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more general lexicon. Brent and Cartwright ( 1996) hypotheszze that chﬁdren
use MDL algorithms to learn a lexicon by segmenting words from speech. In
fact, Saffran et al. (1996) shows that eight-month-old infants can use phone
sequence probabilities as evidence for word segmentation. :

5.10 PRONUNCIATION IN HUMANS

Section 5.7 discussed many factors which influence pronunciation variation

in humans. In this section we very briefly summarize a computational mode:

. of the retrieval of words from the mental lexicon as part of human lexical
" production. The model is due to Gary Dell and his colleagues; for brevity
we combine and simplify features of multiple models (Dell, 1986, 1988
Dell et al,, 1997) in this single: overview. First consider some data. As
‘we suggested iit Chapter 3, production errors such as slips of the tongue
(darn bore instead barn door) often provide important insights into lexical
production. Dell (1986) summarizes a number of previous results about such

. slips.'The lexical bias effect is that slips ar¢ more likely to create words than
~“non-words; thus slipslike dean bad— bean dad are thiree times more likely

- than slips like deal back— beal dack. The repeated-phoneme bias is tha

© - two phonés in two words are hkely to partlclpate in an error if there is an
~ “identical phone in both WOI'dS Thus deal beack is more hke]y to shp to bea
than deal back is: : ’

. -The model- that Dell (1986 1988) proposes is a network with three

- Ievels ‘sémantics;’ Word (lemma); and phonemes The semantics level has

_ ‘nodes for concepts ‘the lemma level has oné node for each words, and the

- phoneme level has separate nodes for each phone, separated into onsets.
vowels, and codas.. Each lemma node is connected to the phoneme units
which comprise the word and the semantic units which represent the co
'cept Connecuons are used to pass actlvatron from node to node and are

- the first’ stage, act1vatlon passes from the Semantic concepts to words. Ac |

- vation will cascade down into ‘the phonological units and then back up nto
~ other word imits; At some: pomt the riost highly activated word is selecte
In the ‘second ‘stage, ‘this selected is given a large jolt of activation. Agam/‘
this activation passes ‘to the phonological level. N ow the most hrghiy actrve-; ~
phoneme nodes'. are selected and accessed in order e '

,'6 Deﬂ (1988) also has a fouﬂh 1evel for syllable structure that we wﬂl ignore. here
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Figure 5.22 shows Dell’s model. Errors occur because too much acti-
vation reaches the wrong phonological node. Lexical bias, for example, is
modeled by activation spreading up from the phones of the intended word to
neighboring words, which then activated their own phones. Thus incorrect
- phones get “extra” activation if they are present in actual words.

Semantics

OQRRQOO

- Words
(Lemmas)

. Onsets =

. Vowels .

. Figure 5.22 - The network model of Dell (1986, 1988), showing the mecha-
" nism for lexical bias (modified from Dell (1988, p. 134)). The boldfaced nodes
" indicate nodes with ots of activation.” The intended word dean has a greater
~ chance of slipping to bean bécause of the existence of the bean node. The
. boldfaced lines show the connections which account for the possible slip.

' The two-step network model also explains other facts about lexical
- production. Aphasic speakers have various troubles in language production
ér_id comiprehension, often caused by strokes or accidents. Dell et al. (1997)
* show that weakening various connéctions in a network model like the one
above can also account for the speech errors in aphasics. This supports the
continuity hypothesis, which suggests that some part of aphasia is merely an
extension of normal difficulties in word retrieval, and also provides further
evidence for the network model. Readers interested in details of the model
should see the above references and related computational models such as
Roelofs (1997), which extends the network model to deal with syllabifica-
tio‘n;; phonetic encoding, and more complex sequential structure, and Levelt
etal €1999). oo

APHASIC
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5.11 SUMMARY

This chapter has introduced some essential metaphors and algorithms that
will be useful throughout speech and language processing. The main pomts ;
are as follows: .

e We can represent many language problems as if a clean string of sym
bols had been corrupted by passing through a noisy channel and it is.
our job to recover the original symbol string. One powerful way to
recover the original symbol string is to consider all possible original

o stnngs and rank them by their conditional probability. -
_o" The conchtlonal probablhty is usually easiest to compute using the :
~ Bayes Rule, which breaks down the probablhty into a prior and 4 -
) kaehhood For spellmg error correctzon or pronunc1at10n~modehng,
_... the prior is computed by takmg word frequenmee or word bigram fre-
. .' quen01es The likelihood i i8 computed by training a simple probabﬂlsuc
N model (hke a confusmn matnx a deczsmn tree or a hand—wntten rule)

onadatabaee T T R A ST T
‘e The task of" computmg the dlstance between two strmgs comes. up
" in spelling eror correction and other problems. The minimum edit
. distange algorithm is an application of the dynamic programming
L _,'-"paradlgm o solvmg thls problem and can be used to produce the dis-
o tance between two strings or an allgnment of the two strings.

o The pronuncxatmn of words is very variable. Pronunciation variation

- iscaused by two classes of factors: lexical variation and allophomc
- variation.  Lexical variation mcludes socmlmgurstlc factors like dl-
R - alect and reglster or style RN -

o The smgle most 1mportant factor affectmg allophomc variation is the
identlty of the eurroundmg phones Other 1mportant factors include
- ".syllable structure stress patterns and the 1dent1ty and frequency of the

:: -,_-},.:[Y.'efobservatzon symbols’ e e y
_':':;_The forward algonthm 1s an’ efﬁment way of comput:m0 the hke
. -hood of an observatlon sequence given a we1ghted automata. Like the

}mlmmum edlt dlstance algomthm itis a variant of dynamic program
o '-f_"mmg I‘c wﬂi prove patticularly in Chapter 7 when we consider Hldd
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Markov Models, since it will allow us to sum multiple paths that each
account for the same observation sequence.

e The Viterbi algorithm, another variant of dynamic programming, is
an efficient way of solving the decoding problem by considering all
possible strings and using the Bayes Rule to compute their probabilities
of generating the observed “noisy” sequence.

e Word segmentation in languages without word-boundary markers,
like Chinese and Japanese, is another kind of optimization task which
can be solved by the Viterbi algorithm.

- BIBLIOGRAPHICAL AND HISTORICAL NOTES

- Algorithms for spelling error detection and correction have existing since
_at least Blair (1960). Most early algorithm were based on similarity keys
“like the Soundex algorithm discussed in the exercises on page 89 (Odell and
Russell, 1922; Knuth, 1973).  Dameérau (1964) gave a dictionary-based al-
- gorithi for error detection; most error-détection algorithms since then have
~ been based on dictionaries. Damerau also gave a correction algorithm that
- worked for single errors. Most algorithms since then have relied on dynamic
* programining, beginning with Wagner and Fischer (1974) (see below). Ku-
“kich (1992) is the definitiveé survey article on spelling error detection and
:-"C'brrection. Only much later did probabilistic algorithms come into vogue
for non-OCR spelling-error correction (for example Kashyap and Oommen
' (1983) and Kernighan et al. (1990)).

. By contrast, the ficld of optical character recognition developed prob-
abilistic algorithms quite early; Bledsoe and Browning (1959) developed a
~ probabilistic approach to OCR spelling error correction that used a large dic-
“tionary and computed the likelihood of each observed letter sequence given
~éach word in the dictionary by multiplying the likelihoods for each letter. In
his sense Bledsoe and Browning also prefigured thé modern Bayesian ap-
roaches to speech recognition. Shinghal and Toussaint (1979) and Hull and
Srihari (1982) applied bigram letter-transition probabilities and the
Viterbi algorithm to choose the most likely correct form for a misspelled
OCR input.

 The application of dynamic programming to the problem of sequence
omparison has what Kruskal (1983) calls a “remarkable history of multiple
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independent discovery and publication”.” Kruskal and others give at least
the following independently-discovered variants of the algorithm published
in four separate fields:

Citation Field

Viterbi (1967) information theory
Vintsyuk (1968) : speech processing
Needleman and Wunsch (1970) molecular biology.
Sakoe and Chiba (1971) ~ speech processing
Sankoff (1972) , - molecular biology.
Reichert et al. (1973) molecular biology
Wagner and Fischer (1974) computer science

To the extent that there is any standard to terminology in speech and -
language processing, it is the use of the term Viterbi for the application of
dynamic programming to any kind of probabilistic maximization problem.
For non-probabilistic problems, the plain term dynamic programming is
often used. The history of the forward algorithm, which derives from Hid-
den Markov Models, will be summarized in Chapter 7. Sankoff and Kruskal
(1983) is a collectlon exploring the theory and use of sequence comparison
in differént fields. I*orney ( 1973) is an early survey paper which explores the
origin of the V1terb1 alcorlthm in the context of information and commum-
cations theory e : : -

The Welghted finite- qtate automata was ﬁrst desanbed by Perelm et al
(1994), drawing from a combination of work in finite-state transducers and:
work in p10b1b1115m languages (Booth and Thompson 1973).

EXERCISES

51 Computmg minimum edit distances by hand, ﬁgure out whether drzvei
is closer to brief or to divers, and what the edit distance is. You may use any ‘
version of dzstance that you hke '

5. 2 Now nnplement a minimum edlt dlstance algonthm and use your hand-,,
computed results to check your code. ;

7" Seven is pretty remarkable, but see e page 15 for a dJscmslon of the prévalence of multlple_
d1scovu'y , : :
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.3 The Viterbi algorithm can be used to extend a simplified version of
he Kernighan et al. (1990) spelling error correction algorithm. Recall that
he Kernighan et al. (1990) algorithm only allowed a single spelling error
“for each potential correction. Let’s simplify by assuming that we only have
three confusion matrices instead of four (del, ins and sub; no trans). Now
how how the Viterbi algorithm can be used to extend the Kernighan et al.
'.,»"(1990) algorithm to handle multiple spelling errors per word.

4  To attune your ears to pronunciation reduction, listen for the pronun-
iation of the word the, a, or to in the spoken language around you. Try to
jotice when it is reduced, and mark down whatever facts about the speaker
. or speech situation that you can. What are your observations?

.5 Find a speaker of a different dialect of English than your own (even
omeone from a slightly different region of your native dialect) and tran-
f’c‘x'ibe (using the ARPAbet or IPA} 10 words that they pronounce differently
“than you. Can you spot any generalizations?

6 " Implement the Forward algorithm.
7 Write a modified version of the Viterbi algorithm which solves the seg-
mentation problem from Sproat et al. (1996).

_1,-85-; Now 1mag1ne a version of English that was written without spaces.
'pply your segmentation program to this “compressed English”. You will
‘vv‘-,vrljéed other programs to compute word bigrams or trigrams.

9 Two words are confusable if they have phonetically similar pronunci-
ons. Use one of your dynamic programming implementations to take two
vords and output a simple measure of how confusable they are. You will
ieed to use an on-line pronunciation dictionary. You will also need a metric
61‘ how close together two phones are. Use your favorite set of phonetic
'}_'}fe'émre vectors for this. You may assume some small constant pr()bablhty of
""V'hone insertion and deletion.

CONFUSABLE
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“But it must be recognz"ed that the notion pmbabzlzzy of a sen-
tence” is an entirely useless one, under any known interpretation
ofthzsterm L _

Noam Chomsky (1969, p. 57)

Anytzme a lmgmsf leaves the group the recognition rate goes up.
‘ ~ FredJ ehnek (then of the IBM speech group) (1988)!

Radar O Reﬂly, the mﬂd»mannered clerk of the 4077th ‘M*A*S*H unit in
he book movie, and television show M*A* S*H, had an uncanny ability to
buéss what his mteﬂocutor was about to bay Most of us don’t have this skill,
xcept perhaps when it comes to guessing the next words of songs written
by 'Very unimaginative lyricists. Or perhaps we do. For e‘(ample what word
s hkely to follow thlS sentence fragment‘?

- I’d hke to make a collect

’-Probably most of you concluded that a very: hkely word is calf al-
gh it’s possible the next word could be telephone, or person-to-person
t-international. (Think of some others). The moral here is that guessing
vords is not as' amazing as it seems, at least if we don’t require perfect accu-
‘racy. Why is this important? Guessing the next word (or word prediction)
is an essential subtask of speech recognition, hand-writing recognition, aug-
entatlve commumcauon for the disabled, and spelling error detection. In

: In an address’ fo the ﬁrst Workehop on the Evaluatlon of Natural Langnage Processing
Systems, Decembet 7. 1988, While this workshop is described in Palmer and Finin (1990),
‘quote was niot written down; somie participants remember a more snappy version: Every
fire a linguist the performance of the recognizer improves.. .

WORD
PREDICTION
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AUGMENTATIVE
COMMUNICATION

~of their probabilities (especially in the context of a hold-up, “T have a gur

'.These are spelling errors that result in real English words (although not the.

vthem by just lookmg for words that aren’t in the dmuonary) Flgure'_'
v glves some examples o

_ other features the words Surroundmg the errors. For examiple, Whﬂ th
phrase in about ﬁfz‘e‘en‘ minuets is perfectly grammatical English; it is

such tasks, word-identification is difficult because the input is very noi
and ambiguous. Thus looking at previous words can give us an importa
cue about what the next ones are going to be. Russell and Norvig (199
give an exarmple from Take the Money and Run, in which a bank teller inte
prets Woody Allen’s sloppily written hold-up note as saying “I have a gub
A speech recognition system (and a person) can avoid this problem by th‘é
knowledge of word sequences (“a gub” isn’t an English word sequence) and

will have a much higher probability than “I have a gub” or even “I have
gull™).

This ability to predict the next word is important for augmentatlv
communication systems (Newell et al., 1998). These are computer sy
tems that help the disabled in communication. For example, people wh
are unable to use speech or sign-language to communicate, like the physici
Steven Hawking, use systems that speak for them, letting them choose wor
with simple hand movements, either by spelling them out, or by selectin
from a menu of possible words. But spelling is very slow, and a menu
words obviously can’t have all possible English words on one screen. Th
it is important to be able to know which words the speaker is likely to Wan
to use next, so as to put those on the menu. ’

" Finally, consu:ler the problem of detecting real-word spelhnc error' 3

ones the writer intended) and so detecting them is difficult (we can t‘ﬁnd'

: They are leaving in about fifteen minuets to go to her house.
The study was conducted mainly be John Black.
. The design an construction of the system will take more than a year
- Hopefully, all wzth connnue smoothly in my absence B :
.. Can they lave Imn my messages?
| Ineed to notzﬁed the bank of [this prob]em ]
‘He is trymg to ﬁne out

Flgure 6 1 Some attested real-word spelhng errors from Kukich (199’7

These errors can be detected by algonf:hms which examme amon
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unlikely combination of words. Spellcheckers can look for low probability
- combinations like this. In the examples above the probability of three word
:i-; combinations (they lave him, to fine out, to notified the) is very low. Of
.. course sentences with no spelling errors may also have low probability word
. sequences, which makes the task challenging. We will see in Section 6.6 that
. there are a number of different machine learning algorithms which make use
. of the surrounding words and other features to do context-sensitive spelling
error correction.

: Guessing the next word tums out to be closely related to another prob-
lem computing the probability of a sequence of words. For example the
-+ following sequence of words has a non-zero probability of being encoun-
* tered in a text written in English:

..all of a sudden I notice three guys standing on the sidewalk
takmg a very good long gander at me.

Whlle this same set of words in a d1ffe1ent order probably has a very low
probablhty RN

. good all I of notlce a takmg mdewalk the me lono three at sudden
ooguys gander on standmg aa the Ve1y ' '

S AIgonthms that assxgn a probabzhty toa sentence can also be used to
: ass1gn a probability to the next word in an incomplete sentence, and vice
~versa. We will see in later chapters that knowing the probability of whole
“'sentences or strings of words is useful in part-of-speech-tagging (Chapter 8),
Word—sense dxsambzguatlon and pI‘ObabﬂlStlc parsing Chaptex 12. _

- This model of word prechctlon that we: wﬂl introduce in th1s chapter
s the N-gram An N- gram model uses the previous N = 1 words to predict
the next one. In speech recognition, it is traditional to use the term lan-
guage model or LM for such statl‘;tlcal models of word sequences. In the

- [upon being asked if there weren’t eﬁoﬁgh‘ words ifi the English laziguage for him]:
“Yes, there are enough, but they aren’t the right ones.” ..
- James Joyce; reported in Bates: (1997) - i

N-GRAM

LANGUAGE
MODEL

M
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Probabilities are based on counting things. Before we talk about pro

abilities, we need to decide what we are going to count and where we ar

going to find the things to count. s

As we saw in Chapter:5; vstatistical processing of natural languag

CORPORA based on corpora (singular corpus), on-line collections of text and speec]
CORPUS For computing word probabilities, we will be counting words in a train ]
corpus. Let’s look at part of the Brown Corpus, a 1 million word collectio

of samples from 500 written texts from different genres (newspaper;:

els, non-fiction, academic, etc.), which was assembled at Brown Univer Ly

in 1963-64 (KuCera and Francis, 1967; Francis, 1979; Francis and Kuder; v

1982). It contains sentence (6.1); how many words are in this sentence?:

(6.1) He stepped out into the hall, was delighted to éncounter a water
brother.

, Example (6 1) has 13 words 1f we dont count punctuauon—marks as
words, 15 if we count punctuation. Whether we treat penod (<, comma.l
(), and so on“as ‘words- depends on the task. There are tasks such as
grammar—checkmg, spellmg efror detection, or anthor-identification '
which the location of the punctuation is zmportant (for checking for prop [
capltahzatmn at the’ beg1m1ng of ‘sentences, or looking for mterestmg pat-
terns of punctuation usage that uniquely identify an' author). In- naturaf
lanvuage processmg apphcatlons question-marks are an nnportant cue that.
’someone has asked a questmn " Punctuation is a useful cue for part~of-speec :
taggmg These apphcatlons, then, often count punctuation as words.

A Unhke text corpora ‘corpora of spoken language usually don’ t ’hav :
punctuatxon “but speech corpora do have other phenomena that we mxg
or might not want to treat as words ‘One speech corpus, the Switchboar,

- corpus of te]ephone conversations between strangers, was collected mj
early '1990s and contains 2430 conversations averaging 6 minutes eac 51
a total of 240 hours’ of speech and 3 million words (Godfrey et al, 19
Here sa sample utterance of Switchboard (smce the units of spoken Eanwuag

UTTERANGE  are dlfferent than' written language, we will use the word utterance rath
than ° sentence when we are referring to spoken language):

(6 2) Ido uh mair- mamly busmess data processmg

- ThlS utterance like many or most utterances in Spoken lanvuage .
" FRAGMENTS fragments words that are broken off in the middle, like the first 1n$tane
PR of the word mainly, represented here as main-. It also has filled: pauSé
‘ uh; Wthh don t: occur in written: English. : Should we consider these
Words? Agam 1t depends oti the application: If we are building an automaﬁ
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_ dictation system based on automatic speech recognition, we might want to
strip out the fragments. But the uhs and wms are in fact much more like
 words. For example, Smith and Clark (1993) and Clark (1994) have shown
~ that wm has a slightly different meaning than uh (generally speaking um is
" used when speakers are having major planning problems in producing an
- utterance, while wh is used when they know what they want to say, but are
- searching for the exact words to express it). Stolcke and Shriberg (1996b)
- also found that uh can be a useful cue in predicting the next word (why might
* this be?), and so most speech recognition systems treat u# as a word.

... . Are capitalized tokens like They and uncapitalized tokens like they the
- same word? For most statistical applications these are lumped together,
‘although sometimes (for example for spelling error correction or part-of-
speech-tagging) the capitalization is retained as a separate feature. For the
rest of this chapter we will assume our models are not case-sensitive,

: How should we deal with inflected forms like cats versus cat? Again,
this depends on the application. Most current N-gram based systems are
based on the wordform, which is the inflected form as it appears in the
coi*pus Thus these are treated as two separate words. This is not a good
mmphﬁcauon for many domiains, Wthh might want to treat cats and caf as
stances of a smgle abstract word or lemma. A'lemina is a set of lexical
forms | havmg the same stem, the sarne major paﬂ ~of-speech, and the same
wofd “sense. “We will return to the distinction between wordforms (which
dlstmgulsh cat and cats) and 1emmas (Whlch 1ump car and cats together) in
Chapter 16. L : ,

-~ How many WOI'dS are there in Enchsh‘? One way to answer th1s ques-
n‘_i's to count 1n a corpus We use types to mean the number of distinct
words in a corpus, that is, the 31ze of the Vocablﬂa_ry and tokens to mean the
‘a‘l‘"number of running Words Thus the followmg sentence from the Brown
corpus has 16 word tokens and 14 word types (not counting punctuauon)

6 3) They p1cmcked by the pool then 1ay back on the gra@s and 100ked at
f'the stars.’

- _The Sw1tchb0ard corpus has 2 4 Imlhon Wordform tokens and approx—
ately 20,000 wordform types. This mcludes prope1 nouns. Spoken lan-
r 'age is less nch in its Vocabulary than wntten language Kucera (1992)
- gives a'count for Shakespeare $ complete Works at 884,647 wordform tokens
from 29, 066 wordform types. Thus each of the 884,647 wordform tokens is
epetmon of one of the 29,066 wordform types. The 1 million wordform
ptou-en_s' of the Brown corpus contain 61,805 wordform types. that belong to

WORDFORM

LEMMA

TYPES
TOKENS
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37,851 lemma types. All these corpora are quite small. Brown et al. (1992)
amassed a corpus of 583 million wordform tokens of English that includ d
293,181 different wordform types. g

Dictionaries are another way to get an estimate of the number of Word
although since dictionaries generally do not include inflected forms they are
better at measuring lemmas than wordforms. The American Heritage th]rd
edition dictionary has 200,000 “boldface forms”; this is somewhat higher
than the true number of lemmas, since there can be one or more boldfa‘:c_:e_; :
form per lemma (and since the boldface forms includes multiword phrases |

- The rest of this chapter will continue to distinguish between types and
tokens: “Types” will mean wordform types and not lemma types, and pun
tuat1on marks will generally be counted as words

6.2 SIMPLE (UNSMOOTHED) N-GRAMS .~

The models of word ’s‘ejquénce‘s' we will consider in this chapter are proba-

bilistic models; ways to assign probdbﬂmes to strings of words, whether f

- computing’ the probab111ty of an entire sentence or for giving a probab1hst1c

predlctlon of what the next word will be in a sequence. As we did in Chap»

Cter'5; we wﬂl assume that the reader has a bas1c knowledoe of probab.' lity

‘aftheory _ . . :

The s1mplest possable model of Word sequences Would sunply leti__ ny

Word of the language follow any other word. In the probabilistic version: of

- this theory, then,” every ‘word would have an equal probability of followmg
- every other word. If Enghsh had 100 000 words, the probab1hty of any WOl

' 'followmg any other word would.be L 0 000 or 00001 Lo e

“Tna shghtly more complex model of word sequences any Word coul

follow any other word, but the following word would appear with 1ts_““"

mal frequency of occurrence For example, the word the has a high rela '

frequency, it occurs: 69 971 times in the Brown corpus of 1,000,000 words

(i:e.; 7% of the ‘words in this particular corpus are z‘he) By contrast the Wwo

_rabbzt occurs only 11 times in the Brown corpus.’ v

» We can use these relative frequenmes to ass1gn a probablhty dlS i

_ "tlon across followmg words. So if we’ve just seen the strmg Anyhow,

use the probability .07 for the and .00001 for rabbzt to guess the next WOt

'But suppose We ve Just seen the followmg smng .

Just then the wh1te
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In this context rabbit seems. like a more reasonable word to follow
“'white than the does. This suggests that instead of just looking at the in-
. dividual relative frequencies of words, we should look at the conditional
~probability of a word given the previous words. That is, the probability
< of seeing rabbit given that we just saw white (which we will represent as
* P(rabbit|white)) is higher than the probability of rabbit otherwise.

Given this intuition, let’s look at how to compute the probability of a
'fcomplete string of words (which we can represent either as wy...w, or wi).
- If we consider each word occurring in its correct location as an mdependent
“event, we might represent this probability as follows:

S P(wi,wa .. Who 1, W) (6.4)
We can use the chain rule of probability to decompose this probability:

PO = Plw))P(walwi)P(wslw?) ... Plwaw’™")
= T]Powilwt™) | (6.5)
=1 )

: But how can we compute probabilities like P(w,|[w" )7 We don’t

know any easy way to compute the probability of a word given a long se-
quence of preceding words. (For example, we can’t just count the number of
. times every word occurs following every long string; we would need far too
large a corpus).

We solve this problem by making a useful simplification: we approxi-
mate the probability of a word given all the previous words. The approxima-
tion we will use is very simple: the probability of the word given the single
previous word! The bigram model approximates the probability of a word
given all the previous words P(w,|w? ') by the conditional probability of
the preceding word P(wy,|w,—1). In other words, instead of computing the
probablhty -

- (rabblt]Just the other 1 day I saw a} T (X )
we apprOXJmate it with the probablhty - » | . _v ,
P(rabbit|a) 6.7

: This assumption that the. pmbablhty of a word depends only on the
previous word is called a Markov assumption. Markov models are the class
of probabilistic models that assume that we can predict the probability of
some future unit without looking too far into the past. We saw this use of the
- word Markov in introducing the Markov chain in Chapter 5. Recall that a

BIGRAM

MARKOV
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When is Caffe Venezia open during the day?
I don’t wanna walk more than ten minutes.

: Table 6.2 shows a sample of the bigram probabilities for some of the
words that can follow the word eat, taken from actual sentences spoken by
uSers (putting off just for now the algorithm for training bigram probabil-
ties). Note that these probabilities encode some facts that we think of as
trictly syntactic in nature (like the fact that what comes after eat is usu-
ally something that begins a noun phrase, that is, an adjective, quantifier or
noun), as well as facts that we think of as more culturally based (like the low
'fpbabiliw of anyone asking for advice on finding British food).

~eaton .16 - eat Thai 03
“eat some -~ 06 || - eatbreakfast .03
“eatlunch .06 | eat in m
‘eat dinner . .05 - eat Chinese 02
‘eatat .~ .04 | eatMexican 02
‘eata 04 eat tomorrow .01
~eat Indian .04 ~ cat dessert 007
‘eattoday . © .03 || eatBritish .001

Flgure 6.2 A fragmentofa blgram grammar from the Berkel ey Restaurant

Project showing the most likely words to follow eaz.

SO

' Assume that in addition to the probabilities in Table 6.2, our grammar
Iso includes the bigram probabilities in Table 6.3 (<s> is a special word
f'eanmg “Start of sentence”)

.,:;}‘.25 Twant 32| wanito &3]t eat .26 British food 60]
<s>T'd- 06| Iwould .29 || wanta - .05| tohave .14| British restaurant .15
s> Tell .04 )| Idon’t .08 || want some .04 ) to spend .09 || British cuisine .01
~less>T'm .02 Thave .04| wantthai .01||tobe .02 Brtishlunch .01

i igare 6.3  More fragments from the bigram grammar from the Berkeley
- Restaurant Project.

~ Now we can compute the probability of sentences like I want to eat
ritishk food or I want to eat Chirese food by simply mult1p]y1ng the appro-
rxate bigram probabilities together, as follows:

_'_P(I want to eat British food) = P(If<q>)P(Want}I}P(tO}want)
P(eat{to)P(BnUsh}eat)
P(food|British)
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LOGPRQOB

TRIGRAM

NORMALZING -~

R _staz“t with a given word w,—; must be equal to the unigram count for that‘
'Word Wy i+ (The reader should take a moment to be convinced of this): -

- RELATIVE -
FREQUENCY

MAKIMUM
LIKELIHOOD
ESTIMATION

COME

o ablhsnc models, normalizing means dividing by some total count so that the:.
. resulting probablhtles fall legally between 0 and 1). We take some I:rammg"

corpus; and from this corpus take the count of a particular bigram, and d1v1de :
L tlus count by the sum of all the bigrams that share the same first word:

' For the general case of N -gram parameter estunauon

.’ served frequency of a particular sequence by the observed frequency: of !

= 25%.32%.65%.26%.002« .60
= 000016

As we can see, since probabilities are all less than 1 (by definition), th
product of many probabilities gets smaller the more probabilities we mui_
ply. This causes a practical problem: the risk of numerical underflow. If wx
are computing the probability of a very long string (liké a paragraph or"
entire document) it is more customary to do the computation inlfog spacei_\':‘g%ef.'
take the log of each probability (the logprob), add all the logs (since addin;
in log space is equivalent to multiplying in linear space) and then take th
anti-log of the result. For this reason many standard programs for computing
N-grams actually store and calculate all probabilities as logprobs. In this textf
we will always report logs in base 2 (i.e., we will use log to mean log,).. -

' A trigram model Iooks just the same as a bigram model, except that
we condition on the two previous words (e.g., we use P(food|eat Brza‘zsh'
instead of P(foodentlsh)) To compute trigram probabilities at the Very.
beginning of sentence, we can use two pseudo-words for the first tngram"
(1 e., P(I} < startl >< start2 >)). '

"' N-gram models can be trained by countmg and normalizing (for prob

 Cwizw)
ZWC(W H~IW)
We can simplify this equation, since the ; sum of all bigram counts that,

- Plwdwr) = (610

P(wnfw,; ' )« Cwé‘;";:‘:’) ")

(wann»NH) m( e 6.
Cw —N+1} ;
Equa‘uon 6 12 estlmates the. N—gram probabﬂlty by dividing the. ob

preﬂx Thls ratlo is- called a relatlve frequency, the use of relative fre ;

......

known as Maximum Likelihood Estimation or MLE, because the result_mg :
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-, parameter set is one in which the likelihood of the training set T given the
= model M (i.e., P(T|M)) is maximized. For example, suppose the word Chi-
* nese occurs 400 times in a corpus of a million words like the Brown corpus.
- What is the probability that it will occur in some other text of way a million
* words? The MLE estimate of its probability is 1zaapm of -0004. Now .0004
- is not the best possible estimate of the probability of Chinese occurring in all
- situations; but it is the probability that makes it most likely that Chinese will
occur 400 times in a million-word corpus.

o There are better methods of estimating N-gram probabilities than us-
. ing relative frequencies (we will consider a class of important algorithms in
. Section 6.3), but even the more sophisticated algorithms make use in some
" way of this idea of relative frequency. Figure 6.4 shows the bigram counts
i from a piece of a bigram grammar from the Berkeley Restaurant Project.
" Note that the majority of the values are zero. In fact, we have chosen the
- sample words to cohere with each other; a matrix selected from a random set
of seven words would be even more sparse.

T want| to | eatl Chinese | food.]‘ lunch

I 1
) g ] 1087] o [ 13 0 [ O 0
want 30 0 | 78| 0 | 6 8 6
_. 3 0 10 860 3 0 12
éat 0] 0 2 | 0 19 2 52
~|Chinesef{. 2| 0 | 0 | 0 0 120 1
lfood || 19 0 17 0 0 0 0
| lunch 41 0 0 0 0 1 0
- Figure 6.4. Bigram counts for seven of the words (out of 1616 total word
.- types) in the Berkeley Restaurant Project corpus of ~10,000 sentences.

Figure 6.5 shows the bigram probabilities after normalization (dividing
each row by the following appropriate unigram counts):

o1 3437
want._ 1215
to. 326 ..
Coeat . 938 . .
~ Chinese. 213 .
food - 1506

lunch 459
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More on N rams and Tﬁéif"séns{ﬁ'vity to"ﬂié‘mining-'cm'-pus‘ :

Cits oenre and its size in words).. -

A non ( 1951) and also used by Miller and Selfridge (1950). The idea is to train
- various N- g;rams and then use each to generate random sentences. It’s sim-
- plest to visualize how this works for the unigram case. Imagine all the words
‘of English covering the probability space between 0 and 1. We choose a ran-

~ order N grams by first generatmg a random bigram that starts with <s> (ac—
_’cordmg to its blgram probability), then choosing a random bigram to folIow’

we trained a unigram, bigram, trigram, and a quadrigram model on the COl

(_' II | want| to I eat | ChinesJ food | lunckﬂ

0023 | 32 1 o 00381 0 0 0
Want 0025 | 0 .65 0 0049 00667 .0049
to 00092) 0 |.0031 .26 080092 | 0 0037
eat 0 - 0. 0021} 0 020 00211 055
Chinese - .0094 | O |0 [*0 | 0. | 56 | 0047
food 013 | 0 011 | o 0 0 0
lunch 0087 | 0 0 | 0 | o0 00220 0
- Figure 6.5 Bigram probabilities for seven of the words (out of 1616 total -
word types) in the Berkeley Restaurant Project corpus of ~10,000 sentences.- -

In thlS sectzon we looL at a few examples of dlfferent N-gram models to
get an intuition for two important facts about their behavior. The first is the
increasing accuracy of N-gram models as we iricrease the value of . The
second is their very strong dependency on their trammg corpus (in partleular

" We do this by borrowing a stﬁahzanon techmque proposed by Shan~

dom number between 0 and 1, and print out the word that covers the real
value we have chosen. The same technique can be used to generate hlgher: :

it (again, where the likelihood of following a particular bigram is propo -
tional to its conditional probability), and so on.
To give an intuition for the increasing power of higher order M- gram

plete corpus of Shakespeare’s works. We then used these four grammars,t‘
generate random sentences. In the following examples we treated each pun
tuation mark as if it were a word in its own right, and we trained the gram
mars on a version of the corpus with all capital letters changed to lowercas
After generated the sentences we corrected the output for eapltahzatxon just
to 1mprove readablhty Some of the resultmg sentences R

1 Umgram approx1manon to Shakespeare SR
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(a) To him swallowed coﬁféss hear both. Which. Of save on trail for are ay
device and rote life have .

{b) Every enter now severaﬂy S0, let

 (c) Hill he late speaks; or! a more to leg less first you enter

' (d) Will rash been and by I the me loves gentle me not slavish page, the and

hour; ill let

" (&) Are where exeunt and sighs have rise excellency took of.. Sleep knave

we. near; vile hke

2. Bxgram approxnnatmn to Shakespeare

‘(a) What means, sir. I confess she? then all sorts, he is trim, captain.
* (b) Why dost stand forth thy canopy, forsooth; he is this palpable hit the
o King Henry. Live king. Follow. .

nor the first gentleman?

_(e) Thou whoreson chops. Consumption catch your dearest friend, well,
~....'and I know where many mouths upon my undoing all but be, how soon,
then; we'll execute upon my love s bonde and we do yOu wﬂl’?

'(f) The world shall my }ord'
3 Tngram approximation to Shakespeare

(a) Sweet prince, Falstaff shall die. Harry of Monmouth’s grave'

" (b) "This shall forbid it should be branded, if renown made it empty
“(¢) What i8’t that cried?

(d) Indeed the duke; and had a véry good friend.”

- ing; as they say, ’tis done.
“(f) The sweet! How many then shall posthumus end his miseries.

: 4: , Quadrlgram apprommanon to Shakespeare

-+ of the watch. A great banquet serv’d in;

. (b) Will you not tell me who I am"

(c) It cannot be but $o. o R -

(dy: Indeed the short and the Iong Marry ns a noble Lepldus

... obliged faith unforfeited! .

.. of people sick.

" (c) What we, hath got so she that I rest and sent to scold and nature bankrupt, :

. (d) Enter Menenius, if it so many good direction found’st thou art a strong
~.upon command of fear not a liberal largess given away, Falstaff! Exeunt . "

ey Fly, and will rid me these news of prlce Therefore the sadness of part- O
B (a) King ‘Henry. What!'I will go seek the traitor Gloucester. Exeunt some

.. (e): They say all lovers swear more performance than they are wont to keep ;‘

| f) Enter Leonato’s brother Antomo and the rest but seek the weary beds -
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~ The longer the context on which we train the model, the more coher-
it the sentences. In the unigram sentences, there is no coherent relation
between words, and in fact none of the sentences end in a period or other
sentence-final punctuation. The bigram sentences can be seen to have very
16c’al word-to-word coherence (especially if we consider that punctuation
sounts as a word). The trigram and quadrigram sentences are beginning to
Ioék"a lot like Shakespeare. Indeed a careful investigation of the quadri-
gram sentences shows that they look a little too much like Shakespeare. The
words It cannot be but so are directly from King John. This is because
the' Shakespeare ceuvre, while large by many standards, is somewhat less
na million words. Recall that Kulera (1992) gives a count for Shake-
Spééfé’s complete works at 884,647 words (tokens) from 29,066 wordform
If'{'types (including proper nouns). That means that even the bigram model is
very sparse; with 29,066 types, there are 29,066, or more than 844 miltion
: p6851ble bigrams, so a 1 million word training set is clearly vastly insufficient
o-estimate the frequency of the rarer ones; indeed somewhat under 300,000

”sjtraln quadrigrams; thus once the generator has chosen the first quadrigram
'f cannot be but), there are only five possible continuations (that, I, he, thou,
_ s0); indeéed for many quadrigrams there is only one continuation.

"',_:'i_-To get an idea of the dependence of a grammar on its training set,
,_.let look at an N-gram grammar trained on a completely different corpus:
. the Wall' Street Journal (WSJ). A native speaker of English is capable of
::'_readmg both Shakespeare and the Wall Street Journal; both are subsets of
glish. Thus it seems intuitive that our N-grams for Shakespeare should
ve some overlap with N-grams from the Wall Street Journal. In order to
'-fcheck’ whether this is true, here are three sentences generated by unigram,
',?blgram ‘and trigram grammars trained on 40 million words of articles from
‘the-daily Wall Street Journal (these grammars are Katz backoff grammars
_with Good-Turing smoothing; we will learn in the next section how these are
tructed).  Again, we have corrected the output by hand with the proper
Enghsh Capltahzatlon for readablhty

: (umgmm) Months the my and issue of year foreign new exchange’s
; september were recessmn exchange new endorsed a acquire 1o SiX ex-
cutives - RN ST N AU N

B bzgram) Last December through the way to preserve the Hudson cor-
“poration N. B. E. C. Taylor would seem to complete the major central
~planners one point five percent of U. S. E. has already old M. X. corpo-
.i‘ranon of living on mformatlon such as more frequently fishing to keep

fdafferent bigram types actually occur in Shakespeare. This is far too small to -
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SMOOTHING

her

3. (trigram) They also point to ninety nine point six billion dollars from:
two hundred four oh six three percent of the rates of interest stores as’
Mexico and Brazil on market conditions o

Compare these examples to the pseudo-Shakespeare on the previous
page; while superficially they both seem to model “English-like sentences”
there is obviously no overlap whatsoever in possible sentences, and very lit-
tle if any overlap even in small phrases. The difference between the Shake-
speare and WSJ corpora tell us that a good statistical approximation to En—,
glish will have to involve a very large corpus with a very large cross-qectloni
of different genres. 'v Even then a simple statistical model like an N~gran_11
would be incapable of modeling the consistency of style across genres. (We
would only want to expect Shakespearean sentences when we are readmg_
Shakespeare, not in the middle of a Wall Street Journal article.) b

 Never do I ever want

" to hear another word!
There isn’t one,

I haven't heard! »

Eliza Doolittle in
Alan Jay Lerner’s My

Fair Lady lytics =~~~

words people
never use —
could be
~onlyl

know them
 Ishikawa Takuboku 1885— 1912'

One major problem with' standard N -crram models is that they must',
be trained from some corpus, and because any particular training corpus is
finite, some perfectly acceptable English N-grams are bound to be missing
from it. That is, the bigram matrix for any given training corpus is sparse; it
is bound to have a very large number of cases of putative “zero probability’
bigrams”. that should really have some non-zero probability. Furthermor
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the MLE method also produces poor estimates when the counts are non-zero
but still small.

: Some part of this problem is endemic to N-grams; since they can’t
use long-distance context, they always tend to underestimate the probability
of strings that happen not to have occurred nearby in their training corpus.
But there are some techniques we can use to assign a non-zero probability
to these “zero probability bigrams”. This task of reevaluating some of the
zero-probability and low-probability N-grams, and assigning them non-zero
values, is called smoothing. In the next few sections we will introduce some
smoothing algorithms and show how they modify the Berkeley Restaurant
waam probabilities in Figure 6.5.

Add One Smoothing

One simple way to do smoothing might be just to take our matrix of bigram
counts, before we normalize them' into probabilities, and add onc to all the
counts. This algorithm is called add-one smoothing. Although this algo-
rithm does not perform well and is not commonly used, it introduces many
of the concepts that we will see in other smoothmg algonthms and also gives
us a useful baseline. :

<. Let’s first consider the apphcatlon of add—one smoothing to unigram
probabilities, since that will be simpler. The unsmoothed maximum likeli-
hood estimate of the unigram probability can be computed by dividing the
count of the word by the total number of word tokens N:

- c(wy)
P(Wx) | ZiC(Wi)
_ o)
.+ The various smoothing estimates will rely on an adjusted count ¢*. The
ount adjustmient for add-one smoothing can then be defined by adding one
o the count and then multiplying by a normalization factor, 25, where V
s the total number of word types in the language, that is, the vocabulary
ize. Since we are adding 1 to the count for each word type, the total number
f tokens must be increased by the number of types. The adjusted count for
ai_dd—one smoothing is then defined as: .

c:“: (ci+ I)Ni\]—..v . o R O 6.13)
d the counts can be turned into probablhuee P by normahzm0 by N.

SMOOTHING

ADD-ONE

VOCABULARY
SIZE
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1 3437+1616
want 1215+1616
to 3256+1616
- eat 938+1616
© Chinese 213+1616
~ food  1506+1616
lunch  459+1616.

if

it

H

5053
2931
4872
2554
1829
3122

= 2075

N ”;Vneed to add V (= 1616) to each of the unigram counts:

he result is the smoothed bigram probabilities in Figure 6.7.

‘smoothed case.

1 | want | to | eat | Chinese| food | lunch |
0018 | .22 -.00020 | .0028 | .00020¢ | .00020| .00020
0014 | .00035| .28 00035 .0025 0032 | .0025
000821 .00021| .0023 | .18 .00082 | 00021 .0027
‘eat - 00039 | .00039| .0012 | .00039| .0078 | .0012 | .021
Chinese | .0016 | .00055 | .00055| .00055| .00055 | .066 | .0011
0064 | .00032| .0058 | .00032| .00032 | .00032| .00032
Iunch 0024 | .00048 | .00048 | 00048 | .00048 | .00096 | .00048
‘Figure 6.7  Add-one smoothed bigram probabilities for seven of the words
‘(out of 1616 total word types) in the Berkeley Restaurant Project corpus of
~10,000 sentences. -~

Tt is often convenient to reconstruct the count marrix so we can see
how much a s'mo'othing algorithm has changed the original counts. These
‘adjusted counts can be computed by Equatlon (6.13). Figure 6.8 shows the
reconstructed counts. .

.. Note that add-one smoothmg has made a very b1g chanoe to the counts.
’C(want t0) changed from 786 to 331! We can see this in probability space
‘as well: P(to]want) decreases from .65 in the unsmoothed case to .28 in the

.- Looking at the dISCOUJlt d (the raﬁo between new and old counts) shows
s how strikingly the counts for each prefix-word have been reduced; the
-bigrams starting with Chinese were discounted by a factor of 8!
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- :pl obab1hty mass is moved to all the zeros. The problem is that we arbitrarily
‘_ _';fp1cked the value “1” to add to each count. We could avoid this problem b
addmg smaller leues to the counts (“add-one-half” “add-one-thousandth™),

" Church (1994) summarize a number of additional problems with the add-om

_Wltten-Bell Dlscountmg

© WITTEN-BELL

DISCOUNTING

 think of a zero-frequency word or N-gram as one that just hasn’t happene

L

I | want| to |

cat |

Chinese L foodL 1unch

———

I
want

to

eat
Chinese
food
lunch

6

2

3
37
.36
10
1.1

740
42
.69
37
12
48
22

.68
331
3
1
12
9
22

10
42
594
37
12
48
22

.68
3
3

74

12
48
22

.68
4
.69
1
15
A8
44

68
9
20
24
48

22

sentences.

Figure 6.8 -
1616 total word types) in the Berkeley Restaurant Project Corpus of ~10,000

Add-one smoothed bigram counts for seven of the words (out of -

|

. want.
. Chinese .12
food

Tunch

.68

42

6o

A8 R

22

" A muich better emoothmg algonthm that is only shvhtly more complex tha

The sharp change n counts and probablhtxes occurs because too much

but we would need to rétrain this parameter for each situation.
_______ In general add-one smoothing is a poor method of smoothmg Gale an
‘method; the main problem is that add -one is much worse at predicting th
actual probabﬂlty for bigrams with zero counts than other methods like th
Good-Turing method we will describe below. Furthermore, they show tha
variances of the counts produced by the add-ome method are actually Worse
than those from the unbmoothed MLE method '

-Add-One smoothing: we will refer to as Witten-Bell discounting (it is m
-troduced ‘as Method C in Witten and Bell (1991)). Witten-Bell discounting
is based on a simple but clever intuition about zero-frequency: events. Let’
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.yet. When it does happen, it will be the first time we see this new N-gram.
S ’?t'he probability of sceing a zero-frequency N-gram can be modeled by the

: 'rfobabi}ity of seeing an N-gram for the first time. This is a recutring concept

' statistical language processing:

~ Key Concept #4. Things Seen Once: Use the count of things you've

seen once to help estimate the count of things you’ve never seen.

_ The idea that we can estimate the probablhty of “things we never saw”
; 1th help from the count of “things we saw once” will return when we dis-
uss Good-Turing smoothing later in this chapter, and then once again when
e vdlSCUSS methods for taggmg an unknown word with a part-of-speech in

How can we compute the probabﬂlty of seeing an N-gram for the first
:','ume‘? By counting the number of times we saw N-grams for the first time in
ur'training corpus. This is very simple to produce since the count of “first-
e” N-grams is just the number of N-gram fypes we saw in the data (since
¢ had to see each type for the first time exactly once).

So we estimate the fofal probability mass of all the zero N-grams with
‘the numbel of types divided by the number of tokens plus observed types:

‘ - . 6.1
lZOI; NH . (6.16)

, Why do we normalize by the number of tokens plus types? We can
-i-ythmk of our training corpus as a series of events; one event for each token
and one event for each new type. So Equation 6.16 gives the Maximum
‘Likelihood Estimate of the probability of a new type event occurring. Note
at the number of observed types T is different than the “total types” or
““ocabulary size V" that we uséd in add-one smoothing: T is the types we
ave already seen, Whlle V is the total number of possible types we might
ever see. e
© Equation 6.16 gwes the total “probability of unseen N-grams”. We
need to divide this up among all the zero N-grams. We could just choose
to divide it equally. Let Z be the total number of N-grams with count zero
(types; there aren’t any tokens). Each formerly-zero unigram now gets its
jual share of the redistributed probability mass: |

gy 61
T

. D= ZNeT (6.18)



and N the number of bigram tokens, on the previous word w, , as followS

'parametenzmg T:on the hlstory

| _' 'we w111 need the number of bigram types T (w) for each of the first wor
o Here are those values: . | |

Chapter 6.  N-gram

If the total probability of zero N-grams is computed from Equation (6
the extra probability mass must come from somewhere; we get it by d1
counting the piobabxhty of all the seen N-grams as follows: .

if (¢; > 0) ‘mj

pi = N+T

Alternatively, we can represent the smoothed counts directly as:

. { i ifci=0
¢ = (6.20
' c,N+T, ife; >0

WxttennBelI dlscountmg looks a lot like add-one smoothing for un
grams ‘But if we extend the equation to bigrams we will see a big differenc
This is because now our type-counts are conditioned on some history, In or:
der to compute the probability of a bigram w,_;w,_; we haven’t seen, we¢
use “the probability of seeing a new bigram starting with w,_,”. This ¢
our estimate of “first-time bigrams™ be specific to a word history. Words tha
tend to occur in a smaller number of bigrams will supply a lower ¢ unseen
blgram estimate than words that are more promiscuous. :

We represent this fact by conditioning T, the number of bigram typ

2 p (WS(WX (Wx) + T(Wx)

g B c(wxwi)—()

i c(wxw,) 0

)= ' if (v 'w,x() - (623
i) = g >(N+T(wz~_ o =0) 1 (63
CAs for the non-zero bxgrar_ns, we discount them in the same manner, by

P WZWA o , {62
:'} zc(m,zwl,)>0 [ (Wx) + T(Wx) o o ( .

" Touse Equatlon 6 24 to smooth the restaurant blgram from Figure 6
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I 95

. want 76
to 130

- eat 124

- Chinese 20
- food 82
© lunch 45

. In addition we will need the Z values for each of these words. Since
“we know how many words we have in the vocabulary (V = 1,616), there are
' ;_:_exactly V possible bigrams that begin with a given word w, so the number of
" ‘unseen bigram types with a given prefix is V minus the number of observed
-types:

S Zw)=V-=T(w) I ' - (6.25)
- ~Here are those Z values:
1 - 1.521
Swant 1,540
to 1,486
< eat 1,492
“Chinese 1,596
food 1,534

lunch 1,571

Figure 6.9 shows the discounted restaurant bigram counts.

_ ! ; I i want j to i eat | Chinese [ food *; tunch |
ol 8 1060 062 13 062 062 062
- want 3 046 | 740 | 046! 6 8 6

to 3 - .085 10 | 827 3 085 12
- leat 07548 075 2 075 17 2 46
. {Chinese|| 2 | .012 012 012 012 109 1
food 18 | .059 16 059 .059 .059 .059
lunch | 4 | .026] 026, 026 026 | 1 026
Figure 6.9  Witten-Bell smoothed bigram counts for seven of the words
.| (outof 1616 total word types) in the Berkeley Restaurant Project corpus of
L 210,000 sentences.. - : : .

The discount values for the Witten-Bell algom thm are much more rea-
- sonable than for add-one smoothnuy
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‘countmor we walked through above starting with Equation 6.21. (Although it
is often used for the Good—Turmg discounting algorithm described below).

- Good-Turmg Dlscountmg

- GOCD-
TURING

| speech ru,ogmtlon systems such as Placuway et al. (1993)

“ ‘Th1s section muoduces a bhghtly more complex form of dlscountmg than the

et al_. (1991). The basic insight of Good-Turing smoothing is to re-estimate
~ the amount of probability mass to assign to N-grams with zero or low counts

I 97
want 94
to 96
eat .88
Chinese 91
food 94
lunch 91

It is also possible to use Witten-Bell (or other) discounting in a differ-
ent way. In Equation (6.21), we conditioned the smoothed bigram prob
bilities on the previous word. That is, we conditioned the number of typ

T (w;) and tokens N(w;) on the previous word w,. But we could choose
instead to treat a bigram as if it were a single event, ignoring the fact that-
it is composed of two words. Then 7 would be the number of types of a
bigrams, and N would be the number of tokens of all bigrams that occurred.
Treating the bigrams as a unit in this way, we are essentially discounting, not
the conditional probability P(w;}w,), but the joint probability P(w,w;). In
this way the probability P(w,w;) is treated just like a unigram probability.
This kind of discounting is less commonly used than the “conditional™ di

- In Sectzon 6.4 we show that discounting also plays a role in more s
phlstlcated Ianguage models. Witten-Bell discounting is commonly used in

Witten-Bell algorithm called Good-Turing smoothing. This section may be
sklpped by readers who are not focusing on discounting algorithms. s

* The Good-Turing algorithm was first described by Good (1953), who
credlts Turing with the original idea; a complete proof is presented in Church

by lookmg at the number of N-grams with higher counts. In other words,
we examine N, the number of N-grams that occur ¢ times. We refer to the-
number of N-grams that occur ¢ times as the frequency of frequency c. S_o-
applying the idea to smoothing the joint probability of bigrams, Nj is the
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number of bigrams b of count 0, N, the number of bigrams with count 1, and

-~ The Good-Turing estimate gives a smoothed count ¢* based on the set
“of N, for all ¢, as follows:

: g 1y iVet! -

¢ =(c+1) N, (6.27)
, For example, the revised count for the bigrams that never occurred
(6‘0) is estimating by dividing the number of bigrams that occurred once (the
-singleton or hapax legomenon bigrams N;) by the number of bigrams that
‘never occurred (Np). Using the count of things we’ve seen once to estimate
- the count of things we’ve never seen should remind you of the Witten-Bell
_discounting algorithm we saw earlier in this chapter. The Good-Turing al-
!gbrithm was first applied to the smoothing of N-gram grammars by Katz,
‘as cited in Nédas (1984). Figure 6.10 gives an example of the applica-
- tion of Good-Turing discounting to a bigram grammar computed by Church
, ~and Gale (1991) from 22 million words from the Associated Press (AP)
- ‘newswire. The first column shows the count c, i.e., the number of observed
S [:,:ins'tances‘of a bigram. The second column shows the number of bigrams that
~ had this count. Thus 449,721 bigrams has a count of 2. The third column
shows c*, the Good-Turing re-estimation of the count.

¢ (MLE) N < (GT)
0 74,671,100,000 0.0000270

| 2,018,046 0.446
2 449,721 1.26

3 188,933 2.24
4 105,668 3.24
5 68,379 422
6 48,190 5.19
7 35,709 6.21
8 27,710 7.24

_ 9 22,280 8.25
| Figure 6.10 = Bigram “frequencies of frequencies” from 22 million AP bi-
o | grams, and Good-Tunng re-estimations after Church and Gale (1991).

L Church et al. (1991) show that the Good-Turing estimate relies on the
a$sun1ption that the distribution of each bigram is binomial. The estimate

Ne= 3 1 (6.26) .

SINGLETON
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6.4 BACKOFF

_ - can draw on, If we have no examples of a particular trigram w,,_ow,,_ Iw,, to
help us compute P(w,,!w,,m_lw,, 2), wWe can estimate its probability by usmg

DELETED
INTERPOLATION
. BACKOFF

- The d.i‘Sc'ou‘nﬁﬁg we have been discussingx so far éan help solve the problerﬁ: of

‘compute P(wn}w,,_, ‘we can look to the unigram P{w,).

~ overview of deleted interpolation after this section. Backoff N-gram model-

~ like the deleted interpolation model, we build an N-gram model based on an

Chapter 6. N-grams

also assumes we know Ny, the number of bigrams we haven’t seen. We
know this because given a vocabulary size of V, the total number of blgrams
is V2. (Np is V? minus al] the bigrams we have seen).
In practice, this discounted estimate ¢* is not used for all counts
Large counts (where ¢ > k for some threshold &) are assumed to be reliable.
Katz (1987) suggests setting k at 5. Thus we define o
c*=c fore>k (6.28)
The correct equation for ¢* when some % is introduced (from Katz
(1987))y1s:
(c+ 1)ch+'1" = o DNy

o =

, forl <c<k. ' ('6.2:9).
B -
Wlth Good— Turing discounting as w1th any other, it is usual to treat

N —grams with low counts (especially counts of 1) as if the count was 0.

1 ‘ (L'Ll leL-l ‘

zero frequencv n-grams. But there is an additional source of knowledge we

the bigram probablhty (wn|wy—1). Similarly, if we don’t have counts

There are two ways to rely on this N-gram “hierarchy”, deleted inférQ
polation and backoff. We will focus on backoff, although we give a quick

ing is a nonlinear method introduced by Katz (1987). In the backoff model

(N — 1)-gram model. The difference is that in backoff, if we have non-zero
trigram counts, we rely solely on the trigram counts and don’t interpoiat‘e.
the bigram and unigram counts at all. We only “back off™ to a lower order
N-gram if we have zero evidence for a higher-order N-gram.

Thc tngram version of backoff might be represented as follows:

( P(w,]wl_m,wl)'_ if C{wi_owi_iw;) > 0
0(11’ (Wz wi1), i C(wiawiwi) = 0
o . | and C{w;_yw;) >0
| P(wy), otherwise.

(6.30)

ﬁ(wflwimgw,-_';) =
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Let’s ignore the o values for a moment; we’ll discuss the need for
iese weighting factors below. Here’s a first pass at the (recursive) equation
forrepresenting the general case of this form of backoff.

Wnlwn N+]) - P(H’f?lwn N+1)
+ O(P(wn|w,~ N+1))0‘P(Wn1“’:::31\7+2) (6.31)

: " Again, ignore the o and the P for the moment. Following Katz, we’ve
sed 0 to indicate the binary function that selects a lower ordered model only
he higher-order model gives a zero probability:

(1, ifx=0
8(x) = { 0, otherwise. (6.32)
and each P(:) is a MLE (i.e., computed directly by dividing counts). The
- next section will work through these equations in more detail. In order to do
that we’ll need to understand the role of the o values and how to compute

Combining Backoff with Discounting

Our previous discussions of discounting showed how to use a discounting
Igorithm to assign probability mass to unseen events. For simplicity, we
~assumed that these unseen events were all equally probable, and so the prob-
“ability mass got distributed evenly among all unseen events. Now we can
ombine discounting with the backoff algorithm we have just seen to be a
“little more clever in assigning probability to unseen events. We will use the
iscounting algorithm to tells s how much total probability mass to set aside
“for all the events we haven’t seen, and the backoff algorithm to tell us how
to distribute this probability in a clever way.

.- First, the reader should stop and answer the following question (don’t
‘look ahead): Why did we need the o values in Equation (6.30) (or Equa-
“tion (6. 31))? Why couldn’t we just have three sets of probabilities without
“weights?
- The answer: w1thout o values, the result of the equatlon would not be
i'a true probability! This is because the original P(w,|w" L +1) We got from
‘relative frequencies were true probabilities, that is, if we sum the probability

of a given wy over all N~gram contexts, we should get 1:

L
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~ that begin some N-gram (trigram). The final equation for computing how
~.much probability mass to distribute from an N-gram to an N — l-gram is
- represented by the function o

~ 1
1 VVVVVV ZWn (-( - 1V+l)>0 P(‘H)nl“’n """ J'V‘Ll)

Zw,i el Wit e >0 P Wn ’ W I N _§_2)

o) =

v Note that o is a function of the preceding word string, that is, of
ng {, (+ thus the amount by which we discount each trigram (d), and the
~mass that gets reassigned to lower order N-grams (o) are recomputed for
'_;‘féiféry N-gram (more accurately for every N — 1-gram that occurs in any N-
 gram).

.. We only need to specify what to do when the counts of an N — 1-gram

jfcontext are 0, (i.e., when ¢(w)" ,\IL 1) = 0) and our definition is complete:

: P(Wm""n vvvv i'fili) Pwp|w,” xﬁ (6.35)
O Pnbihod=o (639
B(“’n—’\f' 1) 1 (0.40)

. InEquation (6.35), the discounted probability P can be computed with
“the discounted counts ¢* from the Witten-Bell discounting (Equation (6.20))
- or with the Good-Turing discounting discussed below.
s " Here is the backoff model expressed in a slightly clearer format in its
~ trigram version:

[ P(wi|lwiawi_1), if Clwi_awiwi) >0
v n ) . ‘ a n { w LfC b - .. :0
o P(wilwiawily) = q (2P (wilwi-), (wi-awi1wi)
and C(w;—1w;) >0
{ a(wn_1)P(w;), otherwise.

In practice, when discounting, we usually ignore counts of 1, that is,
v‘we treat V-grams with a count of 1 as if they never occurred.

- Gupta et al. (1992) present a variant backoff method of assigning prob-
a ablhtles to zero trigrams. :

(6.37)
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6.5 DELETED INTERPOLATION

The deleted interpolation algorithm, due to Jelinek and Mercer { 1980) cot
bines different N-gram orders by linearly interpolating all three models whi
ever we are computing any trigram. That is, we estimate the probabl

P(w,|w,_1wy,-2) by mixing together the unigram, bigram, and trigram pro
abilities. Each of these is weighted by a linear weight A: '

Bl 1waz) = P (wplwo 1wy o)
+AoP(wp|wn_1)
+7\,3P(w,l)

such that the As sum to 1:

Z)L_l

REEES, arion - In practice, in this deleted interpolation deleted lnterpolatlon alg
rithm we don’t train just three As for a trigram grammar. Instead, we ma
each A a function of the context. This way if we have particularly acc
rate counts for a particular bigram, we assume that the counts of the trigrams

" based on this bigram will be more trustworthy, and so we can make the lamnt
© das for those trigrams higher and thus give that trigram more weight in the
_interpolation. So a more detailed version of the interpolation formula wot

P(w,llw,,_gwn )= A (w )P(w,,[w,,_own__l)

| + 7&3 (W ) (wn) ,

leen the P(w ) values, the A values are trained so as to msmmlze the
hkehhood of a held-out corpus separate from the main training corpus, usmg
a verswn of the EM algorithm defined in Chapter 7 (Baum,. 1972; Dempster

et al.; 1977, Jelinek and Mercer, 1980). Further details of the algonthm
descnbed in Bahl et al. (1983).

6.6 NGRAMSFOR SPELLINGAND PRONUNCIATION

| In Chapter 5 we saw the use of the Bayes1an/n01sy channel algonthm for
A conectmg spelling errors and for picking a word given a surface pronun‘
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ation. We saw that both these algorithms failed, returning the wrong word,
’]because they had no way to model the probability of multiple-word strings.
g Now that our »n-grams give us such a model, we return to these two problems.

Cﬁ(’intext-Sensitive Spelling Error Correction

Cﬁapter 5 introduced the idea of detecting spelling errors by looking for
words that are not in a dictionary, are not generated by some finite-state
model of English word-formation, or have low probability orthotactics. But
' {‘fnone of these techniques is sufficient to detect and correct real~-word spelling
errors. real-word error detection. This is the class of errors that result
"'an actual word of English. This can happen from typographical errors
(msertlon, deletion, transposition) that accidently produce a real word (e.g.,
f_f-f{there for three), or because the writer substituted the wrong spelling of a
homophone or near-homophone (e.g., dessert for desert, or piece for peace).
“The task of correcting these errors is called context-sensitive spelling error
correction.

<. How important are these errors? By an a priori analysis of single typo-
graphical errors (single insertions, deletions, substitutions, or transpositions)
Peterson (1986) estimates that 15% of such spelling errors produce valid En-
glish words (given a very large list of 350,000 words). Kukich (1992) sum-
marizes a number of other analyses based on empirical studies of corpora,
which give figures between of 25% and 40% for the percentage of errors
~ that are valid English words. Figure 6.11 gives some examples from Kukich
1:(1992), broken down into local and global ervors. Local errors are those that
;1,'».f_'are probably detectable from the immediate surrounding words, while global
:'ferrors are ones in which error detection requires examination of a large con-

- The word N-gram approach to spelling error detection and correction
was proposed by Mays et al. (1991). The idea is to generate every possible
misspelling of each word in a sentence either just by typographical modifi-
-ations (letter insertion, deletion, substitution), or by including homophones
s well, (and presumably including the correct spelling), and then choos-
ng the spelling that gives the sentence the highest prior probability, That
s, given a sentence W = {wi,w2,..., Wi, ..., Wy }, Where wy, has alternative
pelling wh, Wi, etc.; we choose the spelling among these possible spellings
hat maximizes P(W), using the N-gram grammar to compute P{W}.. A

EEAL-WORD
DETECTION



‘Vclass-based N~gram can be used mstead whlch can ﬁnd unhkely part-of
o speech combinations; although it may not do as well at to finding unllkely*
R word combinations.

S types of Jexical disambiguation (such: as word-sense disambiguation or ac:
cent restoration):: Beside the trigram approach we have just described, these~’
- include Bayesian classifiers, alone or combined with trigrams (Gale et al.

~ rithms are very: similar in' many ways; they are all based on features like
word and pait-of-speech N-grams, and Roth (1998, 1999) shows that many
Cof them make their pl‘edICtIOIlS using a family of linear predictors called Lin-
. ear Statistical Queries (1.SQ) hypotheses. Chapter 17 will define all these;

o 'amblguanon
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[ - ... Local Errors . |
The study was conducted mamly be John Black.
They are leaving in about fifteen minuets to go to her house. #
The design an construction of the system will take more than a year.
Hopeftully, all with continue smoothly i in my absence
Can they lave him my messages‘? . -

Ineed to notified the bank of [this problem ]

| He need to go there right no w.

- Heis trymg to fine out. . , .

= ~ . Global Errovs

> Won t they heave if next Monday at that time?

- This thesis is supported by the fact that sincé 1989 the system
“: " has béen operating system with all four units on-line, but ..

'~ Figure 611 Some attested réal-word spelling efrors from Kukich (1 992) :
o broken down mto local and globai errors.

- There are many other stanstlcal approaches to context-sensitive Spelhn
error correction, some proposed directly for spelling, other for more general

1993; Golding, 1997; Golding and Schabes, 1996}, decision lists (Yarowsky
1994), transformation: based learning (Mangu and Brill, 1997), latent: se:
mantic analysis (Jones and Martin; 1997), and Winnow (Golding and Roth,
1999) Ina comparxson of these; Golding and: Roth (1999) found the. Wlll
now algorithm gave. the best performance. In general, however, these algo'

algorithms' and dlSCU.SS thesc issues further in the context of word-sense: dlS
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.grams for Pronunciation Modeling

he. N—gram model can also be used to get better performance on the words-~
,from—pronunmamon task that we studied in Chapter 5. Recall that the input
":-wasvthe pronunciation [n iy] following the word 7. We said that the five words
that could be pronounced [n iy] were need, new, neat, the, and knee. The
: valgonthm in Chapter 5 was based on the product of the unigram probability
_of éach word and the pronunciation likelihood, and incorrectly chose the
_ 'word:" izew, based mainly on its high unigram probability.

Addmg a simple bigram probability, even without proper smoothing, is
,enough' to solve this problem correctly. In the following table we fix the table
,.on page 167 by using a bigram rather than unigram word probability p(w)
for'each of the five candidate words (given that the word I occurs 64,736
times ir:i the combined Brown and Switchboard corpora):

Word C(‘T’ w) C(‘T’ w)+0.5 p(w|'I")

need 153 153.5 .0016
new 0 0.5 .000005
kree 0 0.5 .000005
the 17 17.5 .00018
_ heat . 0, o 05 .000005

Incorporatmg this new word probablhty into combined model, it now
vredlcts the correct word need, as the table below shows:

 Word p(y|w) p(w)  p(y|lw)p(w)

need 11 .0016 00018
knee 1.00 .000005 .000005

. near 52000005 0000026
. mew .36 .000005 .0000018
. the 0 .00018 O
6.7 'E’NTROP'Y' o

Igot the harse rwht here o
. FrankLoesser Guys andDolls S

Entropy and perplexity are the most common metrics used to evaluate
igram systems. The next sections summarize a few necessary fundarmental
cts about information theory and then introduce the entropy and perplex-
v meétrics. We strongly suggest that the interested reader consult a good
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- |Horse 1 % Horse 5 glz
. |Horse2 1 |Horse 6 &
" |Horse3 & |Horse 7 #
y L L
~.{Horse 4 77| Horse 8

. The entropy of the random variable X that ranges over horses gives us
;_‘_IOWer bound on the number of bits, and 1s:

= 2 bits (6.45)

A code that averages 2 bits per race can be built by using short en-
codings for more probable horses, and longer encodings for less probable
horses. For example, we could encode the most likely horse with the code
:0,-and the remaining horses as 10, then 110, 1110, 111100, 111101,
1110 and 111111,

 What if the horses are equally 11ke1y‘7 We saw above that if we use an
qual-length binary code for the horse numbers, each horse took 3 bits to
ode; and so the average was 3. Is the entropy the same? In this case each
Se Would have a probability of 3 : . The entropy of the choice of horses is

H@)?»TZ_?"%}'f*:f“-“lf’g.g_?3bit5._  . (649)

The value ZH is called the perplexnty (Jehnek et al 1977 Bahl et al.,

':?.1983) Perplexxty can be intuitively thought of as the weighted average num-
er'of choices a random variable has to- make. Thus choosing between 8
qually likely horses (where H = 3 bits), the perplexity is 2° or 8. Choosing
‘between the biased horses in the table above (where H = 2 bits), the perplex-
y'13220r4 ST

~-Until now we have been computmg the entropy of a single variable.

ut most of what we will use entropy for involves sequences; for a grammar,
for example we will be computing the enfropy of some sequence of words
= {...Wg, W1, W2;.::; Wy }.- One way to do this is to have a variable that
anges over sequences of words. For example we can compute the entropy
f a random variable that ranges over all finite sequences of words of length

PERPLEXITY
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b in some language L as follows: ,
H{wi,wa,...,wn) = — 3 p(W")log p(WY) (6.47)
wrel P
ENTRORY We could define the entropy rate (we could also think of this as the

B quences will reoccur in the longer sequence according to their probabilities.
STATIONARY -

- of upcommg ‘words can be dependent on events that were arbitrarily distan
- and time dependent.. Thus our statistical models only give an appronmatm

e assumptlons we can compute the entropy of some stochastic process by tak-

' Ways (to be exact, if it is both statlonary and CI'gOd.lC)

per-word entropy) as the entropy of this sequence divided by the number
of words o
LHW) = L S pW)og (W) 64

WlEL ‘

But to measure the true entropy of a language, we need to consid

sequences of infinite length. If we think of a language as a stochastic process
L that produces a sequence of words, its entropy rate H (L) is defined as: .

. H(L) = nhﬁx?o;H(vwl,Wa wn) .
R = ggr;o n%p(wl - logp(m, Wa) (6.49)
The Shannon-Mchllan—Brelman theoremy (Algoet and Cover, 1988'{

Cover and Thomas, 1991) states that if the langnage is regular in certam

<L>—11m~ilogp<wlwz W)

That is, we can take 2 single Sequence ‘that is long enough mstea_ :
of summmg over all possible sequences. The intuition of the Shanno
McMillan-Breiman theorem is that a long enough sequence of words will
contam in it many other shorter sequences, and that each of these shorter se~

A stochastic process is said to be stationary if the probabilities it as-
s1gns. to_. a sequence are invariant with respect to shifts in the time index. In
other words, the probability distribution for words at time ¢ is the same as the
probablhty distribution at time ¢ + 1. Markov models, and hence N- -grams;
are stationary.. For example, in a bigram, B is dependent only on P._;. So- 1f
we shift our time index by x, Py is still dependent on Piy,_;. But natural
-languaoe 18 not stationary, since as we will see in Chapter 9, the probabﬂity

to the correct distributions and entropies of natural language. - :
- To summarize, by making some incorrect but convenient s1mphfy1ng'
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rery long sample of the output, and computing its average log probabil-
Tn the next section we talk about the why and how; why we would want to
! s (i.e., for what kinds of problems would the entropy tell us something
ul); and how to compute the probability of a very long sequence.

-0ss Entropy for Comparing Models -
this‘-sééﬁon we introduce the cross entrdﬁy’, and discuss its usefulness in 55y
ompanng dlfferent probabllzsuc modelb The cross entropy is useful when .

'Hw WeL

;:'the log of their probability accordm g tom. :
rain; following the Shannon-McMﬂlan—Brelman theorem for a sta-
onary ergodlc process: : g '

H(p;tm)w hm——}—logm(wle' w,,) | .. . (6.52) |

Wha_t makes the cross entropy useful is that the cross entropy H(p,m) -
upper bound on the entropy # (p). For any model m: .
Hp)<Hpm) ©653)

'I’hls means that we é‘ari'tiée "so’ﬁié‘ Simp]iﬁed model m to help estimate Ll

tmderestlmaung the true entropy)

Th -Entropy of Enghsh'

A W» suggested mn the prevmus sectmn the cross—entropy of some: model
m can be used as an upper bound on the true entropy of some process. We
an use this method to get an estimate of the true entropy of English. Why

d we care about the entropy of English? SO
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~ million word WSJ test set according to each of these grammars. =

.-+ In computing perplexities the model m must be constructed
-+ without any. knowledge of the test set .. Any kind of knowledge .
" of the test set can cause the perplexity to be artificially low. For
.- example, sometimes instead of mapping all unknown words to the -
~. <UNK>> token, we use a closed-vocabulary test set in which we
.-~ know in advance what the set of words is. This can greatly reduce
- the petplexity. As long as this knowledge is provided equally to each
. of the models we are comparing, the closed-vocabulary perplexity is

_  is no longer guaranteed to be greater than the true perplexity of the
- test set, and so great care must be taken in interpreting the results. In
- general, the perplexity. of two language models is only comparable
- if they use the same vocabulary. A

METHODOLOGY BOX: PERPLEXITY

The methodology box on page 204 mentioned the idea of com:
puting the perplexity of a test set as a way of comparing two
probabilistic models. (Despite the risk of ambiguity, we will fol-
low the speech and language processing literature in using the term
“perplexity” rather than the more technically correct tesm “cross-
perplexity”.) Here’s an example of perplexity computation as part
of a “business news dictation system”. We trained unigram, bi-
gram, and trigram Katz-style backoff grammars with Good-Turing
discounting on 38 million words (including start-of-sentence tokens)
from the Wall Street Journal (from the WSJO corpus (LDC, 1993))
We used a vocabulary of 19,979 words (i.e., the rest of the words
types were mapped to the unknown word token <UNK> in both:
training and testing). We then computed the perplexity of each of
these models on a test set of 1.5 million words (where the perplexity
is defined as 27(P")). The table below shows the perplexity of a 1.5

N-gram Order Perplexity
- Unigram. =~ 962

Bigram: - 170

Trigram 109

still a useful metric for comparing models. But this cross-perplexity
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.. One reason is that the true entropy of English would give us a solid
wer bound for all of our future experiments on probabilistic grammars.
\niother is that we can use the entropy values for English to help under-
tand what parts of a language provide the most information (for example,
he predictability of English mainly based on word order, on semantics,
“on: morphology, on constituency, or on pragmatic cues?) This can help us
immensely in knowing where to focus our language-modeling efforts.

-+ There are two common methods for computing the entropy of English.
¢ first was employed by Shannon (1951), as part of his groundbreaking
sork in defining the field of information theory. His idea was to use human
sjects, and to construct a psychological experiment that requires them to
uess. strings of letters; by looking at how many guesses it takes them to
tiess letters correctly we can estimate the probability of the letters, and
'hence the entropy of the sequence.

.. The actual experiment is designed as follows: we present a subject
‘1th some English text and ask the subject to guess the next letter. The sub-
"cts will use their knowledge of the language to guess the most probable
r first, the next most probable next, and so on. We record the number of
sses it takes for the subject to guess correctly. Shannon’s insight was that
‘the entropy of the number-of-guesses sequence is the same as the entropy
f English. (The intuition is that given the number-of-guesses sequence, we
“could reconstruct the original text by choosing the “nth most probable” letter
henever the subject took n guesses). This methodology requires the use of
"_‘ft'er: guesses rather than word guesses (since the subject sometimes has to
o an: exhaustive search of all the possible letters!), and so Shannon com-
puted the per-letter entropy of English rather than the per-word entropy.
éi-"r'eported an entropy of 1.3 bits (for 27 characters (26 letters plus space)).
Shannon’s estimate is likely to be too low, since it is based on a single text
(Jefferson the Virginian by Dumas Malone). Shannon notes that his subjects
had worse guesses (hence higher entropies) on other texts (newspaper writ-
,;’scientific work, and poetry). More recently variations on the Shannon
Xpenments include the use of a gambling paradigm where the subjects get
 bet on the next letter (Cover and King, 1978; Cover and Thomas, 1991).
:The second method for computing the entropy of English helps avoid
the single-text problem that confounds Shannon’s results. This method is to
ake a very. good stochastic: model, train it on a very large corpus, and use
to-assign a log-probability to a very long sequence of English, using the
-‘Shannon McMillan-Breiman theorem

L H (Enghsh) < hm —--—logm(wlw;z | W) | | (654
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For example, Brown et al. (1992) trained a trigram language mode

on 583 million words of English, (293,181 different types) and used _ii
compute the probability of the entire Brown corpus (1,014,312 tokens). Th
training data include newspapers, encyclopedias, novels, office correspon
dence, proceedmgs of the Canadian parliament, and other miscellaneou
sources.. s
They then computed the character—entropy of the Brown corpus by us
ing their word-trigram grammar to assign probabilities to the Brown corp 18
considered as a sequence of individual letters. They obtained an entrép,

oo of 175 bits per character (where the set of characters included all the
R prmtable ASCII characters). - . G
~The average length of Enohsh wntten words (meludmg space) has b
hHs reported at 5.5 letters (Nédas, 1984). If this is correct, it means that the Sk
non estimate of 1.3 bits per letter corresponds to a per-word perplexity of 1
-+ for general English. The numbers we report above for the WSJ expérime
. are significantly lower since the training and test set came from same s
-+ sample of English. That is, those experiments underestimate the comples
-+ of English since the Wall Street Journal looks very little like Shakespeare

BIBLIOGRAPHICAL AND HISTORICAL N OTES
| The underlymg mathemaucs of the N—gram was ﬁrst proposed by Ma;tko
- (1913); who used what are now called Markov chains (bigrams and-
grams): to: predict whether an upcoming letter in Pushkin’s Eugene One
- would be a vowel or a consonant. Markov. classified 20,000 letters as V
C and computed the bigram and trigram probability that a given letter would -
3’ bea vowel given the previous one or two letters. Shannon (1948) applied -
- N-grams to compute approximations to-English word sequences. Based
“*" Shannon’s work; Markov models were commonly used in modeling word
© quences by the 1950s::In a series of extremely influential papers starting w
<" Chomsky:(1956) and including Chomsky (1957) and-Miller and Chom
1 (1963); Noam Chomsky argued that “finite-state Markov processes”, whil
-+ -a possibly useful engineering heuristic, were incapable:-of being a'compl
-~ cognitive- model of human grammatical knowledge. These arguments
_ © many hngmsts and ‘computational linguists away from statistical medels
R together :
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~ The resurgence of N-gram models came from Jelinek, Mercer, Bahl,
‘and colleagues at the IBM Thomas J. Watson Research Center, influenced
yy Shannon, and Baker at CMU, influenced by the work of Baum and col-
ézigues. These two labs independently successfully used N-grams in their
peech recognition systems (Jelinek, 1976; Baker, 1975; Bahl et al., 1983).
ﬁéf“Good—Turing algorithm was first applied to the smoothing of N-gram
‘ai’ni‘nars at IBM by Katz, as cited in Nadas (1984). Jelinek (1990) summa-
s this and many other early language model innovations used in the IBM
anguage models.

" 'While smoothing had been applied as an éngineering solution to the
ero-frequency problem at least as early as Jeffreys (1948) (add-one smooth-
ng),lt is only relatively recently that smoothing received serious atten-
n. Church and Gale (1991) gives a good description of the Good-Turing
thod; as well as the proof, and also gives a good description of the Deleted
"térpolatlon method and a new smoothing method. Sampson (1996) also
. 2 a useful discussion of Good-Turing. Problems with the Add-one algo-
~r1_ﬂun are summarized in Gale and Church (1994). Method C in Witten and
11'(1991) describes what we called: Witten-Bell discounting. Chen and
oodman (1996) give an empirical comparison of different smoothing algo-
thms, including two new methods, average-count and one-count, as well as
hm'ch and Gale’s. Iyer and Ostendorf (1997) discuss a way of smoothing
by addmg in data from additional corpora.

*+* Much recent work on language modeling has focused on ways to build
.m_ore sophisticated N-grams. These approaches include giving extra weight
0 N-grams which have already occurred recently (the cache LM of Kuhn
‘dlde Mori (1990)), choosing long-distance triggers instead of just local
l-grams (Rosenfeld, 1996; Niesler and Woodland, 1999; Zhou and Lua,
998), and using variable-length N-grams (Ney et al., 1994; Kneser, 1996;

'iesler and Woodland, 1996). Another class of approaches use semantic in-
‘rmauon to enrich the N-gram, including semantic word associations based
‘the latent semantic indexing described in Chapter 15 (Coccaro and fu-
"fsky 1998; Bellegarda, 1999)), and from on-line dictionaries or thesauri
'(Demetrlou et ak,; 1997); Class-based N-grams, based on word classes such
as"parts—of—speech are described in Chapter 8. Language models based on
re structured linguistic knowledge (such as probabilistic parsers) are de-
nbed in Chapter 12. Finally, a number of augmentations to N—grams are
based on discourse knowledge, such as using knowledge of the current topic
(Chen et al., 1998; Seymore and Rosenfeid 1997; Seymore et al., 1998; Flo-
rian and Yarowsky; 1999; Khudanpur and Wu, 1999) or the current speech
act' in dlalogue (see Chapter 19)

CACHE M
TRIGGERS

VARIABLE-LENGTH
N-GHAMS

LATENT
SEMANTIC
INDEXING

CLASS-BASED



Chapter 6. N -gram

6.8 SUMMARY

EXERCISES

This chapter introduced the N-gram, one of the oldest and most broadly use—'
ful practical tools in language processing. "

e An N-gram probability is the conditional probability of a word gl
the previous N — 1 words. N-gram probabilities can be computed by
simply counting in a corpus and normalizing (the Maximum lee_h‘

* hood Estimate) or they can be computed by more sophisticated algo-
rithms. The advantage of N-grams is that they take advantage of lots

~of rich Iexmal knowledge. A disadvantage for some purposes is th:
they are very dependent on the corpus they were trained on. '

e Smoothing algorithms provide a better way of estimating the proba :
bility of N-grams which never occur. Commonly-used smoothing al:
gorithms include backoff or deleted interpolation, with Witten-Bell”
or Good-’l\lrmg discounting. :

e Corpus-based language models like N-grame are evaluated by sepa-,;'

- rating the corpus into a training set and a test set, training the model
on the training set; and evaluating on the test set. The entropy H,f:’yfo_
more commonly the perplexity 27 (more properly cross-entropy and
cross-perplexity) of a test set are used to compare language models.

: 6 1 Wnte out the equatlon for trigram probabﬂlty estlmatlon (modlfymg,,
Equanon 6. 11)

6.2 Write out the equatzon for the dlscount d= "* for add~one smoothm‘
Do the same for Witten-Bell smoothing. How do they differ? :

6.3 Wnte a program (Perl is sufﬁcxent) to compute unsmoothed umgrams
and bwrams '

64 Run your N—gram program on two dltferent small corpora of yourjg
- choice (you might use email text or newsgroups). Now compare the statistics
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of the two corpora. What are the differences in the most common unigrams
tween the two? How about interesting differences in bigrams?

5. Add an option to your program to generate random sentences.
Add an option to ydui‘_ program to do Witten-Bell discounting.

5.7 Add an option to your program to compute the entropy (or perplexity)
0ff” test set.

6 8 'Suppose someone took a]l the words in a sentence and reordered them
randomly Write a program which take as input such a bag of words and
oduces as output a guess at the original order. Use the Viterbi algorithm
,an&"an N-gram grammar produced by your N-gram program (on some cor-

"The field of authorship attribution is concerned with discovering the
thor of a particular text. Authorship attribution is important in many fields,
icluding history, literature, and forensic linguistics. For example Mosteller
and Wallace (1964) applied authorship identification techniques to discover
wrote The Federalist papers. The Federalist papers were written in
87-1788 by Alexander Hamilton, John Jay and James Madison to per-
ade New York to ratify the United States Constitution. They were pub-
hed: anonymously, and as a result, although some of the 85 essays were
early attributable to one author or another, the authorship of 12 were in
~dispiite between Hamilton and Madison. Foster (1989) applied authorship
entification techniques to suggest that W.S.’s Funeral Elegy for William
Peter was probably written by William Shakespeare, and that the anonymous
author of Primary Colors the roman a clef about the Clinton campaign for
American presidency, was journalist Joe Klein (Foster, 1996).

oA standard technique for authorship attribution, first used by Mosteller
-and Wallace, is a Bayesian approach. For example, they trained a proba-
istic model of the writing of Hamilton, and another model of the writings
of Madison, and computed the maximum-likelihood author for each of the
kls:b'uted- essays. There are many complex factors that go into these models,
ncluding vocabulary use, word-length, syllable structure, chyme, grammar;
see (Holmes, 1994) for a summary. This approach can also be used. for iden-
tifying which genre a text comes from.

~One factor in many models is the use of rare words. As a simple ap-
roximation to this one factor, apply the Bayesian method to the attribution
‘any particular text. You will need three things:: a text to-test, and two
tential authors or genres, with @ large on-line text sample of each. One of

BAG OF WORDS

AUTHORSHIP
ATTRIBUTION
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them should be the correct author ‘Train a unigram language model on e’é’c"
of the candidate authors. You are only going to use the singleton umgram
in each language model. You will compute P(T|A;), the probabxhty of the
text given author or genre Ap, by (D taking the language model from A2
by muliiplying together the probabilities of all the unigrams that only oc
cur once in the “unknown” text and (3) taking the geometric mean of the
(i.e., the nth root, where n is the number of probabilities you muluphed’
Do the same for A>. Choose whichever is higher. Did it produce the corre
canchdate” ~
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When Frederic was a little lad he proved so brave and daring,

His father thought he’d *prentice him to some career seafaring.

I was, alas! his nurs’rymaid, and so it fell to my lot

To take and bind the promising boy apprentice to a pilot —

A life not bad for a hardy lad, though surely not a high lot,

Though I'm a nurse, you might do worse than make your boy a pilot.
I was a stupid nurs’rymaid, on breakers always steering,

*."And I did not catch the word aright, through being hard of hearing;

~ Mistaking my instructions, which within my brain did gyrate,

I took and bound this promising boy apprentice to a pirate.
The Pirates of Penzance, Gilbert and Sullivan, 1877

Alas, this mistake by nurserymaid Ruth led to Frederic’s long indenture as
" a pirate and, due to a slight complication involving 21st birthdays and leap
“years, nearly led to 63 extra years of apprenticeship. The mistake was quite
natural, in a Gilbert-and-Sullivan sort of way; as Ruth later noted, “The two
- words were so much alike!” True, true; spoken language understanding is a
-difficult task, and it is remarkable that humans do as well at it as we do. The
. goal of automatic speech recognition (ASR) research is to address this prob-
- lem computationally by building systems that map from an acoustic signal to
-a string of words. Automatic speech understanding (ASU) extends this goal
- to producing some sort of understanding of the sentence, rather than just the
© words. | .
oo The general problem of automauc transcnptlon of speech by any speaker
m any environment is still far from solved. But recent years have seen ASR

* technology mature to the point where it is viable in certain limited domains.

-~ One major application area is in human-computer interaction. While many

- tasks are better solved with visual or pointing interfaces, speech has the po-

- tential to be a better interface than the keyboard for tasks where full natural
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LVCSR.,

" CONTINUOUS

. 1SOLATED--
WORD

SPEAKER-
INDEPENDENT

“than a graphical usér interface without speech (Cohen et al., 1998). Finally

- This chapter also-includes a short section on the acoustic component of th

Previous eh'apters have introduced many of the core algorithms use-d'_l‘n peec
- recognition. Chapter 4 introduced the notions of phone and syllable: Ct

language communication is useful, or for which Keyboards are not appropri
ate. This includes hands-busy or eyes-busy applications, such as where th
user has objects to manipulate or equipment to control. Another lmportan
application area is telephony, where bpeech recogmnon is already used fo
example for entering digits, recognizing “yes™ 16 accept collect calls, or call
routing (“Accounting, please”, “Prof. Regier, please”). In some appl1cat10ns
a multimodal interface combining speech and pointing can be more efficien

ASR is being applied to dictation, that is, transcription of extended mona
logue by a single specific speaker. Dictation is common in fields such as lay
and is also important as part of augmentative communication (interaction be
tween computers and humans with some disability resultmg in the mabﬂlty
to type, or the 1nab111ty to speak). The blind Milton famously dictated Par
adise Lost 1o his daughters, and Henry J ames dictated his later novels afte
repetitive Stress mjury i »
. Dn“ferent apphcatlons of speech technology necessarﬂy place chfferent*
constraints on the problem and lead to different algonthms We chose to fo
cus this chapter on the fundamentals of one crucial area: Large-Vocabula
Contmuous Speech Recogmtmn (LVCSR) with a small section on acous:
tic issues in speech synthe51s Large—vocabulary generally means that'_thef
systems have a Vocabulary of roughly 5,000 to 60,000 words. The term cOn”
tinuous means that the words are run together naturally; it contrasts w
isolatéd-word: speech recognition, in which each word must be preceded
and followed by a pause. Furthermore, the algorithms we will discuss are
generally speaker-independent; that is, they are able to recognize spe_e h
from 'p‘ebple whose speech the system has nevet been exposed to before, =~
. The chapter begins with an overview of speech recognition archxtec

ture “and then proceeds to introduce the HMM, the use of the Viterbi and
A* algorithms for decoding, speech acoustics and features, and the use |
Gaussians and MLPs to compute acoustic probabilities. Even relying ontl
previous three chapters; summarizing this much of the field in this chapte
requires us to' omit many crucial areas; the reader is encouraged: fo seeth
suggested readings at the end of the chapter for useful textbooks and

speech syntheSIS algorithms dlScuased n Chapter 4. S
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ter 5 introduced the noisy channel model, the use of the Bayes rule, and
the probabilistic automaton. Chapter 6 introduced the N-gram language
model and the perplexity metric. In this chapter we introduce the remaining
components of a modern speech recognizer: the Hidden Markov Model
(HMM), the idea of spectral features, the forward-backward algorithm
for HMM training, and the Viterbi and stack decoding (also called A* de-
if‘(iding algorithms for solving the decoding problem: mapping from strings
of phone probability vectors to strings of words.

. Let’s begin by revisiting the noisy channel model that we saw in Chap-
ter 5. Speech recognition systems treat the acoustic input as if it were a
“poisy” version of the source sentence. In order to “decode” this noisy
sentence, we consider all possible sentences, and for each one we compute
the probability of it generating the noisy sentence. We then chose the sen-
tence with the maximum probability. Figure 7.1 shows this noisy-channel
metaphor.

- guess at
original
sentence

If meusic be the
food of love...

ource- . - : B no::.sy - - DECODER -
entence Lo T Sentence : .
. U E 7Alice was beginaing to get.)
musicbethe: < - . 7?Every happy family...
food of love... — - ?in @ hole in the ground...
A Y _ 2It music be the food of fove...
71f music be the foot of dave..

‘Figure7.1  The noisy channel model applied to entire sentences (Figure 5.1
showed its application to individual words). Modern speech recognizers work
by searching through a huge space of potential “source” sentences and choos-
ing the one which has the highest probability of generating the “noisy” sen-
tence. To do this they must have models that express the probability of
sentences being realized as certain strings of words (V-grams), models that
express the probability of words being realized as certain strings of phones
(HMMs) and models that express the probability of phones being realized as
acoustic or spectral features (Gaussians/MLPs).

-+ Implementing the noisy-channel model as we have expressed it in Fig-
tire 7.1 requires solutions to two problems. First, in order to pick the sentence
that best matches the noisy input we will need a complete metric for a “best
match”. Because speech is so variable, an acoustic input sentence will never
Xactly match any model we have for this sentence. As we have suggested
in: previous chapters, we will use probability as our metric, and will show
ow to combine the various probabilistic estimators to get a complete esti-
mate for the probability of a noisy observation-sequence given a candidate

a*
DECODING






Séétion 7.1. Speech Recognition Architecture

239

The probabilistic implementation of our intuition above, then, can be
pressed as follows: o

W = argmax P(W|0) (7.3)

WeL

Recall that the function argmax f(x) means “the x such that f(x) is
gés_t, .. Equation (7.3) is guaranteed to give us the optimal sentence W; we
 heed to make the equation operational. That is, for a given sentence W
-and acoustic sequence O we need to compute P(W|0). Recall that given any
prdbabﬂzty P(x]y), we can use Bayes’ rule to break it down as follows:

P(y[x)P(x)
x|y) = ———t—t (7.4)
PO =70
We saw in Chapter 5 that we can substitute (7.4) into (7.3} as follows:
o POJW)P(W)
W = ar max ————-——- (7.5)
wee  P(O)

The probablhtles on the r10ht~hand side of (7.5) are for the most part

e Iangﬁage But P(O) doesn t change for each eentence' For each potential
enténce we are still examining the same observations @, which must have
the same probability P(O). Thus:

W = awgmax POIWPWY) _ awgmaxP(OW)PW) (79
LeoWep. PO).. Twer o

To summarlze the most probable sentence W glven some observatlon
'sequence O can be computing by taking the product of two probabilities for
each sentence, and choosing the sentence for which this product is greatest.
Thes: two terms have names; P(W)), the prior probability, is called the lan-
g age model P(O!W) the observation likelihood, is called the acoustic

hkehhood pnor
ey Concept #S W argmax P(O]W) P(W) T
: We have already seen in Chapter 6 how to compute. the language model
or P(W) by using N-gram grammars. The rest of this chapter will show

LANGUAGE
MODEL
ACOUSTIC
MODEL
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of an observaﬁon sequence glven each’ sentence, and give us the most—hkely
'sentcnce ‘These are the Vlterbl and the A* decoding algorithms.
: how the same algorlthms ¢an be’ apphed to true acoustic input rather than

- and feature extractwn the process of deriving meaningful features fro

s den ‘Markov Models and the phone-probability estimators, the forward-
~ backward or Baum-Welch algorithm) (Baum, 1972), a special case of the

- nents of a speech recognition system. The figure shows a speech recognition
‘system-broken' down: into- three stages.. In the signal processing or feature

~which give information about how much energy in the signal is at difféfé
- frequencies. In the subword or phone recognition stage, we use staﬂstzc
‘techniques like neural networks or Gaussian models to tentatlvely recogmz

- . stage is a vector of probabilities over: phones for each frame (i.e., “fo; ‘thi

how to compute the acoustic model P{O|W), in two steps. First we WIH :
make the simplifying assumption that the input sequence is a sequence: of**
phones F rather than a sequence of acoustic observations. Recall that we
introduced the forward algorithm in Chapter 5, which was given “obser-
vations” that were strings of phones, and produced the probability of these
phone observations given a single word. We will show that these probabilis-
tic phone automata are really a special case of the Hidden Markov Model,
and we will show how to extend these models to give the probability of a
phone sequence given an entire sentence. o

One problem with the forward algonthm as'we presented it was that in
order to know which word was the most-likely word (the “decoding prob—
lem”), we had to run the forward algorithm again for each word. This is
clearly intractable for sentences; we can’t possibly run the forward algo-
rithm separately for each possible sentence of English. We will thus intr
duce two different aIgorithms which simultaneously compute the likelihood

Once we have solved the hkehhood~computat10n and decoding pro
}ems for a smiphﬁed Input consrstmg of strings of phones, we will sho

pre deﬁned phones This WlH mvolve a qumk introduction to acoustic mput

the mput soundwave. Then we will infroduce the two standard models for
computmg phone-probabilities from these features: Gaussian models, an
neural net (multi-layer perceptrons) models. :

Fmally, we will introduce the standard algorithm for training the Hl_

the Expectation-Maximization or EM algorithm (Dempster et al., 1977).
- As a preview of the chapter, Figure 7.2 shows an outline of the comp

extraction stage; the acoustic waveform is sliced up into frames. (usually
of 10, 15, or 20 milliseconds) which are transformed into spectral featur

individual speech sounds like p or b. For a neural network, the output of thi
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‘frame the probability of [p]is .8, the probability of [b]is. 1, the probability of
[£] is .02, etc.”); for a Gaussian model the probabilities are slightly different.
inally, in the decoding stage, we take a dictionary of word pronunciations
nd”a language model (probabilistic grammar) and use a Viterbi or A* de-
coder to find the sequence of words which has the highest probability given
the acoustic events.

Speech
Waveform

Fealture Extraction
{Signal Processing)

Spectral .
Feature
Vectors

. Phone Likelfhood

Estimation {(Gausslans
ar Neural Networks}

ay 070 ay 040 ay G#) n 0.50
Phone w927 a{: (IIZ aa 812 m 620

Likelihoods ax 0.4 ax 004 ax O.08 m 647 0

:.')l {Nli‘ eh 103 ¢ 803 cm i1}

Polg) @ om0

:{;m;u,,_;sfge:;awzz'::, b _l'_'l"i REERER

igure 7.2~ Schematic architecture for a (simplified) speech recognizer.

OVERVIEW OF HIDDEN MARKOV MODELS

apter 5 we used weighted finite-state automata or Markov chains to
del ’thc"pronunciation of words. The automata consisted of a sequence
ates ¢-= (9041G2 - gn)> each corresponding to a phone, and a set of
) 1t10n probabﬂmes between states, do1,a12, @13, encoding the probability
: phone fo]lowmg another.- We tepresented the states as nodes, and
 the transition probabilities as edges between nodes; an edge existed between
two nodes if thére was a non-zero transition” probability between the two
‘nodes. We also saw that we could usé the forward algorithm to compute the
hkéllﬁt:)'éd*dffa's'eq'uéhée’of‘ observed phones o= (010205...0;). Figure 7.3
shows an automaton for the word need Wlth sample observation sequence of
the kind we saw in Chapter 5. o

Whﬂe we will see that these models ﬁ gure 1mportant1y in speech recog-
on; they simplify the problem_- in two. ways. First, they assume that the

DECODER
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ay =.11
SERny : ay 2y a3 = .89 a
Word Model @ ‘ @ 2 @ &
gbsefvatidn | L
equence .
(phone symbols) = DN y d -
0y 0; 03

Figure 7.3 A simple weighted automaton or Markov chain pronunciation
" network for the word need, showing the transition probabilities, and a samp
" observation sequence: The transition probabilities a,, between two states
- . and y are 1.0 unless otherwise specified.

1nput consists of a sequence of symbols! Obviously this is not true in th ‘
real world, where speech input consists essentially of small movements: of
air particles. In speech recognition, the input is an ambiguous, real—value :
representation of the sliced-up input signal, called features or spectral fe: )
‘tures.: We. will: study the details of some of these features beginning "'_n
page ?59 ‘acoustic features represent such information as how much energy
there is at different frequencies. The second simplifying assumption of the
: Wezghted automata of Chapter 5 was that the input symbols cotrespond €
actly to the states of the machine. Thus when seeing an input symbol [b
we knew that we could move into a state labeled [b]. In a Hidden Markoy
&z‘%@v Model (HMM), by contrast, we can’t look at the input symbols and know
wInch state to move to. The mput symbols don’t uniquely determine the ne
state , SO _ _ .

Recaﬂ that a We1ghted automaton or smaple Markov model is specrﬁed
by the set of states Q , the set of transition probabilities A, a defined sta_
state and end state(s) and a set of observation likelihoods B. For weighte
automata, we defined the probabilities &;(o,) as 1.0 if the state # matched tl
‘observatlon ot and 0 if they didn’t match. An HMM formally differs from:
Markov: model by adding two more requirements. First, it has a separate

: of observatzon symbol s O, Wthh is not drawn from the same alphabct as-‘ ;

1 ActuaHy, as we mentloned in passmg, by thls second crxtenon some of the automata we
saw in Chapter 5 were technically HMMs as well. This is because the first symbol in the
input: string [n° iy was compatible with the [n] states in the words need or an. Secing the
symbols [n]; we didn’t know which underlying state it was generated by, need-n or an-n.
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from Oto 1. 0

Word Model

_'Observation

0 0, 0; 05 Os 0

igure 7.4  An HMM pronunciation network for the word need, showing
‘the transition probabilities, and a sample observation sequence. Note the ad-
“dition of the output probabilities B. HMM:s used in speech recognition usually

“use self-loops on the states to model variable phone durations.

jon séquence. Note the differences from Figure 7.3. Flrst, the observation
sequences are now vectors of spectral features representing the speech sig-
géiI. ‘Next, note that we’ve also allowed one state to generate multiple copies
of the same observation, by having a loop on the state. This loops allows
IMM s to model the variable duration of phones; longer phones require more
'oops through the HMM.

" In summary, here are the parameters we need to define an HMM:

- states: a set of states Q@ = g1g2...gy ‘ _

' transition probablhtles. a set of probabzhues A=agiags ... sl - Ay
Each a;; ; represents the probability of transitioning from state i to state
j. The set of these is the transition probability matrix

- observation likelihoods: a set of observation likelihoods B = b;(o;),
- each expressing the probability of an observation o, being generated
- from a state i - IR

In our examples 50 far we have used two specml” states (non-emitting
'fstates) as the start and end state; as we saw in Chapter 5 it is also. possible to
'fa_vmd the use of these states by specifying two more things:
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7.3 THE’VI‘TERBI-ALGQRITHM'-REVISITED

in Chapter 5 since we were sure that the pronunmation [ni] came from one?

 tation: and we will solve it by using the Viterbi algorithm just as we did f
- 'nese word~segmentat1on relied on. choosing. the. segmentation that resulted;_

- in the sequence of words with the highest frequency. For speech segmenta—j
. tion we use the more sophisticated N-gram language models introduced it

: _2 I Just heeud somethmg about moving recendy

e initial distribution: an initial probability distribution over states, 7, 'f'j
such that m; is the probability that the HMM will start in state i. Of
course some states j may have 1; = 0, meaning that they, cannot be.’-'.""?
initial states. :

. acceptmg states: a set of legal accepting states

As was true for the weighted automata, the sequences of symbols that;.,
are mput to the model (if we are thinking of it as recognizer) or which are’
produced by the model (if we are thinking of it as a generator) are generaﬂ :
ca]led the observaﬁon sequence referred toas O = (010203...07).

Chapter 5 showed how the forward algorithm could be used to compute th
probability of an observation sequence given an automaton, and how th
Viterbi algonthm can, be. Ubﬁd to find the most-likely path through the au
'tomaton as well as the probability of the observation sequence given this:,
most-likely: path In Chapter 5 the observation sequences consisted of a sm?g,

- gle word. But in continuous speech; the input consists of sequences of words;
’ and we are not glven the: Iocatlon of the word boundaries. Knowing Wheref

wotd, we only had seven candldates to compare But in actual speech w_e;,‘j-z
don’ t know where the word boundanes are. For example try to decode th
followmg sentence from SW1tchboard (don t peek ahead’) g

[aydlhshherdsahmthlhnga‘(bawmuhVIhngrlhsenllh}

The answer is in the footnote The task is hard partly because of coa1 o
tlculatlon ‘and fast speech (e.g., [d] for the first phone of just!). But mainl
it’s the lack of spaces indicating word boundaries that make the task difficult, @
The task of finding word boundaries in connected speech i is called segme .

Chinese word-segmentation in Chapter 5; recall that the algorithm for Chis

Chapter 6 In the rest of th13 sectlon we show how the Vlterb1 algorxthm can
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fi‘?f‘be applied to the task of decoding and segmentation of a simple string of
-“observations phones, using an z-gram language model. We will show how
the algorithm is used to segment a very simple string of words. Here’s the
nput and output we will work with:

Input Output
{aa n iy dh ax] [ need the

: Figure 7.5 shows word models for I, need, the, and also, just to make
things difficult, the word on.

clo¥o=e

Word model tor "on"

(2 @@

. Word model for "need" N S Word model for 1"

Figure 7.5 Pronunciation networks for the words 7, on, need, and the. All
‘networks (especially the) are significantly simplified.

“.~" Recall that the goal of the Viterbi algorithm is to find the best state se-
-quence g= (419293 - - - q:) given the set of observed phones 0 = (010203...0;).
A graphic illustration of the output of the dynamic programming algorithm is
~shown in Figure 7.6: Along the y-axis are all the words in the lexicon; inside
~ each word are its states. The x-axis is ordered by time, with one observed

‘;‘phone per time unit.> Each cell in the matrix will contain the probability of
‘the most-likely sequence ending at that state. We can find the most-likely
state séquence for the entire observation string by looking at the cell in the
'jﬂghf-most column that has the highest probabﬂlty, and tracing back the se-
.,quence that produced 1t

e This x-axis component of thc model is 51mphﬁed in two major ways that we wﬂl show
‘how. to fix in the next section. First, the observations will not be phones but extracted spectral
ffeatures and second; each phone consists of not time unit observation but many obseivations
;ﬁ(‘sm‘c‘:;z phones can last for more than one phone). The y-axis is also simplified in this example,
since ‘as we will see most ASR system use multiple “subphone” units for each phone.
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of the optimal path probability in a simple way; each of the best paths at
';tnne ¢ is the best extension of each of the paths ending at time t — 1. In
other words, the recurrence relation for the best path at time £ ending in state
. 'zrerbz[t, 71. is the maximum of the possible extensions of every possible
.previous path from time ¢ — 1 to time #: :

“viterbilt, j| = max(viterbi[t — 1,1 ai;) b;(os) (7.9)

:The algorithm as we describe it in Figure 7.9 takes a sequence of ob-

;through the automaton. Since the algorithm requires a single automaton, we
-:-wﬂl nieed to combine the different probabilistic phone networks for tke, I,
need, and a into one automaton. In order to build this new automaton we
will need to add arcs with p10bab1ht1es between any two words: bigram
robablhtlcs Figure 7.7 shows simple bigram probabilities computed from
the: combmed Brown and Switchboard corpus.

'0.0016 need need 0.000047| #Need 0.000018
... 000018 | needthe  0.012 - #The 0016
- .. 0000047 | needon . 0.000047) #On . 0.00077
0039 . |'needI ... 0.000016, #I.. 0079
+: 0.00051 |-onneed = 0.000055 - L
- 0.0099 - | onthe . 0.094
.. 0.00022 | onon. 00031
. 0.00051 [onI . 000085 \ .
- Bigram probabﬂitles for the words the, on, need and / followmg

ach: other, and starting a sentence (i.e., following #). Computed from the
ombmed Brown and Swﬁchboard corpora with add-0.5 smoothing.

cservatlons and a single probabilistic automaton, and returns the optimal path

. Figure 7 8 Shows the combmed prbnunciamon networks for the 4 words
gether with a few of the new arcs with the bigram probabilities. For read-
ility of the diagram, most of the arcs aren’t shown; the reader should imag-
ine t:hat gach probabﬂlty in Flgnre 7.7 is inserted as an arc between every two
Si

'The algonthm is given in F1gure 5 19 in Chapter 5 and is repeated
here; for convenience as Figure 7.9.. We see in Figure 7.9 that the Viterbi
algorithm sets up a probability matrix, with one column for each time index
and’one Tow for each state-in the state graph. The algorithm first creates
: _'2 columns; Figure 7.9 shows the first six columns. The first column is

mmal pseudo -observation, the next c0rr63p0nds to the first observation
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- ’phone'ﬁv[a’zi]-,:’and'so on. We begin in the first column by setting the probabili

- of the start state to 1.0, and the other probabilities to 0; the reader shou

- find this i in Flgure 7.10. Cells with probability 0 are simply left blank’ for

_  Lo 'readablhty For each column of the matrix; that is, for each time mdex
. each cell viterbi[t,j1, will contain the probability of the most likely path

- ‘end in that cell. We will calculate this probability recursively, by maximizing

o "6ve’r"thé‘ probability of coming from all possible preceding states. Then we

- tove to the next state; for each of the i states viterbi[0,i] in column 0 we

- compute the probablhty of movmg into each of the j states wterbz{l, j]a_'

©vation dh, we could have arrived from either the iy of need or the iy of

012*.92

0005 _ n40s

Flg'ure 7.8 Single automaton made from the words I, need, on, and the. The
{- - arcs between words have probabilities computed from Figure 7.7. For lack ol
: spaoe the figure only shows a few of the between-word arcs.

probablhty of I bemg pronounced with the Vowel aa. :
~. Notice that if we look at the column for the observation #, that the y
on is currently the “most-probable” word. But since there is no word or
of words in this lexicon which is pronounced i dh ax, the path starting wi
on is a dead end; that is, this hypothe31s can never be extended to cover
Wholeutterance L ST RIS SEEs
By the time we see the observatlon iy, there are two competmg path
I need and I the; I need is currently more likely. When we get to the obs
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fu ction VITERBI(observations of len T,state-graph) returns best-path

nitm-states +- NUM-OF-STATES(state-graph)

Ci‘eate a path probability matrix viterbifnum-states+2,T+2]

viterbif0,0]+ 1.0

for each time step  from 0 to T do

for each state s from 0 to num-states do

for each transition s” from s specified by state-graph

new-score < viterbils, t] * a[s,s'1 * by(oy)

if ((viterbils' ,t+1] = 0) || (new-score > viterbils', t+1]))
then o

- viterbils', t+1] + new-score

: back-pointer[s, t+1]+s

Backtrace from highest probability state in the final column of viterbi[] and

Figure 7.9  Viterbi algorithm for finding optimal sequence of states in con-
wious speech recognition, simplified by using phones as inputs (duplicate of
Figure 5.19).- Given an observation sequence of phones and a weighted an-
tomaton (state graph), the algorithm returns the path through the automaton
which has minimum probability and accepts the observation sequence als,s'|
IS.thﬁ transition probability from current state s to next state s’ and by{o;) is
the observation likelihood of s’ given o;.

he probability of the max of these two paths, in this case the path through /
née cwill go into the cell for dh. V

Fmally, the probability for the best path will appear in the final ax
column;-In this example, only one: cell is non-zero in this column; the ax
ate:of the word the (a real example wouldn’t be this simple; many other
would be non-zero).

If the sentence had actually ended here, we would now need to back-
e to find the path that gave us this probability. We can’t just pick the
‘highest probability state for each state column. Why not? Because the most
hkely path early on is not necessarily the most likely path for the whole sen-
tence. Recall that the most likely path after seeing n was the word on. But
the most likely path for the whole sentence is I need the. Thus we had to
rely ’n‘v Figure 7.10 on the “Hansel and Gretel” method (or the “Jason and
| -the Minotaur” method if you like your metaphors more classical): whenever
we moved into a cell, we kept pointers back to the cell we came from. The
,’,ﬂ_reader should convince themselves that the Viterbt algorithm has simultane-
_ously solved the segmentation and decoding problems.
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" TRIPHONE

fo gorithm, Each cell keeps the probability of the best path so far and a pomte

plified; actual implementations of Viterbi decoding are more complex i

‘simple: phones but rather subphones. In these- systems each phone is di "
~ changes: in the acoustic input happen at a finer granularity than the pho _

- context (Schwartz et al.,; 1985; Déng et al:, 1990). Thus instead of arouni

. ‘“——r“““”""-f“‘—“***———"‘fo—g—g“(,g —————————————————
need iy = 00(?0(?’96

b e e e s e e e e e e e e A e

o= B000626

000000023 ) v
= 0000600028 -

the Tt T T T T TUleFoneISResY T T T T T T T T T Tt
: t 2 000000023 ; :

5000026 > 012§ .92
. = 0000000291

a R ; _
E ' =.00077 ' D :
On ——-__-...-16)_066‘? e e e e ___-—-...‘__...___,._._._.,......4____...
aa - =00077 | [ ST o

ay | [ , CRrnin, i —
N i ey N o

o b 205679
a ( .~ = 0016
¥

start| 1.0

- Figure 7.10- - The entries in the individual state columns for the Viterbi al

. to the prevmus cell along that path. Backtracing from the successful last wor
: (zhe) we can reconstruct the wmd sequence I need tke 2

The presentation of the Viterbi algorithm in this section has been sini

three key ways that we have mentioned already. -First, in an actnal HMM.
for: speech recognition, the input would not be phones.. Instead, the inpu
is a featire vector of spectral and acoustic features.. Thus the observati
likelihood: probabilities 5;(¢)  of an observation o, given a state:; will no
simply take on the values 0 or 1, but will be more fine-grained probabih
estimates, computed via mixtures of Gaussian probability estimators or n
ral nets. The next section will show how these probabilities are computed

- Second; the HMM states in'most speech: recognition systems are-net

vided into three states: the beginning; middle and final portions of the phone
Dividing up a phone in this way captures the intuition: that the significan

for example the closure and release of a stop consonant. Furthermore; r
systems use a separate instance of each of these subphones for each trlphpn'
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phone units, there could be as many as 60° context-dependent triphones.
practice, many possible sequences of phones never occur or are very rare,
SO S§stems create a much smaller number of triphones models by clustering
the possible triphones (Young and Woodland, 1994). Figure 7.11 shows an
| exﬁmple of the complete phone model for the triphone b(ax,aw).

?fgure 7.11  An example of the context-dependent triphone b(ax,aw) (the
phone [b] preceded by a [ax] and followed by a [aw], as in the beginning of

about, showing its left, middle, and right subphones.

_ ‘Finally, in practice in large-vocabulary recognition it is too expensive
to-consider all possible words when the algorithm is extending paths from
tate-column to the next.. Instead, low-probability paths are pruned at
each time step and not extended to the next state column. This is usually im-
Epleﬁiéﬁtéd via beam search: for each state column (time step), the algorithm
maintains a short list of high-probability words whose path probabilities are
within'some percentage (beam width) of the most probable word path. Only
_‘gfsitiOns from these words are extended when moving to the next time step.
ince the words are ranked by the probability of the path so far, which words
Within the beam (active) will change from time step to time step. Making
eam search approximation allows a significant speed-up at the cost of
degradation to the decoding performance. This beam search strategy was
';ﬁ-i_ihplemented by Lowerre (1968). Because in practice most implemen-
tations of Viterbi use beam search, some of the literature uses the term beam
searchi or time-synchronous beam search instead of Viterbi.

here are two main limitations. of the Viterbi decoder. First, the Viterbi
_;‘V__,(")der. does not actually compute the sequence of words which is most
probable given the input acoustics.. Instead, it computes an approximation to
- the sequence of states (i.e:, phones or subphones) which is most prob-

BEAM SEARCH

BEAM WIDTH
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CNBEST -

:Wlth all possible language models. In fact, the Viterbi algorithm as we h av

'Variant't'hat'make'@"dynalnic programming algorithms possible. Recall th
this mvamant is the s1mphfy1ng (but incorrect) assumption that if the ulmm

| s, that this best path must include the best path up to and including s

. word. - Such a situation could occur if a particular word wy has a high: tri-
‘gram probability given wysW;, but that conversely the best path to wy ch’

. arough first decoding pass, allowing more SOphlSthdted but slower decodv'
‘algonthms to-run on a reduced search space: : a5

: Wh1ch returns the N-best sentences: (word sequences) for a given speech in
© put. Suppose for example a-bigram grammar is used with this N -best- V f;b

able given the input. This difference may not always be important; the mo
probable sequence of phones may very well correspond exactly to the mos
probable sequence of words. But sometimes the most probable sequenc
of phones does not correspond to the most probable word sequence. ' Fe
example consider a speech recognition system whose lexicon has multip]
pronunciations for each word. Suppose the correct word sequence include
a word with very many pronunciations. Since the probabilities leaving th
start arc of each word must sum to 1.0, each of these pronunciation-path
through this multiple-pronunciation HMM word model will have a smalle
probability than the path through a word with only a single pronunciatio
path. Thus becatuse the Viterbi decoder can only follow one of these pronin
ciation paths, it may ignore this word in favor of an incorrect word with onl
one pronunciation path. -

. A second problem wzth the V1terb1 decoder is that it cannot be use

defined it cannot take complete advantage of any language model more com
plex than a bigram grammar.. This is because of the fact mentioned early-th:
a trigram grammar; for example, violates the dynamic programming

best path for the entire observation sequence happens to go through a st
g;. Since a trigram grammar allows the probability of a word to be based

the two previous words, it is possible that the best trigram-probability p
for the sentence may go through a word but not include the best path to:th

include w;, (i.e.; P{wy|wy;w;) was low for all ¢).

- There are two classes of solutions to these problems with Vltel‘blzd
codmg "One class involves modifying the Viterbi decoder-to return mu
tiple potential- utterances and: then: using: other- high-level language mod_-
or pronunciation-modeling: algorithms to re-rank these multiple outputs:
general this kind of multiple-pass decoding allows a computatlonally :
cient; ‘but perhaps unsophmtlcated languiage model like a bigram to pes

- For example, Schwartz and Chow (1990) give a V1terb1 hke algomhm
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Simple Smarter
Knowledge Knowledge

Source . Source

" N-Best List

L
it e

D 1-Best Utterance

?Alice was beginning o gel
I, ?Every happy family...
K N-Best 7n a hole in the ground...

; Deeoder ?1f music be the food of fovs...

7Jf music be the foot of dove..

s
~wnd [ music be the

Rescoring |~ fodoflov.

igure 7.12. The use of N-best decodmg as part of a two- stage decodmg
model. Efficient but unsophisticated knowledge sources are used to return the
V-best utterances. This significantly reduces the search space for the second
ass models, which are thus free to be very sophisticated but slow.

““An augmentation of N-best, still part of this first class of extensions to
Viterbi, is to return, not a list of sentences, but a word lattice. A word lattice
a directed graph of words and links between them which can compactly
ncode a large number of possible sentences. Each word in the lattice is aug-
iented with its observation likelihood, so that any particular path through
-the lattice can then be combined with the prior probability derived from a
_"f-’more sophisticated language model. For example Murveit et al. (1993) de-
"’scnbe an algorithm used in the SRI recognizer Decipher which uses a bigram
ammar in a rough first pass, producing a word lattice which is then refined
-a more sophisticated language model.

. The second solution to the problems with Viterbi decodmg is to employ
ompletely different decoding algorithm. The most common alternative
ilgorithm 1s the stack decoder, also called the A* decoder (Jelinek, 1969;
J:’ei'inek et-al., 1975).. We will describe the algorithm in terms of the A*
_:_i:iérch used in the artificial intelligénce literature; although the development
of stack decoding actually came from the communications theory literature
and the link with AT best-first search was noticed only later (Jelinek, 1976).

AESCORED

WORD LATTICE

STACK DECODER

A*

2" seArcH
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A* Decoding

To see how the A* decoding method works, we need to revisit the Viterbi al-
gorithm. Recall that the Viterbi algorithm computed an approximation of the
forward algorithm. Viterbi computes the ohservation likelihood of the single
best (MAX) path through the HMM, while the forward algorithm computes
the observation likelihood of the total (SUM) of all the paths through the
HMM. But we accepted this approximation because Viterbi computed th
likelihood and searched for the optimal path simultaneously. The A* deco :
ing algorithm, on the other hand, will rely on the complete forward algorithm
rather than an approximation. This will ensure that we compute the correct
observation likelihood. Furthermore, the A* decoding algorithm allows us
to use any arbitrary language model. _ '
The A* decoding algorithm is a kind of best-first search of the lattice

tree which implicitly defines the sequence of allowable words in a languag
Consider the tree in Figure 7.13, rooted in the START node on the left. Ea
leaf of this tree defines one sentence of the language; the one formed t
concatenating all the words along the path from START to the leaf. “We
don t represent thlS tree exphcztly, but the stack decoding al gonthm uses ‘the
tree 1mph01t1y as a way to structure the decodmg search. e
. The algorithm performs a search from the root of the tree toward th
leaves, looking for the highest probability path, and hence the highest prob-
ability sentence.- As we proceed from root toward the leaves, each branch
leaving a given word node represent a word which may follow the current
word. Each of these branches has a probability, which expresses the cond
tional probability of this next word given the part of the sentence we’ve sét
so far. In’ addition; we will use the forward algorithm to assign each word
likelihood of producing some part of the observed acoustic data. The A* d
coder must thus find the path (word sequence) from the root to a leaf whic
has the highest probability, where a path probability is defined as the pr‘d
uct of its language model probability (prior) and its acoustic match to: th
FuonrrY data (likelihood). It does this by keeping a priority queue of partial path
(i.e., prefixes of sentences, each annotated with a score). In a priority que'j _
each element has-a score; and the: pop operation returns the element w1th
the highest score: The A* decoding algorithm iteratively chooses the be‘
prefix:so-far, computes all the possible next words for that prefix, and ad‘
these extended sentences to the queue. The Figure 7.14 shows the comple
aigonthm e T
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X to
intention
bequeath m
do - - - mot
: L " want  helieve
- the i
; can't .
; o ‘ lives
START- - -underwriter
o
L . typically
Toare '
o mice
‘dogs”
. ~ exceptional
“Figare 7.13 A visual representation of the implicit lattice of allowable
- word sequences that defines a language. The set of sentences. of a language
~ is far too large to represent explicitly, but the lattice gives a metaphor for ex-
- ploring substrings of these sentences.

Let’s consider a stylized example of a A* decoder working on a wave-
form for which the correct transcription is If music be the food of love. Fig-
ure 7.15 shows the search space after the decoder has examined paths of
length one from the root. A fast match is used to select the likely next
““words. A fast match is one of a class of heuristics designed to efficiently
winnow down the number of possible following words, often by comput-
ing some approximation to the forward probability (see below for further
discussion of fast matching).

' At this point in our example, we've done the fast match, selected a sub-
“set of the possible next words, and assigned each of them a score. The word
Alice has the highest score. We haven’t yet said exactly how the scoring
works, although it will involve as a component the probability of the hypoth-
esized sentence given the acoustic input P(W|A), which itself is composed
of the language model probability P(W) and the acoustic likelihood P(A|W).

. Figure 7.16 show the next stage in the search. We have expanded the
Alzce node. This means that the Alice node is no longer on the queue, but its
~children are. Note that now the node labeled jf actually has a higher score
“ than any of the children of Alice.

FAST MATCH
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| removmg it; and addmg if music; if muscle, and if messy on to the queue

function STACK-DECODING() returns min-distance

Initialize the priority queue with a null sentence:

Pop the best (highest score) sentence s off the queue.

If (s is marked end-of-sentence (EOS) ) output s and terminate.

Get list of candidate next words by doing fast matches.

For each candidate next word w:
Create a new candidate sentence s +w. :
Use forward algorithm to compute acoustic likelihood Lof s+w
Compute language model probability P of extended sentence s+ W
Compute “score” for s +w (a function of Z, P, and 7?7) '
if (end-of-sentence) set EOS flag for s+w.
Insert s + w into the queue together with its score and EOS flag

v Figure 7. 14 - The A" decoding algonthm (modified from Paul (1991) and
) Iehnek ( 1997)) The evaiuanon functmn that is used to compute the score for

"_;'_”dlscussed below

* Placoustic [ "if" y=
 forward probability -

CUPCNEISTARTY /L

N

P(uSTART)

Flgure 7 15 The begmmng of the search for the sentence If music be z‘he
food of love. At thls early stage Alice i 1s the most hkely hypothesw (It has a
hlbher score than the other hypotheses } '

Flgure 7 17 shows the state of the seareh after expanchng the zf nod
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+ P(acoustics! "if" ) =
forward probability

if
P( "if" ISTART) 30 was 2

wants

(none)

walls

figure 7.16  The next step of the search for the sentence If music be the
‘food of love. We’ve now expanded the Alice node and added three extensions
- which have a relatively high score (was, wants, and walls). Note that now the
ode with the highest score is START if, which 1s not along the START Alice

: 'path at all!
- Placoustic | music)j= -
music forward probability
. 32 :
P(music | if o -
: - muscle |
P(acoustic | whether) 31F -
forward probability
™ niessy .
P(if' | START) 0 3
- was !
29
‘ : wants. | . .
(none) Every . 24
walls
In EDE I 2_
4

Figure 7.17 . We've now expanded the if node. The hypothesis START zf

musw currently has the highest score.

* We've implied that the scoring criterion for a hypothesis is related to its
probabﬂlty Indeed 1t might seem that the score for a string of words w1 given
an'acoustm strm yE should be the product of the pnor and the hkehhood
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TREE-
STRUCTURED
LEXICON

:' _. . o( p)is the score from the begmmng of utterance 1o the end of the par—

. h*(p) is an estimate of the best sconng extension of the partial path to

’problem One approach is to choose as #* an estimate which correlates with
. (1997) for further discussion..

'codmo algorithms require the use of a fast match for quickly finding which

‘words' which' start with the same sequence of phones. The tree-structured

- hankar, 1996): Each tree root rep_rc:sents the first phone of all words beg_1

Alas, the score cannot be this probability because the probability W1I
be much smaller for a longer path than a shorter one. This is due to a sim-
ple fact about probabilities and substrings; any prefix of a string fust ha
a higher probability than the string itself (e.g., P(START the ...) will be
greater than P(START the book)). Thus if we used probability as the sco
the A* decoding algorithm would get stuck on the single-word hypothese;

Instead, we use what is called the A* evaluation function (Nilsso
1980; Pearl, 1984) called f*(p), given a partial path p:

f*(p)=¢(p) + 1 (p)
F*(p) is the estimated score of the best complete path (complete se
tence) which starts with the partial path p. In other words, it is an estimate o
how well this path would do if we let it continue through the sentence. T
algomhm buﬂds th1§ esumate from two components '

- tial path P This g function can be nicely estimated by the probabll
“ofp given the acoustics so far (i.e., as P(A|W)P(W) for the word string
W constituting p).

the end of the utterance '

- Coming up with a good est1mate of h* is an unsolved and 1nterest1ng
the number of words remaining in the sentence (Paul 1991); see Jehn K
- We mentioned above that both the A* and various other two-stage d

words in the lexicon are likely candidates for matching some portion of the
acoustic input. Many fast match algorithms are based on the use of a tree
structured lexicon, which stores the pronunciations of all the words in such
a- way that the computation of the forward probability can be shared: for

lexicon was first’ suggested by Klovstad and Mondshein (1975); fast rnzitc ;
algonthms which make use’ of it include Gupta et al. (1988), Bahl et
( 1992) in the context of A"‘ decodmg, and Ney et al. (1992) and Nguyen a
Schwarcz (1999) in the context of V1terb1 decochng Fzgure 7.18 shows: an
example of a tree-structured lexicon from the Sphinx-II recognizer (Raw
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mng with that context dependent phone (phone context may or may not be
preserved across word boundaries), and each leaf is associated with a word.

AW(B,N) HN(AW,DD) H DD(N #) } ABOUND

|

AW(B,1D) {TDAWX)|  ABOUT

B(AX,AH)H AH(B,V) |-_-§ V(AH,X) [ ABOVE

KD(EY,ID) HID(KDA|  BAKED
 K(EY . IX) }—-{IX(K,NG) }——-Jf NG({X,@J BAKING

BAKER

jgure 7.18 A tree-structured lexicon from the Sphinx-II recognizer (af-

- Ravishankar (1996)). Each node corresponds to a particular triphone in a
ightly modified version of the ARPAbet; thus EY(B,KD) means the phone
'EY preceded by a B and followed by the closure of a K.

"Theére are many other kinds of multiple-stage search, such as the for-
wgrﬂ’_‘-’backward search algorithm (not to be confused with the forward-
“';bac‘lfi_'\ﬁéi‘d algorithm for HMM parameter setting) (Austin et al., 1991) which
performs a simple forward search followed by a detailed backward (i.e.,
we-réversed) search. -

5 ACOUSTIC PROCESSING OF SPEECH

‘section presents a very brief overview of the kind of acoustic processing
monly called feature extraction or signal analysis in the speech recog-
nition literature.. The term features refers to the vector of numbers which
epresent one time-slice of a speech signal: A number of kinds of features
ommonly used; such as LPC features and PLP features. All of these are
»»spe'c'tfat features,; which means that they represent the waveform in terms of
- distribution of different frequencies which make up the waveform; such
stribution of frequencies is called a spectrum. We will begin with a brief
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introduction to the acoustic waveform and how it is digitized, summarize
idea of frequency analysis and spectra, and then sketch out different klnds
extracted features. This will be an extremely brief overview; the interest
reader should refer to other books on the linguistics aspects of acoustic pli(y
netics (Johnson, 1997; Ladefoged, 1996) or on the engineering aspects
digital signal processing of speech (Rabiner and Juang, 1993).

Sound Waves

The input to a speech recognizer, like the input to the human ear, is a compl
series of changes in air pressure. These changes in air pressure obvious
originate with the speaker, and are caused by the specific way that air pass
through the glottis and out the oral or nasal cavities. We represent sound
waves by piottmg the change in air pressure over time. One metaphor Wlu
sometimes helps in understanding these graphs is to imagine a vertical pla
which is blocking the air pressure waves (perhaps in a microphone in front o
a speaker’s mouth,"o‘r' the eardrum in a hearer’s ear). The graph measure"s"the

>

amount of compression or rarefaction (uncompression) of the air molecules
at thxs plate Flgure 7 19 shows the waveform taken from the Sw1tchboard

B ST B SR R DA I AP S DY F I S UL I .
5370 TTod0 T 040 R T G510 Toodm - T

Figure 7. 19 . A Waveform of the vowel {1y] from the utterance shown in Flgure 7. 20. Tt
y-axis shows the changes in air pressure above and below normal atmospheric pressure 'F

FREQUENGY

ANPLITUDE:

HERTZ

X-axis shows nme Notlce that the Wave repeal:s regularly‘ U TR

.-+ Two important characteristics of a wave are its frequency and amp

ﬁlde.: The frequency. is- the number of times a second that a wave repe:

-~ itself, orcycleés. Note in Figure 7.19 that there-are 28 repetitions of the wa

. * in the .11 seconds we have captured. Thus the frequency of this segme" 0

the wave is 28/.11 or 255 eycles: per second. Cycles per second are usually
called -Hertz (shortened to Hz), so the frequency n Fxgure 7.19 woul be

descrlbed as:255 Hz. e : : : -
~ The vertical axis. in Flguro 7 19 measures the amount of air pressu
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ariation. A high value on the vertical axis (a high amplitude) indicates
at there is more air pressure at that point in time, a zero value means there
‘normal (atmospheric) air pressure, while a negative value means there is
er than normal air pressure (rarefaction).
Two i 1mp011ant perceptual properties ate related to frequency and am-
ude.. The pitch of a sound is the perceptual correlate of frequency; in
eneral if a sound has a higher frequency we perceive it as having a higher
pltch' although the relationship is not linear, since human hearing has differ-
1t-acuities for different frequencies. Similarly, the loudness of a sound is
‘perceptual correlate of the power, which is related to the square of the
mphtude So sounds with higher amplitudes are perceived as louder, but
ain the relahonsmp is not linear.

o Interpret a. Wavefbrm

nce _hﬁrﬁans’ {and to some extent machines) can transcribe and understand
e'e'cmf'ju'st' given the sound wave, the waveform must contain enough infor-
ation to make the task possible. In most cases this information is hard to
ock"ﬁst by-looking at the waveform, but such visual inspection is still
sufficient to learn some things. For example, the difference between vowels
and most consonants is relatively clear on a waveform. Recall that vowels
voiced, tend to be long, and are relatively loud. Length in time manifests
elf directly as length in space on a waveform plot. Loudness manifests
tself as high amphtude How do we recognize voicing? Recall that voicing
aused by regular openmgs and closing of the vocal folds. When the vocal

losure for the second [b]) SIS .
Fncatlves like-[sh] can also be recognized in a Waveform they produce
‘t¢n§e,1negu1ar pattern; the [sh] from second .33 to .46 is a good example

AMPUTUDE

PITCH
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equency of about 250 Hz (we can figure this out since it repeats roughly
es in .036 seconds, and 9 cycles/.036 seconds = 250 Hz). The smaller
¢ then should have a frequency of roughly four times the frequency of
the larger wave, or roughly 1000 Hz. Then if you look carefully you can see
ittle waves on the peak of many of the 1000 Hz waves. The frequency
hi . tiniest wave must be roughly twice that of the 1000 Hz wave, hence
)00 Hz.

A spectrum is a representation of these different frequency compo-
nts of a wave. It can be computed by a Fourier transform, a mathematical
G edure which separates out each of the frequency components of a wave
ather than using the Fourier transform spectrum directly, most speech ap-
'cat;ons use a smoothed version of the spectrum called the LPC spectrum
tal and Hanauer, 1971; Itakura, 1975).

Flgure 7.22 shows an LPC spectrum for the waveform in Figure 7.21.
C (Linear Predictive Coding) is a way of coding the spectrum that makes
siet to see where the spectral peaks are.

b oo codbe b

Ferdionsss st ecesios g sndh

R T i sl

(SR VI SRPERPERFIIPICE NNV W S SN ST S S SO S

O 1000 2000 3000,

igure 7.22 "An LPC spectrum for the vowel le] waveform of She just had
a baby at the point in time shown in Figure 7.21. LPC makes it easy to see
formants

J

T he x—axm ofa spectrum shows frequency while the y-axis shows some

asure” of the magnitude of each frequency component (in decibels (dB),

annthrmc measure of amplitude). Thus Figure 7.22 shows that there are

Ortant frequuncy components at 930 Hz, 1860 Hz, and 3020 Hz, along

vith many other Jower-magnitude frequency components. These important

« mponents at roughly 1000 Hz and 2000 Hz are just what we predicted by
ng at the wave in hgure 7. ”1' S

SPECTRUM

EQURIER
TRANSFORM

LPS

SPECTRAL
PEAKS
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Why is a spectrum useful? It turns out that these spectral peaks th:
are easily visible in a spectraum are very characteristic of different sound
phones have characteristic spectral “‘signatures”. For example differefit ch
ical elements give off dxfferent ‘wavelengths of hgbt when they burn, all
ing us to detect elements in stars light-years away by looking at the spectru_
of the light. Similarly, by looking at the spectrum of a waveform, we can d
tect the characteristic signature of the different phones that are present. Thi
use of spectral information is essential to both human and machine speec

6OQHLEA‘. ~ recognition. Tn human audition, the function of the cochlea or inner ea
NNEREAR 0 compute a spectrum of the incoming waveform. Similarly, the feature
: used as input to the HMMs in' speech recognition are all representatxons
B spectra, uslw.lly variants of LPC spectra; as we will see.. c
e - While a spectriim shows the frequency components of a wave at o
SPECTADGRAM pomt in time, a spectrogram is a way of envisioning ow the different fre
_ quencies which make up a waveform change over time. The x-axis show
- time; as it did for the waveform; but the' y-axis now shows frequencies
- Hertz. The darkness of a point on a spectrogram corresponding to the ampl
. ‘tude of the frequency component. For example, look in Figure 7.23 aroun
- second 0.9 and notice the dark bar at around 1000 Hz. This means that th
- [iy} of the word she has an important component around 1000 Hz (1000 Hz
LUl e jUSt between the notes B and C): The dark horizontal bars ot a spectrograin,
e - FORMANTS L '. representmcr spectral peaks usually of vowels, are called formants.

- Figure 723 A spectrogram of the senténce *“She juist had a baby” whose waveform wa
| shown i1l Flgure 7.20: One way to think of a qpectmgram is as a collection of spectra (ume
- shcee) hke Flgure 7 22 placed end to end SRR N S e T

B that spemﬁc clues can spectral representatlons give for phone zden_-
ﬁcatlon‘? Flrst different vowels have their formants at characteristic plac
We've seen that [a] in the sample waveform had formants: at 930 Hz, 186
Hz and 3020 Hz C0n51der the vowel {1y] ‘at the beginning of the utterance
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leigure 7.20. The spectrum for this vowel is shown in Figare 7.24. The first
formant of [iy] is 540 Hz; much lower than the first formant for [], while the
second formant (2581 Hz) is much higher than the second formant for [a].
If you look carefully you can see these formants as dark bars in Figure 7.23
just around 0.5 seconds.

'||ls||||1|l|l:||,l|,,|,,,|"

o o 00 3000

“F‘ig’ure 7.24 A smoothed (LPC) spectrum for the vowel [iy] at the start of
‘She just had a baby. Note that the first formant (540 Hz) is much lower than
f_e first formant for [ ] shown in Figure 7.22, while the second fozmant (2581
z) is much hlcfher thdn the second formant for [ee]. |

~../%. The Jocation of the first two formants (called F1 and F2) plays a large
role in determining vowel identity, although the formants still differ from
.speaker to speaker. Formants also can be used to identify the nasal phones
{n], [m], and [}, the lateral phone [1], and [r]. Why do different vowels have
.d1fferent spectral signatures?. The formants are caused by the resonant cav-
ities of the mouth. The oral cavity can be thought of as a filter which se-
ecﬁveiy passes through some of the harmonics of the vocal cord vibrations.
Moving the tongue creates spaces of different size inside the mouth which
‘ f'selectlveiy amplify waves of the appropriate wavelength, hence amplifying
: dlfferent frequency bands.

Aeature Extractmn

C ur survey of the features ot Waveforms and spectra was necessarﬂy brief,
fbut the reader should have the basic idea of the importance of spectral fea-
_.fures and their relation to the original waveform. Let’s now summarize the
‘process of extraction of spectral features, beginning with the sound. wave
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SAMPLING
SAMPLING RATE

NYQUIST.
FREQUENCY

o "'ments for each second of speech, and so it is important to store the amphtud'
‘measurement efficiently. - They are usually stored as integers; either 8-bi

" QUANTIZATION.

o which are cloqer together than this quantum size are represented ldentlcally

X 'spectral features.. An LPC Spectmm is represented by a vector of featu‘_
i each formant is represented by two featires, ‘plus two additional features

gg',;}%zfgggml " One popular feature set is cepstral, which are computed from the LPC co
. ficients by taking the Fourier transform of the spectrum. Another feature $
" PLP (Perceptual Linear Predictive analysis (Hermansky, 1990)), takes'

- LPC features and modifies them in ways consistent with human hearmg; Fo

‘work; and only frequencies less than 4,000 Hz are transmitted by telephon
- Thus an 8,000 Hz sampling rate is sufﬁelent for telephone—bandmdth spee
: 'hke the Switchboard corpiss.- g

14 The reader nnght Want to bear in mznd Plcone 8 (1993) réminder that the use of the Wi

itself and ending with a feature vector.* An input soundwave is first dig
itized. This process of analog-to-digital conversion has two steps: sam
pling and quantization. A signal is sampled by measuring its amplitud
at a particular time; the sampling rate is the number of samples taken pe;
second. Common sampling rates are 8,000 Hz and 16,000 Hz. In order
accurately measure a wave, it is necessary to have at least two samples
each cycle: one measuring the positive part of the wave and one measurin
the negative part. More than two samples per cycle increases the amplitud
accuracy, but less than two samples will cause the frequency of the wave
be completely missed. Thus the maximum frequency wave that can be m
sured is one whose frequency is half the sample rate (since every cycle need-"
two samples). This maximum frequency for a given sampling rate is called
the Nyquist frequency. Most information in human speech is in frequen
cies below 10,000 Hz; thus a 20,000 Hz sampling rate would be necess"v .
for complete accuracy. But telephone speech is filtered by the switching net

- Even an 8,000 Hz samphng rate requzres 8000 amphtude measur

(values from:-128-127) or 16 bit (values from -32768-32767). This p
cess of representing a real-valued number as a integer is called quantization
because there is a minimum granularity (the quantum size) and all valt

Once a Waveform has’ been dxgmzed it 18- converted to some- s

represent spectral tilt. Thus five formants can be represented by 12 (5 x Zﬂ.-
features. It is possible to use LPC features directly as the observation sy
bols of an HMM. However, further processing is often done to the features

extractmn should not be thought of ‘as encouragmg the metaphor of features as somednn
“in the mgnal” waltmg tobe extracted L :
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example, the spectral resolution of human hearing is worse at high frequen-
o ies, and the perceived loudness of a sound is related to the cube rate of its
: intensity. So PLP applies various filters to the LPC spectrum and takes the
,:.Qlibé. root of the features.

6 COMPUTING ACOUSTIC PROBABILITIES

- e:-1ast section showed how the speech input can be passed through signal
,};processmg transformations and turned into a series of vectors of features,
-each: vector representing one time-slice of the input signal. How are these
~ 'fk"ature vectors turned into probabilities?

.- One way to compute probabilities on feature vectors is to first cluster
“them into discrete symbols that we can count; we can then compute the
; f;probabﬂny of a given cluster just by counting the number of times it occurs in
“some training set. This method is usually called vector quantization. Vector
quaﬁtizationr was quite common in early speech recognition algorithms but
: hasmamly been replaced by a more direct but compute-intensive approach:
“}'Cémputing observation probabilities on a real-valued (‘continuous’) input
véctor -This method thus computes a probability density fanction or pdf
er a continuous space.

- There are two popular versions of the continuous approach. The most
idespread of the two is the use of Gaussian pdfs, in the simplest ver-
“sion of which each state has a single Gaussian function which maps the
_"f"bservation vector o, to a probability. An alterpative approach is the use
7'~"6f-neural networks or muiti-layer perceptrons which can also be trained
o0-assign a probability to a real-valued. feature vector. . HMMs with Gaus-
iani‘observation-probability-estimators are trained by a simple extension to
he forward-backward ‘algorithm (discussed in Appendix D). HMMs with
'Z_"'tieu.ral-net observation-probability-estimators are trained by a completely
- different algorithm known as error back-propagation.

“ In: the simplest use of Gaussians, we assume that the possmle values
: Of the observation feature vector o, are normally distributed, and so we rep-
‘resent the observation probability function ;(0;) as a Gaussian curve with
mean vector uj and covariance matrix. 3. ;; (prime denotes vector transpose).
- We present the equation here for -completeness, although we will not cover
; the details of the mathematics: -
1.

= T

(of—m)E Norpp (7.10)

CLUSTER

VECTOR
QUANTIZATION

PROBABILITY
DENSITY
FUNCTION

GAUSSIAN

NEURAL
NETWORKS

MULTI-LAYER
PERCEPTRONS

ERROR BACK-
PROPAGATION
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GAUSSIAN
MIXTURES

TIED
MIXTURES

NEURAL
NETWOHK

MULT!LAYER
- PERCEPTRON

MLP

Usually we make the simplifying assumption that the covariance
trix ¥; is diagonal, i.e., that it contains the simple variance of cepstral
ture 1, the simple variance of cepstral feature 2, and so on, without worryi
about the effect of cepstral feature 1 on the variance of cepstral featur
This means that in practice we are keeping only a single separate mean
variance for each feature in the feature vector.

Most recognizers do something even more complicated; they. ke
multiple Gaussians for each state, so that the probability of each featuire
the observation vector is computed by adding together a variety of Gaus
curves. This technique is called Gaussian mixtures. In addition, many-
systems share Gaussians between states in a technique known as param
tying (or tied mixtures) (Huang and Jack, 1989). For example acoustical
similar- phone states. might share (i.e., use the same) Gaussians forSo_
features. . SRS S
How are: the mean and covariance of the Gaussians estlmated‘7
helpfulr again to consider the simpler case of a nen-hidden Markov MQ lel
with only one state i. The vector of feature means g and the vector of coval

- ances T could then be estlmated by averagmg

- the forward—backward algonthm can be modlﬁed to assign each observau
- vector o7 to every p0551b1e state i, prorated by the probability that the HM

was in state i-at time ¢. - . : :

- An alternative way to model connnuous valued features is the use
neural network, multilayer perceptron (MLP) or Artificial Neural:
Works'(ANNs):‘.“.:*Neur'al-: networks are far too complex for us to introdu
in"a“page' or two here; thus: we will just give the intuition of how:

. are used in probability: estimation as an alternative to Gaussian estlma

The interested reader should consult basic neural network textbooks (And
son; 1995; - Hertz et al.;: 1991) as well as references specifically focusm o
neural network speech recogmtlon (Bourlard and Morgan, 1994)

A neural network 15 a set of small computanon units connecte
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veé{or of output values. The computation proceeds by each computational
':computmcr some non-linear function of its input units and passing the
siilting value on to its output units.
’_T_.‘_he- use of neural networks we will describe here is often called a hy-
,,,iﬁ [MM-MLP approach, since it uses some elements of the HMM (such  Hvari
as the""state -graph’ representatlon of the pronunciation of a word) but the
p(Ot) .
» rearrange the terms as follows:
ploda;) _ Plajlo) .
»(o,) - Play)
'scaied hkehhood (the hkehhood dmded by the probabxhty of the observa- 3500

In fact, the scaled likelihood is just as good as the regular likelihood,
ceﬂth‘e probabxhty of the observatzon p(ot) is a constant during recogmtlon
nd doesn’t hurt us to have in the equation. - S o

'he error-back—propagatlon algonthm for trammg an MLP requxres
we know the correct phone label g; ;-for' each observation o;. Given a
‘ trammg set of observations and correct labels, the algorithm iteratively
‘-;ad}usts the weights in the MLP to minimize the error with this training set.
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Output Layer
54-61 Phones

Hidden 'Lé'y'ér:' o
500-4000 Fully
Connected Units

. Input Layer: -
9 Frames of 20 RASTA or PL
features, total of 180 units

- Cyrrent Frame \ o
N Righr Context

T gOme ~30ns = 20mi =10ms - - Woms . 20mis 30mr fomb. -

LeftCon:ext

_,.".1'."'Fxgure 7 25 A neuraI net used to estimate phone state probabilities. Such.'g
| anet can be used in'an HMM model as an alternative to the Gaussian model
~This partlcular net is from the MLP systems described in Bourlard and Morga
(15994) it'is glven a 'vector of features for a frame and for the four frame
on either side; and estimates p(g;jo;). This probability is then converted: £
an estimate: of the observation likelihood & = p(o|q;) using the Bayes rule
These nets are trained using the error-back-propagation algorithm as pdrt
the same emhedded training algorithm that is used for Gaussians. ‘

, __'In the next section we will see where this labeled training set comes from
o and how this training fits in with the embedded training algorithm uset
. for. HMMs: Neiiral nets seem to-achieve roughly the same performance
* a'Gaussian model but have the advantage of using less parameters and th
dlsadvantage of takmg somewhat longer to train.

| } ‘,'We have Tow: mtroduced alI the algonthms thch make up the stand
. speech recogmtzon system that was. sketched in Figure 7.2 on page: 2

- We've seen how to build a Viterbi decoder, and how it takes 3 inputs (th

. observation likelihoods (via Gaussian or MLP estimation from the spectr;
o features), the HMM lexicon, and the N-gram language model) and produ

i 'the ‘most probableé string of words. But we have not seen how all the pro
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METHODOLOGY B0oX: WORD ERROR RATE

The standard evaluation metric for speech recognifion systems
is the word error rate. The word error rate is based on liow much
the word siring returned by the recognizer (often called the hypoth-
esized word string) differs from a correct or reference transcription.
Given such a correct transcription, the first step in computing word
error is to compute the minimum edit distance in words between
the hypothesized and correct strings. The result of this computation
will be the minimum number of word substitutions, word inser-
tions, and word delefions necessary to map between the correct and
hypothesized strings. The word error rate is then defined as follows
(note that because the equation includes insertions, the error rate can
be great than 100%):

Insertions + Substitutions + Deletions
Total Words in Correct Transcript

Here is an example of alignments between a reference and a

Word Error Rate = 100

. hypothesized utterance from the CALLHOME corpus, showing the
. counts_used to compute the word erfor rate;

. REF: 1 #** ** M. the PHONE IS .- i LEFT THE portable

HYP: i GOT IT TO the ***** FULLEST i LOVE TO portable
Bval: 1 I S D S S S

REF: **#¥  PHONE UPSTAIRS last night so the battery ran out
HYP: FORM OF ~ STORES  last night so the battery ran out

Bval: T ... S - .S
o ‘T‘his"ﬁt't‘eraﬁée‘ has ‘six substitutions, threé insertions, and one dele-
64341
Word Error Rate IOOM+18+ = 56%

© "As of the time of this writing; state-of-the-art speech recognition
* Systems were achieving around 20% word error rate on natural-

speech tasks like the National Institute of Standards and Technology

~ (NIST)’s Hub#4 test set from the Broadcast News corpus (Chen et al.,

©1999), and around 40% word error rate on NIST’s HubS test set from
" thé combined Sw1tchhoard, Sw1tchboard IT and CAI LH()MF cor-
a "pora (Ham et al 1999) '
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EMBEDDED
TRAINING

‘- miich larger corpus of text for traming the language model; mclu

._ 'pronunmatlon dlctlonary such as the PRONLEX dictionary (LDC; 199-
. the CMUdict dictionary, both descnbed in Chapter 4, In some systeml
phone in the dlcuonary maps into a state in the HMM So the word cat wol

' tram in a basic speech recognition system:

- ’In order to train these components we usually have

' "i'"way we described in Chapter 6; by counting N-gram occutrences in a larg’e
»_;-corpus, then smoothing and normalizing the counts. The corpus use
- v.:f_'trammg the language model is usually much larger than the corpus use

'_ 'corpus ‘the more accurate the models. Smce N- gram models are much f;
to train than HMM observation probab1ht1es and since text just takes

____,____.used for trammg the HMM parameters is included as part of the }ang. ge
o "model trammg data; 1t is zmportant that the acoustxc and language m
o trammg be consistent. - -

bilistic models that make up a recognizer get trained.

In this section we give a brief sketch of the embedded trammg proc
dure that 1s used by most ASR systems, whether based on Gaussians, MLP"'
or even vector quantization. Some of the details of the algorithm (like: t
forward-backward algorithm for training HMM: probabilities) have beenr
moved to Appendix D. SN

Let’s begin by summarizing the. four probab111st1c models we need;

"« language model probabilities: P wgfwiﬁlwf_g)
observatlon likelihoods: & (oz o
transxt:on probablhnes a,} L RO R

pronuncxatlon lex1con HMM state 01aph structure

ea training corpus of speech wavefiles, together with a word- transonptl

“ing'the WOI‘d—ﬂ'&IlSCI‘lpthl’lS from the speech corpus together w1th ma
other similar texts e s

. often a smaller tralnmg corpus of speech which is phonetmaﬂy Iab
(1 e frames of the acoustic signal are hand-annotated with phoneme

“Let’s begm with the N -gram language model. This is tramed in

{rain the HMM a and b parameters This is because the. larger the’ traxmng

space than speech, it turns out to be feasible to train language model on
huge corpora of as much as half a billion words of text, Generally the corp

- The HMM 1ex1con sfructure is buﬂt by hand by takmg an off—th

have three states corresponding to [k]; [ae]; and [t]. Many systems, ho
use the more complex subphone structure described on page 251, in whi
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ch hone 18 divided into 3 states: the beginning, middle and final portions
¢ phone, and in which furthermore there are separate instances of each
‘these subphones for each triphone context.

" The details of the embedded. training of the HMM parameters varies;
‘present a simplified version. First, we need some initial estimate of
fransition and observation probabilities @;; and b;(o,;). For the transi-
probabilities, we start by assuming that for any state all the possible
wing states are all equiprobable. The observation probabilities can be
strapped from a small hand-labeled training corpus. For example, the
TIMIT or Switchboard corpora contain approximately 4 hours each of pho-
"hetlcaﬂy labeled speech. . They supply a “correct” phone state label g for
1 .each_frame of speech. These can be fed to an MLP or averaged to give initial
ussian means and varjances. For MLPs this initial estimate is important,
. 'so a hand-Tabeled bootstrap is the norm. For Gaussian models the initial
-v‘z‘ilﬂé;:bf the parameters seems. to. be less important and so the initial mean
and variances for Gaussians: often are just set identically for all states by
using the mean and variances of the entire training set. .

Now we have. initial estimates for the a and b probabﬂmes The next
ge of the algorithm differs for Gaussian and MLP systems. For MLP sys-
s.-we apply what is called a forced Viterbi alignment. A forced Viterbi
: sahgnment takes as input the correct words in an utterance, along with the
"ctral feature vectors. It produces the best sequence of HMM states, with
1 state aligned with the feature vectors. A forced Viterbi is thus a simpli-
catlon of the regular Viterbi decoding algorithm, since it only has to figure
'ut}the correct phone sequence, but doesn’t have to discover the word se-
-guence. It is called forced because we constrain the algorithm: by requiring
- best path.to go: through a particular sequence of words. It still requires
he Viterbi algorithm since words have muitiple pronunciations, and since
he duration of each phone is not fixed. The result of the forced Viterbi is a
‘of features vectors with “correct” phone labels, which can then be used
retrain the neural network. The counts of the transitions which are taken
the forced alignments can be used to estimate the HMM transition proba-
ilities. - R RS =

. For. the Gauss1an HMMS mstead of using forced V1terb1 we use the
_ rward-backward algorithm described in Appendix D. We compute the for-
yard and backward: probabilities for each sentence given the initial a and
- probabilities, and use them to re-estimate the @ and b probabilities.. Just
s for the MLP: situation, the forward-backward algorithm needs to be con-
trained by our knowledge of the correct words.. The forward-backward al-

FORCED
VITERBI
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gorithm computes its probabilities given a model . We use the “kno
words sequence in a transcribed sentence to tell us which word model
string together to get the model A that we use to compute the forward an
backward probabilities for each sentence. 8

7.8 'WAVEFORM GENERATION FOR SPEECH SYNTHESIS |

Now that we have covered acoustic processing we can return to the acou
component of a text- to-speech (TTS) system. Recall from Chapter 4 that

output of the linguistic processing component of a TTS system is a sequen

of phones, each: with a duration, and a FO contour that specifies the pi

TARGET This specification is often called the target, as it is this that we want
synthemzer to produce. '

- The most commonly used type of algonthm works by waveform c

IR S catenatlon ‘Such concatenative synthesis is based on a database of spe
- that has been recorded by a single speaker. This database is then segmel

~ intoa number of short tnits, which can be phones, diphones, syllables, w

or other units. The siriiplest sort of synthiesizer would have phone units

 the database would have a single unit for each phone in the phone invent

By selecting units appropriately, we cangenerate a series of units w

- match the phone sequence in the input. By using signal processing to sm'

joins at the unit edges; we can simply concatenate the waveforms for eac

these units to form a single synthetic speech waveform.

‘ ~Experience has shown that single phone concatenative systems dor

. ""produce good- quahty speech. -Just as in speech recognition, the conte*{"'

. the phoné plays an important role in its acoustic pattern and hence a /t/ be-

a /a/ sounds very different from a /t/ before an /s/. i

- 'The triphone models described in Figure 7.11 on page 251 are a po

‘ ular cho1ce of unit in speech recognition, because they cover both the

~ and- right contexts. of a phone. . Unfortunately, a language typically: h:

E © " very. large' number of triphones (tens of thousands) and it is currently: |
~orvones - hibitive to- collect so many units for speech synthesis. Hence dlphones
. “often used in speech synthesis as they provide a reasonable balance between

" context-dependency and size (typically. 1000-2000 in a language). In SPe“'ch

- synthesis, diphone units normally start half-way through the first phone ‘and
*‘end half-way throngh the second. This is because it is known that phones

" ‘more stable in the middle than at the edges, so that the middles of mos;

- phones in adiphone are réasonably similar, even if the acoustic patterns: st
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difﬁer substantially after that. If diphones are concatenated in the middles
phones, the discontinuities between adjacent units are often negligible.

itch and Duration Modification

he diphone synthesizer as just described will produce a reasonable qual-

s ;S'e"ech waveform corresponding to the requested phone sequence. But
itch and duration (i.e., the prosody) of each phone in the concatenated
Veform will be the same as when the diphones were recorded and will not

worké"'pitch-synchronously in that each frame is centered around a pitch-
imark'm the speech rather than at regular mtervals as in normal speech sxg-

part Speech is made longer by duplication frames and shorter by leaving
s out. The operation: of TD-PSOLA can be compared to that of a tape
recorder: with- variable speed — if you play back a tape faster than it was
”'corded the: pitch penods Wﬂl come closer together and hence the pitch
ncrease. But speeding up a tape recording effectively increases the fre-
quency of all the components of the speech (including the formants which
aractenze the vowels) and will give the impression of a “squeaky”’, unnat-
“v'f’vmce TD-PSOLA differs because it separates each frame first and then

TD-PSOLA
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decreases the distance between the frames. Because the internals of
frame aren’t changed, the frequency of the non-pitch components is ﬁ'ar
altered, and the resultant speech sounds the same as the original except '
a different pitch.

Unit Selection

While signal processing and diphone concatenation can produce reasona )
quality speech, the result is not ideal. There are a number of reasons for thi
but they all boil down to the fact that having a single example of each dlph
is not enough. First of all, signal processing inevitably incurs distortie
and the quality of the speech gets worse when the signal processing has:
stretch the pitch and duration by large amounts. Furthermore, there are man
other subtle effects which are outside the scope of most signal process
algorithms. For instance, the amount of vocal effort decreases over'ﬁiti
the utterance is spoken, producing weaker speech at the end of the utterar
If diphones: are taken from near the start of an utterance, they Wﬂl 'Sourx
unnatural in phrase-final positions.

~Unit-selection synthesis is an attempt to address this problem b‘
Iectmg several examples of each unit at different pitches and duration
linguistic situations, so that the unit is close to the target in the first pla
and hence the signal processing needs to do less work. One techqu
unit-selection (Hunt and Black, 1996) works as follows: i

- The input to the algorithm is the same as other concatenative syn_,
sizers, with the addition that the FO contour is now specified as three.
values per phone, rather than as a contour. The technique uses phon_e__
its units; indexing phones in a large database of naturally occurring spee
Each phone in the database is also marked with a duration and three pitc
values. The algorithm works in two stages. First, for each phone in the”téig
word; a set of candidate units which match closely in terms of phone iden
duration and FO is selected from the database. These candidates are tarke
using a target cost function, which specifies just how close each unit
ally is to the target. The second part of the algorithm works by measu
how: well each candidate for each unit joins with its neighbor’s candidate
Various locations for the joins are assessed, which allows the potential f
units to be joined in the middle, as with diphones..These potential joins
ranked using a concatenation cost function. The final step is to pick thé:_f;be
set of units which minimize the overalil target and concatenation cost for
whole sentence: This step is performed using the Viterbi algorithm in'a sir
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ar way to HMM speech recognition: here the target cost is the observation
robability and the concatenation cost is the transition probability.

. By using a much larger database which contains many examples of
ach unit, unit-selection synthesis often produces more natural speech than
straight diphone synthesis. Some systems then use signal processing to make
sure the prosody matches the target, while others simply concatenate the
~units following the idea that a utterance which only roughly matches the
arget is better than one that exactly matches it but also has some signal
‘processing distortion,

9 HUMAN SPEECH RECOGNITION

peech recognition in humans shares some features with the automatic
peech. recognition models we have presented. We mentioned above that
}Slgnal processing- algorithms -like PLP analysis (Hermansky, 1990) were in
fact-inspired by properties of the human auditory system. In addition, four
f@jpertles of human lexical access (the process of retrieving a word from
ie mental lexicon) are also true of ASR models: frequency, parallelism,
‘neighborhood effects, and cue-based processing. For example, as in ASR
ith its N-gram Janguage models, human lexical access is sensitive to word
frequency: High-frequency spoken words are accessed faster or with less
information than low-frequency words. They are successfully recognized
¢ noisier environments than low frequency words, or when only parts of
the words are presented (Howes, 1957; Grosjean, 1980; Tyler, 1984, inter
ia): - Like ASR models, human lexical access is parallel: multiple words
--aré active at the same time (Marslen-Wilson and Welsh, 1978; Salasoo and
Pisoni, 1985; inter alia). Human lexical access exhibits neighborhood ef-
"fects (the nelghborhood of a word is the set of words which closely resem-
'Bl"cv it). Words with large frequency-weighted neighborhoods are accessed
slower than words with Iess neighbors (Luce et al., 1990). Jurafsky (1996)
shows that the effect of ne1ghb0rh00d on access can be explamed by the
Bayesian models used in ASR. o S

- Finally; human' speech perceptlon is cue based speech input is inter-
preted by integrating cues at many different levels. For example, there is
¢evidence that human perception of individual phones is based on the inte-
gtation of multiple cues, including acoustic cues, such as formant structure
or the exact timing of voicing, (Oden and Massaro, 1978; Miller, 1994), vi-
sual cues, such as lip movement (Massaro and Cohen; 1983; Massaro, 1998),

LEXICAL
ACCESS
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and lexical cues such as the identity of the word in which the phone is placex

(Warren, 1970; Samuel; 1981; Connine and Clifton, 1987; Connine, 1 990)

For example, in what is often called the phoneme restoration effect, Warrei_l

(1970) took a speech sample and replaced one phone (e.g. the [s] in legisla:

furey with a cough. Warren found that subjects listening to the resulting tap

typically heard the entire word legislature including the [s], and perceiv’eﬂ

the cough: as background. Other cues in human speech perception includ

- oRD w ¢ seinantic word association (words are accessed more quickly if a semanti:

RERENGON - cally related word has been heard recently) and repetition priming (wor

SN are dccessed more quickly if they themselves have just been heard). Th‘_'

SR intuitions of both these results are incorporated into recent language models

| G discussed in Chapter 6, suchas the caché model of Kuhn and de Mori (1990)-

. which models repetition priming, or the trigger model of Rosenfeld (1996)- ‘

- " and'the LSA models of Coccaro and Jurafsky (1998) and Bellegarda ( 1999)_

ST which model word association: In a fascinating reminder that good ideas are

~ - never discovered only once, Cole and Rudnicky (1983) point out that man

L -‘_'fof these. 1nsxghts about context effects on word and phone processing: we

o actuaHy dlscovered by Wﬂham Bagley (1901). Bagley achieved his results,

S mcludmg an’ early version of the phonemc restoration effect, by recordi

DR speech on Ed:son phonograph cylinders; modifying it; and presenting it

R !Bagley § resuits were forgotten: and only rediscovered much: Jate

nie difference betWeen cuirent:ASR models and human speech recog:

: Qurse of the model. It is important for the performance

. the:ASR: algonthm‘ that the the decodmg search optimizes over the entire ut

ans*that the be';t sentence hypothesis returned by a decode

15 entence‘ may be very differenit: than: the: current-best ]

LI ’?Sentence By contrast, there is extensive evidenc

L ONANE '_-that human processmg is on-line: people incrementally segment and utter:

. ance mto Words and assign it arm interpretation as they hear it. For exampie

| Marsien—Wﬂson (1972) studied “close  shadowers: : people: who are able

- shadow (repeat back) a passage as they hear it with lags as short as 250 1

1 Marslen- Wﬂson found: that when these shadowers made errors, they w

i 'syntactlcally and semantlcally appropnate with the context, indicating: ¢

SRR Word segmentatmn parsmg, and interpretation took place. within these 25
Joms! Cole a 973) and Cole and Jakimik (1980) found similar effects in th

B ‘work  on’ the detection: of ‘mispronunciations.. These results have led p_

- chological modeéls of human speech perception (such as the Cohort mo

5 Recall the discassion on page 15 of multiple independent discovery in sciénce... =
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‘(Marslen -Wilson and Welsh, 1978) and the computational TRACE model
'(McCleHand and Elman, 1986)) to focus on the time-course of word selec-
..t1oﬁ and segmentation. The TRACE model, for example, is a connectionist
or neural network interactive-activation model, based on independent com-
k~,‘»putat10nal units organized into three levels: feature, phoneme, and word,
“Each unit represents a hypothesis about its presence in the input. Units are
activated in parallel by the input, and activation flows between units; con-
1ections between units on different levels are excitatory, while connections
-'::béfWeen units on single level are inhibitatory.. Thus the activation of a word
hghﬂy inhibits all other words. =

. We have focused on the 51m11m1t1es between human and machine
peech recognition; there are also many differences. In particular, many
ther cues have been shown to play a role in ‘human speech recognition but
ha_Ve, yet to be successfully integrated into ASR. The most important class
these missing cues is prosody. To give only one example, Cutler and
Norris (1988), Cutler and Carter (1987) note that most multisyllabic English
word tokens have stress on the initial syllable suggesting in their metrical
egmentatlon strategy (MSS) that stress should be used as a cue for word
egmentatlon : : :

Together with Chapters 46, this chapter introduced the fundamental algo-
nthms for addressing the problem of Large Vocabulary Continuous Speech
“Recognition and Text-To-Speech synthesis.

* The input to a speech recognizer is a series of acoustic waves. The
) “waveform, 'spectrogram and spectrum are among the wsuahzatmn
" tools used to understand the information in the signal.

In the ﬁrst 9tep in speech recognition, wound waves are sampled
quantlzed ‘and converted to some sort of spectral representatlon A
V'commonly used spectral representatlon is the LPC cepstrum Wthh
'pr0v1des a vector of features for each time- shice of the input.

. These: feature vectors are used o estunate the phonetlc likelihoods
. {(also called observatmn hkehhoods) either by a mixture of Gaussian
estimators or by a neural net.. . U

' Decoding or search is the process of ﬁndmg the optlmal sequence of
2. model states. which matches a sequence of input observations. (The

CONNECTIONIST

NEURAL
NETWORK
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fact that are two terms for this process is a hint that speech recog
tion is inherently inter-disciplinary, and draws its metaphors from mb
than one field; decoding comes from information theory, and searc
from artifictal intelligence). -

s We introduced two decoding algorithms: time-synchronous Vlter

- decoding (which is usually implemented with pruning and can thj:

be called beam search) and stack or A* decoding. Both algonthm_,

take as input a series of feature vectors, and two ancillary algorithms

one for assigning likelthoods (e.g., Gaussians or MLP) and one

assigning priors {(e.g., an N-gram language model). Both give as ou’t}‘i

- . astring of words.

e The embedded training paradigm is the normal method for tralm

“speech recognizers. Given an initial lexicon with hand-built pronumc

- ation stractures, it will train the HMM transition probabilities and th
- HMM observation probabilities. This HMM observation probablh

" estimation can be done via a Gaussian or an MLP,

"o One way to lmplement the acoustic component of a TTS system is with
N concatenatlve synthesis, in which an utterance is built by concatenat-

*ing'and then smoothmg diphones taken from a large database of speec':h;
'cOrded by a smgle speaker

”"ND HISTORICAL NOTES

s 'EL-A,The ﬁrst machme WhICh recogmzed speech was probably a commerc:lal
RS f-jnamed “Radio Rex” which was sold in the 1920s. Rex was a celtuloid. do
. that:moy sprmg) when the spnng was released by 500 Hz acoust
" energy. Since 500 Hz is roughly the first formant of the vowel in “Rex” ‘the
do0 seemed to come when he was called (David and Selfridge, 1962).

By the late 19405 and early 1950s, a number of machine speech recog~

mtlon systems had ‘been built.:'An early Bell Labs system could recognize

any of the 10 digits from a single speaker (Davis et al., 1952). This syste

had 10 speaker-dependent stored patterns, one for each digit, each of whit 1

- . toughly represented the first two vowel formants ini the digit. They achieved
. 97299% accuracy by choosing the patter’ which had the highest relatiy

- correlation coefficient with the input. Fry (1959) and Denes (1959) buﬂt a

. phoneme recognizer at University College, London, which recognized four
. vowels and nine consonants based on a similar pattern-recognition pnnmpl_e .
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""ry and Denes’s system was the first to use phoneme transition probabilities
y constrain the recognizer. '

. The late 1960s and early 1970s produced a number of important para-
igm shifts. First were a number of feature-extraction algorithms, include
‘the’ efficient Fast Fourier Transform (FFT) (Cooley and Tukey, 1965), the
pplication of cepstral processing to speech (Oppenheim et al., 1968), and
1e: development of LPC for speech coding (Atal and Hanauer, 1971). Sec-
;bﬁd'were a number of ways of handling warping; stretching or shrinking
,gtﬁél’input signal to handle differences in speaking rate and segment length
hen matching against stored patterns. The natural algorithm for solving
this problem was dynamic programming, and, as we saw in Chapter 3, the
afgbrit]:un was reinvented multiple times to address this problem. The first
pphcanon to. speech processing was by Vintsyuk (1968), although his re-
’11t ‘was not picked up by other researchers, and was reinvented by Velichko
and Zaooruyko (1970) and Sakoe and Chiba (1971) (and (1984)). Soon af-
erwards; Itakura (1975) combined this dynamic programming idea with the
ECiC'Oefﬁcients that had previously been used only for speech coding. The
resulting system extracted LPC features for incoming words and used dy-
namic programming to match them against stored LPC templates.

The third innovation: of this period was the rise of the HMM. Hid-
env, Markov- Models seem to have been applied to speech independently
at two laboratories around 1972.. One application arose from the work of
:staﬁsucmns in particular Baum and colleagues at the Institute for Defense
: -,Analyses in Princeton on HMMs and their application to various predic-
;tlon problems (Baum and Petrie, 1966; Baum and Eagon, 1967). James
.B:aker learned of this work and applied the algorithm to speech process-
,,mg (Baker 1975) during his graduate work at CMU. Independently, Freder-
ick Jelinek, Robert Mercer, and Lalit Bahl (drawing from their research in
'ormatlon-theoretlcal models influenced by the work of Shannon (1948))
splicd HMMs to speech at the IBM Thomas J. Watson Research Center
ehiiek et al;, 1975). IBM’s and Baket’s systems were very similar, par-
c‘fﬁlaﬂy' in their use of the Bayesian framework described in this chapter.
One early difference was the decoding algorithm; Baker’s DRAGON system
used Viterbi (dynamic programming) decoding, while the IBM system ap-
plied Jelinek’s stack decoding algorithm (Jelinek, 1969). Baker then joined
the IBM: group for a brief time before founding the speéch-recognition com-
_'pany Dragon Systems. The HMM . approach to speech recognition would
tum out to completely dominate the field by the end of the century; indeed
the IBM lab was the dnvmg force in extendmg statistical models. to natu-

WARPING
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ral language processing as well, including the development of class-basi
N-grams, HMM-based part-of-speech tagging, statistical machine tralls;}
tion, and the use of entropy/perplexity as an evaluation metric. v
The use of the HMM slowly spread through the speech commum'
One cause was a number of research and development programs sponsor
by the Advanced Research Projects Agency of the U.S. Department of D
fense (ARPA). The first five-year program starting in 1971, and is review
in Klatt (1977). The goal of this first program was to build speech und_e
standing systems based on a few speakers, a constrained grammar and lex
con (1000 words), and less than 10% semantic error rate. Four systems we
funded and compared against each other: the System Development Corp
ration’ (SDC) system, Bolt, Beranek & Newman (BBN)’s HWIM syste
Carnegie-Mellon University’s- Hearsay-1I system, and Carnegie-Mellon’s
system (Lowerre, 1968). The Harpy system used a simplified versio
Baker’s HMM-based DRAGON system and was the best of the tested §
tems; and according to Klatt the only one to meet the original goals of
ARPA project (with a semantic error rate of 94% on a simple task).
Begmmng in the mid-1980s, ARPA funded a number of new spee
SR research programs The first was the “Resource Management” (RM). task
R ‘(Prlce etal.; 1988) ‘which like the earlier ARPA task involved transcrip-
;_*tlon (recogmnon) of ‘read- speech (speakers reading sentences constructs
from a 1000-word: vocabulary) but which now included a component: 'th
mrolved speaker—mdependent recognition. Later tasks included recognition
“rof -:séntences read from the Wall Street Journal (WSJ) beginning with limit
" systems of 5,000 words, and finally with systems of unlimited Vocabul'_:
- (in practice most systems use approximately 60,000 words). Later speec
- recognition tasks moved away from read-speech to more natural dorain
- the Broadcast News (also called Hub-4) domain (LDC, -1998; Graff, 199
(transcnpﬂon of actual news broadcasts, including quite difficult passages
such as on-the-street interviews) and the CALLHOME and CALLFRIEND
- domain (LDC, 1999) (natural telephone conversations between friends); p"
of what was also called Hub-5. The Air Traffic Information System (ATI
task (Hemphill: et al.;: 1990) was: a speech understanding task whose go
was to-simulate helping: a user book a flight, by answering questlons abo
o potentlal airlines, times; dates, and so forth. - : -
- maeore . - Each of'the ARPA tasks involved an approx1mately annual bake-off
. Wthh all: ARPA-funded systems, and many other ‘volunteer’ systems fro
'North American and Europe were evaluated against each other in term ’of
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poratlons did not generally compete, but eventually many (especially 1BM
and:ATT) competed regularly. The ARPA competitions resulted in widescale
boftowmg of techniques among labs, since it was easy to see which ideas
had provided an error-reduction the previous year, and were probably an im-
jitant factor in the eventual spread of the HMM paradigm to virtual every-
méjt)r speech recognition lab. The ARPA program also resulted in a number
of useful databases, originally designed for training and testing systems for
ch evaluation (TIMIT, RM, WSJ, ATIS, BN, CALLHOME, Switchboard)
at then made available for general research use.
- There are a number of textbooks on speech recognition that are good
choices for readers who seek a more in-depth understanding of the material
this chapter: Jelinek (1997), Gold and Morgan (1999), and Rabiner and
ﬁiéifig (1993) are the most comprehensive. The last two textbooks also have
: comprehenswe discussions of the history of the field, and together with the
_ survey paper of Levinson (1995) have influenced our short history discussion
: _hlS chapter. Our description of the forward-backward algorithm was mod-
~_eled after Rabiner (1989). Another useful tutorial paper is Knill and Young
(1997). - Research in the speech recognition field often appears in the pro-
ceedmgs of the biennial EUROSPEECH Conference and the International
je,Conference on Spoken Language Processing (ICSLP), held in alternating
'years as well as the annual IEEE International Conference on Acoustics,
‘ '-__Speech and Signal Processing (ICASSP). Journals include Speech Com-
f'mumcatlon Computer Speech and Language, IEEE Transactions on Pattern
'Analys1s and Machine Intelligence, and IEEE Transactions on Acoustics,
Speech, and Signal Processing.

EXERCISES

- Analyze each of the errors in the incorrectly recognized transcription
of “um the phone is I left the...” on page 271. For each one, give your best
uess as to whether you thmk it is caused by a problem in signal process-
ng, pronunciation modeling, lexicon size, language model, or pruning in the
fecoding search.

7;2 In practice, speech recogmzers do all their probability computation us-
mg the log probablhty (or logprob) rather than actual probabilities. This

LOGPROB
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helps avoid underflow for very small probabilities, but also makes the Viterbi
algorithm very efficient, since all probability multiplications can be imple-
mented by adding log probabilities. Rewrite the pseudocode for the Viterbi
algorithm in Figure 7.9 on page 249 to make use of logprobs instead of prob*
abilities. '

7.3 Now modify the Viterbi algorithm in Figure 7.9 on page 249 to im:
plement the beam search described on page 251. Hint: You will probably‘%
need to add in code to cheuk whether a given state is at the end of a word «
not. :
7.4 Finally, modify the Viterbi algorithm in Figure 7.9 on page 249 with
more detailed pseudocode implementing the array of backtrace pointer

7.5 Implement the Stack decoding algorithm of Figure 7.14 on 256. Pick
a very simple A* function hke an estimate of the number of words remammg
in the sentence. '

7.6  Modify the forward algonthm of F1gure 5.16 to use the tree- structured'
lexicon of Figure 7 18 on page 259. '
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Oh are you from Wales?

Do you know a fella named Jonah?

He used to live in whales for a while.
Groucho Marx

This chapter introduces a number of topics related to Iezacal semantic pro-
cessing. By this, we have in mind applications that make use of word mean-
ings, but which are to varying degrees decoupled from the more complex
task’s of compositional sentence analysis and discourse understanding. -

- The first topic we cover, word sense disambiguation, is of consmer-
able theoretical and practical interest. Recall from Chapter 16 that the task of
word sense disambiguation is to examine word tokens in context and specify
exactly which sense of each word is being used. As we will see, this is a
non-trivial undertaking given the somewhat illusive nature of a word sense.
Nevertheless, there are robust algorithms that can achieve high levels of ac-
curacy given certain reasonable assumptions. : :

. The second topic we cover, information retneval is an extremely
broad field, encompassing a wide-range of topics pertaining to the storage,
analysis, and retrieval of all manner of media (Baeza-Yates and Ribeiro-
Neto, 1999). Our concern in this chapter is solely with the storage and re-
trieval of text documents in response to users’ requests for information. We
are interested in approaches in which users’ needs are expressed as words,
and documents are represented in terms of the words they contain. Section
173 presents the vector space model, some varlant of Wthh is used in many
current systems, including most Web search engmes -
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17.1  SELECTIONAL R'E"STRI‘CTION;BASED DISAMBIGUATIO}
-+ For the most part, our discussions of compositional semantic analyzers i
Chapter 15 ignored the issue of lexical ambiguity. By now it should be
clear that this is not a reasonable approach Without some ‘means of
lecting correct senses for the words in the input, the enormous amount 0
~ homonymy and polysemyin the lexicon will quickly overwhelm any ap
proach in an avalanche of competmg interpretations. As with syntactic p
o of-speech tagging, there aré two fiindamental ‘approaches to handling t
R ambigulty problem. In an integrated rule-to-rule approach to semantic anal
i ySIS the selection of correct word senses occurs during semantic analy
o as a side-effect of the elimination of ill-formed semantic representations:
cooa stand—alone. approach sense dtsamblguatlon is performed independent.
SERRY and prior to ioomposztlonal semantic analysm This section discusses the roit
Cof seIect:xonal restrictions in the fortner approach 'I‘he stand-alone appro a
is discussed in detail in Section 17.2." . o
Selectional restictions and type hrerarchles are the pnmary knowle
£ sources used to perform dlsamblguahon in'most integrated approaches _T h
‘are-u sed 0 rul > out: mappropnate senses and theteby reduce the amoun
ambtgmty present durmg semantic analys;s In an integrated rule-to-rt I
'_‘proach to: semantlc analysls selectronai restrictions’ are-used to bloc
- formation of component meamng representatzons that contain selectlon re
B 'stncuon violations. By blocking such ill-formed components, the sem
R analyzer will find itself dealing with fewer ambiguous meaning repres
o *'-'g'ttons Th1s ablhty to focus on correct senses by eliminating flawed repre
}tat;tons that result from meorrect senses can be viewed as a form of indir
i word sense dlsamblguatzon While the linguistic basis for this : approac
S be traced back to the work of Katz and Fodor (1963), the most SOphl‘;th&
= s computahonal exploration of it is due to Hirst (1987), .
s Asan example of thls approach ‘consider the followmg peur of'
' exaniples ; focusmg soler on therr use of the lexeme dzsh

‘ '--f“several 51mple dxshes mcludmg bralsed ptg s ears and Cthk
hvers w1th green peppers R : -

‘These examples make use of two polysemous senses of the lexeme dzsh
ﬁrst refers to the physmal Ob_]CCtS that we eat from while the second refe
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- the actual meals or recipes. The fact that we perceive no ambiguity in these
examples can be attributed to the selectional restrictions imposed by wash
and stir-fry on their PATIENT roles, along with the semantic type information
associated with the two senses of dish. The restrictions imposed by wash
conflict with the food sense of dish since it does not denote something that
is normally washable. Similarly, the restrictions on stir-fry conflict with the
artifact sense of dish, since it does not denote something edible. Therefore,
in both of these cases the predicate selects the correct sense of an ambiguous
argurment by eliminating the sense that fails to match one of its selectional
restrictions.
Now consider the following WSJ and ATIS examples, focusing on the
ambiguous predicate serve:

(17.3)  Well, there was the time they served green—hpped mussels from
New Zealand. : L L

(174) Which a1rhne's‘s'eﬁé b’éﬁvér*f o

(17 5) Whlch ones serve breakfast?

| Here the sense: of serve in example (17 3) requlres some kmd of food as its
PATIENT, the sense in example (17.4) requires some kind of geographical or
political entity, and the sense in the last example requires a meal designator.
If we assume that mussels, Denyer and breakfast are unambiguous, then it is
the arguments in these examples that select the appropriate sense of the verb.

Of course, there are also cases where both the predicate and the argu-
ment have multiple senses. Consider the following BERP example:

(17. 6) Tm lookmg fora restaurant that serves vegetanan dxshes

'Restnctmg ourqelve% to three senses of serve and two senses of dzsh ylelds
six possible sense combinations in this example. However, since only one
combination of the six is free from a selectional restriction violation, de-
: termlmng the correct sense of both serve and dish is stralghtforward ‘the
predicate and argument mutually select the correct senses.. SEI
Although there are a wide variety of ways to mtegrate thls style of
dlsamb1guat1on into a semantic analyzer, the most stra1ghtforward approach
follows the rule-to-rule strategy introduced in Chapter 15. In this integrated
approach, fragments of meaning representations are composed and checked
for selectional restriction violations as soon as their corresponding syntac-
tic constituents are created. - Those representations. that contain selectional
restriction violations are eliminated from further consideration.. . - -
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" This approach requifes two additions to the knowledge structures use
in semanttc analyzers:. access to hierarchical type information about af
ments, and semantic select1onal restriction information about the argttmej

o to predwates Recall from Chapter 16 that both of these can be encode

1ng knowledge from. WordNet The type information i is avadable in th'e;"f Ort

- ofthe hypemym mformat}on about the heads of the meaning structures be
" ing used as arguments to predlcates The selecttonal restriction informa
B about argument roles can be encoded by assocmttng the approprtate Wor
S f,.Net synsets Wlth» the arguments to each predtcate-beanng lemcal 1tem» :

Lk -"ti_-";“'leltatlons.of Selectlonal Restrlctlons

: “_5.'::There are & number of practtcal and theoretical problems with this us
. selectional restrictions. The first symptom of these problems is the fact t
e there are examples llke the followmg where the avaﬂab]e selectlonal res

PR thIlS are too general to umquely select a correct sense
(17 ’7) What kmd of dlshes do you recommend7

. I cases hke tlu we .eztl_r_ter have to rely on the stand~alone methods't By
. i'dtscussed in Sectmn ' ._2" 'or_ knowiedge of the broader dtscourse context, a

o ‘-' More problematlc are examples that contam obwous Vtolattons
+ lectional restnctlons but are nevertheless: perfectly well-formed: and mt’
h 'pretable Therefore any approach based on a strict elimination of suc in

: ‘B t;I ._ ] ell apatt, s? 1931 perhaps because people reahzed you ¢
' '-Q'.Jeat gold for lunch 1fyou re hungry. - e e

The phrase eat gold clearly violates the selecttonal restriction that eat plac :

- on'its PATIENT role.. Nevertheless, ‘this’ example is perfectly well- formec

: L "The key is the negattve enmonment set up by can’t prior to the vtolatxo o)

. therestriction, This example makes it clear that any purely local, or Tule-to

" rule, analysis of selectional restrictions will fail when a wider context make
e -."_'-_v'the v1olatlon of a selecttonal resmctton acceptable REERIERN

: “A'second problem W1th selectlonal restrlctlons is 1llustrated by the fol

SRR .f'_'-lowmg example" o S

. :_ '(17 9. In_hts two_ champlonshtp tnals' .le Kulkarm ate glass on an _em"
ymach,. 'accompamed only by Water and t:ea :

Althoughe'the 'event descrlbed in this exampie is’ somewhat unusual the se
- tence 1tse1f is. not semanttcally 111—formed despxte the v1olat10n of eat §: S
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tional restriction. Examples such as this illustrate the fact that thematic roles
and selectional restrictions are merely loose approximations of the deeper
concepts they represent. They cannot hope to account for uses that require
deeper commonsense knowledge about what eating is all about. At best, they
reflect the idea that the things that are eaten are normally edible.

Finally, as discussed in Chapter 16, metaphoric and metonymic uses
challenge this approach as well. Consider the following WSJ example:

(17.10) If you want to ki_ll the Soviet Un'i'dr:l,' get i’tfd try to eat Afghanistan.

Here the typical selectional restrictions on the PATIENTS of both kill and ear
‘will eliminate all possable literal senses leaving the system with no possible
" meamncrs In many syetems such 2 situation serves to tngger altematwe
' mechamsms for interpreting metaphor and metonymy (Fass, 1997)

3 As Hirst (1987) observes, examples like these often result in the ehm-
ination of all senses, bringing semantic analysis to a halt. One approach
to alleviating this problem is to adopt the view of selectional restrictions as
preferences, rather than rigid requirements. Although there have been many
instantiations of this approach over the years (Wilks, 1975¢, 1975b, 1978),
‘the one that has received the most-thorough empirical evaluation is Resnik’s
(1997) work, which uses the notion of a selectional association. A selec-
tional association is a probabilistic measure of the strength of association
between a predicate and a class dominating the argument to the predicate.
‘Resnik (1997) gives a method for deriving these associations using Word-
Net’s hyponymy relations combined with a tagged corpus contammg Verb—
‘argument relations. : : R SRR
Resnik (1998) shows that these selectmnal assoaatlons can be used 1o

this technique for verb-object relationships, a result that is an improvement
over the most frequent sense baseline which performs at 28%. A limitation
-of this approach is that it only addresses the case where the predicate is
unambiguous and selects the correct sense of the argument. A more complex
‘decision criteria would be needed for the situation where both the predicate
‘and argument are ambiGUOUS. - e

perform a limited form of word sense disambiguation. ‘Roughly speaking - -
the algorithm selects as the correct sense for an argument, the one that has =~
‘the highest selectional association between one of its ancestor hypemyms :
‘and the predicate. Resnik (1997) reports an average of 44% correct with



636 Chapter 17. Word Sense Disambiguation and Information Retriev.ef

1‘7 20 ROBUST WORD. SENSE DISAMBIGUATION i

T he selectional restnetlon approaeh to dlsamb1guat10n has too many requlre-
. mieénts to be useful i in Iarge scale practlcal apphcatxons Even with the use of

- WordNet, the’ requlrements of complete ‘selectional restnctlon informatio
“for all predicate roles; and complete type information for the senses of all

| "posmble fillers are unhkely to be met. In addition, as we saw in Chapters 10._
i _-»,"_112 and 15 ‘the avaﬂablhty of a complete and accurate parse for all mputs is”
IR, ‘unhkely to be met in env1ronments mvolvmg unrestricted text.
s O To address these concems anumber of robust stand-alone’ dlsamblg_
tion’ systems WIth riore modest requ1rements have been developed over ther '
SRP ifyears As with part—of—speech taggers, these systems are designed: to o
o <,__';_erate in a stand.alone fashion "and. make nummal assumptlons ‘about
nformatxon will. be: available from. other processes The. followmg sect ns
;jexplore the 'apphcatlon of superv1sed bootstrappmg, and unsupervised m
. chme Ieammg app1oac es' to thlS problem We ‘then conSIder the fol ko)

oo Inimachin ;»leammg approaches, systems are rramed to perform th‘ tas
- of ‘word sense: dxsamb1guatlon In: these approaches; ‘what is learned:
R classaﬁer that can be Used to assign as-yet unseen examples to, one of a ﬁx_‘ ]
- ',.j_number of senses. . As we will see; these approaches vary as to the niature
S “of the trammg matenal how much matenal is needed the degree of human
s »;v,f__mterventzon, the lund of llngmstzc knowledge used and the ou@ut prod
- What they all share is an emphasis on acquiring the knowledge. needed for
the task from data, rather than from human analysts. The principal questxon

o :.ﬁ_»'_tov keep: in m1nd as we explore these systems is whether the method scales-‘

i_‘f.j‘v-f'In most of these approaches the 1n1t1a1 mput consists of the word to be d
R 'amblguated Wthh we will refer to'as the target word, along with a poruon
o - of the: text: i wlnch 1t is embedded Wthh we: wﬂl call 1ts context. Thi

1 lnmal mput is then processed in the followmg ways o
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¢ The input is normally part-of-speech tagged using one of the high ac-
~ curacy methods described in Chapter 8.
‘e The original context may be replaced with larger or smaller segments
surrounding the target word. .
- e Often some amount of stemming, or more sophisticated morphological
processing, is performed on all the words in the context.
e Less often, some form of partial parsing, or dependency parsing, is
'performed to ascertain thematic or grammatical roles and relations.

" * After this initial processmg, the input is then boiled down to a fixed set
f_‘features that capture information relevant to the learning task. This task
* consists of two steps: selecting the relevant linguistic features, and encodmg

leldCd into two classes: collocational features and co-occuirrence features.
“In general the term collocation refers to a quantifiable position-specific re-
attonshlp between. two lexical items. Cellocattonal features encode infor-
mation about the Eemcal nﬂlabltants of speaﬁc positions located to the left
ot nght ‘of the target word. Typ1ca1 features include the word, theé root form
of the word, and the word’: $ part—of«speech Such features are effective at en-
codmg Jocal lexical and grammattcal information that can often accurately
solate a given sense.., o :

o As an example of this type of feature encod;mg, cons1der the situation
whi re' we need to dlsambtcruate the word bass in the followmg example

'-7?;,1 1) ‘An electnc guttar and bass pIayer stand off to one szde not really
. - part of the scene, just as a sort of nod to gringo expectations
perhaps. B

.j The second type of feature consists of co-occurrence data about nezgh~
oring words, ignoring their. exact position, --In this approach, the words
"":themselves (or-their roots) serve as features. The value of the feature is the
A mber of times the Word occurs in a region surrounding the target word.

them iri a form usable in a learning algorithm. A simple feature vector co-
sisting of numeric or norninal values can easily encode the most frequently_' —
used hngmstlc information, and is appropnate for use in most leammg algo—}_, L

The llngulstlc features used m trammg WSD systems can be roughly‘ ,

[gu.l.taf NNl 'and CJC player, NNl sEa}ad VVB]

FEATURE
VECTOR

COLLOCATION

A__featljre-vector consisting of the two words to the right and left of the target o
Word along thh thelr respectlve parts of—speech Wouid yleld the followmg e
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This region is most often defined as a fixed size window with the target word

at the center. To make this approach manageable, a small number of fre:
quently used content words are selected for use as features. This kind of
feature is effectrve at capturmg the general toprc of the discourse in Wblch :

the target word has occurred Thrs in tam tends to 1dent1fy senses of a word-

' that are spectﬁc to certam domams - :

... For exampie a oo~occurrence vector consrstmg of the 12 most frequen

| content words from a coIIectron of bass sentences drawn from the WSJ cor:
BT pus would have the followmg words as features: ﬁshmg, bzg, sound, player
RTH iy, rod, por,md double, rbms playmg, guztar ‘band." Using these words: :
. features with a mndow srze of 10; example ( 17 II) Would be represented by
: '{;" the followmg vector R : » SOREEEE L

S '_representatrve set of ] Iabeled rnstances drawn' from the ‘same drstrrbutron as
SUPERMSED - the test set to be used. ‘This is an application of the supervised Iearnmg
SRR approach to" creatmg a cIassrﬁer “In'such approaches; a learning systent’;
o presented with a training set consisting of feature-encoded inputs along: wrrh
. their'appropriate label, or category. The output of the system is a ¢ assrﬁer
R ;';:system capable of assigning labels to' new feature-encoded inputs. -
T ‘Bayesian classifiers (Duda and Hart, 1973), decision lists (Rlvest ‘19
.. decision trees (Quinlan; '1986), neural ‘networks (Rumelhart et al;; 1986)
o loglc leammg systems (Mooney, 1995), and nearest neighbor methods (Cov‘
~ and Hart, 1967) all fit into this paradigm. We will restrict our discussion to
. the'naive Bayes and decision list approaches; since they have been the foc
L ofa 'nsrderable work in word sense disambiguation. . SR
o gfggﬁs%,\ggs .. The naive: Bayes ciassxﬁer approach to WSD is based on the premrs
ST that”choosmg the best sense for an mput Vector amounts to choosing the m‘
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METHODOLOGY BOX: EVALUATING WSD SYSTEMS

The basic metric used in evaluating sense disambiguation sys-
tems is simple precision: the percentage of words that are tagged
correctly. The primary baseline against which this metric is com-
pared is the most frequent sense metric (Gale et al.,, 1992). how
well a system would perform if it simply chose the most frequent
sense of a word.

The use of precision requires access to the correct senses for the

~ words in a test set. Fortunately, two large sense-tagged corpora are

now available: the SEMCOR corpus (Landes et al:, 1998), which con-
sists of a portion of the Brown corpus tagged with WordNet senses,
and the SENSEVAL corpus (Kilgarriff and Rosenzweig, 2000), which
is a tagged corpus derived from the HECTOR corpus and dictionary
project.

One comphcatxon arising from the use of s1mple precwmn 1s
that the nature of the senses used in an evaluation has a huge effect

.. on the results. In particular, results derived from the use of coarse

distinctions among homographs, such as the musical and fish senses
of bass, can not e‘asﬂy be compared to results based on the use of
fine-grained sense distinctions such as those found in traditional dic-
tionaries, or lexical resources like WordNet.

A second complication has to do with metrics that go beyond
simple precision and make use of partial credit. For example, con-
fusing a particular musical sense of bass with a fish sense, is clearly

- worse than confusing it with another musical sense.. With such a

metric, an exact sense-match would receive full crecht while select-
ing a broader sense would receive partial credit. Of course, this kind
of scheme is entirely dependent on the organization of senses in the
particular dictionary being used. . '
Standardized evaluation frameworks for ‘word sense dlsam-

- biguation systems are now available. In particular, the SENSEVAL

effort (Kilgarriff and Palmer, 2000), provides the same kind of eval-
uation framework for sense disambiguation, that the MUC (Sund-
heim, 1995b) and TREC (Voorhees and Harman, 1998) evaluations

- have provided for information extraction and information retrieval.






