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more general lexicon. Brent and Cartwright (1996) hypothesize that children 
use MDL algorithms to learn a lexicon by segmenting words from speech. Ini 
fact, Saffran et al. (1996) shows that eight-month-old infants can use phone; 
sequence probabilities as evidence for word segmentation.

5.10 Pronunciation in Humans

Section 5.7 discussed many factors which influence pronunciation variation 
in humans. In this section we very briefly summarize a computational model 
of the retrieval of words from the mental lexicon as part of human lexical 
production. The model is due to Gary Dell and his colleagues; for brevity 
we combine and simplify features of multiple models (Dell, 1986, 1988; 
Dell et al., 1997) in this single overview. First consider some data. As 
we suggested in Chapter 3, production errors such as slips of the tongue 
{darn bore instead barn door) often provide important insights into lexical 
production. Dell (1986) summarizes a number of previous results about such 
slips. The lexical bias effect is that slips are more likely to create words than 
noh-words; thus slips like dean bad-1 bean dad are three times more likely 
than slips like deal back-1 beat dack. The repeated-phoneme bias is that 
two phones in two words are likely to participate in an error if there is an 
identical phone in both words. Thus deal beack is more likely to slip to bedd 
than deal back is.

The model that Dell (1986, 1988) proposes is a network with three 
levels; semantics, word (lemma), and phonemes.6 The semantics level has 
nodes for concepts, the lemma level has one node for each words, and the 
phoneme level has separate nodes for each phone, separated into onsets; 
vowels, and codas. Each lemma node is connected to the phoneme units 
which comprise the word, and the semantic units which represent the con­
cept. Connections are used to pass activation from node to node, and are 
bidirectional and excitatory. Lexical production happens in two stages. In 
the first stage, activation passes from the semantic concepts to words. Acti­
vation will cascade down into the phonological units and then back up into 
other word units; At some point the most highly activated word is selected. 
In the second stage, this selected is given a large jolt of activation. Again 
this activation passes to the phonological level. Now the most highly active 
phoneme nodes are selected arid accessed in order:

A Dell (1988) also has a fourth level for syllable structure that we will ignore here.
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Figure 5.22 shows Dell’s model. Errors occur because too much acti­
vation reaches the wrong phonological node. Lexical bias, for example, is 
modeled by activation spreading up from the phones of the intended word to 
neighboring words, which then activated their own phones. Thus incorrect 
phones get “extra” activation if they are present in actual words.

Figure 5.22 The network model of Dell (1986,1988), showing the mecha­
nism for lexical bias (modified from Dell (1988, p. 134)). The boldfaced nodes 
indicate nodes with lots of activation. The intended word dean has a greater 
chance of slipping to bean because of the existence of the bean node. The 
boldfaced lines show the connections which account for the possible slip.

The two-step network model also explains other facts about lexical 
production. Aphasic speakers have various troubles in language production aphasic 

and comprehension, often caused by strokes or accidents. Dell et al. (1997) 
show that weakening various connections in a network model like the one 
above can also account for the speech errors in aphasics. This supports the 

) continuity hypothesis, which suggests that some part of aphasia is merely an 
extension of normal difficulties in word retrieval, and also provides further 
evidence for the network model. Readers interested in details of the model 
should see the above references and related computational models such as 
Roelofs (1997), which extends the network model to deal with syllabifica- 
tion, phonetic encoding, and more complex sequential structure, and Levelt 
et al. (1999).
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5.11 Summary

This chapter lias introduced some essential metaphors and algorithms that 
will be useful throughout speech and language processing. The main points 
are as follows:

• We can represent many language problems as if a clean string of sym- yf 
bols had been corrupted by passing through a noisy channel and it is 
our job to recover the original symbol string. One powerful way io 
recover the original symbol string is to consider all possible original < 
strings, and rank them by their conditional probability.

• The conditional probability is usually easiest to compute using the 
Bayes Rule, which breaks down the probability into a prior and a 
likelihood. For spelling error correction or pronunciation-modeling,f 
the prior is computed by taking word frequencies or word bigram fre­
quencies. The likelihood is computed by training a simple probabilistic : < 

: model (like a confusion matrix, a decision tree, or a hand-written rule) y 
onadatabase.

• The task of computing the distance between two strings comes up 
Ay in spelling error correction and other problems. The minimum edit y 

distance algorithm is an application of the dynamic programming 
f paradigm to solving this problem, and can be used to produce the dis- y 

tance between two strings or an alignment of the two strings.
• The pronunciation of words is very variable. Pronunciation variation 

is caused by two classes of factors: lexical variation and allophonic 
variation. Lexical variation includes sociolinguistic factors like di­
alect and register or style.

• The single most important factor affecting allophonic variation is the 
identity of the surrounding phones. Other important factors include 
syllable structure, stress patterns, and the identity and frequency of the 

yy word; yArf Ay
• The decoding task is the problem of finding determining the correct 

“underlying’’ sequence of symbols that generated the “noisy” sequence 
of observation symbols.

• The forward algorithm is an efficient way of computing the likeli­
hood of an observation sequence given a weighted automata. Like the 
minimum edit distance algorithm, it is a variant of dynamic program­
ming. It will prove particularly in Chapter 7 when we consider Hidden
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Markov Models, since it will allow us to sum multiple paths that each 
account for the same observation sequence.

• The Viterbi algorithm, another variant of dynamic programming, is 
an efficient way of solving tire decoding problem by considering all 
possible strings and using the Bayes Rule to compute their probabilities 
of generating the observed “noisy” sequence.

• Word segmentation in languages without word-boundary markers, 
like Chinese and Japanese, is another kind of optimization task which 
can be solved by the Viterbi algorithm.

Bibliographical and Historical Notes

Algorithms for spelling error detection and correction have existing since 
at least Blair (1960). Most early algorithm were based on similarity keys 

> like the Soundex algorithm discussed in the exercises on page 89 (Odell and 
Russell, 1922; Knuth, 1973). Damerau (1964) gave a dictionary-based al­
gorithm for error detection; most error-detection algorithms since then have 
been based on dictionaries. Damerau also gave a correction algorithm that 
worked for single errors. Most algorithms since then have relied on dynamic 
programming, beginning with Wagner and Fischer (1974) (see below). Ku- 
kich (1992) is the definitive survey article on spelling error detection and 
correction. Only much later did probabilistic algorithms come into vogue 
for non-OCR spelling-error correction (for example Kashyap and Oommen 
(1983) and Kernighan et al. (1990)).

By contrast, the field of optical character recognition developed prob­
abilistic algorithms quite early; Bledsoe and Browning (1959) developed a 
probabilistic approach to OCR spelling error correction that used a large dic­
tionary and computed the likelihood of each observed letter sequence given 
each word in the dictionary by multiplying the likelihoods for each letter. In 
this sense Bledsoe and Browning also prefigured the modern Bayesian ap­
proaches to speech recognition. Shinghal and Toussaint (1979) and Hull and 
Srihari (1982) applied bigram letter-transition probabilities and the 
Viterbi algorithm to choose the most likely correct form for a misspelled 
OCR input.

The application of dynamic programming to the problem of sequence 
comparison has what Kruskal (1983) calls a “remarkable history of multiple
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independent discovery and publication”.7 Kruskal and others give at least 
the following independently-discovered variants of the algorithm published 
in four separate fields:

Citation Field
Viterbi (1967) information theory
Vintsyuk (1968) speech processing
Needleman and Wunsch (1970) molecular biology
Sakoe and Chiba (1971) speech processing
Sankoff (1972) molecular biology
Reichert et al. (1973) molecular biology
Wagner and Fischer (1974) computer science

To the extent that there is any standard to terminology in speech and 
language processing, it is the use of the term Viterbi for the application of 
dynamic programming to any kind of probabilistic maximization problem. 
For non-probabilistic problems, the plain term dynamic programming is 
often used. The history of the forward algorithm, which deri ves from Hid­
den Markov Models, will be summarized in Chapter 7. Sankoff and Kruskal 
(1983) is a collection exploring the theory and use of sequence comparison 
in different fields. Forney (1973) is an early survey paper which explores the 
origin of the Viterbi algorithm in the context of information and communi­
cations theory.

The weighted finite-state automata was first described by Pereira et al. 
(1994), drawing from a combination of work in finite-state transducers and 
work in probabilistic languages (Booth and Thompson, 1973).

Exercises .

5.1 Computing minimum edit distances by hand, figure out whether drive 
is closer to brief ox to divers, and what the edit distance is. You may use any 
version of distance that you like.

5.2 Now implement a minimum edit distance algorithm and use your hand- 
computed results to check your code.
7 Seven is pretty remarkable, but see page 15 for a discussion of the prevalence of multiple 
discovery.
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5.3 The Viterbi algorithm can be used to extend a simplified version of 
the Kernighan et al. (1990) spelling error correction algorithm. Recall that 
the Kernighan et al. (1990) algorithm only allowed a single spelling error 
for each potential correction. Let’s simplify by assuming that we only have 
three confusion matrices instead of four (del, ins and sub; no trans). Now 
show how the Viterbi algorithm can be used to extend the Kernighan et al. 
(1990) algorithm to handle multiple spelling errors per word.

5.4 To attune your ears to pronunciation reduction, listen for the pronun­
ciation of the word the, a, or to in the spoken language around you. Try to 
notice when it is reduced, and mark down whatever facts about the speaker 
or speech situation that you can. What are your observations?

5.5 Find a speaker of a different dialect of English than your own (even 
someone from a slightly different region of your native dialect) and tran­
scribe (using the ARPAbet or IPA) 10 words that they pronounce differently 
than you. Can you spot any generalizations?

5.6 Implement the Forward algorithm.

> 5.7 Write a modified version of the Viterbi algorithm which solves the seg­
mentation problem from Sproat et al. (1996).

5.8 Now imagine a version of English that was written without spaces. 
Apply you* segmentation program to this “compressed English”. You will 
need other programs to compute word bigrams or trigrams.

5.9 Two words are confusable if they have phonetically similar pronunci­
ations. Use one of your dynamic programming implementations to take two 
words and output a simple measure of how confusable they are. You will 
need to use an on-line pronunciation dictionary. You will also need a metric 
for how close together two phones are. Use your favorite set of phonetic 
feature vectors for this. You may assume some small constant probability of 
phone insertion and deletion.

CONFUSABLE



f ; ; But it must be recognized that the notion “probability of a sen­
tence” is an entirely useless one, under any known interpretation 
of this term. . .

Noam Chomsky (1969, p. 57)

: Anytime a linguist leaves the group the recognition rate goes up.
Fred Jelinek (then of the IBM speech group) (1988)1

Radar O’Reilly, the mild-mannered clerk of the 4077th M*A*S*H unit in 
the book, movie, and television show had an uncanny ability to
guess what his interlocutor was about to say. Most of us don’t have this skill, 
except perhaps when it comes to guessing the next words of songs written 

i b^ very unimaginative lyricists. Or perhaps we do. For example what word 
is likely to follow this sentence fragment?

I’dlike to make a collect...

Probably most of you concluded that a very likely word is call, al­
though it’s possible the next word could be telephone, or person-to-person 
or international. (Think of some others). The moral here is that guessing 
words is hot as amazing as it seems, at least if we don’t require perfect accu­
racy. Why is this important? Guessing the next word (or word prediction) prediction 

is an essential subtask of speech recognition, hand-writing recognition, aug­
mentative communication for the disabled, and spelling error detection. In

JI 1 In an address to the first Workshop on the Evaluation of Natural Language Processing 
Systems, December 7, 1988. While this workshop is described in Palmer and Finin (1990), 
the quote was not written down; some participants remember a more snappy version: Every

U.-Itihie-l.fire a linguist the performance of the recognizer improves. ..
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AUGMENTATIVE 
COMMUNICATION

such tasks, word-identification is difficult because the input is very noisy 
and ambiguous. Thus looking at previous words can give us an important 
cue about what the next ones are going to be. Russell and Norvig (1995) 
give an example from Take the Money and Run, in which a bank teller inter­
prets Woody Allen’s sloppily written hold-up note as saying “I have a gub”. 
A speech recognition system (and a person) can avoid this problem by their 
knowledge of word sequences (“a gub” isn’t an English word sequence) and 
of their probabilities (especially in the context of a hold-up, “I have a gun” 
will have a much higher probability than “I have a gub” or even “I have a 
gull”).

This ability to predict the next word is important for augmentative 
communication systems (Newell et al., 1998). These are computer sys­
tems that help the disabled in communication. For example, people who 
are unable to use speech or sign-language to communicate, like the physicist 
Steven Hawking, use systems that speak for them, letting them choose words 
with simple hand movements, either by spelling them out, or by selecting 
from a menu of possible words. But spelling is very slow, and a menu of 
words obviously can't have all possible English words on one screen. Thus 
it is important to be able to know which words the speaker is likely to want 
to use next, so as to put those on the menu.

Finally, consider the problem of detecting real-word spelling errors. 
These are spelling errors that result in real English words (although not the 
ones the writer intended) and so detecting them is difficult (we can’t find 
them by just looking for words that aren’t in the dictionary). Figure 6.1 
gives some examples.

They are leaving in about fifteen minuets to go to her house.
The study was conducted mainly be John Black.
The design an construction of the system will take more than a year.
Hopefully, all with continue smoothly in my absence.
Can they lave him my messages?
I need to notified the bank of [this problem.]
He is trying toout.

Figure 6.1 Some attested real-word spelling errors from Kukich (1992).

■ ; These errors can be detected by algorithms which examine, among 
other features, the words surrounding the errors. For example, while the 
phrase in about fifteen minuets is perfectly grammatical English, it is a very
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unlikely combination of words. Spellcheckers can look for low probability 
combinations like this. In the examples above the probability of three word

: combinations (they lave him, to fine out, to notified the) is very low. Of 
'< course sentences with no spelling errors may also have low probability word 
A sequences, which makes the task challenging. We will see in Section 6.6 that 

there are a number of different machine learning algorithms which make use
i of the surrounding words and other features to do context-sensitive spelling

V error correction.
Guessing the next word turns out to be closely related to another prob-

/ lem: computing the probability of a sequence of words. For example the 
wi following sequence of words has a non-zero probability of being encoun- 
i tered in a text written in English:

... all of a sudden I notice three guys standing on the sidewalk 
taking a very good long gander at me.

: while this same set of words in a different order probably has a very low 
probability: ' ' <

good all I of notice a taking sidewalk the me long three at sudden 
k ? guys gander on standing a a the very

Algorithms that assign a probability to a sentence can also be used to 
■ assign a probability to the next word in an incomplete sentence, and vice 

; versa. We will see in later chapters that knowing the probability of whole 
sentences or strings of words is useful in part-of-speech-tagging (Chapter 8), 
word-sense disambiguation, and probabilistic parsing Chapter 12.

This model of word prediction that we will introduce in this chapter
is the N-gram. An N-gram model uses the previous N — 1 words to predict n-gram 
the next one. In speech recognition, it is traditional to use the term lan-

: r guage model or LM for such statistical models of word sequences. In the k®hage 
rest of this chapter we will be using both language model and grammar, lm . 
depending on the context.

6.1 Counting Words in Corpora

. [upon being asked if there weren’t enough words in the English language for him]:
- >■ ? “ Yes, there are enough, but they aren ’t the right ones.”

James Joyce, reported in Bates (1997)
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CORPORA

CORPUS

UTTERANCE

FRAGMENTS

FILLED
PAUSES

Probabilities are based on counting things. Before we talk about prob­
abilities, we need to decide what we are going to count and where we are 
going to find the things to count.

As we saw in Chapter 5, statistical processing of natural languageis 
based on corpora (singular corpus), on-line collections of text and speech. 
For computing word probabilities, we will be counting words in a training 
corpus. Let’s look at part of the Brown Corpus, a 1 million word collection 
of samples from 500 written texts from different genres (newspaper, nov­
els, non-fiction, academic, etc.), which was assembled at Brown University 
in 1963-64 (Kucera and Francis, 1967; Francis, 1979; Francis and Kucera, 
1982). It contains sentence (6.1); how many words are in this sentence? 

(6.1) He stepped out into the hall, was delighted to encounter a water 
brother

Example (6.1) has 13 words if we don’t count punctuation-marks as 
words, 15 if we count punctuation. Whether we treat period C\”), comma 
(“,”), arid so on as words depends on the task. There are tasks such as 
grammar-checking, spelling error detection, or author-identification, for 
which the location of the punctuation is important (for checking for proper 
capitalization at the beginning of sentences, or looking for interesting pat­
terns of punctuation usage that Uniquely identify an author). In natural 
language processing applications, question-marks are an important cue that 
someone has asked a question. Punctuation is a useful cue for part-of-speech 
tagging. These applications, then, often count punctuation as words. "

Unlike text corpora, corpora of spoken language usually don’t have 
punctuation, but speech corpora do have other phenomena that we might 
or might riot want to treat as words. One speech corpus, the Switchboard 
corpus of telephone conversations between strangers, was collected in the 
early 1990s and contains 2430 conversations averaging 6 minutes each, for 
a total of 240 hours of speech and 3 million words (Godfrey ct al., 1992). 
Here’s a sample utterance of Switchboard (since the units of spoken language 
are different than written language, we will use the word utterance rather 
than “sentence” when we are referring to spoken language):

(6.2) I do uh main- mainly business data processing

This utterance, like many or most utterances in spoken language, has 
fragments, words that are broken off in the middle, like the first instance 
of the word mainly, represented here as main-. It also has filled pauses like 
uhi which don’t occur in written English. Should we consider these to be 
words? Again, it depends on the application. If we are building an automatic
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dictation system based on automatic speech recognition, we might want to 
strip out the fragments. But the uhs and ums are in fact much more like 
words. For example, Smith and Clark (1993) and Clark (1994) have shown 
that um has a slightly different meaning than uh (generally speaking um is 
used when speakers are having major planning problems in producing an 
utterance, while uh is used when they know what they want to say, but are 
searching for the exact words to express it). Stolcke and Shriberg (1996b) 
also found that uh can be a useful cue in predicting the next word (why might 
this be?), and so most speech recognition systems treat uh as a word.

Are capitalized tokens like They and uncapitalized tokens like they the 
same word? For most statistical applications these are lumped together, 
although sometimes (for example for spelling error correction or part-of- 
speech-tagging) the capitalization is retained as a separate feature. For the 

■ / rest of this chapter we will assume our models are not case-sensitive.
How should we deal with inflected forms like cats versus cat? Again, 

this depends on the application. Most current A-gram based systems are 
A based on the wordform, which is the inflected form as it appears in the 

corpus. Thus these are treated as two separate words. This is not a good 
simplification for many domains, which might want to treat cats arid cat as 
instances of a single abstract word, or lemma. A lemma is a set of lexical 
forms having the same stem, the same major part-of-speech, and the same 
woid-sense. We will return to the distinction between word forms (which 
distinguish cat and cats) and lemmas (which lump cat and cats together) in 
Chapter 16.

AAA..'. How many words are there in English? One way to answer this ques­
tion is to count in a corpus. We use types to mean the number of distinct 
words in a corpus, that is, the size of the vocabulary, and tokens to mean the 
total number of running words. Thus the following sentence from the Brown 
corpus has 16 word tokens and 14 word types (not counting punctuation):

(63) They picnicked by the pool, then lay back on the grass and looked at 
AAA-/'the'stars/

A A The Switchboard corpus has 2.4 million wordform tokens and approx­
imately 20,000 wordform types. This includes proper nouns. Spoken lan­
guage is less rich in its vocabulary than written language: Kucera (1992) 
gives a count for Shakespeare’s complete works at 884,647 wordform tokens 
from 29.066 Wordform types. .Thus each of the 884,647 wordform tokens is 
a repetition of one of the 29,066 wordform types. The 1 million wordform 
tokens of the Brown corpus contain 61,805 wordform types that belong to

WORDFORM

LEMMA

TYPES

TOKENS
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37,851 lemma types. All these corpora are quite small. Brown et al. (1992) 
amassed a corpus of 583 million wordform tokens of English that included 
293,181 different wordform types. y

Dictionaries are another way to get an estimate of the number of words, 
although since dictionaries generally do not include inflected forms they are 
better at measuring lemmas than wordforms. The American Heritage third 
edition dictionary has 200,000 “boldface forms”; this is somewhat higher s 
than the true number of lemmas, since there can be one or more boldface 
form per lemma (and since the boldface forms includes multiword phrases).

The rest of this chapter will continue to distinguish between types and 
tokens. “Types” will mean wordform types and not lemma types, and punc­
tuation marks will generally be counted as words.

6.2 Simple (Unsmoothed) /V-grams

The models of word sequences we will consider in this chapter are proba­
bilistic models; ways to assign probabilities to strings of words, whether for 
computing the probability of an entire sentence or for giving a probabilistic 
prediction of what the next word will be in a sequence. As we did in Chap­
ter 5, we will assume that the reader has a basic knowledge of probability 
theory f . . ' <

The simplest possible model of word sequences would simply let any 
word of the language follow any other word. In the probabilistic version of 
this theory, then, every word would have an equal probability of following 
every other word. If Engl i s h had 100,000 words, the probability of any word 
following any other word would be or .00001.

Ili a slightly more complex model of word sequences, any word could 
follow any other word, but the following word would appear with its nor­
mal frequency of occurrence. For example, the word the has a high relative 
frequency, it occurs 69,971 times in the Brown corpus of 1,000,000 words 
(i.e., 7% of the words in this particular corpus are the). By contrast the word 
rabbit occurs only 11 times in the Brown corpus,

We can use these relative frequencies to assign a probability distribu- j 
lion across following words. So if we’ve just seen the string Anyhow, we can * 
use; the probability .07 for the and .00001 for rabbit to guess the next word 
But suppose we’ve just seen the following string: J

Just then, the white
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In this context rabbit seems like a more reasonable word to follow 
white than the does. This suggests that instead of just looking at the in­
dividual relative frequencies of words, we should look at the conditional 
probability of a word given the previous words. That is, the probability 

7 of seeing rabbit given that we just saw white (which we will represent as 
<:: P(rabbit\white)') is higher than the probability of rabbit otherwise.

Given this intuition, let’s look at how to compute the probability of a 
complete string of words (which we can represent either as wi... wn or w"). 
If we consider each word occurring in its correct location as an independent 

' event, we might represent this probability as follows:

P(wi,w2...,w„_bwn) (6.4)

We can use the chain rule of probability to decompose this probability:

.... P(Wi) = P(wi)P(-W2\^l)P(,W3\wl)...P(wn\w’[~1') 
n

= (6.5)
k=l

But how can we compute probabilities like P(wn |w”-1)? We don’t 
know any easy way to compute the probability of a word given a long se­
quence of preceding words. (For example, we can’t just count the number of 
times every word occurs following every long string; we would need far too 
large a corpus).

We solve this problem by making a useful simplification: we approxi­
mate the probability of a word given all the previous words. The approxima­
tion we will use is very simple: the probability of the word given the single 
previous word! The bigram model approximates the probability of a word bigram 
given all the previous words by the conditional probability of
the preceding word P(wn|wM-i). In other words, instead of computing the 
probability

/’(rabbit|Just the other I day I saw a) (6.6)

we approximate it with the probability

P(rabbit|a) (6.7)

This assumption that the probability of a word depends only on the 
previous word is called a Markov assumption. Markov models are the class markov 

of probabilistic models that assume that we can predict the probability of 
some future unit without looking too far into the past. We saw this use of the 
word Markov in introducing the Markov chain in Chapter 5. Recall that a
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Markov chain is a kind of weighted finite-state automaton; the intuition of 
the term Markov in Markov chain is that the next state of a weighted FSA is 
always dependent on a finite history (since the number of states in a finite- 
state automaton is finite). The basic bigram model can be viewed as a simple 5 
kind of Markov chain which has one state for each word.

We can generalize the bigram (which looks one word into the past) to 
n-gram the trigram (which looks two words into the past) and thus to the N-gram
first-order (which looks N — 1 words into the past). A bigram is called a first-order 

Markov model (because it looks one token into the past), a trigram is a 
second-order second-order Markov model, and in general an A-gram is a N — 1th or- : 

der Markov model. Markov models of words were common in engineering, -<■ 
psychology, and linguistics until Chomsky’s influential review of Skinner’s | 
Verbal Behavior in 1958 (see the History section at the back of the chapter), 
but went out of vogue until the success of A-gram models in the IBM speech J 
recognition laboratory at the Thomas J. Watson Research Center, brought d 
them back to the attention of the community.

The general equation for this A-gram approximation to the conditional : 
probability of the next word in a sequence is:

Equation 6.8 shows that the probability of a word wn given all the pre- 4 
vious words can be approximated by the probability given only the previous 
A words. ||

For a bigram grammar, then, we compute the probability of a complete 
string by substituting Equation (6.8) into Equation (6.5). The result:

- (<>»>

Let’s look at an example from a speech-understanding system. The ( 
Berkeley Restaurant Project is a speech-based restaurant consultant; users 
ask questions about restaurants in Berkeley, California, and the system dis- ■ 
plays appropriate information from a database of local restaurants (Jurafsky 
et al., 1994). Here are some sample user queries:

I’m looking for Cantonese food. A".
I’d like to eat dinner someplace nearby. 4 • "
Tell me about Chez Panisse. .4
Can you give me a listing of the kinds of food that are available? • 
I’m looking for a good place to eat breakfast.
I definitely do not want to have cheap Chinese food.
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When is Caffe Venezia open during the day?
I don’t wanna walk more than ten minutes.

Table 6.2 shows a sample of the bigram probabilities for some of the 
words that can follow the word eat, taken from actual sentences spoken by 
users (putting off just for now the algorithm for training bigram probabil­
ities). Note that these probabilities encode some facts that we think of as 
strictly syntactic in nature (like the fact that what comes after eat is usu- 
ally something that begins a noun phrase, that is, an adjective, quantifier or 
noun), as well as facts that we think of as more culturally based (like the low 
probability of anyone asking for advice on finding British food).

eat on .16 eat Thai .03
eat some .06 eat breakfast .03
eat lunch .06 eat in .02
eat dinner .05 eat Chinese .02
eat at , .04 eat Mexican .02
eat a .04 eat tomorrow .01
eat Indian .04 eat dessert .007
eat today ■ .03 eat British .001

Figure 6.2 A fragment of a bigram grammar from the Berkeley Restaurant 
Project showing the most likely words to follow eat.

,/UUC/ Assume that in addition to the probabilities in Table 6.2, our grammar 
also includes the bigram probabilities in Table 6.3 (<s> is a special word 
meaning “Start of sentence”).

<s> 1 .25
<s> I’d .06
<s?> Tell .04
<s> Tm .02

I want .32
I would .29
I don’t .08
I have .04

want to .65
want a .05
want some .04 
want thai .01

to eat .26 
to have .14 
to spend .09 
to be .02

British food .60
British restaurant .15
British cuisine .01
British lunch .01

Figure 6.3 More fragments from the bigram grammar from the Berkeley 
Restaurant Project.

Now we can compute the probability of sentences like I want to eat 
British food or I want to eat Chinese food by simply multiplying the appro­
priate bigram probabilities together, as follows:

P(l want to eat British food) = P(Ii<s>)P(wnnt UZTto want)
T*(eat lojZ^CBritishjeiU)
P(food| British)
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= .25 *.32* .65* .26* .002* .60
- .000016

As we can see, since probabilities are all less than 1 (by definition), the 
product of many probabilities gets smaller the more probabilities we multi­
ply. This causes a practical problem: the risk of numerical underflow. If we 
are computing the probability of a very long string (like a paragraph or an 
entire document) it is more customary to do the computation in log space; we 

logprob take the log of each probability (the logprob), add all the logs (since adding 
in log space is equivalent to multiplying in linear space) and then take the 
anti-log of the result; For this reason many standard programs for computing 
N-grams actually store and calculate all probabilities as logprobs. In this text 
we will always report logs in base 2 (i.e., we will use log to mean log2).

trigram A trigram model looks just the same as a bigram model, except that
we condition on the two previous words (e.g., we use P(food\eatBritish) 
instead of P(food|British)). To compute trigram probabilities at the very 
beginning of sentence, we can use two pseudo-words for the first trigram 
(i.e., P(/[ < start! > < start2 >)).

normalizing N-gram models can be trained by counting and normalizing (for prob­
abilistic models, normalizing means dividing by some total count so that the | 
resulting probabilities fall legally between 0 and 1). We take some training 
corpus, and from this corpus take the count of a particular bigram, and divide 
this count by the sum of all the bigrams that share the same first word:

, x C(,Wn \Wn) P(wn wn^i).= ^Ctw^w) (6.10)

We can simplify this equation, since the sum of all bigram counts that 
start with a given? be equal to the unigram count for that
word b (The reader should take a moment to be convinced of this):

■ ■ . . . (6.11)
<-(H’n ])

For the general case of N-gram parameter estimation:

~ (6.i2)

Equation 6.12 estimates the N-gram probability by dividing the ob­
served frequency of a particular sequence by the observed frequency of a 

frequency prefix. This ratio is called a relative frequency; the use of relative fre­
quencies as a way to estimate probabilities is one example of the technique 

ukeuhood known as Maximum Likelihood Estimation or MLE, because the resulting 
ESTIMATION •

MIH .
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parameter set is one in which the likelihood of the training set T given the 
A model M (i.e., P(T\M)') is maximized. For example, suppose the word Chi­

nese occurs 400 times in a corpus of a million words like the Brown corpus. 
What is the probability that it will occur in some other text of way a million 

■ words? The MLE estimate of its probability is or .0004. Now .0004 
; : is not the best possible estimate of the probability of Chinese occurring in all 

situations; but it is the probability that makes it most likely that Chinese will 
occur 400 times in a million-word corpus.

There are better methods of estimating 2V-gram probabilities than us­
ing relative frequencies (we will consider a class of important algorithms in 
Section 6.3), but even the more sophisticated algorithms make use in some 

j way of this idea of relative frequency. Figure 6.4 shows the bigram counts 
i from a piece of a bigram grammar from the Berkeley Restaurant Project. 

Note that the majority of the values are zero. In fact, we have chosen the 
sample words to cohere with each other; a matrix selected from a random set 
of seven words would be even more sparse.

Figure 6.4 Bigram counts for seven of the words (out of 1616 total word 
types) in the Berkeley Restaurant Project corpus of w10,000 sentences.

1 I want to eat Chinese food lunch
I 8 1087 0 13 0 0 0
want \ 3 0 786 0 6 8 6
to 3 0 10 860 3 0 12
eat 0 0 2 0 19 2 52
Chinese .. 2 0 0 0 0 120 1
food 19 0 17 0 0 0 0
lunch 4 0 0 0 0 1 0

Figure 6.5 shows the bigrani probabilities after normalization (dividing 
■ each row by the following appropriate unigram counts):

I 3437
want 1215
to 3256
eat 938
Chinese 213
food 1506
lunch 459



202 Chapter 6. N-grams

Figure 6.5; Bigram probabilities for seven of the words (out of 1616 total 
word types) in the Berkeley Restaurant Project corpus of « 10,000 sentences/

I want to eat Chinese food lunch
I .0023 .32 0 .0038 0 0 0
want .0025 0 .65 0 .0049 .0066 ? .0049
to .00092 0 .0031 .26 .00092 0 .0037
eat 0 0 .0021 0 .020 .0021 .055
Chinese .0094 0 ■ 0 0 0 .56 .0047
food .013 0 .011 0 0 0 0
lunch .0087 0 0 0 0 .0022 0 :

More on N-grams and Their Sensitivity to the Training Corpus

In this section we look at a few examples of different Al-gram models to 
get an intuition for two important facts about their behavior. The first is the 
increasing accuracy of N-gram models as we increase the value of N. The 
second is their very strong dependency on their training corpus (in particular 
its genre and its size in words).

; We do this by borrowing a visualization technique proposed by Shan­
non (1951) and also used by Miller and Selfridge (1950). The idea is to train 
various N-grams and then use each to generate random sentences. If s sim­
plest to visualize how this works for the unigram case. Imagine all the words 
of English covering the probability space between 0 and 1. We choose a fan­
dom number between 0 and 1, and print out the word that covers the real 
value we have chosen. The same technique can be used to generate higher 
order N-grams by first generating a random bigram that starts with <s> (ac­
cording to its bigram probability), then choosing a random bigram to follow 
it (again, where the likelihood of following a particular bigram is propor­
tional to its conditional probability), and so on.

To give an intuition for the increasing power of higher order N-grams, 
we trained a unigram, bigram, trigram, and a quadrigram model on the com­
plete corpus of Shakespeare’s works. We then used these four grammars to 
generate random sentences. In the following examples we treated each punc­
tuation mark as if it were a word in its own right, and we trained the gram­
mars on a version of the corpus with all capital letters changed to kwercase. 
After generated the sentences we corrected the output for capitalization just 
to improve readability. Some of the resulting sentences:

; 1. Unigram approximation to Shakespeare f / f
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(a) To him swallowed confess hear both. Which. Of save on trail for are ay 
device and rote life have

(b) Every enter now severally so, let
(c) Hill he late speaks; or! a more to leg less first you enter
(d) Will rash been and by I the me loves gentle me not slavish page, the and 

hour; ill let
(e) Are where exeunt and sighs have rise excellency took of.. Sleep knave 

we. near; vile like

2. Bigram approximation to Shakespeare

(a) What means, sir. I confess she? then all sorts, he is trim, captain.
(b) Why dost stand forth thy canopy, forsooth; he is this palpable hit the 

King Henry. Live king. Follow.
(c) What we, hath got so she that I rest and sent to scold and nature bankrupt, 

nor the first gentleman?
(d) Enter Menenius, if it so many good direction found’st thou art a strong 

upon command of fear not a liberal largess given away, Falstaff! Exeunt
(e) Thou whoreson chops. Consumption catch your dearest friend, well, 

and I know where many mouths upon my undoing all but be, how soon, 
then; we’ll execute upon my love’s bonds and we do you will?

(f) The world shall-my lord!

3; Trigram approximation to Shakespeare

(a) Sweet prince, Falstaff shall die. Harry of Monmouth’s grave.
(b) This shall forbid it should be branded, if renown made it empty.
(c) What is’t that cried?
(d) Indeed the duke; and had a very good friend.
(e) Fly, and will rid me these hews of price: Therefore the sadness of part­

ing, as they say, ’tis done.
(f) The sweet! How many then shall posthumus end his miseries.

4. Quadrigram approximation to Shakespeare

? (a) King Henry. What! I will go seek the traitor Gloucester. Exeunt some 
of the watch. A great banquet serv’d in;

v (b) Will you not tell me who I am?
(c) It cannot be but so.
(d) Indeed the short and the long. Marry, ’tis a noble Lepidus.
(e) They say all lovers swear more performance than they are wont to keep 

obliged faith unforfeited ! ^
(f) Enter Leonato’s brother Antonio, and the rest, but seek the weary beds 

of people sick. .
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Methodology Box: Training Sets and Test Sets

The probabilities in a statistical model like an N-gram come from 
the corpus it is trained on. This training corpus needs to be care­
fully designed. If the training corpus is too specific to the task or 
domain, the probabilities may be too narrow and not generalize well 
to new sentences. If the training corpus is too general, the probabil­
ities may not do a sufficient job of reflecting the task or domain.

Furthermore, suppose we are trying to compute the probabil­
ity of a particular “test” sentence. If our “’test’ sentence is part of 
the training corpus, it will have an artificially high probability. The 
training coipus must not be biased by including this sentence. Thus 
when using a statistical model of language given some corpus of rel­
evant data, we start by dividing the data into a training set and a test 
set. We train the statistical parameters of the model on the training 
set, and then use them to compute probabilities on the test set.

This training-and-testing paradigm can also be used to evaluate 
different A’-gram architectures. For example to compare the different 
smoothing algorithms we will introduce in Section 6.3, we can take 
a large corpus and divide it into a training set and a test set. Then 
we train the two different N-gram models on the training set and 
see which one better models the test set. But what does it mean to 
“model the test set”? There is a useful metric for how well a given 
statistical model matches a test corpus, called perplexity. Perplexity 
is a variant of entropy, and will be introduced on page 223.

In some cases we need more than one test set. For example, sup­
pose we have a few different possible language models and we want 
first to pick the best one and then to see how it does on a fair test 
set, that is, one we’ve never looked at before. We first use a devel­
opment test set (also called a devtest set) to pick the best language 
model, and perhaps tune some parameters. Then once we come up 
with what we think is the best model, we run it on the true test set.

When comparing models it is important to use statistical tests 
(introduced in any statistics class or textbook for the social sciences) 
to determine if the difference between two models is significant. Co­
hen (1995) is a useful reference which focuses on statistical research 
methods for artificial intelligence. Dietterich (1998) focuses on sta­
tistical tests for comparing classifiers.

nn

■
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The longer the context on which we train the model, the more coher­
ent the sentences. In the unigram sentences, there is no coherent relation 
between words, and in fact none of the sentences end in a period or other 
sentence-final punctuation. The bigram sentences can be seen to have very 
local word-to-word coherence (especially if we consider that punctuation 
counts as a word). The trigram and quadrigram sentences are beginning to 
look a lot like Shakespeare. Indeed a careful investigation of the quadri- 
gram sentences shows that they look a little too much like Shakespeare. The 
words It cannot be but so are directly from King John. This is because 
the Shakespeare oeuvre, while large by many standards, is somewhat less 
than a million words. Recall that Kucera (1992) gives a count for Shake- 

' speare’s complete works at 884,647 words (tokens) from 29,066 wordform 
■ types (including proper nouns). That means that even the bigram model is 
very sparse; with 29,066 types, there are 29,0662, or more than 844 million 
possible bigrams, so a 1 million word training sei is clearly vastly insufficient 
to estimate the frequency of the rarer ones; indeed somewhat under 300,000 
different bigram types actually occur in Shakespeare. This is far too small to 
train quadrigrams; thus once the generator has chosen the first quadrigram 
{It cannot be but), there are only five possible continuations {that, I, he, thou, 
and so); indeed for many quadrigrams there is only one continuation. 
To gel an idea of the dependence of a grammar on its training set, 
let s look at an N-gram grammar trained on a completely different corpus: 
the Wal! Street Journal (WSJ). A native speaker of English is capable of 
reading both Shakespeare and the Wall Street Journal; both are subsets of 
English. Thus it seems intuitive that our N-grams for Shakespeare should 
have some overlap with N-grams from the Wall Street Journal. In order to 

" check whether this is true, here are three sentences generated by unigram, 
bigram, and trigram grammars trained on 40 million words of articles from 
the daily Wall Street Journal (these grammars are Katz backoff grammars 
with Good-Turing smoothing; we will learn in the next section how these are 
constructed). Again, we have corrected the output by hand with the proper 
English capitalization for readability.

1. {unigram) Months the my and issue of year foreign new exchange’s 
September were recession exchange new endorsed a acquire to six ex-

2. {bigram) Last December through the way to preserve the Hudson cor­
poration N. B. E. C. Taylor would seem to complete the major central 
planners one point five percent of U. S. E. has already old M. X. corpo­
ration of living on information such as more frequently fishing to keep
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her
3. (trigram) They also point to ninety nine point six billion dollars from 

two hundred four oh six three percent of the rates of interest stores as 
Mexico and Brazil on market conditions

Compare these examples to the pseudo-Shakespeare on the previous 
page; while superficially they both seem to model “English-like sentences” 
there is obviously no overlap whatsoever in possible sentences, and very lit­
tle if any overlap even in small phrases. The difference between the Shake­
speare and WSJ corpora tell us that a good statistical approximation to En­
glish will have to involve a very large corpus with a very large cross-section 
of different genres. Even then a simple statistical model like an <V-gram 
would be incapable of modeling the consistency of style across genres. (We 
would only want to expect Shakespearean sentences when we are reading 
Shakespeare, not in the middle of a Wall Street Journal article.)

6.3 Smoothing

Never do I ever want 
to hear another word! 
There isn’t one, 
I haven’t heard!

Eliza Doolittle in 
Alan Jay Lerner’s My 
Fair Lady lyrics

words people 
never use — 
could be 
only I 
know them

Ishikawa Takuboku 1885-1912

One major problem with standard N-gram models is that they must 
be trained from some corpus, and because any particular training corpus is 
finite, some perfectly acceptable English /V-grams are bound to be missing 

sparse from it. That is, the bigram matrix for any given training corpus is sparse; it 
is bound to have a very large number of cases of putative “zero probability 
bigrams” that should really have some non-zero probability. Furthermore,
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Ay- the MLE method also produces poor estimates when the counts are non-zero 
L < but still small.

Some part of this problem is endemic to 2V-grams; since they can’t 
use long-distance context, they always tend to underestimate the probability 
of strings that happen not to have occurred nearby in their training corpus, 

v> But there are some techniques we can use to assign a non-zero probability 
Ty to these “zero probability bigrams”. This task of reevaluating some of the 

zero-probability and low-probability AT-grams, and assigning them non-zero
T values, is called smoothing. In the next few sections we will introduce some smoothing 

yp-- smoothing algorithms and show how they modify the Berkeley Restaurant
bigram probabilities in Figure 6.5.

Add-One Smoothing

One simple way to do smoothing might be just to take our matrix of bigram 
counts, before we normalize them into probabilities, and add one to all the 
counts. This algorithm is called add-one smoothing. Although this algo- add-one 

rithm does not perform well and is not commonly used, it introduces many 
of the concepts that we will see in other smoothing algorithms, and also gives 
us a useful baseline.

A Let’s first consider the application of add-one smoothing to unigram 
probabilities, since that will be simpler. The unsmoothed maximum likeli­
hood estimate of the unigram probability can be computed by dividing the 

syyy count of the word by the total number of word tokens N:

SaW 
fiX)

N
The various smoothing estimates will rely on an adjusted count c*. The 

y count adjustment for add-one smoothing can then be defined by adding one 
to the count and then multiplying by a normalization factor, where V 
is the total number of word types in the language, that is, the vocabulary 
size. Since we are adding 1 to the count for each word type, the total number 
of tokens must be increased by the number of types. The adjusted count for 
add-one smoothing is then defined as:

VOCABULARY 
SIZE

and the counts can be turned into probabilities p* by normalizing by N.
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discounting An alternative way to view a smoothing algorithm is as discounting 
(lowering) some non-zero counts in order to get the probability mass .that 
will be assigned to the zero counts. Thus instead of referring to the dis­
counted counts c*, many papers also define smoothing algorithms in terms 

discount of a discount dc, the ratio of the discounted counts to the original counts:

Alternatively, we can compute the probability p* directly from the 
counts as follows:

* — Ci
A ~ N + V
Now that we have the intuition for the unigram case, let’s smooth 

our Berkeley Restaurant Project bigram. Figure 6.6 shows the add-one- 
smoothed counts for the bigram in Figure 6.4<

Figure 6.6 Add-one Smoothed Bigram counts for seven of the words 
(out of 1616 total word types) in the Berkeley Restaurant Project corpus of

I want to eat Chinese food lunch
I 9 1088 1 14 1 1 1
want ; 4 1 . 787 1 7 9 7 '
to 4 1 11 861 4 1 13
eat i' rr ft 3 1 20 3 53 •
Chinese 3 i 1 1 1 121 2
food 20 i 18 1 1 1 1
lunch 5 i. 1 1 1 2 1

10,000 sentences.

Figure 6.7 shows the add-one-smoothed probabilities for the bigram in 
Figure 6.5. Recall that normal bigram probabilities are computed by nor­
malizing each row of counts by the unigram count:

P(wn\wn..}) = (6.14)
■■ t)

For add-one-smoothed bigram counts we need to first augment the un­
igram count by the number of total word types in the vocabulary V:
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We need to add V (= 1616) to each of the unigram counts:

I 3437+1616 = 5053
want 1215+1616 = 2931
to 3256+1616 = 4872
eat 938+1616 = 2554
Chinese 213+1616 = 1829
food 1506+1616 = 3122
lunch 459+1616 = 2075

The result is the smoothed bigram probabilities in Figure 6.7.

I want to eat Chinese food lunch

T- .0018 .22 .00020 .0028 .00020 .00020 .00020
want .0014 .00035 .28 .00035 .0025 .0032 .0025
to .00082 .00021 .0023 .18 .00082 .00021 .0027
cat ■ .00039 .00039 .0012 .00039 .0078 .0012 .021
Chinese .0016 .00055 .00055 .00055 .00055 .066 .0011
food .0064 .00032 .0058 .00032 .00032 .00032 .00032
lunch .0024 .00048 .00048 .00048 .00048 .00096 .00048

id Figure 6.7 Add-one smoothed bigram probabilities for seven of the words
(out of 1616 total word types) in the Berkeley Restaurant Project corpus of 

L~10,000 sentences.

It is often convenient to reconstruct the count matrix so we can see 
how much a smoothing algorithm has changed the original counts. These 
adjusted counts can be computed by Equation (6.13). Figure 6.8 shows the 
reconstructed counts.

Note that add-one smoothing has made a very big change to the counts. 
/. C(want to) changed from 786 to 331! We can see this in probability space 

as well: P(to\want) decreases from .65 in the unsmoothed case to .28 in the 
smoothed case.

Looking at the discount d (the ratio between new and old counts) shows 
us how strikingly the counts for each prefix-word have been reduced; the 
bigrams starting with Chinese were discounted by a factor of 8!



210 Chapter 6. N-grams

Figure 6.8 Add-one smoothed bigram counts for seven of the words (out of 
1616 total word types) in the Berkeley Restaurant Project Corpus of w 10,000 
sentences.

I want to eat Chinese food lunch
I ! 6 740 .68 10 .68 .68 .68
want 2 .42 331 .42 3 4 * 3 a
to 3 .69 8 594 3 .69 9
eat .37 .37 1 .37 7.4 1 20
Chinese .36 .12 .12 .12 .12 15 .24
food 10 .48 9 .48 .48 .48 .48
lunch 1.1 .22 .22 .22 .22 .44 .22

I ; .68
want-. .42

C-CktO'-:^ .......

L.'AC eat 37''//<
' / ' Chinese .12

food .48
lunch .22

The sharp change in counts and probabilities occurs because too much 
probability mass is moved to all the zeros. The problem is that we arbitrarily 
picked the value “1” to add to each count. We could avoid this problem by 
adding smaller values to the counts (“add-one-half” “add-one-thousandth”), 
but We would need to retrain this parameter for each situation.

In general add-one smoothing is a poor method of smoothing. Gale and 
Church (1994) summarize a number of additional problems with the add-one 
method; the main problem is that add-one is much worse at predicting the 
actual probability for bigrams with zero counts than other methods like the 
Good-Turing method we will describe below. Furthermore, they show that 
variances of the counts produced by the add-one method are actually worse 
than those from the unsmoothed MLE method.

Witten-Bell Discounting

A much better smoothing algorithm that is only slightly more complex than 
Add-One smoothing we will refer to as Witten-Bell discounting (it is in­
troduced as Method C in Witten and Bell (1991)). Witten-Bell discounting 
is based on a simple but clever intuition about zero-frequency events. Let’s 
think of a zero-frequency word or /V-gram as one that just hasn’t happened
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yet. When it does happen, it will be the first time we see this new N-gram. 
So the probability of seeing a zero-frequency N-gram can be modeled by the 
probability of seeing an N-gram for the first time. This is a recurring concept 
in statistical language processing:

N Key Concept #4. Things Seen Once: Use the count of things you’ve
■ seen once to help estimate the count of things you’ve never seen.

The idea that we can estimate the probability of “things we never saw” 
with help from the count of “things we saw once” will return when we dis- 
cuss Good-Turing smoothing later in this chapter, and then once again when 
we discuss methods for tagging an unknown word with a part-of-speech in 
Chapters.
vTy; How can we compute the probability of seeing an N-gram for the first 
time? By counting the number of times we saw N-grams for the first time in 
our training corpus. This is very simple to produce since the count of “first­
time” N-grams is just the number of N-gram types we saw in the data (since 
we had to see each type for the first time exactly once).

vy So we estimate the total probability mass of all the zero N-grams with 
the number of types divided by the number of tokens plus observed types:

■K (6.1«N T
Tv. Why do we normalize by the number of tokens plus types? We can 

think of our training corpus as a series of events; one event for each token 
and one event for each new type. So Equation 6.16 gives the Maximum 
Likelihood Estimate of the probability of a new type event occurring. Note 
that the number of observed types T is different than the “total types” or 
“vocabulary size V” that we used in add-one smoothing: T is the types we 
have already seen, while V is the total number of possible types we might 
ever see.

Equation 6.16 gives the total “probability of unseen N-grams”. We 
need to divide this up among all the zero N-grams. We could just choose 
to divide it equally. Let Z be the total number of N-grams with count zero 
(types; there aren’t any tokens). Each formerly-zero unigram now gets its 
equal share of the redistributed probability mass: z

z =. ■■ y i

“ Z(N+T)

(6-17)

(6.18)
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If the total probability of zero A-grams is computed from Equation (6.16), 
the extra probability mass must come from somewhere; we get it by dis­
counting the probability of all the seen A-grams as follows:

gg

(6.19)

Alternatively, we can represent the smoothed counts directly as:

{
T N 
Z N+TJ

V
CiN+T‘>

if q = 0

if Ci > 0
(6.20)

Witten-Bell discounting looks a lot like add-one smoothing for uni­
grams. But if we extend the equation to bigrams we will see a big difference. 
This is because now our type-counts are conditioned on some history. In or­
der to compute the probability of a bigram wn_] wn-2 we haven’t seen, wc 
use “the probability of seeing a new bigram starting with wn-i”. This lets 
our estimate of “first-time bigrams’’ be specific to a word history. Words that 
tend to occur in a smaller number of bigrams will supply a lower “unseen- 
bigram” estimate than words that are more promiscuous.

Wc represent this fact by conditioning T, the number of bigram types, 
and W, the number of bigram tokens, on the previous word wx , as follows:

Os 
u?

T(wx)
(6.21)

Again, we will need to distribute this probability mass among all the 
unseen bigrams. Let Z again be the total number of bigrams with a given first 
word that have count zero (types; there aren’t any tokens). Each formerly 
zero bigram now gets its equal share of the redistributed probability mass­

zfe) =:■ v i < (6.22)

))) zgSfefcsiif = ' <6 23)
As for the non-zero bigrams, we discount them in the same manner, by 

parameterizing 7’on the history:
c(wKwi)

•• (6:24)
^’(•..vt^O j -f I [Wx)

To use Equation 6.24 to smooth the restaurant bigram from Figure 6.5. 
we will need the number of bigram types T{w) for each of the first words 
Here are those values:
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I
■v want 

to 
eat 
Chinese 
food 
lunch

95
76

130
124
20
82
45

In addition we will need the Z values for each of these words. Since 
we know how many words we have in the vocabulary (V = 1,616), there are 
exactly V possible bigrams that begin with a given word w, so the number of 
unseen bigram types with a given prefix is V minus the number of observed 
types:

Z(h')=.V-» (6.25)

Here are those Z values:
I 1,521
want 1,540
to 1,486
eat 1,492
Chinese 1,596
food 1,534
lunch 1,571

Figure 6.9 shows the discounted restaurant bigram counts.

j. i I
I

want to eat Chinese food lunch
I 8 1060 .062 13 .062 .062 .062
want 3 .046 740 .046 6 8 6
to 3 .085 10 827 3 .085 12
eat .075 .075 2 .075 17 p 46
Chinese . 2 .012 .012 .012 .012 109 1
food 18 .059 16 .059 .059 .059 .059
lunch 4 .026 .026 .026 .026 1 .026

Figure 6.9 Witten-Bell smoothed bigram counts for seven of the words 
(out of 1616 total word types) in the Berkeley Restaurant Project corpus of 
«10,000 sentences.--------- :__ ___ ____—__ ___ ______ ___________ - __ _ _ ■__ J

The discount values for the Witten-Bell algorithm are much more rea­
sonable than for add-one smoothing:
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I -97
want .94
to .96
eat .88
Chinese .91
food .94
lunch .91

It is also possible to use Witten-Bell (or other) discounting in a differ­
ent way. In Equation (6.21), we conditioned the smoothed bigram proba­
bilities on the previous word. That is, we conditioned the number of types 
T(wQ and tokens N(wx) on the previous word wx. But we could choose 
instead to treat a bigram as if it were a single event, ignoring the fact that 
it is composed of two words. Then T would be the number of types of all 
bigrams, and N would be the number of tokens of all bigrams that occurred. 
Treating the bigrams as a unit in this way, we are essentially discounting, not 

probability the conditional probability P(w(|wr), but the joint probability PjM^Wj). In 
this way the probability P(wxWi) is treated just like a unigram probability. 
This kind of discounting is less commonly used than the “conditional” dis­
counting we walked through above starting with Equation 6.21. (Although it 
is often used for the Good-Turing discounting algorithm described below).

In Section 6.4 we show that discounting also plays a role in more so­
phisticated language models. Witten-Bell discounting is commonly used in 
speech recognition systems such as Placeway et al. (1993).

Good-Turing Discounting

This section introduces a slightly more complex form of discounting than the 
totng Witten-Bell algorithm called Good-Turing smoothing. This section may be ; 

skipped by readers who are not focusing on discounting algorithms.
The Good-Turing algorithm was first described by Good (1953), who 

credits Turing with the original idea; a complete proof is presented in Church 
et al. (1991). The basic insight of Good-Turing smoothing is to re-estimate 
the amount of probability mass to assign to N-grams with zero or low counts 
by looking at the number of N-grams with higher counts. In other words, 
we examine Nc, the number of N-grams that occur c times. We refer to the 
number of N-grams that occur c times as the frequency of frequency c. So 
applying the idea to smoothing the joint probability of bigrams, No is the
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number of bigrams b of count 0, the number of bigrams with count 1, and 
so on:

Nc = V 1 (6.26).
h:c(b)~c

The Good-Turing estimate gives a smoothed count c* based on the set 
of M. for all c, as follows:

= (6.27)

For example, the revised count for the bigrarns that never occurred 
(co) is estimating by dividing the number of bigrams that occurred once (the 
singleton or hapax legomenon bigrams N]) by the number of bigrams that singleton 

(;.:. (never occurred (No). Using the count of things we’ve seen once to estimate 
A' the count of things we’ve never seen should remind you of the Witten-Bell 

discounting algorithm we saw earlier in this chapter. The Good-Turing al­
gorithm was first applied to the smoothing of N-gram grammars by Katz, 
as cited in Nadas (1984). Figure 6.10 gives an example of the applica­
tion of Good-Turing discounting to a bi gram grammar computed by Church 
and Gale (1991) from 22 million words from the Associated Press (AP) 

(newswire.. The first column shows the count c, i.e., the number of observed 
instances of a bigram. The second column shows the number of bigrams that 
had this count. Thus 449,721 bigrams has a count of 2. The third column 
shows c*, the Good-Turing re-estimation of the count.

grams, and Good-Turing re-estimations after Church and Gale (1991).

IC c(MLE) Nc. c* (GT)
0 74,671,100,000 0.0000270
1 2,018,046 0.446
2 449,721 1.26

■. 3 . 188,933 2.24
4 105,668 3.24
5 68,379 4.22
6: ■ 48,190 5.19
7 35.709 6.21
8.. 27,710 7.24 .
9 22,280 8.25

Figure 6.10 Bigram “frequencies of frequencies” from 22 million AP bi-

Church et al. (1991) show that the Good-Turing estimate relies on the 
assumption that the distribution of each bigram is binomial. The estimate
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also assumes we know No, the number of bigrams we haven’t seen. We 
know this because given a vocabulary size of V, the total number of bigrams 
is V2. (No is V2 minus all the bigrams we have seen).

In practice, this discounted estimate c* is not used for all counts c. 
Large counts (where ok for some threshold k) are assumed to be reliable. 
Katz (1987) suggests setting k at 5. Thus we define

c* = c for c > k (6.28)
The correct equation for c* when some k is introduced (from Katz 

(1987)) is:
(c 4-1) i t '

(6.29)

With Good-Turing discounting as with any other, it is usual to treat 
//-grams with low counts (especially counts of 1) as if the count was 0.

6.4 Backoff

The discounting we have been discussing so far can help solve the problem of 
zero frequency n-grams. But there is an additional source of knowledge we 
can draw on. If we have no examples of a particular trigram 2 1 wk to
help us compute P(wn\wn~iwn-2), we can estimate its probability by using 
the bigram probability P(wn|wn-i). Similarly, if we don’t have counts to 
compute P(wn|wn-i), we can look to the unigram P(wn).

There are two ways to rely on this A-gram “hierarchy", deleted inter- 
mwolation polation and backoff. We will focus on backoff, although we give a quick 

backoff overview of deleted interpolation after this section. Backoff A-gram model­
ing is a nonlinear method introduced by Katz (1987). In the backoff model, 
like the deleted interpolation model, we build an A-gram model based on an 
(N — l)-gram model. The difference is that in backoff, if we have non-zero 
trigram counts, we rely solely on the trigram counts and don’t interpolate 
the bigram and unigram counts at all. We only “back off” to a lower order 
A-gram if we have zero evidence for a higher-order A-gram.

The trigram version of backoff might be represented as follows:
if C(w/_2Wi^iwz) > 0

P(w;-|w^2Wz_i) = < aiP(wj|w^0,

^2P(Wi),

if C(wioo 1 wf) =0
(6 JU)

andC(wz_iWj) > 0
otherwise.
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Let’s ignore the ex values for a moment; we’ll discuss the need for 
these weighting factors below. Here’s a first pass at the (recursive) equation 
for representing the general case of this form of backoff.

P(wn|w^_^+j) — P( j)

+ e(P{wn^Z1N+0^^ (6.31)

Again, ignore the a and the P for the moment. Following Katz, we’ve 
used 6 to indicate the binary function that selects a lower ordered model only 
if the higher-order model gives a zero probability:

W 0(x) = P’ lf^° (6.32)
7 ( 0, otherwise.

and each P{-) is a MLE (i.e., computed directly by dividing counts). The 
next section will work through these equations in more detail. In order to do 
that, we’ll need to understand the role of the a values and how to compute 
them.

Combining Backoff with Discounting

Our previous discussions of discounting showed how to use a discounting 
algorithm to assign probability mass to unseen events. For simplicity, we 
assumed that these unseen events were all equally probable, and so the prob­
ability mass got distributed evenly among all unseen events. Now we can 

i o combine discounting with the backoff algorithm we have just seen to be a 
little more clever in assigning probability to unseen events. We will use the 
discounting algorithm to tells us how much total probability mass to set aside 

yy for all the events we haven’t seen, and the backoff algorithm to tell us how 
y: to distribute this probability in a clever way.

First, the reader should stop and answer the following question (don’t 
look ahead): Why did we need the a values in Equation (6.30) (or Equa­
tion (6.31))? Why couldn’t we just have three sets of probabilities without 
weights?

The answer: without a values, the result of the equation would not be 
a true probability! This is because the original P(w|w”Z^+]) we got from 
relative frequencies were true probabilities, that is, if we sum the probability 

; of a given wn over all A-gram contexts, we should get 1:

= 1 ' ..... (6-33)
ZvZ?':< ■■ ij ■ '■ ' :
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.V
But if that is the case, if we back off to a lower order model when th^ J 

probability is zero, we are adding extra probability mass into the equation, 
and the total probability of a word will be greater than 1! "3

Thus any backoff language model must also be discounted. This ex- 
plains the as and P in Equation 6.31. The P comes from our need to discount 3 
the MLE probabilities to save some probability mass for the lower order N-',l 
grams. We will use P to mean discounted probabilities, and save P for plain 
old relative frequencies computed directly from counts. The a is used to en­
sure that the probability mass from all the lower order N-grams sums up to f 
exactly the amount that we saved by discounting the higher-order N-grams. 
Here’s the correct final equation: J

= ^(^nl^n-x+l) if

■
' (6-34) •

Now let’s see the formal definition of each of these components of the | 
equation. We define P as the discounted (c*) MLE estimate of the conditional > 
probability of an N-gram, as follows: ; :.

This probability P will be slightly less than the MLE estimate

(i.e., on average the c* will be less than c). This will leave some J 
probability mass for the lower order N-grams. Now we need to build the 3 
a weighting we’ll need for passing this mass to the lower order N-grams. 
Let’s represent the total amount of left-over probability mass by the function / 
P, a function of the N - 1 -gram context. For a given N - 1 -gram context, the ) 
total left-over probability mass can be computed by subtracting from 1 the ' 
total discounted probability mass for all N-grams starting with that context: j

; -(6.36)

This gives us the total probability mass that we are ready to distribute J 
to all N — I-gram (e.g., bigrams if our original model was a trigram). Each 
individual N — 1-gram (bigram) will only get a fraction of this mass, so we ji 
need to normalize 3 by the total probability of all the N- 1-grams (bigrams)
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that begin some /V-gram (trigram). The final equation for computing how 
much probability mass to distribute from an /V-gram to an N- 1-gram is 
represented by the function a:

1 %w„t)>0 ^Wn I V+l)
(6.37) '

1 ~

Note that a is a function of the preceding word string, that is, of 
*us the amount by which we discount each trigram (d), and the 

mass that gets reassigned to lower order A7-grams (a) are recomputed for 
evejy //-gram (more accurately for every N - 1-gram that occurs in any N- 
gram).

We only need to specify what to do when the counts of an // — 1-gram 
context are 0, (i.e., when c(w"tT^+1) ™ 0) and our definition is complete:

1) = <«•»>
and

FWuCkt (6.39)

and

PWIXJ = 1 (6.40)

In Equation (6.35), the discounted probability P can be computed with 
the discounted counts c* from the Witten-Bell discounting (Equation (6.20)) 
or with the Good-Turing discounting discussed below.

Here is the backoff model expressed in a slightly clearer format in its 
trigram version:

. a(wn^)P(wi),

if C(w{-_2W,~iWf) > 0 

if C(wi_2Wj_iWi) = 0 

and C(w,-iw;) > 0 

otherwise.

In practice, when discounting, we usually ignore counts of 1, that is, 
we treat //-grams with a count of 1 as if they never occurred.

Gupta et al. (1992) present a variant backoff method of assigning prob­
abilities to zero trigrams.
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6.5 Deleted Interpolation

The deleted interpolation algorithm, due to Jelinek and Mercer 11980), com- < 
bines different N-gram orders by linearly interpolating all three models when- ; 
ever we are computing any trigram. That is, we estimate the probability z 
P(wK|wn_iw„_2) by mixing together the unigram, bigram, and trigram prob- < 
abilities. Each of these is weighted by a linear weight X: J

. . = A,iP(w„|wn_lWn_2) . /
+X2P(w„jwn_i) ' X
+X3P«) (6.41) /

such that the Xs sum to 1: g
2^=1 (6-42)

J -IB
terpolatjon bi practice, in this deleted interpolation deleted interpolation algo­

rithm we don’t train just three Xs for a trigram grammar. Instead, we make 
each X a function of the context. This way if we have particularly accu- " 
rate counts for a particular bigram, we assume that the counts of the trigrams 
based on this bigram will be more trustworthy, and so we can make the lamb- ) 
das for those trigrams higher and thus give that trigram more weight in the 
interpolation. So a more detailed version of the interpolation formula would z 

' be:. .. ... g...-...;.

' = X1(m^)P(w„K-2MA-i) NX
;g;.Nj.NN
Un . (6.43) \

Given the P(w „) values, the X values are trained so as to maximize the 
likelihood of a held-out corpus separate from the main training corpus, using J 
a version of the EM algorithm defined in Chapter 7 (Baum, 1972; Dempster ~ 
et al., 1977; Jelinek and Mercer, 1980). Further details of the algorithm are. v 
described in Bahl et al. (1983). 3

6.6 N-grams for Spelling and Pronunciation

In Chapter 5 we saw tile use of the Bayesian/noisy-channel algorithm for 
correcting spelling errors and for picking a word given a surface pronunci-
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■ ation. We saw that both these algorithms failed, returning the wrong word, 
because they had no way to model the probability of multiple-word strings. 
Now that our n-grams give us such a model, we return to these two problems.

Context-Sensitive Spelling Error Correction

■ Chapter 5 introduced the idea of detecting spelling errors by looking for 
words that are not in a dictionary, are not generated by some finite-state 
model of English word-formation, or have low probability orthotactics. But 
none of these techniques is sufficient to detect and correct real-word spelling

REAL-W 
errors, real-word error detection. This is the class of errors that result error

DETECT 

in an actual word of English' This can happen from typographical errors 
(insertion, deletion, transposition) that accidently produce a real word (e.g., 
there for three), or because the writer substituted the wrong spelling of a 
homophone or near-homophone (e.g., dessert for desert, or piece for peace).
The task of correcting these errors is called context-sensitive spelling error 
correction.

How important are these errors? By an a priori analysis of single typo­
graphical errors (single insertions, deletions, substitutions, or transpositions) 
Peterson (1986) estimates that 15% of such spelling errors produce valid En­
glish words (given a very large list of 350,000 words). Kukich (1992) sum­
marizes a number of other analyses based on empirical studies of corpora, 
which give figures between of 25% and 40% for the percentage of errors 
that are valid English words. Figure 6.11 gives some examples from Kukich 
(1992), broken down into local and global errors. Local errors are those that 
are probably detectable from the immediate surrounding words, while global 
errors are ones in which error detection requires examination of a large con­
text ■ ■

One method for context-sensitive spelling error correction is based on 
N-grams.
■ The word N-gram approach to spelling error detection and correction 
was proposed by Mays et al. (1991). The idea is to generate every possible 
misspelling of each word in a sentence either just by typographical modifi­
cations (letter insertion, deletion, substitution), or by including homophones 
as well, (and presumably including the correct spelling), and then choos­
ing the spelling that gives the sentence the highest prior probability. That 
is, given a sentence W = {wj,W2,. where w* has alternative
spelling wk, etc., we choose the spelling among these possible spellings 
that maximizes P(W), using the N-gram grammar to compute P(W).. A
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Local Errors
The study was conducted mainly be John Black.
They are leaving in about fifteen minuets to go to her house. ?
The design an construction of the system will take more than a year.
Hopefully, all with continue smoothly in my absence.
Can they lave him my messages?
I need to notified the bank of [this problem.]
He need to go there right now.
He is trying to fine out.

Global Errors
Won’t they heave if next Monday at that time?
This thesis is supported by the fact that since 1989 the system 

has been operating system with all four units on-line, but...
Figure 6.11 Some attested real-word spelling errors from Kukich (1992), 
broken down into local and global errors.

class-based .V-gram can be used instead, which can find unlikely part-of- 
speech combinations, although it may not do as well at to finding unlikely 
word combinations.

? There are many other statistical approaches to context-sensitive spelling 
error correction, some proposed directly for spelling, other for more general 1 
types of lexical disambiguation (such as word-sense disambiguation or ac­
cent restoration). Beside the trigram approach we have just described, these 
include Bayesian classifiers, alone or combined with trigrams (Gale et al., 
1993; Golding, 1997; Golding and Schabes, 1996), decision lists (Yarowsky, 
1994), transformation based learning (Mangu and Brill, 1997), latent! se­
mantic analysis (Jones and Martin; 1997), and Winnow (Golding and Roth, 
1999). In a comparison of these, Golding and Roth (1999) found the Win­
now algorithm gave the best performance. In general, however, these algo­
rithms are very similar in many ways; they are all based on features like 
word and part-of-speech -V-grams, and Roth (1998, 1999) shows that many 
of them make their predictions using a family of linear predictors called Lin­
ear Statistical Queries (LSQ) hypotheses. Chapter 17 will define all these 
algorithms and discuss these issues further in the context of word-sense dis­
ambiguation.
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N-grams for Pronunciation Modeling

i model can also be used to get better performance on the words-
frora-pronunciation task that we studied in Chapter 5. Recall that the input 
was the pronunciation [n iy following the word I. We said that the five words 
that could be pronounced n iy] were need, new, neat, the, and knee. The 
algorithm in Chapter 5 was based on the product of the unigram probability 
of each word and the pronunciation likelihood, and incorrectly chose the 
word hew, based mainly on its high unigram probability.

Adding a simple bigram probability, even without proper smoothing, is 
enough to solve this problem correctly. In the following table we fix the table 
on page 167 by using a bigram rather than unigram word probability p(w) 
for each of the five candidate words (given that the word I occurs 64,736 
times in the combined Brown and Switchboard corpora):

Word C(T w) C(T w)+0.5 p(w|T)
need 153 153.5 .0016
new 0 0.5 .000005
knee 0 0.5 .000005
the 17 17.5 .00018
neat 0 0.5 .000005

Incorporating this new word probability into combined model, it now 
i'-- predicts the correct word need, as the table below shows:

Word p(y|w) p(w) p(y|w)p(w)
need .11 .0016 .00018
knee 1.00 .000005 .000005
neat .52 .000005 .0000026
new .36 .000005 .0000018
the 0 00018 0

6.7 Entropy

. . Frank Loesser, Guys and Dolls

A Entropy and perplexity are the most common metrics used to evaluate 
zV-gramsystems. The next sections summarize a few necessary fundamental 
facts about information theory and then introduce the entropy and perplex­
ity metrics. We strongly suggest that the interested reader consult a good
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ENTROPY

information theory textbook; Cover and Thomas (1991) is one excellent ex­
ample.

Entropy is a measure of information, and is invaluable in natural lan­
guage processing, speech recognition, and computational linguistics. It can 
be used as a metric for how much information there is in a particular gram­
mar, for how well a given grammar matches a given language, for how pre­
dictive a given N-gram grammar is about what the next word could be. Given 
two grammars and a corpus, we can use entropy to tell us which grammar 
better matches the corpus. We can also use entropy to compare how diffi­
cult two speech recognition tasks are, and also to measure how well a given 
probabilistic grammar matches human grammars.

Computing entropy requires that we establish a random variable X that 
ranges over whatever we are predicting (words, letters, parts of speech, the 
set of which we’ll call %), and that has a particular probability function, call 
it p(x). The entropy of this random variable X is then

H(X) = -Yp(^2p(x} (6.44T

The log can in principle be computed in any base; recall that we use log 
base 2 in all calculations in this book. The result of this is that the entropy is 
measured in bits.

The most intuitive way to define entropy for computer scientists is to 
think of the entropy as a lower bound on the number of bits it would take 
to encode a certain decision or piece of information in the optimal coding 
scheme...':. ....... /c'C/; :

Cover and Thomas (1991) suggest the following example. Imagine 
that we want to place a bet on a horse race but it is too far to go all the way 
to Yonkers Racetrack, and we’d like to send a short message to the bookie 
to tell him which horse to bet on. Suppose there are eight horses in this 
particular race.

One way to encode this message is just to use the binary representation 
of the horse’s number as the code; thus horse 1 would be 001, horse 2 010, 
horse 3 011, and so on. with horse 8 coded as 000. If we spend the whole 
day betting, and each horse is coded with 3 bits, on the average we would be 
sending 3 bits per race.

Can we do better? Suppose that the spread is the actual distribution of 
the bets placed, and that we represent it as the prior probability of each horse 
as follows:
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Horse 1 |
Horse 2 ~
Horse 3 |
Horse 4

Horse 5
Horse 6
Horse 7
Horse 8

.Av The entropy of the random variable X that ranges over horses gives us 
v: & lower bound on the number of bits, and is:

H(X) = -Xp(i)logp(i)

= -ilog|-llogi-|log|-^iog^-4(^log^)

= 2 bits (6.45)

A code that averages 2 bits per race can be built by using short en­
codings for more probable horses, and longer encodings for less probable 
horses. For example, we could encode the most likely horse with the code 
0, and the remaining horses as 10, then 110, 1110, 111100, 111101,

A What if the horses are equally likely? We saw above that if we use an 
equal-length binary code for the horse numbers, each horse took 3 bits to 
code, and so the average was 3. Is the entropy the same? In this case each 
horse would have a probability of |. The entropy of the choice of horses is 
then:

i=8 1 i I
H(X) “ — - log-=-log-== 3 bits (6.46)

The value 2# is called the perplexity (Jelinek et al., 1977; Bahl et al., perplexity 

1983). Perplexity can be intuitively thought of as the weighted average num- 
ber of choices a random variable has to make. Thus choosing between 8 
equally likely horses (where /? = 3 bits), the perplexity is 23 or 8. Choosing 
between the biased horses in the table above (where H = 2 bits), the perplex­
ity is 22 or 4.

Until now we have been computing the entropy of a single variable. 
Butmostof what we will use entropy for involves sequences', for a grammar, 
for example, we will be computing the entropy of some sequence of words 
W = {... wq, W!,W2,. One way to do this is to have a variable that 
ranges over sequences of words. For example we can compute the entropy 
of a random variable that ranges over all finite sequences of words of length
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b in some language L as follows:
= - y pW)logp(W) (6-47)

w^el ,}
We could define the entropy rate (we could also think of this as the 3 

per-word entropy) as the entropy of this sequence divided by the number 1 
of words:

' I Pm <6.4sr:

But to measure the true entropy of a language, we need to consider 
sequences of infinite length. If we think of a language as a stochastic process 
L that produces a sequence of words, its entropy rate H(L) is defined as: ::

1 '
H(L) = hm-H(wi,w2,. .. ,wn} 

n
■ 1 :

= lim - V p(wi,...,wM)logXwi,...,wn) (6.49)

The Shannon-McMillan-Breiman theorem (Algoet and Cover, 1988; 
Cover and Thomas, 1991) states that if the language is regular in certain 
ways (to be exact, if it is both stationary and ergodic), 
b.,7 < .y/y ' . .:<y
. - (6.50)

■- n-±°° n
That is, we can take a single sequence that is long enough instead 

of summing over all possible sequences. The intuition of the Shannon 
McMillan-Breiman theorem is that a long enough sequence of words will 
contain in it many other shorter sequences, and that each of these shorter se­
quences will reoccur in the longer sequence according to their probabilities. 

stationary A stochasticprocess is said to be stationary if the probabilities it as­
signs to a sequence are invariant with respect to shifts in the time index. In 
other words, the probability distribution for words at time t is the same as the 
probability distribution at time t + 1. Markov models, and hence W-grams, 
are stationary. For example, in a bigram, Pi is dependent only on TV b So if 
we shift our time index by x, Pi+x is still dependent on Pi+x-i. But natural 
language is not stationary, since as we will see in Chapter 9, the probability 
of upcoming words can be dependent on events that were arbitrarily distant 
and time dependent. Thus our statistical models only give an approximation 
to the correct distributions and entropies of natural language.

To summarize, by making some incorrect but convenient simplifying 
assumptions, we can compute the entropy of some stochastic process by tak-
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ing a very long sample of the output, and computing its average log probabil­
ity. In the next section we talk about the why and how; why we would want to 
do this (i.e., for what kinds of problems would the entropy tell us something 
useful), and how to compute the probability of a very long sequence.

dross Entropy for Comparing Models

In this section we introduce the cross entropy, and discuss its usefulness in entropy 

comparing different probabilistic models. The cross entropy is useful when 
we don’t know the actual probability distribution p that generated some data.
It allows us to use some m, which is a model of p (i.e., an approximation to ■ 
p. The cross-entropy of m on p is defined by:

#(p,m) ■-lim i Y p(wi,...,wn)^ : (6.51) -wyA

That is we draw sequences according to the probability distribution p, 
r but sum the log of their probability according to m.

Again, following the Shannon-McMillan-Brciman theorem, for a sta- ' ■ i 
nonary ergodic process:

H(p,m) = lim ~”logm(wiW2•.-Wn) (6.52) •n.
Whal makes the cross entropy useful is that the cross entropy H(p.m) ; 

is an upper bound on the entropy H(p). For any model m:

■ . (6.53) A . \

This means that we can use some simplified model m to help estimate 
the true entropy of a sequence of symbols drawn according to probability 
p. The more accurate m is, the closer the cross entropy H(ppn) will be to 
the true entropy //(/?). Thus the difference between H(p.m) and H(p) is 7 
a measure of how accurate a model is. Between two models mi and 
the more accurate model will be the one with the lower cross-entropy. (The 
cross-entropy can never be lower than the true entropy, so a model cannot 
err by underestimating the true entropy).

The Entropy of English

As We suggested ini the previous section, the cross-entropy of some model 
m ean bo used as an upper bound on the true entropy of some process. We 
can use this method to get an estimate of the true entropy of English. Why 
shou Id we care about the entropy of English?
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Methodology Box: Perplexity

The methodology box on page 204 mentioned the idea of com-; 
puting the perplexity of a test set as a way of comparing two 
probabilistic models. (Despite the risk of ambiguity, we will fol­
low the speech and language processing literature in using the term 
“perplexity” rather than the more technically correct term “cross­
perplexity”.) Here’s an example of perplexity computation as part 
of a “business hews dictation system”. We trained unigram, bi- 
gram, and trigram Katz-style backoff grammars with Good-Turing 
discounting on 38 million words (including start-of- sentence tokens); 
from the Wall Sheet Journal (from the WSJO corpus (LDC, 1993)) 
We used a vocabulary of 19,979 words (i.e., the rest of the words 
types were mapped to the unknown word token <UNK> in both 
training and testing). We then computed the perplexity of each of 
these models on a test set of 1.5 million words (where the perplexity 
is defined as 2^’^). The table below shows the perplexity of a 1.5 
million word WSJ test set according to each of these grammars, y

N-gram Order Perplexity
Unigram 962
Bigram 170 
Trigram 109

In computing perplexities the model m must be constructed 
without any knowledge of the test set t. Any kind of knowledge 
of the test set can cause the perplexity to be artificially low. For 
example, sometimes instead of mapping all unknown words to the 
<UNK> token, we use a closed-vocabulary test set in which we 
know in advance what the set of words is. This can greatly reduce 
the perplexity As long as this knowledge is provided equally to each 
of the models we are comparing, the closed-vocabulary perplexity is 
still a useful metric for comparing models. But this cross-perplexity 
is no longer guaranteed to be greater than the true perplexity of the 
test set, and so great care must be taken in interpreting the results. In 
general, the perplexity of two language models is only comparable 
if they use the same vocabulary.
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One reason is that the true entropy of English would give us a solid 
lower bound for all of our future experiments on probabilistic grammars. 
Another is that we can use the entropy values for English to help under­
stand what parts of a language provide the most information (for example, 
is the predictability of English mainly based on word order, on semantics, 
on morphology, on constituency, or on pragmatic cues?) This can help us 
immensely in knowing where to focus our language-modeling efforts.
AAA. There are two common methods for computing the entropy of English. 

The first was employed by Shannon (1951), as part of his groundbreaking 
work in defining the field of information theory. His idea was to use human 
subjects, and to construct a psychological experiment that requires them to 
guess strings of letters; by looking at how many guesses it takes them to 
guess letters correctly we can estimate the probability of the letters, and 
hence the entropy of the sequence.

The actual experiment is designed as follows: we present a subject 
with some English text and ask the subject to guess the next letter. The sub­
jects will use their knowledge of the language to guess the most probable 
letter firsts the next most probable next, and so on. We record the number of 
guesses it takes for the subject to guess correctly. Shannon’s insight was that 
the entropy of the number-of-guesses sequence is the same as the entropy 
of English. (The intuition is that given the number-of-guesses sequence, we 
could reconstruct the original text by choosing the “nth most probable” letter 
whenever the subject took n guesses). This methodology requires the use of 
letter guesses rather than word guesses (since the subject sometimes has to 
damn exhaustive search of all the possible letters!), and so Shannon com- 
puted the per-letter entropy of English rather than the per-word entropy. 
He reported an entropy of 1.3 bits (for 27 characters (26 letters plus space)). 
Shannon’s estimate is likely to be too low, since it is based on a single text 
(Jefferson the Virginian by Dumas Malone). Shannon notes that his subjects 
had worse guesses (hence higher entropies) on other texts (newspaper writ­
ing, scientific work, and poetry). More recently variations on the Shannon 
experiments include the use of a gambling paradigm where the subjects get 
to bet on the next letter (Cover and King, 1978; Cover and Thomas, 1991).

... The second method for computing the entropy of English helps avoid 
the single-text problem that confounds Shannon’s results. This method is to 
take a very good stochastic model, train it on a very large corpus, and use 
it to assign a log-probability to a very long sequence of English, using the 
Shamion-McMillan-Breiman theorem:

A 1 -A '
kw H(English) < lim —logm(wiW2... (6.54)

n
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For example, Brown, et al. (1992) trained a trigram language model 
on 583 million words of English, (293,181 different types) and used it to 5 
compute the probability of the entire Brown corpus (1,014,312 tokens). The 
training data include newspapers, encyclopedias, .novels, office correspon- 
dence, proceedings of the Canadian parliament, and other miscellaneous ? 
sources.....

They then computed the character-entropy of the Brown corpus, by us­
ing their word-trigram grammar to assign probabilities to the Brown corpus- 
considered as a sequence of individual letters. They obtained an entropy 
of 1.75 bits per character (where the set of characters included all the 95 
printable ASCH characters).

: The average length of English written words (including space) has been 
reported at 5.5 letters (Nadas, 1984). If this is correct, it means that the Shan­
non estimate of 1.3 bits per letter corresponds to a per-word perplexity of 142 J 
for general English. The numbers we report above for the WSJ experiments ; 
are significantly lower since the training and test set came from same sub­
sample of English. That is, those experiments underestimate the complexity - 
of English since the Wall Street Journal looks very little like Shakespeare.

Bibliographical and Historical Notes

fA The Underlying mathematics of the A-gram was first proposed by Markov 
Ai A (1913), who used what are now called Markov chains (bigrams and tri­

grams) to predict whether an upcoming letter in Pushkin’s Eugene Onegin 
A):-' would be a vowel or a consonant. Markov classified 20,000 letters as V or 

C and computed the bigram and trigram probability that a given letter would 1 
v be a vowel given the previous one or two letters. Shannon (1948) applied 

A-grams to compute approximations to English word sequences. Based on 
Ay) Shannon’s work. Markov models were commonly used in modeling word sc- 

o quences by the 1950s. Ina series of extremely influential papers starting with
Chomsky (1956) and including Chomsky (1957) and Miller and Chomsky ' 

: (1963), Noam Chomsky argued that “finite-state Markov processes”, while 
a possibly useful engineering heuristic, were incapable of being a complete 

AA? cognitive model of human grammatical knowledge. These arguments led 
many linguists and computational linguists away from statistical models al- 

; together. - .
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The resurgence of A-gram models came from Jelinek, Mercer, Bahl, 
and colleagues at the IBM Thomas J. Watson Research Center, influenced 

I by Shannon, and Baker at CMU, influenced by the work of Baum and col­
leagues. These two labs independently successfully used A;-grams in their 
speech recognition systems (Jelinek, 1976; Baker, 1975; Bahl et al., 1983). 
The Good-Turing algorithm was first applied to the smoothing of A-gram 
grammars at IBM by Katz, as cited in Nadas (1984). Jelinek (1990) summa­
rizes this and many other early language model innovations used in the IBM 

7 language models.
While smoothing had been applied as an engineering solution to the 

zero-frequency problem at least as early as Jeffreys (1948) (add-one smooth­
ing), it is only relatively recently that smoothing received serious atten­
tion. Church and Gale (1991) gives a good description of the Good-Turing 
method, as well as the proof, and also gives a good description of the Deleted 
Interpolation method and a new smoothing method. Sampson (1996) also 
has a useful discussion of Good-Turing. Problems with the Add-one algo­
rithm are summarized in Gale and Church (1994). Method C in Witten and 
Bell (1991) describes what we called Witten-Bell discounting. Chen and 
Goodman (1996) give an empirical comparison of different smoothing algo­
rithms, including two new methods, average-count and one-count, as well as 
Church and Gale’s. Iyer and Ostendorf (1997) discuss a way of smoothing 
by adding in data from additional corpora.

■AV; Much recent work on language modeling has focused on ways to build 
7 more sophisticated A-grams. These approaches include giving extra weight 

to A-grams which have already occurred recently (the cache LM of Kuhn 
and de Mori (1990)), choosing long-distance triggers instead of just local 
A-grams (Rosenfeld, 1996; Niesler and Woodland, 1999; Zhou and Lua, 
1998), and using variable-length N-grams (Ney et al., 1994; Kneser, 1996; 
Niesler and Woodland, 1996). Another class of approaches use semantic in­
formation to enrich the A-gram, including semantic word associations based 
on the latent semantic indexing described in Chapter 15 (Coccaro and Ju- 
rafsky, 1998; Bellegarda, 1999)), and from on-line dictionaries or thesauri 
(Demehiou et al., 1997). Class-based A-grams, based on word classes such 
as parts-of-specch, are described in Chapter 8. Language models based on 
more structured linguistic knowledge (such as probabilistic parsers) are de­
scribed in Chapter 12. Finally, a number of augmentations to A-grams are 
based on discourse knowledge, such as using knowledge of the current topic 

: (Chenct al.. 1998; Seymore and Rosenfeld, 1997; Seymore et al., 1998; Flo­
rian and Yarowsky, 1999; Khudanpur and Wu, 1999) or the current speech 
act in dialogue (see Chapter 19).

CACHE LM

TRIGGERS

VARIABLE-LENGTH
N-GRAMS

LATENT
SEMANTIC
INDEXING

CLASS-BASED
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6.8 Summary

This chapter introduced the A-gram, one of the oldest and most broadly use­
ful practical tools in language processing.

• An A-gram probability is the conditional probability of a word given 
the previous N - 1 words. A-gram probabilities can be computed by 
simply counting in a corpus and normalizing (the Maximum Likeli­
hood Estimate) or they can be computed by more sophisticated algo­
rithms. The advantage of A-grams is that they take advantage of lots 
of rich lexical knowledge. A disadvantage for some purposes is that 
they are very dependent on the corpus they were trained on.

• Smoothing algorithms provide a better way of estimating the proba­
bility of A-grams which never occur. Commonly-used smoothing al­
gorithms include backoff or deleted interpolation, with Witten-Bell 
or Good-Turing discounting.

• Corpus-based language models like A-erams are evaluated by sepa­
rating the corpus into a training set and a test set, training the model 
on the training set, and evaluating on the test set. The entropy H, or 
more commonly the perplexity 2H (more properly cross-entropy and 
cross-perplexity) of a test set are used to compare language models.

Exercises

6.1 Write out the equation for trigram probability estimation (modifying 
Equation 6.11).

6.2 Write out the equation for the discount d for add-one smoothing? 
Do the same for Witten-Bell smoothing. How do they differ?

6.3 Write a program (Perl is sufficient) to compute unsmoothed unigrams 
and bigrams.

6.4 Run your A-gram program on two different small corpora of your 
choice (you might use email text or newsgroups). Now compare the statistics
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JVofthetwo corpora. What are the differences in the most common unigrams 
between the two? How about interesting differences in bigrams?

6.5 Add an option to your program to generate random sentences.

6.6 Add an option to your program to do Witten-Bell discounting.

6.7 Add an option to your program to compute the entropy (or perplexity) 
set.

6.8 Suppose someone took all the words in a sentence and reordered them 
randomly. Write a program which take as input such a bag of words and bag of words 
produces as output a guess at the original order. Use the Viterbi algorithm 
and an N-gram grammar produced by your N-gram program (on some cor­
pus).

6.9 The field of authorship attribution is concerned with discovering the attribution 
author of a particular text. Authorship attribution is important in many fields, 
including history, literature, and forensic linguistics. For example Mosteller 
and Wallace (1964) applied authorship identification techniques to discover 
who wrote The Federalist papers. The Federalist papers were written in 
1787-1788 by Alexander Hamilton, John Jay and James Madison to per­
suade New York to ratify the United States Constitution. They were pub­
lished anonymously, and as a result, although some of the 85 essays were 
clearly attributable to one author or another, the authorship of 12 were in 
dispute between Hamilton and Madison. Foster (1989) applied authorship 
identification techniques to suggest that W.S.’s Funeral Elegy for William 
Peter was probably written by William Shakespeare, and that the anonymous 
author of Primary Colors the roman a clef about the Clinton campaign for 
the American presidency, was journalist Joe Klein (Foster, 1996).
AC: A standard technique for authorship attribution, first used by Mosteller 
and Wallace, is a Bayesian approach. For example, they trained a proba­
bilistic model of the writing of Hamilton, and another model of the writings 
of Madison, and computed the maximum-likelihood author for each of the 
disputed essays. There are many complex factors that go into these models, 
including vocabulary use, word-length, syllable structure, rhyme, grammar; 
see (Holmes, 1994) for a summary. This approach can also be used for iden­
tifying which genre a text comes from.

One factor in many models is the use of rare words. As a simple ap­
proximation to this one factor, apply the Bayesian method to the attribution 
of any particular text. You will need three things: a text to test, and two 
potential authors or genres, with a large on-line text sample of each. One of
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them should be the correct author. Train a unigram language model on each 
of the candidate authors. You are only going to use the singleton unigrams 
in each language model. You will compute P(T\Ai), the probability of the 
text given author or genre Ai, by (1) taking the language model from A i, (2) 
by multiplying together the probabilities of all the unigrams that only oc­
cur once in the “unknown” text and (3) taking the geometric mean of these 
(i.e., the /sth root, where n is the number of probabilities you multiplied). 
Do the same for A2. Choose whichever is higher. Did it produce the correct 
candidate?
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When Frederic was a little lad he proved so brave and daring, 
His father thought he’d ’prentice him to some career seafaring.
I was, alas! his nurs’rymaid, and so it fell to my lot
To take and bind the promising boy apprentice to a pilot —
A life not bad for a hardy lad, though surely not a high lot,
Though I’m a nurse, you might do worse than make your boy a pilot.
I was a stupid nurs’rymaid, on breakers always steering,
And I did not catch the word aright, through being hard of hearing; 
Mistaking my instructions, which within my brain did gyrate,
I took and bound this promising boy apprentice to a pirate.

The Pirates of Penzance, Gilbert and Sullivan, 1877

Alas, this mistake by nurserymaid Ruth led to Frederic’s long indenture as 
a pirate and, due to a slight complication involving 21st birthdays and leap 
years, nearly led to 63 extra years of apprenticeship. The mistake was quite 
natural, in a Gilbert-and-Sullivan sort of way; as Ruth later noted, “The two 

7 words were so much alike!” True, true; spoken language understanding is a 
2 difficult task, and it is remarkable that humans do as well at it as we do. The

7 goal of automatic speech recognition (ASR) research is to address this prob- 
■ lem computationally by building systems that map from an acoustic signal to 

a string of words. Automatic speech understanding (ASU) extends this goal 
7 to producing some sort of understanding of the sentence, rather than just the 
7j words...

The general problem of automatic transcription of speech by any speaker 
7 in any environment is still far from solved. But recent years have seen ASR 

technology mature to the point where it is viable in certain limited domains. 
One major application area is in human-computer interaction. While many 
tasks are better solved with visual or pointing interfaces, speech has the po­
tential to be a better interface than the keyboard for tasks where full natural
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language communication is useful, or for which keyboards are not appropri­
ate. This includes hands-busy or eyes-busy applications, such as where the 
user has objects to manipulate or equipment to control. Another important 
application area is telephony, where speech recognition is already used for 
example for entering digits, recognizing ”yes” to accept collect calls, or cally 
routing (“Accounting, please”, “Prof. Regier, please”). In some applications; 
a multimodal interface combining speech and pointing can be more efficient 
than a graphical user interface without speech (Cohen er al., 1998). Finally; 
ASR is being applied to dictation, that is, transcription of extended mono­
logue by a single specific speaker. Dictation is common in fields such as law 
and is also important as part of augmentative communication (interaction be­
tween computers and humans with some disability resulting in the inability 
to type, or the inability to speak). The blind Milton famously dictated Par­
adise Lost to his daughters, and Henry James dictated his later novels after a 
repetitive stress injury.

Different applications of speech technology necessarily place different 
constraints on the problem and lead to different algorithms. We chose to fo­
cus this chapter on the fundamentals of one crucial area: Large-Vocabulary 
Continuous Speech Recognition (LVCSR), with a small section on acous­
tic issues in speech synthesis. Large-vocabulary generally means that the 
systems have a vocabulary of roughly 5,000 to 60,000 words. The term con­
tinuous means that die words are run together naturally; it contrasts with 
isolated-word speech recognition, in which each word must be preceded 
and followed by a pause. Furthermore, the algorithms we will discuss are 
generally speaker-independent; that is, they are able to recognize speech 
from people whose speech the system has never been exposed to before.

The chapter begins with an overview of speech recognition architec­
ture, and then proceeds to introduce the HMM, the use of the Viterbi and 
A* algorithms for decoding, speech acoustics and features, and the use of 
Gaussians and MLPs to compute acoustic probabilities. Even relying on the 
previous three chapters, summarizing this much of the field in this chapter 
requires us to omit many crucial areas; the reader is encouraged to see the 
suggested readings at the end of the chapter for useful textbooks and articles. 
This chapter also includes a short section on the acoustic component of the 
speech synthesis algorithms discussed in Chapter 4.

it

m

7.1 Speech Recognition Architecture

Previous chapters have introduced many of the core algorithms used in spee^ 
recognition. Chapter 4 introduced the notions of phone and syllable. Chap-
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ter 5 introduced the noisy channel model, the use of the Bayes rule, and 
the probabilistic automaton. Chapter 6 introduced the A-gram language 
model and the perplexity metric. In this chapter we introduce the remaining 
components of a modern speech recognizer: the Hidden Markov Model 
(HMM), the idea of spectral features, the forward-backward algorithm 
for HMM training, and the Viterbi and stack decoding (also called A* de­
coding algorithms for solving the decoding problem: mapping from strings §gC0D]NG 

: of phone probability vectors to strings of words.
gi g Let’s begin by revisiting the noisy channel model that we saw in Chap­

ter 5. Speech recognition systems treat the acoustic input as if it were a 
‘noisy” version of the source sentence. In order to “decode” this noisy 
sentence, we consider all possible sentences, and for each one we compute 
the probability of it generating the noisy sentence. We then chose the sen­
tence with the maximum probability. Figure 7.1 shows this noisy-channel 
metaphor.

guess at 
original 
sentence

If music be the 
food of love...

1 Figure 7.1 The noisy channel model applied to entire sentences (Figure 5.1 
i showed its application to individual words). Modern speech recognizers work 

: by searching through a huge space of potential “source” sentences and choos­
ing the one which has the highest probability of generating the “noisy” sen- 
tence. To do this they must have models that express the probability of 
sentences being realized as certain strings of words (A-grams), models that 
express the probability of words being realized as certain strings of phones 
(HMMs) and models that express the probability of phones being realized as

: acoustic or spectral features (Gaussians/MLPs).

(cm Implementing the noisy-channel model as we have expressed it in Fig- 
urc 7.1 requires solutions to two problems. First, in order to pick the sentence 
that best matches the noisy input we will need a complete metric for a “best 
match”. Because speech is so variable, an acoustic input sentence will never 
exactly match any model we have for this sentence. As we have suggested 
in previous chapters, we will use probability as our metric, and will show 
how to combine the various probabilistic estimators to get a complete esti- 
matc for the probability of a noisy observation-sequence given a candidate
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sentence. Second, since the set of all English sentences is huge, we need 
an efficient algorithm that will not search through all possible sentences, but -J 
only ones that have a good chance of matching the input. This is the decod- a 
ing or search problem, and we will summarize two approaches: the Viterbi J 
or dynamic programming decoder, and the stack or A* decoder. rig

In the rest of this introduction we will introduce the probabilistic or J 
Bayesian model for speech recognition (or more accurately re-introduce it, t 
since we first used the model in our discussions of spelling and pronunciation 
in Chapter 5); we leave discussion of decoding/search for pages 244-251.

The goal of the probabilistic noisy channel architecture for speech ' 
recognition can be summarized as follows:

....... . . .. ... J ' Iris

“What is the most likely sentence out of all sentences in the lan-
guage L given some acoustic input O?” 3g
We can treat the acoustic input O as a sequence of individual “sym- 3 

bols” or “observations” (for example by slicing up the input every 10 mil- J 
liseconds, and representing each slice by floating-point values of the energy 
or frequencies of that slice). Each index then represents some time interval, 
and successive di indicate temporally consecutive slices of the input (note Jf 
that capital letters will stand for sequences of symbols and lower-case letters ~ S 
for individual symbols):

Q~ O1,O2,O3)... ,o(

Similarly, we will treat a sentence as if it were composed simply of a 
string of words:

W =(7.2) 3

Both of these are simplifying assumptions; for example dividing sen- H 
tences into words is sometimes too fine a division (we’d like to model facts 
about groups of words rather than individual words) and sometimes too gross 1 
a division (we’d like to talk about morphology). Usually in speech rccogni- 7 
tion a word is defined by orthography (after mapping every word to lower- - 
case): oak is treated as a different word than oaks, but the auxiliary can (“can « 
you tell me...”) is treated as the same word as the noun can (“i need a can 
of...” ). Recent ASR research has begun to focus on building more so- / 
phisticated models of ASR words incorporating the morphological insights 
of Chapter 3 and the part-of-speech information that we will study in Chap­
ter 8.
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The probabilistic implementation of our intuition above, then, can be 
expressed as follows:

1^ = argmaxP(W|O) (7.3)

Recall that the function argmaxx/(x) means “the x such that f(x) is 
largest”. Equation (7.3) is guaranteed to give us the optimal sentence W; we 
now need to make the equation operational. That is, for a given sentence W 
and acoustic sequence O we need to compute P(W|O). Recall that given any 
probability P(x\y}, we can use Bayes’ rule to break it down as follows:

We saw in Chapter 5 that we can substitute (7.4) into (7.3) as follows:
P(O\W)P(W\

Ao W = argmax (7-5)
wen rayi

The probabilities on the right-hand side of (7.5) are for the most part 
easier to compute than P(W\O). For example, P(W), the prior probability 
of the word string itself is exactly what is estimated by the n-gram language 
models of Chapter 6. And we will see below that P(O\W) turns out to be 
easy to estimate as well. But P(O), the probability of the acoustic obser­
vation sequence, turns out to be harder to estimate. Luckily, we can ignore 
P(O) just as we saw in Chapter 5, Why? Since we are maximizing over 
all possible sentences, we will be computing for each sentence in
the language. But P(O) doesn’t change for each sentence? For each potential 
sentence we are still examining the same observations O, which must have 
the same probability P(O). Thus:

..IT ~ argmax — argmax P(O[W) P(W) (7.6)

To summarize, the most probable sentence W given some observation 
sequence O can be computing by taking the product of two probabilities for 
each sentence, and choosing the sentence for which this product is greatest. 
These two terms have names; P(W), the prior probability, is called the lan­
guage model. P(O|W), the observation likelihood, is called the acoustic hoo!TGE 
rhndpl ACOUSTICHiouei. ; MODEL

likclihoodprior

P(W) ; (7.7)
wee

yr We have already seen in Chapter 6 how to compute the language model 
prior P(W) by using A-sram grammars. The rest of this chapter will show
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how to compute the acoustic model P(0|W)ii. in two steps. First we will 
make the simplifying assumption that the input sequence is a sequence of 
phones F rather than a sequence of acoustic observations. Recall that we/ | 
introduced the forward algorithm in Chapter 5, which was given “obser­
vations” that were strings of phones, and produced the probability of these 
phone observations given a single word. We will show that these probabilis­
tic phone automata are really a special case of the Hidden Markov Modell I 
and we will show how to extend these models to give the probability of a 
phone sequence given an entire sentence.

One problem with the forward algorithm as we presented it was that in 
order to know which word was the most-likely word (the “decoding prob­
lem”), we had to run the forward, algorithm again for each word. This is 
clearly intractable for sentences; we can’t possibly run the forward algo­
rithm separately for each possible sentence of English. We will thus intro­
duce two different algorithms which simultaneously compute the likelihood 
of an observation sequence given each sentence, and give us the most-likely 
sentence. These are the Viterbi and the A* decoding algorithms.

Once we have solved the likelihood computation and decoding prob­
lems for a simplified input consisting of strings of phones, we will show 
how the same algorithms can be applied to true acoustic input rather than 
pre-defined phones. This will involve a quick introduction to acoustic input 
and feature extraction, the process of deriving meaningful features from 
the input soundwave. Then we will introduce the two standard models for 
computing phone-probabilities from these features: Gaussian models, and 
neural net (multi-layer perceptrons) models.

Finally, we will introduce the standard algorithm for training the Hid­
den Markov Models and the phone-probability estimators, the forward- 
backward or Baum-Welch algorithm) (Baum, 1972), a special case of the 
the Expectation-Maximization or EM algorithm (Dempster et al., 1977).

As a preview of the chapter, Figure 7.2 shows an outline of the compo 
nents of a speech recognition system. The figure shows a speech recognition 
system broken down into three stages. In the signal processing or feature 
extraction stage, the acoustic waveform is sliced up into frames (usually 
of 10, 15, or 20 milliseconds) which are transformed into spectral features 
which give information about how much energy in the signal is at different 
frequencies. Ih the subword or phone recognition stage, we use statistical 
techniques like neural networks or Gaussian models to tentatively recognize 
individual speech sounds like p or b. For a neural network, the output of this 
stage is a vector of probabilities over phones for each frame (i.e., “for this
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frame the probability of [p] is .8, the probability of [b] is. 1, the probability of
[f] is .02, etc.”); for a Gaussian model the probabilities are slightly different.
Finally, in the decoding stage, we take a dictionary of word pronunciations

y and a language model (probabilistic grammar) and use a Viterbi or A* de­
coder to find the sequence of words which has the highest probability given decoder 

the acoustic events.

Speech 
Waveform

Feature Extraction 
(Signal Processing)

rieurai Net Spectral
V \ ; Feature

i ■ Vectors
■ < ____ Phone Likelihood
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Figure 7.2 Schematic architecture for a (simplified) speech recognizer.

7.2 Overview of Hidden Markov Models

In Chapter 5 we used weighted finite-state automata or Markov chains to 
model the pronunciation of words. The automata consisted of a sequence 
of states </ (70^1^2each corresponding to a phone, and a set of
transition probabilities between states, 001,^12,013, encoding the probability 
of one phone following another. We represented the states as nodes, and 
the transition probabilities as edges between nodes; an edge existed between 
two nodes if there was a non-zerotransition probability between the two 
nodes. We also saw that we could use the forward algorithm to compute the 
likelihood of a sequence of observed phones 0 — (010203... ot). Figure 7.3 
shows an automaton for the word need with sample observation sequence of 
the kind we saw in Chapter 5.

While we will see that these models figure importantly in speech recog­
nition, they simplify the problem in two ways. First, they assume that the
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Figure 7.3 A simple weighted automaton or Markov chain pronunciation 
network for the word need, showing the transition probabilities, and a sample 
observation sequence. The transition probabilities between two states A 
and y are 1.0 unless otherwise specified.

HIDDEN
MARKOV
MODEL

input consists of a sequence of symbols! Obviously this is not true in the 
real world, where speech input consists essentially of small movements of 
air particles. In speech recognition, the input is an ambiguous, real-valued 
representation of the sliced-up input signal, called features or spectral fea­
tures.; We will study the details of some of these features beginning on 
page 259; acoustic features represent such information as how much energy 
there is at different frequencies. The second simplifying assumption of the 
weighted automata of Chapter 5 was that the input symbols correspond ex­
actly to the states of the machine. Thus when seeing an input symbol [b], 
we knew that we could move into a state labeled [b]. In a Hidden Markov 
Model (HMM), by contrast, we can’t look at the input symbols and know 
which state to move to. The input symbols don’t uniquely determine the next 
stateJex/z/J/e^-x/—

Recall that a weighted automaton or simple Markov model is specified 
by the set of states Q , the set of transition probabilities A, a defined start 
state and end state(s), and a set of observation likelihoods B. For weighted 
automata, we defined the probabilities b;(ot") as 1.0 if the state i matched the 
observation ot and 0 if they didn’t match. An HMM formally differs from a 
Markov model by adding two more requirements. First, it has a separate set 
of observation symbols O, which is not drawn from the same alphabet as the

^3-

t Actually, as we mentioned in passing, by this second criterion some of the automata we 
saw in Chapter 5 were technically HMMs as well. This is because the first symbol in the 
input string ji iy] was Compatible with the [n] states in the words need or an: Seeing; the 
symbols [n], we didn’t know which underlying state it was generated by, need-n or an-n
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state set Q. Second, the observation likelihood function B is not limited to 
the values 1.0 and 0; in an HMM the probability bi(pt) can take on any value 
from 0 to 1.0.

Word Model

®24

■ « MObservation 
Sequence 
(spectral feature 
vectors)

O1 o2 o3 o4 o5 o6

Figure 7.4 An HMM pronunciation network for the word need, showing 
the transition probabilities, and a sample observation sequence. Note the ad- 
dition of the output probabilities B. HMMs used in speech recognition usually 
use self-loops on the states to model variable phone durations.

Figure 7.4 shows an HMM for the word need and a sample observa­
tion sequence. Note the differences from Figure 7.3. First, the observation 
sequences are now vectors of spectral features representing the speech sig­
nal. Next, note that we’ve also allowed one state to generate multiple copies 
of the same observation, by having a loop on the state. This loops allows 
HMMs to model the variable duration of phones; longer phones require more 

; loops through the HMM.
.'7 In summary, here are the parameters we need to define an HMM:

• states: a set of states Q = q\qz • • • Qn

• transitionprobabilities: a set of probabilities A = aoi«o2 ■ • -«ni ■■■dm 
Each ay represents the probability of transitioning from state i to state 
j. The set of these is the transition probability matrix

• observation likelihoods: a set of observation likelihoods B = 
each expressing the probability of an observation ot being generated 
from a state z

In our examples so far we have used two “special” states (non-emitting 
■states) as the start and end state; as we saw in Chapter 5 it is also possible to 
■ avoid the use of these states by specifying two more things:
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• initial distribution: an initial probability distribution over states, tc, 
such that nt is the probability that the HMM will start in state L Of 
course some states j may have Tty = 0, meaning that they, cannot be ; 
initial states.

• accepting states: a set of legal accepting states

As was true for the weighted automata, the sequences of symbols that 
are input to the model (if we are thinking of it as recognizer) or which are i 
produced by the model (if we are thinking of it as a generator) are generally ? ; 
called the observation sequence, referred to as O = (010203 • • ■ oj).

7.3 The Viterbi Algorithm Revisited

Chapter 5 showed how the forward algorithm could be used to compute the 
probability of an observation sequence given an automaton, and how the 
Viterbi algorithm can be used to find the most-likely path through the au­
tomaton, as well as the probability of the observation sequence given this 
most-likely path. In Chapter 5 the observation sequences consisted of a sin­
gle word. But in continuous speech, the input consists of sequences of words, 
and we are not given the location of the word boundaries. Knowing where 
the word boundaries are massively simplifies the problem of pronunciation; A 
in Chapter 5, since we were sure that the pronunciation [ui] came from one 
word, we only had seven candidates to compare. But in actual speech we 
don’t know where the word boundaries are. For example, try to decode the 
following sentence from Switchboard (don’t peek ahead!):

[ay dih s hh er d s ah m th ih ng ax b aw m uh v ihng r ih s cn 1 ih]

The answer is in the footnote,2 The task is hard partly because of coar­
ticulation and fast speech (e g., [d] for the first phone of justly But mainly 
it’s the lack of spaces indicating word boundaries that make the task difficult. 
The task of finding word boundaries in connected speech is called segmeiV 
Ution and we will solve it by using the Viterbi algorithm just as we did for 
Chinese word-segmentation in Chapter 5; recall that the algorithm for Chi­
nese word-segmentation relied on choosing the segmentation that resulted 
in the sequence of words with the highest frequency. For speech segmenta­
tion we use the more sophisticated V-gram language models introduced in 
Chapter 6. In the rest of this section we show how the Viterbi algorithm can 

2 1 just heard something about moving recently.
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be applied to the task of decoding and segmentation of a simple string of 
7 observations phones, using an n-gram language model. We will show how 

the algorithm is used to segment a very simple string of words. Here’s the 
input and output we will work with:

Input Output
[aa n iy dh ax] I need the

Figure 7.5 shows word models for I, need, the, and also, just to make 
things difficult, the word on.

Figure 7.5 Pronunciation networks for the words I, on, need, and the. All 
7 networks (especially the) are significantly simplified.

Recall that the goal of the Viterbi algorithm is to find the best state se- 
qucnce q = (q\qzq3 ...qt} given the set of observed phones o = (oi02°3 ■ • ■ Of) 
A graphic illustration of the output of the dynamic programming algorithm is 
shown in Figure 7.6. Along the y-axis are all the words in the lexicon; inside 
each word are its states. The x-axis is ordered by time, with one observed 
phone per time unit.3 Each cell in tire matrix will contain the probability of 
the rnost-Iikely sequence ending at that state. We can find the most-likely 
state sequence for the entire observation string by looking at the cell in the 
right-most column that has the highest probability, and tracing back the se­
quence that produced it.

3 This x-axis component of the model is simplified in two major ways that we will show 
how io fix in the next section. First, the observations will not be phones but extracted spectral 
features, and second, each phone consists of hot time unit observation but many observations 
(since phones can last for more than one phone). The y-axis is also simplified in this example, 
since as we will see most ASR system use multiple “subphone” units for each phone.
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Figure 7.6 An illustration of the results of the Viterbi algorithm used to 
find the most-likely phone sequence (and hence estimate the most-likely word 

■ sequence). ;

More formally, we are searching for the best state sequence q* # 
given an observation sequence o = (<9io2■ --Ot) and a model 

(a weighted automaton or “state graph”) X. Each cell viterbi[i,t] of the ma­
trix contains the probability of the best path which accounts for the first t I 
observations and ends in state i of the HMM. This is the most-probable path I 
out of all possible sequences of states of length t — 1: 1' I

A( viterbi[r ? xj = max P(qiq2. ... qt_i.qt = i,01,02..Ot jX) (7.8)
■ V;-::: Vfr-i. ... j

In order to compute viterbi[t,i], the Viterbi algorithm assumes the dy- 
programming namic programming invariant. This is the simplifying (but incorrect) as­

sumption that if the ultimate best path for the entire observation sequence 
happens to go through a state q^ that this best path must include the best 
path up to and including state qi, This doesn’t mean that the best path at any 
time r is the best path for the whole sequence. A path can look bad at the 
beginning but turn out to be the best path. As we will see later, the Viterbi 
assumption breaks down for certain kinds of grammars (including trigram 
grammars) and so some recognizers have moved to another kind of decoder, 
the stack or A* decoder; more on that, later. As we saw in our discussion 
of the minimum-edit-distance algorithm in Chapter 5, the reason for making 
the Viterbi assumption is that it allows us to break down the computation
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£ of the optimal path probability in a simple way; each of the best paths at 
L time t is the best extension of each of the paths ending at time / - 1. In 
; other words, the recurrence relation for the best path at time t ending in state 

viterbi[t,j], is the maximum of the possible extensions of every possible 
previous path from time t - 1 to time t:

viterbi [t, j] = max( viterbi [t — 1, i] )bj{pt) (7.9)

The algorithm as we describe it in Figure 7.9 takes a sequence of ob­
servations, and a single probabilistic automaton, and returns the optimal path 
through the automaton. Since the algorithm requires a single automaton, we 
will need to combine the different probabilistic phone networks for the, I, 
need, and a into one automaton. In order to build this new automaton we 
will need to add arcs with probabilities between any two words: bigram 
probabilities. Figure 7.7 shows simple bigram probabilities computed from 
the combined Brown and Switchboard corpus.

Inecd 0.0016 need need 0.000047 #Need 0.000018
Ithe 0.00018 need the 0.012 #The 0.016
I on 0.000047 need on 0.000047 #0n 0.00077
II 0.039 need I 0.000016 #1 0.079
the need 0.00051 on need 0.000055
thethe 0.0099 on the 0.094
the on .... 0.00022 on on 0.0031
the 1 0.00051 on I 0.00085

Figure 7.7 Bigram probabilities for the words the, on, need, and I following 
each other, and starting a sentence (i.e., following #). Computed from .the 
combined Brown and Switchboard corpora with add-0.5 smoothing.

Figure 7.8 shows the combined pronunciation networks for the 4 words 
together with a few of the new arcs with the bigram probabilities. For read­
ability of the diagram, most of the arcs aren’t shown; the reader should imag­
ine that each probability in Figure 7.7 is inserted as an arc between every two 
words.

The algorithm is given in Figure 5.19 in Chapter 5, and is repeated 
here for convenience as Figure 7.9. We see in Figure 7.9 that the Viterbi 
algorithm sets up a probability matrix, with one column for each time index 
/ and one row for each state in the state graph The algorithm first creates 
T i 2 columns; Figure 7.9 shows the first six columns. The first column is 
an initial pseudo-observation, the next corresponds to the first observation
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Figure 7.8 Single automaton made from the words I, need, on, and the. The 
arcs between words have probabilities computed from Figure 7.7. For lack of 
space the figure only shows a few of the between-word arcs.

phone | aa|, and so on. We begin in the first column by setting the probability 
of the start state to 1.0, and the other probabilities to 0; the reader should 
find this in Figure 7 .10 . Cells with probability 0 are simply left blank for 
readability. For each column of the matrix, that is, for each time index t 
each cell viterbi[l,j\, will contain the probability of the most likely path to 
end in that cell. We will calculate this probability recursively, by maximizing 
over the probability of coming from all possible preceding states. Then we 
move to the next state; for each of the i statesyiterbi[0,i] in column 0. we 
compute the probability of moving into each of the j states viterbi[l,j] in 
columnT, according to the recurrence relation in (7.9). In the column for 
the input aa, only two cells have non-zero entries, since bi(aa) is zero for 
every other state except the two states labeled aa. The value of viterbi(l,aa) 
of the word / is the product of the transition probability from # to I and the 
probability of I being pronounced with the vowel aa.

Notice that if we look at the column for the observation n, that the word 
on is currently the “most-probable” word. But since there is no word or sct 
of words in this lexicon Which is pronounced i dh ax, the path starting with 
on is a dead end, that is, this hypothesis can never be extended to cover the 
whole utterance.

By the time we see the observation iy, there are two competing paths: 
I need and I they I need is currently more likely. When we get to the obser­
vation dh, we could have arrived from either the iy of need or the iy of the.
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function VVTERBl(pbservations of len T,state-graph) returns best-path

; num-states <- NUM-OF-STATES(.ytote-grapZt)
Create a path probability matrix viterbi[nmn-states+2,T+2]
viterbi] 0,0] v 1.0
for each time step t from 0 to T do

for each state .v from 0 to num-states do
for each transition s' from s specified by state-graph

new-score±-viterbi[s, t] * ah,?] * b^{ot)
(Syiterbi[d ,t+1] =0) || (pew-score > viterbi[s!, /+/]))
then

viterbi[s, r+ /]4“new-score
back-pointer[sf, t+I\<~s

; Backtrace from highest probability state in the final column of viterbi[] and 
return path.

Figure 7.9 Viterbi algorithm for finding optimal sequence of states in con­
tinuous speech recognition, simplified by using phones as inputs (duplicate of 
Figure 5.19). Given an observation sequence of phones and a weighted au- 
tomaton (state graph), the algorithm returns the path through the automaton 

, which has minimum probability and accepts the observation sequence. a[s, /]
is the transition probability from current state s to next state s’ and b^Ot) is 
the observation likelihood of s’ given ot.

The probability of the max of these two paths, in this case the path through I 
need, will go into the cell for dh.

Finally, the probability for the best path will appear in the final ax 
column. In this example, only one cell is non-zero in this column; the ax 
state of the word the (a real example wouldn’t be this simple; many other 
cells would be non-zero).

If the sentence had actually ended here, we would now need to back- 
trace to find the path that gave us this probability. We can’t just pick the 
highest probability state for each state column. Why not? Because the most 
likely path early on is not necessarily the most likely path for the whole sen­
tence. Recall that the most likely path after seeing n was the word on. But 
the most likely path for the whole sentence is I need the. Thus we had to 
rely in Figure 7.10 on the “Hansel and Gretel” method (or the “Jason and 
thd Minotaur” method if you like your metaphors more classical): whenever 

f we moved into a cell, we kept pointers back to the cell we came from. The 
reader should convince themselves that the Viterbi algorithm has simultane­
ously solved the segmentation and decoding problems.
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d 

need iy 

n

ax

the n n 
dh

n on 
aa

। ay 

aa 

start

# aa n / iy dh ax
Figure 7.10 The entries in the individual state columns for the Viterbi al­
gorithm. Each cell keeps the probability of the best path so far and a pointer 
to the previous cell along that path. Backtracing from the successful last word 
(the), we can reconstruct the word sequence I need the.

TRIPHONE

The presentation of the Viterbi algorithm in this section has been sim- 
plified; actual implementations of Viterbi decoding are more complex in ( 
three key ways that we have mentioned already. First, in an actual HMM 
for speech recognition, the input would not be phones. Instead, the input 
is a feature vector of spectral and acoustic features. Thus the observation 
likelihood probabilities bi(t) of anobservation ot given a state i will not 
simply take on the values 0 or 1, but will be more fine-grained probability 
estimates, computed via mixtures of Gaussian probability estimators or neu­
ral nets. The next section will show how these probabilities are computed.

Second, the HMM states in most speech recognition systems are? not | 
simple phones but rather subphones. In these systems each phone is di­
vided into three states- the beginning, middle and final portions of the phone. 
Dividing up a phone in this way captures the intuition that the significant 
changes in the acoustic input happen at a finer granularity than the phone; 
for example the closure and release of a stop consonant. Furthermore, many 
systems use a separate instance of each of these subphones for each triphone 
context (Schwartz et ah, 1985; Deng ct al., 1990). Thus instead of around
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60 phone units, there could be as many as 603 context-dependent triphones, 
in practice, many possible sequences of phones never occur or are very rare, 
go systems create a much smaller number of triphones models by clustering 
the possible triphones (Young and Woodland, 1994). Figure 7.11 shows an 
example of the complete phone model for the triphone b(ax,aw).

Figure 7.11 An example of the context-dependent triphone b(ax,aw) (the 
phone [b] preceded by a [ax] and followed by a [aw], as in the beginning of 
about, showing its left, middle, and right subphones.

Finally, in practice in large-vocabulary recognition it is too expensive 
to consider all possible words when the algorithm is extending paths from

I one state-column to the next Instead, low-probability paths are pruned at 
each time step and not extended to the next state column. This is usually im-

? plemented via beam search: for each state column (time step), the algorithm beam search 

maintains a short list of high-probability words whose path probabilities are 
within some percentage (beam width) of the most probable word path. Only beamwsdth 

transitions from these words are extended when moving to the next time step. 
Since the words are ranked by the probability of the path so far, which words 
are within the beam (active) will change from time step to time step. Making 
fliis?beam search approximation allows a significant speed-up at the cost of 
a degiadation to the decoding performance. This beam search strategy was 
first implemented by Lowerre 61968). Because in practice most implemen­
tations of Viterbi use beam search, some of the literature uses the term beam 
search or time-synchronous beam search instead of Viterbi.

7.4 Advanced Methods for Decoding

There are two main limitations of the Viterbi decoder. First, the Viterbi 
decoder does not actually compute the sequence of words which is most 
probable given the input acoustics. Instead, it computes an approximation to 
this: the sequence of states (i.e., phones or subphones) which is most prob-

h(ax,aw 
i left

j(ax,aw) 
middle

b(ax,aw) 
< right
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able given the input. This difference may not always be important; the most < 
probable sequence of phones may very well correspond exactly to tire most J 
probable sequence of words. But sometimes the most probable sequence t 
of phones does not correspond to the most probable word sequence. For 
example consider a speech recognition system whose lexicon has multiple 
pronunciations for each word. Suppose the correct word sequence includes- 
a word with very many pronunciations. Since the probabilities leaving the i 
start arc of each word must sum to 1.0, each of these pronunciation-paths / 
through this multiple-pronunciation HMM word model will have a smaller 
probability than the path through a word with only a single pronunciation 
path. Thus because the Viterbi decoder can only follow one of these pronun- i 
ciation paths, it may ignore this word in favor of an incorrect word with only 
one pronunciation path. ;

A second problem with the Viterbi decoder is that it cannot be usiedU 
with all possible language models. In fact, the Viterbi algorithm as we have J 
defined it cannot take complete advantage of any language model more com- 7 
plex than a bigram grammar. This is because of the fact mentioned early that : 
a trigram grammar, for example, violates the dynamic programming in- 

; variant that makes dynamic programming algorithms possible. Recall that y| 
this invariant is the simplifying (but incorrect) assumption that if the ultimate 
best path for the entire observation sequence happens to go through a state ,j 
qi, that this best path must include the best path up to and including state ' 
q^ Since a trigram grammar allows the probability of a word to be based on 
the two previous words, it is possible that the best trigram-probability path f 
for the sentence may go through a word but not include the best path to that J 
word. Such a situation could occur if a particular word wx has a high tri- z 
gram probability given w-y, W, but that conversely the best path to wy didn’t 
include wz (i.e., wvj w,) was low for all q).

There are two classes of solutions to these problems with Viterbi de­
coding. One class involves modifying the Viterbi decoder to return mul- J 
tiple potential utterances and then using other high-level language model , 
or pronunciation-modeling algorithms to re-rank these multiple outputs. In z 
general this kind of multiple-pass decoding allows a computationally cffi- i 
cienh but perhaps unsoph isticated. language model like a bigram to perform < 
a rough first decoding pass, allowing more sophisticated but slower decoding 
algorithms to run on a reduced search space. — . :;

For example, Schwartz and Chow (1990) give a Viterbi-like algorithm 
n-best which returns the N-best sentences (word sequences) for a given speech in­

put. Suppose for example a bigram grammar is used with this V-best-Viterbi '
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to return the 10,000 most highly-probable sentences, each with their likeli­
hood score. A trigram-grammar can then be used to assign a new language- 
model prior probability to each of these sentences. These priors can be 
combined with the acoustic likelihood of each sentence to generate a pos­
terior probability for each sentence. Sentences can then be rescored using rescored 

this more sophisticated probability. Figure 7.12 shows an intuition for this 
algorithm.

speech
input

If music be the V
y-Tdadof love...

Simple 
Knowledge 
Source

N-Best List
?Alice was beginning to geD 
?Evety happy family...
?ln a hole in the ground...
?If nnusic be the food of love.
?lf music be the fool of dove.

Smarter 
Knowledge 
Source

1-Best Utterance

N-Best 
Decoder Rescoring

•*  X If music be the
.. / food of love...

Figure 7.12 The use of A-best decoding as part of a two-stage decoding 
model. Efficient but unsophisticated knowledge sources are used to return the 
IV-best utterances; This significantly reduces the search space for the second 
pass models, which are thus free to be very sophisticated but slow.

A ■"AT- An augmentation of A-best, still part of this first class of extensions to 
Viterbi, is to return, not a list of sentences, but a word lattice. A word lattice 
is a directed graph of words and links between them which can compactly 
encode a large number of possible sentences. Each word in the lattice is aug­
mented with its observation likelihood, so that any particular path through 
the lattice can then be combined with the prior probability derived from a 
more sophisticated language model. For example Murveit et al. (1993) de­
scribe an algorithm used in the SRI recognizer Decipher which uses a bigram 
grammar in a rough first pass, producing a word lattice which is then refined 
by a more sophisticated language model.

WORD LATTICE

• The second solution to the problems with Viterbi decoding is to employ 
a completely different decoding algorithm. The most common alternative 
algorithm is the stack decoder^ also called the A* decoder (Jelinek, 1969; 
Jelinek et al., 1975). We will describe the algorithm in terms of the A* 
search used in the artificial intelligence literature, although the development 
of stack decoding actually came from the communications theory literature 
and the link with AI best-first search was noticed only later (Jelinek, 1976).

STACK DECODER

A*

$
A SEARCH
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A* Decoding

To see how the A* decoding method works, we need to revisit the Viterbi al­
gorithm. Recall that the Viterbi algorithm computed an approximation of the J 
forward algorithm. Viterbi computes the observation likel ihood of the single j 
best (MAX) path through the HMM, while the forward algorithm computes 
the observation likelihood of the total (SUM) of all the paths through the ' 
HMM. But we accepted this approximation because Viterbi computed this 
likelihood and searched for the optimal path simultaneously. The A* decod­
ing algorithm, on the other hand, will rely on the complete forward algorithm 
rather than an approximation. This will ensure that we compute the correct 
observation likelihood. Furthermore, the A* decoding algorithm allows us 
to use any arbitrary language model.

The A* decoding algorithm is a kind of best-first search of the lattice or 
tree which implicitly defines the sequence of allowable words in a language. 
Consider the tree in Figure 7.13, rooted in the START node on the left. Each 
leaf of this tree defines one sentence of the language; the one formed by; 
concatenating all the words along the path from START to the leaf. We 
don’t represent this tree explicitly, but the stack decoding algorithm uses the . 
tree implicitly as a way to structure the decoding search.

The algorithm performs a search from the root of the tree toward the f 
leaves, looking for the highest probability path, and hence the highest prob­
ability sentence. As we proceed from root toward the leaves, each branch ; 
leaving a given word node represent a word which may follow the current | 
word, Each of these branches has a probability, which expresses the condi- ; 
tional probability of this next word given the part of the sentence we’ve seen 
so far. In addition, we will use the forward algorithm to assign each word a 
likelihood of producing some part of the observed acoustic data. The A* de­
coder must thus find the path (word sequence) from the root to a leaf which 1 
has the highest probability, where a path probability is defined as the prod­
uct of its language model probability (prior) and its acoustic match to the 
data (likelihood). It does this by keeping a priority queue of partial paths 
(i.e., prefixes of sentences, each annotated with a score). In a priority queue | 
each element has a score, and the pop operation returns the element with 
the highest score; The A* decoding algorithm iteratively chooses the best 
prefix-so-far, computes all the possible next words for that prefix, and adds 
these extended sentences to the queue. The Figure 7.14 shows the complete 
algorithm. vfoiEfog
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intention

my
bequeath

do not
I '"."V

want believe
the

can’t ..lives
f ■ is - - ■

START underwriter

of
typically

‘ are -.’T
mice

dogs
exceptional

V Figure 7.13 A visual representation of the implicit lattice of allowable 
word sequences that defines a language. The set of sentences of a language 

■ is far too large to represent explicitly, but the lattice gives a metaphor for ex­
ploring substrings of these sentences.

Let’s consider a stylized example of a A* decoder working on a wave­
form for which the correct transcription is If music be the food of love. Fig- 
ure 7.15 shows the search space after the decoder has examined paths of 
length one from the root. A fast match is used to select the likely next 
words. A fast match is one of a class of heuristics designed to efficiently 
winnow down the number of possible following words, often by comput­
ing some approximation to the forward probability (see below for further 
discussion of fast matching).

At this point in our example, we’ve done the fast match, selected a sub­
set of the possible next words, and assigned each of them a score. The word 
Alice has the highest score. We haven’t yet said exactly how the scoring 
works, although it will involve as a component the probability of the hypoth­
esized sentence given the acoustic input P(W|A), which itself is composed 
of the language model probability P(W) and the acoustic likelihood P(A|W).

Figure 7.16 show the next stage in the search. We have expanded the 
Alice node. This means that the Alice node is no longer on the queue, but its 
children are. Note that now the node labeled if actually has a higher score 
than any of the children of Alice.

MATCH
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function Stack-DecodingQ returns min-distance

Initialize the priority queue with a null sentence:
Pop the best (highest score) sentence s off the queue.
If 0 is marked end-of~sentence (EOS)) output .y and terminate.
Get list of candidate next words by doing fast matches.
For each candidate next word w:

Create a new candidate sentence s + w.
Use forward algorithm to compute acoustic likelihood L of s + w 
Compute language model probability P of extended sentence w
Compute “score” for £ + w (a function of L, P, and ???) 
if (endmf-sen tehee) set EOS flag for s + w.
Insert s' + w into the queue together with its score and EOS flag

Figure 7.14 The A* decoding algorithm (modified from Paul (1991) and 
Jelinek (1997)). The evaluation function that is used to compute the score for 
a sentence is not completely defined here; possibly evaluation functions are 
discussed below.

P(acoiistic t "if" ) = ' 
forward probability

If
P( "if" I START)

(iioiie) Every

P(inJSTART)

Figure 7.15 The beginning of the search for the sentence If music be the
? food of love . At this early stage Alice is the most likely hypothesis. (It has a7 

higher score than the other hypotheses.)

: Figure 7.17 shows the state of the search after expanding the if node, 
removing it. and addingif music , if muscle, and if messy on to the queue
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P(acousticsi "if") = 
forward probability

Figure 7.16 The next step of the search for the sentence If music be the 
food of love. We’ve now expanded the Alice node and added three extensions 
which have a relatively high score (was, wants, and walls'). Note that now the 
node with the highest score is START if, which is not along the START Alice 
path at all!

; Figure 7.17 We’ve now expanded the if node. The hypothesis START if 
' music currently has the highest score.

We’ve implied that the scoring criterion for a hypothesis is related to its 
probability. Indeed it might seem that the score for a string of words w\ given 
an acoustic string should be the product of the prior and the likelihood:
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Alas, the score cannot be this probability because the probability will 
be much smaller for a longer path than a shorter one. This is due to a sim­
ple fact about probabilities and substrings; any prefix of a string fnust have 
a higher probability than the string itself (e.g.. P(START the ...) will be 
greater than P(START the book)). Thus if we used probability as the score, 3 
the A* decoding algorithm would get stuck on the single-word hypotheses. (

Instead, we use what is called the A* evaluation function (Nilsson, 
1980; Pearl, 1984) called given a partial path p: ■ j

f(p)=g(p)+h\p)

f*(p) is the estimated score of the best complete path (complete sen- '■ 
tence) which starts with the partial path p. In other words, it is an estimate of ; 
how well this path would do if we let it continue through the sentence. The - 
A* algorithm builds this estimate from two components:

• g(p) is the score from the beginning of utterance to the end of the par­
tial pathp. This g function can be nicely estimated by the probability 
of p given the acoustics so far (i.e., as P(A|W)P(W) for the word string 
W constituting p).

• h*(p) is an estimate of the best scoring extension of the partial path to If 
the end of the utterance. 7 if

Coining up with a good estimate of h* is an unsolved and interesting ~ 
problem. One approach is to choose as h* an estimate which correlates with73 
the number of words remaining in the sentence (Paul, 1991); see Jelinek 
(1997) for further discussion. 3

We mentioned above that both the A* and various other two-stage de­
coding algorithms require the use of a fast match for quickly finding which 
words in the lexicon are likely candidates for matching some portion of the - 
acoustic input. Many fast match algorithms are based on the use of a tree-

TREE- -ass
structured structured lexicon, which stores the pronunciations of all the words in such 

a way that the computation of the forward probability can be shared for 
words which start with the same sequence of phones. The tree-structured 
lexicon was first suggested by Klovstad and Mondshein (1975); fast match 
algorithms which make use of it include Gupta et al. (1988), Bahl et al. 
(1992) in the context of A* decoding., and Ney et al. (1992) and Nguyen and 
Schwartz (1999) in the context of Viterbi decoding. Figure 7.18 shows an 
example of a tree-structured lexicon from the Sphinx-II recognizer (Ravis- 
hankar, 1996). Each tree root represents the first phone of all words begin-
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introduction to the acoustic waveform and how it is digitized, summarize the 
idea of frequency analysis and spectra, and then sketch out different kinds of 
extracted features. This will be an extremely brief overview; the interested 
reader should refer to other books on the linguistics aspects of acoustic pho­
netics (Johnson, 1997; Ladefoged, 1996) or on the engineering aspects of , 
digital signal processing of speech (Rabiner and Juang, 1993).

Sound Waves

The input to a speech recognizer, like the input to the human ear, is a complex 
series of changes in air pressure. These changes in air pressure obviously 
originate with the speaker, and are caused by the specific way that air passes ; 
through the glottis and out the oral or nasal cavities. We represent sound . 
waves by plotting the change in air pressure over time. One metaphor which ) 
sometimes helps in understanding these graphs is to imagine a vertical plate 
which is blocking the air pressure waves (perhaps in a microphone in front of 
a speaker’s mouth, or the cardrum in a hearer’s ear). The graph measures the 
amount of compression or rarefaction (uncompfession) of the air molecules 
at this plate. Figure 7.19 shows the waveform taken from the Switchboard 
corpus of telephone speech of someone saying “she just had a baby”.

0.470 0.480 - 0.400 0.300 . 0.510 0.520 0321) 0.5W 0.550 0.560 .

Figure 7.19 A waveform of the vowel [iy] from the utterance shown in Figure 7.20. The 
y-axis shows the changes in air pressure above and below normal atmospheric pressure. The-f j 
x-axis shows time. Notice that the wave repeats regularly. T f UI

frequency Two important characteristics of a wave are its frequency and ampli- 
AWPLiTUDE tude. The frequency is the number of times a second that a wave repeats ,

itself, or cycles. Note in Figure 7.19 that there are 28 repetitions of the wave 
in the . 11 seconds we have captured. Thus the frequency of this segment of

second™ the wave is 28/. 11 or 255 cycles per second. Cycles per second are usually
hertz called Hertz (shortened to Hz), so the frequency in Figure 7.19 would be

described as 255 Hz.
The vertical axis in Figure 7.19 measures the amount of air pressure
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M..

variation. A high value on the vertical axis (a high amplitude) indicates 
that There is more air pressure at that point in time, a zero value means there 
is normal (atmospheric) air pressure, while a negative value means there is 
lower than normal air pressure (rarefaction).

Two important perceptual properties are related to frequency and am­
plitude. The pitch of a sound is the perceptual correlate of frequency; in 
general if a sound has a higher frequency we perceive it as having a higher 
pitch, although the relationship is not linear, since human hearing has differ­
ent acuities for different frequencies. Similarly, the loudness of a sound is 
the perceptual correlate of the power, which is related to the square of the 
amplitude. So sounds with higher amplitudes are perceived as louder, but 
again the relationship is not linear.

AMPLITUDE

PITCH

in ®SW to Interpret a Waveform

ajgSScU!-:

i^^c-

«

Since humans (and to some extent machines) can transcribe and understand 
speech just given the sound wave, the waveform must contain enough infor­
mation to make the task possible. In most cases this information is hard to 
unlock just by looking at the waveform, but such visual inspection is still 
sufficient to learn some things. For example, the difference between vowels 
and most consonants is relatively clear on a waveform. Recall that vowels 
are voiced, tend to be long, and are relatively loud. Length in time manifests 
itself directly as length in space on a waveform plot. Loudness manifests 
itself as high amplitude. How do we recognize voicing? Recall that voicing 
is caused by regular openings and closing of the vocal folds. When the vocal 
folds are vibrating, we can see regular peaks in amplitude of the kind we saw 
in Figure 7.19. During a stop consonant, for example the closure of a [p], [t], 
or [k], we should expect no peaks at all; in fact we expect silence.

Notice in Figure 7.20 the places where there are regular amplitude 
peaks indicating voicing; from second .46 to .58 (the vowel [iy]), from sec­
ond .65 to .74 (the vowel [ax]) and so on. The places where there is no 
amplitude indicate the silence of a stop closure; for example from second 
1 06 to second 1.08 (the closure for the first [b], or from second 1.26 to 1.28 
(the closure for the second [bj).

Fricatives like [sh] can also be recognized in a waveform; they produce 
an intense irregular pattern; the [sh] from second .33 to .46 is a good example 
of a fricative.
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a frequency of about 250 Hz (we can figure this out since it repeats roughly
9 times in .036 seconds, and 9 cycles/.O36 seconds = 250 Hz). The smaller 
wave then should have a frequency of roughly four times the frequency of 
the larger wave, or roughly 1000 Hz. Then if you look carefully you can see 
two little waves on the peak of many of the 1000 Hz waves. The frequency 
of this tiniest wave must be roughly twice that of the 1000 Hz wave, hence 
2000 Hz.

A spectrum is a representation of these different frequency compo- spectrum 

nents of a wave. It can be computed by a Fourier transform, a mathematical transform 
procedure which separates out each of the frequency components of a wave. 
Rather than using the Fourier transform spectrum directly, most speech ap­
plications use a smoothed version of the spectrum called the LPC spectrum lpo 

(Atal andHanauer, 1971; Itakura, 1975).
Figure 7.22 shows an LPC spectrum for the waveform in Figure 7.21.

LPC (Linear Predictive Coding) is a way of coding the spectrum that makes 
it easier to see where the spectral peaks are. peaksral

Figure 7.22 An LPC spectrum for the vowel [ae] waveform of She just had 
a baby at the point in time shown in Figure 7.21. LPC makes it easy to see 
formants;

The x-axis of a spectrum shows frequency while the y-axis shows some 
measure of the magnitude of each frequency component (in decibels (dB), 
a logarithmic measure of amplitude). Thus Figure 7.22 shows that there are 
important frequency components at 930 Hz, 1860 Hz, and 3020 Hz, along 
with many other lower-magnitude frequency components. These important 
components at roughly 1000 Hz and 2000 Hz are just what we predicted by 
looking at the wave in Figure 7.211
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Why is a spectrum useful? It turns out that these spectra] peaks 1 hat 
are easily visible in a spectrum are very characteristic of different sounds', 
phones have characteristic spectral “signatures”. For example different chem- | 
ical elements give off different wavelengths of light when they bum, allow- 2 
ing us to detect elements in stars light-years away by looking at the spectrum ‘? 
of the light. Similarly, by looking at the spectrum of a waveform, we can de- J 
tect the characteristic signature of the different phones that are present. This % 
use of spectral information is essential to both human and machine speech ' 

cochlea recognition. In human audition, the function of the cochlea or inner ear is 
innerear to compute a spectrum of the incoming waveform. Similarly, the features 

used as input to the HMMs in speech recognition are all representations of 7 
spectra, usually variants of LPC spectra, as we will see. |

While a spectrum shows the frequency components of a wave at one p 
spectrogram point in time, a spectrogram is a way of envisioning how the different fre­

quencies which make up a waveform change over time. The x-axis shows 
time, as it did for the waveform, but the y-axis now shows frequencies; ih^ 
Hertz. The darkness of a point on a spectrogram corresponding to the ampli- 7 
tudc of the frequency component. For example, look in Figure 7.23 around 
second 0.9 and notice the dark bar at around 1000 Hz. This means that the t 
[iy] of the word she has an important component around 1000 Hz (1000 Hz is ' 
just between the notes B and C). The dark horizontal bars on a spectrogram, s 

formants : representing spectral peaks, usually of vowels, are called formants.

Figure 7.23 A spectrogram of the sentence “She just had a baby” whose waveform was 
shown in Figure 7.20. One way to think of a spectrogram is as a collection of spectra (time­
slices) like Figure 7.22 placed end to end. -./yf g

What specific clues can spectral representations give for phone identi­
fication? First, different vow'cls have their formants at characteristic places; 
We’ve seen that [mJ in the sample waveform had formants at 930 Hz, I860 
Hz, and 3020 Hz. Consider the vowel [iy], at the beginning of the utterance
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in Figure 7.20. The spectrum for this vowel is shown in Figure 7.24. The first 
formant of [iy] is 540 Hz; much lower than the first formant for [as], while the 
second formant (2581 Hz) is much higher than the second formant for [a?], 
iff:you look carefully you can see these formants as dark bars in Figure 7.23 
jtist around 0.5 seconds.
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Figure 7.24 A smoothed (LPC) spectrum for the vowel [iy] at the start of 
She just had a baby. Note that the first formant (540 Hz) is much lower than 
the first formant for [as] shown in Figure 7.22, while the second formant (2581 
Hz) is much higher than the second formant for [se].

The location of the first two formants (called Fl and F2) plays a large 
role in determining vowel identity, although the formants still differ from 
speaker to speaker. Formants also can be used to identify the nasal phones 
[n], [m], and [t]], the lateral phone [1], and [r]. Why do different vowels have 
different spectral signatures? The formants are caused by the resonant cav­
ities of the mouth. The oral cavity7 can be thought of as a filter which se­
lectively passes through some of the harmonics of the vocal cord vibrations. 
Moving the tongue creates spaces of different size inside the mouth which 
selectively amplify waves of the appropriate wavelength, hence amplifying 
different frequency bands.

Featlire Extraction

Our survey of the features of waveforms and spectra was necessarily brief, 
but the reader should have the basic idea of the importance of spectral fea­
tures and their relation to the original waveform. Let’s now summarize the 
process of extraction of spectral features, beginning with the sound wave
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itself and ending with a feature vector.4 An input soundwave is first dig- 
itized. This process of analog-to-digital conversion has two steps: sam- : 

sampling pling and quantization. A signal is sampled by measuring its amplitude 
sampling rate at a particular time; the sampling rate is the number of samples taken per

second. Common sampling rates are 8,000 Hz and 16,000 Hz. In order to 
accurately measure a wave, it is necessary to have at least two samples in 
each cycle: one measuring the positive part of the wave and one measuring 
the negative part. More than two samples per cycle increases the amplitude 
accuracy, but less than two samples will cause the frequency of the wave to 
be completely missed. Thus the maximum frequency wave that can be mea­
sured is one whose frequency is half the sample rate (since every cycle needs 
two samples); This maximum frequency for a given sampling rate is called

frequency the Nyquist frequency. Most information in human speech is in frequen- . 
cies below 10,000 Hz; thus a 20,000 Hz sampling rate would be necessary ) 
for complete accuracy. But telephone speech is filtered by the switching net­
work, and only frequencies less than 4,000 Hz are transmitted by telephones. . 
Thus an 8,000 Hz sampling rate is sufficient for telephone-bandwidth speech 
like the Switchboard corpus.

liven an 8,000 Hz sampling rate requires 8000 amplitude measure­
ments for each second of speech, and so it is important to store the amplitude 
measurement efficiently. They are usually stored as integers, either 8-bit 
(values from -128-127) or 16 bit (values from -32768-32767). This pro- 

quantiZatioh.. cess of representing a real-valued number as a integer is called quantization
because there is a minimum granularity (the quantum size) and all values 
which are closer together than this quantum size are represented identically.

Once a waveform has been digitized, it is converted to some set of 
spectral features. An LPC spectrum is represented by a vector of features; 
each formant is represented by two features, plus two additional features to 
represent spectral tilt. Thus five formants can be represented by 12 (5 x 2 i-2) 
features. It is possible to use LPC features directly as the observation sym­
bols of an HMM. However, further processing is often done to the features. 

coefficents One popular feature set is cepstral, which are computed from the LPC coef­
ficients by taking the Fourier transform of the spectrum. Another feature set, 

pip PLP (Perceptual Linear Predictive analysis (Hermansky, 1990)), takes the 
LPC features and modifies them in ways consistent with human hearing. For

4 The reader might want to bear in mind Picone's (1993) reminder that the use of the word < 
extraction should not be thought of as encouraging the metaphor of features as' something = 
“in the signal" waiting to be extracted.
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example, the spectral resolution of human hearing is worse at high frequen­
cies, and the perceived loudness of a sound is related to the cube rate of its 
intensity. So PLP applies various filters to the LPC spectrum and takes the 
cube root of the features.

7.6 Computing Acoustic Probabilities

The-last section showed how the speech input can be passed through signal 
processing transformations and turned into a series of vectors of features, 
each vector representing one time-slice of the input signal. How are these 
feature vectors turned into probabilities?
7M- One way to compute probabilities on feature vectors is to first cluster cluster 

them into discrete symbols that we can count; we can then compute the 
probability of a given cluster just by counting the number of times it occurs in

, some training set. This method is usually called vector quantization. Vector quantization 

quantization was quite common in early speech recognition algorithms but 
has mainly been replaced by a more direct but compute-intensive approach: 
computing observation probabilities on a real-valued (‘continuous’) input 
vector. This method thus computes a probability density function or pdf 
over a continuous space.

:■ There are two popular versions of the continuous approach. The most 
widespread of the two is the use of Gaussian pdfs, in the simplest ver- gaussian 

sion of which each state has a single Gaussian function which maps the 
Observation vector ot to a probability. An alternative approach is the use 
of neural networks or multi-layer perceptrons which can also be trained networks 

to assign a probability to a real-valued feature vector. HMMs with Gaus- percepttons 

sian observation-probability-estimators are trained by a simple extension to 
the forward-backward algorithm (discussed in Appendix D). HMMs with 
neural-net observation-probability-estimators are trained by a completely 
different algorithm known as error back-propagation. propagate

In the simplest use of Gaussians, we assume that the possible values 
< of the observation feature vector ot are normally distributed, and so we rep­

resent the observation probability function bj(ot) as a Gaussian curve with 
mean vector /zy and covariance matrix Xyj (prime denotes vector transpose). 
We present the equation here for completeness, although we will not cover 
the details of the mathematics:

(7.10)
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Usually we make the simplifying assumption that the covariance ma- - 
trix Sy is diagonal, i.e,, that it contains the simple variance of cepstral fea- 5 
ture 1, the simple variance of cepstral feature 2, and so on, without worrying : 
about the effect of cepstral feature 1 on the variance of cepstral feature 2,. | 
This means that in practice we are keeping only a single separate mean and J 
variance for each feature in the feature vector.

Most recognizers do something even more complicated; they keep 7 
multiple Gaussians for each state, so that the probability of each feature of " 
the observation vector is computed by adding together a variety of Gaussian I 
curves. This technique is called Gaussian mixtures. In addition, many ASR J 
systems share Gaussians between states in a technique known as parameter ; 
tying (or tied mixtures) (Huang and Jack, 1989). For example acoustically A 
similar phone states might share (i.e., use the same) Gaussians for some j 
features.
l How are the mean and covariance of the Gaussians estimated? It is 
helpful again to consider the simpler case of a non-hidden Markov Model, . 
with only one state i. The vector of feature means // and the vector of covari- 
ances S could then be estimated by averaging:

«= Iio. Ui n'
\ft:ftyT(Aft:d^

All®
-(7.12)-

. -. -Oft#
But since there are multiple hidden states, we don’t know which obser- | 

vation vector was produced by which state. Appendix D will show how ; 
the forward-backward algorithm can be modified to assign each observation , 
vector to every possible state i, prorated by the probability that the HMM 
was in state t at time r. "

.An alternative way to model continuous-valued features is the use of a ; 
neural network, multilayer perceptron (MLP) or Artificial Neural Net­
works (ANNs). Neural networks are far too complex for us to introduce ) 
in a page or two here; thus we will just give the intuition of how they 
arc used in probability estimation as an alternative to Gaussian estimators. J 
The interested reader should consult basic neural network textbooks (Ander- 2 
son, 1995; Hertz et al., 1991) as well as references specifically focusing on 
neural-network speech recognition (Bourlard and Morgan, 1994).

ftV neural network is a set of small computation units connected by 
weighted finks. The network is given a vector of input values and computes
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a vector of output values. The computation proceeds by each computational 
unit computing some non-linear function of its input units and passing the

J/ resulting value on to its output units.
// The use of neural networks we will describe here is often called a hy- 

brid HMM-MLP approach, since it uses some elements of the HMM (such 
T as the state-graph representation of the pronunciation of a word) but the 
; observation-probability computation is done by an MLP instead of a mix- 

< ture of Gaussians. The input to these MLPs is a representation of the signal 
at a time t and some surrounding window; for example this might mean a 

A vector of spectral features for a time t and eight additional vectors for times 
t+2Qms, t + 30nw, t + 40ms, t — 10ms, and so on. Thus the input 

L to the network is a set of nine vectors, each vector having the complete set of 
real-valued spectral features for one time slice. The network has one output 
unit for each phone; by constraining the values of all the output units to sum 
to 1, the net can be used to compute the probability of a state j given an 
observation vector ot, or P(j\ot)- Figure 7.25 shows a sample of such a net.

1 This MLP computes the probability of the HMM state / given an ob­
servation Of, or P^q^Ot). But the observation likelihood we need for the 
HMM, b^Ot), is Pio^qj). The Bayes rule can help us see how to compute 
one from the other. The net is computing:

HYBRID

(7.B) 
. p\°t) ..

We can rearrange the terms as follows:

■ = .... (7 14)
P(P<) p{qi)

The two terms on the right-hand side of (7.14) can be directly com­
puted from the MLP; the numerator is the output of the MLP, and the de­
nominator is the total probability of a given state, summing over all obser- 
vations (i.c., the sum over all t of o/t)). Thus although we cannot directly 
compute P(ot\qj\ we can use (7.14) to compute which is known as 
a scaled likelihood (the likelihood divided by the probability of the observa- 
tion). In fact, the scaled likelihood is just as good as the regular likelihood, 
Since the probability of the observation p(ot) is a constant during recognition 
and doesn’t hurt us to have in the equation.
vc/yThe error-back-propagation algorithm for training an MLP requires 
that we know the correct phone label qj for each observation ot. Given a 
large training set of observations and correct labels, the algorithm iteratively 
adjusts the weights in the MLP to minimize the error with this training set.

SCALED
LIKELIHOOD
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Left Context .
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54-61 Phones

Hidden Layer: 
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Input Layer: .
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Figure 7.25 A neural net used to estimate phone state probabilities. Such 
a net can be used in an HMM model as an alternative to the Gaussian models. 
This particular net is from the MLP systems described in Bourlard and Morgan 
(1994): it is given a vector of features for a frame and for the four frames 
on either side, and estimates p(qjlot). This probability is then converted to 
an estimate of the observation likelihood b = p(ot\qj) using the Bayes rule. 
These nets are trained using the error-back-propagation algorithm as part of 
the same embedded training algorithm that is used for Gaussians.

In the next section we will see where this labeled training set comes from, 
and how this training fits in with the embedded training algorithm used : 
for HMMs. Neural hets seem to achieve roughly the same performance as 
a Gaussian model but have the advantage of using less parameters and the 
disadvantage of taking somewhat longer to train.

7.7 Training a"Speech Recognizer"..'' '

We have now introduced all the algorithms which make up the standard 5 
speech recognition system that was sketched in Figure 7.2 on page 241. 
We’ve seen how to build a Viterbi decoder, and how it takes 3 inputs (the 
observation likelihoods (via Gaussian or MLP estimation from the spectral 
features), the HMM lexicon, and the N-gram language model) and produces 
the most probable string of words. But we have not seen how all the proba-
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Methodology Box: Word Error Rate

The standard evaluation metric for speech recognition systems 
is the word error rate. The word error rate is based on how much 
the word string returned by the recognizer (often called the hypoth­
esized word string) differs from a correct or reference transcription. 
Given such a correct transcription, the first step in computing word 
error is to compute the minimum edit distance in words between 
the hypothesized and correct strings. The result of this computation 
will be the minimum number of word substitutions, word inser­
tions, and word deletions necessary to map between the correct and 
hypothesized strings. The word error rate is then defined as follows 
(note that because the equation includes insertions, the error rate can 
be great than 100%):

Word Error Rate — 100
Insertions + Substitutions + Deletions 

Total Words in Correct Transcript
Here is an example of alignments between a reference and a 

hypothesized utterance from the CALLHOME corpus, showing the 
counts used to compute the word error rate;

This utterance has six substitutions, three insertions, and one dele­
tion; ""

REF: 4=4: UM the PHONE IS i LEFT THE portable
HYP: i GOT IT TO the FULLEST i LOVE TO portable
Eval: I IS D S S S
REF: **** PHONE UPSTAIRS last night so the battery ran out
HYP: FORM OF STORES last night so the battery ran out
Eval: I S S

Word Error Rate = 100--^^—-- = 56%
18

As of the time of this writing, state-of-the-art speech recognition 
systems were achieving around 20% word error rate on natural- 
speech tasks like the National Institute of Standards and Technology 
(NIST)’s Hub4 test set from the Broadcast News corpus (Chen et al., 
1999), and around 40% word error rate on NIST’s Hub5 test set from 
the combined Switchboard, Switchboard-IT, and CAT THOME cor­
pora (Hain et al., 1999).
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bilistic models that make up a recognizer get trained. 7 it
In this section we give a brief sketch of the embedded training proce­

dure that is used by most ASR systems, whether based on Gaussians, MLPs, : 
or even vector quantization. Some of the details of the algorithm (like the 
forward-backward algorithm for training HMM probabilities) have been re­
moved to Appendix D.

Let’s begin by summarizing the four probabilistic models we heed to 
train in a basic speech recognition system:

• language model probabilities:
• observation likelihoods: bj(p{)
• transition probabilities:
• pronunciation lexicon: HMM state graph structure

In order to train these components we usually have

• a training corpus of speech wavefiles, together with a word-transcription 
• a much larger corpus of text for training the language model, includ­

ing the word-transcriptions from the speech corpus together with many 1 
other similar texts

• often a smaller training corpus of speech which is phonetically labeled 
(i.e., frames of the acoustic signal are hand-annotated with phonemes)

Let’s begin with the M-gram language model. This is trained in the 
Way we described in Chapter 6; by counting A-gram occurrences in a large 
corpus, then smoothing and normalizing the counts. The corpus used for 
training the language model is usually much larger than the corpus used to 
train the HMM a and b parameters. This is because the larger the training 
corpus the more accurate the models. Since A-gram models are much faster : 
to train than HMM observation probabilities, and since text just takes less 
space than speech, it turns out to be feasible to train language models on 
huge corpora of as much as half a billion words of text. Generally the corpus 
used for training the HMM parameters is included as part of the language , 
model training data; it is important that the acoustic and language model 
training be consistent. ;

The HMM lexicon structure is built by hand, by taking an off-the-shelf 
pronunciation dictionary such as the PRONLEX dictionary (LDC, 1995) or 
the CMUdict dictionary, both described in Chapter 4. In some systems, each 
phone in the dictionary maps into a state in the HMM. So the word cat would 
have three states corresponding to [k], [ae], and [t]. Many systems, however, „ 
use the more Complex subphone structure described on page 251. in which
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each phone is divided into 3 states: the beginning, middle and final portions
I of the phone, and in which furthermore there are separate instances of each 

of these subphones for each triphone context.
I' The details of the embedded training of the HMM parameters varies; 

we’ll present a simplified version. First, we need some initial estimate of 
the transition and observation probabilities aij and bj(ot). For the transi­
tion probabilities, we start by assuming that for any state all the possible

\ following states are all equiprobable. The observation probabilities can be 
- bootstrapped from a small hand-labeled training corpus. For example, the 
4. TIMIT or Switchboard corpora contain approximately 4 hours each of pho­

netically labeled speech. They supply a “correct” phone state label q for 
each frame of speech. These can be fed to an MLP or averaged to give initial 
Gaussian means and variances. For MLPs this initial estimate is important, 
and so a hand-labeled bootstrap is the norm. For Gaussian models the initial 
value of the parameters seems to be less important and so the initial mean 
and variances for Gaussians often are just set identically for all states by 
using the mean and variances of the entire training set.

Now we have initial estimates for the a and b probabilities. The next 
stage of the algorithm differs for Gaussian and MLP systems. For MLP sys­
tems we apply what is called a forced Viterbi alignment. A forced Viterbi vStere? 
alignment takes as input the correct words in an utterance, along with the 
spectral feature vectors. It produces the best sequence of HMM states, with 
each state aligned with the feature vectors. A forced Viterbi is thus a simpli­
fication of the regular Viterbi decoding algorithm, since it only has to figure 
out the correct phone sequence, but doesn’t have to discover the word se­
quence. It is called forced because we constrain the algorithm by requiring 
the best path to go through a particular sequence of words. It still requires 
the Viterbi algorithm since words have multiple pronunciations, and since 
the duration of each phone is not fixed. The result of the forced Viterbi is a 
set of features vectors with “correct” phone labels, which can then be used 
to retrain the neural network. The counts of the transitions which are taken 
in the forced alignments can be used to estimate the HMM transition proba­
bilities.

For the Gaussian HMMs, instead of using forced Viterbi, we use the 
forward-backward algorithm described in Appendix D. We compute the for­
ward and backward; probabilities for each sentence given the initial a and 
b probabilities, and use them to re-estimate the a and b probabilities. Just 
as for the MLP situation, the forward-backward algorithm needs to be con- 
s trained by our knowledge of the correct words. The forward-backward al-
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gorithm computes its probabilities given a model X. We use the “known’' 
words sequence in a transcribed sentence to tell us which word models to 
string together to get the model X that we use to compute the forward and 
backward probabilities for each sentence.

Waveform Generation for Speech Synthesis

Now that we have covered acoustic processing we can return to the acoustic 
component of a text-to-speech (TTS) system. Recall from Chapter 4 th at the 
output of the linguistic processing component of a TTS system is a sequence 
of phones, each with a duration, and a FO contour that specifies the pitch.

target

WAVEFORM.
CONCATENATION

This specification is often called the target, as it is this that we want the MP

synthesizer to produce.
The most commonly used type of algorithm works by waveform con 

catenation. Such concatenative synthesis is based on a database of speech
that has been recorded by a single speaker. This database is then segmented 
into a number ofshort units, which can be phones, diphones, syllables, words 
or other units. The simplest sort of synthesizer would have phone units and 
the database would have a single unit for each phone in the phone inventory. 
By selecting units appropriately, we can generate a series of units which 
match the phone sequence in the input. By using signal processing to smooth 
joins at the unit edges, we can simply concatenate the waveforms for each of
these units to form a single synthetic speech waveform.

Experience has shown that single phone concatenative systems don’t 
produce good quality speech. Just as in speech recognition, the context of 
the phone plays an important role in its acoustic pattern and hence a /(/ before
a /a/ sounds very different from a /t/ before an /s/.

The triphone models described in Figure 7.11 on page 251 arc a pop
ular choice of unit in speech recognition, because they cover both the left 
and right contexts of a phone. Unfortunately, a language typically has a 
very large number of tri phones (tens of thousands) and it is currently pro- 

diphones hibitive to collect so many units for speech synthesis. Hence diphones are 
often used in speech synthesis as they provide a reasonable balance between 
context-dependency and size (typically 1000-2000 in a language). In speech 
synthesis, diphone units normally start half-way through the first phone and 
end half-way through the second. This is because it is known that phones arc 
more stable in the middle than at the edges, so that the middles of most /a/ 
phones in a diphone arc reasonably similar, even if the acoustic patterns start
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L to differ substantially after that. If diphones are concatenated in the middles 
7 of phones, the discontinuities between adjacent units are often negligible.

. Pitch and Duration Modification

7 The diphone synthesizer as just described will produce a reasonable qual­
ity speech waveform corresponding to the requested phone sequence. But 
the pitch and duration (i.e., the prosody) of each phone in the concatenated 
waveform will be the same as when the diphones were recorded and will not 
correspond to the pitch and durations requested in the input. The next stage 
of the synthesis process therefore is to use signal processing techniques to 
change the prosody of the concatenated waveform.

The linear prediction (LPC) model described earlier can be used for 
prosody modification as it explicitly separates the pitch of a signal from its 
spectral envelope If the concatenated waveform is represented by a sequence 
of linear prediction coefficients, a set of pulses can be generated correspond­
ing to the desired pitch and used to re-excite the coefficients to produce a 
speech waveform again. By contracting and expanding frames of coeffi­
cients, the duration can be changed. While linear prediction produces the 
correct FO and durations it produces a somewhat “buzzy” speech signal.

Another technique for achieving the same goal is the time-domain 
pitch-synchronous overlap and add (TD-PSOLA) technique. TD-PSOLA td-psola 

works pitch-synchronously in that each frame is centered around a pitch-
- mark in the speech, rather than at regular intervals as in normal speech sig­

nal processing. The concatenated waveform is split into a number of frames, 
each centered around a pitchmark and extending a pitch period either side. 
Prosody is changed by recombining these frames at a new set of pitchmarks 
determined by the requested pitch and duration of the input. The synthetic

f waveform is created by simply overlapping and adding the frames. Pitch is 
increased by making the new pitchmarks closer together (shorter pitch peri­
ods implies higher frequency pitch), and decreased by making them further 
apart. Speech is made longer by duplication frames and shorter by leaving 
frames out. The operation of TD-PSOLA can be compared to that of a tape 
recorder with variable speed — if you play back a tape faster than it was 
recorded, the pitch periods will come closer together and hence the pitch 
will increase. But speeding up a tape recording effectively increases the fre­
quency of all the components of the speech (including the formants which

J characterize the vowels) and will give the impression of a “squeaky”, unnat- 
ural voice. TD-PSOLA differs because it separates each frame first and then
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decreases the distance between the frames. Because the internals of 
frame aren’t changed, the frequency of the non-pitch components is haho^^ 
altered, and the resultant speech sounds the same as the original except with ?

While signal processing and diphone concatenation can produce reasonably® 
quality speech, the result is not ideal. There are a number of reasons for this, 
but they all boil down to the fact that having a single example of each diphone-4 
is not enough.. .First of all, signal processing inevitably incurs distortit^O 
and the quality of the speech gets worse when the signal processing has; 
stretch the pitch and duration by large amounts. Furthermore, there are many z) 
other subtle effects which are outside the scope of most signal proceSsir^® 
algorithms. For instance, the amount of vocal effort decreases over time as^ 
the utterance is spoken, producing weaker speech at the end of the uitcrancc.fr) 
If diphones are taken from near the start of an utterance, they will sobh^^ 
unnatural in phrase-final positions.

Unit-selection synthesis is an attempt to address this problem by col- 
leering several examples of each unit at different pitches and durations and j 
linguistic situations, so that the unit is close to the target in the first place 
and hence the signal processing needs to do less work. One technique for^ 
unit-selection (Hunt and Black, 1996) works as follows: 41

■ ■
The input to the algorithm is the same as other concatenative synthe- 4? 

sizers, with the addition that the FO contour is now specified as three 
values per phone, rather than as a contour. The technique uses phones as 
its units, indexing phones in a large database of naturally occurring speech - 
Each phone in the database is also marked with a duration and three pitch 
values. The algorithm works in two stages. First, for each phone in the target 
word, a set of candidate units which match closely in terms of phone identity, 4 
duration and FO is selected from the database. These candidates are ranked" 
using a target cost function, which specifies just how close each unit actu- < 
ally is to the target. The second part of the algorithm works by measuring g 
how well each candidate for each unit joins with its neighbor’s candidates. 
Various locations for the joins are assessed, which allows the potential for > 
units to be joined in the middle, as with diphones. These potential joins are 
ranked using a concatenation cost function. The final step is to pick the best - 
set of units which minimize the overall target and concatenation cost for the '4 
whole sentence. This step is performed using the Viterbi algorithm in a sim-

uitcrancc.fr
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ilar way to HMM speech recognition: here the target cost is the observation 
probability and the concatenation cost is the transition probability.

By using a much larger database which contains many examples of 
each unit, unit-selection synthesis often produces more natural speech than 
straight diphone synthesis. Some systems then use signal processing to make 
sure the prosody matches the target, while others simply concatenate the 
units following the idea that a utterance which only roughly matches the 
target is better than one that exactly matches it but also has some signal 

.processing distortion.

7.9 Human Speech Recognition

I Speech recognition in humans shares some features with the automatic 
speech recognition models we have presented. We mentioned above that 
signal processing algorithms like PLP analysis (Hermansky, 1990) were in 
fact inspired by properties of the human auditory system. In addition, four 
properties of human lexical access (the process of retrieving a word from 
the menral lexicon) are also true of ASR models: frequency, parallelism, 
neighborhood effects, and cue-based processing. For example, as in ASR 
with its iV-gram language models, human lexical access is sensitive to word 

/ frequency. High-frequency spoken words are accessed faster or with less 
information than low-frequency words. They are successfully recognized 
in noisier environments than low frequency words, or when only parts of 
the words are presented (Howes, 1957; Grosjean, 1980; Tyler, 1984, inter 
alia). Like ASR models, human lexical access is parallel: multiple words 
are active at the same time (Marslen-Wilson and Welsh, 1978; Salasoo and 
Pisoni, 1985, inter alia). Human lexical access exhibits neighborhood ef­
fects (the neighborhood of a word is the set of words which closely resem­
ble it). Words with large frequency-weighted neighborhoods are accessed 
slower than words with less neighbors (Luce et al., 1990). Jurafsky (1996) 
shows that the effect of neighborhood on access can be explained by the 
Bayesian models used in ASR.

Finally, human speech perception is cue based: speech input is inter- 
preted by integrating cues at many different levels. For example, there is 
evidence that human perception of individual phones is based on the inte­
gration of multiple cues, including acoustic cues, such as formant structure 
or the exact timing of voicing, (Oden and Massaro, 1978; Miller, 1994), vi- 
sual cues, such as lip movement (Massaro and Cohen, 1983; Massaro, 1998),
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and lexical cues such as the identity of the word in which the phone is placed 
(Warren, 1970; Samuel, 1981; Connine and Clifton, 1987; Connine, 1990). 
For example, in what is often called the phoneme restoration effect, Warren | 
(1970) took a speech sample and replaced one phone (e.g. the [s] in legisla 
ture) with a cough. Warren found that subjects listening to the resulting tape 
typically heard the entire word legislature including the [s], and perceived 
the cough as background. Other cues in human speech perception include j 

association semantic word association (words are accessed more quickly if a semanti- 
prEig0N cally related word has been heard recently) and repetition priming (words 

are accessed more quickly if they themselves have just been heard). The 
intuitions of both these results are incorporated into recent language models 

■ discussed in Chapter 6, such as the cache model of Kuhn and de Mori (1990), 
which models repetition priming, or the trigger model of Rosenfeld (1996) 
and the LSA models of Coccaro and Jurafsky(1998) and Bellegarda (1999); 
which model word association. In a fascinating reminder that good ideas arc 
never discovered only once, Cole and Rudnicky (1983) point out that many 
of these insights about context effects on word and phone processing were

■fyf. actually discovered by William Bagley (1901). Bagley achieved his results;: 
including an early version of the phoneme restoration effect, by recording 
speech oh Edison phonograph cylinders, modifying it, and presenting it to 
subjecls. Baglcy’s results were forgotten and only rediscovered much later.5

One difference between current ASR models and human speech recogy 
nitionis the time-course of thcmodcl.lt is important for the performance of 
theASRalgoriihm that the the decoding search optimizes over the entire ut­
terance. This means that the best sentence hypothesis returned by a decoder 

wiat the end of the sentence may be very different than the current-best: hy­
pothesis, halfway into the sentence. By contrast, there is extensive evidence 

on-line that human processing is on-line: people incrementally segment and utter­
ance into words mid assign it an interpretation as they hear it. For example, 
Marslen-Wilson (1973) studied close shadowers: people who are able to 
shadow (repeat back) a passage as they hear it with lags as short as 250 ms. - 
Marslen-Wilson: found that when these shadowers made errors, they were 
syntactically and semantically appropriate with the context, indicating that 
word segmentation, parsing, and interpretation took place within these 250 
ms. Cole (1973) and Cole and Jakimik (1980) found similar effects in their 
work on the detection of mispronunciations. These results have led psy­
chological models ofhuman speech perception (such as the Cohort model

5 Recall the discussion on page 15 of multiple independent discovery inscience, c c

thcmodcl.lt
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(Mars len-Wilson and Welsh, 1978) and the computational TRACE model 
(McClelland and Elman, 1986)) to focus on the time-course of word selec­
tion and segmentation. The TRACE model, for example, is a connectionist connectionst 

g or neural network interactive-activation model, based on independent com- newrk

putational units organized into three levels: feature, phoneme, and word. 
Each unit represents a hypothesis about its presence in the input. Units are 
activated in parallel by the input, and activation flows between units; con­
nections between units on different levels are excitatory, while connections 
between units on single level are inhibitatory. Thus the activation of a word 
slightly inhibits all other words.
i 7 We have focused on the similarities between human and machine 
speech recognition; there are also many differences. In particular, many 
other cues have been shown to play a role in human speech recognition but 
have yet to be successfully integrated into ASR. The most important class 
of these missing cues is prosody. To give only one example, Cutler and 
Norris (1988), Cutler and Carter (1987) note that most multisyllabic English 
word tokens have stress on the initial syllable, suggesting in their metrical 
segmentation strategy (MS S) that stress should be used as a cue for word 
segmentation.

7.10 Summary

Together with Chapters 4-6, this chapter introduced the fundamental algo­
rithms for addressing the problem of Large Vocabulary Continuous Speech 
Recognition and Text-To-Speech synthesis.

• The input to a speech recognizer is a series of acoustic waves. The 
waveform.spectrogramand spectrum are among the visualization 
tools used to understand the information in the signal.

• In the first step in speech recognition, wound waves are sampled, 
A; i quantized, and converted to some sort of spectral representation; A 
7 commonly used spectral representation is the LPC cepstrum, which 

provides a vector of features for each time-slice of the input.
• These feature vectors are used to estimate the phonetic likelihoods

; (also called observation likelihoods) either by a mixture of Gaussian 
estimators or by a neural net.

A • Decoding or search is the process of finding the optimal sequence of 
7 7 t model states which matches a sequence of input observations. (The
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fact that are two terms for this process is a hint that speech recogni­
tion is inherently inter-disciplinary, and draws its metaphors from more 
than one field; decoding comes from information theory, and search 
from artificial intelligence).

• We introduced two decoding algorithms: time-synchronous Viterbi 
decoding (which is usually implemented with pruning and can then 
be called beam search) and stack or A* decoding. Both algorithms 
take as input a series of feature vectors, and two ancillary algorithms: 
one for assigning likelihoods (e.g., Gaussians or MLP) and one fbp| 
assigning priors (e.g., an N-gram language model). Both give as output 
a string of words.

• The embedded training paradigm is the normal method for training 
speech recognizers. Given an initial lexicon with hand-built pronunci­
ation structures, it will train the HMM transition probabilities and the 
HMM observation probabilities. This HMM observation probability 
estimation can be done via a Gaussian or an MLP.

• One way to implement the acoustic component of a TTS system is with 
concatenative synthesis, in which an utterance is built by concatenat­
ing and then smoothing diphones taken from a large database of speech 
recorded by a single speaker.

Bibliographical and Historical Notes ■.

The first machine which recognized speech was probably a commercial toy 
named“RadioRex”which was sold in the 1920s. Rex was a celluloid dog 
that moved (via a spring) when the spring was released by 500 Hz acoustic 
energy. Since 500 Hz is roughly the first formant of the vowel in “Rex”, the 
dog seemed to come When he was called (David and Selfridge, 1962).

By the late 1940s arid early 1950s, a number of machine speech recog­
nition systems had been built. An early Bell Labs system could recognize 
any of the 10 digits from a single speaker (Davis et al., 1952). This system 
had 10 speaker-dependentstored patterns, one for each digit, each of which 
roughly represented the first two vowel formants in the digit. They achieved 
97-99% accuracy by choosing the pattern which had the highest relative 
correlation coefficient with the input. Fry (1959) and Denes (1959) built a 
phoneme recognizer at University College, London, which recognized four 
vowels and nine consonants based on a similar pattern-recognition principle.
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Fry and Denes’s system was the first to use phoneme transition probabilities 
to constrain the recognizer.

The late 1960s and early 1970s produced a number of important para- 
digm shifts. First were a number of feature-extraction algorithms, include 
the efficient Fast Fourier Transform (FFT) (Cooley and Tukey, 1965), the 
application of cepstral processing to speech (Oppenheim et al., 1968), and 
the development of LPC for speech coding (Atal and Hanauer, 1971). Sec­
ond were a number of ways of handling warping; stretching or shrinking warping 
the input signal to handle differences in speaking rate and segment length 
when matching against stored patterns. The natural algorithm for solving 
this problem was dynamic programming, and, as we saw in Chapter 5, the 
algorithm was reinvented multiple times to address this problem. The first 
application to speech processing was by Vintsyuk (1968), although his re- 
sult was not picked up by other researchers, and was reinvented by Velichko 
and Zagoruyko (1970) and Sakoe and Chiba (1971) (and (1984)). Soon af­
terWards, Itakura (1975) combined this dynamic programming idea with the 
LPC coefficients that had previously been used only for speech coding. The 
resulting system extracted LPC features for incoming words and used dy- 
natmc programming to match them against stored LPC templates.

The third innovation of this period was the rise of the HMM. Hid- 
s den Markov Models seem to have been applied to speech independently 

at two laboratories around 1972.; One application arose from the work of 
statisticians, in particular Baum and colleagues at the Institute for Defense 
Analyses in Princeton on HMMs and their application to various predic­
tion problems (Baum and Petrie, 1966; Baum and Eagon, 1967). James 
Baker learned of this work and applied the algorithm to speech process­
ing (Baker, 1975) during his graduate work at CMU. Independently, Freder­
ick Jelinek, Robert Mercer, and Lalit Bahl (drawing from their research in 
information-theoretical models influenced by the work of Shannon (1948)) 
applied HMMs to speech at the IBM Thomas J. Watson Research Center 
(Jelinek et al., 1975). IBM’s and Baker’s systems were very similar, par­
ticularly in their use of the Bayesian framework described in this chapter. 
One early difference was the decoding algorithm; Baker’s DRAGON system 
used Viterbi (dynamic programming) decoding, while the IBM system ap­
plied Jelinek’s stack decoding algorithm (Jelinek, 1969). Baker then joined 

) the IBM group for a brief time before founding the speech-recognition corn- 
I pany Dragon Systems. The HMM approach to speech recognition would 
| turn out to completely dominate the field by the end of the century; indeed 

the IBM lab was the driving force in extending statistical models to natu-
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ral language processing as well, including the development of class-based ' 
iV-grams, HMM-based part-of-speech tagging, statistical machine transla- < 
tion, and the use of entropy/perplexity as an evaluation metric.

The use of the HMM slowly spread through the speech community. ' 
One cause was a number of research and development programs sponsored • 
by the Advanced Research Projects Agency of the U.S. Department of De- : 
fense (ARPA). The first five-year program starting in 1971, and is reviewed 
in Klatt (1977). The goal of this first program was to build speech under­
standing systems based on a few speakers, a constrained grammar and lexi- z 
con (1000 words), and less than 10% semantic error rate. Four systems were 
funded and compared against each other: the System Development Corpo­
ration (S DC) system, Bolt, Beranek & Newman (BBN)’s HWIM system, ) 
Carnegie-Mellon University’s Hearsay-II system, and Carnegie-Mellon’s Harpj 
system (Lowerre, 1968). The Harpy system used a simplified version of 
Baker’s HMM-based DRAGON system and was the best of the tested sys- ; 
terns, and according to Klatt the only one to meet the original goals of the '' 
ARPA project (with a semantic error rate of 94% on a simple task).

Beginning in the mid-1980s, ARPA funded a number of new speech 
research programs. The first was the “Resource Management” (RM) task 
(Price ct al., 1988), which like the earlier ARPA task involved transcrip­
tion (recognition) of read-speech (speakers reading sentences constructed ( 
fromal000-Word vocabulary) but which now included a component that 
involved speaker-independent recognition. Later tasks included recognition 

i of sentences read from the Wall Street Journal (WS J) beginning with limited 
systems of 5,000 words, and finally with systems of unlimited vocabulary 
(in practice most systems use approximately 60,000 words). Later speech- 
recognition tasks moved away from read-speech to more natural domains; 
the Broadcast News (also called Hub-4) domain (LDC, 1998; Graff, 1997) 
(transcription of actual news broadcasts, including quite difficult passages 
such as on-the-street interviews) and the CALLHOME and CALLFRIEND 
domain (LDC, 1999) (natural telephone conversations between friends), part 
of what was also called Hub-5. The Air Traffic Information System (ATI§) j 
task (Hemphill et al.. 1990) was a speech understanding task whose goal 
was to simulate helping a user book a flight, by answering questions abbuWj 
potential airlines, times, dates, and so forth.

bake-off Each of the ARPA tasks involved an approximately annual bake-off at
which all ARPA-funded systems, and many other ‘volunteer’ systems from 
North American and Europe, were evaluated against each other in terms of 
word error rate or semantic error rate. In the early evaluations, for-profit cor- J
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porations did not generally compete, but eventually many (especially IBM 
and ATT) competed regularly. The ARPA competitions resulted in widescale 
borrowing of techniques among labs, since it was easy to see which ideas 

- had provided an error-reduction the previous year, and were probably an im- 
pbrtant factor in the eventual spread of the HMM paradigm to virtual every- 
rnajor speech recognition lab. The ARPA program also resulted in a number 
of useful databases, originally designed for training and testing systems for 
each evaluation (TIMIT, RM, WSJ, ATIS, BN, CALLHOME, Switchboard) 
but then made available for general research use.

There are a number of textbooks on speech recognition that are good 
choices for readers who seek a more in-depth understanding of the material 
in this chapter: Jelinek (1997), Gold and Morgan (1999), and Rabiner and 
Jtiahg (1993) are the most comprehensive. The last two textbooks also have 
comprehensive discussions of the history of the field, and together with the 
survey paper of Levinson (1995) have influenced our short history discussion 
in this chapter. Our description of the forward-backward algorithm was mod­
eledafter Rabiner (1989). Another useful tutorial paper is Knill and Young 
(1997). Research in the speech recognition field often appears in the pro­
ceedings of the biennial EUROSPEECH Conference and the International 
Conference on Spoken Language Processing (ICSLP), held in alternating 
years, as well as the annual IEEE International Conference on Acoustics, 
Speech, and Signal Processing (ICASSP). Journals include Speech Com­
munication, Computer Speech and Language, IEEE Transactions on Pattern 
Analysis and Machine Intelligence, and IEEE Transactions on Acoustics, 
Speech, and Signal Processing.

Exercises

7.1 Analyze each of the errors in the incorrectly recognized transcription 
of ‘ am the phone is I left the... ” on page 271. For each one, give your best 
guess as to whether you think it is caused by a problem in signal process­
ing, pronunciation modeling, lexicon size, language model, or pruning in the 
decoding search.

7.2 In practice, speech recognizers do all their probability computation us­
ing the log probability (or logprob) rather than actual probabilities. This logprob
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helps avoid underflow for very small probabilities, but also makes the Viterbi 
algorithm very efficient, since all probability multiplications can be imple­
mented by adding log probabilities. Rewrite the pseudocode for the Viterbi 
algorithm in Figure 7.9 on page 249 to make use of logprobs instead of prob­
abilities.

7.3 Now modify the Viterbi algorithm in Figure 7.9 on page 249 to im­
plement the beam search described on page 251. Hint: You will probably 
need to add in code to check whether a given state is at the end of a word bp f 
not.

7.4 Finally, modify the Viterbi algorithm in Figure 7.9 on page 249 with 
more detailed pseudocode implementing the array of backtrace pointers.

7.5 Implement the Stack decoding algorithm of Figure 7.14 on 256. Pick 
a very simple h* function like an estimate of the number of words remaining 
in the sentence.

7.6 Modify the forward algorithm of Figure 5.16 to use the tree-structured 
lexicon of Figure 7.18 on page 259.



WORD SENSE
DISAMBIGUATION AND 
INFORMATION 
RETRIEVAL

Oh are you from Wales?
Do you know a fella named Jonah?
He used to live in whales for a while.

Groucho Marx

This chapter introduces a number of topics related to lexical semantic pro­
cessing. By this, we have in mind applications that make use of word mean- 
ings, but which are to varying degrees decoupled from the more complex 
tasks of compositional sentence analysis arid discourse understanding.

The first topic we cover, word sense disambiguation, is of consider- ^samIguation 
able theoretical and practical interest. Recall from Chapter 16 that the task of 
word sense disambiguation is to examine word tokens in context and specify 
exactly which sense of each word is being used. As we will see, this is a 
non-trivial undertaking given the somewhat illusive nature of a word sense. 
Nevertheless, there are robust algorithms that can achieve high levels of ac­
curacy given certain reasonable assumptions.

The second topic we cover, information retrieval, is an extremely 
broad field, encompassing a wide-range of topics pertaining to the storage, 
analysis, and retrieval of all manner of media (Baeza-Yates and Ribeiro- 
Neto, 1999). Our concern in this chapter is solely with the storage and re­
trieval of text documents in response to users’ requests for information. We 
are interested in approaches in which users’ needs are expressed as words, 
and documents are represented in terms of the words they contain. Section 
17.3 presents the vector space model, some variant of which is used in many 
current systems, including most Web search engines.
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17.1 Selectional Restriction-Based Disambiguation
IS

For the most part, our discussions of compositional semantic analyzers in
Chapter 15 ignored the issueof lexical ambiguity. By now it should be 
clear that this is not a reasonable approach. Without some means of sc 
lecting correct senses for the words in the input, the enormous amount of
homonymy and polysemy in the lexicon will quickly overwhelm any ap
proach in an avalanche of competing interpretations. As with syntactic part- 
of-speech tagging, there are two fundamental approaches to handling this 
ambiguity problem. In an integrated rule-to-rule approach to semantic anal- 

: ysis,the selection of correct word senses occurs during semantic analysis 
as a side-effect of the elimination of ill-formed semantic representations. In 
a stand-alone approach, sense disambiguation is performed independent of. 
and prior to, compositional semantic analysis. This section discusses the foie 
of selectional restrictions in the former approach. The stand-alone approach 
is discussed in detail in Section 17.2.
bL;; Selectional restrictions and type hierarchies are the primary knowledge- 

sources used to perform disambiguation in most integrated approaches. They 
are used to rule out inappropriate senses and thereby reduce the amount of 

t ambiguity present during semantic analysis. In an integrated rule-to-rule ap- 
V proach to semantic analysis, > selectional restrictions arc used to block the 

formation of component meaning representations that contain selectional re­
striction violations. By blocking such ill-formed components, the semantic 
analyzer will find itself dealing with fewer ambiguous meaning representa­
tions. This ability to focus on correct senses by eliminating flawed represen­
tations that result from incorrect senses can be viewed as a form of indirect 
word sense disambiguation. While the linguistic basis for this approach can 
be traced back to the work of Katz and Fodor (1963), the most sophisticated 
computational exploration of it is due to Hirst (1987).

As an example of this approach, consider the following pair of WSJ 
examples, focusing solely on their use of the lexeme dish'.
(17.1)

(17.2)

"Inour house, everybody has a career and none of them includes 
washing dishes ” he says.
In her tiny kitchen at home, Ms. Chen works efficiently, stir-frying 
several simple dishes, including braised pig’s ears and chicken 
livers with green peppers.

These examples make use of two polysemous senses of the lexeme dish. The 
first refers to the physical objects that we eat from, while the second refers to
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the actual meals or recipes. The fact that we perceive no ambiguity in these 
examples can be attributed to the selectional restrictions imposed by wash 
and stir-fry on their PATIENT roles, along with the semantic type information 
associated with the two senses of dish. The restrictions imposed by wash 
conflict with the food sense of dish since it does not denote something that 
is normally washable. Similarly, the restrictions on stir-fry conflict with the 
artifact sense of dish, since it does not denote something edible. Therefore, 
in both of these cases the predicate selects the correct sense of an ambiguous 
argument by eliminating the sense that fails to match one of its selectional 
restrictions.

Now consider the following WSJ and ATIS examples, focusing on the 
ambiguous predicate serve:

(17.3) Well, there was the time they served green-lipped mussels from 
New Zealand.

(17.4) Which airlines serve Denver?

(17.5) Which ones serve breakfast?

Here the sense of serve in example (17.3) requires some kind of food as its 
patient, the sense in example (17.4) requires some kind of geographical or 
political entity, and the sense in the last example requires a meal designator. 
If we assume that mussels, Denver and breakfast are unambiguous, then it is 
the arguments in these examples that select the appropriate sense of the verb.

Of course, there are also cases where both the predicate and the argu­
ment have multiple senses. Consider the following BERP example:

(17.6) I’m looking for a restaurant that serves vegetarian dishes.

Restricting ourselves to three senses of serve and two senses of dish yields 
six possible sense combinations in this example. However, since only one 
combination of the six is free from a selectional restriction violation, de­
termining the correct sense of both serve and dish is straightforward; the 
predicate and argument mutually select the correct senses.

Although there are a wide variety of ways to integrate this style of 
disambiguation into a semantic analyzer, the most straightforward approach 
follows the rule-to-rule strategy introduced in Chapter 15. In this integrated 
approach, fragments of meaning representations are composed and checked 
for selectional restriction violations as soon as their corresponding syntac­
tic constituents are created. Those representations that contain selectional 
restriction violations are eliminated from further consideration.
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This approach requires two additions to the knowledge structures used - 
in semantic analyzers: access to hierarchical type information about Argu­
ments, and semantic sclectionalrestriction information about the arguments 
to predicates. Recall from Chapter 16 that both of these can be encoded us­
ing knowledge from WordNeti The type information is available in the form i 
of the hypernym information about the heads of the meaning structures be­
ing-used as arguments to predicates, the sclectional restriction information 
about argument roles can be encoded by associating the appropriate Word- 
Net synsets with the arguments: to each predicate-bearing lexical item

Limitations of Selectional Restrictions

There are a number of practical and theoretical problems with this use of 
selectional restrictions.The first symptom of these problems is the fact that 
there are examples like the following where the available selectional restric- .1 
tions are too gcneral to uniquely select a correct sense:
(17.7) What kind of dishes do you recommend?
In cases like this, we either have to rely on the stand-alone methods to be 
discussed in Section 17.2, or knowledge of the broader discourse context, as 
will be discussed in Chapter 18.
y More problematic arc examples that contain obvious violations of se­
lectional restrictions but are nevertheless perfectly well-formed and inter- • 
pretable. Therefore, any approach based on a strict elimination of such in­
terpretations is in serious trouble. Consider the following WSJ example:
(17.8) But it fell apart in 1931, perhaps because people realized you can’t 

eat gold for lunch if you’re hungry.
The phrase eat gold clearly violates the selectional restriction that eat places: 
on its PATIENT role. Nevertheless, this example is perfectly well-formed. 
The key is the negative environment set up by can’t prior to the violation of 
the restriction. This example makes it clear that any purely local, or rule-to- j 
rule, analysis of selectional restrictions will fail when a wider context makes 
the violation of a selectional restriction acceptable.

A second problem With selectional restrictions is illustrated by the fol­
lowing example: k-y y OwlyB®
(17.9) In his two championship trials, Mr. Kulkarni ate glass on an empty

■ stomach, accompanied only by water and tea. ;
Although: the; event described in this example is somewhat unusual, the sen- : 
tehee itself is not semantically ill-formed, despite the violation of cat’s selec-
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7 tional restriction. Examples such as this illustrate the fact, that thematic roles 
and selectional restrictions are merely loose approximations of the deeper 
concepts they represent. They cannot hope to account for uses that require 
deeper commonsense knowledge about what eating is all about. At best, they 

7 reflect the idea that the things that are eaten are normally edible.
Finally, as discussed in Chapter 16, metaphoric and metonymic uses 

challenge this approach as well. Consider the following WSJ example:

7 (17.10) If you want to kill the Soviet Union, get it to try to eat Afghanistan.

7i Here the typical selectional restrictions on the PATIENTS of both kill and eat 
will eliminate all possible literal senses leaving the system with no possible 
meanings. In many systems, such a situation serves to trigger alternative 
mechanisms for interpreting metaphor and metonymy (Fass, 1997).

As Hirst (1987) observes, examples like these often result in the elim- 
7/ ination of all senses, bringing semantic analysis to a halt. One approach 

to alleviating this problem is to adopt the view of selectional restrictions as 
( preferences, rather than rigid requirements. Although there have been many 
7 instantiations of this approach over the years (Wilks, 1975c, 1975b, 1978), 

the one that has received the most thorough empirical evaluation is Resnik’s 
(1997) work, which uses the notion of a selectional association. A selec­
tional association is a probabilistic measure of the strength of association 

7 between a predicate and a class dominating the argument to the predicate. 
Resnik (1997) gives a method for deriving these associations using Word- 
Net’s hyponymy relations combined with a tagged corpus containing verb­
argument relations.

Resnik (1998) shows that these selectional associations can be used to 
perform a limited form of word sense disambiguation. Roughly speaking 

7 the algorithm selects as the correct sense for an argument, the one that has 
the highest selectional association between one of its ancestor hypernyms 
and the predicate. Resnik (1997) reports an average of 44% correct with 
this technique for verb-object relationships, a result that is an improvement 
over the most frequent sense baseline which performs at 28%. A limitation 
of this approach is that it only addresses the case where the predicate is 

7 unambiguous and selects the correct sense of the argument. A more complex 
decision criteria would be needed for the situation where both the predicate 
and argument are ambiguous.
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17.2 Robust Word Sense Disambiguation |

The selectional restriction approach to disambiguation has too many require­
ments to be usefol in large-scale practical applications. Even with the use of 
WordNct, the requirements of complete selectional restriction information 
for all predicate foies, and complete type information for the senses of all 
possible fillers are unlikely to be met. In addition, as we saw in Chapters 10, 
12, and 15 • the availability of a complete and accurate parse for all inputs is -fi 
unlikely to be met in environments involving unrestricted text.

To address these concerns, a number of robust stand-alone disambigua­
tion systems with more modest requirements have been developed over the 
years. As with part-of-spcech taggers, these systems are designed to op­
erate in a stand-alone fashion and make minimal assumptions about what 
information will be available from other processes. The following sections 
explore the application of supervised, bootstrapping, and unsupervised ma­
chine learning approaches to this problem. We then consider the role of 
foachi ne readable dictionaries in the construction of stand-alone taggers.

Machine Learning Approaches

In machine learning approaches, systems are trained to perform the task ; 
of word sense disambiguation. In these approaches, what is learned is a 
classifier that can be used to assign as yet unseen examples to one of a fixed 
number of senses. As we will see, these approaches vary as to the nature ' 
of the training material, how much material is needed, the degree of human 
intervention, the kind of linguistic knowledge used, and the output produced. 
What they all share is an emphasis on acquiring the knowledge needed for 
the task from data, rather than from human analysts. The principal question < 
to keep in mind as we explore these systems is whether the method scales; 
that is, would it be possible to apply the method to a substantial part of the ' 
entire vocabulary of a language?

The Inputs: Feature Vectors

In most of these approaches, the initial input consists of the word to be dis­
ambiguated, which we will refer to as the target word, along with a portion 
of the text in which it is embedded, which we will call its context. This 
initial input is then processed in the following ways.' ;
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• The input is normally part-of-speech tagged using one of the high ac­
curacy methods described in Chapter 8.

• The original context may be replaced with larger or smaller segments 
surrounding the target word.

• Often some amount of stemming, or more sophisticated morphological 
processing, is performed on all the words in the context.

• Less often, some form of partial parsing, or dependency parsing, is 
performed to ascertain thematic or grammatical roles and relations.

After this initial processing, the input is then boiled down to a fixed set 
of features that capture information relevant to the learning task. This task 
consists of two steps: selecting the relevant linguistic features, and encoding 
them in a form usable in a learning algorithm. A simple feature vector cbm vectofF 
sisting of numeric or nominal values can easily encode the most frequently 
used linguistic information, and is appropriate for use in most learning algo 
rithms.

The linguistic features used in training WSD systems can be roughly 
divided into two classes: collocational features and co-occurrence features. 
In general, the term collocation refers to a quantifiable position-specific re- collocation 
lationship between two lexical items. Collocational features encode infor­
mation about the lexical inhabitants of specific positions located to the left 
or right of the target word. Typical features include the word, the root form 
of the word, and the word’s part-of-speech. Such features are effective at en­
coding local lexical and grammatical information that can often accurately 
isolate a given sense.
7 As an example of this type of feature-encoding, consider the situation 
where we need to disambiguate the word bass in the following example:

(17.11) An electric guitar and bass player stand off to brie side, riot really 
part of the scene, just as a sort of nod to gringo expectations 
perhaps.

A feature-vector consisting of the two words to the right and left of the target 
word, along with their respective parts-of-speech, would yield the following 
vector:

:[gu and', CJC,player, NN1, stand, WB],

The second type of feature consists of co-occurrence data about neigh­
boring words, ignoring their exact position. In this approach, the words 
themselves (or their roots) serve as features. The value of the feature is the 
number of times the word occurs in a region surrounding the target word.
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This region is most often defined as a fixed size window with the target word 
at the center. To make this approach manageable, a small number qf fre­
quently used content words are selected for use as features. This kind of 
feature is effective at capturing the general topic of the discourse in which 
the target word has occurred. This, in turn, tends to identify senses of a word 
that are specific to certain domains.

For example, a co-occurrence vector consisting of the 12 most frequent 
content words from a collection of bass sentences drawn from the WS J cor­
puswould have the following words as features: fishing, big, sound, player, 
fiy, rod, pound, double, runs, playing, guitar, band. Viswg these words as 
features with a Window size of 10; example (17.11) Would be represented by 
the following vector:

As we will see, most robust approaches to sense disambiguation make 
use of a combination of both collocational arid co-occurrence features.

Supervised Learning Approaches

- ft In supervised approaches, a sense disambiguation system is learned from a 7 
representative set of labeled instances drawn from the same distribution as (

leaPn'B?I! the test set to be used. This is an application of the supervised learning 7 
approach to creating a classifier; In such approaches, a learning system is 
presented with a training set consisting of feature-encoded inputs along with 
their appropriate label, or Category. The output of the system is a classifier :

■ system capable of assigning labels to new feature-encoded inputs.
Bayesian classifiers (Duda and Hart,1973), decision lists (Rivest, 1987), 

decision trees (Quinlan, 1986), neural networks (Rumelhart et al., 1986). 
logic learning systems (Mooney, 1995), and nearest neighbor methods (Cover 
and Hart, 1967) all fit into this paradigm. We will restrict our discussion to 
the naive Bayes and decision list approaches, since they have been the focus : 
of considerable work in word sense disambiguation.

clMwers7 The naive Bayes classifier approach to WSD is based bn the premise 7
that choosing the best sense for an input vector amounts to choosing the most > 
probable sense given that vcctor. In Other words: ~

.f = argmax P(.y IF) (17.12)
<ww obw 71!^

Iri this furinula, ^ denotes the set of senses appropriate asso-
ciated with this vector, 5 denotes each of the possible senses in 5, and V i 
stands for the vector representation of the input context. As is almost always |
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Methodology Box: Evaluating WSD Systems

The basic metric used in evaluating sense disambiguation sys­
tems is simple precision: the percentage of words that are tagged 
correctly. The primary baseline against which this metric is com­
pared is the most frequent sense metric (Gale et al., 1992): how 
well a system would perform if it simply chose the most frequent 
sense of a word.

The use of precision requires access to the correct senses for the 
words in a test set. Fortunately, two large sense-tagged corpora are 
now available: the SEMCOR corpus (Landes et al., 1998), which con­
sists of a portion of the Brown corpus tagged with WordNet senses, 
and the senseval corpus (Kilgarriff and Rosenzweig, 2000), which 
is a tagged corpus derived from the HECTOR corpus and dictionary 
project.

One complication arising from the use of simple precision is 
that the nature of the senses used in an evaluation has a huge effect 
on the results. In particular, results derived from the use of coarse 
distinctions among homographs, such as the musical and fish senses 
of bass, can not easily be compared to results based on the use of 
fine-grained sense distinctions such as those found in traditional dic­
tionaries, or lexical resources like WordNet.

A second complication has to do with metrics that go beyond 
simple precision and make use of partial credit. For example, con­
fusing a particular musical sense of bass with a fish sense, is clearly 
worse than confusing it with another musical sense. With such a 
metric, an exact sense-match would receive full credit, while select­
ing a broader sense would receive partial credit. Of course, this kind 
of scheme is entirely dependent on the organization of senses in the 
particular dictionary being used.

Standardized evaluation frameworks for word sense disam­
biguation systems are now available, In particular, the senseval 
effort (Kilgarriff and Palmer, 2000), provides the same kind of eval­
uation framework for sense disambiguation, that the MUC (Sund- 
heim, 1995b) and TREC (Voorhees and Harman, 1998) evaluations 
have provided for information extraction and information retrieval.




