
Weighted finite-state transducers in speech

We survey the use of weighted finite-state transducers (WFSTs) in speech

transducer operations combine these representations flexibly and efficiently.

weighted finite-state transducers
ance context-free grammars for spoken-dialog applications, they are often restricted, for effi-

A finite-state transducer is a finite automaton whose state transitions are labeled with both
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Abstract 

recognition. We show that WFSTs provide a common and natural representation 
for hidden Markov models (HMMs), context-dependency, pronunciation 
dictionaries, grammars, and alternative recognition outputs. Furthermore, general 

Weighted determinization and minimization algorithms optimize their time and 
space requirements, and a weight pushing algorithm distributes the weights along 
the paths of a weighted transducer optimally for speech recognition. 

As an example, we describe a North American Business News (NAB) 
recognition system built using these techniques that combines the HMMs, full 
cross-word triphones, a lexicon of 40 000 words, and a large trigram grammar into 
a single weighted transducer that is only somewhat larger than the trigram word 
grammar and that runs NAB in real-time on a very simple decoder. In another 
example, we show that the same techniques can be used to optimize lattices for 
second-pass recognition. In a third example, we show how general automata 
operations can be used to assemble lattices from different recognizers to improve 
recognition performance. 

© 2002 Academic Press 

1. Introduction 

Much of current large-vocabulary speech recognition is based on models such as hidden 
Markov models (HMMs), tree lexicons, or n-gram language models that can be represented 
by (WFSTs). Even when richer models are used, for inst-

ciency reasons, to regular subsets, either by design or by approximation (Pereira & Wright, 
1997; Nederhof, 2000; Mohri & Nederhof, 2001). 

input and output symbols. Therefore, a path through the transducer encodes a mapping from 
an input symbol sequence to an output symbol sequence. A weighted transducer puts weights 
on transitions in addition to the input and output symbols. Weights may encode probabili­
ties, durations, penalties, or any other quantity that accumulates along paths to compute the 
overall weight of mapping an input sequence to an output sequence. Weighted transducers 
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are thus a natural choice to represent the probabilistic finite-state models prevalent in speech

in speech processing can be generalized and efficiently implemented by translation to math-
ematically well-defined operations on weighted transducers. Furthermore, new optimization

ers. Thus, WFSTs define a common framework with shared algorithms for the representation

engineering benefits.
We start by introducing the main definitions and notation for weighted finite-state accep-

2. Weighted finite-state transducer definitions and algorithms

The definitions that follow are based on the general algebraic notion of a
). The semiring abstraction permits the definition of automata representations

In the following definitions, we assume an arbitrary semiring

weighted finite-state

, a finite set of states , a finite set of
final states F

final weight function
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processing. 
We present a survey of the recent work done on the use of WFSTs in speech recognition 

(Mohri, Pereira & Riley, 1996; Mohri, 1997; Pereira & Riley, 1997; Mohri & Riley, 1998; 
Mohri, Riley, Hindle, Ljolje & Pereira, 1998; Mohri & Riley, 1999; Mohri, Pereira & Riley, 
2000). We show that common methods for combining and optimizing probabilistic models 

opportunities arise from viewing all symbolic levels of ASR modeling as weighted transduc­

and use of the models in speech recognition that has important algorithmic and software 

tors and transducers used in this work. We then present introductory speech-related examples 
and describe the most important weighted transducer operations relevant to speech applica­
tions. Finally, we give examples of the application of transducer representations and oper­
ations on transducers to large-vocabulary speech recognition, with results that meet certain 
optimality criteria. 

semiring (Kuich & 
Salomaa, 1986 
and algorithms over a broad class of weight sets and algebraic operations. 

A semiring K consists of a set 1K equipped with an associative and commutative operation 
E9 and an associative operation@, with identities O and I, respectively, such that@ distributes 
over E9, and O@ a = a @0 = 0. In other words, a semiring is similar to the more familiar ring 
algebraic structure (such as the ring of polynomials over the reals), except that the additive 
operation E9 may not have an inverse. For example, (N, +, •, 0, 1) is a semiring. 

The weights used in speech recognition often represent probabilities; the corresponding 
semiring is then the probability semiring (R, +, •, 0, 1). For numerical stability, implemen­
tations may replace probabilities with - log probabilities. The appropriate semiring is then 
the image by - log of the semiring (JR,+,•, 0, 1) and is called the log semiring. When using 
- log probabilities with a Viterbi (best path) approximation, the appropriate semiring is the 
tropical semiring (R+ U {oo}, min,+, oo, 0). 

K = (IK, E9, @, 0, 1). We 
will give examples with different semirings to illustrate the variety of useful computations 
that can be carried out in this framework by a judicious choice of semiring. 

2.1. Weighted acceptors 

Models such as HMMs used in speech recognition are special cases of 
acceptors (WFSAs). A WFSA A = (I:, Q, E, i, F, A, p) over the semiring K is given by 
an alphabet or label set I: Q transitions E ~ Q x (I: U 
{ E}) x 1K x Q, an initial state i E Q, a set of ~ Q, an initial weight ).. and a 

p. 
A transition t = (p[t], l[t], w[t], n[t]) E E can be represented by an arc from the source 

or previous state p[t] to the destination or next state n[t], with the label l[t] and weight w[t]. 



to a final state

transitions and the final weight

(a) is a toy finite-state
are specified by the words along each complete path, and their probabilities by the product

Weighted finite-state transducers

, a finite set of states , a finite set of
final states F

final weight function

. The definitions of path, path input label and path weight are those given
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In speech recognition, the transition weight w[t] typically represents a probability or a - log 
probability. 

A path in A is a sequence of consecutive transitions t1 • • • tn with n[t;] = p[t;+il, i = 
1, ... , n - 1. Transitions labeled with the empty symbol E consume no input. A successful 
path TC = t1 • • • tn is a path from the initial state i f E F. The label of the path 
n is the result of the concatenation of the labels of its constituent transitions: 

l[n] =l[til•••l[tn]· 

The weight associated to n is the ®-product of the initial weight, the weights of its constituent 
p(n[tn]) of the state reached by n: 

w[n] =). ® w[ti] ® • • • ® w[tn] ® p(nUnD· 

A symbol sequence x is accepted by A if there exists a successful path n labeled with 
x: l[n] = x. The weight associated by A to the sequence xis then the EB-sum of the weights 
of all the successful paths n labeled with x. Thus, a WFSA provides a mapping from sym­
bol sequences to weights (Salomaa & Soittola, 1978; Kuich & Salomaa, 1986; Berstel & 
Reutenauer, 1988). 

Figure 1 gives some simple, familiar examples of WFSAs as used in speech recognition. 
The automaton in Figure 1 language model. The legal word sequences 

of the corresponding transition probabilities. The transducer in Figure 1 (b) gives the possible 
pronunciations of one of the word data used in the language model. Each legal pronunciation 
is the sequence of phones along a complete path, and its probability is given by the product 
of the corresponding transition probabilities. Finally, the transducer in Figure l(c) encodes a 
typical left-to-right, three distribution-HMM structure for one phone, with the labels along a 
complete path specifying legal sequences of acoustic distributions for that phone. 

2.2. Weighted transducers 

generalize WFSAs by replacing the single transition label 
by a pair (i, o) of an input label i and an output label o. While a weighted acceptor associates 
symbol sequences and weights, a WFST associates pairs of symbol sequences and weights, 
that is, it represents a weighted binary relation between symbol sequences (Salomaa & Soi­
ttola, 1978; Kuich & Salomaa, 1986; Berstel & Reutenauer, 1988).1 

Formally, a WFST T = (I:, n, Q, E, i, F,)., p) over the semiringK is given by an input 
alphabet I:, an output alphabet n Q transitions E s; 
Q x (I: U {E}) x (Q U {E}) x IT{ x Q, an initial state i E Q, a set of s; Q, an 
initial weight). and a p. 

A transition t = (p[t], l;[t], l 0 [t], w[t], n[t]) can be represented by an arc from the source 
state p[t] to the destination state n[t], with the input label l;[t], the output label l 0 [t] and 
the weight w[t] 
earlier for acceptors. A path's output label is the concatenation of output labels of its transi­
tions. 

The examples in Figure 2 encode (a superset of) the information in the WFSAs of 
Figure l(a) and (b) as WFSTs. Figure 2(a) represents the same language model as Figure l(a) 
by giving each transition identical input and output labels. This adds no new information, but 
is a convenient way of interpreting any acceptor as a transducer that we will use often. 
1 In general, several paths may relate a given input sequence to possibly distinct output sequences. 



Weighted finite-state acceptor examples. By convention, the states are

represented by a bold circle, final states by double circles. The label and weight of a
. The final

of a final state
1 as in these examples. In all the figures in this paper the initial weight is not
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is/0.5 

(a) 

(b) 

d3 

represented by circles and marked with their unique number. An initial state is 

transition t are marked on the corresponding directed arc by l[t]/w[t] 
weight p(f) f E Fis marked by fl p(f) or just omitted when 
p(f) = -
marked because A = I. 

better:better/0.7 

using:using/1 

worse:worse/0.3 

(a) 

ey:E/0.5 

ae:E/0.5 

uw:E/1 

(b) 

Figure 2. 

Figure 2(b) represents a toy pronunciation lexicon as a mapping from phone sequences 
to words in the lexicon, in this example data and dew, with probabilities representing the 
likelihoods of alternative pronunciations. Since a word pronunciation may be a sequence of 
several phones, the path corresponding to each pronunciation has E -output labels on all but the 
word-initial transition. This transducer has more information than the WFSA in Figure l(b). 
Since words are encoded by the output label, it is possible to combine the pronunciation 
transducers for more than one word without losing word identity. Similarly, HMM structures 
of the form given in Figure l(c) can can be combined into a single transducer that preserves 
phone model identity while sharing distribution subsequences whenever possible. 



. The decoder finds word pronunciations

used to improve search efficiency at this point (
then identifies the correct context-dependent models to use for each phone in context, and
finally substitutes them to create an HMM-level transducer. The software that performs these

specified number of levels.

pronunciation dictionaries, context-dependency specifications, HMM topology, word, phone

). Each operation implements a single, well-defined function that has

weighted finite-state machine software library (FsmLib) available for non-commercial use

acceptors by projecting onto the input or output label set, find the best or the

for each pair of paths, the first in

are conveniently and efficiently implemented with composition.
Our composition algorithm generalizes the classical state-pair construction for finite auto-
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2.3. Weighted transducer algorithms 

Speech recognition architectures commonly give the run-time decoder the task of combining 
and optimizing transducers such as those in Figure 1 
in its lexicon and substitutes them into the grammar. Phonetic tree representations may be 

Ortmanns, Ney & Eiden, 1996). The decoder 

operations is usually tied to particular model topologies. For example, the context-dependent 
models might have to be triphonic, the grammar might be restricted to trigrams, and the 
alternative pronunciations might have to be enumerated in the lexicon. Furthermore, these 
transducer combinations and optimizations are applied in a pre-programmed order to a pre-

Our approach, in contrast, uses a uniform transducer representation for n-gram grammars, 

or HMM segmentations, lattices and n-best output lists. We then rely on a common set 
of weighted transducer operations to combine, optimize, search and prune these automata 
(Mohri et al., 2000 
its foundations in the mathematical theory of rational power series (Salomaa & Soittola, 
1978; Kuich & Salomaa, 1986; Berstel & Reutenauer, 1988). Many of those operations are 
the weighted transducer generalizations of classical algorithms for unweighted acceptors. 
We have brought together those and a variety of auxiliary operations in a comprehensive 

from the AT&T Labs-Research Web site (Mohri, Pereira & Riley, 1997). 
Basic union, concatenation, and Kleene closure operations combine transducers in parallel, 

in series, and with arbitrary repetition, respectively. Other operations convert transducers to 
n best paths in 

a weighted transducer, remove unreachable states and transitions, and sort acyclic automata 
topologically. We refer the interested reader to the library documentation and an overview 
paper (Mohri et al., 2000) for further details on those operations. Here, we will focus on a 
few key operations that support the ASR applications described in later sections. 

2.3.1. Composition and intersection 

As previously noted, a transducer represents a binary relation between symbol sequences. 
The composition of two transducers represents their relational composition. In particular, the 
composition T = R o S of two transducers R and S has exactly one path mapping sequence 
u to sequence w R mapping u to some sequence v and the 
second in S mapping v tow. The weight ofa path in Tis the ©-product of the weights of the 
corresponding paths in Rand S (Salomaa & Soittola, 1978; Kuich & Salomaa, 1986; Berstel 
& Reutenauer, 1988). 

Composition is the transducer operation for combining different levels of representation. 
For instance, a pronunciation lexicon can be composed with a word-level grammar to produce 
a phone-to-word transducer whose word sequences are restricted to the grammar. A variety 
of ASR transducer combination techniques, both context independent and context dependent, 

mata intersection (Hopcroft & Ullman, 1979) to weighted acceptors and transducers. The 
composition R o S of transducers R and S has pairs of an R state and an S state as states, 



and satisfies the following conditions: (1) its initial state is the pair of the initial states of
; (2) its final states are pairs of a final state of and a final state of

is defined

finite automata (
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c:a/0.3 

a:b/0.6 

(a) (b) 
c:b/0.9 

Figure 3. Example of transducer composition. 

R 
and S R S, and (3) there is a 
transition t from (r, s) to (r', s') for each pair of transitions tR from r tor' and ts from s to 
s' such that the output label oft matches the input label of t'. The transition t takes its input 
label from tR, its output label from ts, and its weight is the ©-product of the weights of tR and 
ts. Since this computation is local-it involves only the transitions leaving two states being 
paired-it can be given a lazy (or on-demand) implementation in which the composition is 
generated only as needed by other operations on the composed automaton. Transitions with E 

labels in R or S must be treated specially as discussed elsewhere (Mohri et al., 1996, 2000). 
Figure 3 shows two simple transducers over the tropical semiring, Figure 3(a) and (b), and 

the result of their composition, Figure 3( c ). The weight of a path in the resulting transducer 
is the sum of the weights of the matching paths in R and S since in this semiring 18) 

as the usual addition ( oflog probabilities). 
Since we represent weighted acceptors by weighted transducers in which the input and 

output labels of each transition are identical, the intersection of two weighted acceptors is 
just the composition of the corresponding transducers. 

2.3.2. Determinization 

A weighted transducer is deterministic or sequential if and only if each of its states has at 
most one transition with any given input label and there are no input E labels. Figure 4 gives 
an example of a non-deterministic weighted acceptor: at state 0, for instance, there are several 
transitions with the same label a. 

Weighted determinization, which generalizes the classical subset method for determinizing 
Aho, Sethi & Ullman, 1986), applies to a weighted automaton and outputs 

an equivalent deterministic weighted automaton. Two weighted acceptors are equivalent if 
they associate the same weight to each input string; weights may be distributed differently 
along the paths of two equivalent acceptors. Two weighted transducers are equivalent if they 
associate the same output sequence and weights to each input sequence; the distribution of 
the weight or output labels along paths need not be the same in the two transducers. 



). Determinization and minimization of finite-state
transducers can also be used to give an efficient and compact representation of a lexicon
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a/0 

Figure 4. Non-deterministic weighted acceptor A I· 
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In contrast to the unweighted case, not all weighted automata can be determinized, 
as explained rigorously elsewhere (Mohri, 1997). Fortunately, most weighted automata used 
in speech processing can be either determinized directly or easily made determinizable by 
simple transformations, as we shall discuss later. In particular, any acyclic weighted automa­
ton can be determinized. 

Our discussion and examples of determinization and, later, minimization will be illustrated 
with weighted acceptors. The more general weighted transducer case can be shown to be 
equivalent to this case by interpreting weight-output label pairs as new "weights" combined 
by the appropriate semiring (Mohri, 1997 

(Mohri, 1996). 
The critical advantage of a deterministic automaton over equivalent nondeterministic ones 

is its irredundancy: it contains at most one path matching any given input sequence, thereby 
reducing the time and space needed to process an input sequence. 

To eliminate redundant paths, weighted determinization needs to calculate the combined 
weight of all the paths for a given input sequence, which will depend on the semiring used. 
We describe determinization here for the tropical semiring; this account carries over easily to 
other semirings. 

Figure 5 shows the weighted determinization in the tropical semiring of automaton A 1 

from Figure 4. In general, the determinization of a weighted automaton is equivalent to the 
original, that is, it associates the same weight to each input string. For example, there are two 
paths corresponding to the input string ae in A1, with weights {0+ 0 = 0, 3 + 10 = 13}. The 
minimum O is also the weight associated by A2 to the string ae. 

In the classical subset construction for determinizing unweighted automata, all the states 
reachable by a given input sequence from the initial state are placed in the same subset. 
In the weighted case, the paths from the initial state for a given input sequence may have 
different weights. Therefore, only the minimum of those weights should be associated with 
the sequence and the leftover weights must be kept track of. Thus, the subsets in weighted 
determinization contain pairs ( q, w) of a state q of the original automaton and a leftover 
weight w. 

The initial subset is {(i, 0)}, where i is the initial state of the original automaton. For 
example, for automaton A1 the initial subset is {(0, 0)}. Each new subset Sis processed in 
turn. For each element a of the input alphabet :E labeling at least one transition leaving a 



Weighted minimization is quite efficient, as efficient in fact as classical deterministic finite
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a/0 

Figure 5. Equivalent weighted automaton A2 obtained by weighted determinization 
ofA1. 

a/0 

Figure 6. Equivalent weighted automaton B2 obtained by weight pushing from A2. 

state of S, a new transition t leaving Sis constructed in the result automaton. The input label 
oft is a and its weight is the minimum of the sums w + l where w is s's leftover weight and 
l is the weight of an a-transition leaving a states in S. The destination state oft is the subset 
S' containing those pairs (q', w') in which q' is a state reached by a transition labeled with a 
from a state of S and w' is the appropriate leftover weight. 

For example, state 0 in A2 corresponds to the initial subset { (0, 0)} constructed by the 
algorithm. The A2 transition leaving 0 and labeled with a is obtained from the two transitions 
labeled with a leaving the state 0 in A 1 : its weight is the minimum of the weight of those 
two transitions, and its destination state is the subset S' = {(l, 0 - 0 = 0), (2, 3 - 0 = 3)}, 
numbered 1 in A2. 

It is clear that the transitions leaving a given state in the deterrninization of an automaton 
can be computed from the subset for the state and the transitions leaving the states in the 
subset, as is the case for the classical determinization algorithm. In other words, the weighted 
determinization algorithm is local like the composition algorithm, and can thus be given a 
lazy implementation. 

2.3.3. Minimization 

Any deterministic automaton can be minimized using classical algorithms (Aho, Hopcroft & 
Ullman, 1974; Revuz, 1992). In the same way, any deterministic weighted automaton A can 
be minimized using our minimization algorithm (Mohri, 1997). 

The resulting weighted automaton B is equivalent to the automaton A, and has the least 
number of states and the least number of transitions among all deterministic weighted 
automata equivalent to A. 

automata (DFA) minimization: linear in the acyclic case ( O(m + n)), and O(m logn) in the 
general case, where n is the number of states and m the number of transitions 



works in two steps: the first step

ical semiring; similar definitions can be given for other semirings. A (non-trivial) weighted
automaton can be reweighted in an infinite number of ways that produce equivalent automata.

has a single final state

and each final weight as follows:

the initial state to the final state is added and then subtracted, making the overall change in

towards the initial state as much as possible, a specific potential

to the final state. After pushing, the lowest cost path (excluding the final weight) from every
state to the final state will thus be 0.

the final step of the algorithm. No approximation or heuristic is used: the resulting automaton

Any automaton can be transformed into an equivalent automaton with a single final state by adding a super-final
state, making all previously final states non-final, and adding an transition from each of the previously final states
to the super-final state with weight
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Figure 7. Equivalent weighted automaton A3 obtained by weighted minimization 
fromA2. 
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We can view the deterministic weighted automaton A2 as an unweighted automaton by 
interpreting each pair (a, w) ofa label a and a weight was a single label. We can then apply 
the standard DFA minimization algorithm to this automaton. But, since the pairs for different 
transitions are all distinct, classical minimization would have no effect on A2. 

The size of A2 can still be reduced by using true weighted minimization. This algorithm 
pushes weight among transitions, 2 and the second applies 

the classical minimization algorithm to the result with each distinct label-weight pair viewed 
as a distinct symbol, as discussed. 

Pushing is a special case of reweighting. We describe reweighting in the case of the trop-

To see how, assume for convenience that the automaton A fA. 3 Let 
V : Q - R be an arbitrary potential function on states. Update each transition weight as 
follows: 

w[t] +- w[t] + (V(n[t]) - V(p[t])) 

It is easy to see that with this reweighting, each potential internal to any successful path from 

path weight: 

(V(JA) - V(iA)) + (V(iA) - V(JA)) = Q. 

Thus, reweighting does not affect the total weight of a successful path and the resulting 
automaton is equivalent to the original. 

To push the weight in A 
function is chosen, the one that assigns to each state the lowest path weight from that state 

Figure 6 shows the result of pushing for the input A2. Thanks to pushing, the size of the 
automaton can then be reduced using classical minimization. Figure 7 illustrates the result of 

A3 is equivalent to A2. 

2Tue weight pushing algorithm is described and analyzed in detail in Mohri (1998) and its applications to speech 
recognition are discussed in Mohri and Riley (2001a). 
3 

E 

f p(f). 



3. Weighted finite-state transducer applications

We now describe several applications of weighted finite-state transducer algorithms to speech

-transition from each final

in the figure are pairs
an unspecified future. For instance, it is easy to see that the

sitions. In real applications, context-dependency transducers will benefit significantly from
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Figure 8. Context-dependent triphone transducer. 

recognition. 

3.1. Transducer combination 

Consider the pronunciation lexicon in Figure 2(b). Suppose we form the union of this trans­
ducer with the pronunciation transducers for the remaining words in the grammar G of 
Figure 2(a) and then take its Kleene closure by connecting an E 
state to the initial state. The resulting pronunciation lexicon L would pair any sequence of 
words from that vocabulary to their corresponding pronunciations. Thus, 

LoG 

gives a transducer that maps from phones to word sequences restricted to G. 
We used composition here to implement a context-independent substitution. However, a 

major advantage of transducers in speech recognition is that they generalize naturally the 
notion of context-independent substitution of a label to the context-dependent case. The 
transducer of Figure 8 does not correspond to a simple substitution, since it describes the 
mapping from context-independent phones to context-dependent triphonic models, denoted 
by phone/ left context_ right context. Just two hypothetical phones x and y are shown for 
simplicity. Each state encodes the knowledge of the previous and next phones. State labels 

(a, b) of the past a and the future b, with E representing the start or 
end of a phone sequence and * 
phone sequence xyx is mapped by the transducer to x/E _y y/x _x x/y _Evia the unique 
state sequence (E, *)(x, y)(y, x)(x, E). More generally, when there are n context-independent 
phones, this triphonic construction gives a transducer with O(n2) states and O(n3) transi­
tions. A tetraphonic construction would give a transducer with O(n3) states and O(n4 ) tran-

determinization and minimization since many n-phones share the same HMM model due to 
the clustering of contexts used to alleviate data sparseness. 



(d). By definition of
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(a) 

(b) 

y 

(c) 

y:y/x_e 

(d) 

Figure 9. Context-dependent composition examples. 

The following simple example shows the use of this context-dependency transducer. A 
context-independent string can be represented by the obvious single-path acceptor as in 
Figure 9(a). This can then be composed with the context-dependency transducer in Figure 8. 4 

The result is the transducer in Figure 9(b ), which has a single path labeled with the context­
independent labels on the input side and the corresponding context-dependent labels on the 
output side. 

The context-dependency transducer can be composed with more complex transducers than 
the trivial one in Figure 9(a). For example, composing the context-dependency transducer 
with the transducer in Figure 9(c) results in the transducer in Figure 9 
relational composition, this must correctly replace the context-independent units with the 
appropriate context-dependent units on all of its paths. Therefore, composition provides a 
convenient and general mechanism for applying context-dependency to ASR transducers. 

If we let C represent a context-dependency transducer from context-dependent phones to 
context-independent phones, then 

CoLoG 

gives a transducer that maps from context-dependent phones to word sequences restricted to 
the grammar G. Note that C is the inverse of a transducer such as in Figure 8; that is the input 

4Before composition, we promote the acceptor in Figure 9(a) to the corresponding transducer with identical input 
and output labels. 



grated transducer in a convenient, efficient and general manner. When these automata are

decoding time and space requirements. If the transducer needs to be modified dynamically,

extended dialogue, we adopt a hybrid approach that optimizes the fixed parts of the transducer

intermediate steps of the construction also helps to improve the efficiency of composition and

be determinizable because the first word of the output sequence might not be known before
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and output labels have been exchanged on all transitions. For notational convenience, we 
adopt this form of the context-dependency transducer when we use it in recognition cascades. 

As we did for the pronunciation lexicon, we can represent the HMM set as H, the closure 
of the union of the individual HMMs [see Fig. l(c)]. Note that we do not explicitly represent 
the HMM-state self-loops in H. Instead, we simulate those in the run-time decoder. With H 
in hand, 

HoCoLoG 

gives a transducer that maps from distributions to word sequences restricted to G. 
We thus can use composition to combine all levels of our ASR transducers into an inte-

statically provided, we can apply the optimizations discussed in the next section to reduce 

for example by adding the results of a database lookup to the lexicon and grammar in an 

and uses lazy composition to combine them with the dynamic portions during recognition 
(Mohri & Pereira, 1998). 

3.2. Transducer standardization 

To optimize an integrated transducer, we use three additional steps; (a) determinization, 
(b) minimization, and ( c) factoring. 

3.2.1. Determinization 

We use weighted transducer determinization at each step of the composition of each pair 
of transducers. The main purpose of determinization is to eliminate redundant paths in the 
composed transducer, thereby substantially reducing recognition time. In addition, its use in 

to reduce transducer size. 
In general, the transducer L o G from phone sequences to words is not determinizable. 

This is clear in the presence of homophones. But, even without homophones, Lo G may not 

the entire input phone sequence is scanned. Such unbounded output delays make L o G non­
determinizable. 

To make it possible to determinize L o G, we introduce an auxiliary phone symbol, denoted 
#o, marking the end of the phonetic transcription of each word. Other auxiliary symbols 
#1 ... #k-1 are used when necessary to distinguish homophones, as in the following example: 

r eh d #o read 
r eh d #1 red 

At most P auxiliary phones are needed, where P is the maximum degree of homophony. The 
pronunciation dictionary transducer with these auxiliary symbols added is denoted by L. 

For consistency, the context-dependency transducer C must also accept all paths contai­
ning these new symbols. For further determinizations at the context-dependent phone level 
and distribution level, each auxiliary phone must be mapped to a distinct context-dependent­
level symbol. Thus, self-loops are added at each state of C mapping each auxiliary phone to 
a new auxiliary context-dependent phone. The augmented context-dependency transducer is 
denoted by C. 



The modified HMM model is denoted by

The benefit of this

a small and efficient integrated transducer, it is important to first determinize the inverse of

In a final step, we use the erasing operation

is treated as a regular symbol for the definition of determinism. If this does not hold,
first determinized (

-phonic context into finite-state transducers (
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Similarly, each auxiliary context-dependent phone must be mapped to a new distinct distri­
bution name. P self-loops are added at the initial state of H with auxiliary distribution name 
input labels and auxiliary context-dependent phone output labels to allow for this mapping. 

iI. 
It is straightforward to see that the addition of auxiliary symbols guarantees the deter­

minizability of the transducer obtained after each composition, allowing the application of 
weighted transducer determinization at several stages in our construction. 

First, L is composed with G and determinized, yielding det(L o G).5 

determinization is the reduction of the number of alternative transitions at each state to at 
most the number of distinct phones at that state, while the original transducer may have as 
many as V outgoing transitions at some states where Vis the vocabulary size. For large tasks 
in which the vocabulary has 105 to 106 words, the advantages of this optimization are clear. 

The context-dependency transducer might not be deterministic with respect to the context­
independent phone labels. For example, the transducer shown in Figure 8 is not deterministic 
since the initial state has several outgoing transitions with the same input label x or y. To build 

- 6 C. 
C is then composed with the resulting transducer and determinized. Similarly, iI is com­

posed with the context-dependent transducer and determinized. This last determinization 
increases sharing among HMM models that start with the same distributions. At each state of 
the resulting integrated transducer, there is at most one outgoing transition labeled with any 
given distribution name, reducing recognition time even more. 

nE to replace the auxiliary distribution symbols 
by E's. The complete sequence of operations is summarized by the following construction 
formula: 

N = nE(det(H o det(C o det(L o G)))) 

where parentheses indicate the order in which the operations are performed. The result N is 
an integrated recognition transducer that can be constructed even in very large-vocabulary 
tasks and leads to a substantial reduction in recognition time, as the experimental results 
below show. 

3.2.2. Minimization 

Once we have determinized the integrated transducer, we can reduce it further by minimiza­
tion. The auxiliary symbols are left in place, the minimization algorithm is applied, and then 
the auxiliary symbols are removed: 

N = nE(min(det(H o det(C o det(L o G))))). 

Weighted minimization can be used in different semirings. Both minimization in the tropical 
semiring and minimization in the log semiring can be used in this context. It is not hard to 
prove that the results of these two minimizations have exactly the same number of states and 

5 Ann-gram language model G is often constructed as a deterministic weighted automaton with back-off states-in 
this context, the symbol E G is 

Mohri, 1997). 
6Triphonic or more generally n-phonic context-dependency models can be built directly with a deternrinistic inverse 
(Riley, Pereira & Mohri, 1997). They can also be computed by compilation of context-dependent rules corresponding 
to eachn Kaplan&Kay, 1994; Karttunen, 1995; Mohri& Sproat, 1996). 



arises from differences in the definition of the key pushing operation for different semirings.
Weight pushing in the log semiring has a very large beneficial impact on the pruning effi-

log of the total probability of paths from the each state to the (super-)final state rather
than the lowest weight from the state to the (super-)final state. In other words, the transducer

the sum of probability mass potential function required significant extensions of the classical

For efficiency reasons, our decoder has a separate representation for variable-length left-to-
HMM specification

into the recognition transducer proper, the HMM specification consists of trivial one-state

A path whose states other than the first and last have at most one outgoing and one inco-
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transitions and only differ in how weight is distributed along paths. The difference in weights 

cacy of a standard Viterbi beam search. In contrast, weight pushing in the tropical semiring, 
which is based on lowest weights between paths described earlier, produces a transducer that 
may slow down beam-pruned Viterbi decoding many fold. 

To push weights in the log semiring instead of the tropical semiring, the potential function 
is the -

is pushed in terms of probabilities along all future paths from a given state rather than the 
highest probability over the single best path. By using - log probability pushing, we preserve 
a desirable property of the language model, namely that the weights of the transitions leaving 
each state be normalized as in a probabilistic automaton (Carlyle & Paz, 1971). We have 
observed that probability pushing makes pruning more effective (Mohri & Riley, 2001a), 
and conjecture that this is because the acoustic likelihoods and the transducer probabilities 
are now synchronized to obtain the optimal likelihood ratio test for deciding whether to prune. 
We further conjecture that this reweighting is the best possible for pruning. A proof of these 
conjectures will require a careful mathematical analysis of pruning. 

One step that has not been described yet is how to compute the reweighting potential 
function. If the lowest cost path potential function is used, classical single-source shortest 
path algorithms can be employed (Carmen, Leiserson & Rivest, 1992). However, adopting 

algorithms, which are of independent interest (Mohri, 1998). 
We have thus standardized the integrated transducer in our construction-it is the unique 

deterministic, minimal transducer for which the weights for all transitions leaving any state 
sum to 1 in probability, up to state relabeling. If one accepts that these are desirable properties 
of an integrated decoding transducer, then our methods obtain the optimal solution among all 
integrated transducers. 

3.2.3. Factoring 

right HMMs, which we will call the . The integrated transducer of the 
previous section does not take good advantage of this since, having combined the HMMs 

HMMs. However, by suitably factoring the integrated transducer, we can again take good 
advantage of this feature. 

ming transition is called a chain. The integrated recognition transducer just described may 
contain many chains after the composition with fl, and after determinization. As mentioned 
before, we do not explicitly represent the HMM-state self-loops but simulate them in the 
run-time decoder. The set of all chains in N is denoted by Chain(N). 

The input labels of N name one-state HMMs. We can replace the input of each length-n 
chain in N by a single label naming an n-state HMM. The same label is used for all chains 
with the same input sequence. The result of that replacement is a more compact transducer 
denoted by F. The factoring operation on N leads to the following decomposition: 

N=H'oF 

where H' is a transducer mapping variable-length left-to-right HMM state distribution names 



can be separately represented in the decoder’s HMM specifica-

of the transducer. This can be measured by defining the

Factoring does not affect recognition time. It can however significantly reduce the size of

3.2.4. Experimental results—first-pass transducers

gives the size of the intermediate and final transducers.

. The HMM specification
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to n-state HMMs. Since H' 
tion, the actual recognition transducer is just F. 

Chain inputs are in fact replaced by a single label only when this helps to reduce the size 
gain of the replacement of an input 

sequence a of a chain by: 

G(a) = lal - lo[rrll - 1 
,reChain(N),i[rr]=a 

where lal denotes the length of the sequence a, i[n] the input label and o[rr] the output 
label of a path Jr. The replacement of a sequence a helps reduce the size of the transducer if 
G(a) > 0. 

Our implementation of the factoring algorithm allows one to specify the maximum number 
r of replacements done (the r chains with the highest gain are replaced), as well as the 
maximum length of the chains that are factored. 

the recognition transducer. We believe that even better factoring methods may be found in 
the future. 

We applied the techniques outlined in the previous sections to build an integrated, optimized 
recognition transducer for a 40 000-word vocabulary NAB task. 7 The following models were 
used: 

• Acoustic model of 7208 distinct HMM states, each with an emission mixture distribu­
tion of up to twelve Gaussians. 

• Triphonic context-dependency transducer C with 1525 states and 80 225 transitions. 
• 40 000-word pronunciation dictionary L with an average of 1.056 pronunciations per 

word and an out-of-vocabulary rate of2-3% on the NAB Eval '95 test set. 
• Trigram language model G with 3 926 010 transitions built by Katz's back-off method 

with frequency cutoffs of 2 for bigrams and 4 for trigrams. It was shrunk with an 
epsilon of 40 using the method of Seymore and Rosenfeld (1996), which retained all 
the unigrams, 22-3% of the bigrams and 19-1% of the trigrams. The perplexity on the 
NAB Eval '95 test set was 164-4 (142-1 before shrinking). 

We applied the transducer optimization steps as described in the previous section except 
that we applied the minimization and weight pushing after factoring the transducer. Table I 

Observe that the factored transducer min(F) has only about 40% more transitions than 
G H' consists of 430 676 HMMs with an average of7-2 states per 
HMM. It occupies only about 10% of the memory of min(F) in the decoder (due to the 
compact representation possible from its specialized topology). Thus, the overall memory 
reduction from factoring is substantial. 

We used these transducers in a simple, general-purpose, one-pass Viterbi decoder applied 
to the DARPA NAB Eval '95 test set. Table II shows the recognition speed on a Compaq 
Alpha 21264 processor for the various optimizations, where the word accuracy has been 

7 Our speech recognition decoder library will soon be made available for non-commercial use. It will include among 
other utilities the construction and optimization of the recognition transducer described in the previous section and 
will be accessible from the AT&T Labs-Research Web site (Mohri & Riley, 2001b). 



I. Size of the first-pass recognition transduc-

first-pass transducers in the NAB

fixed at 83

in the first pass. In particular, since the offline construction of the recognition transducer used

resulting machine, we performed our initial experiments using a significant shrink of the LM.

lary NAB task. The following models were used to build lattices in a first pass:
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TABLE 
ers in the NAB 40 000-word vocabulary task 

Transducer States Transitions 
G 1339 664 3926010 
LoG 8606729 11406721 
det(L o G) 7082404 9836629 
Co det(L o G)) 7273035 10201269 
det(H o C o L o G) 18317359 21237992 
F 3 188 274 6108907 
min(F) 2616948 5497952 

TABLE II. Recognition speed of the 

40 000-word vocabulary task at 83% 
word accuracy 

Transducer 
CoL o G 
Co det(L o G) 
det(H o C o L o G) 
min(F) 

xReal-time 
12-5 

1-2 
1-0 
0-7 

-0%. We see that the fully optimized recognition transducer, rnin(F), substantially 
speeds up recognition. 

To obtain improved accuracy, we can widen the decoder beam8 and/or use better models 

here required approximately an order of magnitude more runtime memory than the size of 

We are currently experimenting with much less shrunken NAB LMs having acquired more 
memory and improved the memory usage of our construction. 

Alternatively, we can use a two-pass system to obtain improved accuracy, as described in 
the next section. 

3.2.5. Experimental results-rescoring transducers 

We have applied the optimization techniques to lattice rescoring for a 160 000-word vocabu-

• Acoustic model of 5520 distinct HMM states, each with an emission mixture distribu­
tion ofup to four Gaussians. 

• Triphonic context-dependency transducer C with 1525 states and 80 225 transitions. 
• 160 000-word pronunciation dictionary L with an average of 1-056 pronunciations per 

word and an out-of-vocabulary rate of0-8% on the NAB Eval '95 test set. 
• Bigram language model G with 1238 010 transitions built by Katz's back-off method 

with frequency cutoffs of2 for bigrams. It was shrunk with an epsilon of 160 using the 
method of Seymore and Rosenfeld (1996), which retained all the unigrams and 13-9% 
of the bigrams. The perplexity on the NAB Eval '95 test set was 309-9. 

8Toese models have an asymptotic wide-beam accuracy of 85-3%. 



We used an efficient approximate lattice generation method (

is fixed at 88

mented by taking the finite-state intersection of the lattices and then finding the lowest cost

that the finite-state intersection of two acceptors is identical to the finite-state com-

The recognition speed excludes the offline transducer construction time.
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TABLE III. Recognition speed of 
the second-pass transducers in the 
NAB 160 000-word vocabulary task 

at 88% word accuracy 

Transducer 
CoLoG 
Co det(L o G) 
Co min(det(L o G)) 

xReal-time 
0-18 
0-13 
0-02 
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Ljolje, Pereira & Riley, 1999) 
to generate word lattices. These word lattices were then used as the "grammar" in a second 
rescoring pass. The following models were used in the second pass: 

• Acoustic model of 7208 distinct HMM states, each with an emission mixture distribu­
tion of up to twelve Gaussians. The model was adapted to each speaker using a single 
full-matrix MLLR transform (Leggetter & Woodland, 1995). 

• Triphonic context-dependency transducer C with 1525 states and 80 225 transitions. 
• 160 000-word stochastic, TIMlT-trained, multiple-pronunciation lexicon L (Riley 

et al., 1999). 
• 6-gram language model G with 40 383 635 transitions built by Katz's back-off method 

with frequency cutoffs of 1 for bigrams and trigrams, 2 for 4-grams, and 3 for 5-grams 
and 6-grams. It was shrunk with an epsilon of 5 using the method of Seymore and 
Rosenfeld, which retained all the unigrams, 34-6% of the bigrams, 13-6% of the tri­
grams, 19-5% of the 4-grams, 23-1 % of the 5-grams, and 11-73% of the 6-grams. The 
perplexity on the NAB Eval '95 test set was 156-83. 

We applied the transducer optimization steps described in the previous section but only to 
the level of L o G (where G is each lattice). Table III shows the speed of second-pass recog­
nition on a Compaq Alpha 21264 processor for these optimizations when the word accuracy 

-0% on the DARPA Eval '95 test set.9 We see that the optimized recognition 
transducers again substantially speed up recognition. The median number of lattice states 
and arcs was reduced by ~ 50% by the optimizations. 

3.3. Recognizer combination 

It is known that combining the output of different recognizers can improve recognition accu­
racy (Fiscus, 1997). We achieve this simply by adding together the negative log probability 
estimates - log Pn (s, x) for sentence hypothesis s and utterance x from each of the n rec­
ognizer lattices and then select the lowest cost path in this combination. This can be imple-

path using the acyclic single-source shortest path algorithm (Cormen et al., 1992). (Recall 
A1 n A2 

position of T1 o T2 where T1 and T2 are the corresponding transducers with identical input 
and output labels). 

We used this combination technique in the AT&T submission to the NIST large vocabulary 
continuous speech recognition (LVCSR) 2000 evaluation (Ljolje, Hindle, Riley & Sproat, 
2000). For that system, we used six distinct acoustic models to generate six sets of word 

9 



malized, as specified in Table

after the finite-state intersection of the lattices for the first

We gave a brief overview of several weighted finite-state transducer algorithms and their
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TABLE IV. Acoustic models used in the 
LVCSR-200 task 

Model Context Gender Cep. var. norm. 
Modi 5-phone Dep. Yes 
Mod2 5-phone Dep. No 
Mod3 5-phone Indep. Yes 
Mod4 5-phone Indep. No 
Mod5 3-phone Dep. Yes 
Mod6 3-phone Indep. No 

TABLE V. Word error rate on LVCSR-2000 task before and after 
model combination 

Model/pass 
MLLR 
Combined 

Modl 
30-3 
30-3 

Word error rate(%) 
Mod2 Mod3 Mod4 
30-2 30-8 30-7 
29-6 28-9 28-8 

Mod5 
31-4 
28-7 

Mod6 
32-6 
28-6 

lattices. These acoustic models differed in their context-dependency level (triphone vs. pen­
taphone ), whether they were gender dependent and whether they were cepstral variance nor­

IV. All these models were MLLR-adapted. The system used a 
40 000 word vocabulary and a 6-gram language model. Table V shows the word error rate on 
the LVCSR Eval '00 test set using each of these models. Also shown are the word error rates 

n acoustic models, where n = 2 
through 6.10 As we can see, the six-fold model combination gives an absolute 1-6% word 
error rate reduction over the best single model. 

4. Conclusion 

application to speech recognition. The algorithms we described are very general. Similar 
techniques can be used in various other areas of speech processing such as speech synthe­
sis (Sproat, 1997; Beutnagel, Mohri & Riley, 1999), in other areas oflanguage technology 
such as information extraction and phonological and morphological analysis (Kaplan & Kay, 
1994; Karttunen, 1995), in optical character recognition, in biological sequence analysis and 
other pattern matching and string processing applications (Crochemore & Rytter, 1994), and 
in image processing (Culik II & Kari, 1997), just to mention some of the most active appli­
cation areas. 

We thank Andrej Ljolje for providing the acoustic models and Don Hindle and Richard Sproat for 
providing the language models used in our experiments. 
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