
Section 4.1. Speech Sounds and Phonetic Transcription 93

discuss computational models of phonological learning: how phonological
rules can be automatically induced by machine learning algorithms.

Finally, we apply the transducer-based model of phonology to an im­
portant problem in text-to-speech systems: mapping from strings of letters
to strings of phones. We first survey the issues involved in building a large

: pronunciation dictionary, and then show how the transducer-based lexicons
and spelling rules of Chapter 3 can be augmented with pronunciations to

y map from orthography to pronunciation.
This chapter focuses on the non-probabilistic areas of computational

linguistics and pronunciations modeling. Chapter 5 will turn to the role of
probabilistic models, including such areas as probabilistic models of pronun­
ciation variation and probabilistic methods for learning phonological rules.

4.1 Speech Sounds and Phonetic Transcription

The study of the pronunciation of words is part of the field of phonetics, the phonetics
study of the speech sounds used in the languages of the world. We will be
modeling the pronunciation of a word as a string of symbols which represent
phones or segments. A phone is a speech sound; we will represent phones phones
with phonetic symbols that bears some resemblance to a letter in an alpha­
betic language like English. So for example there is a phone represented by I
that usually corresponds to the letter I and a phone represented by p that usu­
ally corresponds to the letter p. Actually, as we will see later, phones have

■ much more variation than letters do. This chapter will only briefly touch
on other aspects of phonetics such as prosody, which includes things like
changes in pitch and duration.

This section surveys the different phones of English, particularly Amer­
ican English, showing how they are produced and how they are represented
symbolically. We will be using two different alphabets for describing phones.
The first is the International Phonetic Alphabet (IPA). The IPA is an evolv- ipa
ing standard originally developed by the International Phonetic Association
in 1888 with the goal of transcribing the sounds of all human languages. The

■ IPA is not just an alphabet but also a set of principles for transcription, which
differ according to the needs of the transcription, so the same utterance can
be transcribed in different ways all according to the principles of the IPA.
In the interests of brevity in this book we will focus on the symbols that are
most relevant for English; thus Figure 4.1 shows a subset of the IPA sym­
bols for transcribing consonants, white Figure 4.2 shows a subset of the IPA

94 Chapter 4. Computational Phonology and Text-to-Speech

IPA ARPAbet
Symbol Symbol Word

IPA
Transcription

ARPAbet
Transcription

[p] [pl parsley 'parsli] [p aa r s 1 iy]
[t] [t] tarragon 'tasragan] [t ae r ax g aa n]
[k] [k] catnip 'kaetnip].. [k ae t n ix p]
[b] [b] bay bei] [bey]
[d] [d] dill dil] [d ih1]
[gl [g] garlic 'garlik] [gaarlixk]
[m] [m] mint 'mint]. [m ih n t]
[n] [n] nutmeg 'nAtmeg] [n ah t m eh g
[t|1 [ng] ginseng Msmsiij] [jh ih n s ix ng]
[f] : ' ; [T] ? fennel frill] [f eh n el]
[v] [v] clove klouv] [k 1 ow v]
[0] [th] thistle [’Oisl] [th ih s el]
[d] [dh] heather 'heda] | h eh dh axr]
W M sage seidj] [seyjh]
|z] [z] hazelnut ’heizlnAt] [heyzelnaht]
LIT [sh] squash skwaj] [skwash]
131 [zh] ambrosia eem'brougo] [ae m b r ow zh ax]
IMT [ch] chicory j ■ : [ch ih k axr iy]

Ejh] sage seidg] . ■. .. [seyjh]
[1] [1] licorice [‘likH[] [1 ih k axr ix sh] J
[w] [w] kiwi ['kiwi] . [kiy wiy]
[r] [r] parsley [‘pursli] [paarsliy]
DI lyl yew iyu] [yuw]
[b] lh| horseradish horsimdif] [h ao r s r ae d ih sh]
RI Iql uh-oh ?a?oo] [qahqow]
[r] [dx] butter 'bAta] [b ah dx axr]
[f] |nx] wintergreen wif a'grin] [w Th nx axr g r i n]
[1] | el J ' < ■■ thistle ■ ■ Gisl . [th ih sell

Figure 4.1 IPA and ARPAbet
consonants.

symbols for transcription of English

symbols for transcribing vowels.1 These tables also give the ARPAbet sym­
bols; ARPAbet (Shoup, 1980) is another phonetic alphabet, but one that is
specifically designed for American English and which uses ASCII symbols;

1 For simplicity we use the symbol [t] for the American English sound, rather than the
more-standard IPA symbol p .

Section 4.1. Speech Sounds and Phonetic Transcription 95

it can be thought of as a convenient ASCII representation of an American-
English subset of the IPA. ARPAbet symbols are often used in applications
where non-ASCII fonts are inconvenient, such as in on-line pronunciation
dictionaries.

Many of the IPA and ARPAbet symbols are equivalent to the Roman
letters used in the orthography of English and many other languages. So for
example the IPA and ARPAbet symbol [p] represents the consonant sound at

2 Thelast phone, -u7|ux|, is quite rare in general American English and indeed is an “ex­
tension” not present in the original ARPAbet. Labov (1994) notes that the realization of a
fronted [uw] as [ux]. has made it more common in (at least) Western and Northern Cities di-
alccts of American English starting in the late 1970s. This fronting was first called to public
by imitations arid recordings of ‘Valley Girls’ speech by Moon Zappa (Zappa arid Zappa.
1982). Nevertheless; for most speakers [uw] is still much more common than [ux] in words

f]^ dude. ,)

IPA ARPAbet
Symbol Symbol

IPA ARPAbet
TranscriptionWord Transcription

Uy 1. lily 'lili] [lihliy]
l’hl lily M [lihliy]

[ci] ley 1 -T daisy dcrzi] [deyzi]
Jc . teh] poinsettia pom’serio] |p oy n s eh dx iy ax]
H iacl aster AAA; [ae s t axr]
[a [aa] poppy]papi] [paapi]
[)] [ao] orchid Arkid] [ao r k ix d]
[u |uh] woodruff wudr'Af] [w uh d r ah fJ
[ou] |ow I lotus 'lourosj [1 ow dx ax s]
u] [uw] tulip 'tulip]. .. [tuwlixp]

] a] y v [uh] buttercup bAi ?f kAp] [b uh dx axr k uh p]
[er] bird ; brd] [berd]

at] |ay] iris 'arris] [ay r ix s]
[au] [aw] sunflower AAnflauA] [s ah n f 1 aw axr]
[<h] [oy] A A poinsettia poin'srria] [p oy n s eh dx iy ax]
[juj [yuw] feverfew fiv^fju] [fiyvaxrfyu]

Wl?:- [ax] ; ;A? woodruff 'wudrof] [w uh d r ax f]
[i] . ■ [ix] tulip ’tulip] [t uw 1 ix p]
A] [axr] heather 'heSA [h eh dh axr]
[u] :. [UX] dude A dud] [d ux d]

Figure 4.2 IPA and ARPAbet symbols for transcription of English vowels.

96

ARTICULATORY
PHONETICS

Chapter 4. Computational Phonology and Text-to-Speech

the beginning of platypus, puma, and pachyderm, the middle of leopard, or
the end of antelope (note that the final orthographic e of antelope does not
correspond to any final vowel; the p is the last sound).

The mapping between the letters of English orthography and IPA sym­
bols is rarely as simple as this, however. This is because the mapping be­
tween English orthography and pronunciation is quite opaque; a single letter
can represent very different sounds in different contexts. Figure 4.3 shows
that the English letter c is represented as IPA [k] in the word cougar, but IPA
[s] in the word civet Besides appearing as c and k, the sound marked as [k]
in the IPA can appear as part of x (fox), as ck (jackal), and as cc (raccoon).
Many other languages, for example Spanish, are much more transparent in
their sound-orthography mapping than English.

Word
IPA
AKPAbet

jackal
. .. ['dsm.kl]

[jh ae k el j

raccoon 1
[rae.'kun]
[r ae k uw n] j

cougar
[ku.g^].
[k uw g axr]

civet
< [si.vit] A

[s ih v ix t]

Figure 4.3 The mapping between IPA symbols and letters in English or­
thography is complicated; both IPA [k] and English orthographic [c] have
many alternative realizations.

The Vocal Organs

We turn now to articulatory phonetics, the study of how phones are pro­
duced, as the various organs in the mouth, throat, and nose modify the airflow
from the lungs.

Sound is produced by the rapid movement of air. Most sounds in hu­
man spoken languages are produced by expelling air from the lungs through
the windpipe (technically the trachea) and then out the mouth or nose. As
it passes through the trachea, the air passes through the larynx, commonly
known as the Adam’s apple or voicebox. The larynx contains two small
folds of muscle, the vocal folds (often referred to non-technically as the vo­
calcords) which can be moved together or apart. The space between these

go

■

glottis two folds i s called the glottis. If the folds are close together (but not lightly
closed), they will vibrate as air passes through them; if they are far apart,
they won’t vibrate. Sounds made with the vocal folds together and vibrating

voiced are called voiced; sounds made without this vocal cord vibration are called
unvoiced unvoiced or voiceless. Voiced sounds include [b], [d), [g], [v], [z], and all
voiceless the English vowels, among others. Unvoiced sounds include [p], [t], [k], [f],

■ [z], and others.. 1 j

Section 4.1. Speech Sounds and Phonetic Transcription 97

The area above the trachea is called the vocal tract, and consists of the
oral tract and the nasal tract. After the air leaves the trachea, it can exit the
body through the mouth or the nose. Most sounds are made by air passing
through the mouth. Sounds made by air passing through the nose are called
nasal sounds; nasal sounds use both the oral and nasal tracts as resonating sounds

cavities; English nasal sounds include m, and n, and ng.
Phones are divided into two main classes: consonants and vowels, consonants

i Both kinds of sounds are formed by the motion of air through the mouth, vowels

98 Chapter 4. Computational Phonology and Text-to-Speech

throat or nose. Consonants are made by restricting or blocking the airflow in
some way, and may be voiced or unvoiced. Vowels have less obstruction, are
usually voiced, and are generally louder and longer-lasting than consonants,
The technical use of these terms is much like the common usage; [p], [b],
[t], [d], [k], [g], [f], [v], [s], fz], fr], [1], etc., are consonants; [aa], [ae], [aw],
[ao], [ih], [aw], [ow], [uw], etc., are vowels. Semivowels (such as [y] and
[w]) have some of the properties of both; they are voiced like vowels, but ’
they are short and less syllabic like consonants. s

PLACE

Consonants: Place of Articulation

Because consonants are made by restricting the airflow in some way, con­
sonants can be distinguished by where this restriction is made: the point
of maximum restriction is called the place of articulation of a consonant.
Places of articulation, shown in Figure 4.5, are often used in automatic
speech recognition as a useful way of grouping phones together into equiva­
lence classes: ' "

LABIAL

DENTAL >

• labial: Consonants whose main restriction is formed by the two lips ;
coming together have a bilabial place of articulation. In English these |
include [p] as in possum, [b] as in bear, and [m] as in marmot. The En- /
glish labiodental consonants [v] and [Q are made by pressing the bot­
tom lip against the upper row of teeth and letting the air flow through i
the space in the upper teeth.:

• dental: Sounds that are made by placing the tongue against the teeth '
• .. j7...;.

y Section 4.1. Speech Sounds and Phonetic Transcription 99

are dentals. The main dentals in English are the [0] of thing or the [3]
of though, which are made by placing the tongue behind the teeth with
the tip slightly between the teeth.

• alveolar: The alveolar ridge is the portion of the roof of the mouth just alveolar

behind the upper teeth. Most speakers of American English make the
phones [s], [z], [t], and [d] by placing the tip of the tongue against the
alveolar ridge.

• palatal: The roof of the mouth (the palate) rises sharply from the palatal

back of the alveolar ridge. The palato-alveolar sounds [J] (shrimp), palate

[tf (chinchilla), [3] (Asian), and [dj] (jaguar) are made with the blade
of the tongue against this rising back of the alveolar ridge. The palatal
sound [y] of yak is made by placing the front of the tongue up close to
the palate.

• velar: The velum or soft palate is a movable muscular flap at the very velar

back of the roof of the mouth. The sounds [k] (cuckoo), [g] (goose), velum

and [g] (kingfisher) are made by pressing the back of the tongue up
against the velum.

• glottal: The glottal stop [?] is made by closing the glottis (by bringing glottal

1. the vocal folds together).

Consonants: Manner of Articulation

Consonants are also distinguished by how the restriction in airflow is made,
for example whether there is a complete stoppage of air, or only a partial

: blockage, etc. This feature is called the manner of articulation of a conso- manner

riant The combination of place and manner of articulation is usually suffi­
cient to uniquely identify a consonant. Here are the major manners of artic­
ulation for English consonants:

• stop: A stop is a consonant in which airflow is completely blocked stop

for a short time. This blockage is followed by an explosive sound as
the air is released. The period of blockage is called the closure and
the explosion is called the release. English has voiced stops like [b],
[d], and [g] as well as unvoiced stops like [pL [tk and [k]. Stops are

. ; also called plosives. It is possible to use a more narrow (detailed) tran­
scription style to distinctly represent the closure and release parts of
a stop, both in ARPAbet and IPA-style transcriptions. For example

l the closure of a [pl. |t|, or [k| would be represented as [pci], [tel], or
[kcl] (respectively) in the ARPAbet, and |p'|, T]. or [kj (respectively)

100 Chapter 4. Computational Phonology and Text-to-Speech

NASALS

FRICATIVE

SIBILANTS

APPROXIMANT

TAP

FLAP

in IPA style. When this form of narrow transcription is used, the un­
marked ARPABET symbols [p], [t], and [k] indicate purely the release
of the consonant. We will not be using this narrow transcription style
in this chapter.

• nasals: The nasal sounds [n], [m], and [ij] are made by lowering the
velum and allowing air to pass into the nasal cavity.

• fricative: In fricatives, airflow is constricted but not cut off completely.
The turbulent airflow that results from the constriction produces a char­
acteristic “hissing” sound. The English labiodental fricatives [f] and [v]
are produced by pressing the lower lip against the upper teeth, allow­
ing a restricted airflow between the upper teeth. The dental fricatives
[0] and [3] allow air to flow around the tongue between the teeth. The
alveolar fricatives [s] and [z] are produced with the tongue against the
alveolar ridge, forcing air over the edge of the teeth. In the palato-
alveolar fricatives [J] and [3] the tongue is at the back of the alveolar
ridge forcing air through a groove formed in the tongue. The higher-
pitched fricatives (in English [s], [z], [1 and [3]) are called sibilants.
Stops that are followed immediately by fricatives are called affricates;
these include English [tf] (chicken} and [33] (giraffe).

• approximant: In approximants, the two articulators are close together
but not close enough to cause turbulent airflow. In English [y] (yellow),
the tongue moves close to the roof of the mouth but not close enough
to cause the turbulence that would characterize a fricative. In English
[w] (wormwood), the back of the tongue conies close to the velum.
American [r] can be formed in at least two ways; with just the tip of
the tongue extended and close to the palate or with the whole tongue
bunched up near the palate. [1] is formed with the tip of the tongue up
against the alveolar ridge or the teeth, with one or both sides of the
tongue lowered to allow air to flow over it. [1] is called a lateral sound
because of the drop in the sides of the tongue.

• tap: A tap or flap [r] is a quick motion of the tongue against the alve­
olar ridge. The consonant in the middle of the word lotus ([lourosl) is
a tap in most dialects of American English; speakers of many British
dialects would use a [t] instead of a tap in this word.

Vowels

Like consonants, vowels can be characterized by the position of the articu­
lators as they are made. The two most relevant parameters for vowels are

Section 4.1. Speech Sounds and Phonetic Transcription 101

what is called vowel height, which correlates roughly with the location of
the highest part of the tongue, and the shape of the lips (rounded or not).
Figure 4.6 shows the position of the tongue for different vowels.

heed [iy] had [ae] who’d [uw|

Figure 4.6 Positions of the tongue for three English vowels, high front [iy],
low front [ae] and high back [uw]; tongue positions modeled after Ladefoged
(1996).

In the vowel [ij, for example, the highest point of the tongue is toward
the front of the mouth. In the vowel [u], by contrast, the high-point of the
tongue is located toward the back of the mouth. Vowels in which the tongue
is raised toward the front are called front vowels; those in which the tongue
is raised toward the back are called back vowels. Note that while both [t]
and [e] are front vowels, the tongue is higher for [i] than for [e], Vowels in
wh ich the highest point of the tongue is comparatively high are called high
vowels; vowels with mid or low values of maximum tongue height are called
mid vowels or low vowels, respectively.

Figure 4.7 shows a schematic characterization of the vowel height of
different vowels. It is schematic because the abstract property height only
correlates roughly with actual tongue positions; it is in fact a more accurate
reflection of acoustic facts. Note that the chart has two kinds of vowels;
those in which tongue height is represented as a point and those in which it
is represented as a vector. A vowels in which the tongue position changes
markedly during the production of the vowel is diphthong. English is par­
ticularly rich in diphthongs; many are written with two symbols in the IPA
(for example the [ei] of hake or the [ou] of cobra).

The second important articulatory dimension for vowels is the shape
of the lips. Certain vowels are pronounced with the lips rounded (the same

jB lip shape used for whistling). These rounded vowels include [u], [o], and the
diphthong [ou].

FRONT

BACK

HIGH

DIPHTHONG

ROUNDED

102 Chapter 4. Computational Phonology and Text-to-Speech

V y uw

Figure 4.7 Qualities of English vowels (after Ladefoged (1993)).

Syllables ■■■ • •
■ ; \ -III
syllable Consonants and vowels combine to make a syllable. There is no completely J

agreed-upon definition of a syllable; roughly speaking a syllable is a vowel-
like sound together with some of the surrounding consonants that are most
closely; associated with it The IPA period symbol [.] is used to separate
syllables, so parsley and catnip have two syllables ([‘pax.sli] and [keet.nip]
respectively), tarragon has three ['tas.ro.gan], and dill has one ([dil]). A syl­
lable is usually described as having an optional initial consonant or set of

onset consonants called the onset, followed by a vowel or vowels, followed by a
final consonant or sequence of consonants called the coda. Thus d is the
onset of [dil], while 1 is the coda. The task of breaking up a word into sylla

syllabification bles is called syllabification. Although automatic syllabification algorithms
exist, the problem is hard, partly because there is no agreed-upon definition [
of syllable boundaries. Furthermore, although it is usually clear how many |
syllables are in a word, Ladefoged (1993) points out there are some words]
(meal, teal, seal, hire, fire, hour) that can be viewed either as having one!
syllable or two. ToTA

In a natural sentence of American English, certain syllables are mpO
accented prominent than others. These are called accented syllables. Accented sylla- j

bles may be prominent because they are louder, they are longer; they are as­
sociated with a pitch movement, or any combination of the above. Since ac-<]
cent plays important roles in meaning, understanding exactly why a speaker]

front

Section 4.2. The Phoneme and Phonological Rules 103

chooses to accent a particular syllable is very complex. But one important
factor in accent is often represented in pronunciation dictionaries. This fac­
tor is called lexical stress. The syllable that has lexical stress is the one that
will be louder or longer if the word is accented. For example the word pars­
ley is stressed in its first syllable, not its second. Thus if the word parsley
is accented in a sentence, it is the first syllable that will be stronger. We
write the symbol ['] before a syllable to indicate that it has lexical stress (e.g.
['par ,sli]). This difference in lexical stress can affect the meaning of a word.
For example the word content can be a noun or an adjective. When pro­
nounced in isolation the two senses are pronounced differently since they
have different stressed syllables (the noun is pronounced [kan.trnt]) and the
adjective [kon.'tent]. Other pairs like this include object (noun [’ab-djekt]
and verb [ob.'dgekt]); see Cutler (1986) for more examples. Automatic dis­
ambiguation of such homographs is discussed in Chapter 17. The role of homographs

prosody is taken up again in Section 4.7.

4.2 The Phoneme and Phonological Rules

’Scuse me, while I kiss the sky
Jimi Hendrix, Purple Haze

’Scuse me, while I kiss this guy
Common mis-hearing of same lyrics

All [tls are not created equally. That is, phones are often produced
differently in different contexts. For example, consider the different pro­
nunciations of [t] in the words tunafish and starfish. The [t] of tunafish is
aspirated. Aspiration is a period of voicelessness after a stop closure and
before the onset of voicing of the following vowel. Since the vocal cords are
not vibrating, aspiration sounds like a puff of ah after the [t] and before the
vowel. By contrast, a [t] following an initial [s] is unaspirated; thus the [t] unaspirated

in starfish ([storfij]) has no period of voicelessness after the [t] closure. This
variation in the realization of [t] is predictable: whenever a [t] begins a word
or unreduced syllable in English, it is aspirated. The same variation occurs
for [k]; the [k] of sky is often mis-heard as [g] in Jimi Hendrix’s lyrics because
[k] and [g] are both unaspirated. In a very detailed transcription system we
could use the symbol for aspiration [h] after any [t] (or [k] or [p]) which be­
gins a word or unreduced syllable. The word tunafish would be transcribed
[thunofi[j (the ARPAbet does not have a way of marking aspiration).

104

PHONEME

ALLOPHONES

Chapter 4. Computational Phonology and Text-to-Speech

There are other contextual variants of [t]. For example, when [t] occurs
between two vowels, particularly when the first is stressed, it is pronounced
as a tap. Recall that a tap is a voiced sound in which the top of the tongue
is curled up and back and struck quickly against the alveolar ridge. Thus the
word buttercup is usually pronounced [bAf3ikAp]/[b uh dx axr k uh p] rather
than [bAta*kAp]/[b uh t axr k uh p].

Another variant of [t] occurs before the dental consonant [9]. Here the
[t] becomes dentalized ([t]). That is, instead of the tongue forming a closure
against the alveolar ridge, the tongue touches the back of the teeth.

How do we represent this relation between a [t] and its different real­
izations in different contexts? We generally capture this kind of pronunci­
ation variation by positing an abstract class called the phoneme, which is
realized as different allophones in different contexts. We traditionally write
phonemes inside slashes. So in the above examples, /t/ is a phoneme whose

■A

hallophones include [th], [r], and [t]. A phoneme is thus a kind of general-
ization or abstraction over different phonetic realizations. Often we equate
the phonemic and the lexical levels, thinking of the lexicon as containing
transcriptions expressed in terms of phonemes. When we are transcribing
the pronunciations of words we can choose to represent them at this broad
phonemic level; such a broad transcription leaves out a lot of predictable

transcription phonetic detail. We can also choose to use a narrow transcription that
includes more detail, including allophonic variation, and uses the various di­
acritics. Figure 4.8 summarizes a number of allophones of /t/; Figure 4.9
shows a few of the most commonly used IPA diacritics.

■ ■/

Phone Environment Example IPA

■
LT
W-
tn
T

in initial position
after [s] or in reduced syllables
word-finally or after vowel before [n]
sometimes word-finally
between vowels
before consonants or word-finally
before dental consonants ([9])
sometimes word-finally

toucan
starfish
kitten
cat
buttercup
fruitcake
eighth
past

thukh<en'
storli^
khi?n]
kh?e?t]
[bAra-f^Ap]
[frutkheik
jeitG] I

[paes] J
Figurej 4.8 Some allophones of ZtZ in General American English.

Section 4.3. Phonological Rules and Transducers 105

The relationship between a phoneme and its allophones is often cap-
turcd by writing a phonological rule. Here is the phonological rule for den-
talization in the traditional notation of Chomsky and Halle (1968):

/‘MH/—0 (4.1)

In this notation, the surface allophone appears to the right of the arrow,
and the phonetic environment is indicated by the symbols surrounding the
underbar (__). These rules resemble the rules of two-level morphology of
Chapter 3 but since they don’t use multiple types of rewrite arrows, this rule
ts ambiguous between an obligatory or optional rule. Here is a version of the
Sapping rule:

(4-2)

Diacritics Suprasegmentals
• a
\ h

!

Voiceless
Aspirated
Syllabic
Nasalized
Unreleased
Dental

a] . .
[ph]
Bl­
as]
U].
I;

A .

▼

Primary stress
Secondary stress
Long
Half long
Syllable break

'pu.mo]
'four^grasf]
ai]
a’]
‘pu.moj

Figure 4.9 Some of the IPA diacritics and symbols for suprasegmentals.

4.3 Phonological Rules and Transducers

Chapter 3 showed that spelling rules can be implemented by transducers.
Phonological rules can be implemented as transducers in the same way;
indeed the original work by Johnson (1972) and Kaplan and Kay (1981)
on finite-state models was based on phonological rules rather than spelling
rules. There are a number of different models of computational phonol­
ogy that use finite automata in various ways to realize phonological rules.

:/ We will describe the two-level morphology of Koskenniemi (1983) used in
Chapter 3, but the interested reader should be aware of other recent models.3

While Chapter 3 gave examples of two-level rules, it did not talk about the
3 One example is Bird and Ellison’s (1994) model of the multi-tier representations of au-
tosegmcntal phonology in which each phonological tier is represented by a finite-state au­
tomaton, and autosegmental association by the synchronization of two automata.

106 Chapter 4. Computational Phonology and Text-to-Speech

motivation for these rules, and the differences between traditional ordered -
rules and two-level rules. We will begin with this comparison.

As a first example, Figure 4.10 shows a transducer which models the ,
application of the simplified flapping rule in (4.3):

/t/^[r]/V__ V (4.3)

V:@

Figure 4.10 Transducer for English Flapping: ARPAbet “dx” indicates a f
flap, and the “other” symbol means “any feasible pair not used elsewhere in 4
the transducer”. “@” means “any symbol not used elsewhere on any arc”. 3

The transducer in Figure 4.10 accepts any string in which flaps occur <
in the correct places (after a stressed vowel, before an unstressed vowel), and 4
rejects strings in which flapping doesn’t occur, or in which flapping occurs
in the wrong environment. Of course the factors that flapping are actually a 4

, good deal more complicated, as we will see in Section 5.7. J
In a traditional phonological; system, many different phonological rules

apply between the lexical form and the surface form. Sometimes these rules 4
interact; the output from one rule affects the input to another rule. One
way to implement rule-interaction in a transducer system is to run transduc- "
ers in a cascade. Consider, for example, the rules that are needed to deal
with the phonological behavior of the English noun plural suffix -s. This I
suffix is pronounced [iz] after the phones [sj, [J], [zj, or [3] (so peaches is pro- -'J
nounccd [pitjiz], arid faxes is pronounced [fasksiz]), [z] after voiced sounds
(pigs is pronounced [pigz]), and [sj after unvoiced sounds (cats is pronounced |
[kaets]). We model this variation by writing phonological rules for the rcal-4
ization of the morpheme in different contexts. We first need to choose one of
these three forms (s, z, and iz) as the “lexical” pronunciation of the suffix; we f

Section 4.3. Phonological Rules and Transducers 107

chose z only because it turns out to simplify rule writing. Next we write two
phonological rules. One, similar to the E-insertion spelling rule of page 77,
inserts a [i] after a morpheme-final sibilant and before the plural morpheme
[z], The other makes sure that the -y suffix is properly realized as [s] after
unvoiced consonants.

£ —> i /[+ sibilant] " — z # (4.4)

z > s/[-voice] ' # (4.5)

These two rules must be ordered’, rule (4.4) must apply before (4.5).
This is because the environment of (4.4) includes z, and the rule (4.5) changes
z. Consider running both rules on the lexic al form fox concatenated with the
plural -s\

Lexical form: faks'z
(4.4) applies: faks'iz
(4.5) doesn’t apply: faks^iz

ffffy If the devoicing rule (4.5) was ordered first, we would get the wrong
7 result (what would this incorrect result be?). This situation, in which one

rule destroys the environment for another, is called bleeding:4

Lexical form: faks^z
(4.5) applies: foks's
(4.4) doesn’t apply: faks's

As was suggested in Chapter 3, each of these rules can be represented
by a transducer. Since the rules are ordered, the transducers would also need
to be ordered. For example if they are placed in a cascade, the output of the
first transducer would feed the input of the second transducer.

Many rules can be cascaded together this way. As Chapter 3 discussed,
running a cascade, particularly one with many levels, can be unwieldy, and
so transducer cascades are usually replaced with a single more complex
transducer by composing the individual transducers.

Koskennicmik method of two-level morphology that was sketchily
introduced in Chapter 3 is another way to solve the problem of rule ordering.
Koskcnnicmi (1983) observed that most phonological rules in a grammar
are independent of one another; that feeding and bleeding relations between

If we had chosen to represent the lexical pronunciation of -.r as [s] rather than [zj, we would
have written the rule inversely to voice the S after voiced sounds, but the rules would still
need to be ordered; the ordering would simply flip.

108 Chapter 4. Computational Phonology and Text-to-Speech

rules are not the norm.5 Since this is the case, Koskenniemi proposed that
phonological rules be run in parallel rather than in series. The cases where
there is rule interaction (feeding or bleeding) we deal with by slightly modi­
fying some rules. Koskenniemi’s two-level rules can be. thought of as a way
of expressing declarative constraints on the well-formedness of the lexical-
surface mapping.

Two-level rules also differ from traditional phonological rules by ex­
plicitly coding when they are obligatory or optional, by using four differing
rule operators; the rule corresponds to traditional obligatory phonolog­
ical rules, while the => rule implements optional rules:

Rule type
a: b 4= c — d
a: b => c__ d
a:b44c— d
a: b /4= c d

Interpretation
a is always realized as b in the context c__ d
a may be realized as b only in the context c__ d
a must be realized as b in context c — d and nowhere else
a is never realized as b in the context c__ d

The most important intuition of the two-level rules, and the mechanism
that lets them avoiding feeding and bleeding, is their ability to represent
constraints on two levels. This is based on the use of the colon (“:”), which
was touched in very briefly in Chapter 3. The symbol a:b means a lexical
a that maps to a surface b. Thus a:b :c — means a is realized as b
after a surface c. By contrast a:b c; _ means that a is realized as b
after a lexical c; As discussed in Chapter 3, the symbol c with no colon is
equivalent to c:c that means a lexical c which maps to a surface c.

Figure 4.11 shows an intuition for how the two-level approach avoids
ordering for the i-insertion and z-devoicing rules. The idea is that the /
devoicing: rule maps a lexical z-insertion to a surface s and the i rule refers
to the ZexzW z:

The two-level rules that model this constraint are shown in (4.6)
and (4.7): A:;-

e : i < > [+sibilant]: A _ z: ' ■' (4.6)
z:s o [-voice]: ~ #(4.7)

As Chapter 3 discussed, there are compilation algorithms for creating
automata from rules; Kaplan arid Kay (1994) give the general derivation of
these algorithms, and Antworth (1990) gives one that is specific to two-level
rules. The automata corresponding to the two rules are shown in Figure 4 12

5 / Feeding is a situation in which one rales creates the environment for another rale and so
must be ran beforehand.

Section 4.3. Phonological Rules and Transducers 109

("l+sib] /a
[-voice] /

lexica! level

ix s surface level

Figure 4.11 The constraints for the i-insertion and z-devoicing rules both
refer to a lexical z, not a surface s.

and Figure 4.13. Figure 4.12 is based on Figure 3.14 of Chapter 3; see page
78 for a reminder of how this automaton works. Note in Figure 4.12 that
the plural morpheme is represented by z:. indicating that the constraint is
expressed about an lexical rather than surface z.

other

other

#, other

Figure 4.12 The transducer for the i-insertion rule 4.4. The rule can be
read whenever a morpheme ends in a sibilant, and the following morpheme is
z, insert [i].

Figure 4.14 shows the two automata run in parallel on the input [foks * z]
(the figure uses the ARPAbet notation [f aa k s " z]). Note that both the au­
tomata assuming the default mapping ":e to remove the morpheme boundary,
and that both automata end in an accepting state.

110 Chapter 4. Computational Phonology and Text-to-Speech

Intermediate

ix-insertion

z-devoicing

Surface f aa k IXs

Figure 4.14 The transducer for the i-insertion rule 4.4 and the z-devoicing
rule 4.5 run in parallel.

f aa k s

4.4 Advanced Issues in Computational Phonology

Harmony

Rules like flapping, i-insertion, and z-devoicing are relatively simple as pho­
nological rules go. In this section we turn to the use of the two-level or finite-
state model of phonology to model more sophisticated phenomena; this sec­
tion will be easier to follow if the reader has some knowledge of phonology.
The Yawelmani dialect of Yokuts is a Native American language spoken in
California with a complex phonological system. In particular, there are three
phonological rules related to the realization of vowels that had to be ordered
in traditional phonology and whose interaction thus demonstrates a compli­
cated use of finite-state phonology. These rales were first drawn up in the

Section 4.4. Advanced issues in Computational Phonology 111

traditional Chomsky and Halle (1968) format by Kisseberth (1969) follow­
ing the field work of Newman (1944).

First, Yokuts (like many other languages including for example Turk­
ish and Hungarian) has a phonological phenomenon called vowel harmony, harmony

Vowel harmony is a process in which a vowel changes its form to look like
a neighboring vowel. In Yokuts, a suffix vowel changes its form to agree
in backness and roundness with the preceding stem vowel. That is, a front
vowel like /i/ will appear as a backvowel [u] if the stem vowel is /u/ (ex-

; amp are taken from Cole and Kisseberth (1995):0

Lexical Surface Gloss
.■■■A '., dub+hin dubhun “tangles, non-future”

xil+hin —> xilhin “leads by the hand, non-future”
bok’+al -> bok’ol “might eat”
xat’+al > xat’al “might find”

v.-v This Harmony rule has another constraint: it only applies if the suffix
vowel and the stem vowel are of the same height. Thus /u/ and /i/ are both
high, while /o/ and /a/ are both low.

The second relevant rule, Lowering, causes long high vowels to be­
come low; thus /u:/ becomes [oi] in the first example below:

Lexical Surface Gloss
?uit’+it —k Toit’ut “steal, passive aorist”
miik’-f-it -> meik’+it “swallow, passive aorist”

The third rule, Shortening, shortens long vowels if they occur in closed
syllables:

Lexical Surface
s:ap+hin —> saphin
suduik+hin -> sudokhun

The Yokuts rules must be ordered, just as the i-insertion and z-devoicing
rules had to be ordered. Harmony must be ordered before Lowering because
thc /ui/ in the lexical form /?uit’+it/ causes the /i/ to become m] before it
lowers in the surface form [?oit hit;. Lowering must be ordered before Short­
ening because the /m/ in /suduik+hin/ lowers to [o]; if it was ordered after
shorten ing it would appear on the surface as jf.

Goldsmith (1.993) and Lakoff (1993) independently observed that the
Yokuts data could be modeled by something like a transducer; Karttunen

+ + For purposes of simplifying the explanation, this account ignores some parts of the system
such as vowel underspecification (Archangeti, 1984). :

112 Chapter 4. Computational Phonology and Text-to-Speech

(1998) extended the argument, showing that the Goldsmith and Lakoff con­
straints could be represented either as a cascade of three rules in series, or in
the two-level formalism as three rules in parallel; Figure 4.15 shows the two
architectures. Just as in the two-level examples presented earlier, the rules
work by referring sometimes to the lexical context, sometimes to the surface
context; writing the rules is left as Exercise 4.10 for the reader.

Lexical u: t + (h | i n j r u: t + | h i n
i

t ■

Rounding !

. Lowering j
• 0,. •. | '•

Shortening >
———

।——1—।
। Rounding |

1 I———

1

। Lowering [

r.

-__1____ •• 1_______1
^Shortening} ;
■

Surface 7 0 t h u n । 23 r o t h)u n □2
a) Cascade of rules. b) Parallel two-level rules.

Figure 4.15 Combining the rounding, lowering, and shortening rules for
Yawelmani Yokuts.

Templatic Morphology

Finite-state models of phonology/morphology have also been proposed for
the templatic (non-concatenative) morphology (discussed on page 60) com­
mon in Semiticlanguages like Arabic, Hebrew, and Syriac. McCarthy (1981)
proposed that this kind of morphology could be modeled by using different

tiers levels of representation that Goldsmith (1976) had called tiers. Kay (1987)
proposed a computational model of these tiers via a special transducer which
reads four tapes instead of two, as in Figure 4.16.

The tricky part here is designing a machine which aligns the various
strings on the tapes in the correct way; Kay proposed that the binyan tape
could act as a sort of guide for alignment. Kay’s intuition has led to a number
of more fully worked out finite-state models of Semitic morphology such as
Beesley’s (1996) model for Arabic and Kiraz’s (1997) model for Syriac.

The more recent work of Komai (1991) and Bird and Ellison (1994)
showed how bne-tape automata (i.e. finite-state automata rather than four-
tape or even two-tape transducers) could be used to model templatic mor­
phology and other kinds of phenomena that arc handlced with the tier-based

autosegmental autosegmerital representations of Goldsmith (1976).

Section 4.4. Advanced Issues in Computational Phonology 113

Figure 4.16 A finite-state model of templatic (“non-concatenative”) mor­
phology. Modified from Kay (1987) and Sproat (1993).

Optimality Theory

In a traditional phonological derivation, we are given an underlying lexical
A form and a surface form. The phonological system then Consists of one com­

ponent: a sequence of rules which map the underlying form to the surface
form. Optimality Theory (OT) (Prince and Smolensky, 1993) offers an al- t™rylity

7 tentative way of viewing phonological derivation, based on two functions ot

(GEN and EVAL) and a set of ranked viol able constraints (CON). Given an
underlying form, the GEN function produces all imaginable surface forms,
even those which couldn’t possibly be a legal surface form for the input. The

? EVAL function then applies each constraint in CON to these surface forms in
order of constraint rank. The surface form which best meets the constraints

7 is chosen.
A constraint in OT represents a wellformedness constraint on the sur­

face form, such as a phonotactic constraint on what segments can follow each
other, or a constraint on what syllable structures are allowed. A constraint
can also check how faithful the surface form is to the underlying form. faithful

Let's turn to our favorite complicated language, Yawelmani, for an ex-
i \ (ample.7 In addition to the interesting vowel harmony phenomena discussed

above, Yawelmani has a phonotactic constraints that rules out sequences of
consonants. In particular three consonants in a row (CCC) are not allowed
to occur in a surface word. Sometimes, however, a word contains two con­
secutive morphemes such that the first one ends in two consonants and the
second one starts with one consonant (or vice versa). What does the lan-

7 The following explication of OT via the Yawelmani example draws heavily from
; Archangel! (1997) and a lecture by Jennifer Cole at the 1999 LSA Linguistic Institute.

114 Chapter 4. Computational Phonology and Text-to-Speech

guage do to solve this problem? It turns out that Yawelmani either deletes
one of the consonants or inserts a vowel in between.

For example, if a stem ends in a C, and its suffix starts with CC, the |f
first C of the suffix is deleted (“+” here means a morpheme boundary):

C-deletion C~>e/C +__ C (4.8)

Here is an example where the CCVC “passive consequent adjunctive” mor­
pheme hneil (actually the underlying form is /hnil/) drops the initial C if
the previous morpheme ends in two consonants (and an example where it
doesn’t, for comparison):

underlying
morphemes gloss
diyel-ne:l-aw “guard - passive consequent adjunctive - locative”
cawa-hnerl-aw “shout - passive consequent adjunctive - locative” i

If a stem ends in CC and the suffix starts with C, the language instead
inserts a vowel to break up the first two consonants:

V-insertion £ -> V/C_C+C (4.9)

Here are some examples in which an i is inserted into the roots ?ilk- “sing”
and the roots logw- “pulverize” only when they are followed by a C-initial
suffix like -hin, “past”, not a V-initial suffix like -en, “future”: ?

surface form gloss
?ilik-hin “sang”
?ilken “will sing”
logiwhin “pulverized” ;
logwen “will pulverize”

Kisseberth (1970) suggested that it was not a coincidence that Yawel­
mani had these particular two rules (and for that matter other related deletion ;
rules that we haven’t presented). He noticed that these rules w?ere function- '
ally related; in particular, they all are ways of avoiding three consonants in a ;
row. Another way of stating this generalization is to talk about syllable struc-
ture. Yawelmani syllables are only allowed to be of the form CVC or CV i
(where C means a consonant and V means a vowel). We say that languages J

®EX like Yawelmani don’t allow complex onsets or complex codas. From the :
^LEX point of view of syllabification, then, these insertions and deletions all hap- j

pen so as to allow Yawelmani words to be properly syllabified. Since CVCC ,
resyuabihed syllables aren’t allowed on the surface, CVCC roots must be resyllabified

when they appear on the surface. For example, here are the syllabifications ..

Section 4.4. Advanced Issues in Computational Phonology 115

of the Yawelmani words we have discussed and some others; note, for ex­
ample, that the surface syllabification of the CVCC syllables moves the final
consonant to the beginning of the next syllable:

underlying
morphemes

surface
syllabification

gloss

?ilk-en ?il.ken “will sing”
logw-en log. wen “will pulverize”
logw-hin lo.giw.hin “will pulverize”
xat-en xa.ten “will eat”
diyel-hnil-aw di.yel.ner.law ”ask - pass. cons, adjunct. - locative”
Here’s where Optimality Theory comes in. The basic idea in Optimal­

ity Theory is that the language has various constraints on things like sylla­
ble structure, These constraints generally apply to the surface form. One
such constraint, *COMPLEX, says “No complex onsets or codas”. Another
class of constraints requires the surface form to be identical to (faithful to)
the underlying form. Thus FaithV says “Don’t delete or insert vowels” and
FaithC says “Don’ t delete or insert consonants”. Given an underlying form,
the GEN function produces all possible surface forms (i.e., every possible in­
sertion and deletion of segments with every possible syllabification) and they
are ranked by the EVAL function using these constraints. Figure 4.17 shows
the architecture.

/?ilk-~hin/

EVAL (^COMPLEX, FAITHC, FAITHV)

. [?i.lik.hin]

Figure 4.17 The architecture of a derivation in Optimality Theory (after
Archangeli(1997)).

The EVAL function works by applying each constraint in ranked order;
the optimal candidate is one which either violates no constraints, or violates

116 Chapter 4. Computational Phonology and Text-to-Speech

TABLEAU

less of them than all the other candidates. This evaluation is usually shown
on a tableau (plural tableaux). The top left-hand cell shows the input, the
constraints are listed in order of rank across the top row, and the possible
outputs along the left-most column. Although there are an infinite number
of candidates, it is traditional to show only the ones which are ‘close’; in
the tableau below we have shown the output ?ak.pid just to make it clear
that even very different surface forms are to be included. If a form violates
a constraint, the relevant cell contains *; a !* indicates the fatal violation
which causes a candidate to be eliminated. Cells for constraints which are
irrelevant (since a higher-level constraint is already violated) are shaded.

/?ilk-hin/ * Complex FaithC FaithV
?ilk.hin *;
?il.khin
?il.hin *!
?i.lik.hin
?ak.pid *!

t One appeal of Optimality Theoretic derivations is that the constraints ,
are presumed to be cross-linguistic generalizations. That is all languages are
presumed to have some version of faithfulness, some preference for simple
syllables, and so on. Languages differ in how they rank the constraints; thus
English, presumably; ranks FaithC higher than *Complex. (How do we
know this?)

Can a derivation in Optimality Theory be implemented by finite-state
transducers? Frank and Satta (1999), following the foundational work of
Ellison (1994), showed that (1) if GEN is a regular relation (for example
assuming the input doesn’t contain context-free trees of Some sort), and (2)
if the number of allowed violations of any constraint has some finite bound,
then an OT derivation can be computed by finite-state means. This second
constraint i s relevant because of a property of OT that We haven’t mentioned:
if two candidates violate exactly the same number of constraints, the winning
candidate is the one which has the smallest number of violations of the rele­
vant constraint..... ■ J

One way to implement OT as a finite-state system was worked out by
Karttunen (1998), following the above-mentioned work and that of Ham­
mond (1997). In Karttunen’s model, GEN is implemented as a finite-state
transducer which is given an underlying form and produces a set of candi­
date forms, For example for the syllabification example above, GEN would

Section 4.4. Advanced Issues in Computational Phonology 117

generate all strings that are variants of the input with consonant deletions or
vowel insertions, and their syllabifications.

Each constraint is implemented as a filter transducer that lets pass only
strings which meet the constraint. For legal strings, the transducer thus acts
as the identity mapping. For example, *Complex would be implemented
via a transducer that mapped any input string to itself, unless the input string
had two consonants in the onset or coda, in which case it would be mapped
to null.

The constraints can then be placed in a cascade, in which higher-ranked
constraints are simply run first, as suggested in Figure 4.18.

• - - ■■ ■

GEN

■ ' ^COMPLEX ; '

FAITHG
o

FAITHV

Figure 4.18., Version #1 (“merciless cascade”) of Karttunen’s finite-state
cascade implementation of OT.

There is one crucial flaw with the cascade model in Figure 4.18. Recall
AV that the constraints-transducers filter out any candidate which violates a con­

straint. But in many derivations, include the proper derivation of ?i.lik.hin,
even the optimal form still violates a constraint. The cascade in Figure 4.17
would incorrectly filter it out, leaving no surface form at all! Frank and Satta
(1999) and Hammond (1997) both point out that it is essential to only en-
force a constraint if it does not reduce the candidate set to zero. Karttunen

T (1998) formalizes this intuition with the lenient composition operator. Le- composition
nient composition is a combination of regular composition and an operation

A called priority union. The basic idea is that if any candidates meet the con­
straint these candidates will be p assed through the filter as usual. If no output
meets the constraint, lenient composition retains all of the candidates. Fig­
ure 4.19 shows the general idea; the interested reader should see Karttunen
(1998) for the details. Also see Tesar (1995, 1996), Foster (1996), and Eisner
(1997) for discussions of other computational issues in OT.

118 Chapter 4. Computational Phonology and Text-to-Speech

___l _
GEN

Ol

*COMPLEX

FAITHC ot
FAITHV

■ /?ilk-hin/

GEN '
7ilk.bin ?il.khin 7il.bin ?ak.pid Ti.lik-hin. " UG

*COMPLEX S
7il.bin ?ak.pid 7i.lik.hin

FAITHC
?i.lik.hin

FAITHV I
[?Llik.hin]

Figure 4.19 Version #2 (“lenient cascade”) of Karttunen’s finite-state cas­
cade implementation of OT, showing a visualization of the candidate popula­
tions that would be passed through each FST constraint.

4.5 Machine Learning of Phonological Rules

MACHINE
LEARNING

SUPERVISED

UNSUPERVISED.

LEARNING
BIAS

The task of a machine learning system is to automatically induce a model
for some domain, given some data from the domain and, sometimes, other
information as well. Thus a system to learn phonological rules would be |
given at least a set of (surface forms of) words to induce from. A supervised I
algorithm is one which is given the correct answers for some of this data,
using these answers to induce a model which can generalize to new data
it hasn’t seen before. An urisupervised algorithm does this purely from 3
the data. While unsupervised algorithms don’t get to see the correct labels
for the classifications, they can be given hints about the nature of the rules or f
models they should be forming. For example, the knowledge that the models 5
will be in the form of automata is itself a kind of hint Such hints are called J
a learning bias. : ' W

This section gives a very brief overview of some models of unsuper- •
vised machine learning of phonological rules; more details about machine |
learning algorithms will be presented throughout the book.

Ellison (1992) showed that concepts like the consonant and vowel dis- • -J •
tinction, the syllable structure of a language, and harmony relationships f
could be learned by a system based on choosing the model from the setl|
of potential models which is the simplest. Simplicity can be measured by 1
choosing the model with the minimum coding length, or the highest proba- 1
bility (we will define these terms in detail in Chapter 6). Daelemans et a|||

(1994) used the Instance-Based Generalization algorithm (Aha et al., 1991W
to learn stress rule for Dutch; the algorithm is a supervised one which i&^

Section 4.5. Machine Learning of Phonological Rules 119

given a number of words together with their stress patterns, and which in­
duces generalizations about the mapping from the sequences of light and
heavy syllable type in the word (light syllables have no coda consonant;
heavy syllables have one) to the stress pattern. Tesar and Smolensky (1993)
show that a system which is given Optimality Theory constraints but not
their ranking can learn the ranking from data via a simple greedy algorithm.

M \ Johnson (1984) gives one of the first computational algorithms for
phonological rule induction. His algorithm works for rules of the form

(4.10) a-^b/C

where C is the feature matrix of the segments around a. Johnson’s algorithm
sets up a system of constraint equations which C must satisfy, by consider­
ing both the positive contexts, i.e., all the contexts Cf in which a b occurs on
the surface, as well as all the negative contexts Cj in which an a occurs on
the; surface. Touretzky et al. (1990) extended Johnson’s insight by using the
version spaces algorithm of Mitchell (1981) to induce phonological rules in
their Many Maps architecture, which is similar to two-level phonology. Like
Johnson’s, their system looks at the underlying and surface realizations of
single segments? For each segment, the system uses the version space algo­
rithm to search for the proper statement of the context. The model also has a
separate algorithm which handles harmonic effects by looking for multiple
segmental changes in the same word, and is more general than Johnson’s in
dealing with epenthesis and deletion rules.
fy The algorithm of Gildea and Jurafsky (1996) was designed to induce

transducers representing two-level rules of the type we have discussed ear­
lier. Like the algorithm of Touretzky et al. (1990), Gildea and Jurafsky’s
algorithm was given sets of pairings of underlying and surface forms. The
algonthm was based on the OSTIA (Oncina et al., 1993) algorithm, which is
a general learning algorithm for a subtype of finite-state transducers called
subscquential transducers. By itself, the OSTIA algorithm was too general
to learn phonological transducers, even given a large corpus of underlying-
fonn/surface-tbrni pairs. Gildea and Jurafsky then augmented the domain­
independent OSTIA system with three kinds of learning biases which are
Specific to natural language phonology; the main two are Faithfulness (un­
derlying segments tend to be realized similarly on the surface), and Com­
munity (similar segments behave similarly). The resulting system was able
to learn transducers for flapping in American English, or German consonant
devoicing.

Finally, many learning algorithms for phonology are probabilistic. For

120 Chapter 4. Computational Phonology and Text-to-Speech

example Riley (1991) and Withgott and Chen (1993) proposed a decision-
tree approach to segmental mapping. A decision tree is induced for each
segment, classifying possible realizations of the segment in terms of contex­
tual factors such as stress and the surrounding segments. Decision trees and
probabilistic algorithms in general will be defined in Chapters 5 and 6.

4.6 Mapping Text to Phones for TTS

Dearest creature in Creation
Studying English pronunciation
I will teach you in my verse
Sounds like corpse, corps, horse and worse.

It will keep you, Susy, busy,
Make your head with heat grow dizzy

River, rival; tomb; bomb, comb;
Doll and roll, and some and home.

Stranger does not rime with anger
Neither does devour with clangour.

G.N. Trenite (1870-1946) The Chaos,
reprinted in Witten (1982).

Now that we have learned the basic inventory of phones in English and
seen how to model phonological rules, we are ready to study the problem of
mapping from an orthographic or text word to its pronunciation.

Pronunciation Dictionaries

An important component of this mapping is a pronunciation dictionary.
These dictionaries are actually used in both ASR and TTS systems, although
because of the different needs of these two areas the contents of the dictio­
naries are somewhat different

The simplest pronunciation dictionaries just have a list of words and
their pronunciations:

Section 4.6. Mapping Text to Phones for TTS 121

Word Pronunciation Word Pronunciation
cat [kmt] goose M
cats Lasts] . geese [gis]
pig M hedgehog ['hcds-hog]
Pigs pigz] hedgehogs ['hEds.hagz]
fox fax] : .
foxes “fak.siz]

A--'" Three large, commonly-used, on-line pronunciation dictionaries in this
format are PRONLEX, CMUdict, and CELEX. These are used for speech
recognition and can also be adapted for use in speech synthesis. The PRON­
LEX dictionary (LDC, 1995) was designed for speech recognition applica­
tions and contains pronunciations for 90,694 wordforms. It covers all the
words used in many years of the Wall Street Journal, as well as the Switch-
board Corpus. The CMU Pronouncing Dictionary was also developed for
ASR purposes and has pronunciations for about 100,000 wordforms. The
CELEX dictionary (Celex, 1993) includes all the words in the Oxford Ad­
vanced Learner’s Dictionary (1974) (41,000 lemmata) and the Longman
Dictionary of Contemporary English (1978) (53,000 lemmata), in total it has
pronunciations for 160,595 wordforms. Its pronunciations are British while
the other two arc American. Each dictionary uses a different phone set; the
CMU and PRONLEX phonesets are derived from the ARPAbet, while the
CELEX dictionary’ is derived from the IPA. All three represent three levels
of stress: primary stress, secondary stress, and no stress. Figure 4.20 shows

: the pronunciation of the word armadillo in all three dictionaries.

? Figure 4.20 The pronunciation of the word armadillo in three dictionaries.
: Rather than explain special symbols, we have given an IPA equivalent for each

■ pronunciation. The CMU dictionary represents unstressed vowels ([a], [f], etc.)
by giving a 0 stress level to the vowel. We represented this by underlining in
the IPA form. Note the r-dropping and use of the [au] rather than [ou] vowel in
the British CELEX pronunciation. ;

Dictionary] Pronunciation IPA Version
Pronlex ; 7
CMU
CELEX

। +arm.xdTl.o
I AA2 RM AH0D IH1 LOW0
1 ”#-m@-’dI-15

[armo'dilou]
. [.armA'dilou]

[armo.'di.bu]

Often two distinct words are spelled the same (they are homographs)
but pronounced differently. For example the verb wind (“You need to wind
this up more neatly”) is pronounced [wamd] while the noun wind (“blow,

122 Chapter 4. Computational Phonology and Text-to-Speech

blow, thou winter wind”) is pronounced [wind]. This is essential for TTS
applications (since in a given context the system needs to say one or the
other) but for some reason is usually ignored in current speech recognition
systems. Printed pronunciation dictionaries give distinct pronunciations for
each part-of-speech; CELEX does as well. Since they were designed for
ASR, Pronlex and CMU, although they give two pronunciations for the form
wind, don’t specify which one is used for which part-of-speech.

Dictionaries often don’t include many proper names. This is a seri­
ous problem for many applications; Liberman and Church (1992) report that
21%. of the word tokens in their 33-million-word 1988 AP newswire cor­
pus Were names. Furthermore, they report that a list obtained in 1987 from
the Donnelly marketing organization contains 1.5 million names (covering
72 million households in the United States). But only about 1000 of the
52477 lemmas in CELEX (which is based, on traditional dictionaries) are
proper names. By contrast Pronlex includes 20,000 names; this is still only
a small fraction of the 1.5 million. Very few dictionaries give pronunciations
for entries like Dr, which as Liberman and Church (1992) point out can be
“doctor’’ or “drive”, or 2/5, which can be “two thirds” or “February third” or
“two slash three”.

No dictionaries currently have good models for the pronunciation of
function words (and, I, a, the, of, etc.). This is because the variation in these
words due to phonetic context is so great. Usually the dictionaries include
some simple baseform (such as [3i] for the) and use other algorithms to de­
rive the variation due to context; Chapter 5 will treat the issue of modeling
contextual pronunciation variation for words of this sort.

One significant difference between TTS and ASR dictionaries is that
TTS dictionaries do not have to represent dialectal variation; thus where
a very accurate ASR dictionary needs to represent both pronunciations of
either and tomato, a TTS dictionary can choose one.

is
Bl

Beyond Dictionary Lookup: Text Analysis

Mapping from text to phones relies on the kind of pronunciation dictionaries k
we talked about in the last section. As we suggested before, one way to map
text-to-phohes would be to look up each word in a pronunciation dictionary <
and read the string of phones out of the dictionary. This method would work J|
fine for any word that we can put in the dictionary in advance. But asriv^H
saw in Chapter 3. it’s not possible to represent every word in English (or any
other language) in advance. Both speech synthesis and speech recognition

mi

Section 4.6. Mapping Text to Phones for TTS 123

systems need to be able to guess at the pronunciation of words that are not
in their dictionary. This section will first examine the kinds of words that
are likely to be missing in a pronunciation dictionary, and then show how
the finite-state transducers of Chapter 3 can be used to model the basic task
of text-to-phones. Chapter 5 will introduce variation in pronunciation and
introduce probabilistic techniques for modeling it.

Three of the most important cases where we cannot rely on a word
dictionary involve names, morphological productivity, and numbers. As
a brief example, we arbitrarily selected a brief (561 word) movie review that
appeared in the July 17, 1998 issue of the New York Times. The review,
of Vincent Gallo’s ’’Buffalo ’66”, was written by Janet Maslin. Here’s the
beginning of the article:

In Vincent Gallo’s “Buffalo ’66,” Billy Brown (Gallo) steals a
blond kewpie doll named Layla (Christina Ricci) out of her tap
dancing class and browbeats her into masquerading as his wife at
a dinner with his parents. Billy hectors, cajoles and tries to bribe
Layla. (“You can eat all the food you want. Just make me look
good”) He threatens both that he will kill her and that he won’t
be her best friend. He bullies her outrageously but with such
crazy brio and jittery persistence that Layla falls for him. Gallo’s
film, a deadpan original mixing pathos with bravado, works on
its audience in much the same way.

We then took two large commonly-used on-line pronunciation dictionaries;
the PRONLEX dictionary, that contains pronunciations for 90,694 word­
forms and includes coverage of many years of the Wall Street Journal, as well
as the Switchboard Corpus, and the larger CELEX dictionary, which has
pronunciations for 160,595 wordforms. The combined dictionaries have ap­
proximately 194,000 pronunciations. Of the 561 words in the movie
review, 16 (3%) did not have pronunciations in these two dictionaries (not
counting two hyphenated words, baby-blue and hollow-eyed). Here they are:

Names Inflected Names Numbers Other
Aki Gazzara Gallo’s ’66 c’mere
Anjelica Kaurismaki indie
Arquette Kusturica kewpie
Buscemi Layla sexpot
Gallo Rosanna

Some of these missing words can be found by increasing the dictionary
size (for example Wells’s (1990) definitive (but not on-line) pronunciation

124 Chapter 4. Computational Phonology and Text-to-Speech

dictionary of English does have sexpot and kewpie). But the rest need to
generated on-line.

Names are a large problem for pronunciation dictionaries. It is diffi­
cult or impossible to list in advance all proper names in English; furthermore
they may come from any language, and may have variable spellings. Most
potential applications for TTS or ASR involve names; for example names
are essentially in telephony applications (directory assistance, call routing);
Corporate names are important in many applications and are created con­
stantly (CoComp,: Intel, Cisco), Medical speech applications (such as tran­
scriptions of doctor-patient interviews) require pronunciations of names of
pharmaceuticals; there are some off-line medical pronunciation dictionaries;
but they are known to be extremely inaccurate (Markey and Ward, 1997).
Recall the figure of 1.5 million names mentioned above, and Liberman and
Church’s (1992) finding that 21% of the word tokens in their 33 million word;
I988 AP newswire coqrus were names.

Morphology is a particular problem for many languages other than En­
glish. For languages with very productive morphology it is computationally
infeasible to represent every possible word; recall this Turkish example: A;

(4.11) uygarlastiramadiklarimizdanmiysinizcasina

uygdrfM^ +imiz
civilized +bec +CAUS +NegAbLe +ppart +pl +p 1 pl

+dan +mi$ +smiz +casma
+ABL +PAST +2PL + Aslf
“(behaving) as if you are among those whom we could not
civilize/cause to become civilized”

Even a language as similar to English as German has greater ability to
create words; Sproal ef al. (1998) note the spontaneously created German ex­
ample Unerfindlichkeitsunterstellung (“allegation of incomprehensibility”);

But even in English, morphologically simple though it is, morphologi­
cal knowledge is necessary for pronunciation modeling. For example names
and acronyms are often inflected (Gallo’s, IBM's, DATs, Syntex’s) as are new
words (faxes, indies). Furthermore, we can’t just addto the pronunciation
of the uninflected forms, because as the last section showed, the possessive
- s and plural - v suffix in English arc pronounced differently in different con­
texts: Syntex’s is pronounced Lsint rksiz], faxes is pronounced [faeksiz], IBM’s
is pronounced [aibijemz], and DATs is pronounced [dariSj.

Finally, pronouncing numbers is a particularly difficult problem. The
’66 in Buffalo ’66 is pronounced [sikstisiks] hot [sikssiks]. The most natural

Section 4.6. Mapping Text to Phones for TTS 125

way to pronounce the phone number “947-2020” is probably “nine”-“four”-
“seven”-“twenty”-“twenty” rather than “nine”-“four”-“seven”-“two”-“zero”~
‘two”-“zero”. Liberman and Church (1992) note that there are five main
ways to pronounce a string of digits (although others are possible):

' • Serial: Each digit is pronounced separately—8765 is “eight seven six
five”. ' ■

• Combined: The digit string is pronounced as a single integer, with all
position labels read out—“eight thousand seven hundred sixty five”.

• Paired: Each pair of digits is pronounced as an integer; if there is an
odd number of digits the first one is pronounced by itself—“eighty­
seven sixty-five”.

• Hundreds: Strings of four digits can be pronounced as counts of
hundreds—“eighty-seven hundred (and) sixty-five”.

• Trailing Unit: Strings that end in zeros are pronounced serially until
the last nonzero digit, which is pronounced followed by the appropriate
unit—8765000 is “eight seven six five thousand”.

Pronunciation of numbers and these five methods are discussed further
in Exercises 4.5 and 4.6.

An FST-based Pronunciation Lexicon

Early work in pronunciation modeling for text-to-speech systems (such as
the seminal MITalk system Allen et al. (1987)) relied heavily on letter-to-
sound rules. Each rule specified how a letter or combination of letters was sound’T0'
mapped to phones; here is a fragment of such a rule-base from Witten (1982):

Fragment Pronunciation
-p- ft]
-ph- f]

rpl■pne
-phes-

i .
H

-place- piers]
-placi- pleisi]
-plement- pliment]

j Such systems consisted of a long list of such rules and a very small dic­
tionary of exceptions (often function words such as a, are, as, both, do, does,
etc.). More recent systems have completely inverted the algorithm, relying
on very large dictionaries, with letter-to-sound rules only used for the small

126 Chapter 4. Computational Phonology and Text-to-Speech

number of words that are neither in the dictionary nor are morphological d
variants of words in the dictionary. How can these large dictionaries be rep- |
resented in a way that allows for morphological productivity? Luckily, these
morphological issues in pronunciation (adding inflectional suffixes, slight
pronunciation changes at the juncture of two morphemes, etc.) are identical |
to the morphological issues in spelling that we saw in Chapter 3. Indeed, J
(Sproat, 1998b) and colleagues have worked out the use of transducers for
text-to-speech. We might break down their transducer approach into five <
components: >

1. an FST to represent the pronunciation of individual words and mor­
phemes in the lexicon S

2. FS As to represent the possible sequencing of morphemes
3. individual FSTs for each pronunciation rule (for example expressing

the pronunciation of -5 in different contexts) |
4. heuristics and letter-to-sound (LTS) rules/transducers used to model

. the pronunciations of names and acronyms
5. default letter-to-sound rules/transducers for any other unknown words

We will limit our discussion here to the first four components; those
interested in letter-to-sound rules should see (Allen et al., 1987). These first j
components will turn out to be simple extensions of the FST components |
we saw in Chapter 3 and on page 110. The first is the representation of the ;
lexical base form of each word; recall that base form means the uninflected ?
form of the word. The previous base forms were stored in orthographic
representation; we will need to augment each of them with the correct lexical j
phonological representation. Figure 4.21 shows the original and the updated
lexical entries: • -

The second part of our FST system is the finite-state machinery td:|
model morphology. We will give only one example: the nominal plural
suffix -s. Figure 4.22 in Chapter 3 shows the automaton for English plurals, $
updated to handle pronunciation as well. The only change was the addi- ;
tion of the [s] pronunciation for the suffix, and £ pronunciations for all the f
morphological features. ; 1

We can compose the inflection FS A in Figure 4.22 with a transducer g
implementing the baseform lexicon in Figure 4.21 to produce an inflection- i
ally-enriched lexicon that has singular and plural nouns. The resulting mini­
lexicon is shown in Figure 4.23. f

Thelexicon shown in Figure 4.23 has two levels, an underlying Or “lex- <
ical” level and an intermediate level. The only thing that remains is to add

Section 4.6. Mapping Text to Phones for TTS 127

Figure 4.21 FST-based lexicon, extending the lexicon in the table on page
74 in Chapter 3. Each symbol in the lexicon is now a pair of symbols sep­
arated by one representing the “orthographic” lexical entry and one the
“phonological” lexical entry. The irregular plural geese also pre-specifies the
contents of the intermediate tape “;ee|i”.

Orthographic Lexicon Lexicon
RegularNouns

■ cat
fox
dog

: : c k a|as t|t
ffo|axjks

Irregular Singular Nouns
goose g|g oo|u s[s e|e

Irregular Plural Nouns
g ore ore s e . g|g oo|u:ee|i s|s e|e

Figure 4.22 FST for the nominal singular and plural inflection. The au­
tomaton adds the morphological features [+N],: [+PL], and [+SG] at the lexi­
cal level where relevant and also adds the plural suffix sjz (at the intermediate
level). We will discuss below why we represent the pronunciation of -x as z
rather than s.

transducers which apply spelling rules and pronunciation rules to map the
intermediate level into the surface level. These include the various spelling
rules discussed on page 77 and the pronunciation rules starting on page 105.

The lexicon and these phonological rules and the orthographic rules
from Chapter 3 can now be used to map between a lexical representation
(containing both orthographic and phonological strings) and a surface rep­
resentation (containing both orthographic and phonological strings). As we
saw in Chapter 3, this mapping can be run from surface to lexical form, or

7 from lexical to surface form; Figure 4.24 shows the architecture. Recall that

128 Chapter 4. Computational Phonology and Text-to-Speech

Figure 4.23 Mini-lexicon composing a transducer from the baseform lexi­
con of Figure 4.21 with the inflectional transducer of Figure 4.22.

the lexicon FST maps between the ‘lexical” level, with its stems and mor­
phological features, arid an “intermediate” level which represents a simple :
concatenation of iriOrphemes. Then a host of FSTs, each representing ei­
ther a single spelling rule constraint or a single phonological constraint, all
run in parallel so as to map between this intermediate level and the surface f
level. Each level has both orthographic and phonological representations.
For text-to-speech applications in which the input is a lexical form (e.g., for
text generation, where the system knows the lexical identity of the word, its |
part-of-speech, its inflection, etc.), the cascade of FSTs can map from lexical
form to surface pronunciation. For text-to-speech applications in which the
input is a surface spelling (e.g., for “reading text out loud” applications), the
cascade of FSTs can map from surface orthographic form to surface pronun- i
ciation via the underlying lexical form.

Finally let us say a few words about names and acronyms. Acronyms
can be spelled with or without periods (I.R.S. or IRS). Acronyms with pe­
riods arc usually pronounced by spelling them out (auirrSj). Acronyms
that usually appear without periods (AIDS, ANSI, ASCAP) may either be ff
spelled out or pronounced as a word; so AIDS is usually pronounced the
same as the third-person form of the verb aid Liberman and Church (1992)
suggest keeping a small dictionary of the acronyms that are pronounced as S
words, and spelling out the rest. Their method for dealing with names begins y
with a dictionary of the pronunciations of 50,000 names, and then applies a j
small number of affix-stripping rules (akin to the Porter Stemmer of Chap- '3
ter 3), rhyining heuristics, and letter-to-sound rules to increase the coverage.

Section 4.6. Mapping Text to Phones for TTS 129

Lexical
j | f | O | X | +N |+pl[~~~~

I f | a I k S f +N]+PL
1

fLEMCON-FSf
T'
JL
A

— J

Intermediate | f |aa| k | s

Surface

s
A z

A

i /-O-r"! orthographic and
(CO / ? J phonological rules i r”O I > }
““"1 1 I ••• । - 1

r
__U

o x e s
s | ix | z J

Figure 4.24 Mapping between the lexicon and surface form for orthogra­
phy and phonology simultaneously. The system can be used to map from a
lexical entry to its surface pronunciation or from surface orthography to sur­
face pronunciation via the lexical entry.;

Liberman and Church (1992) took the most frequent quarter million words
in the Donnelly list. They found that the 50,000 word dictionary covered
59% of these 250,000 name tokens, Adding stress-neutral suffixes like -5,
-ville, and -son (Walters = Walter + s, Abelson - Abel + son, Lucasville
= Lucas + ville) increased the coverage to 84%; Adding name-name com­
pounds (Abdulhussein, Baumgaertner) and rhyming heuristics increased the
coverage to 89%. The rhyming heuristics used letter-to-sound rules for the
beginning of the word and then found a rhyming word to help pronounce the
end; so Plotsky was pronounced by using the LTS rule for Pl- and guessing -
otsky from Trotsky , They then added a number of more complicated morpho­
logical rules (prefixes like O ’Brien), stress-changing suffixes (Adamovich),
suffix-exchanges (Bierstadt = Bierbaum - baum + stadt) and used a system
of letter-to-sound rules for the remainder This system was not implemented
as an FST; Exercise 4.11 will address some of the issues in turning such a
set of rules into an FST. Readers interested in further details about names,

130 Chapter 4. Computational Phonology and Text-to-Speech

acronyms and other unknown words should consult sources such as Liber- *
man and Church (1992), Vitale (1991), and Allen et al. (1987).]

4.7 Prosody in TTS

The orthography to phone transduction process just described produces the J
main component for the input to the part of a TTS system which actually J
generates the speech. Another important part of the input is a specification |

prosody of the prosody. The term prosody is generally used to refer to aspects of a |
sentence’s pronunciation which aren’t described by the sequence of phones
derived from the lexicon. Prosody operates on longer linguistic units than

suprasegmental phones, and hence is sometimes called the study of suprasegmental phe- :
nomena. > 4

Phonological Aspects of Prosody

prominence There are three main phonologic al aspects to prosody: prominence, struc- |
structure: ture and tune. ^
tune As page 102 discussed, prominence is a broad term used to cover stress J
stress arid accent. Prominence is a property of syllables, and is often described in |
accent a relative manner, by saying one syllable is more prominent than another. :

Pronunciation lexicons mark lexical stress; for example table has its stress]
on the first syllable, while machine has its stress on the second. Function J
words like there, the or a are usually unaccented altogether. When words are ;
joined together, their accentual patterns combine and form a larger accent
pattern for the whole utterance. There are some regularities in how accents'!
combine. For example adjective-noun combinations like new truck are likely
to have accent on the right word (new *truck), while noun-noun compounds 3|
like * treesurgeon are likely to have accent on the left. In generally, how- f
ever, there are many exceptions to these rules, and so accent prediction is |
quite complex. For example the noun-noun compound * apple cake has the |
accent on the first word while the noun-noun compound apple *pie or city :
*hall both have the accent on the second word (Liberman and Sproat, 1992; 2
Sproat, 1994, 1998a). Furthermore, rhythm plays a role in keeping the ac- |
cented syllables spread apart a bit; thus city *hall and sparking lot combine |
as *city hall Sparking lot (Liberman and Prince, 1977). Finally, the location
of accent is very strongly affected by the discourse factors we will describe 2
in Chapters 18 and 19; in particular new or focused words or phrases often -
receive accent.

Section 4.7. Prosody in TTS 131

Sentences have prosodic structure in the sense that some words seem to
group naturally together and some words seem to have a noticeable break or
disjuncture between them. Often prosodic structure is described in terms of
prosodic phrasing, meaning that an utterance has a prosodic phrase struc- .phrases

7 ture in a similar way to it having a syntactic phrase structure. For example, in
’■7-77 the sentence I wanted to go to London, but could only get tickets for France

77 7 there seems to be two main prosodic phrases, their boundary occurring at the
fff comma. Commonly used terms for these larger prosodic units include into-

< national phrase or IP (Beckman and Pierrehumbert, 1986), intonation unit '^RA™m
= (Du Bois et al., 1983), and tone unit (Crystal, 1969). Furthermore, in the ip

y first phrase, there seems to be another set of lesser prosodic phrase bound­
aries (often called intermediate phrases) that split up the words as follows phraseediate

; I wanted j to go) to London. The exact definitions of prosodic phrases
j and subphrases and their relation to syntactic phrases like clauses and noun

■; phrases and semantic units have been and still are the topic of much debate
; ii (Chomsky and Halle, 1968; Langendoen, 1975; Streeter, 1978; Hirschberg

(7: and Pierrehumbert, 1986; Selkirk, 1986; Nespor and Vogel, 1986; Croft,
: 1995; Ladd, 1996; Ford and Thompson, 1996; Ford et al., 1996). Despite

these complications, algorithms have been proposed which attempt to au-
Vy. tomatically break an input text sentence into intonational phrases. For ex-
: ample Wang and Hirschberg (1992), Ostendorf and Veilleux (1994), Tay-

< lor and Black (1998), and others have built statistical models (incorporating
probabilistic predictors such as the CART-style decision trees to be defined
in Chapter 5) for predicting intonational phrase boundaries based on such

; V features as the parts of speech of the surrounding words, the length of the
7 utterance in words and seconds, the distance of the potential boundary from

the beginning or ending of the utterance, and whether the surrounding words
are accented.

Two utterances with the same prominence and phrasing patterns can
7 still differ prosodically by having different tunes. Tune refers to the into­

national melody of an utterance. Consider the utterance oh, really. Without
varying the phrasing or stress, it is still possible to have many variants of
this by varying the intonational tune. For example, we might have an excited

7 7 version oh, really! (in the context of a reply to a statement that you’ve just
won the lottery); a sceptical version oh, really ?—in the context of not being
sure that the speaker is being honest; to an angry oh, really! indicating dis-

7 pleasure. Intonational tunes can be broken into component parts, the most
important of which is the pitch accent Pitch accents occur on stressed sylla- accent

7 < bles and form a characteristic pattern;inthe FO contour (as explained below).

132 Chapter 4. Computational Phonology and Text-to-Speech

Depending on the type of pattern, different effects (such as those just out­
lined above) can be produced. A popular model of pitch accent classification
is the Pierrehumbert or ToBI model (Pierrehumbert, 1980; Silverman et al.,
1992), which says there are five pitch accents in.English, which are made
from combining two simple tones (high H, and low L) in various ways. A
H+L pattern forms a fall, while a L+H pattern forms a rise. An asterisk (*)
is also used to indicate which tone falls on the stressed syllable. This gives
an inventory of H*, L*, L+H*, L*+H, H+L* (a sixth pitch accent H*+L
which was present in early versions of the model was later abandoned). Our
three examples of oh, really might be marked with the accents L+H*, L*+H
and L* respectively. In addition to pitch accents, this model also has two
phrase accents L- and H- and two boundary tones L% and H%, which are
used at the ends of phrases to control whether the intonational tune rises
or falls.

Other intonational modals differ from ToBI by not using discrete phone­
mic classes for intonation accents. For example the Tilt (Taylor, 2000) and
Fujisaki models (Fujisaki and Ohno, 1997) use continuous parameters rather
than discrete categories to model pitch accents. These researchers argue that
while the discrete models are often easier to visualize and work with, con­
tinuous models may be more robust and more accurate for computational

■ purposes.

Phonetic or Acoustic Aspects of Prosody

The three phonological factors interact and are realized by a number of dif­
ferent phonetic or acoustic phenomena. Prominent syllables are generally
louder and longer that non-prominent syllables. Prosodic phrase boundaries
are often accompanied by pauses, by lengthening of the syllable just before
the boundary, and sometimes lowering of pitch at the boundary. Intonational
tune is manifested in the fundamental frequency (FO) contour. j ' ■

Prosody in Speech Synthesis

A major task for a TTS system is to generate appropriate linguistic repre­
sentations of prosody, and from them generate appropriate acoustic patterns
which will be manifested in the output speech waveform. The output of
a TTS system with such a prosodic component is a sequence of phones,
each of which has a duration and an FO (pitch) value. The duration of each |
phone is dependent on the phonetic context (see Chapter 7). The FO value

Section 4.7. Prosody in TTS 133

is influenced by the factors discussed above, including the lexical stress, the
accented or focused element in the sentence, and the intonational tune of the
utterance (for example a final rise for questions). Figure 4.25 shows some

(sample TTS output from the FESTIVAL (Black et al., 1999) speech synthe-
<y sis system for the sentence Do you really want to see all of it?. This output,

together with the FO values shown in Figure 4.26 would be the input to the
A waveform synthesis component described in Chapter 7. The durations here

■ are computed by a CART-style decision tree (Riley, 1992).

do you
d uw y uw

110 110 50 50

H*
really want

r
75

ih 1 iy aa
64 57 82 57 50 72 41

to ’see
t ax s iy

43 47 54 130

L*
all

ao 1
76 90

L- H%
of

44 62

it
ih t
46 220

w n t

Figure 4.25 Output of the FESTIVAL (Black et al., 1999) generator for the sentence
Do you really want to see all of it? The exact intonation contour is shown in Figure 4.26.
Thanks to Paul Taylor for this figure.

do you really want to see all of it

Figure 4.26 The F0 contour for the sample sentence generated by the
FESTIVAL synthesis system in Figure 4.25, thanks to Paul Taylor.

As was suggested above, determining the proper prosodic pattern for
a sentence is difficult, as real-world knowledge and semantic information is
needed to know which syllables to accent, and which tune to apply. This sort
of information is difficult to extract from the text and hence prosody modules
often aim to produce a “neutral declarative” version of the input text, which
assume the sentence should be spoken in a default way with no reference to
discourse history or real-world events . This is one of the main reasons why
intonation in TTS often sounds “wooden”.

134 Chapter 4. Computational Phonology and Text-to-Speech fl

4.8 Human Processing of Phonology and Morphology;

Chapter 3 suggested that productive morphology plays a psycho logic ally real
role in the human lexicon. But we stopped short of a detailed model of how
the morphology might be represented. Now that we have studied phono- A
logical structure and phonological learning, we return to the psychological
question of the representation of morphological/phonological knowledge. |

One view of human morphological or phonological processing might |
be that it distinguishes productive, regular morphology from irregular or ex­
ceptional morphology. Under this view, the regular past tense morpheme
-ed, for example, could be mentally represented as a rule which would be
applied to verbs like walk to produce walked. Irregular past tense verbs like |
broke, sang, and brought, on the other hand, would simply be stored as part
of a lexical representation, and the rule wouldn't apply to these. Thus this
proposal strongly distinguishes representation via rules from representation
via lexical listing. ■

This proposal seems sensible, and is indeed identical to the transducer- |
based models we have presented in these last two chapters. Unfortunately, g
this simple model seems to be wrong. One problem is that the irregular verbs
themselves show a good deal of phonological subregularity. For example, |
the t/m alternation relating ring and rang also relates sing and sang and swim
said swam (Bybee and Slobin, 1982). Children learning the language of­
ten extend this pattern to incorrectly produce bring-brang, and adults often
make speech errors showing effects of this subregular pattern. A second
problem is that there is psychological evidence that high-frequency regular
inflected forms (needed, covered) are stored in the lexicon just like the stems I
cover and need (Losiewicz, 1992). Finally, word and morpheme frequency
in general seems to play an important role in human processing.

Arguments like these led to “data-driven” models of morphological f
learning and representation, which essentially store all the inflected forms
they have seen. These models generalize to new forms by a kind of analogy; I
regular morphology is just like subregular morphology but acquires rule-like
trappings simply because it occurs more often. Such models include the

tiWP’ computational connectionist or Parallel Distributed Processing model of
PARALLE t
processing Rumelhart and McClelland (1986) and subsequent improvements (Plunkett

and Marchman, 1991; MacWhinney and Leinbach, 1991) and the similar ; J
network model of Bybee (1985, 1995). In these models, the behavior of
regular morphemes like -erf emerges from its frequent interaction with other

Section 4.9. Summary 135

forms. Proponents of the rule-based view of morphology such as Pinker
and Prince (1988), Marcus et al. (1995), and others, have criticized the con-
nectionist models and proposed a compromise dual processing model, in
which regular forms like -ed are represent as symbolic rules, but subregular
examples (broke, brought) are represented by connectionist-style pattern as-
sociators. This debate between the connectionist and dual processing models
has deep implications for mental representation of all kinds of regular rule-

: based behavior and is one of the most interesting open questions in human
■ri language processing. Chapter 7 will briefly discuss connectionist models of

human speech processing; readers who are further interested in connection­
ist models should consult the references above and textbooks like Anderson
(1995).

4.9 Summary

; This chapter has introduced many of the important notions we need to un­
derstand spoken language processing. The main points are as follows:

ri • We can represent the pronunciation of words in terms of units called
: < phones. The standard system for representing phones is the Interna­

tional Phonetic Alphabet or IPA. An alternative English-only tran­
scription system that uses ASCH letters is the ARPAbet

ri'ri' • Phones can be described by how they are produced articulatorily by
the vocal organs; consonants are defined in terms of their place and
manner of articulation and voicing, vowels by their height and back-
ness.

• A phoneme is a generalization or abstraction over different phonetic
realizations. Allophonic rules express how a phoneme is realized in a

< given context.
• Transducers can be used to model phonological rules just as they were

used in Chapter 3 to model spelling rules. Two-level morphology is
ri a theory of moiphology/phonology which models phonological rules

as finite-state well-formedness constraints on the mapping between
? A lexical and surface form.

• Pronunciation dictionaries are used for both text-to-speech and au­
tomatic speech recognition. They give the pronunciation of words as
strings of phones, sometimes including syllabification and stress. Most
on-line pronunciation dictionaries have on the order of 100,000 words
but still lack many names, acronyms, and inflected forms.

' '
136 Chapter 4. Computational Phonology and Text-to-Speech

• The text-analysis component of a text-to-speech system maps from/;
orthography to strings of phones. This is usually done with a large
dictionary augmented with a system (such as a transducer) for handling
productive morphology, pronunciation changes, names, numbers, and Si
acronyms.. S

Bibliographical and Historical Notes |

The major insights of articulatory phonetics date to the linguists of 800-150 j
B.C. India. They invented the concepts of place and manner of articulation,
worked out the glottal mechanism of voicing, and understood the concept 4
of assimilation, European science did not catch up with the Indian phoneti-
cians until over 2000 years later, in the late 19th century. The Greeks did H
have some rudimentary phonetic knowledge; by the time of Plato’s Theaete* J
tus and Cratylus, for example, they distinguished vowels from consonants,
and stop consonants from continuants. The Stoics developed the idea of the
syllable and were aware of phonotactic constraints on possible words. An
unknown Icelandic scholar of the twelfth century exploited the concept of
the phoneme, proposed a phonemic writing system for Icelandic, including
diacritics for length and nasality. But his text remained unpublished um
til 1818 and even then was largely unknown outside Scandinavia (Robins,
1967), The modern era of phonetics is usually said to have begun with
Sweet, who proposedwhat is essentially tlie phoneme in his TfrmdZtooA: o/
Phonetics (1877). He also devised an alphabet for transcription and distin-
guished between broad and narrow transcription, proposing many ideas (hat
were eventually incorporated into the IPA. Sweet was considered the best
practicing phonetician of his time; he made the first scientific recordings of
languages for phonetic purposes, arid advanced the start of the ait of articu-
latory description. He was also infamously difficult to get along with, a trait
that is well capturedin the stage character that George Bernard Shaw mod’ J^
eled after him: Henry Higgins. The phoneme was first named by the Polish
scholar Baudouin de Courtenay, who published his theories in 1894. /--A

The idea that phonological rules could be modeled as regular rela­
tions dates to Johnson (1972),who showed that any phonological system 3
that didn’t allow rules to apply to their own output (i.e., systems that did not Jig
have recursive rules) could be modeled with regular relations (or finite-state z|||
transducers). Virtually all phonological rules that had been formulated at

Section 4.9. Summary 137

the time had this property (except some rules with integral-valued features,
like early stress and tone rules). Johnson’s insight unfortunately did not at­
tract the attention of the community, and was independently discovered by
Roland Kaplan and Martin Kay; see Chapter 3 for the rest of the history of
two-level morphology. Karttunen (1993) gives a tutorial introduction to two-
level morphology that includes more of the advanced details than we were
able to present here.

Readers interested in phonology should consult (Goldsmith, 1995) as a
reference on phonological theory in general and Archangeli and Langendoen
(1997) on Optimality Theory.

Two classic text-to-speech synthesis systems are described in Allen
et al. (1987) (the MITalk system) and Sproat (1998b) (the Bell Labs sys­
tem). The pronunciation problem in text-to-speech synthesis is an ongoing
research area; much of the current research focuses on prosody. Interested
readers should consult the proceedings of the main speech engineering con­
ferences: ICSLP (the International Conference on Spoken Language Pro­
cessing). IEEE ICASSP (the International Conference on Acoustics, Speech,
and Signal Processing), and EUROSPEECH.

Students with further interest in transcription and articulatory phonet­
ics should consult an introductory phonetics textbook such as Ladefoged
(1993). Pullum and Ladusaw (1996) is a comprehensive guide to each of the
symbols and diacritics of the IPA. Many phonetics papers of computational
interest are to be found in the Journal of the Acoustical Society of America
(JASAh Computer Speech and Language, and Speech Communication.

Exercises

4.1 Find the mistakes in the IPA transcriptions of the following words:

a. “three” [hrij
; b. “sing” [sing]

c. “eyes” [ais]
d. “study” [studi]
e. “though” [Gou]

138 Chapter 4. Computational Phonology and Text-to-Speech

f. “planning” [planrrj]
g. “slight” [slit]

4.2 Translate the pronunciations of the following color words from the IPA
into the ARPAbet (and make a note if you think you pronounce them differ­
ently than this!):

a. [red]
b. [bln]
c [grin]
d. ['jrM
e. [btek]
f. [wait]

■ g. [brmdg] .

«• ;pju«]
■ j. [toup] ■ (

4.3 Ira Gershwin’s lyric for Let’s Call the Whole Thing O ff talks about two
pronunciations of the word “either” (in addition to the tomato and potato
example given at the beginning of the chapter Transcribe Ira Gershwin’s
two pronunciations of “either” in IPA and in the ARPAbet.

4.4 Transcribe the following words in both the ARPAbet and the IPA:

a. dark
b. suit
c. greasy
d. wash
e. water

4.5 Write an FST which correctly pronounces strings of dollar amounts
like $45, $320, and $4100. If there are multiple ways to pronounce a number
you may pick your favorite way.

4.6 Write an FST which correctly pronounces seven-digit phone numbers
like 555-1212, 555-1300, and so on. You should use a combination of the
paired and trailing unit methods of pronunciation for the last four dig­
its.

4.7 Build an automaton for rule (4.5).

Section 4.9. Summary 139

4.8 One difference between one dialect of Canadian English and most di­
alects of American English is called Canadian raising. Bromberger and
Halle (1989) note that some Canadian dialects of English raise /at/ to [ai]
and /an/ to [au] in stressed position before a voiceless consonant. A simpli­
fied version of the rule dealing only with /ai/ can be stated as:

/ai/ [ai] /
C
—voice

(4-12)

This rule has an interesting interaction with the flapping rule. In some
Canadian dialects the word rider and writer are pronounced differently: rider
is pronounced [rairY while writer is pronounced [rAira1]. Write a two-level
rule and an automaton for both the raising rule and the flapping rule which
correctly models this distinction. You may make simplifying assumptions as
needed.

4.9 Write the lexical entry for the pronunciation of the English past tense
(preterite) suffix -d, and the two level-rules that express the difference in its
pronunciation depending on the previous context. Don’t worry about the
spelling rules. (Hint: make sure you correctly handle the pronunciation of
the past tenses of the words add, pat, bake, and bag.)

4.10 Write two-level rules for the Yawelmani Yokuts phenomena of Har­
mony, Shortening, and Lowering introduced on page 111. Make sure your
rules are capable of running in parallel.

4.11 Find 10 stress-neutral name suffixes (look in a phone book) and sketch
an FST which would model the pronunciation of names with or without suf­
fixes.

PROBABILISTIC MODELS
OF PRONUNCIATION
AND SPELLING

ALGERNON; But my own sweet Cecily, I have never written
you any letters.
CECILY.- You need hardly remind me of that, Ernest. I re­
member only too well that I was forced to write your letters
for you. I wrote always three times a week, and sometimes
oftener.
ALGERNON: Oh, do let me read them, Cecily ?
Cecily.- Oh, I couldn 't possibly. They would make you far
too conceited. The three you wrote me after 1 had broken off
the engagement are so beautiful, and so badly spelled, that
even now l ean hardly read them without crying a little:

Oscar Wilde, The Importance of being Ernest

Like Oscar Wilde’s fabulous Cecily, a lot of people were thinking about
spelling during the last turn of the century. Gilbert and Sullivan provide
many examples. The Gondoliers" Giuseppe, for example, worries that his
private secretary is ‘‘shaky in his spelling” while lolanthe’s Phyllis can “spell
every word that she uses”. Thorstein Veblen’s explanation (in his 1899 clas­
sic The Theory of the Leisure Class') was that a main purpose of the “ar­
chaic, cumbrous, and ineffective” English spelling system was to be difficult
enough to provide a test of membership in the leisure class. Whatever the
social role of spelling, we can certainly agree that many more of us are like
Cecily than like Phyllis. Estimates for the frequency of spelling errors in hu­
man typed text vary from 0.05% of the words in carefully edited newswire
text to 38% in difficult applications like telephone directory lookup (Kukich,
1992).

In this chapter we discuss the problem of detecting and correcting

142 Chapter 5. Probabilistic Models of Pronunciation and Spelling;

spelling errors and the very related problem of modeling pronunciation vari­
ation for automatic speech recognition and text-to-speech systems. On the
surface, the problems of finding spelling errors in text and modeling the vari­
able pronunciation of words in spoken language don’t seem to have much
in common. But the problems turn out to be isomorphic in an important
way: they can both be viewed as problems of probabilistic transduction. For
speech recognition, given a string of symbols representing the pronunciation
of a word in context, we need to figure out the string of symbols represent­
ing the lexical or dictionary pronunciation, so we can look the word up in the
dictionary. But any given surface pronunciation is ambiguous; it might corre­
spond to different possible words. For example the ARPAbet pronunciation
[er] could correspond to reduced forms of the words her. were, are, their,
or your. This ambiguity problem is heightened by pronunciation varia­
tion; for example the word the is sometimes pronounced THEE and sonic- ;
times THUH; the word because sometimes appears as because, sometimes
as ’cause. Some aspects of this variation are systematic; Section 5.7 will sur­
vey the important kinds of variation in pronunciation that are important for
speech recognition and text-to-speech, and present some preliminary rules
describing this variation. High-quality speech synthesis algorithms need to
know when to use particular pronunciation variants. Solving both speech
tasks requires extending the transduction between surface phones and lexi-
cafphones discussed in Chapter 4 with probabilistic variation.

Similarly, given the sequence of letters corresponding to a mis-spelled
word, we need to produce an ordered list of possible correct words. For
example the sequence across might be a mis-spelling of actress, or of cress,
or of acres. We transduce from the “surface” form across to tire various
possible “lexical” forms; assigning each with a probability; we then select
the most probable correct word.

In this chapter we first introduce the problems of detecting and correct- ;
trig spelling errors, and also summarize typical human spelling error patterns.
We then introduce the essential probabilistic architecture that we will use to
solve both spelling and pronunciation problems: the Bayes Rule and the
noisy channel model The Bayes rule and its application to the noisy chan­
nel model will play a role in many problems throughout the book, particu­
larly in speech recognition (Chapter 7), part-of-speech tagging (Chapter 8),
and probabilistic parsing (Chapter 12).

The Bayes Rule arid the noisy channel model provide the probabilistic
framework for these problems. But actually solving them requires an algo­
rithm. This chapter introduces an essential algorithm called the dynamic

Section5.1. Dealing with Spelling Errors 143

4 programming algorithm, and various instantiations including the Viterbi
; algorithm, the minimum edit distance algorithm, and the forward algo­

rithm. We will also see the use of a probabilistic version of the finite-state
automaton called the weighted automaton.

5.1 Dealing with Spelling Errors

The detection and correction of spelling errors is an integral part of modern
word-processors. The very same algorithms are also important in applica-
tions in which even the individual letters aren’t guaranteed to be accurately
identified: optical character recognition (OCR) and on-line handwriting ocr

recognition. Optical character recognition is the term used for automatic
recognition of machine dr hand-printed characters. An optical scanner con­
verts a machine or hand-printed page into a bitmap which is then passed to

■ an OCR algorithm.
On-line handwriting recognition is the recognition of human printed

or cursive handwriting as the user is writing. Unlike OCR analysis of hand­
writing, algorithms for on-line handwriting recognition can take advantage
of dynamic information about the input such as the number and order of
the strokes, and the speed and direction of each stroke. On-line handwrit­
ing recognition is important where keyboards are inappropriate, such as in
small computing environments (palm-pilot applications, etc.) or in scripts
like Chinese that have large numbers of written symbols, making keyboards
cumbersome.

’ In this chapter we will focus on detection and correction of spelling
errors, mainly in typed text, but the algorithms will apply also to OCR and
handwriting applications. OCR systems have even higher error rates than
human typists, although they tend to make different errors than typists. For
example OCR systems often misread “D” as “O” or “ri” as “n”. producing
‘mis-spelled’ words like derision for derision, or POQ Bach for PDQ Bach.
The reader with further interest in handwriting recognition should consult
sources such as Tappertet al. (1990), Hu et al. (1996), and Casey and Leco-
Imet (1996).

’ Kukich (1992), in her survey article on spelling correction, breaks the
? field down into three increasingly broader problems:

1 non-word error detection: detecting spelling errors that result in non­
words (like graffe for giraffe)

144 Chapter 5. Probabilistic Models of Pronunciation and Spelling

2. isolated-word error correction: correcting spelling errors that result
in non-words, for example correcting graffe to giraffe, but looking only
at the word in isolation

REAL-WORD
ERRORS

3. context-dependent error detection and correction: using the con­
text to help detect and correct spelling errors even if they acciden­
tally result in an actual word of English (real-word errors). This
can happen from typographical errors (insertion, deletion, transposi­
tion) which accidently produce a real word (e.g., there for three), of
because the writer substituted the wrong spelling of a homophone or
near-homophone (e.g. , dessert for desert, or piece for peace).

The next section will discuss the kinds of spelling-error patterns that
occur in typed text and OCR and handwriting-recognition input.

Spelling Error Patterns

The number and nature of spelling errors in human typed text differs from
those caused by pattern-recognition devices like OCR and handwriting rec­
ognizers. Grudin (1983) found spelling error rates of between 1 and 3% in
human typewritten text (this includes both non-word errors and real-word
errors). This error rate goes down significantly for copy-edited text. The
rate of spelling errors in handwritten text itself is similar; word error rates of
between 1.5 and 2.5% have been reported (Kukich, 1992).

The errors of OCR and on-line hand-writing systems vary. Yaeger et al.
(1998) propose, based on studies that they warn are inconclusive, that the
on-line printed character recognition on Apple Computer’s newton MES-
SAGEPAD had a word accuracy rate of 97 98%, that is, an error rate of 2-
3%, but with a high variance (depending on the training of the writer, etc.)
It is not clear whether the failure of the NEWTON was because this error rate
was optimistic or because a 2-3% error rate is unacceptable. More recent
devices, like 3Com’s Palm Pilot, often use a special input script (like the
Palm Pilot’s “Graffiti”) instead of allowing arbitrary handwriting. OCR er­
ror rates also vary widely depending on the quality of the input; (Lopresti
and Zhou, 1997) suggest that OCR letter-error rates typically range from
0.2% for clean, first-generation copy to 20% or worse for multigeneration
photocopies and faxes.

Section 5.2. Spelling Error Patterns 145

In an early study, Damerau (1964) found that 80% of all misspelled
words (non-word errors) in a sample of human keypunched text were caused
by single-error misspellings: a single one of the following errors?

w • insertion: mistyping the as ther
? • deletion: mistyping the as th

• substitution: mistyping the as thw
? • transposition: mistyping the hte

Because of this study, much following research has focused on the
correction of single-error misspellings. Indeed, the first algorithm we will
present later in this chapter relies on the large proportion of single-error mis-
spellings.

Kukich (1992) breaks down human typing errors into two classes. Ty­
pographic errors (for example misspelling spell as speel), are generally
related to the keyboard. Cognitive errors (for example misspelling sepa-
rate as seperate) are caused by writers who don’t know how to spell the
word, Grudin (1983) found that the keyboard was the strongest influence on
the errors produced; typographic errors constituted the majority of all error
types. For example consider substitution errors, which were the most com-
mon error type for novice typists, and the second most common error type
for expert typists. Grudin found that immediately adjacent keys in the same
row accounted for 59% of the novice substitutions and 31% of the error sub­
stitutions (e.g., smsllfor small). Adding in errors in the same column and
homologous errors (hitting the corresponding key on the opposite side of
the keyboard with the other hand), a total of 83% of the novice substitutions
and 51% of the expert substitutions could be considered keyboard-based er­
rors. Cognitive errors included phonetic errors (substituting a phonetically
equivalent sequence of letters (seperate for separate) and homonym errors
(substituting piece for peace). Homonym errors will be discussed in Chap-
tcr 7 when we discuss real-word error correction.

While typing errors are usually characterized as substitutions, inser­
tions, deletions, or transpositions, OCR errors are usually grouped into five
classes, substitutions, multisubstitutions, space deletions or insertions, and

1 In another corpus, Peterson (1986) found that single-error misspellings accounted for an
even higher percentage of all misspelled words (93-95%). The difference between the 80%
and the higher figure may be due to the fact that Damerau’s text included errors caused in
transcription to punched card forms, errors in keypunching, and errors caused by paper tape
equipment (!) in addition to purely human misspellings.

INSERTION

DELETION

SUBSTITUTION

TRANSPOSITION

146 Chapter 5. Probabilistic Models of Pronunciation and Spelling

failures. Lopresti and Zhou. (1997) give the following example of common
OCR errors:

Correct:
The quick brown fox jumps over the lazy dog.
Recognized:
’Ihe q~ ick brown foxjurnps over tb 1 azy dog.

Substitutions (e -4 c) are generally caused by visual similarity (rather
than keyboard distance), as are multisubstitutions (T -4 ’I, m -y rn, he -4
b). Multisubstitutions are also often called framing errors. Failures (repre­
sented by the tilde character w -> ~) are cases where the OCR algorithm
does not select any letter with sufficient accuracy. J

5.3 Detecting Non-Word Errors

Detecting non-word errors in text, whether typed by humans or scanned, is- |
most commonly done by the use of a dictionary. For example, the word
foxjurnps in the OCR example above would not occur in a dictionary. Some j|
early research (Peterson, 1986) had suggested that such spelling dictionar­
ies would need to be kept small, because large dictionaries contain very rare J
words that resemble misspellings of other words, For example wont is a fl
legitimate but rare word but is a common misspelling of won’t. Similarly, :
veery (a kind of thrush) might also be a misspelling of very. Based on a sim- ■
pie model of single-error misspellings, Peterson showed that it was possible
that 10% of such misspellings might be “hidden” by real words in a 50,000
Word dictionary, but that 15% of single-error misspellings might be “hidden” .
in a 350,000-word dictionary. In practice, Damerau and Mays (1989) found
that this was not the case; while some misspellings were hidden by real
words in a larger dictionary, in practice the larger dictionary proved more
help than harm.

Because of the need to represent productive inflection (the w and M
suffixes) and derivation, dictionaries for spelling error detection; usually in­
clude models of morphology, just as the dictionaries for text-to-speech we '
saw in Chapters 3 and 4. Early spelling error detectors simply allowed any
word to have any suffix - thus Unix SPELL accepts bizarre prefixed words
like misclam and antiundoggingly and suffixed words based on the]ike the-
hood and theness. Modern spelling error detectors use more linguistically- 7
motivated morphological representations (see Chapter 3).

Section 5.4. Probabilistic Models 147

5.4 Probabilistic Models

This section introduces probabilistic models of pronunciation and spelling
variation. These models, particularly the Bayesian inference or noisy chan­
nel model, will be applied throughout this book to many different problems.

We claimed earlier that the problem of ASR pronunciation modeling,
and the problem of spelling correction for typing or for OCR, can be modeled
as problems of mapping from one string of symbols to another. For speech
recognition, given a string of symbols representing the pronunciation of a
word in context, we need to figure but the string of symbols representing
the lexical or dictionary pronunciation, so we can look the word up in the
dictionary. Similarly, given the incorrect sequence of letters in a mis-spelled
word, we heed to figure out the correct sequence of letters in the correctly
spelled word.

Figure 5.1 The noisy channel model.

The intuition of the noisy channel model (see Figure 5.1) is to treat channel
the surface form (the “reduced”” pronunciation or misspelled word) as an
instance of the lexical form (the “lexical” pronunciation or correctly-spelled
word) which has been passed through a noisy communication channel. This
channel introduces “noise” which makes it hard to recognize the “true” word.
Our goal is then to build a model of the channel so that we can figure out how
it modified this “true” word and hence recover it. For the complete speech
recognition tasks, there are many sources of “noise”; variation in pronun­
ciation, variation in the realization of phones, acoustic variation due to the
channel (microphones, telephone networks, etc.). Since this chapter focuses
on pronunciation, what we mean by “noise” here is the variation in pronun­
ciation that masks the lexical or “canonical” pronunciation; the other sources
of noise in a speech recognition system Will be discussed in Chapter 7. For
spelling error detection, what we mean by noise is the spelling errors which
mask the correct spelling of the word. The metaphor of the noisy channel
comes from the application of the model to speech recognition in the IBM
labs in the 1970s (Jelinek, 1976). But the algorithm itself is a special case

148 Chapter 5. Probabilistic Models of Pronunciation and Spelling

bayesian of Bayesian inference and as such has been known since the work of Bayes
(1763). Bayesian inference or Bayesian classification was applied success­
fully to language problems as early as the late 1950s, including thb OCR
work of Bledsoe in 1959, and the seminal work of Mosteller and Wallace
(1964) on applying Bayesian inference to determine the authorship of the
Federalist papers.

In Bayesian classification, as in any classification task, we are given
some observation and our job is to determine which of a set of classes it
belongs to. For speech recognition, imagine for the moment that the ob­
servation is the string of phones which make up a word as we hear it. For
spelling error detection, the observation might be the string of letters that
constitute a possibly-misspelled word. In both cases, we want to classify
the observations into words; thus in the speech case, no matter which of the
many possible ways the word about is pronounced (see Chapter 4) we want ;
to classify it as about. In the spelling case, no matter how the word separate
is misspelled, we’d like to recognize it as separate.

Let’s begin with the pronunciation example. We are given a string of
phones (say [ni]). We want to know which word corresponds to this string of
phones. The Bayesian interpretation of this task starts by considering all pos-
siblc classcs-iu this case, all possible words. Out of this universe of words,
we want to chose the word which is most probable given the observation we

V ; have ([ni]). In other words, wc want, out of all words in the vocabulary V
* the single word such that P(word] observation) is highest. Wc use w to mean
o “our estimate of the correct w”, and we’ll use O to mean “the observation

sequence [ni]” (we call it a sequence because we think of each letter as an |
individual observation); Then the equation for picking the best word given ;;
is: ■■■■■

argmax P(wjd) • (5.1)

The function argmax Y/(.v) means “the x such that /(x) is maximized”.
While (5.1) is guaranteed to give us the optimal word w, it is not clear how
to make the equation operational; that is, for a given word w and observation
sequence □ we don’t know howto directly computeP(w\0)„ The intuition of
Bayesian classification is to use Bayes’rule to transform (5.1) into a product
of two probabilities, each of which turns out to be easier to compute than
P(u |O). Bayes’ rule is presented in (5.2); it gives us a way to break down
P(x\O} into three other probabilities:

Section 5.5. Applying the Bayesian Method to Spelling 149

We can see this by substituting (5.2) into (5.1) to get (5.3):

w = argmax
w&V

P(O\w)P(w)
P[O) (5.3)

The probabilities on the right-hand side of (5.3) are for the most part
easier to compute than the probability P(w\Oy that we were originally trying
to maximize in (5.1). For example, P(w), the probability of the word itself,
we can estimate by the frequency of the word. And we will see below that
P(O|w) turns out to be easy to estimate as well. But P(O), the probability
of the observation sequence, turns out to be harder to estimate. Luckily, we
can ignore P(O). Why? Since we are maximizing over all words, we will
be computing for each word. But P(O} doesn’t change for each
word; we are always asking about the most likely word string for the same
observation O, which must have the same probability P(O). Thus:

w — argmax-----—= argmaxP(O|w) P(w) (5.4)
wet : P\P) . ..

To summarize, the most probable word w given some observation O
can be computing by taking the product of two probabilities for each word,
and choosing the word for which this product is greatest. These two terms
have names; P(w) is called the Prior probability, and P{O\w) is called the prior

likelihood. . likelihood

likelihood prior

Key Concept #3. w = argmax P(t?[w) P(w) . (5.5)

In the next sections we will show how to compute these two probabili­
ties for the probabilities of pronunciation and spelling.

5.5 Applying the Bayesian Method to Spelling

s There are many algorithms for spelling correction; we will focus on the
Bayesian (or noisy channel) algorithm because of its generality. Chapter 6
will show how this algorithm can be extended to model real-word spelling
errors; this section will focus on non-word spelling errors. The noisy chan-
ncl approach to spelling correction was first suggested by Kernighan et al.
(1990); their program^ correct; takes words rejected by the Unix spell
program^ generates a list of potential correct words, rank them according to
liquation (5.5), and picks the highest-ranked one.

150 Chapter 5. Probabilistic Models of Pronunciation and Spelling

Let’s walk through the algorithm as it applies to Kernighan et al.’s
(1990) example misspelling acress. The algorithm has two stages: proposing
candidate corrections and scoring the candidates.

In order to propose candidate corrections Kernighan et al. make the
simplifying assumption that the correct word will differ from the misspelling
by a single insertion, deletion, substitution, or transposition. As Damerau’s
(1964) results show, even though this assumption causes the algorithm to
miss some corrections, it should handle most spelling errors in human typed
text. The list of candidate words is generated from the typo by applying any
single transformation which results in a word in a large on-line dictionary.
Applying all possible transformations to acress yields the list of candidate
words in Figure 5.2.

Figure 5.2 Candidate corrections for the misspelling acress, together with
the transformations that would have produced the error (after Kernighan et ah
(1990)). represents a null letter.

Error Correction
Correct
Letter

Transformation
Error

. Letter
Position
(Letter#) Type

acress :.. actress . L-'i,... ■ • — ?. 2 deletion L
acress):/ cress • • ~ " a A o insertion
acress caress ■d' ca . ac 0 i transposition
acress access < A c/.i. ;' r 2 : substitution
acress across 0 e 3 substitution
acress acres ' ■ ■ 2 5 insertion
acress acres 2 4 insertion 2

88

The second stage of the algorithm scores each correction by Equa­
tion 5.4. Let t represent the typo (the misspelled word), and let c range over
the set C of candidate corrections. The most likely correction is then:

likelihood prior

c — argmax P(c') ..
. I ceC.

As in Equation (5.4) we have omitted the denominator in Equation (5.6)
since the typo t, and hence its probability P(t), is constant for all c. The prior
probability of each correction P(c) can be estimated by counting how often

normalizing. the word c occurs in some corpus, and then normalizing these counts by the

Bi

Section 5.5. Applying the Bayesian Method to Spelling 151

total count of all words.2 So the probability of a particular correction word
c is computed by dividing the count of c by the number A of words in the
corpus. Zero counts can cause problems, and so we will add .5 to all the
counts. This is called “smoothing”, and will be discussed in Chapter 6; note
that in Equation (5.7) we can’t just divide by the total number of words A
since we added .5 to the counts of all the words, so we add .5 for each of the

? C V words in the vocabulary).

Ir pW = £«±^ (57);f n+o.5k k'
Chapter 6 will talk more about the role of corpora in computing prior

probabilities; for now let’s use the corpus of Kernighan et al. (1990), which
C is the 1988 AP newswire corpus of 44 million words. Thus N is 44 million.

Since in this corpus the word actress occurs 1343 times, the word acres 2879
v times, and so on, the resulting prior probabilities are as follows:

c freq(c) p(c)
actress 1343 .0000315
cress 0 .000000014
caress 4 .0000001
access 2280 .000058
across 8436 .00019
acres 2879 .000065

Computing the likelihood term p(t|c) exactly is an unsolved (unsolve-
able?) research problem; the exact probability that a word will be mistyped
depends on who the typist was, how familiar they were with the keyboard
they were using, whether one hand happened to be more tired than the other,
etc. Luckily, while p(t|c) cannot be computed exactly, it can be estimated
pretty well, because the most important factors predicting an insertion, dele­
tion, transposition are simple local factors like the identity of the correct
letter itself, how the letter was misspelled, and the surrounding context. For

: example, the letters m and n are often substituted for each other; this is partly
) a fact about their identity (these two letters are pronounced similarly and

; they are next to each other on the keyboard), and partly a fact about context
(because they are pronounced similarly, they occur in similar contexts).

One simple way to estimate these probabilities is the one that Kerni-
■ ghan et al. (1990) used. They ignored most of the possible influences on

the probability of an error and just estimated e.g. p(acress\across) using
v -■ Normalizing means dividing by some total count so that the resulting probabilities fall

legally between 0 and 1. . .

152 Chapter 5. Probabilistic Models of Pronunciation and Spelling

the number of times that e was substituted for o in some large corpus of er-
rors. This is represented by a confusion matrix, a square 26 x 26 table which
represents the number of times one letter was incorrectly used instead of an­
other. For example, the cell labeled [o, e] in a substitution confusion matrix
would give the count of times that e was substituted for o. The cell labeled |
[r.s] in an insertion confusion matrix would give the count of times that / y
was inserted after a. A confusion matrix can be computed by hand-coding
a collection of spelling errors with the correct spelling and then counting
the number of times different errors occurred (this has been done by Grudin
(1983)). Kernighan et al. (1990) used four confusion matrices, one for each
type of single-error: : . . /tty 1

• delyyv] Contains the number of times in the training set that the char­
acters xy in the correct word were typed as x. f

• ins[x,y] contains the number of times in the training set that the char­
acter x in the correct word was typed as xy. y

• sub[x, y]' the number of times that x was typed as y.
• trans[x,y] the number of times that xy was typed as yx. ■■

Note that they chose to condition their insertion and deletion proba­
bilities on the previous character; they could also have chosen to condition
on the following character. Using these matrices, they estimated p(t|c) as
follows (where cp is the yth character of the word c):

' (-dcll^-byU deletion
county. <>] •d de*edon

< Xy y x >
? <58>

; gggyd , if transposition ;/y

Figure 5.3 shows the final probabilities for each of the potential correc­
tions; the prior (front Equation (5.7)) is multiplied by the likelihood (com­
puted using Equation (5.8) and the confusion matrices). The final column '
shows the “normalized percentage”.

This implementation of the Bayesian algorithm predicts acres as the
correct word (at a total normalized percentage of 45%), and actress as the /
second most likely word. Unfortunately; the algorithm was wrong here: The
writer’s intention becomes clear from the context: ... was called a “stellar J
and versatile across whose combination of sass and glamour has defined x
her.A”; The surrounding words make itclear that actress and not acres was |

Section 5.6. Minimum Edit Distance 153

c freq(c) P(c) p(t|c) p(t|c)p(c) %
: actress 1343 .0000315 .000117 3.69 x 10“9 37%
cress 0 .000000014 .00000144 2.02x10“14 0%
caress 4 .0000001 .00000164 1.64 x 10”13 0%
access 2280 .000058 .000000209 1.21 x 10" ” . 0%
across 8436 .00019 .0000093 i.77 x nr9 18%
acres 2879 .000065 .0000321 2.09 x IO”9 21%
acres 2879 .000065 .0000342 2.22 x 10”9 • 23%

Figure 5.3 Computation of the ranking for each candidate correction. Note
that the highest ranked word is not actress but acres (the two lines at the bottom
of the table), since acres can be generated in two ways. The del\}, zns[], rabl],
and trans[} confusion matrices are given in full in Kernighan et al. (1990).

the intended word; Chapter 6 will show how to augment the computation of
the prior probability to use the surrounding words.

The algorithm as we have described it requires hand-annotated data to
train the confusion matrices. An alternative approach used by Kernighan
et al. (1990) is to compute the matrices by iteratively using this very spelling
error correction algorithm itself. The iterative algorithm first initializes the
matrices with equal values; thus any character is equally likely to be deleted,
equally likely to be substituted for any other character, etc. Next the spelling

; error correction algorithm is run on a set of spelling errors. Given the set
of typos paired with their corrections, the confusion matrices can now be
recomputed, the spelling algorithm run again, and so on. This clever method
turns out to be an instance of the important EM algorithm (Dempster et al.,
1977) that we will discuss in Chapter 7 and Appendix D. Kernighan et al.
(1990)’s algorithm was evaluated by taking some spelling errors that had
two potential corrections, and asking three human judges to pick the best
correction. Their program agreed with the majority vote of the human judges
87% of the time.

5.6 Minimum Edit Distance

; The previous section showed that the Bayesian algorithm, as implemented
with confusion matrices, was able to rank candidate corrections. But Kerni­
ghan et al. (1990) relied on the simplifying assumption that each word had
only a single spelling error. Suppose we wanted a more powerful algorithm

154 Chapter 5. Probabilistic Models of Pronunciation and Spelling

which could handle the case of multiple errors? We could think of such
distance an algorithm as a general solution to the problem of string distance. The

“string distance” is some metric of how alike two strings are to each other.
The Bayesian method can be viewed as a way of applying such an algorithm
to the spelling error correction problem; we pick the candidate word which
is “closest” to the error in the sense of having the highest probability given
the error.

One of the most popular classes of algorithms for finding string dis-
d‘stanceedit tance are those that use some version of the minimum edit distance algo­

rithm, named by Wagner and Fischer (1974) but independently discovered
by many people; see the History section. The minimum edit distance be­
tween two strings is the minimum number of editing operations (insertion,
deletion, substitution) needed to transform one string into another. For ex­
ample the gap between intention and execution is five operations, which can ;

alignment be represented in three ways; as a trace, an alignment, or a operation list
as show in Figure 5.4.

Trace

Alignment

Operation
List

.incentio

. o x o c, u- t i; o

i r. t one t i
E e x e c u t i

delete i
t ■ ? ■-nsubstitute n by e

• • • £
substitute t by x

insert u e

substitute n by c -►

n

. n • ■ : i;;

on.-..
o n- ■

n tent ion
t- e. n-- L L o n.- :
t e'n-t ion ■
x e n t i o n
xenution

' e x e c u l ...f o ri TT

Figure 5.4 Three methods for representing differences between sequences:
(after Kruskal (1983)) ;

; We can also assign a particular cost or weight to each of these oper­
ations. The Levenshteindistance: between two sequences is the simplest
weighting factor in which each of the three operations has a cost of 1 (Lev­
enshtein, 1966).; Thus the Levenshtein distance between intention and ex-
ecution is 5, Levenshtein also proposed an alternate version of his metric "

Section 5.6. Minimum Edit Distance 155

in which each insertion or deletion has a cost of one, and substitutions are
not allowed (equivalent to allowing substitution, but giving each substitution
a cost of 2, since any substitution can be represented by one insertion and
one deletion). Using this version, the Levenshtein distance between inten-
tion and execution is S. We can also weight operations by more complex
functions, for example by using the confusion matrices discussed above to
assign a probability to each operation. In this case instead of talking about
the “minimum edit distance” between two strings, we are talking about the
“maximum probability alignment” of one string with another. If we do this,
an augmented minimum edit distance algorithm which multiplies the prob­

it abilities of each transformation can be used to estimate the Bayesian likeli­
hood of a multiple-error typo given a candidate correction.

The minimum edit distance is computed by dynamic programming, programming

Dynamic programming is the name for a class of algorithms, first introduced
by Bellman (1957), that apply a table-driven method to solve problems by
combining solutions to subproblems. This class of algorithms includes the
most commonly-used algorithms in speech and language processing, among
them the minimum edit distance algorithm for spelling error correction the
Viterbi algorithm and the forward algorithm which are used both in speech
recognition and in machine translation, and the CYK and Earley algorithm
used in parsing. We will introduce the minimum-edit-distance, Viterbi, and

? forward algorithms in this chapter and Chapter 7, the Earley algorithm in
Chapter 10, and the CYK algorithm in Chapter 12.

The intuition of a dynamic programming problem is that a large prob­
lem can be solved by properly combining the solutions to various subprob­
lems. For example, consider the sequence or “path” of transformed words
that comprise the minimum edit distance between the strings intention and
execution. Imagine some string (perhaps it is exention) that is in this opti-

: mal path (whatever it is). The intuition of dynamic programming is that if
exention is in the optimal operation-list, then the optimal sequence must also
include the optimal path from intention to exention. Why? If there were a
shorter path from intention to exention then we could use it instead, resulting
ill a shorter overall path, and the optimal sequence wouldn’t be optimal, thus
leading to a contradiction. \ < v

Dynamic programming algorithms for sequence comparison work by
creating a distance matrix with one column for each symbol in the target se-

; quence and one row for each symbol in the source sequence (i.e., target along
the bottom, source along the side). For minimum edit distance, this matrix

x is the edit-distance matrix. Each cell edit-distance\i.j\ contains the distance

156 Chapter 5. Probabilistic Models of Pronunciation and Spelling

between the first i characters of the target and the first j characters of the
source. Each cell can be computed as a simple function of the surrounding
cells; thus starting from the beginning of the matrix it is possible to fill in 3
every entry. The value in each cell is computing by taking the minimum of 3 2
the three possible paths through the matrix which arrive there:

(distance[i — 1, j] + ins-cost^arget^ \2 J|
P(r|c) — min < distance^ — 1, j — 1] + subst-cost(source j,target^ (5.9)

(distance^, j — 1] +del-cost(source j))
The algorithm itself is summarized in Figure 5.5, while Figure 5.6 ;

shows the results of applying the algorithm to the distance between inten­
tion and execution assuming the version of Levenshtein distance in which
insertions and deletions each have a cost of 1 and substitutions have a cost
of2.

function MLN-EDlT-DiSTAX(TXt^ source) returns min-distance

. mULENGTHtso^^
Create a distance matrixdistance[n+1,m+1]
dLslance[O:O! <-()
for each column i from 0 to n do

for each row j from 0 to m do
distanced J] t-MTNCdistanceli— l,j] + ins-costCtarget,).,

distance[i— l,j—1] + subst-cosdsourcej, target^,
distancelij— 1] + del-cost^sourcej))

gg

: Figure 5.5 The minimum edit distance algorithm, an example of the class
of dynamic programming algorithms. 1

5.7 English Pronunciation Variation

When any of the fugitives of Ephraim said: ‘Let me go over/ the men
of Gilead said unto him: ‘Art thou an Ephraimite?’ If he said: ‘Nay’;
then said they unto him: ‘Say now Shibboleth’; and he said ‘Sibbo-
leth’; for he could not frame to pronounce it right; then they laid hold
on him, and slcv him at the fords of the Jordan.

Judges 12:5-6

Section 5.7. English Pronunciation Variation 157

n 9 10 11 10 11 12 11 16 9 8
o 8 9 10 9 10 11 10 9 8 9
i 7 8 9 8 9 10 9 8 9 10
t 6 7 8 7 8 9 8 9 10 11'
n 5 6 7 6 7 8 9 10 11 12
e 4 5 6 5 6 7 8 9 10 11
t 3 4 5 6 7 8 9 10 11 12
n 2 3 4 5 6 7 8 8 10 11
i 1 2 3 4 5 6 7 8 9 10
0 1 • 2 3 4 5 6 r 7 8 9

e ? X e c u t i 0 n

Figure 5.6 Computation of minimum edit distance between intention and
execution via algorithm of Figure 5.5, using Levenshtein distance with cost of
1 for insertions or deletions, 2 for substitutions. Substitution of a character for
itself has a cost of 0.

This passage from Judges is a rather gory reminder of the political
importance of pronunciation variation. Even in our (hopefully less politi­
cal) computational applications of pronunciation, it is important to correctly
model how pronunciations can vary. We have already seen that a phoneme
can be realized as different allophones in different phonetic environments.
We have also shown how to write rules and transducers to model these
changes for speech synthesis. Unfortunately, these models significantly sim­
plified the nature of pronunciation variation. In particular, pronunciation
variation is caused by many factors in addition to the phonetic environment.
This section summarizes some of these kinds of variation; the following sec­
tion will introduce the probabilistic tools for modeling it.

Pronunciation variation is extremely widespread. Figure 5.7 shows
the most common pronunciations of the words because and about from the
hand-transcribed Switchboard corpus of American English telephone con­
versations. Note the wide variation in pronunciation for these two words
when spoken as part of a continuous stream of speech.

What causes this variation? There are two broad classes of pronunci­
ation variation, lexical variation and allophonic variation. We can think variation

of lexical variation as a difference in what segments are used to represent vacation lc

the word in the lexicon, while allophonic variation is a difference in how the
individual segments change their value in different contexts. In Figure 5.7,
most of the variation in pronunciation is allophonic; that is, due to the influ-

158 Chapter 5. Probabilistic Models of Pronunciation and Spelling

:r^

because about
IPA ARPAbet % IPA ARPAbet %
[bikAz] [b iy k ah z] : 27% [obau] . [ax b aw] 32%
[bikxz] [b ix k ah z] 14% [obaut] [ax b aw t] 16%
[KazI [k ah z] . 7% [bats] [b aw] 9%
[koz] [k ax z] 5% [xbau] [ix b aw] 8%
[bikoz] [b ix k ax z] 4% [ibaut] [ix b aw t] 5% 3
[bikAz] [bihkahz] . 3%. [ibae] [ix b ae] 4%
[bokAz] [baxkahz] . 3% [obagr] [ax b ae dx] 3% %
[kuz] p . [kuhz] .. 2% [baur] [b aw dx] 3% .
[ks] Iks] , 2% . . [bae] [b ae] 3%.

'’*Zi : [kixz] 2% • : [baut] [b aw t] .. 3%
• .M ■ [kihz] : 2% [obaur] [ax b aw dx] 3%

[bikA$] [b iykahzh] . 2% [obae] [ax b ae | 3%
[bikAs] [b iy k ah s] 2% [ba] [b aa] 3% •
[bikA] B [b iy k ah] 2% [beer] [b ae dx] 3%
[bikuz], | b iy k aa z] 2% [ibaur] [ix b aw dx] 2%

[ax z] . 2% [ibat] [ixbaat] 2%

< Figure 5.7 The 16 most common pronunciations of because and about
from the hand-transcribed Switchboard corpus of American English conver-
sational telephone speech (Godfrey et al., 1992; Greenberg et al., 1996).

SOCIOLINGUISTIC

DIALECT
VARIATION

ence of the surrounding sounds, syllable structure, and so forth. But the fact
that the word because can be pronounced either as monosyllabic ’cnzwc or
bisyllabic because is probably a lexical fact, having to do perhaps with the
level of informality of speech.

An important source of lexical variation (although it can also affect al­
lophonic variation) is sociolinguistic variation. Sociolinguistic variation is
due to extralinguistic factors such as the social identity or background of the
speaker. One kind of sociolinguistic variation is dialect variation. Speak­
ers of some deep-southern dialects of American English use a monophthong
or near-monophthong[a] or [ar] instead of a diphthong in some words with
the vowel [at]. In these dialects rice is pronounced [ra:s]. African-American
Vernacular English (AAVE) has many of the same vowel differences from
General American as does Southern American English, and also has indi­
vidual words with specific pronunciations such as [bidm for business and
[aeks] for ask. For older speakers or those hot from the American West or
Midwest, the words caught and cot have different vowels fkaf and [kal]

Ms

is
a

Section 5.7. English Pronunciation Variation 159

respectively). Young American speakers or those from the West pronounce
the two words cot and caught the same; the vowels [□] and [a] are usually
not distinguished in these dialects. For some speakers from New York City
like the first author’s parents, the words Mary ([meiri]), marry ([meeri]), and
merry ([meri]) are all pronounced differently, while other New York City
speakers like the second author pronounce Mary, and merry identically, but
differently than marry. Most American speakers pronounce all three of these
words identically as ([meri]). Students who are interested in dialects of En­
glish should consult Wells (1982), the most comprehensive study of dialects
of English around the world.

sociolinguistic differences are due to register or style rather than
dialect. In a pronunciation difference that is due to style, the same speaker
might pronounce the same word differently depending on who they were
talking to or what the social situation is; this is probably the case when
choosing between because and ’cause above. One of the most well-studied
examples of style-variation is the suffix -ing (as in something'), which can be
pronounced [rrj] or /m/ (this is often written somethin ’). Most speakers use
both forms; as Labov (1966) shows, they use [i y] when they are being more
formal, and [m] when more casual. In fact whether a speaker will use [ig] or
[m] in a given situation varies markedly according to the social context, tire
gender of the speaker, the gender of the other speaker, and so on. Wald and
Shopen (1981) found that men are more likely to use the non-standard form
[in] than women, that both men and women are more likely to use more of
the standard form [ig] when the addressee is a women, and that men (but not
women) tend to switch to [m] when they are talking with friends.

'AW? Where lexical variation happens at the lexical level, allophonic varia­
tion happens at the surface form and reflects phonetic and articulatory fac­
tors.3 For example, most of the variation in the word about in Figure 5.7
was caused by changes in one of the two vowels or by changes to the final
ft]. Some of this variation is due to the allophonic rules we have already
discussed for the realization of the phoneme /t/. For example the pronun­
ciation of about as [obaurj/fax b aw dx]) has a flap at the end because the
next word was the word it, which begins with a vowel; the sequence about
it was pronounced [obaurij/fax b aw dx ix]). Similarly, note that final [t] is

A often deleted; (about as [bau]/[b aw]). Considering these cases as “deleted”
is actually a simplification; many of these “deleted” cases of [t] are actually

REGISTER

STYLE

3 l or some purposes we distinguish between allophonic variation and what are called “op­
tional phonological rules”; for the purposes of this textbook we will lump these both together
as “allophonic variation”.

160 Chapter 5. Probabilistic Models of Pronunciation and Spelling?

realized as a slight change to the vowel quality called glottalization which
are not represented in these transcriptions.

When we discussed these rules earlier, we implied that they were de­
terministic; given an environment, anile always applies. -This is by no means
the case. Each of these allophonic rules is dependent on a complicated set of .
factors that must be interpreted probabilistically. In the rest of this section
we summarize more of these rules and talk about the influencing factors. J

coarticulation Many of these rules model coarticulation, which is a change in a segment
due to the movement of the articulators in neighboring Segments. Most al­
lophonic rules relating English phoneme to their allophones can be grouped
into a small number of types: assimilation, dissimilation; deletion, flapping,
vowel reduction, and epenthesis . s i

assimilation Assimilation is the change in a segment to make it more like a neigh­
boring segment. The dentalization of [t] to (fl) before the dental consonant
[0] is an example ofassimilation. Another common type of assimilation

palatalization in English and cross-linguislically is palatalization. Palatalization occurs
when the constriction for a segment occurs closer to the palate than it nor­
mallywould, because the following segment is palatal or alveolo-palatali
In the most common cases, /s/ becomes [J],/z/ becomes [3], /t/ becomes [t[
and /d/ becomes d;^. We sawone case of palatalization in Figure 5.7 in the
pronunciation of because as [bikAs] (ARPAbet [b iy k ah zhj). Here the
final segment; of because., a lexical /z/. is realized; as [3], because the fol­
lowing word was you've. So the sequence because you’ve was pronounced
IbikA^uv।. A simple version of a palatalization rule might be expressed as
follows; Figure 5.8 shows examples from the Switchboard corpus.

A
Zj
t

IK
/ — {y} (5.10)

Note in Figure 5.8 that whether a i ll is palatalized depends on lexical
factors like word frequency is more likely to be palatalized in frequent
words and phrases).

deletion Deletion is quite common in English speech. We saw examples of
deletion of final /t/ above, in the words about and it. ft/ and /d/ are often
deleted before consonants, or when they arc part of a sequence of two or
three consonants; Figure 5.9 shows some examples.;

The many factors that influence the deletion of /t/ and /d/ have been .;
extensively studied. For example /d/ is more likely to be deleted than /t/.

Section 5.7, English Pronunciation Variation 161

Figure 5.8 Examples of palatalization from the Switchboard corpus; the
Iemma you (including your, you’ve, and you’d) was by far the most common
cause of palatalization, followed by year(s) (especially in the phrases this year
and last year).

Phrase
1 IPA
j Lexical

IPA
Reduced

ARPAbet
Reduced

set your [setjar] [setJa’J [s eh ch er]
not yet [not jet] [natjet] [n aa ch eh t]

7 last year [lasstjir] [laestjir] - [1 ae s ch iy r]
what you [WAtju] [wot Ju] [w ax ch uw]

' this year [disjir] [MM [dh ih sh iy r]
because you’ve [bikxzjuv] [bikA^uv] [b iy k ah zh uw v]

■did you [didju] [did3yA] [d ih jh y ah]

Phrase
IPA
Lexical

IPA
Reduced

ARPAbet
Reduced

find him [faindhim] [fainim] [f ay nixm]
around this [oraunddis] iraums । [ix raw nibs]
mind boggling [mambogliq] marnboglig] [m ay n b ao g el ih ng]
mostplaces moustpleisiz] mouspleisiz] [m ow s p ley s ix z]
draft the dr^ftdi] drakdii [dr ae f dhiy]
left me [leftmi] kfmi] [1 eh f m iy].

Figure 5.9 Examples of /t/ and/d/ deletion from Switchboard. Some of
these examples may have glottalization instead of being completely deleted.

Both are more likely to be deleted before a consonant (Labov, 1972). The
final /t/ and /d/ in the words and and just are particularly Ekely to be deleted
(Labov, 1975; Neu, 1980). Wolfram (1969) found that deletion is more
likely in faster or more casual speech, and that younger people and males

H are more Ekely to delete. Deletion is more likely when the two words sur-
7 rounding the segment act as a sort of phrasal unit, either occurring together

frequently (Bybee, 1996), having a high mutual information or trigram
predictability (Gregory et al., 1999), or being tightly connected for other

■ reasons (Zwicky; 1972). Fasold (1972), Labov (1972), and many others have
shown that deletion is less likely if the word-final /t/ or /d/ is the past tense
ending. For example in Switchboard, deletion is more likely in the word

; . a than in the word turned (30% /d/-deletion) even
though the two words have similar frequencies.

162 Chapter 5. Probabilistic Models of Pronunciation and Spelling

The flapping rule is significantly more complicated than we suggested
in Chapter 4, as a number of scholars have pointed out (see especially Rhodes ■
(1992)). The preceding vowel is highly likely to be stressed, although this is
not necessary (for example there is commonly a flap in the word thermome­
ter [O^'mamira1]). The following vowel is highly likely to be unstressed, al­
though again this is not necessary, /t / is much more likely to flap than 5
/d/. There are complicated interactions with syllable, foot, and word bound­
aries. Flapping is more likely to happen when the speaker is speaking more
quickly, and is more likely to happen at the end of a word when it forms
a collocation (high mutual information) with the following word (Gregory
ci al.,1999). Flapping is less likely to happen when a speaker hyperar-

hyperarticulates ticulates, i.e. uses a particularly clear form of speech, which often happens
when users are talking to computer speech recognition systems (Oviatt et al.,
1998). There is a nasal flap T* whose tongue movements resemble the oral
flap but in which the velum is lowered. Finally, flapping doesn’t always hap­
pen, even when the environment is appropriate; thus the flapping rule, or
transducer, needs to be probabilistic, as we will see below.

We have saved for last one of the most important phonological pro- ;
cesses: vowel reduction, in which many vowels in unstressed syllables are ’

towels13 realized as reduced vowels, the most common of which is schwa ([a]). 1
schwa Stressed syllables are those in which more air is pushed out of the lungs: <

stressed syllables are longer, louder, and usually higher in pitch than un- j
stressed syllables. Vowels in unstressed syllables in English often don’t have 1
their full form; the articulatory gesture isn’t as complete as for a full vowel.)
As a result the shape of the mouth is somewhat neutral; the tongue is nei-]
ther particularly high nor particularly low. For example the second vowels ,
inparakeet is schwa: [pmrokit], I

While schwh is the most common reduced vowel, it is not the only
one, at least not in some dialects. Bolinger (1981) proposed three reduced
vowels: a reduced mid vowel [o], a reduced front vowel [i], and a reduced
rounded vowel (d. But the majority of computational pronunciation lex-
icons or computational models of phonology systems limit themselves to
one reduced vowel ([:>]) (for example PRONLEX and CELEX) or at most
two (|.)l =ARPABET [ax] and [i] = ARPAbet [ix|). Miller (1998) was able
to train a neural net to automatically categorize a vowel as [a] or [i] based y?
only on the phonetic context, which suggests that for speech recognition and
text-to-speech purposes, one reduced vowel is probably adequate. Indeed.
Wells (1982, p, 167-168) notes that [o] and [i] are falling together in many V
dialects of English including General American and Irish, among others, a %

Section 5.8. The Bayesian Method for Pronunciation 163

phenomenon he calls weak vowel merger.
A final note: not all unstressed vowels are reduced; any vowel, and

diphthongs in particular can retain their full quality even in unstressed po­
sition. For example the vowel [ei] (ARPAbet [ey]) can appear in stressed
position as in the word eight) ['eit] or unstressed position as in the word al­
ways [d.weiz]. Whether a vowel is reduced depends on many factors. For
example the word the can be pronounced with a full vowel di or reduced
vowel do. It is more likely to be pronounced with the reduced vowel do in
fast speech, in more casual situations, and when the following word begins
with a consonant. It is more likely to be pronounced with the full vowel di
when the following word begins with a vowel or when the speaker is having
“planning problems”; speakers are more likely to use a full vowel than a re­
duced one if they don’t know what they are going to say next (Fox Tree and
Clark, 1997). See Keating et al. (1994) and Jurafsky et al. (1998) for more
details on factors effecting vowel reduction in the TIMIT and Switchboard
corpora. Other factors influencing reduction include the frequency of the
word, whether this is the final vowel in a phrase, and even the idiosyncracies
of individual speakers.

5.8 The Bayesian Method for Pronunciation

HEAD KNIGHT OF NI: Ni!
KNIGHTS OF NI:
ARTHUR:
HEAD KNIGHT:
RANDOM:
ARTHUR-
HEAD KNIGHT:
BEDEVERE:
HEAD KNIGHT:

Ni! Ni! Ni! Ni! Ni!
Who are you?
We are the Knights Who Say... ‘Ni’!
Ni!
No! Not the Knights Who Say ’Ni’!
The same!
Who are they?
We are the keepers of the sacred words:
‘Ni’, ‘Peng’, and ‘Neee-wom’!

Graham Chapman, John Cleese, Eric Idle, Terry Gilliam, Terry Jones,
and Michael Palin, Monty Python and the Holy Grail 1975.

The Bayesian algorithm that we used to pick the optimal correction for
a spelling error can be used to solve what is often called the pronunciation
subproblem in speech recognition. In this task, we are given a series of
phones and our job is to compute the most probable word which generated
them. For this chapter, we will simplify the problem in an important way
by assuming the correct string of phones. A real speech recognizer relies on

164 Chapter 5. Probabilistic Models of Pronunciation and Spelling

probabilistic estimators for each phone, so it is never sure about the identity
of any phone. We will relax this assumption in Chapter 7; for now, let’s look
at the simpler problem.

We’ll also begin with another simplification by assuming that we al­
ready know where the word boundaries are. Later in the chapter, we’ll show
that we can simultaneously find word boundaries (“segment”) and model
pronunciation variation.

Consider the particular problem of interpreting the sequence of phones
jo, when it occurs after the word I at the beginning of a sentence. Stop ani^j
see if you can think of any words which are likely to have been pronounced
[ni] before you read on. The word “Ni” is not allowed. j f

You probably thought of the word knee. This word is in fact pro- S
nounced [ni]. But an investigation of the Switchboard corpus produces a
total of 7 words which can be pronounced [ni]! The seven words are riie,
neat, need, new, knee, to, and you.

How can the word the be pronounced [ni]? The explanation for this
pronunciation (and all the others except the one for knee) lies in the contextu­
ally-induced pronunciation variation we discussed in Chapter 4. For exam­
ple; we saw that [t] and [d] were often deleted word finally, especially before
coronals; thus the pronunciation of neat as [ni] happened before the word
Hille (neat little [nilol]). The pronunciation of the as [ni] is caused by the
regressive assimilation process also discussed in Chapter 4. Recall that in
nasal assimilation, phones before or after nasals take on nasal manner of ar­
ticulation. Thus [0] can be realized as [n]. The many cases of the pronounced 3
as [ni] in Switchboard occurred after words like in, on, and been (so in the

[inni!).The pronunciation of hew as [ni] occurred most frequently in the
word New York', the Vowel [u] has fronted to [i] before a [y],

The pronunciation of to as [ni] occurred after the work talking (talking
to you —> [takmiyu]); here the [u] is palatalized by the following [y] and the ^
[n] is functioning jointly as the final sound of talking and the initial sound
of to . Because this phone is part of two separate words we will not try to
model this particular mapping; for the rest of this section let’s consider only
the following five words as candidate lexical forms for [ni]: knee, the, neat,
'need^new^^

We saw in the previous section that the Bayesian spelling error cor­
rection algorithm had two components: candidate generation, and candidate
scoring. Speech recognizers often use an alternative architecture, trading
off speech for storage. In this architecture, each pronunciation is expanded '
in advance with: all possible variants, which are then pre-stored with their .

Section 5.8. The B ayesian Method for Pronunciation 165

scores. Thus there is no need for candidate generation; the word [ni] is
simply stored with the list of words that can generate it. Let’s assume this
method and see how the prior and likelihood are computed for each word.

We will be choosing the word whose product of prior and likelihood is
the highest, according to Equation (5.12), where y represents the sequence
of phones (in this case [ni] and w represents the candidate word [the, new,
etc.]). The most likely word is then:

likelihood prior

vv-argmax P(y\w) P(w) (5.12)

We could choose to generate the likelihoods p(y|w) by using a set of
confusion matrices as we did for spelling error correction. But it turns out
that confusion matrices don’t do as well for pronunciation as for spelling.
While misspelling tends to change the form of a word only slightly, the
changes in pronunciation between a lexical and surface form are much greater.
Confusion matrices only work well for single-errors, which, as we saw above,
are common in misspelling. Furthermore, recall from Chapter 4 that pro­
nunciation variation is strongly affected by the surrounding phones, lexical
frequency, and stress and other prosodic factors. Thus probabilistic models
of pronunciation variation include a lot more factors than a simple confusion
matrix can include.

One simple way to generate pronunciation likelihoods is via proba­
bilistic rules. Probabilistic rules were first proposed for pronunciation by rules811’3110
(Labov, 1969) (who called them variable rules). The idea is to take the
rules of pronunciation variation we saw in Chapter 4 and associate them
with probabilities. We can then run these probabilistic rules over the lexicon
and generate different possible surface forms each with its own probability.
For example, consider a simple version of a nasal assimilation rule which
explains why the can be pronounced [ni]; a word-initial [d] becomes [n] if the
preceding word ended in [n] or sometimes [m]:

. ,. [.15] 3 n / [^__ , (5.13)

The [.15] to the left of the rule is the probability; this can be com­
puted from a large-enough labeled corpus such as the transcribed portion of
Switchboard. Let ncount be the number of times lexical [8] is realized word-
initially by surface [n] when the previous word ends in a nasal (91 in the
Switchboard corpus). Let envcount be the total number of times lexical [6]
occurs (whatever its surface realization) when the previous word ends in a
nasal (617 in the Switchboard corpus). The resulting probability is:

166 Chapter 5. Probabilistic Models of Pronunciation and Spelling

P(b> n / [+nasal] #—) = --------—
envcount

• - ■ ■ ._ 91
6F7 ...

= .15

We can build similar probabilistic versions of the assimilation and dele­
tion rules which account for the [ni] pronunciation of the other words. Fig­
ure 5.10 shows sample rules and the probabilities trained on the Switchboard
pronunciation database.

Word Rule Name Rule ■ wPf
the nasal assimilation 3 => n / [-{-nasal] ft ’ USS
neat final t deletion [-521
heed final d deletion d / V MH

■ neiv u fronting u i /# [y]' Ka [•36U;
Figure 5.10; Simple rules of pronunciation variation due to context in con­
tinuous speech accounting for the pronunciation of each of these words as [ni].

We now need to compute the prior probability P(w) for each word.
For spelling correction we did this by using the relative frequency of the 1
word in a large corpus; a word which occurred 44,000 times in 44 million
words receives the probability estimate or .001, For the pronuncia- .
tion problem, let’s take our prior probabilities from a collection of a written
and a spoken corpus. The Brown Corpus is al million word collection
of samples from 500 written texts from different genres (newspaper, novels,
hon-fiction, academic, etc.) which was assembled at Brown University in .
1963 1964 (Kucera and Francis, 1967; Francis, 1979; Francis and Kucera,
1982); The Switchboard Treebank corpus is a 1.4 million word collection
of telephone conversations. Together they let us sample from both the writ­
ten and spoken genres. The table, below shows the probabilities for our five
words; each probability is computed from the raw frequencies by normaliz­
ing by the number of words in the combined corpus (plus .5 * the number of
word types; so the total denominator is 2,486,075 + 30,836):

Section 5.8. The Bayesian Method for Pronunciation 167

w freq(w) p(w)
knee
the
neat
need

61 .000024
114,834 .046

338 .00013
1417 .00056

new 2625 .001

Now we are almost ready to answer our original question: what is
the most likely word given the pronunciation [ni] and given that the previous
word was I at the beginning of a sentence. Let’s start by multiplying together
our estimates for p(w) and p(y|w) to get an estimate: we show them sorted
from most probable to least probable (the has a probability of 0 since the
previous phone was not [n], and hence there is no other rule allowing [d] to
be realized as [nJ):

Word p(y[w) p(w) p(y|w)p(w)
new 36 .001 .00036
neat .52, .00013 .000068
need J .11 .00056 .000062
knee 1.00 .000024 .000024
the 0 .046 0

Our algorithm suggests that new is the most likely underlying word.
But this is the wrong answer; the string [ni] following the word I came in
fact from the word need in the Switchboard corpus. One way that people
are able to correctly solve this task is word-level knowledge; people know
that the word string I need '... is much more likely than the word string
I new We don’t need to abandon our Bayesian model to handle this
fact; we just need to modify it so that our model also knows that I need is
more likely than I new. In Chapter 6 we will see that we can do this by
using a slightly more intelligent estimate of p(w) called a bigram estimate;
essentially we consider the probability of need following I instead of just the
individual probability of need.

This Bayesian algorithm is in fact part of all modern speech recog­
nizers. Where the algorithms differ strongly is how they detect individual
phones in the acoustic signal, and on which search algorithm they use to
efficiently compute the Bayesian probabilities to find the proper string of
words in connected speech (as we will see in Chapter 7).

168 Chapter 5. Probabilistic Models of Pronunciation and Spelling

Decision Tree Models of Pronunciation Variation

In the previous section we saw how hand-written rules could be augmented
with probabilities to model pronunciation variation. Riley (1991) and With-
gott and Chen (1993) suggested an alternative to writing rules by hand,
which has proved quite useful: automatically inducing lexical-to-siuface

decision tree pronunciations mappings from a labeled corpus with a decision tree, partic­
ularly with the kind of decision tree called a Classification and Regression

cart Tree (CART) (Breiman et al., 1984). A decision tree takes a situation de­
scribed by a set of features and classifies it into a category and an associated
probability. For pronunciation, a decision tree can be trained to take a lexical
phone and various contextual features (surrounding phones, stress and sylla­
ble structure information, perhaps lexical identity) and select an appropriate .
surface phone to realize it. We can think of the confusion matrices we used
in spelling error correction above as degenerate decision trees; thus the sub­
stitution matrix takes a lexical phone and outputs a probability distribution 1
over potential surface phones to be substituted. The advantage of decision
trees is that they can be automatically induced from a labeled corpus, and .
that they are concise: Decision trees pick out only the relevant features andgS
thus suffer less from sparseness than a matrix, which has to condition on f
every neighboring phone.

Next-dictionary_phone

Vowel Consonant

Previous-dictionary_phone Next~d ictionary_phone

kmpixuwaeeh
ihay ey

Previous-dictionary_phone

m ixuwaeeh ,
ihayey KP <

: tcl_t .55 A-
i dx .16 I I tel t .27 i

k. .26.

iyiwaxraaao gktny
. : erawaxelenng

dfnir gtvz

Position in syllable , ,, i
NULL .64 |

" i tcU .13 I
Initial . Coda ; tel .1 j

dh hh th bd fg kl
mnpstwy \

tel .41 I
NULL.32 I
tci_t .11 i

tcLt .83 ■ tcl_t .58
NULL .04 NULL. 16
-.. del d .07

Figure 5.11 Hand-pruned decision tree for the phoneme /t/ induced from the Switch­
board corpus (courtesy of Eric Fosler-Lussier). This particular decision tree doesn’t model
flapping since flaps were already listed in the dictionary. The tree automatically induced the
categories Vowel and Consonant. We have only shown the most likely realizations at each
leafnode.

Section 5.9. Weighted Automata 169

For example, Figure 5.11 shows a decision tree for the pronunciation
of the phoneme /t/ induced from the Switchboard corpus. While this tree
doesn’t including flapping (there is a separate tree for flapping) it does model
the fact that /t/ is more likely to be deleted before a consonant than before
a vowel. Note, in fact, that the tree automatically induced the classes Vowel
and Consonant Furthermore note that if /t/ is not deleted before a conso­
nant, it is likely to be unreleased. Finally, notice that /t/ is very unlikely to
be deleted in syllable onset position.

Readers with interest in decision tree modeling of pronunciation should
consult Riley (1991), Withgott and Chen (1993), and a textbook with an in­
troduction to decision trees such as Russell and Norvig (1995).

5.9 Weighted Automata

We said earlier that for purposes of efficiency a lexicon is often stored with
the most likely kinds of pronunciation variation pre-compiled. The two most
common representation for such a lexicon are the trie and the weighted weighted

finite-state automaton/transducer (or probabilistic FSA/FST) (Pereira et al.,
1994). We will leave the discussion of the trie to Chapter 7, and concentrate

V here on the weighted automaton.
The weighted automaton is a simple augmentation of the finite automa­

ton in which each arc is associated with a probability, indicating how likely
that path is to be taken. The probability on all the arcs leaving a node must
sum to 1. Figure 5.12 shows two weighted automata for the word tomato,
adapted from Russell and Norvig (1995). The top automaton shows two pos­
sible pronunciations, representing the dialect difference in the second vowel.
The bottom one shows more pronunciations (how many?) representing op­
tional reduction or deletion of the first vowel and optional flapping of the
final [t]..

A Markov chain is a special case of a weighted automaton in which markov chain

the input sequence uniquely determines which states the automaton will go
through. Because they can’t represent inherently ambiguous problems, a
Markov chain is only useful for assigning probabilities to unambiguous se-
quences; thus the W-gram models to be discussed in Chapter 6 are Markov
chains since each word is treated as if it was unambiguous. In fact the
weighted automata used in speech and language processing can be shown
to be equivalent to Hidden Markov Models (HMMs). Why do we in-
troducc weighted automata in this chapter and HMMs in Chapter 7? The

170 Chapter 5. Probabilistic Models of Pronunciation and Spelling

? Figure 5.12 You say [t ow m ey t ow] and I say [t ow in aa t ow], Two
pronunciation networks for the word tomato, adapted from Russell and Norvig

y, (1995) . The top one models sociolinguistic variation (some British or eastern
American dialects); the bottom one adds in coarticulatory effects. Note the
correlation between allophonic and sociolinguistic variation; the dialect with

yr the vowel [ey] is more likely to flap than the other dialect.

two models offer a different metaphor; it is sometimes easier to think about
certain problems as weighted-automata than as HMMs. The weighted au­
tomaton metaphor is often applied when the input alphabet maps relatively
neatly to the underlying alphabet For example, in the problem of correct­
ingspelling errors in typewri tten input; the input sequence consists of letters:
and the states of the automaton can correspond to letters. Thus it is natural
to think of the problem as transducing from a set of symbols to the same set
of symbols with some modifications, and hence weighted automata are nat­
urally used for spelling error correction. In the problem of correcting errors
in hand-written input, the input sequence is visual, and the input alphabet is
an alphabet of lines and angles and curves. Here instead of transducing from
an alphabet to itself, we need to do classification on some input sequence be­
fore considering it as a sequence of states. Hidden Markov Models provide
a more appropriate metaphor, since they naturally handle separate alphabets
for input sequences and state sequences. But since any probabilistic automa­
ton in Which the input sequence does hot uniquely specify the state sequence
can be modeled as ah HMM, the difference is one of metaphor rather than
explanatory power, y y

Section 5.9. Weighted Automata 171

Weighted automata can be created in many ways. One way, first pro­
posed by Cohen (1989) is to start with on-line pronunciation dictionaries and
use hand-written rules of the kind we saw above to create different potential
surface forms. The probabilities can then be assigned either by counting
the number of times each pronunciation occurs in a corpus, or if the cor-'
pus is too sparse, by learning probabilities for each rule and multiplying
out the rule probabilities for each surface form (Tajchman et al., 1995). Fi­
nally these weighted rules, or alternatively the decision trees we discussed
in the last section, can be automatically compiled into a weighted finite-state
transducer (Sproat and Riley, 1996). Alternatively, for very common words,
we can simply find enough examples of the pronunciation in a transcribed
corpus to build the model by just combining all the pronunciations into a
network (Wooters and Stolcke, 1994).

The networks for tomato above were shown merely as illustration and
are not from any real system; Figure 5.13 shows an automaton for the word
about which is trained on actual pronunciations from the Switchboard corpus
(we discussed these pronunciations in Chapter 4).

Figure 5.13 A pronunciation network for the word about, from the actual
pronunciations in the Switchboard corpus.

Computing Likelihoods from Weighted Automata: The Forward
Algorithm

One advantage of an automaton-based lexicon is that there are efficient al­
gorithms for generating the probabilities that are needed to implement the
Bayesian method of correct-word-identification of Section 5.8. These algo­
rithms apply to weighted automata and also to the Hidden Markov Models
that we will discuss in Chapter 7. Recall that in our example the Bayesian

172 Chapter 5. Probabilistic Models of Pronunciation and Spelling

method is given as input a series of phones [n iy], and must choose between
the words the, neat, need, new, and knee. This was done by computing two
probabilities: the prior probability of each word, and the likelihood of the
phone string [n iy] given each word. When we discussed this example ear­
lier, we said that for example the likelihood of [n iy] given the word need was
.11, since we computed a probability of .11 for the final-d-deletion rule from
our Switchboard corpus. This probability is transparent for need since there
were only two possible pronunciations ([n iy] and [n iy d]). But for words
like about, visualizing the different probabilities is more complex. Using a
precompiled weighted automata can make it simpler to see all the different
probabilities of different paths through the automaton.

There is a very simple algorithm for computing the likelihood of a
string of phones given the weighted automaton for a word. This algorithm,:

forward the forward algorithm, is an essential part of ASR systems, although in this
chapter we will only be working with a simple usage of the algorithm. This is
because the forward algorithm is particularly useful when there are multiple
paths through an automaton which can account for the input; this is not the
case in the weighted automata in this chapter, but will be true for the HMMS
of Chapter 7. The forward algorithm is also an important step in defining the
Viterbi algorithm that we will see later in this chapter.

; Let’s begin by giving a formal definition of a weighted automaton and :
of the input and output to the likelihood computation problem. A weighted
automaton consists of

1. a sequence of states q — (q^q^q^.. .qn}, each corresponding to aphone,
..... ■'?? and

2. a set of transition probabilities between states, act?^12^13, encoding
the probability of one phone following another.

We represent the states as nodes, and the transition probabilities as
edges between nodes; an edge exists between two nodes if there is a non-zero
transition probability between the two nodes.4 The sequences of symbols

4 We have used two.“special’’ states (often called non-emitting states) as the start and end ..
state; it is also possible to avoid the use of these states. In that case, an automaton must
specify two more things:

1 .k, an initial probability distribution over states, such that iq is the probability that the
automaton will start in state L Of course, some states / may have tty — 0. meaning that:,
they cannot be initial states.

2 . a set of legal accepting states.

Section 5.9. Weighted Automata 173

that are input to the model (if we are thinking of it as recognizer) or which are
produced by the model (if we are thinking of it as a generator) are generally
called the observation sequence, referred to as O = (o102^3... »r)> (Upper- sequence0*1

case letters are used for a sequence and lower-case letters for an individual
element of a sequence). We will use this terminology when talking about
weighted automata and later when talking about HMMs.

Figure 5.14 shows an automaton for the word need with a sample ob­
servation sequence.

Observation
Sequence
(phone symbols)

Oi o2

Figure 5.14 A simple weighted automaton or Markov chain pronunciation
network for the word need, showing the transition probabilities, and a sample
observation sequence. The transition probabilities axy between two states x
and y are 1.0 unless otherwise specified.

This task of determining which underlying word might have produced
an observation sequence is called the decoding problem. Recall that in or- decoding

der to find which of the candidate words was most probable given the ob­
servation sequence [n iy], we need to compute the product P(O\w)P(w) for
each candidate word (the, need, neat, knee, new), i.e. the likelihood of the
observation sequence O given the word w times the prior probability of the
word.

The forward algorithm can be run to perform this computation for each
word; we give it an observation sequence and the pronunciation automaton
for a word and it will return P(0|w)P(w). Thus one way to solve the de­
coding problem is to run the forward algorithm separately on each word and
choose the word with the highest value. As we saw earlier, the Bayesian
method produces the wrong result for pronunciation [n iy] as part of the
word sequence I need (its first choice is the word new, and the second choice
is neat, need is only the third choice). Since the forward algorithm is just
a way of implementing the Bayesian approach, it will return the exact same

174 Chapter 5. Probabilistic Models of Pronunciation and Spelling

rankings. (We will see in Chapter 6 how to augment the algorithm with bi­
gram probabilities which will enable it to make use of the knowledge that J
the previous word was I).

The forward algorithm takes as input a pronunciation network for each 4
candidate word. Because the word the only has the pronunciation [n iy] after
nasals, and since we are assuming the actual context of this word was after
the word I (no nasal), we will skip that word and look only at new, neat, 1
heed, and knee.. Note in Figure 5.15 that we have augmented each network
With the probability of each word, computed from the frequency that we saw
oil page 167.

Word model for “need" Word model for "knee"

Word model for “new"

Figure 5.15 Pronunciation networks for the words need, neat, new, and;
knee; All networks are simplified from the actual pronunciations in the Switch-;
board corpus. Each network has been augmented by the unigram probability
of the word (i.e., its normalized frequency from the Switchboard+Brown cor-
pus). Word probabilities j are not usually included as part of the pronunciation
network for a word; they are added here to simplify the exposition of the for­
ward algorithm.

The forward algorithm is another: dynamic programming algorithm,
and can be thought of as a slight generalization of the minimum edit dis­
tance algorithm. Like the minimum edit distance algorithm, it uses a table
to store intermediate values as it builds up the probability of the observa­
tion sequence. Unlike the minimum edit distance algorithm, the rows are
labeled not just by states which always occur in linear order, but implicitly
by a state-graph' which has many ways of getting from one state to another.
In the minimum edit distance algorithm, we filled in the matrix by just com­
puting the value of each cell from the three cells around it. With the forward

Section 5.9. Weighted Automata 175

algorithm, on. the other hand, a state might be entered by any other state,
and so the recurrence relation is somewhat more complicated. Furthermore,
the forward algorithm computes the sum of the probabilities of all possible
paths that could generate the observation sequence, where the minimum edit
distance computed the minimum such probability.5 Each cell of the forward
algorithm matrix, farward[t,j] represents the probability of being in state j
after seeing the first t observations, given the automaton X. Since we have
augmented our graphs with the word probability p(w), our example of the
forward algorithm here is actually computing this likelihood times p(w). The
value of each cell forward[t,j] is computed by summing over the probabili­
ties of every path that could lead us to this cell. Formally, each cell expresses
the following probability:

. forwrdttj] =P(oi.o2^^ (5.14)

Here qt = j means “the probability that the tth state in the sequence
7 of states is state j”. We compute this probability by summing over the ex­

tensions of all the paths that lead to the current cell. An extension of a path
//from a state i at time t — 1 is computed by multiplying the following three

■ '/.'factors: •

/) 1. the previous path probability from the previous cell forward 7 — 1, i],

./" 2. the transition probability cm from previous state i to current state j,
■ and

// 3. the observation likelihood bp that current state j matches observation
symbol t. For the weighted automata that we consider here, bp is 1 if
the observation symbol matches the state, and 0 otherwise. Chapter 7
will consider more complex observation likelihoods.

The algorithm is described in Figure 5.16.
Figure 5.17 shows the forward algorithm applied to the word need. The

algorithm applies similarly to the other words which can produce the string
[n iy], resulting in the probabilities on page 167. In order to compute the
most probable underlying word, we run the forward algorithm separately on
each of the candidate words, and choose the one with the highest probabil­
ity. Chapter 7 will give further details of the mathematics of the forward
algorithm and introduce the related forward-backward al gorithm.

5 The forward algorithm computes the sum because there may be multiple paths through
themetwork which explain a given observation sequence. Chapter 7 Will take up this point in
more detail. .■:■■<?':■■■: fo/iy-v

176 Chapter 5. Probabilistic Models of Pronunciation and Spelling

function FORSh\{RD(observations,state-graph) returns forward -probability

num-states <— NUM-OF-STATES(sWe-.grap/j)
num-obs ^lengthfobservations)
Create probability matrix forwardfnum-states + 2, num-obs 4- 2]
forward[0,0] <1.0
for each time step t from 0 to num-obs do

for each state 5 from 0 to num-states do
for each transition s' from s specified by state-graph

forward[s' /+!]<- forward[s,t] * * MA oj
return the sum of the probabilities in the final column of forward

: .00056* .11 - .00062

; ■ ' .00056 ‘ 1.0 = .00056

.00056* 1.0 = .00056 ■ I

1.0 :

Figure 5.16 The forward algorithm for computing likelihood of observa­
tion sequence given a word model, is the transition probability from
current state s to next state s', and ,ot] is the observation likelihood of s’:
given . For the weighted automata that we consider here, is 1 if the

| observation symbol matches the state, and 0 otherwise.

end

■ ' d

need iy

n

start

iy ’ # •

Figure 5.17 The forward algorithm applied to the word need, computing
the probability P(0\w}P(w). While this example doesn’t require the full power
of the forward algorithm, we will see its use on more complex examples in
Chapter 7. ": AT

_________________ —_ ___ ... ______________________________________ ____________ _ __________________ /

Decoding: The Viterbi Algorithm

The forward algorithm as we presented it seems a bit of an overkill. Since
only one path through the pronunciation networks will match the input string,
why use such a big matrix and consider so many possible paths? Further- f
more, as a decoding method, it seems rather inefficient to run the forward -
algorithm once for each word (imagine how inefficient this would be if we
were computing likelihoods for all possible sentences rather than all possible 3

Section 5.9. Weighted Automata 177

words!) Part of the reason that the forward algorithm seems like overkill is
that we have immensely simplified the pronunciation problem by assuming
that our input consists of sequences of unambiguous symbols. We will see in
Chapter 7 that when the observation sequence is a set of noisy acoustic val­
ues, there are many possibly paths through the automaton, and the forward
algorithm will play an important role in summing these paths.

But it is true that having to run it separately on each word makes the
forward algorithm a very inefficient decoding method. Luckily, there is a
simple variation on the forward algorithm called the Viterbi algorithm which
allows us to consider all the words simultaneously and still compute the most
likely path. The term Viterbi is common in speech and language process­
ing, but like the forward algorithm this is really a standard application of
the classic dynamic programming algorithm, and again looks a lot like the
minimum edit distance algorithm. The Viterbi algorithm was first applied
to speech recognition by Vintsyuk (1968), but has what Kruskal (1983) calls
a ‘remarkable history of multiple independent discovery and publication’;
see the History section at the end of the chapter for more details. The name
Viterbi is the one which is most commonly used in speech recognition, al­
though the terms DP alignment (for Dynamic Programming alignment),
dynamic time warping and one-pass decoding are also commonly used.
The term is applied to the decoding algorithm for weighted automata and
Hidden Markov Models on a single word and also to its more complex ap­
plication to continuous speech, as we will see in Chapter 7. In this chapter
we will show how the algorithm is used to find the best path through a net­
work composed of single words, as a result choosing the word which is most
probable given the observation sequence string of words.

The version of the Viterbi algorithm that we will present takes as input
a single weighted automaton and a set of observed phones o = (010203... ot)
and returns the most probable state sequence q = (qiq^ ■ • •-&), together
with its probability. We can create a single weighted automaton by combin­
ing the pronunciation networks for the four words in parallel with a single
start and a single end state. Figure 5.18 shows the combined network.

Figure 5.19 shows pseudocode for the Viterbi algorithm. Like the min­
imum edit distance and forward algorithm, the Viterbi algorithm sets up a
probability matrix, with one column for each time index t and one row for
each state in the state graph. Also like the forward algorithm, each column
has a cell for each state qi in the single combined automaton for the four
words. In fact, the code for the Viterbi algorithm should look exactly like
the code for the forward algorithm with two modifications. First, where

VITERBI

DYNAMIC
TIME
WARPING

178 Chapter 5. Probabilistic Models of Pronunciation and Spelling

Figure 5.18 The pronunciation networks for the words need, neat, new, and
knee combined into a single weighted automaton. Again, word probabilities
are not usually considered part of the pronunciation network for a word; they
are added here to simplify the exposition of the Viterbi algorithm.

the forward algorithm places the sum of all previous paths into the current
cell, the Viterbi algorithm puts the max of the previous paths into the current
cell.

The algorithm first creates N + 2 of four state columns. The first col­
umn is an initial pseudo-observation, the second corresponds to the first
observation phone [n], the third to [iy] and the fourth to a final pseudo-
observation. We begin in the first column by setting the probability of the
start state to 1.0, and the other probabilities to 0; the reader should find this
in Figure 5.20. Cells with probability 0 are simply left blank for readability.

Then we move to the next state; as with the forward algorithm, for ?
every state in column 0, we compute the probability of moving into each
state in column 1. The value viterbi[t, j] is computed by taking the maximum >
over the extensions of all the paths that lead to the current cell. An extension b
of a path from a state i at time t — 1 is computed by multiplying the same
three factors we used for the forward algorithm: j

1. the previous path probability from the previous cellforward[t — l,z], j

2. the transition probability ay from previous state i to current state j, ,
■ V/y/andT;vT-::^

3. the observation likelihood b^ that current state j matches observation '7
symbol t. For the weighted automata that we consider here, bjt is 1 if

Section 5.9. Weighted Automata 179

function NlTERWdobservations of len T,state-graph) returns best-path

num-states <— NUM-OF-STATESGzme-grapA)
Create a path probability matrix viterbi[num-states+2,T+2]
viterbi[O,O] <-1.0
for each time step t from 0 to T do

for each state s from 0 to num-states do
for each transition s' from v specified by state-graph

new-score viterbi^s, t] * «[,?,/] * h^ot)
if ((vrier^zf/q+f] = 0) |j (new-score > viterbi[d, t+1]))

then
viterbi[d, t+l]i-new-score
back-pointe r[s', t+l]+-s

Backtrace from highest probability state in the final column of viterbi[] and
return path

Figure 5.19 Viterbi algorithm for finding optimal sequence of states in con­
tinuous speech recognition, simplified by using phones as inputs. Given an
observation sequence of phones and a weighted automaton (state graph), the
algorithm returns the path through the automaton which has maximum proba­
bility and accepts the observation sequence, is the transition probability
from current state .y to next state s', and b[s' ,ot] is the observation likelihood
of s ’ given ot. For the weighted automata that we consider here, b[s\ Of] is 1 if
tire observation symbol matches the state, and 0 otherwise.

the observation symbol matches the state, and 0 otherwise. Chapter 7
will consider more complex observation likelihoods.

In Figure 5.20, in the column for the input n, each word starts with [n],
and so each has a non-zero probability in the cell for the state n. Other cells
in that column have zero entries, since their states don’t match n. When we
proceed to the next column, each cell that matches iy gets updated with the

: contents of the previous cell times the transition probability to that cell. Thus
the value of viterbi\2jynew\for the iy state of the word new is the product of
the “word” probability of new times the probability of new being pronounced
with the vowel iy. Notice that if we look only at this iy column, that the word
need is currently the “most-probable” word. But when we move to the final
column, the word new will win out, since need has a smaller transition prob-
ability to end (.11) than new does (1.0). We can now follow the backpointers
and backtrace to find the path that gave us this final probability of .00036.

180 Chapter 5. Probabilistic Models of Pronunciation and Spelling

end
t

neat iy

n

d

. iy
need

■' n

■ uw

new tv
<;■ ' n

iy
knee

start

Figure 5.20 The entries in the individual state columns for the Viterbi al­
gorithm. Each cell keeps the probability of the best path so far and a pointer
to the previous cell along that path, Backtracing from the end state, we can
reconstruct the state sequence iynew, arriving at the best word new..

SEGMENTA­
TION ...

Weighted Automata and Segmentation

Weighted automata and the Viterbi algorithm play an important in various
algorithm for segmentation. Segmentation is the process of taking an undif­
ferentiated sequence of symbols and “segmenting” it into chunks. For exam­
plesentence segmentation is the problem of automatically finding the sen­
tence boundaries in a corpus. Similarly word segmentation is the problem
of finding word-boundaries in a corpus. In written English there is no dif­
ficulty in segmenting words from each other because there are orthographic
spaces between words. This is not the case in languages like Chinese arid
Japanese that use a Chinese-derived writing system. Written Chinese does
not mark word boundaries. Instead, each Chinese character is written one af­
ter the other without spaces. Since each character approximately represents

&

S ection 5.9. Weighted A utomata 181

a single morpheme, and since words can be composed of one or more char­
acters, it is often difficult to know where words should be segmented. Proper
word-segmentation is necessary for many applications, particularly includ­
ing parsing and text-to-speech. (How a sentence is broken up into words
influences its pronunciation in a number of ways.)

Consider the following example sentence from Sproat et al. (1996):

(5.15)
“How do you say ‘octopus’ in Japanese?”

This sentence has two potential segmentations, only one of which is
correct. In the plausible segmentation, the first two characters are combined
to make the word for ‘Japanese language’ (0 ri-wen) (the accents indicate
the tone of each syllable), and the next two are combined to make the word
for ‘octopus’ zhang-yu).

(5.16) 0# W ?
ri-wen zhang-yu zen-me shub
Japanese octopus how say

“How do you say octopus in Japanese?”

(5.17) 0 m ?
ri wen-zhang yu zen-me shub
Japan essay fish how say

“How do you say Japan essay fish?”

Sproat et al. (1996) give a very simple algorithm which selects the
correct segmentation by choosing the one which contains the most-frequent
words. In other words, the algorithm multiplies together the probabilities of
each word in a potential segmentation and chooses whichever segmentation
results in a higher product probability.

The implementation of their algorithm combines a weighted-finite-
state transducer representation of a Chinese lexicon with the Viterbi algo­
rithm. This lexicon is a slight augmentation of the FST lexicons we saw

| in Chapter 4; each word is represented as a series of arcs representing each
character in the word, followed by a weighted arc representing the proba­
bility of the word. As is commonly true with probabilistic algorithms, they
actually use the negative log probability of the word (— log(P(w)). The log

7 probability is mainly useful because the product of many probabilities gets
i very small, and so using the log probability can help avoid underflow. Using

log probabilities also means that we are adding costs rather than multiplying

182 Chapter 5. Probabilistic Models of Pronunciation and Spelling

probabilities, and that we are looking for the minimum cost solution rather '
than the maximum probability solution.

Consider the example in Figure 5.21. This sample lexicon Figure 5.21(a).
consists of only five potential words:

Word Pronunciation Meaning Cost (-logpin)')
ri-wen ‘Japanese’ 10.63

H ri ‘Japan’ 6.51
zhang- yu ‘octopus’ 13.18
wen-zhang ‘essay’ 9.51

la yu . ‘fish’ 10.28

The system represents the input sentence as the unweighted FSA in
Figure 5.21(b). In order to compose this input with the lexicon, it needs to
be converted into an FST. The algorithm uses a function Id which takes an
FSA A and returns the FST which maps all and only the strings accepted by
A to themselves. Let Dr represent the transitive closure of D, that is, the
automaton created by adding a loop from the end of the lexicon back to the­
beginning. The set of all possible segmentations is/d(Z) oD*, that is, the
input transducer Jd(Z) composed with the transitive closure of the dictionary
D, shown in Figure 5.21(c). Then the best segmentation is the lowest-cost
segmentation in Zd(Z) o£>*, shown in Figure 5.21(d).

Finding the best path shown in Figure 5.21(d) can be done easily with
the Viterbi algorithm, and is left as an exercise for the reader. Furthermore,
this segmentation algorithm, like the spelling error correction algorithm we
saw earlier, can also be extended to incorporate the cross-word probabilities
(Vagram probabilities) that will be introduced in Chapter 6.

Segmentation for Lexicon-Induction

The weighted automata segmentation algorithm that was presented above re­
lies on the weights stored in the lexicon. But how is this lexicon to be learned
in the first place? A nuniber of segmentation algorithms address this “prior”
problem of segmentation in the absence of a lexicon, For example de Mar-
cken (1996) and Brent and Cartwright (1996) both propose algorithms that
take an unsegmented sequence of input phones and use information-theoretic
principles to iteratively induce the lexicon by trying different possible seg­
mentations. Both rely on stochastic versions of the Minimum Descrip-

mdl tion Length (MDL) principle and on phonotactic transition probabilities
to choose between alternative models. The description length of a lexicon

Section 5.9. Weighted Automata 183

(a) Dictionary D

(b) Input I

(c) ld(D)oD*

e. e/s.51 X :w«n<W.000 a:zhang/0.000 e: e/9.51 ®yu/0.000

(d) BestPath(ld(D) o D*)

Figure 5.21 The Sproat et al. (1996) algorithm applied to four input words
(after Sproat et al. (1996))

or grammar (measured, for example, in the number of symbols in it) is a
heuristic measure of the information complexity in the lexicon. By prefer­
ring a lexicon with less symbols, MDL is implicitly choosing a simpler and

