1.1 Bituminous And Subbituminous Coal Combustion
1.1.1 Generd

Coal isacomplex combination of organic matter and inorganic mineral matter formed over eons
from successive layers of fallen vegetation. Coals are classified by rank according to their progressive
alteration in the natural metamorphosis from lignite to anthracite. Coal rank depends on the volatile
matter, fixed carbon, inherent moisture, and oxygen, although no single parameter defines a rank.
Typicaly, coal rank increases as the amount of fixed carbon increases and the amount of volatile matter
and moisture decreases.

Bituminous coals are by far the largest group and are characterized as having lower fixed carbon
and higher volatile matter than anthracite. The key distinguishing characteristics of bituminous coal are
itsrelative volatile matter and sulfur content as well asits slagging and agglomerating characteristics.
Subbituminous coals have higher moisture and volatile matter and lower sulfur content than bituminous
coals and may be used as an alternative fuel in some boilers originaly designed to burn bituminous
coals.* Generally, bituminous coals have heating values of 10,500 to 14,000 British thermal units per
pound (Btu/lb) on awet, mineral-matter-free basis.> As mined, the heating values of typical U.S.
bituminous coals range from 10,720 to 14,730 Btu/lb.®> The heating values of subbituminous coals range
from 8,300 to 11,500 Btu/lb on awet, mineral-matter-free basis?, and from 9,420 to 10,130 Btu/Ib on an
as-mined basis.®> Formulae and tables for classifying coals are given in Reference 2.

1.1.2 Firing Practices®

Coal-fired boilers can be classified by type, fuel, and method of construction. Boiler types are
identified by the heat transfer method (watertube, firetube, or cast iron), the arrangement of the heat
transfer surfaces (horizontal or vertical, straight or bent tube), and the firing configuration (suspension,
stoker, or fluidized bed). The most common heat transfer method for coal-fired boilersis the watertube
method in which the hot combustion gases contact the outside of the heat transfer tubes, while the boiler
water and steam are contained within the tubes.

Coal-fired watertube boilers include pulverized coal, cyclone, stoker, fluidized bed, and handfed
units. In stoker-fired systems and most handfed units, the fuel is primarily burned on the bottom of the
furnace or on agrate. In afluidized bed combustor (FBC), the coal isintroduced to a bed of either
sorbent or inert material (usually sand) which isfluidized by an upward flow of air. In pulverized
coal-fired (PC-fired) boilers, the fuel is pulverized to the consistency of talcum powder (i.e., at least 70
percent of the particleswill pass through a 200-mesh sieve) and pneumatically injected through the
burners into the furnace. Combustion in PC-fired units takes place amost entirely while the coal is
suspended in the furnace volume. PC-fired boilers are classified as either dry bottom or wet bottom (also
referred to as slag tap furnaces), depending on whether the ash isremoved in a solid or molten state. In
dry bottom furnaces, coals with high fusion temperatures are burned, resulting in dry ash. 1n wet bottom
furnaces, coals with low fusion temperatures are used, resulting in molten ash or slag.

Depending upon the type and location of the burners and the direction of coal injection into the
furnace, PC-fired boilers can also be classified into two different firing types, including wall, and
tangential. Wall-fired boilers can be either single wall-fired, with burners on only one wall of the
furnace firing horizontally, or opposed wall-fired, with burners mounted on two opposing walls.
Tangential (or corner-fired) boilers have burners mounted in the corners of the furnace. The fuel and air
are injected tangent to an imaginary circle in the plane of the boilers. Cyclone furnaces are often
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categorized as PC-fired systems even though the coal is crushed to a maximum size of about 4-mesh.
The coal is fed tangentially, with primary air, into a horizonal cylindrical furnace. Smaller coal particles
are burned in suspension while larger particles adhere to the molten layer of slag on the combustion
chamber wall. Cyclone boilers are high-temperature, wet-bottom type systems.

Stoker-fired systems account for the vast majority of coal-fired watertube boilers for industrial,
commercial, and institutional applications. Most packaged stoker units designed for coal firing are small
and can be divided into three groups: underfeed stokers, overfeed stokers, and spreader stokers.
Underfeed stokers are generally either the horizontal-feed, side-ash-discharge type or the gravity-feed,
rear-ash-discharge type. An overfeed stoker uses a moving grate assembly in which coal is fed from a
hopper onto a continuous grate which conveys the fuel into the furnace. In a spreader stoker, mechanical
or pneumatic feeders distribute coal uniformly over the surface of a moving grate. The injection of the
fuel into the furnace and onto the grate combines suspension burning with a thin, fast-burning fuel bed.
The amount of fuel burned in suspension depends primarily on fuel size and composition, and air flow
velocity. Generally, fuels with finer size distributions, higher volatile matter contents, and lower
moisture contents result in a greater percentage of combustion and corresponding heat release rates in
suspension above the bed.

FBCs, while not constituting a significant percentage of the total boiler population, have
nonetheless gained popularity in the last decade, and today generate steam for industries, cogenerators,
independent power producers, and utilities. There are two major categories of FBC systems: (1)
atmospheric, operating at or near ambient pressures, and (2) pressurized, operating from 4 to 30
atmospheres (60 to 450 pounds per square inch gauge). At this time, atmospheric FBCs are more
advanced (or commercialized) than pressurized FBCs. The two principal types of atmospheric FBCs are
bubbling bed and circulating bed. The feature that varies most fundamentally between these two types is
the fluidization velocity. In the bubbling bed design, the fluidation velocity is relatively low in order to
minimize solids carryover or elutriation from the combustor. Circulating FBCs, however, employ high
fluidization velocities to promote the carryover or circulation of the solids. High-temperature cyclones
are used in circulating FBCs and in some bubbling FBCs to capture the solid fuel and bed material for
return to the primary combustion chamber. The circulating FBC maintains a continuous, high-volume
recycle rate which increases the residence time compared to the bubbling bed design. Because of this
feature, circulating FBCs often achieve higher combustion efficiencies and better sorbent utilization than
bubbling bed units.

Small, coal-fired boilers and furnaces are found in industrial, commercial, institutional, or
residential applications and are sometimes capable of being hand-fired. The most common types of
firetube boilers used with coal are the horizontal return tubular (HRT), Scotch, vertical, and the firebox.
Cast iron boilers are also sometimes available as coal-fired units in a handfed configuration. The HRT
boilers are generally fired with gas or oil instead of coal. The boiler and furnace are contained in the
same shell in a Scotch or shell boiler. Vertical firetube boilers are typically small singlepass units in
which the firetubes come straight up from the water-cooled combustion chamber located at the bottom of
the unit. A firebox boiler is constructed with an internal steel-encased, water-jacketed firebox. Firebox
firetube boilers are also referred to as locomotive, short firebox, and compact firebox boilers and employ
mechanical stokers or are hand-fired.
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1.1.3 Emissions®

Emissions from coal combustion depend on the rank and composition of the fuel, the type and
size of the boiler, firing conditions, load, type of control technologies, and the level of equipment
maintenance. The major pollutants of concern from bituminous and subbituminous coal combustion are
particulate matter (PM), sulfur oxides (SO,), and nitrogen oxides (NO,). Some unburned combustibles,
including carbon monoxide (CO) and numerous organic compounds, are generally emitted even under
proper boiler operating conditions.

1.1.3.1 Particulate Matter” -

PM composition and emission levels are a complex function of boiler firing configuration, boiler
operation, pollution control equipment, and coal properties. Uncontrolled PM emissions from coal-fired
boilers include the ash from combustion of the fuel as well as unburned carbon resulting from incomplete
combustion. In pulverized coal systems, combustion is almost complete; thus, the emitted PM is
primarily composed of inorganic ash residues.

Coal ash may either settle out in the boiler (bottom ash) or entrained in the flue gas (fly ash).
The distribution of ash between the bottom ash and fly ash fractions directly affects the PM emission rate
and depends on the boiler firing method and furnace type (wet or dry bottom). Boiler load also affects
the PM emissions as decreasing load tends to reduce PM emissions. However, the magnitude of the
reduction varies considerably depending on boiler type, fuel, and boiler operation.

Soot blowing is also a source of intermittent PM emissions in coal-fired boilers. Steam soot and
air soot blowing is periodically used to dislodge ash from heat transfer surfaces in the furnace,
convective section, economizer, and air preheater.

Particulate emissions may be categorized as either filterable or condensable. Filterable emissions
are generally considered to be the particles that are trapped by the glass fiber filter in the front half of a
Reference Method 5 or Method 17 sampling train. Vapors and particles less than 0.3 microns pass
through the filter. Condensable particulate matter is material that is emitted in the vapor state which later
condenses to form homogeneous and/or heterogeneous aerosol particles. The condensable particulate
emitted from boilers fueled on coal or oil is primarily inorganic in nature.

1.1.3.2 Sulfur Oxides* -

Gaseous SO, from coal combustion are primarily sulfur dioxide (SO,), with a much lower
quantity of sulfur trioxide (SO;) and gaseous sulfates. These compounds form as the organic and pyritic
sulfur in the coal are oxidized during the combustion process. On average, about 95 percent of the sulfur
present in bituminous coal will be emitted as gaseous SO,, whereas somewhat less will be emitted when
subbituminous coal is fired. The more alkaline nature of the ash in some subbituminous coals causes
some of the sulfur to react in the furnace to form various sulfate salts that are retained in the boiler or in
the flyash.

1.1.3.3 Nitrogen Oxides>® -

NO, emissions from coal combustion are primarily nitric oxide (NO), with only a few volume
percent as nitrogen dioxide (NO,). Nitrous oxide (N,O) is also emitted at a few parts per million. NO,
formation results from thermal fixation of atmospheric nitrogen in the combustion flame and from
oxidation of nitrogen bound in the coal. Experimental measurements of thermal NO, formation have
shown that the NO, concentration is exponentially dependent on temperature and is proportional to
nitrogen concentration in the flame, the square root of oxygen concentration in the flame, and the gas
residence time.” Cyclone boilers typically have high conversion of nitrogen to NO, Typically, only 20 to
60 percent of the fuel nitrogen is converted to NO,. Bituminous and subbituminous coals usually
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contain from 0.5 to 2 weight percent nitrogen, mainly present in aromatic ring structures. Fuel nitrogen
can account for up to 80 percent of total NO, from coal combustion.

1.1.3.4 Carbon Monoxide -

The rate of CO emissions from combustion sources depends on the fuel oxidation efficiency of
the source. By controlling the combustion process carefully, CO emissions can be minimized. Thus, if a
unit is operated improperly or is not well-maintained, the resulting concentrations of CO (as well as
organic compounds) may increase by several orders of magnitude. Smaller boilers, heaters, and furnaces
typically emit more CO and organics than larger combustors. This is because smaller units usually have
less high-temperature residence time and, therefore, less time to achieve complete combustion than larger
combustors. Combustion modification techniques and equipment used to reduce NO, can increase CO
emissions if the modification techniques are improperly implemented or if the equipment is improperly
designed.

1.1.3.5 Organic Compounds -

As with CO emissions, the rate at which organic compounds are emitted depends on the
combustion efficiency of the boiler. Therefore, combustion modifications that change combustion
residence time, temperature, or turbulence may increase or decrease concentrations of organic
compounds in the flue gas.

Organic emissions include volatile, semivolatile, and condensable organic compounds either
present in the coal or formed as a product of incomplete combustion (PIC). Organic emissions are
primarily characterized by the criteria pollutant class of unburned vapor-phase hydrocarbons. These
emissions include alkanes, alkenes, aldehydes, alcohols, and substituted benzenes (e.g., benzene, toluene,
xylene, and ethyl benzene). 8°

Emissions of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans
(PCDD/PCDF) also result from the combustion of coal. Of primary interest environmentally are
tetrachloro- through octachloro- dioxins and furans. Dioxin and furan emissions are influenced by the
extent of destruction of organics during combustion and through reactions in the air pollution control
equipment. The formation of PCDD/PCDF in air pollution control equipment is primarily dependent on
flue gas temperature, with maximum potential for formation occurring at flue gas temperatures of 450
degrees to 650 degrees Fahrenheit.

The remaining organic emissions are composed largely of compounds emitted from combustion
sources in a condensed phase. These compounds can almost exclusively be classed into a group known
as polycyclic organic matter (POM), and a subset of compounds called polynuclear aromatic
hydrocarbons (PNA or PAH). Polycyclic organic matter is more prevalent in the emissions from coal
combustion because of the more complex structure of coal.

1.1.3.6 Trace Metals-

Trace metals are also emitted during coal combustion. The quantity of any given metal emitted,
in general, depends on:

- the physical and chemical properties of the metal itself;

- the concentration of the metal in the coal;

- the combustion conditions; and
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- the type of particulate control device used, and its collection efficiency as a function of
particle size.

Some trace metals become concentrated in certain particle streams from a combustor (e.g.,
bottom ash, collector ash, and flue gas particulate) while others do not.?® Various classification schemes
have been developed to describe this partitioning behavior.'*? These classification schemes generally
distinguish between:

- Class 1: Elements that are approximately equally concentrated in the fly ash and bottom
ash, or show little or no small particle enrichment. Examples include manganese,
beryllium, cobalt, and chromium.

- Class 2: Elements that are enriched in fly ash relative to bottom ash, or show increasing
enrichment with decreasing particle size. Examples include arsenic, cadmium, lead, and
antimony.

- Class 3: Elements which are emitted in the gas phase (primarily mercury and, in some
cases, selenium).

Control of Class 1 metals is directly related to control of total particulate matter emissions, while control
of Class 2 metals depends on collection of fine particulate. Because of variability in particulate control
device efficiencies, emission rates of these metals can vary substantially. Because of the volatility of
Class 3 metals, particulate controls have only a limited impact on emissions of these metals.

1.1.3.7 Acid Gases-

In addition to SO, and NO, emissions, combustion of coal also results in emissions of chlorine
and fluorine, primarily in the form of hydrogen chloride (HCI) and hydrogen fluoride (HF). Lesser
amounts of chlorine gas and fluorine gas are also emitted. A portion of the chlorine and fluorine in the
fuel may be absorbed onto fly ash or bottom ash. Both HCI and HF are water soluble and are readily
controlled by acid gas scrubbing systems.

1.1.3.8 Fugitive Emissions -

Fugitive emissions are defined as pollutants which escape from an industrial process due to
leakage, materials handling, inadequate operational control, transfer, or storage. The fly ash handling
operations in most modern utility and industrial combustion sources consist of pneumatic systems or
enclosed and hooded systems which are vented through small fabric filters or other dust control devices.
The fugitive PM emissions from these systems are therefore minimal. Fugitive particulate emissions can
sometimes occur during fly ash transfer operations from silos to trucks or rail cars.

1.1.3.9 Greenhouse Gases'**® -

Carbon dioxide (CO,), methane (CH,), and nitrous oxide (N,O) emissions are all produced
during coal combustion. Nearly all of the fuel carbon (99 percent) in coal is converted to CO, during the
combustion process. This conversion is relatively independent of firing configuration. Although the
formation of CO acts to reduce CO, emissions, the amount of CO produced is insignificant compared to
the amount of CO, produced. The majority of the fuel carbon not converted to CO, is entrained in
bottom ash. CO, emissions for coal vary with carbon content, and carbon content varies between the
classes of bituminous and subbituminous coals. Further, carbon content also varies within each class of
coal based on the geographical location of the mine.

Formation of N,O during the combustion process is governed by a complex series of reactions
and its formation is dependent upon many factors. Formation of N,O is minimized when combustion
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temperatures are kept high (above 1575°F) and excess air is kept to a minimum (less than 1 percent).
N,O emissions for coal combustion are not significant except for fluidized bed combustion (FBC), where
the emissions are typically two orders of magnitude higher than all other types of coal firing due to areas
of low temperature combustion in the fuel bed.

Methane emissions vary with the type of coal being fired and firing configuration, but are
highest during periods of incomplete combustion, such as the start-up or shut-down cycle for coal-fired
boilers. Typically, conditions that favor formation of N,O also favor emissions of CH,.

1.1.4 Controls*

Control techniques for criteria pollutants from coal combustion may be classified into three
broad categories: fuel treatment/substitution, combustion modification, and postcombustion control.
Emissions of noncriteria pollutants such as particulate phase metals have been controlled through the use
of post combustion controls designed for criteria pollutants. Fuel treatment primarily reduces SO, and
includes coal cleaning using physical, chemical, or biological processes; fuel substitution involves
burning a cleaner fuel. Combustion modification includes any physical or operational change in the
furnace or boiler and is applied primarily for NO, control purposes, although for small units, some
reduction in PM emissions may be available through improved combustion practice. Postcombustion
control employs a device after the combustion of the fuel and is applied to control emissions of PM, SO,
, and NO, for coal combustion.

1.1.4.1 Particulate Matter Control* -

The principal control techniques for PM are combustion modifications (applicable to small
stoker-fired boilers) and postcombustion methods (applicable to most boiler types and sizes).
Uncontrolled PM emissions from small stoker-fired and hand-feed combustion sources can be minimized
by employing good combustion practices such as operating within the recommended load ranges,
controlling the rate of load changes, and ensuring steady, uniform fuel feed. Proper design and operation
of the combustion air delivery systems can also minimize PM emissions. The postcombustion control of
PM emissions from coal-fired combustion sources can be accomplished by using one or more or the
following particulate control devices:

. Electrostatic precipitator (ESP),

. Fabric filter (or baghouse),

. Wet scrubber,

. Cyclone or multiclone collector, or
. Side stream separator.

Electrostatic precipitation technology is applicable to a variety of coal combustion sources.
Because of their modular design, ESPs can be applied to a wide range of system sizes and should have no
adverse effect on combustion system performance. The operating parameters that influence ESP
performance include fly ash mass loading, particle size distribution, fly ash electrical resistivity, and
precipitator voltage and current. Other factors that determine ESP collection efficiency are collection
plate area, gas flow velocity, and cleaning cycle. Data for ESPs applied to coal-fired sources show
fractional collection efficiencies greater than 99 percent for fine (less than 0.1 micrometer) and coarse
particles (greater than 10 micrometers). These data show a reduction in collection efficiency for particle
diameters between 0.1 and 10 micrometers.

Fabric filtration has been widely applied to coal combustion sources since the early 1970s and
consists of a number of filtering elements (bags) along with a bag cleaning system contained in a main
shell structure incorporating dust hoppers. The particulate removal efficiency of fabric filters is

1.1-6 EMISSION FACTORS 9/98
AMEREN UE EXHIBIT 1043, Page 6



dependent on a variety of particle and operational characteristics. Particle characteristics that affect the
collection efficiency include particle size distribution, particle cohesion characteristics, and particle
electrical resistivity. Operational parameters that affect fabric filter collection efficiency include
air-to-cloth ratio, operating pressure loss, cleaning sequence, interval between cleanings, cleaning
method, and cleaning intensity. In addition, the particle collection efficiency and size distribution can be
affected by certain fabric properties (e. g., structure of fabric, fiber composition, and bag properties).
Collection efficiencies of fabric filters can be as high as 99.9 percent.

Wet scrubbers, including venturi and flooded disc scrubbers, tray or tower units, turbulent
contact absorbers, or high-pressure spray impingement scrubbers are applicable for PM as well as SO,
control on coal-fired combustion sources. Scrubber collection efficiency depends on particle size
distribution, gas side pressure drop through the scrubber, and water (or scrubbing liquor) pressure, and
can range between 95 and 99 percent for a 2-micron particle.

Cyclone separators can be installed singly, in series, or grouped as in a multicyclone or
multiclone collector. These devices are referred to as mechanical collectors and are often used as a
precollector upstream of an ESP, fabric filter, or wet scrubber so that these devices can be specified for
lower particle loadings to reduce capital and/or operating costs. The collection efficiency of a
mechanical collector depends strongly on the effective aerodynamic particle diameter. Although these
devices will reduce PM emissions from coal combustion, they are relatively ineffective for collection of
particles less than 10 micron (PM-10). The typical overall collection efficiency for mechanical collectors
ranges from 90 to 95 percent.

The side-stream separator combines a multicyclone and a small pulse-jet baghouse to more
efficiently collect small-diameter particles that are difficult to capture by a mechanical collector alone.
Most applications to date for side-stream separators have been on small stoker boilers.

Atmospheric fluidized bed combustion (AFBC) boilers may tax conventional particulate control
systems. The particulate mass concentration exiting AFBC boilers is typically 2 to 4 times higher than
pulverized coal boilers. AFBC particles are also, on average, smaller in size, and irregularly shaped with
higher surface area and porosity relative to pulverized coal ashes. The effect is a higher pressure drop.
The AFBC ash is more difficult to collect in ESPs than pulverized coal ash because AFBC ash has a
higher electrical resistivity and the use of multiclones for recycling, inherent with the AFBC process,
tends to reduce exit gas stream particulate size.

1.1.4.2 Sulfur Oxides Control* -

Several techniques are used to reduce SO, emissions from coal combustion. Table 1.1-1 presents
the techniques most frequently used. One way is to switch to lower sulfur coals, since SO, emissions are
proportional to the sulfur content of the coal. This alternative may not be possible where lower sulfur
coal is not readily available or where a different grade of coal cannot be satisfactorily fired. In some
cases, various coal cleaning processes may be employed to reduce the fuel sulfur content. Physical coal
cleaning removes mineral sulfur such as pyrite but is not effective in removing organic sulfur. Chemical
cleaning and solvent refining processes are being developed to remove organic sulfur.

Post combustion flue gas desulfurization (FGD) techniques can remove SO, formed during
combustion by using an alkaline reagent to absorb SO, in the flue gas. Flue gases can be treated using
wet, dry, or semi-dry desulfurization processes of either the throwaway type (in which all waste streams
are discarded) or the recovery/regenerable type (in which the SO, absorbent is regenerated and reused).
To date, wet systems are the most commonly applied. Wet systems generally use alkali slurries as the
SO, absorbent medium and can be designed to remove greater than 90 percent of the incoming SO.,.
Lime/limestone scrubbers, sodium scrubbers, and dual alkali scrubbers are among the commercially
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proven wet FGD systems. The effectiveness of these devices depends not only on control device design
but also on operating variables. Particulate reduction of more than 99 percent is possible with wet
scrubbers, but fly ash is often collected by upstream ESPs or baghouses, to avoid erosion of the
desulfurization equipment and possible interference with FGD process reactions.*® Also, the volume of
scrubber sludge is reduced with separate fly ash removal, and contamination of the reagents and
by-products is prevented.

The lime and limestone wet scrubbing process uses a slurry of calcium oxide or limestone to
absorb SO, in a wet scrubber. Control efficiencies in excess of 91 percent for lime and 94 percent for
limestone over extended periods are possible. Sodium scrubbing processes generally employ a wet
scrubbing solution of sodium hydroxide or sodium carbonate to absorb SO, from the flue gas. Sodium
scrubbers are generally limited to smaller sources because of high reagent costs and can have SO,
removal efficiencies of up to 96.2 percent. The double or dual alkali system uses a clear sodium alkali
solution for SO, removal followed by a regeneration step using lime or limestone to recover the sodium
alkali and produce a calcium sulfite and sulfate sludge. SO, removal efficiencies of 90 to 96 percent are
possible.

1.1.4.3 Nitrogen Oxide Controls* -

Several techniques are used to reduce NO, emissions from coal combustion. These techniques
are summarized in Table 1.1-2. The primary techniques can be classified into one of two fundamentally
different methods—combustion controls and postcombustion controls. Combustion controls reduce NO,
by suppressing NO, formation during the combustion process, while postcombustion controls reduce NO,
emission after their formation. Combustion controls are the most widely used method of controlling NO,
formation in all types of boilers and include low excess air (LEA), burners out of service (BOOS), biased
burner firing, overfire air (OFA), low NO, burners (LNBs), and reburn. Postcombustion control methods
are selective noncatalytic reduction (SNCR) and selective catalytic reduction (SCR). Combustion and
postcombustion controls can be used separately or combined to achieve greater NO, reduction from
fluidized bed combustors in boilers.

Operating at LEA involves reducing the amount of combustion air to the lowest possible level
while maintaining efficient and environmentally compliant boiler operation. NO, formation is inhibited
because less oxygen is available in the combustion zone. BOOS involves withholding fuel flow to all or
part of the top row of burners so that only air is allowed to pass through. This method simulates air
staging, or OFA conditions, and limits NO, formation by lowering the oxygen level in the burner area.
Biased burner firing involves more fuel-rich firing in the lower rows of burners than in the upper row of
burners. This method provides a form of air staging and limits NO, formation by limiting the amount of
oxygen in the firing zone. These methods may change the normal operation of the boiler and the
effectiveness is boiler-specific. Implementation of these techniques may also reduce operational
flexibility; however, they may reduce NO, by 10 to 20 percent from uncontrolled levels.

OFA is a technique in which a percentage of the total combustion air is diverted from the burners
and injected through ports above the top burner level. OFA limits NO, by
(1) suppressing thermal NO, by partially delaying and extending the combustion process resulting in less
intense combustion and cooler flame temperatures and (2) suppressing fuel NO, formation by reducing
the concentration of air in the combustion zone where volatile fuel nitrogen is evolved. OFA can be
applied for various boiler types including tangential and wall-fired, turbo, and stoker boilers and can
reduce NO, by 20 to 30 percent from uncontrolled levels.

LNBs limit NO, formation by controlling the stoichiometric and temperature profiles of the
combustion process in each burner zone. The unigue design of features of an LNB may create (1) a
reduced oxygen level in the combustion zone to limit fuel NO, formation, (2) a reduced flame
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temperature that limits thermal NO, formation, and/or (3) a reduced residence time at peak temperature
which also limits thermal NO, formation.

LNBs are applicable to tangential and wall-fired boilers of various sizes but are not applicable to
other boiler types such as cyclone furnaces or stokers. They have been used as a retrofit NO, control for
existing boilers and can achieve approximately 35 to 55 percent reduction from uncontrolled levels.
They are also used in new boilers to meet New Source Performance Standards (NSPS) limits. LNBs can
be combined with OFA to achieve even greater NO, reduction (40 to 60 percent reduction from
uncontrolled levels).

Reburn is a combustion hardware modification in which the NO, produced in the main
combustion zone is reduced in a second combustion zone downstream. This technique involves
withholding up to 40 percent (at full load) of the heat input to the main combustion zone and introducing
that heat input above the top row of burners to create a reburn zone. Reburn fuel (natural gas, oil, or
pulverized coal) is injected with either air or flue gas to create a fuel-rich zone that reduces the NO,
created in the main combustion zone to nitrogen and water vapor. The fuel-rich combustion gases from
the reburn zone are completely combusted by injecting overfire air above the reburn zone. Reburn may
be applicable to many boiler types firing coal as the primary fuel, including tangential, wall-fired, and
cyclone boilers. However, the application and effectiveness are site-specific because each boiler is
originally designed to achieve specific steam conditions and capacity which may be altered due to reburn.
Commercial experience is limited; however, this limited experience does indicate NO, reduction of 50 to
60 percent from uncontrolled levels may be achieved.

SNCR is a postcombustion technique that involves injecting ammonia (NH;) or urea into specific
temperature zones in the upper furnace or convective pass. The ammonia or urea reacts with NO, in the
flue gas to produce nitrogen and water. The effectiveness of SNCR depends on the temperature where
reagents are injected; mixing of the reagent in the flue gas; residence time of the reagent within the
required temperature window; ratio of reagent to NO,; and the sulfur content of the fuel that may create
sulfur compounds that deposit in downstream equipment. There is not as much commercial experience
to base effectiveness on a wide range of boiler types; however, in limited applications, NO, reductions of
25 to 40 percent have been achieved.

SCR is another postcombustion technique that involves injecting NH; into the flue gas in the
presence of a catalyst to reduce NO, to nitrogen and then water. The SCR reactor can be located at
various positions in the process including before an air heater and particulate control device, or
downstream of the air heater, particulate control device, and flue gas desulfurization systems. The
performance of SCR is influenced by flue gas temperature, fuel sulfur content, ammonia-to-NO, ratio,
inlet NO, concentration, space velocity, and catalyst condition. Although there is currently very limited
application of SCR in the U.S. on coal-fired boilers, NO, reductions of 75 to 86 percent have been
realized on a few pilot systems.

1.1.5 Emission Factors

Emission factors for SO,, NO,, and CO are presented in Table 1.1-3. Tables in this section
present emission factors on both a weight basis (Ib/ton) and an energy basis (Ib/Btu). To convert from
Ib/ton to Ib/MMBtu, divide by a heating value of 26.0 MMBtu/ton. Because of the inherently low NOy
emission characteristics of FBCs and the potential for in-bed SO, capture by calcium-based sorbents,
uncontrolled emission factors for this source category were not developed in the same sense as with other
source categories. For NO, emissions, the data collected from test reports were considered to be baseline
(uncontrolled) if no additional add-on NO, control system (such as ammonia injection) was operated.
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For SO, emissions, a correlation was developed from reported data on FBCs to relate SO, emissions to
the coal sulfur content and the calcium-to-sulfur ratio in the bed.

Filterable particulate matter and particulate matter less than, or equal to, 10 micrometers in
diameter (PM-10) emission factors are presented in Table 1.1-4. Condensable particulate matter
emission factors are presented in Table 1.1.5. Cumulative particle size distributions and particulate size-
specific emission factors are given in Tables 1.1-6, 1.1-7, 1.1-8, 1.1-9, 1.1-10, and 1.1-11. Particulate
size-specific emission factors are also presented graphically in Figures 1.1-1, 1.1-2, 1.1-3, 1.1-4, 1.1-5,
and 1.1-6.

Controlled emission factors for PCDD/PCDF and PAHSs are provided in Tables 1.1-12 and
1.1-13, respectively. Controlled emission factors for other organic compounds are presented in Table
1.1-14. Emission factors for hydrogen chloride and hydrogen fluoride are presented in Table 1.1-15.

Table 1.1-16 presents emission factor equations for nine trace metals from controlled and
uncontrolled boilers. Table 1.1-17 presents uncontrolled emission factors for seven of the same metals,
along with mercury, POM and formaldehyde. Table 1.1-18 presents controlled emission factors for 13
trace metals and includes the metals found in Tables 1.1-16 and 1.1-17. The emission factor equations in
Table 1.1-16 are based on statistical correlations among measured trace element concentrations in coal,
measured fractions of ash in coal, and measured particulate matter emission factors. Because these are
the major parameters affecting trace metals emissions from coal combustion, it is recommended that the
emission factor equations be used when the inputs to the equations are available. If the inputs to the
emission factor equations are not available for a pollutant, then the emission factors provided in Table
1.1-17 and 1.1-18 for the pollutant should be used.

Greenhouse gas emission factors, including CH,, non-methane organic compounds (NMOC), and
N,O are provided in Table 1.1-19. In addition, Table 1.1-20 provides emission factors for CO.,.

1.1.6 Updates Since the Fifth Edition

The Fifth Edition was released in January 1995. Revisions to this section since that date are
summarized below. For further detail, consult the memoranda describing each supplement or the
background report for this section. These and other documents can be found on the EFIG home page
(http://www.epa.gov/oar/oaqps/efig/).
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Supplement A, February 1996

. SCC’s were corrected from 1-01-002-17, 1-02-002-17, and 1-03-002-17, to 1-01-002-18,
1-02-002-18, and 1-03-002-18 in the tables with SO,, NO,, CO, and PM/PM10 emission
factors.

. For SO, factors, clarifications were added to the table footnotes to clarify that “S” is a
weight percent and not a fraction. Similar clarification was added to the footnote for the
CO, factor.

. For fluidized bed combustors (bubbling bed and circulating bed), the PM10 factors were
replaced with footnote "m." The revised footnote "m" directs the user to the emission
factor for spreader stoker with multiple cyclones and no flyash reinjection.

. In the table with filterable PM factors, the misspelling of "filterable™ was corrected.

. In the cumulative particle size distribution table, text was added to the table footnotes to
clarify that “A” is a weight percent and not a fraction.

. In the cumulative particle size distribution for spreader stokers, all of the factors were
corrected.
. The N,O emission factor for bubbling bed was changed from 5.9 Ib/ton to 5.5 Ib/ton.

Supplement B, October 1996

. Text was added concerning coal rank/classification, firing practices, emissions, and
controls.
. The table for NO, control technologies was revised to include controls for all types of

coal-fired boilers.

. SO,, NO,, and CO emission factors were added for cell burners.
. The PM table was revised to recommend using spreader stoker PM factors for FBC units.
. Tables were added for new emission factors for polychlorinated toxics, polynuclear

aromatics, organic toxics, acid gas toxics, trace metal toxics, and controlled toxics.

. N,O emission factors were added.

Default CO, emission factors were added.
Supplement E, September 1998

. The term “Filterable” was added to the PM-10 column heading of Table 1.1-4.
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. Reference to condensable particulate matter was deleted from footnote b of

Table 1.1-4.
. Emission factors for condensable particulate matter were added (Table 1.1-5).
. Table 1.1-7 was revised to correct a typographical errors in the ESP column.
. The zeros in Table 1.1-8 appeared to be in error. Engineering judgement was used to

determine a conservative estimate.

. NO, emission factors were updated based on data from the Acid Rain program.
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Table 1.1-1. POSTCOMBUSTION SO, CONTROLS FOR COAL COMBUSTION SOURCES

Typical Control
Control Technology Process Efficiencies Remarks

Wet scrubber Lime/limestone 80 - 95+% Applicable to high sulfur
fuels, wet sludge product

Sodium carbonate 80 - 98% 5-430 million Btu/hr
typical application range,
high reagent costs

Magnesium oxide/ 80 - 95+% Can be regenerated
hydroxide
Dual alkali 90 - 96% Uses lime to regenerate
sodium-based scrubbing
liquor
Spray drying Calcium hydroxide 70 - 90% Applicable to low and
slurry, vaporizes in medium sulfur fuels,
spray vessel produces dry product
Furnace injection Dry calcium 25 - 50% Commercialized in Europe,
carbonate/hydrate several U. S. demonstration
injection in upper projects are completed

furnace cavity

Several research and

Duct injection Dry sorbent injection 25 - 50+% development, and
into duct, sometimes demonstration projects
combined with water underway, not yet
spray commercially available in

the United States.
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Table 1.1-7. CUMULATIVE PARTICLE SIZE DISTRIBUTION AND

SIZE-SPECIFIC EMISSION FACTORS FOR WET BOTTOM BOILERS BURNING PULVERIZED

BITUMINOUS COAL?

EMISSION FACTOR RATING: E

Cumulative Emission Factor®
Cumulative Mass % < Stated Size (Ib/ton)
Controlled Controlled*
Particle Size® Multiple Multiple
(xm) Uncontrolled | Cyclones ESP Uncontrolled | Cyclones ESP
15 40 99 83 2.8A 1.38A 0.046A
10 37 93 75 2.6A 1.3A 0.042A
6 33 84 63 2.32A 1.18A 0.036A
2.5 21 61 40 1.48A 0.86A 0.022A
1.25 6 31 17 0.42A 0.44A 0.01A
1.00 4 19 8 0.28A 0.26A 0.004A
0.625 2 —° —° 0.14A —° —°
TOTAL 100 100 100 7.0A 1.4A 0.056A

® o o o

Reference 33. Applicable Source Classification Codes are 1-01-002-01, 1-02-002-01, and 1-03-002-05.
To convert from Ib/ton to kg/Mg, multiply by 0.5. Emission factors are Ib of pollutant per ton of coal
combusted as fired. ESP = Electrostatic precipitator.

Expressed as aerodynamic equivalent diameter.

A = coal ash weight %, as fired. For example, if coal ash weight is 2.4%, then A = 2.4.

Estimated control efficiency for multiple cyclones is 94%, and for ESPs, 99.2%.

Insufficient data.
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Table 1.1-8. CUMULATIVE SIZE DISTRIBUTION AND SIZE-SPECIFIC EMISSION FACTORS FOR
CYCLONE FURNACES BURNING BITUMINOUS COAL?

EMISSION FACTOR RATING: E

Cumulative Emission Factor®
Cumulative Mass % < Stated Size (Ib/ton)
. Controlled Controlled®
Particle
Size® Multiple Multiple
(um) Uncontrolled Cyclones ESP Uncontrolled Cyclones ESP
15 33 95 90 0.66A 0.114A 0.013A
10 13 94 68 0.26A 0.112A 0.011A
6 8 93 56 0.16A 0.112A 0.009A
25 55 92 36 0.11A¢ 0.11A 0.006A
1.25 5 85 22 0.10A¢ 0.10A 0.004A
1.00 5 82 17 0.10A¢ 0.10A 0.003A
0.625 0 —f —f 0 —f —f
TOTAL 100 100 100 2A 0.12A 0.016A

@ Reference 33. Applicable Source Classification Codes are 1-01-002-03, 1-02-002-03, and 1-03-002-03.
To convert from Ib/ton to kg/Mg, multiply by 0.5. Emissions are Ib of pollutant per ton of coal
combusted, as fired.

Expressed as aerodynamic equivalent diameter.

A = coal ash weight %, as fired. For example, if coal ash weight is 2.4%, then A = 2.4.

Estimated control efficiency for multiple cyclones is 94%, and for ESPs, 99.2%.

These values are estimates based on data from controlled source.

Insufficient data.

- ©o o o o
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Table 1.1-10.

CUMULATIVE PARTICLE SIZE DISTRIBUTION AND SIZE-SPECIFIC EMISSION
FACTORS FOR OVERFEED STOKERS BURNING

BITUMINOUS COAL?

Cumulative Mass % Cumulative Emission Factor
< Stated Size (Ib/ton)
Multiple Cyclones
Uncontrolled Controlled®
Particle Multiple EMISSION EMISSION
Size" Cyclones Emission FACTOR Emission FACTOR
(um) Uncontrolled | Controlled Factor RATING Factor RATING
15 49 60 7.8 C 5.4 E
10 37 55 6.0 C 5.0 E
6 24 49 3.8 C 4.4 E
2.5 14 43 2.2 C 3.8 E
1.25 13 39 2.0 C 3.6 E
1.00 12 39 2.0 C 3.6 E
0.625 —d 16 —d C 1.4 E
TOTAL 100 100 16.0 C 9.0 E

Reference 33. Applicable Source Classification Codes are 1-01-002-05, 1-02-002-05, and 1-03-002-07.
To convert from Ib/ton to kg/Mg, multiply by 0.5. Emissions are Ib of pollutant per ton of coal
combusted, as fired.
Expressed as aerodynamic equivalent diameter.

Estimated control efficiency for multiple cyclones is 80%.
Insufficient data.
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Table 1.1-11. CUMULATIVE PARTICLE SIZE DISTRIBUTION AND
SIZE-SPECIFIC EMISSION FACTORS FOR UNDERFEED STOKERS BURNING
BITUMINOUS COAL?

EMISSION FACTOR RATING: C

Cumulative Mass % Uncontrolled Cumulative Emission Factor®

Particle Size" (um) < Stated Size (Ib/ton)
15 50 7.6

10 41 6.2

6 32 4.8

2.5 25 3.8

1.25 22 3.4

1.00 21 3.2

0.625 18 2.7
TOTAL 100 15.0

Reference 33. Applicable Source Classification Codes are 1-02-002-06 and 1-03-002-08. To convert
from Ib/ton to kg/Mg, multiply by 0.5. Emission factors are Ib of pollutant per ton of coal combusted,

as fired.

Expressed as aerodynamic equivalent diameter.

May also be used for uncontrolled hand-fired units.
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Table 1.1-12 EMISSION FACTORS FOR POLYCHLORINATED
DIBENZO-P-DIOXINS AND POLYCHLORINATED DIBENZOFURANS FROM CONTROLLED
BITUMINOUS AND SUBBITUMINOUS COAL COMBUSTION

Controls FGD-SDA with FF? ESP or FF°
EMISSION EMISSION
Emission Factor® FACTOR Emission Factor® FACTOR

Congener (Ib/ton) RATING (Ib/ton) RATING
2,3,7,8-TCDD No data - 1.43E-11 E
Total TCDD 3.93E-10 E 9.28E-11
Total PeCDD 7.06E-10 E 4.47E-11 D
Total HXCDD 3.00E-09 E 2.87E-11 D
Total HpCDD 1.00E-08 E 8.34E-11 D
Total OCDD 2.87E-08 E 4.16E-10 D
Total PCDD* 4.28E-08 E 6.66E-10 D
2,3,7,8-TCDF No data 5.10E-11 D
Total TCDF 2.49E-09 E 4.04E-10 D
Total PeCDF 4.84E-09 E 3.53E-10 D
Total HXCDF 1.27E-08 E 1.92E-10 D
Total HpCDF 4.39E-08 E 7.68E-11 D
Total OCDF 1.37E-07 E 6.63E-11 D
Total PCDF° 2.01E-07 E 1.09E-09 D
TOTAL PCDD/PCDF 2.44E-07 E 1.76E-09

a

Reference 34. Factors apply to boilers equipped with both flue gas desulfurization spray dryer

absorber (FGD-SDA\) and a fabric filter (FF). SCCs = pulverized coal-fired, dry bottom boilers,

1-01-002-02/22, 1-02-002-02/22, and 1-03-002-06/22.
References 35-37. Factors apply to boilers equipped with an electrostatic precipitator (ESP) or a fabric
filter. SCCs = pulverized coal-fired, dry bottom boilers, 1-01-002-02/22, 1-02-002-02/22,

1-03-002-06/22; and, cyclone boilers, 1-01-002-03/23, 1-02-002-03/23, and 1-03-002-03/23.
Emission factor should be applied to coal feed, as fired. To convert from Ib/ton to kg/Mg, multiply by
0.5. Emissions are Ib of pollutant per ton of coal combusted.
Total PCDD is the sum of Total TCDD through Total OCDD. Total PCDF is the sum of Total TCDF
through Total OCDF.
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Table 1.1-13 EMISSION FACTORS FOR POLYNUCLEAR AROMATIC
HYDROCARBONS (PAH) FROM CONTROLLED COAL COMBUSTION?

Emission Factor” EMISSION FACTOR

Pollutant (Ib/ton) RATING
Biphenyl 1.7E-06 D
Acenaphthene 5.1E-07 B
Acenaphthylene 2.5E-07 B
Anthracene 2.1E-07 B
Benzo(a)anthracene 8.0E-08 B
Benzo(a)pyrene 3.8E-08 D
Benzo(b,j,k)fluoranthene 1.1E-07 B
Benzo(g,h,i)perylene 2.7E-08 D
Chrysene 1.0E-07 C
Fluoranthene 7.1E-07 B
Fluorene 9.1E-07 B
Indeno(1,2,3-cd)pyrene 6.1E-08 C
Naphthalene 1.3E-05 C
Phenanthrene 2.7E-06 B
Pyrene 3.3E-07 B
5-Methyl chrysene 2.2E-08

a

References 35-45. Factors were developed from emissions data from six sites firing bituminous coal,
four sites firing subbituminous coal, and from one site firing lignite. Factors apply to boilers utilizing
both wet limestone scrubbers or spray dryers with an electrostatic precipitator (ESP) or fabric filter
(FF). The factors also apply to boilers utilizing only an ESP or FF. Bituminous/subbituminous SCCs =
pulverized coal-fired dry bottom boilers, 1-01-002-02/22, 1-02-002-02/22, 1-03-002-06; pulverized
coal, dry bottom, tangentially-fired boilers, 1-01-002-12/26, 1-02-002-12/26, 1-03-002-16/26; and,

cyclone boilers, 1-01-002-03/23, 1-02-002-03/23, and 1-03-002-03/23.

Emission factor should be applied to coal feed, as fired. To convert from Ib/ton to kg/Mg, multiply by
0.5. Emissions are Ib of pollutant per ton of coal combusted.
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Table 1.1-14 EMISSION FACTORS FOR VARIOUS ORGANIC COMPOUNDS
FROM CONTROLLED COAL COMBUSTION?®

Pollutant Emission Factor® EMISSION FACTOR
(Ib/ton) RATING

Acetaldehyde 5.7E-04 C
Acetophenone 1.5E-05

Acrolein 2.9E-04 D
Benzene 1.3E-03 A
Benzyl chloride 7.0E-04 D
Bis(2-ethylhexyl)phthalate (DEHP) 7.3E-05 D
Bromoform 3.9E-05 E
Carbon disulfide 1.3E-04 D
2-Chloroacetophenone 7.0E-06 E
Chlorobenzene 2.2E-05 D
Chloroform 5.9E-05 D
Cumene 5.3E-06 E
Cyanide 2.5E-03 D
2,4-Dinitrotoluene 2.8E-07 D
Dimethyl sulfate 4.8E-05 E
Ethyl benzene 9.4E-05 D
Ethyl chloride 4.2E-05 D
Ethylene dichloride 4.0E-05 E
Ethylene dibromide 1.2E-06 E
Formaldehyde 2.4E-04 A
Hexane 6.7E-05 D
Isophorone 5.8E-04 D
Methyl bromide 1.6E-04 D
Methyl chloride 5.3E-04 D
Methyl ethyl ketone 3.9E-04 D
Methyl hydrazine 1.7E-04 E
Methyl methacrylate 2.0E-05 E
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Table 1.1-14 (cont.).

Pollutant Emission Factor® EMISSION FACTOR
(Ib/ton) RATING

Methyl tert butyl ether 3.5E-05 E
Methylene chloride 2.9E-04

Phenol 1.6E-05 D
Propionaldehyde 3.8E-04 D
Tetrachloroethylene 4.3E-05 D
Toluene 2.4E-04 A
1,1,1-Trichloroethane 2.0E-05 E
Styrene 2.5E-05 D
Xylenes 3.7E-05 C
Vinyl acetate 7.6E-06 E

@ References 35-53. Factors were developed from emissions data from ten sites firing bituminous coal,
eight sites firing subbituminous coal, and from one site firing lignite. The emission factors are
applicable to boilers using both wet limestone scrubbers or spray dryers and an electrostatic
precipitator (ESP) or fabric filter (FF). In addition, the factors apply to boilers utilizing only an ESP or
FF. SCCs = pulverized coal-fired, dry bottom boilers, 1-01-002-02/22, 1-02-002-02/22,
1-03-002-06/22; pulverized coal, dry bottom, tangentially-fired boilers, 1-01-002-12/26,
1-02-002-12/26, 1-03-002-16/26; cyclone boilers, 1-01-002-03/23, 1-02-002-03/23, 1-03-002-03/23;
and, atmospheric fluidized bed combustors, circulating bed, 1-01-002-18/38, 1-02-002-18, and
1-03-002-18.

b Pollutants sampled for but not detected in any sampling run include: Carbon tetrachloride- 2 sites;
1,3-Dichloropropylene- 2 sites; N-nitrosodimethylamine- 2 sites; Ethylidene dichloride- 2 sites;
Hexachlorobutadiene- 1 site; Hexachloroethane- 1 site; Propylene dichloride- 2 sites;
1,1,2,2-Tetrachloroethane- 2 sites; 1,1,2-Trichloroethane- 2 sites; Vinyl chloride- 2 sites; and,
Hexachlorobenzene- 2 sites.

¢ Emission factor should be applied to coal feed, as fired. To convert from Ib/ton to kg/Mg, multiply by
0.5.
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Table 1.1-16. EMISSION FACTOR EQUATIONS FOR TRACE ELEMENTS FROM COAL

COMBUSTION?

EMISSION FACTOR EQUATION RATING: A°

Emission Equation
Pollutant (Ib/10* Btu)®

Antimony 0.92 * (C/A * PM)%®3
Arsenic 3.1 * (C/IA* PM)*®
Beryllium 1.2 * (C/A * PM)*
Cadmium 3.3 * (C/A * PM)®S
Chromium 3.7 * (CIA * PM)"*8
Cobalt 1.7 * (CIA * PM)®%9
Lead 3.4* (CIA * PM)°®
Manganese 3.8 * (C/IA * PM)*®
Nickel 4.4* (CIA * PM)**

a

c

Reference 55. The equations were developed from emissions data from bituminous coal combustion,
subbituminous coal combustion, and from lignite combustion. The equations may be used to generate
factors for both controlled and uncontrolled boilers. The emission factor equations are applicable to all
typical firing configurations for electric generation (utility), industrial, and commercial/industrial
boilers firing bituminous coal, subbituminous coal, and lignite. Thus, all SCCs for these boilers are
assigned to the factors.
b AP-42 criteria for rating emission factors were used to rate the equations.

The factors produced by the equations should be applied to heat input. To convert from 1b/10% Btu to

kg/joules, multiply by 4.31 x 10,

C = concentration of metal in the coal, parts per million by weight (ppmwt).
A = weight fraction of ash in the coal. For example, 10% ash is 0.1 ash fraction.
PM = Site-specific emission factor for total particulate matter, lb/10° Btu.
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Table 1.1-18 EMISSION FACTORS FOR TRACE METALS FROM
CONTROLLED COAL COMBUSTION?

Pollutant Emission Factor (Ib/ton)® EMISSION FACTOR RATING
Antimony 1.8E-05 A
Arsenic 4.1E-04 A
Beryllium 2.1E-05 A
Cadmium 5.1E-05 A
Chromium 2.6E-04 A
Chromium (V1) 7.9E-05 D
Cobalt 1.0E-04 A
Lead 4.2E-04 A
Magnesium 1.1E-02 A
Manganese 4.9E-04 A
Mercury 8.3E-05 A
Nickel 2.8E-04 A
Selenium 1.3E-03 A

a

References 35-53, 62-70. The emission factors were developed from emissions data at eleven facilities
firing bituminous coal, fifteen facilities firing subbituminous coal, and from two facilities firing lignite.
The factors apply to boilers utilizing either venturi scrubbers, spray dryer absorbers, or wet limestone
scrubbers with an electrostatic precipitator (ESP) or Fabric Filter (FF). In addition, the factors apply
to boilers using only an ESP, FF, or venturi scrubber. SCCs = pulverized coal-fired, dry bottom
boilers, 1-01-002-02/22, 1-02-002-02/22, 1-03-002-06/22; pulverized coal, dry bottom,
tangentially-fired boilers, 1-01-002-12/26, 1-02-002-12/26, 1-03-002-16/26; cyclone boilers,
1-01-002-03/23, 1-02-002-03/23, 1-03-002-03/23; and, atmospheric fluidized bed combustors,
circulating bed, 1-01-002-18/38, 1-02-002-18, and 1-03-002-18.

Emission factor should be applied to coal feed, as fired. To convert from Ib/ton to kg/Mg, multiply by
0.5.
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Table 1.1-20. DEFAULT CO, EMISSION FACTORS FOR U. S. COALS?

EMISSION FACTOR RATING: C

Emission Factor®
Coal Type Average %C° Conversion Factor® (Ib/ton coal)
Subbituminous 66.3 72.6 4810
High-volatile bituminous 75.9 72.6 5510
Medium-volatile bituminous 83.2 72.6 6040
Low-volatile bituminous 86.1 72.6 6250

8

This table should be used only when an ultimate analysis is not available. If the ultimate analysis is
available, CO, emissions should be calculated by multiplying the %carbon (%C) by 72.6 This resultant
factor would receive a quality rating of “B”.

An average of the values given in References 2,76-77. Each of these references listed average carbon
contents for each coal type (dry basis) based on extensive sampling of U.S. coals.

Based on the following equation:

44 ton CO, Ib CO, 1 Ib CO,
——= x 0.99 x 2000 X =726
12 ton C ton CO, 100% ton %C
Where:
44 = molecular weight of CO,,
12 = molecular weight of carbon, and
0.99 = fraction of fuel oxidized during combustion (Reference 16).

¢ To convert from Ib/ton to kg/Mg, multiply by 0.5.
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Figure 1.1-2. Cumulative size-specific emission factors for an example wet bottom boiler burning
pulverized bituminous coal.
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December 23, 1971.
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Field Tests Of Industrial Stoker Coal Fired Boilers For Emission Control And
Efficiency Improvement - Sites L1 17, EPA-600/7-81-020a, U. S. Environmental
Protection Agency, Washington, DC, February 1981.

Application Of Combustion Modifications To Control Pollutant Emissions From
Industrial Boilers  Phase I, EPA-650/2-74-078a, U. S. Environmental Protection
Agency, Washington, DC, October 1974.

Source Sampling Residential Fireplaces For Emission Factor Development,
EPA-50/3-6-010, U. S. Environmental Protection Agency, Research Triangle Park, NC,
November 1875.

Atmospheric Emissions From Coal Combustion: An Inventory Guide, 999-AP-24, U. S.
Environmental Protection Agency, Washington, DC, April 1966.

Inhalable Particulate Source Category Report For External Combustion Sources,
EPA Contract No. 68-02-3156, Acurex Corporation, Mountain View, CA, January
1985.

Results of the March 28, 1990 Dioxin Emission Performance Test on Unit 3 at the NSP Sherco
Plant in Becker, Minnesota. Interpoll Laboratories, Inc., Circle Pines, Minnesota. July 11, 1990.

Field Chemical Emissions Monitoring Project: Site 22 Emissions Report. Radian Corporation,
Austin, Texas. February, 1994.

Toxics Assessment Report. Illinois Power Company. Baldwin Power Station- Unit 2. Baldwin,
Illinois. Volumes I- Main Report. Roy F. Weston, Inc. West Chester, Pennsylvania. December,
1993.

Toxics Assessment Report. Minnesota Power Company Boswell Energy Center- Unit 2.
Cohasset, Minnesota. Volume 1-Main Report. Roy F. Weston, Inc. West Chester,
Pennsylvania. December, 1993. (EPRI Report)

Field Chemical Emissions Monitoring Project: Site 11 Emissions Monitoring. Radian
Corporation, Austin, Texas. October, 1992. (EPRI Report)

Field Chemical Emissions Monitoring Project: Site 21 Emissions Monitoring. Radian
Corporation, Austin, Texas. August, 1993. (EPRI Report)

Field Chemical Emissions Monitoring Project: Site 111 Emissions Report. Radian Corporation,
Austin, Texas. May, 1993. (EPRI Report)

Field Chemical Emissions Monitoring Project: Site 115 Emissions Report. Radian Corporation,
Austin, Texas. November, 1994. (EPRI Report)

Draft Final Report. A Study of Toxic Emissions from a Coal-Fired Power Plant-Niles Station
No. 2. Volumes One, Two, and Three. Battelle, Columbus, Ohio. December 29, 1993.

Draft Final Report. A Study of Toxic Emissions from a Coal-Fired Power Plant Utilizing an

ESP/Wet FGD System. Volumes One, Two, and Three. Battelle, Columbus, Ohio. December
1993.
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Assessment of Toxic Emissions From a Coal Fired Power Plant Utilizing an ESP. Final Report-
Revision 1. Energy and Environmental Research Corporation, Irvine, California. December 23,
1993.

500-MW Demonstration of Advanced Wall-Fired Combustion Techniques for the Reduction of
Nitrogen Oxide (NOx) Emissions from Coal-Fired Boilers. Radian Corporation, Austin, Texas.

Results of the November 7, 1991 Air Toxic Emission Study on the Nos. 3, 4, 5 & 6 Boilers at the
NSP High Bridge Plant. Interpoll Laboratories, Inc., Circle Pines, Minnesota. January 3, 1992.

Results of the December 1991 Air Toxic Emission Study on Units 6 & 7 at the NSP Riverside
Plant. Interpoll Laboratories, Inc., Circle Pines, Minnesota. February 28, 1992.

Field Chemical Emissions Monitoring Project: Site 10 Emissions Monitoring. Radian
Corporation, Austin, Texas. October, 1992. (EPRI Report)

Field Chemical Emissions Monitoring Project: Site 12 Emissions Monitoring. Radian
Corporation, Austin, Texas. November, 1992. (EPRI Report)

Field Chemical Emissions Monitoring Project: Site 15 Emissions Monitoring. Radian
Corporation, Austin, Texas. October, 1992. (EPRI Report)

Field Chemical Emissions Monitoring Project: Site 101 Emissions Report. Radian Corporation,
Austin, Texas. October, 1994. (EPRI Report)

Field Chemical Emissions Monitoring Project: Site 114 Report. Radian Corporation, Austin,
Texas. May, 1994. (EPRI Report)

Field Chemical Emissions Monitoring Report: Site 122. Final Report, Task 1 Third Draft. EPRI
RP9028-10. Southern Research Institute, Birmingham, Alabama. May, 1995. (EPRI Report)

Hydrogen Chloride And Hydrogen Fluoride Emission Factors For The NAPAP Inventory, EPA-
600/7-85-041, U. S. Environmental Protection Agency, October 1985.

Electric Utility Trace Substances Synthesis Report, Volume 1, Report TR-104614, Electric Power
Research Institute, Palo Alto, CA, November 1994,

Locating And Estimating Air Emissions From Sources Of Chromium, EPA-450/4-84-007¢g, U. S.
Environmental Protection Agency, July 1984,

Locating And Estimating Air Emissions From Sources Of Formaldehyde, (Revised),
EPA-450/4-91-012, U. S. Environmental Protection Agency, March 1991.

Estimating Air Toxics Emissions From Coal And Oil Combustion Sources, EPA-450/2-89-001,
Radian Corporation, Project Officer: Dallas W. Safriet, Research Triangle Park, NC, April 1989.

Canadian Coal-Fired Plants, Phase I: Final Report And Appendices, Report for the Canadian

Electrical Association, R&D, Montreal, Quebec, Contract Number 001G194, Report by Battelle,
Pacific Northwest Laboratories, Richland, WA.
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R. Meij, Auteru dr., The Fate Of Trace Elements At Coal-Fired Plants, Report No. 2561-MOC
92-3641, Rapport te bestellen bij; bibliotheek N.VV. KEMA, February 13, 1992.

Locating And Estimating Air Emissions From Sources Of Manganese, EPA-450/4-84-007h,
September 1985.

Results of the September 10 and 11, 1991 Mercury Removal Tests on the Units 1 & 2, and Unit 3
Scrubber Systems at the NSP Sherco Plant in Becker, Minnesota. Interpoll Laboratories, Inc.,
Circle Pines, Minnesota. October 30, 1991.

Results of the November 5, 1991 Air Toxic Emission Study on the No. 1, 3 & 4 Boilers at the
NSP Black Dog Plant. Interpoll Laboratories, Inc., Circle Pines, Minnesota. January 3, 1992,

Results of the January 1992 Air Toxic Emission Study on the No. 2 Boiler at the NSP Black Dog
Plant. Interpoll Laboratories, Inc., Circle Pines, Minnesota. May 4, 1992.

Results of the May 29, 1990 Trace Metal Characterization Study on Units 1 and 2 at the
Sherburne County Generating Station in Becker, Minnesota. Interpoll Laboratories, Inc., Circle
Pines, Minnesota. July, 1990.

Results of the May 1, 1990 Trace Metal Characterization Study on Units 1 and 2 at the
Sherburne County Generating Station. Interpoll Laboratories, Inc., Circle Pines, Minnesota.
July 18, 1990.

Results of the March 1990 Trace Metal Characterization Study on Unit 3 at the Sherburne
County Generating Station. Interpoll Laboratories, Circle Pines, Minnesota. June 7, 1990.

Field Chemical Emissions Monitoring Project: Site 19 Emissions Monitoring. Radian
Corporation, Austin, Texas. April, 1993. (EPRI Report)

Field Chemical Emissions Monitoring Project: Site 20 Emissions Monitoring. Radian
Corporation, Austin, Texas. March, 1994. (EPRI Report)

Characterizing Toxic Emissions from a Coal-Fired Power Plant Demonstrating the AFGD ICCT
Project and a Plant Utilizing a Dry Scrubber /Baghhouse System. Final Draft Report.
Springerville Generating Station Unit No. 2. Southern Research Insititute, Birmingham,
Alabama. December, 1993.

Emissions Of Reactive Volatile Organic Compounds From Utility Boilers,
EPA-600/7-80-111, U. S. Environmental Protection Agency, Washington, DC,
May 1980.

EPA/IFP European Workshop On The Emission Of Nitrous Oxide For Fuel Combustion, EPA
Contract No. 68-02-4701, Ruiel-Malmaison, France, June 1-2, 1988.

R. Clayton, et al., NO, Field Study, EPA-600/2-89-006, U. S. Environmental Protection Agency,
Research Triangle Park, NC, February 1989.

L. E. Amand, and S. Anderson, "Emissions of Nitrous Oxide from Fluidized Bed Boilers",

Presented at the Tenth International Conference on Fluidized Bed Combustor, San Francisco,
CA, 1989.
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Alternative Control Techniques Document--NO, Emissions From Utility Boilers,
EPA-453/R-94-023, Office of Air Quality Standards, Research Triangle Park, NC, 1994.

Alliance Technologies Corporation, Evaluation of Significant Anthropogenic Sources of
Radiatively Important Trace Gases, U. S. Environmental Protection Agency, Office of Research
and Development, Research Triangle Park, NC, 1990.

R. A. Winschel, Richard, "The Relationship of Carbon Dioxide Emissions with Coal Rank and
Sulfur Content," Journal of the Air and Waste Management Association, Vol. 40, no. 6, pp. 861-
865, June 1990.

Public Service Electric and Gas Company Mercer Generating Station Unit No. 2 Emission
Compliance Test Program. November 1994,

Particulate Emission Study Performed for Madison Gas and Electric Company at the Blount
Street Station Units 7, 8, 9 Inlets/Outlets. Mostardi-Platt Associates, Inc. December 6, 1994.

Particulate Emission Study Performed for Marshfield Electric and Water Department at the
Wildwood Station Marshfield Wisconsin Boiler 5 Stack. Mostardi-Platt Associates, Inc.
January 23-25, 1990.

Report on Particulate, SO,, and NO, Compliance Testing. Dairyland Power Cooperative J.P.
Madgett Stack. Alma, Wisconsin. CAE. January 6, 1995.

Particulate Emissions Test Results. Portland General Electric Coal-fired Power Plant.
Boardman, Oregon. SAIC, Inc. January 25, 1994,

Report on Compliance Testing Performed at Marshfield Electric and Water Department
Wildwood Station Unit 5, Marshfield, Wisconsin. Clean Air Engineering, December 11, 1989.

Portland General Electric Company Boardman Coal Plant. Unit #1 Coal-fired Boiler.
Boardman, Oregon. August 24-27,1995.

Particulate Emission Compliance Study Performed for Portland General Electric at the Boardman
Plant Unit 1 Stack. Boardman, Oregon. September 19, 1996.

Emissions Source Test Report. Portland General Electric Coal-Fired Power Plant. Boardman,
Oregon. OMNI Environmental Services, Inc. October 17, 1990.

Source Emissions Test Report Compliance. Portland General Electric Coal-Fired Power Plant.
Boardman, Oregon. OMNI Environmental Services. January 29, 1991.

Source Test Report. Particulate Emissions. Portland General Electric Coal-Fired Power Plant.
Boardman, Oregon. OMNI Environmental Services, Inc. January 14, 1991.

Emissions Source Test Rpeort. Portland General Electric Coal-Fired Power Plant. Boardman,
Oregon. OMNI Environmental Services, Inc. April 3, 1991.

Source Emissions Test Report. Portland General Electric Coal-Fired Power Plant. Boardman,
Oregon. OMNI Environmental Services, Inc. January 21, 1992.
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91. Particulate Emissions Test Results. Portland General Electric Coal-fired Power Plant.
Boardman, Oregon. OMNI Environmental Services, Inc. April 4, 1992,

92. Particulate Emissions Test Results. Portland General Electric Coal-Fired Power Plant.
Boardman, Oregon. OMNI Environmental Services, Inc. September 9, 1992.

93. Particulate Emissions Test Results. Portland General Electric Coal-Fired Power Plant.
Boardman, Oregon. OMNI Environmental Services, Inc. November 6, 1992.

94. Particulate Emissions Test Results. Portland General Electric Coal-Fired Power Plant.
Boardman, Oregon. OMNI Environmental Services, Inc. January 26, 1993.

95. Stationary Source Sampling Report. Keystone Cogeneration Facility. Keystone Cogeneration
Facility. Logan Township, NJ. November 1994.

96. Source Emissions Survey of City Public Service Board J.K. Spruce Unit Number 1 Stack.
METCO Environmental. December 1992.

97. Report of Particulate Emission Testing on the Number 1 Boiler at Associated Milk Products
Incorporated Located in Jim Falls, Wisconsin. Environmental Services of American, Inc.
November 1994.

98. Appletone Papers, Inc. Boiler Emission Test at Appleton, WI. May 11 and 12, 1993. Badger
Laboratories and Engineering.

99. Appleton Papers, Inc. Boiler Emission Test Report at Appleton, WI. Badger Laboratories and
Engineering. October 11, 1993.

100. Results of a Source Emission Compliance Test on Boiler #2 at the Hills Farm Heating Plant,
Madison, Wisconsin. MMT Environmental Services, Inc. January 22, 1993.

101. Results of a Source Emission Compliance Test on Boiler #2 at the Hills Farm Heating Plant,
Madison, Wisconsin. MMT Environmental Services, Inc. March 2, 1995.

102. Report to Mosinee Paper Company for Particulate Matter Emission Testing. No. 6 Boiler at
Mosinee, Wisconsin. May 18, 19, and 20, 1993.

103. Report to Milwaukee County for Particulate Matter Emission Test Boiler No. 21. Environmental
Technology and Engineering Corporation. November 5, 1991.

104. Report on Compliance Testing Conducted at Oscar Mayer Foods Corporation, Madison,
Wisconsin. Clean Air Engineering. July 21, 1989.
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