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ABSTRACT 

In this paper we introduce a new search algorithm that pro- 
vides a simple, clean, and efficient interface between the speech 
and natural language components of a spoken language system. 
The N-Best algorithm is a time-synchronous Viterbi-style beam 
search procedure that is guaranteed to find the N most likely 
whole sentence altematives that are within a given a “beam” 
of the most likely sentence. The computation is linear with 
the length of the utterance, and faster than linear in N .  When 
used together with a first-order statistical grammar, the correct 
sentence is usually within the first few sentence choices. The 
output of the algorithm, which is an ordered set of sentence 
hypotheses with acoustic and language model scores can easily 
be processed by natural language knowledge sources without 
the huge expansion of the search space that would be needed to 
include all possible knowledge sources in a top-down search. 

I Introduction 

In a spoken language system (SLS) we have a large search 
problem. We must find the most likely word sequence consis- 
tent with all knowledge sources (speech, statistical N-gram, nat- 
ural language). The natural language (NL) knowledge sources 
are many and varied, and might include syntax, semantics, dis- 
course, pragmatics, and prosodics. One way to use all of these 
constraints is to perform a top-down tightly-coupled search that, 
at each point, uses all of the knowledge sources (KSs) to deter- 
mine which words can come next, and with what probabilities. 
Assuming an exhaustive search in this space, we can find the 
most likely sentence. However, since many of these KSs con- 
tain “long-distance” effects (for example, agreement between 
words that are far apart in the input), the search space can be 
quite large, even when pruned using various beam-search or 
best-first search techniques. Furthermore, a top-down search 
strategy requires that all of the KSs be formulated in a pre- 
dictive, left-to-right manner. This may place an unnecessary 
restriction on the type of knowledge that can be used. 

The general solution that we have adopted is to apply the KSs 
in the proper order to constrain the search progressively. Thus, 
we trade off the entropy reduction that a KS provides against the 
cost of applying that KS. Naturally, we can also use a pruning 
strategy to reduce the search space further. By ordering the 

various KSs, we attempt to minimize the 
and complexity for a given level of search 
we apply the most powerful and cheapest 

using the remaining KSs. In the remainder 
present the N-best search paradigm, follow 
decoding algorithm. We give an outline o 
algorithm does, in fact, result in the corr 
hypotheses. Finally, we present statistics 
correct sentence in a list of the top N sentences 
phonetic models and a statistical language model. 

I1 The N-best Search Paradigm 

Figure 1 illustrates the general N 
order the various KSs in terms of th 

of the most likely whole sentence hypotheses, along with their 

Depending on the amount of comput 

example, it is quite inexpensive to sear 
statistical language model, since the numb 
language states is small. Frequently, a synt 
will be quite large, so it might be reserved 
generation. Given a list of hypothesized 
native can usually be parsed in tum in 

to the remainder of the KSs. We can 
conjunction with high-order statistical 
a high-order model frequently provides added power (over a 
first-order model), the added power m mmensurate 
with the large amount of extra comput 
for the search. In this case, a 
be used to reduce the choice to a small num 
which can then be reordered using the higher 

there are several other practical advan 
Since the output of the first stage 
and there is no further processing 
recognition component, the interfac 

Besides the obvious comput 
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Figure 1: The N-best Search Paradigm. The most efficient knowl- 
edge sources, KSl, are used to find the N Best sentences. Then the 
remaining knowledge sources, KS2 are used to reorder the sentences 
and pick the most likely one. 

nition and the other KSs is trivially simple, while still optimal. 
As such this paradigm provides a most convenient mechanism 
for integrating work in a modular way. This high degree of 
modularity means that the different component subsystems can 
be optimized and even implemented separately (both hardware 
and software). For example, the speech recognition might run 
on a special-purpose may processor-like machine, while the 
NL might run on a general purpose host. 

III The N-Best Decoding Algorithm 

The optimal N-Best decoding algorithm is, in spirit, quite 
similar to the time-synchronous Viterbi decoder that is used 
quite commonly. However, it differs in what it must compute 
and in its implementation. It must compute probabilities of 
word-sequences rather than state-sequences, and it must find all 
such sequences within the specified beam. The basic idea is to 
keep separate records for theories with different word sequence 
histories. Each path is marked with an identifier that represents 
the complete sequence of words up to this point (the history). 
When two or more paths come to the same state at the same 
time, we check whether there is already an existing path at that 
state with the same history. If there is, we add the probability 
for the two paths. Otherwise, we create a new path. When 
all paths for a state have been created, we reduce the number 
of paths by keeping up to a specified maximum number N 
of theories whose probabilities are within a threshold of the 
probability of most likely word sequence at that state. Note 

that this state-dependent threshold is distinct from and smaller 
than the global beam search threshold. 

Since probabilities for different word sequences are kept dis- 
tinct, it is easy to see that any word sequence hypothesis that 
reaches the end of the sentence has an accurate score. This 
score is the conditional probability of the observed acoustic se- 
quence given this word sequence. Of course, since the number 
of possible word sequences grows exponentially, we must use 
a pruning algorithm to reduce it to the desited number. The in- 
teresting question is whether one can prove that all of the word 
sequences with probabilities greater than the threshold will end 
up in the list with the correct scores. 

Algorithm Optimality 

There have been two recent papers that deal with the topic 
of finding more than one answer for the whole sentence [l, 21. 
However, both of these papers are based on the Viterbi algo- 
rithm. That is, when two paths for the same word sequence 
come to the same state, the probability is computed as the 
maximum of the two paths rather than the sum. Thus these 
algorithms find the most likely sequence of states rather than 
the most likely sequence of words. More importantly though, 
the altemative answers are constrained by the segmentation and 
traceback of the most likely answer. Since the segmentation of 
the sentence into words often depends on the words chosen, the 
answers found in this way are not, in fact, the best N answers. 
In fact, we have found in the past that this approximation is 
quite severe. In [2], the exact algorithm for the word sequences 
corresponding to the best state sequences is mentioned, but is 
not used, due to the computational requirements. The results 
given in [2] using a statistical bigram grammar of perplexity 
124 show that approximately one third of the sentences that 
are not recognized correctly on the first choice have the correct 
answer within the top 10 choices found by the approximate al- 
gorithm. As will be seen in the next section, with the exact 
algorithm used here, for a similar statistical grammar, about 
90% of the sentences that are not recognized correctly on the 
first choice have the correct answer within the top 10 choices 
found by the approximate algorithm, and about 97% are within 
the top 24 choices. It should be mentioned that these tests 
have been performed on different speech corpora, with differ- 
ent acoustic and language models, making direct comparisons 
difficult. 

It should be clear that the algorithm used here would result 
in the exact solution for all of the possible answers for a given 
utterance. It is harder to see that the algorithm that finds the 
N-Best answers within a threshold of the best answer, in fact 
does so. The proof (which is not included here in its entirety) 
relies on the fact that the beamwidth at each state is very large - 
typically on the order of lo”. Possible errors could occur when 
we should be adding two paths for the same word sequence 
together, but one or both of them is ignored because its score 
is more than lo’’ below the best score at the state. However, 
if the larger of the two path probabilities was much above the 
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threshold - say 10 times the threshold (still l O I 4  below the 
best score) - then the error due to ignoring the lower score 
is insignificant. If both are below the threshold, then when 
added, they can at most be twice the threshold - still quite 
low, Even if this happened in every frame of an utterance - 
an extremely unlikely event - the effect on the score would be 
small compared to the state beamwidth. 

The result is that the algorithm will correctly detect and score 
all theories that are above the threshold by one order of mag- 
nitude. However, the score of theories that are within the last 
order of magnitude of the final beam may be slightly underesti- 
mated. This means that the state beamwidth should be one or- 
der of magnitude larger than needed, and the theories within the 
last order of magnitude can be ignored. When a hard limit of N 
is placed on the theories at each state, the effective beamwidth 
at that state could decrease. In this case, we must again include 
any theories that are within one order of magnitude below the 
Nth theory at the state to ensure that the final result is correct. 

implementation 

This algorithm requires (at least) N times the memory for 
each state of the hidden Markov model. However, this memory 
is typically much smaller than the amount of memory needed 
to represent all the different acoustic models. We assume here, 
that the overall “beam” of the search is much larger than the 
“beam at each state” to avoid pruning errors. In fact, for the 
first-order grammar, it is even reasonable to have an infinite 
beam, since the number of states is determined only by the 
vocabulary size. 

At first glance, one might expect that the cost of combining 
several sets of N theories (from preceding states) into one set 
of N theories at a state might require computation on the order 
of N 2 .  However, we have devised a “grow and prune” strategy 
that avoids this problem. At each state, we simply gather all of 
the incoming theories. At any instant, we know the best scoring 
theory coming to this state at this time. From this, we compute 
a pruning threshold for the state. This is used to discard any 
theories that are below the threshold. At the end of the frame 
(or if the number of theories gets much too large), we reduce 
the number of theories using a prune and count strategy that 
requires no sorting. While this would theoretically still require 
computation on the order of N ,  it only accounts for a part of 
the total computation. We find, empirically, that the overall 
computation increases with a, or slower than linear. This 
makes it practical to use somewhat high values of N in the 
search. 

IV Rank of the Correct Answer 

Whether the N-best search is practical depends directly on 
whether we can assure that the correct answer is found reliably 
within the list that is created by the first stage. (Actually, if 
all the remaining KSs have binary scores, that is they either 
accept or reject a sentence, then the search is sufficient as long 

is possible that when the correct answer is not the top cho 
might be quite far down the list, since there could be 
tially many other altematives that score between the 
scoring answer and the correct 
depends on the power of the aco 
statistical language model used in 
fore we have accumulated statistics o 
sentence in the list of N answers for two diffe 

[3], and no grammar (perplexity 10 
grammar constrains the probabilities 
class to be the same, and therefore 
small amount of training data. The expenment 
on the speaker-dependent portion of the 

(Perplexity - 1000) 

Figure 2: Cumulative Distribution of Rank of CO 
the statistical class grammar, 99% of the sentenc 
exactly within the top 24 choices. 

Figure 2 plots the cumulative distri 
two different language models. The 
sentence N up to 100. We have also marked the average rank 
on the distribution. The average rank of the correct answer 
was 9.3 for no grammar, and the correct answer is not on the 

version (that does not model coarticulation between words or 
use smoothing of poorly trained mode 
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the word error rate of the most recent models. This means that 
the likelihood that the correct answer will be found within a 
short list of sentences could be even higher than shown here 
when the better acoustic models are used. 

To illustrate the types of lists that are generated we show 
below a sample N-best output. In this example, the correct 
answer is the fifth one on the list. 

Example of N-best Output 

Set chart switch resolution to high. 

Answer: 

Top N Choices: 
Set charts which resolution to five. 
Set charts which resolution to high. 
Set charts which resolution to on. 
Set chart switch resolution to five. 
Set chart switch resolution to high. (***) 
Set chart switch resolution to on. 
Set charts which resolution to the high. 
Set the charts which resolution to five. 

V Other Applications for N-Best Algorithm 

We have, so far, found two additional applications for the N- 
Best algorithm. The first is to generate altemative hypotheses 
for discriminative training algorithms. Typically, altematives 
must be generated using a fast match procedure, or by using 
overall statistics of typical errors. Instead, we can generate 
all the actual altematives that are appropriate to each partic- 
ular sentence. This application is discussed in another paper 
elsewhere in these proceedings [6]. 

A second application for the N-best algorithm is to generate 
altemative sentences that can be used to test overgeneration in 
the design of spoken language systems. Typically, to reduce 
overgeneration, one generates random sentences using the NL 
model, examines each sentence to determine whether it makes 
sense, and changes the grammar to eliminate bad sentence gen- 
eration. One problem with this is that many of the word se- 
quences generated this way would never, in fact, be presented 
to a NL system by any reasonable acoustic recognition compo- 
nent. Thus, most of the work may be spent on fixing problems 
that don’t actually occur in a spoken language system. If, in- 
stead, we generate N-best lists from a real acoustic recognition 
system, then we can ask the NL system to parse all the sen- 
tences that are known to be wrong. Typically the NL system 
will reject most of these, and we only need to look at those 
few that were accepted, to determine whether they should have 
been. 

VI Conclusion 

We have presented a new algorithm for computing the top 
N sentence hypotheses for a hidden Markov model recognition 
system. Unlike previous algorithms, this one is guaranteed to 
find the’most likely scoring hypotheses with essentially constant 
computation time. In experiments using a first-order statistical 
language model, the average rank of the correct answer was 
1.8 and was within the first 24 choices 99% of the time. This 
new algorithm makes possible a simple and efficient approach 
to integration of several knowledge sources, in particular the 
integration of complex natural language knowledge sources in 
spoken language systems. In addition there are other useful 
applications of the algorithm. 
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