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~ discuss computational models of phonological learning: ow phonological
* rules can be automatically induced by machine learning algorithms.

Finally, we apply the transducer-based model of phonology to an im-
portant problem in text-to-speech systems: mapping from strings of letters
to strings of phones. We first survey the issues involved in building a large
* pronunciation dictionary, and then show how the transducer-based lexicons
and spelling rules of Chapter 3 can be augmented with pronunciations to

map from orthography to pronunciation.
This chapter focuses on the non—probabﬂ1st1c areas of computational
" linguistics and pronunciations modeling. Chapter 5 will turn to the role of
~ probabilistic models, including such areas as probabilistic models of pronun-
_ ciation variation and probabilistic methods for learning phonological rules.

4.1 SPEECH SOUNDS AND PHONETIC TRANSCRIPTION

"The study of the pronunciation of words is part of the field of phonetics, the
“study of the speech sounds used in the languages of the world. We will be
“modeling the pronunciation of a word as a string of symbols which represent
- phones or segments. A phone is a speech sound; we will represent phones
‘with phonetic' symbols that bears some resemblance to a letter in an alpha-
~ betic language like English. So for example there is a phone represented by /
that usually corresponds to the letter / and a phone represented by p that usu-
“ally corresponds to the letter p. Actually, as we will see later, phones have
~much more variation than letters do. This chapter will only briefly touch
“on other aspects of phonetics such as prosedy, which includes things like
“changes in pitch and duration. .

.. Thissection surveys the dlffercnt phones of Enghsh partxcularly Amer-
jcan English, showing how they are produced and how they are represented
symbolically. We will be using two different alphabets for describing phones.
'The first is the International Phonetic Alphabet (IPA). The IPA is an evolv-
-ing standard originally developed by the International Phonetic"Association
in 1888 with the goal of transcribing the sounds of all human languages. The
IPA is not just an alphabet but also a set of principles for transcription, which
‘differ according to the needs of the transcription, so the same utterarice can
‘be transcribed in-different ways all according to the principles of the IPA.
'In the interests of brevity in this book we will focus on the symbols that are
“most relevant for English; thus Flgure 4.1 shows a subset of the IPA sym-
“bols for transcribing consonants whﬂe Figure 4.2 shows a subset of the IPA

PHONETICS

PHONES

PA



Chapter 4. Computational Phonology and Text-to-Speech

IPA ARPAbet . TPA ARPAbet
Symbol Symbol Word - Transcription Transcription

fpl [pl parsley ['parsh] [paarsliy]
[k [t tarragon [taeragan] - [taerax g aan]
[

(ki . fk} . . catnip. .  [keetnip] [k aetnixp]
bl ] . bay [

[ . [ = dil. . Jad - [dih]]

[g} lel garlic ['garlik]. [gaarlix k] -
[m] . [m] -  mint. . [mrnt] [mihnt]
o] Ml putmeg  ['natmeg|- [nahtmehg
Mgl [ngl- - . ginseng . . ['dgmsig) [jh ih n s ix ng]

[} [f]: - fennel .. - [fenl} -~ [fehnel] .

[vi-  [v] . clove [klouv] k1ow v]
| [0)-  [hl  thistle ['61s]] fthibsel] .
[8) [dh] . heather ‘  [heda] [heh dh axr]
sl o [s] . sage - [sed3] [s ey jh]

- fber}. [bey]

ST [shloo squash o [skwafl o [skwash]

. [herzlnat]. . [hey zelnaht]
- f31 70 [zh}: . ambrosia- - {eem'brouge] . [ae mbrowzhax] -
[
[

Cftf) o [eh] - chicory [tfiked] .. [chihkaxriy] o
{dg] s fjhlet o sage oo serdg) oo [sey jh] |
I [1] oo licorice o [Tkedf] o [lihkaxrix sh} oo
CwTe s pwle e Kiwd [-'kiwi]_'~. oo [kiy woiy]
el il opatsley o ['parsli] o [paarsliy]
[hl e thier o horseradish ¢ [horsteedrf] - c[haot s rae dih sh}
[?] [q]ff' oo cubeoh o [2aRou} v [gah g ow]
Cfeloo s [dx} o butter oot ['barad o [bahdxoaxr 1

S 1 .[nx]'-':f o wig;ergreen [wifewgrin] - - [wihnxaxrgrin
[1]'“'7‘ '*“'[el]':“* oo thistle - [08Y e [theibes el]
?}“"Fxgure 41 iPA and ARPAbet symbols for transcnptmn of Enghsh
‘ "ConSonants a

symbols for 'transcnbmg vowels 1 These tables also gwe the ARPAbet sy‘
bols; ARPAbet (Shoup, 1980) is another phonetlc alphabet but one that
spemﬁcally de&gned for Amerlcan Enghah and Wthh uses ASCII symbols

I For simplicity 'we use  the symbol I} for the Ameucan Enghsh “¢* sound; rather th
' morestandard IPA symbol [1].- : i o
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an be thought of as a convenient ASCII representation of an American~

ARPADet PA . ARPAbet

Symbol  Word . ._.;TfénSCfiption Transcription

Gy] ity oo [Wh} oo [lihiiy]

[ih] . Cdily . [WE. - [likliy])

ley] . daisy ['dem} < [deyzi]

feh} o pomsettla- . [por' ssma]:; . [poynsehdxiy ax]
[ac] . = . aster: ['aestat] . [ae’s taxt]

(aa]  poppy " [papi] - Ipaapi]

[ac] -« .- orchid - forkid} 0 [aorkix d]

- [uh] Woodruff'f ._[‘Wudmf} j;, - [wuhdrahf]
{OW];"‘;W X e losros]: - {1 ow dx ax 5]
[u‘v’v]" oo [tuliph oo ftuwlixpl

S .[uh] butterc;pj."'.; I'bara kAp]-._- . [buh dx axr k uh p]
er] blrd o bad] . iberd]
[ay],v_ . ".'_‘ S lamis] . - [ayrixs]
[aw] sunﬁowerl_ [‘smﬂauat]* * [sahnflaw axr]

[oy] - poinsettia  [pom'secio] . [p oy nsehdxiy ax]

[yuw]  feverfew . [fivofju] (fiyvaxrfyu]
cofax]on woodruff 3 {'wudraf] {wuhdrax f]
[ix}-. . - tuhp ['tulip] . [t uw 1 ix p]
S [axr]‘ R heather [heda] [h eh dh axr]
[ux] . dude’ . [dud] [dux d]

lgure 42 IPA and"ARPAbet symbols for transcription of English vowels.

Maay"af”ﬂaem and ARPAbet symbols are equivalent to the Roman
Iett_ers used in the orthography of English and many other languages. So for
example the IPA and ARPAbet symbol [p] represents the consonant sound at

: & last phorie, [ ]/[ux], is quite raré in genéral American English and indeed is an “ex-
.SIOHV” not present in the original ARPAbet.. Labov (1994) notes that the realization of a
fronted {ow] as. [ux] has made it more common in (at least) Western and Northern Cities di-
a ects 'of American Enﬂhsh startmg in the Iate 1970s. ThlS frontmg was first called to public
by inntatxons anid recordlngs of “Valley Girls’ speech by Moon Zappa (Zappa and Zappa,
1982) Nevertheless for most speakers fuw] is stﬂl much more cominon than { ux] in words
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The Vocal Organs

" ARTIGULATORY-
PEIONETICS:

VOICED

UNVOICED -
VOICELESS .

‘Word ) Jackal raccoon “cougar | civet

R f’ thography is'complicated; both TPA" {k} and. Enghsh orthographic [c] have
. :]", many alternative realizations. . R - _

"We turn now to artmulatory phonetlcs the study of how phones are pro

v Sound is produced by the rapld movement of a1r Most sounds in
- man spoken Ianguages are produced by expelling air from the lungs throu

- kiown as ‘the Ad'un s appIe or voicebox. The larynx contains two sma][

: folds of muscle; the vocal folds (often’ referred to non-technically as the vo

3 * cal cords) which ¢an be moved together or apart. The space between thes
ooms
PR 'cIosed) they will vibrite as air passes through them; if they are far ap
:'they won't vzbrate Sounds made with the vocal folds together and wbratm
» are called vmced ‘sounds made without thls vocal cord vibration are’ caﬂ :
:unvomed or voxceless Voxced sounds mclude {b] [d}, [g], [v], [z} and
‘the Enghsh vowels, among others. Unvoiced sounds include [pl, It], Ik},
[z, and others.. :

the beginning of platypus, puma, and pachyderm, the middle of leopard, or.
the end of antelope (note that the final orthographic e of antelope does not’
correspond to any final vowel; the p is the last sound). _
The mapping between the letters of English orthography and IPA sym‘ .
bols is rarely as simple as this, however. This is because the mapping be-
tween English orthography and pronunciation is quite opaque; a single lette
can represent very different sounds in different contexts. Figure 4.3 shows:
that the English Ietter c is represented as IPA [k] in the word cougar, but IPA:
[s] in the word civet. Besides appearing as ¢ and &, the sound marked as [k
in the IPA can appear as part of x (fox), as ck (jackal), and as cc (raccoon
Many other languages, for example Spanish, are much more transparent 1
their sound- orthography mapping than Enghsh :

IPA - {d;;ae.kll} free.’kun] | [ku.ga ~ [srvit]
ARPAb'et . [fhaekell frackuwn]] [kuwgaxr]l ({sihvixt]

. Figure 4.3~ The mapping between IPA symbols and letters in English or-

duced, as the various organs in the mouth, throat and nose modity the a1rﬁo'
from the Iungs. " ' R » _

the windpipe (technically the trachea) and then out the mouth or nose. A
it passes through the trachea, the air passes through the larynx, commonl

two folds is called the glottls If the folds are close together (but not ugh
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. Figure 4.4  The vocal orgaﬁs, shown in side view. Drawing by Laszlo Ku-
* binyi from Sundberg (1977), © Scientific American. !

- The area above the trachea is called the vocal tract, and consists of the
< oral tract and the nasal tract. After the air leaves the trachea, it can exit the
- body through the mouth or the nose. Most sounds are made by air passing
*through the mouth. Sounds made by air passing through the nose are called
- nasal sounds; nasal sounds use both the oral and nasal tracts as resonating ¥
- cavities; English nasal sounds include m, and n, and ng.

' Phones are divided into two main classes: consonants and vowels.

Both kinds of sounds are formed by the motion of air through the mouth,

CONSONANTS
VOWELS
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are dentals. The main dentals in English are the [8] of thing or the |0]
of though, which are made by placing the tongue behind the teeth with
the tip slightly between the teeth. .

e alveolar: The alveolar ridge is the portion of the roof of the mouth just

- behind the upper teeth. Most speakers of American English make the

phones [s], [z], [t], and [d] by placmg the tip of the tongue against the
alveolar ridge.

- o palatal: The roof of the mouth ( the palate) rises sharply from the
back of the alveolar ridge: The palato-alveolar sounds [f] (shrimp),
[t]] (ckmchllla) 3] (Asian), and [d3] (jaguar) are made with the blade
of the tongue against this rising back of the alveolar ridge. The palatal
“* sound [yl of yak is made by placmg the front of the tongue up close to
- - the palate. : :
"« velar: The velum or soft palétte is a movable muscular flap at the very
_' ‘bacl{ of the roof of the mouth. The sounds [k] (cuckoo), [g] (goose),
o an'd:[ | (kingfisher) ate made by pressing the back of the tongue up
S against the velum.
e glottal The glottal stop [?] is made by clogmg the g otus (by brmgmg
the Vocal folds together) :

Consonants' Manner of Artxculatmn P

Consonants are also ChStnlnghed by how the restriction in airflow is made,
- for example whether thére is a complete stoppage of air, or only a partial
blockage etc. This feature is called the manner of articulation of a conso-
" nant; The combination of place and manner of articulation is usually suffi-

i _c1ent to uniquely 1dent1fy a consonant Here are the major manners of artic-
= ulat:lon for Enghsh oonsonants ' ' ' o

e stop A stop is a consonant in Wthh alrﬁow is completely blocked
... for a short time:- Thzs blockage is followed by an explosive sound as
- the air is released.. The penod of blockage is called the closure and
fgg_f ».__:'_the explosxon is called the release Enghsh has voiced’ stops like [b],
~-.[d], and [g] as well as unvoxced stops like {p], [tl, and [k]. Stops are
. also called plosnves It is possible to useé a more narrow (detailed) tran-

scription: style to distinctly: represent the closure and release parts of
‘. a stop, both in ARPAbet and IPA-style transcriptions. For example
-0 the closure:of a [pl, ;‘[t};;‘()’p‘;[k]{fWOuld be represented as [pcl],. [tcl], or

-+ [kel] (respectively) in the ARPAbet; and [p], [t"]; or [K7] (respectively)

ALVEQLAR

PALATAL
PALATE

VELAR
VELUM

GLOTYAL

MANNER

sToP
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NASALS

FRICATIVE

SIBILANTS

APPROXIMANT

TAP
FLAP

| - Stops that are followed immediately by fricatives are called affrlcates

Vowels

Like consonants vowels can be charactenzed by the position of the art
lators as they are made. The two most relevant parameters for vowels -

in IPA style. When this form of narrow transcription is used, the un-
marked ARPABET symbols [p], [t], and [k] indicate purely the release
of the consonant. We will not be using this narrow transcription style
in this chapter.
nasals: The nasal sounds [n], [m], and [g] are made by lowering the"?f;
velum and allowing air to pass into the nasal cavity. >
fricative: In fricatives, airflow is constricted but not cut off completely.
The turbulent airflow that results from the constriction produces a char-
acteristic “hissing” sound. The English labiodental fricatives [f] and [v]
are produced by pressing the lower lip against the upper teeth, allow-
ing a restricted airflow between the upper teeth. The dental fricatives
[6] and [3] allow air to flow around the tongue between the teeth. The
alveolar fricatives [s [s] and [#] are produced with the tongue against th'
alveolar ridge, forcing air over the edge of the teeth. .In the palato»
alveolar fricatives [[] and [3] the tongue is at the back of the alveola
ridge forcing air through a groove formed in the tongue. The higher
pitched fricatives (in English [s], [z], [f] and r3) are called SIbllants

these include English [t[] (chicken) and [d3] (giraffe).

approximant: In apploxrmants the two articulators are close togethe'
but not close enough to cause turbulent airflow. In English [y] ( (vellow)
the tongue moves close to the roof of the miouth but not close enough
to cause the turbulence that would characterize a fricative. In Enghsh
(W] (_ormwood) the back of the tongue comes close to the vel il
American [r] can be formed in at least two ways; with just the tip of
the tongue extended and close to the palate or with the whole tongue
bunched up near the palate. [1] is formed with the tip of the tongue il
against the alveolar ridge or the teeth, with one or both sides of the
tongue lowered to allow air to flow over it. [1] is called a lateral sound
because of the drop in the sides of the tongue.
tap: A tap or flap [r] is a quick motion of the tongue against the alv
olar ridge. The consonant in the middle of the word lofus ([lo Uros]) is
a tap in most dialects of Amencan Enghsh, speakers of many Bn’
dlalects would use a [t] mstead ot a tap in this word.
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~-What is called vowel height, which correlates roughly with the location of
~ “the highest part of the tongue, and the shape of the lips (rounded or not).
Figure 4.6 shows the position of the tongue for different vowels.

_ nasal tract

heed [iy] - had [ae] whe'd [uw]

:F‘i"g“ure 4.6  Positions of the tongue for three English vowels, high front (ivl,
low front [ae] and high back fuw; tongue positions modeled after Ladefoged
- (1996).

- Inthe vowel [i], for example, the highest point of the tongue is toward
- the front of the mouth. In the vowel [u], by contrast, the high-point of the
“tongue is located toward the back of the mouth. Vowels in which the tongue
- is raised toward the front are called front vowels; those in which the tongue
“is raised toward the back are called back vowels. Note that while both [1]
~and [g] are front vowels, the tongue is higher for [1] than for [¢]. Vowels in
“which the highest point of the tongue is comparatively high are called high
- vowels; vowels with mid or low values of maximum tongue height are called
B gmld vowels or low vowels; respectively.
. Figure 4.7 shows a schematic characterization of the vowel height of
different vowels. It is schematic because the abstract property height only
~“correlates roughly with actual tongue positions; it is in fact a more accurate
~ reflection of acoustic facts. Note that the chart has two kinds of vowels:
‘those in which tongue height is represented as a point and those in which it
- is represented as a vector. A vowels in which the tongue position changes
“markedly during the production of the vowel 1s diphthong. English is par-
~ ticularly rich in diphthongs; many are written with two symbols in the IPA
o (for example the [e1] of hake or the [ou] of cobra). |
: - The second important articulatory dimension for vowels is the shape
- of the lips. Certain vowels are pronounced with the lips rounded (the same
lip shape used for whistling). These rounded vowels include [u], [0}, and the
_ v',kdxphthono fou]. | |

HIGH

DIPHTHONG

ROUNDED



102

S sl

ONSET

CODA

SYLLABIFICATION

ACCENTED

'Consonants and Vowels combme to make a syllable There is no completel
', .'_‘ '-.”agreed—upon deﬁnmon of a syllable; roughly speaking a syllable is a vowe
" like sound together with some-of the surrounding consonants that are mo;
" closely. associated with it The IPA. period symbol [] is used to separat

‘ promment than others. These are called accented syllables. Accented sy

Chapter 4.  Computational Phonology and Text-to-SpeeCﬁ_{_':;:{_f.

high

back:

" Figure 4.7 -~ Qualities of English vowels (after Ladefoged (1993)).

syllables; so parsley and catnip have two syllables (['par.sli] and ['keet.nij
respectively), tarragon has three ['ta.ra.gan], and dill has one ([dd]). A
lable is usually descubed as having an optional initial consonant or se
consonants ca}led the onset followed by a vowel or-vowels; followed b
final consonant or sequence: of consonants called the: coda. “Thus d is
onset of [dil], 1 while 1 is the coda. The task of breaking up a word into sle:
bles is called syllabification. Although automatic syllabification algonthm
exist, the problem is hard, partly because there is no agreed-upon deﬁmt
of syllable boundanes Furthermore, although it is usually clear how man
syllables-are in‘a word, Ladefoged (1993) points out there are some. wot
(meal; teal; seal hlre, ﬁre, hour) that can be v1ewed ezther as havm'
syllable or tWo. DURIGRVII Sl st e e

- Tna natural sentence of Ameﬁcan Enghsh certam syllables are -0“-

bles may be prominent because they are louder, they are longer, they: are
sociated. with a pitch- movement, or any combination of the above. Sin
cent plays important roles in meaning, understanding exactly why a spee
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chooses to accent a particular syllable is very complex. But one important
factor in accent is often represented in pronunciation dictionaries. This fac-
tor is called lexical stress. The syllable that has lexical stress is the one that
will be louder or longer if the word is accented. For example the word pars-
ley is stressed in its first syllable, not its second. Thus if the word parsiey
is accented in a sentence, it is the first syllable that will be stronger. We
write the symbol ['] before a syllable to indicate that it has lexical stress (e.g.
['par sli]). This difference in lexical stress can affect the meaning of a word.
For example the word content can be a noun or an adjective. When pro-
nounced in isolation the two senses are pronounced differently since they
have different stressed syllables (the noun is pronounced [kan.tent]) and the
adjective [kon.'tent]. Other pairs like this include object (noun ['ab.d3zekt]
and verb [ob.'dzekt]); see Cutler (1986) for more examples. Automatic dis-
ambiguation of such homographs is discussed in Chapter 17. The role of
prosody is taken up again in Section 4.7.

4.2 THE PHONEME AND PHONOLOGICAL RULES

‘Scuse me, while I kiss the sky
Jimi Hendrix, Purple Haze

*Scuse me, while I kiss this guy
Common mis-hearing of same lyrics

All [t]s are not created equally. That is, phones are often produced
differently in different contexts. For example, consider the different pro-
nunciations of [t] in the words tunafish and starfish. The [t] of mnafish is
aspirated. Aspiration is a period of voicelessness after a stop closure and
before the onset of voicing of the following vowel. Since the vocal cords are
not vibrating, aspiration sounds like a puff of air after the [t] and before the
vowel. By contrast, a [t] following an initial [s] is unaspirated; thus the [t]

in starfish ([starfif]) has no period of voicelessness after the [t] closure. This

- variation in the realization of [t] is predictable: whenever a [t] begins a word
or unreduced syllable in English, it is aspirated. The same variation occurs
for [k|; the [k] of sky is often mis-heard as [g] in Jimi Hendrix’s lyrics because
[k] and [g] are both unaspirated. In a very detailed transcription system we
could use the symbol for aspiration ["after any [t] (or [k] or [p]) which be-
gins a word or unreduced syllable. The word tunafish would be transcribed
[thunafrf ] (the ARPAbet does not have a way of marking aspiration).

LEXICAL
STRESS

HOMCGRAPHS

UNASPIRATED
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- The relationship between a phoneme and its allophones is often cap-
tared by writing a phonological rule. Here is the phonological rule for den-
talization in the traditional notation of Chomsky and Halle (1968):

g /= [t/ —8 ' 4.1)
_ In this notation, the surface allophone appears to the right of the arrow,
and the phonetic environment is indicated by the symbols surrounding the
underbar (___). These rules resemble the rules of two-level morphology of
Chapter 3 but since they don’t use multiple types of rewrite arrows, this rule
is ambiguous between an obligatory or op’uonal rule. Here is a version of the
ﬁappmg rule: :

/ { }/ = 1 v e 4.2)

Diacritics , ‘Suprasegmentals
Voiceless a] || Primary stress ['pu.mo]
Aspirated p"" | , | Secondary stress ['foura greet]
Syllabic | [l .|| :.| Long - [ay]
.| Nasalized |- {&] || - | Halflong .- .| [a] -
-Unreleased | [t'] || -. |+ Syllable break - ['pu m’)]
| Dental - {t| o -
~ Figure4.9  Some of the IPA diacritics and symbols for suprasegmentals.

4.3 PHONOLOGICAL RULES AND TRANSDUCERS

" Chapter 3 showed that spelling rules can be implemented by transducers.
- Phonological rules can be implemented as transducers in the same way;
ndeed the original work by Johnson (1972) and Kaplan and Kay (1981)
ot finite-state models was based on phonological rules rather than spelling
rules.: There are a number of different models of computational phonol-
ogy that use finife automata in various ways- to' realize' phonological rules.
We will describe the two-level morphology of Koskenniemi (1983) useéd in
Chapter 3, but the-interested reader should be aware of other recent models.>
While Chapter 3 gave examples of two-level rulés; it did not talk about the

- One example is Bird and Ellison’s (1994) model of the multi-tier representations of au-
osegmental phonology in which éach phonological tier is represented by a finite-state au-
omaton; and autosegmental association by the synchronization of two automata. . -
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chose z only because it turns out to simplify rule writing. Next we write two
- phonological rules. One, similar to the E-insertion spelling rule of page 77,

" inserts a [i] after a morpheme-final sibilant and before the plural morpheme
[z]. The other makes sure that the -5 suffix is properly realized as [s] after
: unvoiced consonants.

€ — i/ [+sibilant] © — z # (4.4)
z — s/[-voice] © _# (4.5)

. These two rules must be ordered; rule (4.4) must apply before (4.5).
* This is because the environment of {4.4) includes z, and the rule (4.5) changes
7. Consider running both rules on the lexical form fox concatenated with the

plural -s:

Lexical form: - - faks"z
(4.4) applies: - faks iz
(4.5) doesn’t apply: faks iz

- If the devoicing rule (4.5) was ordered first, we would get the wrong
esult (what would this incorrect result be?). This situation, in which one
rule destroys the environment for another, is called bleeding:*

Lexical form: - faks™z
(4.5) applies: faks™s
(4.4) doesn’t apply: faks™s

' As was suggested in Chapter 3, each of these rules can be represented
by a transducer: Since the rules are ordered, the transducers would also need
0 be ordered. For example if they are placed in a cascade, the output of the
first transducer would feed the input of the second transducer.

Many rules can be cascaded together this way. As Chapter 3 discussed,
unmng a cascade, particularly one with many levels, can be unwieldy, and
o transducer cascades are usually replaced with a single more complex
ransducer by composing the individual transducers.

* Koskenniemi’s method of two-level morphology that was sketchily
pt__roduaed in Chapter 3 is another way to solve the problem of rule ordering.
Koskenniemi (1983) observed that most phonological rules in a grammar
re independent of one another; that feeding and bleeding relations between

CTfwe had chosen to represent the lexical pronunciation of -s as [s] rather than [z z], we would
é’\fé_*Written the rule inversely to voice 'th'e:_-ﬁ-;s_'- ‘after voiced sounds, but the rules would still
d to be ordered; the ordering would simply flip.
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o that lets: them avoiding. feeding and bleeding, is. their ability to represe
a constramts on fwo levels ‘This is based on the use of the colon (), whik
. was. touched in Very bneﬂy in Chapter 3. The symbol a:b means a 1ex1cal

" that maps to a surface b. Thus a:b -@ €. means a is realized as:

o ordermg for the i- 1nsert10n and z-devoicing rules..: The idea.is that the 7-
~ devoicing rule maps a lexzcal Z- 1nsert10n to a smface 5 and the i rule refers
’tothelexzcalz SR STt i

| fautomata from rules: Kaplan and Kay (1994) give the general derivatiol

“miust be riif beforehand

rules are not the norm.”> Since this is the case, Koskenniemi proposed th
phonological rules be run in paralle] rather than in series. The cases where
there is rule interaction (feeding or bleeding) we deal with by slightly mod
fying some rules. Koskenniemi’s two-level rules can be thought of as a way
of expressing declarative constraints on the well-formedness of the 1ex1cj
surface mapping.

Two-level rules also differ from traditional phonological rules by e
plicitly coding when they are obligatory or optional, by using four dlffenng
rule operators; the <> rule corresponds to traditional obligatory phenolo’
ical rules, Whﬂe the => rule implements optional rules:

Rule type Interpretatmn :

a:b<c__d|ais always realized as b in the Context ¢ d
a:b=c__d |amay berealized as b only in the context ¢ __ d
a:b ¢ ¢ .. d |a must be realized as b in context ¢ —_ 4 and nowhere els o
a:b/< ¢ djais never realized as & in the contextc . d -

. The most 1mportant inthition of the two-level rules, and the mechamsm

after a surface c. By contrast a:b 4 ¢ __ méans that a is realized as’
after a lexical c: As discussed in Chapter 3; the symbol ¢ with no colon 1s
equivalent to ¢:c that means 4 lexical ¢ ‘which maps to a surface c.

~ Figure 4.11 shows an intuition for how. the two-level approach avmds

The two- Ievelv fules that model th1s constramt are shown in (4%__

e [+S1b11ant] | ___z# _:

z s <:> [VOICS]:

As Chapter 3 dlscussed there are compﬂatlon algonthms for creatm s

these algorlthms and: Antworth (1990) gives one that is specific to two-lev ¢
rules The automata comespondmg to the two rules are shown in Figure 4.1

5 Feedmg 18°a situation in which one rulés creates the enwronment for another rule an S0
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'M[_ff’{t_’l in z), lexical level
(T=voice] /
ix s surface level
Figure 4.11  The constraints for the i-insertion and z-devoicing rules both
refer to a lexical z, not a surface s.

 and Figure 4.13. Figure 4.12 is based on Figure 3.14 of Chapter 3. see page

- 78 for a reminder of how this automaton works. Note in Figure 4.12 that

the plural morpheme is represented by z:, indicating that the constraint is
~ expressed about an lexical rather than surface z.

#, other

Figure 4.12  The transducer for the i-insertion rule 4.4. The rule can be
read whenever a morpheme ends in a sibilant, and the following morpheme is

z, insert [il.

o Figure 4.14 shows the two automata run in parallel on the input [faks"z]
(the figure uses the ARPAbet notation [f aa k s~ z]). Note that both the au-
~ tomata assuming the default mapping ":e to remove the morpheme boundary,
~ and that both automata end in an accepting state.
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Figure4.13  The transducer for the z-devoicing rule 4.5. This rule might be
summarized Devoice the morpheme z if it follows a morpheme-final voiceless
consonant.

Intermediate é

iX-insertion

z—devoicing

Surface é x

Figure 4.14  The transducer for the i-insertion rule 4.4 and the z-devoicing
rule 4.5 run in parallel. :

4.4  ADVANCED ISSUES IN COMPUTATIONAL PHONOLOGY

Harmony

Rules like flapping, i-insertion, and z-devoicing are relatively simple as pho-
nological rules go. In this section we turn to the use of the two-level or fini
state model of phonology to model more sophisticated phenomena; this §é
tion will be easier to follow if the reader has some knowledge of phonolog
The Yawelmani dialect of Yokuts is a Native American language spoken
California with'a complex phonological system. In particular, there are thr
‘phonological rules related to the realization of vowels that had to be order

~ in traditional phonology and whose interaction thus demonstrates a comp
cated use of finite-state phonology. These rules were first drawn up in:
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aditional Chomsky and Halle (1968) format by Kisseberth (1969) follow-
ng the field work of Newmari (1944).

- First, Yokuts (like many other langnages including for example Turk-
sh and Hungarian) has a phonological phenomenon called vowel harmony.
owel harmony is a process in which a vowel changes its form to lock like
neighboring vowel. In Yokuts, a suffix vowel changes its form to agree
backness and roundness with the preceding stem vowel. That is, a front
owel like /i/ will appear as a backvowel [u] if the stem vowel is /u/ (ex-
mples are taken from Cole and Kisseberth (1995):6

. Lexical = Surface Gloss
. dub+hin — dubhun “tangles, non- future
xil+hin — xilhin  “leads by the hand, non-future”
~ bok’+al — bok’ol “might eat”
©xat’+al - — xat’al  “might find”

. This Harmony rule has another constraint: it only applies if the suffix
vowel and the stem vowel are of the same height. Thus /u/ and /i/ are both
high, while /o/ and /a/ are both low. .

- The second relevant rule, Lowering, causes long high vowels to be-
come low; thus /u:/ becomes [o1] in the first example below:

Lexical ~ * Surface Gloss
Purt’+it — Tort’ut  “steal, passwe aorist”
mitk’+it — me:k’+it “swallow, passive aorist”

K | The thlrd rule, Shortemng, shortens Iong vowels 1f they oceur in closed
syllables . o o

o j‘ri."ivLeXi.eal- s Surface
s:ap-+hin. - - saphm BT
suduk+hin — sudokhun -

" The Yokuts rules must be ordered just as the i- msertlon and ?—devmcmg
‘rales had to be ordered: Harmony must be ordered before Lowering because
thé /uz/ in the lexical form /?urt’+it/ causes the /i/ to become [u] before it
lowers in the surface form [20:t’ut]. Lowering must be ordered before Short-
ning because the /i /-in/suduzk+hin/ lowers to [o]; if it was ordered after
shortening it would’ appear on the surface as [u].. : EPEE

~ Goldsmith (1993) and Lakoff (1993) mdependently observed that the
Yokuts data could be modeled by somethmg like a transducer; Karttunen

6 “For purposes of snmphfymg the explananon thls account 1gn0rex soinie parts of the’ system
such as vowel underspecification (Archangeh 1984). - o e

VOWEL
HARMONY
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TIERS:" © -

AUTOSEGMENTAL °

Templatxc Morphoiogy

the templatic (non-concatenative) morphology (discussed on page 60) com
_* mon in Semitic languages like Arabic, Hebrew, and Syriac. McCarthy (1981
' proposed that this kind of morphology could be modeled by using differen
levels of répresentation that Goldsmith (1976) had called tiers. Kay (1987

vstrmgs on the'tapes in the correct way; Kay proposed that the binyan tap

' showed how one-tape automata (i.e: ‘finite-state automata rather than four

3 autosegmental representauons of Goldsmith ( 1976)

(1998) extended the argument, showing that the Goldsmith and Lakoff con
straints could be represented either as a cascade of three rules in series, or in
the two-level formalism as three rules in parallel; Figure 4.15 shows the two:
architectures. Just as in the two-level examples presented earlier, the rule
work by referring sometimes to the lexical context, sometimes to the surfac
context; writing the rules is left as Exercise 4.10 for the reader.

Lesical § [ 2 ]u:]t |+ h[i n ST2Tu]t [+Th [i] n!“é

i Rounding | S S, S—

: E Lowermg P 1 {' Rounding ! ;' Lowering | *Shoﬂemng.

o E Sheﬁe_a_;zxfg_ j R -"——_‘:___'i_h_‘_':.':.}—.::,_:“_:-}”"-V k
Su:face%J !OTH"TUI | 15 ¢ [?joft[hjufn] [+
a} Cascade of rules, o . b) Parallel two-level rules. e

Flgure 415 Cornbmmg the roundlng, lowenng, and shortening rules for'
- Yawelmani Yokuts : L

Finite-state models of phonology/morphology have also been proposed fo

proposed a computational model of these tiers via a special transducer Wh1c
reads four tapes instead of two, as in Figure 4.16. '
-~ The tricky: part here is designing a machine which aligns the vari

could act as a sort of gulde for ahomnent Kay $ mtumon has Jed to a num
Beesley. s (1996)_ model. for Arabic and Kiraz’s (1997) model for Syriac.:
.- The more recent work of Kornai (1991): and Bird and Ellison. (1994

tape or even two-tape: transducers) could be used to model templatic: mo
phology and other kinds of phenomena that are handleed with the t1er—bav'
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binyan tape i LV [ C l C ‘ V

vocalic morph. tape { [

" Figure 4.16 A finite-state model of templatic (“non-concatenative”) mor-
- phology. Modified from Kay (1987) and Sproat (1993).

- Optimality Theory -~ = - -
‘I a traditional phonological derivation, we are givén an underlying lexical
“ form and a surface form. Thé phonological system then consists of one com-
% ponerit a sequence of rules which map the underlying form to the surface
f:form Optlmahty Theory (OT) (Prmce and Smolensky, 1993) offers an al-
“ternative way of v1ew1ng phonologlcal derivation, ‘based on two functions
: "(GEN and EVAL) and a set ‘of ranked v1olable constraints (CON). Given an
‘underlying form, the GEN function produces all imaginable surface forms,
“even those which couldn’t possibly be a legal surface form for the input. The
“EVAL function then applies each constraint in CON to these surface forms in
“order of constraint rank. The surface form which best meets the constraints
~is chosen.
© A constraint in OT represents a wellformedness constraint on the sur-
“face form, such as a phonotactic constraint on what segments can follow each
e.fother or a constraint on what qyllable structures are allowed. A constraint
}fcan also check how falthful the surface form is to the underlymg form.
.....Let’s turn to our favorite comphcated language, Yawelmani, for an ex-
; ample In addltlon to the interesting vowel harmony phenomena discussed
“above, Yawelmani has a phonotacnc constraints that rules out sequences of
';”consonants In particular three consonants in a row (CCC) are not allowed
-_ _‘to‘occur in a surface word. Sometlmes however a word contains two con-
secutive morphemes such. that the ﬁrst one ends i m two consonants and the
: econd orne stm’ts with one consonant (or vice Versa) What does the lan-

T The' foll‘owmg exphcatlon"of -OT " via' the' Yawelmani ‘example draws heavily from
: A'rchangeli (1997) and a lecture by Jennifer Cole at the 1999 LSA Linguistic Institute... - .

OPTIMALITY
THEORY

o1

FAITHFUL
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COMPLEX -
ONSET
COMPLEX
COBA

RESYLLABIFIED

guage do to solve this problem? It turns out that Yawelmani either deletes -
one of the consonants or inserts a vowel in between.

For example, if a stem ends in a C, and its suffix starts with CC, the
first C of the suffix is deleted (“+” here means a morpheme boundary):

C-deletion C —»e/C+___C (4.8)
Here 1s an example where the CCVC “passive consequent adjunctive” mor-
pheme hne:l (actually the underlying form is /hnil/) drops the initial C if

the previous morpheme ends in two consonants (and an example where it
doesn’t, for comparison):

underlying

morphemes  gloss

diyel-ne:sl-aw  “guard - passive consequent adjunctlve locative”
cawa-hne:l-aw “shout - passive consequent adjunctive - locative”

~ If a stem ends in CC and the suffix starts with C the language mstead
mserts a vowel fo break up the first two consonants:

- V-insertion € - V/C__C+C : : (4.9)
Here are some examples in which an i is inserted into the roots ?ilk- “sing”
and the roots logw- “pulverize” only when they are followed by a C~1nmaI
sufﬁx like hm past” not a V-initial suffix like -en, “future”:

surface form gloss
. ?ilik-hin “sang”
tilken - “will sing”
logiwhin “pulverized”
. logwen “will pulverize”

Kisseberth (1970) suggested that it was not a comc:ldcnce thd[ Yawe1~
mani had these particular two rules (and for that matter other related deletion
rules that we haven’t presented). He noticed that these rules were function:
ally related; in particular, they all are ways of avoiding three consonants i’n’;i
row. Another way of stating this generalization is to talk about syllable struc-
ture. Yawelmani syllables are only allowed to be of the form CVC or CV
(where C means a consonant and V means a vowel). We say that languages
like Yawelmani don’t allow complex onsets or complex codas. From the
point of view of syllabification, then, these insertions and deletions all hap-
pen so as to allow Yawelmani words to be properly syllabified. Since cvce
syllables aren’t allowed on the surface, CVCC roots must be resyllabifie
when they appear on the surface. For example, here are the syllabificatio
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of the Yawelmani words we have discussed and some others; note, for ex-
“ample, that the surface syllabification of the CVCC syllables moves the final
- consonant to the beginning of the next syllable:

underlying  surface gloss
morphemes  syllabification

?ilk-en ?il.ken “will sing”
logw-en log.wen “will pulverize™
logw-hin lo.giw.hin “will pulverize”
xat-en xa.ten *will eat”

diyel-hnil-aw di.yel.nerlaw “ask - pass. cons. adjunct. - locative™

i Here’s where Optimality Theory comes in. The basic idea in Optimal-
- ity Theory is that the language has various constraints on things like sylla-

ble structure, These constraints generally apply to the surface form. One

- such constraint, *COMPLEX, says “No complex onsets or codas”. Another

- class of constraints requires the surface form to be identical to (faithful to)
~ the underlying form. Thus FAITHV says “Don’t delete or insert vowels” and
 FArTHC says “Don’t delete or insert consonants”™. Given an underlying form,

- the GEN function produces all possible surface forms (i.e., every possible in-

v “sertion and deletion of segments with every possible syllabification) and they

" are ranked by the EVAL function using these constraints. Figure 4.17 shows

the architecture.

/7ilk~hin/
GEN

/

vilkchin 7ilkhin %ilhin %akpid %ilkhin

EVAL (+*COMPLEX, FAITHC, FAITHV)

i

!

[7ilikhin]

. Figare 4.17  The architecture of a derivation in Optimality Theory (after

. Archangeli (1997)).

The EVAL function works by applying each constraint in ranked order;

. the optimal candidate is one which either violates no constraints, or violates
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TABLEAU

: ‘are presmned to be cross-lmgulsuc generahzauons That is all languages are

. then an OT derivation can be computed by finite-state means. This secon
‘constraint is relevant because of a property of OT that we haven’t mentior
if two candidates violate exactly the same number of constraints, the wirinin
“candidate is the one which has the smallest number of violations of the: fel

' ’evant constraint. -

fKam:unen (1998); following the above-mentioned work and that of H,

- ‘date forms For example for the syllablﬁcatlon example above; GEN: WO i

less of them than all the other candidates. This evaluation is usually showti{
on a tableau (plural tableaux). The top left-hand cell shows the input, the
constraints are listed in order of rank across the top row, and the p0351ble
outputs along the left-most column. Although there are an infinite number
of candidates, it is traditional to show only the ones which are ‘close’; in:
the tableau below we have shown the ontput ?ak.pid just to make it clear
that even very different surface forms are to be included. If a form violat
a constraint, the relevant celi contains *; a !* indicates the fatal violation.
which causes a candidate to be eliminated. Cells for constraints which are
itrelevant (since a higher-level constraint is already violated) are shaded.

[ Ailk-hin/ | *CompLEX [FAITHC [FAITHV |
o xhin T o [ . T T
. Plkhin | F1
| Hilhin |
I . I’ak pld

One, appeal of Optlmahty Theoreuc denvanons is that the constramts

presumed to have some version of faithfulness, some preference for 31mp1e-
syllables, and so on. Languages differ in how they rank the constraints; thus
English, presumably, ranks FAITHC higher than *COMPLEX. (How do we
know this?y '

Can a derivation in Optimality Theory be implemented by nmte—sta'
transducers? Frank and Satta (1999), following the foundational work.-f_’
Ellison (1994), showed that (1 if GEN is a regular relation (for examp
assuming the input doésn’t contain contéxi-free frees of some sort), and
if the number of allowed violations of any constraint has some finite boun

~ One way to 1mplement OT as'a ﬁmte—state system was Worked ou

mond: (1997) In Kaittunen’s model, GEN is 1mplemented as a finite-sta
transdicer which is given an underlying form and produces a set of can
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enerate all strings that are variants of the input w1th consonant deletions or
owel insertions, and their syllabifications. DR
Each constraint is implemented as a filter transducer that lets pass only

s the identity mapping. For example, *COMPLEX would be implemented
ia a transducer that mapped any input string to itself; unléess the input string
ad two consonants in the onset or coda, in which case it would be mapped

o null.
The constraints can then beplacedina cascade in which higher-ranked

bnstramts are simply run first, as suggested in Figure 4.18.

. GEN |
| BATTHC. |

,Y”i:Flgure 4. 18 Vers1on #1 (“mercﬂess ca@cade”) of Karttunen S ﬁnlte-state
5 cascade 1mplementat1on of OT o - J

~-:-There is one crucial flaw with the cascade mode] in Figure 4.18. Recall
‘that the constraints-transducers filter out any candidate which violates a con-
‘straint. But in many derivations; include the proper derivation of ?ilik hin,
even the optimal form still violates a constraint. The cascade in Figure 4.17
‘would incorrectly filter it out, leaving no surface form at all! Frank and Satta
(1999) and Hammond: (1997) both point out that it is essential to only en-
force a constraint if it does not reduce the candidate set to zero.: Karttunen
(1998) formalizes this intuition with the lenient composition operator. Le-
nient composition-is a combination of regular composition and an operation
alled priority union. The basic idea is that if any candidates meet the con-
straint these candidates will be passed through the filter as usual. If no output
‘meets the constraint, lenient composition retains all of the candidates. Fig-
tire: 4.19 shows the general idea; the interested reader should see Karttunen
‘(1998) for the details: Also see Tesar (1993, 1996), Fosler (1996), and Eisner
(1997) for discussions of other computatwnal issues in QL. DI

trings which meet the constraint. For legal strings, the transducer thus acts |

LENIENT
COMPOSITION
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g1ven a number of words together with their stress patterns, and which in-
duces generalizations about the mapping from the sequences of light and
h‘éavy syllable type in the word (light syllables have no coda consonant;
‘he‘avy syllables have one) to the stress pattern. Tesar and Smolensky (1993)
show that a system which is given Optimality Theory constraints but not
_ﬂlelr ranking can learn the ranking from data via a simple greedy algorithm.
- Johnson (1984) gives one of the first computational algorithms for
phonologlcal rule mductlon His algorithm works for rules of the form

@l 10) a— b/C

where Cisthe feature rnatnx of the segmentb around a. Johnson’s algorithm
ts‘up a system of constraint equations which C must satisfy, by consider-
mg both the positive contexts, i.e., all the contexts C; in which a b occurs on
the surface, as well as all the negative contexts C; in which an « occurs on
the surface. Touretzky et al. (1990) extended Johnson s insight by using the
sersion spaces algorithm of Mitchell (1981) to induce phonological rules in
thelr Many Maps architecture, which is similar to two-level phonology. Like
hnson s, their system looks-at the underlying and surface realizations of
single segments: For each segment, the system uses the version space algo-
ﬁthm to search for the proper statement of the context. The model also has a
separatc algorithm Wthh handles harmonic effects by looking for multiple
segmental changes in the same word, and is more general than Johnson’s in
dealing with epenthesis and deletion rules.
The algorithm of Gildea and Jurafsky (1996) was designed to induce
transducers representing two-level rules of the type we have discussed ear-
lier. Like the algorithm of Touretzky et al. (1990), Gildea and Jurafsky’s
algonthm was given sets of pairings of underlying and surface forms. The
algorithm was based on the OSTIA (Orncina et al., 1993) algorithm, which is
a general learning algorithm for a subtype of finite-state transducers called
suhsequentlal transducers. By itself, the OSTIA algorithm was too general
to learn phonological transducers, even given a large corpus of underlying-
form/surface-form pairs. Gildea and Jurafsky: then augmented the domain-
ndependent OSTIA system with three kinds of learning. biases which are
specific to natural language phonology; the main two are Faithfulness (un-
derlymg segments tend to be realized similarly on the surface), and Com-
”‘umty (similar segments behave similarly). The resulting system was able
‘Q‘ leamn transducers for ﬁappmg in Amencan Enghsh or German consonant
devoicing. - e : SERERRSPINNENE

= Fmally, many leammg algonthms for phonology are probablhstlc For
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example Riley (1991) and Withgott and Chen (1993) proposed a decision-'
tree approach to segmental mapping. A decision tree is induced for each
segment, classifying possible realizations of the segment in terms of contex
tual factors such as stress and the surrounding segments. Decision trees and
probabilistic algorithms in general will be defined in Chapters 5 and 6. -

4.6 MAPPING TEXT TO PHONES FOR TTS

- Dearest creature in Creation
- Studying English pronunciation
I will teach you in my verse
- Sounds like corpse, corps, horse and worse
It will keep you, Susy, busy,
- Make your head with heat grow dizzy

“ River; rival; tomb; bomb, comb;
~Doll and roll, and some and home.
. Stranger does not rime with anger -+
Neither does devour with clangour. -
G.N. Trenite (1870-1946) The Chaos’
. reprmted in Witten ( 198”) '

, N ow that we have leamed the basw 1nvcntorv of phones in Englmh Land
seen how to model phonoloolcal rules we are ready to study the problem 0
mapping from an orthooraphxc or text word to its plonuncmuon

Pronunciation Dictionaries

~ An important component of this mapping is a pronunciation dictionar

These dictionaries are actually used in both ASR and TTS systems, although

because of the different needs of these two areas the contents of the dlCtl

naries are somewhat different.
The simplest pronunciation dictionaries ]ust have a hst of words

their pronunciations: a
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Word Pronunciation | Word Pronunciation
[keet] . - goose [gus]

cats  [kats] geese [gis]

pig  [pig]. hedgehog [hedghog)

pigs [pigz] hedgehogs [hed3. hogz

fox  [fax]. .

foxes |[fak.siz|

- Three large, commonly-used, on-line pronunciation dictionaries in this
format” are PRONLEX, CMUdict, and CELEX. These are used for speech
,;re'c'ogmtlon and can also be adapted for use in speech synthesis. The PRON-
EX dictionary (LDC, 1995) was designed for speech recognition applica-
jvtlv(‘)lfls and contains pronunciations for 90,694 wordforms. It covers all the
‘words used in many years of the Wall Street Journal, as well as the Switch-
3 Oard Corpus. The CMU Pronouncing Dictionary was also developed for
“ASR purposes and has pronunciations for about 100,000 wordforms. The
ELEX dictiopary (Celex, 1993) includes all the words in the Oxford Ad-
_jvanced Learner’s Dictionary (1974): (41,000 lemmata) and the Longman
f'chuonary of Contemporary English (1978) (53,000 lemmata), in total it has
‘pronunciations for 160,595 wordforms. Its pronunciations are British while
the other two are American. Each dictionary uses a different phone set; the
CMU and PRONLEX phonesets are derived from the ARPAbet; while the
'CELEX dictionary is derived from the IPA. All three represent three levels
of stress: primary stress, secondary stress, and no stress. Figure 4.20 shows
:the pronunciation of the Word armadzllo in all three dlctlonanes

;chtlonary ] ﬂ Pronum:latlon B IPA Versxon ]
Proplex. .. o ramxd o o | [armo'ddou]
CMU- = ||/ AA2ZRM AHODIHI LOWO o0 [drma'didou]
CELEX "#m@-di-15 - o [armo.'diloy]

Figure 4.20.  The pronunciation of the word armadillo in three dictionaries.
‘Rather than explain special symbols, we have given an IPA equivalent for each
‘pronunciation. The CMU dictionary represents unstressed vowels ([2], [i], etc.)
by giving a 0 stress level to the vowel. We represented this by underlining in
the TPA form. Note the r-dropping and use of the [au] rather than [QU] vowel in
:the Bntleh CELEX pronuncxatlon : BRI

' Oft'en two distht Words ax‘e s;)ell'ed the:same (ﬂley Vare homographs)
but'pronounced differently.- For example the verb wind (“You need to wind
this up more neatly”) is pronounced [wamd] while the noun: wind (*“blow,
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: fo'us‘pr'obiem:for many applications; Liberman and Church (1992) report that

' proper names By contrast Pronlex includes 20,000 names; this is still only

_“doctor” or “drlve” "or 2/3 Wthh can be “two thlrds” or “February thlrd”
B two slashthree i ,

| _ '> -l,_.‘.functlon Words (and I a, the, of, etc. ). Thxs is because the variation in the_:
,_"words due to phonetlc context is so great. Usually the dictionaries inclide
© some snnple baseform (such as [6i] for the) and use other algorithms to Vde-

contcxtual pronunciation variation for words of th1s sort.

B 'TTS dICtl()naIICS do not have ta represent dlalectal variation; thus whe
a Very ‘accurate ASR dlctlonary needs to represent both pronuncmuons;jj_ )

':'Beyond chtmnary Lookup Text Ana]y51s

'Mappmgifrom text tc phones rehes on. the kmd of pronunczatl()n dmtmn"
‘we talked about in the last section. As we suggested before, one way to _'

' ’text-to-pho_nes would be to look up each word in a pronunciation dictionary
“and read the string of phones out of the dictionary. This method would work

- sawin Chapter 3,it’s not possible to represent every word in English (or’,an
S other language) in advance: Both speech: synthems and: speech lecogm_.l

Chapter 4. Computational Phonology and Text—to-Sgeééh

blow, thou winter wind”) is pronounced [wind]. This is essential for TTS
applications (since in a given context the system needs to say one or the
other) but for some reason is usually ignored in current speech recognition
systems. Printed pronunciation dictionaries give distinct pronunciations for
each part-of-speech; CELEX does as well. Since they were designed for
ASR, Pronlex and CMU, although they give two pronunciations for the form
wind, don’t specify which one 1s used for which part-of-speech.

Dictionaries often don’t include many proper names. This is a seri-

21%. of the word tokens in their 33-million-word 1988 AP newswire co
pus were names. Fuﬂhermore they report that a list obtained in 1987 fro
the Dcnnelly markemng organization contains 1.5 million names (covenn
72 million households in the United States). But only about 1000 of .the
52477 1emmas in CELEX (wh1ch is based on traditional d1ct10nar1es) :

a small fraction of the 1.5 million, Very few dictionaries give pronunciatio

for enmes hke Dr, whzch as leerman and Church (1992) point out can.

N6 dlcuonanes currently have good models for the pronunc1at1on

rive the variation due to context; Chapter 5 wﬂl treat the issue of modelmg

+.One’ s1gmﬁcant dlfference between TTS and-ASR dlctlonanes is that

ezther and tomato, a. TTS dlctlonary can choose one.

fine: for-any word that we can put in the dictionary in advance.. But as
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systems need to be able to guess at the pronunciation of words that are not
. in their dictionary. This section will first examine the kinds of words that
are likely to be missing in a pronunciation dictionary, and then show how

of text-to-phones. Chapter 5 will introduce variation in pronunciation and
introduce probabilistic techniques for modeling it.

Three of the most important cases where we cannot rely on a word
dictionary involve names, morphelogical productivity, and numbers. As
a brief example, we arbitrarily selected a brief (561 word) movie review that
appeared in the July 17, 1998 issue of the New York Times. The review,
of Vincent Gallo’s “Buffalo '66”, was written by Janet Maslin. Here’s the
beginning of the article:

In Vincent Gallo’s “Buffalo *66,” Billy Brown (Gallo) steals a

blond kewpie doll named Layla (Christina Ricci) out of her tap

dancing class and browbeats her into masquerading as his wife at

a dinner with his parents. Billy hectors, cajoles and tries to bribe

Layla. (*You can eat all the food you want. Just make me look

good.”) He threatens both that he will kill her and that he won’t

be her best friend. He bullies her outrageously but with such

crazy brio and jittery persistence that Layla falls for him. Gallo’s

film, a deadpan original mixing pathos with bravado, works on

its audience in much the same way.
We then took two large commonly-used on-line pronunciation dictionaries;
the PRONLEX dictionary, that contains pronunciations for 90,694 word-
forms and includes coverage of many years of the Wall Street Journal, as well
as the Switchboard Corpus, and the larger CELEX dictionary, which has
pronunciations for 160,595 wordforms. The combined dictionaries have ap-
proximately 194,000 pronunciations.  Of the 561 words in the movie
review, 16 (3%) did not have pronunciations in these two dictionaries (not
counting two hyphenated words, baby-blue and hollow-eyed). Here they are:

Names - Inflected Names Numbers Other
Aki Gazzara  Gallo’s "66 c'mere
~ Anjelica Kaurismaki o ‘ indie
~ Arquette Kusturica ... ... .. . kewpie
Buscemi Layla sexpot

Some of these missing words can be found by increasing the dictionary
size (for example Wells’s (1990) definitive (but not on-line) pronunciation

the finite-state transducers of Chapter 3 can be used to model the basic task
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(4 11) uygarla§t1ramad1klannnzdanm1§ sinizcasina -

f‘-’_"cmhze/cause to become 01v111zed”

S Even a language as sunﬁar to Enghsh as German has greater ablhty_ o
create words Sproat et al (1998) note the spontaneously created German ¢ ex--

o _cal lcnowledge is necessary for pronunmatlon modehng For example nanx

_' o Words (faxes, indies). Furthermiore, we can’t just add s to the pronunciatio
e "of the umnﬂected forms, because as the last section’ showed, the: poqqessiv
“sand plural -5 suffix in English are pronounced differently in different con:

- texts; Syntex’s is pronounced [smteksiz], faxes is pronounced [feeksiz], IBM'.
is pronounced [arbijemz], and DAT's is pronounced [dets]. :

A . ’66 in Buﬁalo 66 is pronounced [ﬂkStlSIkS] not. [SIkSSIkS] The most nat

dictionary of English does have sexpot and kewpie). But the rest need t
generated on-line. : =

Names are a large pro’olem for pronunmauon dictionaries. It is dlfﬁ
cult or impossible to list in advance all proper names in English; furthermor_
they may come from any language, and may have variable spellings. Mo
potential applications for TTS or ASR involve names; for example name
are essentially in telephony applications (directory assistance, call routing
Corporate names are important in many applications and are created con
stantly (CoComp, Intel, Cisco).. Medical speech applications (such as trari
scriptions of doctor-patient interviews) require pronunciations of names_.f
pharmaceuticals; there are some off-line medical pronunciation dictionarie
but they are known to be extremely inaccurate (Markey:and Ward, 1997
Recall the figure of 1.5 million names mentioned above, and Liberman an
Church’s (1992) ﬁndmo that 21% of the word tokens in their 33 million wor
1988 AP newswire corpus were names.. L :

Morphology isa partlcular problem for many languages other than E :
ghsh For languages with very productive morphology it is computationall
mfeasmle to represent every p0531b1e word; recall this Turkish example:

'uygar +la§ +z‘zr Ctama +dzk +Zar Yz
',?;_""cmhzed +BEC +CAUS +NEGABLE +PPART +PL +P1PL

- +dan +mz§ '+smzz +casma T

U UFABL +PAST H2PL+ASIE

T

- (behavmg) as lf you are among those whom we could not e

ample Unerﬁndlzckkeztsunterstellung (¢ allegatlon of mcomprehenmblhty”)V
Buteven in Enghsh morphologmaﬂy SImple though it is, morpholog:

and acronyms are often inflected (Gallo s, ‘IBM’s, DATs, Syntex’s) as are new

= Finally, pronouncing: numbers is: a particularly- difficult problem:.: :



;1§‘ection 4.6. Mapping Text to Phones for TTS

125

ay to pronounce the phone number “947-2020” is probably “nine”-“four”-

even’-“twenty”-“twenty” rather than “nine”-“four”-“seven”-“two”-“zero”-

wo”-“zero”. Liberman and Church (1992) note that there are five main

‘ways to pronounce a string of digits (although others are possible):

e Serial: Each digit 1s pronounced separately—38765 is “eight seven six

o five”. o

_'e Combined: The digit string is pronounced as a single integer, with all

" position labels read out—eight thousand seven hundred sixty five”.

¢ Paired: Each pair of digits is pronounced as an integer; if there is an

' odd humber of digits the first one is pronounced by itself—"‘eighty-

seven sixty-five”.

o Hundreds: Strings of four digits can be pronounced as counts of

A -seven hundred (and) sixty-five”.

e Trailing Unit: Strings that end in zeros are pronounced serially until

* the last nonzero digit, which is pronounced followed by the appropnate
unit—8765000 is “eight seven six five thousand”.

, Pronunmatmn of numbers and these ﬁve methods are dzscussed further
in Exermses 4 5 and 4 6 - - : :

An FST-based Pronuncxatmn Lexn:on

) Early ‘work in pronuncmt:lon modehng for text-to-speech systems (such as
the seminal MITalk system Allen et al. (1987)) relied heavily on letter-to-
sound rules. Each rule specified how a letter or combination of letters was
‘mapped to phones here is a fragment of such a rule-base from Witten (1982):

- Fragment Pronunmanon

-p- [p]
- ooph- o [f]
. phe- [
e mg

“—pIace— ' [plers] B
.. -placi- [plesi
... - plement [plment]
Such systems consxsted ofa iong list of such rules and a very smaﬂ dic-
tlonary of exceptions (often function words such as g, are; as, both, do, does,

etc.). - More recent systems have completely inverted the algorithm, relying
on very: large dlctlonanes Wlth5 Ietter—to -sound rules only used for the small

LETTER-TO-
SOUND






Section 4.6. Mapping Text to Phones for TTS

ronhographic Lexicon | ... Lexicon

Regular Nouns .

. cat o ckalett

. fox " flfoa x|ks

. dog | . noddolaglg

, Irregular Singular Nouns

- goose | . glgooluslsele

o Irregular Plural Nouns

goeoese . - glgoo|uweeliss ele

- Figure 4.21  FST:based lexicon, extending the lexicon in the table on page
.. 74 in Chapter 3. Each symbol in the lexicon is now a pair of symbols sep-
. arated by “[”, one representing the “orthographic” lexical entry and one the
- “phonological” lexical entry. The 1rregniar plural geese also pre-specifies the
- contents of the intermediate tape “:eefi”.

__+PLIgslz

' o Nle: de
...... reg-noun-sten.

+S'Cfle: de —

(' ifreg-sg-noun-form -

N, Jrreg-pl-noun—form; . =i

1~ Figure 4.22 . FST for the nominal singular and plural inflection. The au-
‘1. tomaton adds the morphological features [+N], [+PL], and [+SG] at the lexi-
- cal level where relevant and also adds the plural suffix s|z (at the intermediate
|- level).. We will discuss below why we represent the pronunc1at10n of -5 as z
| rather than .

transducers which apply spelling rules and pronunciation rules to- map the
“intermediate level into the surface level. These include the various spelling
: rules discussed on page 77 and the pronunciation rules starting on page 105.
wv' The lexicon and these: phonological rules and: the orthographic rules
f'.from Chapter 3: can-now: be- used: to map between a lexical representation
“(containing both orthographic- and phonological strings) and a surface rep-
- fesentation- (containing both orthographic and phonological strings). As we
‘saw in Chapter-3, this mapping can be run from surface to lexical form, or
“from lexical to surface form; Figure 4.24 shows the architecture. Recall that
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’the lex1con FST maps between the “lexical” level, with its stems and mor

- concatenation of morphemes Then a host of FSTs, each representing 2
‘ther a smglc spelling rule constraint or a single phonological constraint, a

~ level: Each level has both orthographic and phonological representatlons
- “For text-to-speech appl;cat1ons in which the input is a lexical form {e.g., fo
‘text generation, where the system knows the lexical identity of the word; it

~same as the third-person form of the verb aid. Liberman and Church (1992
- suggest keepmg a small dictionary of the acronyms that are pronounced

 small number: of afﬁx stripping rules: (akin to:the:Porter Stemmer of Chap
- ter: w) rhymmg heuristics; and letter-to-sound rules to increase the covera

+PLig:gle

+Nie:ele

Figi'zx"‘e’4.23-_ . Mini-lexicon composing a transducer from the baseform lexi
con of Figure 4.21 with the inflectional transducer of Figure 4.22.

phological features, and an “{ntermediate” level which represents a snnpl

run in parallel soas to map between this intermediate level and the surfac

part-of-speech, its inflection, etc.), the cascade of FSTs can map from lexic
form to'surface pronunciation.. For text-to-speech applications in which th »
input is a surface spelling (e.g.; ;for ¢ ‘reading text out loud”” applications),
cascade of FSTs can map from surface orthographm form to surface promm
ciation via the underlying lexical form: ol S
.. Finally let us say a few words about names and acronyms. Acrony
can’ .be spelled with or without periods (ZR.S. or IRS). Acronyms with pe
riods: are ‘usually proncunced by spelling them out ([arares]). Acronym
that usually: appear: without periods (AIDS, ANSI; ASCAP) may either’
spelled out:or” pronounced as a word; so AIDS is usually pronounced th

words, and spelling out the rest. Their method for dealing with names beg
with: a dictionary of the pronunciations of 50,000: names, and then applie
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SIf[olx[«NErd | | 3
Lexical ' —
s [fTa[k|s [+NPL s
l.
! LEXICON——FST'
_ 1,;
TfTo[x[A]s s
- Intermediate e
s |[flaalk|s [ ]z 3
- 1 |
. r--———— o e o B S S i S W 9 s
T | -[ 1 -
== T=Uonthographicand - TS e “1
: FST1 | phonological rules | FST g
‘___.T..__: see ___T___I
N _l....__r...._l ...... H
flo|x|e]|s
Surface é —l L é
f laaj k | s |ix| z H
|-~ Figure 4,24 Mapping between the lexicon and surface form for orthogra-
" 1..- phy and phonology simultaneously. The system can be used to map from a
.. lexical entry to its surface pronunciation or from surface orthography to, sur-
. face pronunmatlon via the 1ex1cal entry...

Libe'rman and Church (1992)’ took the m’ost frequent quarter million words
in the Donnelly list. They found that the 50,000 word dictionary covered
59%: of these: 250,000 name. tokens. - Adding stress-neutral suffixes like -s,
-ville, and -son (Walters = Walter + s, Abelson = Abel + son;, Lucasville
= Lucas + ville) increased the coverage to 84%: Adding name-name com-
pounds (Abdulhussein, Baumgaermer) and rhyming heuristics increased the
coverage to 89%. The rhyming heuristics used. letter-to-sound. rules for the
beginning of the word and then found a rhyming word to help pronounce the
end; so Plotsky was pronounced by using the LTS rule for PI- and guessing -
otsky from Trotsky. They then added a number of more complicated morpho-
logical rules (prefixes:like: O’Brien), stress-changing suffixes (Adamovich),
suffix-exchanges (Bierstadi = Bierbaum - baum + stadt) and used a system
of letter-to-sound rules for the remainder. This'system was not implemented
as an FST; Exercise 4.11 will addtess some of the issues in turning such a
set of rules into an FST. Readers interested in further details about names,
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3 Sentences have prosodic structure in the sense that some words seem to
* group naturally together and some words seem to have a noticeable break or
disjuncture between them. Often prosodic structure is described in terms of
prosodic phrasing, meaning that an uiterance has a prosodic phrase struc-
ture in a similar way to it having a syntactic phrase structure. For example, in
the sentence [ wanted to go to London, but could only get tickets for France
- there seems to be two main prosodic phrases, their boundary occurring at the
comma. Commonly used terms for these larger prosodic units include into-
- national phrase or IP (Beckman and Pierrehumbert, 1986), intonation unit
(Du Bois et al., 1983), and tone unit (Crystal, 1969). Furthermore, in the
first phrase, there seems to be another set of lesser prosodic phrase bound-
‘aries (often called intermediate phrases) that split up the words as follows
I wanted | to go | to London. The exact definitions of prosodic phrases
“and subphrases and their relation to syntactic phrases like clauses and noun
phrases and semantic units have been and still are the topic of much debate
(Chomsky and Halle, 1968; Langendoen, 1975; Streeter, 1978; Hirschberg
and Pierrehumbert; 1986; Selkirk, 1986; Nespor and Vogel, 1986; Croft,
1995;. Ladd, 1996; Ford and Thompson, 1996; Ford et al., 1996).. Despite
- these complications, algorithms have been proposed which attempt to au-
" tomatically break an input text sentence into intonational phrases. For ex-
- ample Wang and Hirschberg (1992), Ostendorf and Veilleux (1994), Tay-
* lor and Black (1998), and others have built statistical models (incorporating
probabilistic predictors such as the CART-style decision trees to be defined
in Chapter 5) for predicting intonational phrase boundaries based on such
. features as the parts of speech of the swrrounding words, the length of the
 utterance in-words and seconds, the distance of the potential boundary from
- the begmnmg or enchng of the utterance, and whether the surrounding words
are accented: - LT T i e e
o Twor utterances with the same pwmmenoe and phlasmg patterns can
: stﬂ} differ prosodically by having different tunes. Tune refers to the into-
national melody of an utterance. Consider the utterance ok, really. Without
varying the phrasing or stress, it is still possible to have many variants of
this by varying the intonational tune. For example, we might have an excited
version ok, really! (in the context of a reply to a statement that you've just
- won the lottery); a sceptical version oh, really?—in the context of not being
" ‘sure that the speaker is being honest; to an angry oh, really! indicating dis-
- pleasure.  Intonational tunes can be broken into component parts, the most
important of which is the pitch accent. Pitch accents occur on stressed sylla-
bles and form a characteristic pattern in the FO contour (as explained below).

PROSCDIC

PHRASING

INTONATIONAL
PHRASE

P

INTERMEDIATE
PHRASE

PITCH
ACCENT
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+is influenced by the factors discussed above, including the lexical stress, the
“accented or focused element in the sentence, and the intonational tune of the
- utterance (for example a final rise for questions). Figure 4.25 shows some
- sample TTS output from the FESTIVAL (Black et al., 1999) speech synthe-
- sis system for the sentence Do you really want to see all of it?. This output,
together with the FO values shown in Figure 4.26 would be the input to the
waveform synthesis component described in Chapter 7. The durations here
-are computed by a CART-style decision tree (Riley, 1992).

H’*’ ‘ L*x | L- B%

coide ] you” | really o want |to |vsee |ooall | of it
todfuw| oyiuw! rpibh| I iy | w|aa] no| -t} t{ax| s[iy:{aoll [ahi v|ih|t
- 110} k10| 507 50 (751 64| 57| 8257| 50| 72| 41| 43| 47{ 54| 130 76| 90{44| 62| 46

220

" Thanks to Paul Taylor for this ﬁgure

Flgure 425" 'O'u'tzpﬁt of the FESTIVAL (Black et al., 1999) generator for the sentence
Do you really want to see all of it? The exact mtonatlon contour is shown in Figure 4.26.

do you o really  want to o see all of R

Figure 4.26° __Tﬁe__-' FO contour for the sample seni}énce geﬁerate‘ci' by the
FESTIVAL synthesis system in Figure 4.25, thanks to Paul Taylor.

- As was suggested above, determining the proper prosodic pattern for
© a sentence is difficult; as real-world knowledge and semantic information is
~ needed to know which syllables to accent, and which tune to apply. This sort

~of information is difficult to'extract from the text and hence prosody modules

often aim to produce a “neutral declarative” version of the input text, which
© assume the sentence should be spoken int a default way with no reference to
- discourse history or real-world events This is one of the main reasons: why
mtonatmanTS often sounds wt)oden S S R
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: :"ti'liforms Proponents of the rule-based view of morphology. such as Pinker
| -’-and Prince (1988), Marcus et al. (1995), and others, have criticized the con-
nectionist models and proposed a compromise dual processing model, in
which regular forms like -ed are represent as symbolic rules, but subregular
‘examples (broke, brought) are represented by connectionist-style pattern as-
sociators. This debate between the connectionist and dual processing models
_h_'as deep implications for mental representation of all kinds of regular rule-
based behavior and is one of the most interesting open questions in human
language processing. Chapter 7 will briefly discuss connectionist models of
human speech processing; readers who are further interested in connection-
ist models should consult the references above and textbooks like Anderson
€1995). .

49 SsomwAry

This chapter has introduced many of the important notions we need to un-
derstand spoken language processing. The main points are as follows:
o We'can repregent the pronunciation of words in terms of units called
- 'phones.” The standard’ system for representing phones is the Interna-
' tional Phonetic Alphabet or IPA. An alternative English-only tran-
- scription system that uses ASCII letiers is the ARPAbet.
"o Phones can be described by how they are produced articulatorily by
the vocal organs; consonants are defined in terms of their place and
' manner of aruculauon and vmcmg, VOWGlb by their height and back-
S mess. . ‘
S e A phoneme is a crenerahzauon or abstraction over dlfferent phonetic
realizations. Allophonie rules express how a phoneme is realized in a
Hie gwen context.
e Transducers can be used to model phonological rules just as they were
... used in Chapter 3 to model spelling rules. Two-level morphology is
- a theory of morphology/phonology Wthh models phonological rules
as ﬁmte—state Well—formedness constramts on the mapping between
* lexical and surface form.- i _
-« Pronunciation dlctlonanes are used for both text—to speech and au-
-+ tomatic speech recognition:: They give the pronunciation of words as
. strings of phones, sometimes including syllabification and stress. Most
. . on-line pronunciation dictionaries have on the order of 100,000 words
but still lack many names, acronyms, and inflected forms.
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. » The text-analysis component of a text-to-speech system maps from
orthography to strings of phones. This is usually done with a large
dictionary augmented with a system (such as a transducer) for handlmg
productive morphology, pronunciation changes, names, numbers, and:
acronyms. i

BIBLIOGRAPHICAL AND HISTORICAL NOTES

The ma]or 1n31ghts of artlculatory phonetlcs date to the hngutsts of 800—150
B.C. India. They invented the concepts of place and manner of articulation,
worked out the glottal mechanism of voicing, and understood the concept

of assimilation. European science did not catch up with the Indian phone
“cians. until over 2000 years later, in the late 19th century. The Greeks did
have some rudimentary phonetic knowledge; by the time of Plato’s Theaete-
tus and- Cratylus, for example; they distinguished vowels from consonan
and stop consonants from continuants. The Stoics developed the idea of the
',syllable and were aware of phonotactic constraints on, possible words..

' unknown Ioelandlc scholar of the twelfth century explmted the concept of

- : the phoneme proposed a phonermc Wntlng system for Icelandlc mcludmg
diacritics for length and nasahty But his text remained unpubhshed u
til 1818 and even then Was largely unknown outside Scandinavia (Robin
,1967) "The modem era of phonetlcs is usually said to have begun witt

: Sweet who proposed What is essenttally the phoneme in his Handbook‘
C Phonetics (1877). He also devxsed an alphabet for transcnptxon ‘and disti
. gmshed between broad and narrow transcrlptlon proposmg many ideas that
were eventually mcorporated into the TPA. Sweet was considered the best
practicing phonetl(:lan of his time; he 'made the first scwntiﬁc recordmgs
languages for phonetlc purposes, and advanced the start of the art of aI'tIC
~latory: descnptlon He was also mfamously difficult to get along with; a-trait

' thatis well captured in the stage character that George Bernard Shaw. mo:
~ eled afteér him: “Henry Higgins. ‘The: phoneme was first named by the Pohsh
K -'scholar Baudoum de Courtenay, who published his theories in 1894~

. The idea that phonological rules  could: be ‘modeled as regular Tela-

tlons dates to: Johnson (1972); who showed that ‘any phonological syste'
‘that dtdn’t allow rules to apply to their own’ output (i.e.; systems that didr

o jhave recurswe rules) couId be modeled w1th regular relations (or. ﬁmte-sta
e transducers)’“ V]Itually alt phonologlcal rules that had been formuiate
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the time had this property (except some rules with integral-valued features,
like early stress and tone rules). Johnson’s insight unfortunately did not at-
tract the attention of the community, and was independently discovered by
Roland Kaplan and Martin Kay; see Chapter 3 for the rest of the history of
two-level morphology. Karttunen (1993) gives a tutorial introduction to two-
level morphology that includes more of the advanced details than we were
able to present here.

Readers interested in phonology should consult (Goldsmith, 1995) as a
reference on phonological theory in general and Archangeli and I.angendoen
(1997) on Optimality Theory.

Two classic text-to-speech synthesis systems are described in Allen
et al. (1987) (the MITalk system) and Sproat (1998b) (the Bell Labs sys-
tem). The pronunciation problem in text-to-speech synthesis is an ongoing
research area; much of the current research focuses on prosody. Interested
readers should consult the proceedings of the main speech engineering con-
ferences: ICSLP (the International Conference on Spoken Language Pro-
cessing), IEEE ICASSP (the International Conference on Acoustics, Speech,
and Signal Processing), and EUROSPEECH.

Students with further interest in transcription and articulatory phonet-
ics should consult an introductory phonetics textbook such as L.adefoged
(1993). Pullum and Ladusaw (1996) is a comprehensive guide to each of the
symbols and diacritics of the IPA. Many phonetics papers of computational
interest are to be found in the Journal of the Acoustical Society of America
(JASA), Computer Speech and Language, and Speech Communication.

EXERCISES

4.1 Find the mistakes in the IPA transcriptions of the following words:

Lo a. “three” [dri]

b. “sing” [sing]

o oc “eyes” [ams]
0 d. “study” [stodi]
e

. “though” [fou]
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" 43 Tra Gershwin’s 1ync for Let's Call the Whole Thmg Oﬁtﬂks about two

f. “planning” [planm)
g. “slight” [sht}

4.2 Translate the pronuncxatwns of the followmg color wmds from the IPA
into the ARPAbet (and make a note if you think you pronounce them dlffer;—;j
ently than this!): '
a. [red]
b. [bluj
c. [grin]
d. [jelou]
e f blmk}
£ [wart]
& [omnds]
h. [pspl]
i. [pjus]
! Itovp}

pronunciations ‘of the word “either” (in addition to the tomato and potat y
example given at the beginning of the chapter. Transcribe Tra Gershwm S,
two pronunuatmns of “either” in IPA and in the ARPAbet. o

4. 4 Transcnbe thc followmg worde m both the ARPAbet and the IPA
a. dark
b. suit
c. greasy
d. wash
e. water

4.5 Write an FST which correctly pronounces strings of doliar 'ar.no'un.t 5
like $45, $320, and $4100. If there are mulnple ways to pmnounce a number”*
you may plck your favonte Way o

4.6 Write an FST Wthh correctly pronounceb seven- dlglt ph()ne numbers
like 555-1212; 555-1300, and so on. You should use a combination of the
palred and trallmg unit methods of pronuncxatxon for the last four dlg—

4 7 Bu:lld an automaton for rule (4.5).
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4.8 One difference between one dialect of Canadian English and most di-
alects of American English is called Canadian raising. Bromberger and
Halle (1989) note that some Canadian dialects of English raise /ar/ to [a1]
and /au/ to [au] in stressed position before a voiceless consonant. A simpli-
fied version of the rule dealing only with /a1/ can be stated as:

Jax] — (w1 / {C } (4.12)

—voice

This rule has an interesting interaction with the flapping rule. In some
Canadian dialects the word rider and writer are pronounced differently: rider
is pronounced [rarra] while writer is pronounced [raira]. Write a two-level
rule and an automaton for both the raising rule and the flapping rule which
correctly models this distinction. You may make simplifying assumptions as
needed.

4.9 Write the lexical entry for the pronunciation of the English past tense
(preterite) suffix -d, and the two level-rules that express the difference in its
pronunciation depending on the previous context. Don’t worry about the
spelling rules. (Hint: make sure you correctly handle the pronunciation of
the past tenses of the words add, pat, bake, and bag.)

410 Write two-level rules for the Yawelmani Yokuts phenomena of Har-
mony, Shortening, and Lowering introduced on page 111. Make sure your
rules are capable of running in parallel.

4.11 Find 10 stress-neutral name suffixes (look in a phone book) and skeich
an FST which would model the pronunciation of names with or without suf-
fixes.

CANADIAN
RAISING
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5 OF PRONUNCIATION

L AND SPELLING
I —————————.

‘ "'ALGERNON But my own sweet Ceczly, I have never written
. you any letters. . =
- CECILY: You need hardly remmd me of that Ernest 1 re-
- member only too well that I was forced to write your letters
for you. I wrote always three times a week, and sometimes
~ oftener. _
~ ALGERNON:. Oh, do let me read them, Cecily?
- CECILY: Oh, I couldn’t p'oss'ibly' They would make you far
- too conceited. The three you wrote me aﬁer I had broken off
- the engagement are so beautiful, and so badly spelled, that
o even now I can hardly read them withoiit crying a little.
" Oscar Wﬂde The Importance of being Ernest

Like Oscar Wilde’s fabulous Cecily, a lot of people were thinking about

~ spelling during the last turn of the century.: Gilbert and Sullivan provide

many examples. The Gondoliers” Giuseppe, for example, worries that his
private secretary is “shaky in his spelling” while Jolanthe’s Phyllis can “spell
every word that she uses”. Thorstein Veblen’s explanation (in his 1899 clas-
sic The Theory of the Leisure Class) was that a main purpose of the “ar
chaic, cumbrous, and ineffective” English spelling system was to be difficult
enough to provide a test of membership in the leisure class. Whatever the

. social role of spelling, we can certainly agree that many more of us are like

Cecily than like Phyllis. Estimates for the frequency of spelling errors in hu-

. man typed text vary from 0.05% of the words in carefully edited newswire
. textto 38% in difficult apphcat1ons like telephone directory lookup (Kukich,

1992)

> “ o thls chapter we' dxscuss the problem of detectmg and: correcting




142

Chapter 5. Probabﬂistic Models of Pronunciation and Spelling:

: tlmes THUH the WOI‘d because sometlmes appears as because, sometimes:

~ vey the important kinds of variation in pronunciation that are important for
. speech recognmon and text~t0 speech, and present some preliminary rules
: ‘descnbmg thls vanatlon ngh—quahty speech synthe51s algorithms need to |
‘ know When to use part1eular pronunmatlon vanants ‘Solving both speech"
- tasks reqmres ‘extending the transduction between: surface phongés and lex1
: cal phones discussed in Chapter 4 with probab1hst1c variation.

F'U p0551ble “lexical” forms; ass1gmng each with a probab111ty, we then selee

. nél' model will p}ay arole in many problems throughout the book, particu:

el framework for these problems. But actually solving them requires an alg
.- rithm. This chapter introduces an essential algorithm called the dynam

spelling errors and the very related problem of modeling pronunciation vari
ation for automatic speech recognition and text-to-speech systems. On th
surface, the problems of finding spelling errors in text and modeling the vari
able pronunciation of wotds in.spoken language don’t seem to have muc
in common. But the problems turn out to be isomorphic in an importan
way: they can both be viewed as problems of probabilistic transduction. Fo
speech recognition, given a string of symbols representing the pronunciatio
of a word in context, we need to figure out the string of symbols represent
ing the lexical or dictionary pronunciation, so we can look the word up in the
dictionary. But any given surface pronunciation is ambiguous; it might corre
spond to different possible words. For example the ARPAbet pronunciation:
[er] could' correspond to reduced forms of the words fer, were, are, their,
or your. This ambiguity problem is heightened by . pronunmatmn varia
tmn for example the word the is sometimes pronounced THEE and some-

as 'cause. Some aspects of this variation are systematic; Section 5.7 will sur:

 Similarly, given the sequence of letters corresponding to a mis- spelled
Word we need to produce an ordered list of possible correct words. Foi
example the sequence acress might be a mis-spelling of actress, or of cress; ;-
or'of acres. - We: transduce: from: the “surface” form acress-to the various’

the miost probable correct word.

- In this chapter we first mtroduce the problems of detectmg and correct—
ing spelhng errots; and also sunimarize typical human spelling error patterns;
We then introduce: the essential probabihsnc architecture that we will use to
solve: both spellmg and pronuncxatlon problems: the Bayes Rule and the
noisy channel model.: The Bayes rule-and its application to the noigy chan:

larly in speech recogmnon (Chapter 7), part of—speech taggmo (Chapter 8)
and probablhsnc parsing (Chapter 12). e :
 The'Bayes Rule and the noisy channel model prov1de the probablhs
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programming algorithm, and various instantiations including the Viterbi
algorithm, the minimum edit distance algorithm, and the forward algo-
rithm. We will also see the use of a probabilistic version of the finite-state
automaton called the weighted automaton.

‘5.1 DEALING WITH SPELLING ERRORS

Thc detection and correction of spelling errors is an integral part of modern
“word-processors. The very same algorithms are also important in applica-
“tions in which even the individual letters aren’t guaranteed to be accurately
‘identified: optical character recognition (OCR) and on-line handwriting
‘recognition. Optical character recognition is the term used for automatic
‘recognition of maching or hand-printed characters. An optical scanner con-
‘verts a machine or hand-printed page into a bitmap which is then passed to
“an OCR algorithm.
“: On-line handwriting recognition is the recognition of human printed
“or cutsive handwriting as the user 1s writing. Unlike OCR analysm of hand-
“writing; algorithms for on-line handwriting recognition can take advantage
‘of dynamic information about the input sich as the number and order of
‘the strokes, and the speed and direction of each stroke.. On-line handwrit-
‘ing recognition’is ‘iniportant where keyboards are inappropriate, such as in
‘small computing environments (palm-pilot applications, etc.) or in scripts
like Chinese that have large numbers of written symbols, making keyboards
“cumbersome. - ERTE o
-~ In this chapter we wﬂl focus on detectlon and correction of spelling
:errorq, ‘mainly in typed text, but the algorithms’ will apply also to OCR and
‘handwriting applications. OCR systems have ‘even higher error rates than
‘liman typists, although they tend to make different errors than typists. For
»’example OCR systems often misread “D” as “O” or “ri” as “n”, producing
! rms—spelled’ words like dension for derision, or POQ Bach for PDQ Bach.
;}The reader with further interest in handwriting recognition should consult
ources such as Tappert et al (1990), Hu et a1 (1996) and Casey and Leco-
;hriet (1996). B

" Kukich (199?) in her sw"vey ‘article on spelhng correctlon breaks the
_ﬁeld down into three mcreasmgly broader problcms : :

x 'non-word error detectmn detecmng spellmo errors that result in non-
words (like graffe for guaﬁe) S :

OCR
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. The number and nature of spelhng errors in human typed text d:tffers fro”'_
R those caused by pat‘cem—recogmtlon devices like OCR and handwriting rec

2. isolated-word error correction: correcting spelling errors that result:
in pon-words, for example correcting graffe to giraffe, but looking onlyf.;
at the word in isolation . !

3. context-dependent error detection and correction: using the con
text to help detect and correct spelling errors even if they acciden
tally result in an actual word of English (real-word errors). Thi
can happen from typographical errors (insertion, deletion, transposi
tion) which accidently produce a real word (e.g., there for three), o

- because the writer substituted the wrong spel]mg of a homophone 'o
5: i 'near—homophone (e g a’essert for desert or pzece for peace)

o The next secnon wﬂl d1scuss the kmds of spelhne error pattems tha
occur m typed text and OCR and handwntmg—reco gnition mput

ogmzers Grudm (1983) fourid spelllng error rates of between 1 and 3% in
human typewntten text, (thlS includes both non-word errors and real-wor
errors) This error rate goes ‘down significantly for copy-edited text. Th
rate of spelling errors in handwritten text itself is similar; word error rates o
between 1.5 and 2.5% have been reported (Kukich, 1992). R

. The errors of OCR and on—hne hand-wrxtmg systems Vary Yaever etal
(1998) propose based’ on’ studles that they warn are inconclusive, that the'
on-line printed character recognmon on Apple Computer’s NEWTON MES
SAGEPAD had a word accuracy rate of 97-98%, that is, an error rate of
3 % but with a hlgh variance (dependmg on the trazmng of the writer, et
Iti 1s not clear Whether the faﬂure of the NEWTON was because this error rat
was optnmsuc or because a 2-3% error rate is unacceptable More rec.
devices, like 3Com’s Palm Pilot, often use a special input script (like 1
Palm Pilot’ 3 “Graffiti”) instead of allowing arbitrary handwriting. OCR
ror rates also vary Wldeiy dependmg on the quahty of the input; (Loprestl
and Zhou, 1997) suggest that OCR letter-error rates typically range from
0.2% for clean, ﬁrst-generauon copy to 20% or worse for multlgeneratxo‘
photocopzes and faxes """ RN e
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g In an early study, Damerau (1964) found that 80% of all misspelled
3 words (nop-word errors) in a sample of human keypunched text were caused
by single-error misspellings: a single one of the following errors:’

~ o insertion: mistyping the as ther
deletion: mistyping the as th
substitution: mistyping the as thw

‘& transposition: mistyping the as ite

" Because of this study, much following résearch has focused on the
correction of single-error misspellings. Indeed, the first algorithm we will
present later in this chapter rehes on the 1arge proportlon of smgle—crror mis-
pellings. L ’ '
.. Kukich (1992) breaks down human typmg errors into two classes Ty-
: pographlc errors (for example misspelling spell as speel), are generally
elated to the keyboard. Cognitive errors (for example misspelling sepa-
rate as seperate) are caused by writers who don’t know how to spell the
word.- Grudin (1983) found that the keyboard was the strongest | influence on
the errors produced; typographic errors constituted the majority of all error
“types. For example consider substitution: exrors, which were the most com-
._on error type for novice typists, and the second most common error type
or ‘expert typists. Grudin found that immediately adjacent keys in the same
ow accourited for 59% of the novice substitutions and 31% of the error sub-
titutions (e.g., smsll for small). Adding in errors in the same column and
homologous errors (hitting the corresponding key on the opposite side of
he keyboard with the other hand), a total of 83% of the novice substitutions
_nd-’Sl%? of the expert substitutions could be considered keyboard-based er-
ors: Cognitive errors included phonetic errors (substituting a phonetically
quiVaiént- sequence of letters (seperate for separate) and homonym errors
bstituting piece for peace). Homonym errors will be dlscussed n Chap—
er'7 'when we discuss real-word error correction. = - e
" While typing errors are usually characterized as substitutions, inser-
s, deletions, or transpositions, OCR errors are usually grouped into five
1asses subsututlons multlsubstltutlons, pace deletlons or 1nsert10ns and

In_another Corpus, Peterbon (1986) found that smgle error misspelhngs accounted for an
ven higher pexcentage of all misspelled words (93—95%) The difference between the 80%
nd the hlgher figute may be die to the fact that Damerau’s text included errors caused in
scnptmn to punched card forms, errors’in keyplmchmg, ‘and errors caused by paper tape
1pment (1 in addition to pureiy human mlsspellmgs e ,

INSERTION
DELETION
SUBSTITUTION
TRANSPOSITION



146 Chapter 5. Probabilistic Models of Pronunciation and Spelling

failures. Lopresti and Zhou (1997) give the following example of commo
OCR errors: SR :

Correct: :
The quick brown fox jumps over the lazy dog.
Recognized: .
"lhe q” ick brown foxjurnps over tb 1 azy dog

Substitutions (e — ¢) are generally caused by visual similarity (rathe
than keyboard distance), as are multisubstitutions (T — I, m — m, he —
b) Multisubstitutions are also often called framing errors. Failures (repre
sented by the tﬂde character 7 u — ”) are cases where the OCR algorithr
does not select any letter with sufficient accuracy.

53 DETECTING NONWORDERRORS

‘Detectmg non—word errors m text whether typed by humans or scanned i
- most. commonly done by the use of a dlcttonary For example, the word
fox]umps in the OCR example above would not occur in a dictionary. Som

-~ early. research (Peterson, 1986). had suggested that such spelling dtctronar
des would need to be kept small; because large dictionaries contain very rare

Words that resemble mlsspellmgs of other words.. For example wont is':
legmmate but rare word but is a common misspelling of won’z. Slmﬂarly
‘veery (a kind of thrush) mlght also be a misspelling of very. Based on a sim
ple model of s1ng1e~error nuSSpelhngs Peterson showed that it was possrble-
‘that 10% of such mrsspelhngs might be “}ndde by real words in a 50,000
word dtctronary, but that 15% of single-error: rmsspellmgs might be. “hrdden
in a 350,000-word dxcttonary In practice, Damerau and Mays (1989) foun
that this was not the case; while ‘some misspellings were hidden by rea
words in a- larger drct1onary, in practlce the 1arger d1ct1onary proved morev
helpthanharm R Lo L .

oo Because of the need to represent productwe mﬁecuon (the -5 and e 3
| sufhxes} and demvatlon, d10ttonar1es for spelling error detectxon usually in-
: clude models of moiphology, just as:the dictionaries for text-to-speech w

saw in Chapters 3and 4. Early speﬂmg error detectors simply allowed any“~
word to have any sufﬁx - thus Unix SPELL accepts bizarre prefixed Words '
like mzsclam and antlundoggmgly and sufﬁxed words based on the like ¢/
“hood and theness. Modern spelling efror detectors use more linguistical
. miotivated morphologlcal representations (see Chapter 3). ;
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5.4 PROBABILISTIC MODELS

This section introduces probabilistic models of pronunciation and spelling
variation. These models, particularly the Bayesian inference or noisy chan-
nel model, will be applied throughout this book to many different problems.

We claimed earlier that the problem of ASR pronunciation modeling,
and the problem of spelling correction for typing or for OCR, can be modeled
as problems of mappmg from one string of symbols to another. For speech
recognition, given a string of symbols representing the pronunciation of a
word in context, we need to figure out the string of symbols representing
the lexical or dictionary pronunciation, so we can look the word up in the
diétibﬁatjf Similarly; given the incorrect SéQiiénCe of letters in a mis-spelled
word, we need to ﬁgure out the correct sequence of letters in the correctly
spelled word ' -

. guess at
original
Lo N s /0 word

noisy

~~Tword. DECODER

“Figwesd Thenoiychamelmodel

- The intuition of the noisy channel model (see Figure 5.1) is to treat
the surface form (the “reduced”™ pronunciation or misspelled word) as an
instance of the lexical form (the “lexical” pronunciation or correctly-spelled
word) which has been passed through a noisy communication channel. This
channel introduces “noise” which makes it hard to recognize the “true” word.
Our goal is then to build a model of the channel so that we can figure out how
it modified this “true” word and hence recover it. For the complete speech
recognition tasks, there are many sources of “noise”; variation in pronun-
ciation, variation in the realization of phones, acoustic variation due to the

- channel {microphones; telephone networks, etc.}. Since this chapter focuses
on: pronunciation, what we mean by “noise” here is the variation in pronun-
ciation that masks the lexical or “canonical” pronunciation; the other sources

- of noise in a speech recognition system will be discussed in Chapter 7. For

~spelling error detection, what we mean by noise is the spelling errors which

- mask the correct spelling of the word. The metaphor of the noisy channel

~comes from the application of the model to speech recognition in the IBM

“labs'in the 1970s (Jelinek; 1976);?--Biitﬁ the algorithm ‘itself is a special case

NOISY
CHANNEL
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BAYESIAN

®!

“to classify it as about. In the spelling case, no matter how the word separat

, "phones (say [ni]). We want to know which word corresponds to this string of
. phones. The Bayesian interpretation of this task starts by considering all pos
‘sible classes——in this case; all possible words. Out of this universe of words
'we want to chose the word which is most probable given the observation Wi

of two' probabilities;: each of which: turns:out to be easier to compute than

of Bayesian inference and as such has been known since the work of Bayes.
(1763). Bayesian inference or Bayesian classification was applied SUCCEss-:
fully to language problems as early as the late 1950s, including the OCR:
work of Bledsoe in 1959, and the seminal work of Mosteller and Wallace:
(1964) on applymg Bayesmn inference to determine the authorship of thel;
Federalist papers. %

~ In Bayesian clasStﬁcauOn as in any classification task, we are give
some observation and our job is to determine which of a set of classes
belongs to. For’ speech recognmon imagine for the moment that the ob
servatmn 1s the string of phones which make up a word as we hear it. Fo
spelhng error detecuon the observahon mJght be the string of letters th
constitute a pos&bly mlsspelled word. In both cases, we want to classify’
the obserVauOns into words; thus in the speech case, no matter which of the
many poss1bie ways the word about is pronounced (see Chapter 4) we wan

is nnsspelled we’d like to recognize it as separate.
- Let’s begm with the pronunciation example. We are given a string off‘»

have ([ni]). In other words, we want, out of all words in the vocabulary
the single word such that P(word|observation) is highest. We use % to mea
“our estimate of the correct W, and we’ll use O to mean “the observatiol
sequence: [ni]” (we call it a sequence because we think of each letter as.an
indi'vidh'alaobser‘Vation);‘;ﬂThen thefequation for picking the best word give

W= argmaxP(MO) b R e “(_5’.’1:

The funct:zon argmax f (x) means “the X such that f (x) is max1m1zed’
Whﬂe (5.1) is guaranteed to give us the optimal word w, it is not clear hog
to make the equation operational; that is, for a given word w and observatlo_'
sequence O we don’t know how to directly compute P(w|0). The intuition of
Bayeslan clasmﬁca‘uon is to use Bayes’ rule to transform (5.1) into a produc

P(w|O}: Bayes rule'is presented in (3 2) it gwes us a way to break down
P (340) into three other probablhtxes R
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We can see this by substituting (5.2) into (5.1) to get (5 3)

P(Olw)P(w)
PSP
- The probabilities on the nght—hand snie of (S 3) are for the most part
* easier to compute than the probability P(WIO) that we were ongmally trying
to maximize in (5.1). For example, P(w), the probability of the word itself,
we can estimate by the frequency of the word. And we will see below that
" P(O}w).turns out to be easy to estimate as well. But P(Q), the probability
of the obéervaﬁon'sequ:ance turns out to be harder to estimate. Luckily, we
can 1gnore P(0). Why? Since we are maximizing over all words, we will

be computing (O}',‘("())P ) for each word. But P(Q) doesn’t change for each
-~ word; we are always asking about the most likely word string for the same

. observation O, Whlch ‘must have the same probability P(O). Thus:

¥ = argmax M argmaxP(O]w) P{w) 5.4

wEV : P(O) D ‘AGV R

= To summarize, the most probable word w given some observation &
- can be computing by taking the product of two probabilities for each word,

'&ﬁd'chObSi'ng the word for which this product is greatest. These two terms

have names; P(w) is called the Prior probability, and P(O|w) is called the
hkehhood

(5.3)

- likelihood prior

Key Concept #3 W =argmax P(Olw) P(w) - o (5.5)
weV .

S In the ne*(t sectlons we W1II show how to compute these two probablh-
ties for the probabilities of pronunciation and spelling.

55 ._'.,,”APP’LYING_‘ T'HE’?_BAYESIAN METHOD TO S_'PELLING

'.Therc are many algonthms for spelhng correction; we w1ll focus on the
Bayesian (or noisy channel) algorithm because of its generality. Chapter 6
‘will show how this algorithm can be extended to model real-word spelling
errors; this section will focus on non-word spelling errors. The noisy chan-
nel approach to spelling correction was first suggested by Kernighan et al.
990); their program; correct; takes words rejected by the Unix spell
'program generates a list of potential correct words, rank them accordmg to
Equatlon (5. 5) and plcks the highest-ranked one. RETAVEN

PRIOR
UKELIHOOD



150

- NORMALIZING.

Chapter 5. Probabilistic Models of Pronunciation and Spelliﬁ

Let’s walk through the algorithm as it applies to Kernighan et al
(1990) example misspelling acress. The algorithm has two stages: proposm
candidate corrections and scoring the candidates. s

In order to propose candidate corrections Kernighan et al. make th:
simplifying assumption that the correct word will differ from the mlqspellm "
by a single insertion, deletion, substitution, or transposition. As Damerau_-_’
(1964} results show, even though this assumption causes the algorithm to -
miss some corrections, it should handle most spelling errors in human typéf‘
text. The list of candidate words is generated from the typo by applying any
single transformation which results in a word in a large on-line diction'afjf'
Applying all possﬂﬂe transformations to acress ylelds the list of candldat
words in F1gure 52. SRR : &

Transformation .

TR | IR . Correct| Error |- Position
Error || - Correction " Letter | Letter| - (Letter #)| Type
jacress ||: - actress © .t oo deletion
acress | cress:: —~ a - insertion
| acréss _7-';5'caress"'-.v';ffv‘ Ceat | ac
acress - access || ¢ r
acress | across | o | e
acress || acres ' | =~ 2
lacress | acres - || 2

WO O
Ca
3
S
z
&

subsﬁtution
insertion’
insertion’

i

=N

: Fig’lire 52  Candidate corrections for the misspelling acress, togethier with
* the transformations that would have produced thc error ( attel Kermghan et al.
(1990)) e represents a null 1etter - - D :

) The second stage of the algorithm scores each correction by Equa—
tion 5.4, Let ¢ represent the typo (the misspelled word), and let ¢ range 0V
the set C of candldate corrections. The most likely correction is then: ;

hkehhood pr1or " |

argmax P(tlc P(c)
L CEC

As in Equatzon (5 4) we have omi tted the denommator in Equatxon '(
since the typo ¢, and hence its probability P(¢), is constant for all c. The prior
probability of each: correction P(c) can be estimated by counting how often
the word ¢ occurs in some corpus; and then normallzmg these counts by
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tbtal count of all words.? So the probability of a particular correction word
g’,is computed by dividing the count of ¢ by the number N of words in the
corpus. Zero counts can cause problems, and so we will add .5 to all the

that in Equation (5.7) we can’t just divide by the total number of words N
~since we added .5 to the counts of all the words, so we add .5 for each of the
'V words in the vocabulary).
: C{c)+0.5"
Pe)=FTosv D
S Chapter 6 will talk more about the role of corpora in computmg prior
probablhtles for now let’s use the corpus of Kernighan et al. (1990), which
" is the 1988 AP newswire corpus of 44 million words. Thus A is 44 million.
. Since in this corpus the word actress occurs 1343 times, the word acres 2879
- times, and so on, the resulting prior probabilities are as follows:

freqe) p(©)
- actress 1343.-. 0000315 . -
~.cress. 0 - 000000014 o
.. caress. 4. .0000001 . .. .
... -access: 2280 ;;.0()0058 TR
_-across. 8436 .00019 . .. . . .
acres.. 2879.  .000065 =

o Computing the likelihood term p(t1c) exactly is an unsolved (unsolve-
. able?) research problem; the exact probability that a word will be mistyped
- depends on who the typist was, how familiar they were with the keyboard
- they were using, whether one hand happened to be more tired than the other,
“ete. Luckily, while p(f|c) cannot be coniputed exactly, it can be estimated
pretty well, because the most important factors predicting an insertion, dele-
tion, transposition are simple local factors like the identity of the correct
letter itself, how the letter was misspelled; and the surrounding context. For
- example; the letters m and » are often substituted for each other; this is partly
- a fact about their identity (these two letters are pronounced similarly and
. they are next to each other on the keyboard), and partly a fact about context
* (because they are pronounced similarly, they occur in similar contexts).

... One simple way to estimate these probabilities is the one that Kemni-
* ghan et al. (1990) used.. They ignored: most of the possible influences on
the probability of an error and just estimated e.g.  p(acress|across) using

(5.7

- Normalizing means d1v1d1ng by some total COunt so that the resulting probab:hues fall
egallybetweenOandl PR e

counts. This is called “smoothing”, and will be discussed in Chapter 6; note -
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CONFUSION
MATRIX

e sublx, y] the number of times that x was typed as y.

R ”correct word (at 4 total: normahzed percentage of 45%), and actress as" th
~ second-most likely word: Unfortunately; the al gonthm was wrong here: Th
. writer’s. 1ntent10n becomes clear from the context: ... was called a. “szerl

- cand: versatile acress whose-combination of sass: and glamour. has deﬁn_.,
S her-. e The surroundmg ‘words make it clear that actress and not acres

Chapter 5. Probabilistic Models of Pronunciation and Spelliﬁ

the number of times that ¢ was substituted for o in some large corpus of er
rors. This is represented by a confusion matrix, a square 26 X26 table whie:h::
represents the number of times one letter was incorrectly used instead of an-
other. For example, the cell labeled [o, ¢] in a substitution confusion matrix
would give the count of times that e was substituted for o. The cell Iabelef_
[¢,s] in an insertion confusion matrix would give the count of times that'z.
was inserted after s. A confusion matrix can be computed by hand-codin;
a collection of spelling errors with the correct spelling and then counting
the number of times different errors occurred (this has been done. by Grudi'
(1983)) Kernighan et al. ( 1990) used four confusion matrices, one for each
type of single-error:: ¥ L

“o delfx,y] Sontiifis the number of times in the training set that the char

_ " acters xy in the correct word were typed as x. N
e ins[x,y| contains the number of times in the training set that the ch :
acter x in the correct word was typed as xy. :

"+ & trans[x,y| the number of times that xy was typed as yx.

: " Note that they chose to condition their insertion and deletion proba
blhtles on the prev1ous character; they could also have chosen to condltlon!
“on the followmg character. Using these matrices, they estimated p(t|c)
follows (where cp is the pth character of the word ¢):

de]‘[cz 1Cp)
- m _;f_Qelemon

W vlif substltutlon

COElnt[c Ch_ } lf trdnspoqmon ‘ O




Minimum Edit Distance

| freq©)] pl© - | pitlo - | pjop© [ % |

factress || - 1343 [ 0000315 | 000117 | 3.69x107° || 37%
Cress 0 000000014 | .00000144 | 2.02 x 10714 0%
caress 4 0000001 00000164 | 1.64x 1073 0%
‘access 2280 .000058 000000209 | 1.21x107H | 0%
across || 8436 00019 .0000093 1.77 x 107\ - 18%
acres 2879 000065 0000321 2.09 x 107? 21%
acres 2879 000065 - -] .0000342 . 222 %1077 23%
) ‘Figure5.3  Computation of the ranking for edch candidate correction. Note

* that the highest ranked word is niot actress but dcres (the two lines at the bottom

" of the table), since acres can be generated in two ways. The del[}, ins[], subl],

- and trans[] confusion matrices are given in:full in Kernighan et al. (1990).

‘the mtended word Chapter 6 will show how to augment the computatlon of
the prior probability to use the surrounding words.

- The algorithm as we have described it requlres hand-annotated data to
train the confusion matrices. An alternative approach used by Kemighan
‘et al. (1990) is to compute the matnces by 1terat1vely using this very spelling
‘error correction al gorithm itself. The iterative algorithm first initializes the
‘matrices with equal values; thus any character is equally likely to be deleted,
‘equally likely to be substituted for any other character, etc. Next the spelling
- “error correction algorithm is run on a set of spelling errors. Given the set
" ‘of typos paited with their corrections, the confusion matrices can now be
~+ recomputed, the spelling algorithm run again, and so on. This clever method
‘- turns out to be an instance of the lmportant EM algorithm (Dempster et al.,
1977) that we will discuss in Chapter 7 and Appendlx D. Kermghan et al.
- (1990)'s algonthm was evaluated by taking some spelling errors that had
-~ two potential corrections, and ‘asking three human judges to pick the best
" correction. Their program agreed with the majority vote of the human judges
: '87% of the ume B T .

5.6 MINIMUM EDIT DISTANCE
._Thé'pfevious.- section showed that the Bayesian algorithm;, as implemented
with confusion matrices, was able to rank candidate corrections. But Kerni-

ghan et al. (1990) relied on the:simplifying assumption that each word had
only a single spelling error:: Suppose: we wanted a more powerful algorithm
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which could handle the case of multiple errors? We could think of such

DISTANGE an algorithm as a general solution to the problem of string distance. The
“string distance” is some metric of how alike two strings are to each other:

The Bayesian method can be viewed as a way of applying such an algorithm

to the spelling error correction problem; we pick the candidate word whicﬁ

“closest” to the error in the sense of having the highest probability g1ven

thc EITor. ,

- One of the most popular classes of algorithms for finding strmg d1

MINI M EDIT tance are those that use some version of the minimum edit distance algo-
nthm named by Wagner and Fischer (1974) but mdependentiy discovered:

by: many people see the History section. The minimum edit distance be-

tween two strings is the minimum number of editing operations (msemo :
deletion, substitution) needed to transform one string into another. For ex-

ample the gap between mtentxon and executzon is five operations, which can

acneNt  be represented in three Ways as a trace an ahgnment ora operatlon lxst
as show in Flgure 5 4 o ’ '

P—- P“..; -
O - of i

\ 5
\ .

T
S
n.

i n._._t_'_e_, n_a t_ iomn. .

- Alignment

Lge®xecutilon .-

nten o n.
deletelu-—- S ‘
o ten 10 n:
substltutenbye —_—
e en't 101
: subst:tutetbyx - ete a
- exention’
L _ : msertuwa- _
e - substltutenbyc-- ex enut 1o .
o e x eCcut.ron

Figure 5.4 Three methods for representing differences between sequenc
¢ after Kruskal ( 1983))

We can also aSSIgn a partlcular cost or wezght to each of these oper-
'atlons The Levenshtein distance between two sequences is the sunpiest
weighting factor in-which each of the three operations has a cost of 1 (Lev—.,

. “enshtein; 1966) -Thus the Levenshtein distance: between intention and:ex-
ecution 1s 5 ‘Levenshtein also: proposed an: altemate version of his- me
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in which each insertion or deletion has a cost of one, and substitutions are
not allowed (equivalent to allowing substitution, but giving each substitution
a cost of 2, since any substitution can be represented by one insertion and
one deletion). Using this version, the Levenshtein distance between inten-
tion and execution 1s 8. We can also weight operations by more complex
functions, for example by using the confusion matrices discussed above to
assign a probability to each operation. In this case instead of talking about
" the “minimum edit distance” between two strings, we are talking about the
. “maximum probability alignment” of one string with another. If we do this,
an augmentéd' minimum edit distance algorithm which multiplies the prob-
. abilities of each transformatlon can be used to estlmate the Bayesmn 11keh—
“hood of a muluple errm typo given a candidate correction. - -

~ The minimum edit distance is computed by dynamlc programmmg
*Dynamic programming is the name for a class of algorithms, first introduced
- by Bellman (1957), that apply a table-driven method to solve problems by
- combining solutions to subproblems. This class of algorithms includes the
~ most commonly-used algorithms in speech and language processing, among
- them the minimum edit distance algorithm for spelling error correction the
. Viterbi algorithm and the forward algorithm which are used both in speech
- recognition and in machine translation, and the CYK and Earley. algorithm
'-‘_'_::used in parsing. We will introduce the minimum-edit-distance, Viterbi, and
- forward -algorithms in this chapter and Chapter 7, the Earley algorithm in
~'Chapter 10, and the CYK algorithm in Chapter 12.

" - The intuition of a dynamic programming problem is that a large prob-
lem can be solved by properly combining the solutions to various subprob-
lems. For example, consider the sequence or “path” of transformed words
- that comprise the minimum edit distance between the strings infention and
. execution. Tmagine some string (perhaps it is exention) that is in this opti-
* mal path (whatever it is). The intuition of dynamic programming is that if
““exention is in the optimal operation-list, then the optimal sequence must also
include the optimal path from intention to exention. Why? If there were a
shorter path from intention to exention then we could use it instead, resulting
- in a shorter overall path, and the optimal sequence wouldn’t be optimal, thus
leadmg to a contradiction. R . .

i Dynamic programming algorlthms for sequence companson work by
“creating a distance matrix with one column for each symbol in the target se-
quence and one row for each symbol in the source sequence (i.e., target along
the bottom, source along the: side):. For minimum edit distance, this matrix
the edit-distance matrix.. Bach cell edit-distanceli j] contains the distance

DYNAMIC
PROGRAMMING
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between the first i characters of the target and the first j characters of the
source. Bach cell can be computed as a simple function of the surrounding
cells; thus starting from the beginning of the matrix it is possible to fill in”
every entry. The value in each cell is computing by taking the minimum 0
the three possible paths through the matrix which arrive there:

distance[i — 1, j| + ins-cost(target;) Co
P(tlc)=min < distanceli — 1, j — 1)+ subst-cost{source;, target;) (5.9
R dz‘smnce[i j - }] +del cos*t(source )) '

shows the results of applymg the algorithm to the dlstance between mteri—
tion and execution assuming the version ‘of Levenshtein distance in which
msemons and deletmns each have a cost of 1 and subsmmtions have a cos'_:
of 2 h R

= function MIN- EDIT—DISTANCE(ta'rgez, source) retarns min-distance
n¢ LENGTH(targel) o
"+~ LENGTH(source) -
" Create a distance matnx dmtcmce[ n+1 oy ]
i distance [0 0]¢--0 -
- for each column i t'rom Otonrdo:
‘ foreachrow jfromOtomdo - - s :
distancefi, j]<— MIN( distance[i—1, J] + ins- coat(taroet[) -
o distanceli—1,j—1]+ subst-co vt(source s target;)
i _ dzsta_nce[z, J1]+ del-cost(source;))

. Figﬁfé 5. 5 The mlmmum edit dxstance alvonthm an cxample of the class
. of dynamic prograrmmng algonthms :

: _-" When any ¢ of the fugmves of Ephraum sald ‘Let me go over, the-__ 1
v of Gilead said unto him: ‘Art thou an ‘Ephraimite?’ .If he said: ‘Nay

- then said they unto him: - ‘Say now Shibboleth’;: and he said: ‘Sib

- leth’; for he could not frame to pronounce it rxght then they Iald h

-.f-tfon hnn and slew him-at the fords of the Jordan :
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I because = = about
IPA | ARPAbet | % IPA | ARPAbet | %
[bikaz] [biykahz] | 27%]| [sbav] | [axbaw] 32%:
[bikaz) [bixkahz] | 14%|| [obaut] | [axbawt] | 16%
[kaz] | -[kahz] | 7% | [pbau] [b aw] 9% -
[koz] [k ax z] 5% || [abau] [ix b aw] 8%:
| [bikoz] |. [bixkaxz] 4% | [ibaut] fix baw t] 5%
[bikaz] | [bihkahz] | 3% [ibee] [ix b ae] 4%
[bokaz] | [baxkahz] | 3% | [obaer] | [axbaedx] 3%
lkuz] - | [kuhz] - | 2% | [bave] | [bawdx] 3%
ks].. | [kslo. | 2% | .[be] | [bae] = | 3%
iz | [kixzl. | 2% |- [bawut] bawtl | 3%
| kz) | [kihz] - 2% [sbavr] | - [ax baw dx] 3%.
1 [bikag] |- [biyk ah zh] 2% || [obee] | [axbael 3%,
[bikas] | [biykahs] | 2% || [ba] | [baa] 3%
[bika] | [biyk ah] 2% || |[ber] [b ae dx] 3%.
| [bikaz] | [biyk aa' 2] 2% [ibaur] | [ix baw dx] 2%
| loz] - ‘_-"';'.-[ax zZl: . | 2% || Jibat] | [ixbaat] 2%;
Flgure 5.7.. The 16 most common pronunciations of because and abour
i _ from the hand transcribed Switchboard corpus of American English conver—
S satmnal telephone speech (Godfrey et al 1992 Greenberget al., 1996) :
en'ce of the'surroun'ding' sounds; syllabl'e Structure-, and' S0 forth. But the fé
that the word because: can be pronounced either as monosyllabic 'cause:
~ bisyllabic because:is: probably a lexical fact; havmg to-do perhaps Wlth th
-level of mformahty of speech. SRS : A R
'An important source of lexxcal variation (although it can also affect _
sociouneuisTic  lophonic variation) is sociolinguistic variation. Sociolinguistic variation.
due to extralinguistic factors such as the social identity or background o
DIMESTN speaker.: One kind of sociolinguistic variation is dialect variation. Spea

< M1dwest the words- caught and cot have dlfferent vowels ([kot] and--

*ers of some deep-southern dialects of American English use a monophth
- or near-monophthong:[a} or [a¢} instead of a diphthong in some words:
~ the vowel [ar]: In these dialects rice is pronounced [ra:s]. African-Ameri

~ General® American as - does Southern-Americarn: English, and also has ing

Vernacular English' (AAVE) has many of the same vowel differences fro

vidual words: with specific: pronunciations such as. [brdns] for busmesv
[ceks] for ‘ask. - For-older: speakers or ‘those not from: the American Wes

|
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' Lp‘é'ctively). Young American speakers or those from the West pronounce
“the two words cof and caught the same; the vowels [o] and [a] are usually
k d’t'-di'éﬁnguished in these dialects. For some speakers from New York City
like the first author’s parents, the words Mary ([merxi]), marry ([mari]), and
merry ([meri]) are all pronounced differently, while other New York City
;;spéék"ers like the second author pronounce Mary, and merry identically, but
~.f'f:é“r"e'ntly than marry. Most American speakers pronounce all three of these
""’r"d:s'f‘identically as ([meri]). Students who are interested in dialects of En-
glish should consult Wells (1982), the most comprehensive study of dialects
nglish around the world. . .

v Other sociolinguistic dlfferences are due to reglster or style rather than
-dialect. In a pronunciation difference that is due to style, the same speaker
ght pronounce the same word differently depending on who they were
talking to or what the social situation is; this is probably the case when
'Iﬁ.choosmg between because and 'cause above. One of the most well-studied
: amples of style-variation is the suffix -ing (as in something), which can be
‘j‘pronounced [m] or /m/ (this is often written somethin’). Most speakers use
k_'both forms; as Labov (1966) shows, they use [} when they are being more
mal; and [m] when more casual. In fact whether a speaker will use [m] or
]_m a given $ituation varies markedly according to the social context, the
~ffgeﬂdér ‘of the speaker; the gender of the other speaker, and so on. Wald and
'J'ShOpen (1981) found that men are more likely to use the non-standard form
[m] than women, that both men and women are more likely to use more of
.f-.'the standard form [15] when the addressee is a women, and that men (but not
women) tend to switch to [m] when they are talking with friends.

"+ Where lexical variation happens at the lexical level, aliophonic varia-
on'happens at the surface form and reflects phonetic and articulatory fac-
s.* For example, most of the variation in the word about in Figure 5.7
jwasfcaused by changes in one of the two vowels or by changes 1o the final
- Some of this variation is due to the allophonic rules we have already
iscussed for the realization of the phoneme /t/. For example the pronun-
iation of about as [obavs}/[ax b aw dx]) has a flap at the end because the
éXt word was the word i, which begins with a vowel; the sequencc about
_'as'pronounced [abaurﬂ/[a\ b aw dx ix]). Similarly, pote that final [t] is
-often deleted; (about as [bavl/[b aw]). Con31der1ng these cases as “deleted”
:v"actually a s1mphﬁcat10n many of these “deleted” cases of [ ] are actually

or SOMe purposes we dxstmgulsh between allophomc variation and what are called ° ‘op-
uonal‘phonoiomcal roles”™; for the purposes of thxs textbook we will 1ump these both together
s allophomcvanano ST T A v

REGISTER
STYLE
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realized as a slight change to the vowel quality called glottallzatmn wmch'
are not represented in these transcrzpuons
. When we discussed these rules earlier, we 1mphed that they were de
'termmlsuc given an environment; a rule always applies..This is by no mean
the case. Eacli of these allophoiic rules is dependent on a complicated set of
factors that must be interpreted probabilistically. -Tn the rest of this section
‘ ‘we: summanze ‘more: of these rules and talk about the influencing factors
 comscuinon.  Manly of these rules model coarticulation; which is a change in a segmen
' . due to the movement of the amculators in neighboring segments. Most al
. "'Iophomc ritles relatmor Enghsh phoneme to their a1]0phones ‘can be groupe"_
¢ into a small number of types: 3331mﬂat1on dlssmnlauon, deletion, ﬂappmg-

o vowclreduchon andepenthe31s o e
o assmianoi - Asstmilation is the change ina secment to make it more hke a neigh
L _. 'bonno segment The dcntahzamon of [t] to ([t }) before the' dental consonaﬁt
Cooor [e)isan example of assimilation: Another common type of asmmdaﬂon
O 'PALAT'AL|2AT10N-_3',-'_}'m Envhsh and cross- Imcrulsmcally is palatahzatlon - Palatalization occur:
e :'_fwhen the: consmcuon for a segment occurs closer to the palate than it: nor_
mally would because the foﬂowmg segmentis palatal or" alveolo—palatal;_

. In the most common cases, /s/ becomes [f]; /z/ becomes [3], /t/ becomes. [t
n _f_f;and /df becomes d3]. We'saw one case of palatalization in Figure 5.7 in the
s promm iatlon" of because as [b1kA3} (ARPAbet [b iy k- ah: zh]). - Hers: the
- final segment of“b'ecaus & lexical /2/; is realized as [3], because’ the: fol
- lowing word was you ve So the sequence because you've was pronounce
* [bikazuv]ii A snnple version of a palatalization rule might be expressed
follows Flgure 5 8 ';hows examples from the Sw1tchboard corpus ot

RRRUE A 'the words about and i, /t/ and /d/ are often
or when they are paft of a seqﬁeme Of tWO‘.O

e :The many factors that influence the delétion of / / £ / and / d/ have _
E f_.":-'extens1vely stuched F01 cxample / d/ is more ]1kely to be deleted than- /
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S IPA IPA . ARPAbet
‘Phrase Lexical | Reduced | Reduced s
set your f [setjor] setfa) | [sehcher]

‘not yet [natjet] natfet] |} [naacheht]

last year [lestjir) leestfir] | [laeschiyr].
“what you . [watju] [wat{u] [w ax ch uw]
‘this year [O1sjir] [0xfir] {dh ih sh iy 1]
‘because you've. | [bikazjuv]! - [bikaguv] {biy k ah zh uw v}
didyou . (| [didju] o | [didgyal [dih jhy ah]
“Figure 5.8 Examples of palatahz'atmn from the Switchboard corpus; the
femima you (including your, yoi’ve, and you'd) was by far the most common
‘cause of palatahzatlon followed by vear(s) (especially in the phrabes this year
-and last year). : : : S

CIPAC o TPA - ARPAbDet -

Phrase ' | Lexical = | Reduced - | Reduced = = =
find him - [famdhrm| = | [famim] | faynixm]
‘around this " [oraunddis| || [iravnis] | [ixrawnihs]
'mind boggling | [mambogly] [mamboglig] | "[m ay nbao g el ih ng)
‘mostplaces | [moustpleisiz) || [mousplewsiz] | [mowspleysixz]
Udraft the e [d'raeftﬁi]* o | [dreefdi] - | [drae fdhiyl oo
leftme [leftml] 0 {lefmi] - [ebfmiyl.
: ‘Figure 5.9 Examples of /t/ and /d/ deletion from Switchboard. Some of
these examples may have glottalization instead of being completely deleted.

Both are more likely to be deleted before a consonant (Labov, 1972). The
*final /t/ and /d/ in the words and and just are particularly likely to be deleted
(Labov, 1975; Neu, 1980). Wolfram (1969) found that deletion is more
likely in faster: or more casual speech, and that younger people and males
are more likely to delete; Deletion is more likely when the two words sur-
rounding the segment act as a sort of phrasal unit, either occurring together
ifrequently (Bybee, 1996); having a high mutual information or trigram
predictability (Gregory et‘al;;-1999), or being tightly connected for other
reasons (Zwicky; 1972). Fasold (1972), Labov (1972); and many others have
‘shown that deletion is less likely if the word-final /t/ or /d/ is the past tense
ending. For example in Switchboard; - deletion is more likely in the word
around (73% [d /-deletion) than in the word turned (30% / d / deletlon) even
'ithough the two words have smnlar treqaencws T LRI
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HYPERARTICULATES

© . REDUCED.

VOWELS .

o scHWA.

‘cesses:: vowel reductlon in which many vowels in unstressed syllables‘_ar
'reahzed as reduced vowels the most: common of which is schwa ([

‘As a result the shape of the mouth is somewhat neutral; the tongue is ne
‘ther particularly high nor pamcularly low. For example the second vow

; two (o l‘—ARPABET fax] and [i } = ARPAbet [ix]). Miller (1998) was

Wells (1982, p.:167-168) notes that [o] and [i} are falling together in mat

Chapter 3. Probabilistic Models of Pronunciation and Spelling_.

The flapping rule is significantly more complicated than we suggeste
in Chapter 4, as a number of scholars have pointed out (see especially Rhodes
(1992)). The preceding vowel is highly likely to be stressed, although this.
not necessary (for example there is commonly a flap in the word thermome
ter [Ba*mamira]). The following vowel is highly likely to be unstressed; al
though again this is not necessary. /t/ is much more likely to flap th
/d/. There are complicated interactions with syllable, foot, and word boui_id’-
aries. Flapping is more likely to happen when the speaker is speaking moi
quickly, and is more likely to happen at the end of a word when it form
a collocation (high mutual information) with the following word (Grego‘
et al 1999). . Flappmg is less hkely to happen when a speaker hypera
ticulates, i.e. uses a particularly clear form of speech, which often happer
when users are talking to computer speech recognition systems (Oviatt et a
1998). There is a nasal flap [f] whose tongue movements resemble the or
flap but in which the velum is lowered: Finally, flapping doesn’t always haj
pen; even when the environment is: appropriate; thus the ﬁapping.mle"br
transducer, needs to be probabihstlc as we will see below. I

. We have saved. for last one of the most 1mp0rtant phonologlcal p_ 0=

3.
Stressed syllables are those in wh1ch more air is pushed out of the lungs;
stressed syllables are. longer, louder; and usually higher n pitch than. u'nv,
stressed syllables Vowels in unstressed syllables in English often don’t have
their full form; the amculatory gesture isn’t as complete as for a full vbw 1

i—,l

in pamkeet is schwa: [peerokit]. . : : N

. While schwa is the ‘most' common redaced vowel 1t is not the only
one, at least not in some dialects. Bolinger (1981) proposed three reducez
vowels: a reduced mid vowel [0}, a reduced front vowel [3], and a reduce
rounded vowel [e 6] But the majerity of computatlonal pronunczatlon"'l"
icons: or computational models: of phonology systems limit themselves
one reduced vowel ([9]) (for example PRONLEX and CELEX) or at m
to; train ‘a neural et to’ automatically categorize a vowel as-[o] or [i] bas
only on the phonetm context, which suggests that for speech recognitio an
text-to-speech purposes, one reduced vowel is probably adequate. Ind

dlalects of Enghsh including General: Amencan and Irish, among oth”
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probabilistic estimators for each phone, so it is never sure about the ident
of any phone. We will relax this assumption in Chapter 7; for now, Iet s look
at the simpler problem.
. We’ll also begin with another mmphﬁcatxon by assuming that we: ‘a :
r’eady know where the word boundaries are. Later in the chapter, we'll show
that we can simultaneously find word boundaries (“segment”) and m'o'djc'
pronunciation variation. =
Consider the particular problem of mtelpretmg the sequence of phon
~.[ni]; when it occurs after the word [ at the beginning of a sentence. Stop ang
- see if you can think of any words which are likely to have been pronounced
[m} before you read on. The word “Ni” is not allowed. -
- You' probably thought of the word knee. This word is in fact pro-
, nounced [ni]. But an investigation of the Switchboard corpus produces
~ total of 7- words which-can. be pronounced [m]' The seven words- are th
Reat; néed, new, knee. to, and you. - ~ : e
. How can the word the be: pronounced [m]'? The explanatlon for t
- ,"pronunmatxon (and all the others except the one for knee) lies in the conteXt
o ally-mduced profunciation variation we discussed in Chapter 4. For exa
- ple, we saw that [¢] and [d] were often deleted word finally, especially befo
PaNE ,'coronals ‘thus’ the’ pronunciation of neat as [ni] happened before the word
S 'lztﬂe (neat little =+ [migl]) The pronunciation of the as [ni] is caused by t
o regressive assimilation process also discussed in Chapter 4. Recall that in
* nasal assimilation; phones before or after nasals take on nasal manner of ¢
- - ticulation. Thus [8] can be realized as [n]. The many cases of the pronounc
- as [m] in ‘Switchboard occurred after words like in, on, and been (so in’ tke
o e [mm}) ‘The pronunciation of riéw as [ni] occurred most frequently in the

- word New York; the vowel [u] has fronted to [i] before a [y]. '
The pronunmatlon of to as [ni] occurred after the work talking (mlkzng
. to you — [tokmiyu)); here the [u] is palatalized by the following [y] and the
~ [n] is functioning’ jointly as the final sound of: talking and the initial sout
~of to.” Because this phone is part of two separate words we will not try.
" “model this particular mapping; for the rest of this section let’s consider only
= " the followmg ﬁve WOI‘dS as candldate le‘ucal forms for [ni]: knee, the, neatv
' - need ‘hevr T e i e R S
i _f.i_We saw in the prevxous sectlon that the Bayesmn spellmg erTor-C
~ ‘rection algorlthm had two components: candidate generation, and cand1da
- 'scoring.: Speech recognizers often use an alternative architecture, tradiy
oooff speech for storage:: In this architécture, each: pronunciation is expand
im advance Wlth all possible-variants, which are then pre-stored with’ thﬂ ,
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'pronuncmtlon database

{ Ward } “Rule Name ] Rule e
- the - | nasal assimilation | - 8= n / [+nasal] #
f';‘neat _"f-"ﬁnél' tdeletion | =0/ V__. o
-"_3~‘rzeed | final d deletion - | " d=0/ Vo#
new REE ) ’frontmGr S BT s # [y]
B Flgure 5. 10 S1rnpie rules’ of pronunc:lanon variation due fo context in con
8 tmuous Speech accountmg for the pronuncmtlon of each of these words as [m]

1982). The Switchboard Treebank - corpus.is a 1.4 million word collectw
~of telephone converqatlons ‘Together they let us sample from both the w

. Word types, 80: the total denominator is 2, 486 075 +30,836):..

Chapter 5.  Probabilistic Madels of Pronunciation and Spe]hn |

. _ t
PO —n/[+nasall #__) = feownt
o . enveount

91

617
— .15

* We can build similar probabilistic versions of the assimilation and dele
tlon rules Whlch account for the [ni] pronunc;atlon of the other words F1g~

We now need to compute the prlor probabxhty P(w) for each wor
For spel}mg correctlon we: did this b y. using the relative frequency of?"' e
word in a Iarge corpus a Word which occurred 44,000 times in 44 mllho
Words receives the probablhty estimate 44430%0300 or .001. For the pronunv
tion problem let s take our pnor probabzhtles from a collection of a written
and a spoken Corpus The Brown_ Corpus isal million word collectl
of samples from 500 written texts from different genres (newspaper; novel:
non-fiction; academlc,‘ etc.) which was assembled at Brown Umversny

1963-1964 (Kudera and Francis, 1967; Francis, 1979; Francis and Kug:

ten and spoken genres The table. below. shows the probabilities for our
words: each probability is computed from the raw frequencies by norm; il
ing by the number of words in the combined corpus. (plus .5 * the numbe’
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w . freq(w) p(w)
knee 61 .000024
the 114,834 .046
neat 338 .00013
need 1417 00056
new 2625 .001

- Now we are almost ready to answer our original question: what is
the most likely word given the pronunciation |ni] and given that the previous
word was [ at the beginning of a sentence. Let’s start by multiplying together
our estimates for p{w) and p{(y|w) to get an estimate; we show them sorted
from most probable to least probable (the has a probability of O since the
previous phone was not [1], and hence there is no other rule allowing {3} to
be realized as [n)):

. Word p(y|lw) p(w)  p@yiwp(w)
. new 36 001  .00036
. neat .52 .00013. .000068
need .11 .00056 .000062 .
knee  1.00 .000024 .000024 .
the 0 .046 0

Our algorithm suggests that new is the most likely underlying word.
But this is the wrong answer; the string [ni] following the word / came in
- fact from the word need in the Switchboard corpus. One way that people
" are able to correctly solve this task is word-level knowledge; people know
© that the word string I need"... is much more likely than the word string
I new .... We don’t need to abandon our Bayesian model to handle this
fact; we just need to modify it so that our model also knows that I need is
~ more likely than [ new. In Chapter 6 we will see that we can do this by
- using a slightly more intelligent estimate of p(w) called a bigram estimate;
- essentially we consider the probability of need following 7 instead of just the
- individual probability of need. . .
- ‘This Bayesian: algonthm is In fact part of all modem speech recog-
£ ‘hizers. Where the algorithms differ strongly is how they detect individual
- phones in the acoustic signal, and on which search algorithm they use to
+ - efficiently compute the Bayesian probabilities to find the proper string of
‘words in connected speech (as we will see in Chapter 7). -




168 Chapter 5. Probabilistic Models of Pronunciation and ,Spelli%x

Decision Tree Models of Pronunciation Variation

In the previous section we saw how hand-written rules could be' augment'

with probabilities to model pronunciation variation. Riley (1991) and W1‘_

gott and Chen (1993) suggested an alternative to writing rules by han

which has proved quite useful:  automatically inducing lexical- to-surfaA

DECISIONTREE  pronunciations mappings from a labeled corpus with a decision tree, pam
ularty with the kind of decision tree called a Classification and Regressmn

CART fTree (CART) (Brexman et al., 1984). A decision tree takes a situation Ad
scnbed by a set of features and ‘classifies it into a category and an assocxaied
probablhty For pronun01at10n a decision tree can be trained to take a lex

‘ phone and vanous contextual features (surrounding phones, stress and syll

ble structure information, perhaps lexical identity) and select an appropnate

surface phone to realize it. We can think of the confusion matrices we used

in spelling error correction above as degenerate decision trees; thus the sub-

stitution matrix takes a lexical phone and outputs a probability dlstnbution

over potential surface phones. to be substituted. The advantage of dcc1s10n

. trees is that they can be automatically induced from a labeled corpus, i

' that they are concise: Decision trees pick out only the relevant features an
 ‘thus suffer less from sparseness than a matrix, which has to condition

"every nelghbormg phone G

Next-dictionary_phone

] Vowe{_‘ o ~ Consonant
L Prev:ous—dlctlonarymphone """ Next-dictionary_phone N .
km txuwaeeh ;y;waxraaao . gkiny . dahhthpdfg
fha;f,ey ... erawaxelenng. . g y .. mnpstwy .
) ‘ dfnir gtvz )
A Prev:ous—dlctlonary_phone Posltlon in sytlabfe L NULL 64| ;% . ;‘é |
SoeTe ER R - e T o f.CI_t 13 H »: ! N
%i'i}“e”feé" ome o Ceds W wm
Poa -tth .58 :
& ;5}?“;; CONULL IS e

i del @ 07

| Figure 5.11- Hand-pruned decision tree for the phoneme /t/ induced from the Swit
board corpus (courtesy of Eric Fosler-Lussier).. This particular decision tree doesn’t model
flapping since flaps were already listed in the dictionary. The tree automatically induced: th
cateoones Vowel and Consonant We have only shown the most likely reahzatlons at eac
~-' leaf node.: . ... e
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For example, Figure 5.11 shows a decision tree for the pronunciation
- of the phoneme /t/ induced from the Switchboard corpus. While this tree
- doesn’t including flapping (there is a separate tree for flapping) it does model
the fact that /t/ is more likely to be deleted before a consonant than before
a vowel. Note, in fact, that the tree automatically induced the classes Vowel
and Consonant. Furthermore note that if /t/ is not deleted before a conso-
nant, it is likely to be unreleased. Finally, notice that /t/ is very unlikely to
be deleted in syllable onset position.

_ Readers with interest in decision tree modeling of pronunciation should
“consult Riley (1991), Withgott and Chen (1993), and a textbook with an in-
_troduction to decision trees such as Russell and Norvig (1995).

5.9 WEIGHTED AUTOMATA

“We said earlier that for purposes ‘of efficiency a lexicon is often stored with
“the most likely kinds of pronunciation variation pre-compiled. The two most
‘common representation for such a lexicon are the trie and the weighted
“finite-state automaton/transducer {or probablllstlc FSA/FST) (Perciraetal.,
'1994), We will leave the discussion of the trie to Chapter 7, and concentrate
“here on the weighted automaton.

“# ... The weighted automaton is a simple augmentation of the finite automa-
ton in which each arc is associated with a probability, indicating how likely
. that path is to be taken. The probability on all the arcs leaving a node must
+» sum to 1. Figure 5.12 shows two weighted automata for the word tomato,
- adapted from Russell and Norvig (1995). The top automaton shows two pos-
_sible pronunciations, representing the dialect difference in the second vowel.
“The: bottorm one shows more pronunciations (how many?) representing op-
‘tional reduction or deletion of the first vowel and optional flapping of the
" final [t]. .
.. A Markov chain is a specml case of a weighted automaton in which
‘the input sequence uniquely determines which states the automaton will go
'through ‘Because they can’t represent inherently amblguous problems, a
‘Markov chain is only. useful for assigning probabilities to unambignous se-
‘quences; thus the N:gram -models to be discussed in Chapter 6 are Markov
chains. since: each: word is. treated as if it was: unambiguous.. In fact the
-weighted automata used in speech and language processing can be shown
1_ to be equivalent to Hidden Markov Models (HMMs). Why do we' in-
‘troduce weighted automata in this chapter and HMMSs in Chapter- 77 The

WEIGHTED

MARKOV CHAIN
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Word model with dlalect variation: . ..

- Figure 512 You say [tow m ey t ow] and I say [t ow m aa t ow]. Tw
pronuncxatxon networks for the word tomato, adapted from Russell and Norvig:
(1995 ). The top one models soemlmgulstxc Vanatxon (some British or eastern:
1. American dlalects) the bottom one adds in coartlculatory effects. Note the:
correlation between allophomc and <;oc1ol1ngulstlc varlatlon the dlalect w1
B the vowel [ey] is more I]kely to ﬂap than the other dlalect S

two miodels offer a different metaphor; it is sometimes easier to think about
certain’ problems' as weighted-automata than as HMMs. The weighted au
tomaton: metaphor is bfteﬁ’applied when the input alphabet maps relativel
neatly to ‘the underlymg alphabet ‘For example; in the problem of correct
ing spelling errors in'typewritten input; the input sequence consists of letters
and the: states of the: automaton can: correspond to letters: Thus it is nataral
to" hink of the problem ds transducing from a set of symbols to the same sé
| f: symbols with some mod1ﬁcat10ns and hence weighted automata are na?t
'_vjAurally used for spellmg error correction. In the problem’ of éorrecting error
~in hand—wntten input; the input sequence is visual, and the'input alphabet 1
:}}f‘an alphabet of lines ancl angles and curves: Here instead of transducing from
©an alphabet to: 1tself we need to do’ cla%mﬁcamon on some input sequence b
. +fore-considering it as a sequenice of states. Hidden Markov Models provide.
;S more: approprlate metaphor; since they naturally handle separate alphabet

- for 1nput sequences ‘and state sequences. Buit since any probabilistic automa
S ton in Wthh the mput sequence does not uniquely specify the state sequence:
can be modeled as an: HMM the dlfference isone of metaphor rather than.
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FORWARD

. “of Chapter 7. The forward aIgorxthm is also an important step in deﬁnlng the.
= 'Vlterbl aIgonthm that we' wﬂl see later in this chapter. .

i of the input and output to the hkehhood computauon problem. A Welghtedf
"automaton consists of i

: :Vf: edges bétween nodes; an edge exists between two nodes if there is a non-zero -

- probabﬂmes of different paths through the automaton.

- chapter we will only-be working with a simple usage of the algorithm. This is-

54 We have used two “speclal i states (Often calied: non-emxttlng states) as the start and en

B specxfy two more: things:

method is given as input a series of phones [n iy], and must choose between
the words the, neat, need, new, and knee. This was done by computing two
probabilities: . the prior probability of each word, and the likelihood of thi
phone string [n iy] given each word. When we discussed this example ear
lier, we said that for exaniple thie likelihood of- [n iy} given the word need w
.11, since we computed a probability of .11 for the final-d-deletion rule fro
our Switchboard corpus. This probability is transparent for need since there:
were only twa possible pronunciations ([n iy] and [n iy d]). But for words
like about, visualizing the different probabilities is more complex. Using a:
precompiled weighted automata can make it simpler to see all the differen :

. There is a very simple- algorithm for computing the likelihood of a.
stnng of phones given the weighted automaton for a word. This algorithm
the forward algorithm, is an essential part of ASR systems, although in this:

because the forward algorithm is particularly useful when there are multipl '

paths through an automaton which can account for the input; this is not the:
case in the Wexghted automata in this chapter ‘but will be true for the HMMS

- Lét’s begin by giving a formal definition of a Welghted automaton andl‘

1 a sequence of states q (qoql Qo 'cg,;); each cOfrespénding to a phong
o and-: SR , : ,

2” ‘:a, set of transﬂonv‘probablhnes between states am alg,aw, encodm
: _the probablhty of one phone fol]owmg another B

We represent the states as nodes and- the transition probablhues asi

transition: probabxhty between the two nodes The sequences of symbol‘ X

Ctate: itis’ ‘also’ possﬂﬂe to avoid the use of these states: In that case, an automaton mu

i V'.""n‘ an mltla] probabﬂlty dlstnbutlon over states ‘such that 7 n, is the probablllty that the
~ s automaton will startin staté i Of course, somie states j may have 7ty = 0; meaning th:
, ,,they cannot be mmal states o

:}‘ta’v set of legal accepung state@
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_ . In the mininium edit distance algorithm; we filled in the matrix by just com-
e putmg the VaIUe of each cell from the three cells around it. With the forw‘ \

‘candldate word; Because the Word the only has the pronunciation [n iy] after

. '"on paoe 167

e network for a-word; they are added here to simplify the exposition of the for-

: ’and can be thought of-as'a shght generahzatlon of the minimum edit’ dis
- -tance algonthm Like the minimum edit distance' algorithm, it uses a table
~ to store intermediate values as it builds up the probability of the observ
- tion sequence Unlike the minimunm edlt distance algorithm, the TOWS are
~labeled not Just by states which always occur in linear order, but nnphmﬂy ‘

rankings. (We will see in-'CH‘zipter 6 how to augment the algorithm Withi-jb
gram probabilities which will enable it to make use of the knowledge that

the previous word was 7). o :
- The forward algonthm takes as input a pronunc1at10n network for each'"

nasals, and since we are assuming the actual context of this word was afte;
the word I (no nasal), we will skip that word and look only at new, ned
need, and knee. Note in Figure 5.15 that we have augmented each network
with the probabthty of each word; computed from the frequency that we saw

' ‘Word model for "neat™ ¢

Wordmodelfor new“‘ Dl R TR

Flgm'e 5, 15 Pronunciation networks for the words reed, neat, new, and
-+ knee, All networks are simplified from the actual pronunciationsin the Switch-
. board corpus. Each network: has been atigmented by the unigram probabﬂlty
iof the word (i:¢.; its’ normalized frequency from the Switchboard+Brown cor-
= 'pus) “Word probabilities: ‘are not usually incladed as part of the pronunciation

Ward aigorlthm i e

The forward algonthm is another dynamlc programmmg algonthm

by a sz‘ate~graph which has many ways of getting from one state to anothe
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algorithm, on the other hand, a state might be entered by any other state,
and so the recurrence relation is somewhat more complicated. Furthermore,
the forward algorithm computes the sum of the probabilities of all possible
paths that could generate the observation sequence, where the minimum edit
distance computed the minimum such probability.> Each cell of the forward
algorithm matrix, forward(t, j] represents the probability of being in state j
after seeing the first ¢ observations, given the automaton A. Since we have
augmented our graphs with the word probability p(w), our example of the
forward algorithm here is actually computing this likelihood times p{w). The
value of each cell forward[t, j] is computed by summing over the probabili-
ties of every path that could lead us to this cell. Formally, each cell expresses
the following probability:

 forwardlt, j| = P(o1,02..0,G: = jA) P(w)  "<"""('514>

_ Here g; = j means “the probability that the th state in the sequence
':of states is state ;. We compute this probability by summing over the ex-
- tensions of all the paths that lead to the current cell. An extension of a path
“from a state i at time ¢ — 1 is computed by multiplying the followmg three
. factors SR :

: 1 the prevmus path probabihty from the prevmus celi forward[t — 1,4,

2. the transition probablhty aiy from pxevmus state i to current state 7

~ 3. the observation likelihood 5, that current state j matches observation
" symbol . For the weighted automata that we consider here, by is 1 if
the observation symbol matches the state, and 0 otherwise. Chapter 7
. Wﬁl conslder more complex observatzon hkehhoods

The'algonthm is descnbed in F1gure 5. 16 :

Figure 5.17 shows the forward alﬂonthm apphed to the word need The
algorithm applies similarly to the other words which can produce the string
1 iy], resulting in the probabilities on page 167. In order to compute the
most probable underlying word, we run the forward algonthm separately on
ach of the candidate words, and choose the one with the highest probabil-
-i__ff.C_hapteI 7 will give further details of the mathematics of the forward
Igorithm and introduce the related forward-backward algorithm.

The forward algorithm computes the sum becauise there may be multiple paths through
network wh1ch expialn a gwen observatxon sequence Chapter 7 w111 take up this’ pomt in
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L Flgure S 18 The pronuncmtwn networks for the words need neat new, an
- kriee combined into a single Welghted autormaton. Again, word probabilitie
_are not usually considered part of the prommcmtlon network for a word; the)
:'_f © dre added hele to snnphfy the etposmon of the Vlterbl algonthm

| '}the forward algonthm places the sum of all prev1ous paths into the curreno
cell; the Vzterbi algonthm put@ the max of the prevmus paths mto the current.-
'ceﬂ DL -
“The algorlthm ﬁrst creates N + 2 or four state columns. The first col
' umn is ‘an mmal pseudowobservatxon the second corresponds to the ﬁrs
~ ‘observation phone [n], the third to [iy} and the fourth to a final pseud0~
observation. We. begm in the ﬁr@t column by <ettmg the probabﬂzty of the
start state to 1.0, and the other probabﬂmes io 0; the reader should find th:s
m thure 5.20. Cells with probablhty 0 are simply left blank for readabilit
_ Then we move to the next state; as with the forward aIgonthm, (
' every etate in column 0, we compute the’ probablhty of moving mto'le ¢h
state in cqumn 1. The value viterbilt, j] is computed by takmg the maxim
over the extenszons of all the paths that lead to the cuirent cell. An extension
of a path from a state i at time'¢ — 1 is computed by multlplymg the "ame
'three factors we used for the forward algonthm o

. 1 ‘the prevmus path probablhty from the prevmus celi forward v
the transﬁmn probablhty a, i from prevmus state z to current s :

,..___.,

- symbol t For the We1ghted automata that we conszder here b
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function VITERBI(observations of len T ,state-graph) returns best-path

num-states < NUM-OF-STATES (state-graph)
Create a path probability matrix viterbifnum-states+2,T+2]
viterbif0,0]+ 1.0
for each time step ¢ from 0 to 7 do
for each state s from (O to rum-stares do
for each transition s’ from s specified by stare-graph
new-score<—viterbi[s, 1] * a[s,5'1* by (o)
if ((viterbil[s' 1+1] = 0} || (new-score > viterbils', t+1}))
then
viterbils', t+ 1] new-score
back-pointer[s’, t+1]¢ s
Backtrace from highest probability state in the final column of viterbif ] and
return path

Figure5.19  Viterbi algorithm for finding optimal sequence of states in con-
tinuous speech recognition, simplified by using phones as inputs. Given an
observation sequence of phones and a weighted automaton (state graph), the
algorithm returns the path through the automaton which has maximum proba-
bility and accepts the observation sequence, als,s'] 1s the transition probability
from current state s to next state s’, and b[s’,0;] is the observation likelihood
of 57 given o;. For the weighted automata that we consider here, b[s', 0;] is 1 if
the observation symbol matches the state, and O otherwise.

the observation symbol matches the state, and 0 otherwise. Chapter 7
will consider more complex observation likelithoods.

, In Figure 5.20, in the column for the mput n, each word starts with ],
“and so each has a non-zero probability in the cell for the state n. Other cells
‘in that column have zero entries, since their states don’t match n. When we
‘proceed to the next column, each cell that matches iy gets updated with the
“contents of the previous cell times the transition probability to that cell.. Thus

: the “word” probability of new times the probability of new being pronounced
-with the vowel iy. Notice that if we look only at this iy column, that the word
eed is currently the “most-probable” word. But when we move to the final
;cf)lumn the word new will win out; since need has a smaller transition prob-
bﬂzty to end (.11) than new does (1.0).. We can now follow the backpointers
nd backtrace to find the path that gave us this final probability of .00036.

'fhe‘ value of viterbi[2,iyney ] for the iy state of the word new is the product of
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e
i ﬁ 'ferentlated sequence of symbo]s and “segmenung it into chunks. For exam

: ple sentence segmentatmn is the probi’em of automatlca]ly finding the sen
R " tence boundaries it a coxpu”-‘:' Snmlarly word segmentatmn is the proble‘
S }"j'of ﬁndm _,‘Word—boundanes ina corpus ~In written English theré is no dif

__ ",;,-f;"»fﬁcult / in segmenting words from each other because there. are orthographi
FRIVREE spaces between words:: “This is not the case in languages like Chinese and
“. " Japanese: that use'a Chmese-denved writing system. - Written Chinese doe
L notmark Wor 'b.oundanes Instead; each Chinese character is written one:
o v;fter the other, w1th0ut spaces Smce each character approxunately represe

[ B Flgure 5 20
“gorithm. Each cell keeps the probability of the best path so far and a pointe

o ','Welghted Automata and Segmentatlon

| Welghted automata and the Vlterbl algonthm play an 1mp0rtant 1n vanou

00036 * 1.0

end| } / £.00036
t
o Y T L K
neat v o o gmcoon
‘n| . 1.0*00013

I, = 00013 !

e o e iy e e e — i S i s s

" Thé entries in the individual state columns for the Viterbi al--

f to the previous cell along that path. Backtracing from the end state, we can.
'ffn:‘;leconstruct the statev sequence n,,gw ty,,ew, arnwng at the best word new.

aIgonthm f01 segmentatlon Segmentatlon is the process of taking an undif







182

Chapter 5. ProBabilistic Models of Prohuneiation and Spelﬁﬁg;

MDL .

~ beginning. The set of all possible segmentations is 7d(I) o D*, that is, the

"f;egmentauOn in Id(1) o D*, shown i in Figure 5.21(d).

- (N gram probab111t1es) that wxll be mtroduced in Chapter 6

The Welghted automata segmentation aIgonthm that was presented above ié

. takéan unsegmented sequence of input phones and use information-theoreti

" to’'choose between: alternative models:: The description length of a leX_iCti

probabilities, and that we are lookmg for the minimum cost solution rath'
than the maximum probability solution.

Consider the example in Figure 5.21. This sample lexicon Figure s, 21
consists of only five potermal ‘words:

Word Pronunc1at10n Meamng Cost (—logp(w))
B ri-wén ‘Japanese’ 10.63
H 1l ‘Japan’ 6.51
Ha zhang- yi ‘octopus’  13.18
XE wén- zhiing ‘essay’ 9.51
Y oyh sk 1028"

* The system represents the mput sentence as the unwezghted FSA i
Flgure 5.21(b). In order to compose this input with the lexicon, it needs t
be converted into an FST. The algorithm uses a function /d which takes a
FSA A and returns the FST which maps all and only the strings accepted b
A to themselves. Let Dx represent the transitive closure of D, that is, th
automaton created by adding a Ioop from the end of the lexicon back to the:

input transducer 7d (1) composed with the transitive closure of the dlcuonary}
D, shown in Figure 5.21(c). Then the best segmentation is the lowest-cost.

 Finding the- best path shown i in Figure 5.21(d) can be done easily Wlthi
the Viterbi algorithm and is left as an exercise for the reader. Furthermor
this segmentation algorithm, like the spelling error correction algorithm w
saw earlier, can also be extended to incorporate the cross-word probabilitie

Segmentatmn for Levacon-Inductmn o

lies on the weights stored in the lexicon. But how is this lexicon to be learne
in the first place?- A number of segmentation algorithms address this “pri()i
problem: of segmentation in the absence of a lexicon. For example de Mar
cken: (1996) and-Brent and Cartwright (1996) both propose algorithms th:

principles to iteratively induce the lexicon by trying different possible seig_»
mentations.- Both: rely- on- stochastic versions of the Minimum:Descri'p
tion Length: (MDL): principle: and- on' phonotactic : transition probabilitie
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{a) Dictionary D

w 1wen/0.000

8 :ri/0.000 €: £/10.63

£: £/6.51

i rif0.000

e: £f13.18

£: £/10.28

(¢) Id(D}o D*

e gj6.51 T wenMi000 m:zhang/0.000 e:e/951  &yw0.000

2:1i/0.000

N/
€: £/10.63 #:zhang/0.000 @:yu/0.000

(@) BestPath(ld(D) o D*)

a:rif0000 © wiwen/L000 € £/10.63  =zhang/0.000  #yu/0.000 £: 6/13.18
{D—D—)—Q)
7 - 8 9 -

| Figure5.21  The Sproat et al. (1996) algorithm applied to four input words

. (after Sproatetal. (1996)) 3

-or grammar (measured, for example, in the number of symbols in it) is a
- heuristic measure of the information complexity in the lexicon. By prefer-
- ring a lexicon with less symbols, MDL is implicitly choosing a simpler and





