports (ServiceSupport+)>
<!ELEMENT ServiceSupport (ServiceType, ServiceVersion, ContentHan
dlers?, Senders?, Receivers?)>
<!ATTLIST ServiceSupport

ServiceID ID #REQUIRED
CanReceive (TRUE FALSE) #REQUIRED
Filtering (TRUE FALSE) #REQUIRED

>

<!ELEMENT ServiceType (#PCDATA)>
<!ELEMENT ServiceVersion (#PCDATA)>
<!ELEMENT ContentHandlers (ContentHandler+)>
<!ELEMENT ContentHandler (ClassName, Property)>
<!ELEMENT Senders (Sender*)>
<!ELEMENT Sender (ClassName, Property)>
<!ELEMENT Receivers (Receiver)>
<!ELEMENT Receiver (ClassName, Property)>
<!ELEMENT AdapterIdentification (AdapterGroup, AdapterType,
AdapterD-escription, AliasIDs?)>
<!ATTLIST AdapterIdentification

AdapterID CDATA #REQUIRED
InitialCreationMethod (USER SYSTEM) #REQUIRED

>

<!ELEMENT AliasIDs (AliasIDRange, AliasID*)>
<!ELEMENT AliasIDRange EMPTYs
<!ATTLIST AliasIDRange

Min CDATA #REOUIRED
Max CDATA #REOUIRED

>

&ELEMENT Alias D. EMPTY
&ATTLIST Alias)

Value CDATA #REQUIRED
>

<!ELEMENT AdapterGroup (#PCDATA)>
<!ELEMENT AdapterType (#PCDATA)>
<!ELEMENT AdapterDescription (#PCDATA)>
<!ELEMENT ProductManagement (ProductStarter?, ProductStopper?,
Pro-ductDetector?, ProductConfigurator?)>
<!ELEMENT ProductStarter (ClassName, Property)>
<!ELEMENT ProductStopper (ClassName, Property)>
<!ELEMENT ProductDetector (ClassName, Property)>
<!ELEMENT ProductConfigurator (ClassName, Property)>
<!ELEMENT DefaultAdapterID (#PCDATA)>
<!ELEMENT Framework (ClassName, Identification, Property)>
<!ELEMENT Identification (Description)>
<!ELEMENT AdapterUIConfiguration (Component+)>
<! ELEMENT Component EMPTY
<!ATTLIST Component

Id ID #REOUIRED
Label CDATA #REQUIRED
LabelKey CDATA #IMPLIED

1. A method of arranging data transfer in a data System
between Software components implementing mobile com
munication applications in a Software development environ
ment, the data System comprising at least a first Software
component and a Second Software component, at least one of
the Software components comprising program code for
controlling a mobile Station, the data System further com
prising adapters for the different Software components and a
broker component for transferring data between different

Sep. 30, 2004

adapters, wherein an adapter provides an interface to the
broker component for at least one Software component
connected to the adapter, and wherein addressing informa
tion is maintained in the broker component about the adapt
erS in the data System, in which method

a first adapter in the data System is activated for a first
Software component and a Second adapter for a Second
Software component in response to a need for data
transfer between the first Software component and the
Second Software component, and

data is transferred in the broker component between the
first adapter and the Second adapter in accordance with
the addressing information.

2. A method as claimed in claim 1, wherein interfaces for
the first adapter and the Second adapter to the broker
component are arranged for connection-oriented or connec
tionless data transfer in response to the need for data transfer
between the first Software component and the Second Soft
ware component.

3. A method as claimed in claim 1, the method further
comprising:

maintaining identifiers of the first adapter and the Second
adapter and information about the properties of the
adapters in the broker component in response to the
first adapter and the Second adapter being connected to
the broker component, and

checking, in the broker component, on the basis of the
identifiers and properties of the adapters, if data transfer
is possible between the first adapter and the Second
adapter in response to the need for data transfer
between the first Software component and the Second
Software component.

4. A method as claimed in claim 1, wherein the data
System has at least one Stored template comprising infor
mation about the properties of the first Software component
for Specifying an adapter for the first Software component,
whereby

the configuration of the first adapter is Specified on the
basis of the template,

the configuration of the first adapter is Stored in the data
System, and

the configuration of the first adapter is retrieved when the
first adapter is connected to the broker component.

5. A method as claimed in claim 1, wherein an adaptation
functionality provided by the adapter is arranged by using a
Software adaptation, the adapter being implemented in a
Software component process, or

an adaptation functionality provided by the adapter is
arranged by using a communication adaptation, the
adapter being implemented in a separate process and
the data transfer being arranged between the adapter
and the Software component process by using a data
transfer protocol.

6. A method as claimed in claim 1, wherein the System
further comprises at least one filter adapter connected to the
broker component, whereby

the data transfer between the first Software component and
the Second Software component is arranged via the filter
adapter, and

US 2004/0192277 A1

information is collected in the filter adapter about infor
mation transferred between the first Software compo
nent and the Second Software component.

7. A method as claimed in claim 1, wherein the first
adapter provides an interface to a data transfer application of
the mobile communication System, the application being the
first Software component.

8. A data System comprising at least a first Software
component and a Second Software component, at least one of
the Software components comprising program code for
controlling a mobile Station, wherein the data System further
comprises adapters for the different Software components
and a broker component for transferring data between dif
ferent adapters, an adapter being configured to provide an
interface to the broker component for at least one Software
component connected thereto, and the broker component
being configured to maintain addressing information about
the adapters in the data System, wherein

a first adapter is configured to be activated for a first
Software component and a Second adapter is configured
to be activated for a Second Software component in the
data System in response to a need for data transfer
between the first Software component and the Second
Software component, and

the broker component is configured to transfer data
between the first adapter and the Second adapter in
accordance with the addressing information.

9. A data processing device, wherein the data processing
device comprises a data System according to claim 8.

10. A computer program product for controlling one or
more data processing devices for arranging data transfer

Sep. 30, 2004

between a first Software component and a Second Software
component, at least one of the Software components com
prising program code for controlling a mobile Station,
wherein the computer program product comprises

a program code portion for implementing adapters for the
different Software components, wherein an adapter
provides an interface to a broker component for at least
one Software component connected thereto,

a program code portion for implementing the broker
component for data transfer between the different
adapters, the broker component being configured to
maintain addressing information about the adapters in
a data System,

a program code portion for controlling the data processing
device to activate a first adapter for a first Software
component and a Second adapter for a Second Software
component in response to a need for data transfer
between the first Software component and the Second
Software component, and

a program code portion for controlling the data processing
device to Set the broker component to transfer data
between the first adapter and the Second adapter in
accordance with the addressing information.

11. A data Storage medium readable by a data processing
device, wherein the data Storage medium comprises a com
puter program product according to claim 10.

12. A Signal, wherein the Signal comprises a computer
program product according to claim 10.

k k k k k

