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Abstract 

Advances in speech technology and computing power have created a surge of 
interest in the practical application of speech recognition. However, the most accurate 
speech recognition systems in the research world are still far too slow and expensive to 
be used in practical, large vocabulary continuous speech applications. Their main goal 
has been recognition accuracy, with emphasis on acoustic and language modelling. 
But practical speech recognition also requires the computation to be carried out in 
real time within the limited resources-CPU power and memory size-of commonly 
available computers. There has been relatively little work in this direction while 
preserving the accuracy of research systems. 

In this thesis, we focus on efficient and accurate speech recognition. It is easy to 
improve recognition speed and reduce memory requirements by trading away accu­
racy, for example by greater pruning, and using simpler acoustic and language models. 
It is much harder to improve both the recognition speed and reduce main memory 
size while preserving the accuracy. 

This thesis presents several techniques for improving the overall performance of 
the CMU Sphinx-II system. Sphinx-II employs semi-continuous hidden Markov mod­
els for acoustics and trigram language models, and is one of the premier research 
systems of its kind. The techniques in this thesis are validated on several widely used 
benchmark test sets using two vocabulary sizes of about 20K and 58K words. 

The main contributions of this thesis are an 8-fold speedup and 4-fold memory size 
reduction over the baseline Sphinx-II system. The improvement in speed is obtained 
from the following techniques: lexical tree search, phonetic fast match heuristic, and 
global best path search of the word lattice. The gain in speed from the tree search is 
about a factor of 5. The phonetic fast match heuristic speeds up the tree search by 
another factor of 2 by finding the most likely candidate phones active at any time. 
Though the tree search incurs some loss of accuracy, it also produces compact word 
lattices with low error rate which can be rescored for accuracy. Such a rescoring is 
combined with the best path algorithm to find a globally optimum path through a 
word lattice. This recovers the original accuracy of the baseline system. The total 
recognition time is about 3 times real time for the 20K task on a 175MHz DEC Alpha 
workstation. 

The memory requirements of Sphinx-II are minimized by reducing the sizes of 
the acoustic and language models. The language model is maintained on disk and 
bigrams and trigrams are read in on demand. Explicit software caching mechanisms 
effectively overcome the disk access latencies. The acoustic model size is reduced by 
simply truncating precision of probability values to 8 bits. Several other engineering 
solutions, not explored in this thesis, can be applied to reduce memory requirements 
further. The memory size for the 20K task is reduced to about 30-40MB. 
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Chapter 1 

Introduction 

Recent advances in speech technology and computing power have created a surge 
of interest in the practical application of speech recognition. Speech is the primary 
mode of communication among humans. Our ability to communicate with machines 
and computers, through keyboards, mice and other devices, is an order of magnitude 
slower and more cumbersome. In order to make this communication more user­
friendly, speech input is an essential component. 

There are broadly three classes of speech recognition applications, as described 
in [53]. In isolated word recognition systems each word is spoken with pauses before 
and after it, so that end-pointing techniques can be used to identify word boundaries 
reliably. Second, highly constrained command-and-control applications use small vo­
cabularies, limited to specific phrases, but use connected word or continuous speech. 
Finally, large vocabulary continuous speech systems have vocabularies of several tens 
of thousands of words, and sentences can be arbitrarily long, spoken in a natural fash­
ion. The last is the most user-friendly but also the most challenging to implement. 
However, the most accurate speech recognition systems in the research world are still 
far too slow and expensive to be used in practical, large vocabulary continuous speech 
applications on a wide scale. 

Speech research has been concentrated heavily on acoustic and language modelling 
issues. Since the late 1980s, the complexity of tasks undertaken by speech researchers 
has grown from the 1000-word Resource Management (RM) task [51] to essentially 
unlimited vocabulary tasks such as transcription of radio news broadcast in 1995 
[48]. While the word recognition accuracy has remained impressive, considering the 
increase in task complexity, the resource requirements have grown as well. The RM 
task ran about an order of magnitude slower than real time on processors of that 
day. The unlimited vocabulary tasks run about two orders of magnitude slower than 
real time on modern workstations whose power has grown by an order of magnitude 
again, in the meantime. 

The task of large vocabulary continuous speech recognition is inherently hard for 
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2 CHAPTER 1. INTRODUCTION 

the following reasons. First, word boundaries are not known in advance. One must 
be constantly prepared to encounter such a boundary at every time instant. We can 
draw a rough analogy to reading a paragraph of text without any punctuation marks 
or spaces between words: 

myspiritwillsleepinpeaceorifthinksitwillsurelythinkthusfarewellhesprangfrom 
thecabinwindowashesaidthisupontheiceraftwhichlayclosetothevesselhewassoon 
borneawaybythewavesandlostindarknessanddistance ... 

Furthermore, many incorrect word hypotheses will be produced from incorrect seg­
mentation of speech. Sophisticated language models that provide word context or 
semantic information are needed to disambiguate between the available hypotheses. 

The second problem is that co-articulatory effects are very strong in natural or 
conversational speech, so that the sound produced at one instant is influenced by 
the preceding and following ones. Distinguishing between these requires the use of 
detailed acoustic models that take such contextual conditions into account. The in­
creasing sophistication of language models and acoustic models, as well as the growth 
in the complexity of tasks, has far exceeded the computational and memory capacities 
of commonly available workstations. 

Efficient speech recognition for practical applications also requires that the pro­
cessing be carried out in real time within the limited resources-CPU power and 
memory size-of commonly available computers. There certainly are various such 
commercial and demonstration systems in existence, but their performance has never 
been formally evaluated with respect to the research systems or with respect to one 
another, in the way that the accuracy of research systems has been. This thesis is 
primarily concerned with these issues-in improving the computational and memory 
efficiency of current speech recognition technology without compromising the achieve­
ments in recognition accuracy. 

The three aspects of performance, recognition speed, memory resource require­
ments, and recognition accuracy, are in mutual conflict. It is relatively easy to improve 
recognition speed and reduce memory requirements while trading away some accu­
racy, for example by pruning the search space more drastically, and by using simpler 
acoustic and language models. Alternatively, one can reduce memory requirements 
through efficient encoding schemes at the expense of computation time needed to de­
code such representations, and vice versa. But it is much harder to improve both the 
recognition speed and reduce main memory requirements while preserving or improv­
ing recognition accuracy. In this thesis, we demonstrate algorithmic and heuristic 
techniques to tackle the problem. 

This work has been carried out in the context of the CMU Sphinx-II speech 
recognition system as a baseline. There are two main schools of speech recognition 
technology today, based on statistical hidden Markov modelling (HMM), and neural 
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net technology, respectively. Sphinx-II uses HMM-based statistical modelling tech­
niques and is one of the premier recognizers of its kind. Using several commonly used 
benchmark test sets and two different vocabulary sizes of about 20,000 and 58,000 
words, we demonstrate that the recognition accuracy of the baseline Sphinx-II system 
can be attained while its execution time is reduced by about an order of magnitude 
and memory requirements reduced by a factor of about 4. 

1.1 The Modelling Problem 

As the complexity of tasks tackled by speech research has grown, so has that of 
the modelling techniques. In systems that use statistical modelling techniques, such 
as the Sphinx system, this translates into several tens to hundreds of megabytes of 
memory needed to store information regarding statistical distributions underlying the 
models. 

Acoustic Models 

One of the key issues in acoustic modelling has been the choice of a good unit of 
speech [32, 27]. In small vocabulary systems of a few tens of words, it is possible to 
build separate models for entire words, but this approach quickly becomes infeasible 
as the vocabulary size grows. For one thing, it is hard to obtain sufficient training 
data to build all individual word models. It is necessary to represent words in terms 
of sub-word units, and train acoustic models for the latter, in such a way that the 
pronunciation of new words can be defined in terms of the already trained sub-word 
units. 

The phoneme (or phone) has been the most commonly accepted sub-word unit. 
There are approximately 50 phones in spoken English language; words are defined as 
sequences of such phones1 (see Appendix A for the Sphinx-II phone set and examples). 
Each phone is, in turn, modelled by an HMM ( described in greater detail in Section 
2.1.2). 

As mentioned earlier, natural continuous speech has strong co-articulatory ef­
fects. Informally, a phone models the position of various articulators in the mouth 
and nasal passage ( such as the tongue and the lips) in the making of a particular 
sound. Since these articulators have to move smoothly between different sounds in 
producing speech, each phone is influenced by the neighbouring ones, especially dur­
ing the transition from one phone to the next. This is not a major concern in small 
vocabulary systems in which words are not easily confusable, but becomes an issue 
as the vocabulary size and the degree of confusability increase. 

1Some systems define word pronunciations as networks of phones instead of simple linear se­
quences [36]. 
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Most systems employ triphones as one form of context-dependent HMM models 
[4, 33] to deal with this problem. Triphones are basically phones observed in the 
context of given preceding and succeeding phones. There are approximately 50 phones 
in spoken English language. Thus, there can be a total of about 503 triphones, 
although only a fraction of them are actually observed in the language. Limiting 
the vocabulary can further reduce this number. For example, in Sphinx-II, a 20,000 
word vocabulary has about 75,000 distinct triphones, each of which is modelled by a 
5-state HMM, for a total of about 375,000 states. Since there isn't sufficient training 
data to build models for each state, they are clustered into equivalence classes called 
senones [27]. 

The introduction of context-dependent acoustic models, even after clustering into 
equivalence classes, creates an explosion in the memory requirements to store such 
models. For example, the Sphinx-II system with 10,000 senones occupies tens of 
megabytes of memory. 

Language Models 

Large vocabulary continuous speech recognition requires the use of a language model 
or grammar to select the most likely word sequence from the relatively large number 
of alternative word hypotheses produced during the search process. As mentioned 
earlier, the absence of explicit word boundary markers in continuous speech causes 
several additional word hypotheses to be produced, in addition to the intended or 
correct ones. For example, the phrase It's a nice day can be equally well recognized 
as It sun iced A. or It son ice day. They are all acoustically indistinguishable, but the 
word boundaries have been drawn at a different set of locations in each case. Clearly, 
many more alternatives can be produced with varying degrees of likelihood, given the 
input speech. The language model is necessary to pick the most likely sequence of 
words from the available alternatives. 

Simple tasks, in which one is only required to recognize a constrained set of 
phrases, can use rule-based regular or context-free grammars which can be repre­
sented compactly. However, that is impossible with large vocabulary tasks. Instead, 
bigram and trigram grammars, consisting of word pairs and triples with given prob­
abilities of occurrence, are most commonly used. One can also build such language 
models based on word classes, such as city names, months of the year, etc. However, 
creating such grammars is tedious as they require a fair amount of hand compilation 
of the classes. Ordinary word n-gram language models, on the other hand, can be 
created almost entirely automatically from a corpus of training text. 

Clearly, it is infeasible to create a complete set of word bigrams for even medium 
vocabulary tasks. Thus, the set of bigram and trigram probabilities actually present 
in a given grammar is usually a small subset of the possible number. Even then, they 
usually number in the millions for large vocabulary tasks. The memory requirements 
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for such language models range from several tens to hundreds of megabytes. 

1.2 The Search Problem 

There are two components to the computational cost of speech recognition: acoustic 
probability computation, and search. In the case of HMM-based systems, the former 
refers to the computation of the probability of a given HMM state emitting the 
observed speech at a given time. The latter refers to the search for the best word 
sequence given the complete speech input. The search cost is largely unaffected by 
the complexity of the acoustic models. It is much more heavily influenced by the size 
of the task. As we shall see later, the search cost is significant for medium and large 
vocabulary recognition; it is the main focus of this thesis. 

Speech recognition-searching for the most likely sequence of words given the 
input speech-gives rise to an exponential search space if all possible sequences of 
words are considered. The problem has generally been tackled in two ways: Viterbi 
decoding (62, 52] using beam search (37], or stack decoding [9, 50] which is a variant 
of the A* algorithm [42]. Some hybrid versions that combine Viterbi decoding with 
the A* algorithm also exist [21]. 

Viterbi Decoding 

Viterbi decoding is a dynamic programming algorithm that searches the state space 
for the most likely state sequence that accounts for the input speech. The state 
space is constructed by creating word HMM models from its constituent phone or 
triphone HMM models, and all word HMM models are searched in parallel. Since 
the state space is huge for even medium vocabulary applications, the beam search 
heuristic is usually applied to limit the search by pruning out the less likely states. 
The combination is often simply referred to as Viterbi beam search. Viterbi decoding 
is a time-synchronous search that processes the input speech one frame at a time, 
updating all the states for that frame before moving on to the next frame. Most 
systems employ a frame input rate of 100 frames/sec. Viterbi decoding is described 
in greater detail in Section 2.3.1. 

Stack Decoding 

Stack decoding maintains a stack of partial hypotheses2 sorted in descending order of 
posterior likelihood. At each step it pops the best one off the stack. If it is a complete 
hypothesis it is output. Otherwise the algorithm expands it by one word, trying all 

2 A partial hypothesis accounts for an initial portion of the input speech. A complete hypothesis, 
or simply hypothesis, accounts for the entire input speech. 
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possible word extensions, evaluates the resulting (partial) hypotheses with respect 
to the input speech and re-inserts them in the sorted stack. Any number of N-best 
hypotheses [59] can be generated in this manner. To avoid an exponential growth in 
the set of possible word sequences in medium and large vocabulary systems, partial 
hypotheses are expanded only by a limited set of candidate words at each step. These 
candidates are identified by a fast match step [6, 7, 8, 20]. Since our experiments have 
been mostly confined to Viterbi decoding, we do not explore stack decoding in any 
greater detail. 

Tree Structured Lexicons 

Even with the beam search heuristic, straightforward Viterbi decoding is expensive. 
The network of states to be searched is formed by a linear sequence of HMM models 
for each word in the vocabulary. The number of models actively searched in this 
organization is still one to two orders of magnitude beyond the capabilities of modern 
workstations. 

Lexical trees can be used to reduce the size of the search space. Since many 
words share common pronunciation prefixes, they can also share models and avoid 
duplication. Trees were initially used in fast match algorithms for producing candidate 
word lists for further search. Recently, they have been introduced in the main search 
component of several systems [44, 39, 43, 3]. The main problem faced by them is in 
using a language model. Normally, transitions between words are accompanied by 
a prior language model probability. But with trees, the destination nodes of such 
transitions are not individual words but entire groups of them, related phonetically 
but quite unrelated grammatically. An efficient solution to this problem is one of the 
important contributions of this thesis. 

Multipass Search Techniques 

Viterbi search algorithms usually also create a word lattice in addition to the best 
recognition hypothesis. The lattice includes several alternative words that were recog­
nized at any given time during the search. It also typically contains other information 
such as the time segmentations for these words, and their posterior acoustic scores 
(i.e., the probability of observing a word given that time segment of input speech). 
The lattice error rate measures the number of correct words missing from the lattice 
around the expected time. It is typically much lower than the word error rate3 of the 
single best hypotheses produced for each sentence. 

Word lattices can be kept very compact, with low lattice error rate, if they are 
produced using sufficiently detailed acoustic models (as opposed to primitive models 

3Word error rates are measured by counting the number of word substitutions, deletions, and 
insertions in the hypothesis, compared to the correct reference sentence. 
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as in, for example, fast match algorithms). In our work, a 10sec long sentence typically 
produces a word lattice containing about 1000 word instances. 

Given such compact lattices with low error rates, one can search them using 
sophisticated models and search algorithms very efficiently and obtain results with a 
lower word error rate, as described in [38, 65, 41]. Most systems use such multipass 
techniques. 

However, there has been relatively little work reported in actually creating such 
lattices efficiently. This is important for the practical applicability of such techniques. 
Lattices can be created with low computational overhead if we use simple models, but 
their size must be large to guarantee a sufficiently low lattice error rate. On the other 
hand, compact, low-error lattices can be created using more sophisticated models, at 
the expense of more computation time. The efficient creation of compact, low-error 
lattices for efficient postprocessing is another byproduct of this work. 

1.3 Thesis Contributions 

This thesis explores ways of improving the performance of speech recognition systems 
along the dimensions of recognition speed and efficiency of memory usage, while 
preserving the recognition accuracy of research systems. As mentioned earlier, this 
is a much harder problem than if we are allowed to trade recognition accuracy for 
improvement in speed and memory usage. 

In order to make meaningful comparisons, the baseline performance of an estab­
lished "research" system is first measured. We use the CMU Sphinx-II system as the 
baseline system since it has been extensively used in the yearly ARPA evaluations. 
It has known recognition accuracy on various test sets, and with similarities to many 
other research systems. The parameters measured include, in addition to recognition 
accuracy, the CPU usage of various steps during execution, frequency counts of the 
most time-consuming operations, and memory usage. All tests are carried out using 
two vocabulary sizes of about 20,000 ( 201() and 58,000 ( 581() words, respectively. 
The test sentences are taken from the ARPA evaluations in 1993 and 1994 [45, 46]. 

The results from this analysis show that the search component is several tens 
of times slower than real time on the reported tasks. (The acoustic output proba­
bility computation is relatively smaller since these tests have been conducted using 
semi-continuous acoustic models [28, 27].) Furthermore, the search time itself can 
be further decomposed into two main components: the evaluation of HMM models, 
and carrying out cross-word transitions at word boundaries. The former is simply a 
measure of the task complexity. The latter is a significant problem since there are 
cross-word transitions to every word in the vocabulary, and language model proba­
bilities must be computed for every one of them. 
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1.3.1 Improving Speed 

The work presented in this thesis shows that a new adaptation of lexical tree search 
can be used to reduce both the number of HMMs evaluated and the cost of cross-word 
transitions. In this method, language model probabilities for a word are computed not 
when entering that word but upon its exit, if it is one of the recognized candidates. 
The number of such candidates at a given instant is on average about two orders of 
magnitude smaller than the vocabulary size. Furthermore, the proportion appears to 
decrease with increasing vocabulary size. 

Using this method, the execution time for recognition is decreased by a factor of 
about 4.8 for both the 20K and 58K word tasks. If we exclude the acoustic output 
probability computation, the speedup of the search component alone is about 6.3 for 
the 20K word task and over 7 for the 58K task. It also demonstrates that the lexical 
tree search efficiently produces compact word lattices with low error rates that can 
again be efficiently searched using more complex models and search algorithms. 

Even though there is a relative loss of accuracy of about 20% using this method, we 
show that it can be recovered efficiently by postprocessing the word lattice produced 
by the lexical tree search. The loss is attributed to suboptimal word segmentations 
produced by the tree search. However, a new shortest-path graph search formulation 
for searching the word lattice can reduce the loss in accuracy to under 10% relative 
to the baseline system with a negligible increase in computation. 

If the lattice is first rescored to obtain better word segmentations, all the loss in 
accuracy is recovered. The rescoring step adds less than 20% execution time overhead, 
giving an effective overall speedup of about 4 over the baseline system. 

We have applied a new phonetic fast match step to the lexical tree search that 
performs an initial pruning of the context independent phones to be searched. This 
technique reduces the overall execution time by about 40-45%, with a less than 2% 
relative loss in accuracy. This brings the overall speed of the system to about 8 times 
that of the baseline system, with almost no loss of accuracy. 

The structure of the final decoder is a pipeline of several stages which can be 
operated in an overlapped fashion. Parallelism among stages, especially the lexical 
tree search and rescoring passes, is possible for additional improvement in speed. 

1.3.2 Reducing Memory Size 

The two main candidates for memory usage in the baseline Sphinx-II system, and 
most of the common research systems, are the acoustic and language models. 

The key observation for reducing the size of the language models is that in decod­
ing any given utterance, only a small portion of it is actually used. Hence, we can 
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consider maintaining the language model entirely on disk, and retrieving only the nec­
essary information on demand. Caching schemes can overcome the large disk-access 
latencies. One might expect the virtual memory systems to perform this function 
automatically. However, they don't appear to be efficient at managing the language 
model working set since the granularity of access to the related data structures is 
much smaller than a pagesize. 

We have implemented simple caching rules and replacement policies for bigrams 
and trigrams, which show that the memory resident portion of large bigram and 
trigram language models can be reduced significantly. In our benchmarks, the number 
of bigrams in memory is reduced to about 15-25% of the total, and that of trigrams 
to about 2-5% of the total. The impact of disk accesses on elapsed time performance 
is minimal, showing that the caching policies are effective. We believe that further 
reductions in size can be easily obtained by various compression techniques, such as 
a reduction in the precision of representation. 

The size of the acoustic models is trivially reduced by a factor of 4, simply by 
reducing the precision of their representation from 32 bits to 8 bits, with no difference 
in accuracy. This has, in fact, been done in many other systems as in [25]. The new 
observation is that in addition to memory size reduction, the smaller precision also 
allows us to speed up the computation of acoustic output probabilities of senones every 
frame. The computation involves the summation of probabilities-in log-domain, 
which is cumbersome. The 8-bit representation of such operands allows us to achieve 
this with a simple table lookup operation, improving the speed of this step by about 
a factor of 2. 

1.4 Summary and Dissertation Outline 

In summary, this thesis presents a number of techniques for improving the speed 
of the baseline Sphinx-II system by about an order of magnitude, and reducing its 
memory requirements by a factor of 4, without significant loss of accuracy. In doing 
so, it demonstrates several facts: 

• It is possible to build efficient speech recognition systems comparable to research 
systems in accuracy. 

• It is possible to separate concerns of search complexity from that of mod­
elling complexity. By using semi-continuous acoustic models and efficient search 
strategies to produce compact word lattices with low error rates, and restricting 
the more detailed models to search such lattices, the overall performance of the 
system is optimized. 

• It is necessary and possible to make decisions for pruning large portions of the 
search space away with low cost and high reliability. The beam search heuristic 
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is a well known example of this principle. The phonetic fast match method and 
the reduction in precision of probability values also fall under this category. 

The organization of this thesis is as follows. Chapter 2 contains background 
material and brief descriptions of related work done in this area. Since recognition 
speed and memory efficiency has not been an explicit consideration in the research 
community so far, in the way that recognition accuracy has been, there is relative 
little material in this regard. 

Chapter 3 is mainly concerned with establishing baseline performance figures for 
the Sphinx-II research system. It includes a comprehensive description of the base­
line system, specifications of the benchmark tests and experimental conditions used 
throughout this thesis, and detailed performance figures, including accuracy, speed 
and memory requirements. 

Chapter 4 is one of the main chapter in this thesis that describes all of the new 
techniques to speed up recognition and their results on the benchmark tests. Both the 
baseline and the improved system use the same set of acoustic and language models. 

Techniques for memory size reduction and corresponding results are presented in 
Chapter 5. It should be noted that most experiments reported in this thesis were 
conducted with these optimizations in place. 

Though this thesis is primarily concerned with large vocabulary recognition, it is 
interesting to consider the applicability of the techniques developed here to smaller 
vocabulary situations. Chapter 6 addresses the concerns relating to small and ex­
tremely small vocabulary tasks. The issues of efficiency are quite different in their 
case, and the problems are also different. The performance of both the baseline 
Sphinx-II system and the proposed experimental system are evaluated and compared 
on the ATIS (Airline Travel Information Service) task, which has a vocabulary of 
about 3,000 words. 

Finally, Chapter 7 concludes with a summary of the results, contributions of this 
thesis and some thoughts on future directions for search algorithms. 



Chapter 2 

Background 

This chapter contains a brief review of the necessary background material to un­
derstand the commonly used modelling and search techniques in speech recognition. 
Sections 2.1 and 2.2 cover basic features of statistical acoustic and language mod­
elling, respectively. Viterbi decoding using beam search is described in Section 2.3, 
while related research on efficient search techniques is covered in Section 2.4. 

2.1 Acoustic Modelling 

2.1.1 Phones and Triphones 

The objective of speech recognition is the transcription of speech into text, i.e., word 
strings. To accomplish this, one might wish to create word models from training 
data. However, in the case of large vocabulary speech recognition, there are simply 
too many words to be trained in this way. It is necessary to obtain several samples 
of every word from several different speakers, in order to create reasonable speaker­
independent models for each word. Furthermore, the process must be repeated for 
each new word that is added to the vocabulary. 

The problem is solved by creating acoustic models for sub-word units. All words 
are composed of basically a small set of sounds or sub-word units, such as syllables 
or phonemes, which can be modelled and shared across different words. 

Phonetic models are the most frequently used sub-word models. There are only 
about 50 phones in spoken English (see Appendix A for the set of phones used in 
Sphinx-II). New words can simply be added to the vocabulary by defining their pro­
nunciation in terms of such phones. 

The production of sound corresponding to a phone is influenced by neighbouring 
phones. For example, the AE phone in the word "man" sounds different from that in 

11 
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"lack"; the former is more nasal. IBM [4] proposed the use of triphone or context­
dependent phone models to deal with such variations. With 50 phones, there can be 
up to 503 triphones, but only a fraction of them are actually observed in practice. 
Virtually all speech recognition systems now use such context dependent models. 

2.1.2 HMM modelling of Phones and Triphones 

Most systems use hidden Markov models (HMMs) to represent the basic units of 
speech. The usage and training of HMMs has been covered widely in the literature. 
Initially described by Baum in [11], it was first used in speech recognition systems by 
CMU [10] and IBM [29]. The use of HMMs in speech has been described, for example, 
by Rabiner [52]. Currently, almost all systems use HMMs for modelling triphones and 
context-independent phones (also referred to as monophones or basephones). These 
include BBN [41], CMU [35, 27], the Cambridge HTK system [65], IBM [5], and LIMSI 
[18], among others. We will give a brief description of HMMs as used in speech. 

First of all, the sampled speech input is usually preprocessed, through various 
signal-processing steps, into a cepstrum or other feature stream that contains one 
feature vector every frame. Frames are typically spaced at lOmsec intervals. Some 
systems produce multiple, parallel feature streams. For example, Sphinx has 4 feature 
streams-cepstra, ~cepstra, ~~cepstra, and power-representing the speech signal 
(see Section 3.1.1). 

An HMM is a set of states connected by transitions (see Figure 3.2 for an example). 
Transitions model the emission of one frame of speech. Each HMM transition has 
an associated output probability function that defines the probability of emitting the 
input feature observed in any given frame while taking that transition. In practice, 
most systems associate the output probability function with the source or destination 
state of the transition, rather than the transition itself. Henceforth, we shall assume 
that the output probability is associated with the source state. The output probability 
for state i at time t is usually denoted by bi(t). (Actually, bi is not a function oft, 
but rather a function of the input speech, which is a function oft. However, we shall 
often use the notation bi( t) with this implicit understanding.) 

Each HMM transition from any state i to state j also has a static transition 
probability, usually denoted by aij, which is independent of the speech input. 

Thus, each HMM state occupies or represents a small subspace of the overall 
feature space. The shape of this subspace is sufficiently complex that it cannot be 
accurately characterized by a simple mathematical distribution. For mathematical 
tractability, the most common general approach has been to model the state output 
probability by a mixture Gaussian codebook. For any HMM state s and feature stream 
f, the i-th component of such a codebook is a normal distribution with mean vector 
µs,f,i and covariance matrix Us,J,i· In order to simplify the computation and also 
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because there is often insufficient data to estimate all the parameters of the covariance 
matrix, most systems assume independence of dimensions and therefore the covariance 
matrix becomes diagonal. Thus, we can simply use standard deviation vectors u s,J,i 
instead of Us,f,i· Finally, each such mixture component also has a scalar mixture 
coefficient or mixture weight Ws,f,i• 

With that, the probability of observing a given speech input x in HMM states is 
given by: 

bs(x) = Il(I: ws,1,Jv(x1, µs,J,i, <1's,J,i)) 
f 

(2.1) 

where the speech input xis the parallel set of feature vectors, and Xf its f-th feature 
component; i ranges over the number of Gaussian densities in the mixture and f over 
the number of features. The expression N'(.) is the value of the chosen component 
Gaussian density function at Xf· 

In the general case of fully continuous HMMs, each HMM state s in the acoustic 
model has its own separate weighted mixture Gaussian codebook. However, this is 
computationally expensive, and many schemes are used to reduce this cost. It also 
results in too many free parameters. Most systems group HMM states into clusters 
that share the same set of model parameters. The sharing can be of different degrees. 
In semi-continuous systems, all states share a single mixture Gaussian codebook, but 
the mixture coefficients are distinct for individual states. In Sphinx-II, states are 
grouped into clusters called senones [27], with a single codebook (per feature stream) 
shared among all senones, but distinct mixture weights for each. Thus, Sphinx-II uses 
semi-continuous modelling with state clustering. 

Even simpler discrete HMM models can be derived by replacing the mean and 
variance vectors representing Gaussian densities with a single centroid. In every 
frame, the single closest centroid to the input feature vector is computed ( using the 
Euclidean distance measure), and individual states weight the codeword so chosen. 
Discrete models are typically only used in making approximate searches such as in 
fast match algorithms. 

For simplicity of modelling, HMMs can have NULL transitions that do not con­
sume any time and hence do not model the emission of speech. Word HMMs can be 
built by simply stringing together phonetic HMM models using NULL transitions as 
appropriate. 

2.2 Language Modelling 

As mentioned in Chapter 1, a language model (LM) is required in large vocabulary 
speech recognition for disambiguating between the large set of alternative, confusable 
words that might be hypothesized during the search. 
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The LM defines the a priori probability of a sequence of words. The LM proba­
bility of a sentence (i.e., a sequence of words w1, w2, ... , wn) is given by: 

n 

= IJ P(wilw1, ... ,wi-1), 
i=l 

In an expression such as P( wilw1, ... , Wi-i), w 1, ... , Wi-1 is the word history or simply 
history for Wi. In practice, one cannot obtain reliable probability estimates given 
arbitrarily long histories since that would require enormous amounts of training data. 
Instead, one usually approximates them in the following ways: 

• Context free grammars or regular grammars. Such LMs are used to define the 
form of well structured sentences or phrases. Deviations from the prescribed 
structure are not permitted. Such formal grammars are never used in large 
vocabulary systems since they are too restrictive. 

• Word unigram, bigram, trigram, grammars. These are defined respectively as 
follows (higher-order n-grams can be defined similarly): 

P(w) 
P(wilwi) 
P(wklwi,Wj) 

probability of word w 
probability of Wj given a one word history Wi 
probability of Wk given a two word history Wi, Wj 

A bigram grammar need not contain probabilities for all possible word pairs. 
In fact, that would be prohibitive for all but the smallest vocabularies. Instead, 
it typically lists only the most frequently occurring bigrams, and uses a backoff 
mechanism to fall back on unigram probability when the desired bigram is not 
found. In other words, if P(wilwi) is sought and is not found, one falls back on 
P( Wj ). But a backoff weight is applied to account for the fact that Wj is known 
to be not one of the bigram successors of Wi [30). Other higher-order backoff 
n-gram grammars can be defined similarly. 

• Class n-gram grammars. These are similar to word n-gram grammars, except 
that the tokens are entire word classes, such as digit, number, month, proper 
name, etc. The creation and use of class grammars is tricky since words can 
belong to multiple classes. There is also a fair amount of handcrafting involved. 

• Long distance grammars. Unlike n-gram LMs, these are capable of relating 
words separated by some distance (i.e., with some intervening words). For 
example, the trigger-pair mechanism discussed in [57) is of this variety. Long 
distance grammars are primarily used to rescore n-best hypothesis lists from 
previous decodings. 
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Figure 2.1: Viterbi Search as Dynamic Programming 

Of the above, word bigram and trigram grammars are the most commonly used 
since they are easy to train from large volumes of data, requiring minimal manual 
intervention. They have also provided high degrees of recognition accuracy. The 
Sphinx-II system uses word trigram LMs. 

2.3 Search Algorithms 

The two main forms of decoding most commonly used today are Viterbi decoding 
using the beam search heuristic, and stack decoding. Since the work reported in this 
thesis is based on the former, we briefly review its basic principles here. 

2.3.1 Viterbi Beam Search 

Viterbi search [62] is essentially a dynamic programming algorithm, consisting of 
traversing a network of HMM states and maintaining the best possible path score 
at each state in each frame. It is a time-synchronous search algorithm in that it 
processes all states completely at time t before moving on to time t + 1. 

The abstract algorithm can be understood with the help of Figure 2.1. One 
dimension represents the states in the network, and the other is the time axis. There is 
typically one start state and one or more final states in the network. The arrows depict 
possible state transitions throughout the network. In particular, NULL transitions 
go vertically since they do not consume any input, and non-NULL transitions always 
go one time step forward. Each point in this 2-D space represents the best path 
probability for the corresponding state at that time. That is, given a time t and 
state s, the value at ( t, s) represents the probability corresponding to the best state 
sequence leading from the initial state at time O to state s at time t. 

The time-synchronous nature of the Viterbi search implies that the 2-D space 
is traversed from left to right, starting at time 0. The search is initialized at time 
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t = 0 with the path probability at the start state set to 1, and at all other states 
to 0. In each frame, the computation consists of evaluating all transitions between 
the previous frame and the current frame, and then evaluating all NULL transitions 
within the current frame. For non-NULL transitions, the algorithm is summarized 
by the following expression: 

Pj(t) = m~x(Pi(t -1) • aij • bi(t)),il set of predecessor states of j (2.2) 
i 

where, Pj(t) is the path probability of state j at time t, aij is the static probability 
associated with the transition from state i to j, and bi(t) is the output probability 
associated with state i while consuming the input speech at t (see Section 2.1.2 and 
equation 2.1 ). It is straightforward to extend this formulation to include NULL 
transitions that do not consume any input. 

Thus, every state has a single best predecessor at each time instant. With some 
simple bookkeeping to maintain this information, one can easily determine the best 
state sequence for the entire search by starting at the final state at the end and 
following the best predecessor at each step all the way back to the start state. Such 
an example is shown by the bold arrows in Figure 2.1. 

The complexity of Viterbi decoding is N 2T (assuming each state can transition 
to every state at each time step), where N is the total number of states and T is the 
total duration. 

The application of Viterbi decoding to continuous speech recognition is straight­
forward. Word HMMs are built by stringing together phonetic HMM models using 
NULL transitions between the final state of one and the start state of the next. In 
addition, NULL transitions are added from the final state of each word to the initial 
state of all words in the vocabulary, thus modelling continuous speech. Language 
model (bigram) probabilities are associated with every one of these cross-word tran­
sitions. Note that a system with a vocabulary of V words has V2 possible cross-word 
transitions. All word HMMs are searched in parallel according to equation 2.2. 

Since even a small to medium vocabulary system consists of hundreds or thousands 
of HMM states, the state-time matrix of Figure 2.1 quickly becomes too large and 
costly to compute in its entirety. To keep the computation within manageable limits, 
only the most likely states are evaluated in each frame, according to the beam search 
heuristic [37]. At the end of time t, the state with the highest path probability pmax(t) 
is found. If any other state i has Pi(t) < pmax(t) • B, where B is an appropriately 
chosen threshold or beamwidth < 1, state i is excluded from consideration at time 
t + 1. Only the ones within the beam are considered to be active. 

The beam search heuristic reduces the average cost of search by orders of magni­
tude in medium and large vocabulary systems. The combination of Viterbi decoding 
using beam search heuristic is often simply referred to as Viterbi beam search. 
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2.4 Related Work 

Some of the standard techniques in reducing the computational load of Viterbi search 
for large vocabulary continuous speech recognition have been the following: 

• Narrowing the beamwidth for greater pruning. However, this is usually asso­
ciated with an increase in error rate because of an increase in the number of 
search errors: the correct word sometimes get pruned from the search path in 
the bargain. 

• Reducing the complexity of acoustic and language models. This approach works 
to some extent, especially if it is followed by more detailed search in later 
passes. There is a tradeoff here, between the computational load of the first 
pass and subsequent ones. The use of detailed models in the first pass produces 
compact word lattices with low error rate that can be postprocessed efficiently, 
but the first pass itself is computationally expensive. Its cost can be reduced if 
simpler models are employed, at the cost of an increase in lattice size needed to 
guarantee low lattice error rates. 

Both the above techniques involve some tradeoff between recognition accuracy and 
speed. 

2.4.1 Tree Structured Lexicons 

Organizing the HMMs to be searched as a phonetic tree instead of the flat structure 
of independent linear HMM sequences for each word is probably the most often cited 
improvement in search techniques in use currently. This structure is referred to as 
tree-structured lexicon or lexical tree. If the pronunciations of two or more words 
contain the same n initial phonemes, they share a single sequence of n HMM models 
representing that initial portion of their pronunciation. (In practice, most systems 
use triphones instead of just basephones, so we should really consider triphone pro­
nunciation sequences. But the basic argument is the same.) Since the word-initial 
models in a non-tree structured Viterbi search are typically the majority of the total 
number of active models, the reduction in computation is significant. 

The problem with a lexical tree occurs at word boundary transitions where bigram 
language model probabilities are usually computed and applied. In the flat (non-tree) 
Viterbi algorithm there is a transition from each word ending state (within the beam) 
to the beginning of every word in the vocabulary. Thus, there is a fan-in at the 
initial state of every word, with different bigram probabilities attached to every such 
transition. The Viterbi algorithm chooses the best incoming transition in each case. 

However, with a lexical tree structure, several words may share the same root node 
of the tree. There can be a conflict between the best incoming cross-word transition 
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for different words that share the same root node. This problem has been usually 
solved by making copies of the lexical tree to resolve such conflicts. 

Approximate Bigram Trees 

SRI [39] and CRIM [43] augment their lexical tree structure with a flat copy of the 
lexicon that is activated for bigram transitions. All bigram transitions enter the flat 
lexicon copy, while the backed off unigram transitions enter the roots of the lexical 
tree. SRI notes that relying on just unigrams more than doubles the word error rate. 
They show that using this scheme, the recognition speed is improved by a factor of 
2-3 for approximately the same accuracy. To gain further improvements in speed, 
they reduce the size of the bigram section by pruning the bigram language model in 
various ways, which adds significantly to the error rate. 

However, it should be noted that the experimental set up is based on using discrete 
HMM acoustic models, with a baseline system word error rate (21.5%), which is 
significantly worse than their best research system (10.3%) using bigrams, and also 
worse than most other research systems to begin with. 

As we shall see in Chapter 3, bigram transitions constitute a significant portion of 
cross word transitions, which in turn are a dominant part of the search cost. Hence, 
the use of a flat lexical structure for bigram transitions must continue to incur this 
cost. 

Replicated Bigram Trees 

Ney and others [40, 3] have suggested creating copies of the lexical tree to handle 
bigram transitions. The leaf nodes at the first level (unigram) lexical tree have sec­
ondary (bigram) trees hanging off them for bigram transitions. The total size of the 
secondary trees depends on the number of bigrams present in the grammar. Sec­
ondary trees that represent the bigram followers of the most common function words, 
such as A, THE, IN, OF, etc. are usually large. 

This scheme creates additional copies of words that did not exist in the original 
flat structure. For example, in the conventional flat lexicon ( or in the auxiliary flat 
lexicon copy of [39]), there is only one instance of each word. However, in this 
proposed scheme the same word can appear in multiple secondary trees. Since the 
short function words are recognized often ( though spuriously), their bigram copies 
are frequently active. They are also among the larger ones, as noted above. It is 
unclear how much overhead this adds to the system. 
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Dynamic Network Decoding 

Cambridge University [44] designed a one-pass decoder that uses the lexical tree 
structure, with copies for cross-word transitions, but instantiates new copies at ev­
ery transition, as necessary. Basically, the traditional re-entrant lexical structure is 
replaced with a non-re-entrant structure. To prevent an explosion in memory space 
requirements , they reclaim HMM nodes as soon as they become inactive by falling 
outside the pruning beamwidth. Furthermore, the end points of multiple instances of 
the same word can be merged under the proper conditions, allowing just one instance 
of the lexical tree to be propagated from the merged word ends, instead of separately 
and multiply from each. This system attained the highest recognition accuracy in the 
Nov 1993 evaluations. 

They report the performance under standard conditions-standard 1993 20!( Wall 
Street Journal development test set decoded using the corresponding standard bi­
gram/trigram language model using wide beamwidths as in the actual evaluations. 

The number of active HMM models per frame in this scheme is actually higher 
than the number in the baseline Sphinx-II system under similar test conditions ( except 
that Sphinx-II uses a different lexicon and acoustic models). There are other factors 
at work, but the dynamic instantiation of lexical trees certainly plays a part in this 
increase. The overhead for dynamically constructing the HMM network is reported to 
be less than 20% of the total computational load. This is actually fairly high since the 
time to decode a sentence on an HP735 platform is reported to be about 15 minutes 
on average. 

2.4.2 Memory Size and Speed Improvements in Whisper 

The CMU Sphinx-II system has been improved in many ways by Microsoft in pro­
ducing the Whisper system [26]. They report that memory size has been reduced by 
a factor of 20 and speed improved by a factor of 5, compared to Sphinx-II under the 
same accuracy constraints. 

One of the schemes for memory reduction is the use of a context free grammar 
(CFG) in place of bigram or trigram grammars. CFGs are highly compact, can 
be searched efficiently, and can be relatively easily created for small tasks such as 
command and control applications involving a few hundred words. However, large 
vocabulary applications cannot be so rigidly constrained. 

They also obtain an improvement of about 35% in the memory size of acoustic 
models by using run length encoding for senone weighting coefficients (Section 2.1.2). 

They have also improved the speed performance of Whisper through a Rich Get 
Richer (RGR) heuristic for deciding which phones should be evaluated in detail, using 
triphone states, and which should fall back on context independent phone states. 
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RGR works as follows: Let Pp(t) be the best path probability of any state belonging 
to basephone pat time t, pmax(t) the best path probability over all states at t, and 
bp(t + 1) the output probability of the context-independent model for p at time t + 1. 
Then, the context-dependent states for phone p are evaluated at frame t + 1 iff: 

where, a and K are empirically determined constants. Otherwise, context-independent 
output probabilities are used for those states. (All probabilities are computed in 
log-space. Hence the addition operations really represent multiplications in normal 
probability space.) 

Using this heuristic, they report an 80% reduction in the number of context de­
pendent states for which output probabilities are computed, with no loss of accuracy. 
If the parameters a and K are tightened to reduce the number of context-dependent 
states evaluated by 95%, there is a 15% relative loss of accuracy. (The baseline test 
conditions have not be specified for these experiments.) 

2.4.3 Search Pruning Using Posterior Phone Probabilities 

In [56], Renals and Hochberg describe a method of deactivating certain phones during 
search to achieve higher recognition speed. The method is incorporated into a fast 
match pass that produces words and posterior probabilities for their NOWAY stack 
decoder. The fast match step uses HMM base phone models, the states of which 
are modelled by neural networks that directory estimate phone posterior probabil­
ities instead of the usual likelihoods; i.e., they estimate P(phoneldata ), instead of 
P(dataiphone). Using the posterior phone probability information, one can identify 
the less likely active phones at any given time and prune the search accordingly. 

This is a potentially powerful and easy pruning technique when the posterior phone 
probabilities are available. Stack decoders can particularly gain if the fast match step 
can be made to limit the number of candidate words emitted while extending a 
partial hypothesis. In their NOWAY implementation, a speedup of about an order of 
magnitude is observed on a 20K vocabulary task (from about 150x real time to about 
15x real time) on an HP735 workstation. They do not report the reduction in the 
number of active HMMs as a result of this pruning. 

2.4.4 Lower Complexity Viterbi Algorithm 

A new approach to the Viterbi algorithm, specifically applicable to speech recognition, 
is described by Patel in [49]. It is aimed at reducing the cost of the large number 
of cross-word transitions and has an expected complexity of N -./NT, instead of N 2T 
(Section 2.3.1). The algorithm depends on ordering the exit path probabilities and 
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transition bigram probabilities, and finding a threshold such that most transitions 
can be eliminated from consideration. 

The authors indicate that the algorithm offers better performance if every word 
has bigram transitions to the entire vocabulary. However, this is not the case with 
large vocabulary systems. Nevertheless, it is worth exploring this technique further 
for its practical applicability. 

2.5 Summary 

In this chapter we have covered the basic modelling principles and search techniques 
commonly used in speech recognition today. We have also briefly reviewed a number 
of systems and techniques used to improve their speed and memory requirements. One 
of the main themes running through this work is that virtually none of the practical 
implementations have been formally evaluated with respect to the research systems 
on well established test sets under widely used test conditions, or with respect to one 
another. 

In the rest of this thesis, we evaluate the baseline Sphinx-II system under normal 
evaluation conditions and use the results for comparison with our other experiments. 



Chapter 3 

The Sphinx-II Baseline System 

As mentioned in the previous chapters, there is relatively little published work on 
the performance of speech recognition systems, measured along the dimensions of 
recognition accuracy, speed and resource utilization. The purpose of this chapter is 
to establish a comprehensive account of the performance of a baseline system that 
has been considered a premier representative of its kind, with which we can make 
meaningful comparisons of the research reported in this thesis. For this purpose, we 
have chosen the Sphinx-II speech recognition system1 at Carnegie Mellon that has 
been used extensively in speech research and the yearly ARPA evaluations. Various 
aspects of this baseline system and its precursors have been reported in the literature, 
notably in [32, 33, 35, 28, 1, 2]. Most of these concentrate on the modelling aspects 
of the system-acoustic, grammatical or lexical-and their effect on recognition ac­
curacy. In this chapter we focus on obtaining a comprehensive set of performance 
characteristics for this system. 

The baseline Sphinx-II recognition system uses semi-continuous or tied-mixture 
hidden Markov models (HMMs) for the acoustic models [52, 27, 12] and word bigram 
or trigram backoff language models (see Sections 2.1 and 2.2). It is a 3-pass decoder 
structured as follows: 

1. Time synchronous Viterbi beam search [52, 62, 37] in the forward direction. It is 
a complete search of the full vocabulary, using semi-continuous acoustic models, 
a bigram or trigram language model, and cross-word triphone modelling during 
the search. The result of this search is a single recognition hypothesis, as well as 
a word lattice that contains all the words that were recognized during the search. 
The lattice includes word segmentation and scores information. One of the key 
features of this lattice is that for each word occurrence, several successive end 
times are identified along with their scores, whereas very often only the single 
most likely begin time is identified. Scores for alternative begin times are usually 

1The Sphinx-II decoder reported in this section is known internally as FBS6. 
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not available. 

2. Time synchronous Viterbi beam search in the backward direction. This search 
is restricted to the words identified in the forward pass and is very fast. Like 
the first pass, it produces a word lattice with word segmentations and scores. 
However, this time several alternative begin times are identified while typically 
only one end time is available. In addition, the Viterbi search also produces 
the best path score from any point in the utterance to the end of the utterance, 
which is used in the third pass. 

3. An A* or stack search using the word segmentations and scores produced by the 
forward and backward Viterbi passes above. It produces an N-best list [59] of 
alternative hypotheses as its output, as described briefly in Section 1.2. There 
is no acoustic rescoring in this pass. However, any arbitrary language model 
can be applied in creating the N-best list. In this thesis, we will restrict our 
discussion to word trigram language models. 

The reason for the existence of the backward and A* passes, even though the 
first pass produces a usable recognition result, is the following. One limitation of the 
forward Viterbi search in the first pass is that it is hard to employ anything more 
sophisticated than a simple bigram or similar grammar. Although a trigram grammar 
is used in the forward pass, it is not a complete trigram search (see Section 3.2.2). 
Stack decoding, a variant of the A* search algorithm2 [42], is more appropriate for 
use with such grammars which lead to greater recognition accuracy. This algorithm 
maintains a stack of several possible partial decodings (i.e, word sequence hypotheses) 
which are expanded in a best-first manner [9, 2, 50]. Since each partial hypothesis 
is a linear word sequence, any arbitrary language model can be applied to it. Stack 
decoding also allows the decoder to output several most likely N-best hypotheses 
rather than just the single best one. These multiple hypotheses can be postprocessed 
with even more detailed models. The need for the backward pass in the baseline 
system has been mentioned above. 

In this chapter we review the details of the baseline system needed for under­
standing the performance characteristics. In order to keep this discussion fairly self­
contained, we first review the various knowledge source models in Section 3.1. Some 
of the background material in Sections 2.1, 2.2, and 2.3 is also relevant. This is fol­
lowed by a discussion of the forward pass Viterbi beam search in Section 3.2, and the 
backward and A* searches in Section 3.3. The performance of this system on sev­
eral widely used test sets from the ARPA evaluations is described in Section 3.4. It 
includes recognition accuracy, various statistics related to search speed, and memory 
usage. We finally conclude with some final remarks in Section 3.5. 

2We will often use the terms stack decoding and A* search interchangeably. 
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Figure 3.1: Sphinx-II Signal Processing Front End. 

3.1 Knowledge Sources 

This section briefly describes the various knowledge sources or models and the speech 
signal processing front-end used in Sphinx-IL In addition to the acoustic models 
and pronunciation lexicon described below, Sphinx-II uses word bigram and trigram 
grammars. These have been discussed in Section 2.2. 

3.1.1 Acoustic Model 

Signal Processing 

A detailed description of the signal processing front end in Sphinx-II is contained 
in Section 4.2.1 Signal Processing of [27]. The block diagram in Figure 3.1 depicts 
the overall processing. Briefly, the stream of 16-bit samples of speech data, sampled 
at 16KHz, is converted into 12-element mel scale frequency cepstrum vectors and a 
power coefficient in each lOmsec frame. We represent the cepstrum vector at time t 
by x(t) (individual elements are denoted by xk(t), 1 ~ k ~ 12). The power coefficient 
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Final State 
(Non-emitting) 

Figure 3.2: Sphinx-II HMM Topology: 5-State Bakis Model. 
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is simply x0(t). This cepstrum vector and power streams are first normalized, and 
four feature vectors are derived in each frame by computing the first and second order 
differences in time: 

x(t) 
~x(t) 
~~x(t) 
xo(t) 

normalized cepstrum vector 
x(t + 2) - x(t - 2), ~zx(t) = x(t + 4) - x(t - 4) 
~x(t + 1) - ~x(t -1) 
xo(t), 
~xo(t) = xo(t + 2) - xo(t - 2), 
~~xo(t) = ~xo(t + 1) - ~xo(t - 1) 

where the commas denote concatenation. Thus, in every frame we obtain four feature 
vectors of 12, 24, 12, and 3 elements, respectively. These, ultimately, are the input 
to the speech recognition system. 

Phonetic HMM Models 

Acoustic modelling in Sphinx-II is based on hidden Markov models (HMMs) for base­
phones and triphones. All HMMs in Sphinx-II have the same 5-state Bakis topology 
shown in the Figure 3.2. (The background on HMMs has been covered briefly in 
Section 2.1.2.) 

As mentioned in Section 2.1.2, Sphinx-II uses semi-continuous acoustic modelling 
with 256 component densities in each feature codebook. States are clustered into 
senones [27], where each senone has its own set of 256 mixture coefficients weighting 
the codebook for each feature stream. 

In order to further reduce the computational cost, only the top few component 
densities from each feature codebook-typically 4-are fully evaluated in each frame 
in computing the output probability of a state or senone ( equation 2.1). The rationale 
behind this approximation is that the remaining components match the input very 
poorly anyway and can be ignored altogether. The approximation primarily reduces 
the cost of applying the mixture weights in computing senone output probabilities in 
each frame. For each senone and feature only 4 mixing weights have to be applied to 
the 4 best components, instead of all 256. 
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3.1.2 Pronunciation Lexicon 

The lexicon in Sphinx-II defines the linear sequence of phonemes representing the 
pronunciation for each word in the vocabulary. There are about 50 phonemes that 
make up the English language. The phone set used in Sphinx-II is given in Appendix 
A. The following is a small example of the lexicon for digits: 

OH ow 
ZERO z IH ROW 
ZERO(2) Z IY ROW 
ONE WAHN 
TWO T UW 
THREE TH R IY 
FOUR F AO R 
FIVE FAY V 
SIX S IH KS 
SEVEN S EH VAX N 
EIGHT EY TD 
NINE NAY N 

There can be multiple pronunciations for a word, as shown for the word ZERO above. 
Each alternative pronunciation is assumed to have the same a priori language model 
probability. 

3.2 Forward Beam Search 

As mentioned earlier, the baseline Sphinx-II recognition system consists of three 
passes, of which the first is a time-synchronous Viterbi beam search in the forward 
direction. In this section we describe the structure of this forward pass. We shall 
first examine the data structures involved in the search algorithm, before moving on 
to the dynamics of the algorithm. 

3.2.1 Flat Lexical Structure 

The lexicon defines the linear sequence of context-independent or base phones that 
make up the pronunciation of each word in the vocabulary. Since Sphinx-II uses 
triphone acoustic models [34], these base phone sequences are converted into triphone 
sequences by simply taking each base phone together with its left and right context 
base phones. (Note that the phonetic left context at the beginning of a word is the 
last base phone from the previous word. Similarly, the phonetic right context at the 
end of the word is the first base phone of the next word. Since the decoder does 
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not know these neighbouring words a priori, it must try all possible cases and finally 
choose the best. This is discussed in detail below.) Given the sequence of triphones 
for a word, one can construct an equivalent word-HMMby simply concatenating the 
HMMs for the individual triphones, i.e., by adding a NULL transition from the final 
state of one HMM to the initial state of the next. The initial state of first HMM, and 
the final state of the last HMM in this sequence become the initial and final states, 
respectively, of the complete word-HMM. Finally, in order to model continuous speech 
(i.e., transition from one word into the next), additional NULL transitions are created 
from the final state of every word to the initial state of all words in the vocabulary. 
Thus, with a V word vocabulary, there are V 2 possible cross-word transitions. 

Since the result is a structure consisting of separate linear sequence of HMMs for 
each word, we call this a flat lexical structure. 

3.2.2 Incorporating the Language Model 

While the cross-word NULL transitions do not consume any speech input, each of 
them does have a language model probability associated with it. For a transition 
from some word Wi to any word Wj, this probability is simply P(wilwi) if a bigram 
language model is used. A bigram language model fits in neatly with the Markov 
assumption that given any current state s at time t the probability of transitions out 
of s does not depend on how one arrived at s. Thus, the language model probability 
P( Wj lwi) can be associated with the transition from the final state of W i to the initial 
state of Wj and thereafter we need not care about how we arrived at Wj, 

The above argument does not hold for a trigram or some other longer distance 
grammar since the language model probability of transition to Wj depends not only 
on the immediate predecessor but also some earlier ones. If a trigram language model 
is used, the lexical structure has to be modified such that for each word w there are 
several parallel instances of its word HMM, one for each possible predecessor word. 
Although the copies may score identically acoustically, the inclusion oflanguage model 
scores would make their total path probabilities distinct. In general, with non-bigram 
grammars, we need a separate word HMM model for each grammar state rather than 
just one per word in the vocabulary. 

Clearly, replicating the word HMM models for incorporating a trigram grammar 
or some other non-bigram grammar in the search algorithm is much costlier compu­
tationally. However, more sophisticated grammars offer greater recognition accuracy 
and possibly even a reduction in the search space. Therefore, in Sphinx-II, trigram 
grammars are used in an approximate manner with the following compromise. When­
ever there is a transition from word Wi to Wj , we can find the best predecessor of Wi 

at that point, say wi, as determined by the Viterbi search. We then associate the 
trigram probability P(wilwi,wi) with the transition from Wi to Wj, Note, however, 
that unlike with bigram grammars, trigram probabilities applied to cross-word tran-
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sitions in this approximate fashion have to be determined dynamically, depending on 
the best predecessor for each transition at the time in question. 

Using a trigram grammar in an approximate manner as described above has the 
following advantages: 

• It avoid any replication of the lexical word-HMM structures and associated 
increase in computational load. 

• In terms of accuracy, it is much better than using a bigram model and is close to 
that of a complete trigram search. We infer this from the fact that the accuracy 
of the results from the final A* pass, which uses the trigram grammar correctly, 
and also has the benefit of additional word segmentations to choose from, is 
relatively only about 5% better (see Section 3.4.2). 

• A trigram grammar applied in this approximate manner is empirically observed 
to search fewer word-HMMs compared to a bigram grammar, thus leading to a 
slight improvement in the recognition speed. The reduction in search is a result 
of sharper pruning offered by the trigram grammar. 

3.2.3 Cross-Word Triphone Modeling 

It is advantageous to use cross-word triphone models ( as opposed to ignoring cross­
word phonetic contexts) for continuous speech recognition where word boundaries 
are unclear to begin with and there are very strong co-articulation effects. Using 
cross-word triphone models we not only obtain better accuracy, but also greater com­
putational efficiency, at the cost of an increase in the total size of acoustic models. 
The sharper models provided by triphones, compared to diphones and monophones, 
leads to greater pruning efficiency and a reduction in computation. However, us­
ing cross-word triphone models in the Viterbi search algorithm is not without its 
complications. 

Right Context 

The phonetic right context for the last triphone position in a word is the first base 
phone of the next word. In time-synchronous Viterbi search, there is no way to know 
the next word in advance. In any case, whatever decoding algorithm is used, there 
can be several potential successor words to any given word Wi at any given time. 
Therefore, the last triphone position for each word has to be modelled by a parallel 
set of triphone models, one for each possible phonetic right context. In other words , if 
there are k basephones p1, p2, ... , Pk in the system, we have k parallel triphone HMM 
models hp1 , hp2 , ••• , hPk representing the final triphone position for Wi. A cross-word 
transition from W i to another word Wj, whose first base phone is p is represented by 
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Figure 3.3: Cross-word Triphone Modelling at Word Ends in Sphinx-IL 

a NULL arc from hp to the initial state of Wj. Figure 3.3 illustrates this concept of 
right context fanout at the end of each word Wi in Sphinx-IL 

This solution, at first glance, appears to force a large increase in the total number 
of triphone HMMs that may be searched. In the place of the single last position 
triphone for each word, we now have one triphone model for each possible phonetic 
right context, which is typically around 50 in number. In practice, we almost never 
encounter this apparent explosion in computational load, for the following reasons: 

• The dynamic number of rightmost triphones actually evaluated in practice is 
much smaller than the static number because the beam search heuristic prunes 
most of the words away by the time their last phone has been reached. This is 
by far the largest source of efficiency, even with the right context fanout. 

• The set of phonetic right contexts actually modelled can be restricted to just 
those found in the input vocabulary; i.e., to the set of first base phones of all 
the words in the vocabulary. 

Moreover, Sphinx-II uses state clustering into senones, where several states 
share the same output distribution modelled by a senone. Therefore, the parallel 
set of models at the end of any given word are not all unique. By removing 
duplicates, the fanout can be further reduced. In Sphinx-II, these two factors 
together reduce the right context fanout by about 70% on average. 

• The increase is number of rightmost triphones is partly offset by the reduction 
in computation afforded by the sharper triphone models. 
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Left Context 

The phonetic left context for the first phone position in a word is the last base 
phone from the previous word. During decoding, there is no unique such predecessor 
word. In any given frame t, there may be transitions to a word Wj from a number 
of candidates Wi1 , Wi2 , ... The Viterbi algorithm chooses the best possible transition 
into Wj. Let us say the winning predecessor is Wik. Thus, the last base phone of Wik 

becomes the phonetic left context for Wj. However, this is in frame t. In the next 
frame, there may be an entirely different winner that results in a different left context 
base phone. Since the real best predecessor is not determined until the end of the 
Viterbi decoding, all such possible paths have to be pursued in parallel. 

As with right context cross-word triphone modelling, this problem also can solved 
by using a parallel set of triphone models for the first phone position of each word-a 
separate triphone for each possible phonetic left context. However, unlike the word­
ending phone position which is heavily pruned by the beam search heuristic, the word­
initial position is extensively searched. Most of the word-initial triphone models are 
alive every frame. In fact, as we shall see later in Section 3.4, they account for more 
than 60% of all triphone models evaluated in the case of large-vocabulary recognition. 
A left context fanout of even a small factor of 2 or 3 would substantially slow down 
the system. 

The solution used in the Sphinx-II baseline system is to collapse the left context 
fanout into a single 5-state HMM with dynamic triphone mapping as follows. As 
described above, at any given frame there may be several possible transitions from 
words Wi 1 , Wi2 , • •• into Wj. According to the Viterbi algorithm, the transition with 
the best incoming score wins. Let the winning predecessor be Wik. Then the initial 
state of Wj also dynamically inherits the last base phone of Wik as its left context. 
When the output probability of the initial state of Wj has to be evaluated in the next 
frame, its parent triphone identity is first determined dynamically from the inherited 
left context basephone. Furthermore, this dynamically determined triphone identity 
is also propagated by the Viterbi algorithm, as the path probability is propagated 
from state to state. This ensures that any complete path through the initial triphone 
position of Wj is scored consistently using a single triphone HMM model. 

Figure 3.4 illustrates this process with an example, going through a sequence of 
4 frames. It contains a snapshot of a word-initial HMM model at the end of each 
frame. Arcs in bold indicate the winning transitions to each state of the HMM in 
this example. HMM states are annotated with the left context basephone inherited 
dynamically through time. As we can see in the example, different states can have dif­
ferent phonetic left contexts associated with them, but a single Viterbi path through 
the HMM is evaluated with the same context. This can be verified by backtracking 
from the final state backward in time. 
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Figure 3.4: Word Initial Triphone HMM Modelling in Sphinx-IL 

Single Phone Words 

In the case of single-phone words, both their left and right phonetic contexts are 
derived dynamically from neighbouring words. Thus, they have to be handled by a 
combination of the above techniques. With reference to Figures 3.3 and 3.4, separate 
copies of the single phone have to be created for each right phonetic context, and each 
copy is modelled using the dynamic triphone mapping technique for handling its left 
phonetic context. 

3.2.4 The Forward Search 

The decoding algorithm is, in principle, straightforward. The problem is to find the 
most probable sequence of words that accounts for the observed speech. This is 
tackled as follows. 

The abstract Viterbi decoding algorithm and the beam search heuristic, and its 
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application to speech decoding have been explained in Section 2.3.1. In Sphinx-II, 
there are two distinguished words, <s> and </ s> , depicting the beginning and ending 
silence in any utterance. The input speech is expected to begin at the initial state of 
<s> and end in the final state of</ s> . 

We can now described the forward Viterbi beam search implementation in Sphinx-
11. It is explained with the help of fragments of pseudo-code. It is necessary to 
understand the forward pass at this level in order to follow the subsequent discussion 
on performance analysis and the breakdown of computation among different modules. 

Search Outline 

Before we go into the details of the search algorithm, we introduce some terminology. 
A state j of an HMM model m in the flat lexical search space has the following 
attributes: 

• A path score at time t, Pf (t), that indicates the probability corresponding to 
the best state sequence leading from the initial state of <s> at time O to this 
state at time t, while consuming the input speech until t. 

• A history information at time t, Hf(t), that allows us to trace back the best 
preceding word history leading to this state at t. (As we shall see later, this is 
a pointer to the word lattice entry containing the best predecessor word.) 

• The senone output probability, b]'(t), for this state at time t (see Section 2.1.2). 
If m belongs to the first position in a word, the senone identity for state j is 
determined dynamically from the inherited phonetic left context (Section 3.2.3). 

At the beginning of the decoding of an utterance, the search process is initialized 
by setting the path probability of the start state of the distinguished word <s> to 1. 
All other states are initialized with a path score of 0. Also, an active HMM list that 
identifies the set of active HMMs in the current frame is initialized with this first 
HMM for <s> . From then on, the processing of each frame of speech, given the input 
feature vector for that frame, is outlined by the pseudo-code in Figure 3.5. 

We consider some of the functions defined in Figure 3.5 in a little more detail be­
low. Certain aspects, such as pruning out HMMs that fall below the beam threshold, 
have been omitted for the sake of simplicity. 

VQ: VQ stands for vector quantization. In this function, the Gaussian densities 
that make up each feature codebook are evaluated at the input feature vectors. In 
other words, we compute the Mahalanobis distance of the input feature vector from 
the mean of each Gaussian density function. (This corresponds to evaluating N in 
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forward_frame (input feature vector for current frame) 
{ 

I* Find top 4 densities closest to input feature *I VQ (input feature); 
senone_evaluate (); I* Find senone output probabilities using VQ results *I 

} 

hmm_evaluate (); 
word_transition (); 
I* HMM pruning using 

I* Within-HMM and cross-HMM transitions *I 
I* Cross-word transitions *I 

a beam omitted for simplicity *I 

update active HMM list for next frame; 

hmm_evaluate () 
{ 

} 

I* Within-HMM transitions *I 
for (each active HMM h) 

for (each states in h) 
update path probability of s using senone output probabilities; 

I* Within-word cross-HMM transitions and word-exits *I 
for (each active HMM h with final state score within beam) { 

if (his a final HMM for a word w) { 

} 

create word lattice entry for w; I* word exit *I 
} else { 

let h' = next HMM in word after h; 
NULL transition (final-state(h) -> initial-state(h')); 
I* Remember right context fanout if h' is final HMM in word *I 

} 

word_transition () 
{ 

let {w} = set of words entered into word lattice in this frame; 
for (each word w' in vocabulary) 

Find the best transition ({w} -> w'), including LM probability; 
} 

Figure 3.5: One Frame of Forward Viterbi Beam Search in the Baseline System. 
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equation 2.1.) Only the top 4 densities are fully evaluated and used further, since the 
rest typically contribute very little to the senone output probability. 

Since all senones share a single codebook per feature stream in the Sphinx-II 
semi-continuous model, the VQ step does not have to be repeated for each senone. 

Senone Evaluation: (Function senone_evaluate.) In this function, we compute 
the output probability for each senone in the current frame as a weighted sum of 
the top 4 density values in the frame. There are 4 feature streams in Sphinx-II. The 
weighting is done independently on each stream and the final result is the product of 
the four weighted values. (See Sections 3.1.1 and 2.1.2.) 

HMM Evaluation: (Function hmm_evaluate.) This step includes two cases: 

• Within-HMM transitions: For each active HMM model m the path score of 
each state j in m is updated according to: 

Pt(t) = mfix(Pt(t - 1) • bi(t) • aZJ) 
i 

(3.1) 

where, t indicates the current frame, i ranges over all states of m, and a0 
is a static probability for the arc from i to j in m. (See also Section 2.1.2.) 
Furthermore, the history pointer Hf ( t), and the dynamic phonetic left context 
if applicable, are propagated to j from the state i that maximizes expression 
3.1. 

• Within-word cross-HMM transitions and Word Exits: A cross-HMM NULL 
transition within a word from HMM m1 to m2 causes the path score and history 
information to be propagated from the final state of m1 to the start state of m2 

if it results in a better path score at the start state of m2 • 

Words whose final states have a score within the allowed threshold represent 
potential word recognitions in the current frame. There can be several such 
words in any given frame. All of them are entered in a word lattice along with 
the path score and history information from the final state. The right context 
fanout at the end of each word actually results in several entries for each word, 
one for each possible phonetic right context. 

Cross-Word Transition: (Function word_ transition.) In principle, this step 
attempts all possible cross-word transitions from the set of words exited to all words 
in the vocabulary, computing the language model probability in each case. If n words 
reached their final state in the current frame, and there are V words in the vocabulary, 
a total of n V transitions are possible. This is an enormous number. However, not all 
transitions have explicit trigram or even bigram probabilities in the language model. 
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Transitions to trigram and bigram successors of words exited this frame 

First HMMs of all words in vocabulary 
Final HMMs of words exiting this frame 
(Right context fanout not shown) 

Backoff transitions 
Unigram transition to all words .__ __ ___, 

Figure 3.6: Word Transitions in Sphinx-II Baseline System. 

Therefore, the computation is approximated by using trigram and bigram transitions 
that can actually be found in the grammar, and backing off to unigrams through 
a backoff node for the rest3 . Thus, the total number of transitions evaluated is at 
most V plus the number of bigrams and trigrams for the n words exited, which is a 
typically a much smaller number than n V. The scheme is shown in Figure 3.6. For 
the sake of clarity, details involving cross-word triphone modelling have been omitted. 

If a cross-word transition is successful, the history information of the start state 
of the destination word is updated to point to the word lattice entry corresponding 
to the "winning" word just exited, i.e., the best predecessor word at this time. The 
dynamic phonetic left context for the initial phone of the destination word is also set 
from the best predecessor word. 

Result of Forward Beam Search 

One result of the forward pass is the word lattice identifying each word recognized 
during the entire utterance. Each entry in the table identifies a word, its segmentation 
(i.e., start and end points in time), and the acoustic score for that word segmentation. 

The second result of the forward Viterbi search is a single recognition hypothesis. 
It is the word sequence obtained by starting at the final state of </ s> at the end of 

3Trigram probabilities are applied using the approximation described in Section 3.2.2. 
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the utterance and backtracking to the beginning, by following the history pointers in 
the word lattice. 

3.3 Backward and A* Search 

As mentioned earlier, the A* or stack search is capable of exactly using more so­
phisticated language models than bigram grammars, thus offering higher recognition 
accuracy. It maintains a sorted stack of partial hypotheses which are expanded in a 
best-first manner, one word length at a time. There are two main issues with this 
algorithm: 

• To prevent an exponential explosion in the search space, the stack decoding 
algorithm must expand each partial hypothesis only by a limited set of the 
most likely candidate words that may follow that partial hypothesis. 

• The A* algorithm is not time synchronous. Specifically, each partial hypotheses 
in the sorted stack can account for a different initial segment of the input speech. 
This makes it hard to compare the path probabilities of the entries in the stack. 

It has been shown in [42) that the second issue can be solved by attaching a heuris­
tic score with every partial hypothesis H that accounts for the remaining portion of 
the speech not included in H. By "filling out" every partial hypothesis to the full 
utterance length in this way, the entries in the stack can be compared to one another, 
and expanded in a best-first manner. As long as the heuristic score attached to any 
partial hypothesis H is an upper bound on the score of the best possible complete 
recognition achievable from H, the A* algorithm is guaranteed to produce the correct 
results. 

The backward pass in the Sphinx-II baseline system provides an approximation to 
the heuristic score needed by the A* algorithm. Since it is a time-synchronous Viterbi 
search, run in the backward direction from the end of the utterance, the path score 
at any state corresponds to the best state sequence between it and the utterance end. 
Hence it serves as the desired upper bound. It is an approximation since the path 
score uses bigram probabilities and not the exact grammar that the A* search uses. 

The backward pass also produces a word lattice, similar to the forward Viterbi 
search. The A* search is constrained to search only the words in the two lattices, and 
is relatively fast. 

The word lattice produced by the backward pass has another desirable property. 
We noted at the beginning of this chapter that for each word occurrence in the forward 
pass word lattice, several successive end times are identified along with their scores, 
whereas very often only the single most likely begin time is identified. The backward 
pass word lattice produces the complementary result: several beginning times are 
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identified for a given word occurrence, while usually only the single most likely end 
time is available. The two lattices can be combined to obtain acoustic probabilities 
for a wider range of word beginning and ending times, which improves the recognition 
accuracy. 

In the following subsections, we briefly describe the backward Viterbi pass and 
the A* algorithm used in the Sphinx-II baseline system. 

3.3.1 Backward Viterbi Search 

The backward Viterbi search is essentially identical to the forward search, except that 
it is completely reversed in time. The main differences are listed below: 

• The input speech is processed in reverse. 

• It is constrained to search only the words in the word lattice from the forward 
pass. Specifically, at any time t, cross-word transitions are restricted to words 
that exited at t in the forward pass, as determined by the latter's word lattice. 

• All HMM transitions, as well as cross-HMM and cross-word NULL transitions 
are reversed with respect to the forward pass. 

• Cross word triphone modelling is performed using left-context fanout and dy­
namic triphone mapping for right contexts. 

• Only the bigram probabilities are used. Therefore, the Viterbi path score from 
any point in the utterance up to the end is only an approximation to the upper 
bounds desired by the A* search. 

The result of the backward Viterbi search is also a word lattice like that from the 
forward pass. It is rooted at </ s> that ends in the final frame of the utterance, and 
growing backward in time. The backward pass identifies several beginning times for a 
word, but typically only one ending time. Acoustic scores for each word segmentation 
are available in the backward pass word lattice. 

3.3.2 A* Search 

The A* search algorithm is described in [42]. It works by maintaining an ordered stack 
or list of partial hypotheses, sorted in descending order of likelihood. Hypotheses are 
word sequences and may be of different lengths, accounting for different lengths of 
input speed. Figure 3. 7 outlines the basic stack decoding algorithm for finding N-best 
hypotheses. 
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initialize stack with <s>; 
while (N > 0) { 

} 

pop best hypothesis Hoff top of stack; 
if His a complete hypothesis { 

output H, and decrement N; 
} else { 

} 

find candidate list of successor words to H from backward pass lattice; 

for (each word Win above candidate list) { 

} 

extend H by appending W to it, giving new partial hypothesis H'; 
evaluate new score for H' using forward and backward lattices; 
insert H' into the stack in accordance with its new score; 

Figure 3. 7: Outline of A* Algorithm in Baseline System 

The specific details relevant to the Sphinx-II implementation are covered in [2]. 
Most of the additional details pertain to two steps: identifying candidate word ex­
tensions for a partial hypothesis H, and computing the score for each newly created 
partial hypothesis H'. Candidate words are located by looking for lattice entries that 
begin where the partial hypothesis ends. The score for the new hypothesis H' is 
computed by factoring in the acoustic score for the new word W ( obtained from the 
forward and backward pass word lattices), a new heuristic score to the end of the 
utterance from the end point of H', and the language model probability for W, given 
the preceding history, i.e., H. 

The hypotheses produced by the A* algorithm are not truly in descending order 
of likelihood since the heuristic score attached to each partial hypothesis is only an 
approximation to the ideal. However, by producing a sufficiently large number of 
N-best hypotheses, one can be reasonably sure that the best hypothesis is included 
in the list . In our performance measurements described below, the value of N is 150. 
The best output from that list is chosen as the decoding for the utterance. There is 
no other post processing performed on the N-best list. 

3.4 Baseline Sphinx-II System Performance 

The performance of the baseline Sphinx-II recognition system was measured on several 
large-vocabulary, speaker-independent, continuous speech data sets of read speech4 

from the Wall Street Journal and other North American business news domain. These 

4 As opposed to spontaneous speech. 
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data sets have been extensively used by several sites in the past few years, including 
the speech group at Carnegie Mellon University. But the principal goal of these ex­
periments has been improving the recognition accuracy. The work reported in this 
thesis is focussed on obtaining other performance measures for the same data sets, 
namely execution time and memory requirements. We first describe the experimen­
tation methodology in the following section, followed by other sections containing a 
detailed performance analysis. 

3.4.1 Experimentation Methodology 

Parameters Measured and Measurement Techniques 

The performance analysis in this section provides a detailed look at all aspects of 
computational efficiency, including a breakdown by the various algorithmic steps in 
each case. Two different vocabulary sizes-approximately 20,000 and 58,000 words, 
referred to as the 20K and 58K tasks, respectively-are considered for all experiments. 
The major parameters measured include the following: 

• Recognition accuracy from the first Viterbi pass result and the final A* result. 
This is covered in detail in Section 3.4.2. 

• Overall execution time and its breakdown among the major computational 
steps. We also provide frequency counts of the most common operations that 
account for most of the execution time. Section 3.4.3 deals with these mea­
surements. Timing measurements are performed over entire test sets, averaged 
to per frame values, and presented in multiples of real time. For example, any 
computation that takes 23msec to execute per frame, on average, is said to run 
in 2.3 times real time, since a frame is lOmsec long. This makes it convenient to 
estimate the execution cost and usability of individual techniques. Frequency 
counts are also normalized to per frame values. 

• The breakdown of memory usage among various data structures. This is covered 
in Section 3.4.4. 

Clearly, the execution times reported here are machine-dependent. Even with a sin­
gle architecture, differences in implementations such as cache size, memory and bus 
speeds relative to CPU speed, etc. can affect the speed performance. Furthermore, 
for short events, the act of measuring them itself would perturb the results. It is 
important to keep these caveats in mind in interpreting the timing results. Having 
said that, we note that all experiments were carried out on one particular model of 
Digital Equipment Corporation's Alpha workstations. The Alpha architecture [61] 
includes a special RPCC instruction that allows an application to time very short 
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events of as little as a few hundred machine cycles with negligible overhead. All 
timing measurements are normalized to an Alpha processor running at 175MHz. 

It should also be emphasized that the main computational loops in the Sphinx-II 
system have been tuned carefully for optimum speed performance. The measurements 
reported in this work have been limited almost exclusively to such loops. 

Test Sets and Experimental Conditions 

The test sets used in the experiments have been taken from the various data sets 
involved in the 1993 and 1994 ARPA hub evaluations. All the test sets consist of 
clean speech recorded using high quality microphones. Specifically, they consist of 
the following: 

• Dev93: The 1993 development set ( commonly referred to as si_dt_20) . 

• Dev94: The 1994 development set (hLdL94 ). 

• Eva/94: The 1994 evaluation set ( hLeL94 ). 

The test sets are evaluated individually on the 20K and the 58K tasks. This is im­
portant to demonstrate the variation in performance, especially recognition accuracy, 
with different test sets and vocabulary sizes. The individual performance results allow 
an opportunity for comparisons with experiments performed elsewhere that might be 
restricted to just some of the test sets. Table 3.1 summarizes the number of sentences 
and words in each test set. 

Dev93 Dev94 Eva/94 Total 
Sentences 503 310 316 1129 
Words 8227 7387 8186 23800 

Table 3.1: No. of Words and Sentences in Each Test Set 

The knowledge bases used in each experiment are the following: 

• Both the 20K and the 58K tasks use semi-continuous acoustic models of the 
kind discussed in Section 3.1.1. There are 10,000 senones or tied states in this 
system. 

• The pronunciation lexicons in the 20K tasks are identical to those used by CMU 
in the actual evaluations. The lexicon for the 58k task is derived partly from 
the 20k task and partly from the lO0K-word dictionary exported by CMU. 
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• The Dev93 language model for the 20K task is the standard one used by all 
sites in 1993. It consists of about 3.5M bigrams and 3.2M trigrams. The 20K 
grammar for Dev94 and Eval94 test sets is also the standard one used by all 
sites, and it consists of about 5.0M bigrams and 6. 7M trigrams. The grammar 
for the 58K task is derived from the approximately 230M words of language 
model training data that became available during the 1994 ARPA evaluations, 
and it consists of 6.lM bigrams and 18.0M trigrams. The same grammar is used 
with all test sets. 

The following sections contain the detailed performance measurements conducted 
on the baseline Sphinx-II recognition system. 

3.4.2 Recognition Accuracy 

Recognition results from the first pass (Viterbi beam search) as well as the final A* 
pass are presented for both the 20K and 58K task. Table 3.2 lists the word error 
rates on each of the test sets, individually and overall56

. Errors include substitutions, 
insertions and deletions. 

Dev93 Dev94 Eval94 Mean 
20K(Vit.) 17.6 15.8 15.9 16.4 
20K(A*) 16.5 15.2 15.3 15.7 
58K(Vit.) 15.1 14.3 14.5 14.6 
58K(A*) 13.8 13.8 13.8 13.8 

Table 3.2: Percentage Word Error Rate of Baseline Sphinx-II System. 

It is clear that the largest single factor that determines the word error rate is the 
test set itself. In fact, if the input speech were broken down by individual speakers, a 
much greater variation would be observed [45, 46]. Part of this might be attributable 
to different out-of-vocabulary ( OOV) rates for the sets of sentences uttered by in­
dividual speakers. However, a detailed examination of a speaker-by-speaker OOV 
rate and error rate does not show any strong correlation between the two. The main 
conclusion is that word error rate comparisons between different systems must be 
restricted to the same test sets. 

5The accuracy results reported in the actual evaluations are somewhat better than those shown 
here. The main reason is that the acoustic models used in the evaluations are more complex, 
consisting of separate codebooks for individual phone classes. We used a single codebook in our 
experiments instead, since the goal of our study is the cost of the search algorithm, which is about 
the same in both cases. 

6Note that in all such tables, the overall mean is computed over all different sets put together. 
Hence, it is not necessarily just the mean of the means for the individual test sets. 
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3.4.3 Search Speed 

In this section we present a summary of the computational load imposed by the 
Sphinx-II baseline search architecture. There are three main passes in the system: 
forward Viterbi beam search, backward Viterbi search, and A* search. The first 
presents the greatest load of all, and hence we also study the breakdown of that load 
among its main components: Gaussian density computation, senone score computa­
tion, HMM evaluation, and cross-word transitions. These are the four main functions 
in the forward pass that were introduced in Section 3.2.4. Although we present per­
formance statistics for all components, the following functions in the forward Viterbi 
search will be the main focus of our discussion: 

• HMM evaluation. We present statistics on both execution times as well as the 
number of HMMs evaluated per frame. 

• Cross word transitions. Again, we focus on execution times and the number of 
cross-word transitions carried out per frame. 

The execution time for each step is presented in terms of multiples of real time 
taken to process that step. As mentioned earlier, the machine platform for all experi­
ments is the DEC Alpha workstation. All timing measurements are carried out using 
the RPCC instruction, so that the measurement overhead is minimized. It should 
again be emphasized that execution times are heavily influenced by the overall pro­
cessor, bus, and memory architecture. For this reason, all experiments are carried 
out on a single machine model. The performance figures presented in this section are 
normalized to an Alpha processor running at 175MHz. 

Overall Execution Times 

Table 3.3 summarizes the execution times for both the 201( and 581( tasks. As we 
can see, the forward Viterbi search accounts for well over 90% of the computation. Its 
four major components can be grouped into two classes: acoustic model evaluation 
and search. The former includes the Gaussian density computation and senone output 
probability evaluation. The latter consists of searching the network of HMMs to find 
the best decoding-the main body of the Viterbi search algorithm. 

Breakdown of Forward Viterbi Search Execution Times 

Table 3.4 lists the breakdown of the forward pass execution times for the two vocab­
ularies. The important conclusion is that the absolute speed of the search component 
is several tens of times slower than real time for both tasks. This shows that re­
gardless of other optimizations we may undertake to improve execution speed, the 
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Dev93 Dev94 Eval94 Mean %Total 
Forward 22.62 21.84 22.14 22.24 92.8% 
Backward 0.56 0.57 0.59 0.57 2.4% 
A* 1.28 1.02 1.12 1.15 4.8% 

(a) 20K Task. 

Dev93 Dev94 Eval94 Mean %Total 
Forward 46.71 40.25 39.20 42.43 95.8% 
Backward 0.68 0.70 0.70 0.69 1.5% 
A* 1.18 1.17 1.24 1.19 2.7% 

(b) 58K Task. 

Table 3.3: Overall Execution Times of Baseline Sphinx-II System (xRealTime). 

Dev93 Dev94 Eval94 Mean %Forward 
VQ 0.16 0.16 0.16 0.16 0.7% 
Senone Eval. 3.74 3.72 3.71 3.72 16.7% 
HMM Eval. 10.24 9.26 9.41 9.88 44.4% 
Word Trans. 8.29 8.49 8.66 8.47 38.1% 

(b) 20K Task. 

Dev93 Dev94 Eval94 Mean %Forward 
VQ 0.16 0.16 0.16 0.16 0.4% 
Senone Eval. 3.81 3.82 3.85 3.82 9.0% 
HMM Eval. 19.64 17.22 16.18 17.83 42.0% 
Word Trans. 22.90 18.85 18.79 20.41 48.1% 

(b) 58K Task. 

Table 3.4: Baseline Sphinx-II System Forward Viterbi Search Execution Times (xRe­
alTime). 

cost of search must be reduced significantly in order to make large vocabulary speech 
recognition practically useful. 

Since we use semicontinuous acoustic models with just one codebook per feature 
stream, the cost of computing senone output probabilities is relatively low. In fact, 
over 80% of the total time is spent in searching the HMM space in the case of the 20K 
task. This proportion grows to over 90% for the 58K task. We can obtain significant 
speed improvement by concentrating almost solely on the cost of search. 
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We consider the search component-HMM evaluation and cross-word transitions­
in more detail below. 

HMMs Evaluated Per Frame in Forward Viterbi Search 

Table 3.5 summarizes the average number of HMMs evaluated per frame in each of 
the test sets and the overall average, for both the 20K and 58K tasks. The table also 
shows the average number of word-initial HMMs computed per frame, in absolute 
terms and as a percentage of the total number. 

Dev93 Dev94 Eval94 Mean 
Total 16957 15315 15411 15985 
Word-initial 10849 9431 9299 9940 

(%Total) (63) (61) (60) (62) 

(a) 20K Task. 

Dev93 Dev94 Eval94 Mean 
Total 33291 26723 26700 29272 
Word-initial 24576 18219 17831 20569 

(%Total) (74) (68) (67) (70) 

(b) 58K Task. 

Table 3.5: HMMs Evaluated Per Frame in Baseline Sphinx-II System. 

The most striking aspect of the baseline Sphinx-II system is that in the 20K task 
more than 60% of the total number of HMMs evaluated belong to the first position 
in a word. In the case of the 58K task, this fraction grows to 70%. The reason 
for this concentration is simple. Since there are no pre-defined word boundaries in 
continuous speech, there are cross-word transitions to the beginning of every word in 
the vocabulary in almost every frame. These transitions keep most of the word-initial 
triphone models alive or active in every frame. 

Cross-Word Transitions Per Frame in Forward Viterbi Search 

A similar detailed examination of cross-word transitions shows a large number of 
unigram, bigram and trigram transitions performed in each frame. As explained in 
Section 3.2.4, there are three cases to be considered. If w is a word just recognized and 
w' its best Viterbi predecessor, we have the following sets of cross-word transitions: 

1. Trigram followers of ( w, w'), 
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2. Bigram followers of ( w), and 

3. Unigram transitions to every word in the vocabulary. 

Of course, many of them are unsuccessful because their low a priori likelihood, as 
determined by the associated language model probabilities. In Table 3.6 we show 
the number of successful cross-word transitions per frame in the baseline Sphinx-II 
system. 

Dev93 Dev94 Eval94 Mean %Total 
Trigrams 996 662 708 807 6.2% 
Bigrams 5845 5035 5079 5364 40.9% 
Unigrams 7257 6848 6650 6944 52.9% 

(a) 201( Task. 

Dev93 Dev94 Eval94 Mean %Total 
Trigrams 1343 1276 1351 1326 5.1% 
Bigrams 10332 7360 7367 8519 32.9% 
Unigrams 20090 13792 13305 16087 62.0% 

(b) 581( Task. 

Table 3.6: N-gram Transitions Per Frame in Baseline Sphinx-II System. 

We conclude that both bigram and unigram transitions contribute significantly to 
the cost of cross-word transitions. 

3.4.4 Memory Usage 

It is somewhat hard to measure the true memory requirement of any system without 
delving into the operating system details. There are two measures of memory space: 
virtual memory image size, and the resident or working set size. The former is easy 
to measure, but the latter is not. We consider both aspects for each of the main data 
structures in the baseline system. 

Acoustic Model 

In our experiments with Sphinx-II using semi-continuous acoustic models, the senone 
mixture weights discussed in Sections 2.1.2 and 3.1.1 constitute the largest portion of 
the acoustic models. The 10,000 senones occupy 40MBytes of memory, broken down 
as follows. Each senone contains 256 32-bit weights or coefficients corresponding to 
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Unigrams 

Bigrams 

Trigrams 

Figure 3.8: Language Model Structure in Baseline Sphinx-II System. 

the 256 codewords in a codebook. There are four codebooks for the four feature 
streams (Section 3.1.1 ). 

The memory resident size of the senone mixture weights is not significantly less 
than their total size. If all Gaussian densities were fully evaluated in every frame and 
weighted by the senone coefficients, the entire 40MB data structure would be touched 
and resident in memory every frame. In practice, only the top 4 densities out of 256 
are used in a given frame. Nevertheless, the identity of the top 4 densities varies 
rapidly from frame to frame. Hence, most of the senone mixture weights are accessed 
within a short period of time. That is, there isn't very much locality of access to this 
data structure to be exploited by the virtual memory system. 

Language Model 

The representation of the language model data structure has been quite well opti­
mized. The sets of unigrams, bigrams, and trigrams are organized into a tree struc­
ture wherein each unigram points to the set of its bigram successors, and each bigram 
points to its trigram successors. Figure 3.8 illustrates this organization. 

The memory requirement for unigrams in a large-vocabulary, word trigram gram­
mar is negligible, compared to the higher-order n-grams. A bigram entry includes 
the following four components: 

1. Word-id. A bigram is a two-word pair. Since all bigram followers of a single 
unigram are grouped under the unigram, it is only necessary to record the 
second word of the bigram in its data structure. 

2. Bigram probability. 

3. A backoff weight that is applied when a trigram successor of the bigram is not 
in the language model and we have to back off to another bigram. 
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4. Pointer to the trigram successors for the bigram. 

Similarly, a trigram consists of 2 entries: a word-id and its trigram probability. By 
means of a set of indirect lookup tables, each of the components of a bigram or trigram 
entry is compressed into 2 bytes. In other words, a single bigram requires 8 bytes, 
and a single trigram 4 bytes. 

Based on these figures, the two language models used in the 20K task (see Section 
3.4.1) occupy about 41MB and 67MB of memory, respectively. The 58K task language 
model measures at about 121MB. 

In this case, the difficulty faced by the virtual memory system in managing the 
working set is that the granularity of access is usually much smaller than the physical 
page size of modern workstations. Many words have just a few 10s to 100s of bigram 
successors. For example, the average number of bigrams per word in the case of the 
58K vocabulary is about 105. Whereas, the page size on a DEC Alpha is 8KB, 16KB, 
or more. Hence, much'of the contents of a page of bigrams might be unused. 

Search Data Structures 

One of the search data structures is the network of active word HMMs in each frame. 
It is a dynamically varying quantity. The average number of active HMMs per frame, 
shown in Table 3.5, is a rough measure of this parameter. Its peak value, however, can 
be substantially higher. Since all of the active HMMs in a frame have to be evaluated, 
they are all resident in memory. Other prominent search data structures include the 
forward and backward pass word lattices, the sizes of which grows approximately 
proportionately with the utterance length. 

All of these data structures are relatively small compared to the acoustic and 
language models, and we exclude them from further discussion. 

Memory Usage Summary 

In summary, the virtual memory requirement of the baseline system is well over 
100MB for the 20K tasks and around 200MB for the larger 58K task, excluding aux­
iliary data structures used in the three passes. It is worth noting that the 20K tasks 
are on the verge of thrashing on a system with 128MB of main memory, indicating 
that most of the virtual pages are indeed being touched frequently. 
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3.5 Baseline System Summary 

The purpose behind this chapter has been to outline the basic algorithms comprising 
the baseline Sphinx-II speech recognition system, as well as to evaluate its perfor­
mance on large-vocabulary, continuous-speech tasks. We have obtained a measure of 
its efficiency along three basic dimensions: recognition accuracy, speed, and memory 
requirements. The evaluations were carried out on several test sets of read speech 
from the Wall Street Journal and North American Business News domains. The tests 
are run with two different vocabulary sizes of 20K and 58K words. 

The immediate conclusion from these measurements is that the baseline Sphinx-II 
system cannot be used in practical, large vocabulary speech applications. Its compu­
tational and memory requirements are an order of magnitude beyond the capabilities 
of commonly available workstations. While it is possible to improve the recognition 
speed by tightening the beam width (i.e., pruning the search more ruthlessly) and us­
ing less sophisticated acoustic models to reduce memory requirements, such measures 
cannot overcome the inherent algorithmic complexities of the system. Moreover, they 
also result in an unacceptable increase in the recognition error rate. 

We summarize our conclusions from this chapter: 

• The main search of the full vocabulary, i.e. the forward Viterbi search, is 
computationally the most expensive. It accounts for over 90% of the total time. 
Postprocessing the word lattice is relatively inexpensive. 

• The search component of the forward Viterbi search, even on modern high-end 
workstations, is several tens of times slower than real time on large vocabulary, 
continuous speech tasks. 

• About half of the search cost is attributable to HMM evaluation. Moreover, the 
active HMMs to be evaluated during search are concentrated near the beginning 
of words. Specifically, over 60-70% of the active HMMs are word-initial models. 
This is not a new result. It has also been pointed out before, for example in 
[39, 43], although it has not been quantified as systematically. 

• The other half of the search cost is attributable to the evaluation of cross­
word transitions, along with the need to perform several thousands of language 
model accesses in each frame. Both bigram and unigram transitions contribute 
significantly to this cost. 

• The memory requirements of large vocabulary speech recognition systems are 
dominated by the two main databases: acoustic models and language models. 
For large tasks they can run between 100-200MB. 

It is clear that in order for the state-of-the-art speech recognition systems to become 
useful, we must address all of the above issues. 



Chapter 4 

Search Speed Optimization 

4.1 Motivation 

Most of the research effort on large vocabulary continuous speech recognition has 
primarily been in improving recognition accuracy, exemplified by the baseline Sphinx­
II system. We have seen in the previous chapter that the Sphinx-II system is several 
tens of times too slow and requires 100-200MB of memory for large vocabulary tasks. 
In order to be practically useful, speech recognition systems have to be efficient in 
their usage of computational resources as well. 

There clearly are several real-time recognition systems around in the ARPA speech 
research community (23, 60, 55, 24]. However, the published literature is relatively 
bare regarding them. Their performance has never been formally evaluated with re­
spect to the research systems or with respect to one another, in the way that the 
accuracy of research systems has been. One goal of this thesis is to demonstrate 
that it is possible to achieve near real-time performance on large-vocabulary, contin­
uous speech recognition tasks without compromising the recognition accuracy offered 
by research systems. This is a way of lending validity to the ongoing research on 
. . 
1mprovmg accuracy. 

We can also look at the current focus of speech research from the following angle. 
Speech recognition systems consist of two main components: 

• Modelling structure, consisting of acoustic and language models. 

• Algorithmic or search structure. For example, the forward pass Viterbi beam 
search algorithm described in the previous chapter. 

Clearly, both components contribute to the various dimensions of efficiency of the 
system-accuracy, speed, memory usage. But much of speech research has been 
focussed on the modelling aspect, specifically towards improving recognition accuracy. 

49 
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This chapter concentrates on improving the algorithmic structure of search, while 
preserving the gains made in the modelling arena. 

Another reason for concentrating on the search problem is the following. The 
complexity of speech tasks is constantly growing, outpacing the growth in the power 
of commonly available workstations. Since the late 1980s, the complexity of tasks 
undertaken by speech researchers has grown from the 1000-word Resource Manage­
ment ( RM) task [51] to essentially unlimited vocabulary tasks such as transcription 
of radio news broadcast in 1995 [48]. The RM task ran about an order of magnitude 
slower than real time on processors of that day. The unlimited vocabulary tasks run 
about two orders of magnitude slower than real time on modern workstations. At 
least part of the increase in the computational load is the increase in the search space. 
It seems reasonable to expect that task complexity will continue to grow in the future. 

In this chapter, we discuss several algorithms and heuristics for improving the 
efficiency of a recognition system. We use the Sphinx-II research system described in 
Chapter 3 as a baseline for comparison. Since the focus of this work is in improving 
search algorithms, we use the same acoustic and language models as in the baseline 
system. As mentioned above, there are two variables in speech recognition systems, 
modelling and search algorithms. By keeping one of them constant, we also ensure 
that comparisons of the performance of proposed search algorithms with the baseline 
system are truly meaningful. 

Though the work reported in this thesis has been carried out in the context of semi­
continuous acoustic models, it is also relevant to systems that employ fully continuous 
models. At the time that this work was begun, the Sphinx-II semi-continuous acoustic 
models were the best available to us. Over the last two years fully continuous acoustic 
models [66, 5, 18] have become much more widely used in the speech community. 
They reduce the word error rate of recognition systems by a relative amount of about 
20-30% compared to semi-continuous acoustic models1 [46, 47]. The use of fully 
continuous models does not eliminate the search problem. On the other hand, the cost 
of computing output probabilities for each state in each frame becomes much more 
significant that in the semi-continuous system. Hence, improving the speed of search 
alone is not sufficient. We demonstrate that the proposed search algorithms using 
semi-continuous models generate compact word lattices with low lattice error rate. 
Such lattices can be postprocessed efficiently using more complex acoustic models for 
higher accuracy. 

The outline of this chapter is as follows: 

• In Section 4.2 we discuss lexical tree Viterbi search and all its design ramifica-

1The contribution of acoustic modelling in different systems to recognition accuracy is hard to 
estimate since some systems use not one but several sets of acoustic models, particularly for speaker 
adaptation [64]. The overall accuracy resulting from the use of continuous HMM models plus several 
cycles of mean and variance adaptation was about 50% better than semi-continuous HMM modelling 
with little or no adaptation. 
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tions. We show how the lexical tree can be used to not only take advantage of 
the reduction in the number of active HMMs, but also to significantly reduce 
the number of language model operations during cross-word transitions. Tree­
structured lexicons are increasingly being used in all speech recognition systems 
to take advantage of the sharing of HMMs across words, but this is the first 
instance of reducing the language model operations significantly. The section 
includes detailed performance measurements and comparisons to the baseline 
Sphinx-II system. 

• In Section 4.3 we present an efficient word lattice search to find a globally 
optimum path through the lattice using a trigram grammar. Even though the 
lexical tree search is about 20% worse in recognition accuracy relative to the 
baseline system, most of the loss is recovered with this step. The global word 
lattice search improves the recognition accuracy by considering alternative paths 
that are discarded during the lexical tree Viterbi search. 

• In Section 4.4 we show that by rescoring the word lattice output of the tree 
search using the conventional search algorithm of the baseline system, we es­
sentially regain the recognition accuracy of the baseline system. Though our 
rescoring experiments are restricted to semi-continuous acoustic models, clearly 
more sophisticated models can be used as well. 

• In Section 4.5 we propose a phonetic fast match heuristic that can be easily 
integrated into the lexical tree search algorithm to reduce the search, with 
virtually no loss of accuracy. The heuristic uses senone output probabilities in 
each frame to predict a set of active basephones near that frame. All others are 
considered inactive and pruned from search. 

• There is a good deal of inherent parallelism at various levels in a speech recog­
nition system. As commercial processor architectures and operating systems 
become capable of supporting multithreaded applications, it becomes possible 
to take advantage of the applications' inherent concurrency. In Section 4.6 we 
explore the issues involved in exploiting them. 

This chapter concludes with Section 4. 7 that summarizes the performance of all of 
the techniques presented in this chapter. 

4.2 Lexical Tree Search 

The single largest source of computational efficiency in performing search is in or­
ganizing the HMMs to be searched as a phonetic tree, instead of the flat structure 
described in Section 3.2.1. It is referred to as a tree-structured lexicon or lexical tree 
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ABOUND AX B AWN DD 
ABOUT AX B AW TD 
ABOVE AX BAH V 
BAKE BEY KD 
BAKED BEY KD TD 
BAKER BEY K AXR 
BAKERY BEY K AXR IY 
BAKING BEY K IX NG 

(a) Example Pronunciation Lexicon. 

BAKING 

BAKER 

(b) Basephone Lexical Tree. 

Figure 4.1: Basephone Lexical Tree Example. 

structure. In such an organization, if the pronunciations of two or more words con­
tain the same n initial phonemes, they share a single sequence of n HMM models 
representing that initial portion of their pronunciation. Tree-structured lexicons have 
often been used in the past, especially in fast-match algorithms as a precursor step to 
a stack-decoding algorithm. More recently, tree search has come into widespread use 
in the main decoding process (43, 39]. Figure 4.1 shows a simple base-phone lexical 
tree2 for a small example lexicon. 

The lexical tree offers a potential solution to the two main sources of computational 
cost in the baseline system: 

• By introducing a high degree of sharing at the root nodes, it reduces the number 

2Strictly speaking, the so-called lexical tree is actually a collection of trees or a forest, rather 
than a single tree. Nevertheless, we will continue to use the term lexical tree to signify the entire 
collection. 
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of word initial HMMs that need to be evaluated in each frame. As we saw in 
Section 3.4.3, word-initial HMMs are the most frequently evaluated HMMs in 
the baseline system. 

• The tree structure also greatly reduces the number of cross-word transitions, 
which is again a dominant part of search in the baseline system (see Section 
3.4.3, Table 3.6). 

Another advantage of the tree organization is that both the number of active HMMs 
and the number of cross-word transitions grow much more slowly with increasing 
vocabulary size than in the case of a flat lexical structure. On a per active HMM 
basis, however, there is more work involved in the lexical tree search, since each active 
HMM makes NULL transitions to several successor nodes, rather than just a single 
node as in the baseline system. 

The main impediment to the full realization of the above advantages of tree search 
is the incorporation of a language model into the search. In the flat lexical structure, 
each cross-word transition from word Wi to Wj is accompanied by a language model 
probability P( Wj lwi), assuming a bigram grammar. The difficulty with the tree struc­
ture is that individual words are not identifiable at the roots of the tree. The root 
nodes represent the beginning of several different words ( and hence multiple gram­
mar states), which are related phonetically, but not grammatically. This can lead to 
conflicts between different cross-word transitions that end up at the same root node. 

Most of the current solutions rely on creating additional word HMM networks to 
handle such conflicts. The prominent ones have been reviewed in Section 2.4. The 
obvious drawback associated with these solutions is an increase in the number of 
operations that the lexical tree structure is supposed to solve in the first place. 

In this work we present a coherent solution that avoids the replication by post­
poning the computation of language model probability for a word until the end of the 
word is reached. We show that this strategy improves the computational efficiency 
of search as it takes full advantage of the tree structure to dramatically reduce not 
only the number of HMMs searched but also the number of cross-word transitions 
and language model probabilities to be evaluated. 

We first present the structure of the lexical tree in Section 4.2.1, followed by the 
main issue of treating language model probabilities across word transitions in Section 
4.2.2. The overall tree search algorithm is discussed in Section 4.2.3. Section 4.2.4 
contains a detailed performance analysis of this algorithm, and we finally conclude 
with a summary in Section 4.2.5. 
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4.2.1 Lexical Tree Construction 

In Figure 4.1 we saw the construction of a lexical tree of base phone nodes. However, 
we wish to use triphone acoustic models rather than simple base phone models for 
high recognition accuracy. Hence, the lexical tree has to be built out of triphone nodes 
rather than basephone nodes. This basically requires a trivial change to Figure 4.1, 
except at the roots and leaf positions of the tree ( corresponding to word beginnings 
and endings), which have to deal with cross-word triphone models. 

The issues that arise in dealing with cross-word triphone modelling have been 
discussed in Section 3.2.3. The Sphinx-II tree-structured decoder also uses similar 
strategies3 . To summarize: 

• In a time-synchronous search, the phonetic right contexts are unknown since 
they belong to words that would occur in the future. Therefore, all phonetic 
possibilities have to be considered. This leads to a right context fanout at the 
leaves of the lexical tree. 

• The phonetic left context at the roots of the lexical tree is determined dynami­
cally at run time, and there may be multiple contexts active at any time. How­
ever, a fanout at the roots, similar to that at the leaves, is undesirable since the 
former are active much more often. Therefore, cross-word triphones at the root 
nodes are modelled using the dynamic triphone mapping technique described in 
Section 3.2.3. It multiplexes the states of a single root HMM between triphones 
resulting from different phonetic left contexts. 

Figure 4.2 depicts the earlier example shown in Figure 4.1, but this time as a 
triphone lexical tree. The notation b( l, r) in this figure refers to a triphone with base­
phone b, left context phone l, and right context phone r. A question-mark indicates 
an unknown context that is instantiated dynamically at run time. 

The degree of sharing in a triphone lexical tree is not as much as in the basephone 
version, but it is still substantial at or near the root nodes. Table 4.1 lists the number 
of tree nodes at various levels, the corresponding number of nodes in the flattened 
lexicon (i.e., if there were no sharing), and the ratio of the former to the latter as a 
percentage. Leaf nodes were not considered in these statistics since they have to be 
modelled with a large right context fanout. The degree of sharing is very high at the 
root nodes, but falls off sharply after about 3 levels into the tree. 

In our implementation, the entire lexical tree, except for the leaf nodes with their 
right context fanout, is instantiated as a data structure in memory. If the leaf nodes 
were also allocated statically, their right context fanout would increase the total 

3Unlike the baseline system, however, single-phone words have been modelled more simply, by 
modelling different left contexts but ignoring the right context. 
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AW(B,N) N(AW,DD) DD(N,?) 

B(AX,AW) ABOUND 

AX(?,B) 
AW(B,TD) TD(AW,?) ABOUT 

B(AX,AH) AH(B,V) V(AH,?) ABOVE 

KD(EY,?) BAKE 

EY(B,KD) 

KD(EY,TD) TD(KD,?) BAKED 

B(?,EY) 
K(EY,IX) IX(K,NG) NG(IX,?) 

BAKING 
EY(B,K) 

AXR(K,?) BAKER 

K(EY,AXR) 

AXR(K,IY) IY(AXR,?) 

BAKERY 

Figure 4.2: Triphone Lexical Tree Example. 

20K(Dev93) 20K(Dev94/Eval94) 58K 
Level Tree Flat Ratio Tree Flat Ratio Tree Flat Ratio 

1 656 21527 3.0% 690 21725 3.2% 851 61657 1.4% 
2 3531 21247 16.6% 3669 21430 17.1% 5782 61007 9.5% 
3 8047 19523 41.2% 8339 19694 42.3% 18670 57219 32.6% 
4 9455 16658 56.8% 9667 16715 57.8% 26382 49390 53.4% 
5 8362 12880 64.9% 8493 12858 66.1% 24833 38254 64.9% 
6 6359 9088 70.0% 6388 8976 71.2% 18918 26642 71.0% 
7 4429 5910 74.9% 4441 5817 76.3% 13113 17284 75.9% 
8 2784 3531 78.8% 2777 3448 80.5% 8129 10255 79.3% 

Table 4.1: No. of Nodes at Each Level in Tree and Flat Lexicons. 

number of triphone models enormously. Therefore, leaf nodes are only allocated on 
demand; i.e., when these HMMs become active during the search. 



56 CHAPTER 4. SEARCH SPEED OPTIMIZATION 

4.2.2 Incorporating Language Model Probabilities 

The application of language model probabilities at word boundaries presents an inter­
esting dilemma. Traditionally, the language model probability for a transition from 
word Wi to Wj is computed and accumulated during the transition into the initial state 
of Wj, See, for example, the baseline system description in Section 3.2.4. As a result, 
the initial score for the new word Wj is "primed" with the appropriate expectation 
for that word in the context of the preceding history. This approach fits neatly into 
the Markov model and the Viterbi search algorithm, and has two main advantages: 

• By using the language model probability upon word entry, the search process 
is biased in favour of the grammatically more likely words, and against the less 
likely ones. This bias serves to prune away the less likely words, reducing the 
dynamic search space. 

• Frequently occurring short words or function words, such as a, the, an, of, etc., 
which are generally poorly articulated, are given an initial boost by the language 
model at the appropriate moments4. Thus, even though their poor articulation 
might result in a poor acoustic match subsequently, the initial priming by the 
language model often allows them to survive the beam search without getting 
pruned. 

The disadvantage of computing language model probabilities upon word entry is, of 
course, the computational cost of evaluating a very large number of them in each 
frame. This was seen in the previous chapter in Section 3.4.3, Table 3.4, making the 
execution of cross-word transitions one of the most costly steps in the search process. 

One would like to retain the advantages stated above, without incurring the asso­
ciated cost, if possible. The immediate problem with a tree-structured lexicon is that 
one does not have distinct, identifiable initial states for each word in the lexicon. The 
tree structure implies that the root nodes are shared among several words, related 
phonetically, but quite unrelated grammatically. Hence it is not possible to determine 
a meaningful language model probability upon transitioning to a root node. 

The Language Modelling Problem 

Let us see the problem in detail by referring to Figure 4.3( a) and the original algorithm 
for cross-word transitions in the baseline system in Figure 3.6. Figure 4.3( a) depicts 
cross-words NULL transitions attempted from the final states of two words p1 and p2 

to the initial states of words w1 and w2 at time t. Let us represent the path scores 

4The correct thing to do is, of course, to improve the acoustic modelling of such events rather 
than relying on the language model to overcome the former's shortcomings. However, every bit 
helps! 
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(a) (b) 

Figure 4.3: Cross-Word Transitions With Flat and Tree Lexicons. 

at the end of any Pi at time t by Pp;(t), and the bigram probability for the transition 
from Pi to Wj by PLM( Wj IPi)- In the flat-lexical search of the baseline system, the 
path score entering Wj from Pi at time t is: 

( 4.1) 

The Viterbi algorithm chooses the better of the two arcs entering each word w1 and w2 , 

and their history information is updated accordingly. In Figure 4.3( a), the "winning" 
transitions are shown by bold arrows. 

In particular, the presence of separate word-HMM models for w1 and w2 allows 
them to capture their distinct best histories. However, if w1 and w2 share the same 
root node in the tree lexicon, as shown in Figure 4.3(b), it is no longer possible to 
faithfully retain the distinctions provided by the grammar. It should be emphasized 
that the bigram grammar is the source of the problem. If only unigram probabilities 
are used, PLM(wilPi) is independent of Pi and the best incoming transition is the same 
for all words w j.) 

Suggested Solutions to Language Modelling Problem 

Several attempts have been made to resolve this problem, as mentioned in Section 2.4. 
One solution to this problem has been to augment the lexical tree with a separate 
flat bigram section. The latter is used for all bigram transitions and the lexical 
tree only for unigram transitions [39]. The scheme is shown in Figure 4.4. Bigram 
transitions, from the leaves of either the lexical tree or fl.at structure, always enter 
the fl.at structure, preserving the grammar state distinctions required, for example, in 
Figure 4.3( a). U nigram transitions enter the roots of the lexical tree. This solution 
has two consequences for the speed performance: 

• The addition of the fl.at lexicon increases the dynamic number of HMM models 
to be searched. 
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Backoff 
Unigram 
Transitions 
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Bigram 
Transitions 

Flat 
Lexicon 
(Bigram 
Section) 

Bigram 
Transitions 

Figure 4.4: Auxiliary Flat Lexical Structure for Bigram Transitions. 

• The number of unigram transitions is reduced significantly because of the tree 
structure. However, the number of bigram transitions is similar to that of the 
baseline system (Section 3.4.3, Table 3.6), which still constitutes a significant 
computational load. 

Alternative solutions are proposed in [40, 3] that construct separate secondary 
trees for the bigram section, instead of the flat lexical structure of Figure 4.4. Both 
of them report results on 10,000 word vocabulary experiments. In the former, the 
number of tree copies that are active range between 20 and 30, causing an increase 
in the number of active states by about a factor of 2. The latter have reported near 
real-time performance on the 10,000 word task with a language model of perplexity 
27. It is not clear how the performance extends to tasks with a larger vocabulary and 
grammars. 

Computing Language Model Probability Upon Word Exit 

The difficulties can be overcome simply by deferring the computation of the language 
model probability for a word until we reach a node in the lexical tree that uniquely 
represents that word; i.e., it is not shared with any other word. If there are multiple 
words with identical pronunciations (homophones), they can still be forced to become 
distinct at the leaf nodes. Therefore, we can defer the computation of language model 
score for a word until it exits its leaf node in the lexical tree. The advantage of this 
approach is that the total number of such computations per frame is very small. The 
number of words that survive the beam search all the way to their final state, on 
average, is about two orders of magnitude smaller than the vocabulary size. 

Let us see how this scheme works with respect to the example in Figure 4.3(b). 
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Extract Htemp from the final state of Wj; 

From Htemp find Ptemp, the initially chosen predecessor word; 
Obtain t, the end time of Ptemp; 

Find all word lattice entries Pi that ended at t; 
(In this example, they are P1 and pz.) 

Find: f = maxi((PvJt)/PPtemp(t)) • PLM(wilPi)); 

Figure 4.5: Path Score Adjustment Factor f for Word Wj Upon Its Exit. 
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Since the transitions to the root node shared by w1 and w2 no longer include their 
language model probabilities, the incoming score into the root at time t is simply: 

The root node also inherits a history information that points to the word lattice 
entry for the best predecessor word, as described in Section 3.2.4. However, it is 
a temporary value since it does not include a language model probability for the 
transition. Let's call this history Htemp· It is propagated as usual by the Viterbi 
algorithm and eventually reaches the final states of w1 or w2 ( assuming they are not 
pruned by the beam search). By our earlier assumption, the final states of the leaf 
nodes belong to distinct words and are not shared. Therefore, their language model 
probabilities can now be included, and the path scores and history information htemp 

updated if necessary. Figure 4.5 summarizes this path score adjustment at the end 
of word Wj, The value f computed in the figure is the adjustment factor applied to 
the path score at the end of Wj, The word lattice entry that maximizes f becomes 
the adjusted history at the end of Wj, replacing Htemp• (In our discussions we have 
neglected to deal with cross-word triphone models. However, it is straightforward to 
accommodate it into the expression Pp; (t).) 

There are some disadvantages that stem from deferring the accumulation of lan­
guage model probabilities until word exit: 

• The initial "priming" or guidance provided by the language model is absent. 
Since all words are grammatically equal until their final state is reached, the 
search pruning provided by the language model is lost and the number of HMM 
models to be searched increases. 

• Short function words which occur frequently but are poorly articulated, are 
more likely to be pruned by the beam search before their final state is ever 
reached. If their language model probabilities had been included upon word 
entry, on the other hand, they would have received an initial boost allowing 
them to survive the beam pruning. 
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These concerns are addressed below. 

Computing Language Model Probability When Entering Leaf Nodes 

One obvious solution to the lack of guidance from a language model is to adopt an 
intermediate solution between computing the language model probability at the very 
beginning upon word entry and at the very end upon word exit. Since the degree 
of sharing in the lexical tree drops rapidly beyond 3 or 4 phone positions, one might 
as well flatten the lexical structure completely beyond that depth. For example, the 
lexical tree of Figure 4.2 is essentially fiat beginning at a depth of 4. 

Since individual words are identifiable beyond a level of 3 or 4 from the roots, 
language model scores can be computed during the NULL transitions at these points 
in a similar fashion to that described above. Thus, the computational savings afforded 
by the tree structure are retained near the root where it matters most, and the 
guidance and search pruning provided by the language model is available when the 
tree structure ceases to be as effective. 

However, the above solution still doesn't address the problem of poorly articulated 
function words which are typically just 1-3 phones long. Secondly, the shorter we make 
the depth of the actual tree structure and the earlier we compute language model 
probabilities, the more HMMs are actively being searched at that point, increasing 
the cost of the path score adjustments. 

For these reasons, in the final implementation of our tree search algorithm, the 
language model probability for a word is computed upon entering the final leaf node 5 

for that word, rather than when exiting it. The algorithm is basically identical to 
that shown in Figure 4.5, except that the path score adjustment is performed when 
entering the final phone of Wj, rather than exiting Wj. Furthermore, it does not apply 
to single-phone words, which have to be treated essentially as in the baseline Sphinx­
II system, outside the lexical tree structure. But this is not a major issue since the 
number of single-phone words in the vocabulary is only about 10. 

For a short function word, this organization has the effect of accumulating the 
language model probability early into the word, reducing the chances of its having 
been pruned because of poor acoustic match. In particular, in the case of single 
phone words, the language model probability is computed and accumulated upon 
word entry. This compromise partly retains the guidance provided by the language 
model for poorly articulated short function words, while preserving computational 
efficiency for the vast majority of the remaining words. 

5Note that there are really several leaf nodes for any given word, caused by the right context 
fanout for cross-word triphone modelling. However, we shall continue to speak loosely of a leaf node 
in the singular, with the right context fanout being implicitly understood. 
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Optimization of Path Score Adjustment 

We can further reduce the cost of path score adjustment operations shown in Figure 
4.5 using the following optimization. 

We observe that in the Viterbi algorithm, if a triphone model survives the beam 
pruning through to its exit state at a certain frame, it is very likely to continue to 
survive in the next several frames. This is particularly true of triphones near word­
ends. Thus, if we make a transition into a given leaf node of the lexical tree at time 
te, we are likely to make that transition again at te + 1. This is because speech 
corresponding to a phone lingers for several frames. 

We note that the path score adjustment for a transition into a leaf node at te + 1 is 
identical to the adjustment at te, provided the temporary history information Htemp 

is identical in both cases (see previous discussion and Figure 4.5). This is obvious 
because the final expression in Figure 4.5 for the adjustment factor f: 

is independent of te; all the variables involved depend only on Htemp· 

Therefore, we can eliminate many path score adjustment operations as follows. 
When we enter the leaf node of a word Wj with a new temporary history information 
Htemp for the first time, we compute the complete path score adjustment factor and 
cache the result. If we transition to the leaf node again in subsequent frames with the 
same history, we simply re-use the cached result. Some rough measurements indicate 
that this optimization eliminates approximately 50% of the adjustment operations in 
our benchmarks. 

4.2.3 Outline of Tree Search Algorithm 

The lexical tree search is implemented as a time-synchronous, Viterbi beam search 
algorithm6 . It is similar to the baseline Sphinx-II decoder in many ways: 

• It uses the same signal processing front end and semi-continuous phonetic HMM 
models as the baseline system, described in Section 3.1.1. The HMM topology 
is the 5-state Bakis model shown in Figure 3.2. 

• The pronunciation lexicon is also identical to that used in the baseline system 
(Section 3.1.2). 

• It uses backed off word trigram language models. 

6The tree-search decoder is known within CMU as FBS8. 
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• Cross-word modelling at word ends is accomplished by right context fanout, 
and at word beginnings by multiplexing a single HMM with dynamic triphone 
mapping (Section 3.2.3). 

• The vector quantization step is identical to the baseline system (Section 3.2.4). 
In particular, only the top 4 densities in each feature codebook are fully evalu­
ated and used. 

• Senone output probability evaluation is similar to the baseline system, except 
that we have the option of evaluating only the active senones in a given frame. 
These are identified by scanning the active HMMs in that frame. It is not 
worthwhile in the baseline system because of the overhead of scanning the much 
larger number of active HMMs. 

• The result of the Viterbi search is a single recognition hypothesis, as well as a 
word lattice that contains all the words recognized during the decoding, their 
time segmentations, and corresponding acoustic scores. The word lattice typi­
cally contains several alternative end times for each word occurrence, but usually 
only a single beginning time. 

As with the baseline system, the decoding of each utterance is begun with the 
path probability at the start state of the distinguished word <s> set to 1, and 0 
everywhere else. An active HMM list that identifies the set of active HMMs in the 
current frame is initialized with this first HMM of <s>. From then on, the processing 
of each frame of speech, given the input feature vector for that frame, is outlined by 
the pseudo-code in Figure 4.6. Some of the details, such as pruning out HMMs that 
fall below the beam threshold, have been omitted for the sake of clarity. 

The Viterbi recognition result is obtained by backtracking through the word lat­
tice, starting from the lattice entry for the distinguished end symbol </ s> in the final 
frame and following the history pointers all the way to the beginning. 

4.2.4 Performance of Lexical Tree Search 

The lexical tree search implementation was evaluated on the same large vocabulary, 
continuous speech test sets of read speech from the Wall Street Journal and North 
American Business News domains as the baseline Sphinx-II system. To recapitulate, 
they include the clean speech development test sets from the Dec. '93 and Dec. '94 
DARPA speech evaluations, as well as the evaluation test set of the latter. 

The experiments are carried out on two different vocabulary sizes of 20K and 58!( 
words. The main parameters measured include the following: 

• Overall execution time and its breakdown among major components, as well as 
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tree_forward_frame (input feature vector for current frame) { 
VQ (input feature); I* Find top 4 densities closest to input feature *I 
senone_evaluate (); I* Find senone output probabilities using VQ results *I 

} 

hmm_evaluate (); 
leaf_transition (); 
word_transition (); 
I* HMM.pruning using 

I* Within-HMM/cross-HMM (except leaf transitions) *I 
I* Transitions to tree leaf nodes, with LM adjustment *I 
I* Cross-word transitions *I 

a beam omitted for simplicity *I 

update active HMM list for next frame; 

hmm_evaluate () { 

} 

for (each active HMM h) 
for (each states in h) 

update path probability of s using senone output probabilities; 

I* Cross-HMM and tree-exit NULL transitions *I 
L = NULL; I* List of leaf transitions in this frame *I 
for (each active HMM h with final state score within beam) { 

if (his leaf node or represents a single phone word) { 

} 

create word lattice entry for word represented by h; I* word exit *I 
} else { 

for (each descendant node h' of h) { 
if (h' is NOT leaf node) 

} 
} 

NULL transition (final-state(h) -> start-state(h')); 
else 

add transition h->h' to L; 

leaf_transition () { 
for (each transition tin L) { 

} 
} 

let transition t be from HMM h to h', and w the word represented by h'; 
compute path score adjustment entering h', INCLUDING LM probability of w; 
update start state of h' with new score and history info, if necessary; 

word_transition () { 
let {w} = set of words entered into word lattice in this frame; 
for (each single phone word w') 

compute best transition ({w} -> w'), INCLUDING LM probabilities; 
for (each root node r in lexical tree) 

compute best transition ({w} -> r), EXCLUDING LM probabilities; 
} 

Figure 4.6: One Frame of Forward Viterbi Beam Search in Tree Search Algorithm. 



64 CHAPTER 4. SEARCH SPEED OPTIMIZATION 

frequency counts of the most common operations that account for most of the 
execution time. 

• Word error rates for each test set and vocabulary size. 

The experimentation methodology is also similar to that reported for the baseline 
system. In particular, the execution times are measured on DEC's Alpha workstations 
using the RPCC instruction to avoid measurement overheads. See Section 3.4.1 for 
complete details. 

Recognition Speed 

Table 4.27 lists the execution times of the lexical tree search on the 201{ and 581{ 
tasks, and also shows the overall speedup obtained over the baseline Sphinx-II recog­
nition system (see Table 3.3 for comparison). Clearly, tree search decoding is several 

Task Dev93 Dev94 Eval94 Mean 
20K 4.68 4.66 4.75 4.70 
58K 8.93 8.36 8.68 8.69 

(a) Absolute Speeds (xRealTime). 

Task Dev93 Dev94 Eval94 Mean 
20K 4.8 4.7 4.7 4.7 
58K 5.2 4.8 4.5 4.9 

(b) Speedup Over Forward Viterbi Pass of Baseline System. 

Table 4.2: Execution Times for Lexical Tree Viterbi Search. 

times faster than the baseline system on the given 20K and 58K tasks. As mentioned 
at the beginning of this chapter, however, there are two main aspects to the decod­
ing procedure, acoustic model evaluation, and searching the HMM space, of which 
the latter has been our main emphasis. Therefore, it is instructive to consider the 
execution speeds of individual components of the lexical tree search implementation. 

Table 4.3 shows the breakdown of the overall execution time of the lexical search 
algorithm into five major components corresponding to the main functions listed in 
Figure 4.6. It is also instructive to examine the number of HMMs and language 
model operations evaluated per frame. These are contained in Tables 4.4 and 4.5, 
respectively. 

7Note that in all these tables, the mean value is computed over all test sets put together. Hence, 
it is not necessarily just the mean of the means for the individual test sets. 
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Dev93 Dev94 Eval94 Mean %Total 
VQ 0.15 0.15 0.16 0.15 3.2% 
Senone Eval. 1.73 1.70 1.73 1.72 36.6% 
HMM Eval. 2.02 1.98 2.02 2.01 42.8% 
Leaf Trans. 0.56 0.58 0.60 0.58 12.3% 
Word Trans. 0.20 0.23 0.24 0.22 4.7% 

(a) 20K System. 

Dev93 Dev94 Eval94 Mean %Total 
VQ 0.16 0.17 0.17 0.16 1.8% 
Senone Eval. 2.39 2.27 2.32 2.33 26.8% 
HMM Eval. 3.78 3.57 3.71 3.70 42.6% 
Leaf Trans. 2.08 1.81 1.91 1.94 22.3% 
Word Trans. 0.51 0.56 0.57 0.54 6.2% 

(b) 58K System. 

Table 4.3: Breakdown of Tree Viterbi Search Execution Times (xRealTime). 

Dev93 Dev94 Eval94 Mean %Baseline 
Total 4298 4181 4281 4259 26.6% 
Word-initial 551 556 557 554 5.6% 

(%Total) (12.8) (13.3) (13.0) (13.0) 

(a) 20K System. 

Dev93 Dev94 Eval94 Mean %Baseline 
Total 7561 7122 7358 7369 25.2% 
Word-initial 711 680 683 693 3.4% 

%Total (9.4) (9.5) (9.3) (9.4) 

(b) 58K System. 

Table 4.4: No. of HMMs Evaluated Per Frame in Lexical Tree Search. 

Dev93 Dev94 Eval94 Mean %Baseline 
20K 663 591 609 625 4.8% 
58K 1702 1493 1558 1595 6.2% 

Table 4.5: No. of Language Model Operations/Frame in Lexical Tree Search. 
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In summary, the lexical tree search has reduced the total number of HMMs evalu­
ated per frame to about a quarter of that in the baseline system. More dramatically, 
the number of language model operations have been reduced to about 5-6%, mainly 
because of the decision to defer the inclusion of language model probabilities until 
the leaves of the lexical tree. 

Accuracy 

Table 4.6( a) shows the word error rates resulting from the lexical tree search on the 
different test sets individually and overall. Table 4.6(b) provides a comparison with 
the baseline system results from both the forward Viterbi search and the final A* 
algorithm. 

Dev93 Dev94 Eval94 Mean 
20K 21.2 18.9 18.0 19.4 
58K 19.2 17.5 17.1 18.0 

(a) Absolute Word Error Rates(%). 

Baseline Dev93 Dev94 Eval94 Mean 
20K(Vit.) 20.6 19.6 13.4 17.8 
20K(A*) 28.8 24.3 18.0 23.7 
58K(Vit.) 27.9 22.4 18.3 23.1 
58K(A*) 39.4 26.6 24.1 30.3 

(b) %Degradation w.r.t. Baseline System Error Rates. 

Table 4.6: Word Error Rates for Lexical Tree Viterbi Search. 

The relative increase in recognition errors, compared to the baseline system, is 
unquestionably significant. The appropriate baseline for comparison is the output 
of the first Viterbi search pass, for obvious reasons, but even then the tree search is 
about 20% worse in relative terms. However, it can be argued that the nearly five 
fold speedup afforded by the lexical tree search is well worth the increase in error 
rate. In practical terms, the absolute word error rate translates, very roughly, into 1 
error about every 5 words, as opposed to the baseline case of 1 error about every 6 
words. 

More importantly, we shall see in the subsequent sections of this chapter that the 
loss in accuracy can be completely recovered by efficiently postprocessing the word 
lattice output of the tree Viterbi search. 

We attribute the increase in word error rate to occasionally poorer word segmen­
tations produced by the tree search, compared to the baseline system. One problem 
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is that Viterbi search is a greedy algorithm that follows a local maximum. In each 
frame, the root nodes of the lexical tree receive several incoming, cross-word transi­
tions (from the final states of the leaves of the tree), of which the best is chosen by 
the Viterbi algorithm. The same is true in the case of the baseline system with a 
fiat lexical structure. However, in the latter, each cross-word transition is augmented 
with a grammar probability so that the effective fan-in is reduced. This is not possible 
with the tree structure, with the result that the Viterbi pruning behaviour at tree 
roots is modified. 

4.2.5 Lexical Tree Search Summary 

Clearly, the results from the lexical tree search algorithm are mixed. On the one hand, 
there is a nearly 5-fold overall increase in recognition speed, but it is accompanied by 
an approximately 20% increase in word error rate, relative to the baseline system. We 
shall see in subsequent sections that we can, not surprisingly, recover from the loss 
in accuracy by postprocessing the word lattice output of the tree search algorithm. 
Some of the other conclusions to be drawn in this section are the following: 

• While the overall speedup is slightly under 5, the search speed alone, excluding 
senone output probability computation, is over 6 times faster than the baseline 
case ( comparing Tables 4.3 and 3.4). This is an important result since our focus 
in this section has been improving the speed of searching the HMM space. 

• It should be pointed out that the reduction in search speed is irrelevant if 
the cost of computing state output probabilities is overwhelming. Thus, it is 
appropriate to rely on a detailed tree search if we are using semi-continuous or 
even discrete acoustic models, but it is less relevant for fully continuous ones. 

• Using semi-continuous acoustic models, we obtain a word lattice that is ex­
tremely compact. The total number of words in the lattice is, on average, sev­
eral hundreds to a few thousand for an average sentence of 10sec duration (1000 
frames). Furthermore, the lattice error rate-the fraction of correct words not 
found in the lattice around the expected time-is extremely small. It is about 
2%, excluding out-of-vocabulary words. This is substantially the same as the 
lattice error rate of the baseline Sphinx-II system, and similar to the results 
reported in [65]. The compact nature of the word lattice, combined with its 
low error rate, makes it an ideal input for further postprocessing using more 
detailed acoustic models and search algorithms. 

The lexical tree described in this section can be contrasted to those described in 
[40, 3, 39, 43] in their treatment of the language model. By deferring the application of 
language model probabilities to the leaves of the tree, we gain a significant reduction 
in computation. 
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4.3 Global Best Path Search 

In Section 4.2.4 we saw that although the lexical tree search algorithm improves the 
execution efficiency of large vocabulary continuous speech recognition, there is also 
a significant degradation in the recognition accuracy of about 20% relative to the 
baseline Sphinx-II system using the same acoustic, lexical and grammar models. We 
also observed that much of this degradation could be attributed to the following 
factors: 

• Greedy nature of the Viterbi algorithm in following a locally optimum path that 
is globally suboptimal; and more so than in the case of the baseline system. 

• Poorer word segmentations along the best Viterbi decoding. 

However, the lexical tree search algorithm produces not only the single best Viterbi 
decoding, but also a word lattice containing other candidate words recognized. An 
examination of the word lattices from both the lexical tree Viterbi search and the 
flat-lexical Viterbi search in the baseline system reveals that the correct words are 
predominantly present in both lattices at the expected times. Therefore, it is possible 
to extract a more accurate recognition result from the word lattice. 

In this section we present a simple and efficient algorithm to search the word 
lattice produced by the lexical tree search for a globally optimum decoding. This 
is accomplished by casting the word lattice as a directed acyclic graph (DAG) such 
that the problem is reduced to that of finding the least-cost path from end to end. 
Therefore, any of the well-known and efficient shortest-path graph search algorithms 
can be used. We show that the algorithm brings the recognition accuracy significantly 
closer to that of the baseline system, at an almost negligible computational cost. 

4.3.1 Best Path Search Algorithm 

Global Best Path Search Using Bigram Grammar 

The word lattice output from the lexical tree Viterbi search algorithm contains in­
stances of all candidate words that were recognized during the search. In particular, 
there may be several candidates at any point in time. Each unique word instance is 
identified by two quantities: the word itself, and a start time for that instance of the 
word. Figure 4. 7 shows an example of such a word lattice, where each word instance 
is identified by one of the line segments representing a word starting at a specific time 
frame. Note that the Viterbi search algorithm produces a range of end times for each 
word instance, as observed earlier at the beginning of Chapter 3 and in Section 4.2.3. 
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Time 
0 20 40 60 80 100 120 140 160 180 200 220 240 

TAKE CASE AN 
I I I 

KATE DELL CAISSE EXAMPLE 

~ KAY EXAM 
I I 

K. K. SNAGS 
I I 

FIDELITY'S AS EX 
I I 

FIDELITY SAYS 

FIDEL HAS 

VALLEY'S 

~· 7 ·~ 
start time first end time last end time 

Figure 4.7: Word Lattice for Utterance: Take Fidelity's case as an example. 

Thus, the information contained in the word lattice can be converted into as a 
DAG as follows: Each word instance represented by a pair, ( w, t), is a DAG node, 
where w is a word-id and t the start time corresponding to this instance of w. There 
can be a range of end-times for this word instance or DAG node, as just mentioned. 
We create an edge from a node (wi,ti) to node (wj,tj) iff ti - l is one of the end 
times of ( wi, ti); i.e., there is a word lattice entry for Wi at ti - l and so it is possible 
for (wj, ti) to follow (wi, ti) in time. Such a DAG representation of the example in 
Figure 4. 7 is shown in Figure 4.8. It is easy to see that the graph is indeed a DAG: 

• The edges are directed. 

• The DAG cannot contain any cycles since edges always proceed in the direction 
of increasing start time. 

The DAG is rooted at ( <s> ,0), since the Viterbi search algorithm is initialized to 
start recognition from the beginning silence <s> at time 0. We can also identify a 
final node in the DAG which must be an instance of the end silence word </ s> that 
has an end time of T, where T is the end time for the entire utterance8 . 

We can now associate a cost with each edge in the DAG. Consider an edge from 
a node (wi, ti) to (wj, tj), The cost for this edge is the product of two components: 
an acoustic score or probability and a grammar probability9 . The acoustic score is 
obtained as follows. The edge represents a time segmentation of Wi from frame ti 

8 We can be sure that there will only be one such instance of </ s> , since there can only be one 
entry for </s> ending at Tin the word lattice. 

9 Actually, the cost is computed from the reciprocal of the probabilities, since an increase in the 
latter implies a reduction in the former. 
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DELL 

TAKE L. 

EXAMPLE 

KATE FIDELITY'S 

EXAM 

THEY FIDELITY 

EX 

K. FIDEL 

VALLEY'S 

Figure 4.8: Word Lattice Example Represented as a DAG. 

and ending at tj - 1, as discussed above. Since the word lattice produced by the 
Viterbi search contains all the word-ending scores of interest, we can easily compute 
the acoustic score for this segmentation of Wi. In fact, the word lattice contains path 
scores for all possible phonetic right contexts of wi, and we can choose exactly the 
right one depending on the first base phone of Wj. 

As for the language model probability component for the edge, let us first consider 
the case of a simple bigram grammar. The grammar probability component for the 
edge under consideration is just P( Wj lwi). In particular, it is independent of the path 
taken through the DAG to arrive at (wi, ti)-

We have now obtained a cost for each edge of the graph. The cost of any path 
through the DAG from the root node to the final node is just the product of the costs 
of the individual edges making up the path. The path that has the least cost is the 
globally optimum one, given the input word lattice, acoustic models and (bigram) 
grammar. The word sequence making up this path has to be the globally optimum 
one. Given the above formulation of the problem, any of the textbook algorithms for 
finding the least-cost path can be applied [17]. Given a graph with N nodes and E 
edges, the least-cost path can be found in time proportional to N + E. 

Global Best Path Search Using Trigram Grammar 

The above formulation of edge costs is no longer valid if we use a trigram grammar 
since the grammar probability of an edge is not solely dependent on the edge. Con-
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(b) Modified DAG for Trigram Grammar. 

Figure 4.9: Word Lattice DAG Example Using a Trigram Grammar. 

sider an edge from node (wi, ti) to (wj, tj) again. The trigram probability for the 
transition depends also on the predecessor of Wi. Since there can be more than one 
such predecessor in the DAG, the grammar probability for the edge under consider­
ation is not uniquely determined. 

The difficulty is easily resolved by the usual method of replicating a node for each 
distinct predecessor, i.e., creating distinct grammar states in the DAG. We illustrate 
this process with an example in Figure 4.9. (The start time information at each 
node has been omitted from the figure since it is superfluous and only clutters up 
the picture, as long as it is understood that each node has a specific start time 
associated with it. We shall also omit the time component in labelling nodes below, 
under the assumption that nodes can be identified uniquely even after this omission.) 
Modification to the DAG is straightforward: 

1. If a node ( w) has n distinct predecessors ( Wi), i = 1, 2, ... , n in the original 
DAG, it is replicated n times in the new DAG, labelled (wiw), i = 1, 2, ... , n 

respectively; i.e., the first component of the label identifies a predecessor word. 
Instances of such replication where n > I are marked by dashed rectangles in 
Figure 4.9(b). 
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2. If there was an edge from ( Wi) to ( w j) in the original DAG, the new DAG has an 
edge from every replicated copy of ( wi) to ( WiWj ). Note that by the replication 
and labelling process, if the new DAG has an edge from (wiwj) to (wkwt), then 
Wj = Wk, 

3. The acoustic score component of the cost of an edge from node ( WiWj) to ( WjWk) 

in the new DAG is the same as that of edge (wj) to (wk) in the original DAG. 

4. The language model component of the cost of an edge from node ( WiWj) to 
(wjwk) in the new DAG is the trigram probability: P(wklwiwj), 

In particular, it should be noted that the language model probability component of 
the cost of an edge in the new DAG is no longer dependent on other edges in the 
DAG. 

It should be easy to convince ourselves that the new DAG is equivalent to the 
original one. For any path from the root node to the final node in the original DAG, 
there is a corresponding path in the new DAG, and vice versa. Thus, we have again 
reduced the task to the canonical shortest path graph problem and the standard 
methods can be applied. 

It is, in principle, possible to extend this approach to arbitrary language models, 
but it quickly becomes cumbersome and expensive with higher order n-gram gram­
mars. With n-gram grammars, the size of the graph grows exponentially with n, and 
this is one of the drawbacks of this approach. Nevertheless, it is still valuable since 
bigram and trigram grammars are the most popular and easily constructed for large 
vocabulary speech recognition. 

Suboptimality of Viterbi Search 

At this point we consider the question of why we should expect the global best path 
algorithm to find a path (i.e., word sequence) that is any better than that found 
by the Viterbi search. One reason has to do with the approximation in applying 
the trigram grammar during Viterbi search as explained in Section 3.2.2. The same 
approximation is also used in the lexical tree Viterbi search. The suboptimal nature 
of this approximation can be understood with the help of Figure 4.10. 

Let us say that at some point in the Viterbi tree search, there were two possible 
transitions into the root node for word w4 from the final states of w2 and w3 . And 
let us say that the Viterbi algorithm deemed the path w1 w2w4 (including acoustic 
and grammar probabilities) to be more likely and discarded transition w3w4 , shown 
by the dashed arrow in the figure. It could turn out, later when we reach word 
W5, that perhaps W3W4W5 is a more likely trigram than w 2w 4w 5, and in the global 
picture transition w3w4 is a better choice. However, given that the Viterbi algorithm 
has already discarded transition w3w4 , the global optimum is lost. The shortest 
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Figure 4.10: Suboptimal Usage of Trigrams in Sphinx-II Viterbi Search. 

path algorithm described here considers all such alternatives discarded by the Viterbi 
algorithm and finds the globally optimum path. 

The second reason for the improvement in accuracy follows from the above. We 
noted in Section 4.2.4 that the Viterbi algorithm, owing to its greedy nature, produces 
suboptimal word segmentations along the best Viterbi path. However, the word 
lattice often also contains other word segmentations that have been discarded along 
the best Viterbi path. The global DAG search uncovers such alternatives in finding 
a global optimum, as described above. 

4.3.2 Performance 

We now summarize the improvement in recognition accuracy obtained by applying 
the global best path search algorithm to the word lattice produced by the lexical 
tree search. We also examine the computational overhead incurred because of this 
additional step. 

Accuracy 

Table 4. 7 shows the word error rate figures on our benchmark test sets resulting from 
applying the best path DAG search algorithm to the word lattice output of the lexical 
tree Viterbi search. 

As we can see from Table 4.7(b), there is a significant improvement of over 10% 
in accuracy relative to the tree search. Correspondingly, Table 4. 7( c) shows that 
compared to the first pass of the baseline Sphinx-II system, the word error rate is now 
less than 10% worse, in relative terms. In practical terms, this is almost insignificant 
given their absolute word error rates of 15%. We surmise that this difference in 
recognition accuracy is partly attributable to incorrect word segmentations for which 
no alternatives were available in the word lattice, and partly to pruning errors during 
the tree search. 
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Dev93 Dev94 Eval94 Mean 
20K 18.5 16.9 16.5 17.3 
58K 16.5 15.4 15.2 15.7 

(a) Absolute Word Error Rates. 

Dev93 Dev94 Eval94 Mean 
20K 12.4 10.9 8.4 10.5 
58K 14.3 12.1 11.2 12.5 

(b) %Improvement Over Lexical Tree Search. 

Dev93 Dev94 Eval94 Mean 
20K(Vit.) 5.3 7.0 4.0 5.4 
20K(A*) 12.4 11.2 8.1 10.7 
58K(Vit.) 9.9 7.7 5.2 7.7 
58K(A*) 19.8 11.4 10.3 14.0 

(c) %Degradation w.r.t. Baseline System. 

Table 4. 7: Word Error Rates from Global Best Path Search of Word Lattice Produced 
by Lexical Tree Search. 

Recognition Speed 

Table 4.8 summarizes the average execution times of the shortest path algorithm. 
The computational overhead associated with this step is negligible. This is to be 
expected since the DAG size is usually small. For a 10sec long sentence, it typically 
consists of a few hundred nodes and a few thousand edges. 

Dev93 Dev94 Eval94 Mean 
20K 0.04 0.05 0.05 0.05 
58K 0.07 0.08 0.09 0.08 

Table 4.8: Execution Times for Global Best Path DAG Search (x RealTime). 

4.3.3 Best Path Search Summary 

Performing a global best path search over the word lattice output of the lexical 
tree Viterbi search is unquestionably advantageous. The resulting accuracy is not 
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significantly worse than that of the baseline system, and it is achieved at an almost 
negligible cost. 

The DAG search is similar to the A* search of the baseline system in that it finds a 
globally optimum path, but it does so at a much lower computational cost, as seen by 
comparing Tables 4.8 and 3.3. On the other hand, the A* pass in the baseline system is 
not restricted to low-order n-gram grammars, and uses additional word segmentation 
information from the backward Viterbi pass, which is the main reason for its superior 
word accuracy. We note that we are not precluded from applying the latter passes 
of the baseline system to the word lattice output of the lexical tree Viterbi search. 
Likewise, we can apply the shortest path algorithm to the word lattice output of the 
forward Viterbi pass of the baseline system. One reason to avoid a backward pass is 
that many practical systems need online operation, and it is desirable not wait for 
the end of the utterance before beginning a search pass. 

The DAG search algorithm, while sufficiently fast to be unobservable for short 
sentences, can cause noticeable delay for a long sentence. But this can be avoided by 
overlapping the search with the forward pass. The nodes of the DAG can be built 
incrementally as the forward Viterbi pass produces new word lattice entries. The 
addition of a node only affects existing nodes that immediately precede the new one 
and nodes that occur later in time. Since the Viterbi search is a time-synchronous 
algorithm, it is likely to add new nodes towards the end of the DAG, and hence the 
update to the DAG for the addition of each new node is minimal. 

There are several other uses for the DAG structure. For example, once the word 
lattice is created, it is possible to search it efficiently using several different parameters 
for language weight, word insertion penalties, etc. in order to tune such parameters. 
One can also search the DAG several times using different language models, effectively 
in parallel. The result is a measure of the posterior probability of each language 
model, given the input speech. This can be useful when users are allowed speak 
phrases from different domains without explicit prior notification, and the system has 
to automatically identify the intended domain by trying out the associated language 
models in parallel. 

The creation of word graphs and some of their uses as described here, has also 
been reported in [65]. However, they do not report on the performance issues or on 
the use of the shortest path algorithm to find a global optimum that overcomes the 
suboptimality of the Viterbi search algorithm. A final word on the use of the global 
path search is that it essentially eliminates the need for a full trigram search during 
the first pass Viterbi search. Thus, the approximate use of a trigram grammar in the 
forward pass, in the manner described in Section 3.2.2 is quite justified. 
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4.4 Rescoring Tree-Search Word Lattice 

4.4.1 Motivation 

We noted in Section 4.2.5 that the word lattice output of the lexical tree Viterbi 
search is quite compact, consisting of only several hundreds or thousands of words 
for a 10sec sentence, on average, and that its low lattice error rate makes it an ideal 
input for postprocessing with models and algorithms of higher sophistication. 

The main purpose of this section is to obtain a measure of the quality of the word 
lattice produced by the lexical tree search. This is relevant for understanding what 
we lose or gain by postprocessing the word lattice with detailed models instead of 
performing a complete search with such models. The parameters that determine the 
quality of the word lattice include its size and the lattice error rate. The former 
measures the work needed to search the lattice, while the latter sets an upper bound 
on the recognition accuracy. 

We measure these parameters indirectly by rescoring the lexical tree word lattice 
with the forward pass Viterbi search of the baseline Sphinx-II system. The main 
difference between the two is that the rescoring pass is restricted to searching words 
in the lattice. By comparing the recognition accuracy and search time overhead with 
the baseline system results in Section 3.4, we ascertain the quality of the lexical tree 
word lattice output. 

We believe that the suboptimality of the tree search word lattice manifests itself as 
occasionally poor word segmentations that we observe by manually comparing them 
with the baseline Sphinx-II system. To overcome this shortcoming, we allow the word 
boundaries in the input lattice to be treated in a fuzzy manner. In other words, at 
any time t in the rescoring pass, we allow cross-word transitions to those words in 
the tree search word lattice that begin within a given window oft. We can afford to 
be generous with the window since the size of the input word lattice is small anyway. 
In our experiments we use a window of 25 frames although that is probably an order 
of magnitude larger than necessary. 

The output of the rescoring pass is another word lattice that presumably has 
correct word segmentations. This lattice is then searched using the global best path 
algorithm described in Section 4.3 to produce the final recognition result. 

4.4.2 Performance 

The new configuration consisting of three passes-lexical tree search, rescoring its 
word lattice output, and global best path search of the rescored word lattice-has 
been tested on our benchmark test sets. We use the same set of acoustic and language 
models in the rescoring pass as in the lexical tree search and the baseline system. 
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Dev93 Dev94 Eval94 Mean 
20K 17.4 16.0 15.9 16.4 
58K 15.0 14.4 14.5 14.7 

(a) Absolute Word Error Rates(%). 

Dev93 Dev94 Eval94 Mean 
20K(Vit.) -1.0 1.3 0.2 0.1 
20K(A*) 5.7 5.2 4.2 5.0 
58K(Vit.) -0.1 0.7 0.3 0.4 
58K(A*) 8.9 4.2 5.2 6.2 

(b) %Degradation w.r.t. Baseline System. (Negative values indicate improvement 
over baseline system.) 

Table 4.9: Word Error Rates From Lexical Tree+Rescoring+Best Path Search. 

Dev93 Dev94 Eval94 Mean 
20K 0.72 0.76 0.80 0.76 
58K 1.25 1.26 1.35 1.28 

(a) Rescoring Pass Alone (xRealTime). 

Dev93 Dev94 Eval94 Mean Speedup Over 
Baseline Fwd.Vit. 

20K 5.4 5.5 5.5 5.5 4.04 
58K 10.2 10.0 10.0 10.0 4.24 

(b) Lexical Tree+Rescoring+Best Path Search (xRealTime). 

Table 4.10: Execution Times With Rescoring Pass. 

Table 4.9 summarizes the word error rates obtained by using all three passes, 
and compares them to the baseline system. The bottom line is that there is no 
difference in accuracy between the new three-pass search and the baseline one-pass 
search. One reason the three-pass baseline system is still better is that the backward 
pass provides additional word segmentations to the A* pass, that are lacking in the 
lexical tree-based system. 

Table 4.10 shows the execution times with the rescoring pass. We note that our 
implementation has not been optimized or tuned. Hence, the costs shown in the table 
are somewhat on the higher side. 
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4.4.3 Summary 

The main conclusion from this section is that the word lattice output of the lexical 
tree is compact and has a low lattice-error rate. We are able to recover the baseline 
system recognition accuracy at the cost of about 15% increase in computation. The 
computational overhead is less than 5% compared to the forward pass of the baseline 
system. The 3-pass tree-based recognizer is about 4.1 times faster than the forward 
pass of the baseline system on our benchmarks. 

We also conclude that though the tree search is sub-optimal in that the output 
word segmentations are occasionally incorrect, it is possible to recover the loss using 
a second rescoring pass similar to the first pass of the baseline Sphinx-II system. The 
A* accuracy of the baseline system is still slightly better because of the additional 
word segmentations provided by its backward pass. 

4.5 Phonetic Fast Match 

4.5.1 Motivation 

We have described the senone as the acoustic model shared by a cluster of phonetic 
HMM states (Sections 2.1.2 and 3.1.1). Mei-Yuh Hwang in her dissertation [27] 
has pointed out that " ... each senone describes a very short distinct acoustic event 
(shorter than a phoneme) ... ," and " ... it can be used to construct models of all kinds 
of acoustic phenomena." One of the phenomena modelled by senones is the relative 
activity of the different phonemes at any given time. 

Let us see how senones can be used to predict the presence or absence of a given 
basephone at a given point in the input speech. In Sphinx, clusters of HMM states 
that form a senone can only belong to a single parent basephone. That is, senones are 
partitioned among basephones. Consider all basephones Pi, i = 1, 2, .... Let C D(pi) 
represent the collection of context dependent triphones derived from Pi as well as Pi 
itself. We say that senone s E C D(pi), ifs models any state of any phone in C D(pi). 
(Similarly, s l Pi, if s models any of the states of the basephone Pi•) At each time 
instant t, we compute base phone scores given by: 

Pp;(t) = max (bs(t)),i = 1,2, ... 
s € CD(p;) 

(4.2) 

where bs(t) is the output probability of senone s at t. That is, Pp;(t) is the output 
probability, at time t, of the best scoring senone belonging to basephone Pi or any 
triphone derived from it. Equation 4.2 defines an ordering or ranking among all 
basephones, as well as the acoustic separation between them, in each frame. 

We can use the above ranking as a measure of the relative activity of the individual 
basephones at any point in time. The basic understanding is that if Pp; ( t) > > PPi ( t) 
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for some two basephones Pi and Pi, then none of the states derived from Pi will score 
well at t, and all instances of HMMs derived from Pi can be pruned from search. 
In other words, by setting a pruning threshold or beam width relative to the best 
scoring basephone, we can limit the search at time t to just those falling within the 
threshold. The phones within the beamwidth at t are the list of active candidates to 
be searched at t. Because of this similarity to word-level fast match techniques that 
identify candidate words active at a given time, we call this the phonetic fast match 
heuristic. 

The proposed heuristic raises the following issues: 

• Like other fast match techniques, the phonetic fast match can cause pruning 
errors during search. This occurs because senone scores are noisy, as we shall 
see later in Section 4.5.2, and they occasionally mispredict the active phones. 
We explore efficient ways of minimizing pruning errors later under this section. 

• Equation 4.2 requires the computation of all senone output probabilities in 
order to determine the base phone scores. That is relatively expensive for a fast 
match heuristic. We can also obtain base phone scores from just the context 
independent senones; i.e., s t Pi instead of s t C D(pi) in equation 4.2. However, 
by omitting the more detailed context dependent senones from the heuristic, we 
make the phone scores and ranking less reliable, and the beamwidth must be 
increased to avoid pruning errors. We explore the trade-offs presented by these 
alternatives. 

A somewhat similar approach to search pruning has also been suggested in [56, 31). 
In their work, phones are pruned from the search process based on their posterior 
probabilities estimated using neural network models. It is also different in that the 
pruning mechanism is embedded in a hybrid Viterbi-stack decoding algorithm. Fi­
nally, we use the phone prediction mechanism to activate new phones at a given 
point in the search, and not to deactivate already active ones, unlike in their case. 
We believe that this leads to a more robust pruning heuristic given the nature of our 
semi-continuous acoustic models. 

In Section 4.5.2, we present the details of the heuristic and its incorporation as a 
fast match front end into the lexical tree search. This description is primarily based 
on equation 4.2, i.e., using all senones to compute the base phone scores. But most 
of it also applies to the alternative scheme of using only the context independent 
senones. We present details of the performance of both schemes on our benchmarks 
in Sections 4.5.3 and 4.5.4, respectively. 
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4.5.2 Details of Phonetic Fast Match 

Phones Predicted by Best Scoring Senones 

We first consider an example of the base phone ranking produced by equation 4.2. 
Figure 4.11 illustrates the heuristic with an example extracted from one of our bench­
mark tests. Each row represents one frame of speech. All senone output probabilities 
are computed in each frame to obtain a base phone score. The base phones are ranked 
accordingly and pruned with a certain threshold. We list the remaining active phones 
in each frame in descending order of their scores. (See Appendix A for a complete 
list of the 50 context independent phones used in Sphinx-II.) The figure underscores 
several points: 

• The candidate basephone list in each frame, even though quite short, appears 
to contain the correct base phone, and quite often at the head of the list. We 
emphasize appears because, a priori, it is by no means clear which base phone is 
the "correct" one in any given frame. At this point we can only visually discern 
a pattern in the candidate lists that seems to match the expected basephone 
sequence fairly well. 

• It is obvious that the best phone in a frame is certainly not always the correct 
one, whatever that may be, since we sometimes observe a best phone that is 
not any of the correct ones. Hence, it is necessary to look further down the list 
for the correct basephone. 

• The choice of the pruning threshold is crucial. Too tight a threshold causes the 
correct phone to be pruned entirely from the list. On the other hand, if it is 
too wide, we end up with too many unnecessary candidates. 

• The length of the list varies from frame to frame, indicating the acoustic con­
fusability within each frame. The confusion is higher around phone boundaries. 

Quality of Phone Prediction 

We can estimate the quality of this heuristic by measuring the position of the correct 
base phone in the candidate list in each frame. But we first need to know what the 
correct phone is in a given frame. For that we use the Viterbi alignment [52] of the 
correct sequence of phones to the input speech 10. Specifically, the experiment consists 
of the following steps: 

1. Obtain the Viterbi alignment for an entire test set. This gives us a correct 
basephone mapping for each frame in the test set. 

10The choice of Viterbi alignment as the reference is debatable. But we believe that any other 
alignment process will not make a significant difference to the resulting phone segmentations. 
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Frame# Base phones active in each frame, ranked by score 

[ 331] 
[ 332] 
[ 333] 
[ 334] 
[ 335] 
[ 336] 
[ 337] 
[ 338] 
[ 339] 
[ 340] 
[ 341] 
[ 342] 
[ 343] 
[ 344] 
[ 345] 
[ 346] 
[ 347] 
[ 348] 
[ 349] 
[ 350] 
[ 351] 
[ 352] 
[ 353] 
[ 354] 
[ 355] 
[ 356] 
[ 357] 
[ 358] 
[ 359] 
[ 360] 
[ 361] 
[ 362] 
[ 363] 
[ 364] 
[ 365] 
[ 366] 
[ 367] 
[ 368] 
[ 369] 
[ 370] 
[ 371] 
[ 372] 
[ 373] 
[ 374] 
[ 375] 

dh b p th d ax ix k td 
dh b th pix ax ih eh k ae ey d g td 
dh b th p ax ix ey ih eh 
dh they ih ax eh b ix p ae t d 
ih ax ey t dh ix eh d ae th b p 
ih ix ey ax ae eh t d 
ih ix ax ey ae eh er 
ix ih ax er ey eh 
ih ix ax ey eh er uw ah 
ih ix ax ey uw 
ix ih ax z 
z ix sax 
z s 
z s ts 
s z ts 
s z ts 
s z ts td 
std z ts t dd 

td t s z 
t td ch 
t td ch jh 
t td dd d ch 
t td k dd p d 
t td k dd 
t f ch hh td sh k jh 

ch sh t y f jh hh s k 
f ch t sh y hh p s th k 
r ch t y ae hh f p eh k th ax sh er ix 
r ae eh ax 

eh ae r ey aw ah aa ih ax ow ix 
ae eh aw ey ax ah ih ix row ay 
ae eh ax ih ey ix aw ah 
ax ae eh ih ix aw ey ah iy 
eh ax ae ih ix aw 
eh ax ae ix ih ah 
eh ax ah ix ih ae nay 
n eh ix ah ng ax ih ae ay 
n ng ix 
n ng 
n dd m 
n dd m ng 
n dd m ng d 
n dd d m ng dh td 

dd d n dh ng m y td g v 1 
dd d n dh ng td y ix g m 

d s 
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Figure 4.11 : Base Phones Predicted by Top Scoring Senones in Each Frame; Speech 
Fragment for Phrase THIS TREND, Pronounced DH-IX-S T-R-EH-N-DD. 
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Figure 4.12: Position of Correct Phone in Ranking Created by Phonetic Fast Match. 

2. Use the heuristic of equation 4.2 to obtain an ordering of all basephones in each 
frame (without any pruning). 

3. In each frame, identify the position of the correct base phone in the ranked list. 

This test was run on a random sampling of sentences chosen from our benchmark 
test sets described in Section 3.4.1. Figure 4.12 shows the resulting histogram of the 
position of the correct base phone11 in the ordered list created by equation 4.2. For 
example, we note that the correct base phone occurs at the very head of the ordered 
list created by the phonetic fast match over 40% of the time. It is just one away from 
the head of the list 20% of the time. 

The figure also includes the cumulative distribution corresponding to the his­
togram. It shows that the correct phone in a given frame is missing from the top 10 
phones only about 5% of the time, and from the top 20 phones only 1 % of the time. 
The number of pruning errors is proportional to the frequency of misses. 

Clearly, we should use as tight a pruning threshold as possible without incurring 
an excessive number of pruning errors. Such errors occur if the correct base phone 
is not within the pruning threshold in some frame. With a tight threshold, they can 
occur fairly often. For a given threshold, pruning errors are more likely around phone 
boundaries, where the degree of confusability between phones is higher. 

11The figure shows 63 basephones instead of the 50 listed in Appendix A. The remaining 13 
correspond to various noise phones. 
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Current Frame Being Searched 
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Lookahead window (4 frames in this example): 

Active set of base phones determined in each frame in window 
and combined to predict base phones to activate in frame t + 1. 

Figure 4.13: Lookahead Window for Smoothing the Active Phone List. 

Reducing Pruning Errors Through Smoothing 

83 

Pruning errors can be reduced if we use the candidate list to determine when to 
activate new phones, but not to de-activate them. That is, once activated, a phone 
is searched as usual by the Viterbi beam search algorithm. 

Secondly, the candidate list can also be made more robust by smoothing it by 
considering all candidate phones from a window of neighbouring frames. If the candi­
date list is used only to activate new phones to be searched in the future, the window 
should be positioned to look ahead into the future as well. Hence, we call it a looka­
head window. The two strategies together overcome the problem of sporadic holes in 
the active phone list, especially around phone boundaries. 

Figure 4.13 summarizes the lookahead window scheme used in our experiments. 
A window of 2 or 3 frames is usually sufficient, as we shall see in the experimental 
results. 

Algorithm Summary 

The phonetic fast match heuristic has been incorporated into the lexical tree search 
pass of the decoder. The resulting modification to the original algorithm (see Figure 
4.6) is straightforward: 

1. We compute all senones scores in each frame instead of just the active ones, 
since the base phone scores are derived from all senones (equation 4.2). 

2. Since the active phones are determined by looking ahead into future frames, 
senone output probability evaluation ( and hence Gaussian density or VQ com­
putation) has to lead the rest by the size of the lookahead window. 

3. In each frame, before we handle any cross-HMM or cross-word transition, the list 
of new candidate phones that can be activated is obtained by the phonetic fast 
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match heuristic together with the lookahead window mechanism. If a basephone 
is active, all triphones derived from it are also considered to be active. 

4. In each frame, cross-HMM and cross-word transitions are made only to the 
members in the active phone list determined above. 

The main drawback of this heuristic is that one needs to compute the output 
probabilities of all senones in each frame in order to determine the phones to be 
activated in that frame. This overhead is partly offset by the fact that we no longer 
need to track down the active senones in each frame by scanning the list of active 
HMMs. The alternative heuristic proposed at the end of Section 4.5.1 determines the 
active phones from just the context-independent senone, and does not require all of 
the context-dependent senone scores. 

4.5.3 Performance of Fast Match Using All Senones 

We measure the performance of the decoder in its full configuration-lexical tree 
search augmented with the phonetic fast match heuristic, followed by the rescoring 
pass (Section 4.4) and global best path search (Section 4.3). The benchmark test sets 
and experimental conditions have been defined in Section 3.4.1. 

The two main parameters for this performance evaluation are the lookahead win­
dow width and the active phone pruning threshold. The benchmark test sets are 
decoded for a range of these parameters values. Since listing the performance on each 
test set individually for all parametric runs makes the presentation too cluttered, we 
only show the performance aggregated over all test sets. 

20K Task 

Figure 4.14 shows two sets of performance curves for the 20K task. In Figure 4.14( a), 
each curve shows the variation in word error rate with changing pruning threshold for 
a fixed lookahead window size. (The pruning threshold is in negative log-probability 
scale, using a log-base of 1.0001.) With the fast match heuristic we asymptotically 
reach the baseline word error rate of 16.4% as the pruning beamdwidth is widened. 
It is also clear that increasing the lookahead window size for a fixed beamwidth helps 
accuracy. 

Figure 4.14(b) shows the same data points, but instead of the pruning beamdwidth, 
we plot the number of active HMMs per frame along the x-axis. Comparing this graph 
to the statistics for the lexical tree search without phonetic fast match (Section 4.2.4, 
Table 4.4), it is clear that we can essentially attain the baseline word error rate of 
16.4% while reducing the number of active HMMs by about 50%. 
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Figure 4.14: Phonetic Fast Match Performance Using All Senones (20K Task). 
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Figure 4.14( b) also demonstrates that increasing the window size beyond 2 or 3 
frames is not worthwhile. We conclude this from the fact that to achieve a given 
recognition accuracy, we do more work as the window size grows larger. It also makes 
intuitive sense that a smoothing window of 2-3 frames is all that is needed since the 
window is needed to cover "holes" in the active phones predicted by the heuristic. 
These holes occur at random and not in long bursts. In the following discussion, we 
use a window of size of 3 frames, which seems to be an optimal choice considering 
Figure 4.14. 

Table 4.11 summarizes the performance results on the 20K task from including 
the phonetic fast match heuristic. It corresponds to a fixed lookahead window size 
of 3 frames. With the incorporation of the phonetic fast match heuristic in the 

Pruning beamwidth 40K 50K 60K 70K SOK No fastmatch 
% Word Error Rate 18.8 17.4 16.7 16.5 16.5 16.4 
No. HMMs/Frame 1019 1340 1728 2134 2538 4259 
No. LM Ops/Frame 151 193 245 302 360 625 
Total Time ( xRealTime) 3.24 3.48 3.77 4.06 4.36 5.50 
( All Three Passes) 
Speedup Over Baseline 6.86 6.39 5.90 5.48 5.10 4.04 
Forward Viterbi 

Table 4.11: Fast Match Using All Senones; Lookahead Window=3 (20K Task). 

tree Viterbi search, there is a significant speedup in the total execution time, with 
a negligible increase in the word error rate. If we consider only the search time, 
excluding the acoustic output probability computation, the improvement in speed is 
between a factor of 2 to 3. 

58K Task 

We show similar performance figures for the 58K task in Table 4.12, with the looka­
head window fixed once again at 3 frames. The conclusions are quite similar to those 
in the 20K task. There is a factor of 2 reduction in the number of active HMMs 
per frame and in the search time, with no appreciable increase in recognition errors. 
The reduction in the overall execution time is more marked since the acoustic model 
evaluation is a relatively smaller fraction of the total computation. 
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Pruning beamwidth 40K 50K 60K 70K 80K No fastmatch 
% Word Error Rate 17.0 15.7 15.1 14.9 14.8 14.7 
No. HMMs/Frame 1636 2195 2883 3604 4322 7369 
No. LM Ops/Frame 457 559 685 820 958 1595 
Total Time (xRealTime) 4.42 4.75 5.36 5.99 6.50 10.0 
( All Three Passes) 
Speedup Over Baseline 9.60 8.93 7.92 7.08 6.53 4.24 
Forward Viterbi 

Table 4.12: Fast Match Using All Senones; Lookahead Window=3 ( 58/( Task). 

4.5.4 Performance of Fast Match Using CI Senones 

The main drawback of the fast match heuristic discussed in Section 4.5.2 is that all 
senones have to be computed in every frame in order to determine the active base 
phones. In this section we consider predicting the active basephones from just the 
context-independent senones. That is, equation 4.2 now becomes: 

( 4.3) 

Thus, we still have to evaluate all senones of all basephones in every frame in order 
to determine the active phone list, but this is a much smaller number than the total 
number of senones. The context dependent senones can be evaluated on demand. 

We expect the list of candidate phones indicated by this heuristic to be somewhat 
less reliable than the earlier one since context independent senones are cruder mod­
els of speech. In particular, coarticulation effects across phone boundaries in fluent 
speech are captured by triphone models but might be missed by the broader mono­
phone models. On the other hand, we still use the lookahead window to smooth the 
candidate list from neighbouring frames. Overall, it is a tradeoff between a poten­
tial increase in the number of active HMMs in order to retain the original level of 
recognition accuracy, and a reduction in the number of senones evaluated per frame. 

Table 4.13 shows a summary of the performance of this scheme on the 201( and 
581( tasks. The lookahead window size is fixed at 3 frames. As we expected, the 
pruning threshold has had to be widened, compared to the previous scheme. 

A Comparison with the results in Section 4.5.3 brings out the following observa­
tions: 

• We are able to match the baseline recognition accuracy with a further reduction 
in computation. In both the 20K and 58K tasks, there is a reduction in total 
execution time of about 45% for a less than 2% relative increase in word error 
rate, compared to not using the fast match heuristic. 
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Pruning beamwidth 65K 75K 85K 95K 105K No fastmatch 
%Word Error Rate 18.1 17.1 16.7 16.6 16.5 16.4 
No. HMMs/Frame 1402 1707 2016 2290 2580 4259 
Total Time (xRealTime) 2.41 2.72 3.02 3.29 3.55 5.50 
( All Three Passes) 
Speedup Over Baseline 9.23 8.18 7.36 6.76 6.26 4.04 
Forward Viterbi 

(a) 20K Task. 

Pruning beamwidth 65K 75K 85K 95K 105K No fastmatch 
% Word Error Rate 16.6 15.6 15.1 14.9 14.8 14.7 
No. HMMs/Frame 2334 2878 3430 3919 4438 7369 
Total Time (xRealTime) 4.20 4.82 5.45 5.84 6.58 10.0 
( All Three Passes) 
Speedup Over Baseline 10.1 8.80 7.79 7.27 6.45 4.24 
Forward Viterbi 

(b) 58K Task. 

Table 4.13: Fast Match Using CI Senones; Lookahead Window=3. 

• There is some increase in the number of active HMMs needed to achieve the 
same recognition accuracy, compared to the fast match based on all senones. 
But it is partially offset by the reduction in the number of senones evaluated. 
The balance, of course, depends on the relative costs of the two. 

• Using context independent senones for the fast match is more beneficial to the 
smaller vocabulary system. As vocabulary size increases, the increase in the 
number of active HMMs affects larger vocabulary systems more. The reduction 
in the cost of computing senone output probabilities is offset by the need to 
scan the active HMMs to find the active senones in each frame. 

4.5.5 Phonetic Fast Match Summary 

The conclusion is that using the phonetic fast match heuristic, the speed of the lexical 
tree decoder can be improved by almost a factor of two, with negligible increase in 
recognition errors. The heuristic can be further tuned in ways that we have not 
explored. For example, one can use basephone-specific pruning beamwidths. The 
graph in Figure 4.12 is averaged over all 50 phones in the Sphinx-II system. However, 
certain base phones, such as fricatives and long vowels, are predicted much better 
than others. It is possible to tighten the pruning threshold for these phones. 
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The phonetic fast match also has several other potential uses. These need to be 
explored: 

• The active base phones usually occur clustered in time. One can create a phone 
lattice in which each node is a phone that is active for some contiguous set of 
frames. Such a phoneme lattice could be searched very efficiently for producing 
a candidate list of active words to be searched. 

• A phone lattice such as described above can be used for word spotting. We may 
consider the word to be present if we can trace a sequence of nodes through the 
phone lattice corresponding to the word's pronunciation. 

• Obtaining confidence measures. Wherever the phone lattice is sparse, i.e., very 
few phones are identified as being active, we can conclude that we have a high 
degree of confidence about which phones are active. If a region of frames has 
many phones active in it, on the other hand, it indicates a high degree of acoustic 
confusion in that region. The acoustic modelling in that segment is less reliable. 

The technique of identifying active phones has been discussed in [22], however, 
only in the context of applying it to a fast match. They have reported a reduction 
in fast-match computation of about 50% with a slightly under 10% increase in error 
rate. A similar technique using phone posterior probabilities has also been reported 
in [56]. It is also in the phase of the fastmatch step that generates word candidates 
and posterior probabilities to a stack-decoding algorithm. The phonetic HMM states 
are modelled by neural network that directly estimate phone posterior probabilities 
that are used to identify and deactivate inactive phones during the fast match step. 
They report an order of magnitude increase in search speed for a nearly real-time 
performance, while incurring a 7% relative increase in word error rate on a 20K task. 
Part of the large increase in speed in probably owing to the fact that the basic decoder 
is based on stack-decoding algorithm. They do not report frequency counts for the 
reduction in the number of active models per frame. 

4.6 Exploiting Concurrency 

Our main purpose in this section is to explore the potential for speeding up the recog­
nition architecture via concurrency. It is relevant since modern commercial processor 
architectures are increasingly capable of multiprocessor operation and commercial op­
erating systems support concurrency and multithreading within single applications. 
It is possible to take good advantage of this facility. 

One of the early attempts at speeding up the Sphinx-II baseline system exploited 
the large degree of concurrency within its algorithmic steps [54]. In a parallel imple­
mentation on the PLUS multiprocessor designed at CMU [13], a speed up of 3.9 was 
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obtained on a 5 node configuration. The parallelization involved static partitioning 
of data and computation among multiple threads using the Mach C-threads facility 
[16]. Though the lexical tree decoder has significant structural differences compared 
to the baseline system, some of the parallelization techniques can still be applied to 
it. We explore this question in some detail in this section. 

In parallelizing any application, there are two broad options: dynamic load bal­
ancing using a central task queue model, or static load balancing based on some 
suitable static data and computation partitioning. The former presumably achieves 
the best (most even) load balance among the active threads. But it is more complex 
to implement, and harder to maintain and modify for experimentation purposes. We 
consider static partitioning schemes which are easier to manipulate in a coarse-grained 
fashion on small-scale multiprocessors. 

In the following discussion we assume a shared-memory multiprocessor configu­
ration with an application running in a single address space shared by multiple con­
current threads. The discussion is hypothetical. We have not actually implemented 
a parallel version of the tree search decoder. But we do address the relevant issues. 

4.6.1 Multiple Levels of Concurrency 

There are several levels of concurrency in the decoder as discussed so far, which can 
be exploited individually and in combination. We review the main ones briefly. 

Pipelining Between Search Passes 

The lexical tree search and rescoring passes can be pipelined and executed concur­
rently. If the latter is time synchronous, the only constraint is that it cannot proceed 
beyond time t until the lexical tree search has completed emitting all its word lattice 
entries that correspond to a begin time of t or earlier. This is easily established by 
checking the history information Hf in each active HMM (see Section 3.2.4). If all 
of them point to word lattice entries with end times greater than t, the rescoring pass 
can proceed beyond t12 . 

The potential speedup obviously depends on the relative costs of the two passes. 
In our benchmark system, the lexical tree search is the dominant pass. However, it 
can be parallelized internally, so pipelining the later pass becomes useful. 

The communication bandwidth between the two passes is minimal. It only involves 
the exchange of word lattice information, which consists of a few tens of words every 
frame, on average. The two passes must also synchronize to ensure that the rescoring 
pass does not overtake the other. 

12 Actually, the rescoring pass treats the word segmentations in the tree search word lattice fuzzily, 
using a window, as described in Section 4.4.1. We must also allow for the window. 
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Pipelining Between Acoustic and HMM Evaluation in Tree Search 

We can pipeline the VQ and senone output probability computation with the HMM 
search if there is no feedback from the latter to the former. That is the case if we 
decide to evaluate all senones every frame, instead of computing just the active ones. 
The latter requires feedback from the active HMMs. The phonetic fast match heuristic 
presented in Section 4.5.2 requires the evaluation of all senone output probabilities 
every frame anyway. Hence this pipelining is suitable in that context. 

Again, the potential speedup depends on the costs of the individual steps. In 
our lexical tree search using semi-continuous acoustic models, the execution times 
for senone output probability computation and searching the active HMMs are fairly 
even for the 201( task. This is seen from Tables 4.3(a) and 4.11. Even otherwise, 
each component has a fair amount of internal parallelism which can be exploited to 
balance the computation. 

We consider the communication bandwidth between the two components. The 
data exchanged between the pipeline components consists of the senone output prob­
abilities in each frame. In our system, it amounts to lOK 4-byte values in each frame, 
or about 4MB/sec, and it is not likely to be significantly different for most systems. 
This volume is well within the capabilities of modern memory-bus systems. 

The two pipeline components have a producer-consumer relationship. The pro­
ducer, senone evaluation, must stay ahead of the consumer, the search component. 
The execution time for the former is fairly constant from frame to frame, but the 
search cost can vary by an order of magnitude or more. Hence, for a proper balance 
in computation, the two cannot be simply run in lockstep. We need a queue of frames 
between the two to smooth out variations in execution times. However, the queue 
cannot be arbitrarily large since it has to contain 40KB of senone output probability 
data per frame. We surmise that a queue depth of about 10 frames is sufficient to 
keep the pipeline flowing relatively smoothly without hiccups. 

Partitioning Acoustic Output Probability Computation 

The computation of senone output probabilities can be trivially partitioned in most 
instances. Basically, there is no dependency between the output probabilities of 
different senones within a given frame. Every senone can be evaluated concurrently 
with the others. 

Partitioning the senone output probability computation creates a multiple-producer 
and consumer relationship with the search module. Hence the latter must synchronize 
with all of the producer partitions to ensure integrity. 
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Concurrency in Searching the Lexical Tree HMM Network 

Parallelism inside the Viterbi tree search algorithm is the hardest to control and 
exploit effectively for several reasons: 

• The beam search heuristic restricts the active HMMs to a small fraction of the 
total number. The actual identity of the active HMMs is time varying. It is 
necessary to balance the computation among parallel components in spite of 
this variation. 

• The amount of search computation varies by orders of magnitude from frame 
to frame. 

• There is global dependency from one frame to the next. This follows from 
the time-synchronous nature of the Viterbi algorithm. For example, the word 
lattice must be completely updated with new word entries in a given frame 
before moving on to attempt cross-word transitions in that frame. 

• The search component is the most memory intensive. The memory access pat­
tern is highly unstructured since the set of active HMMs varies over time. The 
memory bottleneck is probably the largest impediment to the effective paral­
lelization of this component. 

The most natural way to parallelize the lexical tree search is by partitioning the 
collection of trees among concurrent threads. For example, the two trees in Figure 
4.2 can be assigned to separate threads. This approach has the following advantages: 

• The computation within each thread is largely the same as in the sequential 
algorithm. It is important to retain the simplicity of structure offered by se­
quential implementations for ease of modification and experimentation. The 
main difference is that threads need to synchronize with each other once in 
each frame to exchange updates to the word lattice. 

• Since the HMM data structures to be searched are partitioned, there is no 
conflict during access to them, except for cross-word transition updates. These 
are handled by exchanging updates to the word lattice as mentioned above. 

• The large number of trees offer sufficient parallelism and scope for effective 
load balancing in spite of the level of activity within individual trees varying 
substantially with time. In the 20K task, there are about 650 trees (see Table 
4.1). 

It is important to distribute the trees with some care, in order to maintain a 
proper load balance among threads. The phonetic fast match heuristic restricts the 
activity at the root nodes by allowing only the predicted phones to become active at 
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a given point in time. Hence, it is advantageous to scatter trees with root nodes that 
have the same parent basephone among different threads. In general, it is desirable 
to spread trees with acoustically similar initial prefixes among threads, ensurmg a 
more even distribution of the computation load. 

4.6.2 Parallelization Summary 

We have reviewed the potential for speedup through parallelism at several levels. 
Even with a static partitioning of the task, the available concurrency can be effectively 
exploited on small-scale shared-memory multiprocessors. 

It is possible to pipeline individual passes of the decoder with one another. Within 
the lexical tree search, we can exploit pipelining between the acoustic output prob­
ability evaluation for senones and the HMM search algorithm. This is especially 
advantageous since they are fairly evenly matched in our lexical tree decoder using 
semi-continuous models. Finally, both acoustic output probability computation and 
HMM search can be partitioned into concurrent threads. However, the latter requires 
a careful static assignment of the overall search space to threads in order to balance 
the computational load among them. 

However, the effectiveness of a parallel implementation is limited by the available 
processor-memory bandwidth. Since certain portions of the original sequential algo­
rithm, especially HMM evaluation, are heavily memory bound, the actual speedup 
possible through concurrency remains to be seen. 

4. 7 Summary of Search Speed Optimization 

The contents of this chapter can be summarized by comparing the performances of 
various approaches along two axes: word error rate vs recognition speed. Figure 4.15 
captures this information succinctly. 

The figure shows that we can very nearly attain the recognition accuracy of the 
baseline system while speeding up the system by a factor of about 8. It also brings 
out the relative contributions and costs of each technique. Appendix B contains a 
summary of the results of significance tests on the differences between the recognition 
accuracies of the various systems. 

We briefly review the results from this chapter: 

• The lexical tree search algorithm is about 5 times faster than the baseline 
Sphinx-II system. The search component alone, excluding the computation of 
acoustic output probabilities of senones, is over 7 times faster than the baseline 
system. 
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• During the lexical tree search, deferring the computation of language model 
probabilities until the leaves of the lexical reduces the cost of such accesses by 
about an order of magnitude compared to the baseline system. It also leads to 
an optimization whereby about half of these computations can be eliminated 
by reusing results from an earlier time. 

• The lattice error rate of the word lattice produced by the lexical tree search is 
about 2%, and is highly compact, making it ideal for postprocessing steps using 
more sophisticated searches and models. The number of entries in the word 
lattice for a 10sec sentence is typically about 1000. The word lattice size and 
error rate is comparable to that of the baseline system. 

• Even though the lexical tree search suffers an increase in word error rate of 
about 20% relative to the baseline system, the loss can be largely recovered by 
searching the word lattice for a globally optimum path. The resulting word 
error rate is within 7% relative to the baseline system. The computational cost 
of the best path search is negligible. 

• The compact word lattice produced by the tree search can be efficiently postpro­
cessed using detailed acoustic models and/or search algorithms. By applying 
the forward Viterbi search algorithm of the baseline system to the word lat­
tice, followed by the best path search, we equal the recognition accuracy of the 
baseline system. The overall increase in computation with the addition of the 
postprocessing step is about 15%. 

• The phonetic fast match heuristic improves recognition speed by identifying a 
limited set of candidate phones to be activated at each frame. Incorporating this 
step into the lexical tree search leads to a further speedup in overall execution 
time by a factor of about 1.8 with less than 2% relative increase in word error 
rate. 

Based on our experiences reported in this chapter, we believe that a practical 
organization for the decoder is as shown in Figure 4.16. 

Phonetic Lexical Tree Rescore Global 
- Lexical Tree Best Path 

Fast Match Search - -
Word Lattice Search 

(Optional) 

Figure 4.16: Configuration of a Practical Speech Recognition System. 

Each of the blocks in the linear pipeline operates in the forward direction in time, 
and hence the entire configuration can be overlapped to a large extent, avoiding delays 
that would be inherent if any of the blocks involved a backward pass, for instance. 
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The lexical tree search module, using fairly detailed acoustic and grammar models 
but simple enough to allow near real-time operation, produces a compact word lattice 
with a low lattice error rate. It is the key to the overall organization of a practical 
speech recognition system. 

Additional improvements in speed can be obtained by exploiting parallelism be­
tween and within the individual blocks in Figure 4.16. The pipelined organization 
lends itself naturally to a parallel implementation, operating asynchronously in a 
data-driven fashion. There is also a large amount of parallelism within some of the 
modules. For example, the evaluation of acoustic models and the HMM network 
search can be performed in parallel, with very simple communication between them. 
One of the early work in this area was in parallelizing the forward Viterbi pass of 
the baseline Sphinx-II system on a 5-node shared-memory multiprocessor [14, 13] on 
the 1000-word Resource Management task [51], which yielded a speedup of about 3.8 
[54]. Parallelizing the lexical tree search is a little different, but the potential exists, 
nevertheless. 



Chapter 5 

Memory Size Reduction 

The second important computational resource needed by modern speech recognition 
systems, after CPU power, is main memory size. Most research systems require 
hundreds of megabytes of main memory that are only found on high-end workstations. 
Clearly, practical applications of speech recognition must be able to run on much 
smaller memory configurations. 

The work reported in this chapter is once again in the context of the baseline 
Sphinx-II system described in Chapter 3. It is typical of most other research systems 
in use in the speech community. The two main candidates for memory usage in 
the baseline Sphinx-II system are the acoustic and language models. The former 
is dominated by the senone mixture weights (see Sections 2.1.2, 3.1.1, and 3.4.4). 
The latter primarily consists of the bigram and trigram data structures described in 
Section 3.4.4, Figure 3.8. 

In this chapter we describe the approaches taken to reduce their sizes in the lexical 
tree decoder. In Section 5.1 we discuss the reduction of acoustic model size and in 
Section 5.2 that of the language model. Some of the techniques presented here have 
also been incorporated into the baseline decoder with similar results. 

5.1 Senone Mixture Weights Compression 

The main hypothesis in designing a scheme for reducing the memory size requirement 
of acoustic models is that the exact state score ( or senone score) in each frame is not as 
important to the detailed search as is the relative ranking of the models. Furthermore, 
short-term fine distinctions in the scores of states in a given frame are misleading, 
because of the inherent uncertainty in the statistical models underlying those states. 
These observations lead to the simple solution of clustering acoustic modelling values 
into a small number of bins which can be indirectly addressed using a small number 
of bits. 
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This approach is applied to the Sphinx-II semi-continuous acoustic models in the 
case of the senone weights. As we saw in Section 3.4.4, the senone mixture weights 
or coefficients account for about 40MB of memory usage, where each coefficient is a 
4-byte value. These coefficients are reduced to 1 byte by simply truncating their least 
significant bits until the entire dynamic range can be fit into 8 bits. Thus, we obtain 
a 4-fold reduction in their memory requirement. 

Most benchmark evaluations described in this thesis have been carried out with 
this memory organization. The impact of this truncation on recognition accuracy is 
virtually non-existent. More important, only about 1 % of the individual sentences 
have different recognition results in the two cases. In other words, the reduction in 
precision makes little difference not just on average, but even in detail. In fact, the 
overall recognition accuracy is actually slightly better after the truncation. 

There is also an execution speed benefit to this compaction. Equation 2.1 in 
Section 2.1.2 defines the expression for the output probability of a senone in a given 
frame. In Sphinx-II, as in many other speech recognition systems, all probability 
calculations are carried out in log-space, so that multiplication operations can be 
reduced to additions in log-space. But the summation term in equation 2.1 poses a 
difficulty. By truncating all log-probability values to 8-bits, however, the addition 
operation can be achieved in log-space by simply implementing it as a table-lookup 
operation. This optimization reduces the execution time for senone output probability 
computation by a factor of 2. 

5.2 Disk-Based Language Models 

In the case of the language model, a totally different approach is necessary. It is 
indeed feasible to reduce the probability values and backoff weights to 8-bit values 
without any effect on recognition accuracy. But in this case, the probability values 
have already been compacted to 16-bits as mentioned in Section 3.4.4. Hence, the 
payoff in reducing them to 8 bits is less. Furthermore, there are other fields in each 
bigram and trigram, such as the word-id, which are much harder to compress further. 

The observation in this case is that in decoding any given utterance, only a very 
small portion of the language model is actually used. Hence, we can consider main­
taining the language model entirely on disk, and retrieving only the necessary pieces, 
on demand. One would expect the virtual memory system to effectively accomplish 
this for free. But, as we noted in Section 3.4.4, the granularity of access to the bi­
gram and trigram data structures is much smaller than a physical page size on most 
modern workstations. For example, the average number of bigrams per word in the 
case of the 58K vocabulary is about 105. The average number of trigrams per word 
pair is at least an order of magnitude smaller. Hence, the virtual memory system is 
relatively ineffective in managing the working set for these data structures. 



5.2. DISK-BASED LANGUAGE MODELS 99 

It is possible to maintain the language model on disk and explicitly load the 
necessary bigrams and trigrams on demand. However, to avoid excessive delays due 
to disk access, we must resort to some caching strategy. For this, we observe that 
if we are required to compute a bigram probability P( Wjlwi) during some frame, we 
are very likely to have to compute other bigram probabilities P( wklwi), k =/= j, in the 
same frame. We can make a similar case for trigram probabilities. The reason for 
this phenomenon is that typically several words arrive at their ends in a given frame, 
and we need to compute each of their language model probabilities with respect to 
each of some set of predecessor words. 

The caching policy implemented in our system is quite straightforward: 

• Since unigrams are a small portion of the large vocabulary language models, 
they are always kept in memory. Only bigrams and trigrams are read from disk, 
and they are cached in logical chunks. That is, all bigram followers of a word 
or all trigram followers of a word pair are cached at a time. 

• Whenever a bigram probability P(wilwi) is needed, and it is not in memory, all 
bigram followers of Wi are read from disk and cached into memory. 

• Likewise, whenever a trigram probability P( wk lwi, Wj) is needed, and it is not in 
memory, all trigram followers of Wi, w j are read and cached in memory. Further­
more, all bigram followers of Wi are also read from disk and cached in memory, 
if not already there. 

• To avoid a continual growth in the amount of cached language model data, it is 
necessary to garbage collect them periodically. Since the decoder processes input 
speech one sentence at a time (which are at the most a few tens of seconds long), 
the cached data are flushed as follows. At the end of each utterance, we simply 
free the memory space for those cached entries which were not accessed during 
the utterance. This ensures that we recycle the memory occupied by relatively 
rare words, but retain copies of frequently occurring words such as function 
words ( A, THE, IS, etc.). The "cache lines" associated with the functions words 
are also relatively large, and hence more expensive to read from disk. 

All the benchmark evaluations with the lexical tree decoder have been carried 
out using the disk-based language model with the above caching scheme. We have 
measured the number of bigrams and trigrams resident in memory during all of our 
benchmark evaluations. In both the 20K and 58K tasks, only about 15-25% of bigrams 
and about 2-5% of all trigrams are resident in memory on average, depending on the 
utterance. 

The impact of the disk-based language model on elapsed time is minimal, implying 
that the caching scheme is highly effective in avoiding disk access latency. Measuring 
elapsed time is tricky because it is affected by factors beyond our control, such as other 
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processes contending for the CPU, and network delays. However, on at least some 
experimental runs on entire benchmark test sets, the difference between the CPU 
usage and elapsed time is no more than if the entire language model is completely 
memory-resident. The elapsed time exceeds the CPU usage by less than 5%, and it 
is the existence proof for the effectiveness of the caching policy. 

5.3 Summary of Experiments on Memory Size 

We have presented two simple schemes for reducing the memory sizes of large acoustic 
and language models, respectively. The former is compressed by simply truncating 
the representation from 32 to 8 bits. This granularity appears to be quite sufficient 
in terms of retaining the original recognition accuracy, sentence for sentence. 

The memory-resident size of the language model is reduced by maintaining it 
on disk, with an effective caching policy for eliminating disk access latency. The 
fraction of bigrams in memory is reduced by a factor of between 4 and 6, and that of 
trigrams by a factor of almost 20-50. Clearly, there is no question of loss of recognition 
accuracy, since there is no change in the data representation. 

We believe that several other implementations use 8-bit representations for acous­
tic models, although the literature hasn't discussed their effect on recognition, to 
our knowledge. We do not know of any work dealing with the language model in 
the way described here. Other approaches for reducing the size of language models 
include various forms of clustering, for example into class-based language models, 
and eliminating potentially useless bigrams and trigrams from the model [58]. These 
approaches generally suffer from some loss of accuracy. The advantage of simple word 
bigram and trigram grammars is that they are easy to generate from large volumes 
of training data. 



Chapter 6 

Small Vocabulary Systems 

6.1 General Issues 

Although we have mainly concentrated on large vocabulary speech recognition in 
this thesis, it is interesting to consider how the techniques developed here extend 
to smaller vocabulary tasks. There are two cases: tiny vocabulary tasks of a few 
tens to a hundred words, and medium vocabulary of a few thousands of words. The 
former are typical of command and control type applications with highly constrained 
vocabularies. The latter are representative of applications in constrained domains, 
such as queries to a financial database system. 

For a really small vocabulary of a few tens of words, search complexity is not a 
major issue. In a Viterbi beam search implementation, at most a few hundred HMMs 
may be active during each frame. Similarly there may be at most a few hundred 
cross-word transitions. (These are the two most prominent subcomponents of search 
in large vocabulary recognition, and our main focus.) The acoustic output probability 
computation, and questions of recognition accuracy are much more dominant issues 
in such small vocabulary tasks. The nature of the problem also allows the use of ad 
hoc techniques, such as word HMM models for improving recognition accuracy. The 
wide range of options in the extremely small vocabulary domain makes the efficiency 
measures for large vocabulary recognition less relevant. 

Secondly, as the vocabulary size decreases, words tend to have fewer common 
pronunciation prefixes. For example, the triphone lexical tree for the digits lexicon 
in Section 3.1.2 is not a tree at all. It is completely flat. The tree structure is largely 
irrelevant in such cases. We do not consider extremely small vocabulary tasks any 
further. 

Even when the vocabulary is increased to a few thousands of words, the cost of 
search does not dominate as in the case of large vocabulary tasks. The computation 
of HMM state output probabilities is about equally costly. Hence, even an infinite 
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speedup of the search algorithm produces an overall speedup of only a small factor. 

In this chapter we compare the baseline Sphinx-II system and the lexical tree 
search system on the speech recognition component of the ATIS (Airline Travel In­
formation Service) task1 [45, 46], which has a vocabulary of about 3K words. 

Section 6.2 contains the details of the performance of the baseline Sphinx-II system 
and the lexical tree decoder on the ATIS task. 

6.2 Performance on ATIS 

6.2.1 Baseline System Performance 

ATIS is a small-vocabulary task in which the utterances are mainly queries to an 
air travel database regarding flight and other travel-related information. The test 
conditions for the ATIS task are as follows: 

• 3000 word vocabulary, including several compound words, such as !_WANT, 
WHAT_IS, etc. 

• 10,000 senone semi-continuous acoustic models trained for ATIS from both the 
large vocabulary Wall Street Journal and ATIS data. 

• Word bigram language model, with about 560,000 bigrams. It is a fairly con­
strained grammar with a much lower perplexity than the large vocabulary ones. 

• Test set consisting of 1001 sentences, 9075 words. 

The style of speaking in ATIS is a little more conversational than in the large vocab­
ulary test sets from the previous chapters. 

The performance of the baseline Sphinx-II system on the ATIS task is summarized 
in Table 6.1. The noteworthy aspects of this test are the following (we focus mainly 
on the forward Viterbi pass): 

• The cost of output probability computation (VQ and senone evaluation) is 
almost half of the total execution time of the forward Viterbi search. Hence 
speeding up the other half, i.e. search alone, by an order of magnitude has 
much less impact on the overall speed. 

• The number of HMMs evaluated per frame is still sufficiently large that it is 
not worth while computing the senone output probabilities on demand. It is 
less expensive to compute all of them in each frame. 

1The overall ATIS task has other components to it, such as natural language understanding of 
the spoken sentence. We ignore them in this discussion. 
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Fwd. Vit. Fwd/Bwd/A* 
%Word Error Rate 5.11% 4.95 % 
x RealTime 8.66 10.73 

(a) Word Error Rates, Execution Times (x RealTime). 

VQ+Senone HMM Word 
Evaluation Evaluation Transition 

x RealTime 4.06 2.88 1.54 
%Forward Pass 46.9% 33.3% 17.8% 

(b) Breakdown of Forward Pass Execution Times. 

Table 6.1: Baseline System Performance on ATIS. 
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• Cross word transitions are only half as computationally costly as HMM evalua­
tion, whereas in the large vocabulary tasks they are about evenly balanced (Ta­
ble 3.4). Part of the reason is that the ATIS language model provides stronger 
constraints on word sequences, so that fewer cross-word transitions have to be 
attempted. The pruning behaviour of the language model is significant in this 
case. 

6.2.2 Performance of Lexical Tree Based System 

In this section we evaluate the lexical tree search and the associated postprocessing 
steps on the ATIS task. First of all, we compare the number of root nodes in the 
triphone lexical tree in the ATIS task with the other large vocabulary tasks. Table 6.2 
shows these figures. (There are multiple alternative pronunciations for certain words, 
which increase the total number of lexical entries over the vocabulary size.) Clearly, 

ATIS 20K task 58K task 
No. words 3200 21500 61000 
No. root HMMs 450 650 850 
Ratio(%) 14.1 3.0 1.4 
(root HMMs/words) 

Table 6.2: Ratio of Number of Root HMMs in Lexical Tree and Words in Lexicon 
(approximate). 

the degree of sharing at the root of the tree structure decreases as the vocabulary size 
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decreases. Hence, we may expect that the lexical tree structure will give a smaller 
improvement in recognition speed compared to large vocabulary situations. 

Recognition Speed 

The recognition speed for various configurations of the experimental decoder is re­
ported in Table 6.3. The phonetic fast match heuristic in this case is based on 
context-independent HMM state scores. (We have observed in Section 4.5.4 that it 
is advantageous to do so for smaller vocabulary systems.) As expected, the overall 
speedup is less compared to the large vocabulary case (Figure 4.15). 

T TB TRB FTRB 
x RealTime 2.50 2.55 2.89 1.57 
Speedup Over 3.46 3.40 3.00 5.52 
Baseline Viterbi 

(T=Tree Search, B=Bestpath, R=Rescoring, F=Phonetic Fastmatch) 

Table 6.3: Execution Times on ATIS. 

The main reason for the limited speedup over the baseline system is clearly the 
cost of acoustic probability computation, which is nearly 50% of the total in the 
baseline system. The tree search algorithm is primarily aimed at reducing the cost of 
the search component, and not at the acoustic model evaluation. Secondly, as noted 
earlier in Table 6.2, there is less sharing in the ATIS lexical tree than in the larger 
vocabulary tasks. Hence, even the potential speedup in search is limited. 

Let us first consider the situation in further detail without the phonetic fast match 
heuristic. Table 6.4 summarizes the breakdown of the lexical tree search execution 
time on the ATIS task when the fast match step is not employed. Comparing these 

VQ+Senone HMM Leaf Node Word 
Evaluation Evaluation Transition Transition 

x RealTime 1.30 0.72 0.39 0.08 
% Tree Search 52.0 28.8 15.6 3.2 

Table 6.4: Breakdown of Tree Search Execution Times on ATIS (Without Phonetic 
Fast Match). 

figures to Table 4.3 for the large vocabulary case, we see the relative dominance of 
the cost of acoustic model evaluation. 
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In spite of the large cost of acoustic model evaluation, we are still able to obtain a 
speedup of over a factor of 3 for two reasons. First, the fewer number of active HMMs 
in the tree search, compared to the baseline system, allows us to scan for and evaluate 
just the active senones, instead of all of them. Second, the reduction in the precision 
of senone mixture weights allows us to implement some of the output probability 
computation with simple table-lookup operations, as discussed in Section 5.1. Hence, 
the larger than expected gain in speedup is only partly owing to improvement in 
search. 

The phonetic fast match heuristic, however, is as effective as before. When the 
heuristic is included in the lexical tree search, it reduces the number of HMMs eval­
uated. Since it is based only on context-independent state scores, the reduction in 
the number of active HMMs also translates to a reduction in the number of active 
context-dependent senones. In other words, this technique helps both the search and 
acoustic model evaluation components. As a result, we are able to further reduce the 
total execution time by about 45%. 

Recognition Accuracy 

Table 6.5 lists the recognition accuracy of various configurations of the experimental 
decoder. As noted earlier, the phonetic fast match heuristic is based on context­
independent HMM state scores. As in the case of the large vocabulary tasks, the 

T TB TRB FTRB 
% Word Error Rate 6.31 5.70 5.27 5.34 
%Degradation w.r.t. 23.5 11.5 3.1 4.5 
Baseline Viterbi 
%Degradation w.r.t. 27.5 17.2 6.5 7.9 
Baseline A* 

(T=Tree Search, B=Bestpath, R=Rescoring, F=Phonetic Fastmatch) 

Table 6.5: Recognition Accuracy on ATIS. 

rescoring and global best path searches are able to recover the loss in accuracy from 
the lexical tree search. There is still a resultant loss of about 3-5% relative to the 
forward search of the baseline system. It is probably due to a larger degree of pruning 
errors in the tree search. Since the lexical tree is searched without the benefit of prior 
language model probabilities, a word must survive acoustic mismatches until the leaf 
node. There is a greater likelihood of poor acoustic matches in the ATIS task because 
of its more conversational nature and associated fluent speech phenomena. 
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Memory Size 

As in the case of large vocabulary systems, truncating senone mixture weights down 
to 8 bit representation has no effect on recognition accuracy. The language model 
size, while not a major issue at 560K bigrams, is also significantly reduced by the 
disk-based implementation outlined in Section 5.2. The average number of bigrams 
in memory is reduced to about 10% of the total. Once again, the caching strategy 
effectively eliminates the cost of disk access latency. 

6.3 Small Vocabulary Systems Summary 

Recognition speed and memory size are typically not a serious issue in the case of 
extremely small vocabulary tasks of a few tens or hundreds of words. They are 
dominated by concerns of modelling for high accuracy. The lexical tree structure is 
entirely irrelevant because of the limited amount of sharing in the pronunciation of 
individual words. 

In the case of medium vocabulary tasks consisting of a few thousand words, the 
cost of search does become an issue, but the cost of acoustic model evaluation is an 
equally important concern. 

The techniques described in this thesis are together able to improve the speed of 
recognition on the 3K word ATIS task by a factor of about 5.5, with a 4.5% relative 
increase in word error rate over the forward Viterbi result of the baseline Sphinx-II 
system. The speedup in search is limited by the relative dominance of the acoustic 
output probability computation in the small vocabulary environment. Furthermore, 
the lesser degree of sharing in the lexical tree structure reduces the effectiveness of 
the tree search algorithm. Hence, it is also necessary to speed up the acoustic model 
evaluation. 

The smaller number of active HMMs per frame allows us to compute only the 
active senones per frame. This is not useful in the baseline system as the reduction 
in computing active senones is offset by the need to scan a large number of active 
HMMs to determine the set of active senones. Clearly, there is a tradeoff, depending 
on the relative costs of the two operations. 

The phonetic fast match heuristic is able to provide a speedup comparable to 
that in the large vocabulary situation, demonstrating the effectiveness and power of 
the heuristic. When it is based on context-independent state scores, it is effective in 
reducing both the search and context-dependent acoustic model evaluation times. 



Chapter 7 

Conclusion 

This thesis work has focussed on the problems relating to the computational efficiency 
of large vocabulary, continuous speech recognition. The foremost concern addressed 
in this thesis is that of dealing with the large search space associated with this task. 
This space is so large that brute force approaches can be several orders of magnitude 
slower than real-time. The beam search heuristic is able to narrow down the search 
space dramatically by searching only the most likely states at any time. However, 
searching even this reduced space requires several tens of times real time on current 
computers. A reduction in the computational load must come from algorithmic and 
heuristic improvements. 

The second issue addressed in this thesis is efficiency of memory usage. In partic­
ular, the acoustic and language models are the largest contributors to memory size 
in modern speech recognition systems. 

In order to translate the gains made by research systems in recognition accuracy 
into practical use, it is necessary to improve the computational and memory efficiency 
of speech recognition systems. It is relatively easy to improve recognition speed 
and reduce memory requirements while trading away some accuracy, for example by 
using tighter beamwidths for most drastic pruning, and by using simpler or more 
constrained acoustic and language models . But it is much harder to improve both 
the recognition speed and reduce main memory requirements while preserving the 
original accuracy. 

The main contributions of this thesis are an 8-fold speedup and a 4-fold reduction 
in the memory size of the CMU Sphinx-II system. We have used the Sphinx-II system 
as a baseline for comparison purposes since it has been extensively used in the yearly 
ARPA evaluations. It is also one of the premier systems, in terms of recognition 
accuracy, of its kind. On large vocabulary tasks the system requires several tens 
of times real time and 100-200MB of main memory to perform its function. The 
experiments have been performend on several commonly used benchmark test sets 
and two different vocabulary sizes of about 20K and 58K words. 
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We first present a brief description of the lessons learnt from this work, followed 
by a summary of its contributions, concluding with some directions for future work 
based on this research. 

7.1 Summary of Results 

The results in this thesis are based on benchmark tests carried out on the Wall Street 
Journal and North American Business News development and test sets from the Nov. 
1993 and Nov. 1994 ARPA evaluations. They consist of read speech in a clean 
environment using high quality, close-talking microphones, and are widely used in 
the ARPA speech community. The experiments are carried out using two different 
vocabulary sizes, of 20,000 words and 58,000 words, respectively. We now summarize 
the main results from this thesis below. 

• The lexical tree search algorithm is about 5 times faster than the baseline 
Sphinx-II system. The search component alone, excluding the computation of 
acoustic output probabilities of senones, is over 7 times faster than the baseline 
system. 

• During the lexical tree search, deferring the computation of language model 
probabilities until the leaves of the lexical reduces the cost of such accesses by 
about an order of magnitude, compared to the baseline system. It also leads to 
an optimization whereby about half of these computations in a given frame can 
be eliminated by reusing results from an earlier frame. 

• The lattice error rate of the word lattice produced by the lexical tree search is 
about 2% (excluding out of vocabulary words), and is highly compact. This 
makes it an ideal input for postprocessing steps using more detailed models and 
search algorithms. The number of entries in the word lattice for a 10sec sentence 
is typically about 1000. The word lattice size and error rate are comparable to 
that of the baseline system. 

• Even though the lexical tree search suffers an increase in word error rate of 
about 20% relative to the baseline system, the loss can be largely recovered 
from the word lattice. The best path algorithm presented in this thesis finds a 
globally optimum path through the word lattice and brings the word error rate 
down to within 7% relative to the baseline system. The computational cost of 
the best path search is negligible. 

• The compact word lattice produced by the tree search can be efficiently postpro­
cessed using detailed acoustic models and/or search algorithms. By applying 
the forward Viterbi search algorithm of the baseline system to the word lat­
tice, followed by the best path search, we equal the recognition accuracy of the 
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baseline system. The overall increase in computation with the addition of the 
postprocessing step is about 15%. 

• The phonetic fast match heuristic improves recognition speed by identifying a 
limited set of candidate phones to be activated at each frame. Incorporating this 
step into the lexical tree search leads to a further speedup in overall execution 
time by a factor of about 1.8 with less than 2% relative increase in word error 
rate. 

• It is possible to reduce the precision of representation of the statistical databases, 
and thus reduce their memory requirement, with no significant effect on recog­
nition accuracy. Thus, a reduction in the precision of senone weight values from 
32 bits to 8 bits reduces the acoustic model size from about 40MB to about 
10MB. This result has also been observed by several other sites such as IBM, 
BBN and Microsoft. 

• The compact representation of senone weights in 8 bits enables the computa­
tion of senone output probabilities to be implemented by simple table look up 
operations. This speeds up the computation by about a factor of 2. 

• A disk-based language model, coupled with a simple software caching scheme to 
load bigrams and trigrams into memory on demand leads to a reduction in its 
memory requirements by over a factor of 5. The fraction of bigrams resident in 
memory is reduced to around 15-25% of the total, and that of trigrams to 2-5% 
of the total number, on average. The caching scheme is effective in neutralizing 
the cost of disk access latencies. Since there is no change in data representation, 
there is no loss of accuracy. 

In summary, it is possible to reduce the computation time of the Sphinx-II recog­
nizer by nearly an order of magnitude and the memory size requirements by a factor 
of about 4 for large vocabulary continuous speech recognition, with very little loss of 
accuracy. Appendix B contains a summary of the results of significance tests on the 
differences between the recognition accuracies of the various systems. 

As an additional benchmark result, we note that the techniques described in this 
thesis are sufficiently robust that the lexical tree based recognizer was used by CMU 
during the Nov. 1995 ARPA evaluations. 

7 .2 Contributions 

One of the main contributions of this thesis is in providing a comprehensive account 
of the design of a high-performance speech recognition system in its various aspects 
of accuracy, speed, and memory usage. One of the underlying questions concerning 
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research systems that focus mainly on accuracy, and require large amounts of com­
putational power is whether the approaches taken will ever be of practical use. This 
work suggests that concerns of accuracy and efficiency are indeed separable compo­
nents of speech recognition technology, and lends validity to the ongoing effort in . . 
1mprovmg accuracy. 

The second major contribution of the thesis is the presentation an overall or­
ganization of a speech recognition system for large vocabulary, continuous speech 
recognition. We contend that a fast but detailed search, such as that provided by 
the lexical tree search described in this thesis, is the key step in obtaining a highly 
compact and accurate word lattice. The lattice can be searched using more detailed 
and sophisticated models and search algorithms efficiently. The use of multi-pass 
systems is not new. Most current speech recognition systems are of that nature 
[41, 65, 5, 15, 19, 38]. Many reports cite the savings to be had by postprocessing a 
word lattice [65, 38] instead of the entire vocabulary. However, the task of actually 
producing such lattices efficiently has been relatively unexplored. This is necessary 
for the practical application of accurate, large vocabulary speech recognition and it 
is addressed in this thesis. 

Technically, the thesis presents several other contributions: 

• The design and implementation of search using lexical trees. It analyzes the 
technique of deferring the application of language model probabilities until the 
leaves of the lexical tree in an efficient way, and reduces the cost of computing 
these probabilities by an order of magnitude. Other tree-based searches [39, 
43, 65, 66, 40] attempt to overcome the problem by creating bigram copies of 
the search tree. This has three problems: the search space is increased, the 
cost of language model access is still substantial, and the physical memory size 
requirements also increase. Though the lexical tree search presented in this 
thesis suffers some loss of accuracy, the loss is recovered by postprocessing the 
word lattice output, which can be done efficiently since the lattice is highly 
compact. 

• A best path search for global optimization of word lattices. This technique 
searches the word graph formed from word segmentations and scores produced 
by an earlier pass. It finds a globally optimum path through the graph, which 
can be accomplished by any textbook shortest path algorithm. When applied to 
the word lattice produced by the lexical tree search, it brings the final accuracy 
much closer to that of the baseline system, largely overcoming the degradation 
in accuracy incurred by the lexical tree search. Furthermore, it operates in a 
small fraction of real time and its cost is negligible. Word lattice searches have 
been proposed in [65, 39], for example, but they are directed more towards using 
the lattice for driving later search passes with more detailed models. 

• Use of HMM state output probabilities as a fast match to produce candidate 
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list of active phones to be searched. This heuristic has the potential to reduce 
the active search space substantially, depending on the sharpness of the under­
lying acoustic models. We have tried two different approaches for determining 
the set of active phones: based on all HMM states, and based on only the 
context-independent states. The former leads to better phone prediction and 
more effective search pruning, but incurs a fixed cost of evaluating all HMM 
state probabilities. The latter does not have this limitation but is somewhat 
less accurate in predicting active phones. It is more appropriate for smaller 
vocabularies since senone evaluation does not become a bottleneck. 

• Precision of representation of statistical models is largely irrelevant for recogni­
tion accuracy. Substantial savings in memory space can be obtained by quantiz­
ing, clustering, or truncating probability values into few bits. When probability 
values are represented in this compact fashion, it is sometimes possible to imple­
ment complex operations on them by means of simple table-lookup operations. 
The space reduction is not specific to the lexical tree search algorithm. It has 
been implemented in the baseline Sphinx-II system as well, with similar results. 

• Use of disk-based language models in reducing memory requirements. Bigrams 
and trigrams are read into memory on demand, but a simple software caching 
policy effectively hides long disk access latencies. The technique is not specific 
to the lexical tree search algorithm. It has been implemented in the baseline 
Sphinx-II system as well, and has proven to be as effective. 

7.3 Future Work on Efficient Speech Recognition 

The efficiency of speech recognition is ultimately judged by the end application. 
Transforming today's laboratory versions of speech recognition systems into practical 
applications requires solutions to many other problems. The resource requirements of 
current systems-CPU power and memory-are still beyond the capabilities of com­
monly available platforms for medium and large vocabulary applications. Further­
more, the notion of "performance" extends beyond accuracy, speed and memory size. 
These factors include, for example, robustness in the presence of noise, adaptation 
to varying speaking styles and accents, design issues dealing with human-computer 
interfaces that are appropriate for speech-based interaction, speech understanding, 
etc. We consider how research on the following might be useful in this respect. 

Combining Word-Level Fast Match With Lexical Tree Search 

The speed of recognition systems could be improved by a combination of a word­
level fast match algorithm and a lexical tree search. The former typically reduces 
the number of candidate words to be searched by at least an order of magnitude. 
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Furthermore, the candidates produced at a given instant are likely to be phonetically 
closely related, which can be exploited effectively by the lexical tree search algorithm. 
We do not know of any detailed report on a system that takes advantage of the two 
together. It is worthwhile studying this problem further. The results presented in 
this thesis provide a baseline for comparison purposes. 

Robustness to Noise Using Phone Lattices 

Normal speech is often interrupted or overshadowed by noise, and recognition during 
such periods is highly unreliable. The need for confidence measures attached to recog­
nition results has often been felt. The phone lattices produced by the phonetic fast 
match heuristic described in Section 4.5 could be adapted for this purpose. During 
clean speech, there is a distinct separation between the leading active phones and 
the remaining inactive ones. Few phones fall within the beam and they are generally 
closely related or readily confusable. Also there is a good correlation between neigh­
bouring frames. In the presence of noise, especially non-speech noise, the number of 
active phones within the beamwidth increases significantly. The reason is that the un­
derlying acoustic models are unable to classify the noisy speech with any confidence. 
There is a much greater degree of confusability within a frame, and little correlation 
among active phones between neighbouring frames. One could use these measures to 
detect regions where the recognition is potentially unreliable. The advantage of this 
approach is that it is inexpensive to compute. 

Postprocessing Word Lattices Using Multiple Language Models 

This technique pertains to good user interface design. Several practical applications 
of speech recognition deal with the handling of a number of well-defined but distinct 
tasks. For example, in a dictation task text input through speech might be inter­
spersed with spoken commands to manipulate the document being edited, such as 
"scroll-up", "previous paragraph", etc. However, it is cumbersome for the user to 
constantly have to indicate to the system the type of command or speech that is 
forthcoming. It is desirable for the system to make that decision after the fact. Such 
a task can be accomplished by searching the word lattice output of the lexical tree 
search using multiple language models. The dictation task would use two language 
models, a general purpose one, and a restricted one for editing commands. Initial 
speech recognition is always carried out using the general purpose model. Once a 
sentence is recognized and the word lattice is built, it can be searched again, this 
time using the constrained language model. If a path through the word lattice is 
found, the sentence can be interpreted as an editing command. The compact nature 
of the word lattice allows such searches to be carried out rapidly. 
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Rescoring Word Lattices Using Prosodic Models 

Word lattices often contain alternative paths that are phonetically identical. Rescor­
ing these using conventional acoustic models, however detailed, is unlikely to resolve 
them. However, word or context-dependent prosodic models applied to longer units 
such as syllables can help discriminate between the alternatives. Once again, the com­
pact nature of the lattices enables such postprocessing to be performed efficiently. 

Disk-Based Acoustic Models 

With the emergence of continuous HMMs for acoustic modelling, demands on CPU 
power and memory capacities increase. The availability of compact lattices that can 
be rescored with detailed acoustic models alleviates the CPU power problem. It also 
implies that fewer HMM states are active at any given instant. Furthermore, once 
a state becomes active, it remains active for a few more frames. Thus, it may be 
possible to use disk-based acoustic models to reduce their memory requirements as 
well. One needs to explore caching mechanisms and their effectiveness in overcoming 
disk access latencies for this purpose. 

Design of Scalable Systems 

It is important to consider the problem of designing a speech application on a specific 
platform with given resource constraints. The main criteria are that the application 
should perform in real time within the CPU and memory capacities of the system. 
Therefore, it is generally necessary to make trade-offs regarding the level of sophisti­
cation of modelling and search that may be employed. The memory size problem can 
be attacked by using less detailed models during the initial search to create a word 
lattice, as well as using disk-based mechanisms. The cost of search can be reduced 
by increasing the degree of sharing in the lexical tree, for example, by using diphone 
or even monophone models instead of triphones. The word lattice output may have 
to be larger in order to provide an acceptably low lattice error rate, and hence the 
postprocessing costs also increase. It is worth investigating the tradeoffs that are 
possible in this respect. 
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Appendix A 

The Sphinx-II Phone Set 

Phone Example Phone Example Phone Example 
AA odd EY ate p pee 
AE at F fee PD lip 
AH hut G green R read 
AO ought GD bag s sea 
AW cow HH he SH she 
AX abide IH it T tea 
AXR user IX acid TD lit 
AY hide IY eat TH theta 
B be JH gee TS bits 
BD dub K key UH hood 
CH cheese KD lick uw two 
D dee L lee V vee 
DD dud M me w we 
DH thee N knee y yield 
DX matter NG pmg z zee 
EH Ed ow oat ZH seizure 
ER hurt OY toy 

Table A.l: The Sphinx-II Phone Set. 
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Statistical Significance Tests 

We have conducted statistical significance tests using the scoring and stats packages 
from NIST. They were run on recognition results from all test sets put together. We 
have reproduced the results from these significance tests on the 201( and 581( tasks 
below1 . In these tables, five different systems are identified: 

• f6p1 .m: Baseline system; forward Viterbi pass. 

• f6p3 .m: Baseline system; all three passes. 

• f8p1 .m: Lexical tree search. 

• f 8p2. m: Lexical tree search and global best path search. 

• f8p3. m: Lexical tree, rescoring, and global best path search. 

The conclusion from these tests is that the new system with three passes (lexical 
tree search, rescoring, and best path search) is essentially identical to the baseline 
Viterbi search in recognition accuracy. 

1The recognition accuracy results are a little bit better here from the figures reported in the main 
thesis sections because of small differences in the scoring packages used in the two cases. 
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B.1 20K Task 

COMPARISON MATRIX: FOR THE MATCHED PAIRS TEST 
PECENTAGES ARE MEAN PCT ERROR/SEGMENT. FIRST# IS LEFT SYSTEM 

STATS from std_stats 
Minimum Number of Correct Boundary words 2 

1-----------------------------------------------------I 
I I f6p1.m I f6p3.m I f8p1.m I f8p2.m I f8p3.m I 

l--------+--------+--------+--------+--------+--------1 
I f6p1.m I I f6p3.m I f6p1.m I f6p1.m I same I 

l--------+--------+--------+--------+--------+--------1 
I f6p3.m I I I f6p3.m I f6p3.m I f6p3.m I 

l--------+--------+--------+--------+--------+--------1 
I f8p1.m I I I I f8p2.m I f8p3.m I 

l--------+--------+--------+--------+--------+--------1 
I f8p2.m I I I I I f8p3.m I 

1--------+--------+--------+--------+- ------+--------1 
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COMPARISON MATRIX: McNEMAR'S TEST ON CORRECT SENTENCES FOR THE TEST: 
STATS from std_stats 

For all systems 
1-----------------------------------------------------------------------------I 
I I f6p1.m(2O9) I f6p3.m(228) I f8p1.m(157) I f8p2.m(2O2) I f8p3.m(215) I 
------------+------------+------------+------------+------------+------------1 
f6p1 .m(2O9) I I D=( 19) I D=( 52) I D=( 7) I D=( 6) I 

I I f6p3 .m I f6p1.m I same I same I 
------------+------------+------------+------------+------------+------------1 
f6p3.m(228) I I I D=( 71) I D=( 26) I D=( 13) I 

I I I f6p3.m I f6p3.m I same I 
------------+------------+------------+------------+------------+------------1 
f8p1.m(157) I I I I D=( 45) I D=( 58) I 

I I I I f8p2.m I f8p3.m I 
------------+------------+------------+------------+------------+------------1 
f8p2.m(2O2)1 I I I I D=( 13) I 

I I I I I same I 
------------+------------+------------+------------+------------+------------1 

Comparison Matrix for the Sign Test 
Using the Speaker Word Accuracy Rate(¼) Percentage per Speaker 

as the Comparison Metric 
l-----------------------------------------------------1 
I I f6p1.m I f6p3.m I f8p1.m I f8p2.m I f8p3.m I 
1--------+--------+--------+--------+--------+--------I 
I f6p1.m I I f6p3.m I f6p1.m I f6p1.m I same I 
1--------+--------+--------+--------+--------+--------I 
I f6p3.m I I I f6p3.m I f6p3.m I f6p3.m I 
1--------+--------+--------+--------+--------+--------I 
I f8p1.m I I I I f8p2.m I f8p3.m I 
1--------+--------+--------+--------+--------+--------I 
I f8p2.m I I I I I f8p3.m I 
1--------+--------+--------+--------+--------+--------I 

Comparison Matrix for the Wilcoxon Test 
Using the Speaker Word Accuracy Rate(¼) Percentage per Speaker 

as the Comparison Metric 
1-----------------------------------------------------I 
I I f6p1.m I f6p3.m I f8p1.m I f8p2.m I f8p3.m I 
1--------+--------+--------+--------+--------+--------I 
I f6p1.m I I f6p3.m I f6p1.m I f6p1.m I same I 
1--------+--------+--------+--------+--------+--------I 
I f6p3.m I I I f6p3.m I f6p3.m I f6p3.m I 
1--------+--------+--------+--------+--------+--------I 
I f8p1.m I I I I f8p2.m I f8p3.m I 
1--------+--------+--------+--------+--------+--------I 
I f8p2.m I I I I I f8p3.m I 
1--------+--------+--------+--------+--------+--------I 
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RANGE ANALYSIS ACROSS RECOGNITION SYSTEMS FOR THE TEST: 
STATS from std_stats 

by Speaker Word Accuracy Rate(¼) 
1-----------------------------------------------I 
I SYS I high I low I I std dev I mean I 

l--------+--------+--------++---------+---------1 
I f6p3.m I 95.1 I 50.3 I I 8.o I 84.5 I 

I f6p1.m I 94.9 I 48.5 I I 8.3 I 83.8 I 

I f8p3.m I 95.4 I 46.6 I I 8.5 I 83.8 I 

I f8p2.m I 95.4 I 46.3 I I 8.8 I 82.9 I 

I f8p1.m I 94.1 I 45.1 I I 8.7 I 80.9 I 

1-----------------------------------------------I 

------------------------------------------------------------1 
I PERCENTAGES I 

--------+---------------------------------------------------1 
10 10 20 30 40 50 60 70 80 90 1001 

SYS 11 I I I I I I I I I 11 
--------+---------------------------------------------------1 

f6p3.m I ------------+---1---+- I 
f6p1.m I -------------+---1---+- I 
f8p3.m I --------------+---1---+- I 

f8p2.m I -------------+---1----+- I 

f8p1.m I -------------+---1----+-- I 

------------------------------------------------------------1 
I -> shows the mean 
+->shows plus or minus one standard deviation 
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Composite Report of All Significance Tests 
For the STATS from std_stats Test 

Test Name Abbrev. 

Matched Pair Sentence Segment (Word Error) Test MP 
Signed Paired Comparison (Speaker Word Accuracy Rate(¼)) Test SI 

Wilcoxon Signed Rank (Speaker Word Accuracy Rate(¼)) Test WI 
McNemar (Sentence Error) Test MN 

1-----------------------------------------------------------------------I 
I I f6p1.m I f6p3.m I f8p1.m I f8p2.m I f8p3.m I 
1-----------+-----------+-----------+-----------+-----------+-----------I 
I f6p1.m I I MP f6p3.m I MP f6p1.m I MP f6p1.m I MP same I 
I I I SI f6p3.m I SI f6p1.m I SI f6p1.m I SI same I 
I I I WI f6p3.m I WI f6p1.m I WI f6p1.m I WI same I 
I I I MN f6p3.m I MN f6p1.m I MN same I MN same I 
1-----------+-----------+-----------+-----------+-----------+-----------I 
I f6p3.m I I I MP f6p3.m I MP f6p3.m I MP f6p3.m I 
I I I I SI f6p3.m I SI f6p3.m I SI f6p3.m I 
I I I I WI f6p3.m I WI f6p3.m I WI f6p3.m I 
I I I I MN f6p3.m I MN f6p3.m I MN same I 
-----------+-----------+-----------+-----------+-----------+-----------1 

f8p1.m I I I I MP f8p2.m I MP f8p3.m I 
I I I I SI f8p2.m I SI f8p3.m I 
I I I I WI f8p2.m I WI f8p3.m I 
I I I I MN f8p2.m I MN f8p3.m I 

-----------+-----------+-----------+-----------+-----------+-----------1 
f8p2.m I I I I I MP f8p3.m I 

I I I I I SI f8p3.m I 
I I I I I WI f8p3.m I 
I I I I I MN same I 

-----------+-----------+-----------+-----------+-----------+-----------1 
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B.2 58K Task 

COMPARISON MATRIX: FOR THE MATCHED PAIRS TEST 
PECENTAGES ARE MEAN PCT ERROR/SEGMENT. FIRST# IS LEFT SYSTEM 

STATS from std_stats 
Minimum Number of Correct Boundary words 2 

1-----------------------------------------------------I 
I I f6p1.m I f6p3.m I f8p1.m I f8p2.m I f8p3.m I 
1--------+--------+--------+--------+--------+--------I 
I f6p1.m I I f6p3.m I f6p1.m I f6p1.m I same I 
1--------+--------+--------+--------+--------+--------I 
I f6p3.m I I I f6p3.m I f6p3.m I f6p3.m I 
1--------+--------+--------+--------+--------+--------I 
I f8p1.m I I I I f8p2.m I f8p3.m I 
1--------+--------+--------+--------+--------+--------I 
I f8p2.m I I I I I f8p3.m I 
1--------+--------+--------+--------+--------+--------I 
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COMPARISON MATRIX: McNEMAR'S TEST ON CORRECT SENTENCES FOR THE TEST: 
STATS from std_stats 

For all systems 
1-----------------------------------------------------------------------------I 
I I f6p1.m(220)1 f6p3.m(256)1 f8p1.m(155)1 f8p2.m(213)1 f8p3.m(230)1 
1------------+------------+------------+------------+------------+------------I 
I f6p1 .m(220) I I D=( 36) I D=( 65) I D=( 7) I D=( 10) I 
I I I f6p3 .m I f6p1.m I same I same I 
1------------+------------+------------+------------+------------+------------I 
I f6p3.m(256) I I I D=(101) I D=( 43) I D=( 26) I 
I I I I f6p3.m I f6p3.m I f6p3.m I 
1------------+------------+------------+------------+------------+------------I 
I f8p1 .m(155) I I I I D=( 58) I D=( 75) I 
I I I I I f8p2.m I f8p3.m I 
1------------+------------+------------+------------+------------+------------I 
I f8p2.m(213) I I I I I D=( 17) I 
I I I I I I f8p3. m I 
1------------+------------+------------+------------+------------+------------I 

Comparison Matrix for the Sign Test 
Using the Speaker Word Accuracy Rate(¾) Percentage per Speaker 

as the Comparison Metric 
l-----------------------------------------------------1 
I I f6p1.m I f6p3.m I f8p1.m I f8p2.m I f8p3.m I 
1--------+--------+--------+--------+--------+--------I 
I f6p1.m I I f6p3.m I f6p1.m I f6p1.m I same I 
l--------+--------+--------+--------+--------+--------1 
I f6p3.m I I I f6p3.m I f6p3.m I f6p3.m I 
l--------+--------+--------+--------+--------+--------1 
I f8p1.m I I I I f8p2.m I f8p3.m I 
l--------+--------+--------+--------+--------+--------1 
I f8p2.m I I I I I f8p3.m I 
l--------+--------+--------+--------+--------+--------1 

Comparison Matrix for the Wilcoxon Test 
Using the Speaker Word Accuracy Rate(¾) Percentage per Speaker 

as the Comparison Metric 

1-----------------------------------------------------I 
I I f6p1.m I f6p3.m I f8p1.m I f8p2.m I f8p3.m I 
1--------+--------+--------+--------+--------+--------I 
I f6p1.m I I f6p3.m I f6p1.m I f6p1.m I same I 
l--------+--------+--------+--------+--------+--------1 
I f6p3.m I I I f6p3.m I f6p3.m I f6p3.m I 
1--------+--------+--------+--------+--------+--------I 
I f8p1.m I I I I f8p2.m I f8p3.m I 
l--------+--------+--------+--------+--------+--------1 
I f8p2.m I I I I I f8p3.m I 
1--------+--------+--------+--------+--------+--------I 
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RANGE ANALYSIS ACROSS RECOGNITION SYSTEMS FOR THE TEST: 
STATS from std_stats 

by Speaker Word Accuracy Rate(¼) 
l-----------------------------------------------1 
I SYS I high I low I I std dev I mean I 
l--------+--------+--------++---------+---------1 
I f6p3.m I 96.7 I 41 .4 I I 9.1 I 86.2 I 

I f6p1.m I 96.2 I 47.2 I I 8.2 I 86.6 I 

I f8p3 .m I 96.7 I 47.2 I I 8.4 I 86.4 I 

I f8p2.m I 96.9 I 43.3 I I 8.9 I 84.4 I 

I f8p1.m I 94.4 I 39.6 I I 9.3 I 82.2 I 

l-----------------------------------------------1 

------------------------------------------------------------1 
I ~~~ I 

--------+--------------------------------------------------- 1 
10 10 20 30 40 60 60 70 80 90 1001 

SYS 11 I I I I I I I I I 11 
--------+---------------------------------------------------1 
f6p3.m I ------------------+---1----+ I 

f6p1.m I ---------------+---1---+- I 

f8p3.m I ---------------+---1---+- I 

f8p2.m I ----------------+---1----+ I 

f8p1.m I ----------------+----1----+- I 

------------------------------------------------------------1 
I -> shows the mean 
+->shows plus or minus one standard deviation 
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Composite Report of All Significance Tests 
For the STATS from std_stats Test 

Test Name 

Matched Pair Sentence Segment (Word Error) Test 

Abbrev. 

Signed Paired Comparison (Speaker Word Accuracy Rate(¼)) Test 
Wilcoxon Signed Rank (Speaker Word Accuracy Rate(¼)) Test 

McNemar (Sentence Error) Test 

MP 
SI 
WI 
MN 

l-----------------------------------------------------------------------1 
I I f6p1.m I f6p3.m I f8p1.m I f8p2.m I f8p3.m I 
l-----------+-----------+-----------+-----------+-----------+-----------1 
I f6p1.m I I MP f6p3.m I MP f6p1.m I MP f6p1.m I MP same I 
I I I SI f6p3 .m I SI f6p1.m I SI f6p1.m I SI same I 
I I I WI f6p3.m I WI f6p1.m I WI f6p1.m I WI same I 
I I I MN f6p3 .m I MN f6p1.m I MN same I MN same I 
1-----------+-----------+-----------+-----------+-----------+-----------I 
I f6p3.m I I I MP f6p3.m I MP f6p3.m I MP f6p3.m I 
I I I I SI f6p3.m I SI f6p3.m I SI f6p3.m I 
I I I I WI f6p3.m I WI f6p3.m I WI f6p3.m I 
I I I I MN f6p3.m I MN f6p3.m I MN f6p3.m I 
-----------+-----------+-----------+-----------+-----------+-----------1 

f8p1.m I I I I MP f8p2.m I MP f8p3.m I 
I I I I SI f8p2.m I SI f8p3.m I 
I I I I WI f8p2.m I WI f8p3.m I 
I I I I MN f8p2.m I MN f8p3.m I 

-----------+-----------+-----------+-----------+-----------+-----------1 
f8p2.m I I I I I MP f8p3.m I 

I I I I I SI f8p3. m I 
I I I I I WI f8p3.m I 
I I I I I MN f8p3.m I 

-----------+-----------+-----------+-----------+-----------+-----------1 
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