

# A Norrisome Outlook for Europe's Environment?

PUBLISHED BY THE AMERICAN CHEMICAL SOCIETY

AMEREN UE EXHIBIT 1075 Page 1

### UNIVERSITY OF PITTSBURGH

### FEB 2 1 2000

**BEVIER ENGINEERING LIBRARY** 



February 1, 2000 • Vol. 34, No. 3

### European ban on use of surfactant alarms U.S. producers • 68A

U.S. chemical producers sharply criticized a draft EU risk assessment that recommends a European ban on many uses of nonylphenol ethoxylates.

### Growing conflict over GM trees • 69A

As the number of genetically modified trees being planted in test plots has increased, debate over their pros and cons has grown more heated, concurrent with a rise in vandalism against research laboratories.

**European governments urged** to consider environmental benchmarks • 70A

The European Environment Bureau hopes that government leaders will base environmental performance on specified targets, timetables, and indicators in 10 key areas.

### EPA's diesel health assessment needs tweaking, science advisors say . 71A

EPA's Clean Air Act Scientific Advisory Committee has again declined approval of the Agency's analysis of human health effects from diesel exhaust.

### News Briefs • 72A

Market-based pollution control alternatives • Waste reduction • Risks of contaminated underwater sediments • Paper in catalogs • Conservation areas threatened . Chemical accidents • Pollutantbirth defect link • School bus pollution



## Departments

Comment • 63A How to thank our reviewers

### EPA Watch • 73A

2000 budget includes steady funding; policy orders • PBT releases, including dioxin, will be captured on TRI reports · Confusion over agreement confounds species protection efforts • Proposal to regulate large animal farms still under fire

### Technology Update • 75A

Technology costs for arsenic removal

**Research Watch** • 91A Huge dioxin emission source • Controlling mercury emissions

**Online/In Print • 93A** Web sites and new books

Meeting Calendar • 94A New events through April 2000

### Classifieds • 95A

Environmental career opportunities Advertiser index

34(3) 57A-96A/349-540

ISSN 0013 936X

### Research at a Glance

Aminodinitrotoluene, kinetics, 450 Aminodinitrotoluene, oxidation, 497 Atrazine, degradation, 430 Bacterial bioremediation, 535 Biofilters, performance, 461 Chlorobenzene, in sediments, 385 Chloronapthalenes, in air, 393 Chromium, leaching, 455 Cr(VI), reduction, 438 Diesel fuels, emissions, 349 Haloorganics, FeS, 422 Hydrocarbons, degradation, 489 lodide, sorption, 399 Mercury, sequestration, 483 MTBE, outboard engines, 368 n-Alkanes, solubilization, 476 Nitroaromatics, reactions, 505 NOM, aromatics, 444 PAHs, in air, 356 PCBs, contamination, 527 PCDD/DFs, source, 377 Pesticides, in air, 393 Phenanthrene, sorption, 406 Phenol, degradation, 509 Pyrene, photochemistry, 415 SOM, composition, 530 Sorption, mechanisms, 468 SVOCs, precipitation, 361 TCE, dechlorination, 514 Trees, pollution damage, 373

The table of contents of research papers in this issue begins on page 61A.



Cover: Maria Burke reviews a new European Environment Agency report, which finds that environmental policies have not achieved desired objectives. (Artwork by Matthew J. Baek)

FEBRUARY 1, 2000 / ENVIRONMENTAL SCIENCE & TECHNOLOGY / NEWS = 59 A



### Optimization of High Temperature Sulfur Impregnation on Activated Carbon for Permanent Sequestration of Elemental Mercury Vapors

### WEI LIU AND RADISAV D. VIDIC\*

Department of Civil and Environmental Engineering, 943 Benedum Hall, University of Pittsburgh, Pittsburgh, Pennsylvania 15261-2294

### THOMAS D. BROWN

U.S. Department of Energy, Federal Energy Technology Center, P.O. Box 10940, Pittsburgh, Pennsylvania 15236-0940

Following previous success with the use of activated carbon impregnated with sulfur at elevated temperatures for elemental mercury control, possible improvements in the impregnation procedure were evaluated in this study. Adsorbents prepared by thoroughly mixing sulfur and activated carbon in the furnace at the initial sulfur-to-carbon ratio (SCR) ranging from 4:1 to 1:2 showed similar adsorptive behavior in a fixed-bed system. Maintaining a stagnant inert atmosphere during the impregnation process improves sulfur deposition resulting in the enhanced dynamic capacity of the adsorbent when compared to other sulfur impregnated carbons. The fate of spent adsorbents was assessed using a toxicity characteristics leaching procedure (TCLP). Although mercury concentration in all leachates was below the TCLP limit (0.2 mg/L), virgin activated carbon lost a significant fraction of the adsorbed elemental mercury during storage, while no loss was observed for sulfurimpregnated carbons. This finding suggests that virgin activated carbon may not be appropriate adsorbent for permanent sequestration of anthropogenic elemental mercury emissions.

### Introduction

As listed in the Clean Air Act Amendments of 1990, mercury is one of the 189 hazardous air pollutants (HAPs). Although air emissions of mercury occur naturally, major mercury pollution comes from anthropogenic activities. Recent EPA report showed that coal-fired power plants, municipal waste combustors, and medical waste incinerators account for more than 70% of the total anthropogenic mercury emissions (*I*).

Mercury emission control measures in coal-fired power plants are mainly based on the existing air pollution control devices (APCD). The primary APCDs include multiple cyclones, electrostatic precipitators (ESPs), fabric filters (baghouses), wet scrubbers, and wet and dry flue gas desulfurization (FGD) systems. Several studies revealed that the efficiency of mercury control is a function of a specific device used and flue gas conditions. For example, the oxidized mercury could be trapped to a substantial degree by fabric

\* Corresponding author phone: (412)624-1307; fax: (412)624-0135; e-mail: vidic@engrng.pitt.edu.

10.1021/es9813008 CCC: \$19.00 @ 2000 American Chemical Society Published on Web 12/22/1999

filters, while elemental mercury could not be captured due to its small diameter. The average removal efficiency of total mercury for fabric filter was about 30% (2). A series of pilot plants studies on wet scrubbing FGD system has shown that 90% HgCl<sub>2</sub> was removed from flue gas, while essentially no elemental mercury was dissolved in the scrubbing slurry (3).

New technologies are being developed for the control of mercury emissions. Among them, activated carbon adsorption demonstrated potential for capturing both elemental and oxidized mercury species.

Vidic and McLaughlin (4) found that sulfur impregnated carbon performed much better than virgin carbon. Physisorption dominated the capacity of a virgin carbon, while HgS formation controlled the adsorption ability of sulfurimpregnated carbons. Additional study (5) showed that the improved mercury uptake capacity by sulfur-impregnated carbon was also related to the factors such as bonding between sulfur and carbon surface, specific surface area of the carbon, and types of sulfur allotropes impregnated on the carbon surface. Liu et al.(6) further developed this new impregnation protocol to control the parameters (temperature and initial sulfur-to-carbon ratio) that have the major impact on the performance of sulfur-impregnated activated carbons. It was found that the impregnation temperature was the crucial parameter for the performance of sulfur-impregnated carbons, while the amount of sulfur impregnated on the carbon surface had much lower impact. This was explained by the presence of more short chain sulfur allotropes, larger surface area, and larger fraction of meso-pores in the adsorbents prepared at higher temperatures.

One of the major drawbacks of the impregnation procedure used in previous studies (5, 6) was that only 3% of the sulfur used in the procedure was impregnated onto activated carbon. Therefore, one objective of this study was to develop an improved impregnation method that would reduce the sulfur loss while producing equally effective mercury adsorbents. This is done by determining the impact of impregnation process modifications and adsorbent particle size on sulfur deposition and adsorbent performance for elemental mercury uptake.

Current approaches to handling the spent adsorbents include ash pond or landfill disposal or regeneration. Powdered activated carbon injection technology does not allow for the recovery and regeneration of spent adsorbent which is, instead, discharged together with fly ash directly into a pond. For granular activated carbon, both landfilling and regeneration are feasible. Upon disposal of saturated adsorbents, the adsorbed mercury compounds may be dissolved into leachate due to acidic conditions that occur during landfill stabilization. Once mercury compounds are mobilized, their migration could pose significant environmental risk. The second objective of this study was to investigate the environmental impact of mercury-saturated adsorbents after they are removed from the system. Toxicity characteristics leaching procedure (TCLP) (40 CFR 261) was utilized in order to evaluate the fate of the adsorbed mercury compounds once saturated adsorbents are removed from the flue gas.

### **Experimental Methods**

BPL, a commercially available bituminous coal-based activated carbon, was provided by the manufacturer (Calgon Carbon Corporation, Pittsburgh, PA) in  $4 \times 10$  and  $12 \times 30$  U.S. mesh sizes and was used as base adsorbent throughout

VOL. 34, NO. 3, 2000 / ENVIRONMENTAL SCIENCE & TECHNOLOGY = 483

the study. It was ground into  $60 \times 80$ ,  $170 \times 230$ , and minus 400 U.S. mesh size and stored in a desiccator prior to use.

Two sulfur impregnation procedures similar to the method described previously (5, 6) were used in this study. The major difference is that instead of using two ceramic boats, one for sulfur and one for activated carbon, only one boat was used. Sulfur flakes were ground into a fine powder and thoroughly mixed with carbon in a single boat. The initial sulfur-to-carbon ratio (SCR) in the boat was adjusted from 4:1 to 1:5, and the impregnation temperature was set at 600 °C for all tests. The designation of these carbons used a letter M to indicate that the sulfur and carbon were mixed in one ceramic boat. For example, BPL-S-4/1M-600 denotes a BPL carbon impregnated with sulfur at 600 °C with an SCR of 4:1.

The second procedure also used single boat for the impregnation procedure, and the SCR was set at 1:2. However, after an inert atmosphere was created inside the system, nitrogen flow was stopped, the tube furnace was sealed, and a balloon was attached to the furnace exit to compensate for gas expansion. The furnace temperature was raised to 600 °C and held at that level for 2 h. The objective of this method was to further increase the amount of active sulfur molecules on the carbon surface. The designation of this adsorbent was BPL-S-1/2M-600S.

When  $170 \times 230$  and minus 400 U.S. mesh size carbons were used for the preparation of sulfur-impregnated carbons adsorbents, the impregnation conditions were identical to those described previously for BPL-S adsorbents (5, 6) to allow for direct assessment of the impact of carbon particle size on sulfur impregnation process and resulting mercury uptake dynamics.

The sulfur content of all adsorbents was measured using a Leco Model SC 132 sulfur determinator (Leco Corporation, St. Joseph, MI), while surface areas were determined using an Orr Surface-Area Pore-Volume Analyzer Model 2100 (Micromeritics Instrument Corporation, Atlanta, GA) and calculated using the nitrogen BET isotherm method.

Adsorbent samples were subjected to FTIR analysis in an attempt to elucidate predominant sulfur forms resulting from these impregnation procedures. Samples for IR analysis were prepared by grinding a very small amount of adsorbent with KBr salt followed by compression between two stainless steel cylinders to form a thin transparent solid film. This film was subjected to direct scanning in an FTIR spectrophotometer (Mattson IR, Madison Instruments, Inc. Madison, WI) to determine predominant forms of sulfur on the carbon surface.

Mercury uptake by these newly developed sulfur impregnated adsorbents was studied using a fixed-bed adsorber system in order to assess the impact of modifications in sulfur impregnation procedure on their performance. All column tests were conducted using a 1/4 in. (0.635 cm) I.D. stainless steel reactor charged with 100 mg of impregnated carbon and operated at 140 °C in a downflow mode. Pure N<sub>2</sub> at a flow rate of 1.0 L/min was used as the carrier gas in all experiments so that the results can be compared to previous data (5, 6). Unless otherwise noted, influent mercury concentration was 55  $\mu$ g/m<sup>3</sup>.

EPA Method 1311 was used to select the proper extraction fluid for TCLP analysis. Based on the tests with various adsorbents, it was found that the extraction fluid 1 (5.7 mL of glacial CH<sub>3</sub>CH<sub>2</sub>OOH and 64.3 mL of 1 N NaOH in 1.0 L of reagent water, pH =  $4.93 \pm 0.05$ , EPA Method 1311) was suitable for the extraction of mercury loaded adsorbents.

### **Results and Discussion**

FTIR Analyses of Virgin and Sulfur Impregnated Carbons. It has long been assumed that the sulfur impregnated on the carbon surface was in the elemental form. However, early research has shown that the actual forms of sulfur on the adsorbent surface could change from simple elemental sulfur

484 . ENVIRONMENTAL SCIENCE & TECHNOLOGY / VOL. 34, NO. 3, 2000

to various sulfur compounds (7). The actual carbon–sulfur complexes were strongly related to the initial structures of carbon. For example, hydrogen sulfide and organic sulfur compounds were found if the carbons contained hydrocarbon compounds (8).

FTIR was used to measure possible sulfur functional groups of on the carbon surface. Figures1 and 2 depict IR scans of virgin BPL and BPL-S-4/1-600, respectively. As expected, Figure 1 revealed no distinct sulfur-related peaks on virgin BPL because its total sulfur content was below 1%. FTIR analysis of BPL-S-4/1-600 also revealed no distinct sulfur-related peaks (Figure 2) throughout 500–4000 cm<sup>-1</sup>, where the possible ranges for sulfur-based functional groups are as follows (9):

| functional group | possible peaks, cm <sup>-1</sup> |  |
|------------------|----------------------------------|--|
| S-H              | 1200-1400, 3700-4000             |  |
| S-C              | 1300-1400, 1500-1600             |  |
| S-0              | 1100-1300, 1600-1700             |  |

The predominant sulfur bonds that are expected in these novel adsorbents are S-C and possibly some S-H and S-O. In addition to the fact that all of these bonds have fairly weak vibrations (9), extremely high background noise in the fingerprint region and overwhelming O-H and C-H vibrations coming from the surface of activated carbon, as evidenced from the spectra of virgin BPL carbon in Figure 1. precluded the observation of such bonds. However, under high impregnation temperature (600 °C), most sulfur-based compounds that could be formed on the carbon surface would evaporate or decompose to simple compounds that would be carried out of the furnace by the purge gas. This is particularly true for the simple sulfur compounds such as H<sub>2</sub>S, CS<sub>2</sub>, or SO<sub>2</sub> that could easily be volatilized and flushed out of the system. It is reasonable to assume that the major sulfur forms on the carbon surface resulting from sulfur impregnation at elevated temperatures are short linear-chain sulfur allotropes as suggested by Korpiel and Vidic (5).

**Performance of BPL-S-M Series.** As can be seen from Figure 3, mercury uptakes by BPL-S-1/1M-600 and BPL-S-1/2M-600 are very close to that previously measured for BPL-S-4/1-600 (2300  $\mu$ g Hg/g carbon) (6). However, the adsorptive capacity for mercury decreased to 1450  $\mu$ g Hg/g carbon when the initial sulfur-to-carbon ratio was reduced to 1:5.

Sulfur content and specific surface area of these novel adsorbents are shown in Table 1. This table shows that all BPL-S and BPL-S-M adsorbents had very similar surface areas regardless of the impregnation method or SCR used. Furthermore, the sulfur content of BPL-S-M carbons prepared using the SCR of 1:1and 1:2 is very close to that of BPL-S-4/1-600 (approximately 10%). Hence, all three adsorbents exhibited very similar behavior for the uptake of elemental mercury. Although BPL-S-1/5M-600 had similar BET surface area with other adsorbents, its sulfur content was about 20% lower, which can explain somewhat reduced capacity for elemental mercury.

The key advantage of the new impregnation procedure is that it reduced the amount of sulfur required to maintain sulfur content of about 10%. In our previous study, sulfur and carbon were kept in separate ceramic boats, and the majority of sulfur would be carried out of the furnace by  $N_2$ gas before it had a chance to react with carbon. Furthermore, several mass transfer steps were required before sulfur impregnation onto carbon surface. The initial sulfur loss and mass transfer resistance are reduced for the newly developed methods since sulfur and carbon were thoroughly mixed in a single boat.

**Performance of BPL-S-1/2M-600S.** Figure 4 shows that the mercury uptake by BPL-S-1/2M-600S was about 10% higher when compared to BPL-S-4/1-600. Table 1 shows that



FIGURE 1. IR analysis of BPL surface for possible sulfur structures.

the sulfur content of BPL-S-1/2M-600S was about 20% higher than for the other carbons. Since all the carbons were prepared at same temperature, the predominant forms of sulfur allotropes should be the same (short chain sulfur molecules). Therefore, the amount of active sulfur molecules is proportional to the total sulfur content. Because of the higher sulfur content, BPL-S-21/2M-600S showed slightly better performance. On the other hand, Table 1 also shows that the surface area of this carbon was somewhat lower when compared to other carbons, which was most likely caused by the larger amount of sulfur deposited on the carbon surface. Reduction in surface area would normally offset the effect of having more active sulfur molecules. Furthermore, although the initial SCR used in the production of this carbon was 1:2, only about 20% of the sulfur was deposited on the carbon surface. Significant sulfur loss even in this procedure was probably due to the extreme high impregnation temperature.

The most likely explanation for the incomplete deposition of sulfur on the carbon surface even in a closed system used for the production of BPL-S-21/2M-600S is insufficient reaction time. During a 2-h period when the furnace temperature was maintained at 600 °C only about 20% of the sulfur was deposited on the surface of activated carbon, and, except for the amount that diffused through the balloon, the unreacted sulfur remained in the vapor phase inside the quartz tube. The unreacted sulfur vapor was deposited on the walls of the quartz tube during the cooling phase as evidenced by yellow discoloration. It is possible that longer impregnation time would result in better sulfur utilization and improved economics of the process.

Effect of Adsorbent Particle Size. Data shown in Table 2 indicate that there is no significant difference in sulfur content and specific surface area among the three particle

size fractions used in this study. However, Figure 5 shows that smaller particle size adsorbents exhibited higher dynamic adsorptive capacity when compared to  $60 \times 80$  U.S. mesh size BPL-S-4/1-600. It is clear that Figure 5 does not reflect a true adsorption equilibrium because the adsorbent particle size should not have such a pronounced impact on the adsorption capacity, especially considering that all fractions had very similar surface area and sulfur content. The data shown in Figure 5 reflect a dynamic equilbrium that is established for a given set of fixed-bed operating parameters (e.g., temperature, influent composition, empty bed contact time, adsorbent particle size, etc.) and is defined by the lack of additional measurable mercury uptake. Korpiel and Vidic (5) argued that the dynamic equilibrium established in a single breakthrough test does not reflect the true capacity of sulfur impregnated adsorbents for mercury because the rate of mercuric sulfide formation and subsequent diffusion into the sulfur bulk phase is the rate limiting step in the adsorption dynamics. Rapid formation of large HgS molecules which can block the access to the narrower pores and prevent mercury molecules from accessing the highly reactive S2 molecules that are present in the microporous region of the BPL-S carbon is responsible for the apparently low sulfur utilization in a single breakthrough test. They also showed that even after 100% breakthrough was observed in a given breakthrough test, additional mercury uptake would occur in subsequent loading steps when HgS formed in the previous loading step was allowed sufficient time to diffuse into the bulk sulfur.

It is obvious that the reduction in the adsorbent particle size from  $60 \times 80$  (0.21 mm) to  $170 \times 230$  (0.08 mm) U.S. mesh size provided sufficient kinetic advantage in a fixedbed operated at an extremely short empty bed contact time of 0.011 seconds to allow better penetration of mercury

VOL. 34, NO. 3, 2000 / ENVIRONMENTAL SCIENCE & TECHNOLOGY = 485



FIGURE 2. IR analysis of BPL-S-4/1-600 surface for possible sulfur structures.





molecules into the microporous region before HgS formation prevented the remaining sulfur molecules to react with mercury. However, no additional increase in capacity was observed as the particle size decreased from  $170 \times 230$  (0.08 mm) to minus 400 (0.03 mm) U.S. mesh size. It is very likely that the kinetic limitations of a short empty bed contact time are fully counterbalanced by the reduction in particle size from  $60 \times 80$  to  $170 \times 230$  and that further particle size reduction brings no benefits to the process of mercury uptake. It is also possible that further reduction in empty bed contact

486 = ENVIRONMENTAL SCIENCE & TECHNOLOGY / VOL. 34, NO. 3, 2000

TABLE 1. Sulfur Content and Surface Area of Sulfur Impregnated Carbons

| adsorbent       | sulfur content<br>[wt %] | specific surface<br>area [m²/g] |
|-----------------|--------------------------|---------------------------------|
| BPL             | 0.5-0.7                  | 988-1026                        |
| BPL-S-4/1-600   | 10.0-10.2                | 824-846                         |
| BPL-S-1/1M-600  | 10.9-11.0                | 842-871                         |
| BPL-S-1/2M-600  | 9.4-9.8                  | 854-905                         |
| BPL-S-1/5M-600  | 7.9-8.0                  | 857-862                         |
| BPL-S-1/2M-600S | 12.5-12.9                | 789-812                         |

time could bring about advantages of using even smaller adsorbent particle size.

**Fate of Spent Adsorbents.** To determine the fate of mercury adsorbed on activated carbon-based adsorbents, a TCLP test was conducted by placing 0.1 g of spent adsorbent in a glass vial together with 20 mL of extraction fluid 1. The volume of the vial was also 20 mL so that there would be no headspace above the liquid. By doing so, the possibility of losing any mercury into the vapor phase can be eliminated. All the sample vials were capped and sealed tightly by Teflon tapes. Then, the vials were placed in a 30 rpm tumbler for 18–20 h of the extraction process.

The supernatant was separated by pressurized filtration and liquid mercury analysis method (5) was used to measure mercury concentration in the leachate. The solid adsorbent was collected to verify the remaining mercury concentration by combusting the adsorbent in oxygen atmosphere at 800 °C. The combustion off-gas was collected in impingers (15 g of KMnO<sub>4</sub> in 1 L of 10% H<sub>2</sub>SO<sub>4</sub>) that were analyzed by liquid mercury analysis method.

Table 3 shows the mercury concentrations measured in extracts of different spent adsorbents. It can be seen from



FIGURE 4. Mercury uptake by sulfur-impregnated carbons prepared using two different procedures.

### TABLE 2. Properties of Different Particle Size Fractions of BPL-S-4/1-600

| particle size<br>[U.S. mesh] | mean particle<br>diameter [mm] | sulfur<br>content [wt %] | specific surface<br>area [m²/g] |
|------------------------------|--------------------------------|--------------------------|---------------------------------|
| 60 × 80                      | 0.21                           | 10.04-10.18              | 823.7-845.7                     |
| 170 × 230                    | 0.08                           | 9.88-10.51               | 833.7-869.2                     |
| minus 400                    | 0.03                           | 10.22-10.56              | 840.1-852.5                     |



FIGURE 5. Effect of particle size on mercury uptake by BPL-S-4/ 1-600.

this table that the amount of mercury extracted by acidic solution is below the detection limit of the analytical method used (about  $0.1-0.2 \mu g/L$ ). The sample storage time varied from 2 to 330 days, and the adsorbents included all types of sulfur-impregnated carbons (5, 6) (i.e., HGR, React-A-S, and BPL-S series). The last column in Table 3 shows the ratio of the expected mercury mass on adsorbents after breakthrough tests and the amount of mercury measured by combusting the adsorbents after the TCLP test. These results revealed that the amount of mercury remaining on sulfur-impregnated

### **TABLE 3. TCLP Results for Different Carbon Samples**

| sample        | storage time<br>[days] | Hg in leachate<br>[µg/L] | expected:<br>measured<br>[µg/g carbon] |
|---------------|------------------------|--------------------------|----------------------------------------|
| BPL-S-4/1-600 | 30                     | not detected             | 2287:2170                              |
| BPL-S-4/1-600 | 330                    | not detected             | 2312:2421                              |
| BPL-S-2/1-600 | 240                    | not detected             | 2010:1907                              |
| BPL-S-1/1-600 | 200                    | not detected             | 1256:1302                              |
| BPL-S-4/1-400 | 260                    | not detected             | 1448:1331                              |
| BPL-S-4/1-250 | 180                    | not detected             | 550:603                                |
| React-A-S     | 300                    | not detected             | 1905:1961                              |
| HGR           | 260                    | not detected             | 38:36                                  |
| HGR           | 60                     | not detected             | 36.9:38                                |
| BPL           | 310                    | < 0.2                    | 0.65:0.42                              |
| BPL           | 2                      | <0.2                     | 0.68:0.71                              |

adsorbents after prolonged storage and after TCLP test was equal to the amount of mercury adsorbed during the breakthrough test.

The test results for BPL carbons loaded with mercury and stored for 2 and 310 days revealed different behavior. Although there was no mercury detected in the TCLP leachate, the combustion tests showed that the amount of mercury present on this adsorbent after 310 days of storage was much lower than the expected value, while the amount of mercury present on BPL carbon after 2 days of storage was within the experimental error of the expected value.

The results described above are in agreement with the hypothesis that mercury is chemisorbed by sulfur-impregnated carbons as HgS. HgS is a very stable chemical with high sublimation point (583.5 °C) and is not soluble in water and weak acids (10).

Although TCLP results showed that the amount of mercury extracted from carbons were far below the RCRA limit (200  $\mu$ g/L) (*11, 12*), the stability of mercury on the adsorbent surface is strongly related to the adsorption mechanism and predominant mercury forms.

Apparently, mercury adsorbed by sulfur-impregnated carbons is more stable than that adsorbed by virgin carbons. It is obvious that converting elemental mercury to HgS would be beneficial in terms of handling the spent adsorbents. Another important conclusion is that although TCLP analysis of spent virgin carbon may pass the regulatory limit, the elemental mercury could re-enter the vapor phase during a long storage time. This will certainly present a threat to the environment, and the spent virgin carbon may have to be treated as hazardous waste regardless of the TCLP results.

### Acknowledgments

Funding for this work was provided by the U.S. Department of Energy (Grant No. DE-FG22-96PC96212). The views expressed are entirely those of the authors and do not necessarily reflect the views of the agency. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

### Literature Cited

- (1) Johnson, J. Environ. Sci. Technol. 1997, 31, 218A.
- 2) Chu, P.; Porcella, D. B. Water, Air, Soil Pollut. 1995, 80, 135.
- (3) Chang, R.; Owens, D. EPRI J. July/August 1994, 46.
- (4) Vidic, R. D.; McLaughlin, J. B. J. Air Waste Manage. Assoc. 1996, 46, 241.
- (5) Korpiel, A. J.; Vidic, R. D. *Environ. Sci. Technol.* **1997**, *31*, 2319.
  (6) Liu, W.; Vidic, R. D.; Brown, T. D. *Environ. Sci. Technol.* **1998**,
- 32, 531.(7) Chemistry and Physics of Carbon; Walker, P. L., Jr., Ed.; Vol. 6,
- Marcel Dekker: New York, 1970; p 264.
- (8) Sykes, K. W.; White, P. Trans. Faraday Soc. 1956, 52, 660.

VOL. 34, NO. 3, 2000 / ENVIRONMENTAL SCIENCE & TECHNOLOGY = 487

(12) Heavy Metals in Soils, 2nd ed.; Alloway, B. J., Ed.; Chapman and Hall: New York, 1995; p 245.

Received for review December 14, 1998. Revised manuscript received October 18, 1999. Accepted October 21, 1999. ES9813008

(10) Lide, D. R., ed., Handbook of Chemistry and Physics, 73rd ed.; CRC Press: Boca Raton, FL, 1992; pp 4–74.
(11) U.S. EPA. Mercury and Arsenic Wastes - - - Removal, Recovery, Treatment, and Disposal; Noyes Data Corporation: Park Ridge,

| NJ, 1993; | p 14.         |  |
|-----------|---------------|--|
|           | Distantio Ion |  |
|           |               |  |
|           |               |  |
|           |               |  |
|           |               |  |
|           |               |  |
|           |               |  |
|           |               |  |
|           |               |  |
|           |               |  |

(9) Pouchert, C. J. ed., The Aldrich Library of FT-IR Spectra Vapor Phase, 1st ed.; Aldrich Chemical Co.: Milwaukee, WI, 1989; p

343.

anandorate alter projection and affect (CLD and ana equal to the amount of mercury adaption during the traditionals per

The rest results for RPL entrones limited with relevely and found. For 2 and 510 days, revealing different before a vibboard times was no mercury tabletooting the ULT was receive the combustion man showed that the mount is necroity merceive to take the objection of the SH already of the product of the combustion and when a shift the control of merceive transmission of a consort when a days of body of the control of merceive structure of the transfer of the structure of the formation control of the consort after a days of body of the structure of the control of the structure and when the structure of the structure.

The country developed around on in accounter with the hypothesis that matching a characteristic by suffice improve matching contracts at 10% bins were could a character with hypothesis and a second cost of the matching of which and weak such (10)

Additioned TEEL results allowed from the meaning manager where the result of the second har occave the lot the transformation of the (10, 20), the second line of meaning on the adjustment out have a strengthy related to the advector and the adjustment out have a strengthy related to the advector and the adjustment out have a strengthy related to the advector and the adjustment out have a strengthy related to the advector and the adjustment out have a strengthy related to the advector and the adjustment out have a strengthy related to the advector and the adjustment out have a strengthy related to the advector advector and the strength out of the advector advec

Apparently designs supprint if addressering and cathons is more used the part of addressering and bears it is obtained that of a supprint and any superlines would be beneficial in a more provident is a supermore that any super-sector of the super-sector and the supervise of an an utique and any super-sector and the first and demonstration of the super-sector and the more any supervise of an an utique and any superties and the supervise of an an utique and the superties and the supervise of an any super-sector and the demonstration and the supervise and the supervise of the supervised and the supervise and the supervise to the supervised and the supervised as well and the first and and the supervised as well as a supervised at well and the supervised and the supervised at well as

#### **Deinavyleilements**

motion for this work who pile the treate D.M. Department of charge (Gram No. DE-FRE2-00000022) Top views spectral are entropy there of the contrast models and pressed are entropy there of the contrast models and press or contrast all products mass not continue at con-

FIRDLER, BRITCHT LINDING IN TELS MANDERINGS.

#### Literature Dited

And the second sec

488 = ENVIRONMENTAL SCIENCE & TECHNOLOGY / VOL. 34, NO. 3, 2000

The second secon

Hard C. Softer Content of Softer of Softer S

the drawn Brazig about determine of arrow cane enable

all Fig. 2012 and the second spin of a sub-spin or second spin or any line of the second spin or any line of the second spin of the spin o