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METHOD AND APPARATUS FOR A SPEECH 
RECOGNITION SYSTEM LANGUAGE 
MODEL THAT INTEGRATES A FINITE 

STATE GRAMMAR PROBABILITY AND AN 
N-GRAM PROBABILITY 

FIELD OF THE INVENTION 

This invention relates to speech or voice recogmt10n 
systems. More particularly, this invention relates to a speech 
recognition system using a language model that integrates a 
finite state grammar paradigm and an n-gram paradigm. 

BACKGROUND OF THE INVENTION 

The broad goal of speech recognition technology is to 
create devices that can receive spoken information and act 
appropriately upon that information. In order to maximize 
benefit and universal applicability, speech recognition sys­
tems (SRSs) should be capable of recognizing continuous 
speech, and should be able to recognize multiple speakers 
with possibly diverse accents, speaking styles, and different 
vocabularies and grammatical tendencies. Effective SRSs 
should also be able to recognize poorly articulated speech, 
and should have the ability to recognize speech in noisy 
environments. 

Models of sub-word sized speech units form the backbone 
of virtually all SRSs. Many systems use phonemes to define 
the dictionary, but some SRSs use allophones. A phoneme is 
the basic theoretical unit for describing how speech conveys 
linguistic meaning. As such, the phonemes of a language 
comprise a minimal theoretical set of units that are sufficient 

2 
the permissible freedom allowed within a particular lan­
guage in producing a phoneme, and this flexibility is depen­
dent on the phoneme as well as on the phoneme position 
within an utterance. 

The typical modern speech recognition systems operate 
under the principle that, in some form or another, they 
maximize the a posteriori probability of some sequence of 
words W given some acoustic evidence A, where the prob­
ability is denoted Pr(W/A). Using Bayes' rule, this amounts 

10 to maximizing Pr(A/W)xPr(W), where Pr(A/W) is provided 
by a specified acoustic model and Pr (W) is provided by a 
specified language model. It should be noted that this 
formulation can be extended to other fields, such as hand­
writing recognition, by changing Pr(W/A) appropriately; the 

15 language model component need not change since it char­
acterizes the language itself. Therefore, language modeling 
plays a central role in the recognition process, where it is 
typically used to constrain the acoustic analysis, guide the 
search through various partial text hypotheses, and contrib-

20 ute to the determination of the final transcription. 
Two statistically-based paradigms have traditionally been 

exploited as language models to derive the probability 
Pr(W). The first one, the finite state grammar paradigm, 
relies on rule-based grammars, while the second one, the 

25 n-grammar paradigm, involves data-driven n-grams. The 
finite state grammar paradigm may be based on parsing or 
other structural a priori knowledge of the application 
domain, while then-gram paradigm translates the probabil­
ity of occurrence in the language of all possible strings of n 

30 words. Consequently, the finite state grammar paradigms are 
typically used for well-defined, small vocabulary applica­
tions such as command and control recognition, while the 
n-gram paradigms are typically applied to general large 

to convey all meaning in the language; this is to be compared 
with the actual sounds that are produced in speaking, which 
speech scientists call allophones. Each phoneme can be 
considered to be a code that consists of a unique set of 35 

articulatory gestures. Once a speaker has formed a thought 

vocabulary dictation within some typically broad domain. 
The reason for this dichotomy is well understood. In 

command and control applications, the number of words 
used for system command and control is typically limited as 
are the scope and complexity of the formulations. Therefore, 
it is straightforward to build a finite state grammar-based 

to be communicated to a listener, they construct a phrase or 
sentence by choosing from a collection of phonemes, or 
finite mutually exclusive sounds. If speakers could exactly 
and consistently produce these phoneme sounds, speech 
would amount to a stream of discrete codes. However, 
because of many different factors including, for example, 
accents, gender, and coarticulatory effects, every phoneme 
has a variety of acoustic manifestations in the course of 
flowing speech. Thus, from an acoustical point of view, the 
phoneme actually represents a class of sounds that convey 
the same meaning. 

40 model to constrain the domain accordingly. In contrast, in a 
dictation application, potentially anything could be uttered 
having an arbitrary degree of complexity making reliance on 
a finite state grammar-based model impractical. It makes 
sense in the case of a dictation application to exploit the 

45 statistical patterns of the language as a knowledge source, 
assuming a sufficient amount of training text, or data, is 
available. 

The problem involved in speech recognition is enabling 
the speech recognition system with the appropriate language 
constraints. Whether phones, phonemes, syllables, or words 50 

are viewed as the basic unit of speech, language, or 
linguistic, constraints are generally concerned with how 
these fundamental units may be concatenated, in what order, 
in what context, and with what intended meaning. For 
example, if a speaker is asked to voice a phoneme in 55 

isolation, the phoneme will be clearly identifiable in the 
acoustic waveform. However, when spoken in context, 
phoneme boundaries become difficult to label because of the 
physical properties of the speech articulators. Since the 
vocal tract articulators consist of human tissue, their posi- 60 

tioning from one phoneme to the next is executed by 
movement of muscles that control articulator movement. As 
such, there is a period of transition between phonemes that 
can modify the manner in which a phoneme is produced. 
Therefore, associated with each phoneme is a collection of 65 

allophones, or variations on phones, that represent acoustic 
variations of the basic phoneme unit. Allophones represent 

While the command and control and the dictation appli­
cations cover extreme ends of the speech recognition 
spectrum, there is an important intermediate case of a large 
vocabulary interaction, in which the scope and complexity 
of the utterances are greater than in traditional command and 
control, while still more constrained, for example, by a 
dialog model, than in traditional dictation. This situation is 
likely to become pervasive in future SRS user interfaces 
because, as the size of the vocabulary increases, finite state 
grammar-based models become less and less effective. 
There are several reasons for the decreasing effectiveness of 
the finite state grammar-based models. First, from a purely 
algorithmic perspective, the larger the grammar, the fewer 
constraints it offers, and therefore the lower the accuracy of 
the speech recognition system. Furthermore, from a SRS 
user's point of view, the more complex the formulation 
allowed, the more difficult it is to remember exactly which 
variations are in-grammar and which are not. As a result, in 
a typical SRS application that uses a finite state grammar­
based model, accuracy degrades significantly if the number 
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of language items is greater than approximately 100. This is 
an order of magnitude short of what a typical dialog system 
might require in the near future. 

In contrast to finite state grammar-based models, n-gram­
based models have been successfully constructed for 
vocabulary sizes up to approximately 60,000 words. They 
are typically estimated on large machine-readable text 
databases, comprising, for example, newspaper or magazine 
articles in a given broad domain. However, due to the finite 
size of such databases, numerous occurrences of n-word 
strings are infrequently encountered, yielding unreliable 
SRS model parameter values or coefficients. As a result, 
interest has been generated in fairly sophisticated parameter 
estimation and smoothing. Unfortunately, it remains 
extremely challenging to go beyond n~4, with currently 
available databases and processing power. Thus, n-gram­
based models alone are inadequate to capture large-span 
constraints present in dialog data, even if a suitable database 
could be collected, stored, and processed. Consequently, 
there is a need for a speech recognition system using a 
language model that integrates a finite state grammar para­
digm and an n-gram paradigm into a statistical language 
modeling framework so as to provide speech recognition in 
the intermediate case of a large vocabulary interaction. 

SUMMARY OF THE INVENTION 

A method and an apparatus for a speech recognition 
system that uses a language model based on an integr~t~d 
finite state grammar probability and an n-gram probability 
are provided. According to one aspect of the invention, 
speech signals are received into a processor of a speech 
recognition system. The speech signals are processed using 
a speech recognition system hosting a language model. The 
language model is produced by integrating a finite state 
grammar probability and an n-gram probability. In the 
integration, the n-gram probability is modified based on 
information provided by the finite state grammar probabil­
ity; thus, the finite state grammar probability is subordinate 
to the n-gram probability. The language model is used by a 
decoder along with at least one acoustic model to perform a 
hypothesis search on an acoustic sequence to provide a word 
sequence output. The word sequence generated is represen­
tative of the received speech signals. 

These and other features, aspects, and advantages of the 
present invention will be apparent from the accompanying 
drawings and from the detailed description and appended 
claims which follow. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The present invention is illustrated by way of example 
and not limitation in the figures of the accompanying 
drawings, in which like references indicate similar elements 
and in which: 

FIG. 1 is a speech recognition system of one embodiment. 
FIG. 2 is a computer system hosting the speech recogni­

tion system of one embodiment. 
FIG. 3 is the computer system memory hosting the speech 

recognition system of one embodiment. 
FIG. 4 is a flowchart for the speech recognition system of 

one embodiment. 
FIG. 5 is a flowchart for producing the language model of 

one embodiment for use by the decoder in performing a 
hypothesis search. 

FIG. 6 shows the results of the evaluation of the language 
model of one embodiment in terms of average word error 
rate across the speakers considered. 

4 
DETAILED DESCRIPTION 

A method and an apparatus for a speech recognition 
system that uses a language model based on an integr~t~d 
finite state grammar probability and an n-gram probability 

5 are provided. The method and apparatus described herein 
may also be used in pattern recognition systems and hand­
writing recognition systems. In the following description, 
for purposes of explanation, numerous specific details are 
set forth in order to provide a thorough understanding of the 

10 present invention. It will be evident, however, to one skilled 
in the art that the present invention may be practiced without 
these specific details. In other instances, well-known struc­
tures and devices are shown in block diagram form in order 
to avoid unnecessarily obscuring the present invention. It is 

15 noted that experiments with the method and apparatus 
provided herein show significant speech recognition 
improvements when compared to speech recognition sys­
tems using typical prior art language models. 

FIG. 1 is a SRS 100 of one embodiment. An input device 
20 

102 is coupled to the SRS 100 and inputs a voice signal 101 
into the SRS 100 by converting the voice signal 101 into an 
electrical signal representative of the voice signal 101. A 
feature extractor 104, or signal sampler, coupled to the input 
device 102 samples the signal at a particular frequency, the 

25 
sampling frequency determined using techniques known in 
the art. The feature extractor 104 may perform signal 
segmentation by segmenting the electrical signal represen­
tative of a voice signal into phonemes or phones or words, 
but is not so limited. A decoder 108 is coupled to receive the 

30 
output 106 of the feature extractor 104. The output 106 of 
the feature extractor 104 is an acoustic sequence that is a 
representation of speech events in the speech signal 101. The 
decoder 108 uses acoustic models 110 and a language model 
112 to perform a hypothesis search. These models are 

35 
trained in a supervised paradigm as to the statistical makeup 
of appropriate exemplars, or observation strings. The 
decoder 108 provides output signals 114 representative of 
the received speech signals 101. 

40 The SRS comprising components 102-112 may be hosted 
on a processor, but is not so limited. For an alternate 
embodiment, the decoder 108 may comprise some combi­
nation of hardware and software that is hosted on a different 
processor from SRS components 102, 104, 110, and 112. For 

45 another alternate embodiment, a number of model devices, 
each comprising a different acoustic model or a language 
model, may be hosted on a number of different processors. 
Another alternate embodiment has multiple processors host­
ing the acoustic models and the language model. For still 

50 another embodiment, a number of different model devices 
may be hosted on a single processor. 

FIG. 2 is a computer system 200 hosting the speech 
recognition system (SRS) of one embodiment. The com­
puter system 200 comprises, but is not limited to, a system 

55 bus 201 that allows for communication among a processor 
202, a digital signal processor 208, a memory 204, and a 
mass storage device 207. The system bus 201 is also coupled 
to receive inputs from a keyboard 222, a pointing device 
223, and a speech signal input device 225, but is not so 

60 limited. The system bus 201 provides outputs to a display 
device 221 and a hard copy device 224, but is not so limited. 

FIG. 3 is the computer system memory 310 hosting the 
speech recognition system of one embodiment. An input 
device 302 provides speech signals to a digitizer and bus 

65 interface 304. The digitizer 304, or feature extractor, 
samples and digitizes the speech signals for further process­
ing. The digitizer and bus interface 304 allows for storage of 
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interaction is provided by a language model that integrates 
the finite grammar paradigm and the n-gram paradigm, 
thereby exploiting the advantages of both. Therefore, a 
properly targeted, or trained, finite state grammar-based 

5 model enhances accuracy, while the n-gram-based model 
provides some robustness to sentence variability. 

the digitized speech signals in the speech input data memory 
component 318 of memory 310 via the system bus 308. The 
digitized speech signals are processed by a digital processor 
306 using algorithms and data stored in the components 
312-322 of the memory 310. As discussed herein, the 
algorithms and data that are used in processing the speech 
signals are stored in components of the memory 310 
comprising, but not limited to, a hidden Markov model 
(HMM) training and recognition processing computer pro­
gram 312, a viterbi processing computer program code and 10 

storage 314, a preprocessing computer program code and 
storage 316, language model memory 320, and acoustic 
model memory 322. 

FIG. 4 is a flowchart for the speech recognition system of 
one embodiment. Operation begins at step 402, at which 
speech signals are received into a processor. The features of 
the signal required for speech recognition processing are 
extracted from the received speech signals, at step 404. In 
decoding the received speech signals, acoustic models are 
used, at step 406, to compute the probability of an acoustic 
sequence given a particular word sequence. 

Typically, a set of acoustic models are used because one 
model is used for each phoneme in the particular language, 
but the embodiment is not so limited. The acoustic models 
are typically based on a parameter sharing hidden Markov 
model (HMM) that is used to model the speech utterance 
represented in the received speech signal. An HMM is a 
stochastic finite state automaton, or a type of abstract 
machine used to model a speech utterance. The utterance 
modeled by an HMM of one embodiment may be, but is not 
limited to, a word, a subword unit like a phoneme, or a 
complete sentence or paragraph. Using the HMM, a speech 
utterance is reduced to a string of features, or observations, 
because these features represent the information that is 
"observed" from the incoming speech utterance. Therefore, 
an HMM which is associated with a particular phoneme or 
other utterance is a finite state machine capable of generat-

Traditionally, an integration of this type used either 
simple interpolation or the maximum entropy formulation. 
Unfortunately, neither are particularly well suited to the 
problem because of the restrictions on size with respect to 
the finite state grammar and the restrictions on span with 
respect to the n-grams. Thus, it is more practical to consider 
subordinating one paradigm to the other. Because of the 

15 difficulty encountered in constructing a complete grammar 
in a large vocabulary context, it is most natural to subordi­
nate the finite state grammar paradigm to the n-gram para­
digm. When subordinating the finite state grammar para­
digm to the n-gram paradigm, the role of the finite state 

20 grammar paradigm is to selectively complement the statis­
tical properties of the n-gram paradigm language model by 
exploiting whatever structural properties the discourse 
domain possesses. 

25 
In generating the integrated language model of one 

embodiment, W q denotes the word to be predicted, assumed 
to belong to some underlying vocabulary V, and Hq denotes 
the admissible history, or context, for this particular word. 
The role of the language model is to provide an estimate of 

30 
the probability of observing the word w q given the history 
considered, Pr(w qlHq). In the n-gram probability case, this 
probability is specified by the equation 

(1) 

35 
where the context consists of n-1 words. In the case of the 

ing observation strings. An HMM is more likely to produce 
observation strings that would be observed from real utter-
ances of its associated phoneme. 40 

probabilistic finite state grammar, G, the relevant history 
comprises the present sentence up to the word w q' denoted 
Sq, provided it is in-grammar. The present history is 
in-grammar when the present sentence Sq is a subset of the 
probabilistic finite state grammar, or SqEG. Thus, the prob­
ability sought can be expressed as: Operation of the speech recognition system continues at 

step 408, at which the probability of the particular word 
sequence is computed using a language model. In one 
embodiment, a single language model is used, but the 
embodiment is not so limited. At step 410, the product of the 
probability of the acoustic sequence, computed at step 406, 
and the probability of the particular word sequence, com­
puted at step 408, are maximized. A word sequence output 

45 

is generated at step 412, the word sequence output repre-
50 

sentative of the received speech signals. 
FIG. 5 is a flowchart for producing the language model of 

one embodiment for use by the decoder in performing a 
hypothesis search. Operation begins at step 502, at which an 
n-gram probability is provided. A determination is made, at 55 
step 504, whether a sentence is in-grammar. When the 
sentence is not in-grammar, operation ends and only the 
n-gram probability is used. In cases where the sentence is 
determined to be in-grammar at step 504, operation contin-

(2) 

If Sq is not in-grammar, then typically Pr(W qlHq) will equal 
zero in equation 2; however, this case may be assigned a 
small non-zero probability E and re-normalize accordingly. 

Using equation 1, Pr(W qlw q-l w q-2 ... W q-n+i) is com­
puted from the training corpus as a relative frequency count. 
Using equation 2, Pr(W qlSqEG) is derived according to the 
type of grammar considered. For example, in the case of a 
simple word-pair grammar, then Pr(w qlSqEG) reduces to 
1\(w qw q-l EG), where 11 is the Kronecker operator. More 
elaborate grammars relying on parsing can lead to an 
arbitrarily complex expression. 

To integrate the finite state grammar paradigm and the 
n-gram paradigm as previously described, a computation is 
made of 

(3) 

ues at step 506, at which a finite state grammar probability 60 
is provided. The n-gram probability is modified, at step 508, 
based on information provided by the finite state grammar 
probability. The integrated language model is produced, at 
step 510. The detailed discussion of the generation of the 
integrated language model is now discussed. 

where the history, Hq, now comprises an n-gram component 
(H/nl) as well as a finite state grammar component (H/gl). 

65 Using the definition of a conditional probability, applying 
marginal probability expansion, and re-arranging, this 
expression can be rewritten as 

A potential solution to the problem of providing speech 
recognition in the intermediate case of a large vocabulary 
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(Pr(wq, H1n1)Pr(H1g11wq, H1n1)) 
Pr(wqlHq) = -----------I (Pr(w;IH4n1)Pr(H4g1lw;, H4n1)) 

(4) 

8 
yields a reduction in word error rate of approximately 15%. 
The real benefit of the integrated model is found in the 
comparison with the finite state grammar-based language 
model. If the test set is completely in-grammar 604, the finite 

WjEV 

where the summation in the denominator extends over all 
words in the underlying vocabulary, V, thereby reflecting the 
normalizing role of the denominator. 

The first term in the numerator of equation 4 corresponds 
to the n-gram probability as obtained in equation 1. The 
second term in the numerator of equation 4 carries the 
influence of the finite state grammar probability, which is 
consistent with the subordination approach discussed pre­
viously. In essence, cast in a Bayesian framework, equation 
4 translates the fact that the n-gram probability is modified 
based on the prior information provided by the finite state 
grammar probability. 

5 state grammar-based model performs relatively well with a 
word error rate of approximately two percent. But in the 
more realistic case where the test set is largely out-of 
grammar 606, the integrated language model 614 leads to an 
error rate of approximately five times lower. Thus, the 

10 integrated language model described herein results in an 
average reduction in word error rate of over 60% compared 
to the finite state grammar-based model 602 alone. This 
shows that the integrated model leads to a substantial 

15 increase in robustness. 

Thus, a method and an apparatus for a speech recognition 
system that uses a language model based on an integrated 
finite state grammar probability and an n-gram probability 
have been provided. Although the present invention has The second term in the numerator of equation 4 can be 

further expanded as 

(5) 

20 been described with reference to specific exemplary 
embodiments, it will be evident that various modifications 
and changes may be made to these embodiments without 
departing from the broader spirit and scope of the invention 
as set forth in the claims. Accordingly, the specification and 

25 drawings are to be regarded in an illustrative rather than a 
restrictive sense. where the factor Pr(H/gl) can be ignored since it will also 

appear in the denominator of equation 4. Furthermore, 
Pr(w q,H/nllH/g)) can be simplified by noting that if SqE G, 
then any subsentence of Sq is also in-grammar. Therefore, 
without loss of generality, Pr(w q,Hq (n)IHq (g)) reduces to 30 

Pr(w qlHq (gl). Combining, the integrated probability of equa­
tion 4 becomes 

(6) 

35 

which is an integrated n-gram probability-based language 40 

model incorporating prior information from the finite state 
grammar probability. 

An evaluation was conducted on the integrated model of 
one embodiment using several tests from the Advanced 
Research Projects Agency (ARPA) North American Busi- 45 

ness (NAB) News Corpus. For each speaker, 20,000-word 
speech recognition experiments were performed with an 
identical set of speaker-independent acoustic models, and 
one of five language models. The five language models used 
included: the standard ARPA bigram trained on 240 million 50 

words of the NAB corpus; a word-pair grammar constructed 
by pooling together all the test sets to simulate a "completely 
in-grammar" evaluation; a word-pair grammar constructed 
from an equivalent amount of training material to reflect a 
more likely "largely out-of-grammar" evaluation; the inte- 55 

grated bigram/grammar language model derived as 
described herein, using the grammar of the word-pair gram­
mar constructed from pooling together all the test sets as the 
grammar component; and the integrated bigram/grammar 
language model derived as described herein, using the 60 

grammar of the word-pair grammar constructed from an 
equivalent amount of training material as the grammar 
component. 

FIG. 6 shows the results of the evaluation of the integrated 
language model of one embodiment in terms of average 65 

word error rate across the models considered. Compared to 
the standard bigram 602, the integrated language model 614 

What is claimed is: 
1. A method for recognizing speech comprising: 

receiving speech signals into a processor; 
processing the received speech signals using a language 

model produced by integrating a finite state grammar 
probability and an n-gram probability with the finite 
state grammar probability being subordinated to the 
n-gram probability, wherein the language model com­
prises a probability that is specified by the equation 

Pr(wqlSq E G) 
Pr(wqlwq-! .. Wq-n+1J------­

Pr(wqwq-l .. Wq-n+I) 
Pr(wqlHq) = ---------~Pr~(w_;I_Sq~E_G_)_ 

:Z.: Pr(w;lwq-! .. Wq-n+1J------
WjEV Pr(wiwq-1 .. Wq-n+I) 

where, w q is the word about to be predicted, Hq is the 
admissible history for this particular word, G is the proba­
bilistic finite state grammar, Sq is the present sentence up to 
w q, and V is the vocabulary to which w q belongs; and 

generating a word sequence representative of the received 
speech signals. 

2. The method of claim 1, wherein the language model is 
used with at least one acoustic model to perform a hypoth­
esis search on an acoustic sequence to provide a word 
sequence output. 

3. The method of claim 2, wherein the at least one acoustic 
model is based on a hidden Markov model paradigm, 
wherein the at least one acoustic model comprises one 
model for each of at least one phonemes. 

4. An apparatus for speech recognition comprising: 
an input for receiving speech signals into a processor; 
a processor configured to recognize the received speech 

signals using a language model produced by integrating 
a finite state grammar paradigm and an n-gram 
paradigm, with the finite state grammar paradigm being 
subordinated to the n-gram paradigm, wherein the 
language model comprises a probability that is speci­
fied by the equation 
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where, w q is the word about to be predicted, Hq is the 
admissible history for this particular word, G is the proba­
bilistic finite state grammar, Sq is the present sentence up to 10 

w q, and V is the vocabulary to which w q belongs; and 
an output for providing a word sequence representative of 

the received speech signals. 
5. The apparatus of claim 4, wherein the processor is 

further configured to control a hypothesis search by a 15 
decoder, the decoder using inputs from the language model 
and from at least one acoustic model to execute the hypoth­
esis search. 

6. The apparatus of claim 5, wherein the at least one 
acoustic model is based on a hidden Markov model para- 20 
digm. 

7. A speech recognition process comprising a statistical 
learning technique that uses a language model produced by 
integrating a finite state grammar probability and an n-gram 
probability with the finite state grammar probability being 25 
subordinated to the n-gram probability, wherein the lan­
guage model comprises a probability that is specified by the 
equation 

30 

35 
where, w q is the word about to be predicted, Hq is the 
admissible history for this particular word, G is the proba­
bilistic finite state grammar, Sq is the present sentence up to 
w q, and V is the vocabulary to which w q belongs. 

8. The process of claim 7, wherein at least one acoustic 40 
model is used, the at least one acoustic model used with the 
language model in executing a hypothesis search on an 
acoustic sequence to provide a word sequence output. 

9. A computer readable medium containing executable 
instructions which, when executed in a processing system, 45 
causes the system to perform a method for recognizing 
speech comprising: 

receiving a speech signal into a processor; 
processing the received speech signal using a language 

model produced by integrating a finite state grammar 50 

probability and an n-gram probability with the finite 

10 
state gammar probability being subordinated to the 
n-gram probability, wherein the language model com­
prises a probability that is specified by the equation 

where, w q is the word about to be predicted, Hq is the 
admissible history for this particular word, G is the proba­
bilistic finite state grammar, Sq is the present sentence up to 
w q' and V is the vocabulary to which w q belongs; and 

generating a word sequence representative of the received 
speech signal. 

10. The computer readable medium of claim 9, wherein 
the language model is used with at least one acoustic model 
to perform a hypothesis search on an acoustic sequence to 
provide a word sequence output. 

11. A method for generating a language model for use in 
a speech recognition system comprising: 

integrating a finite state grammar probability and an 
n-gram probability with the finite state grammar prob­
ability being subordinated to the n-gram probability, 
wherein the language model comprises a probability 
that is specified by the equation 

Pr(wqlSq E G) 
Pr(wqlwq-! .. Wq-n+1J------­

Pr(wqwq-l .. Wq-n+I) 
Pr(wqlHq) = ----------Pr-(w_;I_Sq_E_G_)_ 

:Z.: Pr(w;lwq-! .. Wq-n+1J---~--
WjEV Pr(wiwq-1 .. Wq-n+I) 

where, w q is the word about to be predicted, Hq is the 
admissible history for this particular word, G is the proba­
bilistic finite state grammar, Sq is the present sentence up to 
w q, and V is the vocabulary to which w q belongs. 

12. The method of claim 11, further comprising using the 
language model along with at least one acoustic model to 
perform a hypothesis search on an acoustic sequence to 
provide a word sequence output. 

13. The method of claim 12, wherein the at least one 
acoustic model is based on a hidden Markov model 
paradigm, wherein the at least one acoustic model comprises 
one model for each of at least one phonemes. 

* * * * * 
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