

Full Scale Evaluations of Mercury Control Technologies with PRB Coals

EUEC January 25, 2005

Sharon Sjostrom, ADA-ES Inc.

Co-Authors

- ADA-ES: Travis Starns, Michael Durham, Jean Bustard
- Sunflower Electric: Wayne Penrod, Corey Linville
- AmerenUE: Rich Phillips, Tom Hart
- DOE/NETL: Andrew O'Palko
- EPRI: Ramsay Chang

Hg Removal with Existing Equipment

ICR Data		
<u>Controls</u>	Bituminous	Subbituminous (PRB)
CSESP	46%	16%
FF	83%	72%
SDA + FF	98%	25%

Example: Sunflower Electric Holcomb Station PRB Coal SDA/FF

Inlet Hg: 10.5 μg/dncm

Outlet Hg: 11.2 µg/dncm

Hg Removal: 0%

Enhancing Mercury Removal for Western Coals

Coal Blending to Improve Mercury Control

Sunflower Electric, Holcomb Station Detroit Edison, Monroe Station Completed 2004 2005

Mercury and Chlorine in Western Bituminous Coals

Native Mercury Removal by Western Bituminous Coals

Plant	APC	Coal	Mercury
			Removal
Cherokee 3	FF	Colowyo	98%
Intermountain	FGD	Utah Bit	74%
Valmont	FF	20 Mile Colowyo	86%

Coal Blending Results - Holcomb

Coal Blending at Holcomb

Activated Carbon Injection to Improve Mercury Control

Sunflower Electric, Holcomb StationCompleted 2004AmerenUE, Meramec StationCompleted 2004Great River Energy, Coal Creek StationCompleted 2003We Energies, Presque Isle2005-2007Detroit Edison, Monroe Station2005Entergy, Independence Station2005

ACI Required Equipment

E EXHIBIT 1066 Page 11

Testing at Holcomb Station

- Unit Capacity
 360 MW
- Coal
 - PRB
 - Hg Content:
 0.04 0.1 ppm-dry
 - CI Content:7-35 ppm-dry
- SO₂ Control SDA
- Particulate Control FF

DOE Cooperative Agreement DE-FC26-03NT41986

Plant Layout

Holcomb Overall Layout

360 MW 180 MW

Effect of Injection Location on Hg Removal: DARCO FGD, Holcomb

Injection Concentration (Ib/MMacf at ~ 290° AFE) REN UE EXHIBIT 1066 Page 15

SDA Results, PRB and Lignite Fuels

Page 16

Holcomb – 30-day Long Term Results FGD-E3 Injection

AmerenUE Meramec Plant

Unit Capacity 140 MW Coal PRB Mercury Content: 0.04 – 0.1 ppm-dry Chlorine Content: 7-35 ppm-dry NOx Control – SOFA, LNB SO₂ Control – Compliance Coal Particulate Control – CSESP

DOE Cooperative Agreement DE-FC26-03NT41986

Flue Gas Flow – 1/2 of Unit 2

Untreated PAC Injection into ESP PRB and Lignite Coals

Page 20

Parametric Results – Treated Carbon

Preliminary Long-Term Results

Coal Additives at Meramec

KNX (Alstom Power) and SEA2 (EERC)
 >80% mercury removal measured with additive injection during high LOI periods

Is Meramec "Typical"?

- Tubular Air Preheater
 - Data from Salem Harbor (Phase I program) and Meramec indicate higher than expected Hg removal. Both have tubular APH. Both had high LOI during testing.
- Large fraction of particulate-phase mercury
 - Large carbonaceous ash particles were present in ash and have very high
 Hg (~ 4 ppm)

Secondary Emissions from Coal Additives or Treated Carbon

- Holcomb:
 - Halogen emissions decreased across SDA + FF during FGD-E3 testing
 - No increase in halogen concentrations during coal additive tests
- Meramec:
 - Halogen emissions were slightly higher during FGD-E3 testing but remained within range expected from PRB coal
 - No M26 results available from coal additive tests

Plant Operation and Effects on Ash

- Plant Operation
 - No adverse effects on ESP power, SDA operation or FF cleaning frequency, or opacity during longer-term tests
- Landfill Concerns: leaching (mercury or halogens) from ash
 - Initial tests indicate ash does not leach significant halides or measurable mercury
- Ash Sales Meramec
 - Fly ash may require additional AEA due to fly ash contamination from ACI injection

Additional Testing

Monroe Unit 4

- Fires blend of PRB and E. Bituminous (60/40)
- 750 MW, Wall-Fired Unit
 - Test size ¼ of unit
- Low NOx burners (B&W)
- Cold-Side ESP, Small SCA (280 ft²/kacfm)
- SCR in-service during ozone season

EPRI TOXECON[™] Configuration

First TOXECON Hg Control System at We Energies Presque Isle Power Plant

- Units 7 9 on PRB Coal
- 270 MW
- System designed for 90% Hg control

AMEREN UE EXHIBIT 1066 Page 29

DOE Clean Coal Power Initiative

EPRI TOXECON II[™] Configuration Hg Sorbent Coal 10% of Fly Ash + Sorbent 90% of Fly Ash 🔎 Ash Sales Sorbent recycle Sell for use in ്ര. രി Sorbent regeneration concrete or disposal

TOXECON II™ at Coal Creek Station

- Unit Capacity
 - 590 MW
- Coal
 - North Dakota Lignite (Falkirk Mine)
 - Mercury Content: 0.096 ppm-dry
 - Chlorine Content: 0.009 %-dry
- NO_x Control OFA
- SO₂ Control WFGD
- Particulate Collection Device CESP
 - SCA = 599 ft²/1000cfm
 - ESP Inlet Temperatures: 340-360°F

AMEREN UE EXHIBIT 1066 Page 31

Tests Funded by EPRI and Great River Energy

Comparison of ESP and TOXECON II™

Page 32

DOE/NETL Full-Scale Field Test of TOXECON II in 2005

- Host Site: Entergy Independence Station (842 MW)
 – PRB Coal, CS ESP
- Goals
 - Document mercury capture performance
 - Evaluate possible improvements with treated carbons
 - Identify impacts on ESP
- Participation by other utilities encouraged

Options for Western Fuels: Summary

- Treated Activated Carbon Injection
 - High removal achieved at Holcomb and Meramec
 - No adverse balance-of-plant impacts noted
- Coal Additives
 - >80% removal achieved at Meramec without ACI (plant configuration and high LOI may have contributed to removal)
 - ACI required at Holcomb for high removal

Options for Western Fuels: Summary

- Coal Blending
 - Up to 80% mercury removal achieved during short-term test at Holcomb
 - Additional tests required to confirm this result

