

Mercury Control Evaluation of Halogen Injection into a Texas Lignite-Fired Boiler

Carl Richardson Katherine Dombrowski URS Corporation

> Ramsay Chang EPRI

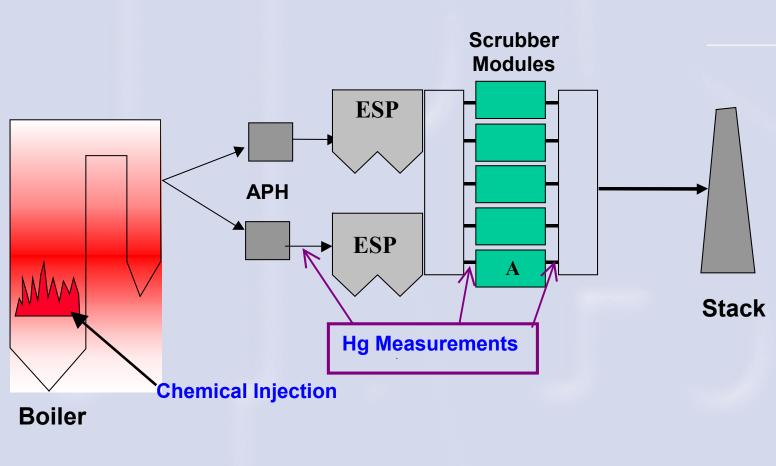
- Oxidation of mercury in flue gas
 - Hg speciation related to flue gas HCI content
 - Higher Hg oxidation may increase Hg removal across flue gas path
- For low-chloride coals, inject halogen species into boiler
 - Increases Hg oxidation in flue gas
 - Potential for enhanced fly ash reactivity
 - Increase in Hg removal across wet scrubber
 - EPRI testing since 2002 shows promising results
 - Lignite and PRB coals

EPRI Chemical Addition Test Objectives

- Increase mercury oxidation in flue gas derived from Texas lignite
- Enhance mercury removal across wet scrubbers
- Parametric Tests
 - CaCl₂ vary injection rates
 - CaBr₂ limited 3-hour test at one rate

Host Site - Texas Genco's Limestone Electric Generating Station

- Unit 1- 890 MW
- Inject into half of split furnace

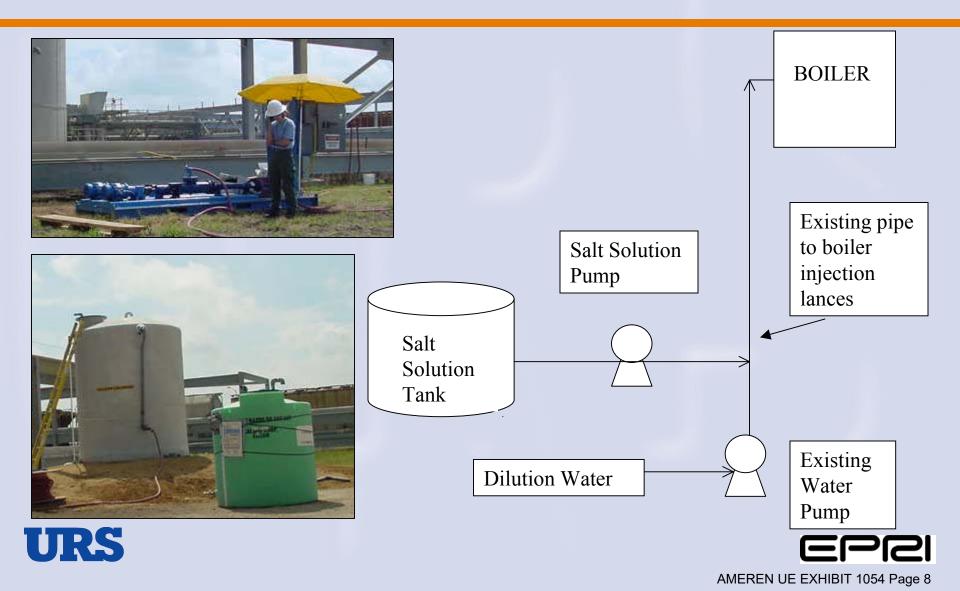


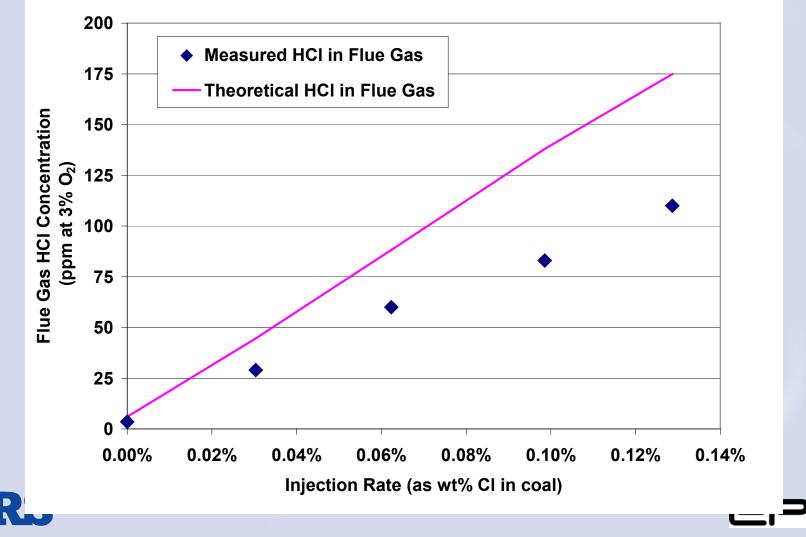
Chemical Injection Limestone Station Unit 1

Fuel Parameters During Testing at Limestone

Fuel Type	Texas Lignite	PRB
Heating Value (as received)	5500-6900 Btu/lb	7900-8300 Btu/lb
Ash	15-27%	4-8%
Sulfur	0.9-1%	0.3-0.5%
Water	29-32 %	30%
Mercury	0.15-0.22 ppm	0.06-0.10 ppm
Chlorine	50-100 ppm	25-60 ppm

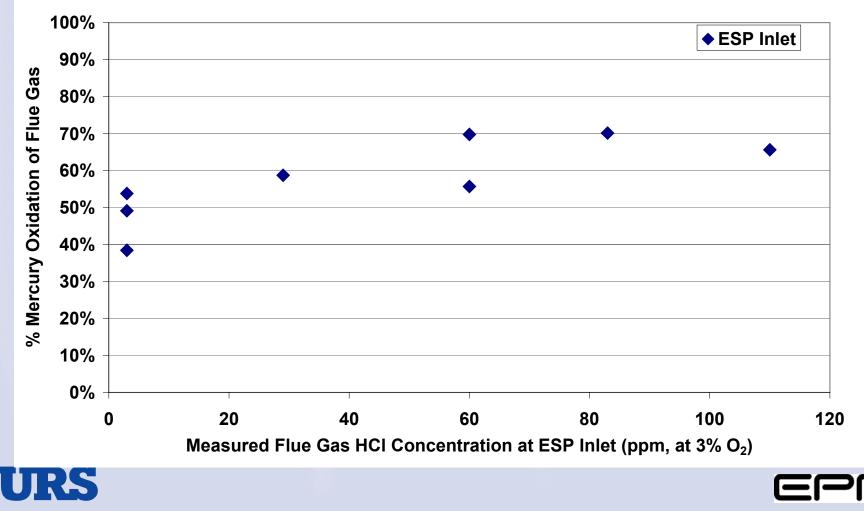
Baseline Mercury Measurements


- Hg at ESP Inlet = 23-33 μ g/Nm³ at 3% O₂
- 45% Oxidation at ESP Inlet
- Baseline HCI = 3 ppm
- Hg vapor removal by fly ash < 5%
- System Hg vapor removal = 50 to 65%



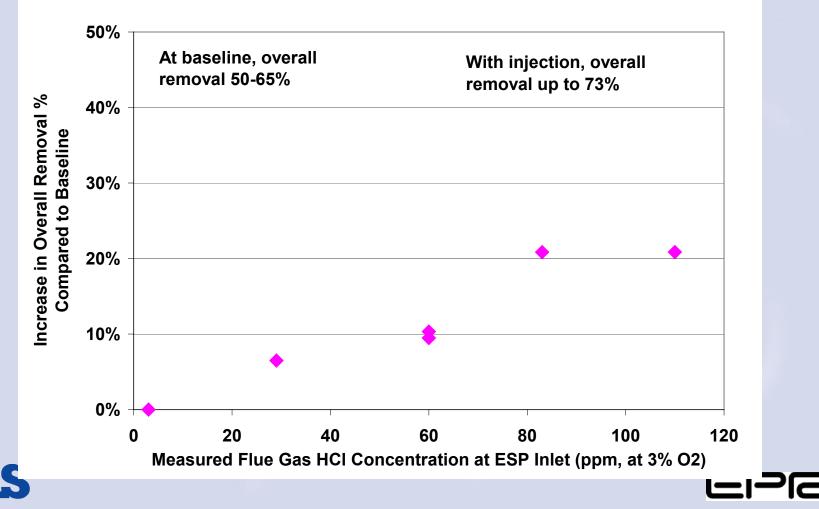
Chemical Addition to Unit 1 Boiler Limestone Station

Salt	Weight % Chloride/ Bromide (% relative to coal)	Liquid Salt Feed Rate (gpm)	Theoretical Gas Conc. (ppm HCI or ppm HBr)	
CaCl ₂ (25 wt%)	0.03	1.9	40	
	0.06	4.0	80	-
	0.10	6.4	120	-
	0.13	8.2	155	-
CaBr ₂ (52 wt%)	0.09	1.6	50	



Effect of CaCl₂ Addition Limestone Station

CaCl₂ Effect on Hg Oxidation at ESP Inlet


% Removal of Hg across System

- Compares the ESP inlet Hg to the FGD outlet Hg.
- Includes both native removal and effect of CaCl₂ injection.
- Calculated as:

Removal across ESP/FGD =100 * $(1 - \frac{Hg_{FGD \ Out, Inj}^{Total}}{Hg_{ESP \ In, Inj}^{Total}})$

Increase in System Hg Removal Percentage - CaCl₂ Tests

Effect of CaBr₂ Tests

- Limited, three-hour test of calcium bromide
- Injected 0.09 wt% as Br in coal
 - 48 ppm HBr in flue gas
- Results:
 - 81% overall removal across ESP/FGD (observed 73% removal with 60 ppm CI)

Summary

- Oxidation of mercury increased with each salt tested
 - Oxidation at ESP Inlet increased from 45% to 70%
- Scrubber removal enhanced
 - With CaCl₂ injection, achieved as high as 73% system Hg removal
 - With CaBr₂ injection, achieved 81% system removal

Further Testing Needed

- Evaluate long-term operation
- Characterization of potential balance-ofplant impacts of chemical injection
 - Boiler corrosion
 - Air heater plugging
 - FGD performance
 - FGD materials of construction

Plan Forward

- Additional Tests Planned at Limestone for 2005-2006
 - Process optimization tests
 - Balance of plant determinations
- Project team is soliciting participation from other Power Generators

Plan Forward

Contacts:

 Ramsay Chang, EPRI rchang@epri.com; (650) 855-2535

 Craig Eckberg, Texas Genco ceckberg@txgenco.com; (713)-945-7612

