:DANIEL JURAFSKY & JAMES H. MARTIN

Petitioner has added romanettes to pages (1) - (vi).
Otherwise, it leaves the original page numbering.

MICROSOFT CORP.
EXHIBIT 1010

(i)

Speech a nd Language PI'OCCSSng‘

' “This book is an absolute necessity for instructors at all levels, as well as an indispehSiBl'e
- reference for researchers. Introducing NLP, computational linguistics, and speech recogmtmn
= comprehensively in a single book is an ambitious enterprise. The authors have managed it

- admirably, paying careful attention to traditional foundations, relating recent developments and
©- trends to those foundations, and tying it all together with insight and humor. Remarkable”
i — Philip Resnik, University of Maryland g

“...ideal for ...linguists who want to learn more about computational modeling and techniqu
- in language processing; computer scientists building language applications who want to learn
. more about the linguistic underpinnings of the field; speech technologists who want to learn:
- more about language understanding, semantics and discourse; and all those wanting to learn’
" more about speech processing. For instructors . . . this book is a dream. It covers virtually every:
- aspect of NLP... What’s truly astounding is that the book covers such a broad range of topics,
- while giving the reader the depth to understand and make use of the concepts, algorithms and
. techniques that are presented. . . ideal as a course textbook for advanced undergraduates, as well
as graduate students and researchers in the field. '

— Johanna Moore, University of Edinburgh

: “Speech and Language Processing is a comprehensive, reader-friendly, and up-to-date guide to’
.. - computational linguistics, covering both statistical and symbolic methods and their application.
- Tt will appeal both to senior undergraduate students, who will find it neither too technical nor
too simplistic, and to researchers, who will find it to be a helpful guide to the newly estabhshed
techniques of a rapidly growing research field.”

— Graeme Hirst, University of Toronto

“The field of human language processing encompasses a diverse array of disciplines, and as
such is an incredibly challenging field to master. This book does a wonderful job of bringing
together this vast body of knowledge in a form that is both accessible and comprehensive. Its -
encyclopedic coverage makes it a must-have for people already in the field, while the clearf‘;-.
presentation style and many examples make it an ideal textbook.” '
— Eric Brill, Microsoft Research

‘This is quite simply the most complete introduction to natural language and speech technol(')gy :
ever written. Virtually every topic in the field is covered, in a prose style that is both clear
and engaging. The dlscussmn is linguistically informed, and strikes a nice balance between
theoretical computatlonal models, and practical applications. It is an extremely impressive
achievement. _ .
— Richard Sproat, AT&T Labs — Research

PRENTICE HALL SERIES
IN ARTIFICIAL INTELLIGENCE
S{z;art Russell and Peter Norvig, Editors

o _‘GRAHAM B ANSI Common Lisp_

RUSSELL & NORVIG Amﬁcml Inte]lzgence A Modern Approach

JURAFSKY & MARTIN -~ Speech and Language Processing

(iii)

Speech and Language Processing

An Introduction to Natural Language Processing,
Computational Linguistics, and Speech Recognition

Daniel Jurafsky and) anies H Martin

University of Colorado, Boulder

Contributing writers:
Andrew Kehler, Keith Vander Linden, and Nigel Ward

RSN Prentice Hall '
. [/pper Saddle River, New Jersey 07458

(iv)

Library of Congress Cataloging-in-Publication Data

Jurafsky, Daniel S. (Daniel Saul)
Speech and Langauge Processing / Daniel Jurafsky, James H. Martin.
p. cm. :
- Includes bibliographical references and index. .
ISBN 0-13-095069-6 '

' Editor-in-Chief: Marcia Horton

Publisher: Alan Apt

Editorial/production supervision: Scort Dzs(mno

Editorial assistant: Toni Holm

Executive managing editor: Vince O’Brien

Cover design director: Heather Seott .

Cover design execution: J’olm Ch;mzana

Manufactunng managet dey stcwm

Manutactunng buyer Pat Brown - ‘

Assxstam v:ce prcqident of productxon and manufactunng David W. Riccardi

’ Cover deswn Damel Jurafs*ky James H Martin, and Linda Martin. The front cover drawmg
_is the action for the - Jacquard Loom (Usher 1954). The back cover drawmg is Alexander
Graham Fell’s Gallows telephone (Rhodes, 1929). .

o This book was set m Tlmes-Roman TIPA (IPA), and PMC (Chinese} by the authors using
Ié-TEX2e

' © 200{) by P1 enuce-HaII Inc.
Pearson Higher Education
v Upper S‘iddle River, New Jersey 07458

The author and: pubhsher of this book have used their best efforts in preparing this book.

o These efforts include the development, research, and testing of the theories and programs to
. determine their effectiveness. The author and publisher shall not be liable in any event for
mc1dentai or consequentlal damages in conmection with, or arising out of, the furnishing,

' pexformance or use of thesc programs.

AIE nghts recerved No part of this book may be reproduced in any form or by any means,
: ’w1thout pemussron in ertmg from the pubhsher . s : -

Pnnted in the Umted States of Amenca

109 876543
ISBN 0-13= 095069*6

Prentice- Hall Intemanonal (UK) Lumted London
Prentlce~Hall of Austraha Pty. Limited, Svdney
Prentice-Hall Canada Inc., Toronto

Prerntice-Hall Ehspanoam,encana_,s_ Al Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo.

Prentice-Hall Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

For my parents, Ruth and Al Jurafsky — D.J.

For Linda — J M.

(vi)

- Summary of Contents

g T xxi
1 Introduction........coooiiiiiiiiiiiiiiiniiiieiaiiiinnaes 1
1 Words 19
2 Regular Expressions and Automata..........ccoevenane, 21
3 Morphology and Finite-State Transducers............... 57
4 Computational Phonology and Text-to-Speech........... 91
5 Probabilistic Models of Pronunclatlon and Spelling 141
L - P T 191
ST HMMS and Speech Recognitionoovireinne. 235
‘Il Syntax . 285
8 Word Classes and Part-of-Speech Tagging 287
9 Context-Free Grammars for English 323
10 Parsing with Context-Free GrammarS.......veeeveeconss 357
11 Features and Unificationoooeveieeireennnonrnansenes 395
12 Lexicalized and Probabilistic Parsing.........c..cccvenn.e. 447
. 13 Language and Complexlty 477
Il Semantics - 499
14 Representmg Meanmg 501
15 Semantic ANALYSIS cuueeeerrnrreesrerrceesrersnrenesenes 545
16 Lexical Semanticscovvivrnrciercrorisorsocnanranss 589
17 Word Sense Disambiguation and Information Retrieval .. 631
IV Pragmatics 667
18 DiSCOUTSE vivvruvivereenuiiinieiiiiieireiiisairiaiieana. 669
19 Dlalogue and Conversatmnal AgentS......coiiiiinicinnnn. 719
20 Natural Language Generation.......cccoveeieaviaeanonss 763
21 Machine Translation.......c.ociveiiivieriranineoncnaces 799
Appendices - . 831
A Regular Expressmn OPeratorS . ..uvueeeranerrenneerennse 831

~ B’ The Porter Stemming Algorithmcoovvvnennaeen. 833
B R O . € O Y T S 837
SRR D Traimng HMMS The Forward-Backward Algorithm 843
: Blbhography . 851

Index "

vii

.»_Contents

Preface xxi
1 Introduction 1
1.1 Knowledge in Speech and Language Processing 2
12 Ambiguity 4
1.3~ Models and Algorithms S
1.4 Language, Thought, and Understanding 6
1.5 The State of the Art and the Near-Term Future 9
1.6 SomeBriefHistory 10
Foundational Insights: 1940s and 1950s 10

The Two Camps: 19571970 11

Four Paradigms: 1970-1983 12
Empiricism and Finite State Models Reduz 1983 1993 .. 14

The Field Comes Together: 1994-1999 14

On Multiple Discoveries 15

~ - AFinal Brief Note on Psychology 16
L7 Summary. ..o oo R 16
Bibliographical and Historical Notes 17
Words A - 19
Regular Expressmns and Automata : : 21
2.1 Regular Expressions i e 22
Basic Regular Expression Patterns, 23
Disjunction, Grouping, and Precedence 27
ASimple Example oL 28

- AMore ComplexExample 29

_ Advanced Operators 30
o Regular Expression Substitution, Memory, and ELIZA . . . 31
22 Fipite-State Automata 33
: Using an FSA to Recognize Sheeptalk 34
Formal Languages - 38

Another Example e e S 39
Non-Deterministic FSAs e e e e e 40

Using an NFSA to Accept Strings e 41

- Recognition as Search e e e 46

Contents

‘od

Relating Deterministic and Non-Deterministic Automata '
2.3 Regular Languagesand FSAs
24 Summaryo
Bibliographical and Historical Notes
Exercises e
Morphology : aﬂd Finite-State Transducers RESR
3.1 Surveyof (Mostly) English Morphology
- Inflectional Morphology e i, U e e
- Derivational Morphology oL
 '3.2 Finite-State Morphological Parsing
' _,_The Lemcon and Morphotactics i L
e Morpholomcal Parsing with Finite-State Transducers,
. Orthographic Rules and Finite-State Transducers EEEEN
: 3.3 'f"':'Combmmg FST Lexicon and Rules . . ;. SR
.34 _'_:'.Lex1con~Free FSTs: The Porter Stemmer SR L
3.5 Human Morphological Processmg GRS ERY R L
36 Summary-. S DU
B1b110graphlca1 and Historical Noteso voe ...
CBxercises ... e U
- ;:Computatlonal Phonology and Text-to-Speech o
4.1 Speech Sounds and Phonetic Transcrxptlon. e e e e
" The Vocal Organs e e e
, - Consonants: Place of Amcula’mon L e
5 ,‘; :;: Consonants: Manner of Amculatlon CEEL L
o o Vowels L
4.2 The Phoneme and Phono]oglc,al Rules e .
43 Phonological Rules and Transducers RN
4.4 . Advanced Issues in Computational Phonolocry L
o - Hammony A
,~k'i_faTemplauc Morphology T SN
. ,Optlmahty Theory ST S P S
4.5 Machine Learning of Phonologmal Rules . . Snh .
46 Mappmg Text to Phones for TTS R
" Pronunciation Dictionaries u.e ..
- Beyond Dictionary Lookup: Text Analy51s A S
* An FST-based Pronunciation Lexicon

47 ProsodyinTTS 0w o

48
49
51
52
53

57
59
61
63
65
66
71
76
79
82
84
86
87
89

91

xi

. Contents

Phonological Aspects of Prosody 130
Phonetic or Acoustic Aspects of Prosody 132
Prosody in Speech Synthesis 132
4.8 Human Processing of Phonology and Morphology 134
49 Summary e e 135
- Bibliographical and Hlstoncal Notes 136
CEXerciseso e e 137
% Probablhstlc Models of Pronunciation and Spelling 141
5.1 - Dealing with Spelling Errors 143
| 5?2': Spelling Error Patterns 144
5, Detecting Non-Word Errors 146
‘54 Probabilistic Models, . 147
5.5 Applying the Bayesian Method to Spelling 149
56 Minimum Bdit Distance 153
. English Pronunciation Variation-.-. 156
The Bayesian Method for Pronunciation 163
Decision Tree Models of 'Pronunciation Variation 168
Weighted Automata .. .o B e e e e e e e e 169

Computing leehhoods from We1ghted Automata: The For-
o ~ward Algorithm.o L. 171
Decodmg The Viterbi Algorithm 176
Weighted Automata and Segmentation 180
Segmentation for Lexicon-Induction 182
- 5.10 Pronuncxatlon n Humans e e e e e e 184
S511 Summary .ocoLc e LU 186
. Bibliographical and Historical Notes & v 187
CCEXercises ..o . ou e e e e e e e e e 188

N-grams N 191

CountmgWordsmCorpora., e .. 193

. Simple (Unsmoothed) N-grams 196
e More on N-grams and Their Sensitivity to the Training Cor-

PUS. © o oe e . 202
"Smoothmg 206
... Add~-One Smoothing - e e e e e e e e 207

Witten-Bell Dlscountmg i e e e e e oL 210
Good- Turmg Dlscountlng e e e .. . 214

Backoff . 216

XIi Contents

Combining Backoff with Discounting L. 217

6.5 DeletedInterpolation 2206
6.6 N-grams for Spelling and Pronunuduun 220
Context-Sensitive Spelling Error Correction 221
N-grams for Pronunciation Modeling 223

6.7 Entropy e e e e e 223
Cross Entropy for Compalmg Modeis 227

The Entropy of English 227

- Bibliographical and Hlstoncal Notes 230
6.8 Summary - .. L e e e e e 232
- LT o s 232

: Exerc1ses o

7 HMMS andaSpeech Recogmtwn N 235

Wavefo_rm Generauon for Speech Synlhems‘tv

B itch. and Durauon Modlﬁcatlon T R =275
" Unit Selection S . 276
: "f'"::t-Human'Speech Recogmtxon i e e .21
©7.10 Summary e e 279

’;}.-Blbhographlcal and Historical Notes R RS AL S R
‘V'Exermses e e T PO T

: ; Word C}asses and Part-of*Speech Taggmg
o *(Mostly)-English Word Classes.

R ’82 Tagsets for English .- O SRR DU ST I

L 8.3 Part~0f Speech Tagglng U TR

xiii

4 - Rule-Based Part-of-Speech Tagging

06
, 99

o9

4 300

.5 Stochastic Part-of-Speech Tagging 303

A Motivating Example 00 0000 303

The Actual Algorithm for HMM Tagging 305

.6 Transformation-Based Tagging 307

How TBL Rules Are Applied 309

How TBL Rules Are Learned 309

Otherlssues 312

‘Multiple Tags and Multiple Words 312
UnknownWords 314

Class-based N-grams 316

Summary 317
Biblographical and Historical Notes 317
ExXercises 320
Context-Free Grammars for English 323
Constituency v v v v v v e e e e 325

Context-Free Rules and Trees 326
Sentence-Level Constructions 332
TheNounPhrase 334

Beforethe HeadNoun 335

s AftertheNoun, .. 337
95 Coordinationo 339

Lk Agreement L. L 340
. © .97 The Verb Phrase and Subcategorization 342
298 Awpxiharieso 344
Spoken Language Syntax, 345

L Disfluencies 347
-9.10 Grammar Equivalence and Normal Form 348
s Finite-State and Context-Free Grammars 348
e 9,12 Grammars and Human Processing 350
003 SUMMATY L L L e e e e 352
~ Bibliographical and Historical Notes 353
o UBXEICISES L. i 355
, Parsing with Context-Free Grammars - - 357
© 07101 ParsingasSearch ... Ui e e 358
' Top-Down Parsingot v i i i 360
Bottom-Up Parsing 361

X1V

Contents .

Comparing Top-Down and Bottom-Up Parsing 363

10.2 A Basic Top-Down Parser e e 364

Adding Bottom-Up Filtering 368

10.3 Problems with the Basic Top-Down Parser 370

Left-Recursion -« . oo oo v 370

Ambiguity T P 372

Repeated Parsing of Subtrees e e 376

10.4 The Earley Algorithm 377

'10.5" Finite-State Parsing Methods 385

1060 SUMMALY © . o oo e 391

= Bxbkocrdphlcal and Historical Notes e e e 392

g Exerc1ses TElh e e e e a R TR S 393

1L Features and Umﬁcatwn 395

©UIL1 Feature Structures . L. .. . h ... oL 397

~11.2 Unification of Feature Structures o .. 400

" 11.3 Features Structures mthe Grammar R L. ... 405

S Agreement ...l e o s DL e 407

~ HeadFeatures o 410

. Subcategorizationo i oo 4l

~ " Long-Distance Dependencies 417

114 Implementing Unification BT § ¢

o ‘Unification Data Struémres e e 418

~“~ . The Unification Algonthm e e, 422

- 11.5 Parsing with Unification Constraints 427

. Integrating Umﬁcatlon into anEaﬂey Parser 428

ST Unification Parsingo i o ... 434

116 Types and Inheritance . -hl oL 437

| Extensions to Typing S S R ()

Other Extensmns to Umﬁcatlon R AR R A AU 3 |

*,117 Summary L e A2

- Bibliographical and Hlstoncal Notes ORISR ¥)

"if';Exerases e e e e e e N DRI LS EPETUS P P Lo 444

12 Lexu:ahzed and Probabxllstlc Parsmg R ~

"1'5171 Probabilistic Context-Free Grammars i 448

Probabilistic CYK Parsing of PCFGs 453

- ' . Learning PCFG Probabilities N 1
122

ProblemswﬂhPCFGsv. S S A LR A S 456

Contents

123 Probabilistic Lexicalized CFGs 458

. 12.4 Dependency Grammars 463

Categorial Grammar 466

© 125 HumanParsing. 467

26 SUMMALY « .« o e e e 474

- Bibliographical and Historical Notes 474

U EBXercises ... 476

‘13 Language and Complexity | 477

" 13.1 The ChomskyHierarchy 478

132 Howto Tellif a Language Isn’t Regular 481

o The PumpingLemma 482
Are English and Other Natural Languages Regular Lan- -

guages?o 485

-13.3 Is Natural Language Context-Free? 488

13.4 - Complexity and Human Processing 491

135 Summary ..ol e e e e e 496

-~ Bibliographical and Hlstoncal Notes 496

o EBXErCISES L. oL i e e e 497

III Semantlcs o | 499

14 Representmg Meanmg o ' 501

~14.1 Computational Desiderata for Replesentauons 504

Verifiability, 504

Unambiguous Representations 505

“Canonical Form P 506

Inference and Variables 508

- Expressivenmess 509

14.2 Meaning Structure of Langnage 510

o - Predicate-Argument Structure et .- 310

~ 143 First Order Predicate Calculus P Y K

Elements of FOPC oo 513

The Semantics of FOPC i e e 516

Variables and Quantifiers e e e e 517

SRR Inference L. e 520

144 Some Linguistically Relevant Concepts 522

CatEOTIES . . . v o v v i i e e e e 522

Events 0y s e e ... 523

R Contents

Representing Time 527

ASPECto e e 530
Representing Beliefs 534

Pitfalls v oci .. 537

14.5 Related Representational Approaches 538
14.6 Altemative ApproachestoMeaning 539
Meaningas Actiono oo 539
Meaningas Truth 540

147 Summary . ..o L. 540
Blbhographlcal and Historical Notes . .~. 541
Exercxses :

15 Semant[c Analysxs . B e -
151 Syntax—Dnven Semantlc Analy51s e e e .. 546
-7 Semantic Augmentations to Context-Free Grammar Rules . 549
& Quantxﬁer Scoping and the Translation of Complex—Terms . 557
, - Attachments for a Fragment of Enghsh W i
Sentences e N R
_“-iNounPhrases RN o
" Verb Phrases: . e ., Rt
{%'Preposmonai Phrases A ‘
_f:f Integrating Semantic Analy31s into the Earfey Parser ... 569
5.4 Idioms and Composmonahty SIS A PN

.5 ‘Robust Semantic Analy31s R AR A PETIRE
. Semantic Grammars. .. . E
~w - Information EKtracnon. X '.
156 Summary .- . L
, ;;.._;’BlbhograpMCal and Hlstoncal Notes S :
C U Exercises S e e e e e VR

16 Lexrcal Semantlcs S] S 589
B :1-:'»"161 Relations Among Lexemes and Their Senses 592
.;;:;-:»Homonymy e e e e e e e e 592

.. . Polysemy. e U i i .. 595
I SYRORYIY e e e .. 598
S THYpenymy . S 600
16.2 - WordNet: ADatabase of Lex1cal Relanons S 602
"+ 16.3 The Internal Structure of Words e ... 606
v ThematicRoles «ovw v v on v o v oo L. 607

Xviii Contents

8.3 Discourse SHUCTUIE « « v v v v vt .. 704
18.4 Psycholinguistic Studies of Reference and Coherence . . . 707.
185 Summary e e e 712
Bibliographical and Historical Notes 713
Exermses. e e e e e e e e e e e e 715

19 Dlalogue and Conversatlonal Agents e 719
19.1 ~What Makes Dialogue Different? 720
ATums and Uterances« .ovvwn v ... 721
O GrOMdING e . T24
. Conversational Imphcature SR 726
p ’i:Dlalogue ACES i e 12T
3" ‘Automatic Interpretatlon of Dlalogue Acts SRR
A i‘Plan—lnferennal Interpretatlon of Dlalogue Acts
'Cue-bascd Intaprcta&o"*‘"of Dlalogue Acts

20 Natural Language Generatlo S
- 20 1 Introduction to Language Generatxon
202" ~An Architecture for Generatlon
..20.3 Surface Realization
}i{'Systemlc Grammar e
- :Functlonal Lmﬁcatlon Grammar
o Summary L e
4 " Discourse Planmng e L
- Text Schemata e
: ;f‘}f;Rhetoncal Relauons e e
). i:f;f‘OtherIssues:; R AL SO T
. “Microplanning -
‘"iffLemcalSeleunon EHE R
‘Evaluating Generatlon Systems R SR EL RS SRR
I.,'Generatmg Speech N s PSR

XiX

................ 792
.............................. 796

799
... 802

807
808
o | | 810
""j_”v""The Interlingua Idea: Usmg Meanmg R S 3 B |
Direct Translation - SRR S 815
1.5 Using Staistical Techniques . . » 818
- Quantifying Fluency820
Quantifying Fa1thfulnees T T R - 73
CoSearch LoDt L 822
216 Usabxhty zmd System Development S L 822
217 Summary ... L .. 825
'1b110graph1cal and Histoncal Notes 82
' . 828

s
R <
833

CS and C7 tagsets . . c 837
Trammg HM’VIS The Forward-Backward Algorlthm i ' * 843
i Continuous Probability Densmes Lol 849

1bhography R 1. |

903

Foreword

Linguistics has a hundred-year history as a scientific discipline, and compu-
tational hngulsmcs has a forty year history as a part of computer science. But
it is only in the last five years that language understanding has emerged as an
mdust:ry reaching millions of people with mformatlon retneva1 and machine
translation avaﬂable on the internet, and speech recogmtlon becoming pop-
ular on desktop computers _ThiS 1ndustry has been enabled by theoretical
advances in: the representanon and processing of lanvuage mformatmn

e Speech and Language Processmg is the fifst book to thoroughiy cover
- language technology, at all levels and with all modem technologles It com-

- -‘I._bxnes deep lmgmstzc analyms w1th robust statlstlcal methods Frozp the point
- of view of }evels ‘the book starts Wlth the ‘word and 1ts'comp tS; MOving

- of words, phrases and sentences and concludmg W1th is

up to the Way words ﬁt together (or syntax) to the meamng (or semantics)
coherent

“texts, ‘_dlalo“ '_and translatron _From the: pomt of vzew of technolog'les' the

- Peter Norv1g & Stuart‘-Russell‘,-ﬁ detors
Prenuce Hall Senes m Artlﬁmal Intelllgence

XX .

P;eface

“This is an exciting time to be working in speech and language processing.
’Hlstoncally distinct fields (natural language processing, speech recognition,
‘computational linguistics, computational psycholinguistics) have begun to
f'merge The commercial availability of speech recognition and the need for
-,Web-based language techniques have provided an important impetus for de-
‘velopment of real systems. The availability of very large on-line corpora has
_enabled statistical models of language at every level, from phonetics to dis-
Course: “We have tried to draw on this emergmg state of the art in the de51gn
of thlS pedagoglcal and reference work I

1 Coverage o - SR
-~ In attemptmg 0 descnbe a umﬁed V1S1on of speech and language pro-
cessmg, we cover-areas that trad1t1onally are taught in different courses
~in dlfferent departmeﬁts speech recogmtlon in electrical engmeenng,
" parsing; semantic mterpretanon, and pragmat1cs in natural language
processmg courses in computer smence departments and computa—
o 'ﬁonal morphology and phonology in computatlonal lmguxstms courses
in lmgmstu:s departments The book introduces the fundamental al-
B gonthms of each of these fields, whether ongmally proposed for spo-
.. ken or wntten language whether logloal or statistical in origin, and
' attempts to tie together the descnpnons of algorithms from different
~ domains. We have also included coverage of applications hke spellmg—
. checkmg and mformatlon retriéval and extraction as well as areas like
"_:_”cogmtwe modelmg A potentlal problem with this broad—coverage ap-
“proach is that it required us to includé mtroductory material for each
field; thus linguists may want to skip our description of artlculatory
- phonetics, computer scientists may want to skip such sections as reg-
~“ular expressions; and electrical engineers skip the sections on signal
f_j"-'process1ng “Of course, even in a book this long, we didn’t have room
“for everything. Thus this book should not be considered a substitute
for important relevant courses in linguistics; automata and formal lan-
f_f-"guage theory, or, especially; statistics and mformatlon theory

2 Emphaszs on practical applications

It 1s important to show how language- ‘related algorithms and tech-
mques (from: HMMs to. unification, - from the lambda calculus to
transformation-based learnmo) can be applied to important real-world
problems spelling” checkmg, text-document search, speech recogni-

L xxi

XXii Preface

tion, Web-page processing, part-of-speech tagging, machine transla-
tion, and spoken-language dialogue agents. We have attempted to do
this by integrating the description of language processing applications
- into each chapter. The advantage of this approach is that as the relevant
’ }mgulstlc knowledge is 1ntroduoed the student has the background to
understand and model a pamcular domam .

3. Emphaszs on, sczentzﬁc evaluatzon i T
_The recent prevalence of statlsucal algorxthms in language process—
. ing & and the growth of orgamzed*‘eva]uaﬁons of speech and language
processmg systems has 1ed to a I'iew emphasm on evaluation. We
. have; therefore, tried to accompany most of our problem domains wn:h
RS 'a Methodology Box describing: how systems are evaluated (e. g.,
such: ; g and test sets cross- vahdatlon and

: words phonetlc phonology, morphology, and algonthms used o process
them ﬁmte autoiuata ﬁmte transducers welghted transducers “N-grams,

Preface ‘ Xxiii

and Hidden Markov Models. Part II, “Syntax”, introduces parts-of-speech
and phrase structure grammars for English and gives essential algorithms for
p’f’ocessing word classes and structured relationships among words: part-of-
speech taggers based on HMM s and transformation-based learning, the CYK
and Earley algorithms for parsing, unification and typed feature structures,
lgxlcahzed and probabilistic parsing, and analytical tools like the Chomsky
hierarchy and the pumping lemma. Part III, “Semantics”, introduces first
Qr(ier predicate calculus and other ways of representing meaning, several
approaches to compositional semantic analysis, along with applications to
nfc)rmatton retrieval, information extraction, speech understanding, and ma-
chine translation: Part IV, “Pragmatics”, covers reference resolution and dis-
u;:se' structure and coherence, spoken dialogue phenomena like dialogue
ai'nd?speech act modeling, dialogue structure and coherence, and dialogue
anagers, as well as a comprehensive treatment of natural language genera-
h?'and' of machine translation, - .-

smg thls Book

Thev book provides: enough matenal o be used fo:r a full—year sequence in
peech and language processing. It is also deﬂgned so that it can be used for
a number of dlfferent useful one-term courses: :

NLP o ~ NLP Speech+NLP Comp. Linguistics |
lquarter . | lsemester - | - 1 sémester 1 quarter
. Intro | L. Intro . - 1. Iniro 1. Imtro
. Regex, FSA | 2. Régex, FSA | 2. Regex,FSA = | 2. Regex, FSA
. POS taggmg + 3. Morph., FS’E {3 Morph., FST - | 3. Morph., FST
- CFGs - "6, N-grams " 4. Comp. Phonol.| 4. Comp. Phonol.
Parsing - 8. POS taggmg 5. Prob. Pronun. | 10. Parsing
Umﬁcatlon 1 9. CFGs : 6 ‘N-grams - {11. Unification
14, Semantics |10, Parsmg 7. HMMs & ASR | 13, Complexity
. Sem, Analysm 11.. Umﬁcanon . 8. POS tagging | 16. Lex. Semantics
Discourse |12 Prob. Parsmg | 9. CFGs - |18. Discourse
Generatmn |14, Semantics -~ * {10 Parsing" - 19. Dialogue
EERE 15."'Semi"Anal§is'is 12.. Prob. Parsmg o
16. Lex. Semaﬁhés 14. Semantics .
117.. WSD and IR - 115.7 Sem. An‘aIYSis
- |18..Discourse.”.~ . [19. Dialogue- >
200 Generatlon 21 Mach,_Trahsl.
21 Mach. Transl RO

_elected chapters from the book couId also be used to'augment courses
t ﬁc1a1 Intelligence, Cogmtwe Science; or Information Retrieval.

XX1iV

Preface

i and Erlc Irene and Sam Susan aﬁd'Rlchard L1sa and Mlke,- Mlke and F1a,

. nght answers and teachmg h1m to ask “but is it reaIIy 1mport_an

Acknowledgments

The three wmnbutlng wnterf, for the book are Andy Kehlcr Who wrote
Chapter 18 (Discourse), Keith Vander Linden, who wrote Chapter 20 (Gen-
eration), and Nigel Ward, who wrote most of Chapter 21 (Machine Transla-
tion). Andy-Kehler also wrote Section 19.4 of Chapter 19. Paul Taylm wrote
most of Secnon 4.7 and Section-7.8. . .

. Dan would like to thank his parentg for encouragmg th to do a re-
ally eood }ob of everythmg he does, finish it in a timely fashion, and make
time for gomg to the gym. He would also like to thank: Nelson Morgan, for
mtroducmg hxm to speech recogmtzon and teaching him to ask “but does it
work?”; Jerry Feldman for: sharmg his intense comnutment to ﬁndmg the
775 Chuck
Fﬂlmoret his: ﬁrst advisor, for shanng hxs Tove for languagc' and, espemally

argument stmcture and teachmg th to always go look a he- data, (and

L H Erm and ChIlS Enc and Beth Pe_arl_ a_nd Tnstan Bruce and Pefrgy, Ramon

o in' NLP" at Berkeley, Peter’ Ntirwg, for prov;dmg many posmvé examples

at a cntlcal

the way, Rlck Alterman for encourdgement and msplratl_

o tmi' and Chuck Fillmore; George Lakoff, Paul Kay, and Susanna Cummmg

hmg himn. ‘what httIe he knows: about hngulstlcs ‘He’d also like to

- :thatnk Michael Main for covermg for him while he shirked his departmental
= :dutles .

"'Fl_nally, he’d hke to thank his wife Linda for all her support and

Ve ':“patlence through all the' years it took. to complete this book, .

Bouldes is-a very ‘rewarding: place 0" work “on speech and lanouage

B .."pfoc5331ng ‘We'd like to thank our colleagues here for their collaborations,

- _wh10h have crreatly mﬂuenced our research and teachmg ‘Alan Bell, Barbara

¥ j. ' Fox Laura M1chaehs and Llse Menn m lmgulsucs Clayton Lewis; Gerhard

Preface

XXV

Fischer, Mike Eisenberg, Mike Mozer, Liz Jessup; and Andrzej Ehrenfeucht
in computer science; Walter Kintsch, Tom Landauer, and Alice Healy in
psychology; Ron Cole, John Hansen, and Wayne Ward in the Center for
Spoken Language Understanding, and our current and former students in the
computer science and linguistics departments: Marion Bond, Noah Coccaro,
Michelle Gregory, Keith Herold, Michael Jones, Patrick Juola, Keith Vander
Linden, Laura Mather, Taimi Metzler, Douglas Roland, and Patrick Schone.
' - This book has benefited from careful reading and enormously helpful
comments from a number of readers and from course- -testing. We are deeply
indebted to colleagues who each took the time to read and give extensive
comments and advice, which vastly improved large parts of the book, in-
cluding Alan Bell, Bob Carpenter, Jan Daciuk, Graeme Hirst, Andy Kehler,
Kemal Oflazer, Andreas Stolcke, and Nigel Ward. Our editor Alan Apt,
our series editors Peter Norvig and Stuart Russell, and our production editor
Scott DiSanno made many helpful suggestions on design and content. We
are also indebted to many friends and colleagues who read individual sec-
tions of the book or answered our many questions for their comments and
advice, including the students in our classes at the University of Colorado,
Boulder, and in Dan’s classes at the University of California, Berkeley, and
the LSA Summer Institute at the University of Illinois at Urbana-Champaign,
aswellas, . . >

o Yosh1 Asano Todd M. Baﬂey, John Bateman, Giulia Bencini,
Lois Boggess, Michael Braverman, Nancy Chang, Jennifer Chu-
Carroll, Noah Coccaro, Gary Cottrell, Gary Dell, Jeff Elman,
Robert Dale, Dan Fass, Bill Fisher, Eric Fosler-Lussier, James

- Garnett, Stisan Garnsey, Dale Gerdemann, Dan Gildea, Michelle -
" Gregory, Nizar Habash, Jeffrey Haemer, Jorge Hankamer, Keith
" Herold, Beth Heywood, Derrick Higgins, Erhard Hinrichs, Julia

Hirschberg, Jerry Hobbs, Fred Jelinek, Liz Jessup, Aravind Joshi,

Terry Kleeman, Jean-Pierre Koenig, Kevin Knight, Shalom Lap-
~ 'pin, Julie Larson, Stephen Lévinson, Jim Magnuson, Jim May-
- field; Lise Menn, Laura Michaelis, Corey Miller, Nelson Morgan,
Christine Nakatani, Mike Neufeld, Peter Norvig, Mike O’ Connell,
~ Mick O’Donnell, Rob Oberbreckling, Martha Palmer, Dragomir
~ Radev, Terry Regier, Ehud Reiter, Phil Resnik, Klaus Ries, Ellen
" Riloff, Mike Rosner, Dan Roth, Patrick Schone, Liz Shriberg,
. 7" Richard Sproat, Subhashini Srinivasin, Paul Taylor, Wayne Ward,
T Pauhne Welby, Deka1 Wu, and Vlctor Zue. | :

XXVi

Preface

- We'd also like to thank the Institute of Cognitive Science and the De-
partments of Computer Science and Linguistics for their support over the
years. We are also very grateful to the National Science Foundation: Dan
Jurafsky’s time on the book was supported in part by NSF CAREER Award
1IS-9733067 and Andy Kehler was supported in part by NSF Award IIS-
9619126. - - .. -

Damel Jurafsky
- James H. Martin
Boulder, Colorado

INTRODUCTION

~Dave Bowman: Open the pod bay doors, HAL.

" HAL: I'm sorry Dave, I'm afraid I can’t do that.
Stanley Kubrick and Arthur C. Clarke,
~ screenplay of 2001: A Space Odyssey

: The HAL 9000 computer in Stanley Kubrick’s film 2001: A Space
yssey is one of the most recognizable characters in. twentieth-century
inema. -HAL is: an artificial agent. capable of such advanced language-
processing behavior as speaking and understanding English, and at a crucial
~_moment in the plot, even reading lips. It is. now clear that HAL’s creator
“Arthur C. Clarke was a little optimistic in predicting when an artificial agent
uchas HAL would be available. But just how far off was he? What would
take to create at least the language-related parts of HAL? Minimally, such
an agent would have to be capable of interacting with humans via language,
“which includes understanding humans via speech recognition and natural
inguage understanding (and, of course, lip-reading); and of communicat-
g with humans via natural language generation and speech synthesis.
'AL would also need to be able to do information retrieval (finding out
__:here needed textual resources reside), information extraction (extracting
: péftment facts from those textual resources) and inference (drawing con-
ions based on known facts).. RS : :
: }' Although these problems are far from completely so]ved much of the
uage-related technology that HAL needs is “currently being developed,
ith :some: of it already available commercially. - Solving these problems,
nd thers like them, is the main concern of the fields known as Natural
anguage ‘Processing, Computational. Linguistics, and Speech: Recognition
1d yntheqs which together. we call Speech and Language Processing.
Oal of this. book is to descrlbe the state of the art of this technology

2 Chapter 1. Introduction

at the start of the twenty-first century. The applications we will consider
are all of those needed for agents like HAL as well as other valuable areas
of language processing such as spelling correction, grammar checkmg,
information rétrieval, and machine translation. : ,

1.1 KNOWLEDGE IN SPEECH AND LANGUAGE PROCESSING

By speéCh and language processing, we have in mind those com'putational
techniques that process spoken and written human language, as language.
As we:will see, this is an inclusive definition that encompasses everything
from mundane apphcanons such : as Word countmg ‘and automatic hyphen-
auon to cuttmg edge app11cat10ns such as automated’ question answering on
the Web and real~time spoken language translation. o
o What d;zstmgulshes these Janguage processing apphcatlons from other
SR f'data processmg systems is their use of knowledge of language ‘Consider the
- Unix we program, which is used to count the total number of Wytes words
SR and Tines. in ext"ﬁle ‘When! used to count bytes and lmes,::wc
data'processm' apphcanon Howcver when it is used to coun}} thé worda

Note’ vals’, that \inlike Star Trel’s C'ommander Data HAL IS capable g
; }uvcmgrc'ontracnons likeé P’'m and can’t. Producmg and’ recogmzmg_
'these arid other variations of individual words (¢.. g recognizing’ that doors is
“pluraly équlres knowledge about morphology, which captures mformatmn
"about the shape and behawor of words ifi context (Chapters 2 and 3. s

_éCtion 1.1 Knowledge in Speech and Language Processing

_“Moving beyond individual words, HAL must know how to analyze the
_struo'ture underlying Dave’s request. Such an analysis is necessary among
ét-jfeasons for HAL to determine that Dave’s utterance is a request for
actlon' as opposed to a simple statement about the world or a question about
¢ door as in the following variations of his or1gmal statement.

HAL the pod bay door is Open
HAL-' is the pod bay door open?

"ddltlon HAL must use similar structural knowledge to properly string
tocéthér the words that constitute its response. For example, HAL must
: w" that ‘the’ following sequence of words will not make sense to Dave,
desp1te the fact that 1t contamq precisely the same set of wo1ds as the original.

m I do sorry that afraid Dave I'm can’t

: nowledge needed to order and group words togethel comes under the
heading of syntax. = : : -
Of course, ‘simply knowing the words and the syntactic structure of
what Dave said does not tell HAL much about the nature of his request.
o} kiiow that Dave’s command is actually about opening the pod bay door,
er than' an inquiry about the day’s lunch menu, requires knowledge of
the mieanings of the component ‘words, the- domain of lexical semantics,
and knowledge of how these components combme to form laxger meanmgg
composmonal semantics. : ERTES SRR
' Next, despite its bad behavior; HAL knows enough to be pohte to
Dave It could, for example, have simply replied No or No, I won’t open
the 'door Instead, it first embellishes its response with the phrases I’'m sorry
I'w afraid, and then only: indirectly signals its refusal by saying I can’t,
’ erf'than‘the‘more direct (and truthful) I'won’t.! The appropriate use of this
“kind of polite and indirect language comes under the heading of pragmatics.
i E_inany; rather than simply ignoring Dave’s command and leaving the
~ door closed; HAL chooses' to: engage in a structured conversation: relevant
to Dave’s initial request.- HAL’s correct use of the word that in its answer
ve’s request is a'simple: illustration ‘of the kind of between-utterance
e common: in such conversations. Corréctly stmctunng these such con-
_ »’requlres knowledge of discourse conventions: -
To'_ ummarize, the knowledge of language needed to engage in’com-
anguage behavior can be separated into six distinct categories. .

-

For tho! "unfarmhar with HAL 1t is neﬂher sorry nor afraid, nor is 1t 1ncapable of openmg
s‘S1mp1y decided in a fit of paranoia to kill its crew. ' -

Chapter 1. Introduction :

¢ Phonetics and Phonology — The study of linguistic sounds

» Morphology — The study of the meaningful components of words |
e Syntax — The study of the structural relationships between words'
‘e Semantics — The study of meaning

e Pragmatics — The study of how language is used to accomplish goals
e Discourse — The study of linguistic units larger than a single utterance

1.2 AMBIGUIT_Y_';, R

AMBIGUITY

}A perhaps surpnsmg fact about the 51x categones of hngmstw knowledge is
that most or all tasks in speech and language processuig'_han be Vlewed as
resolvmg ambxgulty at one of these levels. We say someé mputw amblguous

if thére are. multiple altematlve hngmshc structures than c¢an be built for it.

SRR Consmier the spoken sentence ! made her duck. Here s fi nt mean-

B _'_'L o mgs thlS sentence could have (there are more), each of Wth
. .ji_famb1gu1ty at some level R SR e
: "(1 1) I cooked waterfowl for her B R
o (1 2) Icooked ‘waterfow! belongmg toher.
ay |
_ : i ._: : (1 4) T cﬁused her to quxc]dy lower her head or body .
R f"(l 51 waved my magw wand and tumed her ifito undlfferentlated

_xemphﬁes an

I created the (plaster”) duck she owns.

waterfowl

hese'dlfferent meanmgs are caused by a number of amb1gmt 5, Fnst the

i words diick and Her are morphologwally or syntactzcally ‘amblguou 1_n' thelr
S -"part 'f-speech “Duck can be-a verb-or a noun, while her can be a
S *pron un or'a possessive pronoun:- Second, the- Word make’:

sémariucally

N ij;_amblguous -it'can mean- create or cook.: Finally; the. verb: ke is syntacn-

amblguous in a’diffarent way. Make can be’ transﬁne “that is; taking

o a sing dn'ect obJect (1:2); or it can be: ditransitive; that is, taking two ob-

ieaning that the: first object (her) got made into the second object

'(duck)‘-ei Flnally, make can taI\e a direct object and a verb (1.4), meaning that
o ,the object (her) gotcaused to perfornt the verbal action (duck): ‘Furthermore, 3
ina spoken sentence, there is an even deeper kmd of amb1gu1ty, the first

word could have been eye or the second word maid. R
- We wﬂl often 1ntroduce the models and algonthms we present through«

PSR out the book as Ways to resolve or dlsamblguate these ambiguities. For -

Chapter 1. Introduction

used when dealing with knowledge of phonology, morphology, and syntax..

The algorithms associated with both state-machines and formal rule
systems typically involve a search through a space of states representing hy-
potheses about an input. Representative tasks include searching through a
space of phonological sequences for a likely input word in speech recog-
nition, or searching through a space of trees for the correct syntactic parse
of an input sentence. Among the algorithms that are often. used for. these

tasks are well-known graph algorithms such as depth-first search, as well

as heuristic variants such as best-first, and A* search. The dynamic pro-

'glammmg paradlgm is critical to the computational tractability of many of

these approaches by ensuring that redundant computations are avoided.

“The third model that plays-a critical role in capturing knowledge of .-

o]anguage is logic. We will discuss first order logic; also known as the pred- -
o icate calculus; as well as such related formalisms as feature-structures, se-
' mantic networks; and conceptual dependency. These logical representations

i ‘have tradltlonally been the tool of choice when dealing with knowledge of

Lo “semantics, pragmatics, ‘and diséourse (although, as we will see, applications

5 m these areas are increasingly 131ymg on the snnp]er mechamsms used in -
I phonology, morphology, and syntax)..’ . ,

Probability theory is the final element in our set of techmques for cap—

) '5.-tunng hngmstlc knowledge Each: of the other models (state machines, for-

S mal rule systems, and logic) can be augmented with probabilities. Oné major

."s_e' of probablhty theory is to: solve the many kinds of ambiguity problems
‘that we discussed earlier; almost any speech and language processing prob-

A lem can be recast as: “g;wen N cho1ces for some amb1guous mput choose

L the most probable one”.

;Another major advantage of 'probabxhsuc models is that they are one of

S on Ways to automatically learn the various representations described above;

| g"automata rule systems; search heuristics, classifiers. ‘These systems canbe

S tramed on: large COrpora : and can be used: asa powerful modeling techmque s
SRR ’[especm]ly in places where we don’t yet have good causal mode]s Machine

o - ';: w111 b1gna1 the cu‘nval of Lruly mtcl]lgem maduues The basis of this belief i

N earmng’ algonthms wxll be descnbed throughout the book

; To many, the: abﬂxty of computers to process Ianguage as sklllfully as we do :

ass of machme learnmg,models Machme learning research- has focused,’_

e(_::tion 1.4. Language, Thought, and Understanding

the fact that the effective use of language is intertwined with our general cog-
ve abilities. Among the first to consider the computational implications
this infimate connection was Alan Turing (1950). In this famous paper,
‘uring introduced what has come to be known as the Taring Test. Turing
egan' with the thesis that the question of what it would mean for a machine
think was essentially unanswerable due to the inherent imprecision in the
: terms ‘machine and think. Instead, he suggested an empirical test, a game,
whlch a computer’s use of language would form the basis for determin-
i f1tvc0u1d thmk If the machine could win the game it would be judged

One of the people is a'contestant and plays the role of an interrogator.
win, the interrogator must determine which of the other two participants
‘the machine by asking a series of questions via a teletype. The task of the
.hme is to fool the interrogator into believing it is a person by responding
';‘;person would to the 1nterrogato1 s questions. The task of the second
:hun'ian partl(:lpant is to convince the interrogator that the othier participant is
the ‘machine, and that they are human.

i‘-‘,The follow_mg mtexacnon from Turmg S paper illustrates the kind of
in racnons he had in mind. Cleaﬂy a convincing sxmulatlon of humanity
f-'doesn t requ;n‘e bemg an expert in all domams |

Q Please write me a sonnet on the topic of the Forth Bridge.
A: Count me out on this one. I never could write poetry '
Q: Add 34957 to 70764. : : ‘

A:’ (Pause about 30 seconds and then ﬂlve answer as) 105621

,_'I‘urmg predleted that roughly by the end of the twenneth century a machme
with 10 glaabytes of memory would have around a 30% chance of fooling a
‘ _ihuman mterrogator after 5 minutes of questlonmg Given the faet that you

artlculér‘ standard is. Nevertheless the critical 1ssue for Tunng was that
sin, language as humans do is sufficient, by itself, as an operauonal test for

TURING TEST

8 Chapter 1. Introduction -

User;: You are like my father in some ways.

FLIZA;: WHAT RESEMBLANCE DO YOU SEE . N
Usery: You are not very aggressive but I think you don’t want me to notice that.
ELIZA;: WHAT MAKES YOU THINK I AM NOT AGGRESSIVE

Users: You don't argue with me.

ELIZA3: - WHY DO YOU THINK I DON T ARGUE WITH YOU

Usery: - You are afraid of me.-

ELIZA4: DOES IT PLEASE YOU TO BELIEVE I AM AFRAID OF YOU

As we will discuss in more detail in Chapter 2, ELIZ‘A isa femarkablyi sim-

ple program that makes use of pattem—matchmg to process the input and

translate it into suitable outputs "The success of this snnple technique i this

o domam IS due to the fact that ELIZA doesn’t actually need 10 know anything
. to'mimic & Rogena.n psychotherapmt As We1zenbaum notes; this is one of
| the few dlalogue genres Where the hstener can act as 1f they knowznothmg of -

o _'event knowh as the Loebner Prize competition has attempted to put"vyanous i
o ':f ; :computer programs to the. Turmg test. AIthough thesé contests have proven
- -‘_"-;'to have little: scxentrﬁc mterest a consxstent ‘result over the years has been -
that even the crudest p1ocrams can fool some of the Judges sorme of the time
| '”':(Shleber 1994) Not surpnsmgly, these results have done nothmg to'quell
the ongomg debate over the sultablhty of the Turlng test as_a test for 1‘nte1h—)
‘gence among phﬂosophers and AI fesearchers (Searle 1980)) -
__ Fortunately for the purposes of this book, the relevar these results
.. does. 1ot hmge on whether or not computers W1Il ever be intelligent, or ur-
~ " derstand natural 1anguage ‘Far more important is recent 1 research in
Coovthe socml scrences that has conﬁrmed another of Turmg s predlctrons from i

Nevertheless I beheve that at the end of the century the ube of _
Words and educated opmron will have altered sa much that we S
will be able to speak of machmes thmkmg W1thout expectmc to
be contradwted o R

- It 1s now clear that regardless of what people beheve or know about the in- -
R ner workmgs of computers; they talk about them and interact with them as .

»cgfion 1.5 The State of the Art and the Near—Tenh Future

ial entities. People act toward computers as if they were people; they are
) ite to them, treat them as team members, and expect among other things
hat computers should be able to understand their needs, and be capable of
racting with them naturally. For example, Reeves and Nass (1996) found
“that when a computer asked a human to evaluate how well the computer had
it doing, the human gives more positive responses than when a different
omputer asks the same questions. People seemed to be afraid of being im-
olite. In a different experiment; Reeves and Nass found that people also
e computers higher performance ratings if thc computer has recently said
iething flattering to the human. Given these predispositions, speech and
angﬁage~based systems may provide many users with the most natural inter-
ace for many applications, This fact has led to a long-term focus in the field
n the design of conversational agents, artificial entities that communicate

. We can only see a short chstance ahead but we can see plenty there
'that needs to be done S - : : .

Alan Turlng

Th1$ is an excmng tlme for the ﬁeld of speech and 1anguage processing.
he recent commercialization of robust speech recognition systems, and the
nse"of the Web; have placed speech and language processing applications in
‘the spotlight, and have pointed-out a plethora of excmng possible applica-
_’nbns The: following scenarios serve to illustrafe some current apphcatmns
‘and near-term possibilities.

“+ A Canadian computer program accepts daily weather data and gener-
‘ates weather reports that are passed along unedited to the pubhc in English
.and French (Chandioux;, 1976).- .

" The Babel Fish translation system from Systran handles over 1 OOO 000
;‘translatzon requests a day fromm the AltaVista search engine site. -

A visitor to Cambridge; Massachusetts; asks a computer about places
at using only spoken language.-The system returns relevant information
om a database of facts about the-local restaurant scene (Zue et al., 1991).

- These scenarios represent just a few of applications possible given cur-
rent :chnology The followmg, somewhat more speculatwe scenarios; glve

10 Chapter 1. Introduction”

some feeling for applications currently being explored at research and devel-
opment labs around the world.

A computer reads hundreds of typed student essays and grades them
in a manner that is indistinguishable from human graders (Landauer et al.,
t1997)

An automated readmg tutor helps 1mprove hteracy by having children
read stories and using a speech recognizer to intervene when the reader asks -
for readmg help or makes mistakes (Mostow and Aist, 1999).
______ A computer equipped with a vision system watches a short video clip
of a soccer match and pr0v1des an automated natural Ianguage report onthe
‘game (Wahlster, 1989). - e oo
e A computer predzcts upcommg words or expands telegraphlc speech to
- a331st5'peop1e w1th a speech or communication dlsabﬂlty (Newe]l; et al 1998; -
- McCoy ot al 1998). L X

1. 6SOME B RIEFHISTORY SRR

o cessmg encompasses a number of different’ but overlappmc ﬁelds in these
e ’dlfferent departments computatmnal hngulstlcs in hngU.lSthS natural lan-
— guage processing in computer science; speech recogmtmn in ‘electrical en-
L gmeenng, computatmnal psycholmgmstlcs m psyehology ThlS sectzon

_'-' _-".ter Wcrld War 1I that gave rise to the computer xtself ThIS penod from the_
- 19403 through the end of the 1950s saw intense’ work: on'two foundational
- fparadlgm' “the - automaton and probablhstlc ‘or: mformatmn-theoretlc :

The automaton arose in the 19503 out of Turmg S (1936) modei of alu :
R gonthnue_ computation; considered by many to be the foundation: of modern -
- computer science: ‘Turing’s work led first to the McCulloch-Pitts neuron °
- (McCulloch and Pitts, 1943), a simplified model of the neuron as a kind of

e::ction L.6. Some Brief History

11

computing element that could be described in terms of propositional logic,
d then to the work of Kleene (1951) and (1956) on finite automata and reg-
'uia;r ‘expressions. Shannon (1948) applied probabilistic models of discrete
barkov processes to automata for language. Drawing the idea of a finite-
state: Markov process from Shannon’s work, Chomsky (1956) first consid-
¢d finite-state machines as a way to characterize a grammar, and defined
finite-state language as a language generated by a finite-state grammar.
hese early models led to the field of formal language theory, which used
algebra and set theory to define formal languages as sequences of symbols.
[his includes the context-free grammar, first defined by Chomsky (1956) for
tural languages but independently discovered by Backus (1959) and Naur
‘al. (1960) in their descriptions of the ALGOL programming language..

- The second foundational insight of this period was the development of
probablhstlc algorithms for speech and language processing, which dates to
,Shannons, other contribution: - the metaphor of the noisy channel and de-
coding for the transmission of language through media like communication
‘éh'annels and speech acoustics. Shannon also borrowed the concept of en-
opy from thermodynamics as a way of measuring the information capacity
of ‘a'channel, or the information content of a language, and performed the
ﬁrst meéasure of the entropy: of Enghsh using probabilistic techniques. .

i+ It was also- during; this early period. that the sound spectrograph was
,veloped (Koenig: ¢t al.,. 1946), and foundational research was done in in-
strumental phonetics that laid the groundwork for later work in speech recog-
nition. This led to the first machine speech recognizers in the early 1950s. In
"1 952 researchers at Bell Labs built a statistical system that could recognize
any of the 10 digits from a single speaker (Davis et al.,. 1952). The system
had 10 speaker- -dependent stored pattems roughly representing the first two
vowel formants in the digits. They achieved 97-99% accuracy by choos-
ing the pattern which had the highest relative correlation coefficient with the

The Two Camps 1957—-1970

By the end of the 19503 and the eaﬂy 1960s, speech and language processing
had split very cleanly into two paradigms: symbolic and stochastic. - .

“:.. The symbolic paradigm took off from two lines of research. The first
was the work of Chomsky and others on formal language theory and genera-
tWe syntax throughout the late 19SOS and early to mid 1960s, and the work of
aﬁy Imgulstlcs and computer sc1entzsts on parsmg algonthms 1mt1a]ly top-
doWn and bottom—up and then vza dynamlc programming. One of the earliest

12

Chapter 1. Introduction :’{'

complete parsing systems was Zelig Harris’s Transformations and Discourse -
Analysis Project (TDAP), which was implemented between June 1958 and
July 1959 at the University of Pennsylvania (Hartis, 1962).2 The second line
of research was the new field of artificial intelligence. In the summer of 1956
John McCarthy, Marvin Minsky, Claude Shannon, and Nathaniel Rochester
brought together a group of researchers for a two-month workshop on what :

they decided to call artificial intelligence (AI). Although Al always included -

a minority of researchers focusing on stochastic and statistical algorithms -
(include probabilistic models and neural nets), the major focus of the new
field was: the work-on reasoning and logic typified by Newell and Simon’s .
work ‘on the Logic Theorist and the General Problem Solver. At this point
early’ natural language understanding-systems were: built; These were sim-
- ple systems that worked in single domains mamly by a combmatxon of pat-
S tem matchmg and keyword search with simple heuristics: for reasoning and
AR ‘question- answenng By the late 19605 more formal Ioglcal systems were
o deve15§¢ A T : :

7 The ch Ltlc’paradlgm took hoId mamiy in departments of statistlcs E

L "and of electncal engineering. By the late 1950s the: Bayesxan method was be-

K ,_ f‘Four aradlgm"'f-‘-1970_1983

B ‘gmnmg to be apphed to the: problem of optical: character recogmnon Bled-
. soe and. Brownmg (1959) built a Bayesian system: for text—recogmtlon that -
' used a large dictlonary and computed the likelihood of éach observed letter

sequence given: ‘each word in the dictionary by mulmplymg the: hkehhoods
for each letter: Mosteller and ‘Wallace (1964) applied Bayesian methods to

) the problem of authorshlp attnbutlon on The Fedemlzst papers.

. The 1960s also. saw the nse of the first serious: testable psychoiogical

o _models of humian language processmg based: on. transfonnatlonal grammar,
K ‘f;"-as well as the. first on-line ¢ corpora: the Brown corpus: of_ Amencan English,
Sl rmlhon word collection of saimples from 500 writte _texts from different

| genres: (newspaper novels ‘non-fiction, academlc, etc) whlch was’ assem-
-~ bled at.Brown University in 1963-64 (Kulera and Franc1s 1967 Francis,
o 1979; Francis and Kuéera, 1982), and William S. Y. Wang’s 1967 DOC (Dic-
. 'aona_ry on Computer) an on-hne Chinese dialect dictionary.. .. o

E The next penod saw an exploslon in research in speech and language p1o~v
“cessing and the develc)pment of a number of rcsearch paradlgms that stﬂl
'dormnatetheﬁeldf" S T TR P

“This system Was relmp]emented recently and is descmbed by IObhl and Hopely (1999)

'and Kartturier (1999), who note that the parser vas essentially implemented as a cascade of -
finite-state transducers. " vl

jbtion 1.6. Some Brief History

-“The stochastic paradigm played a huge role in the development of
speech recognition algorithms in this period, particularly the use of the Hid-
n-Markov Model and the metaphors of the noisy channel and decoding,
developed independently by Jelinek, Bahl, Mercer, and colleagues at IBM’s
homas J. Watson Research Center, and by Baker at Carnegie Mellon Uni-
vcmty, who was influenced by the work of Baum and colleagues at the In-
stitute for Defense Analyses in Princeton. AT&T’s Bell Laboratories was
_ -a‘ center for work on speech recognition and synthesis; see Rabiner and
Juang (1993) for descriptions of the wide range of this work.
: ’T_he logic-based paradigm was begun by the work of Colmerauer
and: his ‘colleagues on Q-systems and’ metamorphosis grammars (Colmer-
, 1970, 1975), the forerunners of Prolog, and Definite Clause Grammars
(Pereira and Warren, 1980). Independently, Kay’s (1979) work on functional
grammar; and shortly later, Bresnan and Kaplan’s (1982) work on LFG es-
l1shed the importance of feature structure unification. . :
' f_':_ The. natural language understanding field took off durmg this pe-
110 begmnmg with Terry Winograd’s SHRDLU system, which simulated a
robot embedded in a world of toy blocks (Wmograd 1972a). The program
was “able to accept natural language text commands (Move the red block on
4 top bf the smaller green one) of a bhitherto unséen complex1ty and sophisti-
n; His system was also the first to attempt to build an extensive (for the
, ._,;mme)"grammar of English, based on Halliday’s ‘systemic grammar. Wifo-
| grad’s model madeé it clear that the problem of parsing was well-enotigh
derstood to begin fo focus on semantics and discourse models. Roger
lf_I‘Schank and his colleagues and students (in what was often referred to as
""ithe_Yale School) built a series of language understanding programs that fo-
. sed on human conceptual knowledge such as scripts, plans and goals, and
uman memory organization (Schank and Albelson, 1977; Schank and Ries-
beck; 1981; Cullingford, 1981; Wilensky, 1983; Lehnert, 1977). This work
ff"often tised network-based semantics (Quillian, 1968; Norman and Rumel-
- hart 1975 Schank; 1972; Wilks; 1975c,:1975b; Kintsch, 1974) and began
to mc_orporate Fillmore’s nonon of case roles (Flllmore 1968) into their rep-
tations (Simmons; 1973) : T S S T TR
ey "The Jogic-based and natural—language undc—:rstandmcy paradxgms were
“un ed on systems that used predicate logic as a semantic representation,
~such as the LUNAR question-answering system (Woods, 1967, 1973).
: ‘he- discourse modeling paradigm focused on four key areas in dis-
..':»-.;:Grosz and her colleagues. introduced the: study of substructure in
‘couree and of discourse focus (Grosz 1977a: Sidner, 1983), a number of

13

14

Chapter 1. Introduction :

o v'tax by _Church (1980) A large body of work on ﬁmte- '
Lo .descrxbed throughout the book '

S eft
o nborporate probabilities, ‘and emiploy evaluation methodologies borrowed - -

~ from speech recognition and information retrieval. Second, the increases in . -
the Speed and; meriory: of computers had allowed commercial exploitation .-

- 'of ‘a'number of subareas of speech and:language processing, in particular

' ”‘Vspeech recogmtlon and spelling ‘and grammar: checking. - Speech and.lan-
‘guage processmg algorithms. began to be applied to- Augmentative and Al-

o ternative' Communication (AAC). Finally, the rise of the Web emphasized the '
. need for language-based information retrieval and information extraction.

researchers began to work on automatic reference resolution (Hobbs, 1978),
and the BDI (Belief-Desire-Intention) framework for logic-based work on .-
speech acts was developed (Perrault and Allen, 1980; Cohen and Perrault
1979) :

Emplrmsm and Flmte State Models Redux. 1983-—1993

Th1s next decade saw the retum “of two classes of models Whlch had 1ost

populanty in the late 19508 and ear]y 19603, partlally due to theoretical
arguments agamst them such as Chomsky S 1nﬂuent1al review of Skinner’s ¢

Verbal Behawor__ (Chomsky 1959b) The ﬁrst class was ﬁmte—s_tate models

speéch tagginig, reférence resoiuuon and discourse. processing all began

15

proof that Swiss-German has a non-context-free syntax by Huybregts

: _Shleber (Chapter 13); the application of unification to langnage pro-

¢ essmg' by Colmerauer ¢t al. and by Kay in (Chapter 11).

¢ these multiples to be considered- astonishing coincidences? A

_'well~lmown hypothesxs by soc;olocnst of sc1ence Robert K Merton (1961)
3 j_"qmte the contrary, that s S S

11 smenmﬁc dlscovenes are in prmc:1p1e multlples mcludmg those
}that'on the surface appear to be smgietons |

o "se there are rnany well—known cases ot multlple (hscovery or inven-
_-ftlon' Just a few examples from an extensive list in Ogburn and Thomas
:22) include the multiple invention of the calculus by Leibnitz and by
wton, the multiple development of the theory of natural selection by Wal-
lae and' by Darwin, and’ the mulnple invention of the telephone by Gray
“and’ Bell.? But Merton gwes an further array of evidence for the hypothesis
‘that mlﬂuple dlSCOVGI’Y is the rule rather than the exception, including many
_cases of puta’me smgletons that turn out be a rediscovery of previously un-
pubhshed or perhaps maccesmb{e work. An even stronger piece of evidence
thnomethodologlcal pomt that SCIel'itlStS themseIVes act under the as-
uiption t_hat mu]tlple mventlon is the norm, Thus many aspects of sc1ent1ﬁc
;demgned to help sc1ent1sts avo1d bemg scooped” subrmssmn dates
mal artxcles careful dates m research records c1rculat10n of prehml—
or. techmcal reports S

2 and’ Thomas are generally crechted w1th noﬁcmg that the prevalence of multiple
vent;on suggests that the cultural milieu and not individial genitis is the déciding causal
ctor in'scientific discovery. In an amusing bit of recursion, however, Merton notes that even
has'been multiply discovered, citing sources from the 19th century and earlier!

16 Chapter 1. Introduction"-"'j-_.-..»'_'i;

A Final Brief Note on Psychology

Many of the chapters in this book include short summaries of psychological
research on human processing. Of course, understanding human language -
processing is an important scientific goal in its own right and is part of the
general field of cognitii}eecieﬁce' However, an understanding of human lan- =
guage. plocessmg can ‘often be helpful in building better machine models

of language. This seems contrary to the popular wisdom, which holds that
direct m1m1cry of nature’s algorithms is rarely useful in engineering appli- -
cations. For example the argument is often made that if we copied nature
exactly, alrpianes would flap their wings; yet airplanes with fixed wings area

more st_l_c_cessful engmeermg solution. But language is not aeronautics. Crib-
 bing from nature is sometimes useful for aeronautics (after ally alrplanes do

" have wmgs) but it is partlculariy useful when we are trying to solve human- ::-_ijf
. centered tasks. Airplane flight has ‘different goals than bird flight; but the -
. goal of speech recognition systems, for example, is to perform exactly the
- task that human court reporters perform every day: transcribe spoken dia:

- log.: Since people already do this well, we can learn from nature’s previous
- solution. Since an important application of speech and language processmg .
. 'systems is for human- ~computer intéraction, it makes sense to copy a solution

K that behaves the Way people are accustomed to

R is chapter Lntroduces the ﬁeld of speech and lanouage processmg The
Ll =;.f0110vv1ng are some of the hlghhghts of this chapter B T

Af’good way to understand the concerns of speech and language pro-
" cessing research is to consider what it would take to create an mteIhL :
. gent agent like HAL from 2001 A Space Odycsey IOV
f’Speech and language technology relies on formal models or repre~ i
entations; of knowledge of- language at the levels’ of phonology and -
'-"phonetlcs morphology, syntax, semantics, pragmatics and discourse.
U :_;A_; smal} number of formal ‘models mcludmg state. machmes, fmmal._‘*ff
© oo rules systems logic, and. probablhty theory are used to: capture thIS

'-'?{v-;v‘knowledge e T e
he foundatlons of speech and language technology 11e in computer'
. science, hngmstlcs ‘mathematics; electrical engineering. and psychol—- :
N 'ogy A Small nurmber of algorithms from standard frameworks are used'

Secuon 1.7. Summary

- throughout speech and language processing, ,

‘The critical connection between language and thought has placed speech
and language processing technology at the center of debate over intel-
‘ligent machines. Furthermore, research on how people interact with
complex media indicates that speech and language processing technol-
ogy will be critical in the development of future technologies.
Revolutionary applications of épeech and language processing are cur-
rently in use around the world. Recent advances in speech recognition
- and the creation of the World-Wide Web will lead to many more appli-
©cations.

-f_i?LBIBLIOGRAPHICAL AND HISTORICAL NOTES

G Research in the various subareas of speech and language processing is spread
. “across a wide number of conference proceedings and journals. The con-
L A ferences and journals most centrally concerned with computational linguis-
. tics and natural language processing are associated with the Association for
.+ Computational Linguistics (ACL), its European counterpart (EACL), and the
' International Conference on Computational Linguistics (COLING). The an-
b _‘a_nual proceedings of ACL and EACL, and the biennial COLING conference
. © " are thé primary forums for work in this area. Related conferences include
. the biennial conference on Applied Natural Language Processing (ANLP)
. and the conference on Empirical Methods in Natural Language Processing
" (EMNLaP). The journal Computational Linguistics is the premier publica-
tion: in the field;: although it has a decidedly theoretical and linguistic ori-
o entation:” The journal Natural Language Engineering covers more practical
apphcatlons of speech and language research. - o
.~ Research on speech recognition, understanding; and synthesis is pre-
'_ 'sented at the biennial International Conference on Spoken Language Pro-
';"¢6531ng (ICSLP) which alternates with the European Conference on Speech
“ Communication and Technology. (EUROSPEECH). The IEEE International
_{fConference on Acoustics, Speech, and Signal Processing (IEEE ICASSP)
“is held annually, as is the meeting of the Acoustical Society of America.
;".S'peech journals include Speech Communication, Computer Speech and Lan-
guage, ‘and the [EEE Transactions on Pattern Analysis and Machine [ntelli-

18

Chapter 1. Introduction’ ‘;-

- ‘mgs in Namml Language Pmcessmg}

o f'_'- a are: now available on the World-Wide Web. Pomters fo these resources are
e mamtalned on the home~page for this book at::- RENN '

Work on language processing from an Artificial Intelligence perspec- - -
tive can be found in the annual meetings of the American Association for
Artificial Intelligence (AAAI), as well as the biennial International Joint '_,5
Conference on Artificial Intelligence (IJCAI) meetings. The following arti- "
ficial intelligence publications periodically feature. work on speech and lan-
guage processing: Artificial Intelligence, Computational Intelligence, IEEE
Transactions on Intelligent Systems, and the Journal ofArtzﬁczal Intelltgence
Research. Work on cognitive modeling of language can be found at the an-
nual meetmg of the Cognitive Sc1ence Socwty, as well as its Joumal Cogni-
tive Science. An influential series of invitation- only ‘workshops was held by
ARPA, called variously the DARPA Speech and Naniral Language Process-

: mg Workshop or the ARPA Workshop on Human Language Tecknology

" There are a fair number of textbooks available covering various aspects’

o of speech and language processing. Manning and:Schutzei'(I999) (Founda-
SRR :tzons of Sz‘az‘zsz‘zcal Language Processmg) focus

vt‘at;sncal models of .

' cxal'?lintelllgence that mcludes chapters on natural language processing.

o Pa;ftee et al. (1990) has a very broad coverage of mathematxcal Imgulstlcs

Of course, a Wlde-vanety of speech and lanvuag rocessmg resources jf;‘f;

htitp'v":"'//wmf cs colorado edu/ martln/slp html

ords are the fundamental building block of language. Every human
'anguage spoken, signed, or written, is composed of words. Every
area of speech and language processing, from speech recognition to
machme translation to information retrieval on the Web, requires ex-
enisive knowledge ‘about words. Psycholinguistic models of human
guage processing and models from generative linguistics are also
neavily based on lexical knowledge.

" The six chapters in this part introduce computational models
the spelling, pronunciation, and morphology of words and cover
ee i - important real-world tasks that rely on lexical knowledge: auto-
matic speech recognition (ASR), text-to-speech synthesis (TTS), and
he correction of spelling errors. Finally, these chapters define per-
‘the most important computatlonal model for speech and lan-
guage processing: the automaton.. Four kinds of automata are cov-
red: finite-state automata (FSAs) and re gular expressions, finite-state
nsducers (ESTSs), weighted transducers, and the Hidden Markov
del (HMM), as well as the N-gram model of word sequences.

A A S —- A —— - —

' REGULAR EXPRESSIONS
AND AUTOMATA

.A“{

n'the old days, if you wanted to impeach a witness you had to go
ack and fumble through endless transcripts. Now it’s on a screen
‘omewhere or on a disk and I can search for a parttcular word —
y every time the witness used the word glove — and then quickly
sk a question ‘about whaf ke Sard years ago Rzght away you see
he’wzmess get flustered.

' Iohmue L Cochran Jr attomey, New I rk szes, 9/28/97

;-rrﬁag'i‘ﬁé’that fyau have bécame’a'passianate f'zm of Woodchucks. De-
g 'more information on this celebrated woodland creature, you turn o
: your favorite Web browser and type:in woodchuck.: Your browser returns
ew sites. You have a flash of inspiration and type in woodchucks. This
ime: you' discover “interesting links to woodchucks and lemurs™ and “all
bout Vermont’s unique, endangered species”. Instead of having to do this
géarch twice, you would have rather typed one search command specifying
mething like woodchuck with an optional final s.. Furthermore; you might
want fo find a site whether or not it spelled woodchucks with a capital W
Woodc huck). Or perhaps you might want to search for all the prices in some
document; you might want to see-all strings that look like $/99 or $25 or
4.99. In this chapter we introduce the regular expression, the standard
‘Gtéfidﬁ' for characterizing text sequences. The regular expression is used
specifying text strings in situations like this Web-search example, and in
ther information retrieval applications, but also plays an important role in
rd-processing (in PC; Mac, or UNIX: apphcatmns) computatxon of fre-
uencies from corpora, and other such tasks.- 3% :

“After we have defined regular expressions, we qhow how they can be
plemented via the finite-state automaton. The finite-state automaton is
nly the mathematical devme used to implement regular expressions, but

22 Chapter 2. Regular Expressions and Automata

also one of the most significant tools of computational linguistics. Variations -
of automata such as finite-state transducers, Hidden Markov Models, and
- N-gram grammars are important components of the speech recognition and
synthesis, spell-checking, and mfonnatlon extraction applications that we*
will introduce in later chapters.

2.1 REGULAR EXPRESSIONS

SIR ANDREW: Her C’s, her U’s and her T’s: why that?
Shakespeare Fwelﬁh Night :

_ One of the unsung successes in standardrzatlon in computer science :
LA has been the regular expression (RE), a la.nguage for speczfymg text search
strrngs The regular e‘(pressron Ianouages used for searchmg texts in UNIX
Lo (Vl, Perl; Emacs, g grep), Microsoft Word (versron 6 and beyond) and Word
R Perfect are almost identical, and many RE features exrst in the various Web_"ﬁ
i "j-"search engmes ‘Besides this practrcal use, the regular expressron is an im-

e '*portant theoretlcai tool throughout computer science and imgmstrcs
i Arregular expression (first developed by Kleene (1956): but see the His-
cen _lj._‘tory secuon for more details) is a formula in a special language that is used
sranes - for specrfymg simple clagses of strings. A string is a sequence of symbols;
- . for the purpose of most text-based search techniques, a string is any sequence
~of alphanumerrc characters (letters, numbers, spaces, tabs, and punctuation)..
o For these purposes a space is just a character lrke any other and we represent
""vi‘:'rtwuhthesymbol vt e
Rt Formaﬂy, a reguiar expressron is an algebrmc notatron for characterrz»
. 'ing a set of strings. Thus they can be used to specify search strings as well as
to-define a language in a formal way. We will begin by talkmg about regular
expressions:as a way of specifying searches in:texts, and proceed to other
uses. Section 2.3 shows that the use of just three régular expression opera-
 tors is sufficient to characterize strings, but we use the more convenient and
: 'commonly—used regular expression syntax of the Perl langnage throughout
- this'section.- ‘Since common text-processing programs agree on most of the
- syntax of regular expressionis, most of what we say extends to all UNIX; Mi
~ “crosoft Word, and WordPerfect regular expressions. Appendlx A shows the
- few areas where these programs differ from the Perl syntax.-
L Regular expression: search: requires a pattern that we want to search
L comeus for and a corpus of texts: to: search through. - A regular expression search

f:tion 2.1. Regulai__ﬁiﬁfessions

23

nction will search through the corpus returning all texts that contain the
paffém. In an information retrieval (IR) system such as a Web search engine,
the texts might be entire documents or Web pages. In a word-processor, the

ts might be individual words, or lines of a document.. In the rest of this
;chapter we will use this last paradigm.. Thus when we give a search pattern,
~we will assume that the search engine returns the line of the document re-
v "Z:E.t_umcd‘ This is what the UNIX grep command does. We will underline the
t part of the pattern that matches the regular expression. A search can be
~ designed to return all matches to a regular expressmn or only the first match.
: Wefwﬂl show only the ﬁrst match.

ch’Regular Expressmn Patterns |

e snnplest kind of regular expression is a'sequence of snnple characters.
xample; to seatch for woodchuck, we type /woodchuck/. So the reg-
_ _‘ular expression /Buttercup/ matches any string containing the substring
y ,_Butrercup, for example the line I’m called little Buttercup) (recall that we
_are assuming a search application’ that returns entire lines).. From here on
Alk put- slashes around each regular expression to make it clear what is
Vgular expression and what is a pattern. We use the slash since this is the
“notation used by Perl, but the slashes are not part of the regular expressions.
.The search string can consist of a single letter (like / ! /) or a sequence
letters (like /urgl/); The first instance of each match to the regular ex-
Ssmn is underlined below (although a given apphcatlon might choose to
emm more than Just the first instance):

E oo oo- Example Pattems Matched . _
/ woodchucks /+:]“interesting links to woodchacks and 1emurs

_ o “Mary Apn stopped by Mona'’s’
laire_ says, /| Dagmar, my gift piease Claire says

_"ong/ ' - “al} our pretty songs™: : ST
il i “You ve left the burglar behmd agaln"’ sald Non

uppercase/ S/ (/s/ matches a lowe;r case s but not an uppercase S) This
~means that the pattern./woodchucks/ will not match the string Wood-
‘ ‘We can solve this problem with the use of the square braces [and .
T tring: of characters inside the braces specify a disjunction of characters
-For example Figure 2.1 shows that the pattem / [wW] / matches
atterns contammg cither w or W

@iion 2.1. Regular Expressions

25

The use of square braces solves our capitalization problem for wood-
hucks But we still haven’t answered our original question; -how do we
pecify both woodchuck and woodchucks? We can’t use the square brack-
‘because while they allow us to say “s or $”, they don’t allow us to say
or nothing”. For this we use the question-mark /? /, which means “the
;t_e‘ceding character or nothing”, as shown in Figure 2.4.

e “{Match- - | Example Patterns Matched
woodchucks" woodchuck or woodchucks “woodchuck”
color or colour “colour”

: 1gure 2.4 The quéstion-mark ? marks optionality of the previous expres-

Thls }anguage consists of stnngs wzth a b followed by at Ieast two as,
Afollowed by an exclamation pomt The set of operators that allow us to say
thmgs like “‘some number of as” are based on the asterisk or *, commonly
called: the: Kleene * (pronounced “cleany star”). . The Kleene star means
@aro or more occurrences of the immediately previous character or regular
xpressmn - So' /a*/ means “any string of zero or more as”. This will
:match ‘@ or: aaaaaa but it will also match: Off Minor, since the string Off
'o'r has zero as. So the regular expression for matching one or more a is
ax/y meaning one a followed by zero or more as. More complex patterns
so be repeated. So./ [ab] */ means “zero or more s or bs” (not “zero
more nght square braces”) ThlS wﬂl match strmgs lﬂce aaaa or ababab

-

KLEENE *

26

KLEENE +

© ANCHOSS

: '_: Flgure 2 S Ihe u_s_f_: oﬁ the perlod to spec:1fy any character

Chapter 2. Regular Expressions and Automata‘fji"}:‘f

We now know enough to specify part of our regular expression for
prices: muitiple digits. Recall that the regular expression for an individual .~
digit was / [0-91/. So the regular expression for an integer (a string of ..
digitsyis / [0-9] [0-9]*/. (Why isn’t it just /[0-9] % /)?

- .. Sometimes it’s annoying to have to write the regular expression for dig- ..
its twice, so there is a shorter way to specify “at least one” of some character.
This is the Kleene +, which means “one or more of the previous character”. -
Thus the expression / [0-9] +/ is the normal way to specify “a sequence of
digits”. There are thus two Ways to specify the sheep language: /baaa* !/
or /baasi /. ARV :

. One very nnpoﬂant special character is the penod (/./,a wildcard

’ expressxon that matches any smgle character (excepr a camage return)

RE . - Match o R Example Pattems
/ beg n/ any character between beg and n begm beg n; begun

The wﬂdcard is often uscd together w1th the Kleene star to mean “any

"Smnfr of characters”, For example suppose we want to find : any line in which

a partlcular word, for example aardvark, appears twice. We can spemfy this.

: w1th the regular expression: /aardvark.*aardvark/.

Anchors are special characters that anchor regular expressmns to par-

' t1c:u1ar places in a string. The most common anchors are the caret * and the

dollar-sign $. The caret ~ matches the start of a line. The pattcrn /"The/

- matches-the word The only at the start of a line. Thus there are three uses
~ of the caret * : to match the start of a line, as a negation m51de of square;ﬁi_};}

- brackets; and Just to mean a caret.: (What are the contexts-that allow Perl to

know which function a given caret is supposed to have?). The dollar sign $
matches the end of a line:. So the pattern._$ is a useful pattern for matching

- ~a space atthe end of a hne and /"The dog\.$/ matchesa line that con-
o ‘tams only the phrase The dog: (We have to use thie backslash here since we
'want the tomean* “period” and not the wildcard). ‘

Therc are also two other anchors: \b matches a wo1d boundary whﬂe

- \B matches a non-boundary.. Thus./\bthe\b/ matches the word the but
~ not the word other. More technically, Perl defines a word as any sequence
A of dlglts underscores or letters; this is based on the definition of “words” i
i programming languages like Perl or C. For example, /\b99/ will match

. I the stnng 99 in There are 99 bottles of beer on the wall (because 99 foilows;:_'”

‘Section 2.1. Regular Expressions

27

‘a space) but not 99 in There are 299 bottles of beer on the wall (since 99
follows a number). But it will match 99 in $99 (since 99 follows a dollar
‘sign ($), which is not a digit, underscore, or letter).

Disjunction, Grouping, and Precedence -

Siiiipose we need to search for texts about pets; perhaps we are particularly
terested in cats and dogs. In such a case we might want to search for either
’thé string cat or the string dog. Since we can’t use the square-brackets to
arch for “cat or dog” (why not?) we need a new operator, the disjunction
'operator also called the pipe symbol |. The pattern /cat } dog/ matches
iher the string cat or the string dog.

a‘larger sequence. For example, suppose I want to search for information
about pet fish for my cousin David. How can I specify both guppy and
'guppzes‘? We cannot simply say /guppy | 1es/, because that would match
only the strings guppy and ies. This is because sequences like guppy take
précéd'ence over the disjunction operator |. In order to make the disjunction
operator apply only to a specific pattem we need to use the parenthesis
erators (and). Enclosing a pattern in parenthéses makes it act like a
single character for the purposes of neighboring operators like the pipe |
d the Kleene* So the pattern /gupp (viies) / would spec1fy that we
meant the dlS]UIlCtl()n only to apply to the suffixes y and ies.

The parenthesis operator (is also useful when we are using counters
like the Kleene*. Unlike the | operator, the Kleene* operator applies by
default only to a single character, not a whole sequence. Suppose we want
‘match repeated instances of a string. Perhaps we have a line that has
column labels of the form Column I Column 2. Column 3. The expression
5)?’C'olumnu [0-971+_*/ will not match any column; instead, it will match
 column followed by any number of spaces! The star here applies only to
the space , , that precedes it, not the whole sequence. With the parentheses,
e':'could write the expression / (Column_ [0-9]+_*)*/ to match the
ord Column, followed bya number and optional spaces, the whole pattern
ated a any number of times. -

This idea that one operator may take precedence over another requir-
us. to sometimes use pa:entheses to spemfy what we mean, is formalized
¢ operator precedence hierarchy for regular expressions. The follow-
g table gives the order of RE operator precedence from hlghest precedence
West precedence : S : .

" Sometimes we néed to use this mSJuncuon operator in the midst of _

DISJUNCTION

PRECEDENCE

OPERATOR
PRECEDENCE

29

Section 2.1. Regular Expressions

. But there is still one more problem with this pattern: it won’t find the
~word the when it begins a line. This is because the regular expression [~a-
‘zA-71, which we used to avoid embedded rhes, implies that there must be
some single (although non-alphabetic) character before the the. We can
-avoid this by specifying that before the the we require either the beginning-

~ of-line or a non-alphabetic character:

 /("i["a-zA-Z]) [tTlhe[a-zA-7]/

'A More Complex Example

Let’s try out a more significant example of the power of REs. Suppose we
*want to build an application to help a user buy a computer on the Web. The
" user might want “any PC with more than 500 MHz and 32 Gb of disk space

for less than $1000”. In order to do this kind of retrieval we will first need

“to be able to look for expressions like 500 MHz or 32 Gb or Compagq or Mac
or $999.99. In the rest of this section we’ll work out some simple regular
expressions for this task.

i First, let’s complete our regular expression for prices. Here’s a regular

“ ‘expression for a dollar sign followed by a string of digits. Note that Perl is
- smart enough to realize that $ here doesn’t mean end-of-line; how might it
~ know that? :

.;-/s[o 9] +/

Now we JUS'C need to deal w1th fractions of dollars. We’ll add a decimal
~point and two dxglts afterwards:

Vj/s{o 974\, [0-9][0-9] /

"~ This pattern only allows $799.99 but not $§799. We need to make the
”'ﬁ’:éénts optional, and make sure we’re at a word boundary:

‘A/\bS[O 9]+(} [0~ 9J1(‘ 21)7 \b/

= How about specxﬁcatlons for processor speed (in megahertz = MHz or
3 glgahertz = GHz)? Here’s a pattern for that

{3/\b{o “974. *(MHZIme]egaherinGHal[Gg]lgahertz)\b/

- Note that we use /_*/ to mean “zero or more spaces”, since there
. :,mlght always be extra spaces lying around. Dealing with disk space (in Gb
i gigabytes), or memory size (in Mb = megabytes or Gb = gigabytes), we

erl substitution operator s/ regexpl/regexp2/ allows a string charac-
‘terized by one regular expresswn to be replaced by a string characterized by
a different regular expression: :

;s/colour/color/

LTt s often useful to be able to refer to a pamcular subpant of the string
atchmg the first pattern. For example, supposé we wanted to put angle
ackets around all integers in a text, changing e.g., the 35 boxes to the <35>
‘boxes. We'd hke a way to refer back to the mteger we’ve found so that we
I ‘ea'sﬂy add the brackets “To do this, we put parentheses (and) around
the first’ pattem and use fhie number operator \1 in the second pattern to
fer back. Here’s how it looks:"

02914y yany

Section 2.1. Regular Expressions 31
: Match N v
Zero or more occurrences of the prevmus ehar or expressmn
one or more occurrences of the previous char or expression
2. exactly zero or one occurrence of the previous char or expression
{n} n occurrences of the previous char or expression
{n,m} | from n to m occurrences of the previous char or expression
;{'n .} 1atleast n occurrences of the previous char or expression
Figure 2.7 . Regular expression operators for counting.
RE Match | Example Patterns Matched
* an asterisk “*¥” CKEARPFLEFA*N
N | o aperiod “ - “Dr. Livingston, T presumie”
A7 a question mark “Would you light my candIeZ” ‘
\n a newline
\t a tab
Figure 2.8 - Some characters that need to be backslashed
" The readeér should consult Appendix A for further details of regular
xpressmns, and especially for the differences between regular expressmns
n' Perl UNIX and Mlcrosoft Word o
'5 Régil‘lar'EpresSioh'SnBStifutii}n; Memory, and ELIZA
An important use of regular expressions is in substitutions. For example, the susstmurion

. Section 2.2. Finite-State Automata

33

. s/.% YOU ARE (depressedl|sad) .*/WHY DO YOU- THINK YOU ARE \1/

::‘s,/.* all .*/IN WHAT WAY/
'g/.* always .*/CAN YOU THINK OF A SPECIFIC EXAMPLE/

‘ Since multiple substitutions could apply to a given input, substitutions
~ were assigned a rank and were applied in order. Creation of such patterns is
- addressed in Exercise 2.2.

2.2 FINITE-STATE AUTOMATA

- The regular expression is more than just a convenient metalanguage for text
. searching. First, a regular expression is one way of describing a finite-state
automaton (FSA). Finite-state automata are the theoretical foundation of a
. good deal of the computational work we will describe in this book. Any

.. regular expression can be implemented as a finite-state automaton (except
regular expressions that use the memory feature; more on this later). Sym-
“metrically, any finite-state automaton can be described with a regular expres-
“sion. Second, a regular expression is one way of characterizing a particular
‘kind of formal language called a regular language. Both regular expres-
‘sions and finite-state automata can be used to described regular languages.
.The relation among these three theoretical constructions is sketched out in

Figue29.
regular
expressions
A
- ll \
R A N
A
oy N
. / N\
finite —=~==—=== ~ regular
automata languages
Figure 2.9 The relationship between finite automata, regular expressions,
.. and regular languages; figure suggested by Martin Kay.

i This section will begin by ntroducing finite-state automata for some of
the regular expressions from the last section, and then suggest how themap-
ping from regular expressions to-automata proceeds in general. - Although
we begin with their use for implementing regular expressions, FSAs have a
wide variety of other uses that we will explore in this chapter and the next.

FINITE-STATE
AUTOMATON

FSA

REGULAR
LANGUAGE

Section 2.2. Finite-State Automata

35

~ broken up into cells, with one symbol written in each cell of the tape, as in

=
A

< {albla

Figure 2,11 A tape with cells.

: The machine starts in the start state (gg), and iterates the following
- process: Check the next letter of the input. If it matches the symbol on
" an arc leaving the current state, then cross that arc, move to the next state,
-and also advance one symbol in the input. If we are in the accepting state
* (g4) when we run out of input, the machine has successfully recognized an
instance of sheeptalk, - If the machine never gets to the final state, either
- “because it runis out of input; or it gets some input that doesn’t match an arc
" (as in Figure 2.11), or if it just happens to get stuck in some non-final state,
owe sa'yf the machine rejects or fails to accept an input. -

. We can also represent an automaton with a state-transition table. As
iti' the graph notation; the state-transition table represents the start state, the
-+ accepting states, and what transitions leave each- state with which symbols.
-~ Here’s the state-transition table for the FSA of Figure 2.10.

[l Input |
Statellb a !
0. |I1L060

1 020

2 O 30
3 0 3 41 .
d4e (00 D)

o Flgure 2. 12 The state-transition table for the FSA of F1gure 2.10.

A We ve ma;tked state 4 w1th a colon to mdlcate that it’'sa ﬁnal state (you
< an have as many final states as you want), and the @ indicates an illegal or
mxssmg transition. We can read the first row as “if we’re in state 0 and we

ee the input b we must go to statc 1 If we’re in state 0 and we see the input
'Ot' we fail”. EA .

REJECTS
STATE-
TRANSITION
TABLE

Finite-State Automata

37

~Section 2.2.

- function D-RECOGNIZE(fape, machine) returns accept or reject

index + Beginning of tape
current-state < Initial state of machine
loop
if End of input has been reached then
if current-state is an accept state then-
3 return accept
else .. e
L return reject : -
" elsif transition- mble[current—state rape[mdex]]is empty then
' ‘return reject
else
current-state < transition-table{current-state, tapefindex}j]
index<—index + 1
end

" Figure 213 ~ - An algorithm for déterministic recognition of FSAs. This al-
- gorithm returns accept if the entire string it is pointing at is in the language

defined by the FSA, and reject if the string is not in the language.

3

.. Figure 2.14 - Tracing the execution of FSA #1 on some sheeptalk.

: Before examining the beginning of the tape, the machme is in state gg.
:'Fmdmg a b on input tape, it changes to state ¢; as indicated by the contents
of transition-table[qo.b) in Figure 2.12 on page 35. It then finds an a and
switches to state gy, another a puts it in state g3, a third a leaves it in state g3,
Whére’it reads the “1”, and switches to state g4. Since there is no more input,
_ V’e' End of input condition at the beginning of the loop is satisfied for
the_ﬁrst time' and the machine halts' in g4. State g4 is an accepting state,
nd' so the machine has accepted the strmg baaa! as a sentence in the sheep

38

Chapter 2. Regular Expressions and Automata::

FAIL STATE

L) state 3,:the automaton has to. chose between:printing out a ! and going;to
 state 4, or printing out an a and returning to state 3. Let’s say for now that

| Figure 2.15 = Adding a fail state to Figure 2.10. - i

"Fgrmai Languages S

o We can use the same graph in F:gure 2 10 as‘an automaton for GENERATING
L sheeptalk If we do, we would say that the automaton starts at state go, and
- 'crosses’arcs to new’ states, printing out the: symbols. that label each arc it

For now; we don’t care which exact string of sheeptalk we generate, as long
as 1t sa strmg captured by the regular expression for sheeptalk above. ..

The algorithm will fail whenever there is no legal transition for a given -
combination of state and input. The input abe will fail to be recognized since
there is no legal transition out of state go on the input a, (i.e., this entry of -
the transition table in Figure 2.12 on page 35 has a 0). Even if the automaton . -
had allowed an initial g it would have certainly failed on ¢, since ¢ isn’t even
in the sheeptalk alphabet!. We can think of these “empty” elements in the
table as if they all pointed at one “empty” state, which we might call the fail
state or sink state. In a sense then, we could view any machine with empty °
transitions as’ if we had augmented it with a fail state, and drawn in all the
extra arcs, so we always had somewhere to go from any state on any possible *
input. . Just for completeness, Fxgure 2.15 shows the FSA from Flgure 2.10
with the fail state g filled in. I AN TR

follows ‘When the automaton gets. to the final state it stops.. Notice that at

we don’t care how the machine makes this decision; maybe it flips a coin.

Section 2.2 Finite-State Automata

39

Key Concept #1. Formal Language: A model which can both gener-
te and recognize all and only the strings of a formal language acts as
- a definition of the formal language.

A formal language is a set of strings, each string composed of symbols
'_ﬁnite symbol—set called an alphabet (the same alphabet used above

L(m) {baa* baaa’ baaaa? baaaaa* baaaaaa! v } (2 1

- eX ess:an 1nﬁmte set (such as this one above) ina ciosed form. Formal
; ges are not the same as natural languages Wthh are the kind of

'}to model the different states of a soda machme) But we often use a formal
--}Ianguage to model part of a natural language, such as parts of the phonology,
rphdogy, or syntax. The term generative grammar is sometimes used
li gulstics to mean a grammar of a fonnal language the ongm of the term

Another Example

e'prewous examples our. formal alphabet conmsted of letters but we
Iso' have a higher level alphabet consisting of words. In this way we
write finite-state automata that model facts about word combinations.
sxample; suppose we wanted to build an FSA that modeled the subpart
Engllsh dealing with amounts of money. Such a formal language would
'17-ﬂle subset of Enghsh consisting of phrases like fen cents, three dol-
oné dollar thzrty -five cents and so on.

_g 'mlght break this: down by first buﬂdmg Just the antomaton to ac-
unt for the numbers from'1 to 99, since we’ll need them to deal with cents.
fe}2 16 shows this.. e

- We: could now add cents and dollars to our automaton Flgure 2.17
how - a'simple version of this, where we just made two copies of the au-
ton‘in Figure 2.16 and appended the words cenzs and dollars.

FORMAL
LANGUAGE

ALPHABET

NATURAL
LANGUAGES

ection 2.2. Finite-State Automata

41

" Figure 218 A non-deterministic finite-state automaton for talking sheep

(NFSA #1). Compare with the deterministic automaton in Figure 2.10.

2 or go on to state 3. Automata with decision points like this are called
on-deterministic FSAs (or NFSAs). Recall by contrast that Figure 2.10
“specified a deterministic automaton, i.c., one whose behavior during recog-
‘tlon is fully determined by the state it is in and the symbol it is looking at.
A deterministic automaton can be referred to as a DFSA. That is not true for
the machine in Figure 2.18 (NFSA #1).. L

HNE Therc is another common type of non—determlmsm caused by arcs
_that have no symbols on them (called e-transitions). The automaton in
Figure 2.19 defines the exact same. language as the last one, or our first one,
but it does it thh an e-transition. .

~ Figure 2.19 - Another NFSA for the sheep language (NFSA' #2) It differs-
- from NFSA #1 in Figure 2.18 in having an e-transition. . T T

" We interpret this new arc as follows: If we are in state 3, we are al-
Iowed to move to state 2 without looking at the input, or advancing our input
pomter 'So this introdiices another kind of non- detemnmsm -~ we might not
know whether to fo]low the e—trammon or the ! arc. .

smgi an NFSA to Accept Strmgs s hielh i

If we want to I\now whether a string is an mstance of sheeptalk or not, and
" we. use'a' non-deterministic: machine to recognize it, we might follow the
wrong arc and reject it when we should have accepted it. That is, since there
is more than one choice at some point, we might take the wrong choice. This

NON-
DETERMINISTIC
NFSA

DFSA

E-TRANSITION

42 Chapter 2. Regular Expressions and Autom'fcit

problem of choice in non-deterministic models will come up again and aga
as we build computational models, particularly for parsing. s
There are three standard solutions to this problem:

e Backup: Whenever we come to a choice point, we could put a marké‘r;{;

to mark where we were in the input, and what state the automaton was :

~in. Then if it turns out that we took the wrong choice, we could back[_‘f

upandtryanotherpath R "

. Look-ahead: We could look ahead in the mput to help us decuie Whlch,

.- path to take. -
. Parallehsm. Whenever we come to'a choice point, we could look

LUevery: altematwe path in parallel '

CWe wﬂ} focus here on the backup approach and defer discussion of th
'look ahead and parallelism approaches to later chapters. ,
. The backup approach suggests that we should blithely make chmces'.'f}
o ‘that rmght lead fo deadends knowmg that we can aiways retum to unexa-fj_

-:altematlve and contmues from there Applymg this: notion to our non“‘gl_‘;{
" detertiinistic recognizer, we need only remember two things for each choice
:pomt the state, or node, of the machine that we can go to and the cone{{_{

R 'spondmg position on the tape. We will call the combination of the node and-_-’_}
sepo: - “position the search-state of the recognition algorithm. To avoid confusion,
o we will refer to the state of the: automaton (as-opposed to the state of the .
search) as a node or a machine-state. Figure 2.21 presents a recogmﬁon_f._
algomthm based on this approach.

vl Before oomg on to descnbe the main part of thxs a}gonthm we should

; 'note two changes to the transmon table that drives it, FlISt in order to rep

- resent nodes that have outgoing e-transitions, we add a new g-column to th __f:_{g

- transition table. If a node has an &- -transition, we list the destination node i in’

L the’ e-column for that node’s row.. Theé second addition is needed to accountff;l_'

- “for multiple transitions to different nodes from the same input symbol. We -

- let-each cell entry: consist: of a list of destination: nodes: rather than a sing'léfff

~ ‘niode. Figure 2.20 shows the transition table for the machine in Figure 2. 18

i (NF SA #1) Whlle 1t has no-g- transitions; it does show that in- machme-statef‘_ff;

. Section 2.2. Finite-State Automata 43

Input |
Statellb a ! ¢
0 10 00
1 02 00
2 02300
3 00 40
4: 00 00

Figure 2.20 The transition table from NFSA #1 in Figure 2.18.

" g3 the input a can lead back to g, or on to gs.
L Figure 2.21 shows the algorithm for using a non-deterministic FSA
to.recognize an input string. The function ND-RECOGNIZE uses the variable
- agenda to keep track of all the currently unexplored choices generated during
. the course of processing. Each choice (search state) is a tuple consisting of a
. node (state) of the machine and a position on the tape. The variable current-
- search-state represents the branch choice being currently explored.
N ND-RECOGNIZE begins by creating an initial search-state and placing
" it on the agenda. For now we don’t specify what order the search-states are
- placed on the agenda. This search-state consists of the initial machine-state
: df: the machine and a pointer to the beginning of the tape. The function NEXT
is then called to retrieve an item from the agenda and assign it to the variable

" current-search-state.

As with D-RECOGNIZE, the first task of the main 100p is to determme

if the entire contents of the tape have been successfully recognized. This
-+ is done via a call to ACCEPT-STATE?, which returns accept if the current

search-state contains both an accepting machine-state and a pointer to the
... end of the tape. If we’re not done, the machine generates a set of possible
next steps by calling GENERATE-NEW-STATES, which creates search-states
- for any e-transitions and any normal input-symbol transitions from the tran-

' sition table. All of these search-state tuples are then added to the current

- agenda.

= If the agenda is empty we’ve run out of options and have to reject the input.

- Otherwise, an unexplored option is selected and the loop continues.

.-+ It is important to understand why ND-RECOGNIZE returns a value of
- reject only when the agenda is found to be empty. Unlike D-RECOGNIZE, it

<. does not return reject when it reaches the end of the tape in an non-accept

. »machme-state or when it finds 1tself unable to advance the tape from some

Finally, we attempt to get a new search-state to process from the agenda.

44

Chapter 2. Regular Expressions and Automata

SR) functlon GENERATE NEW-STATES(cur}‘entnsmte) returns a set of search-, |

|/ “index & the point on the tape the current search-state is looking at ™~ =~ "

|- a state of the FSA while state or search-state means “the state of the search

machine-state. This is because, in the non-deterministic case, such road-.

blocks only indicate failure down a given path, not overall failure. We can |

only be sure we can reject a string when all possible choices have been ex-
amined and found lacking.

function ND-RECOGNIZE(tape, machine) returns accept or reject

agenda + {(Initial state of machine, beginning of tape)}
current-search-state «— NEXT(agenda)
loop
if ACCEPT-STATE X (current-search-state) returns true then
. retum accept L
L else
o agenda%agenda U GENBRATE NEW-STATES(current»search-state)
lf agena’a is empty then ' :
retum re]ect
- currem‘~seamk 9tate - NEXT(agenda)

i iventnode e the tiode the cirent searehstate Is G ¢

- retarn a list of search states from transition table as follows:
L2 (transition-table[current-node, €], index). .
(mmsztzon tabe‘e[current-node tape[mdex] }, ma‘ex + I)

&S functxon ACCEPT~STATE"(search-state) returns true or false

- current-node - the node search-state 16 in"
~“indéx+the point on the tape search:state is looking at ~
o lf mdex is at the end of the tape and current—node isan accept state of machme :
s return true
;_»,z-,else et
' retum faIse R

i Flgure 2. 21 - An algonthm for NFSA recogmtlon The word node means

process ie, a combmatlon of node and mpe-posztzon

S_éétion 2.2. Finite-State Automata

45

1 ;iﬂaﬁlﬂ!llii

©® | -
2 5ibu1wru11T%

3 {DLTI1T13

,/\

}é(buluaw1| 3 {[eelaarT T3 6

f':,'.‘.%—rb‘"'alala‘ﬁT‘Tié g 1‘31&]&1 ST 7

"%iﬁBLﬂauLJTT§8

gure 2. 22 Tracmg the cxecuuon of NFSA #1 (Flgure 2 18) on some

sheeptalk

Figure 2.22 illustrates the progress of ND-RECOGNIZE as it attempts to
andle’ the input baaa ! Each strip illustrates the state of the algorithm at
iven point in its processing. The current-search-state variable is captured
the solid bubbles representing the machine-state along with the arrow rep-
esenting progress on the tape. Each strip lower down in the figure represents
mgréss from one current-search-state to the next. .

- Little. of interest happens until the aigonthm finds 1tself in state q>
118_ looking at the second a on the tape. An examination of the entry
or transition-table[g; ,a] returns both ¢, and g3. Search states are created
ich of these choices and placed on the agenda. Unfortunately, our al-
Of_nthi'ﬁ*chooses to move to state g3, a move that results in neither an accept
enor any new states since the entry for transition-table[gs, a] is empty.
this point, the algorithm simply asks the agenda for a new state to pursue.
ce the choice of returning to ¢, from g; is the only unexamined choice on
‘agenda it is returned with the tape pointer advanced to the next a. Some-

Chapter 2. Regular Expressions and Automata

" - partial path to explore and keeps track of any remammg, as yet uncxplored
' "parhal paths. " R -

- STATESPACE -
SEARCH

o 'f_'cessful solution' is discovered.. Unfortunately, it s typically not possible to
C o telta good choi¢e from a bad one; and often the best we can do is to insure
o -fthat each possible solution is eventually considered.. :
il _::~RECOGNIZE has been left unspecified. We know only that unexplored states

* tion NEXT returns an"ﬁiiéXpldred state’from the agenda when-asked.- How

s 'the states that are consadered next are the most recently created ones, Such

AR such:algonthms the problem definition creates a space of possible solu-
. found
S f_f.In ND- RECOGNIZE; search states consist of pairings of machine-states with
R positions on the input tape. The state-space consists of all the pairings of
e .,; ~machine-state and tape positions that are possible given the machine in ques-

' . g*.-txon The goal of the search is to navigate through this space from one state to
o another lookmg for a pairing of an accept state with-an end of tape position:

h 1Wh1Ch the states in ‘the space are considered. A poor ordering of states may

what diabolically, ND-RECOGNIZE finds itself faced with the same choice.
The entry for transition-table[g;,a] still indicates that looping back to ¢, or
advancing to g3 are valid choices. As before, states representing both are
placed on the agenda. These search states are not the same as the previous
ones since their tape index values have advanced. This time the agenda pro-
vides the move to g3 as the next move. The move to g4, and success, is then
uniquely determined by the tape and the transition-table.

Recogmtmn as Search

ND-RECOGNIZE accomplishes the task of recognizing strings in a regular
language by providing a way to systematically explore all the possible paths
through a machine. If this exploration yields a path ending in an accept
state, it accepts the strmg, otherwise it rejects it. This systématic exploration
is made possxble by the agenda mechanism, which on each iteration selects a

: Algonthms such as ND- RECOGNIZE, which operate by systematlcally
searchmg for solutions, are known as state-space search algorithms. In

’_the goal is to explorc this space returmng an answer when one is
r"re]ectmg the mput When the space has been exhaustlve}y exp}{ored

- The: key tosthe: effecuvenﬁss of such: programs-is often the order in

lead to the exammaﬁon ofa 1aroe number of unfruitful states before a suc-

-~ Careful readers may: have noticed that the ordenng of states in ND-
“are added to- the agenda as they are created and that the (undefined) funcj_

- should the: funcuon NEXT be deﬁned‘7 ‘Consider an ordering strategy wherg

‘;;S“"ection 2.2. Finite-State Automata

47

j':'-éj'{.policy can be implemented by placing newly created states at the front
“0f the agenda and having NEXT return the state at the front of the agenda
when called. Thus the agenda is implemented by a stack. This is commonly
eferred to as a depth-first search or Last In First Out (LIFO) strategy.

- Such a strategy dives into the search space following newly developed
eads as they are generated. It will only return to consider earlier options
vhen progress along a current lead has been blocked. The trace of the ex-
cution of ND-RECOGNIZE on the string baaa! as shown in Figure 2.22
llustrates a depth-first search. The algorithm hits the first choice point after
eeing ba when it has to decide whether to stay in g, or advance to state
3. At this point, it chooses one alternative and follows it until it is sure it’s
ong. The algorithm then backs up and tries another older alternative.

" Depth first strategies have one major pitfall: under certain circum-
tances they can enter an infinite loop. This is possible either if the search
"_fat:e-happens to be set up in such a way that a search-state can be acciden-
ally re-visited, or if there are an infinite number of search states. We will
éifiSit’thjs question when we turn to more complicated search problems in

! ';'{ The second way to order the states in the search space is to consider
fates in the order in' which they are created. Such a policy can be imple-
"ented by placing newly created states at the back of the agenda and still
ave NEXT return the state at the front of the agenda. Thus the agenda is
uhplemented via a quene. This is commonly referred to as a breadth-first
:search or First In First Out (FIFO) strategy. Consider a different trace
f the execution of ND-RECOGNIZE on the string baaa! as shown in Fig-
r€.2.23. Again, the algorithm hits its first choice point after seeing ba when
- had to decide whether to stay in g» or advance to state g3. But now rather
.than picking one choiee and following it up, we imagine examining all pos-
Ble choices, expanding one ply of the search tree at a time. . Lo
© Like depth-first search, breadth-first search has its pitfalls. As with
epth-first if the state-space is infinite, the search may never terminate. More
nportantly, due to growth in the size of the agenda if the state-space is
ven moderately large, the search may require an impractically large amount
-of memory. - For small problems; either depth-first or breadth-first search
rategies may be adequate; although depth-first is normally. preferred for its
ore. efficient use of memory. For larger problems, more complex search
hhlques such as dynamic programming or A* must be used, as we will
¢ in Chapters 7and 10...

DEPTH-FIRST

BREADTH-FIRST

48

Chapter 2. Regular Expressions and Automata

LY "Relatlng' Determlmstxc and Non-Determlmstchutomata

‘tran'sm‘o‘ns Would make them more powerful than DFSAS Tn fact this is not-}:

L :a‘sunple algonthm for convertmg an NFSA to an equivalent DFSA,, although-
- the number of states in this equivalent deterministic automaton may be much -
< larger See Lewis and Papadmutnou (1981) or Hopcroft-and Ullman (1979) -
SRR - for'the proof ,0f the correspondence The basic: 1nttut10n of the proof is worth:

. 'mentioning, :
 that the deference between NFSAs and DFSAs is that in an NFSA-a state g; -

o Q‘ _f'and q;,) The algonthm in Figure 2.2} dealt with this: problem by choosin

S ;reuher qa or gy and then backrmckmg if the choice: turned out to be wrong
. We mentionied that a parallel version: of the algonthm would follow both
SR pafhs (toward g, and g;) simultaneously. -

Lol gonthm ‘we build an automaton that has a deterministic path for every path
. our parallel recognizer might have followed in the search space. We imagin

- . following both paths simultaneously, and group together into an equivalenc
. class all the states we reach on the same input symbol (i.e:; g, and gp). W
. now give a new state label to this new equivalence class state (for exarmpl

1

Q|
2 el 113
3 [OhLEEITIE
e
_"4%)1’1 LIS (Ol 113 4

5 CTEGTETAIT TS 587 ﬁnuas i_TTTéS "

i imauaw H[é

: ‘-_"=‘ Flgure223 A breadth—ﬁrst trace of FSA #1 on some sheeptalk

may. eem that allowmcr NFSAS to have non-determnnstlc features like &-

the case; for any NESA, there is an exactly equivalent DFSA: In fact there is -

however and builds on the way NESAs parse theu' input. Recall :

may have more than one possible next state given an input i (for example g,

ﬂﬁ”gThe algorithm for converting: a NFSA to'a DFSA is. hke this paralle

:é:éc.tion 2.3. Regular Languages and FSAs

49

»). We continue doing this for every possible input for every possible group
of states. The resulting DFSA can have as many states as there are distinct
sets of states in the original NFSA. The number of different subsets of a set
With N elements is 2¥, hence the new DESA can have as many as 2V states.

2.3 REGULAR LANGUAGES AND FSAS

As we suggested above, the class of languages that are definable by regular
pressions is exactly the same as the class of languages that are character-
izable by finite-state automata (whether deterministic or non-deterministic).
Because of this, we call these languages the regular languages. In order to
give a formal definition of the class of regular languages, we ‘need to refer
B’é‘c&k to two earlier concepts: the alphabet Z, which is the set of all symbols in
é' language, and the empty string €, which is conventionally not included in
X. In addition, we make reference to the empty set O (which is distinct from

'_"?__The class of regular languages (or regular sets) over ¥ i is then formally
deﬁned as follows L SRR

1 01s aregular language _ S S
2 VaEZUe {a}is aregularlanguage o

3. IfL; and Lz are regular languages then so are:.

@) Ly Ly= {xy|x € Ly,y € L}, the concatenatlon of L1 and L,

(b) LjULy, the union or disjunction of LyandL; .
(c) Lj, the Kleene closure of L; -

.~ All and only the sets of languages which meet the above properties
are regular languages. Since the regular languages are the set of languages
characterizable by regular expressions, it must be the case that all the regu-
ar expression operators introduced in this chapter (except memory) can be
mplemented by the three operations which define regular languages: con-
caténation, disjunction/union (also called “|”), and Kleene closure. For ex-
ample all the counters (*,+, {r., m}) are just a special case of repetition plus
K}eene *.- All the anchors can be thought of as individual spemal symbols.
The square braces [| are a kind of d1slunct10n (le., [ab} means “aor b”, or
the: disjunction of a and b). Thus it is true that any regular expression can be
tumed into a (perhaps larger) expressxon which only makes use of the three
rimitive operations. - SRR

achrmtnou (1981)

Followmg van Santen and Sproat (1998) Kap%an and Kay (1994), and Lew;s and Pa- -

REGULAR
LANGUAGES

50 Chapter 2. Regular Expressions and Automata

Regular languages are also closed under the following operations (X*
means the infinite set of all possible strings formed from the alphabet X): . -

e intersection: if L; and L, are regular languages, then so is L1 N Ly, the
language consisting of the set of strings that are in both L; and L.
o difference: if L; and L, are regular languages, then so is L; — L, the
language consisting of the set of strings that are in Ly but not L,.
o complementation: If L is a regular language, then so is X* — Ly, the
- set of alI pmslble strings that aren’tin L;.

o reversal: If Ly is a regular language; then so is L R, the Ianguage con-
smung of the set of reversals of all the strmgs in L1 :

5 The proof that regular expressmns are equlvalent to ﬁmte state au«
tomata can. be found in Hopcroft and Ullman (1979), arid has two parts
' showmg that _an_automaton can. be bullt for each regular language, and c:on~

: _., 'concatenatmn We JU.St strmg two FSAS next to each other by con-
ncctlng aﬂ the ﬁnai states of FSA1 to the 1mt1ai state of FSA') by an

Figure 224 The concatenation of two FSAs.

e ’clbsiir'é 'We connect all the final states of the FSA: back to the initi
. states by e-transitions, (this implements the repetition part of the KXeene
g *), and then put chrect lmks between the: initial and final states. by:.

Section 2.4, Summary

51

transitions (this implements the possibly of having zero occurrences).
We’d leave out this last part to implement Kleene-plus instead.

| MFiguz'e 2.25 | Tﬁe cld-siifé (Klee:n’év;"») of an FSA ST]

-~ union: We add a single new initial staté gj; and add new transitions
- from it to all the former initial states of the two machines to be joined.

s b LN

—~ .
—~ L e

Figure 2.26 The union (]) of two FSAs.

24 SUMMARY-

] ThlS chapter mtroduced the most 1mportant fundamental concept in language
_, prccessmg, the ﬁmte automaton and the practlcal tool based ori automatonn,
. the regular expressmn Here s a 9ummary of the mam pomts we covered
: about these 1deas el e ,

e The regular expressmn Ianguace isa powerful tool for pattem match-
" Basic 'opérations in‘ recrula'r”expressio'ns' inClude concaten’ation of sym-
- bols,: disjunction: of: symbols (L1, ty and-.), counters (*, +, and

52 Chapter 2. Regular Expressions and Automat

{n,m}), anchors (", $) and precedence operators ((,)). |

e Any regular expression can be realized as a finite state automaton
(FSA). :

o Memory (\1 together with ()) is an advanced operation that is often =
considered part of regular expressions, but which cannot be realized as

a finite automaton. S

s Anautomaton 1mp1101tly deﬁnes a t‘ormal language as the set of strings -~

the automaton accepts . | F

e An. automaton can use any set of symbols for its vocabulary, 1nclud1ng
lettels words or even graphxc nnages |
e The behav1or of a determmlstlc automaton (DFSA) 1s fully deter.
. mined by the state 1t is m IR RNARRR T B ‘ :
' -deterministic automaton (NFSA) sometlmes has to ‘make a
chioice: between muluple paths to take glven the same current state and

An NFSA can be convertcd to a DFSA L
The order in: Whlch a NFSA chooses the next state to’ explore on the
enda.deﬁnes its search strategy. The depth- first search or LIFO
"”'ategy' 'corresponds to the agenda-as-stack; the: breadth-ﬁrst search

FIFO strategy corresponds to the agenda-as- queue Gt
Any regular expressmn can be: automancally compﬂed mto a NFSA
~and hene nto'a FSA e

IBLIOGRAPHICAL AND HISTORICAL N OTES

Flmte automata arose in the 1950s out of ’Ilumg) (1936) model of algo
- rithmic-computation, considered by many to be the foundation ‘of modern
SR computer science: The Tunng machine was an abstract machine with a finite
T fcont:ol and’ an 1nput/output tape Tn ong move; the. Tunng ‘machine could
SRS read ' symbol on the tape, write a different symbol on the tape, change state
S an ;mcive left or nght (Thus the. Tunng machine differs from a ﬁmte—stat
"automaton mamly in its ability to change the symbols on its tape).
o Inspired by Turing’s work, McCulloch: and Pitts built an automata- hkc
S 'model of the neuron (see von Neumann, 1963, p.-319). Their model, which
o ﬁ;ﬁg;;m is now u'su'al}y:- called the.-McCulloch-Pitts: nearon (McCulloch: and Pitt\S
- 1943), was-a simplified model of the neuron as @ kind of -“‘computing ele:

-,-;-Section 2.4. Summary o

53

yient” that could be described in terms of propositional logic. The model
was a binary device, at any point either active or not, which took excitatory
and inhibitatory input from other neurons and fired if its activation passed
édme fixed threshold. Based on the McCulloch-Pitts neuron, Kleene (1951)
and (1956) defined the finite antomaton and regular expressions, and proved
ir equivalence. Non-deterministic automata were. introduced by Rabin
and 4Scott (1959), who also proved them equivalent to deterministic ones.
“Ken Thompqon was one of the first to build regular expressions compil-
into editors for text searching (Thompson, 1968). His editor ed included
. minand “gltegular expression/p”, or Global Regular Expressxon Print,
Whlch later became the UNIX grep utility. N
f}There are many general-purpose introductions to the mathemaucs un-
rlying automata theory; such as Hopcroft and Ullman (1979) and Lewis
and Papadlmlmou (1981) ‘These cover the mathematical foundations the
_ple automata of this’ chapter as well as the finite-state transducers of
Chapter 3 the context-free grammars of Chapter 9, and the Chomsky hier-
'hy_‘of Chapter 13, Friedl (1997) is a very useful cornprehenswe mnde fo
dvanced use of regular expressions. - g
he metaphor of problem-solving as search is basm to Artlﬁmal Intel-
gence (Al); more details on search can be found in any Al textbook such as
Russcll and Norvig (1995).

rite regular expressions for the following languages: You miay use

‘etther _'erl potation or the minimal “algebraic” notation of Section 2.3, but

"’imake ure to say which one you are using. By “word”, we mean an alpha-

‘bet stﬂng separated from other words by white space, any relevant punctu-
ne breaks and so forth :

the set of aH alphabetlc stnngs

the:set of all lowercase alphabeﬂc stnngs endmg ina b

e sét‘ of all strings with two consecutive repeated words (e g, “Hum—
bert. Humbert” and “the the” but not “the bug” or “the big bug”). .

54 Chapter 2. Regular Expressions and Automata

d. the set of all strings from the alphabet a,b such that each @ is immedi- .
ately preceded and immediately followed by a b.

e. all strings which start at the beginning of the line with an integer (1 e,
1,2,3,.. ,10, ,10000) and which end at the end of the line with a
word.. T L
Cf all strmgs whrch have both the word grotto and the word raven in them
- (but not, for example, words hke grottos that merely contain the word
"grotto) S

: g wnte a 'pattern:' wbrch pIaces the first word of an Enghsh sentence in a,.‘-._
 register, Deal with punctuatlon :

':'-. "'Imp._ment; an ELIZA hke program, usmg substxtutmns such as those

24 Desrgn an FSA that recogmzes s1mple date expressrons hke March 15,
the 22nd of November ‘Christmas. You should try to include all such “abso-
_j-’,-lute dates, (e. g. not “deictic” ones relative to the current day like the day
 before yesterday)‘.-:;" Each edge of the graph should have a word or a set of
- words ¢ yu should use some sort of shorthand for classes of words to

o avoid 'd.rawmgv too rnany arcs (e.g., furmture — desk chalr table)

. 2:5' | N ow extend your date FSA to handle delctlc expressrons hke yesterdav,v i
L ""week from tomorrow, the a’ay before yesterday, Sunday, next.

’ ue"to: Paulme Welby, thrs problem probably requxres the abrhty to
ﬂjkmt) Wnte a regular expression (of draw an FSA) thch matches all kmt-
N :__"f'tmg patterns for scarves with the followinig: specification: 32 stitches wzde
| KIPI ribbing on both ends, stockinette stitch body; exactly two raised smpes
R .:"AH kmttmg patterns mustinclude a cast-ofi row. (to put the correct nizmber of

55

adds length
- stockinette stitch

epeat instruction 4 an additional 13 times. adds length

32, P32. raised stripe stitch

32, P32. stockinette stitch

epeat instruction 7 an additional 251 times. adds length

32, P32, raised stripe stitch

32, P32. stockinette stitch

epeat instruction 10 an additional 13 times. adds length

"P1 across row. KIP] ribbing

epeat instruction 12 an additional 7 times. adds length

ind off 32 stitches. binds off row: ends pattern

W:'"te a regular expression for the language accepted by the NFSA in

gire 2.27.

Currently the function D-RECOGNIZE in Figure 2.13 only solves a sub-
‘of the important problem of finding a string in some text. Extend the
gorithm to solve the following two deficiencies: (1) D-RECOGNIZE cur-
'réﬁtl:y:_'.asmnnes that it is already pointing at the string to be checked, and (2)

Knit and purl are two different types of stitches. The notation K»n means do » knit stitches.
larly for purl stitches. Ribbing has a striped texture—most sweaters have ribbing at the
sléeves, bottom, and neck. Stockinette stitch is a series of knit and purl rows that produces a
plain pattern— socks or stockings are knit with this basic pattern, hence the name.

56

Chapter 2. Regular Expressions and Automata

D-RECOGNIZE fails if the string it is pointing includes as a proper substring B
a legal string for the FSA. That is, D-RECOGNIZE fails if there is an extra
character at the end of the string.

2.10 Give an algorithm for negating a deterministic FSA. The negation -
of an FSA accepts exactly the set of strings that the original FSA rejects
(over the same alphabet), and rejects all the strings that the original FSA -
accepts. Ui . S .
2.11 Why doesn’t your previous algorithm work with NFSAs? Now extend
your algorithm to negate an NFSA. '

A ———

MORPHOLOGY AND
FINITE-STATE
'TRANSDUCERS

{ writer is someone who writes, and a stinger is something that
z.‘mgs But fingers don’t fing, grocers don’t groce, haberdash-
ers don { haberda sh, hammers don t kam and humdmgers don’t

o Richard Lederer, Crazy English

hapter 2 introduced the regular expression, showing for example how

an woodchucks. Hunting for singular or plural woodchucks was easy; the
ural just tacks an s on to the end. But suppose we were looking for another
nating woodland creatures; let’s say a fox, and a fish, that surly peccary
d pérhaps a'Canadian wild goose. Hunting for the plurals of these animals
_"»'fnore than just tacking on an s. The plural of fox is foxes; of peccary,
ccaries; and of goose, geese. To confuse matters further, fish don’t usually
ange their form when they are plural (as Dr. Seuss points out: one fish two
fed fish, blue fish). . _

_It takes two kinds of knowledge to correctly search for smcrular'; and
plurals of these forms. Spelling rules tell us that English words ending in -y
are pluralized by changing the -y to -i- and adding an -es. Morphological
lesv tell us that fish has a null plural, and that the plurai of goose is formed
cha_ngmg the vowel.

-The problem of recognizing that 'foxes breaks dc)wn into the two mor-
emes’fax and -es is called morphological parsing. -

’_"éy Concept#z Parsmg means takmg an 1nput and producmg some
“sort of structure for 1t B

'We w111 :use the term parsmg very broadly throughout thls book, including
kmds of structures that might be prodiiced; morphoioglcal syntactic,

gle search string could helpa web search engine find both woodchuck -

PARSING

58 Chapter 3. Morphology and Finite-State Transducers
semantic, pragmatic; in the form of a string, or a tree, or a network. In
the information retrieval domain, the similar (but not identical) problem of

stewming mapping from foxes to fox is called stemming. Morphological parsing o:'r

SURFACE

PROOUCTIVE

R form is - -es rather than -5 We'll need to encode these rules somewhere Fi
R 'nally, We certamly cannot list all the morphologlcal vanants of every word in

| (3 1) uygar1a§uIamad1klannuzdannu§ s1mzcasma

T verb can: be qmte ‘inefficient. Furthermore, productive suffixes even apply to
. mew WOIdS (so the new word fax automatically can be used in the -ing form:
s faxmg) Smce new words (pamcuiaﬂy acronyms. and pmper nouns) are cre-

: need' to be able to add the plural morpheme -5 to each of these Addmonaliy,

' followmg

| - The various pieces of this word (the morphemes) have these meamngs: -

stemming applies to many affixes other than plurals for example we migh_
need to take any English verb form ending in -ing (going, talking, congrat-
ulating) and parse 1t into its verbal stem plus the -ing morpheme. So given
the surface or input form going, we might want to produce the parsed form

phological knowledge that needs to be represented in different languages and
introduce the main component of an important algorithm for morpholog1ca1
pmsmg the finite-state transducer.

Why don’t we Just list all the plural forms of Enghsh nouns, and all the
-mg fOrms of Enghsh verbs in the dlcuonary? The major reason is that -ing
isa productlve suffix; by this we mean that it apphes to every verb. Simi-
laﬂy =S apphes to almost every noun. So the idea of listing every noun and

ated: every day, the class of 1nouns in Enghsh mCreases constantly, and we

plural form of these new.nouns depends on the: speﬂmg/pronunaatzon
of f'e smgular fOI‘I]l for example if the noun ends. in’ -z then the plmal

morphologlcally complex languages like. Turklsh Wthh has WOIdS like the

-}uygar | "_'+la§ whr +ama. +dzk '-._:"+lar Yimiz
’ '_', ilized. - +BEC +CAUS +NEGABLE +PPART +PL +PIPL

L Hdan +mz§ +szmz +ca?ma
o +ABL +PAST +2PL +AsIf .
i (behavmg) as if you are among those whom we could not
B 'Clwhze/cause to become 01v1hzed”

“#BEC - ° - is “become” in English
i _+CAUS ~..-,Is the causative voice marker on a verb
. -._-_;ngGA_BLE is “not able” in English.~. .

Survey of (Mostly) English Morphology

59

marks a past participle form

is 1st person pl possessive agreement

1s 2nd person pl

is the ablative (from/among) case marker

is a derivational marker that forms an adverb from a finite verb form

“fiot counting derivational suffixes; adding derivational suffixes allows
eotetically infinite number of words. This is true because, for exam-
1y verb can be “‘causativized” like the example above, and multiple
st'anéés of causativization can be embedded in a single word (You cause X
ause Y to ... do W). Not all Turkish words look like this; Oflazer finds
‘the average Turkish word has about three morphemes (a root plus two
es). Bven so; the fact that such words are possible means that it will be
fficult to store all possible Turkish words in advance.

Morphologlcal parsing is necessary for more than just 1nformat10n re-
eval i'We will need it in machine translation to realize that the French
-va and- aller should both translate to forms of the Enghsh verb go.
will also need’ it in: spell checking; as we will see; it is:morphological
: dge that wﬂl tell us that misclam and antiundoggingly are not words.
The next sections will summarize morphologlcal facts about English
eri introduce the ﬁmte-state transdiicer. .

SURVEY OF (MOSTLY) ENGLISH MORPHOLOGY

orphology is the study of the way words are built up from smaller meaning-
"é;ﬁﬁg*units, morphemes.. A morpheme is often defined as the minimal
meaning-bearing unit in alanguage. So for example the word fox consists of
ingle morpheme (the morpheme fox) while the word cats consists of two:
the morpheme caz and the morpheme -s.. o

- 'As this example suggests, it is otten use:ful to chstmgulsh two broad
eS" of morphemes:: stems and affixes. The exact details of the distinc-
tion ‘vary from language to language, but intuitively, the stem is the “main”
orpheme of the word, supplying the main meaning, while the affixes add
dditional” meanings of various kinds.

- Affixes are further divided into prefixes, suffixes, infixes, and circum-
ﬁxes, Preﬁxes precede the stem sufﬁxeq follow: the stem, circumfixes do

MORPHEMES

STEMS
AFFIXES

60

f**kmg-hatta n”, “abso blx*dy-lutely”) (McCawley, 1978)

Chapter 3. Morphology and Finite-State Transducers

both, and infixes are inserted inside the stem. For example, the word eats 1s
composed of a stem eat and the suffix -s. The word unbuckle is composed of
a stem buckle and the prefix un-. English doesn’t have any good examples:
of circumfixes, but many other languages do. In German, for example, the'
past participle of some verbs formed by adding ge- to the beginning of the
stem and -f to the end; so the past participle of the verb sagern (to say) is
gesagt (said). Infixes, in which a morpheme is inserted in the middle of a

‘word, occur very commonly for example in the Philipine language Tagalog.

For example the:affix wm, which marks the agent of an action, is infixed to
the Tagalog stem hingi “borrow” to produce humingi. There is one infix that'
occurs in'some dialects of English in which taboo morpheme like “f**king’-
or. “bl**dy” orothers like it are inserted i the middle: of other words (“Man-,

_Preﬁxes and sufﬁxes are often called concatenatwe morphology since

: word is: composed of a number: of morphemes concatenated together.: A
L number: of languages: have: extensive: non—concaten’ morphology,
'-,_:;._Wh1_ch morphemes are combmed in more complex /ays. The -Tagalog in-

concatenanve morphology is called templatn') rphology or- root-

: g-’and{)attem morphology This: is very comnio'r | m_'Ai’ablo ‘Hebrew; and
~ - other Semitic languages In Hebrew for example, a verb is constructed us-
i 'mg fWO Components: a root, con31stmg usually ‘of three consonants (CCC)

and carrying the basic meaning, and a template; which gives the ordering of
consonants and vowels and specifies more semantx' ”mformanon about the‘:
resultmg verb “such as the semantic vou:e (e g actlve, passive, Imddle) For=
example the Hebrew m-consonantal root bmd, meanmg “learn’ or ‘study’,’
can be combined with the active voice CaCaC template to: produce the word’
lamad,;: ‘he studled’ -or the intensive: CiCeC template to: produce the word

-~ limed; ‘he taught ‘or'the: mtensxve passwe template CuCaC to: produce the:
o word lumad ‘he was taught :

A word can ‘have more than one afﬁx For example the word rewrztesr_

S has fhe preﬁx re-, the stem:write, and the suffix. -s.- The word unbelievably
',j-'has a stem: (bel;eve) plus three afﬁxes (un-; -able, and -Iy).. While English.
- doesn t tend to- stack more than four ot: five afﬁxes, languages like Turk-

RS 1sh can have words ‘with nine’or ten afﬁxes as'we saw above. Languages:

i . V"-.: f in the lync to “Wouldn t It Be Loverly"” (Lemer, 1978, p. 60).

Section 3.1. Survey of (Mostly) English Morphology'

61

that tend to string affixes together like Turkish does are called agglutinative
anguages. . e

i There are two broad (and partially overlappmg) classes of ways to form
~words from morphemes: inflection and derivation. Inflection is the combi-
“nation of a word stem with a grammatical morpheme; usually resulting in a
- ‘word of the same class as the original stem, and usually filling some syntac-
/ tic function like agreement. For example, English has the inflectional mor-
* pheme -5 for marking the plural on nouns, and the inflectional morpheme
~-ed for marking the past tense on verbs. Derivation is the combination of a
:.;:_{"Word stem with a grammatical morpheme, usually resulting in a word of a
- different class, often with a meaning hard to predict exactly. For example the
verb computerize can take the denvanonal suffix -ation to produce the noun
cbmputertzatwn :

Inﬁectwnal Morphology

Engllsh has a relauvely sxmple 1nﬂcct10na1 system only nouns, verbs, and
ometimes adjéctives can be inflected, and the number of possible inflec-
ional affixes is quite small.

g Engllsh nouns have only two lcmds of 1nﬂect1on an afﬁx that marks
‘lural and an afﬁx that marks possesswe For example, many (but not all)
vnghsh nouns can elther appear in the bare stem or singular form, or take a
plural suffix, Here are examples of the regular plural suffix -5, the alternative
: spelhng -es, and irregular plurals '

| |Regular Nouns || Im-,gular Nouns [:
" ‘[Singular[cat |thrush ~ [Jmousefox |
Plural _]cats | thrushes mice [oxen |

o Whlle the regular plural is spellcd -s after most nouns, it is spelled -es
fter words ending in -s (ibis/ibises) , -z, (waltz/waltzes) -sh, (thrush/thrushes)
chy’ (finch/finches) and sometimes -x (box/boxes). Nouns ending in -y pre-
eded by a consonant change the -y to -i (butterfly/butterflies). . -

. The possessive suffix is realized by apostrophe + -5 for regular singular
' s (Hama’sy and plural nouns not ending in--s (children sy and often by a
one apostrophe after regular plural nouns (Jamas’) and some names ending
n-s or -z (Euripides’ comedies).

zA English verbal 1nﬂect10n is more complicated than nominal inflection.

Alrst’ English: has three kinds of verbs _main verbs, (eat, sleep, impeachy),

“odal verbs (can; will, should) and pnmary ‘verbs (be, have, do) (using

INFLECTION
DERIVATION

PLURAL
SINGULAR

62 Chapter 3. Morphology and Finite-State Transducers

the terms of Quirk et al., 1985). In this chapter we will mostly be concerned
with the main and primary verbs, because it is these that have inflectional
REGULAR endings. Of these verbs a large class are regular, that is to say all verbs of .
this class have the same endings marking the same functions. These regular
verbs (e.g. walk, or inspect), have four morphological forms, as follow: = -

o FMorphologlcal Form Classes|| Regularly Inflected Verbs

o "j;"'stem o walk |merge |ty |map |
sform TR walks |merges |tries |maps
o |-ing partmple .| walking | mérging | trying | mapping |
‘Past form or’ -ed partrcxple 'Walkedf "therg'ed"{:;_,’i‘riéd[" 'r’ri'a'pped' 1

o These Verbs are called regular because Just by knowmg the stem we
B can prechct the other forms, by adding one of three pred.lctable endmcrs and
. ﬁ'makmg sonie regular spelling changes (and as we will see in Chapter 4, reg-
S ular pronunmatlon changes): These regular verbs and forms are ‘significant in :

' the mor phology of English first because they cover a maJonty of the verbs;: -

d second because the regular class is productive. As discussed earlier, & -

- _pro ctive class is one that automatically includes any'r ew words that ente;

B . ﬂ:'the Ianguage For example the recently-created verb fax (My mom faxed v me
" the note from cousin Everez‘t), takes the regular endmgs -ed ing; -es. (Note
that the -s form is spelled faxes rather than faxs, we wﬂ{ discuss spelling

o rulesbelow) L , S SR RER _

o PRESUAR - The xrregular verbs are; those that have some more"'or less 1d1osyn-
. cratrc forms of 1nﬂect10n Ixregular Verbs in Enghsh often have ﬁve differerit
- forms, but can have as many- as eight (e: g., the verb be) or as few as three (e. g'
“cut Ot klt) While constituting a much smaller class of verbs (Quirk et al.
A 1985) estimate there are only about 250 nregular verbs, not counting auxil-
o ianes), this class lnciudes most of the very frequent verbs of the language.
- The table below shows some sample irregular forms. Note that an irregular
" PRETERITE ;,vverb{cf:'ar‘lf-inﬁet:t{ in"v.ﬂle‘past,form (also;vcalledj the pr'ete’rite) by changing its
- ,.Vowel (eaf/ate) or its vowel and some consonants (carck/caugkt), or with no
L ivendmgatall(cur/cut) ST T

.2;,:'V'fn'g}eﬁeral;'_f"‘the Thore frequent a word form, the more likely it is to have idiosyncratic
. properties; this'is due to a fact about language change; very frequent words presérve thei
-« form even if ‘other words around them are changing so as to become more regular. +.0

Section3.1. Survey of (Mostly) English Morphology

Morphological Form Ciasses Irregularly Inflected Verbs
stem eat |catch .. |cut

-s form eats |catches |cuts

-ing participle eating | catching | cutting
Past form ate |caught |cut

-ed participle eaten |caught |cut

... The way these forms are used in a sentence will be discussed in Chap-
ters 812 but is worth a brief mention here. The -s form is used in the “habit-
ual present” form to distinguish the third-person singular ending (She jogs
evéry Tuesday) from the other choices of person and number (Iyou/we/they
jog every Tuesday). The stem form is used in the infinitive form, and also
after certain other verbs (I'd rather walk home, I want fo walk home). The
-ing participle is used when the verb is treated as a noun; this particular
nd of nominal use of a verb is called a gerund use: Fishing is fine if you
lzve" near water. The -ed participle is used in the perfect construction (He’s
caten lunch already) or the passive construction (The verdict was overturned
ye&te'rday.). e

-+ In addition to notmg Wthh sufﬁxes can be attached to Whlch stems,

we nced to capture the fact that a number of regular spelling changes occur
at these morpheme boundaries. For example, a single consonant letter is
doubled before adding the -ing and -ed suffixes (beg/begging/begged). If the
final letter is “c”, the doubling is spelled “ck” (picnic/picnicking/picnicked).

If the base ends in a silent -e, it is deleted before adding -ing and -ed (merge/-
mergmg/merged) Just as for nouns, the -5 ending is spelled -es after verb
stems ending in -s (toss/z‘osses) , -2, (waltz/waltzes) -sh, (wash/washes) -ch,

(Carch/catckes) and sometimes -x- (tax/mxes) Also like nouns, verbs ending
n -y preceded by a consonant change the -y to -i (try/tries),

The English’ verbal system is much stmpler than for example the Eu-
ropean Spanish system, which has 'a‘s"many as fifty distinct verb forms for
each regular verb. Figure 3. 1 shows justa few of the examples for the verb
amar, ‘to love Other languages can have even more forms than this Spanish
'f'exampie SR

Derlvatlonal Morphology

Whﬂe Enghsh inflection is: relatlvely snnple compared to other langu'tges
erivation in English is quite complex.: Recall that derivation:is the combi-

GERUND
PERFECT

65

Section 3.2. Finite-State Morphological Parsing.

jmcr suffixes. For example sincerity has a subtle dlfference in meaning from
fszncereness

.2 FINITE-STATE MORPHOLOGICAL PARSING

’s now proceed to the problem of parsing English morphology. Consider
imple example: parsing just the productive nominal plural (-5) and the
rbal progressive (-ing). Our goal will be to take input forms like those in
.;_thé ﬁrst column below and produce output forms like those in the second

Input |Morphological Parsed Output
[cats cat +N +PL
Cat - fcat +N +8G
Cities |city +N +PL
geese |goose +N +PL
goose |(goose +N +5G) or (goose +V)
‘gooses [goose +V +3SG
merging {merge +V +PRES-PART
‘éé‘ught‘ (catch +V +PAST-PART) or {catch +V. +PAST)

~The second column contains the stem of each word as well as assorted
smorphoiogmal features. These features specify additional information about
e stem. For example the feature +N means that the word is a noun; +SG
eans it is singular, +PL that it is plural. We will discuss features in Chap-
' 11; for now, consider +SG to be a primitive unit that means “singular’
oté t_hat some of the input forms (hke caught or goose) wﬂl be amblguous
weer different morphologlcal parses.: :

“In order to bulld a morpholog1ca1 parser we'll need at least the
'Ilowmg o - :

. lexicon: the hst of stems and afﬁxes together w1th basxc information
* about them (whether a stem is-a Noun stem or a Verb stem, etc.).
morphotactlcs. the model of morpheme ordering that explains which
classes of morphemes can follow other classes of morphemes inside a
word. For example, the rule that the Engltsh plural morpheme follows
~ the noun rather than preceding it o

: *orthographlc rules: these spellmg rules are used to model the changes
- that oceur in a word; usually ' when two morphemes combine (e.g., the

~

FEATURES

LEXICON

MORPHCTACTICS

66

Chapter 3. Morphology and Finite-State Transducers

sons we discussed above, to list every word in the language, computational -

of the most common is the finite-state automaton. A very simple finite-state
- model for English nominal inflection might look like Figure 3.2.

~ (reg-noun) that take the regular -5 plural (e.g., car, dog, fox, aardvark).

‘the fact that the plural of words like fox have an inserted e: foxes. The
lexicon also includes irregular-noun forms that don’t take -s, both singular

y — ie spelling rule discussed above that changes city + -5 to cities
rather than citys). '

The next part of this section will discuss how to represent a simple ver-
sion of the lexicon just for the sub-problem of morphological recognition,
including how to use FSAs to model morphotactic knowledge. We will then
introduce the finite-state transducer (FST) as a way of modeling morpholog-
ical features in the lexicon, and addressing morphological parsing. Finally, =
we show how to use FSTs to model orthographic rules. :

The Lexicon and Morphotactics

A lbexicoh"is a fepo‘sitory’ for words. The sunplest po}s‘si'bvle’flexicon would
consist of an explicit list of every word of the language (every word, ie.,
including abbreviations (“AAA”) and proper names (‘Jane” or “Beijing”) as
follows . ,

Ca
o AAA

Aachen

- aardvark -
- aardwolf
~aba -

~ abaca
aback

Smce it wﬂl often be inconvenient or Impossﬂole for the various rea
lexicons are usually structured with a list of each of_ the stems and affixes of
the language together with a representation of the morphotactics that tells us
how they can fit together. There are many ways to model morphotactics; one

- The FSA in Figure 3.2 assumes that the lexicon includes regular nouns

These are: the vast majority of English nouns since for now we will ignore

irreg-sg-noun (goose, mouse) and plural irreg-pl-noun (geese, mice).

Finite-State Morphological Parsing

67

reg-notin plural (-s) -

irreg—-pl-noun

irreg—sg-noun

Ei*gfur‘e 3.2

A finite-state automaton fo‘r'En'glish nominal inflection.

mice 7 | mouse

_irreg-pl-noun | irreg-sg-noun | = plural |
geese goose -
sheep - sheep

irreg-verb-stem

irreg-past-verb-form '

preterité (~ed).

Fl'g'l:ife 33

R A ﬁnite—sté_fé ﬁﬁfﬁmatoﬁvfppsEthish verbal inflection

68 Chapter 3. Morphology and Finite-State Transducers
reg-verb- | irreg-verb- | irreg-past- | past| past-part| pres-part
stem stem - | verb o
walk cut caught -ed | -ed -ing .
fry speak ate
talk sing eaten
|impeach | sang
' spoken

~are based on the more complex context—free grammars of Chapter 9 (Sproa
"1993 Orgun, 1995). '

' "- reqmre we present a small part of the morphotacmcs of English adjective
~taken from Antworth (1990). Antworth offers the followmg data on Englis

" adj ecuves

oo : " bxg, ‘o1gger blggest
- ool cooler, coolest, coolly

real unreal really

_ 01‘ ly) ThlS r_mght suggest the the FSA in Flgure 3 4..

. __;_Antworth s.z'ffoposal #1

Enghsh denvanonal morphology is significantly more oomplex than
English inflectional morphology, and so automata for modeling English der
vation tend to be guite complex. Some models of English derivation, in fac

Asa prehrmnary example though of the kmd of analyms 1t Would.

" 1ed, redder, reddest

. ‘Clear, clearer, clearest, clearly, unclear, unclearly
heppy, happier, happiest, happily. |
~ unhappy, unhappier, unhappiest, unhapplly

B An mltlal vhypothesm mlght be that ad}ectlves can have an optlonal pre~
ﬁx (un.),' an obhcraiory root (big, cool ‘etc) and an optlonal sufﬁx (-er; -es’

ser -est
ad;—root

Sectmn 3.2 Finite-State Morphological Parsing -

69

; “Alas, while this FSA will recognize all the adjectives in the table above,
it:will also recognize ungrammatical forms like unbig, redly, and realest.
We need to set up classes of roots and specify which can occur with which
",;;‘sufﬁ){es. So adj-root; would include adjectives that can occur with un- and
Iy (¢lear, happy, and real) while adj-root, will include adjectives that can’t
‘cool, and red). Antworth (1990) presents Figure 3.5 as a partial solution
‘fo these problems.

Flgure 35 An FSA for a fravmcnt of Enghsh adjective morphology
Antworth] Proposal #2. .

.__This glVCb an xdea of the complexﬁy to be expected from English
"fdenvatlon For a farther example, we give in Figure 3.6 another fragment
f ant FSA for English nominal and verbal derivational morphology, based
‘Sproat (1993), Bauer (1983), and Porter (1980). This FSA models a
_number of derivational facts, such as the well known generalization that any
: :v""b endmg in -ize can be followed by the nominalizing suffix -ation (Bauer,
1983; Sproat 1993)) Thus since there is a word fossilize, we can predict the
td fossilization by following states gg, gy, and g». Similarly, adjectives
nding in -al or -able at g5 (equal, formal, realizable) can take the suffix -ity,
V'(Sﬁiétimes the suffix -ness to state gg (naturalness, casualness). We leave
an exercise for the reader (Exercise 3.2) to discover some of the indi-
g éxceptlons to many of these constramts and also to gwe examples of
ome of the various noun and verb classes. - e

'We can now' use these FSAs to solve the problem of morphologlcal
_recognition; that is, of determining whether an input string of letters makes
“up a legitimate English word or not. We do this by taking the morphotactic
'SAs, and plugging in each “sub- lexicon” into the FSA. That is; we expand
edch arc (e g., the reg-noun-stem arc): with all the-morphemes that make up
setof reg-noun:stem. The resultmo FSA can then be defined at the level
f the individual Ietter ' S

70

Chapter 3. Morphology and Finite-State Transducer

the Nominal Inflection FSA of Figure 3.2 with sample regular and irregula

noun; -ize/V ~ation/N

Figure 3.6 An FSA for another fragment of English derivational morphol-
. ogy. - .

\ __"Fig’uréS.? ~ Compiled FSA for a few English nouns with their inflection.
‘Note that this automaton will incorrectly accept the input foxs.” We will see
beginning on page 76 how to correctly deal with the inserted e in foxes. '

- Figure 3.7 shows the noun-recognition FSA produced by expaﬁdingf
nouns for each class. We can use Figure 3.7 to recognize strings like aard
varks by simply starting at the initial state, and comparing the input lette

71

8 'é'%;tion 3.2. Finite-State Morphological Parsing .-~ =

‘letter with each word on each outgoing arc, and: 50 'c)h',- just as we saw in
apter 2.

qrij_hologic_al Parsing with Finite;s'taté Transducers

A__EN'ow' that we’ve seen how to use FSAs to represent the lexicon and inciden-
tally do morphological recognition, let’s move on to morphological parsing.
r'example given the input cats, we’d like to output cat +N +PL, telling
that cat is a plural noun.. We will do this via a version of two-level mor-
Ogy, first proposed by Koskenmenu (1983) Two-level morphology rep-
‘tesents a word as a correspondence between a léxical level, which represents
imple concatenation of morphemes making up a word, and the surface
el, which represents the actual spelling of the final word, Morphological
sing is implemented by building mapping rules that map letter sequences
like cafs on the surface level into morpheme and features sequences like
4N +DT ot the lexical level. Figure 3.8 shows these two levels for the
W(’)’fd.__cats.._ Note that the lexical level has the stem for a word, followed_ by
- morphological information +N +PIL which tells us that cats is a plural

Levical § S]a]t [+NRPL | [5

Smfaceéca [t]s RN

Figure 3.8 - Example of the lexical and surface tapes. . . .

‘The automaton that we use for performing the mapping between these
two levels is the finite-state transducer or FST. A transducer maps between
ne "set of symbols and another; a finite-state transducer does this via a fi-
ite automaton. Thus we usually visualize an FST as a two-tape automaton
hlch recognizes or generates: pairs-of strings.. The: FST thus:has a more
eral function than-an FSA; where an FSA defines a formal language by
pﬁhiﬁg'a- set.of strings, an FST defines a relation between sets of strings.
s relates to another view of an FST; as a machine that reads one. string
and generates another Heie’s a: summary of thlS four-fold way of thmlcmg
'uttransducers o RN s L . L

TWO-LEVEL

SURFACE

F8T

ecfﬁ_ion 3.2. Finite-State Morphological Parsing

73

are more likely to have such closure properties). Besides union, FSTs have
' "addmonal closure properties that turn out to be extremely useful:

inversion: The inversion of a transducer 7 (7!} simply switches the
input and output labels. Thus if 7 maps from the input alphabet / to
:'fhé output alphabet O, T~! maps from O to 1.
composition: If 77 is a transducer from /; to O and T a transducer
from I to Oy, then T3 o T maps from [; to O,.

Inversmn is useful because it makes it easy to convert a FST-as-parser
nto an FST-as-generator. Composition is useful because it allows us to take
two .an'sduce:rs that run in series and replace them with one more complex
[‘ucel Composition works as in algebra; applymg TyoT3 toan input
sequence S is identical to applying T} to S and then T to the result; thus
5(S) = T5(T1(S)). We will see examples of composition below.
We mentioned that for two-level morphology it’s convenient to view
an'BS as having two tapes. The upper or lexical tape, is composed from
aracters from the left side of the a: b pa1rs the lower or surface tape,
s omposed of characters from the right side of the a : b pairs. Thus each
mbol a:: = bin the transducer a}phabet Z expresses how the symbol a from
’pc is mapped to the symbol & on the another tape. For example a : €
- ‘means that an g on the upper tape will correspond to nothing on the lower
" fape '_iust as for an FSA, we can write regular expressions in the complex
alp habet . Since it’s most common for symbols to map to themselves, in
tWo- :level morphology we call pairs like a : ¢ default pairs, and just refer to
by the single letter a.
We are now ready to build an FST morphological parser out of our
lier morphotactic FSAs and lexica by adding an extra “lexical” tape and
ropriate morphological fedtures. Figure 3.9 shows an augmentation
of Figure 3.2 with the nominal morphological features (+SG and +PL) that
~correspond to each morpheme. - Note that these features map: to the empty
: of the word/morpheme boundary symbol # since there is no qegment
rrespondmg to them on the output tape. - e
order to use Figure 3.9 as a morphologlcal noun parser; it needs to be
augmentéd with all the individual regular and irregular noun stems, replacing
abels regular-noun-stem etc. In order to do this we need to update the
ni»for this:transducer, so that irregular plurals like geese will patse into
correct stem goose +N +PL. We do this by allowing. the lexicon to
ave two Ievels Since surface: geese maps to undcrlymg goose, the
new x1cal entry will be “girg oie o:ersrs e:e’: Regular forms are

INVERSION

COMPOSITION

LEXICAL TAPE

DEFAULT
PAIRS

75

‘é_ction 3.2. Finite-State Morphological Parsing

cascade of transducers with many different levels of inputs and outputs and
converting them into a single “two-level” transducer with one input tape and
one output tape. The algorithm for composition bears some resemblance to
é"‘algoritlnn for determinization of FSAs from page 48; given two automata
and T, with state sets Q; and O, and transition functions 8, and &, we
create a new possible state (x,y) for every pair of states x € Q1 and y € Q).
Then the new automaton has the transition function:

((xa,)’a)) (xfnyb) if
Ae st d{xgize) =x
and 0, (ya,c 0} = | (3.4)

The resulting composed automaton, T[ex = Tnum o Tstems, 1S shown in
Figure 3.11 (compare this with the FSA lexicon in Figure 3.7 on page 70).3
*NO’te that the final automaton still has two levels separated by the :. Because
_lon was reserved for these levelg we had to use the | symbol i in Tstems
Figure 3.10 to separate the upper and lower tapes.

- reg-poun-stem aardvark

- reg«-noun'-—stém; tdog. . .7

T reg-noun—stem | cat.

~Teg-noun-stem ! fox

irreg—sg-noun—form I goose

q F— irreg—sg-noun—form: | sheep ’
“—._irreg-sg-nounform [mouse

irreg-pl-noun—form | golemese

. irreg-pl-nouniform:} sheép

__irreg=pi-noun—form [moed uesice

i'giire 3.10 The transducer Tyfems, which maps roots to their root-class.

vnTihis transducer will map plural nouns into the stem plus the morpho-
al marker +PL, and singular nouns into the stem plus the morpheme
Thus a surface cats Wﬂl map tocat +N +PL as follows '

:anatt+NE +PL S%#

Thatis c maps to itself, as do 2 and £, while the morphologlcal feature
ecall that thls means noun maps 0 nothmg (e), and the feature +PL

ote_ that for the purposes’ of clear expoemon, Flgure 3.11 has not bcen mmnmzed in the

76

Chapter 3. Morphology and Finite-State Transduceful'_

WORPHEME -

BOUNDARY.

" WORD
BOUNDARY "

SPELLING
RULES .

"(:m'eauing “plural”) maps to *s. The 'sy"n.lb'oi “indicates 2 morpheme bound
ary, while the symbol # indicates a word boundary, Figure 3.12 refers t
. .'tapes Wlth these morpheme boundary markers as mtermedlate tapes; th

i next section wﬂl <h0W how the boundary marker is removed :

o }Flgure 3 A"ﬂe'sﬁed'-out English nominal inflection FST Tjgy = Tnum .
Y:vtems j' o B T R T R

o

Leucaz { Tf o] x [+«N[+P]

FARNEN

- Orthographlc Rules and Flmte-State Transducers

| 'The method descnbed m the prevmus sec‘uon wﬂi successfully recogmz
‘work for cases where there is a spelling change; it would incorrectly reje

~ fact that English often requires ‘spelling changes at morpheme boundaries b
introducmg spelling rules (or orthographlc rules) ‘This section introduc

- a nuriber of notations for writing such rules and’ shows h0w to 1mp]em

the rules as fransducers. Some of these spellmg rules:

| Figure32 Ancrampleofthe exicaland intermedist apes.

words like aardvarks and mzce ‘But just concatenanng the morphemes won

an mput like foxes and accept an inpuit like foxs. We need to deal with th

.ecﬁon 3.2. Finite-State Morphological Parsing - .

77

[Name | Description of Rule _ - _. _ | Example |
‘Consonant ' 1-letter consonant doubled before -ing/-ed | beg/begging |

| E deletion Silent e dropped before -ing and -ed. . = | make/making.

E insertion e added after -s,-z,-x,-ch, -sh before -s watch/watches
Y replacement | -y changes to -ie before -s, -i before -ed |tryftries

K insertion verbs ending with vowel + -c add -k panic/panicked

. We can think of these spelling changes as tak}ng as mput a simple
oncatenation of morphemes (the “intermediate output” of the lexical trans-
ucer in Figure 3.11) and producing as output a slightly-modified, (correcily-
pelled) concatenation of morphemes. Figure 3.13 shows the three levels we
are talking about: lexical, intermediate, and surface. So for example we
suld write an E-insertion rule that performs the mapping from the interme-
dlate to surface levels shown in Figure 3. 13 Such a rule mlght say some-

Lexical 5 | f [0] X N [+PL 3
: | Intermediate é .f O X[A }S"' "V#. f

Figure 313 An example of the lexical, intermediate, and surface tapes.
Between each pair of tapes is a two-level transducer; the lexical transducer of
Flgure 3.11 between the lexical and intermediate levels, and the E-insertion
spelling rule between the intermediate and surface levels. The E-insertion
= gpelling rule inserts an e on the surface tape when the intermediate tape has a
:morpheme boundary " followed by the morpheme -s.

thing like “insert an e on the surface tape just when the lexical tape' has a
_'orpheme ending in x (or z, etc) and the next morpheme is =57 Here s a
'»"ahzahon of the rule ' S

(3.5)

‘This is the rule: notation: of Chomsky and Halle (1968); a tule of the
ca — bleiod means “rewrite a.as b when it occurs. between. ¢ and

78

Chapter 3. Morphology and Finite-State Transducers

o the constramts necessary for that rule allowmg any other strmg of symbols
o pass through unchanged Thls rule is used to- msure that we can only
. see the e pair if we are in the proper context. So state: g, which models

" having seen only default pairs unrelated to the rule, is an accepting state,

~ - as is gy, which models havmg seen a z, 5, Of X. g2 models having seen the

' ‘mmpheme boundary after the : z, 5, or x, and again is an acceptmg state. State
g5 models havmg just’ seen the E—msertzon itis not an accepting state, since
the insertion’ is only allowed 1f itis followed by the s morpheme and then the

: pafcs of words that don’t play a role in the E-insertion rule other means

tWl’nch is context—dependent ina transducer—by transducer way. So for exam
S ?ple when leavmg state qo, we go to g; on the z; s; or x symbols, rather than

d”. Since the symbol € means an empty transition, replacing it means in-
serting something. The symbol " indicates a morpheme boundary. These
boundaries are deleted by including the symbol “:& in the default pairs for -
the transducer; thus morpheme boundary markers are deleted on the surface
level by default. (Recall that the colon is used to separate symbols on the in-
termediate and surface forms). The # symbol is a special symbol that marks
a word boundary. Thus (3.5) means “insert an e after a morpheme-final x,
s, or z, and before the morpheme s”. Figure 3.14 shows an automaton that
corresponds to this rule.

Flgﬂre 3, 14 ‘The transducer for the E—msertmn rule of (3 5) extended from
a smular transducer in Antworth (1990) Lo

The 1dea m bmldmg a transducer for a parﬂcular rule i is to express only

end—of-word symbol #..
The other symbol is used in Flgure 3 14 to safely pass throuch a

“any feasible pair that is not in this transducer ; it is thus a version of @: @

‘Section 3.3. Combining FST Lexicon and Rules .

79

following the other arc and staying in go. The semantics of other depends
what symbols are on other arcs; since # is mentioped on some arcs, it
;‘ (by definition) not included in other, and thus, for example, is exphculy
ntioned on the arc from g, to gq.
- A transducer needs to correctly reject a string that applies the rule when
houldn t. One possible bad string would have the correct environment for
‘E-insertion, but have no insertion. State gs is used to insure that the e
Iways inserted whenever the environment is appropriate; the transducer
1€ éhés gs only when it has seen an s after an appropriate morpheme bound-
ry. If the machine is in state g5 and the next symbol is #, the machine rejects
tring (because there is no legal transition on # from g¢s). Figure 3.15
ws the transition table for the rule which makes the illegal transitions

jfcphmt w1th the “~symbol.
State\Input o s:s | x:x zZ:Z e €:e #! other
1 -1 1 -0 - 0 0
1 1 1 2 - 0 0
S S T 1 0.3 ol .0
4 - - - - - -
S o ; - - 0 -
1 11 R 20 NUUN SURUN SR ¢
'-.,Flgm'e 3 15 The state transmon table for E-insertion rule of Figure 3.14,
X ended from a sumlar transducer in Antworth (1990).

The next section will show a trace of this E-insertion transducer run-
ngon'asample input string. ...

COMBINING FST LEXICON AND RULES

are: now ready to combine our lexicon and rule transducers for parsing
cenerating.: Figure 3.16 shows the architecture of a two-level morphol-
ogy system; whether used for parsing or generating.: The lexicon transducer
maps between the lexical level, with its stems and morphological features,

and an’ intermediate level that represents a simple concatenation of mor-
~phiemes: Then a host of transducers, each representing a single spelling rule
: ristraint, all run in parallel so as to map between this intermediate level and
-t Su1face level. Putting all the spelling rules in parallel is a design choice;

80

- from fox’s to foxes.::

- the sutface tape. For example, for generation, imagine leaving the Interme

 states that it accepted the Lexical and Intermediate tapes in our earlier exam

Chapter 3. Morphology and Finite-State Transducer

we could also have chosen to run all the spelling rules in series (as a long
cascade), if we slightly changed each rule. g

| - Lexical % (£ {0 X..l +N'*".-;-P-L'%’v----- f
R S
,,,,,,, {LEXICON-FST]
e ey _“““‘fy """""" I
S l""'Ifzt'e‘rfr'zédicz’fé’ i flolx|Als | | s
A S "“"'"*'+"."T"T?.",".';'-T'-':fl-=. :
TFST 7
o it TR OO0 s ot

- Figure 3.16. Génerating or parsing with FST lexiéonvaﬁd' fules

from one transducer acts as the input to- another transducer cascadés ¢
be of arbitrary depth, and each level might be built ‘out of many individu:
transducers. . The ‘cascade in Figure 3.16 has two. transducers in series: th
transdiicer mappmg from the lexical to the intérmediate levels, and the co
lection of parallel: transducers mapping from the 1ntermed1ate to the surfac
level. The cascade can be run top-down to generate a string; or bottom-u
to.parse it; Figure 3 17 shows a trace of the system acceptmg the mappmg

- The- power of ﬁmte state transducers is that the exact same cascad
wrth the same state: sequences. is: used when the machine is generating. th
surface tape from the lexical tape, or when it is parsing the lexical tape. fro;

diate and Surface tapes blank.- Now if we run the lexicon transducer, give
fox. +N:+PL, it will produce fox”s# on the Intermediate tape via the sam

ple. If we then allow all possible: orthographlc transducers to run in paralle
we will produce the same surface tape. R TR TSP SR

81

Section33. Combining FST Lexicon and Rules

Lexical { ' f | Oo| X | +N|+PL| f
3 Y 3
T QOQOO®
if??é'rmediate { ‘f‘O XA s [#| é
Te—msert [E)P D &Dﬁ} > Pp @
 Surface $ f lo[x|e]s s
Flgure% 17 Accepting foxes: The lexicon transducer Ty, from Figure 3.11
cascaded with the E-insertion transducer in Figure 3.14.

Parsing can be slightly more complicated than generation, because of
problem of amblgmty For example, foxes can also be a verb (albeit a
Tare’ 'ne meaning “to baffle or confuse™), and hence the lexical parse for
foxe ucould be fox +V +38G aswell as fox +N +PL. How are we to
know: which’ one is the | proper parse? In fact, for ambxguous cases of this sort,
ansducer is not capable of deciding. Disambiguating will require some
e‘xt‘emai evidence such as the surrounding words. Thus foxes is likely to be
"un'm the sequence I saw two foxes yesterday, but a verb in the sequence
”mckster foxes me every time!. We will discuss such disambiguation
e }:-algorlthm's in Chapters 8 and 17. Barring such external evidence, the best our
i anéducer can do is just enumerate the possible choices; so we can transduce
"fbx s# into both fox +V +3SGand fox +N +PL.

There is a kind of ambiguity that we need to handle: local ambiguity
that c oébhrs during the process of parsing. For example, imagine parsing the
input verb assess. After seeing ass, our E-insertion transducer may propose
that_the ¢ that follows is inserted by the spelling rule (for example, as far as
~the: transducer is concerned, we might have been parsing the word asses). It
1 ot' until we don’t see the # after asses, but rather run into another s, that
we realize we have gone down an incorrect path. L

Beécause of this non-determinism, FST-parsing algorlthms need to in-
orate- some sort of search algorithm.. Exercise 3.8 asks the reader to
dlfy the- algorithm for non-deterministic FSA: recognition in Figure 2.21
~in'Chapter 2 to do FST parsing.

AMBIGUITY

OISAMBIGUAT-
ING

82

Chapter 3. Morphology and Finite-State Transdu_cersv;

INTERSECTION

I necessary in practice to write an PST by hand. ‘Kaplan:and Kay (1994) giv
- the mathematics: that define the mapping from: tules to two-level relation
. -and: Antworth (1990) gives' details of the. algonthms for rule: compilatio
o Mohn (1997) glves a"igonthms for transducer mmumzauon and detennmlza

R '-.__'_-}'j_ngl'iré 318 _:L}"Inferéec'_t'_idn and composition of transducers.

. ."'Whﬂe bmldmg a transducer from a 1ex1con plus rules is- the standard al
L gonthm for. morpholog1cal parsing, there are: simpler algorithms that don
' require the large on-line lexicon deranded by this algorithm. These are use

: :especmlly in ‘nformation Retrieval (IR) tasks (Chapter 17) in which a uise
" needs some information; and is looking for relevant documents (perhaps on
. the web, perhaps in a digital library database). She gives the system a quef _
: .'-'_f_-w1th some: Important characteristics: of documents she: desires, and the IR
SRR system retneves What 1t thinks are the relevant documents One commo

Running a cascade, particularly one with many levels, can be unwieldy.
Luckily, we’ve already seen how to compose a cascade of transducers in se-
ries into a single more complex transducer. Transducers in parallel can be
combined by automaton intersection. The automaton intersection algo-
rithm just takes the Cartesian product of the states, i.e., for each state g; in
machine 1 and state ¢; in machine 2, we create a new state g;;. Then for
any input symbol g, if machine 1 would transition to state g, and machine 2,
would transition to state Gm, W€ transition to state Grrii- ;

Figure 3.18 sketches. how this mtersectwn (/\) and composmon (o) pro-
cess nrught be eamed out;-

L‘EXICON;-FS_' L
U | LEXICON-FST|

| compiose . O

" FST,

Smce there are'a number of rule-—>FST compxlers 1t is almost neve

33

- Section 3.4. Lexicon-Free FSTs: The Porter Ste’rii_rhéf‘ |

' type of query is Boolean combinations of relevant keywords or phrases, e.g.
. (marsupial OR kangaroo OR koala). The system then returns documents that
have these words in them. Since a document with the word marsupials might
not match the keyword marsupial, some IR syqtems ﬁrst run a stemmer on
the keywords and on the words in the document. Since morpholog1cal pars-
- ir'lo‘ in IR is only used to help form equivalence classes; the details of the
'éufﬁxes are irrelevant; what matters is determining that two words have the
same stem.

. One of the most widely used such stemmmg al gonthms is the simple
and efficient Porter (1980) algorithm, which is based on a series of simple
cascaded rewrite rules. Since cascaded rewrite rules are just the sort of thing
that could be easily 1mplemented as an FST, we think of the Porter algorithm
és' a lexicon-free FST stemmer (this idea will be developed further in the
exermses (Exercise 3.7). The algorithm contains rules like:

(3 6) ATIONAL —+ ATE (e g relatmnal - relate)
(3 7) ING s g zf stem contains Vowel (e g., motoring — motor)

The algonthm is presented in detail in Appendix B.. . o

- Do stemmers really improve the performance of information retrieval
ehgines?. One problem is that stemmers are not perfect. For example Krovetz
(1993) summarizes the following kinds of errors of omission and of commis-
sion in the Porter algorithm:

i Errors of Commission = = Errors of Omission

s t)rganization organ . . }European Europe

- doing . . doe . . . apalysis a_nalyzes

o 'generahzatlon ‘generic . .. matrices matrix |
numencal ~ numerous ~ noise noisy
policy =~ police =~ sparse .- sparsity
university universe explain explanation
neglxglble negh'gent urgency urgent

the Porter stemmer acmally improved IR performance. Overall he found
ome improvement, especially with smaller documents (the larger the docu-
ment, the higher the chance the keyword will occur in the exact form used
in'the query). Since any zmprovement is qu1te small IR engmes often don t
:356 stemming.. . AR : oo C

= Krovetz also glves the results of a number of experiments testing whether

KEYWORDS

STEMMING

84 Chapter 3. Morphology and Finite-State T ransducérs;-.

3.5 HUMAN MORPHOLOGICAL PROCESSING

In this section we look at psychological studies to learn how multi- morphemlc

words are represented in the minds of speakers of Enghsh For example, cor

sider the word walk and its inflected forms walks, and walked. Are all three

in the human lexicon? Or merely walk plus as well as -ed and -s? Ho

about the word happy and its derived forms happily and happiness? We ca

imagine two ends of a theoretical spectrum of representations. The full Iis

ruLusTna ing hypothesis proposes that all words of a language are listed in the ment:
lexicon without any internal morphological structure. On this view, mo
phologlcal structure is simply an epiphenomenon, and walk, walks, walké:

happy, and happzly are all separately listed in the lexicon. This hypothesi

is certainly untenable for morphologically complex languages like Turkis
(Hankamer (1989) éstimates Turkish as 200 billion possible words). The-
REbNbency . minimum redundancy hypothesis suggests that only the constituent mo
B ”phemes are represented in the lexicon, and when processing walks, (Whethe

- for reading, listening, or talking) we must access both morphemes (walk an

o ;'}s) and combine them., :

o Most modern expenmental eV1dence suggests that neither of these '1
S completely true. Rather, some kinds of morphological relauonshlps are men

 __ : o tally represe_nted (particularly inflection and certain kinds of derivation), bl_i

_ others are not; with those words being fully listed: Stanners et al. (1979), for
‘example, found that derived forms (happiness, happily) are stored separately

~ from their stem (happy), but that regularly inflected forms (pouring) are not

- distinct in the Iex1con from theLr stems (poir). They did this by using a rep

etition’ pnmmg experlment ‘In short, repetition priming takes advantage 0

-~ the fact that a word is ‘recognized: faster if it has been seen before (if it is
PRIMED primed). They found: that lifting primed lift, and burned primed burn, but
 for example selective didn’t pnme select Flgure 3 19 sketches one poss1b1

| 'representatmn of thelr ﬁndmg ' ' : :

(select) (selective)

Flgure 3. 19 Stanners et al (1979) resu]t Dliferent representatlons of 1:
ﬂectlon and denvatmn : : S :

'.éCtion 3.5. Humah;M‘d‘PhOIOgical Processing

85

- In a more recent study, Marslen-Wilson et al. (1994) found that spoken
idoﬁved words can prime their stems, but only if the meaning of the derived
form is closely related to the stem. For example government primes govern,
but department does not prime depart. Grainger et al. (1991) found similar
sults with prefixed words (but not with suffixed words). Marslen-Wilson
etal. (1994) represent a model compatible with their own findings as follows:

‘ ;ing

Flgure 3.20 Marslen-Wilson et al. (1994) result: Derived words are lmked
to thelr stems only if semantically related :

‘Other evidence that the human lexicon represeiits some morphological
cturc comes from specch errors, also called slips of the tongue. In
ormal conversatlon, speakers often mix up the order of the words or initial

-ityoubreak1t1t11dr0p TS ETE
',I don’t have time to work to watch telewsmn because I have to

: work

'But 1nﬂect10nal and denvatlonaI afﬁxes can also appear separately from
their stems as these examples from Fromkin and Ratner (1998) and Garrett

1t s not only us Who have screw Iooses (for ‘Screws loose)

: words of rule formation (for “rules of word formatloh")

éasy enoughly (for “easily enough”)

.WhICh by 1tself 1S the most ummplausﬁ)le sentence you ¢an 1magme

-rThe ability of these affixes to bé’ 'prOduéed s'ep'arately'ﬁém their stem
_suggests that the mental Iexicon must contain some representation of the
morphological structure of these words.- L e

In summary, these results. suggest that morphology does piay arolein
human lexicon; especially productive morphology like inflection. They
mphasu:e the important of semantic generalizations across words, and
8 ggest that the human auditory lexicon (representing words in terms of their
}s' unds) and the orthographxc }exmon (representing words in terms of letters)

ion 3.6. Summary

87

BIBLIOGRAPHICAL AND HISTORICAL NOTES

espite the close mathematical similarity of finite-state transducers to finite-
utomata, the two models grew out of somewhat different traditions.
hapter 2 described how the finite automaton grew out of Turing’s (1936)
of algorithmic computation, and McCulloch and Pitts finite-state-like
m 'eIS" of the neuron. The influence of the Turing machine on the trans-
' 'was somewhat more indirect. Huffman (1954) proposed what was
sentially a state-transition table to model the behavior of sequential cir-
s; based on the work of Shannon (1938) on an algebraic model of relay
5. Based on Turing and Shannon’s work, and unaware of Huffman’s
Moore (1956) introduced the term finite automaton for a machine
nite number of states with an alphabet of input symbols and an al-
et of output symbols. Meaiy (1 955) extended and synthemzed the work
re'and Huffman. . LEa
The finite automata in Moore s orzgmal paper and the extensxon by
fffered in an important’ way. Ina Mealy machine, the input/output
symbols"are associated with the transitions betweeri states. The finite-state
ransdiicers: in this chapter are Mealy machines. In a Moore machine, the
t/output symbols are associated with the state; we will see examples of
re: ‘machines.in Chapter 5 and Chapter 7. The two types of transduc-
ai‘r'é?'equivalent' any Moore machine can be converted into an equivalent
{_machme and vice versa. .

Many early programs for morphologxcal parsing used an afﬁx-strlp—
pproach to parsing. For example Packard’s (1973) parser for ancient
eek iteratively stripped prefixes and suffixes off the input word, making
note of them, and then looked up the remainder in a lexicon. It returned
any root that was compatible with the stripped-off affixes. This approach
' 'equzvalent to the bottom-up method of parsmg that we will discuss in

: AMPLE (A Morphologxcal Parser for ngmstlc Exploratlon) (Weber
Mann,.1981, Weber et al., 1988; Hankamer and Black, 1991) is another
eatly bottom-up morphological parser. It contains a lexicon with all possible
ace variants of each morpheme (these are called allomorphs), together
Wlth”constramts on their occurrence (for example in English the -es allo-
i rph of the plural morpheme can only occur after s, x, z, sh, or ch). The
~system finds every possible sequence of morphemes which match the input
d then filters out all the sequences which have failing constraints.

88

Chapter 3. Morphology and Finite-State Transducer

: and Church (1988)

" 'of automata ‘theory should see Hopcroft and Ullman (1979) or Lewis an
- Papadimitriou (1981). -Mohri (1997) and Roche and Schabes (1997b) giv
- additional-algorithms ‘and: mathematical foundations for language applica
- tions; including, for example, the details of the algorithm for transducer m

An alternative approach to morphological parsing is called generate
and-test ot analysis-by-synthesis approach. Hankamer’s (1986) keCi is
morphological parser for Turkish which is guided by a finite-state represen
tation of Turkish morphcmes. The program begins with a morpheme tha
might match the left edge of the word, and applies every possible phonolog
ical rule to it, checking each result against the input. If one of the output
succeeds, the program then follows the finite-state morphotactics to the nex
morpheme and tries to continue matching the input. ‘

- The idea. of modeling spelling rules as finite-state transducers is really. :
based on Johnson’s (1972) early idea that phonological rules (to be discussed -
in Chapter 4) have finite-state properties. Johnson’s insight unfortunately di
not attract the attention of the community, and was independently discovere
by Roland Kaplan and Martin Kay, first in an unpublished talk (Kaplan and
Kay; 1981) and then: finally in print (Kaplan and Kay, 1994) (see page 1
for a dlscussmn of multiple independent discoveries). Kaplan and Kay’
work was followed up and most fully worked out by Koskenniemi (1983)
who descnbed finite-state morphological rules for Finnish. Karttunen (1983
built a program called KIMMO based on Koskenniemi’s models. Antworth
(1990) gives many details of two-level morphology and its application to En
glish.’ Besxdes Koskenniemi’s work on Finnish and that of Antworth (1990)1 :
on English; two-level or other finite-state: models of morphology have bee
worked out for many languages; such as. Turkish (Oflazer, 1993) and Ara
bic: (Eeesley, 1996) - Antworth: (1990) summarizes a number of issues i
finite-state analysis of languages with morphologically complex processes-,;_
like infixation and reduplication (e.g., Tagalog) and: gemination (e.g., He
brew).: Karttunen: (1993) is a good summary of the application of two—leve
morphology specifically to-phonological rules of the sort we will discuss i
Chapter 4. Barton et al: (1987) bring up some computational complexit
problems: with two—level models wkneh are responded to by Koskenniemi

©. Students 1nterested in further detzuls of the fundamental mathemauc

imization. Sproat (1993) gives abroad general mtroducﬁon to eomputatxon)
morphology S e ¥

Section3.6. Summary il 89

EXERCISES

3.1 Add some adjectives to the adjective FSA in Figure 3.5,
3.2 Give examples of each of the noun and verb classes in Figure 3.6, and
find some exceptions to the rules. '

3 3 Extend the transducer in Figure 3.14 to deal with sh and ch.
3.4 Write a transducer(s) for the K insertion spelling rule in English.

3.5 Write a transducer(s) for the consonant doubling spelling rule in En-

3.6 The Soundex algorithm (Odell and Russell, 1922; Knuth, 1973} is a
~method commonly used in libraries and older Census records for represent-
ng people’s names. It has the advantage that versions of the names that are
slightly misspelled or otherwise modified (common, for example, in hand-
written census records) will still have the same representation as correctly-
~spelled names. (e.g., Jurafsky, Jarofsky, Jarovsky, and Jarovski all map to
- a. Keep the first letter of the name, and drop all occurrences of non-initial
aehLo,u, Wy
~ b. Replace the remaining letters with the following numbers:

b,fp,v—1

cgikqgsxz—>2

dt—3

1—-4

mn—5

o r— 6

S C Replace any sequences of identical numbers with a single number (i.€.,
. 666 — 6)

@, Convert to the form Letter Digit Digit Digit by dropping
- digits past the third (if necessary) or padding with trailing zeros (if
.. necessary).

The exercise: write a FST to 1mplement the Soundex algorithm.

3 7 Implement one of the steps of the Porter Stemmer as a transducer.

90

Chapter 3. Morphology and Finite-State Transduceﬁéj

3.8 Write the algorithm for parsing a finite-state transducer, using the pseu{
do-code introduced in Chapter 2. You should do this by modlfymg the algo-
rithm ND-RECOGNIZE in Figure 2.21 in Chapter 2.
3.9 Write a program that takes a word and, using an on-line dictionary';;_{'
computes possible anagrams of the word, each of which is a legal word.

3.10 InnFigu:re 3.14, §)vhy is there a z, s, x arc from qs to q,?

- COMPUTATIONAL
4 PHONOLOGY AND
o TEXT—TO SPEECH

You like po-tay-io and I like po-tah-to.
You like to-may-to and I like to-mah-to.
Po-tay-to, po-tah-to,

To-may-to, to-mah-to,

Let’s call the whole thing oﬁf

- George and Tra Gershwin, Let’s Call the
Whole Thzng Of from Shall We Dance,
1937 '

. The debate between the “whole language” and “phonics” methods of
‘teaching reading to children seems at very glance like a purely modern edu-
cational debate. Like many modern debates, however, this one recapitulates
.- an important historical dialectic, in this case in writing systems. The earliest
© independently-invented writing systems (Sumerian, Chinese, Mayan) were
- mainly logographic:. one symbol represented a whole word: But from the
.. earliest stages we can find, most such systems contain elements of syllabic
. or phonemic writing Systems, in which symbols are used to represent the
sounds that make up the words. Thus the Sumerian symbol pronounced ba
~and meaning “ration” could also function purely as the sound /ba/. Even
.- modern Chinese,: which remains: primarily logographic,: uses sound-based
. characters to-spell out foreign words: and especially geographical names.
Purely sound-based writing systems, whether syllabic (like-Japanese Aira-
gana or katakana), alphabetic (like the. Roman alphabet used in this book),
or consonantal (like Semitic writing systems), can generally be traced: back
to these: early: logo-syllabic: systems, often as two cultures came together.
Thus the Arabic, Aramaic, Hebrew, Greek, and Roman systems all derive
from a:West Semitic script that i§ presumed to have been modified by West-
ern Semitic mercenaries from a:cursive form of Egyptian hieroglyphs. The

92 Chapter 4. Computational Phonology and Text—to—Speccﬁ,f

Japanese syllabaries were modified from a cursive form of a set of Chinese -
characters which were used to represent sounds. These Chinese characters
themselves were used in Chinese to phonet.ically represent the Sanskrit 11'1
the Buddhist scriptures that were brought to China in the Tang dynasty.
Whatever ifs origins, the idea impiigit m a so;md—based writing-‘sy'stem;

that the spoken word i‘s"bbmpt)séd of smaller units of speech, is the Ur-theory
that underlies all our modern theories of phonology. In the next four chapters: -,
we begin our exploration of these ideas, as we introduce the fundamental . -
insights and algorithms necessary t0 understand modern speech recognition.
and speech synthesis technology. and the related branch of linguistics called -
computational phenology. ¥

_ Let’s begin by defining these areas. The core task of automatic speech
recognition is take an acoustic waveform as input and produce as output.

a string of words. Conversely, the core task of text-to-speech synthesis is:

to take a sequence of text ‘words and produce as output an acoustic Wave'-gl
form. The uses of speech recognition and synthesis are manifold, including
automatic dictation/transcription, speech-based interfaces to computers and:
. télépﬁérié's,' voice-based input and output for the disabled, and many others
. that will be discussed in greater detail in Chapter 7. 5
. 'This chapter will focus on an important part of both speech recognitio
~ and-text-to-speech systems: how words are pronounced in terms of individ
- -ual speech units called phones. A speech recognition system needs to hav
- -a‘pronunciation for every word it can recognize, and a text-to-speech syste

needs to have a pronunciation for every word it can say. The first section o

this chapter will introduce phenetic alphabets for describing pronunciation

proneTics partof the ﬁél‘d 'of'phonetics. We then introduce articulatqry phonetics, thi
ARTIGULATORY sricly of how speech sounds are produced by articulators in the mouth. -

- Modeling pronunciation would be much simpler if a given phone wa
always pr'dﬁ‘oun'ced the same in every context. Unfortunately this is not the
~ case. As we will see; the phone [t] is pronounced very differently in differen

. phonetic- environments. - Phonology is the area of linguistics-that describe
. the SYStématié'} way that sounds are differently realized in different environ
* ments, and how this system of sounds is related to the rest of the gramm

SR The next section of the chapter will describe the way we write phonologi

S e rules to°describe these different realizations: . oot
| COMPUTRIONAL We next introdiice an area known as Compﬁtaﬁqnal phonology. One
“important part of computational phonology is the} study of computational

mechanisms for modeling phonological rules: We will show how the spel.
ling-rule transducers of Chapter 3 can be used to-model phonology. We then

