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ABSTRACT 

This paper explores the use of the phone and syllable 
as primary units of representation in t he first stage of a 
two-stage recognizer. A finite-state transd~c:r speech rec­
ognizer is utilized to configure the recogmt10n as a two­
stage process, where either phone or syll able graphs are 
computed in the first stage, and passed to the seco~d .~tage 
to determine the most likely word hypotheses. Preltmmary 
experiments in a weather information speech understanding 
domain show that a syllable representation with either bi­
gram or trigram language models provides more constraint 
than a phonetic representation wit h a lugher-order n-gram 
language model (up to a 6-gram), and approaches t he per­
formance of a more conventional single-stage word-based 

configuration. 

I. INTRODUCTION 

Most conventional speech recognition systems represent the 
search space as a directed graph of phone-like units. These 
graphs are typically determined by t he allowable pronun­
ciations of a given word vocabulary, with word (and thus 
phone) sequences being prioritized by word-level constraints 
such as n-grams. This framework has proven to be very ef­
fective, since it combines multiple knowledge sources into 
a single search space, rather than decoupling the search 
into multiple stages, each with t he potential to introduce 
errors. Although multi-stage searches have been explored, 
they typically all operate with the word as a basic unit . 

Although t his framework has worked extremely well, 
• the use of the word as the main unit of representation has 

some difficulties in certain situations. One common prob­
lem is that for any reasonably-sized domain, it is essentially 
impossible to predefine a word vocabulary. For example, 
in our weather information system, we are constantly faced 
with new words spoken by users (e.g., city names, concepts) . · 
We would have this problem no matter how large our vo­
cabulary was, since the vocabulary of the English language 
is constantly growing and changing. It is thus not possible 
to define a word vocabulary, no matter how large, that will 
forever cover all conceivable spoken words. One problem 
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with out-of-vocabulary words, is t hat they introduce errors 
into the recognition system (typically more t han one), since 
the recognizer will fit the phonetic sequence with the best­
fitting set of words which exist in its vocabulary. 

A similar phenomenon to out-of-vocabulary words is 
that of partially spoken words, which are typically produced 
in more conversational or spontaneous speech applicat ions. 
These phenomena also tend to produce errors since the rec­
ognizer matches t he phonetic sequence with t he best fitting 
words in its active vocabulary. 

Since the domains we work on tend to have both of 
these properties, we have begun to explore methods that 
can be used to model out-of-vocabulary and partial words 
which are based on the use of more flexible sub-word units 
(such as phones or syllables, which are not cons:rained to 
match the active word vocabulary). Sub-word U111ts such as 
phones and syllab les have the attractive property of being 
a closed set, and thus wi ll be able to cover new words, and 
can conceivably cover most partial word utterances as well. 
While these methods can conceivably fit within a domain­
dependent word-based recognition architecture, we are also 
interested in exploring their use as a separate first stage, 
operating independently of a given vocabulary. 

One of the main reasons for exploring t he u t ili ty of 
a domain-independent first stage is to attempt to separate 
domain-independent constraints from domain-dependent one. 
in the speech recogn ition process. Currently, most speech 
recognizers are tuned to a particular domain , for both 
acoustic and linguistic modeling. In our experience, this 
is especially true of the lan guage model, which can provide 
tremendous constraint to the search space. We are inter­
ested in exploring t he viability of incorporating domain­
independent constraints in a first-stage process, and leaving 
domain-dependent constraints to a second-stage search. 
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For speech understanding systems, a two-stage recog­
nizer might enable alternative integrat ion strategies with 
natural language understandin g. To date, most such sys­
tems are loosely coupled at the word-level via N-best or 
word graph interfaces. An alternative unit might allow for 
more integrated search strategics (e.g., [l]), with a unified 
word-based language model. 

A two-stage recognizer configurat ion might a lso provide 
for a more flexible deployment strategy. For example, a 
user interacting with several different spoken dialogue do-
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mains (e.g., weather, travel, entertainment), might have 
their speech initially processed by a domain-independent 
first stage, and then subsequently processed by domain­
dependent recognizers. For client/server architectures, a 
two-stage recognition process could be configured to have 
the first stage run locally on small client devices (e.g., hand­
held portables) and thus potentially require less bandwidth 
to communicate with remote servers for the second stage. 

In this work we have begun to examine whether we can 
create a two-stage recognizer with a domain-independent 
first stage, without sacrificing accuracy due to the lack 
of word-level constraints in the first stage. In particular 
we were interested in understanding whether better-trained 
(due to fewer units) sub-word models could provide a useful 
source of information to our recognizer. 

Although we are ultimately interested in out-of-vocab­
ulary and partial word phenomena, as well as domain­
independence, these topics have not been part of these 
initial investigations. Instead we have examined only the 
best-case scenario for a word-based recognizer (i.e., within­
vocabulary utterances only). Our motivation was to estab­
lish that a two-stage system could at least be competitive in 
this environment, since we hope that it can surpass a-word­
based approach in non-optimal situations. We have also 
allowed our first-stage recognizers to be domain-dependent, 
to establish at least an upper bound on performance. The 
following sections outline our strategy and report prelim­
inary experiments with two possible sub-word representa­
tions, namely the phone and the syllable. 

2. RECOGNIZER ARCHITECTURE 

In this work we use the SUMMIT segment-based speech 
recognition system (2]. Typical recognizer configurations 
deploy a bigram language model in a forward Viterbi search, 
while a trigram (or higher-order) language model is used in 
a backward A• search. The SUMMIT system uses a weighted 
finite-state transducer (FST) representation of the search 
space (3]. In this framework, recognition can be viewed as 
finding the best path(s) in the composition: 

S = PoLoG, (1) 

where P represents the scored phonetic graph, L is the lex­
icon mapping pronunciations to lexical units, and G is the 
language model. Equation (1) shows how a typical recog­
nizer is formulated as a compositions of three FST's. How­
ever, this FST framework allows for a variety of composi­
tions and flexibility in the composition order. In typical 
recognizer configurations, L and G are precomposed prior 
to recognition, and are then composed with P during recog­
nition to create one single large search space. In the follow­
ing sections, we describe how we can divide this composi­
tion into two stages, using either phones or syllables as the 
first-stage unit of representation. 

2.1. The Phone Recognizer 

A two-stage search using phones as the first-stage unit of 
representation can be represented in FST notation as: 

S == Po Lv o Gv o Lo G (2) 

where £ 1, and G,, are the phone lexicon and grammar, re­
spectively, while L and G are the corresponding word lexi­
con and grammar, which are the same as those in the basic 
word recognizer configuration. For our phone recognizer, 
Lp is a trivial FST and can be discarded, since the phone 
units in P are already the basic units of the word lexicon. 
The phone grammar, Gp, can consist of a phone-level n­
gram language model. Since the phone inventory size is 
small we are able to run with higher-order n-grams than we 
would be able to with words. 

Although there are many possible ways to explore the 
• phone composition, S, we have only explored one way thus 
far. In our experiments, we precompose L and G as in the 
baseline word recognizer. During the first stage of recogni­
tion, we compute a phone graph from the composition of P 
and Gv. This graph is then composed with the word FST to 
produce the best word hypothesis. We express this search 
order in the following expression: 
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S = (Po Gv) o (L oG) {3) 

Since the phone vocabulary is quite small, the first stage can 
potentially be much faster than the baseline word recogni­
tion system. We wished to understand how much the phone 
grammar G,, could compensate for the loss of higher-level 
word constraints during the first stage, and whether the 
two-stage search would suffer higher word error rates. 

2.2. The Syllable Recognizer 

A two-stage search using syllables as the first-stage unit of 
representation can be represented in FST notation as: 

S == Po L, o G, o Lw o G (4) 

where L, and Gs are the syllable lexicon and grammar, 
respectively. The syllable lexicon, L,, is created from the 
word lexicon, L, through a direct mapping from phonetic 
units to syllabic units. For each word in the lexicon, we par­
tition the phone sequence into syllables using an automatic 
syllabification procedure [5]. Entries in the second-stage 
word lexicon, Lw, are represented by sequences of syllable 
units. Syllable graphs are used to represent words with 
multiple pronunciations. 

To build the syllable language model, G,, we start with 
a word-based training set, and partition the words into syl­
lables to obtain syilable sequences for training a syllable bi­
gram or trigram. For words with multiple pronunciations, 
we randomly select one of the allowed pronunciations and 
use the corresponding sequence of syllables. 

The two-stage search configuration for the syllable-based 
recognizer is similar to the phone-based recognizer. In the 
first stage we compute a syllable graph by searching the 
composition of P with the precomposed FST L, o G,. The 
second-stage search composes this FST with the precom­
posed word FST Lw o G. We describe this search as: 

S ==(Po L, o G,) o (Lw o G) (5) 

For the syllable-based experiments, we were interested 
in learning whether syllable constraints in the first stage 
could better compensate for the loss of word information 
than could phonetic constraints alone. 
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Figure 1: Word coverage versus syllable vocabulary size. 

In order to explore the degradation of splitting the 
search into two stages, we also examined a single compo­
sition and search for the syllable representation. In these 
experiments, L,oG,, and LwoG were precomposed, but the 
final composition with P was done dynamically in a single 
search. The dynamic composition allowed us to explore the 
full search space in a single pass. 

Although a closed-set syllable recognizer would require 
all possible syllables for a given language, in practice it 
might be desirable to utilize a subset of syllables which 
provide good coverage for a particular domain. The subset 
could be created via a selection criterion which maximizes 
coverage of a particular vocabulary. 

To better understand vocabulary coverage with syl­
lables, we examined the LDC PRONLEX dictionary which 
contains 90,694 words with 99,202 unique pronunciations. 
When these pronunciations were syllabified we obtained a 
total of 14,570 syllables. Figure 1 ·plots the vocabulary cov­
erage as a function of the number of syllables. Our selection 
criterion was based on the most frequently occurring sylla­
bles in the lexicon. The figure indicates that the coverage 
quickly increases as we add more syllables to the inventory. 
For example, using a syllable inventory of 1,000 syllables 
covers around 45 ,000 words, a fairly large coverage for a 
relatively small syllable vocabulary. 

3. EXPERIMENTS AND RESULTS 

The experiments described in this section are all within the 
JUPITER weather information domain [3]. In the following 
sections we first give a brief description of the baseline sys­
tem and report both word and phonetic error rates. We 
then present phonetic error rates for the first stage of the 
phone and syllable recognizers. Finally, we report word er­
ror rates of the full two-stage systems. 
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Recognition unit n-gram order J PER(%) J 

Word 2 I 5.9 I 

Phone 3 24.0 
Phone 4 19.5 
Phone 5 17.4 
Phone 6 15.9 
Syllable 2 14.3 
Syllable 3 12.1 

Table 1: Phonetic error rates for first stage recognizers. 

3.1. The Baseline System 

The baseline system used a similar configuration to that 
which has been reported previously [3]. A set of context­
dependent diphone acoustic models were used, whose fea­
ture representation was based on the first 14 MFCC's aver­
aged over 8 regions near hypothesized phonetic boundaries. 
Diphones were modeled using diagonal Gaussians with a 
maximum of 50 mixtures per model. The word lexicon con­
sisted of a total of 1957 words, many of which have multiple 
pronunciations (3]. The training set used for these experi­
ments consists of 46,685 utterances used to train both the 
acoustic and the language models. The test set consists 
of 1169 utterances. This test data consists of sets of calls 
randomly selected over our data collection period [3] . 

3.2. Phonetic Recognition Experiments 

Since we wanted to be able to compare performance across 
our different recognizer configurations, we first evaluated 
the phonetic error rate (PER) for each system. Reference 
phonetic transcriptions were computed by creating forced 
paths (i .e., constrained by the orthography). The PER for 
the baseline word-based system was computed by taking 
the best phonetic sequence of the top word hypothesis (i .e., 
Viterbi output). As shown in Table I, we obtained a 5.9% 
PER for the baseline word-based system. 

For the phone-based recognizer, the phone lexicon, Lp, 
consisted of all phonetic units in JUPITER. The resulting vo­
cabulary size of the phone recognizer was 61 phones. We ex­
perimented with four different phone n-gram models ( n=3-
6) for Gp. Table 1 shows the PER as a function of the 
n-gram order. Going from a trigram to a 6-gram, we note 
around 32% reduction in PER (from 24.0% to 15.9%). 

For the syllable-based recognizer, we started. with the 
JUPITER vocabulary of 1957 words. Brnaking the words 
into syllables, we obtained a syllable lexicon, L,, of 1624 
syllables. For the syllable n-gram, G., we experimented 
with both a bigram and a trigram on sequences of syllables. 
As we can see from Table 1, we obtained a PER of 14.3% 
with a syllable bigram, and 12.1% with a syllable trigram. 

3.3. Word Recognition Experiments 

Following the first-stage experiments, we evaluated the word 
error rate (WER) performance for the baseline word-based 
system, and the phone- and syllable-based systems. As 
shown in Table 2, the WER for the baseline system using a 
bigram word-level language model is 10.4%. 
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Condition I WER (%) I 

Baseline, word-level I 10.4 I 

Phone graphs 15.7 
Syllable graphs 13.2 
Syllable-level,word composition 11.7 

Table 2: Word error rates for word-, phone-, and syllable­
based recognizers. 

For the phone-based recognizer, we considered a two­
stage search which used the best performing n-gram for Gp 
(i.e., n=6). When the phone graph output was composed 
with the word-level lexicon and grammar, Lo G, the WER 
was 15.7%. For the syllable-based two-stage search, we used 
a syllable trigram for G,. When the syllable graph was 
composed with the word-level lexicon and grammar, L,,, oG, 
the WER was reduced to 13.2%. Finally, when the syllable­
based representation was dynamically searched in a single 
pass, the WER was reduced further to 11.7%. 

An important aspect of the two-stage system is the size 
of the graph. Usually, the bushier (more arcs and states) 
the graph is, the better the recognition performance. In the 
limit, if there were no pruning during search, the two stage 
search would produce identical results to a single stage. 
However, as the graph size increases, the computation can 
become quite expensive and does not justify the extra gain 
in performance. For the experiments we reported, the graph 
size varied from 1,000 to 10,000 states (and around twice 
that for the number of arcs) depending on the length of the 
utterance and uncertainty of the decoder. 

4. DISCUSSION 

One of the most striking observations from our experiments 
is the significantly lower phonetic error rate for the word­
based recognizer (5.9%) compared to the other recogniz­
ers (>12%). However, the WER is only around 11% more 
(10.4% compared to 11.7%). This suggests that the con­
straint imposed from using words as the unit of represen­
tation does not add significantly to the recognition per­
formance . Thus, a syllable-based representation has some 
promise as a first-stage unit of representation, due to its 
increased flexibility. 

Despite the use of high-order n-grams, the phone-based 
recognizer was not as competitive as the syllable-based rec­
ognizer, at either of the phonetic or word levels. Even 
though the use of the 6-gram may capture some informa­
tion across words, it appears to be less constraining than 
either the word bigram or the syllable bigram or trigram. 

An analysis of the syllable-graph outputs indicates that 
there remain additional gains to be made for the syllable 
recognizer. Our word syllabification produced a single pos­
sible syllable sequence. In practice, however, we observed 
that a correct phone sequence would often be represented 
by a syllable sequence which did not match the underlying 
sequence because an ambisyllabic consonant had moved to 
a neighboring syllable. This effect introduced word recogni­
tion errors, which we believe can be reduced by representing 
words as syllable graphs, rather than single sequences. 

5. CONCLUSIONS 

There are still several computational and modeling issues 
to resolve that we believe are behind the degradation in 
word recognition performance for the two-stage framework . 
Considering the fact that the syllable-based framework is 
less constrained than the word-based framework, we believe 
that these preliminary results are quite encouraging. 

One of the problems with a two-stage search is the in­
troduction of errors when the correct sub-word sequence is 
pruned from the intermediate graph. We have been inves­
tigating the use of a more flexible matching process in the 
second stage to compensate for these errors. The matching 
is done via a confusion FST, which allows for substitution, 
insertion, and deletion of sub-word units in the graph, and 
which has been used successfully elsewhere (4] . 

The experiments performed in this paper were con­
ducted within the context of a single domain. Both the 
phonetic and syllable recognizers took advantage of the 
constraints of the domain (e.g., syllable inventory, n-gram 
grammars) . For our future work, we plan to examine the 
use of a more domain-independent syllable recognizer with 
a larger inventory of syllables, and a more generic language 
model. Such a recognizer could easily be combined with 
a domain-specific word-level lexicon and language model. 
A domain-independent first stage would not necessarily be 
composed of a single type of unit . We plan to explore 
integrating several different lexical units within the same 
recognizer (e.g., words and syllables). The most frequently 
spoken words in most domains are function words or par­
ticles, and could conceivably add constraint to a language 
model. Such words also tend to be domain-independent. 

Finally, we have not yet examined the behavior of our 
systems on out-of-vocabulary or partial words. The perfor­
mance of our word-based systems are significantly worse on 
these kinds of data, so it is conceivable that recognizer con­
figurations with closed-set units are better able to process 
these data. We plan to develop a mechanism for handling 
these phenomena in our second-stage recognizers in the near 
future. 
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