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discuss computational models of phonological learning: how phonological 
rules can be automatically induced by machine learning algorithms.

Finally, we apply the transducer-based model of phonology to an im­
portant problem in text-to-speech systems: mapping from strings of letters 
to strings of phones. We first survey the issues involved in building a large 

: pronunciation dictionary, and then show how the transducer-based lexicons 
and spelling rules of Chapter 3 can be augmented with pronunciations to 

y map from orthography to pronunciation.
This chapter focuses on the non-probabilistic areas of computational 

linguistics and pronunciations modeling. Chapter 5 will turn to the role of 
probabilistic models, including such areas as probabilistic models of pronun­
ciation variation and probabilistic methods for learning phonological rules.

4.1 Speech Sounds and Phonetic Transcription

The study of the pronunciation of words is part of the field of phonetics, the phonetics 
study of the speech sounds used in the languages of the world. We will be 
modeling the pronunciation of a word as a string of symbols which represent 
phones or segments. A phone is a speech sound; we will represent phones phones 
with phonetic symbols that bears some resemblance to a letter in an alpha­
betic language like English. So for example there is a phone represented by I 
that usually corresponds to the letter I and a phone represented by p that usu­
ally corresponds to the letter p. Actually, as we will see later, phones have

■ much more variation than letters do. This chapter will only briefly touch 
on other aspects of phonetics such as prosody, which includes things like 
changes in pitch and duration.

This section surveys the different phones of English, particularly Amer­
ican English, showing how they are produced and how they are represented 
symbolically. We will be using two different alphabets for describing phones. 
The first is the International Phonetic Alphabet (IPA). The IPA is an evolv- ipa 
ing standard originally developed by the International Phonetic Association 
in 1888 with the goal of transcribing the sounds of all human languages. The 

■ IPA is not just an alphabet but also a set of principles for transcription, which 
differ according to the needs of the transcription, so the same utterance can 
be transcribed in different ways all according to the principles of the IPA. 
In the interests of brevity in this book we will focus on the symbols that are 
most relevant for English; thus Figure 4.1 shows a subset of the IPA sym­
bols for transcribing consonants, white Figure 4.2 shows a subset of the IPA
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IPA ARPAbet
Symbol Symbol Word

IPA
Transcription

ARPAbet 
Transcription

[p] [pl parsley 'parsli] [p aa r s 1 iy]
[t] [t] tarragon 'tasragan] [t ae r ax g aa n]
[k] [k] catnip 'kaetnip].. [k ae t n ix p]
[b] [b] bay bei] [bey]
[d] [d] dill dil] [d ih1]
[gl [g] garlic 'garlik] [gaarlixk]
[m] [m] mint 'mint]. [m ih n t]
[n] [n] nutmeg 'nAtmeg] [n ah t m eh g
[t|1 [ng] ginseng Msmsiij] [jh ih n s ix ng]
[f] : ' ; [T] ? fennel frill] [f eh n el]
[v] [v] clove klouv] [k 1 ow v]
[0] [th] thistle [’Oisl] [th ih s el]
[d] [dh] heather 'heda] | h eh dh axr]
W M sage seidj] [seyjh]
|z] [z] hazelnut ’heizlnAt] [heyzelnaht]
LIT [sh] squash skwaj] [skwash]
131 [zh] ambrosia eem'brougo] [ae m b r ow zh ax]
IMT [ch] chicory j ■ : [ch ih k axr iy ]

Ejh] sage seidg] . ■. .. [seyjh]
[1] [1] licorice [‘likH[] [1 ih k axr ix sh] J
[w] [w] kiwi ['kiwi] . [kiy wiy]
[r] [r] parsley [‘pursli] [paarsliy]
DI lyl yew iyu] [yuw]
[b] lh| horseradish horsimdif] [h ao r s r ae d ih sh]
RI Iql uh-oh ?a?oo] [qahqow]
[r] [dx] butter 'bAta] [b ah dx axr ]
[f] |nx] wintergreen wif a'grin] [w Th nx axr g r i n ]
[1] | el J ' < ■■ thistle ■ ■ Gisl . [th ih sell

Figure 4.1 IPA and ARPAbet 
consonants.

symbols for transcription of English

symbols for transcribing vowels.1 These tables also give the ARPAbet sym­
bols; ARPAbet (Shoup, 1980) is another phonetic alphabet, but one that is 
specifically designed for American English and which uses ASCII symbols;

1 For simplicity we use the symbol [t] for the American English sound, rather than the 
more-standard IPA symbol p .
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it can be thought of as a convenient ASCII representation of an American- 
English subset of the IPA. ARPAbet symbols are often used in applications 
where non-ASCII fonts are inconvenient, such as in on-line pronunciation 
dictionaries.

Many of the IPA and ARPAbet symbols are equivalent to the Roman 
letters used in the orthography of English and many other languages. So for 
example the IPA and ARPAbet symbol [p] represents the consonant sound at 

2 Thelast phone, -u7|ux|, is quite rare in general American English and indeed is an “ex­
tension” not present in the original ARPAbet. Labov (1994) notes that the realization of a 
fronted [uw] as [ux]. has made it more common in (at least) Western and Northern Cities di- 
alccts of American English starting in the late 1970s. This fronting was first called to public 
by imitations arid recordings of ‘Valley Girls’ speech by Moon Zappa (Zappa arid Zappa. 
1982). Nevertheless; for most speakers [uw] is still much more common than [ux] in words 

f ]^ dude. ,)

IPA ARPAbet
Symbol Symbol

IPA ARPAbet
TranscriptionWord Transcription

Uy 1. lily 'lili] [lihliy]
l’hl lily M [lihliy]

[ci] ley 1 -T daisy dcrzi] [deyzi]
Jc . teh] poinsettia pom’serio] |p oy n s eh dx iy ax]
H iacl aster AAA; [ae s t axr]
[a [aa] poppy ]papi] [paapi]
[)] [ao] orchid Arkid] [ao r k ix d]
[u |uh] woodruff wudr'Af] [w uh d r ah fJ
[ou] |ow I lotus 'lourosj [1 ow dx ax s]
u] [uw] tulip 'tulip]. .. [tuwlixp]

] a] y v [uh] buttercup bAi ?f kAp] [b uh dx axr k uh p]
[er] bird ; brd] [berd]

at] |ay] iris 'arris] [ay r ix s]
[au] [aw] sunflower AAnflauA] [s ah n f 1 aw axr]
[<h] [oy] A A poinsettia poin'srria] [p oy n s eh dx iy ax]
[juj [yuw] feverfew fiv^fju] [fiyvaxrfyu]

Wl?:- [ax] ; ;A? woodruff 'wudrof] [w uh d r ax f]
[i] . ■ [ix] tulip ’tulip] [t uw 1 ix p]
A] [axr] heather 'heSA [h eh dh axr]
[u] :. [UX] dude A dud] [d ux d]

Figure 4.2 IPA and ARPAbet symbols for transcription of English vowels.
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the beginning of platypus, puma, and pachyderm, the middle of leopard, or 
the end of antelope (note that the final orthographic e of antelope does not 
correspond to any final vowel; the p is the last sound).

The mapping between the letters of English orthography and IPA sym­
bols is rarely as simple as this, however. This is because the mapping be­
tween English orthography and pronunciation is quite opaque; a single letter 
can represent very different sounds in different contexts. Figure 4.3 shows 
that the English letter c is represented as IPA [k] in the word cougar, but IPA 
[s] in the word civet Besides appearing as c and k, the sound marked as [k] 
in the IPA can appear as part of x (fox), as ck (jackal), and as cc (raccoon). 
Many other languages, for example Spanish, are much more transparent in 
their sound-orthography mapping than English.

Word 
IPA 
AKPAbet

jackal
. .. ['dsm.kl] 

[jh ae k el j

raccoon 1
[rae.'kun] 
[r ae k uw n] j

cougar 
[ku.g^].
[k uw g axr]

civet
< [si.vit] A 

[s ih v ix t]

Figure 4.3 The mapping between IPA symbols and letters in English or­
thography is complicated; both IPA [k] and English orthographic [c] have 
many alternative realizations.

The Vocal Organs

We turn now to articulatory phonetics, the study of how phones are pro­
duced, as the various organs in the mouth, throat, and nose modify the airflow 
from the lungs.

Sound is produced by the rapid movement of air. Most sounds in hu­
man spoken languages are produced by expelling air from the lungs through 
the windpipe (technically the trachea) and then out the mouth or nose. As 
it passes through the trachea, the air passes through the larynx, commonly 
known as the Adam’s apple or voicebox. The larynx contains two small 
folds of muscle, the vocal folds (often referred to non-technically as the vo­
calcords) which can be moved together or apart. The space between these

go

■

glottis two folds i s called the glottis. If the folds are close together (but not lightly 
closed), they will vibrate as air passes through them; if they are far apart, 
they won’t vibrate. Sounds made with the vocal folds together and vibrating 

voiced are called voiced; sounds made without this vocal cord vibration are called
unvoiced unvoiced or voiceless. Voiced sounds include [b], [d), [g], [v], [z], and all
voiceless the English vowels, among others. Unvoiced sounds include [p], [t], [k], [f], 

■ [z], and others.. 1 j
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The area above the trachea is called the vocal tract, and consists of the 
oral tract and the nasal tract. After the air leaves the trachea, it can exit the 
body through the mouth or the nose. Most sounds are made by air passing 
through the mouth. Sounds made by air passing through the nose are called 
nasal sounds; nasal sounds use both the oral and nasal tracts as resonating sounds 

cavities; English nasal sounds include m, and n, and ng.
Phones are divided into two main classes: consonants and vowels, consonants 

i Both kinds of sounds are formed by the motion of air through the mouth, vowels
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throat or nose. Consonants are made by restricting or blocking the airflow in 
some way, and may be voiced or unvoiced. Vowels have less obstruction, are 
usually voiced, and are generally louder and longer-lasting than consonants, 
The technical use of these terms is much like the common usage; [p], [b], 
[t], [d], [k], [g], [f], [v], [s], fz], fr], [1], etc., are consonants; [aa], [ae], [aw], 
[ao], [ih], [aw], [ow], [uw], etc., are vowels. Semivowels (such as [y] and 
[w]) have some of the properties of both; they are voiced like vowels, but ’ 
they are short and less syllabic like consonants. s

PLACE

Consonants: Place of Articulation

Because consonants are made by restricting the airflow in some way, con­
sonants can be distinguished by where this restriction is made: the point 
of maximum restriction is called the place of articulation of a consonant. 
Places of articulation, shown in Figure 4.5, are often used in automatic 
speech recognition as a useful way of grouping phones together into equiva­
lence classes: ' "

LABIAL

DENTAL >

• labial: Consonants whose main restriction is formed by the two lips ; 
coming together have a bilabial place of articulation. In English these | 
include [p] as in possum, [b] as in bear, and [m] as in marmot. The En- / 
glish labiodental consonants [v] and [Q are made by pressing the bot­
tom lip against the upper row of teeth and letting the air flow through i 
the space in the upper teeth.:

• dental: Sounds that are made by placing the tongue against the teeth ' 
• .. j7...;. ......
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are dentals. The main dentals in English are the [0] of thing or the [3] 
of though, which are made by placing the tongue behind the teeth with 
the tip slightly between the teeth.

• alveolar: The alveolar ridge is the portion of the roof of the mouth just alveolar 

behind the upper teeth. Most speakers of American English make the 
phones [s], [z], [t], and [d] by placing the tip of the tongue against the 
alveolar ridge.

• palatal: The roof of the mouth (the palate) rises sharply from the palatal 

back of the alveolar ridge. The palato-alveolar sounds [J] (shrimp), palate 

[tf (chinchilla), [3] (Asian), and [dj] (jaguar) are made with the blade 
of the tongue against this rising back of the alveolar ridge. The palatal 
sound [y] of yak is made by placing the front of the tongue up close to 
the palate.

• velar: The velum or soft palate is a movable muscular flap at the very velar 

back of the roof of the mouth. The sounds [k] (cuckoo), [g] (goose), velum 

and [g] (kingfisher) are made by pressing the back of the tongue up 
against the velum.

• glottal: The glottal stop [?] is made by closing the glottis (by bringing glottal 

1. the vocal folds together).

Consonants: Manner of Articulation

Consonants are also distinguished by how the restriction in airflow is made, 
for example whether there is a complete stoppage of air, or only a partial

: blockage, etc. This feature is called the manner of articulation of a conso- manner 

riant The combination of place and manner of articulation is usually suffi­
cient to uniquely identify a consonant. Here are the major manners of artic­
ulation for English consonants:

• stop: A stop is a consonant in which airflow is completely blocked stop 

for a short time. This blockage is followed by an explosive sound as 
the air is released. The period of blockage is called the closure and 
the explosion is called the release. English has voiced stops like [b], 
[d], and [g] as well as unvoiced stops like [pL [tk and [k]. Stops are

. ; also called plosives. It is possible to use a more narrow (detailed) tran­
scription style to distinctly represent the closure and release parts of 
a stop, both in ARPAbet and IPA-style transcriptions. For example 

l the closure of a [pl. |t|, or [k| would be represented as [pci], [tel], or 
[kcl] (respectively) in the ARPAbet, and |p'|, T]. or [kj (respectively)



100 Chapter 4. Computational Phonology and Text-to-Speech

NASALS

FRICATIVE

SIBILANTS

APPROXIMANT

TAP

FLAP

in IPA style. When this form of narrow transcription is used, the un­
marked ARPABET symbols [p], [t], and [k] indicate purely the release 
of the consonant. We will not be using this narrow transcription style 
in this chapter.

• nasals: The nasal sounds [n], [m], and [ij] are made by lowering the 
velum and allowing air to pass into the nasal cavity.

• fricative: In fricatives, airflow is constricted but not cut off completely. 
The turbulent airflow that results from the constriction produces a char­
acteristic “hissing” sound. The English labiodental fricatives [f] and [v] 
are produced by pressing the lower lip against the upper teeth, allow­
ing a restricted airflow between the upper teeth. The dental fricatives 
[0] and [3] allow air to flow around the tongue between the teeth. The 
alveolar fricatives [s] and [z] are produced with the tongue against the 
alveolar ridge, forcing air over the edge of the teeth. In the palato- 
alveolar fricatives [J] and [3] the tongue is at the back of the alveolar 
ridge forcing air through a groove formed in the tongue. The higher- 
pitched fricatives (in English [s], [z], [1 and [3]) are called sibilants. 
Stops that are followed immediately by fricatives are called affricates; 
these include English [tf] (chicken} and [33] (giraffe).

• approximant: In approximants, the two articulators are close together 
but not close enough to cause turbulent airflow. In English [y] (yellow), 
the tongue moves close to the roof of the mouth but not close enough 
to cause the turbulence that would characterize a fricative. In English 
[w] (wormwood), the back of the tongue conies close to the velum. 
American [r] can be formed in at least two ways; with just the tip of 
the tongue extended and close to the palate or with the whole tongue 
bunched up near the palate. [1] is formed with the tip of the tongue up 
against the alveolar ridge or the teeth, with one or both sides of the 
tongue lowered to allow air to flow over it. [1] is called a lateral sound 
because of the drop in the sides of the tongue.

• tap: A tap or flap [r] is a quick motion of the tongue against the alve­
olar ridge. The consonant in the middle of the word lotus ([lourosl) is 
a tap in most dialects of American English; speakers of many British 
dialects would use a [t] instead of a tap in this word.

Vowels

Like consonants, vowels can be characterized by the position of the articu­
lators as they are made. The two most relevant parameters for vowels are
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what is called vowel height, which correlates roughly with the location of 
the highest part of the tongue, and the shape of the lips (rounded or not). 
Figure 4.6 shows the position of the tongue for different vowels.

heed [iy] had [ae] who’d [uw|

Figure 4.6 Positions of the tongue for three English vowels, high front [iy], 
low front [ae] and high back [uw]; tongue positions modeled after Ladefoged 
(1996).

In the vowel [ij, for example, the highest point of the tongue is toward 
the front of the mouth. In the vowel [u], by contrast, the high-point of the 
tongue is located toward the back of the mouth. Vowels in which the tongue 
is raised toward the front are called front vowels; those in which the tongue 
is raised toward the back are called back vowels. Note that while both [t] 
and [e] are front vowels, the tongue is higher for [i] than for [e], Vowels in 
wh ich the highest point of the tongue is comparatively high are called high 
vowels; vowels with mid or low values of maximum tongue height are called 
mid vowels or low vowels, respectively.

Figure 4.7 shows a schematic characterization of the vowel height of 
different vowels. It is schematic because the abstract property height only 
correlates roughly with actual tongue positions; it is in fact a more accurate 
reflection of acoustic facts. Note that the chart has two kinds of vowels; 
those in which tongue height is represented as a point and those in which it 
is represented as a vector. A vowels in which the tongue position changes 
markedly during the production of the vowel is diphthong. English is par­
ticularly rich in diphthongs; many are written with two symbols in the IPA 
(for example the [ei] of hake or the [ou] of cobra).

The second important articulatory dimension for vowels is the shape 
of the lips. Certain vowels are pronounced with the lips rounded (the same 

jB lip shape used for whistling). These rounded vowels include [u], [o], and the 
diphthong [ou].

FRONT

BACK

HIGH

DIPHTHONG

ROUNDED
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V y uw

Figure 4.7 Qualities of English vowels (after Ladefoged (1993)).

Syllables ■■■ • •
■ ; \ -III
syllable Consonants and vowels combine to make a syllable. There is no completely J

agreed-upon definition of a syllable; roughly speaking a syllable is a vowel- 
like sound together with some of the surrounding consonants that are most 
closely; associated with it The IPA period symbol [.] is used to separate 
syllables, so parsley and catnip have two syllables ([‘pax.sli] and [keet.nip] 
respectively), tarragon has three ['tas.ro.gan], and dill has one ([dil]). A syl­
lable is usually described as having an optional initial consonant or set of

onset consonants called the onset, followed by a vowel or vowels, followed by a
final consonant or sequence of consonants called the coda. Thus d is the 
onset of [dil], while 1 is the coda. The task of breaking up a word into sylla

syllabification bles is called syllabification. Although automatic syllabification algorithms
exist, the problem is hard, partly because there is no agreed-upon definition [ 
of syllable boundaries. Furthermore, although it is usually clear how many | 
syllables are in a word, Ladefoged (1993) points out there are some words ] 
(meal, teal, seal, hire, fire, hour) that can be viewed either as having one! 
syllable or two. ToTA

In a natural sentence of American English, certain syllables are mpO
accented prominent than others. These are called accented syllables. Accented sylla- j

bles may be prominent because they are louder, they are longer; they are as­
sociated with a pitch movement, or any combination of the above. Since ac-<] 
cent plays important roles in meaning, understanding exactly why a speaker]

front
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chooses to accent a particular syllable is very complex. But one important 
factor in accent is often represented in pronunciation dictionaries. This fac­
tor is called lexical stress. The syllable that has lexical stress is the one that 
will be louder or longer if the word is accented. For example the word pars­
ley is stressed in its first syllable, not its second. Thus if the word parsley 
is accented in a sentence, it is the first syllable that will be stronger. We 
write the symbol ['] before a syllable to indicate that it has lexical stress (e.g. 
['par ,sli]). This difference in lexical stress can affect the meaning of a word. 
For example the word content can be a noun or an adjective. When pro­
nounced in isolation the two senses are pronounced differently since they 
have different stressed syllables (the noun is pronounced [ kan.trnt]) and the 
adjective [kon.'tent]. Other pairs like this include object (noun [’ab-djekt] 
and verb [ob.'dgekt]); see Cutler (1986) for more examples. Automatic dis­
ambiguation of such homographs is discussed in Chapter 17. The role of homographs 

prosody is taken up again in Section 4.7.

4.2 The Phoneme and Phonological Rules

’Scuse me, while I kiss the sky 
Jimi Hendrix, Purple Haze 

’Scuse me, while I kiss this guy 
Common mis-hearing of same lyrics

All [tls are not created equally. That is, phones are often produced 
differently in different contexts. For example, consider the different pro­
nunciations of [t] in the words tunafish and starfish. The [t] of tunafish is 
aspirated. Aspiration is a period of voicelessness after a stop closure and 
before the onset of voicing of the following vowel. Since the vocal cords are 
not vibrating, aspiration sounds like a puff of ah after the [t] and before the 
vowel. By contrast, a [t] following an initial [s] is unaspirated; thus the [t] unaspirated 

in starfish ([storfij]) has no period of voicelessness after the [t] closure. This 
variation in the realization of [t] is predictable: whenever a [t] begins a word 
or unreduced syllable in English, it is aspirated. The same variation occurs 
for [k]; the [k] of sky is often mis-heard as [g] in Jimi Hendrix’s lyrics because 
[k] and [g] are both unaspirated. In a very detailed transcription system we 
could use the symbol for aspiration [h] after any [t] (or [k] or [p]) which be­
gins a word or unreduced syllable. The word tunafish would be transcribed 
[thunofi[j (the ARPAbet does not have a way of marking aspiration).
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There are other contextual variants of [t]. For example, when [t] occurs 
between two vowels, particularly when the first is stressed, it is pronounced 
as a tap. Recall that a tap is a voiced sound in which the top of the tongue 
is curled up and back and struck quickly against the alveolar ridge. Thus the 
word buttercup is usually pronounced [bAf3ikAp]/[b uh dx axr k uh p] rather 
than [bAta*kAp]/[b uh t axr k uh p].

Another variant of [t] occurs before the dental consonant [9]. Here the 
[t] becomes dentalized ([t]). That is, instead of the tongue forming a closure 
against the alveolar ridge, the tongue touches the back of the teeth.

How do we represent this relation between a [t] and its different real­
izations in different contexts? We generally capture this kind of pronunci­
ation variation by positing an abstract class called the phoneme, which is 
realized as different allophones in different contexts. We traditionally write 
phonemes inside slashes. So in the above examples, /t/ is a phoneme whose

■A

hallophones include [th], [r], and [t]. A phoneme is thus a kind of general-
ization or abstraction over different phonetic realizations. Often we equate 
the phonemic and the lexical levels, thinking of the lexicon as containing 
transcriptions expressed in terms of phonemes. When we are transcribing 
the pronunciations of words we can choose to represent them at this broad 
phonemic level; such a broad transcription leaves out a lot of predictable 

transcription phonetic detail. We can also choose to use a narrow transcription that 
includes more detail, including allophonic variation, and uses the various di­
acritics. Figure 4.8 summarizes a number of allophones of /t/; Figure 4.9 
shows a few of the most commonly used IPA diacritics.

■ ■/

Phone Environment Example IPA

■
LT 
W-
tn
T

in initial position
after [s] or in reduced syllables 
word-finally or after vowel before [n]
sometimes word-finally
between vowels
before consonants or word-finally
before dental consonants ([9]) 
sometimes word-finally

toucan 
starfish 
kitten
cat 
buttercup 
fruitcake 
eighth 
past

thukh<en' 
storli^ 
khi?n] 
kh?e?t] 
[bAra-f^Ap] 
[frutkheik 
jeitG] I

[paes] J
Figurej 4.8 Some allophones of ZtZ in General American English.
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The relationship between a phoneme and its allophones is often cap- 
turcd by writing a phonological rule. Here is the phonological rule for den- 
talization in the traditional notation of Chomsky and Halle (1968):

/‘MH/—0 (4.1)

In this notation, the surface allophone appears to the right of the arrow, 
and the phonetic environment is indicated by the symbols surrounding the 
underbar (__ ). These rules resemble the rules of two-level morphology of
Chapter 3 but since they don’t use multiple types of rewrite arrows, this rule 
ts ambiguous between an obligatory or optional rule. Here is a version of the
Sapping rule:

(4-2)

Diacritics Suprasegmentals
• a
\ h

!

Voiceless 
Aspirated 
Syllabic 
Nasalized 
Unreleased 
Dental

a] . . 
[ph] 
Bl­
as] 
U].
I;

A . 

▼

Primary stress 
Secondary stress 
Long
Half long
Syllable break

'pu.mo]
'four^grasf]
ai]
a’]
‘pu.moj

Figure 4.9 Some of the IPA diacritics and symbols for suprasegmentals.

4.3 Phonological Rules and Transducers

Chapter 3 showed that spelling rules can be implemented by transducers. 
Phonological rules can be implemented as transducers in the same way; 
indeed the original work by Johnson (1972) and Kaplan and Kay (1981) 
on finite-state models was based on phonological rules rather than spelling 
rules. There are a number of different models of computational phonol­
ogy that use finite automata in various ways to realize phonological rules. 

:/ We will describe the two-level morphology of Koskenniemi (1983) used in
Chapter 3, but the interested reader should be aware of other recent models.3 

While Chapter 3 gave examples of two-level rules, it did not talk about the
3 One example is Bird and Ellison’s (1994) model of the multi-tier representations of au- 
tosegmcntal phonology in which each phonological tier is represented by a finite-state au­
tomaton, and autosegmental association by the synchronization of two automata.
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motivation for these rules, and the differences between traditional ordered - 
rules and two-level rules. We will begin with this comparison.

As a first example, Figure 4.10 shows a transducer which models the , 
application of the simplified flapping rule in (4.3):

/t/^[r]/V__ V (4.3)

V:@

Figure 4.10 Transducer for English Flapping: ARPAbet “dx” indicates a f 
flap, and the “other” symbol means “any feasible pair not used elsewhere in 4 
the transducer”. “@” means “any symbol not used elsewhere on any arc”. 3

The transducer in Figure 4.10 accepts any string in which flaps occur < 
in the correct places (after a stressed vowel, before an unstressed vowel), and 4 
rejects strings in which flapping doesn’t occur, or in which flapping occurs 
in the wrong environment. Of course the factors that flapping are actually a 4 

, good deal more complicated, as we will see in Section 5.7. J
In a traditional phonological; system, many different phonological rules 

apply between the lexical form and the surface form. Sometimes these rules 4 
interact; the output from one rule affects the input to another rule. One 
way to implement rule-interaction in a transducer system is to run transduc- " 
ers in a cascade. Consider, for example, the rules that are needed to deal 
with the phonological behavior of the English noun plural suffix -s. This I 
suffix is pronounced [iz] after the phones [sj, [J], [zj, or [3] (so peaches is pro- -'J 
nounccd [pitjiz], arid faxes is pronounced [fasksiz]), [z] after voiced sounds 
(pigs is pronounced [pigz]), and [sj after unvoiced sounds (cats is pronounced | 
[kaets]). We model this variation by writing phonological rules for the rcal-4 
ization of the morpheme in different contexts. We first need to choose one of 
these three forms (s, z, and iz) as the “lexical” pronunciation of the suffix; we f
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chose z only because it turns out to simplify rule writing. Next we write two 
phonological rules. One, similar to the E-insertion spelling rule of page 77, 
inserts a [i] after a morpheme-final sibilant and before the plural morpheme 
[z], The other makes sure that the -y suffix is properly realized as [s] after 
unvoiced consonants.

£ —> i /[+ sibilant] " — z # (4.4)

z > s/[-voice] ' # (4.5)

These two rules must be ordered’, rule (4.4) must apply before (4.5). 
This is because the environment of (4.4) includes z, and the rule (4.5) changes 
z. Consider running both rules on the lexic al form fox concatenated with the 
plural -s\

Lexical form: faks'z
(4.4) applies: faks'iz
(4.5) doesn’t apply: faks^iz

ffffy If the devoicing rule (4.5) was ordered first, we would get the wrong 
7 result (what would this incorrect result be?). This situation, in which one 

rule destroys the environment for another, is called bleeding:4

Lexical form: faks^z
(4.5) applies: foks's
(4.4) doesn’t apply: faks's

As was suggested in Chapter 3, each of these rules can be represented 
by a transducer. Since the rules are ordered, the transducers would also need 
to be ordered. For example if they are placed in a cascade, the output of the 
first transducer would feed the input of the second transducer.

Many rules can be cascaded together this way. As Chapter 3 discussed, 
running a cascade, particularly one with many levels, can be unwieldy, and 
so transducer cascades are usually replaced with a single more complex 
transducer by composing the individual transducers.

Koskennicmik method of two-level morphology that was sketchily 
introduced in Chapter 3 is another way to solve the problem of rule ordering. 
Koskcnnicmi (1983) observed that most phonological rules in a grammar 
are independent of one another; that feeding and bleeding relations between

If we had chosen to represent the lexical pronunciation of -.r as [s] rather than [zj, we would 
have written the rule inversely to voice the S after voiced sounds, but the rules would still 
need to be ordered; the ordering would simply flip.
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rules are not the norm.5 Since this is the case, Koskenniemi proposed that 
phonological rules be run in parallel rather than in series. The cases where 
there is rule interaction (feeding or bleeding) we deal with by slightly modi­
fying some rules. Koskenniemi’s two-level rules can be. thought of as a way 
of expressing declarative constraints on the well-formedness of the lexical- 
surface mapping.

Two-level rules also differ from traditional phonological rules by ex­
plicitly coding when they are obligatory or optional, by using four differing 
rule operators; the rule corresponds to traditional obligatory phonolog­
ical rules, while the => rule implements optional rules: 

Rule type
a: b 4= c — d
a: b => c__ d 
a:b44c— d
a: b /4= c d

Interpretation
a is always realized as b in the context c__ d 
a may be realized as b only in the context c__ d 
a must be realized as b in context c — d and nowhere else 
a is never realized as b in the context c__ d

The most important intuition of the two-level rules, and the mechanism 
that lets them avoiding feeding and bleeding, is their ability to represent 
constraints on two levels. This is based on the use of the colon (“:”), which 
was touched in very briefly in Chapter 3. The symbol a:b means a lexical 
a that maps to a surface b. Thus a:b :c — means a is realized as b 
after a surface c. By contrast a:b c; _ means that a is realized as b 
after a lexical c; As discussed in Chapter 3, the symbol c with no colon is 
equivalent to c:c that means a lexical c which maps to a surface c.

Figure 4.11 shows an intuition for how the two-level approach avoids 
ordering for the i-insertion and z-devoicing rules. The idea is that the / 
devoicing: rule maps a lexical z-insertion to a surface s and the i rule refers 
to the ZexzW z:

The two-level rules that model this constraint are shown in (4.6) 
and (4.7): A:;-

e : i < > [+sibilant]: A _ z: ' ■' (4.6)
z:s o [-voice]: ~ # ........................(4.7)

As Chapter 3 discussed, there are compilation algorithms for creating 
automata from rules; Kaplan arid Kay (1994) give the general derivation of 
these algorithms, and Antworth (1990) gives one that is specific to two-level 
rules. The automata corresponding to the two rules are shown in Figure 4 12

5 / Feeding is a situation in which one rales creates the environment for another rale and so 
must be ran beforehand.
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("l+sib] /a 
[-voice] /

lexica! level

ix s surface level

Figure 4.11 The constraints for the i-insertion and z-devoicing rules both 
refer to a lexical z, not a surface s.

and Figure 4.13. Figure 4.12 is based on Figure 3.14 of Chapter 3; see page 
78 for a reminder of how this automaton works. Note in Figure 4.12 that 
the plural morpheme is represented by z:. indicating that the constraint is 
expressed about an lexical rather than surface z.

other

other

#, other

Figure 4.12 The transducer for the i-insertion rule 4.4. The rule can be 
read whenever a morpheme ends in a sibilant, and the following morpheme is 
z, insert [i].

Figure 4.14 shows the two automata run in parallel on the input [foks * z] 
(the figure uses the ARPAbet notation [f aa k s " z]). Note that both the au­
tomata assuming the default mapping ":e to remove the morpheme boundary, 
and that both automata end in an accepting state.
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Intermediate

ix-insertion

z-devoicing

Surface f aa k IXs

Figure 4.14 The transducer for the i-insertion rule 4.4 and the z-devoicing 
rule 4.5 run in parallel.

f aa k s

4.4 Advanced Issues in Computational Phonology

Harmony

Rules like flapping, i-insertion, and z-devoicing are relatively simple as pho­
nological rules go. In this section we turn to the use of the two-level or finite- 
state model of phonology to model more sophisticated phenomena; this sec­
tion will be easier to follow if the reader has some knowledge of phonology. 
The Yawelmani dialect of Yokuts is a Native American language spoken in 
California with a complex phonological system. In particular, there are three 
phonological rules related to the realization of vowels that had to be ordered 
in traditional phonology and whose interaction thus demonstrates a compli­
cated use of finite-state phonology. These rales were first drawn up in the
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traditional Chomsky and Halle (1968) format by Kisseberth (1969) follow­
ing the field work of Newman (1944).

First, Yokuts (like many other languages including for example Turk­
ish and Hungarian) has a phonological phenomenon called vowel harmony, harmony 

Vowel harmony is a process in which a vowel changes its form to look like 
a neighboring vowel. In Yokuts, a suffix vowel changes its form to agree 
in backness and roundness with the preceding stem vowel. That is, a front 
vowel like /i/ will appear as a backvowel [u] if the stem vowel is /u/ (ex-

; amp are taken from Cole and Kisseberth (1995):0

Lexical Surface Gloss
.■■■A '., dub+hin dubhun “tangles, non-future”

xil+hin —> xilhin “leads by the hand, non-future” 
bok’+al -> bok’ol “might eat”
xat’+al > xat’al “might find”

v.-v This Harmony rule has another constraint: it only applies if the suffix 
vowel and the stem vowel are of the same height. Thus /u/ and /i/ are both 
high, while /o/ and /a/ are both low.

The second relevant rule, Lowering, causes long high vowels to be­
come low; thus /u:/ becomes [oi] in the first example below:

Lexical Surface Gloss
?uit’+it —k Toit’ut “steal, passive aorist” 
miik’-f-it -> meik’+it “swallow, passive aorist”

The third rule, Shortening, shortens long vowels if they occur in closed
syllables:

Lexical Surface 
s:ap+hin —> saphin
suduik+hin -> sudokhun

The Yokuts rules must be ordered, just as the i-insertion and z-devoicing 
rules had to be ordered. Harmony must be ordered before Lowering because 
thc /ui/ in the lexical form /?uit’+it/ causes the /i/ to become m] before it 
lowers in the surface form [?oit hit;. Lowering must be ordered before Short­
ening because the /m/ in /suduik+hin/ lowers to [o]; if it was ordered after 
shorten ing it would appear on the surface as jf.

Goldsmith (1.993) and Lakoff (1993) independently observed that the 
Yokuts data could be modeled by something like a transducer; Karttunen

+ + For purposes of simplifying the explanation, this account ignores some parts of the system 
such as vowel underspecification (Archangeti, 1984). :
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(1998) extended the argument, showing that the Goldsmith and Lakoff con­
straints could be represented either as a cascade of three rules in series, or in 
the two-level formalism as three rules in parallel; Figure 4.15 shows the two 
architectures. Just as in the two-level examples presented earlier, the rules 
work by referring sometimes to the lexical context, sometimes to the surface 
context; writing the rules is left as Exercise 4.10 for the reader.

Lexical u: t + ( h | i n j r u: t + | h i n
i

t ■

Rounding !

. Lowering j
• 0,. •. | '•

Shortening >
———

।——1—। 
। Rounding |

1 I———

1

। Lowering [

r.

-__1____ •• 1_______1
^Shortening} ; 
■

Surface 7 0 t h u n । 23 r o t h )u n □2
a) Cascade of rules. b) Parallel two-level rules.

Figure 4.15 Combining the rounding, lowering, and shortening rules for 
Yawelmani Yokuts.

Templatic Morphology

Finite-state models of phonology/morphology have also been proposed for 
the templatic (non-concatenative) morphology (discussed on page 60) com­
mon in Semiticlanguages like Arabic, Hebrew, and Syriac. McCarthy (1981) 
proposed that this kind of morphology could be modeled by using different 

tiers levels of representation that Goldsmith (1976) had called tiers. Kay (1987) 
proposed a computational model of these tiers via a special transducer which 
reads four tapes instead of two, as in Figure 4.16.

The tricky part here is designing a machine which aligns the various 
strings on the tapes in the correct way; Kay proposed that the binyan tape 
could act as a sort of guide for alignment. Kay’s intuition has led to a number 
of more fully worked out finite-state models of Semitic morphology such as 
Beesley’s (1996) model for Arabic and Kiraz’s (1997) model for Syriac.

The more recent work of Komai (1991) and Bird and Ellison (1994) 
showed how bne-tape automata (i.e. finite-state automata rather than four- 
tape or even two-tape transducers) could be used to model templatic mor­
phology and other kinds of phenomena that arc handlced with the tier-based 

autosegmental autosegmerital representations of Goldsmith (1976).
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Figure 4.16 A finite-state model of templatic (“non-concatenative”) mor­
phology. Modified from Kay (1987) and Sproat (1993).

Optimality Theory

In a traditional phonological derivation, we are given an underlying lexical
A form and a surface form. The phonological system then Consists of one com­

ponent: a sequence of rules which map the underlying form to the surface 
form. Optimality Theory (OT) (Prince and Smolensky, 1993) offers an al- t™rylity

7 tentative way of viewing phonological derivation, based on two functions ot 

(GEN and EVAL) and a set of ranked viol able constraints (CON). Given an 
underlying form, the GEN function produces all imaginable surface forms, 
even those which couldn’t possibly be a legal surface form for the input. The

? EVAL function then applies each constraint in CON to these surface forms in 
order of constraint rank. The surface form which best meets the constraints

7 is chosen.
A constraint in OT represents a wellformedness constraint on the sur­

face form, such as a phonotactic constraint on what segments can follow each 
other, or a constraint on what syllable structures are allowed. A constraint 
can also check how faithful the surface form is to the underlying form. faithful

Let's turn to our favorite complicated language, Yawelmani, for an ex-
i \ ( ample.7 In addition to the interesting vowel harmony phenomena discussed 

above, Yawelmani has a phonotactic constraints that rules out sequences of 
consonants. In particular three consonants in a row (CCC) are not allowed 
to occur in a surface word. Sometimes, however, a word contains two con­
secutive morphemes such that the first one ends in two consonants and the 
second one starts with one consonant (or vice versa). What does the lan-

7 The following explication of OT via the Yawelmani example draws heavily from
; Archangel! (1997) and a lecture by Jennifer Cole at the 1999 LSA Linguistic Institute.
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guage do to solve this problem? It turns out that Yawelmani either deletes 
one of the consonants or inserts a vowel in between.

For example, if a stem ends in a C, and its suffix starts with CC, the |f 
first C of the suffix is deleted (“+” here means a morpheme boundary):

C-deletion C~>e/C +__ C (4.8)

Here is an example where the CCVC “passive consequent adjunctive” mor­
pheme hneil (actually the underlying form is /hnil/) drops the initial C if 
the previous morpheme ends in two consonants (and an example where it 
doesn’t, for comparison):

underlying
morphemes gloss
diyel-ne:l-aw “guard - passive consequent adjunctive - locative” 
cawa-hnerl-aw “shout - passive consequent adjunctive - locative” i

If a stem ends in CC and the suffix starts with C, the language instead 
inserts a vowel to break up the first two consonants:

V-insertion £ -> V/C_C+C (4.9)

Here are some examples in which an i is inserted into the roots ?ilk- “sing” 
and the roots logw- “pulverize” only when they are followed by a C-initial 
suffix like -hin, “past”, not a V-initial suffix like -en, “future”: ?

surface form gloss
?ilik-hin “sang”
?ilken “will sing”
logiwhin “pulverized” ;
logwen “will pulverize”

Kisseberth (1970) suggested that it was not a coincidence that Yawel­
mani had these particular two rules (and for that matter other related deletion ; 
rules that we haven’t presented). He noticed that these rules w?ere function- ' 
ally related; in particular, they all are ways of avoiding three consonants in a ; 
row. Another way of stating this generalization is to talk about syllable struc- 
ture. Yawelmani syllables are only allowed to be of the form CVC or CV i 
(where C means a consonant and V means a vowel). We say that languages J 

®EX like Yawelmani don’t allow complex onsets or complex codas. From the :
^LEX point of view of syllabification, then, these insertions and deletions all hap- j

pen so as to allow Yawelmani words to be properly syllabified. Since CVCC , 
resyuabihed syllables aren’t allowed on the surface, CVCC roots must be resyllabified 

when they appear on the surface. For example, here are the syllabifications ..
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of the Yawelmani words we have discussed and some others; note, for ex­
ample, that the surface syllabification of the CVCC syllables moves the final 
consonant to the beginning of the next syllable:

underlying 
morphemes

surface 
syllabification

gloss

?ilk-en ?il.ken “will sing”
logw-en log. wen “will pulverize”
logw-hin lo.giw.hin “will pulverize”
xat-en xa.ten “will eat”
diyel-hnil-aw di.yel.ner.law ”ask - pass. cons, adjunct. - locative”
Here’s where Optimality Theory comes in. The basic idea in Optimal­

ity Theory is that the language has various constraints on things like sylla­
ble structure, These constraints generally apply to the surface form. One 
such constraint, *COMPLEX, says “No complex onsets or codas”. Another 
class of constraints requires the surface form to be identical to (faithful to) 
the underlying form. Thus FaithV says “Don’t delete or insert vowels” and 
FaithC says “Don’ t delete or insert consonants”. Given an underlying form, 
the GEN function produces all possible surface forms (i.e., every possible in­
sertion and deletion of segments with every possible syllabification) and they 
are ranked by the EVAL function using these constraints. Figure 4.17 shows 
the architecture.

/?ilk-~hin/

EVAL (^COMPLEX, FAITHC, FAITHV)

. [?i.lik.hin]

Figure 4.17 The architecture of a derivation in Optimality Theory (after 
Archangeli(1997)).

The EVAL function works by applying each constraint in ranked order; 
the optimal candidate is one which either violates no constraints, or violates
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TABLEAU

less of them than all the other candidates. This evaluation is usually shown 
on a tableau (plural tableaux). The top left-hand cell shows the input, the 
constraints are listed in order of rank across the top row, and the possible 
outputs along the left-most column. Although there are an infinite number 
of candidates, it is traditional to show only the ones which are ‘close’; in 
the tableau below we have shown the output ?ak.pid just to make it clear 
that even very different surface forms are to be included. If a form violates 
a constraint, the relevant cell contains *; a !* indicates the fatal violation 
which causes a candidate to be eliminated. Cells for constraints which are 
irrelevant (since a higher-level constraint is already violated) are shaded.

/?ilk-hin/ * Complex FaithC FaithV
?ilk.hin *;
?il.khin
?il.hin *!
?i.lik.hin
?ak.pid *!

t One appeal of Optimality Theoretic derivations is that the constraints , 
are presumed to be cross-linguistic generalizations. That is all languages are 
presumed to have some version of faithfulness, some preference for simple 
syllables, and so on. Languages differ in how they rank the constraints; thus 
English, presumably; ranks FaithC higher than *Complex. (How do we 
know this?)

Can a derivation in Optimality Theory be implemented by finite-state 
transducers? Frank and Satta (1999), following the foundational work of 
Ellison (1994), showed that (1) if GEN is a regular relation (for example 
assuming the input doesn’t contain context-free trees of Some sort), and (2) 
if the number of allowed violations of any constraint has some finite bound, 
then an OT derivation can be computed by finite-state means. This second 
constraint i s relevant because of a property of OT that We haven’t mentioned: 
if two candidates violate exactly the same number of constraints, the winning 
candidate is the one which has the smallest number of violations of the rele­
vant constraint..... ■ J

One way to implement OT as a finite-state system was worked out by 
Karttunen (1998), following the above-mentioned work and that of Ham­
mond (1997). In Karttunen’s model, GEN is implemented as a finite-state 
transducer which is given an underlying form and produces a set of candi­
date forms, For example for the syllabification example above, GEN would
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generate all strings that are variants of the input with consonant deletions or 
vowel insertions, and their syllabifications.

Each constraint is implemented as a filter transducer that lets pass only 
strings which meet the constraint. For legal strings, the transducer thus acts 
as the identity mapping. For example, *Complex would be implemented 
via a transducer that mapped any input string to itself, unless the input string 
had two consonants in the onset or coda, in which case it would be mapped 
to null.

The constraints can then be placed in a cascade, in which higher-ranked 
constraints are simply run first, as suggested in Figure 4.18.

• - - ■■ ■

GEN

■ ' ^COMPLEX ; '

FAITHG 
o .. . . .

FAITHV

Figure 4.18., Version #1 (“merciless cascade”) of Karttunen’s finite-state 
cascade implementation of OT.

There is one crucial flaw with the cascade model in Figure 4.18. Recall 
AV that the constraints-transducers filter out any candidate which violates a con­

straint. But in many derivations, include the proper derivation of ?i.lik.hin, 
even the optimal form still violates a constraint. The cascade in Figure 4.17 
would incorrectly filter it out, leaving no surface form at all! Frank and Satta 
(1999) and Hammond (1997) both point out that it is essential to only en- 
force a constraint if it does not reduce the candidate set to zero. Karttunen

T (1998) formalizes this intuition with the lenient composition operator. Le- composition 
nient composition is a combination of regular composition and an operation

A called priority union. The basic idea is that if any candidates meet the con­
straint these candidates will be p assed through the filter as usual. If no output 
meets the constraint, lenient composition retains all of the candidates. Fig­
ure 4.19 shows the general idea; the interested reader should see Karttunen 
(1998) for the details. Also see Tesar (1995, 1996), Foster (1996), and Eisner 
(1997) for discussions of other computational issues in OT.
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___l _
GEN 

Ol 

*COMPLEX

FAITHC ot
FAITHV

■ /?ilk-hin/

GEN '
7ilk.bin ?il.khin 7il.bin ?ak.pid Ti.lik-hin. " UG

*COMPLEX S
7il.bin ?ak.pid 7i.lik.hin 

FAITHC 
?i.lik.hin

FAITHV I
[?Llik.hin]

Figure 4.19 Version #2 (“lenient cascade”) of Karttunen’s finite-state cas­
cade implementation of OT, showing a visualization of the candidate popula­
tions that would be passed through each FST constraint.

4.5 Machine Learning of Phonological Rules

MACHINE
LEARNING

SUPERVISED

UNSUPERVISED.

LEARNING 
BIAS

The task of a machine learning system is to automatically induce a model 
for some domain, given some data from the domain and, sometimes, other 
information as well. Thus a system to learn phonological rules would be | 
given at least a set of (surface forms of) words to induce from. A supervised I 
algorithm is one which is given the correct answers for some of this data, 
using these answers to induce a model which can generalize to new data 
it hasn’t seen before. An urisupervised algorithm does this purely from 3 
the data. While unsupervised algorithms don’t get to see the correct labels 
for the classifications, they can be given hints about the nature of the rules or f 
models they should be forming. For example, the knowledge that the models 5 
will be in the form of automata is itself a kind of hint Such hints are called J 
a learning bias. : ' W

This section gives a very brief overview of some models of unsuper- • 
vised machine learning of phonological rules; more details about machine | 
learning algorithms will be presented throughout the book.

Ellison (1992) showed that concepts like the consonant and vowel dis- • -J • 
tinction, the syllable structure of a language, and harmony relationships f 
could be learned by a system based on choosing the model from the setl| 
of potential models which is the simplest. Simplicity can be measured by 1 
choosing the model with the minimum coding length, or the highest proba- 1 
bility (we will define these terms in detail in Chapter 6). Daelemans et a||| 

(1994) used the Instance-Based Generalization algorithm (Aha et al., 1991W 
to learn stress rule for Dutch; the algorithm is a supervised one which i&^



Section 4.5. Machine Learning of Phonological Rules 119

given a number of words together with their stress patterns, and which in­
duces generalizations about the mapping from the sequences of light and 
heavy syllable type in the word (light syllables have no coda consonant; 
heavy syllables have one) to the stress pattern. Tesar and Smolensky (1993) 
show that a system which is given Optimality Theory constraints but not 
their ranking can learn the ranking from data via a simple greedy algorithm. 

M \ Johnson (1984) gives one of the first computational algorithms for 
phonological rule induction. His algorithm works for rules of the form

(4.10) a-^b/C

where C is the feature matrix of the segments around a. Johnson’s algorithm 
sets up a system of constraint equations which C must satisfy, by consider­
ing both the positive contexts, i.e., all the contexts Cf in which a b occurs on 
the surface, as well as all the negative contexts Cj in which an a occurs on 
the; surface. Touretzky et al. (1990) extended Johnson’s insight by using the 
version spaces algorithm of Mitchell (1981) to induce phonological rules in 
their Many Maps architecture, which is similar to two-level phonology. Like 
Johnson’s, their system looks at the underlying and surface realizations of 
single segments? For each segment, the system uses the version space algo­
rithm to search for the proper statement of the context. The model also has a 
separate algorithm which handles harmonic effects by looking for multiple 
segmental changes in the same word, and is more general than Johnson’s in 
dealing with epenthesis and deletion rules.
fy The algorithm of Gildea and Jurafsky (1996) was designed to induce 

transducers representing two-level rules of the type we have discussed ear­
lier. Like the algorithm of Touretzky et al. (1990), Gildea and Jurafsky’s 
algorithm was given sets of pairings of underlying and surface forms. The 
algonthm was based on the OSTIA (Oncina et al., 1993) algorithm, which is 
a general learning algorithm for a subtype of finite-state transducers called 
subscquential transducers. By itself, the OSTIA algorithm was too general 
to learn phonological transducers, even given a large corpus of underlying- 
fonn/surface-tbrni pairs. Gildea and Jurafsky then augmented the domain­
independent OSTIA system with three kinds of learning biases which are 
Specific to natural language phonology; the main two are Faithfulness (un­
derlying segments tend to be realized similarly on the surface), and Com­
munity (similar segments behave similarly). The resulting system was able 
to learn transducers for flapping in American English, or German consonant 
devoicing.

Finally, many learning algorithms for phonology are probabilistic. For
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example Riley (1991) and Withgott and Chen (1993) proposed a decision- 
tree approach to segmental mapping. A decision tree is induced for each 
segment, classifying possible realizations of the segment in terms of contex­
tual factors such as stress and the surrounding segments. Decision trees and 
probabilistic algorithms in general will be defined in Chapters 5 and 6.

4.6 Mapping Text to Phones for TTS

Dearest creature in Creation
Studying English pronunciation
I will teach you in my verse
Sounds like corpse, corps, horse and worse. 

It will keep you, Susy, busy,
Make your head with heat grow dizzy

River, rival; tomb; bomb, comb;
Doll and roll, and some and home.

Stranger does not rime with anger 
Neither does devour with clangour.

G.N. Trenite (1870-1946) The Chaos, 
reprinted in Witten (1982).

Now that we have learned the basic inventory of phones in English and 
seen how to model phonological rules, we are ready to study the problem of 
mapping from an orthographic or text word to its pronunciation.

Pronunciation Dictionaries

An important component of this mapping is a pronunciation dictionary. 
These dictionaries are actually used in both ASR and TTS systems, although 
because of the different needs of these two areas the contents of the dictio­
naries are somewhat different

The simplest pronunciation dictionaries just have a list of words and 
their pronunciations:
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Word Pronunciation Word Pronunciation
cat [kmt] .. .. goose M
cats Lasts] . geese [gis]
pig M hedgehog ['hcds-hog]
Pigs pigz] hedgehogs ['hEds.hagz]
fox fax] : .
foxes “fak.siz]

A--'" Three large, commonly-used, on-line pronunciation dictionaries in this 
format are PRONLEX, CMUdict, and CELEX. These are used for speech 
recognition and can also be adapted for use in speech synthesis. The PRON­
LEX dictionary (LDC, 1995) was designed for speech recognition applica­
tions and contains pronunciations for 90,694 wordforms. It covers all the 
words used in many years of the Wall Street Journal, as well as the Switch- 
board Corpus. The CMU Pronouncing Dictionary was also developed for 
ASR purposes and has pronunciations for about 100,000 wordforms. The 
CELEX dictionary (Celex, 1993) includes all the words in the Oxford Ad­
vanced Learner’s Dictionary (1974) (41,000 lemmata) and the Longman 
Dictionary of Contemporary English (1978) (53,000 lemmata), in total it has 
pronunciations for 160,595 wordforms. Its pronunciations are British while 
the other two arc American. Each dictionary uses a different phone set; the 
CMU and PRONLEX phonesets are derived from the ARPAbet, while the 
CELEX dictionary’ is derived from the IPA. All three represent three levels 
of stress: primary stress, secondary stress, and no stress. Figure 4.20 shows 

: the pronunciation of the word armadillo in all three dictionaries.

? Figure 4.20 The pronunciation of the word armadillo in three dictionaries.
: Rather than explain special symbols, we have given an IPA equivalent for each 

■ pronunciation. The CMU dictionary represents unstressed vowels ([a], [f], etc.) 
by giving a 0 stress level to the vowel. We represented this by underlining in 
the IPA form. Note the r-dropping and use of the [au] rather than [ou] vowel in 
the British CELEX pronunciation. ;

Dictionary ] Pronunciation IPA Version
Pronlex ; 7
CMU
CELEX

। +arm.xdTl.o
I AA2 RM AH0D IH1 LOW0
1 ”#-m@-’dI-15

[armo'dilou]
. [.armA'dilou] 

[armo.'di.bu]

Often two distinct words are spelled the same (they are homographs) 
but pronounced differently. For example the verb wind (“You need to wind 
this up more neatly”) is pronounced [wamd] while the noun wind (“blow,
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blow, thou winter wind”) is pronounced [wind]. This is essential for TTS 
applications (since in a given context the system needs to say one or the 
other) but for some reason is usually ignored in current speech recognition 
systems. Printed pronunciation dictionaries give distinct pronunciations for 
each part-of-speech; CELEX does as well. Since they were designed for 
ASR, Pronlex and CMU, although they give two pronunciations for the form 
wind, don’t specify which one is used for which part-of-speech.

Dictionaries often don’t include many proper names. This is a seri­
ous problem for many applications; Liberman and Church (1992) report that 
21%. of the word tokens in their 33-million-word 1988 AP newswire cor­
pus Were names. Furthermore, they report that a list obtained in 1987 from 
the Donnelly marketing organization contains 1.5 million names (covering 
72 million households in the United States). But only about 1000 of the 
52477 lemmas in CELEX (which is based, on traditional dictionaries) are 
proper names. By contrast Pronlex includes 20,000 names; this is still only 
a small fraction of the 1.5 million. Very few dictionaries give pronunciations 
for entries like Dr, which as Liberman and Church (1992) point out can be 
“doctor’’ or “drive”, or 2/5, which can be “two thirds” or “February third” or 
“two slash three”.

No dictionaries currently have good models for the pronunciation of 
function words (and, I, a, the, of, etc.). This is because the variation in these 
words due to phonetic context is so great. Usually the dictionaries include 
some simple baseform (such as [3i] for the) and use other algorithms to de­
rive the variation due to context; Chapter 5 will treat the issue of modeling 
contextual pronunciation variation for words of this sort.

One significant difference between TTS and ASR dictionaries is that 
TTS dictionaries do not have to represent dialectal variation; thus where 
a very accurate ASR dictionary needs to represent both pronunciations of 
either and tomato, a TTS dictionary can choose one.

is
Bl

Beyond Dictionary Lookup: Text Analysis

Mapping from text to phones relies on the kind of pronunciation dictionaries k
we talked about in the last section. As we suggested before, one way to map 
text-to-phohes would be to look up each word in a pronunciation dictionary < 
and read the string of phones out of the dictionary. This method would work J| 
fine for any word that we can put in the dictionary in advance. But asriv^H 
saw in Chapter 3. it’s not possible to represent every word in English (or any 
other language) in advance. Both speech synthesis and speech recognition

mi
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systems need to be able to guess at the pronunciation of words that are not 
in their dictionary. This section will first examine the kinds of words that 
are likely to be missing in a pronunciation dictionary, and then show how 
the finite-state transducers of Chapter 3 can be used to model the basic task 
of text-to-phones. Chapter 5 will introduce variation in pronunciation and 
introduce probabilistic techniques for modeling it.

Three of the most important cases where we cannot rely on a word 
dictionary involve names, morphological productivity, and numbers. As 
a brief example, we arbitrarily selected a brief (561 word) movie review that 
appeared in the July 17, 1998 issue of the New York Times. The review, 
of Vincent Gallo’s ’’Buffalo ’66”, was written by Janet Maslin. Here’s the 
beginning of the article:

In Vincent Gallo’s “Buffalo ’66,” Billy Brown (Gallo) steals a 
blond kewpie doll named Layla (Christina Ricci) out of her tap 
dancing class and browbeats her into masquerading as his wife at 
a dinner with his parents. Billy hectors, cajoles and tries to bribe 
Layla. (“You can eat all the food you want. Just make me look 
good”) He threatens both that he will kill her and that he won’t 
be her best friend. He bullies her outrageously but with such 
crazy brio and jittery persistence that Layla falls for him. Gallo’s 
film, a deadpan original mixing pathos with bravado, works on 
its audience in much the same way.

We then took two large commonly-used on-line pronunciation dictionaries; 
the PRONLEX dictionary, that contains pronunciations for 90,694 word­
forms and includes coverage of many years of the Wall Street Journal, as well 
as the Switchboard Corpus, and the larger CELEX dictionary, which has 
pronunciations for 160,595 wordforms. The combined dictionaries have ap­
proximately 194,000 pronunciations. Of the 561 words in the movie 
review, 16 (3%) did not have pronunciations in these two dictionaries (not 
counting two hyphenated words, baby-blue and hollow-eyed). Here they are:

Names Inflected Names Numbers Other
Aki Gazzara Gallo’s ’66 c’mere
Anjelica Kaurismaki indie
Arquette Kusturica kewpie
Buscemi Layla sexpot
Gallo Rosanna

Some of these missing words can be found by increasing the dictionary 
size (for example Wells’s (1990) definitive (but not on-line) pronunciation
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dictionary of English does have sexpot and kewpie). But the rest need to 
generated on-line.

Names are a large problem for pronunciation dictionaries. It is diffi­
cult or impossible to list in advance all proper names in English; furthermore 
they may come from any language, and may have variable spellings. Most 
potential applications for TTS or ASR involve names; for example names 
are essentially in telephony applications (directory assistance, call routing); 
Corporate names are important in many applications and are created con­
stantly (CoComp,: Intel, Cisco), Medical speech applications (such as tran­
scriptions of doctor-patient interviews) require pronunciations of names of 
pharmaceuticals; there are some off-line medical pronunciation dictionaries; 
but they are known to be extremely inaccurate (Markey and Ward, 1997). 
Recall the figure of 1.5 million names mentioned above, and Liberman and 
Church’s (1992) finding that 21% of the word tokens in their 33 million word; 
I988 AP newswire coqrus were names.

Morphology is a particular problem for many languages other than En­
glish. For languages with very productive morphology it is computationally 
infeasible to represent every possible word; recall this Turkish example: A; 

(4.11) uygarlastiramadiklarimizdanmiysinizcasina

uygdrfM^ +imiz
civilized +bec +CAUS +NegAbLe +ppart +pl +p 1 pl

+dan +mi$ +smiz +casma
+ABL +PAST +2PL + Aslf
“(behaving) as if you are among those whom we could not 
civilize/cause to become civilized”

Even a language as similar to English as German has greater ability to 
create words; Sproal ef al. (1998) note the spontaneously created German ex­
ample Unerfindlichkeitsunterstellung (“allegation of incomprehensibility”);

But even in English, morphologically simple though it is, morphologi­
cal knowledge is necessary for pronunciation modeling. For example names 
and acronyms are often inflected (Gallo’s, IBM's, DATs, Syntex’s) as are new 
words (faxes, indies). Furthermore, we can’t just addto the pronunciation 
of the uninflected forms, because as the last section showed, the possessive 
- s and plural - v suffix in English arc pronounced differently in different con­
texts: Syntex’s is pronounced Lsint rksiz], faxes is pronounced [faeksiz], IBM’s 
is pronounced [aibijemz], and DATs is pronounced [dariSj.

Finally, pronouncing numbers is a particularly difficult problem. The 
’66 in Buffalo ’66 is pronounced [sikstisiks] hot [sikssiks]. The most natural
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way to pronounce the phone number “947-2020” is probably “nine”-“four”- 
“seven”-“twenty”-“twenty” rather than “nine”-“four”-“seven”-“two”-“zero”~ 
‘two”-“zero”. Liberman and Church (1992) note that there are five main 
ways to pronounce a string of digits (although others are possible):

' • Serial: Each digit is pronounced separately—8765 is “eight seven six
five”. ' ■

• Combined: The digit string is pronounced as a single integer, with all 
position labels read out—“eight thousand seven hundred sixty five”.

• Paired: Each pair of digits is pronounced as an integer; if there is an 
odd number of digits the first one is pronounced by itself—“eighty­
seven sixty-five”.

• Hundreds: Strings of four digits can be pronounced as counts of 
hundreds—“eighty-seven hundred (and) sixty-five”.

• Trailing Unit: Strings that end in zeros are pronounced serially until 
the last nonzero digit, which is pronounced followed by the appropriate 
unit—8765000 is “eight seven six five thousand”.

Pronunciation of numbers and these five methods are discussed further 
in Exercises 4.5 and 4.6.

An FST-based Pronunciation Lexicon

Early work in pronunciation modeling for text-to-speech systems (such as 
the seminal MITalk system Allen et al. (1987)) relied heavily on letter-to- 
sound rules. Each rule specified how a letter or combination of letters was sound’T0' 
mapped to phones; here is a fragment of such a rule-base from Witten (1982):

Fragment Pronunciation
-p- ft]
-ph- f] 

rpl■pne
-phes-

i .
H

-place- piers]
-placi- pleisi]
-plement- pliment]

j Such systems consisted of a long list of such rules and a very small dic­
tionary of exceptions (often function words such as a, are, as, both, do, does, 
etc.). More recent systems have completely inverted the algorithm, relying 
on very large dictionaries, with letter-to-sound rules only used for the small
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number of words that are neither in the dictionary nor are morphological d 
variants of words in the dictionary. How can these large dictionaries be rep- | 
resented in a way that allows for morphological productivity? Luckily, these 
morphological issues in pronunciation (adding inflectional suffixes, slight 
pronunciation changes at the juncture of two morphemes, etc.) are identical | 
to the morphological issues in spelling that we saw in Chapter 3. Indeed, J 
(Sproat, 1998b) and colleagues have worked out the use of transducers for 
text-to-speech. We might break down their transducer approach into five < 
components: >

1. an FST to represent the pronunciation of individual words and mor­
phemes in the lexicon S

2. FS As to represent the possible sequencing of morphemes
3. individual FSTs for each pronunciation rule (for example expressing 

the pronunciation of -5 in different contexts) |
4. heuristics and letter-to-sound (LTS) rules/transducers used to model 

. the pronunciations of names and acronyms
5. default letter-to-sound rules/transducers for any other unknown words

We will limit our discussion here to the first four components; those 
interested in letter-to-sound rules should see (Allen et al., 1987). These first j 
components will turn out to be simple extensions of the FST components | 
we saw in Chapter 3 and on page 110. The first is the representation of the ; 
lexical base form of each word; recall that base form means the uninflected ? 
form of the word. The previous base forms were stored in orthographic 
representation; we will need to augment each of them with the correct lexical j 
phonological representation. Figure 4.21 shows the original and the updated 
lexical entries: • -

The second part of our FST system is the finite-state machinery td:| 
model morphology. We will give only one example: the nominal plural 
suffix -s. Figure 4.22 in Chapter 3 shows the automaton for English plurals, $ 
updated to handle pronunciation as well. The only change was the addi- ; 
tion of the [s] pronunciation for the suffix, and £ pronunciations for all the f 
morphological features. ; 1

We can compose the inflection FS A in Figure 4.22 with a transducer g 
implementing the baseform lexicon in Figure 4.21 to produce an inflection- i 
ally-enriched lexicon that has singular and plural nouns. The resulting mini­
lexicon is shown in Figure 4.23. f

Thelexicon shown in Figure 4.23 has two levels, an underlying Or “lex- < 
ical” level and an intermediate level. The only thing that remains is to add
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Figure 4.21 FST-based lexicon, extending the lexicon in the table on page 
74 in Chapter 3. Each symbol in the lexicon is now a pair of symbols sep­
arated by one representing the “orthographic” lexical entry and one the 
“phonological” lexical entry. The irregular plural geese also pre-specifies the 
contents of the intermediate tape “;ee|i”.

Orthographic Lexicon Lexicon
RegularNouns

■ cat 
fox 
dog

: : c k a|as t|t 
ffo|axjks

Irregular Singular Nouns
goose g|g oo|u s[s e|e

Irregular Plural Nouns
g ore ore s e . g|g oo|u:ee|i s|s e|e

Figure 4.22 FST for the nominal singular and plural inflection. The au­
tomaton adds the morphological features [+N],: [+PL], and [+SG] at the lexi­
cal level where relevant and also adds the plural suffix sjz (at the intermediate 
level). We will discuss below why we represent the pronunciation of -x as z 
rather than s.

transducers which apply spelling rules and pronunciation rules to map the 
intermediate level into the surface level. These include the various spelling 
rules discussed on page 77 and the pronunciation rules starting on page 105.

The lexicon and these phonological rules and the orthographic rules 
from Chapter 3 can now be used to map between a lexical representation 
(containing both orthographic and phonological strings) and a surface rep­
resentation (containing both orthographic and phonological strings). As we 
saw in Chapter 3, this mapping can be run from surface to lexical form, or 

7 from lexical to surface form; Figure 4.24 shows the architecture. Recall that
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Figure 4.23 Mini-lexicon composing a transducer from the baseform lexi­
con of Figure 4.21 with the inflectional transducer of Figure 4.22.

the lexicon FST maps between the ‘lexical” level, with its stems and mor­
phological features, arid an “intermediate” level which represents a simple : 
concatenation of iriOrphemes. Then a host of FSTs, each representing ei­
ther a single spelling rule constraint or a single phonological constraint, all 
run in parallel so as to map between this intermediate level and the surface f 
level. Each level has both orthographic and phonological representations. 
For text-to-speech applications in which the input is a lexical form (e.g., for 
text generation, where the system knows the lexical identity of the word, its | 
part-of-speech, its inflection, etc.), the cascade of FSTs can map from lexical 
form to surface pronunciation. For text-to-speech applications in which the 
input is a surface spelling (e.g., for “reading text out loud” applications), the 
cascade of FSTs can map from surface orthographic form to surface pronun- i 
ciation via the underlying lexical form.

Finally let us say a few words about names and acronyms. Acronyms 
can be spelled with or without periods (I.R.S. or IRS). Acronyms with pe­
riods arc usually pronounced by spelling them out (auirrSj). Acronyms 
that usually appear without periods (AIDS, ANSI, ASCAP) may either be ff 
spelled out or pronounced as a word; so AIDS is usually pronounced the 
same as the third-person form of the verb aid Liberman and Church (1992) 
suggest keeping a small dictionary of the acronyms that are pronounced as S 
words, and spelling out the rest. Their method for dealing with names begins y 
with a dictionary of the pronunciations of 50,000 names, and then applies a j 
small number of affix-stripping rules (akin to the Porter Stemmer of Chap- '3 
ter 3), rhyining heuristics, and letter-to-sound rules to increase the coverage.
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Lexical
j | f | O | X | +N |+pl[~~~~

I f | a I k S f +N ]+PL
1

fLEMCON-FSf
T' 
JL
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— J

Intermediate | f |aa| k | s

Surface

s
A z

A

i /-O-r"! orthographic and
( CO / ? J phonological rules i r”O I > }
““"1 1 I ••• । - 1

r 
__U

o x e s
s | ix | z J

Figure 4.24 Mapping between the lexicon and surface form for orthogra­
phy and phonology simultaneously. The system can be used to map from a 
lexical entry to its surface pronunciation or from surface orthography to sur­
face pronunciation via the lexical entry.;

Liberman and Church (1992) took the most frequent quarter million words 
in the Donnelly list. They found that the 50,000 word dictionary covered 
59% of these 250,000 name tokens, Adding stress-neutral suffixes like -5, 
-ville, and -son (Walters = Walter + s, Abelson - Abel + son, Lucasville 
= Lucas + ville) increased the coverage to 84%; Adding name-name com­
pounds (Abdulhussein, Baumgaertner) and rhyming heuristics increased the 
coverage to 89%. The rhyming heuristics used letter-to-sound rules for the 
beginning of the word and then found a rhyming word to help pronounce the 
end; so Plotsky was pronounced by using the LTS rule for Pl- and guessing - 
otsky from Trotsky , They then added a number of more complicated morpho­
logical rules (prefixes like O ’Brien), stress-changing suffixes (Adamovich), 
suffix-exchanges (Bierstadt = Bierbaum - baum + stadt) and used a system 
of letter-to-sound rules for the remainder This system was not implemented 
as an FST; Exercise 4.11 will address some of the issues in turning such a 
set of rules into an FST. Readers interested in further details about names,
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acronyms and other unknown words should consult sources such as Liber- * 
man and Church (1992), Vitale (1991), and Allen et al. (1987). ]

4.7 Prosody in TTS

The orthography to phone transduction process just described produces the J 
main component for the input to the part of a TTS system which actually J 
generates the speech. Another important part of the input is a specification | 

prosody of the prosody. The term prosody is generally used to refer to aspects of a | 
sentence’s pronunciation which aren’t described by the sequence of phones 
derived from the lexicon. Prosody operates on longer linguistic units than 

suprasegmental phones, and hence is sometimes called the study of suprasegmental phe- : 
nomena. > 4

Phonological Aspects of Prosody

prominence There are three main phonologic al aspects to prosody: prominence, struc- | 
structure: ture and tune. .... ^
tune As page 102 discussed, prominence is a broad term used to cover stress J
stress arid accent. Prominence is a property of syllables, and is often described in |
accent a relative manner, by saying one syllable is more prominent than another. :

Pronunciation lexicons mark lexical stress; for example table has its stress ] 
on the first syllable, while machine has its stress on the second. Function J 
words like there, the or a are usually unaccented altogether. When words are ; 
joined together, their accentual patterns combine and form a larger accent 
pattern for the whole utterance. There are some regularities in how accents'! 
combine. For example adjective-noun combinations like new truck are likely 
to have accent on the right word (new *truck), while noun-noun compounds 3| 
like * treesurgeon are likely to have accent on the left. In generally, how- f 
ever, there are many exceptions to these rules, and so accent prediction is | 
quite complex. For example the noun-noun compound * apple cake has the | 
accent on the first word while the noun-noun compound apple *pie or city : 
*hall both have the accent on the second word (Liberman and Sproat, 1992; 2 
Sproat, 1994, 1998a). Furthermore, rhythm plays a role in keeping the ac- | 
cented syllables spread apart a bit; thus city *hall and sparking lot combine | 
as *city hall Sparking lot (Liberman and Prince, 1977). Finally, the location 
of accent is very strongly affected by the discourse factors we will describe 2 
in Chapters 18 and 19; in particular new or focused words or phrases often - 
receive accent.
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Sentences have prosodic structure in the sense that some words seem to 
group naturally together and some words seem to have a noticeable break or 
disjuncture between them. Often prosodic structure is described in terms of 
prosodic phrasing, meaning that an utterance has a prosodic phrase struc- .phrases 

7 ture in a similar way to it having a syntactic phrase structure. For example, in
’■7-77 the sentence I wanted to go to London, but could only get tickets for France 

77 7 there seems to be two main prosodic phrases, their boundary occurring at the 
fff comma. Commonly used terms for these larger prosodic units include into-

< national phrase or IP (Beckman and Pierrehumbert, 1986), intonation unit '^RA™m
= (Du Bois et al., 1983), and tone unit (Crystal, 1969). Furthermore, in the ip

y first phrase, there seems to be another set of lesser prosodic phrase bound­
aries (often called intermediate phrases) that split up the words as follows phraseediate 

; I wanted j to go ) to London. The exact definitions of prosodic phrases
j and subphrases and their relation to syntactic phrases like clauses and noun

■; phrases and semantic units have been and still are the topic of much debate 
; ii (Chomsky and Halle, 1968; Langendoen, 1975; Streeter, 1978; Hirschberg

(7: and Pierrehumbert, 1986; Selkirk, 1986; Nespor and Vogel, 1986; Croft, 
: 1995; Ladd, 1996; Ford and Thompson, 1996; Ford et al., 1996). Despite

these complications, algorithms have been proposed which attempt to au-
Vy. tomatically break an input text sentence into intonational phrases. For ex- 
: ample Wang and Hirschberg (1992), Ostendorf and Veilleux (1994), Tay-

< lor and Black (1998), and others have built statistical models (incorporating 
probabilistic predictors such as the CART-style decision trees to be defined 
in Chapter 5) for predicting intonational phrase boundaries based on such 

; V features as the parts of speech of the surrounding words, the length of the 
7 utterance in words and seconds, the distance of the potential boundary from 

the beginning or ending of the utterance, and whether the surrounding words 
are accented.

Two utterances with the same prominence and phrasing patterns can 
7 still differ prosodically by having different tunes. Tune refers to the into­

national melody of an utterance. Consider the utterance oh, really. Without 
varying the phrasing or stress, it is still possible to have many variants of 
this by varying the intonational tune. For example, we might have an excited 

7 7 version oh, really! (in the context of a reply to a statement that you’ve just 
won the lottery); a sceptical version oh, really ?—in the context of not being 
sure that the speaker is being honest; to an angry oh, really! indicating dis-

7 pleasure. Intonational tunes can be broken into component parts, the most 
important of which is the pitch accent Pitch accents occur on stressed sylla- accent

7 < bles and form a characteristic pattern;inthe FO contour (as explained below).
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Depending on the type of pattern, different effects (such as those just out­
lined above) can be produced. A popular model of pitch accent classification 
is the Pierrehumbert or ToBI model (Pierrehumbert, 1980; Silverman et al., 
1992), which says there are five pitch accents in.English, which are made 
from combining two simple tones (high H, and low L) in various ways. A 
H+L pattern forms a fall, while a L+H pattern forms a rise. An asterisk (*) 
is also used to indicate which tone falls on the stressed syllable. This gives 
an inventory of H*, L*, L+H*, L*+H, H+L* (a sixth pitch accent H*+L 
which was present in early versions of the model was later abandoned). Our 
three examples of oh, really might be marked with the accents L+H*, L*+H 
and L* respectively. In addition to pitch accents, this model also has two 
phrase accents L- and H- and two boundary tones L% and H%, which are 
used at the ends of phrases to control whether the intonational tune rises 
or falls.

Other intonational modals differ from ToBI by not using discrete phone­
mic classes for intonation accents. For example the Tilt (Taylor, 2000) and 
Fujisaki models (Fujisaki and Ohno, 1997) use continuous parameters rather 
than discrete categories to model pitch accents. These researchers argue that 
while the discrete models are often easier to visualize and work with, con­
tinuous models may be more robust and more accurate for computational 

■ purposes.

Phonetic or Acoustic Aspects of Prosody

The three phonological factors interact and are realized by a number of dif­
ferent phonetic or acoustic phenomena. Prominent syllables are generally 
louder and longer that non-prominent syllables. Prosodic phrase boundaries 
are often accompanied by pauses, by lengthening of the syllable just before 
the boundary, and sometimes lowering of pitch at the boundary. Intonational 
tune is manifested in the fundamental frequency (FO) contour. j ' ■

Prosody in Speech Synthesis

A major task for a TTS system is to generate appropriate linguistic repre­
sentations of prosody, and from them generate appropriate acoustic patterns 
which will be manifested in the output speech waveform. The output of 
a TTS system with such a prosodic component is a sequence of phones, 
each of which has a duration and an FO (pitch) value. The duration of each | 
phone is dependent on the phonetic context (see Chapter 7). The FO value
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is influenced by the factors discussed above, including the lexical stress, the 
accented or focused element in the sentence, and the intonational tune of the 
utterance (for example a final rise for questions). Figure 4.25 shows some 

( sample TTS output from the FESTIVAL (Black et al., 1999) speech synthe- 
<y sis system for the sentence Do you really want to see all of it?. This output, 

together with the FO values shown in Figure 4.26 would be the input to the 
A waveform synthesis component described in Chapter 7. The durations here 

■ are computed by a CART-style decision tree (Riley, 1992).

do you
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Figure 4.25 Output of the FESTIVAL (Black et al., 1999) generator for the sentence 
Do you really want to see all of it? The exact intonation contour is shown in Figure 4.26. 
Thanks to Paul Taylor for this figure.

do you really want to see all of it

Figure 4.26 The F0 contour for the sample sentence generated by the 
FESTIVAL synthesis system in Figure 4.25, thanks to Paul Taylor.

As was suggested above, determining the proper prosodic pattern for 
a sentence is difficult, as real-world knowledge and semantic information is 
needed to know which syllables to accent, and which tune to apply. This sort 
of information is difficult to extract from the text and hence prosody modules 
often aim to produce a “neutral declarative” version of the input text, which 
assume the sentence should be spoken in a default way with no reference to 
discourse history or real-world events . This is one of the main reasons why 
intonation in TTS often sounds “wooden”.
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4.8 Human Processing of Phonology and Morphology;

Chapter 3 suggested that productive morphology plays a psycho logic ally real 
role in the human lexicon. But we stopped short of a detailed model of how 
the morphology might be represented. Now that we have studied phono- A 
logical structure and phonological learning, we return to the psychological 
question of the representation of morphological/phonological knowledge. |

One view of human morphological or phonological processing might | 
be that it distinguishes productive, regular morphology from irregular or ex­
ceptional morphology. Under this view, the regular past tense morpheme 
-ed, for example, could be mentally represented as a rule which would be 
applied to verbs like walk to produce walked. Irregular past tense verbs like | 
broke, sang, and brought, on the other hand, would simply be stored as part 
of a lexical representation, and the rule wouldn't apply to these. Thus this 
proposal strongly distinguishes representation via rules from representation 
via lexical listing. ■

This proposal seems sensible, and is indeed identical to the transducer- | 
based models we have presented in these last two chapters. Unfortunately, g 
this simple model seems to be wrong. One problem is that the irregular verbs 
themselves show a good deal of phonological subregularity. For example, | 
the t/m alternation relating ring and rang also relates sing and sang and swim 
said swam (Bybee and Slobin, 1982). Children learning the language of­
ten extend this pattern to incorrectly produce bring-brang, and adults often 
make speech errors showing effects of this subregular pattern. A second 
problem is that there is psychological evidence that high-frequency regular 
inflected forms (needed, covered) are stored in the lexicon just like the stems I 
cover and need (Losiewicz, 1992). Finally, word and morpheme frequency 
in general seems to play an important role in human processing.

Arguments like these led to “data-driven” models of morphological f 
learning and representation, which essentially store all the inflected forms 
they have seen. These models generalize to new forms by a kind of analogy; I 
regular morphology is just like subregular morphology but acquires rule-like 
trappings simply because it occurs more often. Such models include the 

tiWP’ computational connectionist or Parallel Distributed Processing model of 
PARALLE t
processing Rumelhart and McClelland (1986) and subsequent improvements (Plunkett 

and Marchman, 1991; MacWhinney and Leinbach, 1991) and the similar ; J 
network model of Bybee (1985, 1995). In these models, the behavior of 
regular morphemes like -erf emerges from its frequent interaction with other
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forms. Proponents of the rule-based view of morphology such as Pinker 
and Prince (1988), Marcus et al. (1995), and others, have criticized the con- 
nectionist models and proposed a compromise dual processing model, in 
which regular forms like -ed are represent as symbolic rules, but subregular 
examples (broke, brought) are represented by connectionist-style pattern as- 
sociators. This debate between the connectionist and dual processing models 
has deep implications for mental representation of all kinds of regular rule- 

: based behavior and is one of the most interesting open questions in human 
■ri language processing. Chapter 7 will briefly discuss connectionist models of 

human speech processing; readers who are further interested in connection­
ist models should consult the references above and textbooks like Anderson 
(1995). ...............

4.9 Summary

; This chapter has introduced many of the important notions we need to un­
derstand spoken language processing. The main points are as follows:

ri • We can represent the pronunciation of words in terms of units called 
: < phones. The standard system for representing phones is the Interna­

tional Phonetic Alphabet or IPA. An alternative English-only tran­
scription system that uses ASCH letters is the ARPAbet

ri'ri' • Phones can be described by how they are produced articulatorily by 
the vocal organs; consonants are defined in terms of their place and 
manner of articulation and voicing, vowels by their height and back- 
ness.

• A phoneme is a generalization or abstraction over different phonetic 
realizations. Allophonic rules express how a phoneme is realized in a 

< given context.
• Transducers can be used to model phonological rules just as they were 

used in Chapter 3 to model spelling rules. Two-level morphology is 
ri a theory of moiphology/phonology which models phonological rules 

as finite-state well-formedness constraints on the mapping between 
? A lexical and surface form.

• Pronunciation dictionaries are used for both text-to-speech and au­
tomatic speech recognition. They give the pronunciation of words as 
strings of phones, sometimes including syllabification and stress. Most 
on-line pronunciation dictionaries have on the order of 100,000 words 
but still lack many names, acronyms, and inflected forms.
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• The text-analysis component of a text-to-speech system maps from/; 
orthography to strings of phones. This is usually done with a large 
dictionary augmented with a system (such as a transducer) for handling 
productive morphology, pronunciation changes, names, numbers, and Si 
acronyms.. S

Bibliographical and Historical Notes |

The major insights of articulatory phonetics date to the linguists of 800-150 j 
B.C. India. They invented the concepts of place and manner of articulation, 
worked out the glottal mechanism of voicing, and understood the concept 4 
of assimilation, European science did not catch up with the Indian phoneti- 
cians until over 2000 years later, in the late 19th century. The Greeks did H 
have some rudimentary phonetic knowledge; by the time of Plato’s Theaete* J
tus and Cratylus, for example, they distinguished vowels from consonants, 
and stop consonants from continuants. The Stoics developed the idea of the 
syllable and were aware of phonotactic constraints on possible words. An 
unknown Icelandic scholar of the twelfth century exploited the concept of 
the phoneme, proposed a phonemic writing system for Icelandic, including 
diacritics for length and nasality. But his text remained unpublished um 
til 1818 and even then was largely unknown outside Scandinavia (Robins, 
1967), The modern era of phonetics is usually said to have begun with 
Sweet, who proposedwhat is essentially tlie phoneme in his TfrmdZtooA: o/ 
Phonetics (1877). He also devised an alphabet for transcription and distin- 
guished between broad and narrow transcription, proposing many ideas (hat 
were eventually incorporated into the IPA. Sweet was considered the best 
practicing phonetician of his time; he made the first scientific recordings of 
languages for phonetic purposes, arid advanced the start of the ait of articu- 
latory description. He was also infamously difficult to get along with, a trait 
that is well capturedin the stage character that George Bernard Shaw mod’ J^ 
eled after him: Henry Higgins. The phoneme was first named by the Polish 
scholar Baudouin de Courtenay, who published his theories in 1894. /--A

The idea that phonological rules could be modeled as regular rela­
tions dates to Johnson (1972),who showed that any phonological system 3 
that didn’t allow rules to apply to their own output (i.e., systems that did not Jig 
have recursive rules) could be modeled with regular relations (or finite-state z||| 
transducers). Virtually all phonological rules that had been formulated at
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the time had this property (except some rules with integral-valued features, 
like early stress and tone rules). Johnson’s insight unfortunately did not at­
tract the attention of the community, and was independently discovered by 
Roland Kaplan and Martin Kay; see Chapter 3 for the rest of the history of 
two-level morphology. Karttunen (1993) gives a tutorial introduction to two- 
level morphology that includes more of the advanced details than we were 
able to present here.

Readers interested in phonology should consult (Goldsmith, 1995) as a 
reference on phonological theory in general and Archangeli and Langendoen 
(1997) on Optimality Theory.

Two classic text-to-speech synthesis systems are described in Allen 
et al. (1987) (the MITalk system) and Sproat (1998b) (the Bell Labs sys­
tem). The pronunciation problem in text-to-speech synthesis is an ongoing 
research area; much of the current research focuses on prosody. Interested 
readers should consult the proceedings of the main speech engineering con­
ferences: ICSLP (the International Conference on Spoken Language Pro­
cessing). IEEE ICASSP (the International Conference on Acoustics, Speech, 
and Signal Processing), and EUROSPEECH.

Students with further interest in transcription and articulatory phonet­
ics should consult an introductory phonetics textbook such as Ladefoged 
(1993). Pullum and Ladusaw (1996) is a comprehensive guide to each of the 
symbols and diacritics of the IPA. Many phonetics papers of computational 
interest are to be found in the Journal of the Acoustical Society of America 
(JASAh Computer Speech and Language, and Speech Communication.

Exercises

4.1 Find the mistakes in the IPA transcriptions of the following words:

a. “three” [hrij
; b. “sing” [sing]

c. “eyes” [ais]
d. “study” [studi]
e. “though” [Gou]
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f. “planning” [planrrj]
g. “slight” [slit]

4.2 Translate the pronunciations of the following color words from the IPA 
into the ARPAbet (and make a note if you think you pronounce them differ­
ently than this!):

a. [red]
b. [bln]
c [grin]
d. ['jrM
e. [btek] .. ..
f. [wait]

■ g. [brmdg] .

«• ;pju«]
■ j. [toup] ■ (

4.3 Ira Gershwin’s lyric for Let’s Call the Whole Thing O ff talks about two 
pronunciations of the word “either” (in addition to the tomato and potato 
example given at the beginning of the chapter Transcribe Ira Gershwin’s 
two pronunciations of “either” in IPA and in the ARPAbet.

4.4 Transcribe the following words in both the ARPAbet and the IPA:

a. dark
b. suit
c. greasy
d. wash
e. water

4.5 Write an FST which correctly pronounces strings of dollar amounts 
like $45, $320, and $4100. If there are multiple ways to pronounce a number 
you may pick your favorite way.

4.6 Write an FST which correctly pronounces seven-digit phone numbers 
like 555-1212, 555-1300, and so on. You should use a combination of the 
paired and trailing unit methods of pronunciation for the last four dig­
its.

4.7 Build an automaton for rule (4.5).
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4.8 One difference between one dialect of Canadian English and most di­
alects of American English is called Canadian raising. Bromberger and 
Halle (1989) note that some Canadian dialects of English raise /at/ to [ai] 
and /an/ to [au] in stressed position before a voiceless consonant. A simpli­
fied version of the rule dealing only with /ai/ can be stated as:

/ai/ [ai] /
C
—voice

(4-12)

This rule has an interesting interaction with the flapping rule. In some 
Canadian dialects the word rider and writer are pronounced differently: rider 
is pronounced [rairY while writer is pronounced [rAira1]. Write a two-level 
rule and an automaton for both the raising rule and the flapping rule which 
correctly models this distinction. You may make simplifying assumptions as 
needed.

4.9 Write the lexical entry for the pronunciation of the English past tense 
(preterite) suffix -d, and the two level-rules that express the difference in its 
pronunciation depending on the previous context. Don’t worry about the 
spelling rules. (Hint: make sure you correctly handle the pronunciation of 
the past tenses of the words add, pat, bake, and bag.)

4.10 Write two-level rules for the Yawelmani Yokuts phenomena of Har­
mony, Shortening, and Lowering introduced on page 111. Make sure your 
rules are capable of running in parallel.

4.11 Find 10 stress-neutral name suffixes (look in a phone book) and sketch 
an FST which would model the pronunciation of names with or without suf­
fixes.



PROBABILISTIC MODELS
OF PRONUNCIATION
AND SPELLING

ALGERNON; But my own sweet Cecily, I have never written 
you any letters.
CECILY.- You need hardly remind me of that, Ernest. I re­
member only too well that I was forced to write your letters 
for you. I wrote always three times a week, and sometimes 
oftener.
ALGERNON: Oh, do let me read them, Cecily ?
Cecily.- Oh, I couldn 't possibly. They would make you far 
too conceited. The three you wrote me after 1 had broken off 
the engagement are so beautiful, and so badly spelled, that 
even now l ean hardly read them without crying a little:

Oscar Wilde, The Importance of being Ernest

Like Oscar Wilde’s fabulous Cecily, a lot of people were thinking about 
spelling during the last turn of the century. Gilbert and Sullivan provide 
many examples. The Gondoliers" Giuseppe, for example, worries that his 
private secretary is ‘‘shaky in his spelling” while lolanthe’s Phyllis can “spell 
every word that she uses”. Thorstein Veblen’s explanation (in his 1899 clas­
sic The Theory of the Leisure Class') was that a main purpose of the “ar­
chaic, cumbrous, and ineffective” English spelling system was to be difficult 
enough to provide a test of membership in the leisure class. Whatever the 
social role of spelling, we can certainly agree that many more of us are like 
Cecily than like Phyllis. Estimates for the frequency of spelling errors in hu­
man typed text vary from 0.05% of the words in carefully edited newswire 
text to 38% in difficult applications like telephone directory lookup (Kukich, 
1992).

In this chapter we discuss the problem of detecting and correcting
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spelling errors and the very related problem of modeling pronunciation vari­
ation for automatic speech recognition and text-to-speech systems. On the 
surface, the problems of finding spelling errors in text and modeling the vari­
able pronunciation of words in spoken language don’t seem to have much 
in common. But the problems turn out to be isomorphic in an important 
way: they can both be viewed as problems of probabilistic transduction. For 
speech recognition, given a string of symbols representing the pronunciation 
of a word in context, we need to figure out the string of symbols represent­
ing the lexical or dictionary pronunciation, so we can look the word up in the 
dictionary. But any given surface pronunciation is ambiguous; it might corre­
spond to different possible words. For example the ARPAbet pronunciation 
[er] could correspond to reduced forms of the words her. were, are, their, 
or your. This ambiguity problem is heightened by pronunciation varia­
tion; for example the word the is sometimes pronounced THEE and sonic- ; 
times THUH; the word because sometimes appears as because, sometimes 
as ’cause. Some aspects of this variation are systematic; Section 5.7 will sur­
vey the important kinds of variation in pronunciation that are important for 
speech recognition and text-to-speech, and present some preliminary rules 
describing this variation. High-quality speech synthesis algorithms need to 
know when to use particular pronunciation variants. Solving both speech 
tasks requires extending the transduction between surface phones and lexi- 
cafphones discussed in Chapter 4 with probabilistic variation.

Similarly, given the sequence of letters corresponding to a mis-spelled 
word, we need to produce an ordered list of possible correct words. For 
example the sequence across might be a mis-spelling of actress, or of cress, 
or of acres. We transduce from the “surface” form across to tire various 
possible “lexical” forms; assigning each with a probability; we then select 
the most probable correct word.

In this chapter we first introduce the problems of detecting and correct- ; 
trig spelling errors, and also summarize typical human spelling error patterns. 
We then introduce the essential probabilistic architecture that we will use to 
solve both spelling and pronunciation problems: the Bayes Rule and the 
noisy channel model The Bayes rule and its application to the noisy chan­
nel model will play a role in many problems throughout the book, particu­
larly in speech recognition (Chapter 7), part-of-speech tagging (Chapter 8), 
and probabilistic parsing (Chapter 12).

The Bayes Rule arid the noisy channel model provide the probabilistic 
framework for these problems. But actually solving them requires an algo­
rithm. This chapter introduces an essential algorithm called the dynamic
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4 programming algorithm, and various instantiations including the Viterbi 
; algorithm, the minimum edit distance algorithm, and the forward algo­

rithm. We will also see the use of a probabilistic version of the finite-state 
automaton called the weighted automaton.

5.1 Dealing with Spelling Errors

The detection and correction of spelling errors is an integral part of modern 
word-processors. The very same algorithms are also important in applica- 
tions in which even the individual letters aren’t guaranteed to be accurately 
identified: optical character recognition (OCR) and on-line handwriting ocr 

recognition. Optical character recognition is the term used for automatic 
recognition of machine dr hand-printed characters. An optical scanner con­
verts a machine or hand-printed page into a bitmap which is then passed to 

■ an OCR algorithm.
On-line handwriting recognition is the recognition of human printed 

or cursive handwriting as the user is writing. Unlike OCR analysis of hand­
writing, algorithms for on-line handwriting recognition can take advantage 
of dynamic information about the input such as the number and order of 
the strokes, and the speed and direction of each stroke. On-line handwrit­
ing recognition is important where keyboards are inappropriate, such as in 
small computing environments (palm-pilot applications, etc.) or in scripts 
like Chinese that have large numbers of written symbols, making keyboards 
cumbersome.

’ In this chapter we will focus on detection and correction of spelling 
errors, mainly in typed text, but the algorithms will apply also to OCR and 
handwriting applications. OCR systems have even higher error rates than 
human typists, although they tend to make different errors than typists. For 
example OCR systems often misread “D” as “O” or “ri” as “n”. producing 
‘mis-spelled’ words like derision for derision, or POQ Bach for PDQ Bach. 
The reader with further interest in handwriting recognition should consult 
sources such as Tappertet al. (1990), Hu et al. (1996), and Casey and Leco- 
Imet (1996).

’ Kukich (1992), in her survey article on spelling correction, breaks the 
? field down into three increasingly broader problems:

1 non-word error detection: detecting spelling errors that result in non­
words (like graffe for giraffe)
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2. isolated-word error correction: correcting spelling errors that result 
in non-words, for example correcting graffe to giraffe, but looking only 
at the word in isolation

REAL-WORD 
ERRORS

3. context-dependent error detection and correction: using the con­
text to help detect and correct spelling errors even if they acciden­
tally result in an actual word of English (real-word errors). This 
can happen from typographical errors (insertion, deletion, transposi­
tion) which accidently produce a real word (e.g., there for three), of 
because the writer substituted the wrong spelling of a homophone or 
near-homophone (e.g. , dessert for desert, or piece for peace).

The next section will discuss the kinds of spelling-error patterns that 
occur in typed text and OCR and handwriting-recognition input.

Spelling Error Patterns

The number and nature of spelling errors in human typed text differs from 
those caused by pattern-recognition devices like OCR and handwriting rec­
ognizers. Grudin (1983) found spelling error rates of between 1 and 3% in 
human typewritten text (this includes both non-word errors and real-word 
errors). This error rate goes down significantly for copy-edited text. The 
rate of spelling errors in handwritten text itself is similar; word error rates of 
between 1.5 and 2.5% have been reported (Kukich, 1992).

The errors of OCR and on-line hand-writing systems vary. Yaeger et al. 
(1998) propose, based on studies that they warn are inconclusive, that the 
on-line printed character recognition on Apple Computer’s newton MES- 
SAGEPAD had a word accuracy rate of 97 98%, that is, an error rate of 2- 
3%, but with a high variance (depending on the training of the writer, etc.) 
It is not clear whether the failure of the NEWTON was because this error rate 
was optimistic or because a 2-3% error rate is unacceptable. More recent 
devices, like 3Com’s Palm Pilot, often use a special input script (like the 
Palm Pilot’s “Graffiti”) instead of allowing arbitrary handwriting. OCR er­
ror rates also vary widely depending on the quality of the input; (Lopresti 
and Zhou, 1997) suggest that OCR letter-error rates typically range from 
0.2% for clean, first-generation copy to 20% or worse for multigeneration 
photocopies and faxes.
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In an early study, Damerau (1964) found that 80% of all misspelled 
words (non-word errors) in a sample of human keypunched text were caused 
by single-error misspellings: a single one of the following errors?

w • insertion: mistyping the as ther
? • deletion: mistyping the as th

• substitution: mistyping the as thw
? • transposition: mistyping the hte

Because of this study, much following research has focused on the 
correction of single-error misspellings. Indeed, the first algorithm we will 
present later in this chapter relies on the large proportion of single-error mis- 
spellings.

Kukich (1992) breaks down human typing errors into two classes. Ty­
pographic errors (for example misspelling spell as speel), are generally 
related to the keyboard. Cognitive errors (for example misspelling sepa- 
rate as seperate) are caused by writers who don’t know how to spell the 
word, Grudin (1983) found that the keyboard was the strongest influence on 
the errors produced; typographic errors constituted the majority of all error 
types. For example consider substitution errors, which were the most com- 
mon error type for novice typists, and the second most common error type 
for expert typists. Grudin found that immediately adjacent keys in the same 
row accounted for 59% of the novice substitutions and 31% of the error sub­
stitutions (e.g., smsllfor small). Adding in errors in the same column and 
homologous errors (hitting the corresponding key on the opposite side of 
the keyboard with the other hand), a total of 83% of the novice substitutions 
and 51% of the expert substitutions could be considered keyboard-based er­
rors. Cognitive errors included phonetic errors (substituting a phonetically 
equivalent sequence of letters (seperate for separate) and homonym errors 
(substituting piece for peace). Homonym errors will be discussed in Chap- 
tcr 7 when we discuss real-word error correction.

While typing errors are usually characterized as substitutions, inser­
tions, deletions, or transpositions, OCR errors are usually grouped into five 
classes, substitutions, multisubstitutions, space deletions or insertions, and

1 In another corpus, Peterson (1986) found that single-error misspellings accounted for an 
even higher percentage of all misspelled words (93-95%). The difference between the 80% 
and the higher figure may be due to the fact that Damerau’s text included errors caused in 
transcription to punched card forms, errors in keypunching, and errors caused by paper tape 
equipment (!) in addition to purely human misspellings.

INSERTION

DELETION

SUBSTITUTION

TRANSPOSITION
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failures. Lopresti and Zhou. (1997) give the following example of common 
OCR errors:

Correct:
The quick brown fox jumps over the lazy dog.
Recognized:
’Ihe q~ ick brown foxjurnps over tb 1 azy dog.

Substitutions (e -4 c) are generally caused by visual similarity (rather 
than keyboard distance), as are multisubstitutions (T -4 ’I, m -y rn, he -4 
b). Multisubstitutions are also often called framing errors. Failures (repre­
sented by the tilde character w -> ~) are cases where the OCR algorithm 
does not select any letter with sufficient accuracy. J

5.3 Detecting Non-Word Errors

Detecting non-word errors in text, whether typed by humans or scanned, is- | 
most commonly done by the use of a dictionary. For example, the word 
foxjurnps in the OCR example above would not occur in a dictionary. Some j| 
early research (Peterson, 1986) had suggested that such spelling dictionar­
ies would need to be kept small, because large dictionaries contain very rare J 
words that resemble misspellings of other words, For example wont is a fl 
legitimate but rare word but is a common misspelling of won’t. Similarly, : 
veery (a kind of thrush) might also be a misspelling of very. Based on a sim- ■ 
pie model of single-error misspellings, Peterson showed that it was possible 
that 10% of such misspellings might be “hidden” by real words in a 50,000 
Word dictionary, but that 15% of single-error misspellings might be “hidden” . 
in a 350,000-word dictionary. In practice, Damerau and Mays (1989) found 
that this was not the case; while some misspellings were hidden by real 
words in a larger dictionary, in practice the larger dictionary proved more 
help than harm.

Because of the need to represent productive inflection (the w and M 
suffixes) and derivation, dictionaries for spelling error detection; usually in­
clude models of morphology, just as the dictionaries for text-to-speech we ' 
saw in Chapters 3 and 4. Early spelling error detectors simply allowed any 
word to have any suffix - thus Unix SPELL accepts bizarre prefixed words 
like misclam and antiundoggingly and suffixed words based on the ]ike the- 
hood and theness. Modern spelling error detectors use more linguistically- 7 
motivated morphological representations (see Chapter 3).
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5.4 Probabilistic Models

This section introduces probabilistic models of pronunciation and spelling 
variation. These models, particularly the Bayesian inference or noisy chan­
nel model, will be applied throughout this book to many different problems.

We claimed earlier that the problem of ASR pronunciation modeling, 
and the problem of spelling correction for typing or for OCR, can be modeled 
as problems of mapping from one string of symbols to another. For speech 
recognition, given a string of symbols representing the pronunciation of a 
word in context, we need to figure but the string of symbols representing 
the lexical or dictionary pronunciation, so we can look the word up in the 
dictionary. Similarly, given the incorrect sequence of letters in a mis-spelled 
word, we heed to figure out the correct sequence of letters in the correctly 
spelled word.

Figure 5.1 The noisy channel model.

The intuition of the noisy channel model (see Figure 5.1) is to treat channel 
the surface form (the “reduced”” pronunciation or misspelled word) as an 
instance of the lexical form (the “lexical” pronunciation or correctly-spelled 
word) which has been passed through a noisy communication channel. This 
channel introduces “noise” which makes it hard to recognize the “true” word. 
Our goal is then to build a model of the channel so that we can figure out how 
it modified this “true” word and hence recover it. For the complete speech 
recognition tasks, there are many sources of “noise”; variation in pronun­
ciation, variation in the realization of phones, acoustic variation due to the 
channel (microphones, telephone networks, etc.). Since this chapter focuses 
on pronunciation, what we mean by “noise” here is the variation in pronun­
ciation that masks the lexical or “canonical” pronunciation; the other sources 
of noise in a speech recognition system Will be discussed in Chapter 7. For 
spelling error detection, what we mean by noise is the spelling errors which 
mask the correct spelling of the word. The metaphor of the noisy channel 
comes from the application of the model to speech recognition in the IBM 
labs in the 1970s (Jelinek, 1976). But the algorithm itself is a special case
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bayesian of Bayesian inference and as such has been known since the work of Bayes 
(1763). Bayesian inference or Bayesian classification was applied success­
fully to language problems as early as the late 1950s, including thb OCR 
work of Bledsoe in 1959, and the seminal work of Mosteller and Wallace 
(1964) on applying Bayesian inference to determine the authorship of the 
Federalist papers.

In Bayesian classification, as in any classification task, we are given 
some observation and our job is to determine which of a set of classes it 
belongs to. For speech recognition, imagine for the moment that the ob­
servation is the string of phones which make up a word as we hear it. For 
spelling error detection, the observation might be the string of letters that 
constitute a possibly-misspelled word. In both cases, we want to classify 
the observations into words; thus in the speech case, no matter which of the 
many possible ways the word about is pronounced (see Chapter 4) we want ; 
to classify it as about. In the spelling case, no matter how the word separate 
is misspelled, we’d like to recognize it as separate.

Let’s begin with the pronunciation example. We are given a string of 
phones (say [ni]). We want to know which word corresponds to this string of 
phones. The Bayesian interpretation of this task starts by considering all pos- 
siblc classcs-iu this case, all possible words. Out of this universe of words, 
we want to chose the word which is most probable given the observation we 

V ; have ([ni]). In other words, wc want, out of all words in the vocabulary V 
* the single word such that P(word] observation) is highest. Wc use w to mean
o “our estimate of the correct w”, and we’ll use O to mean “the observation

sequence [ni]” (we call it a sequence because we think of each letter as an | 
individual observation); Then the equation for picking the best word given ;; 
is: ■■■■■

argmax P(wjd) • (5.1)

The function argmax Y/(.v) means “the x such that /(x) is maximized”. 
While (5.1) is guaranteed to give us the optimal word w, it is not clear how 
to make the equation operational; that is, for a given word w and observation 
sequence □ we don’t know howto directly computeP(w\0)„ The intuition of 
Bayesian classification is to use Bayes’rule to transform (5.1) into a product 
of two probabilities, each of which turns out to be easier to compute than 
P(u |O). Bayes’ rule is presented in (5.2); it gives us a way to break down 
P(x\O} into three other probabilities:
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We can see this by substituting (5.2) into (5.1) to get (5.3):

w = argmax 
w&V

P(O\w)P(w) 
P[O) (5.3)

The probabilities on the right-hand side of (5.3) are for the most part 
easier to compute than the probability P(w\Oy that we were originally trying 
to maximize in (5.1). For example, P(w), the probability of the word itself, 
we can estimate by the frequency of the word. And we will see below that 
P(O|w) turns out to be easy to estimate as well. But P(O), the probability 
of the observation sequence, turns out to be harder to estimate. Luckily, we 
can ignore P(O). Why? Since we are maximizing over all words, we will 
be computing for each word. But P(O} doesn’t change for each
word; we are always asking about the most likely word string for the same 
observation O, which must have the same probability P(O). Thus:

w — argmax-----—= argmaxP(O|w) P(w) (5.4)
wet : P\P) . ..

To summarize, the most probable word w given some observation O 
can be computing by taking the product of two probabilities for each word, 
and choosing the word for which this product is greatest. These two terms 
have names; P(w) is called the Prior probability, and P{O\w) is called the prior 

likelihood. . likelihood

likelihood prior

Key Concept #3. w = argmax P(t?[w) P(w) . (5.5)

In the next sections we will show how to compute these two probabili­
ties for the probabilities of pronunciation and spelling.

5.5 Applying the Bayesian Method to Spelling

s There are many algorithms for spelling correction; we will focus on the 
Bayesian (or noisy channel) algorithm because of its generality. Chapter 6 
will show how this algorithm can be extended to model real-word spelling 
errors; this section will focus on non-word spelling errors. The noisy chan- 
ncl approach to spelling correction was first suggested by Kernighan et al. 
(1990); their program^ correct; takes words rejected by the Unix spell 
program^ generates a list of potential correct words, rank them according to 
liquation (5.5), and picks the highest-ranked one.
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Let’s walk through the algorithm as it applies to Kernighan et al.’s 
(1990) example misspelling acress. The algorithm has two stages: proposing 
candidate corrections and scoring the candidates.

In order to propose candidate corrections Kernighan et al. make the 
simplifying assumption that the correct word will differ from the misspelling 
by a single insertion, deletion, substitution, or transposition. As Damerau’s 
(1964) results show, even though this assumption causes the algorithm to 
miss some corrections, it should handle most spelling errors in human typed 
text. The list of candidate words is generated from the typo by applying any 
single transformation which results in a word in a large on-line dictionary. 
Applying all possible transformations to acress yields the list of candidate 
words in Figure 5.2.

Figure 5.2 Candidate corrections for the misspelling acress, together with 
the transformations that would have produced the error (after Kernighan et ah 
(1990)). represents a null letter.

Error Correction
Correct
Letter

Transformation
Error 

. Letter
Position 
(Letter#) Type

acress :.. actress . L-'i,... ■ • — ?. 2 deletion L
acress ):/ cress • • ~ " a A o insertion
acress caress ■d' ca . ac 0 i transposition
acress access < A c/.i. ;' r 2 : substitution
acress across 0 e 3 substitution
acress acres ' ■ ■ 2 5 insertion
acress acres 2 4 insertion 2

88

The second stage of the algorithm scores each correction by Equa­
tion 5.4. Let t represent the typo (the misspelled word), and let c range over 
the set C of candidate corrections. The most likely correction is then:

likelihood prior

c — argmax .. .. P(c') ..
. I ceC.

As in Equation (5.4) we have omitted the denominator in Equation (5.6) 
since the typo t, and hence its probability P(t), is constant for all c. The prior 
probability of each correction P(c) can be estimated by counting how often 

normalizing. the word c occurs in some corpus, and then normalizing these counts by the

Bi
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total count of all words.2 So the probability of a particular correction word 
c is computed by dividing the count of c by the number A of words in the 
corpus. Zero counts can cause problems, and so we will add .5 to all the 
counts. This is called “smoothing”, and will be discussed in Chapter 6; note 
that in Equation (5.7) we can’t just divide by the total number of words A 
since we added .5 to the counts of all the words, so we add .5 for each of the 

? C V words in the vocabulary).

Ir pW = £«±^ (57);f n+o.5k k'
Chapter 6 will talk more about the role of corpora in computing prior 

probabilities; for now let’s use the corpus of Kernighan et al. (1990), which 
C is the 1988 AP newswire corpus of 44 million words. Thus N is 44 million. 

Since in this corpus the word actress occurs 1343 times, the word acres 2879 
v times, and so on, the resulting prior probabilities are as follows:

c freq(c) p(c)
actress 1343 .0000315
cress 0 .000000014
caress 4 .0000001
access 2280 .000058
across 8436 .00019
acres 2879 .000065

Computing the likelihood term p(t|c) exactly is an unsolved (unsolve- 
able?) research problem; the exact probability that a word will be mistyped 
depends on who the typist was, how familiar they were with the keyboard 
they were using, whether one hand happened to be more tired than the other, 
etc. Luckily, while p(t|c) cannot be computed exactly, it can be estimated 
pretty well, because the most important factors predicting an insertion, dele­
tion, transposition are simple local factors like the identity of the correct 
letter itself, how the letter was misspelled, and the surrounding context. For 

: example, the letters m and n are often substituted for each other; this is partly 
) a fact about their identity (these two letters are pronounced similarly and 

; they are next to each other on the keyboard), and partly a fact about context 
(because they are pronounced similarly, they occur in similar contexts).

One simple way to estimate these probabilities is the one that Kerni- 
■ ghan et al. (1990) used. They ignored most of the possible influences on 

the probability of an error and just estimated e.g. p(acress\across) using 
v -■ Normalizing means dividing by some total count so that the resulting probabilities fall 

legally between 0 and 1. . .
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the number of times that e was substituted for o in some large corpus of er- 
rors. This is represented by a confusion matrix, a square 26 x 26 table which 
represents the number of times one letter was incorrectly used instead of an­
other. For example, the cell labeled [o, e] in a substitution confusion matrix 
would give the count of times that e was substituted for o. The cell labeled | 
[r.s] in an insertion confusion matrix would give the count of times that / y 
was inserted after a. A confusion matrix can be computed by hand-coding 
a collection of spelling errors with the correct spelling and then counting 
the number of times different errors occurred (this has been done by Grudin 
(1983)). Kernighan et al. (1990) used four confusion matrices, one for each 
type of single-error: : . . /tty 1

• delyyv] Contains the number of times in the training set that the char­
acters xy in the correct word were typed as x. f

• ins[x,y] contains the number of times in the training set that the char­
acter x in the correct word was typed as xy. y

• sub[x, y]' the number of times that x was typed as y.
• trans[x,y] the number of times that xy was typed as yx. ■■

Note that they chose to condition their insertion and deletion proba­
bilities on the previous character; they could also have chosen to condition 
on the following character. Using these matrices, they estimated p(t|c) as 
follows (where cp is the yth character of the word c):

' ( -dcll^-byU deletion 
county. <>] •d de*edon

< Xy y x >
? <58>

; gggyd , if transposition ;/y

Figure 5.3 shows the final probabilities for each of the potential correc­
tions; the prior (front Equation (5.7)) is multiplied by the likelihood (com­
puted using Equation (5.8) and the confusion matrices). The final column ' 
shows the “normalized percentage”.

This implementation of the Bayesian algorithm predicts acres as the 
correct word (at a total normalized percentage of 45%), and actress as the / 
second most likely word. Unfortunately; the algorithm was wrong here: The 
writer’s intention becomes clear from the context: ... was called a “stellar J 
and versatile across whose combination of sass and glamour has defined x 
her.A”; The surrounding words make itclear that actress and not acres was |
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c freq(c) P(c) p(t|c) p(t|c)p(c) %
: actress 1343 .0000315 .000117 3.69 x 10“9 37%
cress 0 .000000014 .00000144 2.02x10“14 0%
caress 4 .0000001 .00000164 1.64 x 10”13 0%
access 2280 .000058 .000000209 1.21 x 10" ” . 0%
across 8436 .00019 .0000093 i.77 x nr9 18%
acres 2879 .000065 .0000321 2.09 x IO”9 21%
acres 2879 .000065 .0000342 2.22 x 10”9 • 23%

Figure 5.3 Computation of the ranking for each candidate correction. Note 
that the highest ranked word is not actress but acres (the two lines at the bottom 
of the table), since acres can be generated in two ways. The del\}, zns[], rabl], 
and trans[} confusion matrices are given in full in Kernighan et al. (1990).

the intended word; Chapter 6 will show how to augment the computation of 
the prior probability to use the surrounding words.

The algorithm as we have described it requires hand-annotated data to 
train the confusion matrices. An alternative approach used by Kernighan 
et al. (1990) is to compute the matrices by iteratively using this very spelling 
error correction algorithm itself. The iterative algorithm first initializes the 
matrices with equal values; thus any character is equally likely to be deleted, 
equally likely to be substituted for any other character, etc. Next the spelling 

; error correction algorithm is run on a set of spelling errors. Given the set 
of typos paired with their corrections, the confusion matrices can now be 
recomputed, the spelling algorithm run again, and so on. This clever method 
turns out to be an instance of the important EM algorithm (Dempster et al., 
1977) that we will discuss in Chapter 7 and Appendix D. Kernighan et al. 
(1990)’s algorithm was evaluated by taking some spelling errors that had 
two potential corrections, and asking three human judges to pick the best 
correction. Their program agreed with the majority vote of the human judges 
87% of the time.

5.6 Minimum Edit Distance

; The previous section showed that the Bayesian algorithm, as implemented 
with confusion matrices, was able to rank candidate corrections. But Kerni­
ghan et al. (1990) relied on the simplifying assumption that each word had 
only a single spelling error. Suppose we wanted a more powerful algorithm
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which could handle the case of multiple errors? We could think of such 
distance an algorithm as a general solution to the problem of string distance. The 

“string distance” is some metric of how alike two strings are to each other. 
The Bayesian method can be viewed as a way of applying such an algorithm 
to the spelling error correction problem; we pick the candidate word which 
is “closest” to the error in the sense of having the highest probability given 
the error.

One of the most popular classes of algorithms for finding string dis- 
d‘stanceedit tance are those that use some version of the minimum edit distance algo­

rithm, named by Wagner and Fischer (1974) but independently discovered 
by many people; see the History section. The minimum edit distance be­
tween two strings is the minimum number of editing operations (insertion, 
deletion, substitution) needed to transform one string into another. For ex­
ample the gap between intention and execution is five operations, which can ; 

alignment be represented in three ways; as a trace, an alignment, or a operation list 
as show in Figure 5.4.

Trace

Alignment

Operation 
List

.incentio

. o x o c, u- t i; o

i r. t one t i
E e x e c u t i

delete i
t ■ ? ■-nsubstitute n by e

• • • £
substitute t by x 

insert u e

substitute n by c -►

n

. n • ■ : i;;

on.-..
o n- ■

n tent ion 
t- e. n-- L L o n.- : 
t e'n-t ion ■ 
x e n t i o n 
xenution

' e x e c u l ...f o ri TT

Figure 5.4 Three methods for representing differences between sequences: 
(after Kruskal (1983)) ;

; We can also assign a particular cost or weight to each of these oper­
ations. The Levenshteindistance: between two sequences is the simplest 
weighting factor in which each of the three operations has a cost of 1 (Lev­
enshtein, 1966).; Thus the Levenshtein distance between intention and ex- 
ecution is 5, Levenshtein also proposed an alternate version of his metric "
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in which each insertion or deletion has a cost of one, and substitutions are 
not allowed (equivalent to allowing substitution, but giving each substitution 
a cost of 2, since any substitution can be represented by one insertion and 
one deletion). Using this version, the Levenshtein distance between inten- 
tion and execution is S. We can also weight operations by more complex 
functions, for example by using the confusion matrices discussed above to 
assign a probability to each operation. In this case instead of talking about 
the “minimum edit distance” between two strings, we are talking about the 
“maximum probability alignment” of one string with another. If we do this, 
an augmented minimum edit distance algorithm which multiplies the prob­

it abilities of each transformation can be used to estimate the Bayesian likeli­
hood of a multiple-error typo given a candidate correction.

The minimum edit distance is computed by dynamic programming, programming 

Dynamic programming is the name for a class of algorithms, first introduced 
by Bellman (1957), that apply a table-driven method to solve problems by 
combining solutions to subproblems. This class of algorithms includes the 
most commonly-used algorithms in speech and language processing, among 
them the minimum edit distance algorithm for spelling error correction the 
Viterbi algorithm and the forward algorithm which are used both in speech 
recognition and in machine translation, and the CYK and Earley algorithm 
used in parsing. We will introduce the minimum-edit-distance, Viterbi, and

? forward algorithms in this chapter and Chapter 7, the Earley algorithm in 
Chapter 10, and the CYK algorithm in Chapter 12.

The intuition of a dynamic programming problem is that a large prob­
lem can be solved by properly combining the solutions to various subprob­
lems. For example, consider the sequence or “path” of transformed words 
that comprise the minimum edit distance between the strings intention and 
execution. Imagine some string (perhaps it is exention) that is in this opti- 

: mal path (whatever it is). The intuition of dynamic programming is that if 
exention is in the optimal operation-list, then the optimal sequence must also 
include the optimal path from intention to exention. Why? If there were a 
shorter path from intention to exention then we could use it instead, resulting 
ill a shorter overall path, and the optimal sequence wouldn’t be optimal, thus 
leading to a contradiction. \ < v

Dynamic programming algorithms for sequence comparison work by 
creating a distance matrix with one column for each symbol in the target se- 

; quence and one row for each symbol in the source sequence (i.e., target along
the bottom, source along the side). For minimum edit distance, this matrix 

x is the edit-distance matrix. Each cell edit-distance\i.j\ contains the distance
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between the first i characters of the target and the first j characters of the 
source. Each cell can be computed as a simple function of the surrounding 
cells; thus starting from the beginning of the matrix it is possible to fill in 3 
every entry. The value in each cell is computing by taking the minimum of 3 2 
the three possible paths through the matrix which arrive there:

( distance[i — 1, j] + ins-cost^arget^ \2 J|
P(r|c) — min < distance^ — 1, j — 1 ] + subst-cost(source j,target^ (5.9)

( distance^, j — 1] +del-cost(source j))
The algorithm itself is summarized in Figure 5.5, while Figure 5.6 ;

shows the results of applying the algorithm to the distance between inten­
tion and execution assuming the version of Levenshtein distance in which 
insertions and deletions each have a cost of 1 and substitutions have a cost 
of2.

function MLN-EDlT-DiSTAX(TXt^ source) returns min-distance

. mULENGTHtso^^
Create a distance matrixdistance[n+1,m+1 ]
dLslance[O:O! <-()
for each column i from 0 to n do

for each row j from 0 to m do
distanced J] t-MTNCdistanceli— l,j] + ins-costCtarget,)., 

distance[i— l,j—1] + subst-cosdsourcej, target^, 
distancelij— 1] + del-cost^sourcej))

gg

: Figure 5.5 The minimum edit distance algorithm, an example of the class 
of dynamic programming algorithms. 1

5.7 English Pronunciation Variation

When any of the fugitives of Ephraim said: ‘Let me go over/ the men 
of Gilead said unto him: ‘Art thou an Ephraimite?’ If he said: ‘Nay’; 
then said they unto him: ‘Say now Shibboleth’; and he said ‘Sibbo- 
leth’; for he could not frame to pronounce it right; then they laid hold 
on him, and slcv him at the fords of the Jordan.

Judges 12:5-6
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n 9 10 11 10 11 12 11 16 9 8
o 8 9 10 9 10 11 10 9 8 9
i 7 8 9 8 9 10 9 8 9 10
t 6 7 8 7 8 9 8 9 10 11'
n 5 6 7 6 7 8 9 10 11 12
e 4 5 6 5 6 7 8 9 10 11
t 3 4 5 6 7 8 9 10 11 12
n 2 3 4 5 6 7 8 8 10 11
i 1 2 3 4 5 6 7 8 9 10
# 0 1 • 2 3 4 5 6 r 7 8 9

# e ? X e c u t i 0 n

Figure 5.6 Computation of minimum edit distance between intention and 
execution via algorithm of Figure 5.5, using Levenshtein distance with cost of 
1 for insertions or deletions, 2 for substitutions. Substitution of a character for 
itself has a cost of 0.

This passage from Judges is a rather gory reminder of the political 
importance of pronunciation variation. Even in our (hopefully less politi­
cal) computational applications of pronunciation, it is important to correctly 
model how pronunciations can vary. We have already seen that a phoneme 
can be realized as different allophones in different phonetic environments. 
We have also shown how to write rules and transducers to model these 
changes for speech synthesis. Unfortunately, these models significantly sim­
plified the nature of pronunciation variation. In particular, pronunciation 
variation is caused by many factors in addition to the phonetic environment. 
This section summarizes some of these kinds of variation; the following sec­
tion will introduce the probabilistic tools for modeling it.

Pronunciation variation is extremely widespread. Figure 5.7 shows 
the most common pronunciations of the words because and about from the 
hand-transcribed Switchboard corpus of American English telephone con­
versations. Note the wide variation in pronunciation for these two words 
when spoken as part of a continuous stream of speech.

What causes this variation? There are two broad classes of pronunci­
ation variation, lexical variation and allophonic variation. We can think variation 

of lexical variation as a difference in what segments are used to represent vacation lc 

the word in the lexicon, while allophonic variation is a difference in how the 
individual segments change their value in different contexts. In Figure 5.7, 
most of the variation in pronunciation is allophonic; that is, due to the influ-
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:r^

because about
IPA ARPAbet % IPA ARPAbet %
[bikAz] [b iy k ah z] : 27% [obau] . [ax b aw] 32%
[bikxz] [b ix k ah z] 14% [obaut] [ax b aw t] 16%
[KazI [k ah z ] . 7% [bats] [b aw] 9%
[koz] [k ax z] 5% [xbau] [ix b aw] 8%
[bikoz] [b ix k ax z] 4% [ibaut] [ix b aw t] 5% 3
[bikAz] [bihkahz] . 3%. [ibae] [ix b ae] 4%
[bokAz] [baxkahz] . 3% [obagr] [ax b ae dx] 3% %
[kuz] p . [kuhz] .. 2% [baur] [b aw dx] 3% .
[ks] Iks] , 2% . . [bae] [b ae] 3%.

'’*Zi : [kixz] 2% • : [baut] [b aw t] .. 3%
• .M ■ [kihz] : 2% [obaur] [ax b aw dx] 3%

[bikA$] [b iykahzh] . 2% [obae] [ax b ae | 3%
[bikAs] [b iy k ah s] 2% [ba] [b aa] 3% •
[bikA] B [b iy k ah] 2% [beer] [b ae dx] 3%
[bikuz], | b iy k aa z ] 2% [ibaur] [ix b aw dx] 2%

[ax z] . 2% [ibat] [ixbaat] 2%

< Figure 5.7 The 16 most common pronunciations of because and about
from the hand-transcribed Switchboard corpus of American English conver-
sational telephone speech (Godfrey et al., 1992; Greenberg et al., 1996).

SOCIOLINGUISTIC

DIALECT
VARIATION

ence of the surrounding sounds, syllable structure, and so forth. But the fact 
that the word because can be pronounced either as monosyllabic ’cnzwc or 
bisyllabic because is probably a lexical fact, having to do perhaps with the 
level of informality of speech.

An important source of lexical variation (although it can also affect al­
lophonic variation) is sociolinguistic variation. Sociolinguistic variation is 
due to extralinguistic factors such as the social identity or background of the 
speaker. One kind of sociolinguistic variation is dialect variation. Speak­
ers of some deep-southern dialects of American English use a monophthong 
or near-monophthong[a] or [ar] instead of a diphthong in some words with 
the vowel [at]. In these dialects rice is pronounced [ra:s]. African-American 
Vernacular English (AAVE) has many of the same vowel differences from 
General American as does Southern American English, and also has indi­
vidual words with specific pronunciations such as [bidm for business and 
[aeks] for ask. For older speakers or those hot from the American West or 
Midwest, the words caught and cot have different vowels fkaf and [kal]

Ms

is
a
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respectively). Young American speakers or those from the West pronounce 
the two words cot and caught the same; the vowels [□] and [a] are usually 
not distinguished in these dialects. For some speakers from New York City 
like the first author’s parents, the words Mary ([meiri]), marry ([meeri]), and 
merry ([meri]) are all pronounced differently, while other New York City 
speakers like the second author pronounce Mary, and merry identically, but 
differently than marry. Most American speakers pronounce all three of these 
words identically as ([meri]). Students who are interested in dialects of En­
glish should consult Wells (1982), the most comprehensive study of dialects 
of English around the world.

sociolinguistic differences are due to register or style rather than 
dialect. In a pronunciation difference that is due to style, the same speaker 
might pronounce the same word differently depending on who they were 
talking to or what the social situation is; this is probably the case when 
choosing between because and ’cause above. One of the most well-studied 
examples of style-variation is the suffix -ing (as in something'), which can be 
pronounced [rrj] or /m/ (this is often written somethin ’). Most speakers use 
both forms; as Labov (1966) shows, they use [i y] when they are being more 
formal, and [m] when more casual. In fact whether a speaker will use [ig] or 
[m] in a given situation varies markedly according to the social context, tire 
gender of the speaker, the gender of the other speaker, and so on. Wald and 
Shopen (1981) found that men are more likely to use the non-standard form 
[in] than women, that both men and women are more likely to use more of 
the standard form [ig] when the addressee is a women, and that men (but not 
women) tend to switch to [m] when they are talking with friends.

'AW? Where lexical variation happens at the lexical level, allophonic varia­
tion happens at the surface form and reflects phonetic and articulatory fac­
tors.3 For example, most of the variation in the word about in Figure 5.7 
was caused by changes in one of the two vowels or by changes to the final 
ft]. Some of this variation is due to the allophonic rules we have already 
discussed for the realization of the phoneme /t/. For example the pronun­
ciation of about as [obaurj/fax b aw dx]) has a flap at the end because the 
next word was the word it, which begins with a vowel; the sequence about 
it was pronounced [obaurij/fax b aw dx ix]). Similarly, note that final [t] is 

A often deleted; (about as [bau]/[b aw]). Considering these cases as “deleted” 
is actually a simplification; many of these “deleted” cases of [t] are actually

REGISTER

STYLE

3 l or some purposes we distinguish between allophonic variation and what are called “op­
tional phonological rules”; for the purposes of this textbook we will lump these both together 
as “allophonic variation”.
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realized as a slight change to the vowel quality called glottalization which 
are not represented in these transcriptions.

When we discussed these rules earlier, we implied that they were de­
terministic; given an environment, anile always applies. -This is by no means 
the case. Each of these allophonic rules is dependent on a complicated set of . 
factors that must be interpreted probabilistically. In the rest of this section 
we summarize more of these rules and talk about the influencing factors. J

coarticulation Many of these rules model coarticulation, which is a change in a segment
due to the movement of the articulators in neighboring Segments. Most al­
lophonic rules relating English phoneme to their allophones can be grouped 
into a small number of types: assimilation, dissimilation; deletion, flapping, 
vowel reduction, and epenthesis . s i

assimilation Assimilation is the change in a segment to make it more like a neigh­
boring segment. The dentalization of [t] to (fl) before the dental consonant 
[0] is an example ofassimilation. Another common type of assimilation

palatalization in English and cross-linguislically is palatalization. Palatalization occurs
when the constriction for a segment occurs closer to the palate than it nor­
mallywould, because the following segment is palatal or alveolo-palatali 
In the most common cases, /s/ becomes [J],/z/ becomes [3], /t/ becomes [t[ 
and /d/ becomes d;^. We sawone case of palatalization in Figure 5.7 in the 
pronunciation of because as [bikAs] (ARPAbet [b iy k ah zhj). Here the 
final segment; of because., a lexical /z/. is realized; as [3], because the fol­
lowing word was you've. So the sequence because you’ve was pronounced 
IbikA^uv।. A simple version of a palatalization rule might be expressed as 
follows; Figure 5.8 shows examples from the Switchboard corpus.

A 
Zj 
t

IK
/ — {y} (5.10)

Note in Figure 5.8 that whether a i ll is palatalized depends on lexical 
factors like word frequency is more likely to be palatalized in frequent 
words and phrases).

deletion Deletion is quite common in English speech. We saw examples of
deletion of final /t/ above, in the words about and it. ft/ and /d/ are often 
deleted before consonants, or when they arc part of a sequence of two or 
three consonants; Figure 5.9 shows some examples.;

The many factors that influence the deletion of /t/ and /d/ have been .; 
extensively studied. For example /d/ is more likely to be deleted than /t/.
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Figure 5.8 Examples of palatalization from the Switchboard corpus; the 
Iemma you (including your, you’ve, and you’d) was by far the most common 
cause of palatalization, followed by year(s) (especially in the phrases this year 
and last year).

Phrase
1 IPA
j Lexical

IPA
Reduced

ARPAbet 
Reduced

set your [setjar] [setJa’J [s eh ch er]
not yet [not jet] [natjet] [n aa ch eh t]

7 last year [lasstjir] [laestjir] - [1 ae s ch iy r]
what you [WAtju] [wot Ju] [w ax ch uw]

' this year [disjir] [MM [dh ih sh iy r]
because you’ve [bikxzjuv] [bikA^uv] [b iy k ah zh uw v]

■did you [didju] [did3yA] [d ih jh y ah]

Phrase
IPA
Lexical

IPA
Reduced

ARPAbet 
Reduced

find him [faindhim] [ fainim] [f ay nixm]
around this [oraunddis] iraums । [ix raw nibs]
mind boggling [mambogliq] marnboglig] [m ay n b ao g el ih ng]
mostplaces moustpleisiz] mouspleisiz] [m ow s p ley s ix z]
draft the dr^ftdi] drakdii [dr ae f dhiy]
left me [leftmi] kfmi] [1 eh f m iy].

Figure 5.9 Examples of /t/ and/d/ deletion from Switchboard. Some of 
these examples may have glottalization instead of being completely deleted.

Both are more likely to be deleted before a consonant (Labov, 1972). The 
final /t/ and /d/ in the words and and just are particularly Ekely to be deleted 
(Labov, 1975; Neu, 1980). Wolfram (1969) found that deletion is more 
likely in faster or more casual speech, and that younger people and males 

H are more Ekely to delete. Deletion is more likely when the two words sur- 
7 rounding the segment act as a sort of phrasal unit, either occurring together 

frequently (Bybee, 1996), having a high mutual information or trigram 
predictability (Gregory et al., 1999), or being tightly connected for other 

■ reasons (Zwicky; 1972). Fasold (1972), Labov (1972), and many others have 
shown that deletion is less likely if the word-final /t/ or /d/ is the past tense 
ending. For example in Switchboard, deletion is more likely in the word 

; . a than in the word turned (30% /d/-deletion) even
though the two words have similar frequencies.
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The flapping rule is significantly more complicated than we suggested 
in Chapter 4, as a number of scholars have pointed out (see especially Rhodes ■ 
(1992)). The preceding vowel is highly likely to be stressed, although this is 
not necessary (for example there is commonly a flap in the word thermome­
ter [O^'mamira1]). The following vowel is highly likely to be unstressed, al­
though again this is not necessary, /t / is much more likely to flap than 5 
/d/. There are complicated interactions with syllable, foot, and word bound­
aries. Flapping is more likely to happen when the speaker is speaking more 
quickly, and is more likely to happen at the end of a word when it forms 
a collocation (high mutual information) with the following word (Gregory 
ci al.,1999). Flapping is less likely to happen when a speaker hyperar- 

hyperarticulates ticulates, i.e. uses a particularly clear form of speech, which often happens 
when users are talking to computer speech recognition systems (Oviatt et al., 
1998). There is a nasal flap T* whose tongue movements resemble the oral 
flap but in which the velum is lowered. Finally, flapping doesn’t always hap­
pen, even when the environment is appropriate; thus the flapping rule, or 
transducer, needs to be probabilistic, as we will see below.

We have saved for last one of the most important phonological pro- ; 
cesses: vowel reduction, in which many vowels in unstressed syllables are ’ 

towels13 realized as reduced vowels, the most common of which is schwa ([a]). 1
schwa Stressed syllables are those in which more air is pushed out of the lungs: <

stressed syllables are longer, louder, and usually higher in pitch than un- j 
stressed syllables. Vowels in unstressed syllables in English often don’t have 1 
their full form; the articulatory gesture isn’t as complete as for a full vowel. ) 
As a result the shape of the mouth is somewhat neutral; the tongue is nei- ] 
ther particularly high nor particularly low. For example the second vowels , 
inparakeet is schwa: [pmrokit], I

While schwh is the most common reduced vowel, it is not the only 
one, at least not in some dialects. Bolinger (1981) proposed three reduced 
vowels: a reduced mid vowel [o], a reduced front vowel [i], and a reduced 
rounded vowel (d. But the majority of computational pronunciation lex- 
icons or computational models of phonology systems limit themselves to 
one reduced vowel ([:>]) (for example PRONLEX and CELEX) or at most 
two (|.)l =ARPABET [ax] and [i] = ARPAbet [ix|). Miller (1998) was able 
to train a neural net to automatically categorize a vowel as [a] or [i] based y? 
only on the phonetic context, which suggests that for speech recognition and 
text-to-speech purposes, one reduced vowel is probably adequate. Indeed. 
Wells (1982, p, 167-168) notes that [o] and [i] are falling together in many V 
dialects of English including General American and Irish, among others, a %
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phenomenon he calls weak vowel merger.
A final note: not all unstressed vowels are reduced; any vowel, and 

diphthongs in particular can retain their full quality even in unstressed po­
sition. For example the vowel [ei] (ARPAbet [ey]) can appear in stressed 
position as in the word eight) ['eit] or unstressed position as in the word al­
ways [d.weiz]. Whether a vowel is reduced depends on many factors. For 
example the word the can be pronounced with a full vowel di or reduced 
vowel do. It is more likely to be pronounced with the reduced vowel do in 
fast speech, in more casual situations, and when the following word begins 
with a consonant. It is more likely to be pronounced with the full vowel di 
when the following word begins with a vowel or when the speaker is having 
“planning problems”; speakers are more likely to use a full vowel than a re­
duced one if they don’t know what they are going to say next (Fox Tree and 
Clark, 1997). See Keating et al. (1994) and Jurafsky et al. (1998) for more 
details on factors effecting vowel reduction in the TIMIT and Switchboard 
corpora. Other factors influencing reduction include the frequency of the 
word, whether this is the final vowel in a phrase, and even the idiosyncracies 
of individual speakers.

5.8 The Bayesian Method for Pronunciation

HEAD KNIGHT OF NI: Ni!
KNIGHTS OF NI:
ARTHUR:
HEAD KNIGHT:
RANDOM:
ARTHUR-
HEAD KNIGHT: 
BEDEVERE: 
HEAD KNIGHT:

Ni! Ni! Ni! Ni! Ni!
Who are you?
We are the Knights Who Say... ‘Ni’!
Ni!
No! Not the Knights Who Say ’Ni’!
The same!
Who are they?
We are the keepers of the sacred words: 
‘Ni’, ‘Peng’, and ‘Neee-wom’!

Graham Chapman, John Cleese, Eric Idle, Terry Gilliam, Terry Jones, 
and Michael Palin, Monty Python and the Holy Grail 1975.

The Bayesian algorithm that we used to pick the optimal correction for 
a spelling error can be used to solve what is often called the pronunciation 
subproblem in speech recognition. In this task, we are given a series of 
phones and our job is to compute the most probable word which generated 
them. For this chapter, we will simplify the problem in an important way 
by assuming the correct string of phones. A real speech recognizer relies on
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probabilistic estimators for each phone, so it is never sure about the identity 
of any phone. We will relax this assumption in Chapter 7; for now, let’s look 
at the simpler problem.

We’ll also begin with another simplification by assuming that we al­
ready know where the word boundaries are. Later in the chapter, we’ll show 
that we can simultaneously find word boundaries (“segment”) and model 
pronunciation variation.

Consider the particular problem of interpreting the sequence of phones 
jo, when it occurs after the word I at the beginning of a sentence. Stop ani^j 
see if you can think of any words which are likely to have been pronounced 
[ni] before you read on. The word “Ni” is not allowed. j f

You probably thought of the word knee. This word is in fact pro- S 
nounced [ni]. But an investigation of the Switchboard corpus produces a 
total of 7 words which can be pronounced [ni]! The seven words are riie, 
neat, need, new, knee, to, and you.

How can the word the be pronounced [ni]? The explanation for this 
pronunciation (and all the others except the one for knee) lies in the contextu­
ally-induced pronunciation variation we discussed in Chapter 4. For exam­
ple; we saw that [t] and [d] were often deleted word finally, especially before 
coronals; thus the pronunciation of neat as [ni] happened before the word 
Hille (neat little [nilol]). The pronunciation of the as [ni] is caused by the 
regressive assimilation process also discussed in Chapter 4. Recall that in 
nasal assimilation, phones before or after nasals take on nasal manner of ar­
ticulation. Thus [0] can be realized as [n]. The many cases of the pronounced 3 
as [ ni ] in Switchboard occurred after words like in, on, and been (so in the 

[inni!).The pronunciation of hew as [ni] occurred most frequently in the 
word New York', the Vowel [u] has fronted to [i] before a [y],

The pronunciation of to as [ni] occurred after the work talking (talking 
to you —> [takmiyu]); here the [u] is palatalized by the following [y] and the ^ 
[n] is functioning jointly as the final sound of talking and the initial sound 
of to . Because this phone is part of two separate words we will not try to 
model this particular mapping; for the rest of this section let’s consider only 
the following five words as candidate lexical forms for [ni]: knee, the, neat, 
'need^new^^

We saw in the previous section that the Bayesian spelling error cor­
rection algorithm had two components: candidate generation, and candidate 
scoring. Speech recognizers often use an alternative architecture, trading 
off speech for storage. In this architecture, each pronunciation is expanded ' 
in advance with: all possible variants, which are then pre-stored with their .
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scores. Thus there is no need for candidate generation; the word [ni] is 
simply stored with the list of words that can generate it. Let’s assume this 
method and see how the prior and likelihood are computed for each word.

We will be choosing the word whose product of prior and likelihood is 
the highest, according to Equation (5.12), where y represents the sequence 
of phones (in this case [ni] and w represents the candidate word [the, new, 
etc.]). The most likely word is then:

likelihood prior

vv-argmax P(y\w) P(w) (5.12)

We could choose to generate the likelihoods p(y|w) by using a set of 
confusion matrices as we did for spelling error correction. But it turns out 
that confusion matrices don’t do as well for pronunciation as for spelling. 
While misspelling tends to change the form of a word only slightly, the 
changes in pronunciation between a lexical and surface form are much greater. 
Confusion matrices only work well for single-errors, which, as we saw above, 
are common in misspelling. Furthermore, recall from Chapter 4 that pro­
nunciation variation is strongly affected by the surrounding phones, lexical 
frequency, and stress and other prosodic factors. Thus probabilistic models 
of pronunciation variation include a lot more factors than a simple confusion 
matrix can include.

One simple way to generate pronunciation likelihoods is via proba­
bilistic rules. Probabilistic rules were first proposed for pronunciation by rules811’3110 
(Labov, 1969) (who called them variable rules). The idea is to take the 
rules of pronunciation variation we saw in Chapter 4 and associate them 
with probabilities. We can then run these probabilistic rules over the lexicon 
and generate different possible surface forms each with its own probability. 
For example, consider a simple version of a nasal assimilation rule which 
explains why the can be pronounced [ni]; a word-initial [d] becomes [n] if the 
preceding word ended in [n] or sometimes [m]:

. ,. [.15] 3 n / [^__ , (5.13)

The [.15] to the left of the rule is the probability; this can be com­
puted from a large-enough labeled corpus such as the transcribed portion of 
Switchboard. Let ncount be the number of times lexical [8] is realized word- 
initially by surface [n] when the previous word ends in a nasal (91 in the 
Switchboard corpus). Let envcount be the total number of times lexical [6] 
occurs (whatever its surface realization) when the previous word ends in a 
nasal (617 in the Switchboard corpus). The resulting probability is:
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P(b> n / [+nasal] #—) = --------—
envcount

• - ■ ■ ._ 91
6F7 ...

= .15

We can build similar probabilistic versions of the assimilation and dele­
tion rules which account for the [ni] pronunciation of the other words. Fig­
ure 5.10 shows sample rules and the probabilities trained on the Switchboard 
pronunciation database.

Word Rule Name Rule ■ wPf
the nasal assimilation 3 => n / [-{-nasal] ft ’ USS
neat final t deletion [-521
heed final d deletion d / V MH

■ neiv u fronting u i /# [y]' Ka [•36U;
Figure 5.10; Simple rules of pronunciation variation due to context in con­
tinuous speech accounting for the pronunciation of each of these words as [ni].

We now need to compute the prior probability P(w) for each word. 
For spelling correction we did this by using the relative frequency of the 1 
word in a large corpus; a word which occurred 44,000 times in 44 million 
words receives the probability estimate or .001, For the pronuncia- .
tion problem, let’s take our prior probabilities from a collection of a written 
and a spoken corpus. The Brown Corpus is al million word collection 
of samples from 500 written texts from different genres (newspaper, novels, 
hon-fiction, academic, etc.) which was assembled at Brown University in . 
1963 1964 (Kucera and Francis, 1967; Francis, 1979; Francis and Kucera, 
1982); The Switchboard Treebank corpus is a 1.4 million word collection 
of telephone conversations. Together they let us sample from both the writ­
ten and spoken genres. The table, below shows the probabilities for our five 
words; each probability is computed from the raw frequencies by normaliz­
ing by the number of words in the combined corpus (plus .5 * the number of 
word types; so the total denominator is 2,486,075 + 30,836):
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w freq(w) p(w)
knee 
the 
neat 
need

61 .000024
114,834 .046

338 .00013
1417 .00056

new 2625 .001

Now we are almost ready to answer our original question: what is 
the most likely word given the pronunciation [ni] and given that the previous 
word was I at the beginning of a sentence. Let’s start by multiplying together 
our estimates for p(w) and p(y|w) to get an estimate: we show them sorted 
from most probable to least probable (the has a probability of 0 since the 
previous phone was not [n], and hence there is no other rule allowing [d] to 
be realized as [nJ):

Word p(y[w) p(w) p(y|w)p(w)
new 36 .001 .00036
neat .52, .00013 .000068
need J .11 .00056 .000062
knee 1.00 .000024 .000024
the 0 .046 0

Our algorithm suggests that new is the most likely underlying word. 
But this is the wrong answer; the string [ni] following the word I came in 
fact from the word need in the Switchboard corpus. One way that people 
are able to correctly solve this task is word-level knowledge; people know 
that the word string I need '... is much more likely than the word string 
I new .... We don’t need to abandon our Bayesian model to handle this 
fact; we just need to modify it so that our model also knows that I need is 
more likely than I new. In Chapter 6 we will see that we can do this by 
using a slightly more intelligent estimate of p(w) called a bigram estimate; 
essentially we consider the probability of need following I instead of just the 
individual probability of need.

This Bayesian algorithm is in fact part of all modern speech recog­
nizers. Where the algorithms differ strongly is how they detect individual 
phones in the acoustic signal, and on which search algorithm they use to 
efficiently compute the Bayesian probabilities to find the proper string of 
words in connected speech (as we will see in Chapter 7).
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Decision Tree Models of Pronunciation Variation

In the previous section we saw how hand-written rules could be augmented 
with probabilities to model pronunciation variation. Riley (1991) and With- 
gott and Chen (1993) suggested an alternative to writing rules by hand, 
which has proved quite useful: automatically inducing lexical-to-siuface 

decision tree pronunciations mappings from a labeled corpus with a decision tree, partic­
ularly with the kind of decision tree called a Classification and Regression 

cart Tree (CART) (Breiman et al., 1984). A decision tree takes a situation de­
scribed by a set of features and classifies it into a category and an associated 
probability. For pronunciation, a decision tree can be trained to take a lexical 
phone and various contextual features (surrounding phones, stress and sylla­
ble structure information, perhaps lexical identity) and select an appropriate . 
surface phone to realize it. We can think of the confusion matrices we used 
in spelling error correction above as degenerate decision trees; thus the sub­
stitution matrix takes a lexical phone and outputs a probability distribution 1 
over potential surface phones to be substituted. The advantage of decision 
trees is that they can be automatically induced from a labeled corpus, and . 
that they are concise: Decision trees pick out only the relevant features andgS 
thus suffer less from sparseness than a matrix, which has to condition on f 
every neighboring phone.

Next-dictionary_phone

Vowel Consonant

Previous-dictionary_phone Next~d ictionary_phone

kmpixuwaeeh 
ihay ey

Previous-dictionary_phone

m ixuwaeeh ,
ihayey KP <

: tcl_t .55 A-
i dx .16 I I tel t .27 i

k. .26.

iyiwaxraaao gktny
. : erawaxelenng 

dfnir gtvz

Position in syllable , ,, i
NULL .64 |

" i tcU .13 I
Initial . Coda ; tel .1 j

dh hh th bd fg kl 
mnpstwy \

tel .41 I
NULL.32 I
tci_t .11 i

tcLt .83 ■ tcl_t .58
NULL .04 NULL. 16
-.. ....... ... del d .07

Figure 5.11 Hand-pruned decision tree for the phoneme /t/ induced from the Switch­
board corpus (courtesy of Eric Fosler-Lussier). This particular decision tree doesn’t model 
flapping since flaps were already listed in the dictionary. The tree automatically induced the 
categories Vowel and Consonant. We have only shown the most likely realizations at each 
leafnode.
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For example, Figure 5.11 shows a decision tree for the pronunciation 
of the phoneme /t/ induced from the Switchboard corpus. While this tree 
doesn’t including flapping (there is a separate tree for flapping) it does model 
the fact that /t/ is more likely to be deleted before a consonant than before 
a vowel. Note, in fact, that the tree automatically induced the classes Vowel 
and Consonant Furthermore note that if /t/ is not deleted before a conso­
nant, it is likely to be unreleased. Finally, notice that /t/ is very unlikely to 
be deleted in syllable onset position.

Readers with interest in decision tree modeling of pronunciation should 
consult Riley (1991), Withgott and Chen (1993), and a textbook with an in­
troduction to decision trees such as Russell and Norvig (1995).

5.9 Weighted Automata

We said earlier that for purposes of efficiency a lexicon is often stored with 
the most likely kinds of pronunciation variation pre-compiled. The two most 
common representation for such a lexicon are the trie and the weighted weighted 

finite-state automaton/transducer (or probabilistic FSA/FST) (Pereira et al., 
1994). We will leave the discussion of the trie to Chapter 7, and concentrate

V here on the weighted automaton.
The weighted automaton is a simple augmentation of the finite automa­

ton in which each arc is associated with a probability, indicating how likely 
that path is to be taken. The probability on all the arcs leaving a node must 
sum to 1. Figure 5.12 shows two weighted automata for the word tomato, 
adapted from Russell and Norvig (1995). The top automaton shows two pos­
sible pronunciations, representing the dialect difference in the second vowel. 
The bottom one shows more pronunciations (how many?) representing op­
tional reduction or deletion of the first vowel and optional flapping of the
final [t]..

A Markov chain is a special case of a weighted automaton in which markov chain 

the input sequence uniquely determines which states the automaton will go 
through. Because they can’t represent inherently ambiguous problems, a 
Markov chain is only useful for assigning probabilities to unambiguous se- 
quences; thus the W-gram models to be discussed in Chapter 6 are Markov 
chains since each word is treated as if it was unambiguous. In fact the 
weighted automata used in speech and language processing can be shown 
to be equivalent to Hidden Markov Models (HMMs). Why do we in- 
troducc weighted automata in this chapter and HMMs in Chapter 7? The
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? Figure 5.12 You say [t ow m ey t ow] and I say [t ow in aa t ow], Two 
pronunciation networks for the word tomato, adapted from Russell and Norvig 

y, (1995) . The top one models sociolinguistic variation (some British or eastern 
American dialects); the bottom one adds in coarticulatory effects. Note the 
correlation between allophonic and sociolinguistic variation; the dialect with 

yr the vowel [ey] is more likely to flap than the other dialect.

two models offer a different metaphor; it is sometimes easier to think about 
certain problems as weighted-automata than as HMMs. The weighted au­
tomaton metaphor is often applied when the input alphabet maps relatively 
neatly to the underlying alphabet For example, in the problem of correct­
ingspelling errors in typewri tten input; the input sequence consists of letters: 
and the states of the automaton can correspond to letters. Thus it is natural 
to think of the problem as transducing from a set of symbols to the same set 
of symbols with some modifications, and hence weighted automata are nat­
urally used for spelling error correction. In the problem of correcting errors 
in hand-written input, the input sequence is visual, and the input alphabet is 
an alphabet of lines and angles and curves. Here instead of transducing from 
an alphabet to itself, we need to do classification on some input sequence be­
fore considering it as a sequence of states. Hidden Markov Models provide 
a more appropriate metaphor, since they naturally handle separate alphabets 
for input sequences and state sequences. But since any probabilistic automa­
ton in Which the input sequence does hot uniquely specify the state sequence 
can be modeled as ah HMM, the difference is one of metaphor rather than 
explanatory power, y y
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Weighted automata can be created in many ways. One way, first pro­
posed by Cohen (1989) is to start with on-line pronunciation dictionaries and 
use hand-written rules of the kind we saw above to create different potential 
surface forms. The probabilities can then be assigned either by counting 
the number of times each pronunciation occurs in a corpus, or if the cor-' 
pus is too sparse, by learning probabilities for each rule and multiplying 
out the rule probabilities for each surface form (Tajchman et al., 1995). Fi­
nally these weighted rules, or alternatively the decision trees we discussed 
in the last section, can be automatically compiled into a weighted finite-state 
transducer (Sproat and Riley, 1996). Alternatively, for very common words, 
we can simply find enough examples of the pronunciation in a transcribed 
corpus to build the model by just combining all the pronunciations into a 
network (Wooters and Stolcke, 1994).

The networks for tomato above were shown merely as illustration and 
are not from any real system; Figure 5.13 shows an automaton for the word 
about which is trained on actual pronunciations from the Switchboard corpus 
(we discussed these pronunciations in Chapter 4).

Figure 5.13 A pronunciation network for the word about, from the actual 
pronunciations in the Switchboard corpus.

Computing Likelihoods from Weighted Automata: The Forward 
Algorithm

One advantage of an automaton-based lexicon is that there are efficient al­
gorithms for generating the probabilities that are needed to implement the 
Bayesian method of correct-word-identification of Section 5.8. These algo­
rithms apply to weighted automata and also to the Hidden Markov Models 
that we will discuss in Chapter 7. Recall that in our example the Bayesian
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method is given as input a series of phones [n iy], and must choose between 
the words the, neat, need, new, and knee. This was done by computing two 
probabilities: the prior probability of each word, and the likelihood of the 
phone string [n iy] given each word. When we discussed this example ear­
lier, we said that for example the likelihood of [n iy] given the word need was 
.11, since we computed a probability of .11 for the final-d-deletion rule from 
our Switchboard corpus. This probability is transparent for need since there 
were only two possible pronunciations ([n iy] and [n iy d]). But for words 
like about, visualizing the different probabilities is more complex. Using a 
precompiled weighted automata can make it simpler to see all the different 
probabilities of different paths through the automaton.

There is a very simple algorithm for computing the likelihood of a 
string of phones given the weighted automaton for a word. This algorithm,:

forward the forward algorithm, is an essential part of ASR systems, although in this 
chapter we will only be working with a simple usage of the algorithm. This is 
because the forward algorithm is particularly useful when there are multiple 
paths through an automaton which can account for the input; this is not the 
case in the weighted automata in this chapter, but will be true for the HMMS 
of Chapter 7. The forward algorithm is also an important step in defining the 
Viterbi algorithm that we will see later in this chapter.

; Let’s begin by giving a formal definition of a weighted automaton and : 
of the input and output to the likelihood computation problem. A weighted 
automaton consists of

1. a sequence of states q — (q^q^q^.. .qn}, each corresponding to aphone, 
.....  ■'?? and

2. a set of transition probabilities between states, act?^12^13, encoding 
the probability of one phone following another.

We represent the states as nodes, and the transition probabilities as 
edges between nodes; an edge exists between two nodes if there is a non-zero 
transition probability between the two nodes.4 The sequences of symbols

4 We have used two.“special’’ states (often called non-emitting states) as the start and end .. 
state; it is also possible to avoid the use of these states. In that case, an automaton must 
specify two more things:

1 .k, an initial probability distribution over states, such that iq is the probability that the 
automaton will start in state L Of course, some states / may have tty — 0. meaning that:, 
they cannot be initial states.

2 . a set of legal accepting states.
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that are input to the model (if we are thinking of it as recognizer) or which are 
produced by the model (if we are thinking of it as a generator) are generally 
called the observation sequence, referred to as O = (o102^3... »r)> (Upper- sequence0*1 

case letters are used for a sequence and lower-case letters for an individual 
element of a sequence). We will use this terminology when talking about 
weighted automata and later when talking about HMMs.

Figure 5.14 shows an automaton for the word need with a sample ob­
servation sequence.

Observation 
Sequence 
(phone symbols)

Oi o2

Figure 5.14 A simple weighted automaton or Markov chain pronunciation 
network for the word need, showing the transition probabilities, and a sample 
observation sequence. The transition probabilities axy between two states x 
and y are 1.0 unless otherwise specified.

This task of determining which underlying word might have produced 
an observation sequence is called the decoding problem. Recall that in or- decoding 

der to find which of the candidate words was most probable given the ob­
servation sequence [n iy], we need to compute the product P(O\w)P(w) for 
each candidate word (the, need, neat, knee, new), i.e. the likelihood of the 
observation sequence O given the word w times the prior probability of the 
word.

The forward algorithm can be run to perform this computation for each 
word; we give it an observation sequence and the pronunciation automaton 
for a word and it will return P(0|w)P(w). Thus one way to solve the de­
coding problem is to run the forward algorithm separately on each word and 
choose the word with the highest value. As we saw earlier, the Bayesian 
method produces the wrong result for pronunciation [n iy] as part of the 
word sequence I need (its first choice is the word new, and the second choice 
is neat, need is only the third choice). Since the forward algorithm is just 
a way of implementing the Bayesian approach, it will return the exact same
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rankings. (We will see in Chapter 6 how to augment the algorithm with bi­
gram probabilities which will enable it to make use of the knowledge that J 
the previous word was I).

The forward algorithm takes as input a pronunciation network for each 4 
candidate word. Because the word the only has the pronunciation [n iy] after 
nasals, and since we are assuming the actual context of this word was after 
the word I (no nasal), we will skip that word and look only at new, neat, 1 
heed, and knee.. Note in Figure 5.15 that we have augmented each network 
With the probability of each word, computed from the frequency that we saw 
oil page 167.

Word model for “need" Word model for "knee"

Word model for “new"

Figure 5.15 Pronunciation networks for the words need, neat, new, and; 
knee; All networks are simplified from the actual pronunciations in the Switch-; 
board corpus. Each network has been augmented by the unigram probability 
of the word (i.e., its normalized frequency from the Switchboard+Brown cor- 
pus). Word probabilities j are not usually included as part of the pronunciation 
network for a word; they are added here to simplify the exposition of the for­
ward algorithm.

The forward algorithm is another: dynamic programming algorithm, 
and can be thought of as a slight generalization of the minimum edit dis­
tance algorithm. Like the minimum edit distance algorithm, it uses a table 
to store intermediate values as it builds up the probability of the observa­
tion sequence. Unlike the minimum edit distance algorithm, the rows are 
labeled not just by states which always occur in linear order, but implicitly 
by a state-graph' which has many ways of getting from one state to another. 
In the minimum edit distance algorithm, we filled in the matrix by just com­
puting the value of each cell from the three cells around it. With the forward
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algorithm, on. the other hand, a state might be entered by any other state, 
and so the recurrence relation is somewhat more complicated. Furthermore, 
the forward algorithm computes the sum of the probabilities of all possible 
paths that could generate the observation sequence, where the minimum edit 
distance computed the minimum such probability.5 Each cell of the forward 
algorithm matrix, farward[t,j] represents the probability of being in state j 
after seeing the first t observations, given the automaton X. Since we have 
augmented our graphs with the word probability p(w), our example of the 
forward algorithm here is actually computing this likelihood times p(w). The 
value of each cell forward[t,j] is computed by summing over the probabili­
ties of every path that could lead us to this cell. Formally, each cell expresses 
the following probability:

. forwrdttj] =P(oi.o2^^ (5.14)

Here qt = j means “the probability that the tth state in the sequence 
7 of states is state j”. We compute this probability by summing over the ex­

tensions of all the paths that lead to the current cell. An extension of a path 
//from a state i at time t — 1 is computed by multiplying the following three 

■ '/.'factors: •

/ ) 1. the previous path probability from the previous cell forward 7 — 1, i], 

./" 2. the transition probability cm from previous state i to current state j, 
■ and

// 3. the observation likelihood bp that current state j matches observation
symbol t. For the weighted automata that we consider here, bp is 1 if 
the observation symbol matches the state, and 0 otherwise. Chapter 7 
will consider more complex observation likelihoods.

The algorithm is described in Figure 5.16.
Figure 5.17 shows the forward algorithm applied to the word need. The 

algorithm applies similarly to the other words which can produce the string 
[n iy], resulting in the probabilities on page 167. In order to compute the 
most probable underlying word, we run the forward algorithm separately on 
each of the candidate words, and choose the one with the highest probabil­
ity. Chapter 7 will give further details of the mathematics of the forward 
algorithm and introduce the related forward-backward al gorithm.

5 The forward algorithm computes the sum because there may be multiple paths through 
themetwork which explain a given observation sequence. Chapter 7 Will take up this point in 
more detail. .■:■■<?':■■■: fo/iy-v
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function FORSh\{RD(observations,state-graph) returns forward -probability

num-states <— NUM-OF-STATES(sWe-.grap/j)
num-obs ^lengthfobservations)
Create probability matrix forwardfnum-states + 2, num-obs 4- 2] 
forward[0,0] <1.0
for each time step t from 0 to num-obs do

for each state 5 from 0 to num-states do
for each transition s' from s specified by state-graph 

forward[s' /+!]<- forward[s,t] * * MA oj
return the sum of the probabilities in the final column of forward

: .00056* .11 - .00062

; ■ ' .00056 ‘ 1.0 = .00056

.00056* 1.0 = .00056 ■ I

1.0 :

Figure 5.16 The forward algorithm for computing likelihood of observa­
tion sequence given a word model, is the transition probability from 
current state s to next state s', and ,ot] is the observation likelihood of s’: 
given . For the weighted automata that we consider here, is 1 if the 

| observation symbol matches the state, and 0 otherwise.

end 

■ ' d 

need iy 

n 

start

iy ’ # •

Figure 5.17 The forward algorithm applied to the word need, computing 
the probability P(0\w}P(w). While this example doesn’t require the full power 
of the forward algorithm, we will see its use on more complex examples in
Chapter 7. ": ...... AT

_________________ —_ ___  ... ______________________________________ ____________ _ __________________ /

Decoding: The Viterbi Algorithm

The forward algorithm as we presented it seems a bit of an overkill. Since 
only one path through the pronunciation networks will match the input string, 
why use such a big matrix and consider so many possible paths? Further- f 
more, as a decoding method, it seems rather inefficient to run the forward - 
algorithm once for each word (imagine how inefficient this would be if we 
were computing likelihoods for all possible sentences rather than all possible 3
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words!) Part of the reason that the forward algorithm seems like overkill is 
that we have immensely simplified the pronunciation problem by assuming 
that our input consists of sequences of unambiguous symbols. We will see in 
Chapter 7 that when the observation sequence is a set of noisy acoustic val­
ues, there are many possibly paths through the automaton, and the forward 
algorithm will play an important role in summing these paths.

But it is true that having to run it separately on each word makes the 
forward algorithm a very inefficient decoding method. Luckily, there is a 
simple variation on the forward algorithm called the Viterbi algorithm which 
allows us to consider all the words simultaneously and still compute the most 
likely path. The term Viterbi is common in speech and language process­
ing, but like the forward algorithm this is really a standard application of 
the classic dynamic programming algorithm, and again looks a lot like the 
minimum edit distance algorithm. The Viterbi algorithm was first applied 
to speech recognition by Vintsyuk (1968), but has what Kruskal (1983) calls 
a ‘remarkable history of multiple independent discovery and publication’; 
see the History section at the end of the chapter for more details. The name 
Viterbi is the one which is most commonly used in speech recognition, al­
though the terms DP alignment (for Dynamic Programming alignment), 
dynamic time warping and one-pass decoding are also commonly used. 
The term is applied to the decoding algorithm for weighted automata and 
Hidden Markov Models on a single word and also to its more complex ap­
plication to continuous speech, as we will see in Chapter 7. In this chapter 
we will show how the algorithm is used to find the best path through a net­
work composed of single words, as a result choosing the word which is most 
probable given the observation sequence string of words.

The version of the Viterbi algorithm that we will present takes as input 
a single weighted automaton and a set of observed phones o = (010203... ot) 
and returns the most probable state sequence q = (qiq^ ■ • •-&), together 
with its probability. We can create a single weighted automaton by combin­
ing the pronunciation networks for the four words in parallel with a single 
start and a single end state. Figure 5.18 shows the combined network.

Figure 5.19 shows pseudocode for the Viterbi algorithm. Like the min­
imum edit distance and forward algorithm, the Viterbi algorithm sets up a 
probability matrix, with one column for each time index t and one row for 
each state in the state graph. Also like the forward algorithm, each column 
has a cell for each state qi in the single combined automaton for the four 
words. In fact, the code for the Viterbi algorithm should look exactly like 
the code for the forward algorithm with two modifications. First, where

VITERBI

DYNAMIC 
TIME 
WARPING
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Figure 5.18 The pronunciation networks for the words need, neat, new, and 
knee combined into a single weighted automaton. Again, word probabilities 
are not usually considered part of the pronunciation network for a word; they 
are added here to simplify the exposition of the Viterbi algorithm.

the forward algorithm places the sum of all previous paths into the current 
cell, the Viterbi algorithm puts the max of the previous paths into the current 
cell.

The algorithm first creates N + 2 of four state columns. The first col­
umn is an initial pseudo-observation, the second corresponds to the first 
observation phone [n], the third to [iy] and the fourth to a final pseudo- 
observation. We begin in the first column by setting the probability of the 
start state to 1.0, and the other probabilities to 0; the reader should find this 
in Figure 5.20. Cells with probability 0 are simply left blank for readability.

Then we move to the next state; as with the forward algorithm, for ? 
every state in column 0, we compute the probability of moving into each 
state in column 1. The value viterbi[t, j] is computed by taking the maximum > 
over the extensions of all the paths that lead to the current cell. An extension b 
of a path from a state i at time t — 1 is computed by multiplying the same 
three factors we used for the forward algorithm: j

1. the previous path probability from the previous cellforward[t — l,z], j 

2. the transition probability ay from previous state i to current state j, , 
■ V/y/andT;vT-::^

3. the observation likelihood b^ that current state j matches observation '7 
symbol t. For the weighted automata that we consider here, bjt is 1 if
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function NlTERWdobservations of len T,state-graph) returns best-path

num-states <— NUM-OF-STATESGzme-grapA)
Create a path probability matrix viterbi[num-states+2,T+2]
viterbi[O,O] <-1.0
for each time step t from 0 to T do

for each state s from 0 to num-states do
for each transition s' from v specified by state-graph

new-score viterbi^s, t] * «[,?,/] * h^ot)
if ((vrier^zf/q+f] = 0) |j (new-score > viterbi[d, t+1])) 

then
viterbi[d, t+l]i-new-score
back-pointe r[s', t+l]+-s

Backtrace from highest probability state in the final column of viterbi[] and 
return path

Figure 5.19 Viterbi algorithm for finding optimal sequence of states in con­
tinuous speech recognition, simplified by using phones as inputs. Given an 
observation sequence of phones and a weighted automaton (state graph), the 
algorithm returns the path through the automaton which has maximum proba­
bility and accepts the observation sequence, is the transition probability 
from current state .y to next state s', and b[s' ,ot] is the observation likelihood 
of s ’ given ot. For the weighted automata that we consider here, b[s\ Of] is 1 if 
tire observation symbol matches the state, and 0 otherwise.

the observation symbol matches the state, and 0 otherwise. Chapter 7 
will consider more complex observation likelihoods.

In Figure 5.20, in the column for the input n, each word starts with [n], 
and so each has a non-zero probability in the cell for the state n. Other cells 
in that column have zero entries, since their states don’t match n. When we 
proceed to the next column, each cell that matches iy gets updated with the 

: contents of the previous cell times the transition probability to that cell. Thus 
the value of viterbi\2jynew\for the iy state of the word new is the product of 
the “word” probability of new times the probability of new being pronounced 
with the vowel iy. Notice that if we look only at this iy column, that the word 
need is currently the “most-probable” word. But when we move to the final 
column, the word new will win out, since need has a smaller transition prob- 
ability to end (.11) than new does (1.0). We can now follow the backpointers 
and backtrace to find the path that gave us this final probability of .00036.
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end 
t

neat iy

n

d

. iy
need

■' n

■ uw

new tv
<;■ ' n

iy
knee

start

Figure 5.20 The entries in the individual state columns for the Viterbi al­
gorithm. Each cell keeps the probability of the best path so far and a pointer 
to the previous cell along that path, Backtracing from the end state, we can 
reconstruct the state sequence iynew, arriving at the best word new..

SEGMENTA­
TION ...

Weighted Automata and Segmentation

Weighted automata and the Viterbi algorithm play an important in various 
algorithm for segmentation. Segmentation is the process of taking an undif­
ferentiated sequence of symbols and “segmenting” it into chunks. For exam­
plesentence segmentation is the problem of automatically finding the sen­
tence boundaries in a corpus. Similarly word segmentation is the problem 
of finding word-boundaries in a corpus. In written English there is no dif­
ficulty in segmenting words from each other because there are orthographic 
spaces between words. This is not the case in languages like Chinese arid 
Japanese that use a Chinese-derived writing system. Written Chinese does 
not mark word boundaries. Instead, each Chinese character is written one af­
ter the other without spaces. Since each character approximately represents
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a single morpheme, and since words can be composed of one or more char­
acters, it is often difficult to know where words should be segmented. Proper 
word-segmentation is necessary for many applications, particularly includ­
ing parsing and text-to-speech. (How a sentence is broken up into words 
influences its pronunciation in a number of ways.)

Consider the following example sentence from Sproat et al. (1996):

(5.15)
“How do you say ‘octopus’ in Japanese?”

This sentence has two potential segmentations, only one of which is 
correct. In the plausible segmentation, the first two characters are combined 
to make the word for ‘Japanese language’ (0 ri-wen) (the accents indicate 
the tone of each syllable), and the next two are combined to make the word 
for ‘octopus’ zhang-yu).

(5.16) 0# W ?
ri-wen zhang-yu zen-me shub
Japanese octopus how say

“How do you say octopus in Japanese?”

(5.17) 0 m ?
ri wen-zhang yu zen-me shub
Japan essay fish how say

“How do you say Japan essay fish?”

Sproat et al. (1996) give a very simple algorithm which selects the 
correct segmentation by choosing the one which contains the most-frequent 
words. In other words, the algorithm multiplies together the probabilities of 
each word in a potential segmentation and chooses whichever segmentation 
results in a higher product probability.

The implementation of their algorithm combines a weighted-finite-
state transducer representation of a Chinese lexicon with the Viterbi algo­
rithm. This lexicon is a slight augmentation of the FST lexicons we saw 

| in Chapter 4; each word is represented as a series of arcs representing each 
character in the word, followed by a weighted arc representing the proba­
bility of the word. As is commonly true with probabilistic algorithms, they 
actually use the negative log probability of the word (— log(P(w)). The log 

7 probability is mainly useful because the product of many probabilities gets
i very small, and so using the log probability can help avoid underflow. Using

log probabilities also means that we are adding costs rather than multiplying
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probabilities, and that we are looking for the minimum cost solution rather ' 
than the maximum probability solution.

Consider the example in Figure 5.21. This sample lexicon Figure 5.21(a). 
consists of only five potential words:

Word Pronunciation Meaning Cost (-logpin)')
ri-wen ‘Japanese’ 10.63

H ri ‘Japan’ 6.51
zhang- yu ‘octopus’ 13.18
wen-zhang ‘essay’ 9.51

la yu . ‘fish’ 10.28

The system represents the input sentence as the unweighted FSA in 
Figure 5.21(b). In order to compose this input with the lexicon, it needs to 
be converted into an FST. The algorithm uses a function Id which takes an 
FSA A and returns the FST which maps all and only the strings accepted by 
A to themselves. Let Dr represent the transitive closure of D, that is, the 
automaton created by adding a loop from the end of the lexicon back to the­
beginning. The set of all possible segmentations is/d(Z) oD*, that is, the 
input transducer Jd(Z) composed with the transitive closure of the dictionary 
D, shown in Figure 5.21(c). Then the best segmentation is the lowest-cost 
segmentation in Zd(Z) o£>*, shown in Figure 5.21(d).

Finding the best path shown in Figure 5.21(d) can be done easily with 
the Viterbi algorithm, and is left as an exercise for the reader. Furthermore, 
this segmentation algorithm, like the spelling error correction algorithm we 
saw earlier, can also be extended to incorporate the cross-word probabilities 
(Vagram probabilities) that will be introduced in Chapter 6.

Segmentation for Lexicon-Induction

The weighted automata segmentation algorithm that was presented above re­
lies on the weights stored in the lexicon. But how is this lexicon to be learned 
in the first place? A nuniber of segmentation algorithms address this “prior” 
problem of segmentation in the absence of a lexicon, For example de Mar- 
cken (1996) and Brent and Cartwright (1996) both propose algorithms that 
take an unsegmented sequence of input phones and use information-theoretic 
principles to iteratively induce the lexicon by trying different possible seg­
mentations. Both rely on stochastic versions of the Minimum Descrip- 

mdl tion Length (MDL) principle and on phonotactic transition probabilities 
to choose between alternative models. The description length of a lexicon
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(a) Dictionary D

(b) Input I

(c) ld(D)oD*

e. e/s.51 X :w«n<W.000 a:zhang/0.000 e: e/9.51 ®yu/0.000

(d) BestPath(ld(D) o D*)

Figure 5.21 The Sproat et al. (1996) algorithm applied to four input words 
(after Sproat et al. (1996))

or grammar (measured, for example, in the number of symbols in it) is a 
heuristic measure of the information complexity in the lexicon. By prefer­
ring a lexicon with less symbols, MDL is implicitly choosing a simpler and




