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“This book is an absolute necessity for instructors at all levels, as well as an indispensible 
reference for researchers. Introducing NLP, computational linguistics, and speech recognition 
comprehensively in a single book is an ambitious enterprise. The authors have managed it 
admirably, paying careful attention to traditional foundations, relating recent developments and 
trends to those foundations, and tying it all together with insight and humor. Remarkable.”

- Philip Resnik, University of Maryland

“... ideal for... linguists who want to learn more about computational modeling and techniques 
in language processing; computer scientists building language applications who want to learn 
more about the linguistic underpinnings of the field; speech technologists who want to learn 
more about language understanding, semantics and discourse; and all those wanting to learn 
more about speech processing. For instructors... this book is a dream. It covers virtually every? 
aspect of NLP... What’s truly astounding is that the book covers such a broad range of topics, 
while giving the reader the depth to understand and make use of the concepts, algorithms and 
techniques that are presented... ideal as a course textbook for advanced undergraduates, as well 
as graduate students and researchers in the field.

- Johanna Moore, University of Edinburgh

“Speech and Language Processing is a comprehensive, reader-friendly, and up-to-date guide to y 
computational linguistics, covering both statistical and symbolic methods and their application.

■ It will appeal both to senior undergraduate students, who will find it neither too technical nor 
too simplistic, and to researchers, who will find it to be a helpful guide to the newly established 
techniques of a rapidly growing research field.”

- Graeme Hirst, University of Toronto

“The field of human language processing encompasses a diverse array of disciplines, and as 
such is an incredibly challenging field to master. This book does a wonderful job of bringing 
together this vast body of knowledge in a form that is both accessible and comprehensive. Its 
encyclopedic coverage makes it a must-have for people already in the field, while the clear 
presentation style and many examples make it an ideal textbook.”

- Eric Brill, Microsoft Research

This is quite simply the most complete introduction to natural language and speech technology 
ever written. Virtually every topic in the field is covered, in a prose style that is both clear 
and engaging. The discussion is linguistically informed, and strikes a nice balance between 
theoretical computational models, and practical applications. It is an extremely impressive 
achievement.
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Foreword
Linguistics has a hundred-year history as a scientific discipline, and compu­
tational linguistics has a forty-year history as a part of computer science. But 
it is only in the last five years that language understanding has emerged as an 
industry reaching millions of people, with information retrieval and machine 
translation available on the internet, and speech recognition becoming pop­
ular on desktop computers. This industry has been enabled by theoretical 
advances in the representation and processing of language information.

Speech and Language Processing is the first book to thoroughly cover 
language technology, at all levels and with all modern technologies. It com­
bines deep linguistic analysis with robust statistical methods. From the point 
of view of levels, the book starts with the word and its components, moving 
up to the way words fit together (or syntax), to the meaning (or semantics) 
of words, phrases and sentences, and concluding with issues of coherent 
texts, dialog, and translation; From the point of view of technologies, the 
book covers regular expressions, information retrieval, context free gram­
mars, unification, first-order predicate calculus, hidden Markov and other 
probabilistic models, rhetorical structure theory, and others. Previously you 
would heed two or three books to get this kind of coverage. Speech and Lan­
guage Processing covers the full range in one book, but more importantly, it 
relates the technologies to each other, giving the reader a sense of how each 
one is best used, and how; they can be used together. It does all this with 
an engaging style that keeps the reader’s interest and motivates the technical 
details in a Way that is thorough but hot dry. Whether you’re interested in the 
field from the scientific or the industrial point of view, this book serves as 
an ideal introduction, reference, and guide to future study of this fascinating 
field.

Peter Norvig & Stuart Russell, Editors 
Prentice Hall Series in Artificial Intelligence
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Preface
This is an exciting time to be working in speech and language processing. 
Historically distinct fields (natural language processing, speech recognition, 
computational linguistics, computational psycholinguistics) have begun to 
merge. The commercial availability of speech recognition and the heed for 
Web-based language techniques have provided an important impetus for de­
velopment of real sy stems. The availability of very large on-line corpora has 
enabled statistical models of language at every level, from phonetics to dis­
course. We have tried to draw on this emerging state of the art in the design 
of this pedagogical arid reference work:

1. Coverage
lypf c hn attempting to describe a unified vision of speech and language pro­

cessing, we cover areas that traditionally are taught in different courses 
indifferent departments; speech recognition in electrical engineering; 
parsing, semantic interpretation, arid pragmatics in natural language 
processing courses in computer science departments; and computa­
tional morphology and phonology in computational linguistics courses 

pc'p-/: in linguistics departments. The book introduces the fundamental al­
gorithms of each of these fields, whether originally proposed for spo- 
ken or written language, whether logical or statistical in origin, and 
attempts to tie together the descriptions of algorithms from different 
domains. We have also included coverage of applications like spelling- 
checking and information retrieval and extraction as well as areas like 
cognitive modeling, A potential problem with this broad-coverage ap­
proach is that it required us to include introductory material for each 
field; thus linguists may want to skip our description of articulatory 
phonetics, computer scientists may want to skip such sections as reg- 
ular expressions, and electrical engineers skip the sections on signal 
processing. Of course, even in a book this long, we didn’t have room 
for everything. Thus this book should not be considered a substitute 
for important relevant courses in linguistics, automata and formal lan­
guage theory, or, especially, statistics and information theory.

2. Emphasis on practical applications
It is important to show how language-related algorithms and tech­
niques (from HMMs to unification, from the lambda calculus to 
transformation-based learning) can be applied to important real-world 
problems; spelling checking, text document search, speech recogni-

• xxi
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tion, Web-page processing, part-of-speech tagging, machine transla­
tion, and spoken-language dialogue agents. We have attempted to do 
this by integrating the description of language processing applications 
into each chapter. The advantage of this approach is that as the relevant 
linguistic knowledge is introduced, the student has the background to 
understand and model a particular domain.

3. Emphasis on scientific evaluation
The recent prevalence of statistical algorithms in language process­
ing and the growth of organized evaluations of speech and language 
processing systems has led to a new emphasis on evaluation. We 
have, therefore, tried to accompany most of our problem domains with 

: a Methodology Box describing how systems are evaluated (e.g., in­
cluding such concepts as training and test sets, cross-validation, and 

T informalion-thcorelic evaluation metrics like perplexity), i 
4. Description of widely available language processing resources

Modern speech and language processing is heavily based on com- 
monrcstiurces:rawspeech andtext corpora, annotated corpora and 
treebanks, standard tagsets for labeling pronunciation, part-of-speech, 
parses, word-sense, and dialogue-level phenomena. We have tried to 
introduce many of these important resources throughout the book (e.g., 
the Brown, Switchboard, callhome, ATIS, TREC, MUC, and BNC cor­
pora) and provide complete listings of many useful tagsets and coding 
schemes (such as the Penn Treebank, CLAWS C5 and C7, and the 
ARPAbet) but some inevitably got left out. furthermore, rather than 
include references to URLs for many resources directly in the text­
book, we have placed them on the book’s Web site, where they can 
more readily updated.

The book is primarily intended for use in a graduate or advanced un­
dergraduate course or sequence. Because of its comprehensive coverage and 
the large number of algorithms, the book is also useful as; a reference for 
students^ and professionals in^any of the; areas of speech and language pro­
cessing.

Overview of the Book
The book is divided into four parts in addition to an introduction and end 
matter. Part I, “Words”, introduces concepts related to the processing of 
words: phonetics, phonology, morphology, and algorithms used to process 
them: finite automata, finite transducers j weighted transducers, N-grams,
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and Hidden Markov Models. Part II, “Syntax”, introduces parts-of-speech 
and phrase structure grammars for English and gives essential algorithms for 
processing word classes and structured relationships among words: part-of- 
speech taggers based on HMMs and transformation-based learning, the CYK 
and Earley algorithms for parsing, unification and typed feature structures, 
lexicalized and probabilistic parsing, and analytical tools like the Chomsky 
hierarchy and the pumping lemma. Part III, “Semantics”, introduces first 
order predicate calculus and other ways of representing meaning, several 
approaches to compositional semantic analysis, along with applications to 
information retrieval, information extraction, speech understanding, and ma­
chine translation. Part TV, “Pragmatics”, covers reference resolution and dis- 

? ■ course structure and coherence, spoken dialogue phenomena like dialogue 
and speech act modeling, dialogue structure and coherence, and dialogue 
managers, as well as a comprehensive treatment of natural language genera­
tion and of machine translation.

Using this Book
The book provides enough material to be used for a full-year sequence in 
speech and language processing. It is also designed so that it can be used for 
a number of different useful one-term courses:

NLP 
2 1 quarter

NLP 
1 semester

Speech + NLP 
1 semester

Comp. Linguistics
1 quarter

1. Intro
22. Regex, PSA 

; 8. POS tagging
9. CFGs

10. Parsing
11. Unification
14. Semantics
15. Sem. Analysis
181 Discourse
20. Generation

1. Intro
2. Regex, FSA
3. Morph., FST
6. /V-grarns
8. POS tagging
9. CFGs

10. Parsing
11. Unification
12. Prob. Parsing
14. Semantics
15. Sent. Analysis
16. Lex. Semantics
17. WSDandlR
18. Discourse
20. Generation
21. Mach. Transl,

L Intro
2. Regex, FSA
3. Morph., FST
4. Comp. Phonol.
5. Prob. Pronun.
6. Ai-grams ;
7. HMMs&ASR
8. POS tagging
9. CFGs

10. Parsing
12. . Prob. Parsing
14. Semantics.
15. Sem. Analysis
19. Dialogue
21.. Mach. Transl.

1. Intro
2. Regex, FSA
3. Morph., FST
4. Comp. Phonol.

10. Parsing
11. Unification
13. Complexity
16. Lex. Semantics
18. Discourse
19. Dialogue

Selected chapters from the book could also be used to augment courses 
in Artificial Intelligence, Cognitive Science, or Information Retrieval.
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INTRODUCTION

Da ve Bowman: Open the pod bay doors, HAL. 
HAL: I’m sorry Dave, I’m afraid I can’t do that.

Stanley Kubrick and Arthur C. Clarke, 
screenplay of 2001: A Space Odyssey

The HAL 9000 computer in Stanley Kubrick’s film 2001: A Space 
Odyssey is one of the most recognizable characters in twentieth-century 
cinema. HAL is an artificial agent capable of such advanced language- 

; processing behavior as speaking and understanding English, and at a crucial 
moment in the plot, even reading lips. It is now clear that HAL’s creator 
.Arthur C. Clarke was a little optimistic in predicting when an artificial agent 
such as HAL would be available. But just how far off was he? What would 
it take to create at least the language-related parts of HAL? Minimally, such 
an agent would have to be capable of interacting with humans via language, 
which includes understanding humans via speech recognition and natural 
language understanding (and, of course, lip-reading), and of communicat­
ing with humans via natural language generation and speech synthesis. 
HAL would also need to be able to do information retrieval (finding out 
where needed textual resources reside), information extraction (extracting 
pertinent facts from those textual resources), and inference (drawing con- 
clusions based on known facts).

Although these problems are far from completely solved, much of the 
language-related technology that HAL needs is currently being developed, 
with some of it already available commercially. Solving these problems, 
and others like them, is the main concern of the fields known as Natural 
Language Processing, Computational Linguistics, and Speech Recognition 
and Synthesis, which together we call Speech and Language Processing. 
Tfie goal of this book is to describe the state of the art of this technology
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at the start of the twenty-first century. The applications we will consider 
are all of those needed for agents like HAL as well as other valuable areas 
of language processing such as spelling correction, grammar checking, 
information retrieval, and machine translation.

1.1 Knowledge in Speech and Language Processing

By speech and language processing, we have in mind those computational 
techniques that process spoken and written human language, as language. 
As we will see, this is an inclusive definition that encompasses everything 
from mundane applications such as word counting and automatic hyphen­
ation, to cutting edge applications such as automated question answering on 
the Web, and real-time spoken language translation.

What distinguishes these language processing applications from other 
data processing systems is their use of knowledge of language. Consider the 
Unix wc program, which is used to count the total number of bytes, words, 
and lines in a text file. When used to count bytes arid lines, wc is an ordinary 

f dataipfoceSSihgia^ However, when it is used to count the words 
in a file it requires Uztw/cdge nZwzfr what it means to be a word, and thus 
becomes a language processing system. -

Of course, wc is an extremely simple system with an extremely lim- 
i ited and impoverished knowledge of language? More-sophisticated language 

agents such as HAL require much broader and deeper knowledge of lan­
guage. To get a feeling for the scope and kind of knowledge required in 
more-sophisticated applications, consider some of what HAL would need to 
know to engage in the dialogue that begins this chapter.

To determine what Dave is saying, HAL must be capable of analyzing 
an incoming audio signal and recovering the exact sequence of words Dave 
used to produce that signal. Similarly, in generating its response. HAL must 
be able to take a sequence of words and generate an audio signal that Dave 
can recognize. Both of these tasks require knowledge about phonetics and 

t ? phonology, which can help model how Words are pronounced in colloquial 
speech (Chapters 4 and 5).

Note also that unlike Star Trek’s Commander Data, HAL is capable 
v ; of like I'm and can’t. Producing and recognizing

these and other variations of individual words (e.g., recognizing that doors is 
b plural) requires knowledge about morphology, which captures information 

about the shape and behavior of words in context (Chapters 2 and 3).
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Moving beyond individual words, HAL must know how to analyze the 
structure underlying Dave’s request. Such an analysis is necessary among 
other reasons for HAL to determine that Dave’s utterance is a request for 
action, as opposed to a simple statement about the world or a question about 
the door, as in the following variations of his original statement.

yyy HAL, the pod bay door is open.

L.HAL, is the pod bay door open?

In addition, HAL must use similar structural knowledge to properly string 
together the words that constitute its response. For example, HAL must 

i ;khdiy tfet the following sequence of words will not make sense to Dave, 
despite the fact that it contains precisely the same set of words as the original.

Pm I do, sorry that afraid Dave I’m can’t.

The knowledge needed to order and group words together comes under the 
heading of syntax.

Of course, simply knowing the words and the syntactic structure of 
what Dave said does not tell HAL much about the nature of his request. 
To know that Dave’s command is actually about opening the pod bay door, 
rather than an inquiry about the day’s lunch menu, requires knowledge of 
the meanings of the component words, the domain of lexical semantics, 
and knowledge of how these components combine to form larger meanings, 
compositional semantics

Next, despite its bad behavior, HAL knows enough to be polite to 
Dave It could, for example, have simply replied No or No, I won’t open 
the door. Instead, it first embellishes its response with the phrases I’m sorry 

afraid, and then only indirectly signals its refusal by saying I can’t, 
rather than the more direct (and truthful) I won’t.1 The appropriate use of this 
kind of polite and indirect language comes under the heading of pragmatics.

Finally, rather than simply ignoring Dave’s command and leaving the 
door closed, HAL chooses to engage in a structured conversation relevant 
to Dave’s initial request. HAL’s correct use of the word that in its answer 
to Dave’s request is a simple illustration of the kind of between-utterance 
device common in such conversations. Correctly structuring these such con­
versations requires knowledge of discourse conventions.

To summarize, the knowledge of language needed to engage in com­
plex language behavior can be separated into six distinct categories.

1 For (hose unfamiliar with HAL, it is neither sorry nor afraid, nor is it incapable of opening 
the door. It has simply decided in a fit of paranoia to kill its crew. :
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• Phonetics and Phonology — The study of linguistic sounds
• Morphology — The study of the meaningful components of words
• Syntax — The study of the structural relationships between words
• Semantics —- The study of meaning
• Pragmatics — The study of how language is used to accomplish goals
• Discourse — The study of linguistic units larger than a single utterance

1.2 Ambiguity

A perhaps surprising fact about the six categories of linguistic knowledge is 
that most or all tasks in speech and language processing can be viewed as 

ambiguity resolving ambiguity at one of these levels. We say some input i s ambiguous 
if there are multiple alternative linguistic structures than can be built for it. 
Consider the spoken sentence I made her duck. Here’s five different mean­
ings this sentence could have (there are more), each of which exemplifies an 
ambiguityatsomelevel:

(1.1) 1 cooked waterfowl for her.
(1.2) I cooked waterfowl belonging to her. : -

T (1.3) I created the (plaster?) duck she owns. .
(1.4) I caused her to quickly lower her head or body.
(1.5) I waved my magic wand and turned her into undifferentiated 

waterfowl.

wI These different meanings are caused by a number ofambiguities. ■ Fir st, the 
words duck and her are morphologically or syntactically ambiguous in their 
part-of-speech) Duck can be a verb or a noun, while her can be a dative 
pronoun or a possessive pronoun. Second, the word make is semantically 
ambiguous; it can mean create or cook. Finally, the verb make is syntacti­
cally ambiguous in a different way. Make can be transitive, that is, taking 
a single direct object (1.2). or it can be ditransitive, that is, taking two ob­
jects (1.5), meaning that the first object (Aer) got made into the second object 
(dmd^ can take a direct object and a verb (1.4), meaning that
the object (her) got caused to perform the verbal action (duck). Furthermore, 
in a spoken sentence, there is an even deeper kind of ambiguity; the first 
Word could have been eye dr the second word maid. ■ l w

< • We will often introduce the models and algorithms we present through­
out the book as ways to resolve or disambiguate these ambiguities. For
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example deciding whether duck is a verb or a noun can be solved by part- 
of-speech tagging. Deciding whether make means “create” or “cook” can 
be solved by word sense disambiguation. Resolution of part-of-speech and 
word sense ambiguities are two important kinds of lexical disambiguation. 
A wide variety of tasks can be framed as lexical disambiguation problems. 
For example, a text-to-speech synthesis system reading the word lead needs 
to decide whether it should be pronounced as in lead pipe or as in lead me 
on. By contrast, deciding whether her and duck are part of the same entity 
(as in (1.1) or (1.4)) or are different entity (as in (1.2)) is an example of 
syntactic disambiguation and can be addressed by probabilistic parsing. 
Ambiguities that don’t arise in this particular example (like whether a given 
sentence is a statement or a question) will also be resolved, for example by 

f speech act interpretation.

1.3 Models and Algorithms

One of the key insights of the last 50 years of research in language process­
ing is that the various kinds of knowledge described in the last sections can 
be captured through the use of a small number of formal models, or theo­
ries. Fortunately, these models and theories are all drawn from the standard 
toolkits of Computer Science, Mathematics, and Linguistics and should be 
generally familiar to those trained in those fields. Among the most important 
elements in this toolkit are state machines, formal rule systems, logic, as 
well as probability theory and other machine learning tools. These mod­
els, in turn, lend themselves to a small number of algorithms from well- 
known computational paradigms. Among the most important of these are 
state space search algorithms and dynamic programming algorithms.

In their simplest formulation, state machines are formal models that 
consist of states, transitions among states, and an input representation. Some 
of the variations of this basic model that we will consider are determinis­
tic and non-deterministic finite-state automata, finite-state transducers, 
which can write to an output device, weighted automata, Markov models, 
and hidden Markov models, which have a probabilistic component

Closely related to these somewhat procedural models are their declar­
ative counterparts: formal rule systems. Among the more important ones we 
will consider are regular grammars and regular relations, context-free 
grammars, feature-augmented grammars, as well as probabilistic vari­
ants of them all. State machines and formal rule systems are the main tools
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used when dealing with knowledge of phonology, morphology, and syntax.
The algorithms associated with both state-machines and formal rule 

systems typically involve a search through a space of states representing hy­
potheses about an input. Representative tasks include searching through a 
space of phonological sequences for a likely input word in speech recog­
nition, or searching through a space of trees for the correct syntactic parse 
of an input sentence. Among the algorithms that are often used for these 
tasks are well-known graph algorithms such as depth-first search, as well 
as heuristic variants such as best-first, and A* search. The dynamic pro­
gramming paradigm is critical to the computational tractability of many of 
these approaches by ensuring that redundant computations are avoided.

The third model that plays a Critical role in capturing knowledge of 
language is logic. We will discuss first order logic, also known as the pred­
icate calculus, as well as such related formalisms as feature-structures, se­
mantic networks, and conceptual dependency. These logical representations 
have traditionally been the tool of choice when dealing with knowledge of 
semantics, pragmatics, and discourse (although, as we will see, applications 
in these areas arc increasingly relying on the simpler mechanisms used in 
phonology, morphology, and syntax).

Probability theory isihc final clement in our set of techniques for cap­
turing linguistic knowledge. Each of the other models (state machines, for- 
mal rule systems, and logic) can be augmented with probabilities. One major 
use of probability theory islosolvc the many kinds of ambiguity problems 

iy c that we discussed earlier; almost any speech and language processing prob- 
Icm can bc recast as: '■given A' choices for some ambiguous input, choose 
the most probable one”.

Another major advantage of probabilistic models is that they arc one of 
a class of machine learning models. Machine learning research has focused 
on ways to automatically Icarn thc various representations described above; 
automata, rule systems, search heuristics, classifiers. These systems can be 

; trained on large corpora and ean be used as a powerful modeling technique, 
especially in places Where we don’t yet have good causal: models. Machine 

mphy learning algorithms will be described throughout the book.

1.4 Language, Thought, and Understanding

To many, the ability of computers to process language as skillfully as we do 
will signal the arrival of truly intelligent machines. The basis of this belief is
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the fact that the effective use of language is intertwined with our general cog­
nitive abilities. Among the first to consider the computational implications 
of this intimate connection was Alan Turing (1950). In this famous paper, 
Turing introduced what has come to be known as the Turing Test. Turing turingtest 

began with the thesis that the question of what it would mean for a machine 
to think was essentially unanswerable due to the inherent imprecision in the 
terms machine and think. Instead, he suggested an empirical test, a game, 
in which a computer’s use of language would form the basis for determin­
ing if it could think. If the machine could win the game it would be judged 
intelligent.

InTuring’s game, there are three participants: two people and a com­
puter. One of the people is a contestant and plays the role of an interrogator. 
To win, the interrogator must determine which of the other two participants 
is the machine by asking a series of questions via a teletype. The task of the 
machine is to fool the interrogator into believing it is a person by responding 
as a person would to the interrogator’s questions. The task of the second 
human participant is to convince the interrogator that the other participant is 

< the machine, arid that they are human.
The following interaction from Turing’s paper illustrates the kind of 

interactions he had in mind. Clearly a convincing simulation of humanity 
doesn’t require being an expert in all domains:

Q: Please write me a sonnet on the topic of the Forth Bridge.
A: Count me out on this one. I never could write poetry.
Q: Add 34957 to 70764.
A’ (Pause about 30 seconds and then give answer as) 105621.

Turing predicted that roughly by the end of the twentieth century a machine 
with 10 gigabytes of memory would have around a 30% chance of fooling a 
human interrogator after 5 minutes of questioning. Given the fact that you 
can fool some of the people all the time, it is not clear how rigorous this 
particular standard is. Nevertheless, the critical issue for Turing was that 
using language as humans do is sufficient, by itself, as an operational test for 
intelligence.

Surprisingly, many of the issues raised by Turing became relevant as 
early as 1966 in the context of the ELIZA program (Weizehbaum, 1966). 
ELIZA was an early natural language processing system capable of carry­
ing on a limited form of conversation with a user. Consider the following 
session with a version of ELIZA that imitated the responses of a Rogerian 
psychotherapist.
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Userj: You are like my father in some ways.
ELIZA j: WHAT RESEMBLANCE DO YOU SEE
Users: You are not very aggressive but I think you don’t want me to notice that. 
ELIZA2: WHAT MAKES YOU THINK I AM NOT AGGRESSIVE 
Users: You don't argue with me.
ELIZA3: WHYDO YOU THINK! DON’T ARGUE WITH YOU 
Usem:; You are afraid of me.
ELIZA4: DOES IT PLEASE YOU TO BELIEVE I AM AFRAID OF YOU

As we will discuss in more detail in Chapter 2. ELIZA is a remarkably sim­
ple program that makes use of pattern-matching to process the input and 
translate it into suitable outputs. The success of this simple technique in this 
domain is due to the fact that ELIZA doesn’t actually heed to know anything 
to mimic a Rogerian psychotherapist. As Wcizenbaum notes, this is one of 
the few dialogue genres w here the listener can act as if they know nothing of 
the world.

i ; ELIZA’S deep relevance to Turing’s ideas is that many people who in­
teracted with ELIZA came to believe that it really understood them arid their 
problems. Indeed. Weizenbaum (1976) notes that many of these people con­
tinued to believe in ELIZA’s abilities even after the program’s operation was 
explained to them. In more recent years, Wei zenbaunf sinformal reports 
have been repeated in a somewhat more controlled setting. Since 1991. an 
event known as the Locbner Prize competition has attempted to put various 
computer programs to the Turing test. Although these contests have proven 
to have little scientific interest, a consistent result over the years has been 
that even the crudest programs can fool some of the judges some of the time 
(Shiebcr, 1994). Not surprisingly, these results have done nothing to quell 
the ongoing debate over the suitability of the Turing test as a test for intelli­
gence among philosophers and AI researchers (Searle, 1980).

Fortunately, for the purposes of this book, the relevance of these results 
does riot hinge on whether or not computers will ever be intelligent, or un­
der stand natural language. Far more important is rccent related research in 
the social sciences that has corifirihed another of Turing’s predictions front 
the same paper.

■ , Nevertheless I believe that at the end of the century the use of 
y words and educated opinion will have altered so much that we 

j; w thinking without expecting to
be contradicted.

It is now clear that regardless of what people believe or know about the in­
ner workings of computers, they talk about them and interact with them as
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social entities. People act toward computers as if they were people; they are 
polite to them, treat them as team members, and expect among other things 
that computers should be able to understand their needs, and be capable of 
interacting with them naturally. For example, Reeves and Nass (1996) found 
that when a computer asked a human to evaluate how well the computer had 
been doing, the human gives more positive responses than when a different 
computer asks the same questions. People seemed to be afraid of being im­
polite. In a different experiment, Reeves and Nass found that people also 
give computers higher performance ratings if the computer has recently said 
something flattering to the human. Given these predispositions, speech and 
language-based systems may provide many users with the most natural inter- 
face for many applications. This fact has led to a long-term focus in the field 
on the design of conversational agents, artificial entities that communicate 
conversationally.

1.5 The State of the Art and the Near-Term
Future

We can only sec a short distance ahead, but we can see plenty there 
that needs to be done.

AlanTuring.

This is ait exciting time for the field of speech and language processing. 
The recent commercialization of robust speech recognition systems, and the 
rise of the Web, have placed speech and language processing applications in 
the spotlight, and have pointed out a plethora of exciting possible applica­
tions. The following scenarios serve to illustrate some current applications 
and near-term possibilities.
vF- A Canadian computer program accepts daily weather data and gener­

ates weather reports that are passed along unedited to the public in English 
and French (Chandioux,1976).

■ < : Th© Babel Fish translation system from Systran handles over 1,000,000
translation requests a day from the Alta Vista scare h engine site.

A visitor io Cambridge. Massachusetts, asks a computer about places 
to eat using only spoken language. The system returns relevant information 
from a database of facts about the local restaurant scene (Zue et al., 1991).

These scenarios represent just a few of applications possible given cur­
rent technology. The following, somewhat more speculative scenarios, give
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some feeling for applications currently being explored at research and devel­
opment labs around the world.

A computer reads hundreds of typed student essays and grades them \ 
in a manner that is indistinguishable from human graders (Landauer et al., 
1997).

An automated reading tutor helps improve literacy by having children 
read stories and using a speech recognizer to intervene when the reader asks < 
for reading help or makes mistakes (Mostow and Aist, 1999).

A computer equipped with a vision system watches a short video clip 
of a soccer match and provides an automated natural language report on the 
game (Wahlster, 1989).

A computer predicts upcoming words or expands telegraphic speech to 
assist people with a speech or communication disability (Newell et al., 1998; 
McCoy et al., 1998).

16 Some Brief History

Historically, speech and language processing has been treated very differ- ; 
ently in computer science, electrical engineering, linguistics, and psychol- 
bgy/cognitive science. Because of this diversity, speech and language pro­
cessing encompasses a number of different but overlapping fields in these 
different departments: computational linguistics in linguistics, natural lan­
guage processing in computer science, speech recognition in electrical en- y 
gineering, computational psycholinguistics in psychology. This section ; 
summarizes the different historical threads which have given rise to the field 
of speech and language processing. This section wiH provide only asketch; 
see the individual chapters for more detail on each area and its terminology. 0

Foundational Insights: 1940s and 1950s

The earliest roots of the field date to the intellectually fertile period just af­
ter World War II that gave rise to the computer itself. This period from the 
1940s through the end of the 1950s saw intense Work on two foundational ( 
paradigms: the automaton and probabilistic or information-theoretic

A the automaton arose in the 1950s out of Turing’s (1936) model of al- , 
gorithmic computation, considered by many to be the foundation of modern 
computer sciences Turing’s work led first to the McCulloch-Pitts neuron 
(McCulloch and Pitts, 1943), a simplified model of the neuron as a kind of
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r computing element that could be described in terms of propositional logic, 
and then to the work of Kleene (1951) and (1956) on finite automata andreg- 
ular expressions. Shannon (1948) applied probabilistic models of discrete 

? Maikov processes to automata for language. Drawing the idea of a finite- 
state Markov process from Shannon’s work, Chomsky (1956) first consid- 
cred finite-state machines as a way to characterize a grammar, and defined 
a finite-state language as a language generated by a finite-state grammar. 
These early models led to the field of formal language theory, which used 
algebra and set theory to define formal languages as sequences of symbols. 
This includes the context-free grammar, first defined by Chomsky (1956) for 
natural languages but independently discovered by Backus (1959) and Naur 
et at (1960) in their descriptions of the ALGOL programming language.

The second foundational insight of this period was the development of 
probabilistic algorithms for speech and language processing, which dates to 
Shannon’s other contribution: the metaphor of the noisy channel and de“ 
coding for the transmission of language through media like communication 
channels and speech acoustics. Shannon also borrowed the concept of en- 

4 tropy from thermodynamics as a way of measuring the information capacity 
of a channel, or the information content of a language, and performed the 
first measure of the entropy of English using probabilistic techniques .

It was also during this early period that the sound spectrograph was 
developed (Koenig et al., 1946), and foundational research was done in in- 
strumental phonetics that laid the groundwork for later work in speech recog­
nition. This led to the first machine speech recognizers in the early 1950s. In 
1952, researchers at Bell Labs built a statistical system that could recognize 
any of the 10 digits from a single speaker (Davis et al., 1952). The system 
had 10 speaker-dependent stored patterns roughly representing the first two 
vowel formants in the digits. They achieved 97-99% accuracy by choos­
ing the pattern which had the highest relative correlation coefficient with the 
input.

The Two Camps: 1957-1970

By the end of the 1950s and the early 1960s, speech and language processing 
had split very cleanly into two paradigms: symbolic and stochastic.

7% 7 The symbolic paradigm took off from two lines of research. The first 
was the work of Chomsky and others on formal language theory and genera­
tive syntax throughout the late 1950s and early to mid 1960s, and the work of 
many linguistics and computer scientists on parsing algorithms, initially top- 

7 down and bottom-up and then via dynamic programming. One of the earliest
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complete parsing systems was Zelig Harris’s Transformations and Discourse 
Analysis Project (TDAP), which was implemented between June 1958 and 
July 1959 at the University of Pennsylvania (Harris, 1962).2 The second line 
of research was the new field of artificial intelligence. In the summer of 1956 
John McCarthy, Marvin Minsky, Claude Shannon, and Nathaniel Rochester 
brought together a group of researchers for a two-month workshop on what 
they decided to call artificial intelligence (AI). Although AI always included 
a minority of researchers focusing on stochastic and statistical algorithms 
(include probabilistic models and neural nets), the major focus of the new 
field was the work on reasoning and logic typified by Newell and Simon’s 
work on the Logic Theorist and the General Problem Solver. At this point 
early natural language understanding systems were built. These were sim­
ple systems that worked in single domains mainly by a combination of pat­
tern matching arid key word search with simple heuristics for reasoning and 
question-answering. By the late 1960s more formal logical systems were 
developed.

7 The stochastic paradigm took hold mainly in departments of statistics 
and of electrical engineering. By the late 1950s the Bayesian method was be­
ginning to be applied to the problem of optical character recognition. Bled­
soe and Browning (1959) built a Bayesian system for text-recognition that 
used a large dictionary and computed the likelihood of each observed letter 
sequence given each word in the dictionary by multiplying the likelihoods 
for each letter. Mosteller and Wallace (1964) applied Bayesian methods to 
the problem of authorship attribution on The Federalist papers.

Thel960s also saw the rise of the first serious testable psychological 
models of human language processing based on transformational grammar, 
as well as the first on-line corpora: the Brown corpus of American English, 
a 1 million word collection of samples from 500 written texts:from different 
genres (newspaper, novels, non-fiction, academic, etc.), which was assem­
bled at Brown University in 1963-64 (Kucera and Francis, 1967; Francis, 
1979; Francis and Kucera, 1982), and William S. Y. Wang’s1967 DOC (Dic- 
tionary on Computer), an on-line Chinese dialect dictionary.

Four Paradigms: 1970-1983

The next period saw an explosion in research in speech and language pro­
cessing and the development. of a number of research paradigms that still 
dominate the field.

2 This system was reimplementcd recently and is described by Joshi arid Hopely (1999) 
and Karttunen (1999), who note that the parser was essentially implemented as a cascade of 
finite-state transducers.



Section 1.6. Some Brief History 13

stochastic paradigm played a huge role in the development of 
speech recognition algorithms in this period, particularly the use of the Hid- 
dcn Markov Model and the metaphors of the noisy channel and decoding, 
developed independently by Jelinek, Bahl, Mercer, and colleagues at IBM’s 
Thomas J. Watson Research Center, and by Baker at Carnegie Mellon Uni­
versity, who was influenced by the work of Baum and colleagues at the In­
stitute for Defense Analyses in Princeton. AT&T’s Bell Laboratories was 
also a center for work on speech recognition and synthesis; see Rabiner and 

; Juang ( for descriptions of the wide range of this work.
The logic-based paradigm was begun by the work of Colmerauer 

and his colleagues on Q-systems and metamorphosis grammars (Colmer­
auer, 1970, 1975), the forerunners of Prolog, and Definite Clause Grammars 
(Pereira and Warren, 1980). Independently, Kay’s (1979) work on functional 
grammar, and shortly later, Bresnan and Kaplan ’s (1982) work on LFG, es­
tablished the importance of feature structure unification.

The natural language understanding field took off during this pe­
riod, beginning with Terry Winograd’s SHRDLU system, which simulated a 
robot embedded in a world of toy blocks (Winograd, 1972a). The program 
was able to accept natural language text commands (Move the red block on 
top of the smaller green one) of a hitherto unseen complexity and sophisti­
cation. His system was also the first to attempt to build an extensive (for the 
time) grammar of English, based on Halliday’s systemic grammar. Wino- 
giad’s model made it clear that the problem of parsing was well-enough 
understood to begin to focus on semantics and discourse models. Roger 
Schank and his colleagues and students (in what was often referred to as 
ttie Yale School) built a series of language understanding programs that fo­
cused on human conceptual knowledge such as scripts, plans and goals, and 
human memory organization (Schank and Albelson, 1977; Schank and Ries­
beck, 1981; Cullingford, 1981; Wilensky, 1983; Lehnert, 1977). This work 
often used network-based semantics (Quillian, 1968; Norman and Rumel- 
hart, 1975; Schank, 1972; Wilks, 1975c, 1975b; Kintsch, 1974) and began 
to incorporate Fillmore’s notion of case roles (Fillmore, 1968) into their rep­
resentations (Simmons, 1973).

The logic-based and natural-language understanding paradigms were 
unified on systems that used predicate logic as a semantic representation, 
such as the LUNAR question-answering system (Woods, 1967, 1973).

Thediscourse modeling paradigm focused on four key areas in dis­
course. Grosz and her colleagues introduced the study of substructure in 
discourse, and of discourse focus (Grosz, 1977a; Sidner, 1983), a number of
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researchers began to work on automatic reference resolution (Hobbs, 1978), 
and the BDI (Belief-Desire-Intention) framework for logic-based work on 
speech acts was developed (Perrault and Allen, 1980; Cohen and Perrault, 
1979).

Empiricism and Finite State Models Redux: 1983-1993

This next decade saw the return of two classes of models which had lost 
popularity in the late 1950s and early 1960s, partially due to theoretical 
arguments against them such as Chomsky’s influential review of Skinner’s 
Verbal Behavior (Chomsky, 1959b). The first class was finite-state models, 
which began to receive attention again after work on finite-state phonology 
and morphology by Kaplan and Kay (1981) and finite-state models of syn- ' 
tax by Church (1980). A large body of work on finite-state models will be 
described throughout the book.

The second trend in this period was what has been called the “return of 
empiricism”; most notably here was the rise of probabilistic models through­
out speech and language processing, influenced strongly by the work at the 

TBM Thomas J. Watson Research Center on probabilistic models of speech ; 
recognition. These probabilistic methods and other such data-driven ap­
proaches spread into parrot-speech tagging, parsing and attachment ambi- 
guides, and conncctionisi approaches from speech recognition to semantics.

T This period also saw considerable work on natural language generation.

The Field Comes Together: 1994-1999

By the last five years of the millennium it was clear that the field was vastly I 
changing. First, probabilistic and data-driven models had become quite stan- 
dardthroughout natural language processing. Algorithms for parsing, part- 
of-speech tagging; reference resolution, and discourse processing all began ; 
to incorporate probabilities, and employ evaluation methodologies borrowed 
from speech recognition and information retrieval. Second, the increases in 
the speed and memory of computers had allowed commercial exploitation 
of a number of subareas of speech and language processing, in particular 
speech recognition and spelling and grammar checking. Speech and lan­
guage processing algorithms began to be applied to Augmentative and Al- U 
ternative Communication (AAC). Finally, the rise of the Web emphasized the 
heed for language-based information retrieval and information extraction.
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Ort Multiple Discoveries

Even in this brief historical overview, we have mentioned a number of cases 
of multiple independent discoveries of the same idea. Just a few of the “mul­
tiples” to be discussed in this book include the application of dynamic pro­
gramming to sequence comparison by Viterbi, Vintsyuk, Needleman and 
WujiSehi'Sakoe and Chiba, Sankoff, Reichert et al., and Wagner and Fischer 
(Chapters 5 arid 7); the HMM/noisy channel model of speech recognition 
by Baker and by Jelinek, Bahl, and Mercer (Chapter 7); the development 
of context-free grammars by Chomsky and by Backus and Naur (Chapter 
9); the proof that Swiss-German has a non-context-frec syntax by Huybregts 
and by Shieber (Chapter 13); the application of unification to language pro­
cessing by Colmerauer et al. and by Kay in (Chapter 11).

Are these multiples to be considered astonishing coincidences? A 
well-known hypothesis by sociologist of science Robert K. Merton (1961) 
argues, quite the contrary, that

all scientific discoveries are in principle multiples, including those 
that on the surface appear to be singletons.

Gf bourse there are many well-known cases of multiple discovery or inven­
tion; just a few examples from an extensive list in Ogburn and Thomas 
(1922) include the multiple invention of the calculus by Leibnitz and by 
Newton, the multiple development of the theory of natural selection by Wal­
lace and by Darwin, and the multiple invention of the telephone by Gray 
and Bell? But Merton gives an further array of evidence for the hypothesis 
that multiple discovery is the rule rather than the exception, including many 
cases of putative singletons that turn out be a rediscovery of previously un­
published or perhaps inaccessible work. An even stronger piece of evidence 
is his ethnomethodological point that scientists themselves act under the as­
sumption that multiple invention is the norm. Thus many aspects of scientific 
hfe are designed to help scientists avoid being “scooped”; submission dates 
on journal articles; careful dates in research records; circulation of prelimi­
nary or technical reports.

3 Ogburn and Thomas are generally credited with noticing that the prevalence of multiple 
inventions suggests that the cultural milieu and not individual genius is the deciding causal 
factor in scientific discovery. In ah amusing bit of recursion, however, Merton notes that even 

discovered, citing sources from the 19th century and earlier!
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A Final Brief Note on Psychology

Many of the chapters in this book include short summaries of psychological 
research on human processing. Of course, understanding human language 
processing is an important scientific goal in its own right and is part of the 
general field of cognitive science. However, an understanding of human lan­
guage processing can often be helpful in building better machine models 
of language. This seems contrary to the popular wisdom, which holds that 
direct mimicry of nature’s algorithms is rarely useful in engineering appli­
cations. For example, the argument is often made that if we copied nature 
exactly, airplanes would flap their wings; yet airplanes with fixed wings are a 
more successful engineering solution. But language is not aeronautics. Crib­
bing from nature is sometimes useful for aeronautics (after all, airplanes do 
have wings), but it is particularly useful when we are trying to solve human­
centered tasks. Airplane flight has different goals than bird flight; but the 
goal of speech recognition systems, for example, is to perform exactly the 
task that human court reporters perform every day: transcribe spoken dia­
log.: Since people already do this well, we can learn from nature’s previous 
solution. Since an important application of speech and language processing 
systems is for human-computer interaction, it makes sense to copy a solution 
that behaves the way people arc accustomed to.

1.7 Summary

This chapter introduces the field of speech and language processing. The 
following arc some of the highlights of this chapter.;

• A good way to understand the concerns of speech and language pro­
cessing research is to consider what it would take to create an intelli- 
gent agent like HAL from 2001: A Space Odyssey.

A A • Speech and language technology relies on formal'models, or repre­
sentations, of knowledge of language at the levels of phonology and 
phonctics.nmrphology, syntax, semantics, pragmatics and discourse. 
A small number of formal models including state machines, formal 
rule systems, logic, and probability theory are used to capture this 
knowledge.

• The foundations of speech and language technology lie in computer 
science, linguistics, mathematics, electrical engineering and psychol­
ogy. A small number of algorithms from standard frameworks are used
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.Lr throughout speech and language processing,
• The critical connection between language and thought has placed speech 

y'.-'A and language processing technology at the center of debate over intel­
ligent machines. Furthermore, research on how people interact with 
complex media indicates that speech and language processing technol- 

yf ogy will be critical in the development of future technologies.
C'CA Revolutionary applications of speech and language processing are cur- 

. rently in use around the world. Recent advances in speech recognition 
and the creation of the World-Wide Web will lead to many more appli- 
cations.

Bibliographical and Historical Notes

Research in the various subareas of speech and language processing is spread 
across a wide number of conference proceedings and journals. The con­
ferences and journals most centrally concerned with computational linguis- 

; tics and natural language processing are associated with the Association for
Computational Linguistics (ACL), its European counterpart (EACL), and the 
International Conference on Computational Linguistics (COLING). The an­
nual proceedings of ACL and EACL, and the biennial COLING conference 
are the; primary forums for work in this area. Related conferences include 
the biennial conference on Applied Natural Language Processing (ANLP) 
and the conference on Empirical Methods in Natural Language Processing 

y (EMNLaP). The journal Computational Linguistics is the premier publica­
tion in the field, although it has a decidedly theoretical, and linguistic ori­
entation. The journal Natural Language Engineering covers more practical 

< < applications of speech and language research.
Research on speech recognition, understanding, and synthesis is pre­

sented at the biennial International Conference on Spoken Language Pro­
cessing (ICSLP) which alternates with the European Conference on Speech 
Communication and Technology (EUROSPEECH). The IEEE International 
Conference on Acoustics, Speech, and Signal Processing (IEEE ICASSP) 
is held annually, as: is the meeting of the Acoustical Society of America.

A Speech journals include Speech Communication, Computer Speech and Lan- 
y guage, and the IEEE Transactions on Pattern Analysis and Machine Intelli­

gence. .
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Work on language processing from an Artificial Intelligence perspec­
tive can be found in the annual meetings of the American Association for 
Artificial Intelligence (AAAI), as well as the biennial International Joint 
Conference on Artificial Intelligence (IJCAI) meetings. The following arti­
ficial intelligence publications periodically feature work on speech and lan­
guage processing: Artificial Intelligence, Computational Intelligence, IEEE 
Transactions on Intelligent Systems, and the Journal of Artificial Intelligence 
Research. Work on cognitive modeling of language can be found at the an­
nual meeting of the Cognitive Science Society, as Well as its journal Cogni­
tive Science. An influential series of invitation-only workshops was held by 
ARPA, called variously the DARPA Speech and Natural Language Process­
ing Wo rkshop Or the ARPA Workshop on Human Language Technology.

There are a fair number of textbooks available covering various aspects 
of speech and language processing. Manning and Schfr ze (1999) (Founda­
tions of Statistical Language Processing) focuses on statistical models of 
tagging, parsing, disambiguation, collocations, and other areas. Charniak 
(1993) (Statistical Language Learning) is an accessible, though older and 
less-extensive, introduction to similar material. Allen (1995') (Natural Lan- 

) gadget Understanding) provides extensive coverage of language processing 
from the Al perspective. Gazdar and Mellish ()9S9) (Natural Language Pro­
cessing inLisp/Prolog) covers especially automata, parsing, features, and 
unification. Pereira and Shiebcr (1987) gives a Prolog-based introduction to 
parsing and interpretation. Russell and Norvig (1995) is an introduction to 
artificial intelligence that includes chapters on natural language processing. 
Partee ct al. (1990) has a very broad coverage of mathematical linguistics. 
Cole (1997) is a volume of survey papers covering the entire field of speech 
arid language processing. A somewhat dated but still tremendously useful 
collection of foundational papers can be found in Grosz el al. (1986) (Read­
ings in Natural Language Processing).

Of course, a wide-variety of speech and language processing resources 
are now available on the World-Wide Web. Pointers to these resources are 
maintained on the home-page for this book at:

• hfibp: //www. cs . col orado. edu/"'meirt 11)/s'! p. hfmi.



Part I
WORDS

Words are the fundamental building block of language. Every human 
language, spoken, signed, or written, is composed of words. Every 
area of speech and language processing, from speech recognition to 
machine translation to information retrieval on the Web, requires ex- 
tensive knowledge about words. Psycholinguistic models of human 
language processing and models from generative linguistics are also 
heavily based on lexical knowledge.

The six chapters in this part introduce computational models 
of the spelling, pronunciation, and morphology of words and cover 
three important real-world tasks that rely on lexical knowledge: auto­
matic speech recognition (ASR), text-to-speech synthesis (TTS), and 
the correction of spelling errors. Finally, these chapters define per- 
hapsthcinost important computational model for speech and lan­
guage processing: the automaton. Four kinds of automata are cov­
ered: finite-state automata (FSAs) and regular expressions, finite-state 
transducers (FSTs), weighted transducers, and the Hidden Markov 
Model (HMM), as well as the A-gram model of word sequences.



REGULAR EXPRESSIONS
AND AUTOMATA

hi the old days, if you wanted to impeach a witness you had to go 
back and fumble through endless transcripts. Now it’s on a screen 
somewhere or on a disk and 1 can search for a particular word — 
say every time the witness used the word glove -— and then quickly 
ask a question about what he said years ago. Right away you see 
the w itness get flustered.

Johnnie f . Cochran Jr., attorney, New York Times. 9/28/97

Imagine that you have become a passionate fan of woodchucks. De­
siring more information on this celebrated woodland creature, you turn to 
your favorite Web browser arid type in woodchuck: Your browser returns 
a few sites. You have a flash of inspiration and type in woodchucks. This 
time you discover “interesting links; to woodchucks and lemurs” and “all 
about Vermont’s unique, endangered species”. Instead of having to do this 
search twice, you would have rather typed one search command specifying 
something like woodchuck with an optional final s. Furthermore, you might 
want to find a site whether or not it spelled woodchucks with a capital W 
(Woodchuck). Or perhaps you might want to search for all the prices in some 
document; you might want to see all strings that look like $199 or $25 or 
$24.99/ In this chapter we introduce the regular expression, the standard 
notation for characterizing text sequences. The regular expression is used 
for specifying text strings in situations like this Web-search example, and in 
other information retrieval applications, but also plays an important role in 
word-processing (in PC, Mac, or UNIX applications), computation of fre- 
quencics from corpora, and other such tasks.

After we have defined regular expressions, we show how they can be 
implemented via the finite-state automaton. The finite-state automaton is 
not only the mathematical device used to implement regular expressions, but
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also one of the most significant tools of computational linguistics. Variations 
of automata such as finite-state transducers, Hidden Markov Models, and 
V-gram grammars are important components of the speech recognition and 
synthesis, spell-checking, and information-extraction applications that we 
will introduce in later chapters.

2.1 Regular Expressions

SIR ANDREW: Her C’s, her U’s and her T’s: why that?
Shakespeare, Twelfth Night

One of the unsung successes in standardization in computer science 
expaeBon has been the regular expression (RE), a language for specifying text search 

strings. The regular expression languages used for searching texts in UNIX 
(vi, Perl, Emacs, grep), Microsoft Word (version 6 and beyond), and Word­
Perfect are almost identical, and many RE features exist in the various Web 
search engines. Besides this practical use, the regular expression is an im- 

■ ■ portant theoretical tool throughout computer science and linguistics. j
A regular expression (first developed by Kleene (1956) but see the His- 

lory section for more details) is a formula in a special language that is used ; 
strings for specifying simple classes of strings. A string is a sequence of symbols; i 

for the purpose of most text-based search techniques, a string is any sequence | 
of alphanumeric characters (letters, numbers, spaces, tabs, and punctuation). 
For these purposes a space is just a character like any other, and we represent 
it with the symbol

Formally, a regular expression is an algebraic notation for characteriz­
ing a set of strings. Thus they can be used to specify search strings as well as 
to define a language in a formal way. We will begin by talking about regular 
expressions as a way of specifying searches in texts, and proceed to other 
uses. Section 2.3 shows that the use of just three regular expression opera­
tors is sufficient(to characterize strings, but we use the more convenient and I 
cbmmonlymsed regular expression syntax of the Perl language throughout 
this section. Since common text-processing programs agree on most of the I 
syntax of regular expressions, most of what we say extends to all UNIX, Mi- j 
crosoft Word, and WordPerfect regular expressions. Appendix A shows the 
few areas where these programs differ from the Perl syntax. I

Regular expression search requires a pattern that we want to search f 
corpus for. and a corpus of texts to search through. A regular expression search
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/function will search through the corpus returning all texts that contain the 
| pattern. In an information retrieval (IR) system such as a Web search engine, 

the texts might be entire documents or Web pages. In a word-processor, the 
texts might be individual words, or lines of a document. In the rest of this 
chapter, we will use this last paradigm. Thus when we give a search pattern, 
we will assume that the search engine returns the line of the document re­
turned. This is what the UNIX grep command does. We will underline the 
exact part of the pattern that matches the regular expression. A search can be 
designed to return all matches to a regular expression or only the first match. 
We will show only the first match.

Wsic Regular Expression Patterns

The simplest kind of regular expression is a sequence of simple characters. 
For example, to search for woodchuck, we type /woodchuck/. So the reg­
ular expression /Buttercup/ matches any string containing the substring 
Buttercup, for example the line I’m called little Buttercup') (recall that we 
are assuming a search application that returns entire lines). From here on 
we willput slashes around each regular expression to make it clear what is 
a regular expression and what is a pattern. We use the slash since this is the 
notation used by Perl, but the slashes are not part of the regular expressions. 
/ /. The search string can consist of a single letter (like / ! /) or a sequence 

of letters (like /urgl/); The/fix/ instance of each match to the regular ex­
pression is underlined below (although a given application might choose to 
return more than just the first instance):

RE Example Patterns Matched
/woodchucks/ ■:

//a7?; :

/Cl air essays,/

/song/
Ii7d/;

“interesting links to woodchucks and lemurs’ ’
“Mary Ann stopped by Mona’s”
“Dagmar, my gift please,” Claire says,”
“all our pretty songs”
“You’ve left the burglar behind again!” said Nori

Regular expressions are case sensitive; lowercase / s7 is distinct from 
uppercase / S/; (/s/ matches a lower case s but not an uppercase S). This 
means that the pattern /woodchucks/ will not match the string Wood­
chucks. We can solve this problem with the use of the square braces [ and ]. 
The string of characters inside the braces specify a disjunction of characters 
to match. For example Figure 2.1 shows that the pattern ./ [ wW] / matches 
patterns containing either w or IV.



24 Chapter 2. Regular Expressions and Automata

RE Match Example Patterns
/[wW]oodchuck/ 
/[abc]/

/ [1234567890] /

Woodchuck or woodchuck 
‘a’, ‘b’, or ‘c’ 
any digit

“Woodchuck”
“In uomini, in soldati” 
“plenty of 7 to 5”

Figure 2.1 The use of the brackets [] to specify a disjunction of characters.

The regular expression / [1234567890]/specified any single digit. 
While classes of characters like digits or letters are important building blocks 
in expressions, they can get awkward (e.g., it’s inconvenient to specify

/[ABCDEFGHIJKLMNOPQRSTUVWXYZ]/

to mean “any capital letter”). In these cases the brackets can be used with 
range the dash (-) to specify any one character in a range. The pattern / [2- 

5 ] / specifies any one of the characters 2, 3. 4, or 5. The pattern / [b-g]7 
specifies one of the characters b, c,d, e,f, or g. Some other examples:

RE Match . / Example Patterns Matched
:ZIA-Z]/ 

/[a-z]/ 

/[C-92/

an uppercase letter 
a lowercase letter 
a single digit

“we should call it ‘Drenched Blossoms’” 
“my beans were impatient to be hoed!” 
“Chapter I: Down the Rabbit Hole”

Figure 2.2 The use of the brackets [ ] plus the dash - to specify a range.

The square braces can also be used to specify what a single charac­
ter cannot be, by use of the caret If the caret ~ is the first symbol after 
the open square brace [, the resulting pattern is negated. For example, the 
pattern / [' a 17 matches any single character (including special characters) 
except a. This is only true when the caret is the first symbol after the open 
square brace. If it occurs anywhere else, it usually stands for a caret; Fig­
ure 2.3 shows some examples.

RE Match (single characters) Example Patterns Matched
not an uppercase letter “Oyfn pripetchik”

[\Ss] neither ‘S’ nor ‘s’ “I have no exquisite reason for’t”
hot a period “our resident Djinn”
either ‘e’ or “look up 1 now”

abb the pattern‘abb’ “look up a" b now”

Figure2.3 Uses of the caret " for negation or just to mean ~ .
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The use of square braces solves our capitalization problem for wood­
chucks. But we still haven’t answered our original question; how do we 
specify both woodchuck and woodchucks? We can’t use the square brack­
ets, because while they allow us to say “s or S”, they don’t allow us to say 
‘s or nothing”. For this we use the question-mark / ?/, which means “the 

preceding character or nothing”, as shown in Figure 2.4.

RE Match Example Patterns Matched
woodchucks ? 
co Lou?r

woodchuck or woodchucks 
color or colour

“woodchuck” 
“colour”

Figure 2.4 The question-mark ? marks optionality of the previous expres­
sion.

We can think of the question-mark as meaning “zero or one instances 
of the previous character”. That is, it’s a way of specifying how many of 
something that wc want. So far we haven’t needn’t to specify that we want 

; more than one of something. But sometimes we need regular expressions 
that allow repetitions of things. For example, consider the language of (cer­
tain) sheep, which consists of strings that look like the following:

baa!
baaa.'
baaaa!
baaaaa!
baaaaaa!

This language consists of strings with a b, followed by at least two as, 
followed by an exclamation point. The set of operators that allow us to say 
things like “some number of os” are based on the asterisk or * , commonly 
called the Kleene * (pronounced “cleany star”). The Kleene star means kleene* 
“zero or more occurrences of the immediately previous character or regular 
expression”. So /a*/ means “any string of zero or more as”. This will 
match a or aaaaaa but it will also match Off Minor, since the string Off 
Minor has zero os. So the regular expression for matching one or more a is 
,/cia * /, meaning one a followed by zero or more as. More complex patterns 
can also be repeated. So: / [ ab ] * / means “zero or more as or bs” (not “zero 
or more right square braces”). This will match strings like aaaa or ababab 
or bbbb.
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We now know enough to specify part of our regular expression for A 
prices: multiple digits. Recall that the regular expression for an individual A 
digit was / [ 0 - 9 ] /. So the regular expression for an integer (a string of 
digits) is / [0-9] [0-9] */. (Why isn’t it just / [0-9] */)?

Sometimes it’s annoying to have to write the regular expression for dig- 0 
its twice, so there is a shorter way to specify “at least one” of some character. ] 

kleene + This is the Kleene +, which means “one or more of the previous character”. ) 
Thus the expression / [ 0 - 9 ]+/ is the normal way to specify “a sequence of A 
digits”. There are thus two ways to specify the sheep language: /baaa* 1 / A 
or /baa+ ! I. '

One very important special character is the period (/. /, a wildcard A 
expression that matches any single character (except a carriage return):

RE Match Example Patterns
/beg.r./ any character between beg and n begin, beg’n, begun

Figure 2.5 9 The use of the period . to specify any character.

The wildcard is often used together with the Kleene star to mean “any 
string of characters”. For example suppose we want to find any line in which 9 
a particular word, for example aardvark, appears twice. We can specify this ? 
with the regular expression / aardvark.* aardvark/. . <:.

anchors Anchors are special characters that anchor regular expressions to par- ]
ticular places in a string. The most common anchors are the caret ~ and the A 
dollar-sign $. The caret ~ matches the start of a line. The pattern / "The/ 
matches the word The only at the start of a line. Thus there are three uses 
of the caret ": to match the start of a line, as a negation inside of square ■ 
brackets, and just to mean a caret. (What are the contexts that allow Perl ro 
know which function a given caret is supposed to have?). The dollar sign $ 
matches the end of a line. So the pattern is a useful pattern for matching 
a space at the end of a line, and / " The dog \ . $ / matches a fine that con- 
tains only the phrase The dog. (We have to use the backslash here since we A 
want the . to mean “period” and not the wildcard).

There are also two other anchors: \ b matches a word boundary, whilei k 
\B matches a non-boundary. Thus / \bthe\b/ matches the word the but 
not the word other. More technically, Perl defines a word as any sequence 
of digits, underscores or letters; this is based on the definition of “words” 
in programming languages like Perl or C. For example, / \b9 9 / will match 
the string 99 in there are 99 bottles of beer on the wall (because 99 follows
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a space) but not 99 in There are 299 bottles of beer on the wall (since 99 
follows a number). But it will match 99 in $99 (since 99 follows a dollar 
sign ($), which is not a digit, underscore, or letter).

Disjunction, Grouping, and Precedence

Suppose we need to search for texts about pets; perhaps we are particularly 
interested in cats and dogs. In such a case we might want to search for either

3 the string cat or the string dog. Since we can’t use the square-brackets to 
search for “cat or dog” (why not?) we need a new operator, the disjunction disjunction 

operator, also called the pipe symbol I. The pattern /cat! dog/ matches 
either the string cat or the string dog.

Sometimes we need to use this disjunction operator in the midst of 
a larger sequence. For example, suppose I want to search for information 
about pet fish for my cousin David. How can I specify both guppy and 
guppies I We cannot simply say /guppy I ies/, because that would match 
only the strings guppy and ies. This is because sequences like guppy take

/ precedence over the disjunction operator I. In order to make the disj unction precedence 

operator apply only to a specific pattern, we need to use the parenthesis 
operators ( and ). Enclosing a pattern in parentheses makes it act like a 
single character for the purposes of neighboring operators like the pipe I 
and the Kleene*. So the pattern /gupp (y I ies) / would specify that we 
meant the disjunction only to apply to the suffixes y and ies.

The parenthesis operator ( is also useful when we are using counters 
like the Kleene*. Unlike the I operator, the Kleene* operator applies by 
default only to a single character, not a whole sequence. Suppose we want 
to match repeated instances of a string. Perhaps we have a line that has 
column labels of the form Column 1 Column 2 Column 3. The expression 

M^Col [ 0 -9 ] +u*/ will not match any column; instead, it will match
a column followed by any number of spaces! The star here applies only to 
the space that precedes it, not the whole sequence. With the parentheses, 
we could write the expression / (Column^[0-9] +,_,*) */ to match the 
word Column, followed by a number and optional spaces, the whole pattern 
repeated any number of times.

This idea that one operator may take precedence over another, requir­
ing us to sometimes use parentheses to specify what we mean, is formalized 
by the operator precedence hierarchy for regular expressions. The follow- ^ecedence 

mg table gives the order of RE operator precedence, from highest precedence 
to lowest precedence:
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Parenthesis ()
Counters * + ? {}
Sequences and anchors the "my end$
Disjunction I

Thus, because counters have a higher precedence than sequences,
/ the* / matches theeeee but not thethe. Because sequences have a higher 
precedence than disjunction, I the I any / matches the or any but not theny.

Patterns can be ambiguous in another way. Consider the expression 
/ [a-z] *7 when matching against the text once upon a time. Since I [a- 
z ] * / matches zero or more letters, this expression could match nothing, or 
just the first letter a, or bn, or one, or once. In these cases regular expressions 

greedy always match the largest string they can; we say that patterns are greedy, 
expanding to cover as much of a string as they can.

A Simple Example

Suppose we wanted to write a RE to find cases of the English article the. A 
simple (but incorrect) pattern might be:

.;77 < ■ y '■ '77'7^

One problem is that this pattern will miss the word when it begins 
a sentence and hence is capitalized (i.e., The'). This might lead us to the 
following pattern:

?7777Wi^ .

But we will still incorrectly return texts with the embedded in other 
words (e.g., other or theology). So we need to specify that we want instances 
with a word boundary on both sides:

7 7 ■ 7 / T'y 7;7' .7 -7..'.

S uppose we wanted to do this without the use of / \b / ? We might 
want this since / \b/ won’t treat underscores and numbers as word bound­
aries; but we might want to find the in some context where it might also have 
underlines or numbers nearby (the- or the25). We need to specify that we 
want instances in which there are no alphabetic letters oh either side of the 
the'. Tyy-'y-'y 7 "7 ; ;

/["a-zA-Z][tTjhef"a-zA-Z}[
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But there is still one more problem with this pattern: it won’t find the 
word the when it begins aline. This is because the regular expression [ "a- 
zA-Z], which we used to avoid embedded thes, implies that there must be 
some single (although non-alphabetic) character before the the. We can 
avoid this by specifying that before the the we require either the beginning- 
of-line or a non-alphabetic character:

. /(i T'a-zA-Z])[tT]he["a-zA-ZJ/

A More Complex Example

Let’s try out a more significant example of the power of REs. Suppose we 
want to build an application to help a user buy a computer on the Web. The 
user might want “any PC with more than 500 MHz and 32 Gb of disk space 
for less than $1000”. In order to do this kind of rettieval we will first need 
to be able to look for expressions like 500 MHz or 32 Gb or Compaq or Mac 
or $999.99. In the rest of this section we’ll work out some simple regular 
expressions for this task.

First, let’s complete our regular expression for prices. Here’s a regular 
expression for a dollar sign followed by a string of digits. Note that Perl is 
smart enough to realize that $ here doesn’t mean end-of-line; how might it 
know that?

Now we just need to deal with fractions of dollars. We’ll add a decimal 
point and two digits afterwards:

/S[0-9!. 10-9] L0-9 J/ 7

This pattern only allows $199.99 but not $199. We need to make the 
cents optional, and make sure we’re at a word boundary:

7 \b $ [ 0 - 9 ] + ( \ . [ 0 - 9 ] [ 0 - 9 ] ) ? \b /

How about specifications for processor speed (in megahertz = MHz or 
gigahertz = GHz)? Here’s a pattern for that:

/\b [0-9] +7:K:z I [Mm] egahertz I GHz I [Gg] igahertz) \b/

Note that we use // to mean “zero or more spaces”, since there 
might always be extra spaces lying around. Dealing with disk space (in Gb 
= gigabytes), or memory size (in Mb = megabytes or Gb = gigabytes), we
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need to allow for optional gigabyte fractions again (5.5 Gb). Note the use of | 
? for making the final s optional:

/\b[0-9]+u*(MbI [Mm]egabytes?) \b/ -y | 
/\b[0-9](\.[0-9] +)?,_,* (GbI[Gg]igabytes?)\b/

Finally, we might want some simple patterns to specify operating sys- I
terns and vendors: i 1

/\b(Win95IWin98I WinNT I Windows^*(NT I 95 I 98 12000)?)\bZ 
/\b(Mac I Macintosh I Apple)\b/

Advanced Operators

RE Expansion Match Example Patterns
Ad [ 0-9] any digit Party ^of^S
\D any non-digit Blue^moon

: \W J [a- zA- ZO-9^ j any alphanumeric or space Daiyu
: \W; [X\W].: yAy a non-alphanumeric Hl!
\ s V [^XrVLXnXf] whitespace (space, tab)
vs ['As] Non-whitespace in^Concord

Figure 2.6 Aliases for common sets of characters.

There are also some useful advanced regular expression operators. Fig­
ure2.6 shows some useful aliases for common ranges, which can be used 
mainly to save typing. Besides the Kleene * and Kleene +, we can also use 
explicit numbers as counters, by enclosing them in curly brackets. The reg­
ular expression / {3 } / means “exactly 3 occurrences of the previous char­
acter or expression”. So /a\ . {24}z/ will match a followed by 24 dots 
followed by z (but not a followed by 23 or 25 dots followed by a z).

A range of numbers can also be specified; so / {n, m} / specifies from 
n to m occurrences of the previous char or expression, while / {n, } / means 
at least n occurrences of the previous expression. REs for counting are sum- 
marized in Figure 2.7. \

Finally, certain special characters are referred to by special notation 
newline based on the backslash (\). The most common of these are the newline 

character \h and the tab character \ t. To refer to characters that are special 
themselves, (like ., [, and \), precede them with a backslash, (i.e., I \. /,

.. /\[Zv

' /«
.•?

. -Ulk* .
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RE Match
zero or more occurrences of the previous char or expression
one or more occurrences of the previous char or expression

/? exactly zero or one occurrence of the previous char or expression
An} n occurrences of the previous char or expression
Tn, m} from n to m occurrences of the previous char or expression
V, } at least n occurrences of the previous char or expression

Figure 2.7 Regular expression operators for counting.

RE Match Example Patterns Matched
./X* an asterisk “K*A*P*L*A*bT
O a period "Dr. Livingston, I presume”

a question mark “Would you light my candle?”
\n a newline

I\t a tab

Figure 2.8 Some characters that need to be backslashed.

1 ' The reader should consult Appendix A for further details of regular 
expressions, and especially for the differences between regular expressions 
in Perl, UNIX, and Microsoft Word.

Regular Expression Substitution, Memory, and ELIZA

An important use of regular expressions is in substitutions. For example, the substitution 

Perl substitution operator s/regexpl / regexp2 / allows a string charac- 
terized by one regular expression to be replaced by a string characterized by 
a different regular expression:

s/col ou r/colorz\

It is often useful to be able to refer to a particular subpart of the string 
matching the first pattern. For example, suppose we wanted to put angle 
brackets around all integers in a text, changing e.g., the 35 boxes to the <35> 
boxes. We’d like a way to refer back to the integer we’ve found so that we 
can easily add the brackets. To do this, we put parentheses ( and ) around 
the first pattern, and use the number operator \1 in the second pattern to 
refer hack. Here’s how it looks:
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The parenthesis and number operators can also be used to specify that 
a certain string or expression must occur twice in the text. For example, / 
suppose we are looking for the pattern “the Xer they were, the Xer they will 
be”, where we want to constrain the two X’s to be the same string. We do 
this by surrounding the first X with the parenthesis operator, and replacing 
the second X with the number operator \ 1, as follows:

/the (,*)er they were, the \ler they will be/

Here the \1 will be replaced by whatever string matched the first item in . H 
parentheses. So this will match The bigger they were, the bigger they will be 
but not The bigger they were, the faster they will be.

The number operator can be used with other numbers: if you match 
two different sets of parenthesis, \2 means whatever matched the second / 
set. For example if

/the (.*)er they (.*), the \ler they \27 .77
will match The bigger they were, the bigger they were but not The bigger they 

registers were, the bigger they will be. These numbered memories are called registers 
(e.g. register 1, register 2, register 3, etc). This memory feature is not part 71 
of every regular expression language and is often considered an “extended” :

1 featureofregularexpressions.7-.
Substitutions using memory are very useful in implementing a simple 

natural-language understanding program like ELIZA (Weizenbaum, 1966). 
Recall that ELIZA simulated a Rogerian psychologist and could carry on :1 
conversations with the user like the following: / I

Useri: Men are all alike. . J
ELIZA*: IN WHAT WAY /
Use^: They’re always bugging us about something or other.
ELIZA2: CAN YOU THINK OF A SPECIFIC EXAMPLE
Usery Well, my boyfriend made me come here.
ELIZAs: YOUR BOYFRIEND MADE YOU COME HERE
User4: He says I’m depressed much of the time.

SORRY TO HEAR YOU ARE DEPRESSED.

Eliza worked by having a cascade of regular expression substitutions 
that each matched some part of the input lines and changed them. The first j 
substitutions changed all instances of my to YOUR, and I’m to YOU ARE, yf 
and so on. The next set of substitutions looked for relevant patterns in the J 
input and created an appropriate output; here are some examples:
s/.* YOU ARE (depressed I sad). . */T AM SORRY TO HEAR YOU ARE \ 1. / .?
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s/.* YOU ARE (depressed I sad) .*/WHY DO YOU: THINK: YOU ARE \1/ 
s/.* all . */IN WHAT WAY/

s/.* always -*/CAN YOU THINK OF A SPECIFIC EXAMPLE/

Since multiple substitutions could apply to a given input, substitutions 
were assigned a rank and were applied in order. Creation of such patterns is 
addressed in Exercise 2.2.

2.2 Finite-State Automata

The regular expression is more than just a convenient metalanguage for text 
searching. First, a regular expression is one way of describing a finite-state 
automaton (FSA). Finite-state automata are the theoretical foundation of a automaton" 
good deal of the computational work we will describe in this book. Any fsa 
regular expression can be implemented as a finite-state automaton (except 
regular expressions that use the memory feature; more on this later). Sym­
metrically, any finite-state automaton can be described with a regular expres­
sion. Second, a regular expression is one way of characterizing a particular 
kind of formal language called a regular language. Both regular expres- language 
sions and finite-state automata can be used to described regular languages.
The relation among these three theoretical constructions is sketched out in 
Figure 2.9.

finite

regular 
expressions

regular
automata languages

Figure 2.9 The relationship between finite automata, regular expressions, 
and regular languages; figure suggested by Martin Kay.

This section will begin by introducing finite-state automata for some of 
the regular expressions from the last section, and then suggest how the map- 
pi ng from regular expressions to automata proceeds in general. Although 
we begin with their use for implementing regular expressions, FSAs have a 
wide variety of other uses that we will explore in this chapter and the next.
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Using an FSA to Recognize Sheeptalk

After a while, with the parrot’s help, the Doctor got to learn the lan­
guage of the animals so well that he could talk to them himself and 
understand everything they said.

Hugh Lofting, The Story of Doctor Dolittle

Let’s begin with the “sheep language” we discussed previously. Recall 
that we defined the sheep language as any string from the following (infinite) 
set:

baa!

The regular expression for this kind of “sheeptalk” is /baa+ ! /. Fig- yi 

automaton ure 2.10 shows an automaton for modeling this regular expression. The 
automaton (i.e., machine, also called finite automaton, finite-state automa- 
ton, or FSA) recognizes a set of strings, in this case the strings characterizing 
sheep talk, in the same way that a regular expression does. We represent the : 
automaton as a directed graph: a finite set of vertices (also called nodes), 
together with a set of directed links between pairs of vertices called arcs. 
We’ll represent vertices with circles and arcs with arrows. The automaton 

state has five states, which are represented by nodes in the graph. State 0 is the
startswe start state which we represent by the incoming arrow. State 4 is the final |

state or accepting state, which we represent by the double circle. It also has 1 
four transitions, which we represent by arcs in the graph.

The FSA can be used for recognizing (we also say accepting) strings 
in the following way. First, think of the input as being written on a long tape ■ 

• • • . yc-

I
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i broken up into cells, with one symbol written in each cell of the tape, as in 
Figure 2.11.

The machine starts in the start state (^o), and iterates the following 
process: Check the next letter of the input. If it matches the symbol on 
an arc leaving the current state, then cross that arc, move to the next state, 
and also advance one symbol in the input. If we are in the accepting state 
(^4) when we run out of input, the machine has successfully recognized an 
instance of sheeptalk. If the machine never gets to the final state, either 
because it runs out of input, or it gets some input that doesn’t match an arc 
(as in Figure 2.11), or if it just happens to get stuck in some non-final state, 
we say the machine rejects or fails to accept an input.

We can also represent an automaton with a state-transition table. As 
in the graph notation, the state-transition table represents the start state, the 
accepting states, and what transitions leave each state with which symbols. 
Here’s the state-transition table for the FSA of Figure 2.10.

REJECTS
STATE­
TRANSITION 
TABLE

Input
State b a !
0 1 0 0
1 0 2 0
2 0 3 0
3 0 3 4
4p, 0 0 0

Figure 2.12 The state-transition table for the FS A of Figure 2.10.

: We’ve marked state 4 with a colon to indicate that it’s a final state (you 
can have as many final states as you want), and the 0 indicates an illegal or 
missing transition. We can read the first row as “if we’re in state 0 and we 
see the input b we must go to state 1. If we’re in state 0 and we see the input 
aor I, we fair.
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More formally, a finite automaton is defined by the following five pa- J 
rameters: .

• Q: a finite set of N states qo,qi,-.-,qN i
• Z: a finite input alphabet of symbols j
• qo: the start state |
• F\ the set of final states, F C Q |
• 5(#,z): the transition function or transition matrix between states.

Given a state q E Q and an input symbol i € Z, $(q, i) returns a new I 
state q' E Q. 5 is thus a relation from Q X Z to Q, 1

For the sheeptalk automaton in Figure 2.10, Q — {qo1q\,q2,q'i,q^}, | 
Z = {a,b,!}, F = {^4}, and b(qyi) is defined by the transition table in Fig- j

■ ’A-:;,- |

Figure 2.13 presents an algorithm for recognizing a string using a state- 1 
transition table, The algorithm is called D-RECOGNIZE for “deterministic | 

determinis- recognizer’’. A deterministic algorithm is one that has no choice points; i 
the algorithm always knows what to do for any input. The next section will J 
introduce non-determ ini Stic automata that must make decisions about which |

: ■ D-recognize takes as input a tape and an automaton. It returns ac- } 
cept if the string it is pointing to on the tape is accepted by the automaton, g 
and reject otherwise. Note that since D-RECOGNIZE assumes it is already j 
pointing at the string to be checked, its task is only a subpart of the general 
problem that we often use regular expressions for. finding a string in a cor- if 
pus. (The general problem is left as an exercise to the reader in Exercise 2.9.) |

D-RECOGNIZE begins by initializing the variable index the beginning I 
of the tape, and current-state to the machine’s initial state. D-RECOGNIZE | 
then enters a loop that drives the rest of the algorithm. It first checks whether i| 
it has reached the end of its input. If so, it either accepts the input (if the J 
current state is an accept state) or rejects the input (if not). |

If there is input left on the tape, D-RECOGNIZE looks at the transition t 
table to decide which state to move to. The variable current-state indicates | 
which row of the table to consult. While the current symbol on the tape indi- | 
cates which column of the table to consult. The resulting transition-table cell | 
is used to update the variable current-state and index is incremented to move J 
forward on the tape. If the transition-table cell is empty then the machine || 
has nowhere to go and must reject the input. |

Figure 2.14 traces the execution of this algorithm on the sheep lan- J 
guage FSA given the sample input string baaa!. 1



function D-RECOGNTZE(tape, machine) returns accept or reject

index 4- Beginning of tape
current-state t— Initial state of machine
loop
if End of input has been reached then
if current-state is an accept state then

return accept
else.....

return reject
elsif transition-table  [current-state, tape [index] ] is empty then 

return reject
else

current-state t- transition-table]current-state,tape[ index]] 
index index + 1

end

Figure 2.13 An algorithm for deterministic recognition of FSAs. This al­
gorithm returns accept if the entire string it is pointing at is in the language 
defined by the FSA, and reject if the string is not in the language.

Figlire 2.14 Tracing the execution of FSA #1 on some sheeptalk.

Before examining the beginning of the tape, the machine is in state qQ. 
Finding a b on input tape, it changes to state as indicated by the contents 
of transition-table[qQ,b} in Figure 2d2 on page 35. It then finds an a and 
switches to state q^ another a puts it in state q^, a third a leaves it in state qj, 
where it reads the and switches to state 34. Since there is no more input, 
the And ol .inpu t condition at the beginning of the loop is satisfied for 
the first time and the machine halts in q^. State ^4 is an accepting state, 
and so the machine has accepted the string baaa! as a sentence in the sheep 
language.
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The algorithm will fail whenever there is no legal transition for a given 
combination of state and input. The input abc will fail to be recognized since 
there is no legal transition out of state on the input a, (i.e., this entry of 
the transition table in Figure 2.12 on page 35 has a 0). Even if the automaton 
had allowed an initial a it would have certainly failed on c, since c isn’t even 
in the sheeptalk alphabet!. We can think of these “empty” elements in the 
table as if they all pointed at one “empty” state, which we might call the fail 

fail state state or sink state. In a sense then, we could view any machine with empty 
transitions as if we had augmented it with a fail state, and drawn in all the 
extra arcs, so we always had somewhere to go from any state on any possible 
input. Just for completeness, Figure 2.15 shows the FSA from Figure 2.10 
with the fail state filled in.

Figure 2.15 Adding a fail state to Figure 2.10.

Formal Languages

We can use the same graph in Figure 2.10 as an automaton for Generating 
sheeptalk. If we do, we would say that the automaton starts at state qo, and 
crosses arcs to new states, printing out the symbols that label each arc it 
follows. When the automaton gets to the final state it stops. Notice that at 
state 3, the automaton has to chose between printing out a ! and going to 
state 4, or printing out an a and returning to state 3. Let’s say for now that 
we don’t care how the machine makes this decision; maybe it flips a coin; 
For now, we don’t care which exact string of sheeptalk we generate, as long 
as it’s a string captured by the regular expression for sheeptalk above.
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Key Concept #1. Formal Language: A model which can both gener­
ate and recognize all and only the strings of a formal language acts as 
a definition of the formal language.

A formal language is a set of strings, each string composed of symbols language 

from a finite symbol-set called an alphabet (the same alphabet used above alphabet 

for defining an automaton!). The alphabet for the sheep language is the set 
X = {a, b,!}. Given a model m (such as a particular FSA), we can use L(m) 
to mean “the formal language characterized by m”. So the formal language

[ defined by our sheeptalk automaton m in Figure 2.10 (and Figure 2.12) is the 
infinite set:

L(m) - {baaLbaaa-.baaaa^baaaaafibaaaaaal,...} (2.1)

The usefulness of an automaton for defining a language is that it can 
express an infinite set (such as this one above) in a closed form. Formal 
languages are not the same as natural languages, which are the kind of languages 

languages that real people speak. In fact, a formal language may bear no 
resemblance at all to a real language (e.g., a formal language can be used 
to model the different states of a soda machine). But we often use a formal 
language to model part of a natural language, such as parts of the phonology, 
morphology, or syntax. The term generative grammar is sometimes used 
in linguistics to mean a grammar of a formal language; the origin of the term 
is this use of an automaton to define a language by generating all possible 
strings.

Another Example

In the previous examples our formal alphabet consisted of letters; but we 
can also have a higher level alphabet consisting of words. In this way we 
can write finite-state automata that model facts about word combinations. 
For example, suppose we wanted to build an FSA that modeled the subpart 
of English dealing with amounts of money. Such a formal language would 
model the subset of English consisting of phrases like ten cents, three dol­
lars, one dollar thirty-five cents and so on.

We might break this down by first building just the automaton to ac­
countfor the numbers from 1 to 99. since we’ll need them to deal with cents. 
Figure 2.16 shows this.

We could now add cents and dollars to our automaton. Figure 2.17 
shows a simple version of this, where we just made two copies of the au­
tomaton in Figure 2.16and appended the words cents and dollars.
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one six ten sixty eleven sixteen
two seven twenty seventy twelve seventeen
three eight thirty eighty thirteen eighteen
four nine forty ninety fourteen nineteen
five fifty fifteen

^^^“^V^^one six"
J X twenty sixty / \ two seven

—% 1 thirty seventy 1 4j 1 ei ht U H:
X, forty e^ghty y four nine x><Z

' fifty ninety flve — : i

Figure 2.16 An FSA for the words for English numbers 1-99.

fifty .five

one 
two 
three 
four 
five

ninety fourteen nineteen 
fifteen .

one six ten sixty eleven sixteen
two seven twenty seventy twelve seventeen
three eight thirty eighty thirteen eighteen

six - ten •' • sixty eleven sixteen
seven twenty seventy twelve seventeen
eight ’ thirty eighty thirteen eighteen
nine forty ninety fourteen nineteen

fifty fifteen.
four nine forty

□■olinrE

%
twenty sixty 
thirty seventy 
forty: eighty 
fifty ninety

twenty, sixty 
thirty seventy 
forty ■ eighty 
fifty, ninety

one six 
two. seven I 
three eight- ■ 
four nine 
five-

Figure 2.17 FSA for the simple dollars and cents.

one six 
two seven 
three eight 
four nine 
five.

We would now need to add in the grammar for different amounts of 
dollars; including higher numbers like hundred, thousand. We’d also need to 
make sure that the nouns like cents and dollars are singular when appropriate 
(one cent, one dollar), and plural when appropriate (ten cents, two dollars). 
This is left as an exercise for the reader (Exercise 2.3). We can think of the 
FS As in Figure 2.16 and Figure 2.17 as simple grammars of parts of English. 
We will return to grammar-building in Part II of this book, particularly in 
Chapter 9 / ;

Non-DeterministicFSAs

Let’s extend our discussion now to another class of FSAs? non-deterministic 
FSAs (or NFS As). Consider the sheeptalk automaton in Figure 2.18, which 
is much like our first automaton in Figure 2.10:

The only difference between this automaton and the previous one is 
that here in Figure 2.18 the self-loop is on state 2 instead of state 3. Con­
sider using this network as an automaton for recognizing sheeptalk. When 
we get to state 2, if we see an a we don’t know whether to remain in state
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%

Figure 2.18 A non-deterministic finite-state automaton for talking sheep 
(NFSA #1). Compare with the deterministic automaton in Figure 2.10.

2 or go on to state 3. Automata with decision points like this are called 
non-deterministic FSAs (or NFSAs). Recall by contrast that Figure 2.10 deterministic 
specified a deterministic automaton, i.e., one whose behavior during recog- nfsa 
nition is fully determined by the state it is in and the symbol it is looking at.
A deterministic automaton can be referred to as a DFSA. That is not true for dfsa

A the machine in Figure 2.18 (NFSA #1). _
"BbVb! There is another common type of non-determinism, caused by arcs

that have no symbols on them (called E-transitions ). The automaton in e-transition 
Figure 2,19 defines the exact same language as the last one, or our first one, 

T but it does it with an E-transition.

Figure 2.19 Another NFSA for the sheep language (NFSA #2). It differs 
lioniNFS A#1 inFigure 2.18 in having an E-transition.

•VWe interpret this new arc as follows: If we are in state 3, we are al- 
? lowed to move to state 2 without looking at the input, or advancing bur input 

pointer. So this introduces another kind of non-determinism — wc might not 
know whether to follow the E-trahsition or the ! arc.

Using an NFSA to Accept Strings

If wc want to know whether a string is an instance of sheeptalk or not, and 
if we use a non-deterministic machine to recognize it, we might follow the 
wrong arc and reject it when we should have accepted it. That is, since there 
is more than one choice at some point, we might take the wrong choice. This

b a
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problem of choice in non-deterministic models will come up again and again 
as we build computational models, particularly for parsing.

There are three standard solutions to this problem:

• Backup: Whenever we come to a choice point, we could put a marker 
to mark where we were in the input, and what state the automaton was 
in. Then if it turns out that we took the wrong choice, we could back 
up and try another path.

• Look-ahead: We could look ahead in the input to help us decide which 
path to take.

• Parallelism: Whenever we come to a choice point, we could look at 
every alternative path in parallel.

We will focus here on the backup approach and defer discussion of the 
look-ahead and parallelism approaches to later chapters.

The backup approach suggests that we should blithely make choices 
that might lead to deadends, knowing that we can always return to unexF 
plored alternative choices. There arc two keys to this approach: we need 

i: to remember all the alternatives for each choice point, and we need to store 
sufficient information about each alternative so that we can return to it when 
necessary. When a backup algorithm reaches a point in its processing where 
no progress can be made (because it runs out of input, or has no legal tram 

■ sitions), it returns to a previous choice point, selects one of the unexplored 
alternatives, and continues from there. Applying this notion to our non- 
deterministic recognizer, we need only remember two things for each choice 
point: the state, or node, of the machine that we can go to and the corre­
sponding position on the tape. We will call the combination of the node and 
position the search-state of the recognition algorithm. To avoid confusion, 
we will refer to the state of the automaton (as opposed to the state of the 
search) as a node or a machine-state. Figure 2.21 presents a recognition 
algorithm based on this approach.

Before going on to describe the main part of this algorithm, we should 
note two changes to the transition table that drives it. First, in order to rep­
resent nodes that have outgoing e-transitions, we add a new E-column to the 
transition table. If a node has an e-transition, we list the destination node in 
the E-column for that node’s row. The second addition is needed to account 
for multiple transitions to different nodes from the same input symbol. We 
let each cell entry consist of a list of destination nodes rather than a single 
node. Figure 2.20 shows the transition table for the machine in Figure 2.18 
(NFSA #1). While it has no E-transitions. it does show that in machine-state
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Input
State b a ! £
0 10 0 0
1 0 2 0 0
2 0 2,3 0 0
3 0 0 4 0
4: 0 0 0 0

Figure 2.20 The transition table from NFS A #1 in Figure 2.18.

<72 the input a can lead back to or on to <73.
Figure 2.21 shows the algorithm for using a non-detenninistic FSA 

to recognize an input string. The function nd-recognize uses the variable 
agenda to keep track of all the currently unexplored choices generated during 
the course of processing. Each choice (search state) is a tuple consisting of a 
node (state) of the machine and a position on the tape. The variable current­
search-state represents the branch choice being currently explored.

ND-RECOGNIZE begins by creating an initial search-state and placing 
it on the agenda. For now we don’t specify what order the search-states are 
placed on the agenda. This search-state consists of the initial machine-state 
of the machine and a pointer to the beginning of the tape. The function NEXT 
is then called to retrieve an item from the agenda and assign it to the variable 
current-search-state.

As with D-RECOGNIZE, the first task of the main loop is to determine 
if the entire contents of the tape have been successfully recognized. This 
is done via a call to ACCEPT-STATE?, which returns accept if the current 
search-state contains both an accepting machine-state and a pointer to the 
end of the tape. If we’re not done, the machine generates a set of possible 
next steps by calling GENERATE-NEW-STATES, which creates search-states 
for any e-transitions and any normal input-symbol transitions from the tran­
sition table. All of these search-state tuples are then added to the current 
agenda.

Finally, we attempt to get a new search-state to process from the agenda. 
If the agenda is empty we’ve ran out of options and have to reject the input. 
Otherwise, an unexplored option is selected and the loop continues.

It is important to understand why nd-recognize returns a value of 
reject only when the agenda is found to be empty. Unlike D-recognize, it 
does not return reject when it reaches the end of the tape in an non-accept 
machine-state or when it finds itself unable to advance the tape from some
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machine-state. This is because, in the non-deterministic case, such road­
blocks only indicate failure down a given path, not overall failure. We can 
only be sure we can reject a string when all possible choices have been ex- J 
amined and found lacking.

function ND-RECOGNlZE(t«pe, machine) returns accept or reject

agenda <- {(Initial state of machine, beginning of tape)} 
current-search-state 4- NEXT(ugen  da)
loop

if AcCEPT-STAi:E7(current-search-state) returns true then 
return accept

■ else .7
agenda agenda U GENERATE-NEW-STATESicMrre/it-^eurcAArate)

if agenda isempty then
returnreject

else
7 current-search-state^—^EXj^agenda) : . 

end f

7 function Generate-New-STATEs(cwrren^state) returns a set of search­
states

7 current-node A- the node the current search-state is in
: index t— the point on the tape the current search-state is looking at 

return a list of search states from transition table as follows:
(transition-table[current-node,e], index)

(transition-table[current-node, tape[index]], index + 1)

; function Accept- St ATE? (searches tate) returns true or false

cur rent-node A-search-state is in
index 4- the point on the tape search-state is looking at
if index is at the end of the tape and current-node is an accept state of machine

v: then .. 7: ■
return true <

:A' else
returnfalse ........

Figure 2.21 : An algorithm for NFSA recognition. The word node means 
a state of the FSA, while state or search-state means “the state of the search 
process”, i.e.,a combination of no de and tape-position..
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Figure 2.22 Tracing the execution of NFS A #1 (Figure 2.18) on some 
shecptalk. ' ‘

Figure 2.22 illustrates the progress of ND-RECOGNIZE as it attempts to 
handle the input baaa!. Each strip illustrates the state of the algorithm at 
agiven point in its processing. The current-search-state variable is captured 
by the solid bubbles representing the machine-state along with the arrow rep­
resenting progress on the tape. Each strip lower down in the figure represents 
progress from one current-search-state to the next.

Little of interest happens until the algorithm finds itself in state q2 
while looking at the second a on the tape. An examination of the entry 
for transition-tablet©,a] returns both © and ©. Search states are created 
for each of these choices and placed on the agenda. Unfortunately, our al­
gorithm chooses to move to state ©, a move that results in neither an accept 
state nor any new states since the entry for transition-tablet©, a] is empty. 
At this point, the algorithm simply asks the agenda for a new state to pursue. 
Since the choice of returning to © from © is the only unexamined choice on 
the agenda it is returned with the tape pointer advanced to the next a. Some-
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what diabolically, nd-recognize finds itself faced with the same choice. 
The entry for transition-tablel^^J still indicates that looping back to #2 or 
advancing to <73 are valid choices. As before, states representing both are 
placed on the agenda. These search states are not the same as the previous 
ones since their tape index values have advanced. This time the agenda pro­
vides the move to q^ as the next move. The move to q^ and success, is then 
uniquely determined by the tape and the transition-table.

Recognition as Search

ND-RECOGNIZE accomplishes the task of recognizing strings in a regular 
language by providing a way to systematically explore all the possible paths 
through a machine. If this exploration yields a path ending in an accept 
state, it accepts the string, otherwise it rejects it. This systematic exploration 
is made possible by the agenda mechanism, which on each iteration selects a 
partial path to explore and keeps track of any remaining, as yet unexplored, 
partial paths.

Algorithms such as nd-recognize, which operate by systematically 
searching for solutions, are known as state-space search algorithms. In 
such algorithms, the problem definition creates a space of possible solu­
tions; the goal is to explore this space, returning an answer when one is 
found or rejecting the input when the space has been exhaustively explored. 
In nd-recognize, search states consist of pairings of machine-states with 
positions on the input tape. The state-space consists of all the pairings of 

'machine-state and tape positions that are possible given the machine in ques- 
tion. The goal of the search is to navigate through this space from one state to 
another looking for a pairing of an accept state with an end of tape position.

The key to the; effectiveness of such programs is often the order in 
which the states in the space arc considered. A poor ordering of states may 
lead to the examination of a large number of unfruitful states before a suc­
cessful solution is discovered. Unfortunately, it is typically not possible to 
tell a good choice from a bad one, and often the best we can do is to insure ; 
that each possible solution is eventually considered.

? Chreful readers may have noticed that the ordering of states in ND- 
RECOGNIZE has been left unspecified. We know only that unexplored states 
are added to the agenda as they are created and that the (undefined) func­
tion Next returns an unexplored state from the agenda when asked. How 
should the function NEXT be defined? Consider an ordering strategy where 
the states that arc considered next are the most recently created ones. Such
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a policy can be implemented by placing newly created states at the front 
of the agenda and having NEXT return the state at the front of the agenda 
when called. Thus the agenda is implemented by a stack. This is commonly 
referred to as a depth-first search or Last In First Out (LIFO) strategy depth-first 

Such a strategy dives into the search space following newly developed
leads as they are generated. It will only return to consider earlier options 
when progress along a current lead has been blocked. The trace of the ex­
ecution of ND-RECOGNIZE on the string baaa! as shown in Figure 2.22 
illustrates a depth-first search. The algorithm hits the first choice point after 
seeing ba when it has to decide whether to stay in ^2 or advance to state 
43. At this point, it chooses one alternative and follows it until it is sure it’s 
wrong. The algorithm then backs up and tries another older alternative.

Depth first strategies have one major pitfall: under certain circum- 
stances they can enter an infinite loop. This is possible either if the search 
space happens to be set up in such a way that a search-state can be acciden- 
tally re-visited, or if there are an infinite number of search states. We will 
revisit this question when we turn to more complicated search problems in 
parsing in Chapter 10, 
)V D The second way to order the states in the search space is to consider 
states in the order in which they are created. Such a policy can be imple- 
mented by placing newly created states at the back of the agenda and still 
have NEXT return the state at the front of the agenda. Thus the agenda is 
implemented via a queue. This is commonly referred to as a breadth-first breadth-first 

search or First In First Out (FIFO) strategy. Consider a different trace 
of the execution of ND-RECOGNIZE on the string baaa ’ as shown in Fig­
ure 2.23; Again, the algorithm hits its first choice point after seeing ba when 
it had to decide whether to stay in ^2 or advance to state q^. But now rather 
than picking one choice and following it up, we imagine examining all pos­
sible choices, expanding one ply of the search tree at a time.

Like depth-first search, breadth-first search has its pitfalls. As with 
depth-first if the state-space is infinite, the search may never terminate. More 
importantly, due to growth in the size of the agenda if the state-space is 
evenmoderately large, the search may require an impractically large amount 
of memory. For small problems, either depth-first or breadth-first search 
strategies may be adequate, although depth-first is normally preferred for its 
more efficient use of memory. For larger problems, more complex search 
techniques such as dynamic programming or A* must be used, as we will 
see in Chapters 7 and 10.
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Relating Deterministic and Non-Deterministic Automata

It may seem that allowing NFS As to have non-deterministic features like E- 
transitions would make them more powerful than DFSAs. In fact this is not 
the case; for any NFSA,there is an exactly equivalent DESA. In fact there is 
asimple algorithm for converting an NFSA to an equivalent DFS A, although 
the number of slates in this equivalent deterministic automaton may be much 
larger. See Lewis and Papadimitriou (1981) or Hopcroft and Ullman (1979) 
for the proof of the correspondence. The basic intuition of the proof is worth 
mentioning,however, and builds on the way NFS As parse their input. Recall 
that the difference between NFSAs and DFSAs is that in an NFSA a state 
may have more than one possible next state given an input i (for example qa 
and The algorithm in Figure 2.21 dealt with this problem by choosing 
either qa or and then backtracking if the choice turned out to be wrong. 
We mentioned that a parallel version of the algorithm would follow both 
paths (toward qa and qh) simultaneously.
A The algorithm for converting a NFSA to a DFSA is like this parallel 

algorithm; wc build an automaton that has a deterministic path for every path 
bur parallel recognizer might have followed in the search space. We imagine 
following both paths simultaneously, and group together into an equivalence 
class all the states we reach on the same input symbol (Lei, q^ and qt). Wo 
now give a new state label to this new equivalence class state (for example
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qab). continue doing this for every possible input for every possible group 
of states. The resulting DFSA can have as many states as there are distinct 
sets of states in the original NFSA. The number of different subsets of a set 
with N elements is 2^, hence the new DFSA can have as many as 2W states.

2.3 Regular Languages and FSAs

: L As we suggested above, the class of languages that are definable by regular 
expressions is exactly the same as the class of languages that are character­
izable by finite-state automata (whether deterministic or non-deterministic).
Because of this, we call these languages the regular languages. In order to unguages 
give a formal definition of the class of regular languages, we need to refer 
back to two earlier concepts: the alphabet S, which is the set of all symbols in 
the language, and the empty string £. which is conventionally not included in 
Z In addition, we make reference to the empty set 0 (which is distinct from 
e). The class of regular languages (or regular sets) over L is then formally 
defined as follows: 1

1. 0 is a regular language
2. V« t IUE, {a} is a regular language: \
3. If £i and £2 are regular languages, then so are:

(a) £1 • £2 - {xy £i,y €£2}, the concatenation of £j and£2
(b) £iU£2, the unionor disjunction of £i andZ-2
(c) £j, the Kleene closure of £1

£•.; All and only the sets of languages which meet the above properties 
arc regular languages. Since the regular languages are the set of languages 
characterizable by regular expressions, it must be the case that all the regu­
lar expression operators introduced in this chapter (except memory) can be 
implemented by the three operations which define regular languages: con­
catenation, disjunction/union (also called and Kleeiie closure. For ex- 
atnplc all the counters (*,+, {n, m}) are just a special case of repetition plus 
Kleene *. AH the anchors can be thought of as individual special symbols. 
The square braces [ ] arc a kind of disjunction (i.e., [ ab ] means “a or b”, or 
the disjunction of a and b). Thus it is true that any regular expression can be 
turned into a (perhaps larger) expression which only makes use of the three 
primitive operations.

ST Following van Santcn and Sproat (1998), Kaplan and Kay (1994), and Lewis and Pa- 
padimitriou (1981).
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Regular languages are also closed under the following operations (S* 
means the infinite set of all possible strings formed from the alphabet S):

• intersection: if Lj and L2 are regular languages, then so is Li HZ#, the 
language consisting of the set of strings that are in both Li and L2.

• difference: if Lj and L2 are regular languages, then so is Li - L2, the 
language consisting of the set of strings that are in L\ but not L2.

• complementation: If is a regular language, then so is S* — Li, the 
set of all possible strings that aren’t in Li.

• reversal: If Ei is a regular language, then so is if, the language con­
sisting of the set of reversals of all the strings in Li.

The proof that regular expressions are equivalent to finite-state au­
tomata can be found in Hopcroft and Ullman (1979), and has two parts', 
showing that an automaton can be built for each regular language, and con­
versely that a regular language can be built for each automaton. We won’t 
give the proof, but we give the intuition by showing how to do the first part: 
take any regular expression and build an automaton from it. The intuition is 
inductive: for the base case we build an automaton to correspond to regular 
expressions of a single symbol (e g., the expression u) by creating an initial 
state and an accepting final state, with an arc between them labeled a. For 
the inducti ve step, We show that each of the primitive operations- of a regular 
expression (concatenation, union, closure) can be imitated by an automaton:

( • concatenation: We just string two FSAs next to each other by con­
necting all the final states of FSA] to the initial state of FSA2 by an 
E-transition. AAvA-ww;—wiw

Figure 2.24 The concatenation of two FSAs.

• closure: We connect all the final states of the FS A back to the initial 
states by E-transiti ons (this implements the repetition part of the Klcene 
*), and then put direct links between the initial and final states by e-
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transitions (this implements the possibly of having zero occurrences). 
We’d leave out this last part to implement Kleene-plus instead.

Figure 2.25 The closure (Kleene *) of an FSA.

• union: We add a single new initial state q^ and add new transitions 
from it to all the former initial states of the two machines to be joined.

FSA j FSA 2

Figure 2.26 The union (|) of two FSAs.

2.4 Summary

This chapter introduced the most important fundamental concept in language 
processing, the finite automaton, and the practical tool based on automaton, 
the regular expression. Here’s a summary of the main points we covered 
about these ideas:

iAU* The regular expression language is a powerful tool for pattern-match­
ing.

• Basic operations in regular expressions include concatenation of sym­
bols, disjunction of symbols (fl, I, and .), counters (*, +, and
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{n, m}), anchors C, $) and precedence operators ((,)).
• Any regular expression can be realized as a finite state automaton 

(FSA).
• Memory (\ 1 together with ()) is an advanced operation that is often 

considered part of regular expressions, but which cannot be realized as 
a finite automaton.

• An automaton implicitly defines a formal language as the set of strings 
the automaton accepts.

• An automaton can use any set of symbols for its vocabulary, including 
letters, words, or even graphic images.

• The behavior of a deterministic automaton (DFSA) is fully dcter- 
mined by the state it is in.

• A non-deterministic automaton (NFSA) sometimes has to make a 
choice between multiple paths to take given the same current state and 
next input.

; A Any NFSA can be converted to a DFSA.
• The order in which a NFSA chooses the next state to explore on the 

agenda defines its search strategy. The depth-first search or LIFO 
strategy corresponds to the agenda-as-stack; the breadth-first search

\ or FIFO strategy corresponds to the agenda-as-queue.
• Any regular expression can be automatically compiled into a NFSA 

and hence into a FSA.

BIBL1OGR APHICAL AND HISTORICAL NOTES

Finite automata arose in the 1950s out of Turing’s (1936) model of algo­
rithmic computation, considered by many to be the foundation of modern 
computer science. The Turing machine was an abstract machine with a finite 

: control arid an input/output tape: In one move, the Turing machine could
read a symbol on the tape, write a different symbol on the tape, change state, 
and move left or right. (Thus the Turing machine differs from a finite-state 
aulomaton mainlyinils ability to change the symbols on its tape).

Inspired by Turing’s work, McCulloch and Pitts built an automata-like 
model of the neuron (see von Neumann, 1963, p. 319). Their model, which 
is now usually called the McCulloch-Pitts neuron (McCulloch and Pitts, 
1943), was a simplified model of the neuron as a kind of “computing ele-
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ment” that could be described in terms of propositional logic. The model 
was a binary device, at any point either active or not, which took excitatory 
and inhibitatory input from other neurons and fired if its activation passed 
some fixed threshold. Based on the McCulloch-Pitts neuron, Kleene (1951) 
and (1956) defined the finite automaton and regular expressions, and proved 
their equivalence. Non-deterministic automata were introduced by Rabin 
arid Scott (1959), who also proved them equivalent to deterministic ones.

Ken Thompson was one of the first to build regular expressions compil­
ers into editors for text searching (Thompson, 1968). His editor ed included 
a command “g/regular expression/p”, or Global Regular Expression Print, 
which later became the UNIX grep utility.

There are many general-purpose introductions to the mathematics un­
derlying automata theory; such as Hopcroft and Ullman (1979) and Lewis 
and Papadimitriou (1981). These cover the mathematical foundations the 
simple automata of this chapter, as well as the finite-state transducers of 
Chapter 3, the context-free grammars of Chapter 9, and the Chomsky hier­
archy of Chapter 13. Friedl (1997) is a very useful comprehensive guide to 
the advanced use of regular expressions.

The metaphor of problem-solving as search is basic to Artificial Intel­
ligence (AI); more details on search can be found in any AI textbook such as 
Russell and Norvig (1995).

Exercises : ■'

2.1 Write regular expressions for the following languages: You may use 
dither; Perl notation or the minimal “algebraic” notation of Section 2.3, but 
make sure to say which one you are using. By “word”, we mean an alpha­
betic; string separated from other words by white space, any relevant punctu­
ation, line breaks, and so forth.

a. the set of all alphabetic strings,
b the set of all lowercase alphabetic strings ending in a b.
c the set of all strings with two consecutive repeated words (e.g., “Hum­

bert Humbert’’ and “the the” but not “the bug” or “the big bug").
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d. the set of all strings from the alphabet a, b such that each a is immedi- ■ 
ately preceded and immediately followed by a b.

e. all strings which start at the beginning of the line with an integer (i.e., 
1,2,3,..-,10,...,10000,...) and which end at the end of the line with a 
word.

f. all strings which have both the word grotto and the word raven in them. 4? 
(but not, for example, words like grottos that merely contain the word 
grotto).

g. write a pattern which places the first word of an English sentence in a44 
register? Deal with punctuation.

2.2 Implement an ELIZA-like program, using substitutions such as those 44 
described on page 32. You may choose a different domain than a Rogerian 
psychologist, if you wish, although keep in mind that you would need a 
domain in which your program can legitimately do a lot of simple repeating- 
back.

2.3 Complete the FSA for English money expressions in Figure 2.16 as 
suggested in the text following the figure. You should handle amounts up 
to $ 100,000, and make sure that “cent’’ and “dollar” have the proper plural / ) 
endings when appropriate.

2.4 Design an FSA that recognizes simple date expressions like March 15, 
the 22nd of November, Christmas. You should try to include all such “abso­
lute” dates, (e.g. not “deictic” ones relative to the current day like the day 
before yesterday). Each edge of the graph should have a word or a set of 
words on it. You should use some sort of shorthand for classes of words to 
avoid drawing too many arcs (e.g., furniture -4 desk, chair, table).

2.5 Now extend your date FSA to handle deictic expressions like yesterday, 
tomorrow. a week from tcmiom the day before yesterday, Sunday, next ; 
Monday.lhreeweeks fromSaturday.

2.6 Write an FSA for time-of-day expressions like efeverit>’cZock, rwe/ve- 
ihiifyfthidnightfbtaq^ k

2.7 (Due to Pauline Welby; this problem probably requires the ability to 
knit.) Write a regular expression (or draw an FSA) which matches all knit­
ting patterns for scarves with the following specification: 32 stitches wide, “ 
KIP I ribbing bn both ends,stockinette stitch body, exactly two raised stripes. 
All knitting patterns must include a cast-on row (to put the correct number of
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stitches on the needle) and a bind-off row (to end the pattern and prevent un­
raveling). Here’s a sample pattern for one possible scarf matching the above 
description.

1. Cast on 32 stitches. cast on; puts stitches on needle
2. KI Pl across row (i.e. do (KI Pl) 16 times). K1P1 ribbing 

adds length 
stockinette stitch 
adds length 
raised stripe stitch 
stockinette stitch- 
adds length 
raised stripe stitch 
stockinette stitch 
adds length 
KI Pl ribbing 
adds length 
binds off row: ends pattern

3. Repeat instruction 2 seven more times.
4. K32, P32.
5 Repeat instruction 4 an additional 13 times.
6. P32, P32.
7. K32.P32.
8. Repeat instruction 7 an additional 251 times.
9. P32jP32.

10. K32, P32.
11. Repeat instruction 10 an additional 13 times.
12 KI Pl across row.
13 Repeat instruction 12 an additional 7 times.
14. Bind off 32 stitches.

2.8 Write a regular expression for the language accepted by the NFS A in 
Figure 2.27.

Figure 2.27 A mystery language

2.9 Currently the function d-recognize in Figure 2.13 only solves a sub­
part of the important problem of finding a string in some text. Extend the 
algorithm to solve the following two deficiencies: (1) D-recognize cur­
rently assumes that it is already pointing at the string to be checked, and (2) 
~ Knit arid purl are two different types of stitches. The notation Kn means do n knit stitches. 
Similarly for purl stitches. Ribbing has a striped texture—most sweaters have ribbing at the 
sleeves, bottom, and neck. Stockinette stitch is a series of knit and purl rows that produces a 
plain pattern— socks or stockings are lout with this basic pattern, hence the name.
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D-RECOGNIZE fails if the string it is pointing includes as a proper substring 
a legal string for the FSA. That is, D-RECOGNIZE fails if there is an extra 
character at the end of the string.

2.10 Give an algorithm for negating a deterministic FSA. The negation 
of an FSA accepts exactly the set of strings that the original FSA rejects 
(over the same alphabet), and rejects all the strings that the original FSA 
accepts.

2.11 Why doesn’t your previous algorithm work with NFS As? Now extend : 
your algorithm to negate an NFS A.
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is someone who writes, and a stinger is something that 
stings. But fingers donfifing, grocers don’t grace, haberdash­
ers don’t haberdash, hammers don’t ham, and humdingers don’t 
humding.

' Richard Lederer, Crazy English

Chapter 2 introduced the regular expression, showing for example how 
a single search string could help a web search engine find both woodchuck 
and woodchucks. Hunting for singular or plural woodchucks was easy; the 
plural just tacks an .v on to the end. But suppose we were looking for another 
fascinating woodland creatures; let’s say a fox, and a fish, that surly peccary 

o arid perhaps a Canadian wW goase/Hunting for the plurals ofthese animals 
takes more than just tacking on an s. The plural of fox is foxes-, of peccary, 
peccaries-, and of goose, geese. To confuse matters further, fish don’t usually 
change their form when they are plural (as Dr. Seuss points out; one fish two 
fish, redfish, bluefish).

It takes two kinds of knowledge to correctly search for singulars and 
: plurals of these forms. Spelling rules tell us that English words ending in -y 
are pluralized by changing the -y to -L and adding an -es. Morphological 
rules tell us that^s/z has a null plural, and that the plural of goose is formed 
by changing the vowel.

The problem of recognizing that /iww breaks down into the two mor- 
phcmes/o.r and -es is called morphological parsing.

Key Concept #2. Parsing means taking an input and producing some parsing 

sort of structure for it.

We will use the term parsing very broadly throughout this book, including 
many kinds of structures that might be produced; morphological, syntactic,
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semantic, pragmatic; in the form of a string, or a tree, or a network. In 1 
the information retrieval domain, the similar (but not identical) problem of (( 

stemming mapping from foxes to fox is called stemming. Morphological parsing or 
stemming applies to many affixes other than plurals; for example We might 
need to take any English verb form ending in -ing (going, talking, congrat­
ulating) and parse it into its verbal stem plus the -ing morpheme. So given 

surface the surface or input form going, we might want to produce the parsed form
VERB go +‘ GERUND-ing. This chapter will survey the kinds of mor 
phological knowledge that needs to be represented in different languages and 
introduce the main component of an important algorithm for morphological 
parsing: the finite-state transducer.

Why don’t we just list all the plural forms of English nouns, and all the U 
-ing forms of English verbs in the dictionary? The major reason is that -ing 

productive is a productive suffix; by this we mean that it applies to every verb. Simi­
larly-y applies to almost every noun. So the idea of listing every noun and I 
verb can be quite inefficient. Furthermore, productive suffixes even apply to 
new words (so the new word fax automatically can be used in the -ing form: 
faxing). Since new words (particularly acronyms and proper nouns) are cre- 
ated every day, the class of nouns in English increases constantly, and we:t | 
need to be able to add the plural morpheme -s to each of these. Additionally, ’ 
rhe plural form of these new nouns depends on the spelling/pronunciation

I pf thn singulm form for example if the noun ends in -z then the plural 
form is -es rather than -s. We’ll need to encode these rules somewhere. Fi- I 
nally, we certainly cannot list all the morphological variants of every word in 
morphologically complex languages like Turkish, which has words like the 
following:

(3.1) uygarla§tiramadiklannuzdanmi§simzcasma |

uygar +la$ +tir .... +dik ■ ■ +lar +imiz f/f
Civilized +BEC +CAUS +NEGABLE +PPART +PL +PI PL

+ABL +PAST +2PL +Aslf . ,;foi
v “(behaving) as if you are among those whom we could not )

civilizc/cause to become civilized” ;

The various pieces of this word (the morphemes) have these meanings: ?: J

+BEC is “become” in English ■ ' v
+CAUS . . is the causative voice marker on a verb 
+NegAble is “not able” in English
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+PPart marks a past participle form
+P1 PL is 1st person pl possessive agreement
+2PL is 2nd person pl
+ABL is the ablative (from/among) case marker
+Asif is a derivational marker that forms an adverb from a finite verb form

In such languages we clearly need to parse the input since it is impossi- 
ble to store every possible word. Kemal Oflazer (personal communication), 
wild? c up with this example, notes that verbs in Turkish have 40,000 
forms not counting derivational suffixes; adding derivational suffixes allows 
a theoretically infinite number of words. This is true because, for exam­
ple, any verb can be “causativized” like the example above, and multiple 
instances of causativization can be embedded in a single word (You cause X 
to cause Y to ...do W). Not all Turkish words look like this; Oflazer finds 
that the average Turkish word has about three morphemes (a root plus two 
suffixes). Even so, the fact that such words are possible means that it will be 
difficult to store all possible Turkish words in advance.

Moiphological parsing is necessary for more than just information re­
trieval. We will need it in machine translation to realize that the French 
words vaand alter should both translate to forms of the English verb go. 
We will also need it in spell checking; as we will see, it is morphological 
knowledge that will tell us that misclam and dntiundoggingly are not words.

The next sections will summarize morphological facts about English 
and th en introduce the finite-state transducer.

3.1 Survey of (Mostly) English Morphology

Morphology is the study of the way words are built up from smaller meaning- 
bearing units, morphemes. A morpheme is often defined as the minimal morphemes 

meaning-bearing unit in a language. So for example the word fox consists of 
a single morpheme (the morpheme fox) while the word cats consists of two: 
the morpheme cm and the morpheme-x.

As this example suggests, it is often useful to distinguish two broad 
classes of morphemes: stems and affixes. The exact details of the distinc- stems 

tion vary from language to language, but intuitively, the stem is the “main” affixes 

morpheme of the word, supplying the main meaning, while the affixes add 
“additional” meanings of various kinds.

Affixes are further divided into prefixes, suffixes, infixes, and circuin­
fixes. Prefixes precede the stem, suffixes follow the stem, circumfixes do
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both, and infixes are inserted inside the stem. For example, the word eats is 
composed of a stem eat and the suffix -s. The word unbuckle is composed of I 
a stem buckle and the prefix un-. English doesn’t have any good examples 
of circumfixes, but many other languages do. In German, for example, the 
past participle of some verbs formed by adding ge- to the beginning of thei | 
stem and -t to the end; so the past participle of the verb sagen (to say) is 
gesagt (said), Infixes, in which a morpheme is inserted in the middle of a ' 
word, occur very commonly for example in the Philipine language Tagalog. 
For example the affix um, which marks the agent of an action, is infixed to 
the Tagalog stem hingi “borrow” to produce hunting^ There is one infix that 
occurs in some dialects of English in which taboo morpheme like “f**king” 
or “bl* *dy” or others like it are inserted in the middle of other words (“Man- 
f**king-hattan“, “abso-bl**dy-lutely”1) (McCaWley, 1978). /

Prefixes and suffixes are often called coneatenativemorphology since 
a word is composed of a number of morphemes: concatenated together. A 
number of languages have extensive non-concatenative morphology, in 
which morphemes are combined in more complex Ways.( The Tagalog in­
fixation example above is one example of non-concatcnative morphology, 
since two morphemes (hingi and um) are intermingled. Another kind of 
non-concatcnative t morphology is called template morphology or root- 
and-pattern morphology. This is very common in Arabic, Hebrew, and 
other Semitic languages. In Hebrew, for example, a verb is constructed us­
ing two components: a root, consisting usually of three consonants (CCC) 
and carrying the basic meaning, and a template, which gives the ordering of 
consonants and vowels and specifies more semantic Information about the 
resulting verb, such as the semantic voice (e.g., active, passive, middle). For 
example the Hebrew tri-consonantal root Imd^ meaning 4 learn’ or ‘study’, 
can be combined with the active voice CaCaC template to produce the word 
lamad,‘he studied’, or the intensive CiCeC template to produce the word 
limed, ‘he taught', or the intensive passive template CuCaC to produce the 
word lumad,'hc was taught’.

A Word can have more than one affix. For example, the word rewrites 
has the prefix re-, the stem write, and the suffix -s. The word unbelievably 
has a stem (believe) plus three affixes (un-, -able, and -ly). While English 
doesn’t tend to stack more than four o r fi ve affixes, languages like Turk­
ish can have words with nine or ten affixes, as we saw above. Languages

1 Atari Jay Lerner, the lyricist of My Fair Lady, bowdlerized the latter to abso-bldomin’lately
in the lyric to “Wouldn’t It Be Loverly?” (Lemer, 1978, p. 60). >



Section 3.1. Survey of (Mostly) English Morphology 61

that tend to string affixes together like Turkish does are called agglutinative 
languages.

There are two broad (and partially overlapping) classes of ways to form 
words from morphemes: inflection and derivation. Inflection is the combi­
nation of a word stem with a grammatical morpheme, usually resulting in a 
word of the same class as the original stem, and usually filling some syntac­
tic function like agreement. For example, English has the inflectional mor­
pheme -5 for marking the plural on nouns, and the inflectional morpheme 
-ed for marking the past tense on verbs. Derivation is the combination of a 
word stem with a grammatical morpheme, usually resulting in a word of a 
different class, often with a meaning hard to predict exactly. For example the 
verb computerize can take the derivational suffix -ation to produce the noun 
computerization.

INFLECTION

DERIVATION

Inflectional Morphology

English has a relatively simple inflectional system; only nouns, verbs, and 
; sometimes adjectives can be inflected, and the number of possible inflec­
tional affixes is quite small.

English nouns have only two kinds of inflection: an affix that marks 
plural and an affix that marks possessive. For example, many (but not all) 
English nouns can either appear in the bare stem or singular form, or take a 
plural suffix. Here are examples of the regular plural suffix -s, the alternative 
spelling -es, and irregular plurals:

PLURAL

SINGULAR

Regular Nouns Irregular Nouns
Singular cat thrush mouse ox
Plural cats thrushes mice oxen

While the regular plural is spelled -s after most nouns, it is spelled -es 
after words ending in -s (ibis/ibises) > -z, (waltffwaltzes) -sh, (thrush/thrushes) 
-Ch, (finch/finches)and sometimes -x (box/boxes). Nouns ending in -y pre­
ceded by a consonant change the -y to -i (butterfly/butterflies).

The possessive suffix is realized by apostrophe + -s for regular singular 
nouns (llama ’s) and plural nouns not ending in -s (children’s) and often by a 
Ione apostrophe after regular plural nouns (llamas’) and some names ending 
ih-s or -z (Euripides' comedies).

English verbal inflection is more complicated than nominal inflection. 
First, English has three kinds of verbs; main verbs, (eat, sleep, impeach), 
modal verbs (can, will, should), and primary verbs (be, have, do) (using
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the terms of Quirk et al., 1985). In this chapter we will mostly be concerned 
with the main and primary verbs, because it is these that have inflectional 

regular endings. Of these verbs a large class are regular, that is to say ah verbs of 
this class have the same endings marking the same functions. These regular 
verbs (e.g. walk, or inspect), have four morphological forms, as follow:

Morphological Form Classes Regularly Inflected Verbs
stem walk merge try map
-a-form walks merges tries maps
-mg participle walking merging trying mapping
Past form or -ed participle walked merged; tried mapped

These verbs are called regular because just by knowing the stem we 
can predict the other forms, by adding one of three predictable endings, and 
making some regular spelling changes (and as we will see in Chapter 4, reg­
ular pronunciation changes). These regular verbs and forms arc significant in 
the morphology of English first because they cover a majority of the verbs, ;

; and Second because the regular class is productive. As discussed earlier, a ? 
productive class is one that automatically includes any new words that enter 
the language. For example the recently-created vbrb j^ 
the no^ takes the regular endings-ed,-ing, -es. (Note
that the -5 form is spelled faxes rather than faxs; we will discuss spelling 
rules below).

verbs1^ The irregular verbs are those that have some more or less idiosyn­
craticforms of inflection.Irregular verbs in English often have five different 
forms, but can have as many as eight (e.g., the verb be) or as few as three (e.g. 
cutfx hit). While constituting a much smaller class of verbs (Quirk et al 
(1985) estimate there are only about 250 irregular verbs, not counting auxil­
iaries), this class includes most of the very frequent verbs of the language.2 
The table below shows some sample irregular forms. Note that an irregular 

preterite verb can inflect in the past form (also called the preterite) by changing its 
vowelfeat/aie), or its vowel and some consonants (catch/caught), or with no 

\ ending at all (cut/cut). ?

2 In general, the more frequent a word form, the more likely it is to have idiosyncratic 
properties; this is due to a fact about language change; very frequent words preserve their 
form even if other words around them arc changing so as to become more regular. /
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Morphological Form Classes Irregularly Inflected Verbs
stem eat catch' \ cut
-.v form eats catches cuts
-ing participle eating catching cutting
Past form ate caught cut
-ed participle eaten caught cut

The way these forms are used in a sentence will be discussed in Chap­
ters 8-12 but is worth a brief mention here. The - v form is used in the “habit- 
ual present” form to distinguish the third-person singular ending (She jogs 
every Tuesday) from the other choices of person and number (I/you/we/they 
jog every Tuesday). The stem form is used in the infinitive form, and also 
after certain other verbs (I’d rather walk home, I want to walk home). The 
-mg participle is used when the verb is treated as a noun; this particular 
kind of nominal use of a verb is called a gerund use: Fishing is fine if you gerund 
live near water. The -ed participle is used in the perfect construction (He’s perfect 

eaten lunch already) or the passive construction (The verdict was overturned 
yesterday.).

In addition to noting which suffixes can be attached to which stems, 
we need to capture the fact that a number of regular spelling changes occur 
at these morpheme boundaries. For example, a single consonant letter is 
doubled before adding the -ing and -ed suffixes (beg/begging/begged). If the 
final letter is “c”, the doubling is spelled "ck” (picnic/picnicking/picnicked).

f If the base ends in a silent -e, it is deleted before adding -ing and -ed (merge/- 
F merging/merged). Just as for nouns, the -s ending is spelled -es after verb 

stems ending in -s (toss/tosses) , -z, (waltz/waltzes) -sh, (wash/washes) -ch, 
(catch/catches) and sometimes -x (tax/taxes), Also like nouns, verbs ending 
in -y preceded by a consonant change the -y to -i (try/tries).

The English verbal system is much simpler than for example the Eu­
ropean Spanish system, which has as many as fifty distinct verb forms for 

T each regular verb. Figure 3.1 shows just a few of the examples for the verb 
amar, ‘to love’. Other languages can have even more forms than this Spanish 
example. ■ "

Derivational Morphology

While English inflection is relatively simple compared to other languages, 
derivation in English is quite complex. Recall that derivation is the combi-
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Present
Indicative

Imper. Imperfect
Indicative

Future Preterite Present 
Subjnct.

Conditional Imperfect 
Subjnct.

Future 
Subjnct.

amo amaba amare ame ame amana amara amare
amas ama amabas amaras amaste ames amarfas amaras amares

ames
ama amaba amara am6 ame amaria amara amareme
amamos amabamos amaremos amamos amemos amarfamos amaramos amaremos
amais amad amabais amardis amasteis ameis amariais amarais amareis

amais
aman amaban amaran amaron amen amarian amaran amaren

Figure 3.1 To love in Spanish.

nation of a word stem with a grammatical morpheme, usually resulting in a > 
word of a different class, often with a meaning hard to predict exactly.

A very common kind of derivation in English is the formation of new 
nominauzation nouns, often from verbs or adjectives. This process is called nominalization.

For example, the suffix -ation produces nouns from verbs ending ofteninthe 
suffix-ize (computerize -> computerization). Here are examples of some 
particularly productive English nominalizing suffixes.

Suffix B ase Verb/Adjective Derived Noun
-ation
-ee
-er ■
-ness

computerize (V) 
appoint (V) 
kill (V) ;: 
fuzzy (A)

computerization 
appointee 
killer
fuzziness

Adjectives can also be derived from nouns and verbs. Here are exam­
ples of a few suffixes deriving adjectives from nouns or verbs.

Suffix Base Noun/Verb Derived Adjective
-al
-able
-less

computation (N) 
embrace (V) 
clue (N)

computational 
embraceable 
clueless

Derivation in English is more complex than inflection for a number of 
reasons. One is that it is generally less productive; even a nominalizing suf- / 
fix like -ation, which can be added to almost any verb ending in -ize, cannot 
be added to absolutely every verb. Thus we can’t say ^eatation or *spella- ■ 
tion (we use an asterisk (*) to mark “non-examplcs'’ of English). Another 
is that there are subtle and complex meaning differences among nominaliz- )
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ing suffixes. For example sincerity has a subtle difference in meaning from 
sincereness.

3.2 Finite-State Morphological Parsing

Let’s now proceed to the problem of parsing English morphology. Consider 
a simple example: parsing just the productive nominal plural (-s) and the 
verbal progressive (-ing). Our goal will be to take input forms like those in 
the first column below and produce output forms like those in the second 
column.

Input Morphological Parsed Output
cats cat +N +PL
cat cat.+N +SG
cities city +N +PL
geese goose +N + PL
goose (goose +N +SG) or (goose +V)
gooses goose +V +3SG
merging merge +V +PRES-PART
caught (catch +V +PAST-PART) or (catch +V. +PAST)

The second column contains the stem of each word as well as assorted
i morphological features. These features specify additional information about features 

the stem. For example the feature +N means that the word is a noun; +SG 
means it is singular, +PL that it is plural. We will discuss features in Chap­

iter 11; for now, consider +SG to be a primitive unit that means “singular”. 
Note that some of the input forms (like caught or goose) will be ambiguous 
between different morphological parses.

yhtr In order to build a morphological parser, we’ll need at least the 
following:.

1. lexicon: the list of stems and affixes, together with basic information lexicon 

t about them (whether a stem is a Noun stem or a Verb stem, etc.).
2. morphotactics: the model of morpheme ordering that explains which morphotactics 

classes of morphemes can follow other classes of morphemes inside a 
word. For example, the rule that the English plural morpheme follows 
the noun rather than preceding it.

3. orthographic rules: these spelling rules are used to model the changes 
that occur in a word, usually when two morphemes combine (e.g., the
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y -y ie spelling rule discussed above that changes city + -5 to cities 
rather than citys).

The next part of this section will discuss how to represent a simple ver­
sion of the lexicon just for the sub-problem of morphological recognition, 
including how to use FSAs to model morphotactic knowledge. We will then 
introduce the finite-state transducer (FSTj as a way of modeling morpholog­
ical features in the lexicon, and addressing morphological parsing. Finally, 
we show how to use FSTs to model orthographic rales.

The Lexicon and Morphotactics

A lexicon is a repository for words. The simplest possible lexicon would 
consist of an explicit list of every word of the language (every word, i.e., 
including abbreviations (“AAA”) and proper names (“Jane” or “Beijing”) as 
follows;

a 
AAA 
A A 
Aachen 
aardvark 
aardwolf 
aba 
abaca 
aback

Since it will often be inconvenient or impossible, for the various rea­
sons we discussed above, to list every word in the language, computational 
lexicons are usually structured with a list of each of the stems and affixes of 
the language together with a representation of the morphotactics that tells us 
how they can fit together. There are many ways to model morphotactics; one 
of the most common is the finite-state automaton. A very simple finite-state 
model for English nominal inflection might look like Figure 3.2.

The FSA in Figure 3.2 assumes that the lexicon includes regular nouns 
(reg-noun) that lake the regular -.y plural (c.g., cat, dog, fox, aardvark}. 
These are the vast majority of English nouns since for now we will ignore 
the fact that the plural of words like fox have an inserted e: foxes. The 
lexicon also includes irregular noun forms that don’t take -5, both singular 
irreg-sg-noun (goose, mouse) and plural irreg-pl-noun (geese, mice).
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reg-noim irreg-pl-noun irreg-sg-noun plural
Fox 
cat 
dog 
aardvark

geese 
sheep 
mice

goose 
sheep 
mouse

•-s

similar model for English verbal inflection might look like Fig- 
ure 3.3.

irreg-past-verb-form

Figure 3.3 A finite-state automaton for English verbal inflection

This lexicon has three stem classes (reg-verb-stem, irreg-verb-stem, 
and irreg-past-verb-form), plus four more affix classes {-ed past, -ed partici­
ple, -ing participle, and third singular -s):
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reg-verb - 
stem

irreg-verb- 
stem

irreg-past- 
verb

past past-part pres-part 3sg

walk 
fry 
talk 
impeach

cut 
speak 
sing 
sang 
spoken

caught 
ate
eaten

-ed -ed -ing , -s

English derivational morphology is significantly more complex than 
English inflectional morphology, and so automata for modeling English deri­
vation tend to be quite complex. Some models of English derivation, in fact, 
are based on the more complex context-free grammars of Chapter 9 (Sproat, 
1993; Orgun, 1995).

As a preliminary example, though, of the kind of analysis it would 
require, we present a small part of the morphotactics of English adjectives, 
taken front Aritworth (1990). Antworth offers the following data on English 
adjectives; f

big, bigger, biggest
cool, cooler, coolest, coolly O
red, redder, reddest
clear, clearer, clearest, clearly, unclear, unclearly
happy, happier, happiest, happily
Unhappy, unhappier, unhappiest, unhappily y l
real, unreal, really

An initial hypothesis might be that adjectives can have an optional pre- ; 
fix (nn-), an obligatory root (big, cool, etc) and an optional suffix (-er, -est, . 
or -ly). This might suggest the the FSA in Figure 3;4. r

e

Figure 3.4 An FSA for a fragment of English adjective morphology: 
Antworth’s Proposal//I.
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Alas, while this FSA will recognize all the adjectives in the table above, 
it will also recognize ungrammatical forms like unbig, redly, and realest. 

We need to set up classes of roots and specify which can occur with which 
suffixes. So adj-rooti would include adjectives that can occur with un- and 
dy k lear, happy, and real) while adj-root2 will include adjectives that can’t 
(big, cool, and red). Antworth (1990) presents Figure 3.5 as a partial solution 
to these problems.

adj-root j

adj-root2

Figure 3.5 An FSA for a fragment of English adjective morphology: 
Antwonh’s Proposal #2.

-----------------------------——:——-------------------------;----------------------------------------------------- --------- ---------------------——

This gives an idea of the complexity to be expected from English 
derivation. For a further example, we give in Figure 3.6 another fragment 
of an FSA for English nominal and verbal derivational morphology, based 
on Sproat (1993), Bauer (1983), and Porter (1980). This FSA models a 
number of derivational facts, such as the well known generalization that any 
verb ending in dze can be followed by the nominalizing suffix -ation (Bauer, 
1983, Sproat, 1993)). Thus since there is a word fossilize, we can predict the 

by following states qo, q^. and q2. Similarly, adjectives 
ending in -al or -able at ^5 (equal, formal, realizable) can take the suffix -ity, 
or sometimes the suffix -ness to state (naturalness, casualness). We leave 
it as an exercise for the reader (Exercise 3.2) to discover some of the indi­
vidual exceptions to many of these constraints, and also to give examples of 
some of the various noun and verb classes.

We can now use these FSAs to solve the problem of morphological 
recognition; that is, of determining whether an input string of letters makes 
up a legitimate English word or not. We do this by taking the morphotactic 
FSAs, and plugging in each “sub-lexicon’’ into the FSA. That is, we expand 
each arc (c.g., the reg-noun-stem arc) with all the morphemes that make up 
the set of reg-noun-stem. The resulting FSA can then be defined at the level 
of the individual letter
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nouni -ize/V -ation/N

Figure 3.6 An FSA for another fragment of English derivational morphol­
ogy- : ■ ..

Figure 3.7 Compiled FSA for a few English nouns with their inflection. 
Note that this automaton will incorrectly accept the input/bxs. We will see 
beginning on page 76 how to correctly deal with the inserted e m foxes.

Figure 3.7 shows the noun-recognition FSA produced by expanding . 
the Nominal Inflection FSA of Figure 3.2 with sample regular and irregular j 
nouns for each class. We can use Figure 3.7 to recognize strings like aard­
varks by simply starting at the initial state, and comparing the input letter
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by letter with each word on each outgoing arc, and so on, just as we saw in
Chapter 2.

Morphological Parsing with Finite-State Transducers

Now that we ’ve seen how to use FSAs to represent the lexicon and inciden­
tally do morphological recognition, let’s move on to morphological parsing.
For example, given the input cats, we’d like to output cat +N +PL, telling 
tis that cat is a plural noun. We will do this via a version of two-Ievei mor- two-level 
phology, first proposed by Koskenniemi (1983). Two-level morphology rep­
resents a word as a correspondence between a lexical level, which represents 
a simple concatenation of morphemes making up a word, and the surface surface 
level, which represents the actual spelling of the final word, Morphological 
parsing is implemented by building mapping rules that map letter sequences 
like cats on the surface level into morphcriic and features sequences like

y-WW +PL oil the lexical level. Figure 3.8 shows these two levels for the 
word cats. Note that the lexical level has the stem for a word, followed by 
the morphological information +N + PL which tells us that cats is a plural 
noun.

pw The automaton that we use for performing the mapping between these 
two levels is the finite-state transducer or FST. A transducer maps between fst 
one set of symbols and another; a finite-state transducer does this via a fi­
nite automaton. Thus we usually visualize an FST as a two-tape automaton 
which recognizes or generates pairs of strings. The FST thus has a more 
general function than an FS A; where an FS A defines a formal language by 
defining a set of strings, an FST defines a relation between sets of strings. 
This relates to another view of an FST; as a machine that reads one string 
and generates another. Here’s a summary of this four-fold way of thinking 
about transducers: - d r;.:
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MEALY
MACHiNE

• FST as recognizer: a transducer that takes a pair of strings as input 
and outputs accept if the string-pair is in the string-pair language, and 
a reject if it is not.

• FST as generator: a machine that outputs pairs of strings of the lan­
guage. Thus the output is a yes or no, and a pair of output strings.

• FST as translator: a machine that reads a string and outputs another 
string

• FST as set relater: a machine that computes relations between sets.

An FST can be formally defined in a number of ways; we will rely 
on the following definition, based on what is called the Mealy machine 
extension to a simple FS A:

• Q: a finite set of N states qo,qi, • • • ,
• X: a finite alphabet of complex symbols. Each complex symbol is 

composed of an input-output pair i: o; one symbol i from an input 
alphabet 1, and one symbol o from an output alphabet 0, thus X C 
I x O.1 and O may each also include the epsilon symbol e.

• go- the start state
• F: the set of final states, F C Q
• 8 (4. i: o): the transition function or transition matrix between states. 

Given a state q € Q and complex symbol i: o e X, S(q, i: o) returns a J 
new state e Q. 6 is thus a relation from Q x X to Q.

Where an FS A accepts a language stated over a finite alphabet of single I 
symbols, such as the alphabet of our sheep language:

(3.2)

an FST accepts a language stated over pairs of symbols, as in:

X = {a : a, b : :!, a :!, a : £, £ :!} (3.3)

FEASIBLE 
PAIRS

REGULAR 
RELATIONS

In two-level morphology, the pairs of symbols in X are also called feasible | 
pairs.

Where FSAs are isomorphic to regular languages, FSTs are isomor- | 
phic to regular relations. Regular relations are sets of pairs of strings, a | 
natural extension of the regular languages, which are sets of strings. Like 4 
FSAs and regular languages, FSTs and regular relations are closed under j 
union, although in general they are not closed under difference, complemen-J 
tation and intersection (although some useful subclasses of FSTs are closed 
under these operations; in general FSTs that are not augmented with the £
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arcmore likely to have such closure properties). Besides union, FSTs have 
two additional closure properties that turn out to be extremely useful:

s inversion: The inversion of a transducer T (T”1) simply switches the inversion 

input and output labels. Thus if T maps from the input alphabet I to
f the output alphabet O, maps from O to I.

• composition: If 7) is a transducer from !\ to Oj and 73 a transducer composition 

from T to then T\ o maps from I[ to O2.

Inversion is useful because it makes it easy to convert a FST-as-parser 
into an FST-as-generator. Composition is useful because it allows us to take 
two transducers that run in series and replace them with one more complex 
transducer. Composition works as in algebra; applying o T2 to an input 
sequence S is identical to applying T\ to S and then T2 to the result; thus 
71 ” (S)). We will see examples of composition below.

We mentioned that for two-level morphology it’s convenient to view
an FST as having two tapes. The upper or lexical tape, is composed from lexical tape 

characters from the left side of the a : b pairs; the lower or surface tape, 
is composed of characters from the right side of the a : b pairs. Thus each 
symbol a : b in the transducer alphabet E expresses how the symbol a from 
one tape is mapped to the symbol b on the another tape. For example a : e 
means that an a on the upper tape will correspond to nothing on the lower 
tape. Just as for an FSA, we can write regular expressions in the complex 
alphabet E. Since it’s most common for symbols to map to themselves, in 
two-level morphology we call pairs like a : a default pairs, and just refer to f^LT 
them by the single letter a.

We are now ready to build an FST morphological parser out of our 
earlier morphotactic FSAs and lexica by adding an extra “lexical” tape and 
the appropriate morphological features. Figure 3.9 shows an augmentation 
of Figure 3.2 with the nominal morphological features (+SG and + PL) that 
correspond to each morpheme. Note that these features map to the empty 
string e or the word/morpheme boundary symbol # since there is no segment 
corresponding to them on the output tape.

In order to use Figure 3.9 as a morphological noun parser; it needs to be 
augmented with all the individual regular and irregular noun stems, replacing 
the labels regular-noun-stem etc. In order to do this we need to update the 
lexicon for this transducer, so that irregular plurals like geese will parse into 
the correct stem goose +N + PL. We do this by allowing the lexicon to 
also have two levels. Since surface geese maps to underlying goose, the 
new lexical entry will be “g : g o 1e o: e s : s e: e”. Regular forms are
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Figure 3.9 A transducer for English nominal number inflection Tnum- 
Since both qy and 72 are accepting states, regular nouns can have the plural 
suffix or not. The morpheme-boundary symbol" and word-boundary marker 
//will be discussed below.

simpler; the two-level entry for fox will now be “f: f 0:0 x: x”, but by ■ 
relying on the orthographic convention that f stands for f : f and so on, we 
can simply refer to it as fox and the form for geese as “g o: e o: e s 
e”. Thus the lexicon will look only slightly more complex:

reg-noun irreg-pl-noun irreg-sg-noun
fox
cat

aardvark

g o:e o:e s e 
sheep 
mo:iu.Es;ce

goose 
sheep 
mouse

Our proposed morphological parser needs to map from surface forms 4 
like geese to lexical forms like goose +N 1 SG.We could do this by cas­
cading the lexicon above with the singular/plural automaton of Figure 3.9. 
Cascading two automata means running them in series with the output of 8 
the first feeding the input to the second. We would first represent the lexi- J 
con of stems in the above table as the FST Tstems of Figure 3.10. This FST 3 
maps e g . dog to reg-noun-stem. In order to allow possible suffixes, TstemS I 

©symbol in Figure 3.10 allows the forms to be followed by the wildcard @ symbol;
@: @ stands for “any feasible pair”. A pair of the form @ : x, for example will J 
mean “any feasible pair which has x on the surface level”, and correspond- f 
ingly for the form x: The output of this FST would then feed the number J 
automaton ; 4

Instead of cascading the two transducers, we can compose them using J 
the composition operator defined above. Composing is a way of taking a
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cascade of transducers with many different levels of inputs and outputs and 
converting them into a single “two-level” transducer with one input tape and 

yr one output tape. The algorithm for composition bears some resemblance to
the algorithm for determinization of FSAs from page 48; given two automata 
23 and T2 wtth state sets Qi and and transition functions 61 and 82, we 
create a new possible state (x.y) for every pair of states x e Qi and y e 
Then the new automaton has the transition function:

A W • o) = [xb,yh] if
3 c s.t. 61 (Ay, i:c) = xb

and 82(ya, c : o) = yb (3.4)

resulting composed automaton, T[ex = Tnum o Tstems, is shown in
Figure 3.11 (compare this with the FSA lexicon in Figure 3.7 on page 70).3 
Note that the final automaton still has two levels separated by the :. Because 
the colon was reserved for these levels, we had to use the j symbol in Tstems 
in Figure 3.10 to separate the upper and lower tapes.

This transducer will map plural nouns into the stem plus the morpho­
logical marker + PL, and singular nouns into the stem plus the morpheme 
+SG. Thus a surface cats will map to cat +N + PL as follows:

Ihatis, c maps to itself, as do a and t, while the morphological feature 
+N (recall that this means “noun”) maps to nothing (e), and the feature +PL 
3 Note that for the purposes of clear exposition, Figure 3.11 has not been minimized in the 
way that Figure 3.7 has.
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(meaning “plural”) maps to A s. The symbol" indicates a morpheme bound- 
BouNDAw ary, while the symbol # indicates a word boundary. Figure 3.12 refers to 
# ! tapes with these morpheme boundary markers as intermediate tapes; the
boundary next section will show how the boundary marker is removed;

Lexical f 0 +N +PLX

\ Intermediate f } O X A

Figure 3.12 An example of the lexical and intermediate tapes.

SPELLING 
RULES ..

Orthographic Rules and Finite-State Transducers

The method described in the previous section will successfully recognize 
words like aardvarks and mice. But just concatenating the morphemes won’t 
work for cases where there is a spelling change; it would incorrectly reject 
ah input like foxes and accept ah input like foxs. We need to deal with the 
fact that English often requires spelling changes at morpheme boundaries by 
introducing spelling rules tor orthographic rules). This section introduces?! 
a number of notations for writing such rules arid shows how to implement 
the rules as transducers. Some of these spelling rules:
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Name Description of Rule Example
Consonant 
doubling 
E deletion 
E insertion 
Y replacement 
K insertion

1-letter consonant doubled before -ingl-ed

Silent e dropped before -ing and -ed 
e added after -s,-z,-x,-ch, -sh before -5 
-y changes to -ie before -s, -i before -ed 
verbs ending with vowel + -c add -k

beg/begging

make/making 
watch/watches 
try/tries 
panic/panicked

We can think of these spelling changes as taking as input a simple 
concatenation of morphemes (the “intermediate output” of the lexical trans- 
duccr in Figure 3.11) and producing as output a slightly-modified, (correctly- 
spelled) concatenation of morphemes. Figure 3.13 shows the three levels we 
are talking about: lexical, intermediate, and surface. So for example we 
COuld write an E-insertion rule that performs the mapping from the interme­
diate to surface levels shown in Figure 3.13. Such a rule might say some-

Lexical f O X +N +PL 3
Intermediate f O X A s 3?

Surface f 0 X e s

Figure 3.13 An example of the lexical, intermediate, and surface tapes. 
Between each pair of tapes is a two-level transducer; the lexical transducer of 
Figure 3.11 between the lexical arid intermediate levels, and the E-insertion 
spelling rule between the intermediate and surface levels. The E-insertion 
spelling rule inserts an e on the surface tape when the intermediate tape has a 
morpheme boundary " followed by the morpheme -5.

thirigiike “insert an e on the surface tape just when the lexical tape has a 
morpheme ending in x (of z, etc) and the next morpheme is -y”. Here’s a 
formalization of the rule:

s# (3-5)

This is the rule notation of Chomsky and Halle (1968); a rule of the 
form a —> b!c—d means “rewrite aas b when it occurs between c and
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d”. Since the symbol £ means an empty transition, replacing it means in­
serting something. The symbol A indicates a morpheme boundary. These 
boundaries are deleted by including the symbol ':E in the default pairs for 
the transducer; thus morpheme boundary markers are deleted on the surface 
level by default. (Recall that the colon is used to separate symbols on the in- • 
termediate and surface forms). The # symbol is a special symbol that marks . 
a word boundary. Thus (3.5) means “insert an e after a morpheme-final x, 
s, or z, and before the morpheme s”. Figure 3.14 shows an automaton that 
corresponds to this rule.

Figure 3.14 The transducer for the E-insertion rule of (3.5), extended from 
a similar transducer in Antworth (1990).

The idea in building a transducer for a particular rule is to express only - 
the constraints necessary for that rule, allowing any other string of symbols ; 
to pass through unchanged. This rule is used to insure that we can only 
see the E/e pair if we are in the proper context. So state c/o, which models | 
having seen only default pairs unrelated to the rule, is an accepting state, - 
as is #1, which models having seen a z, s, or x. qz models having seen the uj 
morpheme boundary after the z, s, or x, and again is an accepting state. State | 
^3 models having just seen the E-insertion; it is not an accepting state, since । 
the insertion is only allowed if it is followed by the morpheme and then the H 
end-of-wordsymbol#. |

The ot/zer symbol is used in Figure 3.14 to safely pass through any | 
parts of words that don’t play a role in the E-insertion rule, other means | 
“any feasible pair that is not in this transducer”; it is thus a version of f 
which is context-dependent in a transducer-by-transducer way. So for exam- 
pie when leaving state <70. we go to 71 on the z, 5, or x symbols, rather than y
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following the other arc and staying in qQ. The semantics of other depends 
on what symbols are on other arcs; since # is mentioned on some arcs, it 
is (by definition) not included in other, and thus, for example, is explicitly 
mentioned on the arc from q^ to qQ.

L? A transducer needs to correctly reject a string that applies the rule when 
it shouldn’t. One possible bad string would have the correct environment for 
the E-insertion, but have no insertion. State q^ is used to insure that the e 
is always inserted whenever the environment is appropriate; the transducer 
reaches q^ only when it has seen an s after an appropriate morpheme bound­
ary If the machine is in state qs and the next symbol is #, the machine rejects 
the string (because there is no legal transition on # from qs). Figure 3.15 
shows the transition table for the rule which makes the illegal transitions 
explicit with the symbol.

State \ Input S: s X:X Z : Z 7e £: e # other
1 1 1 0 - 0 0

q\- 1 1 1 2 - 0 0
qz- - 5 1 1 0 .. 3- 0 0
q3 4 ■ - • ■ -: - • - - -

- - - — - 0 -
p 1 1 1 ■ 2 - - 0

Figure 3.15 The state-transition table for E-insertion. rule of Figure 3.14, 
extended from a similar transducer in Antworth (1990).

The next section will show a trace of this E-insertion transducer run­
ning on a sample input string.

3.3 Combining FST Lexicon and Rules

We arc now ready to combine our lexicon and rule transducers for parsing 
and generating. Figure 3.16 shows the architecture of a two-level morphol- 
pgy system, whether used for parsing or generating. The lexicon transducer 
maps between the lexical level, with its stems and morphological features, 
and an intermediate level that represents a simple concatenation of mor­
phemes Then a host of transducers, each representing a single spelling rule 
constraint, all run in parallel so as to map between this intermediate level and 
the surface level. Putting all the spelling rules in parallel is a design choice;
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we could also have chosen to run all the spelling rules in series (as a long 3 
cascade), if we slightly changed each rule.

The architecture in Figure 3.16 is a two-level cascade of transducers. 
Recall that a cascade is a set of transducers in scries, in which the output 
from one transducer acts as the input to another transducer; cascades can _ 
be of arbitrary depth, and each level might be built out of many individual 
transducers. The cascade in Figure 3.16 has two transducers in series: the 
transducer mapping from the lexical to the intermediate levels, and the col­
lection of parallel transducers mapping from the intermediate to the surface ) 
level. The cascade can be run top-down to generate a string, or bottom-up 
to parse it; Figure 3.17 shows a trace of the system accepting the mapping 
from Jot'S Id foxes . :

The power of finite-state transducers is that the exact same cascade 
with the same: state sequences is used when the machine is generating the 
surface tape from the lexical tape, or when it is parsing the lexical tape from 
the surface tape. For example, for generation, imagine leaving the Interme­
diate and Surface tapes blank. Now if we run the lexicon transducer, given ) 
f ox +N +PL, it will produce fox's# on the Intermediate tape via the same :j 
states that it accepted the Lexical and Intermediate tapes in our earlier exam- ~ 
pie. If we then allow all possible orthographic transducers to run in parallel, j 
we will produce the same surfacetape.i



Section 3.3. Combining FST Lexicon and Rules 81

Parsing can be slightly more complicated than generation, because of 
the problem of ambiguity. For example, foxes can also be a verb (albeit a ambiguity 

rare one, meaning “to baffle or confuse”), and hence the lexical parse for 
foxes could be fox +V +3SG as well as fox +N + PL. How are we to 
know which one is the proper parse? In fact, for ambiguous cases of this sort, 
the transducer is not capable of deciding. Disambiguating will require some sambguat 

external evidence such as the surrounding words. Thus/ores is likely to be 
a noun in the sequence I saw two foxes yesterday, but a verb in the sequence 
That trickster foxes me every time!. We will discuss such disambiguation 
algorithms in Chapters 8 and 17. Barring such external evidence, the best our 
transducer can do is just enumerate the possible choices; so we can transduce 
fox^s# into both fox +V +3SGandfox +N +PL.

There is a kind of ambiguity that we need to handle: local ambiguity 
t hat occurs during the process of parsing. For example, imagine parsing the 
input verb assess. After seeing ass, our E-insertion transducer may propose 
that the e that follows is inserted by the spelling rule (for example, as far as 

: the transducer is concerned, we might have been parsing the word asses'). It 
is not until we don’t see the # after asses, but rather run into another s, that 
we realize we have gone down an incorrect path.

Because of this non-determinism, FST-parsing algorithms need to in­
corporate some sort of search algorithm. Exercise 3.8 asks the reader to 
modify the algorithm for non-deterministic FSA recognition in Figure 2.21 
in Chapter 2 to do FST parsing.
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Running a cascade, particularly one with many levels, can be unwieldy. 
Luckily, we’ve already seen how to compose a cascade of transducers in se­
ries into a single more complex transducer. Transducers in parallel can be 

intersection combined by automaton intersection. The automaton intersection algo­
rithm just takes the Cartesian product of the states, i.e., for each state qt in 
machine 1 and state qj in machine 2, we create a new state q-tj. Then for 
any input symbol a, if machine 1 would transition to state qn and machine 2 
would transition to state qm, we transition to state qnrn.

necessary in practice to write an FST by hand. Kaplan and Kay (1994) give
the mathematics that define the mapping from rules to two-level relations, 
and Antworth (1990) gives details of the algorithms for rule compilation. 
Mohri (1997) gives algorithms for transducer minimization and dcterminiza- 

R;tionri'-\Rri<y

3.4 Lexicon-Free FSTs: The Porter Stemmer : '

While building a transducer from a lexicon plus rules is the standard al­
gorithm for morphological parsing, there are simpler algorithms that don’t 
require the large on-line lexicon demanded by this algorithm. These are used 
especially in Information Retrieval (IR) tasks (Chapter 17) in which a user 
heeds some information, and is looking for relevant documents (perhaps on 
the web, perhaps in a digital library database). She gives the system a query 
with some important characteristics of documents she desires, and the JR 
system retrieves what it thinks are the relevant documents. One common
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type of query is Boolean combinations of relevant keywords or phrases, e.g. keywords 

(marsupial OR kangaroo OR koala). The system then returns documents that 
have these words in them. Since a document with the word marsupials might 
not match the keyword marsupial, some IR systems first run a stemmer on

a ? the keywords and on the words in the document. Since morphological pars­
ing in IR is only used to help form equivalence classes, the details of the 
suffixes are irrelevant; what matters is determining that two words have the 

i same stem.
One of the most widely used such stemming algorithms is the simple stemming 

and efficient Porter (1980) algorithm, which is based on a series of simple 
cascaded rewrite rules. Since cascaded rewrite rules are just the sort of thing 
that could be easily implemented as an FST, we think of the Porter algorithm 
as a lexicon-free FST stemmer (this idea will be developed further in the 
exercises (Exercise 3.7). The algorithm contains rules like:

(3 6) ATIONAL ATE (e.g., relational -> relate)

(3.7) ING —> e if stem contains vowel (e.g., motoring -> motor)

The algorithm is presented in detail in Appendix B.
: Do stemmers really improve the performance of information retrieval

engines? One problem is that stemmers are not perfect. For example Krovetz 
(1993) summarizes the following kinds of errors of omission and of commis- 
sion in the Porter algorithm:

Errors of Commission Errors of Omission
organization organ European Europe
doing doe analysis: analyzes
generalization generic matrices matrix
numerical numerous noise noisy
policy police sparse sparsity
university universe explain explanation
negligible negligent urgency urgent

Krovetz also gives the results of a number of experiments testing whether 
the Porter stemmer actually improved JR performance. Overall he found 
some improvement, especially with smaller documents (the larger the docu- 
mcnt, the higher the chance the keyword will occur in the exact form used 
in the query). Since any improvement is quite small, IR engines often don’t 
use stemming.
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3.5 Human Morphological Processing

In this section we look at psychological studies to learn how multi-morphemic 
words are represented in the minds of speakers of English. For example, con­
sider the word walk and its inflected forms walks, and walked. Are all three 
in the human lexicon? Or merely walk plus as well as -ed and -5? How 
about the word happy and its derived forms happily and happiness! We can 
imagine two ends of a theoretical spectrum of representations. The full list- 

full listing ing hypothesis proposes that all words of a language are listed in the mental
lexicon without any internal morphological structure. On this view, mor 
phological structure is simply an epiphenomenon, and walk, walks, walked, 
happy, and happily are all separately listed in the lexicon. This hypothesis 
is certainly untenable for morphologically complex languages like Turkish 
(Hankamer (1989) estimates Turkish as 200 billion possible words). The 

redundancy minimum redundancy hypothesis suggests that only the constituent mor­
phemes are represented in the lexicon, and when processing walks, (whether 1 
for reading, listening, or talking) we must access both morphemes (walk and 3 
-s) and combine them.

Most modern experimental evidence suggests that neither of these is 
completely true. Rather, some kinds of morphological relationships are men­
tally represented (particularly inflection and certain kinds of derivation), but 
others arc not, with those words being fully listed. Stauners et al. (1979), for | 
example, found that derived forms (happiness, happily) are stored separately | 
from their stem (happy), but that regularly inflected forms (pouring) are not f 
distinct in the lexicon from their stems (pour). They did this by using a rep- 
etition priming experiment. In short, repetition priming takes advantage of 
the fact that a word is recognized faster if it has been seen before (if it is 

primed primed). They found that lifting primed lift, and burned primed burn, but
for example selective didn’t prime select. Figure 3.19 sketches one possible 
representation of their finding:

Figure 3.19 Stanners et al. (1979) result: Different representations of in­
flection and derivation.
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In a more recent study, Marslen-Wilson et al. (1994) found that spoken 
derived words can prime their stems, but only if the meaning of the derived 
form is closely related to the stem. For example government primes govern, 
but department does not prime depart. Grainger et al. (1991) found similar 
results with prefixed words (but not with suffixed words), Marslen-Wilson 
et al. (1994) represent a model compatible with their own findings as follows:

Figure 3.20 Marslen-Wilson et al. (1994) result: Derived words are linked 
yhtb their stems only if semantically related

Other evidence that the human lexicon represents some morphological 
structure comes from speech errors, also called slips of the tongue, hi 
normal conversation, speakers often mix up the order of the words or initial 
sounds’

if you break it it’ll drop
I don’t have time to work to watch television because I have to 
work .

cy ;; Blit inflectional and derivational affixes can also appear separately from 
their stems, as these examples from Fromkin and Ratner (1998) and Garrett 
(1975) show:

it’s not only us who have screw looses (for “screws loose”) 
words of rule formation (for “rules of word formation”) 

c Z easy enoughly (for “easily enough”)
c \ which by itself is the most unimplausible sentence you can imagine

The ability of these affixes to be produced separately from their stem 
suggests that the mental lexicon must contain some representation of the 
morphological structure of these words.

In summary, these results suggest that morphology does play a role in 
ihchuman lexicon, especially productive morphology like inflection. They 
also emphasize the important of semantic generalizations across words, and 
suggest that the human auditory lexicon (representing words in terms of their 
sounds) and the orthographic lexicon (representing words in terms of letters)
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may have similar structures. Finally, it seems that many properties of lan­
guage processing, like morphology, may apply equally (or at least similarly) 
to language comprehension and language production.

3.6 Summary :

This chapter introduced morphology, the arena of language processing deal­
ing with the subparts of words, and the flnite-state transducer, the com­
putational device that is commonly used to model morphology. Here’s a 
summary of the main points we covered about these ideas:

• Morphological parsing is the process of finding the constituent mor- 
phemesin a word (e.g., cat +N +PL for cats).

■ • English mainly uses prefixes and suffixes to express inflectional and 
derivational morphology. A

- • English inflectional morphology is relatively simple and includes per­
son and number agreement (-5) and tense markings {-ed and -ing).

• English derivational morphology is more complex and includes suf­
fixes like -ation, -ness, -able as well as prefixes like co- and re-.

• Many constraints on the English morphotactics (allowable morpheme 
sequences) can be represented by finite automata.

• Finite-state transducers are an extension of finite-state automata that 1 
can generate output symbols. ■ |

• Two-level morphology is the application of finite-state transducers to | 
morphological representation and parsing.

• Spelling rules can be implemented as transducers,

• There are automatic transducer-compilers that can produce a trans- | 
ducer for any simple rewrite rule.

• The lexicon and spelling rules can be combined by composing and 
intersecting various transducers.

• The Porter algorithm is a simple and efficient way to do stemming, ? 
stripping off affixes. It is not as accurate as a transducer model that in­
cludes a lexicon, but may be preferable for applications like informa- ' 
tion retrieval in which exact morphological structure is not needed.
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Bibliographical and Historical Notes

Despite the close mathematical similarity of finite-state transducers to finite- 
state automata, the two models grew out of somewhat different traditions. 
Chapter 2 described how the finite automaton grew out of Turing’s (1936) 
model of algorithmic computation, and McCulloch and Pitts finite-state-like 
models of the neuron. The influence of the Turing machine on the trans­
ducer was somewhat more indirect. Huffman (1954) proposed what was 
essentially a state-transition table to model the behavior of sequential cir­
cuits, based on the work of Shannon (1938) on an algebraic model of relay 
circuits. Based on Turing and Shannon’s work, and unaware of Huffman’s 
work, Moore (1956) introduced the term finite automaton for a machine 
with a finite number of states with an alphabet of input symbols and an al- 
phabet of output symbols. Mealy (1955) extended and synthesized the work 
of Moore and Huffman.

The finite automata in Moore’s original paper, and the extension by 
Mealy differed in an important way. In a Mealy machine, the input/output 
symbols are associated with the transitions between states. The finite-state 

y transducers in this chapter are Mealy machines. In a Moore machine, the 
input/output symbols are associated with the state; we will see examples of 
Moore machines in Chapter 5 and Chapter 7. The two types of transduc­
ers are equivalent; any Moore machine can be converted into an equivalent 
Mealy machine and vice versa.

Many early programs for morphological parsing used an affix-strip­
ping approach to parsing. For example Packard’s (1973) parser for ancient 
Greek iteratively stripped prefixes and suffixes off the input word, making 
note of them, and then looked up the remainder in a lexicon. It returned 
any foot that was compatible with the stripped-off affixes. This approach 
is equivalent to the bottom-up method of parsing that we will discuss in 
Chapter 10.

AMPLE (A Morphological Parser for Linguistic Exploration) (Weber 
and Mann, 1981; Weber et al., 1988; Hankamer and Black, 1991) is another 
early bottom-up morphological parser. It contains a lexicon with all possible 
surface variants of each morpheme (these are called allomorphs), together 
with constraints on their occurrence (for example in English the -es allo­
ts the plural morpheme can only occur after s, x, z, sh, or ch). The 
system finds every possible sequence of morphemes which match the input 

A and then filters out all the sequences which have failing constraints.
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An alternative approach to morphological parsing is called generate- 
and-test or analysis-by-synthesis approach. Hankamer’s (1986) keCi is aO 
morphological parser for Turkish which is guided by a finite-state represen­
tation of Turkish morphemes. The program begins with a morpheme that 
might match the left edge of the word, and applies every possible phonolog­
ical rule to it, checking each result against the input. If one of the outputs I 
succeeds, the program then follows the finite-state morphotactics to the nexLli 
morpheme and tries to continue matching the input. f

The idea of modeling spelling rules as finite-state transducers is really 
based on Johnson’s (1972) early idea that phonological rules (to be discussed 
in Chapter 4) have finite-state properties. Johnson’s insight unfortunately did 
not attract the attention of the community, and was independently discovered ; 
by Roland Kaplan and Martin Kay, first in an unpublished talk (Kaplan and ; 
Kay, 1981) and then finally in print (Kaplan and Kay, 1994) (see page 15 ? 
for a discussion of multiple independent discoveries). Kaplan and Kay’s . 
work was followed up and most fully worked out by Koskenniemi (1983), U 
who described finite-state morphological rules for Finnish. Karttunen (1983) 
built a program called KIMMO based on Koskenniemi’s models. Antworth - 
(1990) gives many details of two-level morphology and its application to En- c 
glish.Besides Koskenniemi’s work on Finnish and that of Antworth (1990) ( 
on English, two-level or other finite-state models of morphology have been | 
worked out for many languages, such as Turkish (Oflazer, 1993) and Ara- { 
bic (Beesley, 1996). Antworth (1990) summarizes a number of issues in 
finite-state analysis of languages with morphologically complex processes f 
like infixation and reduplication (e.g., Tagalog) and gemination (e.g., He­
brew); Karttunen (1993) is a good summary of the application of two-level 
morphology specifically to phonological rules of the sort we will discuss in 
Chapter 4. Barton ct al. (1987) bring up some computational complexity - 
problems with two-level models, which are responded to by Koskenniemi 
and Church (1988).

Students interested in further details of the fundamental mathematics 
of automata theory should see Hopcroft and Ullman (1979) or Lewis and | 
Papadimitriou (1981). Mohri (1997) and Roche and Schabes (1997b) give 
additional algorithms and mathematical foundations for language applica- Jf 
turns, including, for example, the details of the algorithm for transducer min- j 
imizatidn. Sproat (1993) gives a broad general introduction to computational | 
morphology. A..—-A; . . .
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Exercises

Z 3.1 Add some adjectives to the adjective FSA in Figure 3.5.

73.2 Give examples of each of the noun and verb classes in Figure 3.6, and 
y find some exceptions to the rules.

3.3 Extend the transducer in Figure 3.14 to deal with sh and ch.

3.4 Write a transducer(s) for the K insertion spelling rule in English.

i) 3.5 Write a transducer^) for the consonant doubling spelling rule in En- 
glish.

h 3.6 The Soundex algorithm (Odell and Russell, 1922; Knuth, 1973) is a 
method commonly used in libraries and older Census records for represent- 

. ing people’s names. It has the advantage that versions of the names that are 
slightly misspelled or otherwise modified (common, for example, in hand- 

; written census records) will still have the same representation as correctly-
spelled names, (e.g., Jurafsky, Jarofsky, Jarovsky, and Jarovski all map to 
J612).

a. Keep the first letter of the name, and drop all occurrences of non-initial 
■ a, e, h, i, o, u, w, y
b. Replace the remaining letters with the following numbers:

b, f, p, v :> 1
c, g, j, k, q, s. x, z > 2
d, t —3
I —> 4
rn. n > 5
r —6

c. Replace any sequences of identical numbers with a single number (i.e., 
666 —\ 6)

d. Convert to the form Letter Digit. Digit Digit by dropping 
digits past the third (if necessary) or padding with trading zeros (if 
necessary).

The exercise: write a FST to implement the Soundex algorithm.

3.7 Implement one of the steps of the Porter Stemmer as a transducer.
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3.8 Write the algorithm for parsing a finite-state transducer, using the pseu­
do-code introduced in Chapter 2. You should do this by modifying the algo­
rithm ND-RECOGNIZE in Figure 2.21 in Chapter 2.

3.9 Write a program that takes a word and, using an on-line dictionary, 
computes possible anagrams of the word, each of which is a legal word.

3.10 In Figure 3.14, why is there az, s, x arc from q^ to q^.



COMPUTATIONAL 
PHONOLOGY AND 
TEXT-TO-SPLECH

You like po-tay-to and! like po-tah-to. 
You like to-may-to and 1 like to-mah-to. 
Po-tay-to, po-tah-to, 
To-may-to, to-mah-to, 
Let’s call the whole thing off!

George and Ira Gershwin, Let’s Call the 
WholeThing Off from Shall We Dance, 
WV

The debate between the “whole language” and “phonics” methods of 
teaching reading to children seems at very glance like a purely modern edu­
cational debate. Like many modern debates, however, this one recapitulates 
an important historical dialectic, in this case in writing systems. The earliest 
independently-invented writing systems (Sumerian, Chinese, Mayan) were 
mainly logographic-, one symbol represented a whole word. But from the 
earliest stages we can find, most such systems contain elements of syllabic 
or phonemic writing systems, in which symbols are used to represent the 
sounds that make up the words. Thus the Sumerian symbol pronounced ba 
and meaning “ration” could also function purely as the sound /ba/. Even 
modern Chinese, which remains primarily logographic, uses sound-based 
characters to spell out foreign words and especially geographical names. 
Purely sound-based writing systems, whether syllabic (like Japanese hira­
gana or katakana), alphabetic (like the Roman alphabet used in this book), 
Or consonantal (like Semitic writing systems), can generally be traced back 
to these early logo-syllabic systems, often as two cultures came together. 
Thus the Arabic, Aramaic, Hebrew, Greek, and Roman systems all derive 
from a West Semitic script that is presumed to have been modified by West­
ern Semitic mercenaries from a cursive form of Egyptian hieroglyphs. The
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Japanese syllabaries were modified from a cursive form of a set of Chinese 
characters which were used to represent sounds. These Chmese characters 
themselves were used in Chinese to phonetically represent the Sanskrit in 
the Buddhist scriptures that were brought to China in the Tang dynasty.

Whatever its origins, the idea implicit in a sound-based writing system, y 
that the spoken word is composed of smaller units of speech, is the I Jr-theoryS 
that underlies all our modern theories of phonology. In the next four chapters , 
we begin our exploration of these ideas, as we introduce the fandamental , a 
insights and algorithms necessary to understand modern speech recognition « 
and speech synthesis technology, and the related branch of hngmsfics > al led 

computational phonology.
Let's begin by defining these areas. The core task of automatic speech , s 

recognition is take an acoustic waveform as input and produce as output 
a string of words. Conversely, the core task of text-to-speech synthesis is 
to take a sequence of text words and produce as output an acoustic wave­
form. The uses of speech recognition and synthesis are manifold, including 
automatic dictation/transcription, speech-based interfaces to computers and

: , telephones. Voice-based input and output for the disabled, and many others,- | 
that will be discussed in greater detail in Chapter 7. ,

This chapter will focus on an important part of both speech recognition ; 
and,text-to-speech systems: how words are pronounced in terms of individ- , 
ual speech units called phones: A speech recognition system needs to have : 
a pronunciation for every word it can recognize, and a text-to-speech system , 
needs to have a pronunciation for every word it can say. The first section of - 
this chapter will introduce phonetic alphabets for describing pronunciation,

PHONETICS part of the field of phonetics. We then introduce articulatory phonetics, the |
"WB study of how speech sounds are produced by articulators in the mouth.

Modeling pronunciation would be much simpler if a given phone was a 
always pronounced the same in every context. Unfortunately this is not the g 
case. As we Will see, the phone [t) is pronounced very differently in different | 
phonetic environments. Phonology is the area of linguistics that describes | 
the systematic way that sounds are differently realized in different environs 
inents, and how this system of sounds is related to the rest of the grammar, j 

: The next section of the chapter will describe the way we write phonological |

rules to describe these different realizations. / . ’
We next introduce an areaknown as computational phonology. One all 

important part of computational phonology is the study of computational J 
mechanisms for modeling phonological rules. We will show how the spel- 3 
hng-rule transducers of Chapter 3 can be used to model phonology. We then g




