
XUEOO N C:S H WAN rG A LEX A CERO I HSI.A.□·WUEN H ON

PR. 1OCESSING

_A (]«J., to Theory, Algorithm, ona System Development

Forewofrl hy Dr. Roj Reddy
(amegie Mellon Unive1'511y

• • •
• • • •

• • •
• • • •

(a)

Petitioner has added letters to pages (a)-(e) and numbers to pages
981-983. Otherwise, it leaves the original page numbering.

MICROSOFT CORP.
EXHIBIT 1009

Spoken Language Processing

ISBN 0-13-022616-5
90000

9 780130 226167

(b)

Spokt'Il l .. ~111guage Processing

~llh.i Systc1n DeYelopment

Xuedong Huang

~..\Jex Acero

Hsiao-\Vuen Hon

.\ficrosoft Research

J'rcr,ticc J lall l'fR
Upper Saddle I< ivcr, New Jersey 07458

www.pl1ptr.com

(c)

Library of Congress Cataloging-in-Publication Data

Huang, Xuedong. . "d to theory algorithm, and system development/
Spoken language processing: a ~UJ e H •

Xuedong Huang, Alex Acero, Hs1ao-Wuen on.

Inci~desc:bliographica\ references and index.

ISBN 0-13-022616-5 . (C uter science) I. Acero, Alex. 11. Hon,
I. Natural language processing omp

Hsiao-Wuen. III. Title.

QA76.9.N38 H83 2001 00-050196
006.3'5-<ic21

Editorial/production supervision:Jane Bonnell
Cover design director: Jerry Votta
Cover design: Anthony Gemmel/or?
Manufacturing buyer: Maura ZAidivar
Development editor: Russ Hall
Acquisitions editor: Jim Moore
Editorial assistant: Allyson Kloss
Marketing manager: Debby van Dijk

«':J 2001 by Prentice Hall PTR
Prentice-Hall, Inc.
Upper Saddle River, New Jersey 07458

Prentice Hall books are widely used by corporations and government agencies for training, marketing,
and resale.
The publisher offers discounts on this book when ordered in bulk quantities. For more infonnation,
contact Corporate Sales Department, Phone: 800-382-3419; FAX: 201-236-7141;
E-mail: corpsales@prenhall.com
Or write: Prentice Hall PfR, Corporate Sales Dept., One Lake Street, Upper Saddle River, NJ 07458.

Company and product names mentioned herein are the trademarks or registered trademarks of their
respective owners.

All rights reserved. No part of this book may be
reproduced, in any fonn or by any means,
without permission in writing from the publisher.

Printed in the United States of America

ISBN 0-13-022616-5

Prent!ce-Hall lntemational (UK) Limited,London
Prent!ce-Hall of Australia Pty. Limited, Sydney
Prennce-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana SA • ., . p . , • ., ,viex1co
rent!ce-Hall of India Private Limited, New Delhi

Prent1ce-Hall of Japan, Inc., To!..yo
Pe~rson Education Asia Pte. Ltd.
Ed1tora Prentice-Hall do Brasil Ltda R· d J, .

• ·, zo e ane1ro

(d)

To Yingzhi, Angela, Christina, and Derek

To Donna and Nicolas

To Phen, Stephanie, and Jacqueline

(e)

Contents

FOREWORD xxi

PREFACE xxv

1. INTRODUCTION 1

1.1. MOTIVATIONS 2
1.1.1. Spoken Language lnterface 2
1.1.2. Speech-to-Speech Translation 3
1.1.3. Knowledge Partners 3

1.2. SPOKEN LANGUAGE SYSTEM ARCHITECTURE 4
1.2.1. Automatic Speech Recognition ... 4
1.2.2. Text-to-Speech Conversion .. 6
1.2.3. Spoken Language Understanding 7

1.3. B0OKORGANIZATION 8
/.3.1. Part I: Fundamental Theory 9
1.3.2. Part JI: Speech Processing 9
1.3.3. Part III: Speech Recognition 9
1.3.4. Part JV: Text-to-Speech Systems 10
1.3.5. Part V: Spoken Language Systems 10

1.4. TARGET AUDIENCES 10
1.5. HISTORICAL PERSPECTIVE AND FuRTHER READING I l

PART I: FUNDAMENTAL THEORY

2. SPOKEN LANGUAGE STRUCTURE 19

2.1. SOUND AND HUMAN SPEECH SYSTEMS 21
2.1./. Sound 21
2.1.2. Speech Production 24
2.1.3. Speech Perception 29

vii

Contents
viii

2.2.

2.3.

2.4.

2.5.

....................... 36
PHONETICS AND PHONOLOGY ,................... . •••..•......•.. 36

Ph
.................. . 2.2.J. onemes .. 47

2
.
2

.
2
. The Allophone: Sound a11d Context

2.2.3. Speech Rate a11d Coarticulation .. .49

W ·······•·•·•·• 51 SYLLABLES AND ORDS

,,l 51 2.3.1. Sylla .es ... •
"' d 53 2.3.2. rrOI' S

SYNTAX AND SEMANTICS •••••••• •••••••••••••••• 58

2.4. l. Syntactic Constituents 58
2.4.2. Semantic Roles 63
2.4.3. Lexical Semantics 64
2 4 4 wgical Form 67

H{s~~RICAL PERSPECTIVE AND FIJRTHER READING · ····, 68

3. PROBABILITY, STATISTICS, AND INFORMATION THEORY .73

3.1. PROBABILITY THEORY , , 74

3.1.J. Conditional Probability and Bayes' Rule ... 75
3.1.2. Random Variables 77
3.1.3. Mean and Variance 79
3.1.4. Covariance and Correlation .. 82
3. 1.5. Random Vectors a11d Multivariate Distributions 83
3.1.6. Some Useful Distributions 85
3.1.7. Gaussian Distributions ... 92

3.2. EsTIMATION THEORY ... 98
3.2.J. Minimum/Least Mean Squared Error Estimation 99
3.2.2. Maximum Likelihood Estimation .. 104
3.2.3. Bayesian Estimation and MAP Estimation .. 107

3.3. SIGNIFICANCE TESTING 113
3.3.1. Level of Significance 114
3.3.2. Nonna! Test (Z-Test) .. 115
3.3.3. x2

Goodness-of-Fir Test J J6
3.3.4. Matched-Pairs Tes! .. 118

3.4. INFORMATION THEORY 120
3.4.1. Entropy.. 120 ································
3.4.2. Conditional Entropy 123
3.4.3. The Source Coding Theorem .. 124

3.5. !:~~Rlc!u~~s~t~n;;::;~:~n;:~E~~:~.:: !;:
4. PATTERN RECOGNITION 133

4.1. BAYES' DECISION1HEORY
4. 1 · 1 • Minimum-Error-Rate· Decision. Rules ••• •••••• ••••• 134

.. 135

4. / .2. Discriminant Functio11s 138
4.2. How TO CONSTRUCT CLASSIFIERS 140

4.2./. Gaussia,1 Classijiers 142
4.2. 2. The Curse of Dimensionality 144
4.2.3. Estimating the Error Rate .. I 46
4.2.4. Comparing Classifiers 148

4.3. DISCRLMINA TIVE TRAINING 150
4.3. / . Maximum Mutual Information Estimation ... 150
4.3.2. Minimum-Error-Rate Es1i111nrion 156
4.3.3. Neural Networks 158

4.4. UNSUPERVISED ESTIMATION METHODS 163
4.4.1. Vector Quantization 163
4.4.2. The EM Algorithm .. l 70
4.4.3. Multivariate Gaussian Mixture Density fatimatio11 172

4.5 . CLASSIFICATION AND REGRESSION TREES 175
4.5.1. Choice of Question Set 177
4.5.2. Splitting Criteria 178
4.5.3. Growing t/ze Tree 181
4.5.4. Missing Values and Conflict Reso flllion .. 182
4.5.5. Coniplex Questions 182
4.5.6. The Right-Sized Tree 184

4.6. HISTORICAL PERSPECTfVE AND FURTHER READING 190

PART II: SPEECH PROCESSING

5. DIGITAL SIGNAL PROCESSING .. 201

5.1. DIGITAL SIGNALS AND SYSTEMS 202
5. /.1. Sinusoidal Signals 203
5.1.2. Other Digital Signals ... 206
5.1.3. Digital Systems 206

5.2. CONTINUOUS-FREQUENCY TRANSFORMS 208
5.2. I. The Fourier Transform 208
5.2.2. Z-Transfornt 21 I
5.2.3. Z-Transforn1s of Elememary Functions 212
5.2.4. Properties of the Z- and Fourier Transforms 215

5.3. DISCRETE·FREQUENCY TRANSFORMS 216
5.3.1. The Discrete Fourier Transform (DFT) 218
5.3.2. Fourier Transfonns of Periodic Sig11als 219
5.3.3. The Fast Fourier Transfo1111 (FFT) 222
5.3.4. Circular Convolution 227
5.3.5. The Discrete Cosine Transform (DCT) 228

Contents

..................... 229
DIGITAL FlLTERS AND WINDOW~....... •·::::::::::::: 229

5.
4

• I Lo Pass Filter..... 230
5.4.1. The Jdea w-.
5.4.2. Window Functions..... ··················· 232

JR F'll s 238
5.4.3. F .' er ::::::: .. 242
5.4.4. JIR Filters ~.ANALOG SIGNALS .. .

5 5 DIGITAL PROCESSING O s· l 243 • • • ns onn of Analog zgna s ············
5.5.J. Founer Tra .fi .. 243

2 r.'h S npling Theorem 245
5.5. • e a, lo -to-Digital Conversion.........................

24
6

5.5.3. Ana g •
5.5.4. Digital-to-Analog Conversion.................... 248

5 .6. MUL TIRA TE S~GN":1- PROCESSING ••••• •• •••• ::·:::::::::: ... 248
5 6 J. Dec1mat1on ••••••••••••• •• ••• • 249
5:6:2. Tnterpolation ... 250
5.6.3. Re sampling ... 251

5.7. FILTERBANKS .. 251
5.7.J. Two-Band Conjugate Quadrature Filters ..

54 l • F·lt b ks •••••••••••••••••• .. •••••• 2 5. 7.2. Multireso utzon I er an ··· ··· ·· · · · ···
5 5 7 3 The DFT as a Filterbank .. 25

5:7:4: Modulated Lapped Transforms .. 258

)

STOCHASTIC PROCESSES , ••• •• .. •• .. • • • • • .. ·· •· · · · ·· · .. · · · .. · .. · · ·•· · · 260 5

.B. 5.8.1. Statistics of Stochastic Processes ······· 261
5.8.2. Stationary Processes .. 264
5.8.3. LT! Systems with Stochastic Inputs .. 267
5.8. 4. Power Spectral Density 268
5.8.5. Noise .. 269

5.9. HISTORICAL PERSPECTCVE AND FuRTHE.R READING ... 270

6. SPEECH SIGNAL REPRESENTATIONS .. 275
6.1.

6.2.

6.3.

SHORT-TIME FOUR1ER ANAL YSJS ... 276
6.1.J. Spectrograms 281
6. 1. 2. Pitch-Synchronous Analysis ... 283

ACOUSTICAL MODEL OF SPEECH PRODUCTION 283
6.2.J. Glottal Excitation ... 284
6.2.2. Lossless Tube Concatenation ... 284
t2.3. Source-Filter Models of Speech Production 288

6~ p~~l~:i~~:p~;~·~/z;········•• ... 290
6.3.2. Solution of the LPC E u~o~; ... 291 6•3•3• Spectral Analysis via iPc ... 292 63 ······••....... 300 • .4. The Prediction Error .. .
63 5 301
• • • Equivalent Representations ······· ········ ··

·····•• ... 303

Contents

6.4.

6.5.

6.6.

6.7.

6.8.

xi

CEPSTRAL PROCESSING 306
6.4.1. The Real and Complex Cepslrum ... 301
6.4.2. Cepstrttm of Pole-Zero Filters 308
6.4.3. Cepstrum of Periodic Signals ... 31 l
6.4.4. Cepstrum o_f Speech Signals 312
6.4.5. Source-Filter Separation via the Cepstrum .. 314

PERCEPTUALLY MOTIVATED REPRESENTATIONS 315
6.5.1. The BilinearTronsform 315
6.5.2. Mel-Frequency Cepstru,n 316
6.5.3. Perceptual linear Prediction (PLPj 318

FORMANT FREQUENCIES 3 19
6.6.1. Statistical Formant Tracking ... 320

THE ROLE OF PITCH .. 324

6.7.1. Autocorrelation Method 324
6.7.2. Nonnalized Cross-Correlation Method 321
6. 7.3. Signal Conditioning 329
6. 7.4. Pitch Tracking 330

HISTORICAL PERSPECTIVE AND FuRTHER READING 332

7. SPEECH CODING 337

7 .1. SPEECH CODERS A lTRIBUTES 338
7.2. SCALAR WAVEFORM CODERS 340

7.2.J. Linear Pulse Code Modulation (PCM) 340
7.2.2. µ-law and A-law PCM ... 342
7.2.3. Adaptive PCM 344
7.2.4. Differential Quantization 345

7.3. SCALAR FREQUENCY DOMAIN CODERS 348
7.3.1. Benefits of Masking 349
7.3.2. Transforni Coders 350
7.3.3. Consumer Audio 351
7.3.4. Digital Audio Broadcasting (DAB) .. 352

7.4. CODE EXCITED LINEAR PREDlCTlON (CELP) 353
7.4.J. LPC Vocoder .. 353
7.4.2. Analysis by Synthesis .. 353
7.4.3. Pitch Prediction: Adaptive Codebook 356
7.4.4. Perceptual Weighting and Postfiltering ... 357
7.4.5. Parameter Quantization 358
7.4.6. CELP Standards 359

7.5. Low-BITRATESPEECHCODERS 361
7.5.1. Mixed-Excitation LPC Vocoder ... 362
7.5.2. Harmonic Coding 363
7.5.3. Waveform Interpolation 367

7.6. HISTORICAL PERSPECTIVE AND FURTHER READING 37 l

Contents
xii

PART Ill: SPEECH RECOGNITION
8. HIDDEN MARKOV MODELS .. 377

8.1. THE MARKOV CI-WN ... 378
8.2. DEFINITION OF THE HIDDEN MARKOV MODEL 380

8.2.1. Dynamic Programming and DTW .. 383
8.2.2. Haw to Evaluate an HMM-The Forward Algorithm 385
8.2.3. Haw to Decode an HMM-'Jhe Viterbi Algorithm 387
8.2.4. How to Estimate HMM Parameters-Baum-Welch Algorithm 389

8.3. CONTINUOUS AND SEMICONTINUOUS HMMS .. 394
8.3.1. Continuous Mixture Density HMMs 394
8.3.2. Semicontinuous HMMs .. 396

8.4. PRACTICAL ISSUES IN USCNG HMMS .. 398

8 41 1··1E · . . . n1t1a stimates ... 398
8.4.2. Model Topology.... ... • 399
8.4.3. Training Criteria ... ,.... 401 8
.4.4. Deleted Interpolation 401

:·:·~· ;ar:me~~r Smoothing , 403
S.S. HMM L~~~%1ty Representations .. .404-

8.5.J. Duration sM~d;i/ · ·•·•·•·•·····•·•·•·· 405
ng.......... 406

8.5.2. First-Order Assum tion
8.5.3. Conditional Indep:'rzden;~·A·;;~;;~i·~~················· .. •

4os
8.6. HISTORICAL PERSPECTIVE AND FlJRTHER READ IN ••409

G ... 409

9. ACOUSTIC MODELING .
9.l. V ARIABll.lTYINTHE SPEECH SIGNAL ... 415

9.1.1. Context Variability :::::::: .. •••• .. ••• .. ·•· ... 416
9.1.2. Style Variability..................... 417
9.1.3 Speak ,, · · • 418 · . er Yariab,lity.................... •
9.1.4. Environm r11 • 418 en r ariability • •••••••• •••••••••••••• •• •

9.2. HOWTOMEASURES 419 9 3 S PEECH RECOGNITION E
· . IGNALPROCESSING-E RRORS....... 419 9 3 . XTRACTING f'EATIJREs •

· .]. S1gnalAc · · · 421
9 3 2

qu1s1tzon • ••••••••

9
·
3
·
3
· End-Point Detection :::::···············• ... 422

· · · MFCC and It D · 4 2 9 3 4 F, s ynamic Features 2
9.4. ~~NET!· cMeaoture Transformation........ ·············• .. 424

DELING--S ·
9.4.1. Comparison of ~~!CTING APPROPRIA~ U~~ 426
9.4.2 Co

1
D l.JJerent Units 428

9.4.3: Cl~;ex: d Aependency ::::···•· .. ••••••• ... 429
9 ,e coustic Ph4.4. Lexical B • onetic Units •••••• •• ••• •••••••• ··········•······ •••• 430

asefonns 432
... · : :: ::: :: :::::: ::::::::::::: 436

Contents xiii

9.5. ACOUSTIC MODELING-SCORING ACOUSTIC FEATURES439
9.5.1. Choice of HMM Output Distributions .. 439
9.5.2. Isolated vs. Continuous Speech Trai11ing ... 441

9 .6. ADAPTIVE TECHNIQUES-MINIMIZING MISMATCHES 444
9.6.J. Maxinwm a Posteriori (MAP) 445
9.6.2. Maximum Likelilzood linear Regressioll (MLLR) 441
9.6.3. MLLR a11d MAP Comparison ... 450
9.6.4. Clustered Models 452

9.7. CONFIDENCE MEASURES: MEASURING THE RELIABILITY 453
9. 7.1. Filler Models .. 453
9.7.2. Transformation Models 454
9.7.3. Combination Models 456

9.8. OTHER TECHNIQUES 457
9.8.1. Neural Networks .. . 451
9.8.2. Segment Models 459

9.9. CASE STUDY: WHJSPER 464
9 .10. HISTORICAL PERSPECTIVE AND FURTHER READING 465

10. ENVIRONMENTAL ROBUSTNESS 477

10. l . THE ACOUSTICAL ENVIRONMENT 478
10.1.l. Additive Noise 478
10.1.2. Reverberation 480
10.1.3. A Model of Ihe Environment482

l 0.2. ACOUSTICAL TRANSDUCERS 486
10.2.1. The Condenser Microphone 486
10.2.2. Directionality Pattems 489
10.2.3. Other Transduction Categories 496

10.3. ADAPTIVE ECHO CANCELLATION (AEC)497
10.3.1. The LMS Algorithrn .. 499
/0.3.2. Convergence Properties of the LMS Algorithm 500
10.3.3. Nonnalized LMS Algorithm ... 501
10.3.4. Transform-Domain LMS Algorithm ... 502
10.3.5. The RLS Algorithm 503

10.4. MULTIMICROPHONE SPEECH ENHANCEMENT 504
10.4. l . Microphone Arrays .. 505
10.4.2. Blind Source Separation 510

10.5. ENVIRONMENT COMPENSATION PREPROCESSING ... 515
l 0.5.1. Spectral Subtraction ... 5 I 6
10.5.2. Frequency-Domain MMSEfrom Stereo Data 519
10.5.3. Wiener Filtering 520
10.5.4. Cepstral Mean Normalization (CMN) 522
10.5.5. Real-Time Cepstral Nonnalization 525
10.5.6. The Use of Gaussian Mixture Models 525

Contents

E IRONMENTALMODEL ADAPTATION 528
10•6•

1
:.-:S.1. Retraining on Corrupted Speech••.•••••••••••••••••••• •••• •• 528

JO 6 2 Model Adaptation 530
10:6:3: Parallel Model Combi11atio11•••••.••••••••••••••• •••••••••• 531
J0.6.4. Vector Taylor Series 535
J0.6.5. Retraining on Compensated Features .. 537

10.7. MODELING NONSTATIONARY NOISE 538
10.8. HISTORICAL PERSPECTIVE AND FuRTHER READING 540

11. LANGUAGE MODELING 545

I I .I . FORMAL LANGUAGE THEORY 546
JI.I.I. Chomsky Hierarchy 541
J J.1.2. Chart Parsing for Context-Free Grammars 549

1 I .2. STOCHASTIC LANGUAGE MODELS 554
11.2.1. Probabilistic Context-Free Grammars 554
J J.2.2. N-gram Language Models 558

11.3. COMPLEXITY MEASURE OF LANGUAGE MODELS 560
11.4. N-GRAM SMOOTHING ·· ···· 562

I 1 .4. I. Deleted Interpolation Smoothing 564
I J .4.2. Backoff Smoothing 565
11.4.3. Class N-grams 570
1 l.4.4. Performance of N-gram Smoothing 573

11.5. ADAPTIVE LANGUAGE MODELS 574
11.5.1. Cache Language Models 514
11.5.2. Topic-Adaptive Models .. 515
1 I .5.3. Maximum Entropy Models 576

11 .6. PRACTICAL ISSUES 578
11.6.J. Vocabulary Selection 578
11.6.2. N-gra,n Pruning 580
11.6.3. CFG vs. N-gram Models 581

11.7. HISTORICAL PERSPECTIVE AND F'URTIIER READING ... 584

12. BASIC SEARCH ALGORITHMS .. 591
12.1. BASIC SEARCH ALGORITHMS

12.1.1. General Graph Searching ;,;~;~d~~~~··592

12. 1 .2. Blind Graph Search Algorithms • •••••••••••• ••• ••••••••••••• •••••••••••
593

12.1.3. Heuristic Graph Search • •.. • •••• •••••••••••• •••••••••••••••••• ••••••
591

12.2. SEARCH ALGORITHMS FOR SPEECH RECOGNITI~N •••••••••••••••••••••••••••••••••••• 601
12.2.J. Decoder Basics.... •• 608
12.2.2. Combining Acous;;~·~~·;j"Li·~~~~~~· M~d;;· •• ••••• •••• • • •••••• •• •••• ·· · ··· · · · · ·· · 60

9

12.2.3. Isolated Word Reco n. . • •• •• •• •• • ••• •• • •• •····· •·· • 610
12 2

g ltlon......... 610
. .4. Continuous Speech Reco nition •••••••••••••••••••••••••••••••• •••••••••••••••••••

g ····················• 611

Contents xv

12.3. LANGUAGE MODEL STATES 613
12.3.J. Search Space with FSM and CFG 613
12.3.2. Search Space with the Unigram 616
12.3.3. Search Space with Bigrams 617
12.3.4. Search Space with Trigrams 619
12.3.5. How lo Handle Silences Between Words 621

12.4. TIME-SYNCHRONOUS VITERBI BEAM SEARCH 622
12.4.1. The Use of Beam 624
12.4.2. Viterbi Beam Search 625

12.5. STACK DECODING (A. SEARCH) .. 626
12.5.1. Admissible Heuristics for Remaining Path 630
12.5.2. When to Extend New Words 63 l

.12.5.3. Fast Match 634
12.5.4. Stack Pruning 638
12.5.5. Multistack Search ... 639

12.6. HISTORICAL PERSPECTIVE AND FlJRTHER READING 640

13. LARGE-VOCABULARY SEARCH ALGORITHMS 645

13.1. EFFICIENT MANIPULATION OF A TREE LEXICON 646
13.1.1. Lexical Tree 646
13. 1.2. Multiple Copie.~ of Prommciation Trees 648
13. 1.3. Factored Language Probabilities 650
13.1.4. Optimization of Lexical Trees 653
13.J.5. Exploiting Subtree Polymorphism 656
J 3.1.6. Context-Dependent Units and Inter-Word Triphones 658

13.2. OTHER EFFICIENT SEARCH TECHNIQUES 659
13.2.1. Using Entire HMM as a State in Search 659
13.2.2. Different Layers of Beams 660
13.2.3. Fast Match 661

13.3. N-BEST AND MUI.. TIPASS SEARCH STRATEGIES ... 663
13.3.1. N-best Lists and Word Lattices 664
13.3.2. The Exact N-best Algorithm ... 666
13.3.3. Word-Dependent N-best and Word-l.Attice Alg.orithm 661
13.3.4. The Forward·Backward Search Algorithm 610
I 3.3.5. One-Pass vs. Multipass Search 673

13.4. SEARCH-ALGORffHM EVALUATION 674
13.5. CASE STUDY-MICROSOFT WHISPER ... 676

13.5.1. The CFG Search Architecture 616
13.5.2. The N-gram Search Architecture 677

13.6. HISTORICAL PERSPECTIVE AND FuRTHER READING 681

Contents
xvi

PART IV: TEXT-TO-SPEECH SYSTEMS
14. TEXT AND PHONETIC ANALYSIS 689

14.1. MODULES AND DATA FLOW 690
/4.J.I . Modules 692
14.1.2. Data Flows ... 694
14.1.3. Localization lssues 696

14.2. LEXICON 697
14.3. DOCUMENT STRUCTURE DETECTION 699

14.3. 1. Chapter and Section Headers 100
14.3.2. Lists .. 101
14.3.3. Paragraphs 702
14.3.4. Sentences 702
14.3.5. Email 704
/4.3.6. Web Pages 705
I 4.3. 7. Dialog Turns and Speech Acts 705

14.4. TExT NORMALIZATION 706
14.4.1. Abbreviations and Acronyms 709
14.4.2. Number Fonnats .. 712
14.4.3. Domain-Specific Tags 718

14
·
5
· ~:::ST~S:.::!':;s~us Fonnats 719

s .. 720 14 6 H . ·····•··
· · OMOGRAPH DISAMBIGUATION.................. 724 14. 7. MORPHOLOGICAL ANAL YS • •

IS....... 725 14.8. LETTER-TO-SOUND CONVER

I 9
SION 728 4. · EVALUATION

14.10.CASE STUDY:·~;~·~· 730
14./0.1. Lexie ... 732

on
14.10.2. Text Analysis :::: ... 7333
14.10.3. Phonetic Anal si •••••••• 7 3

I 4 11 U, y s 735
. .n.1STORJCAL PERSPECTIVE AND FlJRTHER READJ

NG 735 15. PROSO
DY

15.1. THE ROLE OF U~~RSTAND • 739
15 2 PR ING OSODY GENERATION SCHEMATJ~··· ···········• 740
15.3. SPEAKING STYLE........... • 743

15 3 J
· · · Character • ••••••••• ••••••••••••••••• •• ... • 744 15 3 2 · ••••••••• ... •••••••••••••••••
· · · Emotion • • •••• ••• ... 744 15 4 S •• •••••••••••••••••••••••••••••••

· · YMBOLIC PROSODY • •

; ; ! ~ • ~•uses • . :::::: ::: : : ::·· •••• • •••• •· •· •••••••••••••• ::: : : ::::: ::: ::::: :::::::; ~
· · · rosodic Phrases 747

·························• :::::::::::::::::::: 749

Contents xvii

15.4.3. Accent 751
15.4.4. Tone 753
15.4.5. Tu11e 757
15.4.6. Prosodic Tra,w:ription Systems 759

15.5. OURATr0N ASSIGNMENT 761
15.5. J. Rule-Based Methods 762
15.5.2. CART-Based Durations 763

15.6. PITCH GENERATION 763
/5.6./. Attdbutesof Pitch Contours 764
15.6.2. Baseline F0 Co11tour Generation ... 768
15.6.3. Parametric: F0 Generation ... 774
15.6.4. Co17Jus-Based F0 Generation 778

15.7. PROSODY MARKUP LANGUAGES 783
15.8. PROSODY EVALUATION 784
15.9. HISTORICAL PERSPECTIVE AND FURTHER READING 785

16. SPEECH SYNTHESIS 793

16.1.. A TIRIBUTES OF SPEECH SYNTHESIS .. 794
16.2. FORMANT SPEECH SYNTHESIS 796

/6.2.J . Waveform Generation from Formant Values 797
16.2.2. Fonnant Generation by Rule .. 800
16.2.3. Data-Driven Formallt Generation ... 803
16.2.4. Articulatory Synthesis 803

16.3. CONCA TENA TIVE SPEECH SYNTHESIS ... 804
16.3./. Choice of Unit 805
16.3.2. Optimal Unit String: The Decoding Process 810
/6.3.3. Unit Inventory Design 811

16.4. PROSODIC MODIFICATION OF SPEECH 818
16.4.1. Synchronous Overlap and Add (SOlA) .. 818
/6.4.2. Pitch Synchronous Overlap alld Add (PSOLA) 820
16.4.3. Spectral Behavior of PSOLA .. 822
16.4.4. Synthesis Epoch Calculation .. 823
16.4.5. Pitch-Scale Modification Epoch Calculation 825
16.4.6. Time-Scale Modification Epoch Calculation 826
/6.4.7. Pitch-Scale Time-Scale Epoch Calculation .. 821
16.4.8. Waveforn1 Mapping 827
16.4.9. Epoch Detection 828
16.4.10. Problems with PSOLA 829

16.5. SOURCE-FILTER MODELS FOR PROSODY MODIFICATION 831
16.5.J. Prosody Modification of the LPC Residual .. 832
16.5.2. Mixed Excitation Models 832
/6.5.3. Voice Ejfects 834

Contents
xviii

16.6. EVALUATION OF TIS SYSTEMS .. •• 834
16.6.1. Intelligibility Tests 837
16.6.2. Overall Quality Tests 840
16.6.3. Preference Tests 842
16.6.4. Functional Tests ... 842
I 6.6.5. Automated Tests ... 843

16.7. HISTORICAL PERSPECTIVE AND FURTHER READING ... 844

PART V: SPOKEN LANGUAGE SYSTEMS

17. SPOKEN LANGUAGE UNDERSTANDING .. 853
17. l . WRITTEN VS. SPOKEN LANGUAGES 855

17.1.1. Style .. 856
17.1.2. Disjlue11cy 857
17.1.3. Communicative Prosody .. 858

17 .2. DIALOG STRUCTURE 859
17.2.1. Units of Dialog ... 860
17.2.2. Dialog (Speech) Acts 861
17.2.3. Dialog Control .. . 866

17.3. SEMANTIC REPRESENTATION 867
17.3.J. Semantic Frames................................ 867 17 3 2

. . . Conceptual Graphs 872 17.4. SENTENCElNTERPRETATION
17.4.1. Robust Pa · 873

rs1ng .. 874
17.4.2. Statistical Pattern Marchi

17 5 D
ng... 878 · · ISCOURSE ANAL y SIS • ••• ..

ll.5.1. ResolutionofRelativeEx ression ... 881

1752 A
P 882 • • • utomatic Infer d l •

17 .6. DIALOG MANAGEMENT ence an nconszstency Detection 885
17.6.1. Dialog Gram~rs 886
17.6.2. Plan-Based System;· • 887
17.6.3. Dialog Behavior 888

l 7 .7 · R.EsPONSE GENERATION AND '.;;~ •••••••••••• 892 "'LNDmON
17. 7.1. Response Content Gene ratio .. 894
1772 C n.................. 895 . . . oncept•lo-Speech Rendition
17• 7.3. Other Renditions • · 899

17.8. EVALUATION........ • .. 901
ll.8.1. Evaluation ,·n r·J·z·e .. A ... :;:;S .. ~ k .. ·901 .1..1., .1.as

17 9
{!·8·2· PARADISE Framework ::::: 901

· · J7ASE STUDY-DR. WHO............. 903
91 Sem . R

17
·
9

· · ant~c epresentation • •••• ••• • 906
· .2. Semantzc Pa •r (S • • • ••• •• • r.,er entence Inrerpretati) 906

on .. 908

Contents xix

17.9.3. Discourse Analysis 909
17.9.4. D;a/og Manager 910

17. I 0. HISTORICAL PERSPECTJ VE ANO FURTHER READING 913

18. APPLICATIONS AND USER INTERFACES 919

18.1. APPLICATION ARCHITECTURE 920
18.2. TYPICAL APPLICATIONS 921

18.2.1. Computer Command and Control 921

18.2.2. Telephony Applications 924
18.2.3. Dictation 926
18.2.4. Accessibility 929
18.2.5. Handheld Devices 930
18.2.6. Automobile Applications 930

18.2.7. Speaker Recognition 931
18.3. SPEECH INTERFACE DESIGN 931

18.3.1. General Principles 931
18.3.2. Handling Errors 937

18.3.3. OtherConsiderations ... 941
18.3.4. Dialog Flow 942

18.4. INTER NA TIONALlZA TION 943
18.5. CASESTUDY-MIPAD 945

18.5. I. Specifying the Application .. 946
18.5.2. Rapid Prototyping 948

18.5.3. Evaluation 949
18.5.4. Iterations 951

18.6. HISTORICAL PERSPECTfVE AND F'URTHER READING 952

INDEX .. 957

Foreword

Recognition and understanding of spontane­
ous unrehearsed speech remains an elusive goal. To understand speech, a human considers
not only the specific information conveyed to the ear, but also the context in which the in­
formation is being discussed. For this reason, people can understand spoken language even
when the speech signal is corrupted by noise. However, understanding the context of speech
is, in tum, based on a broad knowledge of the world. And this has been the source of the
difficulty and over forty years of research.

It is difficult to develop computer programs that are sufficiently sophisticated to under­
stand continuous speech by a random speaker. Only when programmers simplify the prob­
lem-by isolating words, limiting the vocabulary or number of speakers, or constraining the
way in which sentences may be formed-is speech recognition by computer possible.

Since the early 1970s, researchers at AT&T, BBN, CMU, IBM, Lincoln Labs, MIT,
and SRI have made major contributions in Spoken Language Understanding Research. In
1971, the Defense Advanced Research Projects Agency (DARPA) initiated an ambitious
five-year, $15 million, multisite effort to develop speech understanding systems. The goals
were to develop systems that would accept continuous speech from many speakers, with
minimal speaker adaptation, and operate on a I 000-word vocabulary, artificial syntax, and a

xxi

Foreword

xx.ii

. T f the systems Harpy and Hearsay-II, both developed at Car-
• d rask domain. wo o '

constnune . . h'eved the original goals and in some instances surpassed them .
• Mellon University, ac 1 .

negie .
1

h decades r have been at Carnegie Mellon, I have been very fortu-
Dunng the ast t ree

bl O
rk with many brilliant students and researchers. Xuedong Huang, Alex

nate to be a e to w • h • h
d H

· Wuen Hon were arguably among the outstandmg researc ers m t e speech
Acero an stao·

' CMU s·nce then they have moved to Microsoft and have put together a world-
group at • 1 ' • •

t MJ·crosoft Research Over the years, they have contnbuted standards for build-class team a • . . , .
ing spoken language understanding systems with Microsoft s SAP~/SDK family of prod_ucts
and pushed the technologies forward with the rest of the co~mumty.' ~oday, they contmue

10 play a premier leadership role in both the research community and m rndustry.
This new book, Spoken La11guage Processing, represents a welcome addition to the

technical literature on this increasingly important emerging area of Information Technology.
As we move from desktop PCs to personal digital assistants (PDAs), wearable computers,
and Internet cell phones, speech becomes a central, if not the only, means of communication
between the human and machine! Huang, Acero, and Hon have undertaken a commendable
task of creating a comprehensive reference that covers theoretical, algorithmic, and systems
aspects of the spoken language tasks of recognition, synthesis, and understanding.

The task of spoken language communication requires a system to recognize, interpret,
execute, and respond to a spoken query. This task is complicated by the fact that the speech
signal is corrupted by many sources: noise in the background, characteristics of the micro­
phone, vocal tract characteristics of the speakers, and differences in pronunciation. In addi­
tion, the system has to cope with non-grammaticality of spoken communication and
ambiguity of language. An effective system must strive to utilize all the available sources of
knowledge-acoustics, phonetics and phonology, lexical, syntactic, and semantic structure
of language, and task-specific context-dependent infonnation.

Speech is based on a sequence of discrete sound segments that are linked in time.
These segments, called phonemes, are assumed to have unique articulatory and acoustic
ch~racteristics. While the human vocal apparatus can produce an almost infinite number of
aruculatory gestures, the number of phonemes is limited. English as spoken in the United
st~tes, for example, contains 16 vowel and 24 consonant sounds. Each phoneme has distin-
guishable acoustic charact • • d • • • · . enstics an , m combmat1on with other phonemes forms larger
umts such as syllabl d d '

d . . es an wor s. Knowledge about the acoustic differences among these
soun umts ts esse f I d' • -Wh n ia to tstmgutsh one word from another, say, bit from pit.

en speech sounds are d fi teristics of a iv ~onnecte to orm larger hngmst1c umts, the acoustic charac-
g en phoneme will chang f . f . . . ment because of th . . e as a unct10n o tts immediate phonetic environ-

. e mteractton am • .
hps, and vocal chords) d h . . ong vanous anatomical structures (such as the tongue,
h . . an t eir different d f) • · f P onerruc information in th . egrees o s ugg1shness. The result 1s an overlap o

. e acoustic sign l f same underlying phonem a rom one segment to the other. For ex.ample, the
et can have dr f 11 d' Words, say, in tea, tree c·ty b as ica Y 1fferent acoustic characteristics in different

o 'th' ' i ' eaten and t Th' ccur Wt m a given word or ' s eep. 1s effect, known as coarticulation can
d'rn . across a WO d b , 1 erent acousuc properties in ph r oundary. Thus, the word this will have very

• rases such as this car and this ship.

Foreword xxiii

This book is self-contained for those who wish to familiarize themselves with the cur­
rent state of spoken language systems technology. However, a researcher or a professional in
the field will benefit from a thorough grounding in a number of disciplines, including:

• Signal processing: Fourier Transfonns, DFT, and FFT

• Acoustics: physics of sounds and speech, models of vocal tract

• Pattern recognition: clustering and pattern matching techniques

• Artificial intelligence: knowledge representation and search, natural language
processing

• Computer science: hardware, parallel systems, algorithm optimization

• Statistics: probability theory, hidden Markov models, dynamic programming

• Linguistics: acoustic phonetics, lexical representation, syntax, and semantics

A newcomer to this field, easily overwhelmed by the vast number of different algo­
rithms scattered across many conference proceedings, can find in this book a set of tech­
niques that Huang, Acero, and Hon have found to work well in practice. This book is unique
in that it includes both the theory and implementation details necessary to build spoken lan­
guage systems. If you were able to assemble all the individual material that is covered in the
book and put it on a shelf, it would be several times larger than this volume and yet you
would be missing vital information. You would not have the material that is in this book that
threads it all into one story, one context. If you need additional resources, the authors in­
clude extensive references to get that additional detail. Spoken Language Processing is very
appealing both as a textbook and as a reference book for practicing engineers. Some readers
familiar with a specific topic may decide to skip a few chapters; others may want to focus in
other chapters. This is not a book that you will pick up and read once from cover to cover,
but one you will keep near you for reference as long as you work in this field.

Raj Reddy
Dean, School of Computer Science
Carnegie Mellon University

Preface

0 ur primary motivation in writing this book
is to share our working experience to bridge the gap between the knowledge of industry gu­
rus and newcomers to the spoken language processing community. Many powerful tech­
niques hide in conference proceedings and academic papers for years before becoming
widely recognized by the research community or Lhe industry. We spent many years pursu­
ing spoken language technology research at Carnegie Mellon University before we started
spoken language R&D at Microsoft. We fully understand that it is by no means a small un­
dertaking to transfer a state-of-the-art spoken language research system into a commercially
viable product that can truly help people improve their productivity. Our experience in both
industry and academia is reflected in the context of this book, which presents a contempo­
rary and comprehensive description of both theoretic and practical issues in spoken language
processing. This book is intended for people of diverse academic and practical backgrounds.
Speech scientists, computer scientists, linguists, engineers, physicists, and psychologists all
have a unique perspective on spoken language processing. This book will be useful to all of
these special interest groups.

Spoken language processing is a diverse subject that relies on knowledge of many lev­
els, including acoustics, phonology, phonetics, linguistics, semantics, pragmatics, and dis­
course. The diverse nature of spoken language processing requires knowledge in computer
science, electrical engineering, mathematics, syntax, and psychology. There are a number of
excellent books on the subfields of spoken language processing, including speech recogni­
tion, text-to-speech conversion, and spoken language understanding, but there is no single
book that covers both theoretical and practical aspects of these subfields and spoken lan­
guage interface design. We devote many chapters systematically introducing fundamental

XXV

xxvi
Preface

theories needed to understand how speech recognition, text-to-speech synthesis, and spoken
language understanding work. Even more important is the fact ~at the bo?k highlights what
works well in practice, which is invaluable if you want to bmld a practical speech recog­
nizer, a practical text-to-speech synthesizer, or a practical spoken language system. Using
numerous real examples in developing Microsoft's spoken language systems, we concen­
trate on showing how the fundamental theories can be applied to solve real problems in spo-

ken language processing.
We would like to thank many people who helped us during our spoken language proc-

essing R&D careers. We are particularly indebted to Professor Raj Reddy at the School of
Computer Science, Carnegie Mellon University. Under his leadership, Carnegie Mellon
University has become a center of research exceJlence on spoken language processing. To­
day's computer industry and academia benefit tremendously from his leadership and contri­
butions.

Special thanks are due to Microsoft for its encouragement of spoken language R&D.
The management team at Microsoft has been extremely generous to the speech technology
group. We are particularly grateful to Bill Gates, Nathan Myhrvold, Rick Rashid, Dan Ling,
and Jack Breese for the great environment they have created for us at Microsoft Research.
We would also like to thank Bob Muglia and Kai-Fu Lee for their leadership role in Micro­
soft's speech product development.

Scott ~e:ed~th helped us write a number of chapters in this book and deserves to be a
co-author. Hts ms1ght and experience in text-to-speech synthesis enriched this book a great
deal. We al~o owe gratitude to many colleagues we worked with in the speech technology
gr?up ~f Microsoft Research. In alphabetic order, Jim Adcock Bruno Al b" p ·1 All
Enc Bidstru An · B" . . , a tso, 1 eva,

J h G od
p, tom? igazzi, Ciprian Chelba, Li Deng, James Droppo Doug Duchene

os ua o man, Met-Yuh Hwang L I I D ' , Dav·d Lars K · L . ' arry srae • erek Jacoby, Li Jiang Yun-Cheng Ju
i on, evm arson, Jmgsong Liu Ri ky L • . ' '

Menill, Yunus Mohammed Sal ' c . oyod, Mihnd Mahajan, Peter Mau, John
Mike Rozak Kevin Schofi~ld ;i; Muiha~ Mike Plumpe, Scott Quinn, Bill Rockenbeck,
Wang, and s'henzhi Zhang. ' ana eo orescu, Gina Venolia, Kuansan Wang, Ye-Yi

In addition, we want to thank Le A .
Chang, Phil Chou, Dinei Florencio, sAll~~

s
•~:~:IlmeS, ':Ian Bl~ck, David Caulton, Eric

Hennansky, Henrique Malvar, Julian Odell M . o, Francisco G1menez-Galanes, Hynek
Trower, and Charles Wayne Th . ' an ~Slend0rf, Joseph Pentheroudakis Tandy
th" b k • • ey provided us with • is oo . Tim Moore, Russ Hall d J many wonderful comments to refine
book in_ a finite amount of time. ' an ane Bonnell at Prentice Hall helped us finish this

Fmally, Writing this book was a maratho
:~:~~on of our s~uses, Yingzhi, Donna, an: p~at c~ul? not have been finished without

spent on this project en, unng the many evenings and week-

Xuedong Huang
Alex Acero
Hsiao-Wuen Hon
Redmond, WA

CHAPTER 1

Introduction

From human prehistory to the new media of
the future, speech communication has been and will be the dominant mode of human social
bonding and information exchange. The spoken word is now extended, through technologi­
cal mediation such as telephony, movies, radio, television, and the Internet. This trend re­
flects the primacy of spoken communication in human psychology.

In addition to human-human interaction, this human preference for spoken language
communication finds a reflection in human-machine interaction as well. Most computers
currently utilize a graphical user interface (GUI), based on graphically represented interface
objects and functions such as windows, icons, menus, and pointers. Most computer operat­
ing systems and applications also depend on a user's keyboard strokes and mouse clicks,
with a display monitor for feedback. Today's computers lack the fundamental human abili­
ties to speak, listen, understand, and learn. Speech, supported by other natural modalities,
will be one of the primary means of interfacing with computers. And, even before speech­
based interaction reaches full maturity, applications in home, mobile, and office segments
are incorporating spoken language technology to change the way we live and work.

1

-Introduction
2

both speech recognition and speech synthesis capa-
1eeds to have · · d f A spoken language sySlem I th . Ives are not sufficient to buil a use ul spoken

mponents by ernse . · · .
b'lities However, those two co . ponent is required to manage mteract1ons with 1 • d' g and dialog com .
language system. An underSlan m • .d d to guide the system's interpretauon of speech

~ • kn ledge must be prov1 e . .
the user; and dornam ow . . For all these components, s1gmficant challenges • the appropnate action. .
and allow it to determine f • t grati·on and engineering efficiency. The goal of fl ·blty ease o in e ,
exis~ including robuSmess, exi 1 1 ' terns has long attracted the attention of scientists

·a11 • ble spoken language sys . . .
building commerc1 Y via f this book is to share our working expenence m
and engineers all over dle world. The purposei~ systems with both our colleagues and newcom­
developing advanced spoken language processall ·mgtr~r1ucing fundamental theories and to highlight-

h pters to systematic Y vu .
ers. We devote many c a 1 sons we learned in developing Microsoft's spoken
ing what works well based on numerous es
language systems.

1.1. MOTIVATIONS

What motivates the integration of spoken language as the primary interface. modality? We
present a number of scenarios, roughly in order of expected degree of technical challenges
and expected time to full deployment.

1.1.1. Spoken Language Interface

There are generally two categories of users who can benefit from adoption of speech as a
control modality in parallel with others, such as the mouse, keyboard, touch-screen, and
joystick. For novice users, functions that are conceptually simple should be directly accessi­
ble. For example, raising the voice output volume under software control on the desktop
speakers, a conceptually simple operation, in some GUI systems of today requires opening
one or more windows or menus, and manipulating sliders, check-boxes, or other graphical
elements. This requires some knowledge of the system's interface conventions and struc­
tures. For the novice user, to be able to say raise the volume would be more direct and natu­
ral. For expert users, the GUI paradigm is sometimes perceived as an obstacle or nuisance
and shortcuts are sought. Frequently these shortcuts allow the power user's hands to remain
on the keyboard or mouse while mixing content creation with system commands. For exam­
ple, ~n operator of a graphic design system for CAD/CAM might wish to specify a text for-
matting command while keep· th · · · ..

mg e pomter device m pos1t10n over a selected screen element.

d Speech ~as the potential to accomplish these functions more powerfully than keyboard
an mouse clicks Speech becom .
streams encoding ~ther d namic es more powerful when supplemented by inforrnatron
the semantic corn y f aspects of user and system status, which can be resolved by

ponent o a complete m It' d l - · al
interactions to proceed based u imo a mtertace. We expect such multrmod

on more complete use d 1 · · · l o~entation, natural and device-based estu _r mo e rn~, mcluding spe:ch, v1sua
dtnated with detailed system fil gf res, and facial expression, and these will be coor-

pro I es o typical us k . .
er tas sand aclivity patterns.

Motivations 3

In some situations you must rely on speech as an input or output medium. For ex.am­
ple, with wearable computers. it may be impossible to incorporate a large keyboard. When
driving, safety is compromised by any visual distraction, and hands are required for control­
ling the vehicle. The ultimate speech-only device, the telephone, is for more widespread than
the PC. Certain manual tasks may also require full visual attention to the focus of the work.
Finally, spoken language interfaces offer obvious benefits for individuals challenged with a
variety of physical disabilities, such as loss of sight or limitations in physical motion and
motor skills. Chapter 18 contains a detailed discussion on spoken language applications.

1.1.2. Speech-to-Speech Translation

Speech-to-speech translation has been depicted for decades in science fiction stories. Imag­
ine questioning a Chinese-speaking conversational partner by speaking English into an un­
obtrusive device, and hearing real-time replies you can understand. This scenario, like the
spoken language interface, requires both speech recognition and speech synthesis technol­
ogy. In addition, sophisticated multilingual spoken language understanding is needed. This
highlights the need for tightly coupled advances in speech recognition, synthesis, and under­
standing systems, a point emphasized throughout this book.

1.1.3. Knowledge Partners

The ability of computers to process spoken language as proficient as humans will be a land­
mark to signal the arrival of truly intelligent machines. Alan Turing [29] introduced his fa­
mous Turing test. He suggested a game, in which a computer's use of language would form
the criterion for intelligence. If the machine could win the game, it would be judged intelli­
gent. In Turing's game, you play the role of an interrogator. By asking a series of questions
via a teletype, you must detennine the identity of the other two participants: a machine and a
person. The task of the machine is to fool you into believing it is a person by responding as a
person to your questions. The task of the other person is to convince you the other partici­
pant is the machine. The critical issue for Turing was that using language as humans do is
sufficient as an operational test for intelligence.

The ultimate use of spoken language is to pass the Turing test in allowing future ex­
tremely intelligent systems to interact with human beings as knowledge partners in all as­
pects of life. This has been a staple of science fiction, but its day will come. Such systems
require reasoning capabilities and extensive world knowledge embedded in sophisticated
search, communication, and inference tools that are beyond the scope of this book. We ex­
pect that spoken language technologies described in this book will form the essential ena­
bling mechanism to pass the Turing test.

4
Introduction

1.Z. SPOKEN LANGUAGE SYSTEM ARCHITECTURE

l
•rocessillg refers to technologies related to speech recognition, text-to.

Spoken anguage prv •

h d ken language understanding. A spoken language system has at least one of
speec , an spo . .
the following three subsystems: a speech recogmt10~ syste~ that converts speech into

d text-to-speech system that conveys spoken mfonnat1on, and a spoken language
wor s, a . d h 1 • • •
understanding system that maps words into actions an t at p ans_ system-101t1ated actions.

There is considerable overlap in the fundamental technologies for these three subareas.
Manually created rules have been developed for spoken language systems with limited suc­
cess. But, in recent decades, data-driven statistical approaches have achieved encouraging
results, which are usually based on modeling the speech signal using well-defined statistical
algorithms that can automatically extract knowledge from the data. The data-driven ap­
proach can be viewed fundamentally as a pattern recognition problem. In fact, speech recog­
nition, text-to-speech conversion, and spoken language understanding can all be regarded as
pattern recognition problems. The patterns are either recognized during the runtime opera­
tion of the system or identified during system construction to fonn the basis of runtime gen­
erative models such as prosodic templates needed for text-to-speech synthesis. While we use
and advocate the statisticaJ approach, we by no means exclude the knowledge engineering
approach from consideration. If we have a good set of rules in a given problem area, there is
no need to use the statistical approach at all. The problem is that, at time of this writing, we
do not have enough knowledge to produce a complete set of high-quality rules. As scientific
and theoretical generalizations are made from data collected to construct data-driven sys­
tems, better rules may be constructed. Therefore, the rule-based and statistical approaches
are best viewed as complementary.

1.2.1. Automatic Speech Recognition

A source-channel mathematical model described in Chapter 3 is often used to formulate
speech recognition problems. As illustrated in Figure 1.1, the speaker's mind decides the
source word sequence W that is delivered through his/her text generator. The source is
passed through a noisy communication channel that consists of the speaker's vocal appara­
tus to produce the speech waveform and the speech signal processing component of the
speech recognize!- Finally, the speech decoder aims to decode the acoustic signal X into a
word sequence W wh • h • h fi . , ic 1s ope ully close to the original word sequence W.
th d A typical practical speech recognition system consists of basic components shown in

e otted box of Figure l 2 A 1• • .
suits th t • • PP ications mterface with the decoder to get recognition re-

a may be used to adapt th · · th
representation of knowled e O er com~onents m the system. Acoustic models mclude _e
ability gender and d'

1
g . about acouSttcs, phonetics, microphone and environment van-

• 1a ect d1ffere tern's knowledge of h . nces among speakers, etc. Language models refer to a sys-
. w at constitutes a 'bl d m what sequence Th . possi e word, what words are likely to co-occur, an

• e semantics and fu • • h perfonn may also b nctions related to an operation a user may w1s to
e necessary for th 1 .

areas, associated with k e anguage model. Many uncertainties exist m these
spea er characte • • • 0stJcs, speech style and rate, recognition of basic

Spoken Language System Architecture 5

speech segments, possible words, likely words, unknown words, grammatical vanat10n,
noise interference, nonnative accents, and confidence scoring of results. A successful speech
recognition system must contend with all of these uncertainties. But that is only the begin­
ning. The acoustic uncertainties of the different accents and speaking styles of individual
speakers are compounded by the lexical and grammatical complexity and variations of spo­
ken language, which are all represented in the language model.

Text
Generator

Communication Channel ...
• --------·~,----
.-----. ~ :

Speech ,--~.i Signal Speech
: Generator : Processing : Decoder •

w L ..•..•.............. .l .. ·: ·: ·: ·: j _x _ _. _ _j

................ ~
!

Speech Recognizer

w

Figure 1.1 A source-channel model for a speech recognition system [15].

The speech signal is processed in the signal processing module that extracts salient
feature vectors for the decoder. The decoder uses both acoustic and language models to gen­
erate the word sequence that has the maximum posterior probability for the input feature
vectors. It can also provide information needed for the adaptation component to modify ei­
ther the acoustic or language models so that improved performance can be obtained .

. ---· -· ··- -- ·------. .

r Voice Signal Processing

> Decoder r
"O ~ .,.,
"O >

1 > 0
::,

"O 3:: 00 n 0.
0 "O

0 0 ... C
fO

0. C ;;;-
.,.,

-· 0 0 "'
00

0 "' - 0 - .. ::I
0

Adaptation
.,......

' . . ·-------·······-···-···----···-----·-······
Figure 1.2 Basic system architecture of a speech recognition system (12].

Introduction

6
~

TTS Engine

Text Analysis .
Document Structure Detection

-
Text Normalization ~ ...

Raw text r-

or ragged text
Linguistic Analysis

ragged text l
Phonetic Analysis .

Grapheme-to-Phoneme Conversion

tagged phones
,,

Prosodic Analysis
Pitch & Duration Attachment

controls
, ,

Speech Synthesis
Voice Rendering

Figure 1.3 Basic system architecture of a TIS system.

1.2.2. Text-to-Speech Conversion

The teon text-to-speech, often abbreviated as TI'S, is easily understood. The task of a text-~o­
speech system can be viewed as speech recognition in reverse - a process of building a machtn·
ery system that can generate human-like speech from any text input to mimic human speakers.
'ITS is sometimes called speech synthesis, particularly in the engineering community.

The conversion of words in written form into speech is nontrivial. Even if we can store
a huge dictionary for most common words in English; the ITS system still needs to deal
with millions of names and acronyms. Moreover, in order to sound natural, the intonation of
the sentences must be appropriately generated.

The development of TTS synthesis can be traced back to the 1930s when Dudley's
Voder, developed by Ben Laboratories, was demonstrated at the World's Fair (18). Taking
~dvantage of increasin? computation power and storage technology, ITS researchers have
;:n ;:i1t t~ ~ener~te high-quality commercial multilingual text-to-speech systems, although

q Thty bis t~fenor to human speech for general-purpose applications.
e as1c TTS components h · · t

nonnalizes the text to the a . are s own m Figure 1.3. The text analysis componen
ppropnate fonn so that it becomes speakable. The input can be

Spoken Language System Architecture 7

either raw text or tagged. These tags can be used to assist text, phonetic, and prosodic anal y­
sis. The phonetic analysis component converts the processed text into the corresponding
phonetic sequence, which is followed by prosodic analysis to attach appropriate pitch and
duration information to the phonetic sequence. Finally, the speech synthesis component
takes the parameters from the fully tagged phonetic sequence to generate the corresponding
speech waveform.

Various applications have different degrees of knowledge about the structure and con­
tent of the text that they wish to speak so some of the basic components shown in Figure 1.3
can be skipped. For example, some applications may have certain broad requirements such
as rate and pitch. These requirements can be indicated with simple command tags appropri­
ately located in the text. Many TIS systems provide a set of markups (tags). so the text pro­
ducer can better express their semantic intention. An application may know a lot about the
structure and content of the text to be spoken to greatly improve speech output quality. For
engines providing such support, the text analysis phase can be skipped, in whole or in part.
If the system developer knows the phonetic form, the phonetic analysis module can be
skipped as well. The prosodic analysis module assigns a numeric duration to every phonetic
symbol and calculates an appropriate pitch contour for the utterance or paragraph. In some
cases, an application may have prosodic contours precalculated by some other process. This
situation might arise when TIS is being used primarily for compression, or the prosody is
transplanted from a reaJ speaker's utterance. In these cases, the quantitative prosodic con­
trols can be treated as special tagged field and sent directly along with the phonetic stream to
speech synthesis for voice rendition.

1.2.3. Spoken Language Understanding

Whether a speaker is inquiring about flights to Seattle, reserving a table at a Pittsburgh res­
taurant, dictating an article in Chinese, or making a stock trade, a spoken language under­
standing system is needed to interpret utterances in context and carry out appropriate
actions. Lexical, syntactic, and semantic knowledge must be applied in a manner that per­
mits cooperative interaction among the various levels of acoustic, phonetic, linguistic, and
application knowledge in minimizing uncertainty. Knowledge of the characteristic vocabu­
lary, typical syntactic patterns, and possible actions in any given application context for both
interpretation of user utterances and planning system activity are the heart and soul of any
spoken language understanding system.

A schematic of a typical spoken language understanding system is shown in Figure
l.4. Such a system typically has a speech recognizer and a speech synthesizer for basic
speech input and output, and a sentence interpretation component to parse the speech recog­
nition results into semantic forms, which often need discourse analysis to track context and
resolve ambiguities. The Dialog Manager is the central component that communicates with
applications and the spoken language understanding modules such as discourse analysis,
sentence interpretation, and response generation.

While most components of the system may be partly or wholly generic, the dialog
manager controls the flow of conversation tied to the action. The dialog manager is respon-

8
Introduction

I rng responses, and maintaining the system's • 1eeded for fonnu a 1 · d' J l'ble 'or providing status
1

• state records the current transaction, 1a og s 1• • The discourse
idea of the state of the discourse. . current objects in focus (temporary center of

• d the current tnmsact1on. h . " goals that motivate . 1 • dependent references, and ot er status m1or-• h • tory hst for reso vmg . .
attention), the obJect is . . • 1 for sentence interpretation to interpret utter-• • fom1at1011 is crucra . . . F'
mation. The discourse m I th flow of information 1mphed m 1gure 1.4.

V • us systems may a ter e . .
ances in context. . ano r ma be able to supply contextual discourse mfonnat1on or
For example, the dialog manage y 'd the recoonizer's evaluation of hypotheses at the
pragmatic inferences, as feedback to gm e o

earliest level of search.

I Discourse Analysis

Application J◄ {D•tabosej

; -·--
~ Dialog Strategy Dialog Manager

Response Generation) Sentence Interpretation

I j Text-To-Speech
:f

Speech Recognizer

7
Access Device

Figure 1.4 Basic system architecture of a spoken language understanding system.

1.3. BOOK ORGANIZA TI0N

We attempt to present a comprehensive introduction to spoken language processing, which
includes not only fundamentals but also a practical guide to build a working system that
requires knowledge in speech signal processing, recognition, text-to-speech, spoken lan­
guage understanding, and application integration. Since there is considerable overlap in the
fundamental spoken language processing technologies, we have devoted Part I to the foun­
dations needed. Part I contains background on speech production and perception, probability
and information theory, and pattern recognition. Parts II, III, IV, and V include chaprers on
speech processing, speech recognition, speech synthesis, and spoken language systems, re­
spectively. A reader with sufficient background can skip Part I, refening back to it later as
needed. For example, the discussion of speech recognition in Part III relies on the pattern
recognition algorithms presented in Part I. Algorithms that are used in several chapters

Book Organization 9

within Pait III are also included in Parts I and II. Since the field is still evolving, at the end
of each chapter we provide a historical perspective and list further readings to facilitate fu­
ture research.

1.3.1. Part I: Fundamental Theory

Chapters 2 to 4 provide you with a basic theoretic foundation to better understand tech­
niques that are widely used in modern spoken language systems. These theories include the ~
essence of linguistics, phonetics, probability theory, information theory, and pattern recogni­
tion. These chapters prepare you fully to understand the rest of the book.

Chapter 2 discusses the basic structure of spoken language including speech science,
phonetics, and linguistics. Chapter 3 covers probability theory and information theory,
which form the foundation of modem pattern recognition. Many important algorithms and
principles in pattern recognition and speech coding are derived based on these theories.
Chapter 4 introduces basic pattern recognition, including decision theory, estimation theory,
and a number of algorithms widely used in speech recognition. Pattern recognition forms the
core of most of the algorithms used in spoken language processing.

1.3.2. Part II: Speech Processing

Part II provides you with necessary speech signal processing knowledge that is critical to
spoken language processing. Most of what discuss here is traditionally the subject of electri­
cal engineering.

Chapters 5 and 6 focus on how to extract useful information from the speech signal.
The basic principles of digital signal processing are reviewed and a number of useful repre­
sentations for the speech signal are discussed. Chapter 7 covers how to compress these rep­
resentations for efficient transmission and storage.

1.3.3. Part III: Speech Recognition

Chapters 8 to 13 provide you with an in-depth look at modern speech recognition systems.
We highlight techniques that have been proven to work well in real systems and explain in
detail how and why these techniques work from both theoretic and practical perspectives.

Chapter 8 introduces hidden Markov models, the most prominent technique used in
modem speech recognition systems. Chapters 9 and 11 deal with acoustic modeling and
language modeling respectively. Because environment robustness is critical to the success of
practical systems, we devote Chapter IO to discussing how to make systems less affected by
environment noises. Chapters 12 and 13 deal in detail with how to efficiently implement the
decoder for speech recognition. Chapter 12 discusses a number of basic search algorithms,
and Chapter 13 covers large vocabulary speech recognition. Throughout our discussion,
Microsoft's Whisper speech recognizer is used as a case study to illustrate the methods in­
troduced in these chapters.

Introduction

1.3.4. Part IV: Text-to-Speech Systems

In Chapters J 4 through 16, we discuss proven techniques in ~uilding text-to-sp_e~ch systems.
The synthesis system consists of major components found m speech recognition systems,

except that they are in the reverse order.
Chapter 14 covers the analysis of written documents and the text needed to suppon

spoken rendition, including the interpretation of audio markup commands, interpretation of
numbers and other symbols, and conversion from orthographic to phonetic symbols. Chapter
15 focuses on the generation of pitch and duration controls for linguistic and emotional ef­
fect. Chapter 16 discusses the implementation of the synthetic voice, and presents algo­
rithms to manipulate a limited voice data set to support a wide variety of pitch and duration
controls required by the text analysis. We highlight the importance of trainable synthesis,
with Microsoft's Whistler TIS system as an example.

1.3.5. Part V: Spoken Language Systems

As discussed in Section 1.1, spoken language applications motivate spoken language R&D.
The central component is the spoken language understanding system. Since it is closely re­
lated to applications, we group it together with application and interface design.

Chapter 17 covers spoken language understanding. The output of the recognizer re­
quires interpretation and action in a particular application context. This chapter details useful
strategies for dialog management, and the coordination of all the speech and system re­
sources to accomplish a task for a user. Chapter 18 concludes the book with a discussion of
important principles for building spoken language interfaces and applications, including
general human interface design goals, and interaction with other modalities in specific appl i­
cation contexts. Microsoft's MiPad is used as a case study to illustrate a number of issues in
developing spoken language and multimodal applications.

1.4. TARGET AUDIENCES

This book can serve a variety of audiences:
Integration engineers: Software engineers who want to build spoken language sys­

tems, but who _do ~ot w~t to learn detailed speech technology internals, will find plentiful
rele~ant ~atenal, ~ncludmg application design and software interfaces. Anyone with a pro­
fess_ional interest m aspects of speech applications, integration, and interfaces can also
achieve enough understanding of how the core technologies work, to allow them to take full
advantage of state-of-the-art capabilities.

Speech technology engm· eers· E • d · • ngmeers an researchers working on various subspe
c1alt1es w1thm the speech field ·11 fi d th" b

1 d . . . wi m is ook a useful guide to understanding re-
p::ac::honv~~=ie:.1; su~~ient dfrepth to ~elp _them gain insight on where their own ap­

p t ' or ive~ge om, thetr neighbors' common practice.
Graduate students: This book can serve as a • .

vanced undergraduate speech anal . I ~nm~ textbook m a graduate or ad-
ysis or anguage engmeenng course. It can serve as a sup-

Historical Perspective and Further Reading 11

plementary textbook in some applied linguistics, digital signal processing, computer science,
artificial intelligence, and possibly psycholinguistics course.

Linguists: As the practice of linguistics increasingly shifts to empirical analysis of
real-world data, students and professional practitioners alike should find a comprehensive
introduction to the technical foundations of computer processing of spoken language help­
ful. The book can be read at different levels and through different paths, for readers with
differing technical skills and background knowledge.

Speech scientists: Researchers engaged in professional work on issues related to nor­
mal or pathological speech may find this complete exposition of the state-of-the-art in com­
puter modeling of generation and perception of speech interesting.

Business planners: Increasingly, business and management functions require some
level of insight into the vocabulary and common practices of technology development.
While not the primary audience, managers, marketers, and others with planning responsibili­
ties and sufficient technical background will find portions of this book useful in evaluating
competing proposals, and in making business decisions related to the speech technology
components.

1.5. HISTORICAL PERSPECTIVE AND FURTHER READING

Spoken language processing is a diverse field that relies on knowledge of language at the
levels of signal processing, acoustics, phonology, phonetics, syntax, semantics, pragmatics,
and discourse. The foundations of spoken language processing lie in computer science, ele c­
trical engineering, linguistics, and psychology. In the 1970s an ambitious speech under­
standing project was funded by DARPA, which led to many seminal systems and
technologies (17]. A number of human language technology projects funded by DARPA in
the 1980s and 1990s further accelerated the progress, as evidenced by many papers pub­
lished in The Proceedings of the DARPA Speech and Natural Language/Human Language
Workshop. The field is still rapidly progressing and there are a number of excellent review
articles and introductory books. We provide a brief list here. More detailed references can be
found within each chapter of this book. Gold and Morgan's Speech and Audio Signal Proc­
essing [10] also has a strong historical perspective on spoken language processing.

Hyde [14] and Reddy [24] provided an excellent review of early speech recognition
work in the 1970s. Some of the principles are still applicable to today's speech recognition
research. Waibel and Lee assembled many seminal papers in Readings in Speech Recogni­
tion Speech Recognition [31]. There are a number of excellent books on modem speech
recognition [l, 13, 15, 22, 23].

Where does the state of the art speech recognition system stand today? A number of
different recognition tasks can be used to compare the recognition error rate of people vs.
machines. Table 1. 1 shows five typical recognition tasks with vocabularies ranging from IO
to 5000 words speaker-independent continuous speech recognition. The Wall Street Journal
Dictation (WSJ) Task has a 5000-word vocabulary as a continuous dictation application for
the WSJ articles. In Table 1.1, the error rate for machines is based on state of the art speech

12 Introduction

• h ystems described in Chapter 9, and the error rate of humans is based on recognizers sue as s f .
f b• t t sted on the similar task. We can see the error rate o humans 1s at least a range o su 1ec s e .

5 times smaller than machines except for the sentences that are generated from a trigram

1 od I Where the sentences have the perfect match between humans and machines anguage m e , . h. 1

so humans cannot use high-level knowledge that is not used m mac mes.

Table I.I Word error rate comparisons between human and machines on similar tasks.

Tasks Vocabulary Humans Machines
Connected digits 10 0.009% 0.72%
Alphabet letters 26 1% 5%
Spontaneous telephone speech 2000 3.8% 36.7%
WSJ with clean speech 5000 0.9% 4.5%
WSJ with noisy speech (l 0-db SNR) 5000 1.1% 8.6%
Clean speech based on trigram sentences 20,000 7.6% 4.4%

We can see that humans are far more robust than machines for nonnal tasks. The error
rate for machine spontaneous conversational telephone speech recognition is above 35%,
more than a factor 10 higher than humans on the similar task. In addition, the error rate of
humans does not increase as dramatically as machines when the environment becomes noisy
(from quiet to 10-db SNR environments on the WSJ task). The relative error rate of humans
increases from 0.9% to 1.1 % (1.2 times), while the error rate of CSR systems increases from
4.5% to 8.6% (1.9 times). One interesting experiment is that when we generated sentences
using the WSJ trigram language model (cf. Chapter 11), the difference between humans and
machines disappears (the last row in Table 1.1). In fact, the error rate of humans is even
higher than machines. This is because both humans and machines have the same hlgh-level
syntactic and semantic models. The test sentences are somewhat random to humans but per­
fect to machines that used the same trigram model for decoding. This experiment indicates
humans make more effective use of semantic and syntactic constraints for improved speech
recognition in meaningful conversation. In addition, machines don't have attention problems
as humans do on random sentences.

Fant [7] gave an excellent introduction to speech production. Early reviews of text-to­
speech ~ynthesis can be ~ound in [3, 8, 9]. Sagisaka [26] and Carlson [6] provide more re­
cent reviews of progress m speech synthesis. A more detailed treatment can be found in [19,
30).

s Where d~~s the ~t~te of the art text to speech system stand today? Unfortunately, like
?eech ~ecogni~on, this 1s not a solved problem either. Although machine storage capabili­

ties are_ tmprovmg, the quality remains a challenge for many researchers if we want to pass
the Turmg test.

I

Some of these experiments were conducted t M' ft .
which is not statistically s·agn·li N Ith a icroso with only a small number of human subjects (3-5 people),

1 IC&nL eve eless the ex • ,
of humans and machines. • penments give some mteresllng ms1ght on the performance

Historical Perspective and Further Reading 13

Spoken language understanding is deeply rooted in speech recognition research. There
are a number of good books on spoken language understanding [2, 5, 16]. Manning and
Schutze [20] focuses on statistical methods for language understanding. Like Waibel and
Lee, Grosz et al. assembled many foundational papers in Readings in Natural Language
Processing [11]. More recent reviews of progress in spoken language understanding can be
found in [25, 28]. Related spoken language interface design issues can be found in [4, 21,
27, 32].

In comparison to speech recognition and text to speech, spoken language understand­
ing is further away from approaching the level of humans, especially for general-purpose
spoken language applications.

A number of good conference proceedings and journals report the latest progress in
the field. Major results on spoken language processing are presented at the International
Conference on Acoustics, Speech and Signal Processing (JCASSP), International Confer­
ence on Spoken Language Processing (ICSLP), Eurospeech Conference, the DARPA Speech
and Human Language Technology Workshops, and many workshops organized by the
European Speech Communications Associations (ESCA) and IEEE Signal Processing Soci­
ety. Journals include IEEE Transactions on Speech and Audio Processing, IEEE Transac­
tions on Pattern Analysis and Machine Intelligence (PAM/), Computer Speech and
Language, Speech Communication, and Journal of Acoustical Society of America (JASA).
Research results can also be found at computational linguistics conferences such as the As­
sociation for Computational Linguistics (ACL), International Conference on Computational
Linguistics (COUNG), and Applied Natural Language Processing (ANLP). The journals
Computational Linguistics and Natural Language Engineering cover both theoretical and
practical applications of language research. Speech Recognition Update published by TMA
Associates is an excellent industry newsletter on spoken language applications.

REFERENCES

[1] Acero, A., Acoustical and Environmental Robustness in Automatic Speech Recog­
nition, 1993, Boston, MA, Kluwer Academic Publishers.

[2] Allen, J., Natural Language Understanding, 2nd ed., 1995, Menlo Park, CA, The
Benjamin/Cummings Publishing Company.

[3] Allen, J., M.S. Hunnicutt, and D.H. Klatt, From Text to Speech: The M!Talk Sys­
tem, 1987, Cambridge, UK, University Press.

[4] Balentine, B., and D. Morgan, How to Build a Speech Recognition Application,
1999, Enterprise Integration Group.

[5] Bernsen, N., H. Dybkjar, and L. Dybkjar, Designing Interactive Speech Systems,
1998, Springer.

[6] Carlson, R., "Models of Speech Synthesis" in Voice Communications Between
Humans and Machines. National Academy of Sciences, D.B. Roe and J.G. Wilpon,
eds., 1994, Washington, D.C., National Academy of Sciences.

[7] Fant, G., Acoustic Theory of Speech Production, 1970, The Hague, NL, Mouton.

14

[8)

[9]

[l OJ

[11)

(12]

[13]

(14]

[15]

[16]

[17]

[18]

[19)

[20]

[21]
[22]

[23)

[24]

[25)

[26]

[27]

Introduction

J S ch Anal;•sis Synthesis and Perception, 1972, New York, Flanagan, ., pee
Springer-Verlag. . ., .

J "Voices Of Men And Machines, Journal of Acoustical Society 0, Flanagan, ., ~

America, 1972, 51, p. I 375. . . .
Gold, B. and N. Morgan, Speech and Audio ~1gnal Processing: Processing and
Perception of Speech and Music, 2000, John '"Y1ley_ and Sons.
Grosz, B., F.S. Jones, and B.L. Webber, Reudmgs m Natural l.Lmguage Processing,
I 986, Los Altos, CA, Morgan Kaufmann.
Huang, x., et al., "From Sphinx-II to Whisper-- Make Speech Recognition Usable"
in Automatic Speech and Speaker Recognition, C.H. Lee, F.K. Soong, and K.K.
Paliwal, eds. 1996, Norwell, MA, Kluwer Academic Publishers.
Huang, X.D., Y. Ariki, and M.A. Jack, Hidden Markov Models for Speech
Recognition, 1990, Edinburgh, U .K., Edinburgh University Press.
Hyde, S.R., "Automatic Speech Recognition: Literature, Survey, and Discussion"
in Human Communication, A Unified Approach, E.E. David and P.B. Denes, eds.
1972, New York, McGraw Hill.
Jelinek, F., Statistical Methods for Speech Recognition, Language, Speech, and
Communication, I 998, Cambridge, MA, MIT Press.
Jurafsky, D. and J. Martin, Speech and language Processing: An Introduction to
Natural language Processing, Computational Linguistics, and Speech Recogni­
tion, 2000, Upper Saddle River, NJ, Prentice Hall.
Klatt, D., "Review of the ARPA Speech Understanding Project," Journal of Acous­
tical Society of America, 1977, 62(6), pp. 1324-1366.
Klatt, D., "Review of Text-to-Speech Conversion for English," Journal of Acousti­
cal Society of America, 1987, 82, pp. 737-793.
KJeijn, W.B. and K.K. Paliwal, Speech Coding and Synthesis, 1995, Amsterdam,
Netherlands, Elsevier.

~,fanning, C. and H. Schutze, Foundations of Statistical Natural language Process­
ing, 1999, MIT Press, Cambridge, USA.
Mar~owitz, J., Using Speech Recognition, 1996, Prentice Hall.
Mon, R.D., Spoken Dialogues with Computers, 1998 London UK, Academic
Press. ' '

Rabiner, L.R. and B H Juang F d l .r . . 1993 Prentice-Hall. • • , un amenta s O; Speech Recognitzon, May, '

Reddy, D.R., "Speech Recognition by Machine: A Review" IEEE Proc. 1976,
64(4), pp. 502-531. ' '
Sadek, D. and R D Mori "D" l
puters R O M ." • . ' 18 ogue Systems" in Spoken Dialogues with Com·
Sagisaka. y ?.ns, Ed1htorsl998, ~ondon, UK, pp. 523-561, Academic Press.

, ·• peec ynthes1s from T " IE M, ·ne 1990(1). ext, EE Communication agaz1 •

Schmandt, C., Voice Com . . . y
Nostrand Reinhold. mumcation with Computers, 1994, New York, NY, an

Historical Perspective and Further Reading 15

[28] Seneff, S., "The Use of Linguistic Hierarchies in Speech Understanding," Int. Conj
on Spoken la11g11age Processi11g, 1998. Sydney. Australia.

[29] Turing, A.M., "Computing Machinery and Intelligence," Mind. 1950, LfX(236),
pp. 433-460.

(30] van Santen, J., et al., Progress in Speech Synthesis, 1997, New York, Springer­
Verlag.

[31] Waibel, A.H. and K.F. Lee, Readi11gs in Speech Recognition, 1990, San Mateo,
CA, Morgan Kaufman Publishers.

(32] Weinschenk, S. and D. Barker, Designing Effective Speech Jmerfaces, 2000, John
Wiley & Sons, Inc.

PART I

FUNDAMENTAL THEORY

CHAPTER 2

Spoken Language Structure

Spoken language is used to communicate in­
formation from a speaker to a listener. Speech production and perception are both important
components of the speech chain. Speech begins with a thought and intent to communicate in
the brain, which activates muscular movements to produce speech sounds. A listener re­
ceives it in the auditory system, processing it for conversion to neurological signals the brain
can understand. The speaker continuously monitors and controls the vocal organs by receiv­
ing his or her own speech as feedback .

Considering the universal components of speech communication as shown in Figure
2.1, the fabric of spoken interaction is woven from many distinct elements. The speech pro­
duction process starts with the semantic message in a person's mind to be transmitted to the
listener via speech. The computer counterpart to the process of message formulation is the
application semantics that creates the concept to be expressed. After the message is created,

19

20 Spoken Language Structure

the next step is to convert the message into a sequence of words. Each word consists of a
sequence of phonemes that corresponds to the pronunciation of the words. Each sentence
also contains a prosodic pattern that denotes the duration of each phoneme, intonation of the
sentence, and loudness of the sounds. Once the language system finishes the mapping, the
talker executes a series of neuromuscular signals. The neuromuscular commands perform
articulatory mapping to control the vocal cords, lips, jaw, tongue, and velum, thereby pro­
ducing the sound sequence as the final output. The speech understanding process works in
reverse order. First the signal is passed to the cochlea in the inner ear, which performs fre­
quency analysis as a filter bank. A neural transduction process follows and converts the
spectral signal into activity signals on the auditory nerve, corresponding roughly to a feature
extraction component. Currently, it is unclear how neural activity is mapped into the lan­
guage system and how message comprehension is achieved in the brain.

Speech Generation

.fpp//('ul/011 U mtJ11lic.f , <JCIIOIIY L.........
...___~,..,.

Language System Phonem~ . wotds. prosaJJ,·

Prahl~ t'Xlf<IC/Wn

Neuromuscular Mapping
Arl/c:ulalory parorrmer •

Vocal Tract System

Speech Understanding

'
Message Comprehension

Cochlea Motion

SJ;t>ech
wra(~,•is

Figure 2.1 The underlying d t •
boxes indicate the c d' e ermmants of speech generation and understanding. The gray

orrespon mg computer sy te ti s m components or spoken language processing.

Speech signals are composed of al
crete, symbolic representation of the :n og sound patterns that serve as the basis for a di s-
The production and interpretaf f th poken language - phonemes, syllables, and words.
of the language spoken In th' ionh o ese sounds are governed by the syntax and semantics

• 1s c apter we take a b tt . .
concepts from sound to phonetics and ' ho O om up approach to introduce the basic
tax and semantics which f, h P nology. Syllables and words are followed by syn-
th' b ' orm t e structure of k l 15 00k are drawn primarily from E r h spo en anguage processing. The examples in

ng is , though they are relevant to other languages.

Sound and Human Speech Systems 21

2.1. SOUND AND HUMAN SPEECH SYSTEMS

In this section, we briefly review human speech production and perception systems. We
hope spoken language research will enable us to build a computer system that is as good as
or better than our own speech production and understanding system.

2.1.1. Sound

Sound is a longitudinal pressure wave formed of compressions and rarefactions of air mole­
cules, in a direction parallel to that of the application of energy. Compressions are zones
where air molecules have been forced by the application of energy into a tighter-than-usual
configuration, and rarefactions are zones where air molecules are less tightly packed. The
alternating configurations of compression and rarefaction of air molecules along the path of
an energy source are sometimes described by the graph of a sine wave as shown in Figure
2.2. In this representation, crests of the sine curve correspond to moments of maximal com­
pression and troughs to moments of maximal rarefaction.

Air Molecules

Wavelength

Figure 2.2 Application of sound energy causes alternating compression/rarefaction of air
molecules, described by a sine wave. There are two important parameters, amplitude and
wavelength, to describe a sine wave. Frequency [cycles/second measured in Hertz (Hz)) is also
used to measure of the waveform.

The use of the sine graph in Figure 2.2 is only a notational convenience for charting
local pressure variations over time, since sound does not form a transverse wave, and the air
particles are just oscillating in place along the line of application of energy. The speed of a
sound pressure wave in air is approximately 331.5 + 0.6T,.ml s, where T0 is the Celsius tem­
perature.

The amount of work done to generate the energy that sets the air molecules in motion
is reflected in the amount of displacement of the molecules from their resting position. This
degree of displacement is measured as the amplitude of a sound as shown in Figure 2.2. Be­
cause of the wide range, it is convenient to measure sound amplitude on a logarithmic scale
in decibels (dB) . A decibel scale is a means for comparing the intensity of two sounds:

22
Spoken Language Structure

(2. !)

where J and /
0

are the two intensity levels, with intensity being proportional to the square of

the sound pressure P.
Sound pressure level (SPL) is a measure of absolute sound pressure Pin dB:

r '

SPL(dB) = 20 log,0 l ~ J (2.2)

where the reference O dB corresponds to the threshold of hearing, which is P0 = 0.0002µbar
for a tone of 1 kHz. The speech conversation level at 3 feet is about 60 dB SPL, and a jack­
hammer's level is about 120 dB SPL. Alternatively, watts/meter'units are often used to indi­
cate intensity. We can bracket the limits of human hearing as shown in Table 2.1. On the
low end, the human ear is quite sensitive. A typical person can detect sound waves having
an intensity of 10·12 W/m2 (the threshold of hearing or TOH). This intensity corresponds to a
pressure wave affecting a given region by only one-billionth of a centimeter of molecular
motion. On the other end, the most intense sound that can be safely detected without suffer­
ing physical damage is one trillion times more intense than the TOH. 0 dB begins with the
TOH and advances logarithmically. The faintest audible sound is arbitrarily assigned a value
of 0 dB, and the loudest sounds that the human ear can tolerate are about I 20 dB.

Table 2.1 Intensity and decibel levels of various sounds.

Sound dB Level Times>TOH
Threshold of hearing (TOH: 10-12 w / m2

) 0 100

Li!!ht whisoer 10 101

Quiet livinl! room 20 102
Quiet conversation 40 104

A veraQe office 50 105
Nonna! conversation 60 106
Busv city street 70 10'
Acoustic l?Uitar - 1 ft. awav 80 IOI!

Heavy truck traffic 90 109
Subwav from olatform 100 !010
Power tools 110 1011
Pain threshold of ear 120 1012
Airoort runwav 130 toll

Sonic boom
Permanent damage to hearing

140 1014

150 1015
Jet enl!ine, close up
Rocket eneine 160 10'6

Twelve ft. from artillery cannon muzzle (1010 WI m2)
180 1018

220 10:?.2

Sound and Human Speech Systems
23

The absolute threshold of hearing is the maximum amount of energy of a pure tone
that cannot be detected by a listener in a noise free environment. The absolute threshold of
hearing is a function of frequency that can be approximated by

T/f) = 3.64(! /1000)--0.s -6.5e--o·6
<f"lXXl-J.Jiz + 10-3(/ / l 000)4 (dB SPL) (2.3)

and is plotted in Figure 2.3.

100,---------.----------,--------~-~
oo I

:\ • • • •1·· :

rii 60 - "\ • • • • •

~ 50 ·,· • • • • •• • • .-;- .

0.40 •• ,........ ···•·-'··
en "-. • I

30 •• ,..... ·•··,·~·

:::~:: . . :::::. - : : : : : : : :;/:: 20

---· _/'
·· · ···~-····:···

10 • • • • •

0 ..••.

·10'--------'-----------'-----------'---'
10' 103

Frequency (Hz)
10'

Figure 2.3 The sound pressure level (SPL) level in dB of the absolute threshold of hearing as a
function of frequency. Sounds below this level are inaudible. Note that below 100 Hz and
above JO kHz this level rises very rapidly. Frequency goes from 20 Hz to 20 kHz and is plotted
in a logarithmic scale from Eq. (2.3).

Let's compute how the pressure level varies with distance for a sound wave emitted by
a point source located a distance r away. Assuming no energy absorption or reflection, the
sound wave of a point source is propagated in a spherical front, such that the energy is the
same for the sphere's surface at all radius r. Since the surface of a sphere of radius r is
4nr2

, the sound' s energy is inversely proportional to r 2
, so that every time the distance is

doubled, the sound pressure level decreases by 6 dB. For the point sound source, the energy
(E) transported by a wave is proportional to the square of the amplitude (A) of the wave and
the distance (r) between the sound source and the listener:

A2
Eoc­

r2
(2.4)

The typical sound intensity of a speech signal one inch away (close-talking micro­
phone) from the talker is l Pascal == IOµbar, which corresponds to 94 dB SPL. The typical
sound intensity 10 inches away from a talker is 0.1 Pascal == Iµbar, which corresponds to
74 dB SPL.

------------------------;S:po~k~e:n~L~an:g:u:a:g:e~S:tr=u=~

24

2.1.2. Speech Production

. h b • h an speech production systems, which have influenced research on we review ere as1c um
speech coding, synthesis, and recognition.

2.1.2.1. Articulators

s eech is produced by air-pressure waves emanating from the mouth and the nostrils of a
s!eaker. In most of the world's languages, the inventory of phonemes, as discussed in Sec­
tion 2.2.1, can be split into two basic classes:

• consonants - articulated in the presence of constrictions in the throat or ob­
structions in the mouth (tongue, teeth, lips) as we speak.

• vowels - articulated without major constrictions and obstructions.

The sounds can be further partitioned into subgroups based on certain articulatory
properties. These properties derive from the anatomy of a handful of important articulators
and the places where they touch the boundaries of the human vocal tract. Additionally, a
large number of muscles contribute to articulator positioning and motion. We restrict our­
selves to a schematic view of only the major articulators, as diagrammed in Figure 2.4. The

Tooth-ridge (alveolar):
back part
front part

Upper Teeth

Upper Lip

Lower Lip

Lower Teeth

Vocal Cords

Nasal Cavity

Hard Palate

Nasal Pa~sage

Tongue:
back
middle
front
tip

Figure 2.4 A schem 1· d" a tc iagram of th h
e uman speech production apparatus.

Sound and Human Speech Systems 25

gross components of the speech production apparatus are the lungs, trachea, larynx (organ of
voice production), pharyngeal cavity (throat), oral and nasal cavity. The pharyngeal and oral
cavities are typically referred to as the vocal tract. and the nasal cavity as the nasal tract. As
illustrated in Figure 2.4, the human speech production apparatus consists of:

• Lungs: source of air during speech.

• Vocal cords (larynx): when the vocal folds are held close together and oscil­
late against one another during a speech sound, the sound is said to be voiced.
When the folds are too slack or tense to vibrate periodically, the sound is said
to be unvoiced. The place where the vocal folds come together is called the
glottis.

• Velum (soft palate): operates as a valve, opening to allow passage of air (and
thus resonance) through the nasal cavity. Sounds produced with the flap open
include m and n.

• Hard palate: a long relatively hard surface at the roof inside the mouth,
which, when the tongue is placed against it, enables consonant articulation.

• Tongue: flexible articulator, shaped away from the palate for vowels, placed
close to or on the palate or other hard surfaces for consonant articulation.

• Teeth: another place of articulation used to brace the tongue for certain con­
sonants.

• Lips: can be rounded or spread to affect vowel quality, and closed completely
to stop the oral air flow in certain consonants (p, b, m).

2.1.2.2. The Voicing Mechanism

The most fundamental distinction between sound types in speech is the voiced/voiceless
distinction. Voiced sounds, including vowels, have in their time and frequency structure a
roughly regular pattern that voiceless sounds, such as consonants likes, lack. Voiced sounds
typically have more energy as shown in Figure 2.5. We see here the wavefonn of the word
sees, which consists of three phonemes: an unvoiced consonant Isl, a vowel /iy/, and a
voiced consonant 17.J.

What in the speech production mechanism creates this fundamental distinction? When
the vocal folds vibrate during phoneme articulation, the phoneme is considered voiced; oth­
erwise it is unvoiced. Vowels are voiced throughout their duration. The distinct vowel tim­
bres are created by using the tongue and lips to shape the main oral resonance cavity in
different ways. The vocal folds vibrate at slower or faster rates, from as low as 60 cycles per
second (Hz) for a large man, to as high as 300 Hz or higher for a small woman or child. The
rate of cycling (opening and closing) of the vocal folds in the larynx during phonation of
voiced sounds is called thefundamentalfrequency. This is because it sets the periodic base­
line for all higher-frequency harmonics contributed by the pharyngeal and oral resonance

-------------------------;S~p:o~k:en~L:a:n:gu:a:g:e~S;tru=c;;
26

. . Th f d ntal frequency also contributes more than any other single fac-
cav1t1es above. e un ame . . . d f 11· f •) .

. f •1 h (the semi-musical nsmg an a mg o voice tones m speech.
tor to the perception o P1 c

s (Isl) ee (liyl) s (hf)

Figure 2.5 Waveform of sees, showing a voiceless phoneme Isl, followed by a voiced sound,
the vowel liyl. The final sound,/;/, is a type of voiced consonant.

The glottal cycle is illustrated in Figure 2.6. At stage (a), the vocal folds are closed and
the air stream from the lungs is indicated by the arrow. At some point, the air pressure on the
underside of the barrier formed by the vocal folds increases until it overcomes the resistance
of the vocal fold closure and the higher air pressure below blows them apart (b). However,
the tissues and muscles of the larynx and the vocal folds have a natural elasticity which
tends to make them fall back into place rapidly, once air pressure is temporarily equalized
(c). The successive airbursts resulting from this process are the source of energy for all
voiced sounds. The time for a single open-close cycle depends on the stiffness and size of
the vocal folds and the amount of subglottal air pressure. These factors can be controlled by
a speaker to raise and lower the perceived frequency or pitch of a voiced sound.

(a) (b) (c)

Figure 2.6 Vocal fold eyer I th 1 .
mg a e arynx. (a) Closed with sub-glottal pressure buildup; (b)

trans-glottal pressure differe f al • ~ 1 .
I . . n 1 causing JO ds to blow apart· (c) pressure equalization and us-

sue e asucny forcing te 1 '
mporary rec osure of vocal folds, ready to begin next cycle.

The wavefonn of air pressure • •
Periodic fl . b. . vanations created by this process can be described as a

ow, m cu 1c centimeters p d (af •
the time bracketed as on

I
th ~r seco~ ter [15]). As shown in Figure 2.7, dunng

e eye e, ere 15 no air flow during the initial closed portion. Then as

Sound and Human Speech Systems 27

the glottis o~ens (open phase), the volume of air flow becomes greater. After a short peak,
the f~lds b~gm to re~u~e their original position and the air flow declines until complete clo­
sure 1s attained, begmnmg the next cycle. A common measure is the number of such cycles
per second (Hz). or the fundamental frequency (FO). Thus the fundamental frequency for the
wavefonn in Figure 2.7 is about 120 Hz.

2.1.2.3.

'.ii'
~ 5000
~
3:
~ 1000

<
0

•• Cycle ♦,
I
I

;1 J/1_/_;1
8 16

Time (ms)

24

Figure 2.7 Waveform showing air flow during laryngeal cycle.

Spectrograms and Formants

Since the glottal wave is periodic, consisting of fundamental frequency (FO) and a number
of hannonics (integral multiples of FO), it can be analyzed as a sum of sine waves as dis­
cussed in Chapter 5. The resonances of the vocal tract (above the glottis) are excited by the
glottal energy. Suppose, for simplicity, we regard the vocal tract as a straight tube of uni­
fonn cross-sectional area, closed at the glottal end, open at the lips. When the shape of the
vocal tract changes, the resonances change also. Harmonics near the resonances are empha­
sized, and, in speech, the resonances of the cavities that are typical of particular articulator
configurations (e.g., the different vowel timbres) are calledjonnants. The vowels in an ac­
tual speech waveform can be viewed from a number of different perspectives, emphasizing
either a cross-sectional view of the harmonic responses at a single moment, or a longer-term
view of the fonnant track evolution over time. The actual spectral analysis of a vowel at a
single time-point, as shown in Figure 2.8, gives an idea of the uneven distribution of energy
in resonances for the vowel /iy/ in the waveform for see, which is shown in Figure 2.5.

Another view of sees of Figure 2.5, called a spectrogram, is displayed in the lower part
of Figure 2.9. It shows a long-tenn frequency analysis, comparable to a complete series of
single time-point cross sections (such as that in Figure 2.8) ranged alongside one another in
time and viewed from above.

28

?.,

0.5

0

i 2000 •

LL
0

0

0.2

-~
,

' I >

ly '1, . l . ,
.•

'.,·, .;r.

0.4

s (Isl)

Spoken Language Structure

I i ' I

0.6 0.8 1 1.2

: ·'' ". ,,

.rnlll1
1
1: 111! ·)

T' ;;,

!•it I ., ' ; ... \ ~,,,,~. ,,. '
•l'i, ,. ,, ..

'

'

ee (liyl) s (/z/)

• te phone Figure 2.9 The spectrogram representation of the speech waveform sees (approx.1ma
boundaries are indicated with heavy vertical lines).

ln the spectrogram of Figure 2.9, the darkness o, lightness of a band m 1ca the • d ' tes the rela-
ti,e amplitude o, ene,gy p<esen1 at a given frequency. The da,k horiwntal bands show

1 fonnants, which are hannonics of the fundamental at natural resonances of the vocal trac
cavity position for the vowel liy/ in see. The mathematical methods for deriving analyses
and representations such as those illustrated above are covered in Chapters 5 and 6.

Sound and Human Speech Systems 29

2.1.3. Speech Perception

There are two major components in the auditory perception system: the peripheral auditory
organs (ears) and the auditory nervous system (brain). The ear processes an acoustic pres­
sure signal by first transforming it into a mechanical vibration pattern on the basilar mem­
brane, and then representing the pattern by a series of pulses to be transmitted by the
auditory nerve. Perceptual information is extracted at various stages of the auditory nervous
system. In this section we focus mainly on the auditory organs.

2.1.3.1. Physiology of the Ear

The human ear, as shown in Figure 2.10, has three sections: the outer ear, the middle ear,
and the inner ear. The outer ear consists of the external visible part and the external auditory
canal that forms a tube along which sound travels. This tube is about 2.5 cm long and is
covered by the eardrum at the far end. · When air pressure variations reach the eardrum from
the outside, it vibrates, and transmits the vibrations to bones adjacent to its opposite side.
The vibration of the eardrum is at the same frequency (alternating compression and rarefac­
tion) as the incoming sound pressure wave. The middle ear is an air-filled space or cavity
about 1.3 cm across, and about 6 cm3 volume. The air travels to the middle ear cavity along
the tube (when opened) that connects the cavity with the nose and throat. The oval window
shown in Figure 2.10 is a small membrane at the bony interface to the inner ear (cochlea).
Since the cochlear walls are bony, the energy is transferred by mechanical action of the
stapes into an impression on the membrane stretching over the oval window.

Figure 2.10 The structure of the peripheral auditory system with the outer, middle, and inner ear.

Spoken Language Struc~;
30

The relevant structure of the inner ear for sound perception is the cochlea, which
communicates directly with the auditory nerve. conducting a representation of sound to the
brain. The cochlea is a spiral tube about 3.5 cm long, which coils about 2.6 times. The spiral
is divided, primarily by the basilar membrane running lengthwise, into two fluid-filled
chambers. The cochlea can be roughly regarded as a filter bank, whose outputs are ordered
by location, so that a frequency-to-place transformation is accomplished. The filters closest
to the cochlear base respond to the higher frequencies, and those closest to its apex respond

to the lower.

2.1.3.2. Physical vs. Perceptual Attributes

In psychoacoustics, a basic distinction is made between the perceptual attributes of a sound
especially a speech sound, and the measurable physical properties that characterize it. Each
of the perceptual attributes, as listed in Table 2.2, seems to have a strong correlation with
one main physical property, but the connection is complex, because other physical proper­
ties of the sound may affect perception in complex ways.

Table 2.2 Relation between perceptual and physical attributes of sound.

Phvsical Quantity Perceptual Qualitv
Intensity Loudness

Fundamental freouencv Pitch
Soectralshaoe Timbre

Onset/offset time Timing
Phase difference in binaural hearing Location

Although sounds with a gr t • • the ear varies w1'th th f ea er mtens1ty level usually sound louder, the sensitivity of
e requency and the qua!' t f th

between physical and perceptu
1 1

. . . 1 YO e sound. One fundamental divergence
a qua 1tJes 1s the pheno f • perception of tones of varying f . menon o non-umforrn equal loudness

inherent perceived loudness Trhequenc~~s._ In general, tones of differing pitch have different
. • e sens1t1v1ty of the • •

quahty of the sound. The graph of
11

ear vanes with the frequency and the
ure 2.11. These curves demonstrateeqthua ol u~ne~s contours adopted by ISO is shown in Fig-

e re at1ve ms • • •
quency at moderate to low intens·t 1 1

. enSitlYlty of the ear to sounds of low fre-
4000 H · • 1 Y eve s. Heanng • • • z, which 1s near the fi t sen5ittv1ty reaches a maximum around

d rs resonance frequen f h aroun 13 kHz, the frequency of th cy O t e outer ear canal, and peaks again
Pitch is indeed most closel e slecond resonance [38].

da l Y re ated to the f d . menta frequency, the higher the pitch ~n amental frequency. The higher the fun-
pltches depe d h we perceive How • • • . . n s on t e frequency of the 1 . • ever, d1scnmmation between two
ts mcreased d f ower pitch Pe • d •

1
an requency is kept constant • rceive pitch wil 1 change as intensity

n another exam le f h . •
observed . P O t e non-identity of •
common ::pe~mentally that when the ear is expaocoudsttc and perceptual effects, it has been

penence that on t se to two or d'"" • • e one may mask th h more 111erent tones 1t 1s a
e ot ers Ma k. . , • s mg 1s probably best explained

Sound and Human Speech Systems 31

as an upward shift in the hearing threshold of the weaker tone by the louder tone. Pure tones,
complex sounds, narrow and broad bands of noise all show differences in their ability to
mask other sounds. In general, pure tones close together in frequency mask each other more
than tones widely separated in frequency. A pure tone masks tones of higher frequency more
effectively than tones of lower frequency. The greater the intensity of the masking tone, the
broader the range of the frequencies it can mask (18, 31).

Binaural listening greatly enhances our ability to sense the direction of the sound
source. The sense of localization attention is mostly focused on side-to-side discrimination
or lateralization. Time and intensity cues have different impacts for low frequency and high
frequency, respectively. Low-frequency sounds are lateralized mainly on the basis of inte­
raural time difference, whereas high-frequency sounds are localized mainly on the basis of
interaural intensity differences (5).

Utl

120

CO 110
'O
. !: ,co

J 10
~
~ IIO
'iii i 7e

.s; IQ

X)

10

0

-ao
20

....
-

•:-.

~

1, ..
L--.

.~ ~ ~
~ ~~~ ~~
r--- i-,., "'"' ~ ""

~~ ~~"""~
~ .,_,:

'
100

UPfl• UMIT 0, "'"-lljjG

I
u.-.,

......... ,.._
i.11'

- ~ ,_,,, ,__ ... -~ I-""'"~ --,.._ I..,' "' • . ,..-/

"" r,,.., -i....- --i-- V
~ ,_ I,, i; _v

~
..

Ioli,,; I.../ ,._
r-..... """'- r-...

Ioli,, l/
~ ~ r-- ."'If! ,/ lo...

~ -..... ,.....
~

i.-,_,..
~

~ ,..... -- ~
L.~-

,-... ~ I
I"-, 1 ,......., ... -....... LJ "' ~

""
IP""~

'" I -,.._ I-" i,, ~ r,
.....,,..._ L, \

10wt1 11,11,r 01 Aub11111tY _j
I I t I J t1 II

1K • H IDIC Frequency in z

Figure 2.11 Equal-loudness curves indicate that the response of the human hearing mechanism
is a function of frequency and loudness levels. This relationship again illustrates the difference
between physical dimensions and psychological experience (after ISO 226).

Finally, an interesting perceptual issue is the question of distinctive voice quality.
Speech from different people sounds different. Partially this is due to obvious factors, such
as differences in characteristic fundamental frequency caused by, for example, the greater
mass and length of adult male vocal folds as opposed to female. But there are more subtle

----------------------~S~p~o;k~en~L~a~ng;u~a~g;e~S~tru~-:ctore

32

t. the concept of timbre (of a sound or instrument) is de-
ll In psychoacous 1cs, . . d

effects as we • . d' ensation by which a subJect can JU ge that two sounds
d th t attnbute of au itory s h d ' . ·1 I

fine as a . th same loudness and pitc are 1ss1m1 ar. n other words
similarly presen~ed a

nd
havtdngd_ff;rences are controlled, the remaining perception of differ~

h all the easily measure 1 . . • h th .
w en . b Th's 1·s heard most easily m music, w ere e same note m the

• cribed to um re. 1 .
ence is as d & h ame duration on a violin sounds different from a flute. The tim-

octave playe .or t e s . ,
same d d d n many physical variables including a sound s spectral power dis-
b~e 0

~ a s~un epenl s
0
velope rate and depth of amplitude or frequency modulation, and

tnbutton, 1ts tempora en , .
the degree of inharmonicity of its harmonics.

2.1.3.3. Frequency Analysis

Researchers have undertaken psychoacoustic experimental work to derive frequency scales
that attempt to model the natural response of the human perceptual system, since the cochlea
of the inner ear acts as a spectrum analyzer. The complex mechanism of the inner ear and
auditory nerve implies that the perceptual attributes of sounds at different frequencies may
not be entirely simple or linear in nature. It is well known that the western musical pitch is
described in octaves' and semi-tones.2 The perceived musical pitch of complex tones is basi­
cally proportional to the logarithm of frequency. For complex tones, the just noticeable dif­
ference for frequency is essentially constant on the octave/semi-tone scale. Musical pitch
scales are used in prosodic research (on speech intonation contour generation).

AT&T Bell Labs has contributed many influential discoveries in hearing, such as criti­
cal band and articulation index, since the turn of the 20th century [3J. Fletcher's work [14]
pointed to the existence of critical bands in the cochlear response. Critical bands are of great
importance in understanding many auditory phenomena such as perception of loudness,
pitch, and timbre. The auditory system performs frequency analysis of sounds into their
compo~ent frequencies. The cochlea acts as if it were made up of overlapping filters having
bandwidths equal to the critical bandwidth. One class of critical band scales is called Bark
frequen~y scale. It is hoped that by treating spectral energy over the Bark scale, a more natu­
ral fit with spectral information processing in the ear can be achieved. The Bark scale ranges
from 1 _to 2~ Barks, corresponding to 24 critical bands of hearing as shown in Table 2.3. As
shown m Figure 2.12, the perceptual resolution is finer in the lower frequencies. It should be
noted that the e • • • al b

fi . ~ s cntic ands are continuous, and a tone of any audible frequency al-
ways mds a cnt1cal band cent d • Th f
th r f . ere on tt. e Bark frequency b can be expressed in terms 0

e mear requency (m Hz) by

b(f) == 13arctan(0.00076J)+ 3.5 * arctan((f /7500)2) (Bark) (2.5)

' A tone of frequ /, .
' There en~y I IS said to be an octave above a to .
quenc arc _12 scnutones in one octave so a tone f fre ne with frequency h if and only if f. = 2fi .

Y l2 if and only if f. ""21112 /
2
:: 1'.05946.t; . 0

quency f.. is said to be a semitone above a tone with fre·

Sound and Human Speech Systems

Table 2.3 The Bark frequency scale.

14000

>- 12000
u
5j 10000
::,

[8000

~ 6000
!
c: 4000
QI

Bark Band#
1
2
3
4
5
6
7
8
9
IO
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Ed!!e (Hz) Center (Hz)
100 50
200 150
300 250
400 350
510 450
630 570
770 700
920 840
1080 1000
1270 1170
1480 1370
1720 1600
2000 1850
2320 2150
2700 2500
3150 2900
3700 3400
4400 4000
5300 4800
6400 5800
7700 7000
9500 8500
12000 10500
15500 13500

0

200~ .L. --===;::::::::::::=:=::::==----,-----....----
0 5 10 15 20

Filter number

Figure 2.12 The center frequency of 24 Bark frequency filters as illustrated in Table 2.3.

33

34
Spoken Language Structure

Another such perceptually motivated scale is the me! frequency scale [41], which is
linear below J kHz, and logarithmic above, with equal numbers of samples taken below and
above J kHz. The mel scale is based on experiments with simple tones (sinusoids) in which
subjects were required to divide given frequency ranges into four perceptua1ly equal inter­
vals or to adjust the frequency of a stimulus tone to be half as high as that of a comparison
tone. One mel is defined as one thousandth of the pitch of a 1 kHz tone. As with all such
attempts, it is hoped that the mel scale more closely models the sensitivity of the human ear
than a purely linear scale and provides for greater discriminatory capability between speech
segments. Mel-scale frequency analysis has been widely used in modem speech recognition
systems. It can be approximated by:

B(f) = l 125ln(l + f /700) (2.6)

The me! scale is plotted in Figure 2.13 together with the Bark scale and the bilinear trans­
form (see Chapter 6).

1,---:--~--.----r--.----.----:::~;;;-i

re
i 0.6
.!::!

i 0.4 .

J 0.2
Bark scale
mel scale
bilinear transform

oo;-,1~CXX>oo~2000~1~3<XX>~:---::;4000~:---;:sooo::::;:----:sooo:-:':---.:.__-J
• froouencv ,...,, , 7000 8000

Figure 213 F • ., • ·-J ' ' -,
tr • requency warping according to the B k

ansform for a== 0.6: linear frequency in the - _ar scale, ER!3 scale, mel-scale, and bilinear
x axis and normalized fre •

A number of technique . th quency m the y-axis.
I • s m e modem s k I

:,1a ys1s, and dynamic feature, have benefited :o en anguage system, such as cepstral
iscussed throughout this book. emendously from perceptual research as

2.t.3.4. Masking

Frequency masking is a heno
sound close in fre ue p menon under which one sound

q ncy has a high enough level Th fi cannot be perceived if another
• e irst sound masks the other one. Fre-

Sound and Human Speech Systems
35

quency-masking levels have been determined empirically, with complicated models that
take into account whether the masker is a tone or noise, the masker's level, and other con­
siderations.

We now describe a phenomenon known as tone-masking noise. It has been determined
empirically that noise with energy E.v (dB) at Bark frequency g masks a tone at Bark fre­
quency b if the tone's energy is below the threshold

Tr(b) = E.v -6.025-0.275g+S,.(b-g) (dB SPL) (2.7)

where the spread-of-masking function S
111

(b) is given by

Sm(b) = 15.81 + 7.5(b+ 0.474)- I 7.5✓1 + (b+ 0.474)2 (dB) (2.8)

We now describe a phenomenon known as noise-masking tone. It has been determined
empirically that a tone at Bark frequency g with energy Er (dB) masks noise at Bark fre­
quency b if the noise energy is below the threshold

TN(b) = E7 -2.025-0.175g+Sm(b-g) (dB SPL) (2.9)

Masking thresholds are commonly referred to in the literature as Bark scale functions
of just noticeable distortion (JND). Equation (2.8) can be approximated by a triangular
spreading function that has slopes of +25 and-10 dB per Bark, as shown in Figure 2.14.

Slll(b-g)

----------------~ 25 dB I Bark : 10 dB/ Bark
I
I

g b (Barks)

Figure 2.14 Contribution of Bark frequency g to the masked threshold Sm(b).

In Figure 2.15 we show both the threshold of hearing and the masked threshold of a
tone at 1 kHz with a 69 dB SPL. The combined masked threshold is the sum of the two in
the linear domain

(2.10)

which is approximately the largest Qf the two.
In addition to frequency masking, there is a phenomenon called temporal masking by

which a sound too close in time to another sound cannot be perceived. Whereas premasking
tends to last about 5 ms, postmasking can last from 50 to 300 ms. Temporal masking level of
a masker with a uniform level starting at Oms and lasting 200 ms is shown in Figure 2.16.

36

------------------~S;p~o~ke~n~L~a~ng;u~a~g;e~S;tru~~

80 •

- . - . • • • • I ~ ~ ~1.
• • I• • • .. - - •

70 · • • · · " .

60· • \ · •••• : ••••••••• ·t~, .::::::. ·; · / ·
, · /. . \· . i 50 • • • ' , · • • • • • • / ' \ • - ,. -

:; .. :!\•··•····· ····t·•··\· , I

"' 30 ••• • - ·, ·:. • • • • • • - I ·: •• \" ~ . -c. 40 • '- I , \

7
. -

·20 • •• • • ·~~·· - •••• 7· ·.·: :\ .. ·/· - ' - ,.. '\ 10 • • • • " • • ' • • • • \ '

. - .. - - - • - - ~ ... ~ . 0 • • - •• - - '. -

·10'-------',2 ------ 10'
10

Frequency (Hz)
10'

f h • nd spread of masking threshold for a J kHz sine-
Figure 2.15 Absolute threshold oTh eanng I~ masked threshold is approximately the largest of wave masker with a 69 dB SPL. e overa
the two thresholds.

60

50 -

!40
I ..
! 30
F

120

!
10 •

0
·100 ·50 0 50 100 150 200 250 300 350 400

11me Cmsl

Figure 2.16 Temporal masking level of a mask~r ~ith a uniform level starting at O ms and
lasting 200 ms.

2.2. PHONETICS AND PHONOLOGY

We now discuss basic phonetics and phonology needed for spoken language processing.
Phonetics refers to the study of speech sounds and their production, classification, aod ~­
scription. Phonology is the study of the distribution and patterning of speech soufidS 10 3

language and of the tacit rules governing pronunciation.

2.2.1. Phonemes

LinguiSl Ferdinand de Saussere (1857-1913) is credited with the observation that the relation
between a sign and the object signified by it is arbitrary. The same concept, a certain yeJloW
and black fly' ·a1 • . . - Japanese. mg soc1 insect, has the sign honeybee in English and mitsubachc 1fl

Phonetics and Phonology
37

There is no particular relation between the various pronunciations and the meaning, nor do
these pronunciations per se describe the bee's characteristics in any detail. For phonetics,
this means that the speech sounds described in this chapter have no inherent meaning, and
should be randomly distributed across the lexicon, except as affected by extraneous histori­
cal or etymological considerations. The sounds are just a set of arbitrary effects made avail­
able by human vocal anatomy. You might wonder about this theory when you observe, for
example, the number of words beginning with sn that have to do with nasal functions in
English: sneeze, snort, sniff, snot, s11ore, snuffle, etc. But Saussere's observation is generally
true, except for obvious onomatopoetic (sound) words like buzz.

Like fingerprints, every speaker's vocal anatomy is unique, and this makes for unique
vocalizations of speech sounds. Yet language communication is based on commonality of
fonn at the perceptual level. To allow discussion of the commonalities, researchers have
identified certain gross characteristics of speech sounds that are adequate for description and
classification of words in dictionaries. They have also adopted various systems of notation
to represent the subset of phonetic phenomena that are crucial for meaning.

As an analogy, consider the system of computer coding of text characters. In such sys­
tems, the character is an abstraction, e.g. the Unicode character U+0041. The identifying
property of this character is its Unicode name LATIN CAPITAL LETTER A. This is a genu­
ine abstraction; no particular realization is necessarily specified. As the Unicode 2.1 stan­
dard [I] states:

The Unicode Standard does not define glyph images. The standard defines how char­
acters are interpreted, not how glyphs are rendered. The software or hardware-rendering
engine of a computer is responsible for the appearance of the characters 011 the screen. The
Unicode Standard does not specify the size, shape, nor orientation of on-screen characters.

Thus, the U+0041 character can be realized differently for different purposes, and in
different sizes with different fonts:

U+004! .+ A, A, A, A, A, ...

The realizations of the character U+0041 are called glyphs, and there is no distin­
guished uniquely correct glyph for U+0041. In speech science, the term phoneme is used to
denote any of the minimal units of speech sound in a language that can serve to distinguish
one word from another. We conventionally use the tenn phone to denote a phoneme's
acoustic realization. In the example given above, U+0041 corresponds to a phoneme and the
various fonts correspond to the phone. For example, English phoneme It/ have two very dif­
ferent acoustic realizations in the words sat and meter. You had better treat them as two di f­
ferent phones if you want to build a spoken language system. We will use the terms phone
or phoneme interchangeably to refer to the speaker-independent and context-independent
units of meaningful sound contrast. Table 2.4 shows a complete list of phonemes used in
American English. The set of phonemes will differ in realization across individual speakers.
But phonemes will always function systematically to differentiate meaning in words, just as
the phoneme /pl signals the word pat as opposed to the similar-sounding but distinct bat.
The important contrast distinguishing this pair of words is Ip/ vs. lb/.

38 Spoken Language Structure

In this section we concentrate on the basic qualities that define and differentiate ab­
stract phonemes. In Section 2.2.1.3 below we consider why and how phonemes vary in their
actual realizations by different speakers and in different contexts.

Table 2.4 English phonemes used for typical spoken language systems.

Phonemes Word Examples Description
iy feel, eve, me front close unrounded
ih fill, hit, lid front close unrounded (lax)
ae at, carry, gas front open unrounded (tense)
aa father, ah, car back open unrounded
ah cut, bud, up open-mid back unrounded
ao dog, lawn, caught open-mid back round
ay tie, ice, bite diphthong with quality: aa + ih
ax ago, comply central close mid (schwa)
ey ate, day, tape front close-mid unrounded (tense)
eh pet, berry, ten front open-mid unrounded
er turn, fur, meter central open-mid unrounded rhoti-
ow go, own, tone back close-mid rounded
aw foul, how, our diphthong with quality: aa + uh
oy toy, coin, oil diphthong with quality: ao + ih
uh book, pull, good back close-mid unrounded (Jax)
uw tool, crew, moo back close round
b big, able, tab voiced bilabial plosive
p put, open, tap voiceless bilabial plosive
d dig, idea, wad voiced alveolar plosive
r talk, sat voiceless alveolar plosive &
r meter alveolar flap
f gut, angle, tag voiced velar plosive

cur, ken, take voiceless velar plosive
I fork, after, if voiceless labiodental fricative
v var, over, have voiced labiodental fricative
s sit, cast, toss voiceless alveolar fricative
;h zap, lazy, haze voiced alveolar fricative
dh thin, nothing, truth voiceless dental fricative

then.father, scythe voiced dental fricative
sh she, cushion, · wash · 1 zh voi_ce ess postalveolar fricative genre, azure d
l lid v01ce postalveolar fricative
l elbow, sail alveolar lateral approximant
r red, part, far velar lateral approximant
Y yacht, yard retroflex approximant
w with, away pal~tal sonorant glide
hh help, ahead, hotel la~1ovelar sonorant glide
m mat, amid, aim voiceless glottal fricative
n no, end, pan bilabial nasal
ng sing, a11ger alveolar nasal Jt ~hin, archer, march velar nasal

Joy, agile, edge vo!celess alveolar affricate· t + sh
voiced alveolar affricate: d·+ zh

Phonetics and Phonology 39

2.2.1.1. Vowels

The tongue shape and positioning in the oral cavity do not form a major constriction of air
flow during vowel articulation. However, variations of tongue placement give each vowel its
distinct character by changing the resonance, just as different sizes and shapes of bottles
give rise to different acoustic effects when struck. The primary energy entering the pharyn­
geal and oral cavities in vowel production vibrates at the fundamental frequency. The major
resonances of the oral and pharyngeal cavities for vowels are. called Fl and F2 - the first and
second fom1ants, respectively. They are determined by tongue placement and oral tract
shape in vowels. and they detennine the characteristic timbre or quality of the vowel.

The relationship of Fl and F2 to one another can be used to describe the English vow­
els. While the shape of the complete vocal tract determines the spectral outcome in a com­
plex, nonlinear fashion, generally Fl corresponds to the back or pharyngeal portion of the
cavity, while F2 is determined more by the size and shape of the oral portion, forward of the
major tongue extrusion. This makes intuitive sense - the cavity from the glottis to the tongue
extrusion is longer than the forward part of the oral cavity, thus we would expect its reso­
nance to be lower. In the vowel of see, for example, the tongue extrusion is far forward in
the mouth, creating an exceptionally long rear cavity, and correspondingly low Fl. The for­
ward part of the oral cavity, at the same time, is extremely short, contributing to higher F2.
This accounts for the wide separation of the two lowest dark horizontal bands in Figure 2.9,
corresponding to Fl and F2, respectively. Rounding the lips has the effect of extending the
front-of-tongue cavity, thus lowering F2. Typical values of Fl and F2 of American English
vowels are listed in Table 2.5.

Table 2.5 Phoneme labels and typical formant values for vowels of English.

Vowel Labels Mean Fl (Hz) Mean F2 (Hz)
iy (feel) 300 2300
ih (fill) 360 2100

ae (gas) 150 1750
aa (father) 680 1100

ah (cut) 720 1240
ao (dog) 600 900

ax (comply) 720 1240
eh (pet) 570 1970
er (turn) 580 1380
ow (tone) 600 900
uh (good) 380 950
uw (tool) 300 940

The characteristic Fl and F2 values for vowels are sometimes called formant targets,
which are ideal locations for perception. Sometimes, due to fast speaking or other limitations
on performance, the speaker cannot quite attain an ideal target before the articulators begin
shifting to targets for the following phoneme, which is phonetic context dependent. Addi­
tionally, there is a special class of vowels that combine two distinct sets of FI/F2 targets.

-Spoken Language Structure

40

• Jators move the initial vowel targets glide
. As the art1cu • . . .

are called diphthongs. . h rt'iculators are workmg faster m production of
These fi tion Smee t e a

thly to the final con igura • et values of the component values are not fully
smoo . he ideal formant targ ' .

diphthong, someumes l . English are listed m Table 2.6.
a . T ical diphthongs of Amencan .
attained. yp Table 2.6 The diphthongs of English.

Diphthong Labels Compone_nts
ay (tie) laa/ -# /~yl
ey (ate) /eh/ -# /1!/
oy (coin) /ao/-# /ryl
aw (foul) /aal -# /uwl

Figure 2.17 shows the first two formants for a number of typical vowels.

2500

2000

~~500

~
i1000 u.

500

0
•

/iy/ (feel) /ih/ {fill)

-+-F2 (Hz)

-F1 (Hz)

•

/ae/ (gas) /aa/ (father) /ah/ {cut)
Vowel Phonemes

Figure 2.17 Fl and F2 values for articulations of some English vowels.

..
/ao/ {dog)

The major articulator for English vowels is the middle to rear portion of the to~g~e.
The position of the tongue's surface is manipulated by large and powerful muscles m its

root, which move it as a whole within the mouth. The linguistically important dimensions ~f
movement are generally the ranges [front ~ back] and [high ~ low]. You can feel th_15

movement easily. Say mentally, or whisper, the sound /iyl (as in see) and then /aal (as m
father). Do it repeatedly, and you will get a clear perception of the tongue movement from
high to low. Now try liyl and then luwl (as in blue), repeating a few times. You will get a
clear perception of place of articulation from front /iyl to back /uwl. Figure 2.18 shows a
schematic characterization of English vowels in terms of relative tongue positions. There ~e
two kinds of vowels: those in which tongue height is represented as a point and those in
which it is represented as a vector.

Though the tongue hump is the major actor in vowel articulation other articulators
co • ' d me mto play as well. The most important secondary vowel mechanism for English an
many olher languages is lip rounding. Repeat the exercise above, moving from the fiy/ (see)

Phonetics and Phonology
41

to the !uw/ (blue) position. Now rather than noticing the tongue movement. pay attention to
your lip shape. When you say liyl, your lips will be flat, slightly open, and somewhat spread.
As you move to luw!, they begin to round out, ending in a more puckered position. This
lengthens the oral cavity during luwl, and affects the spectrum in other ways.

high

yuw e /IW

-..

. ""
t/.w back

I

• ao

• aa

low

Figure 2.18 Relative tongue positions of English vowels [24).

Though there is always some controversy, linguistic study of phonetic abstractions,
called phonology, has largely converged on the five binary features: +/- high, +/- low, +/­
front, +/- back, and +/- round, plus the phonetically ambiguous but phonologically useful
feature +/- tense, as adequate to uniquely characterize the major vowel distinctions of Stan­
dard English (and many other languages). Obviously, such a system is a little bit too free
with logically contradictory specifications, such as [+high, +low], but these are excluded
from real-world use. These features can be seen in Table 2.7.

Table 2.7 Phonological (abstract) feature decomposition of basic English vowels.

Vowel high low front back round tense
iy + + +
ih + +
ae + + +
aa + +
ah +
ao + + + +
ax
eh +
ow + + +
uh + +
uw + + +

- .
Spoken Language Structure

42

. 11 searchers to make convenient statements about . f b t analysis a ows re
This kmd o a strac . .1 1 under certain conditions. For example, one may

f ls that behave s1m1 ar y
classes o vowe . h ls to indicate the set /iy, ih, uh, uwl.
speak simply of the h1g vowe

2.2.1.2. Consonants

I are characterized by significant constriction or obstruc-
c nants as opposed to vowe s, . d h

onso • 1 di oral cavities Some consonants are voice ; ot ers are not. f n ·n the pharyngea an or • . f . 10 1
• • that is they share the same configurahon o articulators, Many consonants occur m pairs, • . . k O . .

f h • dd'tionally has voicmg which the other lac s. ne such pair 1s and one member o t e patr a I
• • rty that distinguishes them shows up m the non-penod1c noise of Is, zl, and the vo1cmg prope . d h /z/

• . • 1 t I I • p1·gure 2 5 as opposed to the v01ced consonant en -p one, . Man-the m1t1a segmen s m •
• I • &'. rs to the articulation mechamsm of a consonant. The maJor d1stmc-ner of art1cu at1on re,e

tions in manner of articulation are listed in Table 2.8.

Table 2.8 Consonant manner of articulation.

Sample Example
Manner Phone Words Mechanism

Plosive /pl tat, tap Closure in oral cavity

Nasal /ml team, meet Closure of nasal cavity
Fricative Isl sick, kiss Turbulent airstream noise
Retroflex liquid Ir/ rat, tar Vowel-like, tongue high and curled back
Lateral liquid Ill lean, kneel Vowel-like, tongue central, side airstream
Glide /yl,/w/ yes, well Vowel-like

The English phones that typically have voicing without complete obstruction or nar­
rowing of the vocal tract are called semivowels and include IL, rl, the liquid group, and /y, wl,
the glide group. Liquids, glides, and vowels are all sonorant, meaning they have continuous
voicing. Liquids Ill and Ir! are quite vowel-like and in fact may become syllabic or act en­
tirely as vowels in certain positions, such as the / at the end of edible. In Ill, the airstream
flows around the sides of the tongue, leading to the descriptive term lateral. In Ir/, the tip of
the tongue is curled back slightly, leading to the descriptive term retroflex. Figure 2.19
shows some semivowels.

. Glides ly, wl are basically vowels liy, uwl whose initial position within the syllable re­
q~ue them to be a little shorter and to lack the ability to be stressed, rendering them ju5l

different :-nou~h from true vowels that they are classed as a special category of consonant.
;re~vocahc glides that share the syllable-initial position with another consonant such as the
y/ m lhe ~econd syllable of computer lk uh m . p y uw . t er/, or the /wl in qui;k lk w ih kl,
are sometimes called on- l 'd Th . .

• g I es. e semivowels, as a class are sometimes called approxt-mants, meaning that th t ,
pletely co ta e ongue approaches the top of the oral cavity but does not com-

n ct so as to obstruct the air flow. ,
Even the non-sonorant cons th .

tion may still maintai . ?nants at require complete or close-to-complete obstrUC-
n some voicmg before or during the obstruction, until the pressure dif-

Phonetics and Phonology 43

ferential across the glottis starts to disappear, due to the closure. Such voiced consonants
include lb,d,g, Z, zh, vi. They have a set of counterparts that differ only in their characteristic
lack of voicing: lp,t,k, s, sh, fl.

0.5 -

0 0.1 0.2 0.3 0.4 0.5 0.6

o Ul.!IIIIIMll illiiliiiltilllii,-.11,ajillll~liaiiIMMl6Mllill..Ailll!:.:.r...--.-1L;;~
0 0.2 0.3 0.4 0.5 0.6

Time (seconds)
!yl Ill /er/

Figure 2.19 Spectrogram for the word yeller, showing semivowels ly/, ll!, fer/ (approximate
phone boundaries shown with vertical lines).

Nasal consonants /m,11/ are a mixed bag: the oral cavity has significant constriction (by
the tongue or lips), yet the voicing is continuous, like that of the sonorants, because, with the
velar flap open, air passes freely through the nasal cavity, maintaining a pressure differential
across the glottis.

A consonant that involves complete blockage of the oral cavity is called an obstruent
stop, or plosive consonant. These may be voiced throughout if the trans-glottal pressure drop
can be maintained long enough, perhaps through expansion of the wall of the oral cavity. In
any case, there can be voicing for the early sections of stops. Voiced, unvoiced pairs of stops
include: lb.pl, /d,tl, and lg.kl. In viewing the waveform of a stop, a period of silence corre­
sponding to the oral closure can generally be observed. When the closure is removed (by
opening the constrictor, which may be lips or tongue), the trapped air rushes out in a more or
less sudden manner. When the upper oral cavity is unimpeded, the closure of the vocal folds
themselves can act as the initial blocking mechanism for a type of stop heard at the very
beginning of vowel articulation in vowel-initial words like atrophy. This is called a glottal .
stop. Voiceless plosive consonants in particular exhibit a characteristic aperiodic burst of
energy at the (articulatory) point of closure as shown in Figure 2.20 just prior to Iii. By com-

Spoken Language Structure
44

-0.5

0 0.1 0.2 0.3 0.4 0.5 0.6

4000---1----,-----r-t---.-------;---~,

~ 3000 ' ' •' »:.. ~ ... , ir
~ I fl ;r, , .

[2000 • ·Hffll~►~l tl Ii t • t •
w 1000 :JvJ~tu.ulh~~>H~
~ oL_J....;.·- ----•·-·,_~~~~•Mi~•• ~~-----:-;---_j

o Q1 Q2 Q31 Q4 QS Q6
Time (seconds)

p(/p/) i(lihl) n(lnl)

Figure 2.20 Spectrogram: stop release burst of /pl in the word pin.

parison, the voicing of voiced plosive consonants may not always be obvious in a spectro­
gram.

A consonant that involves nearly complete blockage of some position in the oral cav­
ity creates a narrow stream of turbulent air. The friction of this air stream creates a non­
periodic hiss-like effect. Sounds with this property are called fricatives and include Is, 1).
There is no voicing during the production of s, while there can be voicing (in addition to the
frication noise), during the production of z, as discussed above. Is, v have a common place
of articulation, as explained below, and thus form a natural similarity class. Though contro­
versial, /hi can also be thought of as a (glottal) fricative. / sf in word-initial position and /1} in
word-final position are exemplified in Figure 2.5.

Some sounds are complex combinations of manners of articulation. For example, the
affricates consist of a stop (e.g., It/), followed by a fricative [e.g., /sh/) combining to make_ a
unified sound with rapid phases of closure and continuancy (e.g., {t + sh} == ch as 10

church). The affricates in English are the voiced/unvoiced pairs: /j/ (d + zh) and /chi (t + sh).
The complete consonant inventory of English is shown in Table 2.9.

Consider the set Im/, In/, Ing/ from Table 2.9. They are all voiced nasal consonants, yet
they sound distinct to us. The difference lies in the location of the major constriction along
~he top of ~e oral cavity (from lips to velar area) that gives each consonant its unique qual·
tty. The articulator used to touch or approximate the given location is usually some spot
along lhe length of the tongue. As shown in Figure 2.21 the combination of articulator and
place of articulation gives each consonant its characteristic sound:

Phonetics and Phonology

. Table 2.9 Manner of articulation of English consonants.

Consonant Labels Consonant Examples

b big. able, tab

p put, open. tap
d dig, idea, wad
t talk, sat
g gut, angle. tag
k cut, oaken, take
V vat, over, have
f fork, after, if
z zap, lazy, haze
s sit, cast, toss

dh then, father, scythe
th thin. nothing, truth

zh genre, azure, beige

sh she, cushion, wash

jh joy, agile, edge

ch chin, archer, march

l lid, elbow, sail

r red, part, far

y yacht, onion, yard

w with, away

hh help, ahead, hotel

m mat, amid, aim

n no,end,pan

ng sing, anger, drink

Alveolar:

Labiodental: t, d, n, s, z, r, l

I ~v,rf . Dental,

_,,) \ th, dh
Labial:.

m,p,b, w

Voiced?

+

+

+

+

+

+

+

+

+
+
+
+
+
+
+
+

Palat~

sh, zh,y \

Velar:
k,g, ng

Manner

plosive
plosive
plosive
plosive
plosive
plosive
fricative
fricative
fricative
fricative
fricative
fricative
fricative
fricative
affricate
affricate
lateral

retroflex
glide
glide

fricative
nasal
nasal
nasal

Figure 2.21 The major places of consonant articulation with respect to the human mouth.

45

46 Spoken Language Structur~

• The lnbial consonants have their major constriction at the lips. This includes
/pl, /bl (these two differ only by manner of articulation) and Im/ and /w/.

• The class of dentnl or labio-dental consonants includes If, vi and Ith, dlz! (the
members of these groups differ in manner, not place).

• Alveolar consonants bring the front part of the tongue, called the tip or the
part behind the tip called the blade, into contact or approximation to the al­
veolar ridge, rising semi-vertically above and behind the teeth. These include
It, d, n, s, z, r, ll. The members of this set again differ in manner of articula­
tion (voicing, continuity, nasality), rather than place.

• Palatal consonants have approximation or constriction on or near the roof of
the mouth, called the palate. The members include /sh, z)i, yl.

• Velar consonants bring the articulator (generally the back of the tongue), up to
the reannost top area of the oral cavity, near the velar flap. Velar consonants in
English include lk, gl (differing by voicing) and the nasal continuant Ing/.

With the place terminology, we can complete the descriptive inventory of English
consonants, arranged by manner (rows), place (columns), and voiceless/voiced (pairs in
cells) as illustrated in Table 2.10.

Table 2.10 The consonants of English arranged by place (columns) and manner (rows).

Labio-
Labial dental Dental Alveolar Palatal Velar Glottal

Plosive vb td kg ?

Nasal m n ng
Fricative fv th dh sz sh zh h

Retroflex r
sonorant
Lateral I
sonorant
Glide w y

2.2.1.3. Phonetic Typology

The oral, nasal, pharyngeal, and glottal mechanisms actually make available a much wider
range of effects than English happens to use. So, it is expected that other languages w~u!d
utilize other vocal mechanisms, in an internally consistent but essentially arbitrary fashi~n,
to represent their lexicons. In addition, often a vocal effect that is part of the systematic_ hn·
guistic phonetics of one language is present in others in a less codified, but still percepttble,
form. For example, Japanese vowels have a charactetistic distinction of length that can be
hard for non-natives to perceive and to use when learning the language. The words kado
(corner) and kaado (card) are spectrally identical, differing only in that kado is much shorter

Phonetics and Phonology 47

in all contexts. The existence of such minimally-contrasting pairs is taken as conclusive evi­
dence that length is phonemically distinctive for Japanese. As noted above, what is linguisti­
cally distinctive in any one language is generally present as n less me,mingful signaling
dimension in other languages. Thus, vowel length can be manipulated in any English word
as well, but this occurs either consciously for emphasis or humorous effect, or unconsciously
and very predictably at clause and sentence end positions, rather than to signal lexical iden­
tity in all contexts, as in Japanese.

Other interesting sounds that the English language makes no linguistic use of include
the trilled r sound and the implosive. The trilled r sound is found in Spanish, distinguishing
(for example) the words pero (but) and perm (dog). This trill could be found in times past as
a non-lexical sound used for emphasis and interest by American circus ringmasters and other
showpersons.

While the world's languages have all the variety of manner of articulation exemplified
above and a great deal more, the primary dimension lacking in English that is exploited by a
large subset of the world's languages is pitch variation. Many of the huge language families
of Asia and Africa are tonal, including all varieties of Chinese. A large number of other lan­
guages are not considered strictly tonal by linguistics, yet they make systematic use of pitch
contrasts. These include Japanese and Swedish. To be considered tonal, a language should
have lexical meaning contrasts cued by pitch, just as the lexical meaning contrast between
pig and big is cued by a voicing distinction in English. For example, Mandarin Chinese has
four primary tones (tones can have minor context-dependent variants just like ordinary
phones, as well) as shown in Table 2.11.

Table 2.11 The contrastive tones of Mandarin Chinese.

Tone Shane Example Chinese Meaning
] High level ma ~Yi mother
2 High rising ma ~ numb

3 Low rising ma ~ horse
4 High falling ma "" Qi to scold

Though English does not make systematic use of pitch in itc; inventory of word con­
trasts, nevertheless, as we always see with any possible phonetic effect, pitch is systemati­
cally varied in English to signal a speaker's emotions, intentions, and attitudes, and it has
some linguistic function in signaling grammatical structure as well. Pitch variation in Eng­
lish will be considered in more detail in Chapter 15.

2.2.2. The Allophone: Sound and Context

The vowel and consonant charts provide abstract symbols for the phonemes - major sound
distinctions. Phonemic units should be correlated with potential meaning distinctions. For
example, the change created by holding the tongue high and front (liy/) vs. directly down

48 Spoken Language Structure

from the (frontal) position for /eh/, in the consonant context Im _ nl, corresponds to an im­
portant meaning distinction in the lexicon of English_: 1~1ean Im iy n~ vs. m_en '"! eh nl. This
meaning contrast, conditioned by a pair of rather s1m1lar_ s~un~s, m an 1dent1cal context,
justifies the inclusion of liyl and /eh/ as logically separate d1stmct10ns.

However, one of the fundamental, meaning-distinguishlng sounds is often modified in
some systematic way by its phonetic neighbors. The process by which neighboring sounds
influence one another is called coarticulation. Sometimes, when the variations resulting
from coarticulatory processes can be consciously perceived, the modified phonemes are
called allophones. Allophonic differences are always categorical, that is, they can be under­
stood and denoted by means of a small, bounded number of symbols or diacritics on the

basic phoneme symbols.
As an experiment, say the word like to yourself. Feel the front of the tongue touching

the alveolar ridge (cf. Figure 2.21) when realizing the initial phoneme Ill. This is one allo­
phone of Ill, the so-called light or clear Ill. Now say kill. In this word, most English speakers
will no longer feel the front part of the tongue touch the alveolar ridge. Rather, the Ill is real­
ized by stiffening the broad midsection of the tongue in the rear part of the mouth while the
continuant airstream escapes laterally. This is another allophone of Ill, conditioned by its
syllable-final position, called the dark Ill. Predictable contextual effects on the realization of
phones can be viewed as a nuisance for speech recognition, as will be discussed in Chapter
9. On the other hand, such variation, because it is systematic, could also serve as a cue to the
syllable, word, and prosodic structure of speech.

Now experiment with the sound /pl by holding a piece of tissue in front of your mouth
while saying the word pin in a normal voice. Now repeat this experiment with spin. For
most English speakers, the word pin produces a noticeable puff of air, called aspiration. But
the s'.1111e phone~e, Ip/, embedded in the consonant cluster tsp/ loses its aspiration (burst, see
the lmes bracketmg the /pl release in pin and spin in Figure 2.22), and because these two
typ~s of Ip/ are in c~mpleme~tary distribution (completely determined by phonetic and syl-
lab1c context), the difference 1s considered allophonic. ·

. Try to speak the word bat in a framing phrase say bat again. Now speak say bad
again. Can you feel the length difference in the vowel / ael? A vowel before a voiced conso­
~antht,_ e.g., Id/, seems typically longer than the same vowel before the unvoiced counterpart.
m ts case /ti.

t A sound phonemicized as It/ or Id/, that is, a stop made with the front part of the

i~nru:;~r~~~t::t:e~i:d to a qui~k tongue tap _that has a different sound than either /ti or /di

vowel (coda posi~ion) /~i°ces~ ~ called flappmg. It occurs when /ti or Id/ closes a stressed
ter humidity and ca o owe y an unstressed vowel, as in: bitter, batter, murder, quar-

, , n even occur across w d I •
you can say that again So ti' th or s as ong as the preconditions are met, as in

• me mes e velar flap ope t (. • • • • g a characteristically nasal quality t ns oo soon ant1c1pat1on), g1v1n
have a more detailed discuss· o saloml e pre-n~al vowels such as /ae/ in ham vs. had. We

rnn on ophones m Chapter 9.

Phonetics and Phonology

0 0.5 1.5

4000rr--r------.-------+.-1---------.
"N
6 3000
>,

g 2000 •
Q)
:::,

af 1000 ·
u::

pin (Ip ih nl)
0.5 1 1.5

lime (seconds) spin (Is p ih nl)

Figure 2.22 Spectrogram: bursts of pin and spin. The relative duration of a p-burst in different
phonetic contexts is shown by the differing width of the area between the vertical lines.

2.2.3. Speech Rate and Coarticulation

49

In addition to allophones, there are other variations in speech for which no small set of es­
tablished categories of variation can be established. These are gradient, existing along a
scale for each relevant dimension, with speakers scattered widely. In general, it is harder to
become consciously aware of coarticulation effects than of allophonic alternatives.

Individual speakers may vary their rates according to the content and setting of their
speech, and there may be great inter-speaker differences as well. Some speakers may pause
between every word, while others may speak hundreds of words per minute with barely a
pause between sentences. At the faster rates, formant targets are less likely to be fully
achieved. In addition, individual allophones may merge.

For example (20), consider the utterance Did you hit it to Tom? The pronunciation of
this utterance is Id ih d y uw h ih t ih t t uw t aa ml. However, a realistic, casual rendition of
this sentence would appear as Id ih jh a.x hh ih dx ih t ix t aa ml, where Ii.xi is a reduced
schwa lax/ that is short and often unvoiced, and Id.xi is a kind of shortened, indistinct stop,
intermediate between /di and /ti. The following five phonologic rules have operated on alter­
ing the pronunciation in the example:

• Palatalization of/ di before lyl in dirJ. you

• Reduction of unstressed /ul to schwa in yQu

--- -----------::--:--:-----Spoken Language Structure
50

• Flapping of intervocalic /ti in hil it

• Reduction of schwa and devoicing of /u/ in ta

• Reduction of geminate (double consonant) It/ in iLJo

There are also coarticulatory influences in the spectral appearance of speech sounds
which can only be understood at the level of spectral analysis. For example, in vowels, con~
sonant neighbors can have a big effect on formant trajectories near the boundary. Consider
the differences in Fl and F2 in the vowel /eh/ as realized in words with different initial con­
sonants bet, debt, and get, corresponding to the three major places of articulation (labial
alveolar, and velar), illustrated in Figure 2.23. You can see the different relative spreads of
Fl and F2 following the initial stop consonants.

0.5

0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8

bet (lb eh ti)

Syllables and Words

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

4000

t ., .. ~,1t~~~t; ,
>,

~ -. g 2000 / }. •·' \, ;';''' r a, ·., ;.,,,
::i ~ !}:'I•'

l

~ 1000
•.
I

u. 1' 1

0
0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8

lime (seconds)

ebb (I eh bl) head (/hit eh di) egg (/eh gl)

Figure 2.24 Spectrogram: ebb, head, and egg. Note the increasing relative spread of Fl and
F2 at the final vowel-consonant transition in each word.

2.3. SYLLABLES AND W OROS

51

Phonemes are small building blocks. To contribute to language meaning, they must be or­
ganized into longer cohesive spans, and the units so formed must be combined in character­
istic patterns to be meaningful, such as syllables and words in the English language.

2.3.1. Syllables

An intermediate unit, the syllable, is sometimes thought to interpose between the phones and
the word level. The syllable is a slippery concept, with implications for both production and
perception. Here we will treat it as a perceptual unit. Syllables are generally centered around
vowels in English, giving two perceived syllables in a word like tomcat: ltOm-cAtl. To com­
pletely parse a word into syllables requires making judgments of consonant affiliation (with
the syllable peak vowels). The question of whether such judgments should be based on ar­
ticulatory or perceptual criteria, and how they can be rigorously applied, remains unre­
solved.

52 Spoken Language Structure

Syllable centers can be thought of as peaks in sonority (hig_h-amplitude, periodic sec.
tions of the speech waveform). These sonority peaks have ~ffiliated shoulders of strictly
non-increasing sonority. A scale of sonority can be used, ranking consonants along a contin­
uum of stops, affricates, fricatives. and approximants. So, in a word like verbal, the syllabi­
fication would be ver-bal, or verb-al, but not ve-rbal, because putting the approximant Ir/
before the stop /bl in the second syllable would violate the non-decreasing sonority require­
ment heading into the syllable.

As long as the sonority conditions are met, the exact affiliation of a given consonant
that could theoretically affiliate on either side can be ambiguous, unless detennined by
higher-order considerations of word structure, which may block affiliation. For example, in
a word like beekeeper, an abstract boundary in the compound between the component words
bee and keeper keeps us from accepting the syllable parse: beek-eeper, based on lexical in­
terpretation. However, the same phonetic sequence in beaker could, depending on one's
theory of syllabicity, permit affiliation of the k: beak-er. In general, the syllable is a unit that
has intuitive plausibility but remains difficult to pin down precisely.

/ Syllable /

,-.-..::;....._~ ~ Ir-R-ime--,I

~
~

Onset

Nucleus

str eh nxths

Figure 2.25 The word/syllable strengths (Is tr eh .

Syllables are thought (b r . . nx
th

sf) is the longest syllable of E~lish.
used are w rth kn . Y mgmst1c theorists) t h •
sists of a o owing. Consider a big syllable s ho ave mternaJ structure, and the tenns
positions vThoweI peak, called the nucleus surrou udc dasbstrengths Is tr eh n.x th sf. This con-

• e onset co • • ' n e y the oth · · ·
trailing cons nsists of mitial consonants "f er sounds m charactenstic
coda consist:noanf ts (the Part of the syllable that ma

1
tt an~, and the rime is the nucleus with

consonants • th . ers m dete • • . Th
consonant in a fin I I m e nme following th nnmmg poetic rhyme). e
lab!e parse l11ee ahc uster would belong to an e ~ucleus (in some treatments the last

as s own • p· appentbx) Th· '
domain of coarticulatio m i~ure 2.25. The syllable is • ~s can be diagrammed as a syl-
more than the sam n. that is, sounds within a II b sometimes thought to be the primar}'

e sounds sy a le i fl
separated by a syllabi b n uence one another's realization

e oundary.

Syllables and Words 53

2.3.2. Words

The concept of words seems intuitively obvious to most speakers of Indo-European lan­
guages. It can be loosely defined as a lexical item, with an agreed-upon meaning in a given
speech community, that has the freedom of syntactic combination allowed by its type (noun,
verb, etc.).

In spoken language, there is a segmentation problem: words run together unless af­
fected by a disfluency (unintended speech production problem) or by the deliberate place­
ment of a pause (silence) for some structural or communicative reason. This is surprising to
many people, because literacy has conditioned speakers/readers of Indo-European languages
to expect a blank space between words on the printed page. But in speech, only a few true
pauses (the aural equivalent of a blank space) may be present. So, what appears to the read­
ing eye as never give all the heart, for love would appear to the ear, if we simply use letters
to stand for their corresponding English speech sounds, as nevergivealltheheart forlove or,
in phonemes, as n eh v erg ih v ah l dh ax h aa rt \\f ao r l ah v. The \\ symbol marks a lin­
guistically motivated pause, and the units so formed are sometimes called intonation
phrases, as explained in Chapter 15.

Certain facts about word structure and combinatorial possibilities are evident to most
native speakers and have been confirmed by decades of linguistic research. Some of these
facts describe relations among words when considered in isolation, or concern groups of
related words that seem intuitively similar along some dimension of form or meaning -
these properties are paradigmatic. Paradigmatic properties of words include part-of-speech,
inflectional and derivational morphology, and compound structure. Other properties of
words concern their behavior and distribution when combined for communicative purposes
in fully functioning utterances - these properties are syntagmatic.

2.3.2.1. Lexical Part-of-Speech

Lexical part-of-speech (POS) is a primitive form of linguistic theory that posits a restricted
inventory of word-type categories, which capture generalizations of word forms and distri­
butions. Assignment of a given POS specification to a word is a way of summarizing certain
facts about its potential for syntagmatic combination. Additionally, paradigms of word for­
mation processes are often similar within POS types and subtypes as well. The word proper­
ties upon which POS category assignments are based may include affixation behavior, very
abstract semantic typologies, distributional patterns, compounding behavior, historical de­
velopment, productivity and generalizabilty, and others.

A typical set of POS categories would include noun, verb, adjective, adverb, interjec­
tion, conjunction, determiner, preposition, and pronoun. Of these, we can observe that cer­
tain classes of words consist of infinitely large membership. This means new members can
be added at any time. For example, the category of noun is constantly expanded to accom­
modate new inventions, such as Velcro or Spandex. New individuals are constantly being
born, and their names are a type of noun called proper noun. The proliferation of words us-

-----------------------~S~p~o~k:en~L~a~n;g:ua;g;e~S~t~~

S4

. h ecent set of examples: cyberscoff/aw, cybersex
fi ber is anot er r . . I . '

, 1 descriptive pre x cy . . ativity of humans m mampu atmg word structure 111g t 1e te the infinite ere, d . f
d even cyberia illustra . f ently by analogy with, an usmg ragments of, ex. an d f meaning, requ b' .

t express new sha es
O

1 • the neologism sheeple, a noun com mmg the forms 0
Another examp e is f I h I k h isting vocabulary. 1 t refer to large masses o peop e w o ac t e capacity

and meanings of sheep and peop .e ot. n We can create new words whenever we like, but
take independent ac 10 • . f

or willingness to . . d. ble paradigmatic and syntagmat1c patterns o use sum-f II withm the pre 1cta . f h . .
they had best a . . S J'zations or there will be httle hope o t e1r adoption by

• db the ex1stmg PO genera I ' . . T· bl '> 12 N . h
manze y POS ategories are hsted m a e -· . ouns are m erently
any other speaker. These open ~aces and things. Verbs are predicative; they indicate
~ t' al They ref er to persons, P ,

reieren
1

• • • d erties of entities including part1c1pahon m events. AdJec-
1 t' s between ent1t1es an prop ' .

re a ion 'b d completely specify noun reference, while adverbs describe, • t • cally descn e an more
~•ves ~P• ' letely specify verbal relations. Open-class words are sometimes mtens1fy, and more comp . .
called content words, for their referential properties.

Table 2.12 Open POS categories.

Tag Description Function Example
N Noun Names entity cat
V Verb Names event or condition forget
Adj Adjective Descriptive yellow
Adv Adverb Manner of action auickly
Interj Interiection Reaction oh!

In contrast to the open-class categories, certain other categories of words only rarely
and very slowly admit new members over the history of English development. These closed
POS categories are shown in Table 2.13. The closed-category words are fairly stable over
time. Conjunctions are used to join larger syntactically complete phrases. Determiners help
lo narrow noun reference possibilities. Prepositions denote common spatial and tempera!
relations of objects and actions to one another. Pronouns provide a convenient substitute for
n_oun phrases that are fully understood from context. These words denote grammatical rela­
ltons of other words to one another and fundamental properties of the world and how hu­
mans undcrstand it. They can, of course, change slowly· for example the Middle English

fipron~un rht•e is no longer in common use. The closed-~lass words ~e sometimes called
1111c·1w11 words.

~r'~- ~

Dcscriution
Function Example _ ConJ· C . , .-.~----_ _ on1unctton

Coordinates phrases and Dc1 D . - -,.. •• - l)lcrmmer
Indicates definiteness rhe

l'rq1 -1-,- .- - ·- _rrl~Position
Rdations of time. space, direction from _ 100 \l -··---- - mnoun

Simplified reference she -

Table 2.13 Closed POS categories

Syllables and Words
55

The set of POS categories can be extended indefinitely. Examples can be drawn from
1he Penn Treebank project (http://www.cis.upenn.edu/ldc) as shown in Table 2.14, where
you can find the proliferation of sub-categories, such as Verb, base form and Verb, past
tense. These categories incorporate morphological attributes of words into the POS label
system discussed in Section 2.3.2.2.

Table 2.14 Treebank POS categories - an expanded inventory.

String Description Example
cc Coordinating conjunction and
CD Cardinal number two
OT Determiner the
EX Existential there there (There was an old lady)
FW Foreign word omerta
TN Preposition, subord. conjunction over, but
JJ Adiective vellow
JJR Adjective, comparative better
JJS Adjective, superlative best
LS List item marker
MD Modal might
NN Noun, singular or mass rock, water
NNS Noun, plural rocks
NNP Proper noun, singular Joe
NNPS Proper noun, plural Red Guards
PDT Predeterminer all (all the girls)
POS Possessive ending 's
PRP Personal pronoun I
PRP$ Possessive pronoun mine
RB Adverb quickly
RBR Adverb, comparative higher (shares closed higher.)
RBS Adverb, superlative highest (he jumped hiJ?hest of all.)
RP Particle up (take up tlze cause)
TO to to
UH Interjection hev!
VB Verb, base form choose
VBD Verb, past tense chose
VBG Verb, gerund, or present participle choosing
VBN Verb, past particiole chosen
VBP Verb, non-third oerson sing. present iumo
VBZ Verb, third person singular present iumps
WOT Wh-detenniner which
WP Wh-pronoun who
WP$ Possessive wh-pronoun whose
WRB Wh-adverb when (Wizen he came, it was late.)

Spoken Language Structure

56

f Speech or other lexical class marker • • a part-o -
POS tagging is the process of assignm~ "thms to automatically tag input sentences

to each word in a corpus. There are rn[~~y] ~~:n Markov models (see Chapter 8) (23, 29,
R I based methods • .

into a set of tags. u e~ ti ads (6) are used for this purpose.
46], and machiue-Iearnmg me 1

2.3.2.2. Morphology

f ds i e the patterns of word formation including
. bout the subparts o wor ' •• , . fi Morphology 1s a . of compounds. English mamly uses pre 1xes and

inflection derivation, and the formation
' . fl (on and deri,•ational morphology.

suffixes 10 express 11! ec 1

1
d 1 • with variations in word form that reflect the contextual

Jnjlectional morpho ogy ea s d. ff ·
• . h entence syntax and that rarely have irect e. ect on mter-

siluation of a word m p rase or s , . . fl . I
. f d t I meaning expressed by the word. Enghsh m ect10na morphol-

pretauon of the un amen a d k.
. 1 • 1 • le and includes person and number agreement an tense mar mgs ogy 1s re auve y s1mp . ~ .

I Th · t·on 1·n cats (vs cat) is an example. The plural form 1s used to rejer to an m-on y. e vana 1 •
definite number of cats greater than one, depending on a particular s1tuat1on. _But the basic
POS category (noun) and the basic meaning (felis domesticus) are not sub~tant1ally affected.
Words related to a common lemma via inflectional morphology are said to belong to a
common paradigm, with a single POS category assignment. In English, common paradigm
types include the verbal set of affixes (pieces of words): -s, -ed, -ing; the noun set: -s; and
the adjectival -er, -est. Note that sometimes the base fonn may change spelling under affixa­
tion, complicating the job of automatic textual analysis methods. For historical reasons, cer­
tain paradigms may consist of highly idiosyncratic irregular variation as well, e.g., go,
going, went, gone or child, children. Furthermore, some words may belong to defective
paradigms, where only the singular (noun: equipment) or the plural (noun: scissors) is pro­
vided for.

In derivat_ional morphology, a given root word may serve as the source for wholly new
words, ~ften with POS changes as illustrated in Table 2.15. For example, the tenns racial
~~ _ractSt, _though presumably based on a single root word race, have different POS possi-
b1ht1es (ad;ective vs noun-adiJ·ect·) d • D · · · . . • ive an meanmgs. envational processes may mduce pro-

d
nu~cia~ion change or stress shift (e.g., electric vs. electricity). In Enolish typical
envat1onal affixes (pieces of wo d) th t h' h O

'

fi . . . r s a are 1g ly productive include prefixes and suf-
uces. re-, pre-, -1al, -ism -ish _ •ry _ . . , .

cases these can b dd d' , z_ ' tw11, -ness, -mem, -wus, -ify, -zze, and others. In many
' e a e successively to create a complex layered fonn.

Table 2.15 Examples of stems and their related fonn POS
Noun

s across categones.

criticism
Verb Adjective Adverb

fool criticize critical critically

industry, industrialization
fool foolish foolishly
industrialize

eme_~o~, eme_loyee, eme_lo£_er industrial, industrious industriously
employ employable .£!rtification employably
certify certifiable certifiably -

Syllabll'S and Words
57

Generally, word formation operates in layers, according to a kind of word syntax: (de­
riv-prejix)* root (root)* (deriv-suffix)* (i,zfl-suffix). This means that one or more roots can
be compounded in the inner layer, with one or more optional derivatio11al prefixes, followed
by any number of optional derivational suffixes, capped off with no more than one inflec­
tional suffix. There are, of course, limits on word formation, deriving both from semantics of
the component words and simple lack of imagination. An example of a nearly maximal word
in English might be autocyberconceptualizations, meaning (perhaps!) multiple instances of
automatically creating computer-related concepts. This word lacks only compounding to be
truly maximal. This word has a derivational prefix auto-, two root forms compounded (cyber
and concept, though some may prefer to analyze cyber- as a prefix), three derivational suf­
fixes (-ual, -ize, -ation), and is capped off with the plural inflectional suffix for nouns, -s.

2.3.2.3. Word Classes

POS classes are based on traditional grammatical and lexical analysis. With improved com­
putational resources, it has become possible to examine words in context and assign words
to groups according to their actual behavior in real text and speech from a statistical point of
view. These kinds of classifications can be used in language modeling experiments for
speech recognition, text analysis for text-to-speech synthesis, and other purposes.

One of the main advantages of word classification is its potential to derive more re­
fined classes than traditional POS, while only rarely actually crossing traditional POS group
boundaries. Such a system may group words automatically according to the similarity of
usage with respect to their word neighbors. Consider classes automatically found by the
classification algorithms of Brown et al. [7):

{Friday Monday Thursday Wednesday Tuesday Saturday Sunday weekends}
{ great big vast sudden mere sheer gigantic lifelong scant colossal}
{ down backwards ashore sideways southward northward overboard aloft adrift}
{ mother wife father son husband brother daughter sister boss uncle}
{John George James Bob Robert Paul William Jim David Mike}
{ feet miles pounds degrees inches barrels tons acres meters bytes}

You can see that words are grouped together based on the semantic meaning, which is
different from word classes created purely from syntactic point of view. Other types of clas­
sification are also possible, some of which can identify semantic relatedness across tradi­
tional POS categories. Some of the groups derived from this approach may include follows:

{problems problem solution solve analyzed solved solving}
{ write writes writing written wrote pen}
{ question questions asking answer answers answering}
{ published publication author publish writer titled}

58

2.4. SYNTAX AND SEMANTICS

Spoken Language Stru-t
c Ure

Syntax is the study of the patterns ~f formation of sentenc~s ~nd phrases from words and the
rules for the fonnation of grammatical sentences. Semantics 1s another branch of linguisti
dealing with the study of meaning, including the ways meaning is structured in language an~
changes in meaning and form over time.

2.4.1. Syntactic Constituents

Constituents represent the way a sentence can be divided into its grammatical subparts as
constrained by common grammatical patterns (which implicitly incorporate nonnative
judgments on acceptability). Syntactic constituents at least respect, and at best explain, the
linear order of words in utterances and text. In this discussion, we will not strictly follow
any of the many theories of syntax but will instead bring out a few basic ideas common to
many approaches. We will not attempt anything like a complete presentation of the grammar
of English but instead focus on a few simple phenomena.

Most work in syntactic theory has adopted machinery from traditional grammatical
work on written language. Rather than analyze toy sentences, let's consider what kinds of
superficial syntactic patterns are lurking in a random chunk of serious English text, ex­
cerpted from David Thoreau's essay Civil Disobedience [43]:

The authority of government, even such as I am willing to submit to - for I will cheer­
fully obey those who know and can do better than /, and in many things even those who nei­
ther know nor can do so well - is still an impure one: to be strictly just, it must have the
sanction and consent of the governed. It can have no pure right over my person and prop·
erty but what I concede to it. The progress from an absolute to a limited monarchy, from a
limited monarchy to a democracy, is a progress toward a true respect for the individual.

2.4.1.1. Phrase Schemata

Words may be combined to form phrases that have internal structure and unity. We use gen­
eralized schemata to describe the phrase structure. The goal is to create a simple, unifonn
template that is independent of POS category. _

Let's first consider nouns, a fundamental category refening to persons, places, and
things in the world. The noun and its immediate modifiers form a constituent called the noun
phrase (NP). To generalize this, we consider a word of arbitrary category, say category X
(which could be a noun N or a verb V). The generalized rule for a phrase XP is XP =>
(modifiers) X-head (post-modifiers), where Xis the head, since it dominates the configura­
tion and names the phrase. Elements preceding the head in its phrase are premodifiers and
elements following the head are postmodifiers. XP, the culminating phrase node, is called a
maximal projection of category X. We call the whole structure an x-template. Maximal pro·
jections, XP, are the primary currency of basic syntactic processes. The post-modifiers ~
usually maximal projections (another head, with its own post-modifiers forming an XP on its
own) and are sometimes termed complements, because they are often required by the lexical
properties of the head for a complete meaning to be expressed (e.g., when Xis a preposition

Syntax and Semantics
59

or verb). Complements are typically noun phrases (NP), prepositional phrases (PP), verb
phrases (VP), or sentence/clause (S), which make an essential contribution to the head's ref­
erence or meaning, and which the head requires for semantic completeness. Premodifiers are
likely to be adverbs, adjectives, quantifiers, and determiners, i.e., words that help to specify
the meaning of the head but may not be essential for completing the meaning. With minor
variations, the XP template serves for most phrasal types, based on the POS of the head (N,
V. ADJ, etc.).

For NP, we thus have NP ⇒ (det) (modifier) head-noun (post-modifier). This rule
describes an NP (noun phrase - left side of arrow) in terms of its optional and required in­
ternal contents (right side of the arrow). Det is a word like the or a that helps to resolve the
reference to a specific or an unknown instance of the noun. The modifier gives further in­
formation about the noun. The head of the phrase, and the only mandatory element, is the
noun itself. Post-modifiers also give further information, usually in a more elaborate syntac­
tic form than the simpler pre-modifiers, such as a relative clause or a prepositional phrase
(covered below). The noun phrases of the passage above can be parsed as shown in Table
2.16. The head nouns may be personal pronouns (/, it) , demonstrative and relative pronouns
(those), coordinated nouns (sanction and consent), or common nouns (individual) . The
modifiers are mostly adjectives (impure, pure) or verbal forms functioning as adjectives
(limited). The post-modifiers are interesting, in that, unlike the (pre-)modifiers, they are
typically full phrases themselves, rather than isolated words. They include relative clauses
(which are a kind of dependent sentence, e.g., [those] who know and can do better than/),
as well as prepositional phrases (of the governed).

Table 2.16 NPs of the sample passage.

NP Det Mod Head Noun Post-Mod
l the authority of government
2 even such as I am willing to submit to
3 I
4 those who know and can do better than I
5 many thines
6 even those who neither know nor can do so well
7 an impure one
8 it
9 the sanction and consent of the governed
10 no pure right over my person ... concede to it.
11 the progress from an absolute to a limited monarchy
12 an absolute [monarchy]
13 a limited monarchy
14 a democracy
15 a progress
16 a true respect for the individual
17 the individual

60 Spoken Language Structutt

Table 2.17 PPs of the sample passage.

Head Prep Complement (Postmodifier)

of Government

as I am willin2 to submit to

than I
in many things

of the governed

over mv oerson and property
to it
from an absolute [monarchy]

to a limited monarchy

to a democracy
toward a true respect [for the individual]
for the individual

Prepositions express spatial and temporal relations, among others. These are also said
to project according to the X-template, but usually lack a pre-modifier. Some examples from
the sample passage are listed in Table 2.17. The complements of PP are generally NPs,
which may be simple head nouns like government. However, other complement types, such
as the verb phrase in after discussing it with Jo, are also possible.

For verb phrases, the postmodifier (or complement) of a head verb would typically be
one or more NP (noun phrase) maximal projections, which might, for example, function as a
direct object in a VP like pet the cat. The complement may or may not be optional, depend­
ing on characteristics of the head. We can now make some language-specific generalizations
about English. Some verbs, such as give, may take more than one kind of complement. So
an appropriate template for a VP maximal projection in English would appear abstractly as
VP ⇒ (modifier) verb (modifier) (Complement}, Complement2 ComplementN). Comple­
ments are usually regarded as maximal projections, such as NP, ADJP, etc., and are enumer­
ated in the template above, to cover possible multi-object verbs, such as give, which take
both direct and indirect objects. Certain types of adverbs (really, quickly, smoothly, etc.)
could be considered fillers for the VP modifier slots (before and after the head). In the sam­
ple passage, we find the following verb phrases as shown in Table 2.18.

VP presents some interesting issues. First, notice the multi-word verb submit to. Multi­
word verbs such as look after and put up with are common. We also observe a number of
auxiliary elements clustering before the verb in sentences of the sample passage: am willing
10 su_bmit to, will cheerfully obey, and can do better. Rather than considering these as simple
~od~fiers of the verbal head, they can be taken to have scope over the VP as a whole, which
implies they are outside the VP. Since they are outside the VP we can assume them to be
hea_ds in their own right, of phrases which require a VP as their ~omplement. These elements
~~tly express tense (time or duration of verbal action) and modality (likelihood or prob·
~ 1

itdy fof ve~al action). In a full sentence, the VP has explicit or implicit inflection (pro·
Jecte rom tts verbal h d) d . .

. ea an indicates the person, number, and other context-dependent

Syntax and Semantics 61

features of the verb in relation to its arguments. In English, the person (first, second, third)
and number (singular, plura_l) at~~butes, collectively called agreement features, of subject
and ~erb must match. For s1_mphc1ty, we will lump all these considerations together as in­
flectional elements, and posit yet another phrase type, the Inflectional Phrase (JP): /P =>
premodifier head VP-complement.

Table 2.18 VPs of the sample passage.

Pre-mod Verb Head Post-mod Comolement
submit to [the authority of !!OVemment]

cheerfully obcv those who know and can do better than I
is still an impure one
be strictly iust
have the sanction
have no pure ri~ht
concede to it
is a proJ;?ress

The premodifier slot (sometimes called the specifier position in linguistic theory) of an
IP is often filled by the subject of the sentence (typically a noun or NP) . Since the IP unites
the subject of a sentence with a VP, IP can also be considered simply as the sentence cate­
gory, often written as Sin speech grammars.

2.4.1.2. Clauses and Sentences

The subject of a sentence is what the sentence is mainly about. A clause is any phrase with
both a subject and a VP (predicate in traditional grammars) that has potentially independent
interpretation - thus, for us, a clause is an IP, a kind of sentence. A phrase is a constituent
lacking either subject, predicate, or both. We have reviewed a number of phrase types
above. There are also various types of clauses and sentences.

Even though clauses are sentences from an internal point of view (having subject and
predicate), they often function as simpler phrases or words would, e.g., as modifiers (adjec­
tive and adverbs) or nouns and noun phrases. Clauses may appear as post-modifiers for
nouns (so-called relative clauses), basically a kind of adjective clause, sharing their subjects
with the containing sentence. Some clauses function as NPs in their own right. One common
clause type substitutes a wh-word like who or what for a direct object of a verb in the em­
bedded clause, to create a questioned noun phrase or indirect question: (/don't know who Jo
saw.). In these clauses, it appears to syntacticians that the questioned object of the verb [VP
saw who] has been extracted or moved to a new surface position (following the main clause
verb know). This is sometimes shown in the phrase-structure diagram by co-indexing an
empty ghost or trace constituent at the original position of the question pronoun with the
question-NP appearing at the surface site:

I don't know [,,,,.i,;f,,,[,,,,1 who] Jo saw[,,,,,_ 111
[,,,,,.b/,,, Whoever wins the game]] is our hero.

62 Spoken Language Stnict Ure

There are various characteristic types of sentences. Some typical types include:

• Declarative: I gave her a book.

• Yes-no question: Did you give her a book?

• Wh-question: What did you give her?

• Alternatives question: Did you give her a book, a scarf, or a knife?

• Tag question: You gave it to her, didn't you?

• Passive: She was given a book.

• Cleft: It must have been a book that she got.

• Exclamative: Hasn't this been a great birthday!

• Imperative: Give me the book.

2.4.1.3. Parse Tree Representations

Sentences can be diagrammed in parse trees to indicate phrase-internal structure and linear
precedence and immediate dominance among phrases. A typical phrase-structure tree for
part of an embedded sentence is illustrated in Figure 2.26.

IP(S)

~
NP Inflection VP

I
N V NP

Det Pre-mod N Post-Mod (PP)

It can have no pure right over my person

Figure 2.26 A simplified phrase-structure diagram.

Syntax and Semantics
63

For brevity, the same infonnation illustrated in the tree can be represented as a brack­
eted string as follows:

[,,. f.v,. [,,It]~.],,,.[, can], fv,,frhave J,, [N,, no pure right[,,,, over my person],.PJN,,fv,,l,,.

With such a bracketed representation, almost every type of syntactic constituent can be
coordinated or joined with another of its type, and usually a new phrase node of the common
type is added to subsume the constituents such as NP: We have [N,, [NP tasty berries] and f Nr
tart juices]], !PIS:[,,,[,,. Many have come] and fi,. most have remained}), PP: We went[,.,. fn
over the river] and {p,, into the trees]J, and VP: We want to fv, [vp climb the mountains) and
[vp sail the seas]J.

2.4.2. Semantic Roles

In traditional syntax, grammatical roles are used to describe the direction or control of action
relative to the verb in a sentence. Examples include the ideas of subject, object, indirect ob­
ject, etc. Semantic roles, sometimes called case relations, seem similar but dig deeper. They
are used to make sense of the participants in an event, and they provide a vocabulary for us
to answer the basic question who did what to whom. As developed by [13] and others, the
theory of semantic roles posits a limited number of universal roles. Each basic meaning of
each verb in our mental dictionary is tagged for the obligatory and optional semantic roles
used to convey the particular meaning. A typical inventory of case roles is given below:

Agent
Patient/Theme
Instrument
Goal
Result
Location

cause or initiator of action, often intentional
undergoer of the action
how action is accomplished
to whom action is directed
result of action
location of action

These can be realized under various syntactic identities, and can be assigned to both
required complement and optional adjuncts. A noun phrase in the Agentive role might be the
surface subject of a sentence, or the object of the preposition by in a passive. For example,
the verb put can be considered a process that has, in one of its senses, the case role specifica­
tions shown in Table 2.19.

Table 2.19 Analysis of a sentence with put.

Analysis Example
Kim put the book on the table.

Grammatical Subject (NP) Predicate (VP) Object (NP) Adverbial
functions (ADVPJ
Semantic roles ARent Instrument Theme Location

64
Spoken Language St-ruct­ure

Now consider this passive-tense example, where the semantic roles align with differ­
ent grammatical roles shown in Table 2.20. Words that look and sound identical can h
different meaning or different senses as shown in Table 2.21. The sporting sense of put ~ve
in the sport of shot-put) illustrates the meaning/sense-dependent nature of the role pattern as
because in this sense the Locative case is no longer obligatory, as it is in the original sens~
illustrated in Table 2.19 and Table 2,20.

Table 2.20 Analysis of passive sentence with put.

Analysis Example
The book was put on the table.

Grammatical Subject (NP) Predicate (VP) Adverbial (ADVP)
functions
Semantic roles Af!ent Instrument location

Table 2.21 Analysis of a different pattern of put.

Analysis Examole
Kim J)Ut the shot.

Grammatical Subject (NP) Predicate (VP) Object(NP)
functions
Semantic roles A2ent Instrument Theme

The lexical meaning of a verb can be further decomposed into primitive semantic rela­
tions such as CAUSE, CHANGE, and BE. The verb open might appear as
CAUSE(NPI,PHYSJCAL-CHANGE(NP2,NOT-OPEN,OPEN)). This says that for an agent
(NP 1) to open a theme (NP2) is to cause the patient to change from a not-opened state to an
opened state. Such systems can be arbitrarily detailed and exhaustive, as the application re­
quires.

2.4.3. Lexical Semantics

The specification of particular meaning templates for individual senses of particular words is
called lexical semantics. When words combine, they may take on propositional meanings
::esulting from the composition of their meanings in isolation. We could imagine that a
speaker starts with a proposition in mind (logical form as will be discussed in the next sec­
tion), creating a need for particular words to express the idea (lexical semantics); the pro:"°"
sition is then linearized (syntactic form) and spoken (phonological/phonetic form). Le,tical
semantics is the level of meaning before words are composed into phrases and sentences,
and it may heavily influence the possibilities for combination.
. Words can be defined in a large number of ways including by relations to olh~'. W0rd~
10 terms of decomposition semantic primitives, and in terms of non-linguistic cogmuve c_o~
structs, such as perception, action, and emotion. There are hierarchical and non-hierarchic
relations. The main hierarchical relations would be familiar to most object-oriented p~
&rammers. One is is-a taxonomies (a crow is-a bird), which have transitivity of properue

Syntax and Semantics
65

from type to subtype (inheritance). Another is has-a relations (a car has-a windshield),
which are of several differing qualities, including process/subprocess (teaching has-a sub­
process giving exams), and arbitrary or natural subdivisions of part-whole relations (bread
has-a division into slices, meter has-a division into centimeters). Then there are non­
branching hierarchies (no fancy name) that essentially fom1 scales of degree, such as Jro­
:en =>cold=> lukewarm=> hot=> bu ming. Non-hierarchical relations include synonyms.
such as big/large, and antonyms such as good/bad.

Words seem to have natural affinities and disaffinities in the semantic relations among
the concepts they express. Because these affinities could potentially be exploited by future
language understanding systems, researchers have used the generalizations above in an at­
tempt to tease out a parsimonious and specific set of basic relations under which to group
entire lexicons of words. A comprehensive listing of the families and subtypes of possible
semantic relations has been presented in [10]. In Table 2.22, the leftmost column shows
names for families of proposed relations, the middle column differentiates subtypes within
each family, and the rightmost column provides examples of word pairs that participate in
the proposed relation. Note that case roles have been modified for inclusion as a type of se­
mantic relation within the lexicon.

We can see from Table 2.22 that a single word could participate in multiple relations
of different kinds. For example, knife appears in the examples for Similars: invited attribute
(i.e., a desired and expected property) as: knife-sharp, and also under Case Relations: ac­
tion-instrument, which would label the relation of knife to the action cut in He cut the bread
with a knife. This suggests that an entire lexicon could be viewed as a graph of semantic
relations, with words or idioms as nodes and connecting edges between them representing
semantic relations as listed above. There is a rich tradition of research in this vein.

The biggest practical problem of lexical semantics is the context-dependent resolution
of senses of words - so-called polysemy. A classic example is bank - bank of the stream as
opposed to money in the bank. While lexicographers try to identify distinct senses when they
write dictionary entries, it has been generally difficult to rigorously quantify exactly what
counts as a discrete sense of a word and to disambiguate the senses in practical contexts.
Therefore, designers of practical speech understanding systems generally avoid the problem
by limiting the domain of discourse. For example, in a financial application, generally only
the sense of bank as a fiduciary institution is accessible, and others are assumed not to exist.
It is sometimes difficult to make a principled argument as to how many distinct senses a
word has, because at some level of depth and abstraction, what might appears as separate
senses seem to be similar or related, as face could be face of a clock or face of person.

Senses are usually distinguished within a given part-of-speech (POS) category. Thus,
when an occurrence of bank has been identified as a verb, the shore sense might be auto­
matically eliminated, though depending on the sophistication of the system's lexicon and
goals, there can be sense differences for many English verbs as well. Within a POS cate­
gory, often the words that occur near a given ambiguous form in the utterance or discourse
are clues to interpretation. where links can be established using semantic relations as de­
scribed above. Mutual information measures as discussed in Chapter 3 can sometimes pro­
vide hints. In a context of dialog where other, less ambiguous financial terms come up

66 Spoken Langu~
tucture

frequently, the sense of bank as fiduciary institution is more likely. Finally, whe
. f h • • • l'k 1·h n all else

fails often senses can be ranked m terms o t eir a pnon I e I ood of occurrence It h
, . . . ·.• h · SouJd

always be borne m mmd that language 1s not static, 1t can c ange fonn under a give
sis at any time. For example, the stable English form spinster, a somewhat pejorati::~:
for an older, never-married female, has recently taken on a new morphologically co

h. h 1· • I ffi • I ct· rnplex form, with the ~~w sense_ of a _1g po 1t1_ca o 1~ia , or me ia spokesperson, employed to
provide bland d1smforrnat1on (spm) on a given topic.

Table 2.22 Semantic relations.

Family Subtype Example
Contrasts Contrary old-young

Contradictory alive-dead

Reverse buy-sell

Directional front-back

Incompatible happy-morbid

Asymmetric contrary hot-cool

Attribute similar rake1ork

Similars Synonymity car-auto

Dimensional similar smile-laugh
Necessary attribute bachelor-unmarried
Invited attribute knife-sharp
Action subordinate talk-lecture

Class Inclusion Perceptual subord. animal-horse
Functional subord. furniture-chair
State subord. disease-polio
Activity subord. game-chess
Geographic subord. country-Russia
Place Gennany-Hamburg

Case Relations Agent-action artist-paint
Agent-instrument rarmer-tractor
Agent-object baker-bread
Action-recipient sit-chair
Action-instrument cut-knife

Part-Whole Functional object engine-car
Collection forest-tree
Group choir-singer
Ingredient table-wood
Functional location kitchen-stove
Organization college-admissions -

Measure mile-yard

SJ•ntax and Semantics 67

2.4.4. Logical Form

Because of all the lexical, syntactic, and semantic ambiguity in language, some of which
requires external context for resolution, it is desirable to have a metalanouage in which to

. 0

concretely and succ111ctly express all linguistically possible meanings of an ullerance before
discourse and world knowledge are applied to choose the most likely interpretation. The
favored metalanguage for this purpose is called the predicate logic, used to represent the
logical fonn, or context-independent meaning, of an utterance. The semantic component of
many SLU architectures builds on a substrate of two-valued, first-order, logic. To distin­
guish shades of meaning beyond truth and falsity requires more powerful formalisms for
knowledge representation.

In a typical first-order system, predicates correspond to events or conditions denoted
by verbs (such as Believe or Like), states of identity (such as being a Dog or Cat), and prop­
erties of varying degrees of permanence (Happy). In this form of logical notation, predicates
have open places, filled by arguments, as in a programming language subroutine definition.
Since individuals may have identical names, subscripting can be used to preserve unique
reference. In the simplest systems, predication ranges over individuals rather than higher­
order entities such as properties and relations.

Predicates with filled argument slots map onto sets of individuals (constants) in the
universe of discourse, in particular those individuals possessing the properties, or participat­
ing in the relation, named by the predicate. One-place predicates like Soldier, Happy, or
Sleeps range over sets of individuals from the universe of discourse. Two-place predicates,
like transitive verbs such as loves, range over a set consisting of ordered pairs of individual
members (constants) of the universe of discourse. For example, we can consider the universe
of discourse to be U = {Romeo, Juliet, Paris, Rosaline, Tybalt}, people as characters in a
play. They do things with and to one another, such as loving and killing. Then we could
imagine the relation Loves interpreted as the set of ordered pairs: (<Romeo, Juliet>, <Juliet,
Romeo>, <Tybalt, Tybalt>, <Paris, Juliet>), a subset of the Cartesian product of theoreti­
cally possible love matches Ux U. So, for any ordered pair x, yin U, Loves(x, y) is true if
the ordered pair <x,y> is a member of the extension of the Loves predicate as defined, e.g .,
Romeo loves Juliet, Juliet loves Romeo, etc .. Typical formal properties of relations are some­
times specially marked by grammar, such as the reflexive relation Loves(Tybaft, Tybalt),
which can rendered in natural language as Tybalt loves himself. Not every possibility is pre­
sent; for instance in our example, the individual Rosaline does not happen to participate at
all in this extensional definition of Loves over U, as her omission from the pairs list indi­
cates. Notice that the subset of Loves(x, y) of ordered pairs involving both Romeo and Juliet
is symmetric, also marked by grammar, as in Romeo and Juliet love each other. This general
approach extends to predicates with any arbitrary number of arguments, such as intransitive
verbs like give.

Just as in ordinary propositional logic, connectives such as negation, conjunction, dis­
junction, and entailment are admitted, and can be used with predicates to denote common
natural language meanings:

68 Spoken Language Stru

Romeo isn't happy= -,Happy(Romeo)

Romeo isn't happy, but Tybalt is (happy)= -,Happy(Romeo) /\ Happy(Tybalt)
Either Romeo or Tybalt is happy= Happy(Romeo) v Happy(Tybalt)

If Romeo is happy, Juliet is happy= Happy(Romeo) ➔ Happy(Juliet)

cture

Fonnulae, such as those above, are also said to bear a binary truth value, true or fat
with respect to a world of individuals and relations. The determination of the truth value~:
compositional, in the sense that the truth value of the whole depends on the truth value of
the parts. This is a simplistic but fonnally tractable view of the relation between language

and meaning.
Predicate logic can also be used lo denote quantified noun phrases. Consider a simple

case such as Someone killed Tybalt, predicated over our same V = I Romeo, Juliet, Paris,
Rosaline, Tybalt}. We can now add an existential quantifier, 3, standing for there exists or

there is at least one. This quantifier will bind a variable over individuals in V, and will at­
tach to a proposition to create a new, quantified proposition in logical fonn. The use of vari­
ables in propositions such as killed(x, y) creates open propositions. Binding the variables
with a quantifier over them closes the proposition. The quantifier is prefixed to the original
proposition: 3.x Killed(x, Tybalt).

To establish a truth (semantic) value for the quantified proposition, we have to satisfy
the disjunction of propositions in V: Killed(Romeo, Tybalt) v Killed(Juliet, Tybalt) v
Killed(Paris, Tybalt) v Killed(Rosaline, Tybalt) v Killed(Tybalt, Tybalt) . The set of all such
bindings of the variable x is the space that detennines the truth or falsity of the proposition.
In this case, the binding of x = Romeo is sufficient to assign a value true to the existential
proposition.

2.5. HISTORICAL PERSPECTIVE AND FuRTHER READING

Motivated to improve speech quality over the telephone, AT&T Bell Labs has contributed
many influential discoveries in speech hearing, including the critical band and articulation
index [2, 3]. The Auditory Demonstration CD prepared by Houtsma, Rossing, and
Wagenaars [18) has a number of very interesting examples on psychoacoustics and its ex­
planations. Speech, Language, and Communication [30] and Speech Communication - Hu­
man and Machine [32] are two good books that provide modem introductions to the
stru~ture of spoken. la~guage. Many speech perception experiments were conducted b~ _ex·
plonng how phonetic mfonnation is distributed in the time or frequency domain. In add1uon
to the formant structures for vowels, frequency importance function [12] has been developed
1? studY ho~ f~atures related to phonetic categories are stored at various frequencies. In !he
time do~ru.~, tt has been observed [16, 19, 42) that salient perceptual cues may not be
evenly d1~tn_buted over the speech segments and that certain perceptual critical points exist

th
A_s mtJmate as speech and acoustic perception may be there are also strong evidences

at leXtcal and r • · f ' . -
t. . mguJStlc e fects on speech perception are not always consistent with acous
1c ones. For mstance it ha I b • d' tin· · h. . ' s ong een observed that humans exhibit difficulties rn is

gms mg non-native phonem H . odness es. uman subJects also carry out categorical go

Historkal Perspective and Further Reading
69

difference assimilation based ~n t~eir mother tongue [34], and such perceptual mechanism
~an ~1e ob~erved as early as m_ six-month-old infants [22). On the other hand, hearing-
1mpaire_d listeners are able to _etf~rtlessl~ overcome their acoustical disabilities for speech
perception (8). Speech perception 1s not simply an auditory matter. McGurk and MacDonald
(1976) [27, 28} dramatically demonstrated this when they created a videotape on which the
auditory information (phonemes) did not match the visual speech information. The effect of
this mismatch between the auditory signal and the visual signal was to create a third pho­
neme different from both the original auditory and visual speech signals. An example is
dubbing the phoneme Iba/ to the visual speech movements /gal. This mismatch results in
hearing the phoneme Ida/. Even when subjects know of the effect, they report the McGurk
effect percept. The McGurk effect has been demonstrated for consonants. vowels, words,
and sentences.

The earliest. scientific work on phonology and grammars goes back to Panini, a San­
skrit grammarian of the fifth century B.C. (estimated). who created a comprehensive and
scientific theory of phonetics, phonology, and morphology. based on data from Sanskrit (the
classical literary language of the ancient Hindus). Panini created formal production rules and
definitions to describe Sanskrit grammar, including phenomena such as construction of sen­
tences, compound nouns, etc. Panini's formalisms function as ordered rules operating on
underlying structures in a manner analogous to modem linguistic theory. Panini's phono­
logical rules are equivalent in formal power to Backus-Nauer fonn (BNF). A general intro­
duction to this pioneering scientist is Cardona [91.

An excellent introduction to all aspects of phonetics is A Course in Phonetics [24]. A
good treatment of the acoustic structure of English speech sounds and a through introduction
and comparison of theories of speech perception is to be found in [33]. The basics of pho­
nology as part of linguistic theory are treated in Understanding Phonology [17]. An interest­
ing treatment of word structure (morphology) from a computational point of view can be
found in Morphology and Computation [40]. A comprehensive yet readable treatment of
English syntax and grammar can be found in English Syntax [4] and A Comprehensive
Grammar of the English Language (36}. Syntactic theory has traditionally been the heart of
linguistics, and has been an exciting and controversial area of research since the I 950s. Be
aware that almost any work in this area will adopt and promote a particular viewpoint, often
to the exclusion or minimization of others. A reasonable place to begin with syntactic theory
is Syntax: A Minimalist Imroduction [37]. An introductory textbook on syntactic and seman­
tic theory that smoothly introduces computational issues is Syntactic Theory: A Formal In­
troduction [39]. For a philosophical and entertaining overview of various aspects of
linguistic theory, see Rhyme and Reason: An Introduction to Minimalist Syntax [44]. A good
and fairly concise treatment of basic semantics is Introduction to Natural Language Seman­
tics [l l]. Deeper issues are covered in greater detail and at a more advanced level in The
Handbook of Contemporary Semamic Theory [25]. The intriguing area of lexical semantics
(theory of word meanings) is comprehensively presented in The Generative lexicon (35].
Concise History of the Language Sciences [21] is a good edited book if you are interested in

the history of linguistics.

70
Spoken Language Str ucture

REFERENCES

[1]
(2]

[3]

(4)
[5]
[6]

[7]

[8)

[9]

(10)

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

Al. and J et al The Unicode Standard, Version 2.0, 1996, Addison Wesley 1pr , ., ., . .
Allen, J.B., "How Do Humans Process and Recognize Speech?," IEEE Trans. on
Speech and Audio Processing, 1994, 2(4), pp. 567-577.
Allen, J.B., "Harvey Fletcher 1884-1981" in The ASA Edition of Speech and Hear­
ing Communication 1995, Woodbury, New York, pp. AI-A34, Acoustical Society

of America.
Baker, C.L., English Syntax, 1995, Cambridge, MA, MIT Press.
Blauert, J., Spatial Hearing, 1983, MIT Press.
Brill, E., "Transformation-Based Error-Driven Learning and Natural Language
Processing: A Case Study in Part-of-Speech Tagging," Computational Linguistics,
1995, 21(4), pp. 543-566.
Brown, P., er al., "Class-Based N-gram Models of Natural Language," Computa­
tional Linguistics, 1992, 18(4).
Caplan, D. and J. Utman, "Selective Acoustic Phonetic Impairment and Lexical
Access in an Aphasic Patient," Journal of the Acoustical Society of America, 1994,
95(1), pp. 512-517.
Cardona, G., Panini: His Work and Its Traditions: Background and Introduction,
1988, Motilal Banarsidass.
Chaffin, R., and Herrmann, D., "The Nature of Semantic Relations: A Comparison
of Two Approaches" in Representing Knowledge in Semantic Networks, M. Evens,
ed., 1988, Cambridge, UK, Cambridge University Press.
de Swart, H., Introduction to Natural Language Semantics, 1998, Stanford, CA,
Center for the Study of Language and Information Publications.
Duggirala, V., et al., "Frequency Importance Function for a Feature Recognition
Test Material," Journal of the Acoustical Society of America, 1988, 83(9). PP·
2372-2382.
Fillmore, C.J., "The Case for Case" in Universals in Linguistic Theory, E. Bach and
R. Harms, eds. 1968, New York, NY, Holt, Rinehart and Winston.
Fletcher, H., "Auditory Patterns,'' Rev. Mod. Phys., 1940, 12, pp. 47-65.
Fry, D.B., The Physics of Speech, Cambridge Textbooks in Linguistics, 1979,
Cambridge, U.K., Cambridge University Press.
Furui, S., ''.On Th~ Role of Spectral Transition for Speech Perception," Joumal of
the Acoustical Society of America, l 986, 80(4), pp. IO 16-1025.
Gussenho~en, C., and Jacobs, H., Understanding Phonology, Understanding Lan·
guage Senes, 1998, Edward Arnold.

H~utsma, A., T. Rossing, and W. Wagenaars Auditory Demonstrations, 1987• In·
Slltut~ for Perception Research, Eindhovem The Netherlands Acoustic Society of
Amenca. ' '
1
s~nl kitnsc, J., W. StTange, aod S. Miranda, "Vowel Identification in Mixed-Speak,·er

1 en - enter Syllables " J 1 if 994 95(),
pp. 1030-I 041 _ ' ourna O the Acoustical Society of America, 1 • '

Historical Perspective and Further Reading 71

(20] Klatt, D., "Review of the ARPA Speech Understanding Project," Journal of Acous­
tical Society of America, 1977, 62(6), pp. 1324-1366.

(21] Koerner, E. and E. Asher, eds. Concise HistOI)' of the Language Sciences, 1995,
Oxford, Elsevier Science.

[22) Kuhl, P., "Infant's Perception and Representation of Speech: Development of a
New Theory," Int. Co11f. on Spoken language Processing, 1992, Alberta, Canada,
pp. 449-452.

[23] Kupeic, J., "Robust Part-of-Speech Tagging Using a Hidden Markov Model,"
Comp/lier Speech and Language, 1992, 6, pp. 225-242.

[24] Ladefoged, P., A Course in Phonetics, 1993, Harcourt Brace Johanovich.
(25] Lappin, S., The Handbook of Contemporary Semantic Theory, Blackwell Hand­

books in Linguistics, 1997, Oxford, UK, Blackwell Publishsers Inc.
[26] Lindsey, P. and D. Norman, Human Information Processing, 1972, New York and

London, Academic Press.
[27) MacDonald, J. and H. McGurk, "Visual Influence on Speech Perception Process,"

Perception and Psychophysics, 1978, 24(3), pp. 253-257.
(28] McGurk, H. and J. MacDonald, "Hearing Lips and Seeing Voices," Nature, 1976,

264, pp. 746-748.
[29) Merialdo, B., "Tagging English Text with a Probabilistic Model," Computational

Linguistics, 1994, 20(2), pp. 155-172.
[30] Miller, J. and P. Eimas, Speech, Language and Communication, Handbook of Per­

ception and Cognition, eds. E. Carterette and M. Friedman, 1995, Academic Press.
[31] Moore, B.C., An Introduction to the Psychology of Hearing, 1982, London, Aca­

demic Press.
[32] O'Shaughnessy, D., Speech Communication - Human and Machine, 1987, Addi­

son-Wesley.
(33] Pickett, J.M., The Acoustics of Speech Communication, 1999, Needham Heights,

MA, Allyn & Bacon.
[34) Polka, L., "Linguistic Influences in Adult Perception of Non-native Vowel Con­

trast," Journal of the Acoustical Society of America, 1995, 97(2), pp. 1286-1296.
(35] Pustejovsky, J., The Generative Lexicon, 1998, Bradford Books.
[36) Quirk, R., Svartvik, J., Leech, G., A Comprehensive Grammar of the English Lan­

guage, 1985, Addison-Wesley Pub. Co.
[37] Radford, A., Syntax: A Minimalist Introduction, 1997, Cambridge, U.K., Cam­

bridge Univ. Press.
[38] Rossing, T.D., The Science of Sound, 1982, Reading, MA, Addison-Wesley .

. [39] Sag, I., Wasow, T., Syntactic Theory: A Formal Introduction, 1999, Cambridge,
UK, Cambridge University Press.

(40] Sproat, R., Mmphology and Computation, ACL-MlT Press Series in Natural Lan­
guage Processing, 1992, Cambridge, MA, MIT Press.

(41] Stevens, S.S. and J. Volkman, "The Relation of Pitch to Frequency," Journal of
Psychology, 1940, 53, pp. 329.

72

[42]

[43]

[44]

(45]

[46]

Spoken Langu-;;---
l"llctur,

Strange, W., J. Jenkins, and T. Johnson, "Dynamic Specification of Co .
Vowels," Journal of the Acoustical Society of America, I 983, 74(3), pp. 6;~cuJated
Thoreau HD, Civil Disobedience, Soli1ude and Life Without Pr,·nc· 1 ?Os.

' • • Ip e, 1998
Prometheus Books. ,
Uriagereka, J., Rhyme and Reason: An lntroduclion to Minimalist Synr

1 ax, 998 Cambridge, MA, MIT Press. ,
Voutilainen, A., "Morphological Disambiguation" in Constraint Grammar: A La
guage-lndependent System for Parsing Unrestricted Text 1995, Berlin Mout n. , on de
Gruyter.
Weischedel, R., "BBN: Description of the PLUM System as Used for MUc.

6
,,

The 6th Message Understandi11g Conferences (MUC-6), 1995, San Francisc~
Morgan Kaufmann, pp. 55-70. '

CHAPTER 1 2

Basic Search Algorithms

Continuous speech recognition (CSR) is both
a pattern recognition and search problem. As described in previous chapters, the acoustic
and language models are built upon a statistical pattern recognition framework. In speech
~ecognition, making a search decision is also referred to as decoding. In fact, decoding got
lls name from infonnation theory (see Chapter 3) where the idea is to decode a signal that
has presumably been encoded by the source process and has been transmitted through the
communication channel, as depicted in Chapter I, Figure 1.1. In this chapter, we first review
the general decoder architecture that is based on such a source-channel model.

The decoding process of a speech recognizer is to find a sequence of words whose cor­
responding acoustic and language models best match the input signal. Therefore, the process
?f such a decoding process with trained acoustic and language models is often referred to as
JUSt a search process. Graph search algorithms have been explored extensively in the fields
of artificial intelligence, operation research, and game theory. In this chapter first we present
several basic search algorithms, which serve as the basic foundation for CSR.

591

S92
Basic Search Algorithms

The complexity of a search algorithm is highly correlated with the ~earch spa~e, which

d
• d by the constraints imposed by the language models. We discuss the impact of is etermme ~

different language models, including finite-state grammars, context-free grammars, and 11_

grams. • 1 I V' b' A"• Speech recognition search is usual!~ done wit 1 t 1e 1ter I o~ •· stack decoders. The
reasons for choosing the Viterbi decoder involve arguments Lhat pomt to speech as a left-to­
right process and to the efficiencies aff?~ded by a time-sy?ch.-onous ~rocess. :h~ re~sons for
choosing a stack decoder involve its ab1hty to more effectively exploit the N · cntena, which
holds out the hope of performing an optimal search as well as the ability to handle huge
search spaces. Both algorithms have been successfully applied to various speech recognition
systems. The relative merits of both search algorithms were quite controversial in the 1980s.
Lately, with the help of efficient pruning techniques. Viterbi beam search has been the pre­
ferred method for almost all speech recognition tasks. Stack decoding, on the other hand,
remains an important strategy to uncover the n-best and lattice structures.

12.1. BASIC SEARCH ALGORITHMS

Search is a subject of interest in artificial intelligence and has been well studied for expert
systems, game playing, and information retrieval. We discuss several general graph search
methods that are fundamental to spoken language systems. Although the basic concept of
graph search algorithms is independent of any specific task. the efficiency often depends on
how we exploit domain-specific knowledge.

The idea of search implies moving around, examining things, and making decisions
about whether the sought object has yet been found. In general, search problems can be rep·
resented using the state-space search paradigm. It is defined by a triplet (S, 0 , G), where S
i~ a se~ of_initial states, 0 a set of operators (or rules) applied on a state to generate a transi­
t10n with its corresponding cost to another state, and G a set of goal states. A solution in the
state-space search paradigm consists in finding a path from an initial stale to a goal state.
The state-space representation is commonly identified with a directed graph in which each
node_~orresponds to a state and each arc to an application of an operator (or a rule), which
transitions from one_ state to another. Thus, the state-space search is equivalent to searching
through the graph with some objective function.
. Before we present any graph search algorithms, we need to remind the readers of the
impo~nce of lhe dynamic programming algorithm described in Chapter 8. Dynamic pro·
;:ammm_g ~ho~ld ~e applied :,Vhenever possible and as early as possible because (1) un!ike

Y heuns~1cs, it will not sacnfice optimality; (2) it can transform an exponential search mto
a polynomial search.

Basic Search Algorithms 593

2 11 General Graph Searching Procedures 1 ...

Although dynamic programming is a powerful polynomial search algorithm, many interest­
ing problems cannot be handled b~ it. A classical e~ample is the traveling salesman's prob­
len1. We need to find a shortest•dtstance tour, startmg at one of many cities, visiting each
city exactly once., and returning to the starting city. This is one of the most famous problems
in the NP-hard class [I, 32]. Another classical example is the N-queens problem (typically
8.queens), where the goal is to place N queens on an NxN chessboard in such a way that
no queen can capture any other queen, i.e., there is no more than one queen in any given
row, column, or diagonal. Many of these puzzles have the same characteristics. As we know,
the best algorithms currently known for solving the NP-hard problem are exponential in the
problem size. Most graph search algorithms try to solve those problems using heuristics to
avoid or moderate such a combinatorial explosion.

i----3--....;0 ~--3----1 v

Figure 12.1 A highway distance map for cities S, A, B, C, D, E, F, and G. The salesman needs

to find a path to travel from city S to city G [42).

Let's start our discussion of graph search procedure with a simple city-traveling prob­
lem [42]. Figure 12.1 shows a highway distance map for all the cities. ~ salesman named
John needs to travel from the starting city S to the end city G. One obvious wa~ to find a
palh is to derive a graph that allows orderly exploration of all possible paths. Fi~ure. 12•2

shows the graph that traces out all possible paths in the city-distance map shown m Figure
12 I Alth . . . • al hould note that the search • • ough the city-city connection 1s b1-direct1on , we s
?raph in this case must not contain cyclic paths, because they would not lead to any progress
1a this scenario

If • · b f odes (states) in the graph
we define the search space as the potential mun er o n . h v·terbi algo-

search • • al state sequence in t e 1
. procedure, the search space for findmg the opttm ~ h HMM and T

~Ihm (described in Chapter 8) is N x T • where N is the number of states o~_t e roblem will
~ i; length of the observation. Similary, the search space for John's trave mg P

• . b hing factor defined as the
av Another important measure for a search graph is the ~anc f odes of a search graph

erage number of successors for each node. Since the num er O n

594 Basic Search Algorith111.s

(or tree) grows exponentially with base equal to this branching factor, we certainly need t
watch out for search graphs (or trees) with a large branching factor. Sometimes they can~
too big to handle (even infinite. as in game playing). We often trade the optimal solution for
improved perfomrnnce and feasibility. That is, the goal for such search problems is 10 find
one satisfactory solution instead of the optimal one. In fact, most AI (artifica1 intelligence)
search problems belong to this category.

The search tree in Figure 12.2 may be implemented either explicitly or implicitly. In
an explicit implementation, the nodes and arcs with their corresponding distances (or costs)
are explicitly specified by a table. However, an explicit implementation is clearly impracti­
cal for large search graphs and impossible for those with infinite nodes. In practice, most
parts of the graph may never be explored before a solution is found. Therefore, a sensible
strategy is to dynamically generate the search graph. The part that becomes explicit is often
referred to as an active search space. Throughout the discussion here, it is important to keep
in mind this distinction between the implicit search graph that is specified by the start node
S and the explicit partial search graphs that are actually constructed by the search algo­
rithm.

To expand the tree, the term successor operator (or move generator, as it is often
called in game search) is defined as an operator that is applied to a node to generate all of
the successors of that node and to compute the distance associated with each arc. The suc­
cessor operator obviously depends on the topology (or rules) of the problem space. Expand­
ing the starting node S, and successors of S, ad infinitum, gradually makes the implicitly

Figure 12•2 The search tree (graph) for the salesman problem illustrated in Figure 12· J. The
number next to each node is the accumulated distance from start city to end city [42].

BasirSearch Algorithms 595

defined graph explicit. Thi~ recursive procedure is _straightforward, and the search graph
(tree) can be constructed without the extra b~kkeepmg. However, this process would only
generare a search tree where the same node might be generated as a part of several possible

paths.
For example, node E ,s being generated m four different paths. If we are interested in

finding an optimal path to travel from S to G, it is more efficient to merge those different
paths that lead to the same node E. We can pick the shortest path up to C, since everything
following E is the same for the rest of the paths. This is consistent with the dynamic pro­
gramming principle-when looking for the best path from S to G, all partial paths from s to
any node E, other than the best path from S to E, should be discarded. The dynamic pro­
gramming merge also eliminates cyclic paths implicitly, since a cyclic path cannot be the
shortest path. Performing this extra bookkeeping (merging different paths leading into the
same node) generates a search graph rather than a search tree.

Although a graph search has the potential advantage over a tree search of being more
efficient, it does require extra bookkeeping. Whether this effort is justified depends on the
individual problem one has to address.

Most search strategies search in a forward direction, i.e., build the search graph (or
tree) by starting with the initial configuration (the starting state S) from the root. In the gen­
eral AI literature, this is referred to as forward reasoning (43], because it perfonns rule-base
reasoning by matching the left side of rules first. However, for some specific problem do­
mains, it might be more efficient to use backward reasoning (43], where the search graph is
built from the bottom up (the goal state G). Possible scenarios include:

• There are more initial states than goal states. Obviously it is easy to start
with a small set of states and search for paths leading to one of the bigger se_rs
of states. For example, suppose the initial state S is the homet~wn for Joh~-10

the city-traveling problem in Figure 12.1 and the goal state G 1s an unfam~ltar
city for him. In the absence of a map, there are certa~nly ~ore loca~ions
(neighboring cities) that John can identify as being close to his home city S
than those he can identify as being close to an unfamiliar location. I~ a sense,
all of those locations being identified as close to John's home ct~ S are
equivalent to the initial state S. This means John might want to c~n5ider rea­
soning backward from the unfamiliar goal city G for the trip planning.

• Tl • • lier than that for Jor-ie branching factor for backward reasonmg is sma . . 'th
d . t arch in the direct1on w1 wa~ reasoning. In this case 1t makes sense o se

lower branching factor. .
I d • Itaneously, until two partial
t is m pnnc1ple possible to search from both en s simu . 1 h [43) B'1-path . d b • d' 11ona searc •

dire:teet somewhere in the middle. This s!1'at~gy ts calle '~/::des at each step grows
ionaJ search seems particularly appealmg 1f the number --' Bting cl_o __________ . . ities he can easily remember 1he best pa~ to

rciu h se means that, once John reaches one of those neighboring c • h aru· cular board configurauon,
Ill ome I · . . 0 th player reac es a P he • 11S s1m1lar 10 the killer book for chess play. nee e

can follow th • • t ry e killer book for moves 1ha1 can guarantee a v,c O •

596 Basic Search Algorithms

exponentially with the depth that needs to be explored. However, som~times bi-directional
search can be devastating. The two searches may cross each other, as illustrated in Figure

12.3.
The process of explicitly generating part of an implicitly defined graph fonns the es-

sence of our general graph search procedure. The procedure is summarized in Algorithm
12.1. Jt maintains two lists: OPEN, which stores the nodes waiting for expansion, and
CLOSE, which stores the already expanded nodes. Steps 6a and 6b are basically the book­
keeping process to merge different paths going into the same node by picking the one that
has the minimum distance. Step 6a handles the case where v is in the OPEN list and thus is
not expanded. The merging process is straightforward, with a single comparison and change
of traceback pointer if necessary. However, when V is in the CLOSE list and thus is already
expanded in Step 6b, the merging requires additional forward propagation of the new score
if the current path is found to be better than the best subpath already in the CLOSE list. This
forward propagation could be very expensive. Fortunately, most of the search strategy can
avoid such a procedure if we know that the already expanded node must belong in the best
path leading to it. We discuss this in Section 12.5.

As described earlier, it may not be worthwhile to perform bookkeeping for a graph
search, so Steps 6a and 6b are optional. If both steps are omitted, the graph search algorithm
described above becomes a tree search algorithm. To illustrate different search strategies,
tree search is used as the basic graph search algorithm in the sections that follows. However,
you should note that all the search methods described here could be easily extended to graph
search with the extra bookkeeping (merging) process as illustrated in Steps 6a and 6b of
Algorithm 12. l .

• Forward search explored· area
... . .-. '.

0
• ;. . • Backward .search explored area

--- • -~- .• • • ◄◄--- .

Figure 12,3 A bad case for bi-directional search, where the forward search and the backward
search crossed each other [42].

. Search Algorithms Basic

ALGORITHM 12.1: THE GRAPH-SEARCH ALGORITHM

597

Step 1: Initialization: ~ut _s in the O~EN list and create an initially empty CLOSE list
step 2: If the OPEN list 1s empty, exit and declare failure.
Step 3: Pop up the first node Nin the OPEN list remove it from the OPEN list and put it into
the CLOSE list.
Step 4: If node N is a goal node, exit successfully with the solution obtained by tracing back the
path along the pointers from N to s. .
Step 5: Expand node N by applying the successor operator to generate the successor set
SS(N) of node N. Be sure to eliminate the ancestors of N from SS(N).
Step 6: Vv e SS(N) do

Sa. (optional) If v e OPEN and the accumulated distance of the new path is smaller than
that for the one in the OPEN list, do

(i) change the traceback (parent) pointer of v to N and adjust the accumulated
distance for v .

(ii) go to Step 7.
Sb. (optional) ff v e CLOSE and the accumulated distance of the new path is smaller

than the partial path ending at v in the CLOSE list, do
(i) change the traceback (parent) pointer of v to N and adjust the accumulated

distance for all paths that contain v .
(ii) go to Step 7.

6c. Create a pointer pointing to N and push it into the OPEN fist. ..
Step 7: Reorder the OPEN list according to search strategy or some heunst,c measurement.
Step 8: Go to Step 2.

12.1.2. Blind Graph Search Algorithms

If · bl th ·nstead of the best path, blind
the aim of the search problem is to find an accepta e pa 1

. h d blindly
search • d • th~ OPEN ltst t e same an

. 1s often used. Blind search treats eve?' no e 10
. _ wledae. Since blind search

decides the order to be expanded without usmg any domain kno, 0

1 ust,·ve search be-
tre ts ifi m searc tor ex za '

a every node equally, it is often referred to as um 01
• ally not interested in

~a_use it exhaustively tries out all possible paths. 1~ A!, pe~p:; ::;yp;~phisticated heurisLic
hnd search. However, it does provide a lot of insight 10 y d nodes randomly. In-

search algorithms. You should note that blind search does n;t exp: Two popular Lypes of
s~ad, it follows some systematic way to explore the searc grap •
bhnd search are depth-first search and breadth-firSt search.

598 Basic Search Algorithms

12.1.2.1. Depth-First Search

When we are in a maze, the most natural way to find a way out is to mark the branch we
take whenever we reach a branching point. The marks allow us to go back to a choice point
with an unexplored alternative, withdraw the most recently made. choice and undo all conse­
quences of the withdrawn choice whenever a dead-end is reached. Once the alternative
choice is selected and marked, we go forward based on the same procedure. This intuitive
search strategy is called backtracking. The famous N-queens puzzle [32] can be handily
solved by the backtracking strategy.

Depth-first search picks an arbitrary alternative at every node visited. The search
sticks with this partial path and works forward from the partial path. Other alternatives at the
same level are ignored completely (for the time being) in the hope of finding a solution
based on the current choice. This strategy is equivalent to ordering the nodes in the OPEN
list by their depth in the search graph (tree). The deepest nodes are expanded first and nodes
of equal depth are ordered arbitrarily.

Although depth-first search hopes the current choice leads to a solution, sometimes the
current choice could lead to a dead-end (a node which is neither a goal node nor can be ex­
panded further). In fact, it is desirable to have many short dead-ends. Otherwise, the algo­
rithm may search for a very long time before it reaches a dead-end, or it might not ever
reach a solution if the search space is infinite. When the search reaches a dead-end, it goes
back to the last decision point and proceeds with another alternative.

Figure 12.4 shows all the nodes being expanded under the depth-first search algorithm
for the city-traveling problem illustrated in Figure 12.1. The only differences between the
graph search and the depth-first search algorithms are:

l . The graph search algorithm generates all successors at a time (although all
except one are ignored first), while depth-first search generates only one suc­
cessor at a time.

2. The graph search, when successfully finding a path, saves only one path from
the starting node to the goal node, while depth-first search in general saves
the entire record of the search graph.

. Depth-first search could be dangerous because it might search an impossible path th31

is actually an infinite dead-end. To prevent exploring of paths that are too long, a deplh
b d b • that oun _ca~ . e placed to constrain the nodes to be expanded, and any node reaching
depth hmit 1s treated as a terminal node (as if it had no successor). .

. The ge~eral graph search algorithm can be modified into a depth-first search algonthm
as illustrated m Algorithm J 2.2.

-Basic Search Algorithms

,:' c ': ~_A_:
...

\···. ,, •·• :

~ B:• ~D :
• ... · • ·

; F •. ·. :

...
:·A ··.

Figure 12.4 The node-expanding procedure of the depth-first search for the path search prob­
lem in Figure 12.1. When it fails to find the goal city in node C, it backtracks to the parent and
continues the search until it finds the goal city. The gray nodes are those that are explored. The
dotted nodes are not visited during the search [42].

ALGORITHM 12.2: THE DEPTH-FIRST SEARCH ALGORITHM

Step 1: Initialization: Put Sin the OPEN list and create an initially empty the CLOSE list.
Step 2: If the OPEN list is empty, exit and declare failure.
Step 3: Pop up the first node N in the OPEN list, remove it from the OPEN list and put it into the
CLOSE list.
Step 4: If node N is a goal node, exit successfully with the solution obtained by tracing back the
path along the pointers from N to S.

4a. If the depth of node N is equal to the depth bound, go to Step 2.
Step 5: Expand node N by applying the successor operator to generate the successor set
SS(N) of node N. Be sure to eliminate the ancestors of N from SS(N).
S!ep 6: \iv e SS(N) do

6c. Create a pointer pointing to N and push it into the OPEN list.
step 7: Reorder the the OPEN list in descending order of the depth of the nodes.

~Slep 8: Go to Step 2.

599

600
Basic Search Algorithms

12.1.2.2. Breadth-First Search

One natural alternative to the depth-first search strategy is breadth-first search. Breadth-first
search examines all the nodes on one level before considering any of the nodes on the next
level (depth). As shown in Figure 12.5, node B would be examined just after node A. The
search moves on level-by-level, finally discovering G on the fourth level.

Breadth-first search is guaranteed to find a solution if one exists, assuming that a finite
number of successors (branches) always follow any node. The proof is straightfoiward. If
there is a solution, its path length must be finite. Let's assume the length of the solution is
M. Breadth-first search explores all paths of the same length increasingly. Since the number
of paths of fixed length N is always finite, it eventually explores all paths of length M. By
that time it should find the solution.

It is also easy to show that a breadth-first search can work on a search tree (graph)
with infinite depth on which an unconstrained depth-first search will fail. Although a
breadth-first might not find a shortest-distance path for the city-travel problem, it is guaran­
teed to find the one with fewest cities visited (minimum-length path). In some cases, it is a
very desirable solution. On the other hand, a breadth-first search may be highly inefficient
when all solutions leading to the goal node are at approximately the same depth. The
breadth-first search algorithm is summarized in Algorithm 12.3.

>
2

>
3

>
4

~ F :
Figure 12.5 The node e d. • • • • • h ob-
lem in Figure

12 1
- x.pan mg procedure of a breadth-first search for the path searc pr

are those that • • It searches thr0ugh each level until the goal is identified. The gray nodes
are explored The d tt d d . .) • o e no es are not v1s1ted during the search [42 •

Basic Search Algorithms 601

ALGORITHM 12.3: THE BREADTH-FIRST SEARCH ALGORITHM

Step 1: Initialization: ~u~ S in the O~EN list and create an initially empty the CLOSE list.
step 2: If the OPEN 11st 1s empty, exit and declare failure.
Step 3: Pop up the first node Nin the OPEN list, remove it from the OPEN list and put it into th
CLOSE list. e
Step 4: If node N is a goal node, exit successfully with the solution obtained by tracing back the
path along the pointers from N to S.
Step 5: Expand node N by applying the successor operator to generate the successor set
SS(N) of node N. Be sure to eliminate the ancestors of N, from SS(N).
Step 6: Vv E SS(N) do

6c. Create a pointer pointing to N and push it into the OPEN list.
Step 7: Reorder the OPEN list in increasing order of the depth of the nodes.
Step 8. Go to Step 2.

12.1.3. Heuristic Graph Search

Blind search methods, like depth-first search and breadth-first search, have no sense (or
guidance) of where the goal node lies ahead. Consequently, they often spend a lot of time
searching in hopeless directions. If there is guidance, the search can move in the direction
that is more likely to lead to the goal. For example, you may want to find a driving route to
the World Trade Center in New York. Without a map at hand, you can still use a straight­
line distance estimated by eye as a hint to see if you are closer to the goal (World Trade
Center). This hill-climbing style of guidance can help you to find the destination much· more
efficiently.

Blind search finds only one arbitrary solution instead of the optimal solution. To find
the optimal solution with depth-first or breadth-first search, you must not stop searching
when the first solution is discovered. Instead, the search needs to continue until it reaches all
the solutions, so you can compare them to pick the best. This strategy for finding the opti~al
solution is called British Museum search or brute-force search. Obviously, it is unfeasible
when the search space is large. Again, to conduct selective search and yet still be able to find

the optimal solution, some guidance on the search graph is necessary. .
The guidance obviously comes from domain-specific knowledge. Such knowle~ge is

usually referred to as heuristic information, and search methods taking advantage. 0 ~ tt are
Called heuristic search methods. There is usually a wide varie~ of diffe~en~ heun~tic~tor
the problem domain. Some heuristics can reduce search effort without sacnficmg optlm ty,
Wh'l • 1 l ti In most 1 e 0ther can greatly reduce search effort but provide only sub-optima so u ons. .
practical problems, the choice of different heuristics is usually a tradeoff between the quahty

of the solution and the cost of finding the solution.

602
Basic Sear<'h Algorithms

... , ·maci·o11 works like an evaluation function h(N) that maps each node N Heunst1c m101 .
b d Whl.ch serves to indicate the relative goodness (or cost) of continuing to a real num er, an

I h f that node Since in our city-travel problem. straight-line distance is a the searc 1 pat rom • • . .
I f easurl·ng the goodness of a path. we can use the heunst1c function h(N) for natura way o m ·

the distance evaluation as:

h(N)=Heuristic estimate of the remaining distance from node N to goal G (12.1)

Since g(N), the distance of the partial path to the current node N, is generally known, we

have:

g(N)=The distance of the partial path already traveled from root S to node N (I 2.2)

We can define a new heuristic function, f (N) , which estimates the total distance for the
path (not yet finished) going through node N.

/(N) = g(N)+h(N) (l 2.3)

A heuristic search method basically uses the heuristic function f (N) to re-order the
OPEN list in the Step 7 of Algorithm 12. l. The node with the best heuristic value is ex­
plored first (expanded first). Some heuristic search strategies also prune some unpromising
partial paths forever to save search space. This is why heuristic search is often referred to as
heuristic pruning.

The choice of the heuristic function is critical to the search results. If we use one that
overestimates the distance of some nodes, the search results may be suboptimal. Therefore,
heuristic functions that do not overestimate the distance are often used in search methods
aiming to find the optimal solution.

To close .this section, we describe two of the most popular heuristic search methods:
best-first (or A Search) [32, 43] and beam search (43]. They are widely used in many com­
ponents of spoken language systems.

12.1.3.1. Best-First (A. Search)

Once w~ have a reasonable heuristic function to evaluate the goodness of each node in 1h.e
OPEN hst, we can explore the best node (the node with smallest f(N) value) first, since it

offers the best hope of leading to the best path. This natural search strate0 y is called best-
firsr search. To implement best-first search based on the Algorithm 12.l c we need to first
evaluate f (N) for h ' . • St p 6 eac successor before putting the successors in the OPEN list tn e •
W~ al.so. need to sort the elements in the OPEN list based on f(N) in Step 7, so that the t,eSI

~o e 1~ m t~e front-most position waiting to be expanded in Step 3. The modified procedure i~:::
0
~rr;~n~ best-~rst search is illustrated in Algorithm 12.4. To avoid duplicating no~es

P
rincipl Th hS

t, we include Sfeps 6a and 6b to take advantage of the dynamic programm~ng
e. ey perform the ne d d b . . ths 1ead1ng • t th e e ookkeepmg process to merge different pa m o e same node.

Basic Search Algorithms 603

ALGORITHM 12.4: THE BEST-FIRST SEARCH ALGORITHM

Step 1: Initialization: '.u~ Sin the O~EN list and create an initially empty the CLOSE list.
Step 2: If the OPEN hst 1s empty, exit and declare failure.
Step 3. Pop up the first node Nin the OPEN list, remove it from the OPEN list and put it into the
CLOSflist.
Step 4: If node N is a goal node, exit successfully with the solution obtained by tracing back the
path along the pointers from N to S.
Step 5: Expand node N by applying the successor operator to generate the successor set
SS(N) of node N. Be sure to eliminate the ancestors of N, from SS(N').
Step 6: 'rive SS(N) do

6a. (optional) If v e OPEN and the accumulated distance of the new path is smaller than
that for the one in the the OPEN list, do

(i) Change the traceback (parent) pointer of v to N and adjust the accumulated
distance for v .

(ii) Evaluate heuristic function /(v) for v and go to Step 7.
6b. (optional) If v e CLOSE and the accumulated distance of the new path is small than

the partial path ending at v in the the CLOSE list,
(i) Change the traceback (parent) pointer of v to N and adjust the accumulated

distance and heuristic function J for all the paths containing v •

(ii) go to Step 7.
6c. Create a pointer pointing to N and push it into the OPEN list.

Step 7: Reorder the the OPEN list in the increasing order of the heuristic function /(N).

Step 8: Go to Step 2.

. 'f • arantee to find an optimal solu-
A search algorithm 1s said to be adm1ss1ble 1 1t can gu . .

t. . - • f t' h(N) of estimating the re-
ion, if one exists. Now we show that if the heunstlc unc 10

~ . N
• - . . d • ate- of the true distance from

mammg distance from N to goal node G 1s an un ere5cim . . . 1 f
t

. Al 'thm 12 4 1s adm1ss1ble. n act,
0 goal node G the best-first search illustrated 10 gon • • d
h

' 1 • h • called A {pronounce as
w en h(N) satisfies the above criterion, the best-first a gont m is
lehf-star) Search -• When the frontmost node m the

The proof can be carried out infonnally as follows.
OPEN list is the goal node G in Step 4, it immediately implies that

'rive OPEN f(v)?:. /(G) = g(G)+h(G) == g(G)
(12.4)

1 ----------- - !he distance from N to G.
For ad • , r ction not overesumate al

S
. . m1ss1b1hty, we actually require only that the heunsuc un h t 1his chapter without loss of gener •
•nee II is d -t' mate throug ou

ily So _very rare lo have an exact estimate, we use un eres I d (mate of the trUe value.
• rncumes we refer to an underestimate function as a lower-boun es

1

604 Basic Search Algorithms

Equation (I 2.4) says that the di_stance est!mate of a?y incomplete path is no shorter
than the_ first found complete path. Smee the _distance estimate for any incomplete path is
underest11nated, the first found complete path m Step 4 must be the optimal path. A similar
argument can also be used to prove that the Step 6b is actually not necessary for admis "bl
h . . f . h . th s1 e

eur_1st1c unctions; t at 1s, ere cannot be another path with a shorter distance from the
starting node to a node that has been expanded. This is a very important feature since St
6b is, in general, very expensive and it requires significant updates of many already e:~
panded paths.

The A · search method is actually a family of search algorithms. When h(N) = o for all
N, the search degenerates into an uninfonned search3 [40] . .In fact, this type of uninformed
search is the famous branch-and-bound search algorithm that is often used in many opera­
tions research problems. Branch-and-bound search always expands the shortest path leading
into an open node until there is a path reaching the goal that is of a length no longer than all
incomplete paths terminating at open nodes. When g(N) is defined as the depth of the node
N, the use of heuristic function f(N) makes the search method identical to breadth-first
search. In Section 12.1.2.2, we mention that breadth-first search is guaranteed to find a
minimum length path. This can certainly be derived from the admissibility of the A' search
method.

When the heuristic function is close to the true remaining distance, the search can usu­
ally find the optimal solution without too much effort. In fact, when the true remaining dis­
tances for all nodes are known, the search can be done in a totally greedy fashion without
any search at all, i.e., the only path explored is the solution. Any non-zero heuristic function
is then calJed an informed heuristic function, and the search using such a function is called
informed search. A heuristic function hi is said to be more informed than a heuristic func­
tion h,_ if the estimate hi is everywhere larger than hi and yet still admissible (underesti­
mate). Finding an informed admissible heuristic function (guaranteed to underestimate for
all nodes) is, in general, a difficult task. The heuristic often requires extensive analysis of the
domain-specific knowledge and knowledge representation.

Let's look at a simple example-the 8-puzzle problem. The 8-puzzle consists of eight
numbered, movable tiles set in a 3 x 3 frame. One cell of this frame is always empty, so it is
possible to move an adjacent numbered tile into the empty cell. A solution for the 8-puzzle
is to find a sequence of moves to change the initial configuration into a given goal configu­
ration as shown in Figure 12.6. One choice for an informed admissible heuristic function _h.
is the number of misplaced tiles associated with the current configuration. Since eac~ mi~­

placed tile needs to move at least once to be in the right position, this heuristic function is
clearly a lower bound of the true movements remaining. Based on this heuristic function, the
value for the initial configuration will be 7 in Figure 12.7. If we examine this problem fur­
ther a more infonned heuristic function h,_ can be defined as the sum of all row and column
dist~nces of all misplaced tiles and their goal positions. For example, th~ _row_ and col~;
distance between the tile 8 in the initial configuration and the goal pos1t10n is 2 + I- '

' In some literature an uninformed search is referred to as uniform-cost search.

Basic Search Algorithms
605

8 2 1 1 2 3

6 4 4 5 6

5 3 7 7 8
Figure 12.6 Initial and goal configurations for the 8-puzzle problem.

which indicates that one must move tile 8 at least 3 times in order for it to be in the right
position. Based on the heuristic function h2, the value for the initial configuration will be 16
in Figure 12.6. h2 is again admissible.

In our city-travel problem, one natural choice for the underestimating heuristic func­
tion of the remaining distance between node N and goal G is the straight-line distance since
the true distance must be no shorter than the straight-line distance.

Figure 12.7 shows an augmented city-distance map with straight-line distance to goal
node attached to each node. Accordingly, the heuristic search tree can be easily constructed
for improved efficiency. Figure 12.8 shows the search progress of applying the A' search
algorithm for the city-traveling problem by using the straight-line distance heuristic function
to estimate the remaining distances.

8.5 5.7 28
;,.....-__ 3 _ __,;fc'L---3--~

\.::._J

7
Figur 12 7 . . . , • • ~ t' on The numbers be-
. e · The city-travel problem auomented with heuristic 10 orma 1 •

side h o G [4'1 eac node indicate the straight-line distance to the goal node - •

606
Basic Search Algorithms

Figure 12.8 The search progress of applying A" search for the city-travel problem. The search
detennines that path S-A-C-E-G is the optimal one. The number beside the node is/values on
which the sorting of the OPEN list is based [42].

12.1.3.2. Beam Search

Sometimes, it is impossible to find any effective heuristic estimate, as required in A* search,
particularly when there is very little (or no) information about the remaining paths. For ex­
ample, in real-time speech recognition, there is little information about what the speaker will
utter for the remaining speech. Therefore, an efficient uninformed search strategy is very
important to tackle this type of problem.

Breadth-first style search is an important strategy for heuristic search. A breadth-first
search virtually explores all the paths with the same depth before exploring deeper paths. In
practice, paths of the same depth are often easier to compare. It requires fewer heuristics to
rank the goodness of each path. Even with uninformed heuristic function (h(N) = 0), lhe
direct comparison of g (distance so far) of the paths with the same length should be 3 rea­
sonable choice.

~eam search is a widely used search technique for speech recognition systems l:~• 31.
37). It is a breadth-first style search and progresses along with the depth. Unlike tradiuonal
breadlb-firSl search, however, beam search only expands nodes that are likely to succe~ at
each level. Only these nodes are kept in the beam and the rest are ignored (pruned) for im·
proved efficiency. '

In general, a beam search only keeps up to w best paths at each stage (level), and !he
rest of the paths are d' d d Th . h ,n..e num· b iscar e • e number w is often referred to as beam wtdt • 111

•

~r of_nodes explored remains manageable in beam search even if the whole search space:
~1~anuc. ~f a beam width w is used in a beam search with an average branching faccorbe;
n Y wx nodes need to be explored at any depth, instead of the exponential num

• Search Algorithms
8SS1C 607

needed for breadth-fir~t search. Suppose that a beam width of 2 is used for the city-travel
problem. figure 12.9 1llustrales how beam search progresses to find the path. We can also
see that the beam search saved a large number of unneeded nodes, as shown by the dotted

nodes.
The beam search. algorith~1 cun be eusily. mo~i~ied from the breadth-first search algo­

rithm and is illustrated m Algonthm _l 2.5. For s1'.11phc1ty, we do not include the merging step
here. In Algorithm 12.5, Step 4 obviously requires sorting, which is time-consuming if the
number wxb is huge. In practice, the beam is usually implemented as a flexible list where
nodes are expanded if their heuristic functions J (N) are within some threshold (a.k.a., beam
threshold) of the best node (the smallest value) at the same level. Thus, we only need to
identify the best node and then prune away nodes that are outside of the threshold. Although
this makes the beam size change dynamically, it significantly reduces the effort for sorting
of the Beam-Candidate list. In fact, by adjusting the beam threshold, the beam size can be
controlled indirectly and yet kept manageable.

Unlike A' search, beam search is an approximate heuristic search method that is not
admissible. However, it has a number of unique merits. Because of its simplicity in both its
search strategy and its requirement of domain-specific heuristic information, it has become
one of the most popular methods for complicated speech recognition problems. It is particu­
larly attractive when integration of different knowledge sources is required in a time­
synchronous fashion. It has the advantages of providing a consistent way of exploring nodes
level by level and of offering minimally needed communication between different paths. It
is also very suitable for parallel implementation because of its breadth-first search nature.

7

11

•
~ C :

. ·· •:
; B •. ·. :

,: D :

Figure 12 'th ray color are the ones
kepi . •9 Beam search for the city-travel problem. The nodes wi g f h'igher cos!. The

in the b d b t ned because o d eam. The transparent nodes were explore u pru
OIied node • d' • [42] s in 1cate all the savings because of pruning •

608
Basic Search Algorithm.~

ALGORITHM 12.5: THE BEAM SEARCH ALGORITHM

Step 1: Initialization: Put Sin the ~PEN list and cr?ate an initially empty CLOSElist.
Step 2: If the OPEN list is empty, ex,t and declare failure.
Step 3: VN e OPEN do

3a. Pop up node N in the OPEN list, remove it from the OPEN list and put it into the

CLOSE list.
3b. If node N is a goal node, exit successfully with the solution obtained by tracing back the

path along the pointers from N to S.
3c. Expand node N by applying a successor operator to generate the successor set SS{N)

of node N. Be sure to eliminate the successors, which are ancestors of N, from SS(N/.
3d. Vv e SS(N) Create a pointer pointing to N and push it into Beam-Candidate list.

Step 4: Sort the Beam-Candidate list according to the heuristic function J (N) so that the best
w nodes can be pushed into the the OPEN list. Prune the rest of nodes in the Beam-Candidate
list.
Step 5: Go to Step 2.

12.2. SEARCH ALGORITHMS FOR SPEECH RECOGNITION

As described in Chapter 9, the decoder is basically a search process to uncover the word
sequence W = w, w2 ••• w., that has the maximum posterior probability P(WIX) for the given
acoustic observation X = X1X2 .•• X,,. That is,

W=argmaxP(WI X) =argmax P(W)P(X I W) ==argmax P(W)P(XI W) (12.5)
• ,. P(X) ,.

One obvious way is to search all possible word sequences and select the one with the beSt
posterior probability score.

The unit of acoustic model P(XIW) is not necessary a word model. For large­
vocabulary speech recognition systems, subword models which include phonemes, demisyl­
lables, ~d syllables are often used. When subword ~odels are used, the word model
P(XIW) ts th bta" db · • . . ~n ° me Y concatenating the subword models according to the pronuocra·
lion transcnpt1on of the words in a lexicon or dictionary.

When word models are available, speech recognition becomes a search problem. Toe
goal for speech recogn • t' • th · the
•

1 ton is us to find a sequence of word models that best descnbes
tnput waveform agai t th d d~rV
f h

ns e wor models. As neither the number of words nor the boun "' 1

o eac word or phone • th • • to
d I .th h . me 10 e mput waveform is known appropriate search strategies
ea w1 t ese vanable I h . ,

When HMM • engt nonstatmnary patterns are extremely important.
expanded to i ~ are used for speech recognition systems, the states in the HMM can be
speech model~~l~h e st~te-search space in the search. In this chapter, we use HMMs as o~~

• oug the HMM framework is used to describe the search algorithms, a

searrh Algorithms for Speech Recognition
609

techniques mentioned in this and the followino chapter can be u d .- b
. . . _ e- se 1or systems ased on

Other modeling techmques, mcludmg template matchino and neural tw k 1 .-
- . o ne or s. n 1act, many

-~~,...h iechmques had been invented before HMMs were appl·ied t h . -,.,....~ . . o speec recogmt1on.
Moreover, the HMMs state tr..tns111on network is actually general enough lo represent the
general search framework for all modeling approaches.

12.2.1. Decoder Basics

The lessons learned from dynamic programming or the Viterbi algorithm introduced in
Chapter 8 tell us that the exponential blind search can be avoided if we can store some in­
termediate optimal paths (results). Those intermediate paths are used for other paths without
being recomputed each time. Moreover, the beam search described in the previous section
shows us that efficient search is possible if appropriate pruning is employed to discard
highly unlikely paths. In fact., all the search techniques use two strategies: sharing and prun­
ing. Sharing means that intermediate results can be kept. so that they can be used by other
paths without redundant re-computation. Pruning means that unpromising paths can be dis­
carded reliably without wasting time in exploring them further.

Search strategies based on dynamic programming or the Viterbi algorithm with the
help of cleYer pruning, have been applied successfully to a wide range of speech recognjtion
tasks (31], ranging from small-vocabulary tasks, like digit recognition, to unconstraint large­
vocabulary (more than 60,000 words) speech recognition. All the efficient search algorithms
we discuss in this chapter and the next are considered as variants of dynarruc programming
or the Viterbi search algorithm.

In Section 12.1, cost (distance) is used as the measure of goodness for graph search a~­
gorithms. With Bayes' fonnulation, searching the minimum-cost path (word ~quence) 15

equivalent to finding the path with maximum probability. For the s~ke of constStency, we
use the inverse of Baves' posterior probability as our objective funcuon. Furthem.ore, loga­
• • . . ·d 1 • 1· • s That 1s the fol-nthms are used on the inverse posterior probab1hty to avo1 mu ~•P icauon • '

lowing new criterion is used to find the optimal word sequence W :

C(W]X)=log j _ 1 _ . l=-log[P(W)P(XlW)]
LP(W)P(X ; W) J

(12.6)

W = argmin C(W l X)
(12.7)

...

~ . mirror the likelihood for
Or SUllplicity, we also define the following cost measures 10

<lcoustic models and language models:
(12.8)

C(X • WJ=-log[P<X • W;]

(12.9)

C{WJ ==-log[P<W)]

610 Basic Search Algorithms

12.2.2. Combining Acoustic and Language Models

Although Bayes' equation [Eq. (12.5)] suggests that the acoustic model probability (condi­
tional probability) and language model probability (prior probability) can be combined
through simple multiplication, in practice some weighting is desirable. For example, when
HMMs are used for acoustic models, the acoustic probability is usually underestimated, ow­
ing to the fallacy of the Markov and independence assumptions. Combining the language
model probability with an underestimated acoustic model probability according to Eq. (12.5)
would give the language model too little weight. Moreover, the two quantities have vastly
different dynamic ranges particularly when continuous HMMs are used. One way to balance
the two probability quantities is to add a language model weight L W to raise the language
model probability P(W) to that power P(W/w [4, 25]. The language model weight LW is
typically detennined empirically to optimize the recognition performance on a development
set. Since the acoustic model probabilities are underestimated, the language model weight
L W is typically > l .

Language model probability has another function as a penalty for inserting a new word
(or existing words). In particular, when a uniform language model (every word has an equal
probability for any condition) is used, the language model probability here can be viewed as
purely the penalty of inserting a new word. If this penalty is large, the decoder will prefer
fewer longer words in general, and if this penalty is small, the decoder will prefer a greater
number of shorter words instead. Since varying the language model weight to match the
underestimated acoustic model probability will have some side effect of adjusting the pen­
alty of inserting a new word, we sometimes use another independent insertion penalty to
adjust the issue of longer or short words. Thus the language model contribution becomes:

(12.10)

where IP is the insertion penalty (generally 0 <JP~ l .0) and N(W) is the number of words
in sentence W. According to Eq. (12.10), insertion penalty is generally a constant that is
added to the negative-logarithm domain when extending the search to another new word. In
Chapter 9, we described how to compute errors in a speech recognition system and intro·
duced three types of error: substitutions, deletions and insertions. Insertion penalty is so
named because it usually affects only insertions. Similar to language moue! weight, the in­
sertion penalty is detennined empirically to optimize the recognition perfonnance on a de­
velopment set.

12.2.3. Isolated Word Recognition

W• h • I • · ·1 ble, It iso ated word recogmt1on, word boundaries are known. If word HMMs are avai a
!he acoustic model probability P(XIW) can be computed usino the forward algorithm intro·
d d' Ch 8 Th O dtheword

uce m apter • e search becomes a simple pattern recognition problem, an

Search Algorithms for Speech Recognition
611

w with highest forward probability is then chosen as the reco • d d
d d HMM . gmze wor . When subword

models are use • wor s can be easily constructed by concate t· . . h na mg correspondmg
Phoneme HMMs 01 ot er types of subword HMMs according to th d d . . e proce ure escnbed in
Chapter 9.

12.2.4. Continuous Speech Recognition

Search in continuous :peech recognition is rather complicated, even for a small vocabulary.
since the search algonthm has to consider the possibility of each word starting at any arbi­
trary time frame. Some of the earliest speech recognition systems took a two-stage approach
towards continuous speech recognition, first hypothesizing the possible word boundaries and
then using pattern matching techniques for recognizing the segmented patterns. However,
due to significant cross-word co-articulation, there is no reliable segmentation algorithm for
detecting word boundaries other than doing recognition itself.

Let's illustrate how you can extend the isolated-word search technique to continuous
speech recognition by a simple example, as shown in Figure 12.10. This system contains
only two words, w1 and w2• We assume the language model used here is an unifonn unigram
(P(w1)= P(w2);;::;1/2).

It is important to represent the language structures in the same HMM framework. In
Figure 12.10, we add one starting state S and one collector state C. The starting state has a
null transition to the initial state of each word HMM with corresponding language model
probability (1/2 in this case). The final state of each word HMM has a null transition to the
collector state. The collector state then has a null transition back to the starting state in order
to allow recursion. Similar to the case of embedding the phoneme (subword) HMMs into the
word HMM for isolated speech recognition, we can embed the word HMMs for w. and wi

inlo a new HMM corresponding to structure in Figure 12.10. Thus, the continuous speech
search problem can be solved by the standard HMM formulations.

HMM of
w,

r· • • t k with two words 1111 and
•gure 12.10 A simple example of continuous speech recognition as S . h ·tarting state

w A -~ . . d f th words State 1st es :· un11orm umgram language model 1s assume or ese • rd •
wh·1 d 1· k b t een every wo pair. 1 e state C is a collector state to save fully expande m s e w

612 Basic Search Algorithms

The composite HM Ms shown in Figure 12. IO can be viewed as a stochastic finite state
network with transition probabilities and output distributions. The search algorithm is essen­
tially producing a match between the acoustic observation X and a path' in the stochastic
finite state network. Unlike isolated _word recognition, continuous speech recognition needs
to find the optimal word sequence W . Th~ Viterbi algorithm is clearly a natural choice for
this task since the optimal state sequence S corresponds to the optimal word sequence w.
Figure 12.J l shows the HMM Viterbi trellis computation for the two-word continuous
speech recognition example in Figure 12.10. There is a cell for each state in the stochastic
finite state network and each time frame t in the trellis. Each cell C,., in the trellis can be
connected to a cell corresponding to time t or t+ I and to states in the stochastic finite state
network that can be reached from s. To make a word transition, there is a null transition to
connect the final state of each word HMM to the initial state of the next word HMM that can
be followed. The trellis computation is done time-synchronously from left to right, i.e., each
cell for time tis completely computed before proceeding to time t+ 1.

• • • @

' \ '
\ \ • • I \ © I \
I \

• I \
I I 0 I I

I I
I I

I ® I

• •
• •

I I
I • I (D

\
I
I

\ I
\ I @

I
I

• I e I
I I

I I
I /
'/ ©

0 2 3

Time
Figure 12.11 HMM trellis for .
the final state of the d HM con_ttnuous speech recognition example in Figure l 2. IO. ~en
from it to the initial tor f M is r~ched, a null arc (indicated by a dashed line) is hnked

s ate o the following word.

'A
path here means a sequence of stares and transitions.

U•ge Model States Lang •

2 3 LANGUAGE MODEL STATES 1 ..

613

The state-space is a good indicator of search complexity. Since the HMM representation for
each word in the lexicon is fixed, the state-space is detennined by the language models. Ac­
cording to Chapter 11, every language model (grammar) is associated with a state machine
(automata). Such a state machine is expanded to form the state-space for the recognizer. The
states in such a state machine are referred to as language models states. For simplicity, we
will use the concepts of state-space and language model states interchangeably. The expan­
sion of language model states to HMM states will be done implicitly. The language model
states for isolated word recognition are trivial. They are just the union of the HMM states of
each word. In this section we look at the language model states for various grammars for
continuous speech recognition.

12.3.1. Search Space with FSM and CFG

As described in Chapter 8, the complexity for the Viterbi algorithm is O(N2T), where N is
the total number of states in the composite HMM and Tis the length of input observation. A
full time-synchronous Viterbi search is quite efficient for moderate tasks (vocabulary ~
500). We have already demonstrated in Figure 12. ll how to search for a two-word continu­
ous speech recognition task with a uniform language model. The uniform language model,
which allows all words in the vocabulary to follow every word with the same probability, is
suitable for connected-digit task. In fact, most small vocabulary tasks in speech recognition
applications usually use a finite state grammar (FSG).

Figure 12.12 shows a simple example of an FSM. Similar to the process described in
Sections 12.2.3 and 12.2.4, each of the word arcs in an FSG can be expanded as a network
of phoneme (subword) HMMs. The word HMMs are connected with null transitions with
the grammar state. A large finite state HMM network that encodes all the legal sentences
can be constructed based on the expansion procedure. The decoding process is achieved by
performing a time-synchronous Viterbi search on this composite finite state HMM.

. In practice, FSGs are sufficient for simple tasks. However, when an FSG is made to
sal!sfy the constraints of sharing of different sub-grammars for compactness and support for
dynamic modifications, the resulting non-deterministic FSG is very similar to context-free
~rammar (CFG) in terms of implementation. The CFG grammar consists of a set of pr~duc­
hons or rules, which expand nonterminals into a sequence of terminals and nontennmals.
Nonterminals in the grammar tend to refer to high-level task-specific concepts such as dates,
names, and commands. The terminals are words in the vocabulary. A grammar also has a
non-tenn1· I d . . na es1gnated as its start state .

. Altbough efficient parsing algorithms, like chart parsing (described in Chapter 11),_ are
avatlab]e for CFG, they are not suitable for speech recognition, which require~ _ left-to-ngh:
r;Ocessing. A context-free grammar can be formulated with a recursive ~Slt~On n~~w:~n

TN). RTNs are more powerful and complicated than the finite state machines escn e •

614 Basic Search Algorithms

Chapter 11 because they allow arc labels to refer to other networks as well as words. We use
Figure 12.13 to illustrate how to embed HMMs into a recursive transition network.

Figure 12.13 is an RTN representation of the following CFG:

S➔ NP VP

NP➔ sam I sam davis
VP ➔ VERB tom

VERB ➔ likes I hates

There are three types of arcs in an RTN, as shown in Figure 12.13; CAT(x), PUSH (x),
and POP(x). The CAT(x) arc indicates that x is a tenninal node (which is equivalent to a
word arc). Therefore, all the CAT(x) arcs can be expanded by the HMM network for x. The
word HMM can again be a composite HMM built from phoneme (or subword) HMMs.
Similar to the finite state grammar case in Figure 12.12, each grammar state acts as a state
with incoming and outgoing null transitions to connect word HMMs in the CFG.

During decoding, the search pursues several paths through the CFG at the same time.
Associated with each of the paths is a grammar state that describes completely how the path
can be extended further. When the decoder hypothesizes the end of the current word of a
path, it asks the CFG module to extend the path further by one word. There may be several
alternative successor words for the given path. The decoder considers all the successor word
possibilities. This may cause the path to be extended to generate several more paths to be
considered, each with its own grammar state.

/w/ /ti

..-------;~

/ah/ /silence/

/w/ + /ah/ + It! -------'
/silence/

(optional)

i
Seattle's I weather

:--_B_o_st_o_n_'s_'\--;J/ popu la ti on ~
Denver's ~ latitude /

Figure 12.12 An illustration of how to compile a speech recognition task with finite state
grammar into a composite HMM.

Language Model States

615

S:

PUSH(NP) PUSH(VP)

r:'\~ pop

V ~~
CAT (sam)

CAT (davis)

NP: 0
CAT (Sam)

CAT

CAT (likes) CAT(tom)

VP:

CAT (hates)

Figure 12.13 A simple RTN example with three types of arcs: CAT(x), PUSH (x), POP.

. Readers should note that the same word might be under consideration by the decoder
•n the context of different paths and grammar states at the same time. For example, there are
t~o word arcs CAT (Sam) in Figure 12.13. Their HMM states should be considered as dis­
tmct states in the trellis because they are in completely different grammar states. Two differ­
ent states in the trellis also means that different paths going into these two states cannot be
~erged. Since these two partial paths will lead to different successive paths, the search deci­
sion needs to be postponed until the end of search. Therefore, when embedding HMMs into
word arcs in the grammar network, the HMM state will be assigned a new state identity,
alth0ugh the HMM parameters (transition probabilities and output distributions) can still be
shared across different grammar arcs.

. Each path consists of a stack of production rules. Each element of the stack also con­
tains the position within the production rule of the symbol that is currently being explored.
The search graph (trellis) started from the initial state of CFG (state S). When the path needs
to be extended, we look at the next arc (symbol in CFG) in the production. When the search
~nters a CAT(x) arc (tenninal), the path gets extended with the terminal, an~ the HMM tre_l-
15 computation is perfonned on the CAT(x) arc to match the model x agamst the acoustic

data. When the final state of the HMM for x is reached, the search moves on via the null

616 Basic Search Algorithms

transition to the destination of the CAT(x) arc. When the search enters a PUSH(x) arc, it
indicates a nontem1inal symbol xis encountered. In effect, the search is about to enter a sub­
network of x; the. destination of the PUSH(x) arc is stored in a last-in first-out (LIFO) stack.
When the search reaches a POP arc that signals the end of the current network, the control
should jump back to the calling network. In other words, the search returns to the state ex­
tracted from the top of the LIFO stack. Finally, when we reach the end of the. production rule
at the very bottom of the stack, we have reached an accepting state in which we have seen a
complete grammatical sentence. For our decoding purpose, that is the state we want to pick
as the best score at the end of time frame T to get the search result.

The problem of connected word recognition by finite state or context-free grammars is
that the number of states increases enormously when it is applied to more complex gram­
mars. Moreover it remains a challenge to generate such FSGs or CFGs from a large corpus,
either manually or automatically. As mentioned in Chapter 11, it is questionable whether
FSG or CFG is adequate to describe natural languages or unconstrained spontaneous lan­
guages. Instead, n-gram language models are often used for natural languages or uncon­
strained spontaneous languages. In the next section we investigate how to integrate various
n-grams into continuous speech recognition.

12.3.2. Search Space with the Unigram

The simplest n-grarn is the unigram that is memory-less and depends only on the current
word.

II

P(W) = IT P(w,) (12.11)
i•l

Figure 12.14 shows such a unigram grammar network. The final state of each word
HMM is connected to the collector state by a null transition, with probability 1.0. The col­
lector state is then connected to the starting state by another null transition, with transition
probability equal to 1.0. For word expansion, the starting state is connected to the initial
state of each word HMM l:,y a null transition, with transition probability equal to the corre­
sponding unigram probability. Using the collector state and starting state for word expansion
allows efficient expansion because it first merges all the word-ending paths~ (only the best
one survives) before expansion. It can cut the total cross-word expansion from N2 to N.

' In graph ~carch, a panial path still under consideration is also referred to as a theory. although we will use palhs
instead of theories in this book.

Language Model Stales

•
•
•

Figure 12.14 A unigram grammar network where the unigram probability is attached as the
transition probability from staning state S to the first state of each word HMM.

12.3.3. Search Space with Bigrams

617

When the bigram is used, the probability of a word depends only on the immediately preced­

ing word. Thus, the language model score is:

n

P(W)=P(w1 l<s>)IlP(w, lw1-1)
(12.12)

/:a2

where <s> represents the symbol of starting of a sentence.
Figure 12.15 shows a grammar network using a bigram language model. Because of

~~ bigram constraint, the merge-and-expand framework for unigram search no long:r ap­
P •es here. Instead, the bigram search needs to perfonn expand-and-merge. Thus, bigram
expansion is more expensive than unigram expansion. For a vocabulary size N, the bigram
would need N1 word-to-word transitions in comparison to N for the unigram. Each wo

rd

transition has a transition probability equal to the corresponding bigram probability. Fortu­
n_ately, the total number of states for bigram search is still proportional to the vocabulary
s1zeN.

618

•
•
•

Basic Search Algorithms

Figure 12.15 A bigrarn grammar network where the bigram probability P(w1 I w;) is at­
tached as the transition probability from word W; to w1 (I 9).

Because the search space for bigram is kept manageable, bigram search can be imple­
mented very efficiently. Bigram search is a good compromise between efficient search and
effective language models. Therefore, bigram search is arguably the most widely used
search technique for unconstrained large-vocabulary continuous speech recognition. Particu­
larly for the multiple-pass search techniques described in Chapter 13, a bigram search is
often used in the first pass search.

12.3.3.1. Backoff Paths

When the vocabulary size N is large, the total bigram expansion N 2 can become computa­
tionaUy prohibitive. As described in Chapter 11, only a limited number of bigrams are ob­
servable in any practical corpora for a large vocabulary size. Suppose the probabilities for
unseen bigrams are obtained through Katz's backoff mechanism. That is, for unseen bigram
P(w1 I w,),

(12.13)

where a(w,) is the backoff weight for word w,.

Language Model States 619

Using the backoff mechanism for unseen bigrams, the bigram expansion can be sig­
nificantly reduced [12]. Figure 12.16 shows the new word expansion scheme. Instead of full
bigram expansion, only ob_s~~ved bigrams are c_onnected by direct word transitions with cor­
respondent bigram probab1httes. F~r backo'.~ b1grams, t~e last state of word w, is first con­
nected to a central backoff node wuh trans,uon probability equal to backoff weight a(111,).
The backoff node is then connected to the beginning of each word III with transition prob­
ability equal to its corresponding uni gram probability P(w1) . Readeri should note that there
are now two paths from w, to w1 for an observed big ram P(w1 1 w,). One is the direct link
representing the observable bigram P(wi \ w,), and the other is the two-link backoff path
representing a(w,)P(w1) . For a word pair whose bigram exists, the two-link backoff path is
likely to be ignored since the backoff unigram probability is almost always smaller than the
observed bigram P(wi I W;). Suppose there are only N6 different observable bigrams, this
scheme requires Nh + 2N instead of N2 word transitions. Since under normal circumstance
N « N2 , this backoff scheme significantly reduces the cost of word expansion.

6

backoff node

Figure 12.16 Reducing bigram expansion in a search by using the backoff node. In_ addition to
· d b' th I t state of word w 1s first con-nonnal b1gram expansion arcs for all observe 1grams, e as , .

nected to a central backoff node with transition probability equal to backoff weight a(w!) •
• h ·1 espondmg

The backoff node is then connected to the beginning of each word w J wtt 1 5 corr

unigramprobability P(w1) [12].

12.3.4. Search Space with Trigrams

For a trigram language model, the language model score is:

P(W) = P(w1 I <s>)P(w
2

I <S>, w1)I1 P(w, I w,-2, W;_,)
i=-3

()2. 14)

620 Basic Search Algorlthins

The search space is considerably more complex, as shown in Figure 12.17. Since the equ·
!Va­

lence grammar class is the previous two words w, ~d w1 , ~e. total number of grammar
states is N 2

• From each of these grammar states, there 1s a trans1t1on to the next word [
191

_
Obvio~sly, it is very expensive to implement large-vocabulal)_' trigram search given

the complexity of the search space. It becomes necessary to dynamically generate the tri­
gram search graph (trellis) via a graph search algorithm. The other alternative is to perform

3
multiple-pass search strategy, in which the _first-pass sear~h uses less detailed language
models, like bigrarns, to generate an n-best hst or word lattice, and then a second-pass de­
tailed search can use trigrams on a much smaller search space. Multiple-pass search strategy
is discussed in Chapter 13.

• I ______ __.

P(W1 IW2 ,W

Figur 1217 A • . . .) is at· e • tngram grammar network where the tngram probab1hty P(w, I w,. wi .
tached to transition from grammar state word w w . to the next word w . Illustrated here is a
tw d ,, J t

o-wor vocabulary, so there are four grammar states in the trigram network [19].

Longuage Model States
621

12.3.5. How to Handle Silences Between Words

Jn continuous speech r~cognition. there are unavoidable pauses (silences) between words or
sentences. The pause 1s often referred to as silence or a non speech e t • • . . . - ven in contmuous
speech recognition: Acoust1cally, the pause is modeled by a silence model" that models
background acoustic phenomena. The silence model is usually modeled with a topolo
flexible. enough to accommodate a wide range of lengths, since the duration of a pause~~
arbitrary.

It can be argued that silences are actually linguistically distinguishable events, which
contribute to prosodic and meaning representation. For example, people are likely to pause
more often in phrasal boundaries. However, these pauerns are so far not well understood for
unconstrained natural speech (particularly for spontaneous speech). Therefore, the design of
almost all automatic speech recognition systems today allows silences occurring just about
anywhere between two lexical tokens or between sentences. It is relatively safe to assume
that people pause a little bit between sentences to catch breath, so the silences between sen­
tences are assumed mandatory while silences between words are optional. In most systems,
silence is often modeled as a special lexicon entry with special language model probability.
This special language model probability is also referred to as silence insertion penalty that is
set to adjust the likelihood of inserting such an optional silence between words.

It is relatively straightforward to handle the optional silence between words. We need
only to replace all the grammar states connecting words with a small network like the one
shown in Figure 12. 18. This arrangement is similar to that of the optional silence in training
continuous speech, described in Chapter 9. The small network contains two parallel paths.
One is the original null transition acting as the direct transition from one word to another,
while the other path will need to go through a silence model with the silence insertion pen­
alty attached in the transition probability before going to the next word.

One thing to clarify in the implementation of Figure 12.18 is that this. silence expan­
sion needs to be done for every grammar state connecting words. In the umgram gr~mmar
network of Figure I 2.14, since there is only one collector node to connect words, the silence
expansion is required only for this collector node. On the other hand, in the bigram. gra~mth:
network of Figure 12.15 there is a collector node for every word before expandmg 0

next word. In this case, the silence expansion is required for every collector ~ode. For a vo­
cabulary size IV I , this means there are I V I numbers of silence networks m the grammar

. h • b'gram search we cannot merge
search network. This requirement lies m the fact t at m I f

th . al ·1 can then be regarded as part o
pa s before expanding into the next word. Option si ence f fi · h
th • needs to be done a ter mis -

e search effort for the previous word so the word expansion . .
• • d h ving two possible pronunc1a-1~g the optional silence. Therefore, we treat each wor a~ a. . t integrates silence in
lions, one with the silence at the end and one without. This v,ewpom
the word pronunciation network like the example shown in Figure 12• 19

•

;-S- ----- - ----- . d 1. In that case there are several silence
01ne od 1· to silence mo e 0

• ' researcher:; extend the context-dependent m c mg
Olodels bas •d . c on ~urroundmg contexts.

622 Basic Search Algorithms

w; ~-
-------->0------- >

/si/1

w; ~
------->

Figure 12.18 Incorporating optional silence (a non-speech event) in the grammar search net­
work where the grammar state connecting different words is laced by two parallel paths. One
is the original null transition directly from one word to the other, while the other first goes
through the silence word to accommodate the optional silence.

For efficiency reasons, a single silence is sometimes used for large-vocabulary con­
tinuous speech recognition using higher order n-gram language model. Theoretically, this
could be a source of pruning errors.7 However, the error could turn out to be so small as to
be negligible because there are, in general, very few pauses between word for continuous
speech. On the other hand, the overhead of using multiple silences should be very minimal

because it is less likely to visit those silence models at the end of words due to pruning.

It/ luwl

Figure 12.19 An example of treating silence as of the pronunciation network of word TWO.
The shaded nodes represent possible word-ending nodes: one without silence and the other one
with silence.

12.4. TIME-SYNCHRONOUS VITERBI BEAM SEARCH

When ~Ms are used for acoustic models, the acoustic model score (likelihood) used in
sear~h 15 by definition the forward probability. That is, all possible state sequences must be
considered. Thus,

1
Speech recognition errors d b- • . rs which -11 bed . . ue to su opllmal search or heuristic pruning are referred to as pn111111g erro •

wi escnbcd 1n detail in Chapter 13.

.s nchronous Viterbi Beam Search
Time Y 623

P(XIW)= L, P(X,s~IW)
,,II possible .,·J

(12.15)

where the summation is to be taken over all possible state sequences s with the word se­
quence w unde_r consideration. Howeve~, under the trellis framework (as in Figure J 2.11),
more bookkeeping must be performed smce we cannot add scores with different word se­
quence history. Since th~ goal. of decodin? is to uncover the best word sequence, we could
approximate the summation with the maximum to find the best state sequence instead. The
Bayes' decision rule, Eq. (12.5), becomes

(12.16)

Equation (12.16) is often referred to as the Viterbi approximation. It can be literally
translated to "the most likely word sequence is approximated by the most likely state .te­

quence." Viterbi search is then sub-optimal. Although the search results by using forward
probability and Viterbi probability could, in principle, be different, in practice this is rarely
the case. We use this approximation for the rest of this chapter.

The Viterbi search has already been discussed as a solution to one of the three funda­
mental HMM problems in Chapter 8. It can be executed very efficiently via the same trellis
framework. To briefly reiterate, the Viterbi search is a time-synchronous search algorithm
that completely processes time t before going on to time t+ I. For time t, each state is up­
dated by the best score (instead of the sum of all incoming paths) from all states in at time
H. This is why it is often called time-synchronous Viterbi search. When one update occurs,
it also records the backtracking pointer to remember the most probable incoming state. At
the end of search, the most probable state sequence can be recovered by tracing back th~se
backtrnck.ing pointers. The Viterbi algorithm provides an optimal solution for handling
nonlinear time warping between hidden Markov models and acoustic observati?n, ':~rd
boundary detection and word identification in continuous speech recognition. This unified
Viterbi search algorithm serves as the basis for a11 search algorithms as described in the rest
of the chapter.

It • . . , • h onous Viterbi search is necessary to clarify the backtracking pointer ior time-sync r .
for conu· • d • the opnmal state se-nuous word recognition We are generally not mtereSte 10
qu • . • I rd sequence
i e_nce for speech recognition.k Instead, we are only interested m the opuma wo e word

h
~d1cated by Eq. (12.16). Therefore we use the backtrack pointer just to rememberhth d of
1s1ory ~ th ' b recovered at t e en or e current path so the optimal word sequence can e h' tory

search T b ' f word we create a 1s
• 0 e more specific when we reach the final state O a '. . d to the

ROde co ta· • ' . • d nd thts history no e
. . n mmg the word identity and current time index an appe ode if it

ex1s11ng b . d to the successor n
acktrack pointer. This backtrack pointer 1s then passe on

1 ,,. . • d ·v·na pho11etic
"hiic we . he are very useful rn en 1 0

sea,.. . are no1 interested in optimal stale sequences for ASR, 1 Y
~ ntauon h' . 1 • ASR systems.

'w ich could provide important informauon for deve opmg

624 Basic Search Algorithms

is the optimal path leading to the successor node for both intra-word and inter-word transi­
tion. The side benefit of keeping this backtrack pointer is that we no longer need to keep the
entire trellis during the search. Instead, we only need space to keep two successive time
slices (columns) in the trellis computation (the previous time slice and the current time slice)
because all the backtracking information is now kept in the backtrack pointer. This simplifi­
cation is a significant benefit in the implementation of a time-synchronous Viterbi search.

Time-synchronous Viterbi search can be considered as a breadth-first search with dy­
namic programming. Instead of performing a tree search algorithm, the dynamic program­
ming principle helps create a search graph where multiple paths leading to the same search
state are merged by keeping the best path (with minimum cost). The Viterbi trellis is a repre­
sentation of the search graph. Therefore, all the efficient techniques for graph search algo­
rithms can be applied to time-synchronous Viterbi search. Although so far we have
described the trellis in an explicit fashion-the whole search space needs to be explored
before the optimal path can be found-it is not necessary to do so. When the search space
contains an enormous number of states, it becomes impractical to pre-compile the composite
HMM entirely and store it in the memory. It is preferable to dynamically build and allocate
portions of the search space sufficient to search the promising paths. By using the graph
search algorithm described in Section I 2.1.1, only part of the entire Viterbi trellis is gener­
ated explicitly. By constructing the search space dynamically, the computation cost of the
search is proportional only to the number of active hypotheses, independent of the overall
size of the potential search space. Therefore, dynamically generated trellises are key to heu­
ristic Viterbi search for efficient large-vocabulary continuous speech recognition, as de­
scribed in Chapter 13.

12.4.1. The Use of Beam

Based on Chapter 8, the search space for Viterbi search is O(NT) and the complexity is
O(N

2
T), where N is the total number of HMM states and Tis the length of the utterance.

For large-vocabulary tasks these numbers are astronomically large even with the help of
dynamic programming. In order to avoid examining the overwhelming number of possible
cells in the HMM trellis, a heuristic search is clearly needed. Different heuristics generate or
explore portions of the trellis in different ways.

A simple way to prune the search space for breadth-first search is the beam search de­
scribed in Section 12.1.3.2. Instead of retaining all candidates (cells) at every time frame, a
threshold Tis used to keep only a subset of promising candidates. The state at time t with the
lowest cost Dmin is first identified. Then each state at time r with cost > Dmin + T is dis­
carded from further consideration before moving on to the next time frame t+ I. The use of
the _bea~ alleviates the need to process all the cells. In practice, it can lead to substantial
savings m computation with little or no loss of accuracy. .

Al though beam search is a simple idea, the combination of time-synchronous Viterbi
and beam search algorithms produces the most powerful search strategy for large­
vocabulary speech recognition. Comparing path·s with equal length under a time-

Time-Synchronous Viterbi Beam Search 625

synchronous search framework ma~es beam search possible. That is, for two different word
sequences W1 and Wi, the posterior probabilities P(W1 Ix~) and P(W

2
j x~) are always

compared based on the same partial acoustic observation x~. This makes the comparison
straightforward because the denominator P(x~) in Eq. (12.5) is the same for both tenns and
can be ignored. Since the score comparison for each time frame is fair, the only assumption
of beam search is that an optimal path should have a good enough partial-path score for each
time frame to survive under beam pruning.

The time-synchronous framework is one of the aspects of Viterbi beam search that is
critical to its success. Unlike the time-synchronous framework, time-asynchronous search
algorithms such as stack decoding require the nonnalization of likelihood scores over fea­
ture streams of different time lengths. This, as we will see in Section 12.5, is the Achilles'
heel of that approach.

The straightforward time-synchronous Viterbi beam search is ineffective in dealing
with the gigantic search space of high perplexity tasks. However, with a better understand­
ing of the linguistic search space and the advent of techniques for obtaining n-best lists from
time-synchronous Viterbi search, described in Chapter 13, time-synchronous Viterbi beam
search has turned out to be surprisingly successful in handling tasks of all sizes and all dif­
ferent types of grammars, including FSG, CFG, and n-gram [2, 14, 18, 28, 34, 38, 44).
Therefore, it has become the predominant search strategy for continuous speech recognition.

12.4.2. Viterbi Beam Search

To explain the time-synchronous Viterbi beam search in a formal way [31], we first define
some quantities:

D(t;s,; w) = total cost of the best path up to time I that ends in state s, of gram­
mar word state w.

h(t;s,; w) = backtrack pointer for the best path up to time I that ends in state s, of
grammar word state w.

Readers should be aware that w in the two quantities above represents a grammar
word state in the search space. It is different from just the word identity since the same wo~d
c~uld occur in many different language model states, as in the trigram search space shown m
Figure 12.17.

There are two types of dynamic programming (DP) transition rules [30],_ n~ely intra­
Word and inter-word transition. The intra-word transition is just like the V1terb1 rule for

liMMs and can be expressed as follows:

D(t;s, ;w)=min{d(x s Is ·w)+D(t-l;s,_,;w)} ', ' ,-1, s,..

h(t;s,;w) = h(t-1 b . (t·s ·w)·w)
, min ' ,, '

(I 2.17)

(l 2.18)

-626 Basic Search Algorithms

where d(x, .s, I s,_1; w) is the cost associated with taking the transition from state s,_, to
state s, while generating omput observation x,, and bmin (t; s,; w) is the optimal predecessor
state of cell D(r;s,; w). To be specific, they can be expressed as follows:

dtx, , s, ls,_, ; w)=-logP(s, ls,_,;w)-logP(x, ls,;w) (12.19)

bmin (r; s,; w) = arg min { d(x,, s, I s,_1; w) + D(t - l; s,_,; w)} (12.20)

The inter-word transition is basically a null transition without consuming any observa­
tion. However. it needs to deal with creating a new history node for the backtracking
pointer. Let's define F(w) as the final state of word HMM wand /(w) as the initial state of
word ID1M w. ~foreover, state '7 is denoted as the pseudo initial state. The inter-word tran­
sition can then be expressed as follows:

D(r;Tj; w) = min{logP(w I\')+ D(r; F(\·); ,·)}
r

(12.21)

Jr(r; 1]; w) =(,·,,.., ,r) :: h(r, F(v~); '°.,.;.) (12.22)

where ,.r:m: = arg min {log P(w ! v) + D(l; F(,·); \")} and :: is a link appending operator.
The time-s;'llchronous Viterbi beam search algorithm assumes that all the inaa-word

transitions are evaluate-d before inter-word null transitions take place. The same rime index
is used incentionallv for inter-word transition since the null lan2:ua2:e model state transition
does not consume~ observation vector. Since the initial state J(w)-for word IDl\f w could
have a self-transition. the cell D(r; I (w); w) might already have an active path. Therefore,
we need to perform the follo,,ing check to advance the inrer-word transitions.

ifD(r;,r,w) < D(r;l(w);w)

D(r;J(w): w) = D(t; 1T, w) and h(t; l(w); w) = h(r; TT, w)
(12.23)

The time-synchronous Viterbi be.am search can be summarized as in Algorithm 12•6•
For large-vocabulary speech recognition, the experimental resulcs show that only 8 sroall
perrentage of the entire search space (the beam) ~ to be kepi: for e2ch rime interval 1

without i~creasing error rates. Empirically, the be3IIl size has typically been found _t~:
between :,~ and lO'k of the entire search space. In Chapter 13 we describe srrategte.s
using different level of beams for more effectively pruning.

1,, -... :,. STACK DECODING (A• SEARCH)

If some reliable heuristics are available to guide the decodino the search can be done_ i~ a
de th firs f h' - ,,. m1SU12

P • . t as ion around the best path early on. instead of wastin2: effortS on unpro 10
path$ via the time-synchronous beam search. Stack decoding rep~nts the best auempl

~ Decoding (A* Search)

ALGORITHM 12.6: TIME-SYNCHRONOUS VITERBI BEAM SEARCH

Step 1: lnltlallzatlon: For all the grammar word states w which can start a senten
D(O;I(w);w)=O ce,

h(O; J(w); 111) = nu/J

Step 2: Induction: For time t = 1 to r do
For all active states do
Intra-word transitions according to Eq. (12.17) and (12.18)
D(t;s,;w) = "]in {d(x,,s, I s,_1; w) + D(t-l;st-1; w)}

H

h(t;s,; w) = h(t- l, bmin (t;s,; w); w)

For all active word-final states do
Inter-word transitions according to Eq. (12.21), (12.22) and (12.23)
D(t;77; w) = mJn {log P(w Iv)+ D(t; F(v); v)}

h(t;1]; w) = (Vmin ,t) :: h(I, F(vrnin); Vmin)

if D(1;17; w) < D(t;l(w); w)

D(t;J(w);w) = D(t;17; w) and h(r;l(w); w) = h(t;T/; w)

Pruning: Find the cost for the best path and decide the beam threshold
Prune unpromising hypotheses

Step 3: Termination: Pick the best path among all the possible final states of grammar at time
T • Obtain the optimal word sequence according to the backtracking pointer h(r;11; w)

627

use A* search instead of time-synchronous beam search for continuous speech recognition.
Unfortunately, as we will discover in this section such a heuristic function h(•) (defined in
~ection 12.1.3) is very difficult to attain in continuous speech recognition, so search algo­
nlhms based on A* search are in general less efficient than time-synchronous beam search.

Srack decoding is a variant of the heuristic A• search based on the forward algorithm,
~here lhe evaluation function is based on the forward probability. lt is a tree search algo­
nlbm, which takes a slightly different viewpoint than the time-synchronous Viterbi search.
Time-synchronous beam search is basically a breadth-first search, so it is crucial to control
th

e number of all possible language model states as described in Section 123· In a typical
large-vocabulary Viterbi search with n-gram language models, this number is determined by
the • d. equivalent classes of language model histories. On the other hand, stack deco ing as a
tree search algorithm treats the search as a task for finding a path in a tree whose branches
correspond to words in the vocabulary V non-tenninal nodes correspond to incomplete sen­
tences and . ' h h tree has a constant b '. tennmal nodes correspond to complete sentences. T e searc .

12 20 ranchino- tact f . II d b every word. Figure • ill 6 or o IVI, 1f we allow every word to be fo owe Y
Ustfaies such a search tree for a vocabulary with three words (] 91-

628 Basic Search Algorithms

An important advantage of stack decoding is its consistency with the forward­
backward training algorithm. Viterbi search is a graph search, and paths cannot be easily
summed because they may have different word histories. In general, the Viterbi search finds
the optimal state sequence instead of optimal word sequence. Therefore, Viterbi approxima­
tion is necessary to make the Viterbi search feasible, as described in Section 12.4. Stack
decoding is a tree search, so each node has a unique history, and the forward algorithm can
be used within word model evaluation. Moreover, all possible beginning and ending times
(shaded areas in Figure 12.21) are considered (24). With stack decoding, it is possible to use
an objective function that searches for the optimal word string, rather than the optimal state
sequence. Furthermore, it is in principle natural for stack decoding to accommodate long­
range language models if the heuristics can guide the search to avoid exploring the over­
whelmingly large unpromising grammar states .

.. c..i;;...--___;;, __,O~IIIE=========-­

()-,~ ::::::::=-------'0

~

0

Figure 12.20 Asta k d d"
c eco mg search tree for a vocabulary size of three [19J.

Stack Decoding (A* Search)
629

By fo~mul~ting st_ack decoding in. a tree search framework, the graph search algo­
rithms described 1~ Section I ~-1 can be direct!~ applied to stack decoding. Obviously, blind­
search methods, like depth-first and breadth-first search, that do not take advantage of the
goodness measure~nent of how close_ ~'e are getting to the goal. are usually computationally
infeasible in practical speech recogn1tron systems. A* search is clearly attractive for speech
recognition, given the hope of a sufficient heuristic function 10 guide the tree search in a
favorable direction without exploring too many unpromising branches and nodes. In contrast
10 the Viterbi search. it is not time-synchronous and extends paths of different lengths.

The search begins by adding all possible one-word hypotheses to the OPEN list. Then
the best path is removed from the OPEN list, and all paths from it are extended, evaluated,
and placed back in the OPEN list. This search continues until a complete path that is guaran­
teed to be better than all paths in the OPEN list has been found.

Unlike Viterbi search, where the acoustic probabilities being compared are always
based on the same partial input, it is necessary to compare the goodness of partial paths of
different lengths to direct the A* tree search. Moreover, since stack decoding is done asyn­
chronously, we need an effective mechanism to determine when to end a phone/word
evaluation and move on to the next phone/word. Therefore, the heart and soul of the stack
decoding are clearly in

I. Finding an effective and efficient heuristic function for estimating the future
remaining input feature stream and

2. Determining when to extend the search to the next word/phone.

: '-:-,
: '7

. • . Each grid poinl corresponds to a
Figure 12.21 The forward trellis space for stack decoding. ts the values con1ribu1ing to

. . h I d d area represen
trelhs cell in the forward computauon. T es 13 e d quence it' 11, w, , .. . [24).
h re • al wor se " 2 • , 1 e computation of lhe forv,iard score for t opum

630 Basic Search Algorithms

In the fo1lowing section we describe these two critical components. Readers will note that
the solutions to these two issues are virtually the same-using a normalization scheme 10
compare paths of different lengths.

12.5.1. Admissible Heuristics for Remaining Path

The key issue in heuristic search is the selection of an evaluation function . As described in
Section 12.1.3, the heuristic function of the path H N going through node N includes the cost
up to the node and the estimate of the cost to the target node from node N. Suppose path H.v
is going through node Nat time t; then the evaluation for path HN can be expressed as fol­
lows:

(12.24)

where g(H~.) is the evaluation function for the partial path of H N up to time t, and
h(H~r) is the heuristic function of the remaining path from t + I to T for path H N. The
challenge for stack decoders is to devise an admissible function for h(•) .

According to Section 12.1.3.1, an admissible heuristic function is one that always un­
derestimates the true cost of the remaining path from t + 1 to T for path H N • A trivially
admissible function is the zero function. In this case, it results in a very large OPEN list. In
addition, since the longer paths tend to have higher cost because of the gradually accumu­
lated cost, the search is likely to be conducted in a breadth-first fashion, which functions
very much like a plain Viterbi search. The evaluation function g(•) can be obtained easily by
using the HMM forward score as the true cost up to current time t. However, how can we
find an admissible heuristic function h(•)? We present the basic concept here [19, 35J.

The goal of h(•) is to find the expected cost for the remaining path. If we can obtain
the expected cost per frame l/f for the remaining path, the total expected cost, (T -1) * If/ , is
simply the product of l/f and the length of the remaining path. One way to find such ex­
pected cost per frame is to gather statistics empirically from training data.

1. After the final training iteration, perform Viterbi forced alignmentq with each
training utterance to get an optimal time alignment for each word.

2. Randomly select an interval to cover the number of words ranging from two
to ten. Denote this interval as [i ... j).

3. Compute the average acoustic cost per frame within this selected interval ac­
cording to the following formula and save the value in a set A:

' Viterbi forced alignment means that the Viterbi is perfom1ed on the HMM model constructed from tile }alown
word transcription. The term "forced" is used because the Viterbi alignment is forced to be pcrfonned on ihe co~-

od I V• _,_." d 1· · • · v·de the opti-rect m e • 1teiu1 ,orce a 1gnment 1s a very useful tool in spoken language processing as 1t can pro 1

ma! state-time alignment with lhe uuerances. This detailed alignment can then be used for different purposes,
including discriminant training, concatenated speech synthesis, etc.

- k Decoding (A* Search)
s1ar

--2-JogP(x{ I W; ... J)
J-i

where w, ... J is the word string corresponding to interval [i ... j].

4. Repeat Steps 2 and 3 for the entire training set.

S. Define 1f/.,;. and l/fmx as the minimum and average value found in set A.

631

(I 2.25)

Clearly, V' min should be a good under-estimate of the expected cost per frame for the
future unknown path. Therefore, the heuristic function h(H?) can be derived as:

(12.26)

Although 1/!min is obtained empirically, stack decoding based on Eq. (12.26) will generally
find the optimal solution. However, the search using 1/f min usually runs very slowly, since
Eq. (12.26) always under-estimates the true cost for any portion of speech. In practice, a
heuristic function like l/f,.'11 that may over-estimate has to be used to prune more hypotheses.
This speeds up the search at the expense of possible search errors, because 1/lmi should rep­
resent the average cost per frame for any portion of speech. In fact, there is an argument that
one might be able to use a heuristic function even more than IJI avi:. The argument is that IJI avg
is derived from the correct path (training data) and the average cost per frame for all paths
during search should be more than 111 because the paths undoubtedly include correct and "Y civg

incorrect ones.

12.5.2. When to Extend New Words

Since stack decoding is executed asynchronously, it becomes necessary to detect when a
phone/word ends, so that the search can extend to the next phone/word. If we have a coSt

measure that indicates how well an input feature vector of any length matches the evalua~ed
model sequence, this cost measure should drop slowly for the correct phone/word and nse
~harply for an incorrect phone/word. In order to do so, it implies we must be able to compare

YP0theses of different lengths.
The first thing that comes to mind for this cost measure is simply the forwa:d co~t

-logP(x' I ,) . . . d • tic observation X1 b 1,s, 1111 , which represents the hkehhood of pro ucmg acous .

be
ased on word sequence wk and ending at state s . However, it is definitely not smtable
cause •1 • d 1 ' Th' ses the search

t 1 15 eemed to be smaller for a shorter acoustic input vector. 15 cau
0 almost al . • • errors Therefore,
we ways prefer short phones/words resulting m many mseruon ·.b d bove
'I'\. muS! derive some normalized score that' satisfies the desired property descn e a •
',ie normal· ' 6 24] • ized cost C(x;,s, I wt) can be represented as follows [• •

C(x;,s, I WI~):: -log[P(x;,;; I Wik) l = -log [Pcx; ,s, I w{)] + t Iogr

Wherer(o .
< Y < l) 1s a constant normalization factor.

(12.27)

632
Basic Search Algorithms

Suppose the searc~ is now evaluating a particular word wt ; we can define Cmin ~t) as
the minimum cost for C(x; ,s, I w1t) for all the states of w• • and . am:u (t) as the maximum
forward probability for P(x;. s, I w1

1
) for all the states of w• • That 1s,

(12.28)

anu, (t)=max[P(x; lwt,s,)]
S, lil W't

(12.29)

We want C . (t) to be near O just as long as the phone/word we are evaluating is the correct
one and wem

1

ttave not gone beyond its end. On the other hand, if the phone/~ord we are
evaluating is the incorrect one or we have already passed its end, we want the Cmin (t) to be
rising sharply. Similar to the procedure of finding the admissibleA heuristic function, we can
set the normalized factor y empirically during training so that Cm;n(T) = 0 when we know
the correct word sequence W that produces acoustic observation sequence x; . Based on Eq.
(12.27), r should be set to:

r = {)a'""' (T) (12.30)

Figure 12.22 shows a plot of Crnin (t) as a functio1! of time for correct match. In addi­
tion, the cost for the final state FS(wk) of word wk , C(x; ,s, = FS(wk) I wt) , which is the
score for wk -ending path, is also plotted. There should be a valley centered around O for
C(x; ,s, = FS(w1) I wt) , which indicates the region of possible ending time for the correct
phone/word. Sometimes a stretch of acoustic observations may match better than the aver­
age cost, pushing the curve below 0. Similarly, a stretch of acoustic observations may match
worse than the average cost, pushing the curve above 0. .

There is an interesting connection between the normalized factor r and the heuristic
estimate of the expected cost per frame, 'I' , defined in Eq. (12.25). Since the cost is simply
the logarithm on the inverse posterior probability, we get the following equation:

-1 A [

lJl = TlogP(xr IW) = -log a • ..,. (T)I/T] =-log r (12.31)

_Equation (12.31) reveals that these two quantities are basically the same estimate. In
fact, 1f we subtract the heuristic function f(H~.) defined in Eq. (1 2.24) by the constant
lo~ ('Y), we get exactly the same quantity as the one defined in Eq. (12.27). Decisions on
which path to extend first based on the heuristic function and when to extend the search to
the next word/phone are basically centered on comparing partial theories with different
lengths. Therefore, the normalized cost C(x; ,s, I wt) can be used for both purposes.

. Based on the connection we have established, the heuristic function, f (H.~), which
e~tui;1ates ~e goodness of a path is simply replaced by the normalized evaluation function
C(x1 ,s, I W1) • If we plot the Un-normalized cost C(x; ,s, I wt) for the optimal path and other

stack l)eeoding (A• Search)

Most likely
word-ending

/·

__ . ____ /L
I

I

- --~------
' I
I
I
I
I

'< >'
Significant range
of ending time

Significant
threshold

Figure 12.22 cmin (t) and C(x:,s, = FS(wi) I wt) as functions of timer. The valley region
represents possible ending times for the correct phone/word.

633

competing paths as the function time t the cost values increase as paths get longer (illus­
tr~ted in Figure 12.23) because every fr~me adds some non-negative cost to the overall cost.
~ is clear that using on-normalized cost function C(x; ,s, I wt) generally results in a breadth­
lTSI search. What we want is an evaluation that decreases slightly along the optimal path,
~d ~opefupy increases along other competing paths. Clearly, the normalized cost function
C(x,,s, I w,) fulfills this role, as shown in Figure 12.24.

optimal path

F· d th c mpeting paths as a
•gu~e 12.23 Unnormalized cost C(x;,s, I w:) for optimal path an o er o

functton of time.

634 Basic Search Algorithms

--- .
optimal path

Figure 12.24 Nonnalized cost C(x;,s, I wt) for the optimal path and other competing paths as
a function of time.

Equation (12.30) is a context-less estimation of the normalized factor, which is also re­
ferred to as zero-order estimate. To improve the accuracy of the estimate, you can use con•
text-dependent higher-order estimates like [24):

Y; =r(x,.)
r, =r(x;,x,._,)

Y1 = r(x,-, X1-P- • • , Xi-N+I)

first-order estimate

second-order estimate

n-order estimate

Since the nonnalized factor r is estimated from the training data that is also used to
train the parameters of the HMMs, the normalized factor r,. tends to be an overestimate. ~s
a result, alTW((t) might rise slowly for test data even when the correct phone/word model is
evaluated. This problem is alleviated by introducing some other scaling factor 8 < l so lhat
afflll)((t) falls slowly for test data for when evaluating the correct phone/word model. Toe
best solution for this problem is to use an independent data set other than the training data to
derive the normalized factor r, .

12.5.3. Fast Match

E ' th · · · • . d' time for 3
ven wi an efficient heunst1c function and mechanism to determine the en mg . · n

phone/word, stack decoding could still be too slow for large-vocabulary speech r~cogniu;e

tasks: ~s desc~bed in Section 12.5. l, an effective underestimated heuristic funcu~:::~ti­
remammg portion of speech is very difficult to derive. On the other hand, a heu word
mate for the immediate short segment that usually corresponds to the next phone orduces

b .- 'bl • . • thatre may e ,easi e to attam. In this section, we describe the fast-match mechants!ll
phone/word candidates for detailed match (expansion) bpath-

In h • d th !)est su
async ronous stack decoding, the most expensive step is to exten e entire vo·

Fo~ a larg~-vocabulary search, it implies the calculation of P(x:+k I w) over th~e possible
ca ulary size I V 1- It is desirable to have a fast computation to quickly reduce

Stack Decoding (A"' Search) 635

words starting at u given time 1 to reduce the search space. This process is often referred to
asfast match [15, 35). In fa_ct, fast match is crucial to stack decoding, of which it becomes
an integral part. Fast match is a method for the rapid computation of a list of candidates that
constrain successive search phases. The expensive detailed match can then be perfonned
afier fast match. In this sense, fast match can be regarded as an additional pruning threshold
to meet before new word/phone can be started.

Fast match, by definition, needs to use only a small amount of computation. However,
it should also be accurate enough not to prune away any word/phone candidates that partici­
pate in the best path eventually. Fast match is, in general, characterized by the approxima­
tions that are made in the acoustic/language models in order to reduce computation. There is
an obvious trade-off between these two objectives. Fortunately, many systems [15J have
demonstrated that one needs to sacrifice very little accuracy in order to speed up the
computation considerably.

Similar to admissibility in A' search, there is also an admissibility property in fast
match. A fast match method is called admissible if it never prunes away the word/phone
candidates that participate in the optimal path. In other words, a fast match is admissible if
the recognition errors that appear in a system using the fast match followed by a detailed
match are those that would appear if the detailed match were carried out for all
words/phones in the vocabulary. Since fast match can be applied to either word or phone
level, as we describe in the next section, we explain the admissibility for the case of word­
level fast match for simplicity. The same principle can be easily extended to phone-level fast
match.

Let V be the vocabulary and C(X I w) be the cost of a detailed match between input X
and word w. Now F(X I w) is an estimator of C(X I w) that is accurate enough and fast to
compute. A word list selected by fast match estimator can be attained by first computing
F(X/ w) for each word w of the vocabulary. Suppose w0 is the word for which the fast
match has a minimum cost value:

wb ==argmin F(X I w) (12.32)
kEI'

~fter computing C(X I wb) ' the detailed match cost for wb, we fonn the fast match word
hst, A, from the word w in the vocabulary such that F(XI w) is no greater than C(X I wb) •
In other words,

(12.33)

Similar to the admissibility condition for A' search [3, 33], the_ faSt match ~Slimator
F(•) conducted in the way described above is admissible if and on_ly if F(XI w) is always
an 11nder-estimator (lower bound) of detailed match C(X I w) · That is,

F(X I w) S C(X I w) \f'X, w
(12.34)

!e Proof is straightforward. If the word we has a l~wer detailed match cost C(X I wJ ' you
Prove that it must be included in the fast match hst A because

636 Basic Search Algorithms

C(X I w,) S C(X I wb) and F(X I w,) s; C(X I w,) ⇒ F(X I w,) s; C(X I wh)

Therefore, based on the definition of A, w, e A.
Now the task is to find an admissible fast match estimator. Bahl et al. [6] proposed one

fast match approximation for discrete HMMs. As we will see later, this fast match approxi­
mation is indeed equivalent to a simplification of the HMM structure. Given the HMM for
word w and an input sequence x; of codebook symbols describing the input signal, the
probability that the HMM w produces the VQ sequence x; is given by (according to Chap­
ter 8):

(12.35)

Since we often use Viterbi approximation instead of the forward probability, the equation

above can be approximated by:

P(xi f w): ,?,!:"',, r P.(,,, ,, , ... ,,) TIP. (x, I,,)] (12.36)

The detailed match cost C(X I w) can now be represented as:

C(X I w) =, ':;'("., {-log[P,(s., s,, ... s,) TI P,(x, Is,)]}
(12.37)

th hi h­
Since the codebook size is finite, it is possible to compute, fo~ each mo~l ~;t's ede~ne

est output probability for every VQ label c among all states st m HMM •

m,.(c) to be the following:

m (c)==max.P (c!st)==maxbt(c)
'H' S,tl=t1' W S1EW

. T • the
We can further define the qnw< (w) as the m~ximum s:te sequence with respect to , i.e.,

maximum probability of any complete path m HMM •

qmax (w) = mF [P .. (s1 ,s2 ,. • •5r)]

(12.38)

(12.39)

. F(A I w) as the following:
Now let's define the fast match estimator

F(XI w)=-log[q.~(w)U m,(x,)]

(12.40)

XI) is admissible based on Eq.
. to show the fast match estimator F(X I w) s; C(w

It 1s easy
(12.38) to Eq. (12.40).

k D
ecoding (A• Search)

s1ac

111
11
.(x;)

Figure 12.25 The equivalent one-state HMM con-esponding to fast match computation defined
in Eq. (12.40) [I 5].

637

The fast match estimator defined in Eq. (12.40) requires T + I additions for a vector se­
quence of length T. The operation can be viewed as equivalent to the forward computation
with a one-state HMM of the form shown in Figure 12.25. This correspondence can be in­
terpreted as a simplification of the original multiple-state HMM into such a one-state HMM.
It thus explains why fast match can be computed much faster than detailed match. Readers
should note that this HMM is not actually a true HMM by strict definition, because the out­
put probability distribution mw(c) and the transition probability distribution do not add up
to one.

The fast match computation defined in Eq. (12.40) discards the sequence information
with the model unit since the computation is independent of the order of input vectors.
Therefore, one needs to decide the acoustic unit for fast match. In general, the longer the
unit, the faster the computation is. and, therefore, the smaJler the under-estimated cost
F(X I w) is. It thus becomes a trade-off between accuracy and speed.

Now let's analyze the real speedup by using fast match to reduce the vocabulary V to
the list A, followed by the detailed match. Let !VI and I A I be the sizes for the vocabulary V

and the fast match short list A. Suppose t f and td are the times required to compute o~~
fast match score and one detailed match score for one word, respectively. Then, the to
time required for the fast match followed by the detailed match is t f I V I +td _I A I, whereas
the time required in doing the detailed match alone for the entire vocabulary is td I VI- The

speed-up ratio is then given as follows:

1 (12.41)

(:: ·:t:]
We h maJier than !VI to have a sig­
nificlleed ,, to be much smaller than td and I A I _to _be muc ~atch estimator in Eq. (12.40),

th ~nt speed-up using fast match. Using our admissible_ faS
t . d f N2T for C(X I w),

e lime co 1 • • i F(X I w) 1s T mstea o
Wher . mp ex1ty of the com~utauon ~r . del. Therefore, the t 1 /td saving
• e N is the number of states m the deta.1Ied acouStlC mo
1s about N2

• I VI one needs a very accurate fast
.,, In general, in order to make I A I much smaller than ' fit

O
relax the constraint of

.. ,atch • h" • why we o e
adrnis ~s_tt_mator that could result in t 1 .= Id • T is is In ractice, most real-time speech
reco 5'.~ihty, although it is a nice principle to adher~ t?. ilit p rinciple with the fast match.
Fo &nition systems don't necessarily obey the admissib Y/ [361 used several techniques

rexample, Bahl et al. (10], Laface et al., [22] and Roe et a·•

638
Basic Search Algorithms

to construct off-line groups of acoustically similar words. ~nned with this grouping, they
can use an aggressive fast match to select only a very short hst of word~, and words acousti­
cally similar to the words in this_ list are added to fonn the short word hst A_ for further de­
tailed match processing. By domg so, they are able _to report a very ef~c1ent fast match

th d that misses the correct word only 2% of the time. When non-admissible fast march
me o • d
is used, one needs to minimize the additional search error mtro uced by fast match empiri-

cally.
Bahl et al. [6] use a one-state HMM as their fast match units and a tree-structure lexi-

con similar to the lexical tree structures introduced in Chapter 13 to construct the short word
list A for next-word expansion in stack decoding. Since the fast match tree search is also
done in an asynchronous way, the ending time of each phone is detected using normalized
scores similar to those described in Section 12.5 .2. It is based on the same idea that this
nonnalized score rises slowly for the correct phone, while it drops rapidly once the end of
phone is encountered (so the model is starting to go toward the incorrect phones). During the
asynchronous lexical tree search, the unpromising hypotheses are also pruned away by a
pruning threshold that is constantly changing once a complete hypothesis (a leaf node) is
obtained. On a 20,000-word dictation task, such a fast match scheme was about I 00 times
faster than detailed match and achieved real-time performance on a commercial workstation
with only 0.34% increase in the word error rate being introduced by the fast match process.

12.5.4. Stack Pruning

Even with efficient heuristic functions, the mechanism to determine the ending time for
phone/word, and fast match, stack decoding might still be too slow for large-vocabulary
speech recognition tasks. A beam within the stack, which saves only a small number of
promising hypotheses in the OPEN list, is often used to reduce search effort. This stack
pruning is very similar to beam search. A predetermined threshold e is used to eliminate
hypotheses whose cost value is much worse than the best path so far.

. Bolh faSt match and stack pruning could introduce search errors where the eventual
optimal path _is_ thrown away prematurely. However, the impact could be reduced to a mini·
mum by e~pmcally adjusting the thresholds in both methods.

The 1~plementation of stack decoding is, in general more complicated, particularly
when some inevitable • • . ' ffi • t . prumng strategies are incorporated to make the search more e ,c,en •
The difficulty of dev·s· b th · d
f" . . . 1 mg O an effectively admissible heuristic function for h(•) an an

e 1 ect1ve est1matton of 1· • · • d th
d norma izatton factors for boundary determination has 1tm1te e

a vantage that stack d d h . . • -
h . . eco ers ave over Viterbi decoders. Unlike stack decodmg, time

sync ronous V1terb1 beam s h 'th ut
he · t' d . . earc can use an easy comparison of same-length path wi 0

uns 1c etermmat1on of w d b . ·m-
ple and uni'fi d " or oundanes. As described in the earlier sections, these si

1e 1eatures of v·t b' b ·ous
sound techni ue t . 1 er I earn search allow researchers to incorporate van .
Beam searchq ~ o improve the efficiency of search. Therefore time-synchronous Viterbi

enJoys a much b d . . ' . the
principle of stack decodin is roa ~r popu_lanty 111 the speech community. However, de-
scribe in Chapter 13 kg essential parttcularly for n-best and lattice search. As we

, stac decodi I h trate-ng P ays a very crucial patt in multiple-pass searc s

Stack Decoding (A* Search)
639

gies for u-best and !a~tice search because the early pass is able to establish a near-perfect
estimate of the remaining path.

12.S.S. Multistack Search

Even with the help of normalized factor y or heuristic function /,(•), it is still more effec­
tive to compare hypotheses of the same length than those of different lengths, because hy­
potheses with the same length are compared based on the true forward matching score.
Inspired by the time-synchronous principle in Viterbi beam search, researchers (8, 35 J pro­
pose a variant stack decoding based on multiple stacks.

Multistack search is equivalent to a best-first search algorithm running on multiple
stacks time-synchronously. Basically, the search maintains a separate stack for each time
frame t, so it never needs to compare hypotheses of different lengths. The search runs time­
synchronously from left to right just like time-synchronous Viterbi search. For each time
frame t, multisrack search extracts the best path out of the t-stack, computes one-word ex­
tensions, and places all the new paths into the corresponding stacks. When the search fin­
ishes, the top path in the last stack is our optimal path. Algorithm 12.7 illustrates the
multistack search algorithm.

This time-synchronous multistack search is designed based on the fact that by the time
the t'h stack is extended, it already contains the best paths that could ever be placed into it.
This phenomenon is virtually a variant of the dynamic programming principle introduced in
Chapter 8. To make multistack more efficient, some heuristic pruning can be applied to re­
duce the computation. For example, when the top path of each stack is extended for one
more word, we could only consider extensions between minimum and maximum duration.
On the other hand, when some heuristic pruning is integrated into the multistack search, one
might need to use a small beam in Step 2 of Algorithm 12.7 to extend more than just the beSt

path to guarantee the admissibility.

ALGORITHM 12.7: MULTISTACK SEARCH

Step 1: Initialization: for each word v in vocabulary V
fort=l,2, ... ,T

Compute C(x; J v) and insert it to t'h stack
step 2: Iteration: for t = 1, 2, . .. , T - I

Sort the t'" stack and pop the top path C(x; J w;) out of the stack

for each word v in vocabulary V

for r = t + l,t + 2, .. . ,T
E r J k+l) xtend the path qx; I w;) by word v to get C(x, w,

Where w,1+1 = w: II v and II means string concatenation

Place C(x~ I w;+I) in 1:11
' stack

step 3: Termination: Sort the T'" stack and the top path is the optimal wo,ct sequence

640
Basic Search Algorithms

12.6. HISTORICAL PERSPECTIVE AND FURTHER READING

Search has been one of the most important topics in artificial intelligence since the origins of
the field. It plays the central role in general problem solving [29] and computer games. [43),
Nilsson's Principles of Artificial Intelligence (32] and Barr and Feigenbaum's The Ha11d­
book of Artificial Intelligence [11] contain a comprehensive introduction to state-space
search algorithms. A* search was first proposed by Hart et al. (17]. A* was thought to be
derived from Dijkstra's algorithm [13] and Moore's algorithm [27). A* search is similar to
the branch-and-bound algorithm (23, 39], widely used in operations research. The proof of
admissibility of A* search can be found in (32].

The application of beam search in speech recognition was first introduced by the
HARPY system (26]. It wasn't widely popular until BBN used it for their BYBLOS system
(37]. There are some excellent papers with detailed description of the use of time­
synchronous Viterbi beam search for continuous speech recognition (24, 31]. Over the years,
many efficient implementations and improvements have been introduced for time­
synchronous Viterbi beam search, so real-time large-vocabulary continuous speech recogni­
tion can be realized on a general-purpose personal computer.

On the other hand, stack decoding was first developed by IBM (9) . It is successfully
used in IBM's large-vocabulary continuous speech recognition systems (3, 16). Lacking a
time-synchronous framework, comparing theories of different lengths and extending theo­
ries are more complex as described in this chapter. Because of the complexity of stack de­
coding, far fewer publications and systems are based on it than on Viterbi beam search [16,
19, 20, 35). With the introduction of multistack search (8), stack decoding in essence has
actually come very close to time-synchronous Viterbi beam search.

Stack decoding is typically integrated with fast match methods to improve its effi­
ciency. Fast match was first implemented for isolated word recognition to obtain a list of
potential word candidates (5, 7). The paper by Gopalakrishnan et al. (15] contains a compre­
~ensive ~escription of fast match techniques to reduce the word expansion for stack decod­
ing. Be_s1des the fast match techniques described in this chapter, there are a number of
alte~ativ~ approaches [5, 21, 41]. Waast' s fast match [41), for example, is based on a binary
classificatJ?n tree built automatically from data that comprise both phonetic transcription
and acoustic sequence.

REFERENCES

[I]

[2]

[3]

~o, A., J. Hopcroft, and J. Ullman, The Design and Analysis of Computer Algo­
rithms, 1974, Addison-Wesley Publishing Company.
~lleva, F., X. Huang, and M. Hwang, "An Improved Search Algorithm for Con­
~nuous Spe~ch Recognition," Int. Conj. on Acoustics, Speech and Signal Process­
mg, 1993, Minneapolis, MN, pp. 307_310_
Bahl, L_-~ - and et. al., "Large Vocabulary Natural Language Continuous Speech
Re~ogmtion," Proc. of the IEEE Int. Conf. on Acoustics, Speech and Signal Proc·
essmg, 1989, Glasgow, Scotland, pp. 465-467.

~Ip rspective and Further Reading
fiistoncs e 641

[4]

[5]

[6]

[7)

[8]

(9]

1101

[II]

(12)

113)

(14)

[15]

[16]

117]

(18]

119]

Bahl, L.R., et al., "Language-Model/Acoustic Channel Balance Mechanism," IBM
Technical Disclosure Bulletin, 1980, 23(7B), pp. 3464-3465.
Bahl, L.R., et a!·: "Obtainin~. Candidale Words by Polling in a Large Vocabulary
Speech Recognition System, Proc. of the IEEE lilt. Conf 011 Acoustics, Speech
and Signal Processing, 1988, pp. 489-492.
Bahl, L.R., et al., "A Fast Approximate Acoustic Match for Large Vocabulary
Speech Recognition," IEEE Trans. on Speech and Audio Processing, 1993(1), pp.
59-67.
Bahl, L.R., et al., "Matrix Fast Match: a Fast Method for Identifying a Short List of
Candidate Words for Decoding," Proc. of the IEEE Im. Conj. on Acoustics, Speech
and Signal Processing, 1989, Glasgow, Scotland, pp. 345-347.
Bahl, L.R., P.S. Gopalakrishnan, and R.L. Mercer, "Search Issues in Large Vo­
cabulary Speech Recognition," Proc. of the 1993 IEEE Workshop on Automatic
Speech Recognition, 1993, Snowbird, UT.
Bahl, L.R., F. Jelinek, and R. Mercer, "A Maximum Likelihood Approach to Con­
tinuous Speech Recognition," IEEE Trans. on Pattern Analysis and Machine Intel­
ligence, 1983(2), pp. 179-190.
Bahl, L.R., et al., "Constructing Candidate Word Lists Using Acoustically Similar
Word Groups,'' IEEE Trans. on Signal Processing, 1992(1), pp. 2814-2816.
Barr, A. and E. Feigenbaum, The Handbook of Artificial Intelligence: Volume l,
1981, Addison-Wesley.
Cettolo, M., R. Gretter, and R.D. Mori, "Knowledge Integration" in Spoken Dia­
logues with Computers, R.D. Mori, Editor 1998, London, Academic Press, PP· 231-
256.
Dijkstra, E.W., "A Note on Two Problems in Connection with GraphS," Nu-

merische Mathematik, 1959, 1, pp. 269-271. .
Gauvain, J.L., et al., "The LIMSI Speech Dictation System: Evaluation on _the
ARPA Wall Street Journal Corpus," Proc. of the IEEE Int. Conf 011 AcouS1tcs,
Speech and Signal Processing 1994 Adelaide, Australia, PP· 129-132• .
G ' ' • " • A tomanc opalakrishnan P S 2and L R Bahl "Fast Match Techniques, m u

• • • • • ' Paliwal, eds.,
Speech and Speaker Recognition, C.H. Lee, F.K. Soong, and K.K.
1996, Norwell, MA, Kluwer Academic Publishers, PP· 413-428• S for
Gopalakrishnan, P.S., L.R. Bahl, and R.L. Mercer, "A Tree Sea;;EErrl::?~onf
Large-Vocabulary Continuous Speech Recognition," Pr~c. of the

572
_575 _·

on Acoustics, Speech and Signal Processing, 1995, Detrmt, MI. pp. H ·sric Deter-
Han p E " al Basis for the eun , • ., N.J. Nilsson, and B. Raphael, A Form . and Cybemet-
'.'1ination of Minimum Cost Paths," IEEE Trans. on Systems Science

ics, I 968, 4(2), pp. 100-107. . S eech Recognizer:
:~ng, X., et al., "Microsoft Windows Highly Intel_hge~~ Jcessing 1995, PP·

isper," IEEE Int. Conf on Acoustics, Speech and S,gna r '
n% A J . • . . 199g Cambridge, M •
ehnek, F., Statistical Methods for Speech Recognition, '

MIT Press.

642

(20]

[21]

(221

(23)

[24)

[25)

[26)

[27)

[28)

[29]

[30)

[3 I]

[32)

[33)

[34]

[35]

Basic Search Algorithms

Kenny, P., et al., "A *-Admissible Heuristics for Rapid Lexical Access," IEEE
Trans. 011 Speech and Audio Processi11g, 1993, 1, pp. 49-58.
Kenny, P., et al., "A New Fast Match for Very Large Vocabulary Continuous
Speech Recognition," IEEE !Tit. Conj 011 Acoustics, Speech and Signal Processing,
1993, Minneapolis, MN, pp. 656-659.
Laface, P., L. Fissore, and F. Ravera, "Automatic Generation of Words toward
Flexible Vocabulary Isolated Word Recognition," Proc. of the Int. Co11f. on Spoken
Language Processing, 1994, Yokohama, Japan, pp. 2215-2218.
Lawler, E.W. and D.E. Wood, "Branch-and-Bound Methods: A Survey," Opera­
tions Research, 1966(14), pp. 699-719.
Lee, K.F. and F.A. Alleva, "Continuous Speech Recognition" in Recent Progress in
Speech Signal Processing, S. Furui and M. Sondhi, eds., 1990, Marcel Dekker, Inc.
Lee, K.F., H.W. Hon, and R. Reddy, "An Overview of the SPHINX Speech Rec­
ognition System," IEEE Trans. on Acoustics, Speech and Signal Processing, 1990,
38(1), pp. 35-45.
Lowerre, B.T., The HARPY Speech Recognition System, PhD Thesis in Computer
Science Department, 1976, Carnegie Mellon University.
Moore, E.F., "The Shortest Path Through a Maze," Int. Symp. on the Theory of
Switching, 1959, Cambridge, MA, Harvard University Press, pp. 285-292.
Murveit, H., et al., "Large Vocabulary Dictation Using SRJ's DECIPHER Speech
Recognition System: Progressive Search Techniques," Proc. of the IEEE Int. Conf.
on Acoustics, Speech and Signal Processing, 1993, Minneapolis, MN, pp. 319-322.
Newell, A. and H.A. Simon, Human Problem Solving, 1972, Englewood Cliffs, NJ,
Prentice Hall.
Ney, H. and X. Aubert, "Dynamic Programming Search: From Digit Strings to
Large Vocabulary Word Graphs," in Automatic Speech and Speaker Recognition,
C.H. Lee, F. Soong and K.K. Paliwal, eds., 1996, Boston, Kluwer Academic Pub­
lishers, pp. 385-4 I 2.
Ney, H. and S. Ortrnanns, Dynamic Programming Search for Continuous Speech
Recognition, in IEEE Signal Processing Magazine, 1999, pp. 64-83.
Nilsson, NJ., Principles of Artificial Intellige11ce, 1982, Berlin, Germany, Springer
Verlag.
Nilsson, N.J., Artificial Intelligence: A New Synthesis, 1998, Academic
Press/Morgan Kaufmann.
Normandin, Y., R. Cardin, and RD. Mori, "High-Performance Connected Digit
Recognition Using Maximum Mutual Information Estimation," IEEE Trans. on
Speech and Audio Processing, 1994, 2(2), pp. 299-311 .
Paul, D.B., "An Efficient A* Stack Decoder Algorithm for Continuous Speech
Recognition with a Stochastic Language Model," Proc. of the IEEE Int. Con/. on
1~~ustics, Speech and Signal Processing, 1992, San Francisco, California, PP· 25-

---:-1 Perspective and Further Reading
!listonca 643

[36]

!37]

[38]

[39]
[-!OJ

[4!)

[42]
[43)

[44]

Roe, D.B. and M.D. Riley, "Prediction of Word Confusabilities for Speech Recog­
nition,'' Proc. of the Int. Conj. 011 Spoken language Processing, 1994, Yokohama

""7 2"'0 • Japan, pp. -- - -' •
Schwartz, R., et ~I •• "C~ntext-Dependent Modeling for Acoustic-Phonetic Recogni­
tion of Speech Signals, Proc. of the IEEE Int. Conj. 011 Acoustics, Speech and Si

8
_

nal Processing. I 985. Tampa. FLA, pp. 1205-1208.
Steinbiss. V., et al., "The Philips Research System for Large-Vocabulary Continu­
ous-Speech Recognition," Proc. of the European Conf on Speech Communication
and Tech110/ogy, I 993, Berlin, Germany, pp. 2125-2128.
Taha, H.A., Operations Research: An llllroduction, 6th ed. 1996, Prentice Hall.
Tanimoto, S.L., The Elements of Anificia/ Intelligence : An Introduction Using
Usp, 1987. Computer Science Press, Inc.
Waast, C. and L.R. Bahl, ·'Fast Match Based on Decision Tree," Proc. of the Euro­
pean Conf on Speech Communication and Technology, 1995, Madrid, Spain, pp.
909-912.
Winston, P.H., Anijicia/ Intelligence, 1984. Reading, MA, Addison-Wesley.
Winston, P.H., Aniftcial Intelligence, 3rd ed., 1992, Reading, MA, Addison­
Wesley.
Woodland, P.C., et al, "Large Vocabulary Continuous Speech Recognition Using
1-ITK," Proc. of the IEEE Int. Conj. on Acoustics, Speech and SigTllll Processing,
1994, Adelaide, Australia., pp. 125-128.

CHAPTER 1 3

Large-Vocabulary Search Algorithms

n· t Chapter 1 ~ discussed the basic search tech­
~ques. ?r speech recognition. However, the search complexity for large-vocabulary speech
decog_: 10n ~ith high-order language models is still difficult to handle. In this chapter we
w:n efficient search techniques in the context of time-synchronous Viterbi beam search,
W ch bec?mes the choice for most speech recognition systems because it is very efficient.
te ~ u~ Microsoft Whisper as our case study to illustrate the effectiveness of various search

c nrqu_es. Most of the techniques discussed here can also be applied to stack decoding.
th ~ 1th the help of beam search, it is unnecessary to explore the entire search space or
k e e~ttre ~ellis. Instead, only the promising search state-space needs to be explored. Please
eep '" mind the distinction between the implicit search graph specified by the grammar

network and the explicit partial search graph that is actually constructed by the Viterbi beam
search algorithm.

In th' • • & I is chapter we first introduce the most critical search orgamzat1on ,or arge-
vocabutary . • "fi I d t t"al speech recognition-tree lexicons. Tree lexicons s1gni ,cant y re uce po en 1
search sp • I d t ace, although they introduce many practical problems. In parucu ar, we nee o

645

646
Large-Vocabulary Search Algo;~

bl S Such as reentrant lexical trees, factored language model probabilities sub address pro em . • •
tree optimization, and subtree poly~orph1sm. . . .

Various other efficient techniques also are introduced. Most of these techniques aim

f I Pruning with the hope of sparing the correct paths. For more effective pnming or c ever . ,
different layers of beams are usually use~. Wh!le_fast match techniques ~escribed in Chapter

12 are typically required for stack decodmg, s1m1lar concepts_ and techniques can be applied
to Viterbi beam search. In practice, the look-ahead strategy 1s equally effective for Viterbi

beam search.
Although it is always desirable to use all the knowledge sources (KSs) in the search

algorithm, some are difficult to integrate into the left-to-right time-synchronous search
framework. One alternative strategy is to first produce an ordered list of sentence hypotheses
(a.k.a. n-best list), or a lattice of word hypotheses (a.k.a. word lattice) using relatively inex­
pensive KSs. More expensive KSs can be used to rescore the n-best list or the word lattice to
obtain the refined result. Such a multipass strategy has been explored in many large­
vocabulary speech recognition systems. Various algorithms to generate sufficient 11-best lists
or the word lattices are described in the section on multipass search strategies.

Most of the techniques described in this chapter rely on nonadmissible heuristics.
Thus, it is critical to derive a framework to evaluate different search strategies and pruning
parameters.

13.1. EFFICIENT MANIPULATION OF A TREE LEXICON

The lexicon entry is the most critical component for large-vocabulary speech recognition,
since the search space grows linearly along with increased linear vocabulary. Thus an effi­
cient framework for handling large vocabulary undoubtedly becomes the most critical issue
for efficient search perfonnance.

13.1.1. Lexical Tree

~e searc~ space for n-gram discussed in Chapter 12 is organized based on a straightforward
lmear lexicon, i.e., each word is represented as a linear sequence of phonemes, independent
of 0ther words. For example, the phonetic similarity between the words task and tasks is not
leveraged. In a large-vocabulary ~yst~r.1, many words may share the same beginning pho­
nemes. A tree structure is a natural representation for a large-vocabulary lexicon, as manY
phonemes can be shared t 1· • . 1 t e based . 0 e immate redundant acoustic evaluations. The lex1ca re •
search is thus essential i b ·1d· • • or ui mg a real-time large-vocabulary speech recognizer.

'. The term real-time means the decocr . ce ihe decod·
mg process can talce I mg process takes no longer than the duration of the speech. Sin_ . neo~s

P ace as soon as th h "d al mswn1u responses after speakers fi . h • . e speec starts, such a real-time decoder can prov1 e re
nus talkmg.

- . t Manipulation of a Tree Lexicon Elfic1en

,,.

/el

,,.
,,. ,,.

,,. ,,. W 2 = label

W ~=label

Figure 13.1 An example of a lexical tree, where each branch corresponds to a shared phoneme
and the leaf corresponds 10 a word.

647

Figure 13.1 shows an example of such a lexical tree, where common beginning pho­
nemes are shared. Each leaf corresponds to a word in the vocabulary. Please note that an
extra null arc is used to fonn the leaf node for each word. This null arc has the following
two functions:

l. When the pronunciation transcription of a word is a prefix of other ones, the
null arc can function as one branch to end the word.

2. When there are homophones in the lexicon, the null arcs can function as lin­
guistic branches to represent different words such as two and to.

The advantage of using such a lexical tree representation is obvious: it can effectively
reduce the state search space of the trellis. Ney et al. [32) reported that a lexical tree repre­
sentation of a 12,306-word lexicon with only 43,000 phoneme arcs had a saving of a factor
of 2•5 over the linear lexicon with l 00,800 phoneme arcs. Lexical trees are also referred 1.0

as prefix trees, since they are efficient representations of lexicons with sharing among Iexi­
ca_l entries that have a common prefix. Table 13.1 shows the distribution of phoneme arcs for
this ~2,306-word lexical tree. As one can see, even in the fifth level the number of phoneme
arcs 18 only about one-third of the total number of words in the lexicon.

Table 131 o· . . . h e arc for a 12,306-• 1s1nbut1on of the tree phoneme arcs and active tree P onem
Word lexico • n using a lexical tree representation [32] ,_

level 4 s 6 ?.7
i---,__ 1 2 3

1~nemearcs 3116 4380 4950 29.200
28 331 I 511

Average • 470 329 178 206
~ cs 23 233 485

648
Large-Vocabulary Search Algorithms

The saving by using a lexical tree is substantial, because it not only results in consid­
erable memory saving for representing state-search space but also saves tr~m~ndous time by
searching far fewer potential paths. Ney et al. [32] report tha~ a tree o:gamzat10~ of the lexi­
con reduces the total search effort by a factor of 7 over the linear lexicon organization. This

• is because the lion 's share of hypotheses during a typical large-vocabulary search is on the
first and second phonemes of a word. Haeb-Umbach et al. (23] report that for a 12,306-word
dictation task, 79% and I 6% of the state hypotheses are in the first and second phonemes,
when analyzing the distribution of the state hypotheses over the state position within a word.
Obviously, the effect is caused by the ambiguities at the word boundaries. The lexical tree
representation reduces that effort by evaluating common phonetic prefixes only once. Table
13.l also shows the average number of active phoneme arcs in the layers of the lexical tree
[32]. Based on this table, you can expect that the overall search cost is far less than the size
of the vocabulary. This is the key reason why lexical tree search is widely used for large­
vocabulary continuous speech recognition systems.

The lexical tree search requires a sophisticated implementation because of a funda­
mental deficiency--a branch in a lexical tree representation does not correspond to a single
word with the exception of branches ending in a leaf This deficiency translates to the fact
that a unique word identity is not determined until a leaf of the tree is reached. This means
that any decision about the word identity needs to be delayed until the leaf node is reached,
which results in the following complexities.

• Unlike a linear lexicon, where the language model score can be applied when
starting the acoustic search of a new word, the lexical tree representation has
to delay the application of the language model probability until the leaf is
reached. This may result in an increased search effort, because the pruning
needs to be done on a less reliable measure, unless a factored language model
is used, as discussed in Section 13.1.3.

• Because of the delay of language model contribution by one word, we need to
k~ep a separate copy of an entire lexical tree for each unique language model
history.

13.1.2. Multiple Copies of Pronunciation Trees

A simple lexical tree 1·s suffi • "f • • b use . . icient I no language model or a unigram is used. This 1s eca
the dec1s1on at time t d d ram epen s on the current word only However for higher-order n-g
models, the linguist" t • ' . h
l ic sate cannot be determined locally. A tree copy is required for ea~
anguage model state F b' d nus • or igrams, a tree copy is required for each predecessor wor •

may seem to be astonish· b abu-
1 . F mg, ecause the potential search space is increased by the voe
ary size. ortunately ex • · are re-

g · d b .' penmental results show only a small number of tree copies
uire , ecause efficient • al [32]

report that th pruning can eliminate most of the unneeded ones. Ney et •
e search effort • b' . . h igraJll

USmg igrams 1s increased by only a factor of 2 over t e un

~t Manipulation or a Tree Lexicon
649

e In general, when more detailed (better) acoustic and/or l"ngu"ge d
1 cas • u mo e s are used the

f'ect of a potentially mcreased search space is often compensated by a ~ d b, e 1• more 1ocuse earn
earch from the use of more accurate models. In other words although th t • h s . . . , e s at1c searc

space might increase s1gnrfi~antly by using more accurate models, the dynamic search space
Can be under control (sometimes even smaller), thanks to improved evaluation tiu

1
-. [9 2 nc ions.

To deal with tree copies l , 3, 37}, you can create redundant subtrees. When c ·
d d. b' op1es

of lexical trees are use to 1sam tguate active hngu1st1c contexts, many of the active state
hypotheses correspond to the same redundant unigram state. due to the postponed applica­
tion of language models. To apply the language model sooner, and to eliminate redundant
unigram state computations, a successor tree, I';_, can be created for each linguistic context i.
r; encodes the nonzero 11-grams of the linguistic context i as an isomorphic subgraph of the
unigram tree, TQ. Figure 13.2 shows the organization of such successor trees and unigram
tree for bigram search. For each word w a successor tree, T., is created with the set of suc­
cessor words that have nonzero bigram probabilities. Suppose u is a successor of w; the bi­
gram probability P(u I w) is attached to the transition connecting the leaf corresponding to u
in the successor tree T.,, with the root of the successor tree T,,. The unigram tree is a full­
size lexical tree and is shared by all words as the back-off lexical tree. Each leaf of the uni­
gram tree corresponds to one of !VI words in the vocabulary and is linked to the root of its
bigram successor tree (T.) by an arc with the corresponding unigram probability P(u). The
backoffweight, a(u), of predecessor u is attached to the arc which links the root of succes­
sortree r. to the root of the unigram tree.

o(u)

bigram successor
trees

T,..

T,.

. . trees for bigram search [13).
Figure 13.2 Successor trees and unigram

650 Large-Vocabulary Search Algorithrns

A careful search organiz~tion is requi:ed to avoid computational overhead and to
guarantee a linear time complexity for explonng state hypotheses. In the following sectio
we describe techniques to achieve efficient lexical tree recognizers. These techniques i~~
elude factorization of language model probabilities, tree optimization, and exploiting subtree
dominance.

13.1.3. Factored Language Probabilities

As mentioned in Section 13.1.2, search is more efficient if a detailed knowledge source can
be applied at an early stage. The idea of factoring the language model probabilities across
the tree is one such example [4, 19]. When more than one word shares a phoneme arc, the
upper bound of their probability can be associated to that arc.

2
The factorization can be ap­

plied to both the full lexical tree (unigram) and successor trees (bigram or other higher-order
language models).

An unfactored tree only has language model probabilities attached to the leaf nodes,
and all the internal nodes have probability 1.0. The procedure for factoring the probabilities
across the tree computes the maximum of each node n in the tree according to Eq. (13.1).
The tree can then be factored according to Eq. (13.2) so when you traverse the tree you can
multiply F

0

(n) along the path to get the needed language probability.

p' (n) = max P(x)
rerhtld(n)

(13.1)

F"(n)= • P'(n)
P (parent(n))

(I 3.2)

An illustration of the factored probabilities is shown in Table 13.2. Using this lexicon,
we create the tree depicted in Figure J 3.3(a). In this figure the unlabeled internal nodes have
a probability of 1.0. We distribute the probabilities according to Eq. (13.1) in Figure 13.3(b),
which is factored according to Eq. (13.2), resulting in Figure l 3.3(c).

Table 13.2 Sample probabilities P(w}and their pseudoword pronunciations (4].

Wl Pronunciation P(w}

W O lab cl 0.1

w, /ab cl 0.4

w 2 la C z/ 0.3

W3 Ide/ 0.2

'Th h • f • . . ·n be cnosen e c oice O upper bound 15 because Jt 1s an admissible estimate of the path no matter which wore! WI
later.

---:---nt ,.c90ipulation of a Tree Lexicon Effic1e in

(a)

0.4

(b)

651

0.4

(c)

Figure 13.3 (a) Unfactored lexical tree; (b) distributed probabilities with computed p· (n);
(c)factored treeF'(n) (4].

Using the upper bounds in the factoring algorithm is not an approximation, since the
correct language model probabilities are calculated by the product of values traversed along
each path from the root to the leaves. However, you should note that the probabilities of all
the branches of a node do not sum to one. This can solved by replacing the upper-bound
(max) function in Eq. (13.1) with the sum.

p' (n) = L P(x) (13.3)
XE<hi/d(11)

To guarantee that all the branches sum to one, Eq. (13.2) should also be replaced by
the following equation:

p'(n) F' (n) = __ _.:.._.:.....__ L P
0

(x)

(13.4)

XE<hild(porc:nt(n))

b·1· • b s"ng sum instead of up-
A new illustration of the distribution of LM proba 1 1t1es Y u 1

•

per bound is shown in Figure 13.4. Experimental results have shown that the factonng
method with either sum or upper bound has comparable search performance.

1.0
1.0

(c)
(a) (b)

F' . ng tree, the corresponding (a} ~n-
•gure 13.4 Using sum instead of upper bound wh_en facton d p' (n) ; (c} factored tree with

~actored lexi~al tree; (b) distributed probabilities wich compute
0mputed F (n) [4].

652 Large-Vocabulary Search Algorithms

One interesting observation is that the language model score can be regarded as a heu­
ristic function to estimate the linguistic expectation of the current word to be searched. In a
linear representation of the pronunciation lexicon, application of the linguistic expectation
was straightforward, since each state is associated with a unique word. Therefore, given the
context defined by the hypothesis under consideration, the expectation for the first phone of
word w, is just P(w, I w;-•) . After the first phone, the expectation for the rest of the phones
becomes 1.0, since there is only one possible phone sequence when searching the word w,.
However, for the tree lexicon, it is necessary to compute E(p I I Pt', w;-') , the expectation
of phone p1 given the phonetic prefix pt' and the linguistic context w;-• . Let 4'(j, w1;)
denote the phonetic prefix of length j for w~ . Based on Eqs. (13.1) and (13.2), we can com­
pute the expectation as:

£(I 1-1 w'-') = P(wr I w:-')
P1 Pi ' , P(wP I wt')

(13.5)

where c = arg riax(w, I w;-', ¢(j, wt)= p{) and p = arg max(wk I w;-1
, ¢(} -1, wk) = Pt') . Based

on Eq. (13.5), an arbitrary n-gram model or even a itochastic context-free grammar can be
factored accordingly.

13.1.3.1. Efficient Memory Organization of Factored Lexical Trees

A major drawback to the use of successor trees is the large memory overhead required to
store the additional information that encodes the structure of the tree and the factored lin­
guistic probabilities. For example, the 5.02 million bigrams in the 1994 NABN (North
American Business News) model require 18.2 million nodes. Given a compact binary tree
representation that uses 4 bytes of memory per node, 72.8 million bytes are required to store
the predecessor-dependent lexical trees. Furthermore, this tree representation is not as ame­
nable to data compression techniques as the linear bigrarn representation.

The factored probability of successor trees can be encoded as efficiently as the n-gram
model based on Algorithm 13.1, i.e., one n-gram record results in one constant-sized record.
Step 3 is illustrated in Figure I 3.5(b), where the heavy line ends at the most recently visited
node that is not a direct ancestor. The encoding result is shown in Table 13.3.

ALGORITHM 13.1: ENCODING THE LEXICAL SUCCESSOR TREES (LST)

For each linguistic context:
Step 1: Distribute the probabilities according to Eq. (13.1).
Step 2: Factor the probabilities according to Eq. (13.2).
Step 3: Perform a depth-first traversal of the LST and encode each leaf record,

(a) the depth of the most recently visited node that is not a direct ancestor,
(b) the probability of the direct ancestor at the depth in (a),
(c) the word identity.

L-----------------------------

---:-1 Manipulation of a Tree Lexicon
Effic1en

0.4

(a)

w,
0

~ '
\II u .. ,,
4 2

(b)

Figure 13.5 (a) Factored lree; (b) tree with common prefix-length annotation.

653

Clearly the new data structure meets the requirements set forth, and, in fact, it only re­
quires additional log(n) bits per record (11 is the depth of the tree). These bits encode the
common prefix length for each word. Naturally this requires some modification to the de­
coding procedure. In particular, the decoder must scan a portion of the n-gram successor list
in order to determine which tree nodes should be activated. Depending on the structure of
the tree (which is detennined by the acoustic model, the lexicon, and language model), the
tree structure can be interpreted at runtime or cached for rapid access if memory is available.

Table 13.3 Encoded successor lexical tree; each record corresponds to one augmented factored
n-gram.

WI Depth F·(w
1
)

w, 0 0.4

Wo 4 0.25

w_, 2 0.75

IY1 I 0.5

l3,1.4. Optimization of Lexical Trees
W • k f d by the multiple copies

e now investigate ways to handle the huge search networ • orme .
1 1

s actually
of Jex· 1 f ·zation of lex1ca ree 1

~3 trees m different lingmst1c contexts. The acton d I the intertree
mak~s. rt easier to search. First, after the factorization of the language mo ;~ched because
lransn1on h . . h 1 uage model scores a
th s s own m Figure I 3.2 no longer have t e ang M er as illustrated in
/Y are already applied completely before leaving the leaves. thoreo; h;ve an associated
igure 13 3 d f • gle word pa no

Ira • . • • many transitions toward the en o a sm . - . r that there could be many
du n;_n,on probability that is equal to I . This observauon imp ies then be merged to save
bo~1cated subtrees in the network. Those duplicated subtrees can) tale evaluation. Unlike

Pn, _space and computation by eliminating redundant (unnecess~ry- sl without introducing
••ning th. . . . ming pnnc1p e, an ' 15 savmg rs based on the dynanuc program
Y llOlential error.

-----------------,-=-----
Large-Vocabulary Search Al . 654 gonth1ns

13.1.4.1. Optimization of Finite State Network

One way to compress the lexical tree network is to use a similar algorithm for optimizin th
number of states in a deterministic finite state automaton. The optimization algorith~ _e

f . fi . ~
based on the indistinguishable property o states m a mite state automaton. Suppose that s
and s2 are the initial states for automata 7; and T2 • then s1 and s2 are said to be indisti,i'­
guishable if the languages accepted by automata 7; and T~ are exactly the same. If we con­
sider our lexical tree network as a finite state automaton, the symbol emitted from the
transition arc includes not only the phoneme identity, but also the factorized language model
probability.

The general set-partitioning algorithm [I] can be used for the reduction of finite state
automata. The algorithm starts with an initial partition of the automaton states and iteratively
refines the partition so that two states s1 and s2 are put in the same block B, if and only if
/(s1) and /(s2) are both in the same block B1 • For our purpose, f(s1) and /(s2) can be
defined as the destination state given a phone symbol (in the factored trees, the pair <phone,
IM-probability> can be used). Each time a block is partitioned, the smaller subblock is used
for further partitioning. The algorithm stops when all the states that transit to some state in a
particular block with arcs labeled with the same symbol are in the same block. When the
algorithm halts, each block of the resulting partition is composed of indistinguishable states,
and those states within each block can then be merged. The algorithm is guaranteed to find
the automaton with the minimum number of states. The algorithm has a time complexity of
O(MN log N), where Mis the maximum number of branching (fan-out) factors in the lexi­
cal tree and N is the number of states in the original tree network.

Although the above algorithm can give optimal finite state networks in terms of num­
ber of states, such an optimized network may be difficult to maintain, because the original
lexical tree structure could be destroyed and it may be troublesome to add any new word

into the tree network [1].

13.1.4.2. Subtree Isomorphism

The finite state optimization algorithm described above does not take advantage of !he tree
t f th fi . . • • m number s ructure o e mite state network, though it generates a network with a m1mmu_. _

of states. Since our finite state network is a network of trees, the indistinguishabJhty ~rop
• 11 are said 10

erty IS actua Y the same as the definition of subtree isomorphism. Two subtrees 1 b • I . h . . h uccessors. t e isomorp uc to eac other 1f they can be made equivalent by permuting t es •. ·
h ld b • • d Jy 1f their s ou e straightforward to prove that two states are indistinguishable, if an on

subtrees are isomorphic
Th . • . . orphic. for

ere are efficient algonthms [1] to detect whether two subtrees are isorn e
~II possib~e pa(rs of states u and v, if the subtrees starting at u and v, ST(u) a~d srn~:s
isomorphic, v is merged into u and ST(v) can be eliminated. Note that only mterna_ Jgo·
~eed t_o be c~nsidered for subtree isomorphism check. The time complexity for th1s a
nthm 1s O(N·) [I].

--:---1 •Ma~ipulation of a Tree Lexicon
EfTic1en in

4 3 Sharing Tails
13.1. • •

655

A/• •ir mil in a lexical tree is defined as a subpath ending in u l~af d .
tllli • '" an gomg throu0 h states

.th a unique successor. It 1s often referred as a single-word s11t,,,a,I It b "'
w1 • • . • • . 1- can e pro\'ed that

ch a linear tail has umt probab1hty attached to its arcs according to E (1., 1) d
su . b·b·1· f . . . qs •. ,. an (13.2).
Th·s 1-5 because LM p10 a 1 1ty actonzauon pushes forward the LM b b"I'

1 . • • . . pro a I lly attached to
lhe last arc of the linear t~tl, l~avmg arcs with unit probability. Since all the tails correspond-
ing to the same word_ w m d1fferen~ successor trees are linked to the root of successor tree
r .. ' the subtree start111g from the first state of each linear tail is isomorphic to the subtree
starting from one of _the states _forming the longest linear tail of w. A simple algorithm 10
take advantage of this share-tat] topology can be employed to reduce the lexical tree net­
work.

Figure 13.6 and Figure 13.7 show a lexical tree network before and after shared-tail
op1imization. For each word, only the longest linear tail is kept. All other tails can be re­
moved by linking them to an appropriate state in the longest tail, as shown in Figure 13.7.

Shared-tail optimization is not global optimization, because it considers only some
special topology optimization. However, there are some advantages associated with shared­
tail optimization. First, in practice, duplicated linear tails account for most of the redundancy
in lexical tree networks [12]. Moreover, shared-tail optimization has a nice property of
maintaining the basic lexical tree structure for the optimized tree network.

r. = { u, y}
Tr = {y, z}
T, = { u}

u = /ab/
Y = /acd/
z = /ace/

·-a--bJ
Fi r . a.red-tail optimization [I 2]. The

gu e 13.6 An example of a lexical tree network w1thout sh . sor trees for 11, y, and
vocabulary • I T d T are the succes " inc udes three words, u, v, and ::. T.. ,., an ,

respectively [13]. • •

;--
Wei\s,\

urne bigram is used in the discussion of ·'sharing tails."

656

lex icon
tree

ii C e

linear
transcriptions

Large-Vo('abulary Search Al--:-­gonth111s

successor
trees

Figure 13.7 The lexical tree network in Figure 13.6 after shared-tail optimization [12].

13.1.5. Exploiting Subtree Polymorphism

The techniques of optimizing the network of successor lexical trees can only eliminate iden­
tical subtrees in the network. However, there are still many subtrees that have the same
nodes and topology but with different language model scores attached to the arcs. Th_e
acoustic evaluation for those subtrees is unnecessarily duplicated. In this section we exploit
subtree dominance for additional saving.

A subtree instance is dominated when the best outcome in that subtree is not be«er
than the worst outcome in another instance of that sulJtree. The evaluation becomes redun;
dant for the dominated subtree instance. Subtree isomorphism and shared-tail are case_s;d
subtree dominance, but they require prearrangement of the lexical tree network as descn
in the previous section. . al • ·zat1on •

If we need to implement lexical tree search dynamically, the network optimi .. ax
gorithms are not suitable. Although subtree dominance can be computed. using ~

1
i:: be

search [35] during runtime, this requires that information regarding subtree isomorp I it is
available for all corresponding pairs of states for each successor tree T,,. Unfortunate y,
not practical in terms of either computation or space. xi as· . . • tic conte

In place of computing strict subtree dominance, a polymorpluc hnguis d n local
· d • ebase 0

s1gnment to re uce redundancy is employed by estimating subtree dom1na~c assign·
• & • d . . hie context
m1ormat1on an 1gnonng the subgraph isomorphism problem. Polymorp urne the

t • I k · · • h state to ass • men mvo ves eepmg a smgle copy of the lexical tree and allowmg eac h • thal ti

I. . . th. approac ,s .
mgmsuc context of the most promising history. The advantage of is . th uee 1s

1 • h · • • h node tn e emp oys maximum s anng of data structures and mformauon, so eac

---:-t •"anipulation of a Tree Lexicon Effic1en m 657

evaluated, at most, once._ H~wever, the use of local knowledge to detennine the dominant
context could intro~uce significant errors because of premature pruning. Whisper [4] repons
3 65.7'n: increase JO error rate when only the dominant context is kept, based on local
knowledge. .

To recover the errors created by usmg local linguistic infonnation to estima1e subtree
dominance, you net!d to delay th~ decision regarding which linguistic context is most prom­
ising. This can be done by ~e~pmg a heap of contexts at each node in lhe tree. The heap
maintains all contexts (lingu1s11c paths) whose probabilities are within a constant threshold
e of that of the best global path. The effect of the e -heap is that more comexts are retained
fo; high-probability states in the lexical tree. The pseudocode fragment in Algorithm 13.2
[3) illustrates a transition from state s11 in context c to state s., . The terminology used in
Algorithm I 3.2 is listed as follows:

, (-logP(s., I s
11
,c)) is the cost associated with applying acoustic model

matching and language model probability of state s., transited from s. in
context c.

, /nHeap(s.,,c) is true if context c is in the heap corresponding to state s.,.

, Cost(s.,,c) is the cost for context c in state s.,.

, Statelnfo(s., c) is the auxiliary state infonnation associated with context c in
state s • .

• Add(s.,c) adds context c to the state s., heap.

• Delete(s.,c) deletes context c from state s., heap.

• WorstContext(s'") retrieves the worst context from the heap of state s. •

ALGORITHM 13.2: HANDLING MULTIPLE LINGUISTIC CONTEXTS
IN A LEXICAL TREE

1. d=Cost(s
11
,c)+(-logP(s., ls,,,c))

2. H lnHeap(s,.,c) then
If d < Cost(s .. , c) then

Cost(s,,,,c) = d
Statelnfo(s,,,,c) = Statelnfo(s,.,c)

elself d<BestCost(s,,,)+e then
Add(s.,c); Statelnfo(s,,. ,c) = Statelnfo(s.,c)
Cost(s.,,c)=d
else
W= WorstContext(s,.)
if d < Cost(s,., w) then

Delete(s , w)
Add(s,,.,~); Statelnfo(s,,,,c) = Statelnfo(s11 ,c)
Cost(s,,.,c) d

658
Large-Vocabulary Search Algorithms

. When higher-order n-gram is used for lexical tree search, the potential heap size for
lexical_ tree nodes (some also refer to prefix nodes) could be unmanageable. With decent
acoust~c models ~nd effici~nt pruning, as illustrated in Algorithm 13.2, the average heap size
for act~ve nodes _m the lex'.cal tree is actually very modest. For example, Whisper's average
heap size for active nodes m the 20,000-word WSJ lexical tree decoder is only about 1.6 [3].

13.1.6. Context-Dependent Units and Inter-Word Triphones

So far, we have implicitly assumed that context-independent models are used in the lexical
tree search. When context-dependent phonetic or subphonetic models, as discussed in Chap­
ter 9, are used for better acoustic models, the construction and use of a lexical tree become
more complicated.

Since senones represent both subphonetic and context-dependent acoustic models, this
presents additional difficulty for use in lexical trees. Let's assume that a three-state context­
dependent HMM is formed from three senones, one for each state. Each senone is context­
dependent and can be shared by different allophones. If we use allophones as the units for
lexical tree, the sharing may be poor and fan-out unmanageable. Fortunately, each HMM is
uniquely identified by the sequence of senones used to form the HMM. In this way, different
context-dependent allophones that share the same senone sequence can be treated as the
same. This is especially important for lexical tree search, since it reduces the order of the
fan-out in the tree.

Interword triphones that require significant fan-ins for the first phone of a word and
fan-outs for the last phones usually present an implementation challenge for large­
vocabulary speech recognition. A common approach is to delay full interword modeling
until a subsequent rescoring phase.4 Given a sufficiently rich lattice or word graph, this is a
reasonable approach, because the static state space in the successive search has been reduced
significantly. However, as pointed out in Section 13.1.2, the size of the dynamic state space
can remain under control when detailed models are used to allow effective pruning. In addi­
tion, a multipass search requires an augmented set of acoustic models to effectively model
the biphone contexts used at word boundaries for the first pass. Therefore, it might be desir­
able to use genuine interword acoustic models in the single-pass search.

Instead of expanding all the fan-ins and fan-outs for inter-word context-dependent
phone units in the lexical tree, three metaunits are created.

1. The first metaunit, which has a known right context corresponding to the sec­
ond phone in the word, but uses open left context for the first phone of a
word (sometimes referred to as the word-initial unit). In this way, the fan-in
is represented as a subgraph shared by all words with the same initial left­
context-dependent phone.

' Mulcipass search strategy is described in Section 13.3.S.

~flicient Search Techniques

2_ Another metaunit, which has a known left context corresponding to the sec­
ond-to-last phon~ of the word, but uses open right context for the last phone
of a word (sometimes referred to as the word-final unit). Again, the fan-out is
represented as a subgraph shared by all words with the same final right­
context-dependent phone.

3. The third metaunit, which has both open left and right contexts, and is used
for single-phone word unit.

659

By using these metaunits we can keep the states for the lexical trees under control, because
lhe fan-in and fan-out are now represented as a single node.

During recognition, different left or right contexts within the same metaunit are han­
dled using Algorithm 13.2, where the different acoustic contexts are treated similarly as dif­
ferent linguistic contexts. The open left-context metaunit (fan-ins) can be dealt with in a
straightforward way using Aglorithm 13.2, because the left context is always known (the last
phone of the previous word) when it is initiated. On the other hand, the open right-context
metaunit (fan-out) needs to explore all possible right contexts because the next word is not
known yet. To reduce unnecessary computation, fast match algorithms (described in Section
13.2.3) can be used to provide both expected acoustic and language scores for different coo­
text-dependent units to result in early pruning of unpromising contexts.

13.2. OTHER EFFICIENT SEARCH TECHNIQUES

Tree structured lexicon represents an efficient framework of manipulation of search space.
In this section we present some additional implementation techniques, which can be use~ to
funher improve the efficiency of search algorithms. Most of these techniques can be apphe_d
to both Viterbi beam search and stack decoding. They are essential ingredients for a pracb­
cal large-vocabulary continuous speech recognizer.

13-2.t, Using Entire HMM as a State in Search
The state • 11- t t·on 1·s by definition, a m state-search space based on HMM-tre 1s compu a 1 , .
Markov state. Phonetic HMM models are the basic unit in most speech recognizers. Ev~n
though subphonetic HMMs like senones might be used for such a system, the search is
often b d ' ' ase on phonetic HMMs. Th
" Treating the entire phonetic HJvtM as a state in state-search has many advantagles._th _e
urst obv· h am needs to dea w1 is
srn II ,ous advantage is that the number of states the searc progr th mber of
sta~t Note that using the entire phonetic HMM does not in effect reduc:thi: :uphonetic
HMM in the search. The entire search space is unchanged. All the_ state~ w; . the beam. if
lhe h are now bundled together. This means that all of them are e1thder ep i;or any given

p onetic HMM . . . II f them are prune away.
tirne th 1s regarded as promising, or a o . HMM is used as the cost
for th' e minimum cost among all the states within the phonetic d t nnine the promising

e Phonet· H th. t 1·s used to e e ic MM. For pruning purposes, ts cos

660
Large-Vocabulary Search Algorithms

degree of this phonetic HMM, i.e., the fate of all the states within t~is p?onetic HMM. Al-

th h this does not actually reduce the beam beyond nonnal prunmg, 1t has the effect of
oug . th" I .

processing fewer candidates in_ the be~m. In programmmg, 1s means ess check mg and
bookkeeping, so some computation savings can ~ expe~ted. .

You might wonder if this organization might be meffect1ve for beam search, since it
forces you to keep or prune all the states within a phonetic HMM. In theory, it is possible
that only one or two states in the phonetic HMM need to be kept, while other states can be
pruned due to high cost score. However, this is, in reality, very rare, since a phone is a small
unit and all the states within a phonetic HMM should be relatively promising when the
search is near the acoustic region corresponding to the phone.

During the trellis computation, all the phonetic HMM states need to advance one time
step when processing one input vector. By perfonning HMM computation for all states to­
gether, the new organization can reduce memory accesses and improve cache locality, since
the output and transition probabilities are held in common by all states. Combining this or­
ganization strategy with lexical tree search further enhances the efficiency. In lexical tree
search, each hypothesis in the beam is associated with a particular node in the lexical tree.
These hypotheses are linked together in the heap structure described in Algorithm 13.2 for
the purposes of efficient evaluation and heuristic pruning. Since the node corresponds to a
phonetic HMM, the HMM evaluation is guaranteed to execute once for each hypothesis
sharing this node.

In summary, treating the entire phonetic HMM as a state in state-search space allows
you to explore the effective data structure for better sharing and improved memory locality.

13.2.2. Different Layers of Beams

Because of the complexity of search, it often requires pruning of various levels of search to
make search feasible. Most systems thus employ different pruning thresholds to control what
states participate. The most frequently used thresholds are listed below:

• f, controls what states (either phone st.ates or senone st.ates) to retain. This is
the most fundamental beam threshold.

• TP controls whether the next phone is extended. Although this might not be
necessary for both stack decoding and linear Viterbi beam search it is crucial
for_ lexical tree search, because pruning unpromising phonetic pr~fixes in the
lexical trees could improve search efficiency significantly.

• i-. con~ols whether hypotheses are extended for the next word. Since the
~r~chmg factor for word boundaries is very large, we need this threshold to
hm1t search to only the promising ones.

• -r~ controls where a linguistic context is created in a lexical tree search using
higher-order language models. This is also known as e -heap in Algorithm
13.2.

----E~cient Search Techniques
Other 111

661

Pruning can introduce search errors if a state is pruned th t Id
Th . • I 1 • a wou have been on the

I bally best path. e pnnc1p e app 1ed here is that the more const • • .
go . , • . . . rarnts you have available,
1he more aggressn ely you decide whether this path will participate in the globally best ath

1 diis case at the state level, you have the least constraints At the 1 . 1 P •
n • . - • P 10net1c eve! there are

more and there are the most at the word level. In gent"!r-il the nuinber f d h , • • o wor ypotheses
,ends to drop s1~rnficantl~ at w01d boundaries. Different thresholds for different levels allow
the search designer to fine-tune those thresholds for their tasks to achieve b t h • · · fi • . es searc perfonnance without s1grn 1cant mcrease Ill error rates.

13.2.3. Fast Match

As described in Chapter 12, fast match is a crucial part of stack decoding, which mainly
reduces the number of possible word expansions for each path. Similarly, fast match can be
applied to the most expensive part-extending the phone HMM fan-outs within or between
lexical trees. Fast match is a method for rapidly deriving a list of candidates that constrain
successive search phases in which a computationally expensive detailed match is performed.
In this sense, fast match can be regarded as an additional pruning threshold to meet before a
new word/phone can be started.

Fast match is typically characterized by the approximations that are made in the acous­
tic/language models to reduce computation. The factorization of language model scores
among tree branches in lexical trees described in Section 13.1.3 can be viewed as faS t match
using a language model. The factorized method is also an admissible estima~e of the lan­
guage model scores for the future word. In this section we focus on acouSt1c model fast
match.

13.2.3.1. Look-Ahead Strategy

F • I lied look-ahead strategy.
_ast match, when applied in time-synchronous search, is a so ca f t deter-

sin • b . arch by a few rames o ce it as1cally searches ahead of the time-synchronous se fi d
min h' . all the look-ahead frames are ixe •

e w lch words or phones are likely to extend. Typtc Y . th speci·a11·zed beam
and th ~ f h' n with ano er , e . ast match is also done in time-synchronous as 10. t te HMMs or con-
1or effi • . . "fi d d Is hke the one-s a
t . icient pruning. You can also use s1mph ie mo e ' . d to simplify the level of

d
ex1-_1ndependent models [4, 32]. Some systems [21, 22] h_aveftne several frames into one.
elails i th • • • f nnat1on rom

A . n e mput feature vectors by aggregating m O
. t kip every other frame of

s1ra1ghtf; . & e stream is O s -spe 0rward way for compressing the 1eatur d hile keeping computation
unctech for fast match. This allows a longer-range look-ahea ,trweam instead of simplifying

er contr I Th . . . h • put feature s
the ac . o • e approach of s1mphfymg t e m ailed match.

ousttc models can reuse the fast match results for det . I tree search in which pron-
WJt· t h in lex1ca ' f I

ing. isper [4] uses phoneme look-ahead fast mac 'bl hone fan-outs that may O -
IS appr d of poSSI e p • h th lo ie based on the estimation of the score h d synchronously wit e

w a g· t is searc e iven phone. A context-independent phone-ne

662
Large-Vocabulary Search Algorithms

h but Offset N frames into the future. In practice, significant savings can be searc process .
obtained in search efforts without increase m error rates.

Th erfoimance of word and phoneme look-ahead clearly depends on the length of
the look-::ead frames. In general, the larger the look-ahead window, the longer is the com­
putation and the shorter the word/phone A list. Empirical_lY: the window is a few tens of
milliseconds for phone look-ahead and a few hundreds of m1lhseconds for word look-ahead.

13.2.3.2. The Rich-Get-Richer Strategy

For systems employing continuous-density HMMs, tens of mixtures of Gaussians are often
used for the output probability distribution for each state. The computation of the mixtures is
one of the bottlenecks when many context-dependent models are used. For example, Whis­
per uses about 120,000 Gaussians. In addition to using various beam pruning thresholds in
the search, there could be significant savings if we have a strategy to limit the number of
Gaussians to be computed.

The Rich-Get-Richer (RGR) strategy enables us to focus on most promising paths and
treat them with detailed acoustic evaluations and relaxed path-pruning thresholds. On the
contrary, the less promising paths are extended with less expensive acoustic evaluations and
less forgiving path-pruning thresholds. In this way, locally optimal candidates continue to
receive the maximum attention while less optimal candidates are retained but evaluated us­
ing less precise (computationally expensive) acoustic and/or linguistic models. The RGR
strategy gives us finer control in the creation of new paths that has potential to grow expo­
nentially.

RGR is used to control the level of acoustic details in the search. The goal is to reduce
the number of context-dependent senone probability (Gaussian) computations required. The
context-dependent senones associated with a phone instance p would be evaluated according
to the following condition:

Min[ci(p)] • a+LookAhead[ci(p)] < threshold

where Min[ci(p)] = m}n{cost(s) Is E ci _ phone(p)}

and Look.Ahead [ci(p)] = look-ahead estimate of ci(p)

(13.6)

These co~ditions state that the context-dependent senones associated with p should be
evaluated if there exists a states corresponding top, whose cost in linear combination with a
look-~he~d cost score corresponding top falls within a threshold. In the event that p does not
fall w1thm the threshold th • · · h • . • e senone scores corresponding to p are estimated usmg t e con
text-mdependent senones c d' . e . orrespon mg top. This means the context-dependent senones ar
evaluated only 1f the corr d" • d rt . . espon mg context-independent senones and the look-ahea sta
showmg promise RGR strat h Id · • 1 . . • egy s ou save s1gn1ficant senone computation for clear Y un-
prom1smg paths Whisp [26] 'd d · h . : er reports that 80% of senone computation can be avot e
wit out mtroducmg significant errors for a 20,000-word WSJ dictation task.

--, a:d Multipass Search Strategies
N-bes

13.3, N-BEST AND MULTIPASS SEARCH STRATEGIES

663

Ideally a search algorithm should consider all possible hypotheses based .fi d ' . on a uni 1e prob-
abilistic framework that integrates all knowledge sources (KSs).i These KSs h . , sue as acous-
tic models. language models. an? lex1~al pronunciation models, can be integrated in an
HMM state search framework. It 1s desirable lo use the most detailed models s h . , uc as con-
text-dependent models,_ mterword context-dependent models, and high-order n-grams, in the
search as early as possible. When the explored search space becomes unmanageable, due to
the increasing size of vocabulary or highly sophisticated KSs, search might be infeasible to
implement.

As we develop more powerful techniques, the complexity of models tends to increase
dramatically. For example, language understanding models in Chapter 17 require long­
distance relationships. In addition, many of these techniques are not operating in a left-to­
right manner. A possible alternative is to perform a multipass search and apply several KSs
at different stages, in the proper order to constrain the search progressively. In the initial
pass, the most discriminant and computationally affordable KSs are used to reduce the num­
ber of hypotheses. In subsequent passes, progressively reduced sets of hypotheses are exam­
ined, and more powerful and expensive KSs are then used until the optimal solution is
found.

The early passes of multipass search can be considered fast match that eliminat~s
those unlikely hypotheses. Multi pass search is, in general, not admissible because the opti­
mal word sequence could be wrongly pruned prematurely, due to the fact that not all_ KSs are
used in the earlier passes. However, for complicated tasks, the benefits of computauon com­
plexity reduction usually outweigh the nonadmissibility. In practice, multipass search strat­
egy using progressive KSs could generate better results than a search algorilhm forced to use
less powerful models due to computation and memory constraints.

Th • th called 11-best search para-e most straightforward multipass search strategy is e so- d
d' • f st probable wor se-
igm. The idea is to use affordable KSs to first produce a 11st O 11 mo . d -1 d

q . ored using more eta1 e uences IO a reasonable time. Then these 11 hypotheses are resc . " rth
m d I . f th n-best hst can be 1u er 0 e s to obtain the most likely word sequence. The idea O e I d lattice or
extended to create a more compact hypotheses representation-:--na;e ~th:::s. N-best or
gl ra~h. A word lattice is a more efficient way to represent alternahuve oygpn,·t·1on systems {20,
att,ce s h • • ous speec rec earc ts used for many large-vocabulary continu

30, 44].
I . . . -best list and word lattice. Sev-
n this section we describe the representation of the 11

. d
erdl algo ·th . d I ttice are d1scusse • n ms to generate such an 11-best-hst or wor a

--- •• 'In --------- • rated network of vanous lhe field . . • search through an mteg
~WI of an1fic1al intelligence. the process of perfonnmg

edge sou .
rces 1s called crmsrminl smisfaction.

664
Large-Vocabulary Search Algorithms

13.3.1. N-best Lists and Word Lattices

Table 13.4 shows an example n-best (JO-best) list generated for a North American Business
(NAB) sentence. N-best search framework is effective only for n of the order of tens or hun­
dreds. If the short n-best list that is generated by using less optimal models does not include
the correct word sequence, the successive rescoring phases have no chance to generate the
correct answer. Moreover, in a typical 11-best list like the one shown in Table 13.4, many of
the different word sequences are just one-word variations of each other. This is not surpris­
ing, since similar word sequences should achieve similar scores. In general, the number of ii­
best hypotheses might grow exponentially with the length of the utterance. Word lattices and
word graphs are thus introduced to replace 11-best list with a more compact representation of
alternative hypotheses.

Word lattices are composed by word hypotheses. Each word hypothesis is associated
with a score and an explicit time interval. Figure 13.8 shows an example of a word lattice
corresponding to the n-best list example in Table 13 .4. It is clear that a word lattice is more
efficient representation. For example, suppose the spoken utterance contains IO words and
there are 2 different word hypotheses for each word position. The n-best list would need to
have 210 = l 024 different sentences to include all the possible permutations, whereas the
word lattice requires only 20 different word hypotheses.

Word graphs, on the other hand, resemble finite state automata, in which arcs are la­
beled with words. Temporal constraints between words are implicitly embedded in the to­
pology. Figure 13.9 shows a word graph corresponding to the n-best list example in Table
13.4. Word graphs in general have an explicit specification of word connections that don't
allow overlaps or gaps along the time axis. Nonetheless, word lattices and graphs are simi­
lar, and we often use these terms interchangeably.6 Since an n-best list can be treated as a
simple word lattice, word lattices are a more general representation of alternative hypothe­
ses. N-best lists or word lattices are generaJly evaluated on the following two parameters:

Table 13.4 An example 10-best list for a North American Business sentence.

I. I will tell you would l think in my office
2. I will tell you what I think in my office
3. I will tell you when I think in my office
4. I would sell you would I think in my office
5. I would sell you what I think in my office
6. I would sell you when I think in my office
7. I will tell you would I think in my office
8. I will tell you why I think in my office
9. I will tell you what I think on my office

I 0. I Wilson you I think on my office

• We will use the term word la1tice in the rest of this chapter ..

d Multipass Search Strategies
N-besl an

• Dellsiry: In then-best case, it is measured by how many alternative word se­
quences are kept in the 11-best list. In the word lattice case, it is measured by
the number of word hypotheses or word arcs per uttered word. Obviously, we
want the density to be as small as possible for successive rescoring modules,
provided the correct word sequence is included in then-best list or word lat­
tice.

, The lower bound word error rati•: It is the lowest word error rate for any
word sequence in the. 11-best list or the word lattice.

will tell you what think in my office

would sell when

Wilson why

would

665

Figure 13.8 A word lattice example. Each word has an explicit time interval associated with it.

office

I . are
Fi - . . le 13.4. Temporal constramts
. cure 13-9 A word graph example for the 11-best llSl 10 Tab
l!l\ (" •

P •cu in the topology.

666 Large-Vocabulary Search Algorithms

Rescoring with highly similar 11-best alternatives duplicates computation on com
~arts. Th~ compact representation of word l_au_ices allows _both data structure and comp:~~
tion sharmg of the common parts among s1m1lar altemat1ve hypotheses, so it is generall
computationally less expensive to rescore the word lattice. y

_ _ Figure I 3. IO ~llustrates the general n-best/lattice search framework. Those KSs pro­
v1dmg most constraints, at a lesser cost, are used first to generate then-best list or word lat­
tice. The n-best list or word lattice is then passed to the rescoring module, which uses the
remaining KSs to select the optimal path. You should note that the n-best and word-lattice
generators sometimes involve several phases of search mechanisms to generate the n-best
list or word lattice. Therefore, the whole search framework in Figure 13.10 could involve
several (> 2) phases of search mechanism.

Does the compact n-best or word-lattice representation impose constraints on the
complexity of the acoustic and language models applied during successive rescoring mod­
ules? The word lattice can be expanded for higher-order language models and detailed con­
text-dependent models, like inter-word triphone models. For example, to use higher-order
language models for word lattice entails copying each word in the appropriate context of
preceding words (in the trigram case, the two immediately preceding words). To use inter­
word triphone models entails replacing the triphones for the beginning and ending phone of
each word with appropriate interword triphones. The expanded lattice can then be used with
detailed acoustic and language models. For example, Murveit et al. [30] report this can
achieve trigram search without exploring the enormous trigram search space.

Soeech
►

Input

KS Set 1

N-Best or
Lattice Generator

G0
N-Best list Results

Rescoring
Word Lattice

Figure 13.10 N-best/lattice search framework. The most discriminant and inexpensive knowl·
• • knowledge edge sources (KSs 1) are used first to generate the n-best/lattice. The remaining

sources (KSs 2, usually expensiYe to apply~ cre used in the rescoring phase to pick up !he op­
timal solution [40].

13.3.2. The Exact N-best Algorithm

Stack decoding is the choice of generating n-best candidates because of its beSt·first pri;:~:
pie. We can keep it generating results until it finds n complete paths; these n complete best
tences form the n-best list. However, this algorithm usually cannot generat~ th:

11
earch

candidates efficiently. The efficient n-best algorithm for time-synchronous ~iter 1/ tirne­
was first introduced by Schwartz and Chow [39]. It is a simple extension ; paths
synchronous Viterbi search. The fundamental idea is to maintain separate record5 or

b I and Multipass Search Strategies
N· es 667

'th distinct histories. The history is defined as the whole word sequence up t th w1 . . . o e current
time 1 and word w. This exact 11-best algorithm 1s also called sentence-dependent n-best al-
gorithm. When two or more path_s come t~ _t~e same state at the same time, paths having the
same history are m_erged and their probab1ht1es are summed. together; otherwise, only the n­
besl paths are retained for each state. As commonly used 111 speech recognition, a typical
HMM state has 2 or 3 predecessor states within the word HMM. Thus, for each time frame
and each state, the 11-best search algorithm needs to compare and merge 2 or 3 sets of 11 paths
into n new paths. At the end of the search, the n paths in the final state of the trellis are sim­
ply re-ordered to obtain the 11-best word sequences.

This straightforward n-best algorithm can be proved to be admissible' in normal cir­
cumstances [40]. The complexity of the algorithm is proportional to O(n), where II is the
number of paths kept at each state. This is often too slow for practical systems.

13.3.3. Word-Dependent N-best and Word-Lattice Algorithm

Since many of the different entries in the n-best list are just one-word variations of each
other, as shown in Table 13.4, one efficient algorithm can be derived from the normal I-best
Viterbi algorithm to generate then-best hypotheses. The algorithm runs just like the normal
time-synchronous Viterbi algorithm for all within-word transitions. However for each time
frame 1, and each word-ending state, the algorithm stores all the different words that can end
at current time t and their corresponding scores in a traceback list. At the same time, the
score of the best hypothesis at each grammar state is passed forward, as in the normal time­
synchronous Viterbi search. This obviously requires almost no extra computation above the
nonnal time-synchronous Viterbi search. At the end of search, you can simply search
through the stored traceback list to get all the permutations of word sequences with their
corresponding scores. If you use a simple threshold, the traceback can be implemented very
efficiently to only uncover the word sequences with accumulated cost scores below lhe
threshold. This algorithm is often referred as traceback-based 11-best algorithm [29, 421 be-
cause of the use of the traceback list in the algorithm. .

. However, there is a serious problem associated with this algorith~. It could easily
miss some low-cost hypotheses. Figure 13. J l illustrates an example in which ~0rd

Wi can
be preceded by two different words w and w. in different time frames. Assummg path w, -
w, has a lower cost than path w - w 'when b~th paths meet during the trellis search of W1'
the p th J k l'. fi ct· the n-best word se-a W1-w, will be pruned away. During traceback ,or 10 mg d
quenc h . d • d by the best boun ary
be es, 1 ere 1s only one best starting time for word wk, erennme low

twee h th might have a very co n t e best preceding word w, and it. Even though pa wJ - wk b I tely over-
I st (let•~ say only marginally higher than that of w, - w,), it could e comp e
OOked, since the path has a different starting time for word W1 •

' A ---------- • • al coies for each llhough . . h' ries have near 1denuc 5 .
s1a,. 1h one can show in the worst case when paths wnh different 1s10 d ·ss1'bility Under this worst

"'• e sc h ' ' absolute a m1 • ~ th arc actually needs to keep all paths (> N) in order to guarantee , th tterance since all pennuta-
• e adtni • be f words ,or e u • lio111 r ssible algorithm is clearly exponential in the num r 0
0 Words.,, k -.uences for the whole sentence need to be ept.

668 Large-Vocabulary Search Algorithms

~ 't b•,t path

: J

I

1~
best path

I Can only keep one
path within a word so

this path Is lost.
I I , , I '---,

'--

' '

time

Figure 13.11 Deficiency in traceback-based n-best algorithm. The best subpath, w; - wt , will
prune away subpath w1 - w. while searching the word w• ; the second-best subpath cannot be
recovered {40].

I

1~
best path

w 2nd best path with
1 ---- I different ending word

'
l

I Preceding word is
different so both
theories are kept.

I I

',.± , J
'--

' ' ' ' _,
~

time ----...,.

Figure 13.12 Word-dependent n-best algorithm. Both subpaths W; - wt and W1 - w, are kept
under the word-dependent assumption (40).

I nd Mullipass Search Strategies
N-bes a 669

The word-dependent n-best algorithm [38] can alleviate the deficiency of th t _
· h • h" h 1 e race

back-based 11-best algont m, m w tc on ~ one starting time is kept for each word, so the
starting time is independent of the preceding words. On the other hand, in the sentence­
dependent n-best _algo_rithm, the starting time for a word depends on all the preceding words,
since different htstones are kept separately. A good compromise is the so-called word­
dependent assumption: The starting time of a word depends only on the immediate preced­
ing word. That is, given a word pair and its ending time, the boundary between these two
words is independent of further predecessor words.

In the word-dependent assumption, the history to be considered for a different path is
no longer the entire word sequence; instead, it is only the immediately preceding word. This
allows you to keep k (<< n) different records for each state and each time frame in Viterbi
search. Differing slightly from the exact n-best algorithm, a traceback must be perfonned to
find the 11-best list at the end of search. The algorithm is illustrated in Figure 13. J 2. A word­
dependent n-best algorithm has a Lime complexity proportional to k. However, it is no longer
admissible because of the word-dependent approximation. In general, this approximation is
quite reasonable if the preceding word is long. The loss it entails is insignificant [6].

13.3.3.1. One-Pass N-best and Word-Lattice Algorithm

As presented in Section 13.1, one-pass Viterbi beam search can be implemented very effi­
ciently using a tree lexicon. Section 13.1.2 states that multiple copies of lexical trees are
necessary for incorporating language models other than the unigram. When bigram is used
in lexical tree search, the successor lexical tree is predecessor-dependent. This predecessor­
dependent property immediately translates into the word-dependent property: as defined in
Section 13.3.3, because the starting time of a word clearly depends on the immediately pre­
ceding word. This means that different word-dependent partial paths are automatically saved
uoder the framework of predecessor-dependent successor trees. Therefore, one-pass prede­
cessor-dependent lexical tree search can be modified slightly to output n-beSl lists or wofd
graphs.

Ney et al. [31] used a word graph builder with a one-pass predecessor-dependent lexi­
cal tree search. The idea is to exploit the word-dependent property inherited from the prede­
cess_o_r-dependent lexical tree search. During predecessor-dependent lexical tree search, two
additional quantities are saved whenever a word ending state is processed.

r(t; w" w)-Representing the optimal word boundary between word w, a
nd

wi, given word w
1

ending at time t.
h(w,;-r(t;w,.w1),t)=-logP(x~ I w)-Representing the cumulative cost that
word w1 produces acoustic vector x1',xf+l'···X, • --1 \VJicn hi h- -------- . be n more significanl. For exnmple,

\\'hen lri g er order n-gram models are used the boundary dependence will ~ve rds Since we generally
&rams arc Used th ' d d on the previous 1wo wo • n want a fas , e boundary for a word juncture epen 5 d f higher order 11-gram 10 gc •

cra1c won1\ m~thod of generating word lattices/graphs, bigram is often used inStea
0

atucestgraphs.

670 Large-Vocabulary Search Algorithms

At the end of the utterance, the word lattice or 11-best list is constructed by tracing back
all the pennutations of word pairs recorded during the search. The algorithm is summarized
in Algorithm 13.3.

ALGORITHM 13.3: ONE-PASS PREDECESSOR-DEPENDENT LEXICAL TREE
SEARCH FOR N-BEST OR WORD-LA TT/CE CONSTRUCT/ON

Step 1: For t = l .. T,
1-best predecessor-dependent lexical tree search;
'v'(w;, w1) ending at I

record word-dependent crossing time -r(t; w,, wj) ;

record cumulative word score h(w1 ;-r(t;w1, wj),t);

Step 2: Output 1-best result;
Step 3: Construct n-best or word-lattice by tracing back the word-pair records (T and h).

13.3.4. The Forward-Backward Search Algorithm

As described Chapter 12, the ability to predict how well the search fares in the future for the
remaining portion of lhe speech helps to reduce the search effort significantly. The one-pass
search strategy, in general, has very little chance of predicting the cost for the portion that it
has not seen. This difficulty can be alleviated by multipass search strategies. In successive
phases the search should be able to provide good estimates for the remaining paths, since the
entire utterance has been examined by the earlier passes. In this section we investigate a
special type of multipass search strategy-forward-backward search.

The idea is to first perform a forward search, during which partial forward scores a
for each state can be stored. Then perform a second pass search backward-that is, the sec­
ond pass starts by taking the final frame of speech and searches its way back until it reaches
the start of the speech. During the backward search, the partial forward scores a can be
used as an accurate estimate of the heuristic function or the fast match score for the remain­
ing path. Even though different KSs might be used in forward and backward phases, this
estimate is usually close to perfect, so the search effort for the backward phase can be sig­
nificantly reduced.

The forward search must be very fast and is generally a time-synchronous Viterbi
search. As in the multipass search strategy, simplified acoustic and language models are
often used in forward search. For backward search, either time-synchronous search or time•
asynchronous A* search can be employed to find the n-best word sequences or word lattice.

;.;--:t:an=d~M;;.u~U~ip:a~ss;S;e:a:r~ch~S~tr~a~te:g~ies:--------------------
671

3 3 4 1 Forward-Backward Search 1 ...•

Stack decoding. as described in Chapter 12, is based on the admis .·bt A* h
• " d · si e searc so the first

complete hypothesis 1ou11 with a cost below that of all the hypotl . 1 ' . . 1eses m t 1e stack 1s guar-
anteed to be the best word sequence. It ts straightforward to extend st k d d' . . ac eco mg to pro-
duce the 11-best hypotheses by contmumg to extend the partial hypotheses ac d' th

· • ·1 d"fr h cor mg to e
Same A* cntenon unt1 11 1 ,erent ypotheses are found These 11 di'f•e I h h

• 1' ren ypot eses are
destined to be the n-best hypotheses under a proof similar to that presented in Ch t I?

d d
. .

1
. . ap er __

Therefore, stack eco m~ 1s a_ natura choice tor producing the 11-best hypotheses.
However, as described m Chapter 12, the difficulty of finding a good heuristic func­

tion that can accurately under-estimate the remaining path has limited the use of stack de­
coding. Fortunately, this difficulty can be alleviated by tree-trellis forward-bachvard search
algorithms [41). First, the search perfonns a time-synchronous forward search. At each time
frame t, it records the score of the final state of each word ending. The set of words whose
final states are active (surviving in the beam) at time t is denoted as Do,. The score of the
final state of each word w in A, is denoted as a, (w) , which represents the sum of the cost
of matching the utterance up to time t given the most likely word sequence ending with
word w and the cost of the language model score for that word sequence. At the end of the
forward search, the best cost is obtained and denoted as ar.

After the forward pass is completed, the second search is run in reverse (backward),
i.e., considering the last frame T as the beginning one and the first frame as the final one.
Both the acoustic models and language models need to be reversed. The backward search is
based on A* search. At each time frame t, the best path is removed from the stack and a list
of possible one-word extensions for that path is generated. Suppose this best path at time t is
ph.,

1
, where w

1
is the first word of this partial path (the last expanded during backward A*

search). The exit score of path phw at time t, which now corresponds to the score of the
initial state of the word HMM w

1
, it denoted as /3, (pit,..) •

Let us now assume we are concerned about the ~ne-word extension of wo~d w, for
path Ph..;. Remember that there are two fundamental issue~ f~r the i'.11plement~tion_ of~:
search algorithm-(I) finding an effective and efficient heunsuc function for eSlimatmg
fut . . . h b ss·ng time between w and ure remammg input feature stream and (2) findmg t e eSt cro 1 1

w,.
• . b h • sues effectively and effi-

.... Jhe ~~ored forward score a can be used for solving ot is f the best
c1ent1y. For each time t the sum a (w.) + /3, (ph.,.) represents the cost score o
co I , ' , ' J h (w) clearly represents a very

mp ete path including word w. and partial path P "• • a, 1 t'I the end of
gaod h • . ' t of the utterance un 1

h
euns11c estimate of the remaining path from the star , d ath for the same

t e wo d . . . ted in the 1orwar P r w1, because 1t 1s mdeed the best score compu d can be easily com-
quantity M . - · • b tween w. an w. • oreover, the opumal crossmg ume t e ' 1

PUied by th ti . . e ollowmg equallon:

r' == arg :Oin [a, (w,) + /31 (ph ... 1)]
(I 3.7)

672
Large-Vocabulary Search Algorithms

Finally, the new path ph', including the one-word (w,) extension, is inserted into the stack,
ordered by the cost score a. (w,) + R. (ph) . The heurisric function (forward scores a)

I /Jr w,

allows the backward A* search to concentrate search on extending only a few truly promis-
ing paths.

As a matter of fact, if the same acoustic and language models are used in both the for­
ward and backward search, this heuristic estimate (forward scores a) is indeed a perfect
estimate of the best score the extended path will achieve. The first complete hypothesis
generated by backward A* search coincides with the best one found in the time-synchronous
forward search and is truly the best hypothesis. Subsequent complete hypotheses correspond
sequentially to the n-best list, as they are generated in increasing order of cost. Under this
condition, the size of the stack in the backward A* search need only be N. Since the estimate
of future is exact, the (N + 1) th path in the stack has no chance to become part of the 11-best
list. Therefore, the backward search is executed very efficiently to obtain the n-best hy­
potheses without exploring many unpromising branches. Of course, tree-trellis forward­
backward search can also be used like most other multipass search strategies-inexpensive
KSs are used in the forward search to get an estimate of a , and more expensive KSs are
used in the backward A* search to generate the n-best list.

The same idea of using forward score a can be applied to time-synchronous Viterbi
search in the backward search instead of backward A* search [7, 34]. For large-vocabulary
tasks, the backward search can run 2 to 3 orders of magnitude faster than a normal Viterbi
beam search. To obtain the n-best list from time-synchronous forward-backward search, the
backward search can also be implemented in a similar way as a time-synchronous word­
dependent n-best search.

13.3.4.2. Word-Lattice Generation

The forward-backward n-best search algorithm can be easily modified to generate word lat­
tices instead of n-best lists. A forward time-synchronous Viterbi search is performed first to
compute a,(m), the score of each word m ending at time t. At the end of the search, this
best score ar is also recorded to establish the global pruning threshold. Then, a backward
time-synchronous Viterbi search is performed to compute /3,((J)), the score of each word (J)

beginning at time t. To decide whether to include word juncture (J)
1

-(J) . in the word lat­
tice/graph at time t, we can check whether the forward-backward score

1
is below a global

pruning threshold. Specifically, supposed bigram probability P((J)i I co,) is used, if

(13.8)

where 8 is the pruning threshold, we will include co -co . in the word lattice/graph at time
t. Once word juncture co, -co1 is kept, the search co~tin~es looking for the next word-pair,
where the first word co, will be the second word of the next word-pair.

---nd rvf ultipass Search Strategies
N-best a 673

The above formulation is based on the assumption of using the s . ame acoustic and lan-
guage models in both forwar~ and backward search. If different KSs are used in forward and
backward search, the normalized a and /3 scores should be used instead.

3 3 5 One-Pass vs. Multipass Search 1 ..•

Toere are several real-time one-pass search engines [4, 5]. Is it necessary to build a multi­
pass search engine based on n-best or word-lattice rescoring? We address this issue by dis­
cussing the disadvantages and advantages of multipass search strategies.

One criticism of multipass search strategies is that they are not suitable for real-time
applications. No matter how fast the first pass is, the successive (backward) passes cannot
start until users finish speaking. Thus, the search results need to be delayed for at least the
time required to execute the successive (backward) passes. This is why the successive passes
must be extremely fast in order to shorten the delay. Fortunately, it is possible to keep the
delays minimum (under one second) with clever implementation of multipass search algo­
rithms, as demonstrated by Nguyen et al. [18].

Another criticism for multipass search strategies is that each pass has the potential to
introduce inadmissible pruning, because decisions made in earlier passes are based on sim­
plified models (KSs). Search is a constraint-satisfaction problem. When a pruning decision
in each search pass is made on a subset of constraints (KSs), pruning error is inevitable and
is unrecoverable by successive passes. However, inadmissible pruning, like beam pruning
and fast match, is often necessary to implement one-pass search in order to cope with the
large active search space caused jointly by complex KSs and large-vocabulary tasks. Thus,
the problem of inadmissibility is actually shared by both real-time one-pass search and mul­
tipass search for different reasons. Fortunately, in both cases, search errors can be reduced to
a minimum by clever implementation and by empirically designing all the pruning thresh­
olds carefully, as demonstrated in various one-pass and multipass systems [4, 5, 18].

Despite these concerns regarding multipass search strategies, they remain important
components in developing spoken language systems. We list here several important aspects:

I. It might be necessary to use multipass search strategies to incorporate very
e • • text dependent mod-xpens1ve KSs. Higher-order n-gram, long-distance con -
el5, and natural language parsing are examples that make the . searc~ space
u • h strategies might be nmanageable for one-pass search. Multlpass searc
compelling even for some small-vocabulary tasks. For exampl~, t~ere ~
only a couple of million legal credit card numbers for the authent~cation tas
f l • . . . ·ve to incorporate 0 6-dtgit credit card numbers. However, it is very expenSJ fi d e

all th l • • ammar To lfSt re uc
e egal numbers explicitly in the recogmtion gr . • b d ·rable

search space down to an n-best list or word lattice/graph might e a esi
approach.

2 M 1 . 11 . for spoken language
• u tipass search strategies could be very compe mg rural language

understanding systems. It is problematic to incorporate rnoSt na

674 Large-Vocabulary Search Algorithms

understanding technologies in one-pass search. On the other hand, 11-best lists
or word lattices provide a trivial interface between speech recognition and
natural language understanding modules. Such an interface also provides a
convenient mechanism for integrating different KSs in a modular way. This is
important because the KSs could come from different modalities (like video
or pen) that make one-pass integration almost infeasible. This high degree of
modality allows different component subsystems to be optimized and imple­
mented independently.

3. N-besl lists or word lattices are very powerful offline tools for developing
new algorithms for spoken language systems. It is often a significant task to
fully integrate new modeling techniques, such as segment models, into a one­
pass search. The complexity could sometimes slow down the progress of the
development of such techniques, since recognition experiments are difficult
to conduct. Rescoring of n-best list and lattice provides a quick and conven­
ient alternative for running recognition experiments. Moreover, the computa­
tion and storage complexity can be kept relatively constant for offline n-best
or word lattice/graph search strategies even when experimenting with highly
expensive new modeling techniques. New modeling techniques can be ex­
perimented with using 11-best/word-graph framework first, being integrated
into the system only after significant improvement is demonstrated.

4. Besides being an alternative search strategy, n-best generation is also essen­
tial for discriminant training. Discriminant training techniques, like MMJE,
and MCE described in Chapter 4, often need to compute statistics of all pos­
sible rival hypotheses. For isolated word recognition using word models, it is
easy to enumerate all the word models as the rival hypotheses. However, for
continuous speech recognition, one needs to use an all-phone or all-word
model to generate all possible phone sequences or all possible word se­
quences during training. Obviously, that is too expensive. Instead, one can
use 11-best search to find all the near-miss sentence hypotheses that we want
to discriminate against [I 5, 36].

13.4. SEARCH-ALGORITHM Ev ALUATION

Throughout this chapter we are careful in following dynamic programming principles, using
admissible criteria as much as possible. However, many heuristics are still unavoidable to
implement large-vocabulary continuous speech recognition in practice. Those nonadmissible
heuristics include:

• Viterbi score instead of forward score described in Chapter 12.

• Beam pruning or stack pruning described in Section I 3.2.2 and Chapter 12.

h ,\(aorilhm E,·alua tion Searc •. ..

• Subtree dominance pruning described in Section 13.1.5.

• fast match pruning described in Section 13.2.3.

• Rich-get-richer pruning described in Section 13.2.3.2.

• Multipass search s1T3tegie_.; de.s.<"-ribed in Section 13.3.5.

675

Nonadmissible ~euristics _g~nerate ~uhoptimal searches where the found path is not
necessarily the p:lth with the mm1mum cosL The question is. how differem is this subooti­
mal from the true optimal p~th? l"nfomm:nely. there is no way to know the optimal path
unless an exhausti,·e se..1rch ts conducted. The pr.ictical question is whether the subcmtimal
swch blllt5 the search result. In a test condition where the Ulle result is sre-cified.. y~u can
~ily compare the seJ.rch result with the true result to find whether any error occurs. Errors
could be due to inacct:rate models tincluding acoustic and language mooelst sub.:iptir:ial
search. or end-point detection. The error caused by a suboptimal se~ch 2.lgorithm is refe:red
to as search error or pruning error.

How ~ we find out whether the search. commits a pruning error? One of me p:-.:i-..--e-­
dure; most o~n used is stnigto·orward. Let W ~ the recognized worj ~Jenee t-om ~
recognizer and \\' be !he true word sequence. We n~'"d to comp::re !he cost for u~ ~·o
iron! sequences:

676 Large-Vocabulary Sea ----h
re Algorithll1.S

threshold to retain the correct path. For example, one can adjust the pruning th h
· - · h 1· • res old i fast match if a word m W fails to appear on t e 1st supplied by the fast match. or

13.5. CASE STUDY-MICROSOFT WHISPER

We use the decoder of Microsoft's Whisper [26, 27] discussed in Chapter 9 as a case
. h h h • h d • h. study for reviewing t e searc tee mques we ave presente m t 1s chapter. Whisper can handle

both context-free grammars for small-vocabulary tasks and n-gram language model i
large-vocabulary tasks. We describe these two different cases. s or

13.5.1. The CFG Search Architecture

Although context-free grammars (CFGs) have the disadvantage of being too restrictive and
unforgiving, particularly with novice users, they are still one of the most popular configura­
tions for building limited-domain applications because of the following advantages:

• Compact representation results in a small memory footprint.

• Efficient operation during decoding in tenns of both space and time.

• Ease of grammar creation and modification for new tasks.

As mentioned in Chapter 12, the CFG grammar consists of a set of productions or
rules that expand nonterminals into a sequence of terminals and nonterminals. Nonterminals
in the grammar tend to refer to high-level task-specific concepts such as dates, font names,
and commands. The terminals are words in the vocabulary. A grammar also has a nontenni­
nal designated as its start state. Whisper also allows some regular expression operators on
the right-hand side of the production for notational convenience. These operators are: or _'I';
repeat zero or more times '*'; repeat one or more times • +'; and optional ([]). The following

is a simple CFG example for binary number:

%start BINARY_NUMBER
BINARY_NUMBER: (zero I one)*

. . i se of implernen-
W1thout losing generality, Whisper disallows the left recursion ore~ ~ at cur-

tation [2]. The grammar is compiled into a binary linked list format. The binary
0

; but is
rently has a direct one-to-one correspc~der,..,~ with the text grammar compod~en The bi·

• d • g deco mg.
more compact. The compiled format is used by the search engine unn ar fo1t11at

. k d ther The orarnm
nary representation consists of vanable-s1zed nodes Im e toge • r/''· . n rules.
achieves sharing of subgrarnmars through the use of shared nonterminal de imuo IZ) During

The CFG search is conducted according to RTN framework (see Chapter cirn~- ;...sso-
d d• . th h th CFG at the same an eco mg, the search engme pursues several paths roug e h w the path c .
ciated with each of the paths is a grammar state that describes completely

O
rd of a path, 11

be extended further. When the decoder hypothesizes the end of the current :oy be several ardl·
b ord There m wo asks the grammar module to extend the path further Y one w • 1 the successor

• . d d nsiders al temattve successor words for the given path. The eco er co

case Study Microsoft Whisper
677

possibilities. This may cause the path to be extended to
. · h · generate several more paths to be

considered, each wit its own grammar state. Also note th t th .. .
· h d d · a e same word might be under consideration by t e eco er 111 the context of different paths a d . n grammar states at the same

time.
The decoder uses beam search to prune unpromising paths w·th th d"fr . 1 ree 1 1erent beam

thresholds. The state prunmg threshold i- and new phone pruning th h Id k _ . . :' ~ res o r,, wor as
descnbed m Section 13.2.2. When extending a path, if the score of the extended path does
not exceed _the threshold Th, the ~ath_ to be extended is put into a pool. At each frame, for
each word m the vocabulary, a wmnmg path that extends to that word is picked from the
~ol,_based on the score. ~II the rem~ining paths in the pool are pruned. This level of prun­
rng gives us finer control m the creation of new paths that have potential to grow exponen­
tially.

When two paths representing different word sequences thus far reach the end of the
current word with the same grammar state at the same time, only the better path of the two is
allowed to continue on. This optimization is safe, except that it does not take into account
the effect of different interword left acoustic contexts on the scores of the new word that is
started.

Besides beam pruning, the RGR strategy, described in Section 13.2.3.2, is used to
avoid unnecessary senone computation. The basic idea is to use the linear combination of
context-independent senone score and context-independent look-ahead score to determine
whether the context-dependent senone evaluation is worthwhile to pursue.

All of these pruning techniques enable Whisper to perform typical 100- to 200-word
CFG tasks in real time running on a 486 PC with 2 MB RAM. Readers might think it is not
critical to make CFG search efficient on such a [ow-end platform.9 However, it is indeed
important to keep the CFG engine fast and lean. The speech recognition engine is eventually
only part of an integrated application. The application will benefit if the resources (both
CPU and memory) used by the speech decoder are kept as sma!l as pos~i~le, so there ar_e
more resources left for the application module to use. Moreover, m rec~gmtion server appli­
cations, several channels of speech recognition can be perfonned on a smgle server platform
if each speech recognition engine takes only a small portion of the total resources.

13.S.2. The N-gram Search Architecture

Th C . and and control applications. For
e FG decoder is best suited for limited domam comm 'd

d" · • mar such as 11-grams provt es a ictation or natural conversational systems, a stochaSUC gram b _
rn . d large number of states to e con . ore natural choice. Using bigrams or tngrams lea s to a .
s1dered by the search process, requiring an alternative search architecture.

'Th • scream PC configuration is an order of magni-

1
d anks 10 the progress predicted by Moore's law, che cun"Cnl mam

2
MB RAM) in both speed nnd memory.

u e more powerful than the configuration we list here (486 PC wilh

678 Large-Vocabulary Search Algorithms

Whisper's n-gram search architecture is based on lexical tree search as described in
Section 13.1. To keep the runtime memory

10
as small as possible, Whisper does not need to

allocate the entire lexical tree network statically. Instead, it dynamically builds only the por­
tion that needs to be active. To cope with the problem of delayed application of language
model scores, Whisper uses the factorization algorithm described in Section 13. 1.3 to dis­
tribute the language model probabilities through the tree branches. To reduce the memory
overhead of the factored language model probabilities, an efficient data structure is used for
representing the lexical tree as described in Section I 3.1.3.1. This data structure allows
Whisper to encode factored language model probabilities in no more than the space required
for the original 11-gram probabilities. Thus, there is absolutely no storage overhead for using
factored lexical trees.

The basic acoustic subword model in Whisper is a context-dependent senone. It also
incorporates inter-word triphone models in the lexical tree search as described in Section
13. 1.6. Table J 3.5 shows the distribution of phoneme arcs for 20,000-word WSJ lexical tree
using senones as acoustic models. Context-dependent units certainly prohibit more prefix
sharing when compared with Table 13.1. However, the overall arcs in the lexical tree still
represent quite a saving when compared with a linear lexicon with about 140,000 phoneme
arcs. Most importantly, similar to the case in Table 13. I, most sharing is realized in the be­
ginning prefixes where most computation resides. Moreover, with the help of context­
dependent and interword senone models, the search is able to use more reliable knowledge
to perfonn efficient pruning. Therefore, lexical tree with context-dependent models can still
enjoy all the benefits associated with lexical tree search.

The search organization is evaluated on the 1992 development test set for the Wall
Street Joumal corpus with a back-off trigram language model. The trigram language model
has on the order of 107 linguistic equivalent classes, but the number of classes generated is
far fewer due to the constraints provided by the acoustic model. Figure 13.13(a) illustrates
that the relative effort devoted to the trigram, bigram, and unigram is constant regardless of
total search effort, across a set of test utterances. This is because the ratio of states in the
language model is constant. The language model is using -2 xlOb trigrams, -2 x 10° bi­
grams, and 6 x IO~unigrams. Figure 13.13(b) illustrates different relative order when word
hypotheses are considered. The most common context for word hypotheses is the unigram
context, followed by the bigram and trigram contexts. The reason for the reversal from the
state-level transitions is the partially overlapping evaluations required by each bigram con­
text. The trigram context is more common than the bigram context for utterances that gener­
ate few hypotheses overall. This is likely because the language model models those
utterances well.

"H h • ere I e runtime memory means the virtual memory for the decoder thnt is the entire imnge of the decoder.

------d Microsoft Whisper
caseSIU y

bl 13.5 Configuration of the first seven levels of the 20,000-word WSJ (W. II S
To e . . . f • d . h a treet Jour-
ililfJ tree; ihe large 1mt1al an-out 1s ue 10 t e use of context-dependent acoustic models [

4
).

Tree Level Number or Nodes Fan-Out
I 655 655.0
2 3174 4.85
3 9388 2.96
4 13,703 1.46
5 14,9 I 8 1.09
6 13,907 0.93
7 11,389 0.82

679

To improve efficiency in dealing with tree copies due to the use of higher-order n­
gram, one needs to reduce redundant computations in subtrees that are not explicitly part of
the given linguistic context. One solution is to use successor trees to include only nonzero
successors, as described in Section 13.1.2. Since Whisper builds the search space dynami­
cally, it is not effective for Whisper to use the optimization techniques of the successor-tree
network, such as FSN optimization, subtree isomorphism, and sharing tail optimization.
Instead, Whisper uses polymorphic linguistic context assignment to reduce redundancy, as
described in Section 13.1.5. This involves keeping a single copy of the lexical tree, so that
each node in the tree is evaluated at most once. To avoid early inadmissible pruning of dif­
ferent linguistic contexts, an e -heap of storing paths of different linguistic contexts is cre­
ated for each node in the tree. The operation of such e -heaps is in accordance with
Algorithm 13.2. The depth of each heap varies dynamically according to a changing thresh­
old that allows more contexts to be retained for promising nodes.

0.7 1-iyps Tg
-- 500

0.6 • Og Ua
"

0.5 • 400 II) 0.8 " E e
t: "' ig 0.4 - 300 £ "' 0.6 10 ::'.:; : ·;;;
" 0.3 200 l

.,
"-'$. -5 0.4 ;,-,

0.2 «s 0 5 ,&:. !
;; Q.,

0.1 100 fl 0.2 §
0 0

"$. 0 0
a) un id. (b) utt id.

Figure 13 d b number of active
Slate . •13 (a) Search effort for different linguistic contexts meas~re yh b·oram then the

s 1n each f h eries JS for t e 1,, • unigr O t e three different linguistic contexts. The top 5 d . lotted on the sec-
am and tri T ff utterance an JS P ondary _ . gram. he remamrng series 1s the e ort pe~ to their context. The top

line is thy axis. (b) The distribution of word hypotheses with respec~ . n·es is the average
e unig . • The remammg se . l nurnbe f ram context, then the b1gram and tngram. h ndary)'•aXJS [3 • r o hy th • 1 d 00 t e seco po eses per frame for each utterance and 1s P otce

680 Large-Vocabulary Search Algorithms

Table 13.6 illustrates how the depth of the e -heap, the active states per frame of
speech, word error rate, and search time change when the value of threshold e increases for
the 20 000-word WSJ dictation task. As we can see from the table. the average heap size for
active 'nodes is only about 1.6 for the most accurate configuration. Figure l 3.14(a) illustrates
the distribution of stack depths for a large data sel, showing that the stack depth is small
even for tree initial nodes. Figure 13.14(b) illustrates the profile of the average stack depth
for a sample utterance, showing that the average stack depth remains small across an utter­

ance.
Whisper also employs look-ahead techniques to further reduce the search effort. The

acoustic look-ahead technique described in Section 13.2.3.1 attempts to estimate the prob­
ability that a phonetic HMM will participate in the final result [3). Whisper implements
acoustic look-ahead by running a CI phone-net synchronously with the search process but
offset N frames in the future. One side effect of the acoustic look-ahead is to provide infor­
mation for the RGR strategy, as described in Section 13.2.3.2, so the search can avoid un­
necessary Gaussian computation. Figure 13.15 demonstrates the effectiveness of varying the
frame look-ahead from Oto N frames in terms of states evaluated.

When the look-ahead is increased from O to 3 frames, the search effort, in terms of real
time, is reduced by -40% with no loss in accuracy; however, most of that is due to reducing
the number of states evaluated per frame. There is no effect on the number of Gaussians
evaluated per frame (the system using continuous density) until we begin to negatively im­
pact error rate, indicating that the acoustic space represented by the pruned states is redun­
dant and adequately covered by the retained states prior to the introduction of search errors.

With the techniques discussed here, Whisper is able to achieved real-time performance
for the continuous WSJ dictation task (60,000-word) on Pentium-class PCs. The recognition
accuracy is identical to that of a standard Viterbi beam decoder with a linear lex.icon.

Table 13.6 Effect of heap threshold on contexts/node, states/frame-of-speech (fos), word error
rate, and search time [4].

£ Context I node states I fos %error search time
0 1.000 8805 16.4 I.Ox

1.0 l.001 8808 15.5 I.Ox
2.0 1.008 8898 14.4 I.Ox
3.0 l.018 9252 12.4 l.07x
4.0 1.056 10224 10.5 l.16x
5.0 l.147 l 1832 10.3 J.36x
6.0 1.315 13749 10.0 1.60x
7.0 1.528 15342 9.9 l.8lx
8.0 1.647 15984 9.9 l.86x

-----=:i;~;;~~~~~~~~------------------}{istOrical Perspective and Further Reading
681

2500 6.0
4)

E 2000 a
.:: -+-gaussians

-VI ---states
4) 1500 ;; ---lr- error rate
;;; ~xrealtime
V, 1000
C:

"' "iii
"' 500 ::,

"' Cl)

0 -t-----:------r----,----__.J_ , 0.0

0 2 4 6 8 10

look-ahead frame count

Figure 13.15 Search eff. look-ahead N ort, percent error rate, and real-time factor as a function of the acoustic
number of st c e ort 1s the number of Gaussians evaluated per frame and the · ote that sear h ff •

ates evaluated per frame [3].

13.6. HISTORICAL PERSPECTIVE AND FURTHER READING

Large-vocab I • time syste u ary continuous speech recognition is a computationally intensive task. Real-
lime perfo: starte~ to emerge in the late l 980s. Before that, most systems achieved real­
and Vario anc~ with the help of special hardware [11, 16, 25, 28). Thanks to Moore's law

us efficient • • I h" &eneraJ-pu search techniques, real-time systems became a reality on a sing e-c 1p

Com~se p~rsonal computer in the 1990s [4, 34, 43].
continua on wisdom in 1980s saw stack decoding as more efficient for large-vocabulary
search ausdspeech recognition with higher-order n-grams. T ime-synchronous Viterbi beam

' s escrib d • • fi e m Sections 13.1 and 13.2, emerged as the most efficient search rame-

682 Large-Vocabulary Search Algorithms

work. It has become the most widely used search technique today. The lexical tree represe _
tation was first used by IBM as part of its allophonic fast match system [10). Ney propos:d
the use of the lexical tree as the primary representation for the search space [32]. The ideas
of language model factoring [4, I 9] [5] and subtree polymorphism [4] enabled real-time
single-pass search with higher-order language models (bigrams and trigrams). Alleva [3]
and Ney [33] are two excellent articles regarding the detailed Viterbi beam search algorithm
with lexical tree representation.

As mentioned in Chapter 12, fast match was first invented to speed up stack decoding
[8, 9]. Ney and Ortmanns [33] and Alleva [3] extended the fast match idea to phone look­
ahead in time-synchronous search by using context-independent model evaluation. In Haeb­
Umbach et al. [22], a word look-ahead is implemented for a l 2.3k-word speaker-dependent
continuous speech recognition task. The look-ahead is performed on a lexical tree, with
beam search executed every other frame. The results show a factor of 3-5 times of reduction
for search space compared to the standard Viterbi beam search, while only 1-2% extra er­
rors are introduced by word look-ahead.

The idea of multipass search strategy has long existed for knowledge-based speech
recognition systems [17], where first a phone recognizer is performed, then a lexicon hy­
pothesizer is used to locate all the possible words to form a word lattice, and finaJly a lan­
guage model is used to search for the most possible word sequence. However, HMM's
popularity predominantly shifted the focus to the unified search approach to achieve global
optimization. Computation concerns led many researchers to revisit the multipass search
strategy. The first n-best algorithm, described in Section 13.3.2, was published by research­
ers at BBN [39). Since then, n-best and word-lattice based multipass search strategies have
become important search frameworks for rapid system deployment, research tools, and spo­
ken language understanding systems. Schwartz et al.'s paper [40] is a good tutorial on then­
best or word-lattice generation algorithms. Most of the n-best search algorithms can be made
to generate word lattices/graphs with minor modifications. Other excellent discussions of
multipass search can be found in [14, 24, 30].

REFERENCES

[1)

[2]

[3]

[4]

[5]

Aho, A., J. Hopcroft, and J. Ullman, The Design and Analysis of Computer Algo­

rithms, 1974, Addison-Wesley Publishing Company. . d
Aho, A.V., R. Sethi, and J.D. Ullman, Compilers: Principles, Techniques, an
Tools, 1985, Addison-Wesley. . .
Alleva, F., "Search Organization in the Whisper Continuous Speech Recogmtton
System," IEEE Workshop on Automatic Speech Recognition, 1997.

• • Pre-Alleva, F., X. Huang, and M.Y. Hwang, "Improvements on the Pronunciation h
fix Tree Search Organization," Proc. of the IEEE Int. Conj 011 Acoustics, Speec

and Signal Processing, 1996, Atlanta, Georgia, pp. 133-136. . . Wall
Aubert, X., et al., "Large Vocabulary Continuous Speech Recognition of Si _
Street Journal Corpus," Proc. of the IEEE Int. Conj 011 Acoustics, Speech and g
nal Processing, 1994, Adelaide, Australia, pp. 129-132.

---:--caJ;erspeclive and Further Reading
Histon

[6]

[7]

[8]

(91

[10]

(II]

(12]

(13]

[14]

(15]

(16]

!17]

llBJ

119]

[20]

683

Aubert, X. and H. Ney, "Large Vocabulary Co t'
Word Graphs," Proc. of the IEEE Int. Con' 0 nAmuou~ Speech Recognition Usino

• '1• n coustics Sp h . 0

essing, 1995, Detrolt, MI, pp. 49-52. ' eec and Signal Proc-

Austin, S., R. Schwartz, and P. Placeway "The F
R I T • S ' orward-Backward s h Al

rithm for ea - ,me peech Recognition," Proc. of the IEEE I, earc go-
tics Speech and Signal Processing J 991 Toronto C d 11

• Conj. 0 11 Acous-
' " . . , . ' ' ana a, pp. 697-700

Bahl, L.R., et al., Obtammg Candidate Words by Poll· · La •
Speech Recognition System," Proc. of the IEEE Int ~:~/n a A rge ~ocabulary
and Signal Processing, 1988, pp. 489-492. • •

11
J· on couSt1cs, Speech

Bahl, L.R., et al., "Matrix Fast Match: a Fast Method for Identifying a Sh L' f
d.d W d f D d' " p art ist o Can I ate or s or eco mg, roe. of tire IEEE Im Conif. 011 Aco 1 • s 1 • • . llS ICS, peec I

and Signal Processing, 1989, Glasgow, Scotland, pp. 345-347.
Bahl, L.R., P.S. Gopalakrishnan, and R.L. Mercer, "Search Issues in Large
Vocabulary Speech Recognition," Proc. of the 1993 IEEE Workshop 011 Automatic
Speech Recognition, 1993, Snowbird, UT.
Bisiani, R., T. Anantharaman, and L. Butcher, "BEAM: An Accelerator for Speech
Recognition," Int. Conf on Acoustics, Speech and Signal Processing, 1989, pp.
782-784.
Brugnara, F. and M. Cettolo, "Improvements in Tree-Based Language Model Rep­
resentation," Proc. of the European Conj. on Speech Communication a11d Tec/1110[­

ogy, 1995, Madrid, Spain, pp. 1797-1800.
Cettolo, M., R. Gretter, and R.D. Mori, "Knowledge Integration" in Spoken Dia­
logues with Computers, R.D. Mori, ed., Academic Press, 1998, London, pp. 231-
256.
Cettolo, M., R. Gretter, and R.D. Mori, "Search and Generation of Word Hypothe­
ses" in Spoken Dialogues with Computers, R.D. Mori, ed., 1998, London, Aca-

demic Press, pp. 257 -310. . .
Chou, W., C.H. Lee, and B.H. Juang, "Minimum Error Rate Training Based on_N­
best String Models," IEEE Int. Conf. on Acoustics, Speech and Signal Processmg,

1993, Minneapolis, MN, pp. 652-655. . . t "
Chow, Y.L., et al., "BYBLOS: The BBN Continuous Speech Recogni~ion Sy;

7
em,

Proc. of the IEEE Int. Conj on Acoustics, Speech and Signal Processing, 19 'pp.
~n .
C I d R coonition of Enghsh

oe, R.A., et al., "Feature-Based Speaker Indepen ent _e O

731_734,
Letters," Int. Conf on Acoustics, Speech and Signal Processmg, 1983•!tTime De­
Davenport, J.C., R. Schwartz, and L. Nguyen, "Towards A Robus~ R 1999 Phoe-
c~er," IEEE Int. Conf on Acoustics, Speech and Signal Processing, '
DIX Ari F • . zona, pp. 645-648. . Search," Computer
/denco, M., et al., "Language Modeling for Efficient Beam-

G
peech and language, 1995, pp. 353-379.

1
ts ,·n Continuous

auva· J k "Deve opmen
S m, . • L., L. Lamel, and M. Adda-Dec .~r, .r h IEEE /Ill. Conj. on
peech Dictation using the ARPA WSJ Task, Proc. 01 t e

65 68 Aco • • Ml pp. • • llStics, Speech and Signal Processing, 1995, Detroit, '

684

[21]

[22]

[23]

[24]

[25J

[26]

[27]

[28]

[29]

[30J

[3 l]

[32)

[33]

[34]

(35]

Large-Vocabulary Search Algorithms

Gillick, L.S. and R. Roth, "A Rapid Match Algorithm for Continuous Speech Rec­
ognition," Proc. of the Speech and Natural Language Workshop, 1990, Hidden
Valley, PA, pp. 170-172.
Haeb-Umbach, R. and H. Ney, "A Look-Ahead Search Technique for Large Vo­
cabulary Continuous Speech Recognition," Proc. of the European Conj. 011 Speech
Communication and Technology, 1991, Genova, Italy, pp. 495-498.
Haeb-Umbach, R. and H. Ney, "Improvements in Time-Synchronous Beam-Search
for 10000-Word Continuous Speech Recognition," IEEE Trans. on Speech and Au­
dio Processing, 1994, 2(4), pp. 353-365.
Hetherington, I.L., et al., "A* Word Network Search for Continuous Speech Rec­
ognition," Proc. of the European Conj on Speech Communication and Technology,
1993, Berlin, Germany, pp. 1533-1536.
Hon, H.W., A Survey of Hardware Architectures Designed for Speech Recognition,
1991, Carnegie Mellon University, Pittsburgh, PA.
Huang, X., et al., "From Sphinx II to Whisper: Making Speech Recognition Us­
able," in Automatic Speech and Speaker Recognition, C.H. Lee, F.K. Soong, and
K.K. Paliwal, eds. 1996, Norwell, MA, Kluwer Academic Publishers, pp. 481-508.
Huang, X., et al., "Microsoft Windows Highly Intelligent Speech Recognizer:
Whisper," IEEE Int. Conj. on Acoustics, Speech and Signal Processing, 1995, pp.
93-96.
Jelinek, F., "The Development of an Experimental Discrete Dictation Recognizer,"
Proc. of the IEEE, 1985, 73(1), pp. 1616-1624.
Marino, J. and E. Monte, "Generation of Multiple Hypothesis in Connected Pho­
netic-Unit Recognition by a Modified One-Stage Dynamic Programming Algo­
rithm," Proc. of EuroSpeech, 1989, Paris, pp. 408-411.
Murveit, H., et al., "Large Vocabulary Dictation Using SRI's DECIPHER Speech
Recognition System: Progressive Search Techniques," Proc. of the IEEE Int. Conf
on Acoustics, Speech and Signal Processing, 1993, Minneapolis, MN, pp. 319-322.
Ney, H. and X. Aubert, "A Word Graph Algorithm for Large Vocabulary," Proc. of
the Int. Conf. on Spoken lAnguage Processing, 1994, Yokohama, Japan, pp. 1355-
1358.
Ney, H., et al., "Improvements in Beam Search for 10000-Word Continuous
Speech Recognition," Proc. of the IEEE Int. Conf on Acoustics, Speech and Signal
Processing, 1992, San Francisco, California, pp. 9-12.
Ney, H. and S. Ortmanns, Dynamic Programming Search for Continuous Speech
Recognition, in IEEE Signal Processing Magazine, 1999, pp. 64-83.
Nguyen, L., et al., "Search Algorithms for Software-Only Real-Time Recognition
with Very Large Vocabularies," Proc. of ARPA Human Language Technology
Workshop, 1993, Plainsboro, NJ, pp. 91-95.
Nilsson, N.J., Problem-Solving Methods in Artificial Intelligence, 1971, New York,
McGraw-Hill.

-- . 1 p rspective and Further Reading
flistor1ca e 685

[36)

[37)

[38)

[39]

[40]

[41]

[42]

[43]

[44]

Nonnandin, Y., "M_aximum Mutual Information Estimation of Hidden Markov
Models" in Automa!lc Speech and Speaker Recognition C H Lee p K s . • • • , . . oong, and
K.K. Pahwal, eds. 1996, Norwell, MA, Kluwer Academic Publishers.
Odell, J.J., et al., "A One Pass Decoder Design for Large Vocabulary Recognition,,
Proc. of the ARPA Human Language Technology Workshop, 1994, Plainsboro, NJ,
pp. 380-385.
Schwartz, R. and S. Austin, "A Comparison of Several Approximate Algorithms
for Finding Multiple (N-BEST) Sentence Hypotheses," Proc. of the IEEE Int. Conf
011 Acoustics, Speech and Signal Processing, 199 J, Toronto, Canada, pp. 701-704.
Schwartz, R. and Y.L. Chow, "The N-Best Algorithm: an Efficient and Exact Pro­
cedure for Finding the N Most Likely Sentence Hypotheses," Proc. of the IEEE Int.
Conj. 011 Acoustics, Speech and Signal Processing, 1990, Albuquerque, New Mex­
ico, pp. 81-84.
Schwartz, R., L. Nguyen, and J. Makhoul, "Multiple-Pass Search Strategies" in
Automatic Speech and Speaker Recognition, C.H. Lee, F.K. Soong, and K.K. Pali­
wal, eds., 1996, Norwell, MA, Klewer Academic Publishers, pp. 57-81 .
Soong, F.K. and E.F. Huang, "A Tree-Trellis Based Fast Search for Finding the N
Best Sentence Hypotheses in Continuous Speech Recognition," Proc. of the IEEE
Int. Conf on Acoustics, Speech and Signal Processing, 1991, Toronto, Canada, pp.
705-708.
Steinbiss, V., "Sentence-Hypotheses Generation in a Continuous Speech Recogni­
tion," Proc. of EuroSpeech, 1989, Paris, pp. 51-54.
Steinbiss, V., et al., "The Philips Research System for Large-Vocabulary Continu­
ous-Speech Recognition," Proc. of the European Conj on Speech Communication
a11d Tech11ology, I 993, Berlin, Germany, pp. 2125-2128. . . .
Woodland, P.C., et al. , "Large Vocabulary Continuous Speech Recogmtton Us_mg
HTK," Proc. of the IEEE Int. Conj. on Acoustics, Speech and Signal Processing,

1994, Adelaide, Australia, pp. 125-128.

PART IV

TEXT-TO-SPEECH SYSTEMS

CHAPTER 1 4

Text and Phonetic Analysis

coding . Text-to-speech can be viewed as a speech
llexibTsys~m lhat _yields an extremely high compression ratio coupled with a high degree of
of1T~

1
~m choosing style, voice, rate, pitch range, and other playback effects. In this view

rrs b e text file that is input to a speech synthesizer is a fonn of coded speech. Thus,
su sumes coding technologies discussed in Chapter 7 with the following goals:

• Compression ratios superior to digitized wave files--Compression yields
benefits in many areas, including fast Internet transmission of spoken mes­
sages.

• Flexib 'I' • f 1 tty m output characteristics-Flexibility includes easy change 0

g~otler, average pitch pitch range etc. enabling application developers to
give th • ' ' ' • 'bT . eir systems' spoken output a unique individual personality. Flexi 1 •ty
also 1m r · etype P ies easy change of message content; it is generally easier to r
text Iha • .

• . . n it 1s to record and deploy a digitized speech file.

~b,t,ry for perfect indexing between text and speech forms-Preservation of

li
e correspondence between textual representation and the speech wave fonn

a ows syn h • . d ch as word-by-e ronizat10n with other media and output mo es, su
ward reverse video highlighting in a literacy tutor reading aloud.

689

690
Text and Phonetic Analysis

Al t • ·cess o·•text content-TIS is the most effective alternative ac-• tema ive a, 'J . .
cess of text for the blind, hands-free/eyes-free and display less scenanos.

At first sight, the process of converting text into speech looks strai~h~orw~r~. H~w-

when we analyze how complicated speakers read a text aloud, this simpltst,c view
ever, • t ·
quickly falls apart. First, we need to convert words in wntten orms mto speakable fonns.
This process is clearly nontrivial. Second, to sound natural, the system needs to convey the
intonation of the sentences properly. This second process is clearly an extremely challenging
one. One good analogy is to think how difficult it is to drop a foreign accent when speaking
a second language-a process still not quite understood by human beings.

The ultimate goal of simulating the speech of an understanding, effective human
speaker from plain text is as distant today as the corresponding Holy Grail goals of the fields
of speech recognition and machine translation. This is because such humanlike rendition
depends on common-sense reasoning about the world and the text's relation to it, deep
knowledge of the language itself in all its richness and variability, and even knowledge of
the actual or expected audience-its goals, assumptions, presuppositions, and so on. In typi­
cal audio books or recordings for the visually challenged today, the human reader has
enough familiarity with and understanding of the text to make appropriate choices for rendi­
tion of emotion, emphasis, and pacing, as well as handling both dialog and exposition.
While computational power is steadily increasing, there remains a substantial knowledge
gap that must be closed before fu11y human-sounding simulated voices and renditions can be
created.

While no TIS system to date has approached optimal quality in the Turing test, 1 a
large number of experimental and commercial systems have yielded fascinating insights.
Even the relatively limited-quality ITS systems of today have found practical applications.

The basic ITS system architecture is illustrated in Chapter I. In the present chapter we
discuss text analysis and phonetic analysis whose objective is to convert words into speak­
able phonetic representation. The techniques discussed here are relevant to what we dis­
cussed for language modeling in Chapter 11 (like text normalization before computing n­
g_ram) and for pronunciation modeling in Chapter 9. The next two modules-prosodic analy­
sis and speech synthesis-are treated in the next two chapters.

14.1. MODULES AND DATA FLow

The ~~t analysis component, guided by presenter controls, is typically responsible for de­
tennmmg document structure, conversion of nonorthographic symbols and parsing of lan-
guage structure and meaning Th h • · • · d . • e P onet1c analysis component converts orthographic wor s
to phones (unambiguous speech sound symbols). Some ITS systems assume dependency
between text analysis phonetic J • • · · • • ana ysis, prosodic analysis, and speech synthesis, particu-
larly systems based on very large d t b · • 'fi d a a ases contammg long stretches of original, unmod1 ,e ------ ----

A lest proposed by British mathematician All T •
performance on a given h

I
an unng of the ability of a computer to flawlessly imitate human

speec or anguage task [29].

od !es and Data Flow M u 691

digitized speech with their original pitch conto_urs. We discuss our high-level linguistic de­
• t'on of those modules, based on modularity, transparency, and reusability of compo scnp i . . -

although some aspects of text and phonetic analysis may be unnecessary for some nents,
articular systems. .

P We assume that the entire text (word, sentence, paragraph, document) to be spoken is
rained in a single, wholly visible buffer. Some systems may be faced with special re­

co~rements for continuous flow-through or visibility of only small (word, phrase, sentence)
;~,mks at a time, or extremely complex timing and synchronization requirements. The basic
functional processes within the text and phonetic analysis are shown schematically in Figure
14.1.

EJ

raw text
or ragged text

r---------------- ---------------------- - '

Document Structure Detection

Text Nonnalization Text Analysis

Linguistic Analysis

----------------- ---------------

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

ta,:ged text ------------------
r---------------- ---------
1
I
I
I
I
I

Homograph Disambiguation

I
I
I
I
I

Morphological Analysis

L----,----JPhonetic Analysis

d t ... , & phones tagge '""
. analysis components.

k for text and phonetic
Figure 14.1 Modularized functional bloc s

692
Text and Phonetic Anal .

YSIS

The architecture in Figure 14.1 brings the stand_ard benefits of modularity and trans-

M dulan·ty in this case means that the analysis at each level can be supplied by the parency. o . .
most expert knowledge source, or~ vanety ~f different sources, as long as the markup con-
ventions for expressing the analysis are umfonn. Transparency means that the results of
each stage could be reused by other processes for other purposes.

14.1.1. Modules

The text analysis module (TAM) is responsible for indicating all knowledge about the text or
message that is not specifically phonetic or prosodic in nature. Very simple systems do little
more than convert nonorthographic items, such as numbers, into words. More ambitious
systems attempt to analyze whitespaces and punctuations to detennine document structure,
and perfonn sophisticated syntax and semantic analysis on sentences to detennine attributes
that help the phonetic analysis to generate correct phonetic representation and prosodic gen­
eration to construct superior pitch contours. As shown in Figure 14.1, text analysis for TIS
involves three related processes:

• Document structure detection-Document structure is important to provide a
context for all later processes. In addition, some elements of document struc­
ture, such as sentence breaking and paragraph segmentation, may have direct
implications for prosody.

• Text normalization-Text nonnalization is the conversion from the variety of
symbols, numbers, and other nonorthographic entities of text into a common
orthographic transcription suitable for subsequent phonetic conversion.

• Linguistic analysis-Linguistic analysis recovers the syntactic constituency
and semantic features of words, phrases, clauses, and sentences, which is im­
portant for both pronunciation and prosodic choices in the successive proc­
esses.

. The task ?f the phonetic analysis is to convert lexical orthographic symbols to phone·
mi~ representation along with possible diacritic information such as stress placement. Ph~­
netic analysis is thus often referred to as grapheme-to-phon~me conversion. The purpose is
ol:,v· , • E

,ou->, since phonemes are the basic units of sound as described in Chapter 2· ven
though future TTS syst • h b ' • torage . ems mig t e based on word sounding umts with mcreasmg 5
technologies homogra h d' b' . d (·ther trUe ' P isam 1guat:1on and phonetic analysis for new wor s ei
new words being invented over time or morphologically transformed words) are still neces·
sary for systems to correctly utter every word.

Grapheme-to-phonem c ·mple rela·
tt• h' b e onvers1on 1s tnvial for languages where there 1s a st

ans 1P etween orthog h d b ell cap·
tured b h rap Y an phonology. Such a simple relationship can e w
and ar:r:fe::f~l of rules. L_anguages such as Spanish and Finnish bel_ong to this categ~;,

0 as phonetic languages. English, on the other hand, 1s remote from p

od
Jes and Data Flow

~I u 693

. 1 guage because English words often have many distinct origins It is gen 11 b ne11c an • . • era y e-
lieved that the following three services are necessary to produce accurate pronunciations.

, Homograph disambiguation-It is important to disambiguate words with dif-
ferent senses to determine proper phonetic pronunciations, such as object (/ah
b Jh eh k ti) as a verb or as a noun (/aa b jli eh k rl).

, Morphological a1wlysis--Analyzing the component morphemes provides
important cues to attain the pronunciations for inflectional and derivational
words.

, Lerter-to-sound conversion-The last stage of the phonetic analysis generally
includes general letter-to-sound rules (or modules) and a dictionary lookup to
produce accurate pronunciations for any arbitrary word.

All the processes in text and phonetic analysis phases above need not to be determinis­
tic, although most TIS systems today have deterministic processes. What we mean by not
detem1i11istic is that each of the above processes can generate multiple hypotheses with the
hope that the later process can disambiguate those hypotheses by using more knowledge.
For example, often it might not be trivial to decide whether the punctuation"." is a sentence
ending mark or abbreviation mark during document structure detection. The document struc­
ture detection process can pass both hypotheses to the later processes, and the decision can
then be delayed until there is enough information to make an infonned decision in later
~odules, such as the text normalization or linguistic analysis phases. When generating mul­
ople hypotheses, the process can also assign probabilistic information if it comprehe~ds the
0nderlying probabilistic structure. This flexible pipeline architecture avoids the miStaJces
made by early processes based on insufficient knowledge.

Much of the work done by the text/phonetic analysis phase of a ITS syStem mirrors lhe
processing attempted by natural language process (NLP) systems for other purposes, such as
automatic f . . • d • and so on Increas­. proo readmg, machine translation, database document m exmg, . . : ex
mgly sophisticated NL analysis is needed to make certain ITS processing decisions 1~ ~~ . -

:~ i~lu5tcated in Table 14.1. Ultimately all decisions are context driven aod probabihStlC m
' smce, for example, dogs might be cooked and eaten in some cultures.

,_ Table 141 Ex amp es o f severa am biguous text normalization cases.

Examples
I--.:. Alternatives Techniques

~-Smith -- doctor or drive? abbreviation analysis, case analysis

~You go? yes-no or wh-question? syntactic analysis
I ate a hot do semantic, verb/direct object likelihood
~- accent on dog?
~a hot dog. • a}ysis

accent on dog? discourse, pragmatic an

694
Text and Phonetic Analysis

M t TIS systems today employ specialized natural language processing modules for
front-en~sanalysis. In the future, it is likely that less emphasis will be pla~ed o~ construction
of TIS-specific text/phonetic analysis components such as thos~ descnbed m. [27], while

ore resources will likely go to general-purpose NLP systems with cross-functional poten­
:a1 (23]. In other words, all the modules above only perform simple proc_essing and pass all
possible hypotheses to the later modules. At the end of the text/phonetic phase, a unified
NLP module then performs extensive syntactic/semantic analysis for the best decisions. The
necessity for such an architectural approach is already visible in markets where language
issues have forced early attention to common lexical and tokenization resources, such as
Japan. Japanese system services and applications can usually expect to rely on common
cross-functional linguistic resources, and many benefits are reaped, including elimination of
bulk, reduction of redundancy and development rime, and enforcement of systemwide con­
sistent behavior. For example, under Japanese architectures, TIS, recognition, sorting, word
processing, database, and other systems are expected to share a common language and
dictionary service.

14.1.2. Data Flows

It is arguable that text input alone does not give the system enough information to express
and render the intention of the text producer. Thus, more and more TIS systems focus on
providing an infrastructure of standard set of markups (tags), so that the text producer can
better express their semantic intention with these markups in addition to plain text. These
kinds of markups have different levels of granularity, ranging from simple speed settings
specified in words per minute up to elaborate schemes for semantic representation of con­
cepts that may bypass the ordinary text analysis module altogether.2 The markup can be
d~ne by internal proprietary conventions or by some standard markup, such as XML (Exten­
sible Markup Language [35]). Some of these markup capabilities will be discussed in Sec­
tions 14.3 and 14.4.

For example, an application may know a lot about the structure and content of the text
t? be spoken, an~ it can apply this knowledge to the text, using common markup conven­
tions, to ~atly lnlprove spoken output quality. On the other hand, some applications m_ay
~ave certain broad requirements such as rate, pitch, callback types, etc. For engines provtd­
mg such supports, the text and/or phonetic analysis phase can be skipped, in whole or in
part. Whethe~ the application or the system has provided the text analysis markup, the stru_c­
tural conventions should be identical and must be sufficient to guide the phonetic analYs•S­

The phoneti? analysis module should be presented only with markup tags indicating stru~·
ture or functions of textual chunks, and words in standard orthography The similar phonetic
:~;~~ could also be presented to the phonetic analysis module, ·the module could be

• This latter type of system is sorneti call • • (lescribed in
Chapter 17 It general! mes ed concept-to-spuch or message-to-speech, which is ed I the
system. • y generates better speech rendering when domain-specific knowledge is provid

0

Modules and Data Flow

69S

Internal architectures, data structures and · .4'.

H d ' ,nee, ,aces may va .d I
sysrem. owever, most mo em ITS systems in"t• 11 ry w, e y from system to

h b
I ra Y construct • 1 utterance or paragrap ased on observable attrib t . a simp e description of an

perhaps augmented by control annotations This u _e~, tylp~c~l!y text words and punctuation
I f • mrnrma rnitral rk J t · ' with many ayers o structure hypothesized by the TTS , • . c e on is then augmented

Beginning with a surface stream of words, punctuation :~~tern s rntemal analysis modules.
detected structure that may be added include: ' 0ther symbols, typical layers of

• Phonemes

• Syllables

• Morphemes

• Words derived from non words (such as dates like .. 9110199,,)
• Syntactic constituents

• Relative importance of words and phrases
• Prosodic phrasing

• Accentuation

• Duration controls

• Pitch controls

We c_an now consider how the information needed to support synthesis of a sentence is
developed_rn processing an example sentence such as: "A skilled electrician reponed."

n ln Figure 14.2, the information that must be inferred from text is diagrammed. The
ow proceeds as follows:

• W(ords) + l:, C(ontroJs): the syllabic structure (1:) and the basic phonemic
fonn of a word are derived from lexical lookup and/or the application of
~les. The 1: tier shows the syllable divisions (written in rext form for conven­
ience). The C tier, at this stage, shows the basic phonemic symbols for each
word's syllables.

• W(ords) + S(yntax/semantics): The word stream from text is used to infer
a syntactic and possibly semantic structure (S tier) for an input sentence. Syn­
tactic and semantic structure above the word would include syntactic con­
stituents such as Noun Phrase (NP), Verb Phrase (VP), etc. and any semantic
features that can be recovered from the current sentence or analysis of other
contexts that may be available (such as an entire paragraph or document).
The lower-level phrases such as NP and VP may be ~rouped_ into broader
constituents such as Sentence (S), depending on the parsing archnecture.

• S(y_ntaxJsemantics) + P(rosody): The P(rosodic) tier is al~o called the sym­
?oltc prosodic module. If a word is semantically important rn ~ senten~e, that
rmponance can be reflected in speech with a little extra phonet_,c prominence,
called an accent. Some synthesizers begin building a prosodic structure by

696
Text and Phonetic Analysis

placing metrical foot boundaries to the left of every accented syllable. The re­
sulting metrical foot structure is shown as Fl, F2, etc. in Figure 14.2 (some
feet lack an accented head and are 'degenerate'). Over the metrical foot struc­
ture, higher-order prosodic constituents, with their own characteristic relative
pitch ranges, boundary pitch movements, etc. can be constructed, shown in
the figure as intonational phrases IPI, IP2. The details of prosodic analysis,
including the meaning of those symbols, are described in Chapter 15.

The final phonetic form of the words to be spoken will reflect not only the original
phonetics, but decisions made in the S and P tiers as well. For example, the P(rosody) tier
adds detailed pitch and duration controls to the C(ontrol) specification that is passed to the
voice synthesis component. Obviously, there can be a huge variety of particular architec­
tures and components involved in the conversion process. Most systems, however, have
some analog to each of the components presented above.

- s s I 11, 12, ... , In l

• NP[f1, 12, ... , fn] VP I f1 , 12, ... , In I

- w WI W2 W3 W4
... :t A skilled e lee trl cian re por led

► C ax s lh I I sh r p I

►
k eh r ax iy ao ax
ih k ih n r d
I
d

- p Fl F2 F3 F4 F5

~ IP1 (11, 12, .. . , In) !P2 (11, 12, ... , fn)

U[f1, 12, ... , In]

Figure 14 2 Annot t' 1· • d' • • .. . • . _a ion 1ers m 1ca11ng mcrementa1 ana1ysis based on an input (text) sentence
A skilled electnc1an reported " A f • • • • • . • ow o incremental annotation 1s md1cated by arrows on the

left side.

14.1.3. Localization Issues

A major issue in the text and ph • 1 • •
I
. . . . onetic ana ys1s components of a TIS system is intemat1on-

a 1zauon and localization Wh'l f
are exem lified b E •. 1 e moSt ~ the la_nguage processing technologies in this book
minimal epx . y

I
ngl_ish . case studieS, an internationalized TIS architecture enabling

pense m ocahzation is h' hi d • •
text conventions a d . . ig Y eSirable. From a technological point of view, ~e
arbitrary wa n ~nt_mg sy~tems of language communities may differ substantially in

ys, necessitating senous effiort • b th . . • m o specifying an internationalized arch1tec-

Lexicon
697

lure for text and phonetic analysis, and localizing that architecture '"or a . I I ,, ny parttcu ar an-
g~g~ . .

For example, m Ja~anese and Chinese, the unit of word is not clearly identified b '
spaces in text. In French, mterword dependencies in pronunciation realization ~,··st (.1.. .))

• • • I " ""' ia1son . Conventions for wntmg numenca ,orms of dates, times, money, etc. may differ across lan-
guages. In F~ench, number gr~ups se~arated by spaces may need Lo be integrated as single
amounts, wl11ch rarely occurs Ill English. Some of these issues may be more S:!rious forcer­
tain types of ITS architectures than others. In general, it is best to specify a rule architecture
for text processing and phonetic analysis based on some fundamental formalism that allows
for language-particular data tables, and which is powerful enough to handle a wide range of
relations and altematiYes.

14.2. LEXICON

The most important resource for text and phonetic analysis is the TIS system lexicon (also
referred to as a dictionary). As illustrated in Figure 14.1, the ITS system lexicon is shared
with almost all components. The lexical service should provide the following kinds of con­
tent in order to support a TIS system:

• Inflected forms of lexicon entries

• Phonetic pronunciations (support multiple pronunciations), stress and syllabic
structure features for each lexicon entry

• Morphological analysis capability

• Abbreviation and acronym expansion and pronunciation

• Attributes indicating word status, including proper-name tagging, and other
special properties

• List of speakable names of all common single characters. Under modem op-
• h Id • I de all Unicode characters. eratmg systems, the characters s ou me u

• Word part-of-speech (POS) and other syntactic/semantic attributes

l.k I ord is to be accented, etc. • Other special features, e.g., how 1 e Y a w .

I m lexical service overlap heavily
t should be clear that the requirements for a TIS syste

with those for more general-purpose NLP. . d . ticular for orapheme-to-
Traditionally, TIS systems have been rule onente d 1~ ;; rules (described in detail

~honeme conversion. Often tens of so called letter-to-soul! (. d the role of the lexi-
m Sec· • honeme convers10n, an

lion 14.8) are used first for grapheme-to-p . r· ns cannot be predicted on
con h b 1 • t whose pronuncia to b as een minimized as an exception zs, . 's role has increasingly een
th~ basis of such LTS rules. However, this view of the lex1_co; hioh-quality TIS systems
adjusted as the requirement of a sophisticated NLP analy~,s. or a dictionary system. For a
has become apparent. There are a number of ways to optimize
good overview of lexical organization issues, please see (4]-

698
Text and Phonetic Analysis

To expose different contents about a lexicon entry l!sted above for different ITS mod-

I •t tis for 8 consistent mechanism. It can be done either through a database query or a
u e, 1 ca I h h ·
function call in which the caller sends a key (usual Y t e ort ographtc representation of a

d) and rhe desired attribute. For example, a TIS module can use the following function
wor . • • PO
call to look up a particular attribute (like phonetic pronunciations or S) by passing the
attribute att and the result will be stored in the pointer val upon successful lookup. More­
over. when the lookup is successful (the word is found in the dictionary) the function returns
true, otherwise it will retum false instead.

BOOLEAN DictLookup (string word, ATTTYPE att, (VOID*) val)

We should also point out that this functional view of dictionary could further expand
the physical dictionary as a service. The morphological analysis and letter-to-sound modules
(described in Sections 14.7 and 14.8) can all be incorporated into the same lexical service.
That is, underneath dictionary lookup, operation and analysis is encapsulated from users to

form a unifonn service.
Another consideration in the system's runtime dictionary is compression. While many

standard compression algorithms exist, and should be judiciously applied, the organization
and extent of the vocabulary itself can also be optimized for small space and quick search.
The kinds of American English vocabulary relevant to a TIS system include:

• Grammatical function words (closed class)-about several hundred

• Very common vocabulary-about 5,000 or more

• College-level core vocabulary base forms-about 60,000 or more

• College-level core vocabulary inflected form-about 120,000 or more

• Scientific and technical vocabulary, by field-e.g., legal, medical, engineer-
ing, etc.

• Personal names-e.g., family, given, male, female, national origin, etc.

• Place names-e.g., countries, cities, rivers, mountains, planets, stars, etc.
• Slang

• Archaisms

Tht·a1 · e ypic SJZes of reasonably complete lists of the above types of vocabulary run
f~m 8 few hu~dred function or closed-class words (such as prepositions and pronouns) to
LO,OOO or so inflected forms of college-level vocabulary items up to several million sur-
names and place nam c f 1 . ' . • . es. are u analysis of the likely needs of typical target apphcauons
can potentially reduce the • f th • . . TTS terns . . size o e runttme d1ct1onary In general most sys
mamtam a syst d. • - . • ' d

h I
. . em icttonary With a size between 5000 and 200 000 entries. With advance

tee no og1es m database d h h. . . ' . . k In
add.1. . an as mg, search 1s typically a nonissue for dictionary Joo up.

1 ion, smce new form h as
acronyms b . 5 are constantly produced by various creative processes, sue .
some m , orrf owmg: slang acceptance, compounding and morphological manipulatto~,

eans o analyzmg w d h ' . . h topic
of Sections 14.7 and

14
_
8

_ or s I at have not been stored must be provided. This 1st e

~ Structure Detection
699

14.3, DOCUMENT STRUCTURE DETECTION

For the purpose of discussion, we assume that all input to the TAM · XML
ts an document

!hough perhaps l~rgely unmarked, and the output is also a (more extensively marked) XML
J.,-ument. That 1s to say, all the knowledge recovered during the TAM ph .
lJU'. • fi . ase 1s to be ex-
pressed as XML markup. This con 1m1s the independence of the TAM f h rom p onet1c and
prosodic cons1derauons, allowing a vanety of resources, some perhaps not crafted with TIS
in mind, to be ?rought to bear by the TAM on the text. It also implies that that output of the
TAM is pot~nually usable ~y ?ther. n?n~TTS processes, such as normalization of language­
model traimng data for b~Ilding stat1st1cal language models (see Chapter JI). This fully
modular and transparent view of ITS allows the greatest flexibility in document analysis,
provides for direct authoring of structure and other customization, while allowing a split
between expensive, multipurpose natural language analysis and the core TIS functionality.
Although other text format or markup language, such as Adobe Acrobat or Microsoft Word,
can be used for the same purpose, the choice of XML is obvious because it is the widely
open standard, particularly for the Internet.

XML is a set of conventions for indicating the semantics and scope of various entities
that combine to constitute a document. It is conceptually somewhat similar to Hypertext
Markup Language (HTML), which is the exchange code for the World Wide Web. In these
markup systems, properties are identified by tags with explicit scope, such as "make
this phrase bold< /b>" to indicate a heavy, dark print display. XML in particular
anempts to enforce a principled separation between document structure and content, on one
hand, and the detailed fonnatting or presentation requirements of various uses of documents,
on the other. Since we cannot provide a tutorial on XML here, we freely introduce ~xa~~le
tags that indicate document and linguistic structure. The interpretations of lhese are mt~iuve
10 most readers, though of course the analytic knowledge underlying decision~ to insert
tags be . ' ' . r cial TIS engines come may very sophisticated It will be some time beiore commer d
10 a common understanding on .the wide variety of text attributes that should be mar~ded, athn t
accept • • nable to adopt the I ea a a common set of conventions. Nevertheless, it 1s reaso h" h x-
TAM h I • XML documents (w 1c are e 5 ou d be independent and reusable, thus allowing d r • as indicated
!)eeted to proliferate) to function for speech just as for other mo a ,ueS,
schematicall i F"

. Y n 1gure 14.3. .th the text analysis perhaps
c•..: liS is regarded in Figure 14.3 as a factored process, wi The role of the TIS
... ,,ed out b h . lysis systems. . .

engine Y uman editors or by natural Jan~uage ana. f stroctural tags and prov1s1on
of ph pe~ s~ may eventually be reduced to the interpretauon ° t day are not structured
With ~netic infonnation. While commercial engines of lhe prese~kely to become increas­
ingly . ese assumptions in mind, modularity and transparency are tderlying an XML docu-

1mpon T . . f h basic ideas un lllent ant. he mcreasmg acceptance o t e be seen in the recent
centri . • ~ TTS can . f

Prolifcra . c approach to text and phonetic analysis or While not presentmg any o
these . hon of XML-like speech markup proposals [24• 331• tions that reflect and ex-

tn deta"I • • r nnal conven f the lend th . 1, m the discussion below we adopt mio . b the TTS systems o
eir basic assumptions. The structural markup explmted y

700 Text and Phonetic Analysis

• XML thoring systems at document creation time, or may be
future may ?e imposed by . ~u edures. In any case the distinction between purely
inserted by indepe

nd
ent . ana~ytJca . pro~d human annotation and authoring will increasingly

autom~tic s~cture creat'.on/~:t:c~~~s~ation and information retrieval domains, the distinc-
blur-Just as in na!ural ladng dg Its and human-produced results has begun to blur. tion between machine-pro uce resu

Authoring

Sound Docu- ,,
ment ITTS)

Automatic Language
Generation

LM stylesheet

XML
Document

LMTraining
Doc (ASR)

Automatic Structure
Detection/creation

Document
Structure

DB stylesheet

Database Doc
(IR)

Figure 14.3 A documentcentric view of ITS.

14.3.1. Chapter and Section Headers

'

Automatic
Parsing

Natural
Language
Structure

Other
StylesheelS .. .

Print Doc,
Screen Doc,
Groupware
Doc, etc.

'

;

Section headers are a standard convention in XML document markup, and TIS systems can
use the structural indications to control prosody and to regulate prosodic style, just as a pro­
fessional reader might treat chapter headings differently. Increasingly, a document created
on computer or intended for any kind of electronic circulation incorporates structural
markup, and the ITS and audio human-computer-interface systems of the future lean:1 10
exploit this (in longer documents, the document structure markup assists in audio naviga­
tion, speedup, and skipping). For example, the XML annotation of a book at a high l~vel
might follow conventions as shown in Figure)4.4. Viewing a document in this way might
lead a ITS system to insert pauses and emphasis correctly, in accordance with the Strocture

---nt Structure Detection
oocume

701

ked. Furthennore, an audio interface system would work jointly with a TIS system to
~:w easy navigation. and orientation withi~ such a structure. If future documents are
marked up in this fashion, the concept of audio books. for example, would change to rely
less on unstructured prerecorde~ speech and more on smart, XML-aware, high-quality audio
navigation and TIS sys~ems, with .t~e output c~stomiz~tion flexibility they provide.

For documents without exphcit markup mformation for section and chapter headers, it
is in general a nontrivial task to detect them automatically. Therefore, most TIS systems
today do not make such an attempt.

<Book>
<Title>The Pity of War</fitle>

<Subtitle>Explaining World War !</Subtitle>
<Author>Niall Ferguson</ Author>
<TableOfContents> ... <ffableOfContents>
<Introduction>

<Para> ... </Para>

</Introduction>
<Chapter> .
<ChapterTitle>The Myths of Militarism</ChapterTttle>

<Section>
<SectionTitle>Prophets</SectionTitle>
<Para> ... </Para>

</Section>
</Chapter>

</Book>

Figure 14.4 An example of the XML annotation of a book.

14.3.2. Lists
. tonational contours to indicate a~rally

Lists or bulleted items may be rendered with dtStmct 1~ . d . XML as shown in Figure
lheir spec!al status. This kind of strUcture might be m:~c~~:a :r accepting such markup for
!4·5• Again, TTS engine designers need to get used to d • sert such markup as needed
~nterpretation, or incorporating technologies that can ~et~~~~o :apter and section headers,
Y the downstream phonetic processing modules. Simi I' tructures automatically.

rnost liS systems today do not make an attempt to detect
1st

s

702

<Ll>compression
<Ll>flexibi I ity
text-waveform correspondence</Ll>

<Caption> The advantages of TTS</Caption>

Figure 14.5 An example of a list marked by XML.

14.3.3. Paragraphs

Text and Phonetic Ana-I. ys1s

The paragraph has been shown to have direct and distinctive implications for pitch assign­
ment in TIS [26] . The pitch range of good readers or speakers in the first few clauses at the
start of a new paragraph is typically substantially higher than that for mid-paragraph sen­
tences, and it narrows further in the final few clauses, before resetting for the next para­
graph. Thus, to mimic a high-quality reading style in future TIS systems, the paragraph
structure has to be detected from XML tagging or inferred from inspection of raw fonnat­
ting. Obviously, relying on independently motivated XML tagging is, as always, the supe­
rior option, especially since this is a very common structural annotation in XML documents.

In contrast to other document structure infonnation, paragraphs are probably among
the easiest to detect automatically. The character <CR> (carriage return) or <NL> (new line)
is usually a reliable clue for paragraphs.

14.3.4. Sentences

While sentence breaks are not normally indicated in XML markup today, there is no reason
to exclude them, and knowledge of the sentence unit can be crucial for high-quality TIS. In
fact, some XML-like conventions for text markup of documents to be rendered by synthe­
sizers (e.g., SABLE) provide for a DIV (division) tag that could take paragraph, sentence,
clause, etc. as attribute [24). If we define sentence broadly as a primal linguistic unit _th~t
makes up paragraphs, attributes could be added to a Sent tag to express whatever lingui5t1c
!CT,0-"·iccige exists about the type of the sentence as a whole:

<Sent type="yes-no question">
ls life so dear, or peace so sweet, as to be purchased at the price of chains and slavery?
</Sent>

Again, as emphasized throughout this section, such annotation could be.either applied
during creation of the XML documents (of the future) or inserted by independent process~s.
Such structure-detection processes may be motivated by a variety of needs and may exiSI
outside the ITS system per se.

.---nient Structure Detection ooc11
703

If 00 independent markup of sentence structure is available 1: • . . 1rom an external, inde-
pendently motivated document analysis or natural language system a ITS . .

. . . . , • , system typically
relies on simple mtemal heunst1cs to guess at sentence divisions. ln erna·i d h

1 • . • 1 an ot er re a-
tively infonnal written commumcat1ons. sentence boundaries may be very hard t d

1 I• h b k' o etect. n
con1rast to En~ is ' se_ntence rea mg could be_ trivial for some other written languages. In
Chinese, there 1s a ~es1gnated symbol (~ small circle ~) for marking the end of a sentence, so
!he sentence breaking could be done m a totally straightforward way. However, for most
Asian languages, such as Chinese, Japanese, and Thai. there is in general no space within a
sentence. Thus, tokenization is an important issue for Asian languages.

In more fonnal English writing. sentence boundaries are often signaled by terminal
punctuation from the set: { . ! ?) followed by whitespaces and an upper-case initial word.
Sometimes additional punctuation may trail the '?' and • !' characters, such as close
quotation marks and/or close parenthesis. The character '.' is particularly troubling, because
it is, in programming tenns, heavily overloaded. Apart from its uses in numerical
expressions and Internet addresses, its other main use is as a marker of abbreviation, itself a
difficult problem for text normalization (see Section 14.4). Consider this pathological
jumble of potentially ambiguous cases:

Mr. Smith came by. He knows that it costs $1 .99, but I don't know when he'll be
back (he didn't ask, "when should I return?")... His Web site is
www.mrsmithhhhhh.com. The car is 72.5 in . long (we don't know which park­
ing space he'll put his car in.) but he said" ... and the truth shall set you free," an
interesting quote.
Some of these can be resolved in the linguistic analysis module. However for some

cases, only probabilistic guesses can be made, and even a human reader may have d_ifficulty.
The ambiguous sentence breaking can also be resolved in an abbreviation-proc~sSmg mod­
ule (described in Section 14.4.1). Any period punctuation that is not taken to signal an ab-
b • . d f tence Of course, as we reviat1on and is not part of a number can be taken as en -o -sen • d
h • d that can naturally en sen-ave seen above abbreviations are also confusable with wor s (h k

• • • f the left context c ec -
lences, e.g., "in." For the measure abbreviations, an exammauon ~ f t ce breaking
• r h omplexrty o sen en
mg ior numeric) may be sufficient. In any case, t e c knowledgeable
ill . d letting later, more ustrates the value of passing multiple hypotheses an • • Algorithm

. . . • dule) make dec1s1ons.
modules (such as an abbreviation or lmgu1st1c analysis mo bl t handle most cases
14 I h • . • h hould be a e o • • s ows a simple sentence-breakmg algonthm t at s . . f the following kinds of

F d • ht d combmauon o . or a vanced sentence breakers, a weig e d .
1
·ng sentence boundanes

cons·ct • . • runs for etennm 1 erat1ons may be used in constructing algont
(ordered from easiest/most common to most sophiSticated): .

. ·s one of the most impor-
• Abbreviation processing-Abbreviation process_mgd

1
. detail in Section 14.4.

t • . • d ·11 be descnbe m ant tasks m text nonnahzauon an WI . d ment structure,
'" based on. ocu • Rules or CART built (Chapter 4) upon 1eatures

Whitespace, case conventions. etc. d
• S • • • • • I word likelihoo tatrsttcal frequencies on sentence-mttra

704 Text and Phonetic Analysis

• Statistical frequencies of typical lengths of sentences for various genres

• Streaming syntactic/semantic (linguistic) analysis-Syntactic/semantic analy­
sis is also essential for providing critical information for phonetic and pro­
sodic analysis. Linguistic analysis will be described in Section 14.5.

As you can see, a deliberate sentence breaking requires a fair amount of linguistic process­
ing, like abbreviation processing and syntactic/semantic analysis. Since this type of analysis
is typically included in the later modules (text normalization or linguistic analysis), it might
be a sensible decision to delay the decision for sentence breaking until later modules, either
text normalization or linguistic analysis. In effect, this arrangement can be treated as the
document structure module passing along multiple hypotheses of sentence boundaries, and it
allows later modules with deeper linguistic knowledge (text nonnalization or linguistic
analysis) to make more intelligent decisions.

Finally, if a long buffer of unpunctuated words is presented, TIS systems may impose
arbitrary limits on the length of a sentence for later processing. For example, the writings of
the French author Marcel Proust contain some sentences that are several hundred words long
(average sentence length for ordinary prose is about 15 to 25 words).

ALGORITHM 14.1 : A SIMPLE SENTENCE-BREAKING ALGORITHM

1. ff found punctuation ./!/? advance one character and goto 2.
else advance one character and goto 1.

2. If not found whitespace advance one character and goto 1.
3. If the character is period (.) goto 4.

else goto 5.
4. Perform abbreviation analysis.

If not an abbreviation goto 5.
else advance one character and goto 1.

5. Declare a sentence boundary and sentence type ./!/?
Advance one character and goto 1.

14.3.5. Email
• n eyes-busy situation such as

TIS could be ideal for reading email over the phone orl m ath t XML-tagged email s1r11c-
h. 1 Here again we can specu ate a h ality

when driving a motor ve IC e. . F 14 6 will be essential for big -qu
ture minimally something like the ex_~ple ~n igalu~:wi~g• skips and speedups of areas thhe

' fi tr Irng the audio mteuace, f n of eac prosody and or con o I . to announce the func io .
user ha; defined as less critical, and allow:!!eo?:::1 certainly has a different sem~t~~

block. For example, ~e sig (signatur1 lould be clearly identified as ~uch, or s~ifsrca;ed
function than the mam message text an_l stems are providing increasrngly sop
the listener's discretion. Modem ema1 sy

--- • t Structure Detection J)oCUmtD
705

Port for s1ructure annotation such as that exemplified in Figure
14 6

Ob .
sup be d . • • v1ously, the
mail document structure can etected only with appropriate tags (like XML)

1
.

t t d • • . t 1s very difficult for a TIS system o etect at automat,cally.

<message>
<header>

<date> I I June I 998</date>
<from> Leslie</from>
<to>Jo</to>
<subject>Surrs Up!</subject>

</header>
<body> ... </body>

<sig>Freedom'sjust another word for nothing left to lose</sig>
</message>

Figure 14.6 An example of email marked by XML.

14J.6. Web Pages

All lhe comments about ITS reliance on XML markup of document structure can be applied
: lbe case of IITML-marked Web page content as well. In addition to sections, headers,
~ paragraphs, etc., the ITS systems should be aware of XML/HTML conventions such

as bnk~ (<~ href=" ... ">link name) and perhaps apply some distinctive voice quality or
P:

0sadt
c patch contour to highlight these. The size and color of the section of text also pro­

_v1des useful hints for emphasis. Moreover the ITS system should aJso integrate the render-
mg of d. ' · ·

au to and video contents on the Web page to create a genuine multimedia expenence
_forlhe users. More could be said about the rendition of Web content, whether from underly-1

~g XML documents or HTML-marked documents prepared specifica!Jy for Web presenta­
bon. In addition, the World Wide Web Consortium has begun work on standards fo~ au~ 5
tyleshee1s th HTML • d special direcuon in at can work in conjunction with standard to provi e

aurai rendition [33].

14.3.7,
Dialog Turns and Speech Acts

Not all t . The more expressive
l'rs s ext to be rendered by a TIS system is standard wntte~ pros~ dialog in a spontane-
ous s~stems c~uld be tasked with rendering natural conversanon ~ d by XML markup of
its input¢s_w1th written documents, the TIS system has to :,C g:e;) and speech acts (the
illOO(j • anous systems for marking dialog turns (chang~ 0 spe and these annotations

and funcr •)3 ed for this purpose, od' Will lri tonal intent of an utterance are us The speech act c mg
&&er Particular phonetic and prosodic rules in TIS systems.

' lli~lllode . are described in de1ail in Chapter 17.
ling and the concepts of dialog rums and spuch acts

706 Text and Phonetic Analysis

schemes can help, for example, in identifying the speaker's intent with respect to an utter­
ance, as opposed to the utterance's structural attributes. The prosodic contour and voice
quality selected by the TIS system might be highly depe_ndent ?n this functional knowledge.

For example, a syntactically well-fanned question might be used as infonnation
solicitation, with the typical utterance-final pitch upturn as shown in the following:

<REQUEST_INFO>Can you hand me the wrench?<IREQUEST_INFO>

But if the same utterance is used as a command, the prosody may change drastically.

<DIRECTIVE>Can you hand me the wrench.<IDIRECTIVE>

Research on speech act markup-tag inventories (see Chapter 17) and automatic meth­
ods for speech act annotation of dialog is ongoing, and this research has the property consid­
ered desirable here, in that it is independently motivated (useful for enhancing speech
recognition and language understanding systems). Thus, an advanced TIS system should be
expected to exploit dialog and speech act markups extensively.

14.4. TEXT NORMALIZATION

Text often include abbreviations (e.g., FDA for Food and Drug Administration} and acro­
nyms (SWAT for Special Weapons And Tactics). Novels and short stories may include spo­
ken dialog interspersed with exposition; technical manuals may include mathematical
fonnulae, graphs, figures, charts and tables, with associated captions and numbers; email
may require interpretation of special conventional symbols such as emoticons (e.g., :-)
means smileys], as well as Web and Internet address formats, and special abbreviations
(e.g., IMHO means in my humble opinion). Again, any text source may include part num­
bers, stock quotes, dates, times, money and currency, and mathematical expressions, as well
as standard ordinal and cardinal formats. Without context analysis or prior knowledge, even
a human reader would sometimes be hard pressed to give a perfect rendition of every se­
quence of nonalphabetic characters or of every abbreviation. Text nonnalization (TN) is the
process of generating nonnalized orthography (or, for some systems, direct generation of
phones) from text containing words, numbers, punctuation, and other symbols. For example,
a simple example is given as follows:

The 7% Solution ~ THE SEVEN PER CENT SOLUTION

Text normalization is an essential requirement not only for TIS, but also for the
pre~~ation of training text corpora for acoustic-model and language-model constructi?0 ·~ ~
additwn, speech dictation systems face an analogous problem of inverse text nonnahzaoo
for docu~e~t creation from recognized words, and such systems may depend on knowle_dge
s_ources s1m1lar to those described in this section. The example of an inverse text norma1tza­
t1on for the example above is given as follows:

• For details of acoustic and language modeling, please refer to Chapters 9 and 11 .

Text Normalization
707

THE SEVEN PER CENT SOLUTION ➔ The 7% Solution

•fodular text normalization components, which may produce out t ~ 1 . in k h pu ,or mu t1ple down-
stream consumers, mar, up l e exemplary text along the following lines:

The <tn snor="SEVEN PER CENT">7%</tn> Solution

The snor tag stands for Standard Nonnalh!d Orthogr,~pti,·c Rei·•r , ,· s F . . ~ " , esen a um. or
TIS, input text _may mclude mu_lttsenten_ce paragraphs, numbers, dates, times, punctuation.
symbols of all kmds, ~s we!~ as mterpret1ve annotations in a TIS markup language. such as
tags for word emphasis or p1_tch range. Text analysis for ITS is the work of converting such
text into a stream of normalized orthography, with all relevant input tagging preserved and
new markup added to guide the subsequent modules. Such interpretive annotations added by
text analysis are critical for phonetic and prosodic generation phases to produce desired out­
put. The output of the text normalizer may be deterministic, or may preserve a full set of
interpretations and processing history with or without probabilistic infonnation to be passed
along to later stages. We once again assume that XML markup is an appropriate fonnat for
expressing knowledge that can be created by a variety of external processes and exploited by
a number of technologies in addition to TIS.

Since today's TIS systems typically cannot expect that their input be independently
marked up for text normalization, they incorporate internal technology to perform this func­
tion. Future systems may piggyback on full natural language processing solutions developed
for independent purposes. Presently, many incorporate minimal, TIS-specific hand-written
rules[!], while others are loose agglomerations of modular, task-specific statistical evalua­
tors [3].

For some purposes, an architecture that allows for a set or lattice of possible al~ema­
tive expansions may be preferable to detenninistic text normalization, like the n-~eSl hSlS or

d . •b d • Chapter 13 Altemattves known wo~ graph offered by the speech recognizers descn e m •
I h b•1• • th t may be Jeamable from data. 0 I e system can be listed and ranked by proba I ities a . 1 d
L . • h thesis) can either add know e ge ater stages of processing (linguistic analysis or speec syn . .. 8
10 the lattice structure or recover the best alternative, if needed. ConSider the fr_a~ment at

. h fl "bTty of wntmg conven-
am I • . . " in some informal writing such as email. Given t e hex1 , t ·c context seems to
tions fi · • r d ·ther A M (t e numen o~ pronunciation, am could be rea 1ze as ei . • • d be noted in a descriptive lat-
cue at limes) or the auxiliary verb am. Both alternatives coul T bl 14 2)
f f es if known (a e • • ice O covering interpretations, with confidence measur ..

fragment "At 8 am I • -• • Tabl 14 2 elations for sentence e Two altemauve mterpr

At 8 am I ... At <time> eight am </time> I •••

At 8 am I ... At <number> eight </number> am I •••

;------------- -~ nn way of writing words and sentences
SNQR, or Standard Normalized Onhographic Represenrntion, is a uni o uired as reference material for many

tlia1 e texts are req d stan-
Dc

corrcsponds to spoken rendition. SNOR-format sentenc . f Standards and Technology-sponsore
fense Ad N • al Insuwtes o d vanced Research Project Agency and auon

am speech technology evaluation procedures.

708
Text and Phonetic Analysis

If the potential ambiguity in the ~nterpretation ,of am in the above pai_r of examples is
. d . d the alternatives retained rather than suppressed, the choice can be made simply note . an . . . , .

1 ·t of syntactic/semantic processmg. Note anothe1 1eature of this example-the
by a ater s age . . 1 • h b · · ·

h . 1 ,,bbreviation form for antemendian, w 11c y prescnpt1ve convention hopes roug 1rregu ar u

that high-quality rrs processing can rely ent1_rely on standar~ stylistic conventions. That
observation also applies to the obligatory use ot "?" for all questions.

Specific architectures for the text normalization componen_t of TT~ may be highly
variable, depending on the system architect' s answers to the following questions:

• Are cross-functional language processing resources mandated, or available?

• If so, are phonetic forms, with stress or accent, and nonnalized orthography,

available?

• Js a full syntactic and semantic analysis of input text mandated, or available?

• Can the presenting application add interpretive knowledge to structure the in­
put (text)?

• · Are there interface or pipelining requirements that preclude lattice alterna­
tives at every stage?

Because of this variability in requirements and resources, we do not attempt to for­
mally specify a single, all-purpose architectural solution here. Rather, we concentrate on
describing the text nonnalization challenges any system has to face. We note where solu­
tions to these challenges are more readily realized under particular architectural assump­
tions.

All text nonnalization consists of two phases: identification of type, and expansion to
SNOR or other unambiguous representation. Much of the identification phase, dealing with
phenomena of sentence boundary determination, abbreviation expansion, number spell-out,
etc., can be modeled as regular expression (see Chapter JI) . This raises an interesting archi­
tectural issue. Imagine a system based entirely on regular finite state transducers (FST, see
Cha~ter 11), as in (27], which enforces an appealing unifonnity of processing mechanism
and mte~al structure description. The FST pennits a lattice-style representation that does
not require premature resolution of any structural choice. An entire text analysis system can
~e based on such a representation. However, as long as a system confines its attention to
issues that c~m~only come under the heading of text nonnalization, such as number for­
mats, a~breviations, and sentence breaking, a simpler regular-expression-based uniform
mechanism for rule specification and structure representation may be adequate.

Alternatively, ITS systems could make use of advanced tools such as, for example,
the lex and yacc tools [17], which provide frameworks for writing customized lexical ana­
lyze_rs ~nd context-free grammar parsers, respectively. In the discussion of typical text nor­
mahzat1on re~uirements below, examples will be provided and then a fragment of Perl
~attern-mat~hmg code will be shown that allows matching of the examples given. Perl nota-
llOn (36] 1s used as · . gular . . • a convenient short-hand representing any equivalent re
expressmnparsmg system and can be regarded as a subset of the functionality provided by
any regular expression FST rchitect

• • or context-free grammar tool set that a TTS software a
may choose to employ. Only a small subset of the simple, fairly standard Perl conventions

Text Nor~alization 709

to employ. Only a small subset of the simple, fairly standard Perl conventions for regular
expression matching are used, and comments are provided in our discussion of text
normalization.

A text nonnalizntion system typically adds identification information to assist subse-
uent stages in their tasks. For example, if the TN subsystem has determined with some con­

idence that a given digit string is a phone number, it can associate XML-like tags with its
output, identifying the corresponding normalized orthographic chunk as a candidate for spe­
cial phone-number intonation. In addition, the identification tags can guide the lexical dis­
ambiguation of tenns for other processes. like phonetic analysis in TIS systems and training
data preparation for speech recognition.

Table 14.3 shows some examples of input fragments with a relaxed form of output
normalized orthography. It illustrates a possible ambiguity in TN output. In the (contrived)
example, the ambiguity is between a place name and a hypothetical individual named per­
haps Steve or Samuel Asia. Two questions arise in such cases. The first is format of specifi­
cation. The data between submodules in a TI'S system can be passed (or be placed in a
centrally viewable blackboard location) as tagged text or in a binary format. This is an im­
plementation detail. Most important is that all possibilities known to the TN system be
specified in the output, and that confidence measures from the TN, if any, be represented.
For example, in many contexts, South Asia is the more likely spell-out of S. Asia, and this
should be indicated implicitly by ordering output strings, or explicitly with probability num­
bers. The decision could then be delayed until one has enough information in the later mod­
ule (like linguistic analysis) to make the decision in an infonned manner.

Table 14.3 Examples of the normalized output using XML-like tags for text nonnalization .

. Dr~ King <title> DOCTOR </title> KING

7% <number>SEVEN<ratio>PERCENT</ratio> </number>

S.Asia <toponym> SOUTH ASIA </toponym>

OR <psn name><initial>S</initial>ASIA</psn_name>

14,4.1. Abbreviations and Acronyms

As noted above, a period is an important but not completely reliable clue to the presence of
~ ~bbreviation. Periods may be omitted or misplaced in text for a variety of reasons. For
s1m l • 1· • 1 ar reasons of stylistic variability and a writer's (lack of) care and skill, capita ization,
3:"0ther potentially important clue can be variable as well. For example, all the repre~enta­
llons of th ' d • tu I mrul and . e abbreviation for post script listed below have been observe in ac a
email A • f ntextual sources, • system must therefore combine knowledge from a vanety O co
-~~ • • cument structure and origin, when resolving abbrev1at1ons:

710

PS. Don 'tforget your hat.
Ps. Don 't forget your hat.
P.S. Don't forget your hat.
P.s. Don 'tforget your hat.

Text and Phonetic Analysis

And P.S., when examined out of context, could be personal name initials as well. Of
course, a given TIS system's user may be satisfied with the simple spoken output 11, iy ae sf

in cases such as the above, obviating the need for full interpretation. But at a minimum
when fallback to letter prommciation is chosen, the TIS system must attempt to ensure tha~
some obvious spell-out is not being overlooked. For example, a system should not render the
title in Dr. Jones as Jetter names Id iy aa rl.

Actually, any abbreviation is potentially ambiguous, and there are several distinct
types of ambiguity. For example, there are abbreviations, typically quantity and measure
terms, which can be realized in English as either plural or singular depending on their nu­
meric coefficient, such as mm for millimeter(s). This type of ambiguity can get especially
tricky in the context of conventionally frozen items. For example, 9mm ammu11itio11 is typi­
cally spoken as nine millimeter ammunition rather than nine millimeters ammunition.

Next, there are forms that can, with appropriate syntactic context, be interpreted either
as abbreviations or as simple English words, such as in (inches), particularly at the end of
sentences.

Finally, many, perhaps most, abbreviations have entirely different abbreviation spell­
outs depending on semantic context, such as DC for direct current or District of Columbia.
This variability makes it unlikely that any system ever performs perfectly. However, with
sufficient training data, some statistical guidelines for interpretation of common abbrevia­
tions in context can be derived. Table 14.4 shows a few more examples ofthis most difficult
type of ambiguity.

An advanced ITS system should attempt to convert reliably at least the following ab·
breviations:

• Title-Dr., MD, Mr., Mrs., Ms., St. (Saint), . . . etc.

• Measure-ft., in., mm, cm (centimeter), kg (kilogram), ... etc.

• Place names-CO, LA, CA, DC, USA, St. (street), Dr. (drive), . .. etc.

Table 14.4 Some ambiguous abbreviations.

co Colorado commanding officer

conscientious objector carbon monoxide

IRA Individual Retirement Account Irish Republican Army

MD Maryland doctor of medicine

muscular dystrophy

-- • 1· rext Normahza ,011 711

Abbreviation disambiguation usually can be resolved by POS (part-of-speech) analy­
. For example, whether Dr. is Doctor or Dri1·e can be resolved by examining the POS

;~:tures of the previous and following words. Tf the abbreviation is followed by a capitalized
~onal name, it can be expanded as Doctor. whereas if the abbreviation is preceded by a

:pitalized place name, a number, or_ an alphanm~eric (li~e I 20'"). i~ ~ill be expanded as
Dril'e. Although the example above 1s resolved via a series of heuristic rules, the disam­
biguation (POS analysis) can also be done by a statistical approach. In [6], the POS Lags are
determined based on the most likely POS sequence using POS trigram and lexical-POS uni­
gran1. Since an abbreviation can often be distinguished by its POS feature, the most likely
POS sequence of the sentence discovered by the trigram search then provides the best guess
of lhe P0S (thus the usage) for abbreviations. We describe POS tagging in more detail in
Section 14.5.

Other than POS information, the lexical entries for abbreviations should include all
features and alternatives necessary to generate a lattice of possible analyses. For example, a
typical abbreviation's entry might include information as to whether it could be a word (like
in), whether period(s) are optional or required, whether plural variants must be generated
and if so under what circumstances, whether numerical specification is expected or required,
etc.

Acronyms are words created from the first letters or pans of other words. For example,
SCUBA is an acronym for selj:contained underwater breathing apparatus. Generally, to
qualify as a true acronym, a Jetter sequence should reflect norn1al language phonotactics,
such as a reasonable alternation of consonants and vowels. From a TTS system's point of
view, the distinctions between acronyms, abbreviations, and plain new or unknown words
can be unclear. Many acronyms can be entered into the ITS system lexicon just as ordinary
words would be. However, unknown acronyms (not listed in the lexicon) may occasionally
~en:~untered. Although an acronym's case property can be a significant clue to identifica-
on, 111s often unclear how to speak a given sequence of upper-case letters. Most TIS sys­

tems, failing to locate the sequence in the acronym dictionary, spell it out letter-by-letter.
Other systems attempt to detennine whether the sequence is inherently speakable. For ex­
ample, DEC might be inherently speakable, while FCC is not formed according to nonnal
~0rd phonotactics. When something speakable is found, it is processed via the nonnal letter­
o..sound rules, while something ims•)eakable would be spelled out letter-by-letter. Yet other
ij~ . t s .

em_s might simply feed the sequence directly to the letter-to-sound rules (see ecuo_n
14.8), Just as they would any other unknown word. As with all such problems. a larger lexi-
con usuall . Y provides superior results. . •
· The general al 0 orithm for abbreviations and acronyms expansion in text normahzat~on

h
is summarized in Al;or1'thm 14 2 The algorithm assumes that tokenization and POS taggmsg
av be O • • ' • • • d b the PO ta e en done for the whole sentence. Abbreviation expanSion is determine Y . 1 b

ta:: of the potential abbreviation candidates. Acronym expansion is don\ extus;~: th~
e lookup, and letter-by-letter spell-out is used when acronyms cannot e oun

acronym table.

712
Text and Phonetic Analysis

ALGORITHM 14.2: ABBREVIATIONS AND ACRONYMS EXPANSION

1. If word token w is not in abbreviation table and w contains only capital letters goto 3.
2. Abbreviation Expansion

If the POS tag of wand the correspondent abbreviation match
Abbreviation expansion by inserting SNOR and interpretive annotation lags
Advance one word and goto 1.

3. Acronym Expansion
If w is in the predefined acronym table
Acronym expansion by inserting SNOR and interpretive annotation tags
according to acronym expansion table
else spell out w letter-by-letter

4. Advance one word and goto 1.

14.4.2. Number Formats

Numbers occur in a wide variety of formats and have a wide variety of contextually depend­
ent reading styles. For example, the digits 370 in the context of the product name IBM 370
mainframe computer typically are read as three seventy, while in other contexts 370 would
be read as three hundred seventy or three hundred and seventy. In a phone number, such as
370-1111, the string would normally be read as three seven oh, while in still other contexts it
might be rendered as three seven zero. A text analysis system can incorporate rules, perhaps
augmented by probabilities, for these situations, but might never achieve perfection in all
cases. Phone numbers are a practical place to start, and their treatment i1lustrates some of the
general issues relevant to the other number formats which are covered below.

14.4.2.1. Phone Numbers

Phone numbers may include prefixes and area codes and may have dashes and parentheses
as separators. Examples are shown in Table J 4.5.

~e first_ two examples have prefix codes, while the next four have area codes witb
mmor tonnattmg differences. The final two examples are possible international-format
phone numbers. A basic Perl regular expression pattern to subsume the commonality in all
the local domestic numbers can be defined as foJiows:

$us_basic = • ([0-9]{ 3 }\-[Q-gJ{4 }) ';

This defines a pattern subpart to match 3 digits followed by a separator dash, fol-
lowed by another 4 dig· t Th th ' 1 s. en e pattern to match the prefix type would be:

/({0-9] {l}) [\/ -] ($us_basic)/

Tfd Normalization 713

Table 14.5 Some different written representations of phone numbers.

9-999-4118

9 345-5555

(617) 932-9209

(6 I 7) 932-9209

716-123-4568

409/845-2274

+49 (228) 550-381

+49-228-550-381

In the first example above, this leaves the system pattern variable $1 (corresponding to
the first set of capture parentheses in the pattern) set to 9, and $2 (the second set of capture
parentheses) set to 999-4118. Then a separate set of tables, indexed by the rule name and the
pattern variable contents, could provide orthographic spell-outs for the digits. Clearly a bal­
ance has to be struck between the number of pattern variables provided in the expression and
the overall complexity of the expression, vis-a-vis the complexity and sophistication of the
indexing scheme of the spell-out tables. For example, the $us_basic could be defined to in­
corporate parentheses capture on the first three digits and the remaining four separately,
which might lead to a simpler spell-out table in some cases.

The pattern to match the area code types could be:

/(\([0-9]{3)\)) [\/ -) ($us_basic)/

Th~se patterns could be endlessly refined, expanded, and layered to match stri~gs of ~l~oSt

arbl!rary complexity. A balance has to be struck between number and complexity of d•Stmct
partems. In any case, no matter how sophisticated the matching mechanism, arbitrary or ~t
beSt probabilistic decisions have to be made in constructing a TIS syStem. For exam~le, m
matching an area code type the rule architect must decide how much and what Jcjnd of
Whitespace separation the m;tching system tolerates between the area code and the reSt of
lhe number before a phone-number match is considered unlikely. Or, as another example,
does the rule architect allow new lines or other fonnatting characters to apperu: ~etween ~e
area code and the basic phone number? These kinds of decisions must be exphc1tly cons1d-

d d • er documenta-
~re 'or made by default and should be specified to a reasonable egree m us d th
hon Th ' r d issues that are beyon e

• ere are a great many other phone number ionnats an
scope of this tre atment. . rmalized orthography, the

Once a certain type of pattern requires a conversion to no be aligned
quest" . . Th version characters can

. 10n of how to perform the conversion anses. e con . th pattern matching
With th ·ct . . . • p!icitly dunng e e I ent1fication so that converswn occurs •m . .fi · hase This may
proces A ' • f m the 1dentl 1cauon P •

s. nother way is to separate the conversion ro d depending on the
or may not lead to gains in efficiency and elimination of redun ancy,

714
Text and Phonetic Analysis

overall architecture of the system and whether and how components are expected to be re­
used. A version of this second approach is sketched here.

Suppose that the pattern match variable $1 has b~en set to 617 by o_ne of the identifica­
tion-phase pattern matches described above. Another hst can provide pointers to conversion
tables, indexed by the rule name or number and the variable name. So for the rule that can
match area codes, the relevant entry would be:

Identification rule
Area-Phone

Variable
$1

Spellout table
LITERAL_DIGIT

The LITERAL_DIGIT spell-out rule set, when presented with the 617 character se­
quence (the value of $I), simply generates the nonnalized orthography six one seven, by
table lookup. In this simple and straightforward approach, spell-out tables such as LIT­
ERAL_DIGIT can be reused for portions of a wide variety of identification rules. Other
simple numeric spell-out tables would cover different styles of numeric reading, such as
pairwise style (e.g., six seventeen), full decimal with tens, hundreds, thousands units (six
hundred seventeen), and so on. Some spellout tables may require processing code to sup­
plement the basic table lookup. Additional examples of spell-out tables are not provided for
the various other types of text normalization entities exemplified below, but would function
similarly.

14.4.2.2. Dates

Dates may be specified in a wide variety of formats, sometimes with a mixture of ortho­
graphic and numeric forms. Note that dates in TIS suffer from a mild form of the century•
date-change uncertainty (the infamous Y2K bug), so a fonn such as sn /37 may in the future
be ambiguous, in its full form, between 1937 and 2037. The safest course is to say as little as
possible, i.e., "five seven thirty seven", or even "May seventh, thirty seven", rather than at­
tempt "May seventh, nineteen thirty seven". Table 14.6 shows a variety of date fonnats and
associated normalized orthography.

Table 14.6 Various date formats.

12/19/94 (US) December nineteenth ninety four
19/12/94 (European) December nineteenth ninety four
04/27/1992 April twenty seventh nineteen ninety two
May 27, 1995

May twenty seventh nineteen ninety five
July 4, 94 July fourth ninety four
1,994

one thousand nine hundred and ninety four
1994

nineteen ninety four

WI Normalization
71S

One issue that comes up with certain number formats, including date •
9/94 · b · . s, 1s range check-

·ng. A fonn like 13/1 1s as1cally uninterpretable as a date. This kind of h k' ·r
1 . • " al h' b . c ec mg, ,
·ocluded m the mill pattern mate mg, may e slow and may increase t·ormal .
1 . requirements
for power of the pattern matching system. Therefore, range checking can be do t 11_

d · 1· ne a spe
out time (se~ below) unng norma 1z~d ~rthog'.aphy generation, as Jong as a backtracking or
redo option 1s p'.esent. If range checking 1s_desired as part of the basic identification phase of
text normalization, _some regular ~xpress1on matching systems allow for extensions. For
example, the foll?wm~ pattern vana~le matches only numbers less than or equal to 12, the
valid month spec1ficauons. It can be included as part of a larger, more complex date match­
ingpattem:

$month= '/(0[1 23456789]/1[012)/'

14.4.2.3. Times

Times may include hours, minute, seconds, and duration specifications as shown in Table
14.7. Time fonnats exemplify yet another area where linguistic concerns have Lo intersect
with architecture. If simple, flat normalized orthography is generated during a text normali­
zation phase, a later stage may still find a fonn like am ambiguous in pronunciation. If a
lattice of alternative interpretations is provided, it should be supplemented with interpretive
information on the linguistic status of the alternative text analyses. Alternatively, a single
best guess can be made, but even in this case, some kind of interpretive information indicat­
ing the status of the choice as, e.g., a time expression, should be provided for later stages of
syntac~ic, semantic, and prosodic interpretation. This reiterates the importance of TT~ text
analysis systems to generate interpretive annotations tags for subsequent mod~les use
whenever possible, as discussed in Section J 4.4. In some cases, unique text forma_tn~g of the
ch • ffi • Th t s m some oice, corresponding to the system's lexical contents, may be su icient. a .1 • ,
5Ystems, generation of A.M., for example, may uniquely correspond to th~ l~xicon s entry
for that • . ' fi th des,·red pronunc1at1on and gram­. portion of a time expression, which spec1 1es e
tnahcal treatment.

Table 14 7 Several examples for time expressions. -_!,1:15 eleven fifteen

~8:30 pm eight thirty pm
5:20 am ·- five twenty am

_12:15:20 . d twenty seconds twelve hours fifteen minutes an

~7:55:46
. d forty-six seconds

seven hours fifty-five minutes an -

716 Text and Phonetic Analysis

14.4.2.4. Money and Currency

As illustrated in Table 14.8, money and currency processing should correctly handle at least
the currency indications $, £, DM, ¥, and €, standing for dollars, British pounds, deutsche
marks, Japanese yen, and euros, respectively. In general, $ and £ have to precede the nu­
meral; DM, ¥, and € have to follow the numeral. Other currencies are often written in full
words and have to follow the numeral, though abbreviations for these are sometimes found,
such as JOO francs and 20 lira.

Table 14.8 Several money and currency expressions.

$40 forty dollars

£200 two hundred pounds

5¥ five yen

25DM twenty five deutsche marks

300 € three hundred euros

14.4.2.5. Account Numbers

Account numbers may refer to bank accounts or social security numbers. Commercial prod­
uct part numbers often have these kinds of fonnats as well. In some cases these cannot be

readily distinguished from mathematical expressions or even phone numbers. Some exam­
ples are shown below:

123456-987-125456
000-1254887-87
049-85-5489

The other popular number format is that of credit card number, such as

4446-2289-2465-7065
3745-122267-22465

To process formats like these, it may eventually be desirable for TIS systems to pro­
vide customization capabilities analogous to the pronunciation customization feature~ fo;
words found in current ITS systems. Regular expression formalisms of the type exemphfie
b & • • • gh suitable a ove ,or phone number, would, 1f exposed to apphcallons and developers throu

editors, be adequate for most such needs.

r,st Nom1aliz11tion 717

14.4.2,6. Ordinal Numbers

Ordinal numbers are those referring to rank or placemenl in • • E • a series. xamples include:
• ?.i 3•• 4th , o•h 11th 12~· ., th th 1,- I > ' t t I -_o ! 100, 100011

', etc.
1st, 2nd, 3rd, 4th, 10th, 11th, 12th, 20th, 21st. 32nd, I 00th, I 000th. etc.

The system's ordinal processing may also be used to h • • ~
1

. generate t e denommators of
froctrons, except or haves, as shown in Table 14.9. Notice that the ord' I
for numerators other than 1. ma must be plural

Table 14.9 Some examples of fractions.

1/2 one half

1/3 one third

1/4 one quarter or one fourth

l/10 one tenth

3/10 three tenths

14•4•2,7, Cardinal Numbers

C d. ar ma! numbers are, loosely speaking, those forms used in simple counting or the state-
ment of amo ts If • abo . un • a given sequence of digits fails to fit any of the more complex fonnats

ve, It may be a simple cardinal number. These may be explicitly negative or positive or
~sumed positive. They may include decimal or fractional specifications. They may be read
1~ several different styles, depending on context and/or aesthetic preferences. Table 14.10
gives some examples of cardinal numbers and alternatives for normalized orthography.
th The number-expansion algorithm is summarized in Algorithm J 4.3. In this algorithm

e le~t normalization module maintains an extensive pattern table. Each pattern in the table
contains it • • 1 • th • ter to a ru . s associated pattern in regular expression or Perl format a ong wi a pom

le in the co • • nvers1on table, which guides the expansion process.

Table 14.10 Some cardinal number types.

123
i-__ one two three

one hundred (and) twenty three

1,230 one thousand two hundred (and) thirty _ --=---
2426

L two four two six
twenty four twenty six -

------ two thousand four hundred (and) twenty six

718
Text and Phonetic An~

I ession to match well-formed cardinals with commas grouping chunks of A regu ar expr .
three digits of the type from 1,000,000 to 999,999,999 might appear as:

" f ($item=- /"((0-9]{1,3}), ((0-9]{3}), ([0-9]{3})/
1

{ $NewFrame-> {"millions"} ;:: $1;
$NewFrame->{"thousands"} = $2;
$NewFrame->{"hundreds"} = $3;

d d • 1 found· $1"tem\n",· print "Groupe car ina -
return $NewFrame; }

ALGORITHM 14.3: NUMBER EXPANSION

1. Pattern Matching
If a match is found goto 2.
else goto 3.

2. Number Expansion
Insert SNOR and interpretive annotation tags according to the associated rule
Advance the pointer to the right of the match pattern and goto 1.

3. Finish

14.4.3. Domain-Specific Tags

In keeping with the theme of this section-that is, the increasing importance of independ•
ently generated precise markup of text entities-we present a little-used but interesting ex­
ample.

14.4.3.1. Mathematical Expressions

Mathematical expressions are regarded by some systems as the domain of speciaJ-pu~ose
processors. It is a serious question how far to go in mathematical expression parsing, since
providing some capability in this area may raise users' expectations to an unrealistic level.
The World Wide Web Consortium has developed MathML (mathematical markup language)
£341. which provides a standard way of describing math expressions. MathML is an XML
extension for desc ·b· h . bl mathemat· . n mg mat emattcal expression structure and content to ena e
ics to be served, received, and processed on the Web similar to the function HTML has per~
formed for text As XML b . . • "bly be use

. . • ecomes mcreasmgly pervasive MathML could possi "ble
to guide 1nterpretaf f . ' 2)~ a poss1
M thM ton o mathematical expressions. For the notation (x + k 11 a L represe t • . , spo e . . n ation such as that below might serve as an initial guide ,or a
rendition.

----=~~:-------- ---- ----- --- -----­rcxl Normalization

<EXPR>
<EXPR>

X

<PLUS/>

2
</EXPR>
<POWER/>

2
</EXPR>

719

This might be generated by an application or by a specialized preprocessor within the ITS
system itself. Prosodic rules or data tables appropriate for math expressions could then be
triggered.

14.4.3.2. Chemical Formulae

As XML becomes increasingly common and exploitable by TIS text normalization, other
areas follow. For example, Chemical Markup Language (CML [221) now provides a stan­
dard way to describe molecular structure or chemical formulae. CML is an example of how
standard conventions for text markup are expected increasingly to replace ad hoc, ITS­
intemal heuristics.

In CML, the chemical formula cpCOH~ would appear as:

<FORMULA>

<XVAR BUILTIN="STOICH">
ccocoHHHH
</XVAR>

</FORMULA>

I . f th f rure will be increasingly de-1 seems reasonable to expect that TIS engines O e u . . th h
voted to interpreting such prec1se conventions in high-quality speec~ rendttl?nsthra _edr tt~tny
end! I • th ceed in auessrng e I en 1

ess Y replicating NL heuristics that fail as often as ey sue "'
of raw text strings.

14•4•4• Miscellaneous Formats
h• h an En"lish­A rand . . f henomena for w ic o

0
• om hst illustrating the range of other types O P d hography might include:

nented Trs text analysis module must generate normalize ort
a rvximately before (Ara-

• ~pproximately/tilde: The symbol - is s~ok~ni::h::haracter named tilde.
bic) numeral or currency amount, otherwise it

720 Text and Phonetic Analysis

• Folding of accented Roman characters to nearest plain version: If the ITS
system has no knowledge of dealing with foreign languages, like French or
German, a table of folding characters can be provided so that for a term such
as Uber-mensch, rather than spell out the word Uber, or ignore it, the system
can convert it to its nearest English-orthography equivalent: Uber. The ulti­
mate way to process such foreign words should integrate a language identifi­
cation module with a multi-lingual ITS system, so that language-specific
knowledge can be utilized to produce appropriate text no1malization of all
text.

• Rather than simply ignore high ASCII characters in English (characters from
128 to 255), the text analysis lexicon can incorporate a table that gives char­
acter names to all the printable high ASCII characters. These names are ei­
ther the full Unicode character names, or an abbreviated form of the Unicode
names. This would allow speaking the names of characters like © (copyright
sign), ™ (trademark), @ (at), ® (registered mark), and so on.

• Asterisk: in email, the symbol '*' may be used for emphasis and for setting
off an item for special attention. The text analysis module can introduce a lit­
tle pause to indicate possible emphasis when this situation is detected. For the
example of "Larry has *never* been here," this may be suppressed for aster­
isks spanning two or more words. In some texts, a word or phrase appearing
completely in UPPER CASE may also be a signal for special emphasis.

• Emoticons: There are several possible emoticons (emotion icons).

1. :-) or:)

2. :-(or:(

3. ;-)or;)

SMILEY FACE (humor, laughter, friendliness, sarcasm)

FROWNING FACE (sadness, anger, or disapproval)

WINKING SMILEY FACE (naughty)

4. :-D OPEN-MOUTHED SMILEY FACE (laughing out loud)

Smileys, of which there are dozens of types, may be tacked onto word start or word
end or even occur interword without spaces, as in the following examples.

:)hi!

Hi:)

Hi:)Hi!

14.5. LINGUISTIC ANALYSIS

Linguistic analysis (sometimes also referred to as syntactic and semantic parsing) of natural
language (NL) constitutes a major independent research field. Often commercial TTS sys­
tems incorporate some minimal parsing heuristics developed strictly for TIS. Alternatively,
the ITS systems can also take advantage of independently motivated natural language proc-

Linguistic Analysis 721

essing (NLP) system_s, which can produce structural and semantic information about sen­
tences. Such 1inguist1c~lly analyz~d docume~ts can be used for many purposes other than
'!1S-infonnation retneval, '.11achme t:~nsl~t,on system training, etc.

Provision of some parsing capabtltty ts useful to TIS systems in several areas. Parsers
may be used in _disambig_uating th~ text normalization altemativ~s described above. Addi­
tionally, syntacttc/semanttc analysis can help to resolve grammatical features of individual
words that may vary in pronunciation according to sense or abstract inflection. such as read.
Finally. parsing can lay a foundation for derivation of a prosodic structure useful in deter­
mining segmental duration and pitch contour.

The fundamental types of infonnation desired for TIS from a parsing analysis are
summarized below:

• Word part of speech (POS) or word type, e.g., proper name or verb.

• Word sense, e.g., river bank vs. money bank.

• Phrasal cohesion of words, such as idioms, syntactic phrases, clauses, sen-
tences.

• Modification relations among words.
• Anaphora (co-reference) and synonymy among words and phrases.

• Syntactic type identification, such as questions, quotes, commands, etc.

• Semantic focus identification (emphasis).
• Semantic type and speech act identification, such as requesting, informing,

narrating, etc.

• Genre and style analysis.

H . f . , t' n that a good parser could,
ere we confine ourselves to discussion of the kind o in,onna 10

in principle, provide to enable the TIS-specific functionality· . • bases The
Linguistic analysis supports the phonetic analysis and proso4d71c genderla4u8on AP ling~istic

d • s • 14 6 1 an • • mo ules of phonetic analysis are covered 10 ecuons • •. (. ' mbolic) phonetic forms
Parse • • th ocess of generaung sy r can contnbute in several ways to e pr . rovide accurate part-
from orthographic words found in text. One function of a parser 1~ tu~ ~ of several hundred
of s h - • lving the pronunc1a O • • peec (POS) labels. This can aid tn reso H ographs are discussed in

American English homographs, such as object a_nd . a~se11t~if io;1 names and other special
greater detail in Section 14.6. Parsers can also aid_,~ idenle ~el; may exist [32).
classes of vocabulary for which specialized pronunc1auonfru ntal duration and pitch con-

p ' th 'gnment o segme • rosody generation deals mainly w1 ass1 . 1 cement) and accentuauon.
lour that have close relationship with prosodic phrasing (pauset.~ ~ype of an utterance. (e.g.,
Pars· . ch as the syntac t h b th are tng can contribute useful information, su • contours, thoug 0

Yes/no question contours typically differ from wh-que_stton of synonymy. anaphora, and
ma k d antic relattons aly r e simply by '?' in text) as well as sem . I r rmation from discourse an -
focu th • ' d'c phrasing. nlo • Further . s at may affect accentuation and proso 1 . d voice quality settmgs.
sis and ff t pitch range an text genre characterization may a ec

722
Text and Phonetic Analysis

. • f the contribution of parsing specifically to prosodic phrasing, accentuation exammat1on o ,
and other prosodic interpretation is provided in_Chapter 15. . .

As mentioned earlier, TIS can employ either a general-purpose NL analysis engine or
• r e of a number of very narrowly targeted, special-purpose NL modules together for

a pipe m h t r · · ·
the requirement of TIS linguistic analysis . Altho~g we ocus on mgu_1st1c mf~rmation for
supporting phonetic analysis and prosody gener~t1on here, a lot of ~e '.nformat1_on and ser­
vices are beneficial to document structure detection and text normahzat1on descnbed in pre-

vious sections.
The minimum requirement for such a linguistic analysis module is to include a lexicon

of the closed-class function words, of which only several hundred exist in English (at most),
and perhaps homographs. In addition, a minimal set of modular functions or services would

include:

• Sentence breaki11g-Sentence breaking has been discussed in Section 14.3.4
above.

• POS tagging-POS tagging can be regarded as a two-stage process. The first
is POS guessing, which is the process of determining, through a combination
of a (possibly small) dictionary and some morphological heuristics or a spe­
cialized morphological parser, the POS categories that might be appropriate
for a given input term in isolation. The second is POS choosing-that is, the
resolution of the POS in context, via local short-window syntactic rules, per­
haps combined with probabilistic distribution for the POS guesses of a given
word. Sometimes the guessing and choosing functions are combined in a sin­
gle statistical framework. In (6), lexical probabilities are unigram frequencies
of assignments of categories to words estimated from corpora. In the original
formulation of the model, the lexical probabilities [P(c; I w;) , where C; is the
hypothesized POS for word w,], were estimated from the hand-tagged Brown
corpus [8]. For Example, the word see appeared 771 times as a verb and
once as an interjection. Thus the probability that see is a verb is estimated to
be 77In72 or 0.99. Trigrams are used for contextual probability
[P(c, I c,_,c,_2 • • ·C1) = P(c, I c,_,c,_2)]. Lexical probabilities and trigrams over
category sequences are used to score all possible assignments of categories to
worcis for a given input word sequence. The entire set of possible assign­
ments of :ategories to words in sequence is calculated, and the best-scoring
sequence is used. Likewise, simple methods have been used to detect noun
phrases (NPs), which can be useful in assigning pronunciation, stress, and
pro~ody. The method described in (6] relies on a table of probabilities for in­
serting an NP begin bracket '(' between any two POS categories, and simi­
larly for an NP end bracket ']'. This was also trained on the POS-labeled
Brown _c_orpus, with further augmentation for the NP labels. For example, tbe
probability of inserting an NP begin bracket after an article was found to be

Linguistic Analysis

much lower than that of begin-bracket insertion between a verb and a
thus automatically replicating human intuition. noun,

, Homograph disambiguation-Homograph disambiguation in general refers
to the case of_ words with the_ same o~hographic representation (written form)
but having d1ffere~t sen~a~ttc meanmgs and sometimes even different pro­
nunciations. Sometimes 1t ts also r~ferred as sense disambiguation. Examples
include "The boy used the bat to htt a home run" vs. "We saw a large bat in
the zoo" (the pronunciation is the same for two bat) and "You record your
voice" vs. "I'd like to buy that recorcf' (the pronunciations are different for
the two record). The linguistic analysis module should at least try to resolve
the ambiguity for the case of different pronunciations because it is absolutely
required for correct phonetic rendering. Typically, the ambiguity can be re­
solved based on POS and lexical features. Homograph disambiguation is de­
scribed in detail in Section 14.6.

• Noun phrase (NP) and clause detection-Basic NP and clause information
could be critical for a prosodic generation module to generate segmental du­
rations. It also provides useful cues to introduce necessary pauses for intelli­
gibility and naturalness. Phrase and clause structure are well covered in any
parsing techniques.

• Sentence type identification-Sentence types (declarative, yes-no question,
etc.) are critical for macro-level prosody for the sentence. Typical techniques
for identifying sentence types have been covered in Section 14.3.4.

723

If a more sophisticated p·arser is available, a richer analysis can be derived. A so-called
shallow parse is one that shows syntactic bracketing and phrase type, based on lhe POS of
words contained in the phrases. A training corpus of shallow-parsed sentences has been cre­
ated for the Linguistic Data Consortium [16]. The following example illuSlra~e.s. a sh~llow
parse for sentence: "For six years, Marshall Hahn Jr. has made corporate acqms1ttons m the
George Bush mode: kind and gentle."

For/IN[six/CD years/NNS] / [T. /NNP Marshall/NNP . .
H hn ' ' J quisi-
a INNP Jr./NNP)has/VBZ made/ VBN[corporate/J ac

tions / NNS] in/IN[the/DT George/ NNP Bush/NNP mode / NN]

:/: [kind/JJ] and/CC [gentle/JJ] . / .

The POS . · Ch t r 2 (Table 2.14). A TIS
system labels used in this example are described m ap e . t·

5
and to assign

uses the POS I . 'd lt tive pronuncia ion differi abets m the parse to dec1 e a ema . . ht assist in decid-
. ng degrees f • . dd' • II the bracketmg mtg ing Wh o prosodic prominence. A 1t1ona Y, Id •ncorporate more
higher erect to place pauses for great intelligibility. A fuller parse wou s:mantic analysis,
. ·or er stru t . . 'd .fi t1'on and more •ncludin c ure, mcludmg sentence type I entl 1ca •

g co-reference.

724 Text and Phonetic Analysis

14.6. HOMOGRAPH DISAMBIGUATION

For written languages, sense ambiguities occur when words have different syntac­
tidsemantic meanings. Those words with different senses are called polysemous words. For
example, bat could mean either a kind of animal or the equipment to hit a baseball. Since the
pronunciations for the two different senses of bat are identical, we are in general only con­
cerned6 about the other type of polysemous words that are homographs (spelled alike but
vary in pronunciation), such as bass for a kind of fish (lb ae sl) or an instrument (lb ey s/).

Homograph variation can often be resolved on POS (grammatical) category. Examples
include object, minute, bow, bass, absent, etc. Unfo11unately, correct determination of P0S
(whether by a parsing system or statistical methods) is not always sufficient to resolve pro­
nunciation alternatives. For example, simply knowing that the form bow is a noun does not
allow us to distinguish the pronunciation appropriate for the instrument of archery from that
for the front part of a boat. Even more subtle is the pronunciation of read in "If you read the
book, he'll be angry." Without contextual clues, even human readers cannot resolve the pro­
nunciation of read from the given sentence alone. Even though the past tense is more likely
in some sense, deep semantic and/or discourse analysis would be required to resolve the
tense ambiguity.

Several hundred English homographs extracted from the 1974 Oxford Advanced
Learners Dictionary are listed in [10]. Here are some examples:

• Stress homographs: noun with front-stress vowel, verb with end-stress vowel
"an absem boy" vs. "Do you choose to absent yourself?"

• Voicing: noun/verb or adjective/verb distinction made by voice final conso­
nant

"They will abuse him." vs. "They won't take abuse."

• -ate words: noun/adjective sense uses schwa, verb sense uses a full vowel
"He will graduate." vs. "He is a graduate."

• Double stress: front-stressed before noun, end-stressed when final in phrase
"an overnight bag" vs. "Are you staying overnight?"

• ~.ed a_djectives with matching verb past tenses
He is a learned man." vs. "He leamed to play piano."

• ~mbiguous abbreviations: already described in Section 14.4.1
111' am, SAT (Saturday vs. Standard Aptitude Test)

• B~rrowed words from other languages-They could sometimes be diSlin­
gu1shable based on capitalization
"El C • · •
" . ammo Real road m California" vs. "real world"
polish shoes" vs. "Polish accent"

• Sometimes, a polysemous word with th . . . ·on l)ecause
different semantic propeni·es Id h c _same pronunc1a11on could have impact for prosodic generatt can

cou ave diffe . . 1•-5 system
definitely be benefited fr d . rent accentuauon effects. Therefore, a high-qua Jty 1 • •

om wor -sense d1samb· •
iguauon beyond homograph disambiguation.

hological Anolysis
ilforp

• Miscellaneous
"The sew,•r overflowed.'' vs. "a sewer is not a tai !or.''
•'He moped since his parents refused to buy a moped."
•'Agape is a Greek word." vs. "His mouth was agape."

725

As discussed earlier, abbreviation/acronym expansion and linguistic analysis described
in Sections 14.4. l and 14.5 are two main sources of information for TIS systems to resolve
homograph ambiguities.

We close this section by introducing two special sources of pronunciation ambiguity
!hat are not fully addressed by current TIS systems. The first one is a variation of dialects
(or even personal dialect-idiolect). For example, some might say tomley]to, while some
01hers might say tom[aa]to. Another example is that Boston natives tend to reduce the Ir/
sound in sentences like "Park your car in Harvard yard." Similarly, some people use the
spelling pronunciation i11-ter-es-ting as opposed to intristing. Finally, speech rate and for­
mality level can influence pronunciation. For example, the lg/ sound in recognize may be
omitted in faster speech. It might be a sensible decision to output all possible pronunciations
as a multiple pronunciation list and hope the synthesis back end picks the one with better
acoustic/prosodic voice rendition. While true homographs may be resolved by linguistic and
discourse analysis, achieving a consistent presentation of dialectal and stylistic variation is
an even more difficult research challenge.

The other special source of ambiguity in ITS is somewhat different from what _we
have considered so far, but may be a concern in some markets. MoSI borrowed_ or foreign
• 1 • • • normalized 10 the singe words and place names are realized naturally with pronunciauon ..
• • ~ to the ab1hty of a

main presentation language. Going beyond that, language detection re ers 1
ITS system to recognize the intended language of a multi word stretch of text. For e,xamp e,

. "' th • ·mply une c zose en-
consider the fragment "Well, as for the next department head, at 15 si d) · ht be
lend "Th .. (thing clearly understoo mig

ue. e French phrase "w1e chose entendue some b.1. al English/French
rear d • • f n by a I mgu ize m a proper French accent and phone pronuncia 10 .
read " the system must have.

er. ror a ITS system to mimic the best performance,

• language identification capability

• dictionaries and rules for both languages

• voice rendition capability for both languages

I4•7, MORPHOLOGICAL ANALYSIS
H we consider issues of relating

General issues in morpholO"'Y are covered in Chapter 2. 1;:~~g its component morphemes,
a S~rface Orthographic fo~ to its pronunciation by a;:h as prefixes, suffixes, an~ s~em

W
Wh1ch are minimal meaningful elements of word\ rred as morphological analysis [-8~.

Ords th ' cess is re,e • • sometimes poss1-% emselves. This decomposition pro h'c fonn explicitly, it is f
bl en a dictionary does not list a given orthogra~ I s already present. These shorter onns

e to analyze the new word in terms of shorter onn

726 Text and Phonetic Analysis

may combine as prefixes, one or more stems or roots, and suffixes to generate new forms. If
a word can be so analyzed, the listed pronunciations of the pieces can be combined, perhaps
with some adjustment (phonological rules), to yield a phonetic form for the word as a whole.

The prefixes and suffixes are generally considered bound, in the sense that they cannot
stand alone but must combine with a stem. A stem, however, can stand alone. A word such
as establishment may be decomposed into a "stem" establish and a suffix -mellt. In practice,
it is not always clear where this kind of analysis should stop. That is, should a system at­
tempt to further decompose the stem establish into establ and -ish? These kinds of questions
ultimately belong to etymology, the study of word origins. and there is no final answer.
However, for practical purposes, having three classes of entries corresponding to prefixes,
stems, and suffixes, where the uses of the affixes are intuitively obvious to educated native
speakers, is usually sufficient. In practical language engineering, a difference that makes no
difference is no difference, and unless there is a substantial gain in compression or analytical
power, it is best to be conservative and list only obvious and highly productive affixes.

The English language presents numerous genuine puzzles in morphological analysis.
For example, there is the issue of abstraction: is the word geese one morpheme, or two (base
goose + abstract pluralizing morpheme)? For practical TIS systems, relying on large dic­
tionaries, it is generally best to deal with concrete, observable forms where possible. In such
a lexically oriented system, the word geese probably should appear in the lexicon as such,
with attached grammatical features including plurality. Likewise, it is simpler to include
children in the lexical listing rather than create a special pluralizing suffix -ren whose use is
restricted to the single base child.

The morphological analyzer must attempt to cover an input word in terms of the af­
fixes and stems listed in the morphological lexicon. The covering(s) proposed must be legal
sequences of forms, so that often a word grammar is supplied to express the allowable pat­
terns of combinations. A word grammar might, for example, restrict suffixation to the final
or rightmost stem of a compound, thus allowing plurality on the final element of business­
men but not in the initial stem (businessesman). In support of the word grammar, all stems
and affixes in the lexicon would be listed with morphological combinatory class specifica­
tions, usually subtyped in accordance with the base POS categories of the lexicon entries.
That is, verbs would typically accept a different set of affixes than nouns or adjectives. In
addition, spelling changes that sometimes accompany affixation must be recognized and
undone during analysis. For example, the word stC1ppi~?g has undergone final consonant
doubling as part of accommodating the suffix ing.

A morphological analysis system might be as simple as a set of suffix-stripping ru_les
for English. If a word cannot be found in the lexicon, a suffix-stripping rule can be apphed
to first strip out the possible suffix, including -s, -'s, -ing, -ed, -est, -ment, etc. If the stripped
form can be found in the lexicon, a morphological decomposition is attained. Similarly, pre·
fu-stripping rules can be applied to find prefix-stem decomposition for prefixes like _in-, 111,-,

non-, pre-, sub-, etc., although in general prefix stripping is less reliable.
Suffix and prefix stripping gives an analysis for many common inflected and some de­

rived words such as helped, cats, establishment, unsafe, predetermine, subword, etc. It hel?s
• • f I ahtY m savmg system storage. However, it does not account for compounding, issues O eg

~ological Analysis
727

f sequence (word grammar), or spelling changes. It can also mak . k f
o . • . b , • e m1s1a es (rom a syn-
hronic point of view. asemt 1111s not base+ -ment) some of which -11 h

c . • h' • . • wr ave consequences
• TfS rendil!on. A more sop 1st1cated version could be constructed b dd'
in • . Y a mg elements
. ch as POS type on each suffix/prefix for a rudimentary leoality check

O
b' .

su . . . o n com mat1ons.
However, a truly robust morphological capab1hty would require more powerful formal ma-
chinery and a more thorough analysis. Therefore, adding irregular morphological fonnation
into a system dictionary is always a desirable solution.

Finally. sometimes in commercial product names the compounding structure is sig-
naled by word-medial case differences, e.g .. AltaVistan.', which can aid phonetic conversion I
algorithms. These can be treated as two separate words and will often sound more natural if
rendered with two separate main stresses. This type of decomposition can be expanded to
find compound words that are formed by two separate nouns. Standard morphological
analysis algorithms employing suffix/prefix stripping and compound word decomposition
are summarized in Algorithm 14.4. Note that the algorithm can be easily modified to handle
words constructed by a combination of prefix, suffix, and compound.

ALGORITHM 14.4: MORPHOLOGICAL ANALYSIS

1. Dictionary lookup
Look up word w in lexicon
If found

Output attributes of the found lexical entry and exit
2. Suffix Stripping

If word ends in -s, -'s, -ing, -ed, -est, -ment, etc.
Strip the suffix from word w to form u

If stripped form u found in lexicon .
Output attributes of the stem and suffix and exit

3. Prefix Stripping
If word begins with in-, un-, non-, pre-, sub-, etc.

Strip the prefix from word w to form u
If stripped form u found in lexicon .

Output attributes of the prefix and stem and exit
4. Compound word decomposition

· h· ordw If detect word-medial case differences wit m w d'ng to case changes
Break word w into a multiple words u1' U21 U3, ... accor 1

For words u,, u2, U3, goto 1. . u u in lexicon
Else if word w can be decomposed into two nouns 10 2

Output attributes of the u,. u2 and exit
S. Pass word w to letter-to-sound module

728
Text and Phonetic Analysis

14.8. LETTER-TO-SOUND CONVERSION

The best resource for generating (symbolic) phon~tic _foi:ns. from words is an _extensive word
list. The accuracy and efficiency of such a solutmn 1s _Inmted only by the h_me, effort, and
knowledge brought to bear on the dictionary construction process. As descnbed in Section
I 4.2, a general Jex icon service is a critical resource for _the :1~ sy_st~m. Thus. the first and
the most reliable way for grapheme-to-phoneme conversion 1s via d1ct10nary lookup.

Where direct dictionary lookup fails, rules may be used to generate phonetic fonns.
Under earlier nai've assumptions about the regularity and coverage of simple descriptions of
English orthography, rules have traditionally been viewed as the primary source of phonetic
conversion knowledge, since no dictionary covers every input fonn and the ITS system
must always be able to speak any word. A general letter-to-sound (L TS) conversion is thus
required to provide phonetic pronunciation for any sequence of letters.

Inspired by the phonetic languages, letter-to-sound conversion is usually carried out
by a set of rules. These rules can be thought of as dictionaries of fragments with some spe­
cial conventions about lookup and context. Typically, rules for phonetic conversion have
mimicked phonological rewriting in phonological theory [5], including conventions of
ordering, such as most specific first. In phonological rules, a target is given and the rewrite is
indicated, with context following. For example, a set of rules that changes orthographic k to
a velar plosive /kl except when the k is word-initial (' [') followed by n might appear as:

k ->/sill% [_ n
k -> /kl

The rule above reads that k is rewritten as (phonetic) silence when in word initial position
and followed by n, otherwise k is rewritten as (phonetic) /kl. The underscore in the first line
is a placeholder for the k itself in specifying the context. This little set properly treats kin
k11ight, darkness, and kiuen. These are fonnally powerful, context-sensitive rules. Generally
a ITS system require hundreds or even thousands of such rules to cover words not appear­
ing in the system dictionary or exception list. Typically rules are specified in terms of single­
letter targets, such as the example fork above. However, some systems may have rules for
longer fragments, such as the special vowel and consonant combinations in words like
neigh~or and w~~gh. In practice, a binary fonnat for compression, a corresponding fragment
matchmg capab1I_1ty, and a rule index must be defined for efficient system deployment.

Rules _o~ this type are tedious to develop manually. As with any expert system, it is dif­
ficult to anllcipate all possible relevant cases and sometimes hard to check for rule interfer­
ence and redundancy In a th . . d 'th . . • ny case, e rules must be venfied over a test hst of wor s w,
known transcnpt10ns Generali 'f ct· • . d uch . • Y, 1 pre 1ction of mam stress location is not attempte , 5

~!es migh~ account_for up to 70% of the words in a test corpus of general English. If predic­
tion of mam stress 1s attem t d th • · ch
I P e , e percentage of correct phonetic pronunciations 1s mu
ower, perhaps below soqi Th - . J y
h. h . 0

• e correct pred1ct1on of stress depends in part on morpho og '
w 1c is not typically e r · I . f -xp icit Y attempted m this type of simple rule system (though rag
menhts clorresponding to affixes are frequently used, such as tion -> /ah ax n/). Certainly,
sue rues can be made to appr h d' • 1· · mor-

oac ictionary accuracy, as longer and more exp icit

to Sound Conversion
Leiter· • 729

phological fragments are included. One extreme case _is to cr~ate one specific rule (contain­
. exact contexts for the whole word) for each word m the dictionary Obvi·ously th" . ing • IS IS not
desirable, since rt 1s equivalent to puttmg the word along with its phonetic pronunciation in

the dictionary.
In view of how costly it is to develop LTS rules, particularly for a new language, at­

tempts have been made recently to automate the acquisition of LTS conversion rules. These
self-organizing methods believe that, given a set of words with correct phonetic transcrip­
tions (the offline dictionary), an automated learning system could capture significant gener­
alizations. Among them, classification and regression trees (CART) have been demonstrated
to give satisfactory perfonnances for letter-to-sound conversion. For basic and theoretic de­
scription of CART, please refer to Chapter 4.

In the system described in [14], CART methods and phoneme trigrams were used to
construct an accurate conversion procedure. All of the experiments were carried on two da­
tabases. The first is the NETALK [25], which has hand-labeled alignment between letter and
phoneme transcriptions. The second is the CMU dictionary, which does not have any align­
ment infonnation. The NETALK database consists of 19,940 entries, of which 14,955 were
randomly selected as a training set and the remaining 4951 were reserved for testing. Those
4951 words correspond to 4985 entries in the database because of multiple pronunciations.
The hand-labeled alignments were used directly to train the CART for LTS conversion. The
CMU dictionary has more than 100,000 words, of which the top 60,000 words were selected
based on unigram frequencies trained from North American Business ~ews. Amon~ ~em,
52,415 were used for training and 9719 reserved for testing. Due to mult1p!e pronu~ciauons,
those 9719 words have IO 520 entries in the dictionary. Due to lack of alignment mforma­
tion, dynamic programmin~ was used to align each letter to the corresponding phoneme be­

fore training the L TS CART.
. f f ons and a procedure to se-The basic CART component includes a set o yes-no ques 1 . .

lect the best question at each node to grow the tree from the root. The baste yes-no.tesuon
t . • • ?" r "ls the first lei' output
or LTS conversion looks like "ls the second right letter P • 0

. h •ct F
h .th th left or the ng t s1 e. or

P oneme lay/?" The questions for letters could be on ei er e . ·
h . r ·t The range of quest10n pos1-
~ ones, only questions on the left side were used, for simp ici y._ . . It was found
110 d" honolog1cal vanauons.

ns must be long enough to cover the long- 1stance P I t xt) and 3 h d 5 f right etter con e -1 at the I I-letter window (5 for left letter context an ~r. t A primitive set of ques-
phoneme window for left phoneme context are generally su ic~e~e~ter or phoneme identity.
:ns would be the set of all the singleton questions about eac duction was chosen at each

hen growing the tree, the question that had the beSt entrop~ re question that is a combina­
~ode. We observed that if we allow the node to have a comp! ex duced and the perfonnance
hon of • . • th will be great Y re ,Ft
. Pnm1tive questions the depth of e tree d 1 ,Ft letter 't' and the first leJ'
imp ' • "l the secon eJ' roved. For example the complex question s . suffix "tion" and convert
le11e , ,, ' e • 0 • in common
. r L and the first right letter 'n '?" can captur 11 ·ate the data fragment problem
ll to th • • n also a ev1 e nght phoneme. Complex questions ca . f finding such complex ques-
caused b "thm Thts way o h
I
. Y greedy nature of the CART algon •

1
. ystem built using the above tee -

ions i • . 4 The base me s . s s1mllar to those used in Chapter •
niques has error rates as listed in Table 14. i 1.

730 Text and Phonetic Analysis

Table 14.11 LTS baseline results using CART (13].

Database Phoneme Word

CMU Lexicon 9.7% 35.0%

NETTALK 9.5% 42.3%

The CART LTS system [14] further improved the accuracy of the system via the fol­
lowing extensions and refinements:

• Phoneme trigram rescoring: A statistical model of phoneme co-occurrence,
or phonotactics, was constructed over the training set. A phonemic trigram
was generated from the training samples with back-off smoothing, and this
was used to rescore then-best list generated by LTS.

• Multiple tree combination: The training data was partitioned into two parts
and two trees were trained. When the performance of these two trees was
tested, it was found that they had a great overlap but also behaved differently,
as each had a different focus region. Combining them together greatly im­
proved the coverage. To get a better overall accuracy, the tree trained by all

the samples was used together with two other trees, each trained by half of
the samples. The leaf distributions of three trees were interpolated together
with equal weights and then phonemic trigram was used to rescore the n-best
output lists.

By incrementally experimenting with addition of these extensions and refinements, the re­
sults improved, as shown in Table I 4.12.

These experiments did not include prediction of stress location. Stress prediction is a
difficult problem, as we pointed out earlier. It requires information beyond the letter string.
In principle, one can incorporate more lexical information, including POS and morphologic
information, into the CART LTS framework, so it can be more powerful to learn the pho­
netic correspondence between the letter string and lexical properties.

Table 14.12 LTS using multiple trees and phonemic trigram rescoring [13).

Database Phoneme Word

CMULexicon 8.2% 26.9%

NEITALK 8.1% 34.2%

14.9. EVALUATION

E . -~
ver smce the early days of TIS research [21 31] evaluation has been considered an 10 •

I ' ' are gra part of the development of ITS systems. End users and application developers

731

tly interested in the end-to-end evaluation of TIS systems. This monolilhic type of
mos • 'f "d whole-system evaluation 1_s o _ten re1erre to ~s black-box evaluation. On the other hand,
modular (component) testing is more appropnate for ITS researchers when working with
isolated components of the ITS system, for diagnosis or regression testing. We often refer

10 this type of evaluation as glass-box evaluation. We discuss the modular evaluations in
each modular TIS chapter, while leaving the evaluation of the whole system to Chapter 16.

For text and phonetic analysis, automated, analytic, and objective evaluation is usually
feasible, because the input and output of such module is relatively well defined. The evalua­
tion focuses mainly on symbolic and linguistic level in contrast to the acoustic level, with
IVhich prosodic generation and speech synthesis modules need to deal Such tests usually
involve establishing a test corpus of correctly tagged examples of the tested materials, which
can be automatically checked against the output of a text analysis module. It is not particu­
larly productive to discuss such testing in the abstract, since the test features must closely
track each system's design and implementation. Nevertheless, a few typical areas for testing
can be noted. In general, tests are simultaneously testing the linguistic model and content as
well as the software implementation of a system, so whenever a discrepancy arises, both
possible sources of error must be considered.

For automatic detection of document structures, the evaluation typically focuses on
sentence breaking and sentence type detection. Since the definitions of these two_ types of
document structures are straightforward, a standard evaluation database can be easily eScab­
lished.

In the basic level, the evaluation for the text normalization component shou!d in~l~de
large regression test databases of text micro-entities: addresses, Internet and emru~ enuues,
numbers in many formats (ordinal, cardinal, mathematical, phone, currency, etc.), utles, and

abbreviations in a variety of contexts These would be paired with the correct referen~e
fonns in something like the SNOR used in ASR output evaluation. In its simplest fonn, this

I • d • J'ke 7o/r. vs seven per-
wou d consist of a database of automatically checkable paire entnes 1 0

• .

cem, and $1.20 vs. one dollar and twenty cents. If you want to evaluate the se~anttcmcaanpt~1~
birty f • ht • lude markups 1or se 1 0 text normalization the regression database mig me . <./ b r:>" and
~gs, so that we have 7% vs~ "<number.>SEVEN<ratio>PERCENT<./rauo~. ;~; ;gre;sion

l.20 vs. "<money>ONE DOLLAR AND TWENTY CENTS<./money>d. the sys-
datab . • • r some depen ence on

ase could include domain-specific entnes. This imp ies . . T ble 14 13 the first
teni's API • . . . 1 th amples given in a • '
0

. -Its markup capab1ht1es or tag set. n . e ex . he second one is suitable for
ne 15 a desirable output for domain-independent input, while t .

nonna1· . t· 1 formula domain. 1zat1on of the same expression in mathema ica

I t test domain independent/dependent text nonnalization. Table 1413 T wo examp es o

3-4
three to four

three/our

<math_exp> 3-4 <lmath_exp>
three minus four -

732 Text and Phonetic Analysi5

Some systems may not have a discrete level of orthographic or SNOR represe ta .
f I • d ' bed • h' . n lion that easily lends itself to the type o eva uallon escn m t 1s section. Such systems

have to evaluate their text nomrnlization component in terms of LTS conversion. may
An automated test framework for the LTS conversion analysis minimally include

set of test words a~d thei_r ph?netic transcriptions for automated lookup and comparito:
tests. The problem 1s the mfimte nature of language: there are always new words that the
system does not convert correctly, and many of these will initially lack a transcription of
record even to allow systematic checking. Therefore, a comprehensive test program for test
of phonetic conversion accuracy needs to be paired with a data development effon. The data
effort has two goals: to secure a continuous source of potential new words, such as a 24-hour
newswire feed, and to maintain and construct an offline test dictionary, where reference
transcriptions for new words are constantly created and maintained by human experts. This
requirement illustrates the codependence of automated and manual aspects of evaJuation.
Different types and sources of vocabulary need to be considered separately, and they may
have differing testing requirements, depending, again, on the nature of the particular system
to be evaluated. For example, some systems have elaborate subsystems targeted specifically
for name conversion. Such systems may depend on other kinds of preprocessing technolo­
gies, such as name identification modules, that might be tested independently.

The correct phonetic representation of a word usually depends on its sentence and
even discourse contexts, as described in Section 14.6. Therefore, the adequacy of LTS con­
version should not, in principle, be evaluated on the basis of isolated word pronunciations.
However, a list of isolated word pronunciations is often used in LTS conversion because of
its simplicity. Discourse contexts are, in general, difficult to represent unless specific appli­
cations and markup tags are available to the evaluation database. A reasonable compromise
is to use a list of independent sentences with their corresponding phonetic representation for
the evaluation of grapheme-to-phoneme conversion.

Error analysis should be treated as equally important as the evaluation itself. For ex­
ample, if a confusability matrix shows that a given system frequently confuses central and
schwa-like unstressed vow~ls, this may be viewed as less serious than other kinds of err~rs.
Other subareas of LTS conversion that could be singled out for special diagnosis and .testmg
include morphological analysis and stress placement. Of course, testing with phonemic tran·
scriptions is the ultimate unit test in the sense that it contains nothing to insure that tbe cor­
rectly trl\nscri.bed words, when spoken by the system's artificial voice and prosody, are, a
• 11· 'bl ary but no mte 1&1 e or pleasant to hear. Phone transcription accuracy is, thus, a necess
sufficient condition of quality.

14.10. CASE STUDY: FESTIVAL

Th U • • • f modular
e mversity of Edmburgh's Festival [3] has been designed to take advantage O d pho·

subcomponents fo • . . . lete text an . . r vanous standard functions. Festival provides a comp
4 1 fesU·

nehc analysis w·th d l . . . Figure 1 • • 1 mo u es organized m sequence roughly equivalent to .1 defaull
val outputs speech f 1• • rs Wht e 0 qua tty comparable to many commercial synthesize •

----~--------------------
[JSt siudy: Festival 733

. are provided for each stage of processing, the system is architecturally d • d rouunes . . . es1gne to
ltemative routines m modular fashion, as long as the data transfer protocols '" 1_

accept a d" . 1 TIS h" . are 10

d This variant of the tra 1t1ona arc 1tecture 1s particularly attractive for c 10we . . . ommer-
. 1 rposes (development, maintenance, testmg, scalability) as well as research ., t· 1 eta pu • res 1va

be called in vanous ways with a vanety of switches and filters, set from a variety f can . . . l o
)3J1Ctioned programming and scnptmg anguages. These control options are beyond the
.scope of this overview.

14.10.l. Lexicon

festival employs phonemes as the basic sounding units, which are used not only as the at­
oms of word transcriptions in the lexicons, but also as the organizing principle for unit selec­
tion (see Chapter 16) in the synthesizer itself. Festival can support a number of distinct
phone sets and it supports mapping from one to another. A phone defined in a set can have
various associated phonological features, such as vowel, high, low, etc.

The Festival lexicon, which may contain several components, provides pronunciations
for words. The addenda is an optional list of words that are unique to a particular user,
document, or application. The addenda is searched linearly. The main system lexicon is ex­
pected to be large enough to require compression and is assumed to reside on a disk or other
external slorage. It is accessed via binary search. The lexical entry also contains POS infor­
mation, which can be modified according to the preference of the system configurer. A typi­
cal lexical entry consists of the word key, a POS tag, and phonetic pronunciation (with stress
and possible syllabification indicated in parentheses):

("walkers" N (((w ao) 1) ((k er z) 0)))

be
lf~ syllables structure is not shown with parentheses a syllabification rule component can

in k ' . • • and/or PO vo _ed. Separate entry lines are used for words with multiple pronunciations
S, which can be resolved by later processing.

14,IO 2 T • • ext Analysis

Festi~aJ has b . . atic identification of
d0curn een Partially integrated with research on the use of autom t component

ent and dis • • d ne by a separa e •
Called SOLE course structures. The discourse ~aggtng is O have relevance for
llitch c [I I]. The tags produced by SOLE indicate features lhat may ust be rec-

ontour and h . . . (Chapter 15) These m
ognized and . P rasmg m later stages of synthesis see OLE tags tell Festival
When th P_anially interpreted at the text analysis phrase. The S . Id or new in­
I e text is c • . h ·t•s referring too ·11 orrnation ompanng or contrasting two obJects, w en 1 nd Festival w1
d . • When it' . . paragraph etc., a . ct1de b s using a parenthetical or startmg a new : deemphasize, to
rn ' ased on th. . t emphasize or

lldify its . 1s information, that it needs to pause, 0

pitch range, etc.

Text and Phonetic Analysis
734

Additionally, as discussed in Section 14.3, when document creators have knowledge

h t tu Or Content of documents, they can express the knowledge through an
about t e s rue re .
XML

_i.. d thesis markup language. A document to be spoken 1s first analyzed for all 11ase syn
such tags, which can indicate alternative pronunc1at1ons, semantic or quas1-semant1c attnb-
utes (different uses of numbers by context for exampl~), as v.:etl as d?cument s_tructures,
such as explicit sentence or paragraph divisions. The kmds of mformat1on potentially sup­
plied by the SABLE tags7 are exemplified in Figure 14.7.

<SABLE>
<SPEAKER NAME="male I">
The boy saw the girl in the park <BREAK/> with the telescope.
The boy saw the girl <BREAK/> in the park with the telescope.

Good morning <BREAK/> My name is Stuart, which is spelled

<RA TE SPEED="-40%">
<SAY AS MODE="literal">stuart</SA Y AS> </RATE>
though some people pronounce it
<PRON SUB="stoo art">stuart</PRON>. My telephone number
is <SAYAS MODE="literal">2787</SA YAS>.

I used to work in <PRON SUB="Buckloo">Buccleuch</PRON> Place,
but no one can pronounce that.
</SPEAKER>

</SABLE>

Figure 14.7 A document fragment augmented with SABLE tags can be processed by the Fes­
tival system (3).

For untagged input, or for input inadequately tagged for text division (<BREAK/>),
sentence breaking is perfonned by heuristics, similar to Algorithm 14.1 , which observe
whitespace, punctuation, and capitalization. A linguistic unit roughly equivalent to a sen-
tence is created by the system for the subsequent stages of processing. .

Tokenization is performed by system or user-supplied routines. The basic function is
to recognize potentially speakable items and to strip irrelevant whitespace or other non­
speakable text features. Note that some punctuation is retained as a feature on its neareSt
word.

Te~t normalization is implemented by token-to-word rules, which return a standard or­
thographic form that can, in turn, be input to the phonetic analysis module. The token-_to­
word rules have to. deal with text normalization issues similar to those presented in S~cuon
14•4• As part of this process, token-type-specific rule sets may be applied to disambigu_ate
toke_ns whose pronu~ciations are highly context dependent. For example, a disambi~uauon
ro~llne may be required to examine context for deciding whether St. should be reahzed as
Samt or street. For general English-language phenomena, such as numbers and various

' SABLE and other TI'S m:irk . up sy51ems are discussed further in Chapter 15.

---Histon-.c-:al-.P:-c=rs=p=ec=ti:v~e :an=d~F:u:rt;,h:er~R:ea~d:i:ng=------------------
735

symbols, a standard token-to-word routine is provided. One interesting fe t f h F .
• ·1· " h I • , . a ure o I e es11-

val system ts a utt tty ior e p1~g to automat1cally construct decision trees to serve text nor-
malization rule~, ~hen sys~em integrators can gather some labeled training data.

The ling~1st1c analysis mod~Ic for the Festi~al system is mainly a POS analyzer. An 11_
gram based tram~ble POS tagger 1s used to predict the likelihoods of POS tags from a lim­
ited set given an mput sentence. The system uses both a priori probabilities of tags given a
word and 11-grams for sequences of tags. The basic underlying technology is similar to the
work in [6] and is described in Section 14.S. When lexical lookup occurs, the predicted most
likely P0S tag for a given word is input with the wor<l orthography, as a compound lookup
key. Thus, the POS tag acts as a secondary selection mechanism for the several hundred
words whose pronunciation may differ by POS categories.

14.10.3. Phonetic Analysis

The homograph disambiguation is mainly resolved by POS tags. When lexical lookup oc­
curs, the predicted most likely POS tag for a given word is input with the word orthography
as a compound lookup key. Thus, the POS tag acts as a secondary selection mechanism for
the several hundred words whose pronunciation may differ by POS categories.

If a word fails lexical lookup, LTS rules may be invoked. These rules may be created
by hand, formatted as shown below:

(#(ch)C=/k/)
Chris

// ch at word start, followed by a consonant, is /kl, e.g.,

• • • 1 methods much as de-Altematively LTS rules may be constructed by automatic stattSttCa ' .
' • d d Utility routmes

scribed in Section 14.8 above, where CART L TS systems were mtro u~e c· ART rule con-
ar • . . . · training database ,or e provided to assist in using a system lexicon as 8

Slruction · /
• . I to handle context coart1c11 a-

. In addition, Festival system employs po5r-le:ical n~:\nd sounds, as well as speech
lion. Context coarticulation occurs when surroundmg. wor Examples include re­
style, affect the final form of pronunciation of a parucular phdon~mert. ,·on Some coarticula-
d • • • g an r-inse • uctton of consonants and vowels phrase final devorcm ' • dd'rt'ronal rules.
t' ' ay also wnte a ion rules are provided for these processes, and users m

14,ll. HISTORICAL PERSPECTIVE AND FURTHER READING

i h samples and review almost a cen-
e:i:t-to-speech has a long and rich history• You can earh •s History Project [I 9]. A good

illry' . . . • S eech Synt est s Worth of work at the Sm1thsonran s P . . [20)
source for multilingual samples of various TIS engines~S ha~ been From Text co Speech:
Th The most influential single publi~hed wo!rc;alk system, from which a large number

e MlTalk System [1]. This book describes the

736 Text and Phonetic Analysis

of research and commercial systems were derived during the 1980s, including the widely
used DECTalk system [9]. The best compact overall historical survey is Klatt's Review of
Text-to-Speech Conversion for English [15). For deeper cover~~e of more recent architec­
tures, refer to [7]. For an overview of some of the most prom1smg current approaches and
pressing issues in all areas of TIS and synthesis, see [30). One of the biggest upcoming is­
sues in TIS text processing is the architectural relation of specialized TIS text processing as
opposed to general-purpose natural language or document structure analysis. One of the
most elaborate and interesting TIS-specific architectures is the multilingual text processing
engine described in [27]. This represents a commitment to providing exactly the necessary
and sufficient processing that speech synthesis requires, when a general-purpose language
processor is unavailable.

However, it is expected that natural language and document analysis technology will
become more widespread and important for a variety of other applications. To get an idea of
what capabilities the natural language analysis engines of the future may incorporate, refer
to [12] or [2]. Such generalized engines would serve a variety of clients, including TIS,
speech recognition, information retrieval, machine translation, and other services which may
seem exotic and isolated now but will increasingly share core functionality. This conver­
gence of NL services can be seen in a primitive fonn today in Japanese input method editors
(IME), which offload many NL analysis tasks from individual applications, such as word
processors and spreadsheets, and unify these functions in a single common processor [18).

For letter-to-sound rules, NETalk (25], which describes automatic learning of LTS
processes via neural network, was highly influential. Now, however, most systems have
converged on decision-tree systems similar to those described in [14).

REFERENCES

[l]

[2]
[3]

[4]

[SJ

[6]

[7]

[8]

Allen, J., M.S. Hunnicutt, and D.H. Klatt, From Text to Speech: the M/Talk System,
1987, Cambridge, UK, University Press.
Alshawi, H., The Core Language Engine, 1992, Cambridge, US, MIT Press.
Black, A.W., P. Taylor, and R. Caley, "The Architecture of the Festival Speech
Synthesis System," 3rd ESCA Workshop on Speech Synthesis, 1998, Jenolan
Caves, Australia, University of Edinburgh, pp. 147-151.
Boguraev, B. and E.J. Briscoe, Computational Lexicography for Natural Language
Processing, 1989, London, Longmans.
Chomsky, N. and M. Halle, The Sound Patterns of English, 1968, Cambridge, MIT
Press.

Church, K., "A Stochastic Parts Program and Noun Phrase Parser for Unrestricted
Text(Proc. of the Second Conj. on Applied Natural Language Processing, 1988,
Austm, Texas, pp. 136-143.

Dut~it, T., An Introduction to Text-to-Speech Synthesis, 1997, Kluwer Academic
Pubhshers.

Francis, W. and H. Kucera, Frequency Analysis of English Usage, 1982, New
York, N.Y., Houghton Mifflin.

---::-==:=:-;,:=::==--------Historical Perspective and Further Reading

(91

[10)

Ill l

[12)

[13)

[14)

[15]

[16]

[17)

118)

[19]

[20]

[21]

[22)
[23]

[24]

(25]

[26]

(27]

737

Hallahan, W.I.. "DECtalk Software: Text-to-Speech Technology a d I 1 · · ..,. I · f J n mp ementa-tion," D1.gtt i ec mica oumal, 1995, 7(4), pp. 5-19.

Higgins, J., Homographs, 2000, http://www.stir.ac.uk/celt/staff/higdox/wordlist/
homogrph.htm.

Hitzeman, J., et al., "On the Use of Automatically Generated Discourse-Level In­
fonnation in a Concept-to-Speech Synthesis System," Proc. of the Im. Con/. 011
Spoken Language Processing, 1998, Sydney, Australia, pp. 2763-2766.
Jensen, K., G. Heidorn, and S. Richardson. Natural Language Processing: the
PLNLP Approach, 1993, Boston, MASS, Kluwer Academic Publishers.
Jiang, L., H.W. Hon, and X. Huang, "Improvements on a Trainable Letter-to-Sound
Converter," Proc. of Eurospeech, 1997, Rhodes, Greece, pp. 605-608.
Jiang, L., H.W. Hon, and X.D. Huang, "Improvements on a Trainable Letter-to­
Sound Converter," Eurospeech'97, 1997, Rhodes, Greece.
Klan, D., "Review of Text-to-Speech Conversion for English," Journal of Acousti­
cal Society of America, 1987, 82, pp. 737-793.
LDC, linguistic Data Consortium, 2000, http://www.ldc.upenn.edu/ldc/
noframe.html.
Levine, J., Mason, T., Brown, D., Lex and Yacc, 1992, Sebastopol, CA, O'Rielly &

Associates.
Lunde, K., CJKV Information Processing Chinese, Japanese, Korean & Vietnam-

ese Computing. 1998, O'Reilly.
Maxey, H., Smithsonian Speech Synthesis History Project, 2000, http://www.

mindspring.com/-dmaxey/ssshp/. . .
Mohler, G., Examples of Synthesized Speech, 1999, http://www.ims.um-

stuttgart.de/phonetik/gregor/synthspeech/. . s
Nye p W et al "A Plan for the Field Evaluation of an Automated Reading S6y5-

, • ., ., · 1973 21 pp 2 -
tern for the Blind," IEEE Trans. on Audio and ElectroacouSllcs, • • •

268
- . 1999 http://www.xml-cml.org/.

OMF, CML - Chemical Markup Language, ' d "M. dNet· Acquiring and
Ri h d S D w B D I and L Vanderwen e, m •

c ar ~on, •• , . • • 0 a~, • ,. ACL'98_. J6th Annual Meeting of the
Structunng Semantic [nfonnat10n from Text,

1
l C if.

011
Computational Lin­

Assoc. for Computational Linguistics and l7t 1 111• on •

guistics, 1998, pp. 1098-1102. . 0 2 199g http://www.cstr.ed.ac
Sable, The Draft Specification for Sable version • ' '

.uk/projects/sable_spec2.html. lk · A Parallel Network that Learns to
Sejnowski, T.J. and C.R. Rosenberg._ NET_ta •
Read Aloud, 1986, Johns Hopkins U~~vers~~d Sentence Prosody: Paragraph Intona­
Sluijter, A.M.C. and J.M.B. Terken, BeY

80
_
188

_
tion in Dutch" Phonetica, 1993, SO, PP· 1 h , . The Bell Labs Approach, 1998,
Sproat, R., Multilingual Text-To-Speech Syllt eSIS.

• bl ' hers Dordrecht, Kluwer Academic Pu is •

738

(28]

[29]

[30]

(31]

[32]

(33]

(34)
[35)
(36)

Text and Phonetic Analysis

Sproat, R. and J. Olive, "An Approach to Text-to-Speech Synthesis," in Speech
Coding and Synthesis, W.B. Kleijn and K.K. Paliwal, eds. 1995, Amsterdam, pp.
611-634, Elsevier Science.
Turing, A.M., "Computing Machinery and Intelligence," Mind, 1950, LIX(236),
pp. 433-460.
van Santen, J.. et al., Progress in Speec/z Synthesis, 1997, New York, Springer­
Verlag.
van Santen, J., et al., "Report on the Third ESCA ITS Workshop Evaluation Pro­
cedure," Third ESCA Workshop on Speech Synthesis, 1998, Sydney, Australia.
Vitale, T., "An Algorithm for High Accuracy Name Pronunciation by Parametric
Speech Synthesizer," Computational Linguistics, 1991, 17(3), pp. 257-276.
W3C, Aural Cascading Style Sheets (ACSS), 1997, http://www.w3.org/TR/WD­
acss-970328.
W3C, W3C's Math Home Page, 1998, http://www.w3.org/Math/.
W3C, Extensible Markup Language (XML), 1999, http://www.w3.org/XML/.
Wall, L., Christiansen, T., Schwartz, R., Programming Perl, 1996, Sebastopol, CA,
O'Rielly & Associates.

INDEX

A
A* search, 603, 6~6,_626-39

admissible heunsllcs, 630-31
extending new words, 631-34
fast match, 634-38
multistack search, 639
stack decoders, 592
stack pruning, 638-39

Abbreviations, 709-12
disambiguation, 711
expansion, 711-12

Absolute Category Rating (ACR), 841
Absolute discounting, 568
Absolute threshold of hearing, 23, 36
Abstract prosody, 745-61

accent, 751-53
pauses, 747-49
prosodic phrases, 749-51
prosodic transcription systems, 759-61

INTSINT, 760
PROSPA, 759
TILT, 760

tone, 753-57
tune, 757-59

Accent, 751-53
Accessibility, 929
Acoustical environment, 477, 478-86

additive noise, 478-80
babble ooise, 479
cocktail party effect, 479
Lombard effect, 480
model of the environment, 482-86
pink noise, 4 78
reverberation, 480-82
white noise, 4 78-79

Acoustical model of speech production, 283-90
glonal excitation, 284
lossless tube concatenation, 284-88
mixed excitation model, 289
source-tilter models, 288-90

Acoustical transducers, 486-97
active microphones, 496
bidirectional microphones, 490-94
carbon button microphones, 497
condenser microphone, 486-89
directionality patterns, 489-96
dynamic microphones, 497
electromagnetic microphones, 497
electrostatic microphones, 497
passive microphones, 496
P!ezoelectric microphones, 497
p1ezoresistive microphones, 497
pressure gradient microphones, 496
pressure microphones, 496

ribbon microphones, 497
unidirectional microphones, 494-96

Acoustic modeling, 415-75
adaptive techniques, 444-53
clustered models, 452-53
maximum likelihood linear regression (MLLR),

447-50
maximum a posteriori (MAP), 445-47
MLLR vs. MAP, 450-51

confidence models. 453-57
filler models, 453-54
transformation models, 454-55

historical perspective, 465-68
neural networks, 457-59
integrating with HMMs, 458-59
parametric trajectory models, 460-62
recurrent, 457-58
time delay neural network (TONN), 458

scoring acoustic features, 439-43
HMM output distributions, 439-41
isolated vs. continuous speech training, 441-43

speech signals:
context variability, 417
environment variability, 419
speaker variability, 418-19
style variability, 418

word recognition errors, types of, 420
Acoustic pattern matching, 545
Acronyms, 711-12
Active arcs, 550
Active constituents, 550-5 l
Active microphones, 496
Adaptive codebook, 356-57
Adaptive delta modulation (ADM), 347
Adaptive echo cancellation (AEC), 497-504

LMS algorithm, 499-500
normalized LMS algorithm (NLMS), 501-2
RLS algorithm, 503-4
transform-domain LMS algorithm, 502-3

Adaptive language models, 575-78
cache language models, 574-75
maximum entropy models, 576-78
topic-adaptive models, 575-76

Adaptive PCM, 344-45
Adaptive spectral entropy coding (ASPEC), 350-51
Additive noise, 478-80
Adjectives, 54
ADPCM, 348
Adverbs, 60
AEC, See Adaptive echo cancellation (AEC)
Affiicates, 44
Agent-based dialog modeling, 914
Air Travel Information Service (ATIS) task, 901-3
A-law compander, 343

957

958

Algebraic code books, 358-59
Algorithmic delay, 339
Aliasing. 245
Allophones, 47-49
Alphabet, 121
Alternative hypothesis, 114
Alternatives question. 62
Alveolar consonants. 46
American Institute of Electrical Engineers (AIEE). 272
American National Standards Institute (ANSI), 360
Amplitude modulator, 208
Analog signals. 202

analog-to-digital conversion. 245-46
digital processing of, 242-48
digital-to-analog conversion, 246-48
Fourier transform of. 243
sampling theorem, 243-45

Analysis by synthesis, 353-56
Analysis frames, 276
Anaphora. 882
Anaphora resolution, 883-84
Anechoic chamber, 480
Anger, and speech, 745
Anti-causal system, 211
Anti-jam (AJ), 361
Application programming interface (AP!), 920-21
Applications:

accessibility, 929
automobile, 930
classes of, 921-31
computer command and control, 921-24
dictation, 926-29
handheld devices, 930
hands-busy, eyes-busy, 927
speaker recognition, 931
telephony applications, 924-26

Approximants, 42
Articulation, of English consonant~, 42. 45
Articulators, 24-25
Articulatory speech synthesis. 793, 803-4, 846
Artificial intelligence (Al). 855, 889
Attentional state. 859
Audio coding, 338
Aurora proje.::t, 9?.5
Autocorrelation method, 324-27
Automobile applications, 930
AutoPC (Clarion), 930
Auto-regressive (AR) modeling, 290

B
Babble noise, 479
Back-channel tum, 861
Backoffmodels. 563-64
Backoffpaths. 618-19
Back off smoothing, 565-70
Back propagation algorithm, 163
Backtracking, 598

Backus-Nauer form (BNF), 69
Backward prediction error, 297
Backward reasoning, 595
Bnndlimited interpolation, 245
Bandpass filter, 242
Bark scale, 32-33
Bark scale fimctions. 35
Basic search algorithms, 591-643

blind graph, 597-601
breadth-first, 600-601
depth-first. 598-99
heuristic graph. 601 -8

complexity, 592
general graph searching procedures. 593-97
graph-search algorithm, 597
historical perspective, 640

Index

search algorithms for speech recognition, 608-12
stack decoding (A* search), 626-39
admissible heuristics, 630-31
extending new words, 631-34
fast match, 634-38
multistack search. 639
stack pruning. 638-39

time-synchronous Viterbi beam search, 622-26
use of beam, 624-25
Viterbi beam search, 625-26

Baum-Welch algorithm, 389-93
Bayes• classifiers:

comparing, 148-49
representation, 138-39

Bayes' decision theory, 133, 134-49, 159
curse of dimensionality, 144-46
discriminant functions, 138-41
error rate, estimating, 146-48
Gaussian classifiers, 142-44
minimum-error-rate decision rules, 135-38

Bayes' estimator, 99
Bayesian estimation, 107-13

general, 109-10
prior and posterior estimation. I 08-9

Bayes' risk, 136
Bayes' rule, 75-78
Bayes' theorem. 128
Beamfonning, 507
Beam search, 606-8
Behavior model, 855
Best-first search, 602-6
Bidirectional microphones, 490-94
Bidirectional search, 595-96
Bigrams, 559, 563

search space with, 6 17-18
Bilinear trnnsfonns, 3 I 5-16
Binaural listening, 31
Binomial distributions, 86
Bit, 121
Bit reversal, 224
Blind grnph search algorithms, 597-601

Index

Blind source separation (BSS). 510- 15
Block coding. 125
Bolzrnann ·s constant'. 488
Bottom-up chart pnrsmg. 550-53
Bound stress, 431
Branch-and-bound algo1ithm. 604. 640
Branching factor. 593-95
Breadth-first search. 600-60 I. 624
Breathy-voiced speech. 330
Bridging, 488
Brute-force search. 60 I

C ~
Cache language models, 574-75. 88~
Carbon button microphones, 497
Cardioid mikes. 495
CART. Sl·e Classification and regression trees (CART)
CART-based durations, 763
Cascade/para!lel fonnant synthesizer, 797-802

parameter values, 799
targets, 801-2

Case relations, 63, 66
Cauchy-Schwarz inequality, 263
CCITT (Comite Consultatif International Tele-

phonique et Telegraphique), 343
CELP, See Code excited linear prediction (CELP)
Central Limit Theorem, 93
Centroid, 165
Cepstral mean normalization (CMN), 522-24, 540
Cepstrum, 306-15

cepstrum vector, 309
complex, 307-8
LPC-cepstrum, 309-11
of periodic signals, 311-12
of pole-zero filters. 308-98
real, 307-8
source-filter separation via, 314-15
of speech signals. 312-13

Chain rule, 75. 77-78, 124
Channel coding, 126-28
Character, and prosody, 744
Chart,550

• Chart parsing for context-free grammars, 549-53
bottom-up, 550-53
top down vs. bottom up, 549-50

CHATR system of ATR, 781
Chebychev polynomials, 237
Chemical fommlae, 719
Chemical Markup Language (CML), 719
Chomsky hierarchy, 54 7-48
Chunking, 876
Chunks, 691
Circular convolution, 227
Class:conditional pdfs, 133, 140, 144
Classification and regression trees (CART), 134.

175-89. 191, 729-30, 748, 879
CART algorithm, 189

choice of question set, 177-78
complex questions, 182-84
growing the tree, 181
missmg rnlues and conflict resolution, 182
right-sized tree, 184-89 •
cross-validation, 188-89
independent test sample estimation, 187-88
minimum cost-complexity pruning, 185-87

splitting criteria, 178-81
Class inclusion. 66
Class 11-grams. 570-74

data-driven classes. 57'2.-73
rule-based classes. 571-72

Clauses, 61-62
relative, 61

Clear 1/i. 48
Cleft sentence. 62
Closed-loop estimation, 356
Closed-phase analysis. 3 I 9
Closed POS categories, 54
Cluster, 572
Clustered acoustic-phonetic units, 432-36
Clustered models, 452-53
CMU Pronunciation Dictionary, 436
Coarticulation, 47, 49-51
Cochlea, 30
Cocke-Younger-Kasmi (CYK) algorithm, 584
Cocktail party effect, 479
Codebook, 164-65
Code Division Multiple Access (CDMA),

360-61
Code excited linear prediction (CELP), 353-61

adaptive codebook, 356-57
analysis by synthesis. 353-56
LPC vocoder, 353

959

parameter quantization, 358-59
perceptual weighting/postfiltering, 357-58
pitch prediction, 356-57
standards, 359-61

Coder delay, 339
Codeword, I 64-65
Colored noise, 270
Combination models. 456-57
COMLEX dictionary (LDC), 436-37
Command and control speech recognition, 921-24

application ideas/uses, 923
situations for, 922-23

Commissives, 861
Communicative prosody, 858
Compact Disc-Digital Audio (CD-DA), 342
Compander, 342
Comparison Category Rating (CCR) method, 842
Complements, 58, 59
Complex cepstru1n 307-8
Complexity parameter, 185
Compressions, 21
Computational delay, 339

960

Concatenative speech synthesis, 793-94
choice of unit, 805-8
context-dependent phonemes. 808-9
context-independent phonemes, 806-7
diphones, 807-8
with no wavefonn modification, 794
optimal unit string, 810-17
data-driven transition cost, 815-16
data-driven unit cost, 816-17
empirical transition cost, 812-13
empirical unit cost, 813-15
objective function, 810-12

subphonetic units (senones), 809
syllables, 809
unit inventory design, 817-18
with wavefonn modification, 795
word and phrase, 809

Concept-to-speech rendition, 899-901
Conceptual graphs, 872-73
Condenser microphone, 486-89
Conditional entropy, 123-24
Conditional expectation, 81
Conditional likelihood, 151
Conditional maximum likelihood estimator (Cl'vfLE),

151
Conditional probability, 75-76
Conditional risks, 136
Conditioning, 320
Conference of European Posts and Telegraphs

(CEP1), 360
Confidence models, 453-57

combination models, 456-57
filler models, 453-54
transformation models, 454-55

Conflict resolution procedure, 182
Conjugate quadrature filters, 251-54
Conjunctions, 54
Connotation, message, 739
Consonants, 24, 42-46

affricates, 44
alveolar, 46
dental, 46
fricatives, 42, 44
labial, 46
labio-dental, 46
nasal, 43-44
obstruent, 43
palatal, 46
plosive, 42-43
stop, 43
velar, 46

Consumer audio, 351-52
Content words, 54
Context coarticulation, 735
Context dependency, 430-31
Context-dependent phonemes, 808-9

Index

Context-dependent units and inter-word triphones,
658-59

Context-free grammar (CFG), 465,547,921
vs. n-gram models. 580-84
search space, 613-16

Context-free grammars (CFGs), search architecture,
676-77

Context-independent phonemes, 806-7
Context variability, 417
Continuation rise, 749
Continuous distribution, 78
Continuous-frequency transforms, 209-16

Fourier transforms, 208-10
;:-transforms, 211-15

Continuously listening model, 422
Continuously variable slope delta modulation

(CVSDM), 347
Continuous mixture density HMMs, 394-96
Continuous random variable, 78
Continuous speech recognition (CSR), 591, 611-12,

945
Continuous speech training, vs. isolated speech

training, 441-43
Continuous-time stochastic processes, 260
Contrastive stress, 431
Contrasts, 66
Convolution operator, 207
Co-references, 882
Corpora, 545-46
Corpus-based F0 generation, 779-82

F0 contours indexed by parsed text, 779-81
F0 contours indexed by ToBI, 781-82
transplanted prosody, 779

Corrective training, 158
Correlation, 82-83
Correlation coefficient, 82-83
Covariance, 82-83
Covariance matrix, 84
Critical region, 114
Cross-validation, 188-89
Cumulative distribution function, 79
Currency, 716
Curse of dimensionality, 144-46

D
DAMSL system, See Dialog Act Markup in Several

Layers (DAMSL)
Dark/I/, 48
DARPA, 11
DARPA ATIS programs, 913
Data-directed search, 549
Data-driven parallel model combination (DPMC), 533
Data-driven speech synthesis, 794, 803
Data flow, 694-97
DAVO, 846
DCT, See Discrete Cosine Transfonn (DC1)
Decibels (dB), 22

Index

Decimation-in-frequency, 223
Decimation-in-time, 223
Declaratives, 861
Declarative sentence, 62
Declination, 766-67
Decoder, 5
Decoder basics, 609
Decoder delay. 3 39
DECTalk system, 736, 846
Degree of displacement, 21-22
Deixis, 882
Deleted interpolation smoothing, 564-65
Deletion errors, 420
Delta modulation (DM), 346
Denotation, message, 739
Dental consonants, 46
Depth-first search, 598-99
Derivational morphology, 56-57
Derivational prefixes, 57
Derivational suffixes, 57
Descrambling, 224
Deterministic signals, 260
Development set, 419-20
Diagnostic Rhyme Test (DRT), 837
Dialects, 725
Dialog Act Markup in Several Layers (DAMSL),

862-66
Dialog-act theory, 9 I 4
Dialog control, 866-67, 949
Dialog flow, 942-43

prompting strategy, 943
prosody, 943
spoken menus, 942

Dialog grammars, 887-88
Dialog management, 886-94

dialog grammars, 887-88
plan-based systems, 888-92

Dialog management module, 881
Dialog Manager, 7-8, 855
Dialog repair, 885
Dialog (speech) acts, 861-66
Dialog structure, 859-67

attentional state. 859
Dialog Act Markup in Several Layers (DAMSL),

862-66
intentional state, 859
linguistic forms, 859
task knowledge, 859
units of dialog, 860-61
world knowledge, 859

Dialog system, 854-55
dialog manager, 855
discourse analysis, 855
semantic parser, 854-55

Dialog turns, 705-6
Dictation, 926-29, 935, 948
Dielectric, 486

961

Differential pulse code modulation (DPCM), 345-48
Differential quantization, 345-48
Digital Audio Broadcasting (DAB), 352
Digital tilters and windows, 229-42

generalized Hamming window, 231-32
ideal low-pass filter, 229-30
rectangular window, 230-31
window functions, 230-32

Digital sign:il proc.issing, 20 I -73
of analog signals, 242-48
analog-to-digital conversion, 245-46
digital-to-analog conversion, 246-48
Fourier transform of. 243
sampling theorem, 243-45

circular convolution, 227
continuous-frequency transforms, 209-16
of elementary functions, 212-15
Fourier transform, 208-10
properties, 215-16
: -transforms, 211-12

digital filters and windows, 229-42
generalized Hamming window, 231-32
ideal low-pass filter, 229-30
rectangular window, 230-31
window functions, 230-32

digital signals/systems, 202-8
Discrete Cosine Transform (DCT), 228-29
discrete-frequency transforms, 216-29
discrete Fourier transform (OFT), 218-19
Fourier transforms of periodic signals, 219-22

Fast Fourier Transfom1s (FFT), 222-27
FFT subroutines, 224-27
prime-factor algorithm, 224
radix-2 FFT. 222-23
radix-4 algorithm, 223
radix-6 algorithm, 223
radix-8 algorithm, 223
split-radix algorithm, 223

filterbanks, 251 -60
DFTs as, 255-58
multiresolution, 254-55
two-band conjugate quadrature filters, 251-54

FIR filters, 229, 232-38
first-order, 234-35
linear-phase, 233-34
Parks McClellan algorithm, 236-38
window design FCR lowpass liters, 235-36

IIR filters, 238-42
first-order, 239-41
second-order, 241-42

multirate signal processing, 248-51
decimation, 248-49
interpolation, 249-50
resampling. 250-51

stochastic processes, 260-70
continuous-time. 260
discrete-time, 260

962

Digital signal processing, stochastic
processes (cont.)

L TI systems with stochastic inputs, 267
noise, 269-70
power spectral density, 268-69
stationary processes, 264-67
statistics of, 261-64

Digital Signal Processing (DSP), 202-3, 339
Digital signals/systems, 202-8

digital systems, 206-8
linear time-invariant (L TO systems, 207
linear time-varying systems, 208
nonlinear systems, 208

other digital signals, 206
sinusoidal systems, 203-5

Digital systems, defined, 202
Digital-to-analog conversion, 246-48
Digital wireless telephony applications, 925
Diphones, 807-8
Diphthongs, 40
Directionality patterns, 489-96
Directives, 861
Disambiguation, 876
Discourse analysis, 7,753,855, 881-86

resolution, 882-85
Discourse memories, 882
Discourse segments, 857
Discrete Cosine Transform (DCI), 228-29
Discrete distribution, 77
Discrete-frequency transforms, 216-29

discrete Fourier transform (OFT), 218-19
Fourier transforms of pmodic signals, 219-22

Discrete joint distribution, 83-84
Discrete random variables, 77
Discrete-time Fourier transform, 209,210
Discrete-time stochastic processes, 260
Discriminative training, 150-63

gradient descent, 153-55
maximum mutual information estimation (MMIE),

150-52
minimum-error-rate estimation, 156-58
multi-layer perceptrons, 160-63
neural networks, 158
single-layer perceptrons, 159-60

Disfluency, 857
Distortion measures, 164-66
Distribution function, 79
Document structure detection, 692, 699-706

chapter and section headers, 700-70 I
dialog turns and speech acts, 705-6
email, 704-5
lists, 701 -2
paragraphs, 702
sentences, 702-4
Web pages, 705

Dolby Digital, 351
Domain knowledge, 2

Domain-specific tags, 718-20
chemical formulae, 719
mathematical expressions, 718-19
miscellaneous formats, 719-20

Dragon NaturallySpeaking, 926
Dr. Who case study, 906- 13

dialog manager, 910-13
discourse analysis, 909-10
semantic parser (sentence interpolation), 908
semantic representation, 906-8

Dr. Who Project, 869, 876-77
DTS, 351-52
Duration assignment, 761-63

CART-based durations, 763
rule-based methods, 762-63

Dynamic microphones, 497
Dynamic time warping (DTW), 383 -85

E
Ear:

cochlea, 30
eardrum, 29
middle ear, 29
outer ear, 29
oval window, 29
physiology of, 29-32
sensitivity of, 30

Eardrum, 29
Earley algorithm, 584
Eigensignals, 209
Eigenvalue, 209
Electret microphones, 487
Electroglottograph (EGG), 828

signals, 319-20
Electromagnetic microphones, 497
Electronic Industries Alliance (EIA), 360
Electrostatic microphones, 497
Ellipsis, 882
EM algorithm, 134, 170-72
Embedded ADPCM, 348
Emotion, and prosody, 744-45
Emphatic stress, 431
End-point detection, 422-24
Entropy, !20-11

conditional, 123-24
Entropy coding, 350-51
Environmental model adaptation, 528-38

model adaptation, 530-31
parallel model combination, 531-34
retraining on compensated features, 537-38
retraining on corrupted speech, 528-39
vector Taylor series, 535-37

Environmental robustness, 477-544
acoustical environment, 477, 478-86

additive noise, 478-80
babble noise, 479
cocktail party effect, 4 79

Index

Index

Lombard effect, 480
model of the environment, 482-86
pink noise. 478
reverberation, 480-82
white noise, 478-79

acoustical transducers, 486-97
active microphones. 496
bidirectional microphones, 490-94
carbon button microphones, 497
condensermicrophone,486-89
directionality patterns, 489-96
dynamic microphones, 497
electromagnetic microphones, 497
electrostatic microphones, 497
passive microphones, 496
piezoelectric microphones, 497
piezoresistive microphones, 497
pressure gradient microphones, 496
pressure microphones, 496
ribbon microphones, 497
unidirectional microphones, 494-96

adaptive echo cancellation (AEC), 497-504
convergence properties of the LMS algorithm,

500-501
LMS algorithm. 499-500
normalized LMS algorithm (NLMS), 501 -2
RLS algorithm, 503-4
transfonn-domain LMS algorithm. 502-3

environmental mcxlel adaptation, 528-38
model adaptation, 530-3 I
parallel model combination, 531-34
retraining on compensated features, 537-38
retraining on comipted speech, 528-39
vector Taylor series, 535-37

environment compensation preprocessing, 515-28
cepstral mean normalization (CMN}, 522-24
frequency-domain MMSE from stereo data, 519-20
real-time cepstral normalization, 525
spectral subtraction, 516-19
use of Gaussian mixture models, 525-28
Weiner filtering, 520-22

multimicrophone speech enhancement, 504-15
blind source separation (BSS), 510-15
microphone arrays, 505-10

nonstationary noise, modeling, 538-39
Environment compensation preprocessing, 515-28

cepstral mean normalization (CMN), 522-24
frequency-domain MMSE from stereo data 519-20
real-time cepstral normalization, 525 '
spectral subtraction, 516-19
use of Gaussian mixture mcxlels 525-28
Wiener filtering, 520-22 '

Environment variability, 419
Epoch detection, 828-29
Equal-loudness curves 31
Ergodic processes, 265-67
Ergonomics of Software User Interface, 932

Error handling, 937-41
error detection and correction, 938-39
feedback and confirmation, 939-4 J

Estimation, 98-99
Estimation theory, 98-113

Bayesian estimation, 107-13
general, I 09-10
prior and posterior estimation, 108-9

least squared error (LSE) estimation, 99-100
for constant functions, 100
for linear functions, IO 1-2
for nonlinear functions, I 02-4

MAP estimation, 111-13

963

maximum likelihood estimation (MLE}, I 04-7
minimum mean squared error (MMSE), 99- 104
for constant functions, 100
forlinear functions, 101-2
for nonlinear functions, 102-4

Euclidean distortion measure, 165-66
Eureka 147 DAB specification, 352
European Telecommunication Standards Institute

(ETSI), 360
Evaluation of understanding and dialog, 901-3

and ATIS task, 901-3
PARADISE framework, 903-6

Exact n-best algorithm, 666-67
Exception list, 697, 728
Excitation signal, 30 I
Exclamative sentence, 62
Exhaustive search, 597
Expectation (mean) vector, 84
Expectation ofa random variable, 79
Exponential distribution, 98

F
FO contour interpolation, 772-73
FO jumps, 330
Fl/F2 targets, 39
Factored language probabilities, 650-53
Factored lexical trees, 652-53
Fast Fourier Transforms (FFT), 222-27

FFT subroutines, 224-27
prime-factor algorithm, 224
radix-2 FFT, 222, 223
rndix-4 algorithm, 223
radix-6 algorithm, 223
radix-8 algorithm, 223
split-radix algorithm, 223

Fast match, 634-38, 66 J-62
look-ahead strategy, 661-62
Rich-Get-Richer (RGR) strategy, 662

Fear, and speech, 745
Feedback, 490
F eedforward adaptation, 345
Fenones, 467
Festival, 732-35
FFT, See Fast Fourier Transforms (FFT)

964

Filler models, 453-54
Filterbanks. 251-60

DFTs as, 255-58
multiresolution, 254-55
two-band conjugate quadrature filters, 251-54

Filters. 210
Finite-impulse response (FIR), St>e FIR filters
Finite-state automaton. 547
Finite-state grammar, 6 I 3-16
Finite-state machines (FSM), 548
Finite state network, 654
FIR filters, 229, 232-38

first-order, 234-35
linear-phase, 233-34
Parks McClellan algorithm, 236-38
window design, 235-36

First coding theorem, 124
First-order FIR filters, 234-35
First-order IIR filters, 239-41
First-order moment, 261
Focus, 883
Focus shifts, cueing, 892
Formal language modeling. 546-53

chart parsing for context-free grammars, 549-53
bottom-up, 550-53
top down vs. bottom up, 549-50

Chomsky hierarchy, 547-48
Formant frequencies, 319-23

statistical formant tracking. 320-23
Formants. 27-28
Formant speech synthesis, 793, 796-804

cascade model, 797
formant generation by rule, 800-803
Klatt's cascade/parallel formant synthesizer, 797-99
locus theory of speech production, 800
parallel model, 797
waveform generation from formant values, 797-99

Formant targets, 39
Forward algorithm, 385-87
Forward-backward algorithm, 389-93, 442-43, 557
Forward-backward search algorithm, 670-73
Forward error correction (FEC), 352
Forward prediction error, 297
Forward reasoning, 595
Fourier series expansion, 218
Fourier transforms, 208-10

Fast Fourier Transforms (FFT), 222-27
FIT subroutines, 224-27
prime-factor algorithm, 224
radix-2 FIT, 222-23
radix-4 algorithm, 223
radix-6 algorithm, 223
radix-8 algorithm, 223
split-radix algorithm, 223

properties of, 215-17
Fourier transforms of periodic signals, 219-22

complex exponential, 219-20

general periodic signals, 221-22
impulse train, 221

Frames, 339
Free stress, 431

Index

Frequency analysis, 32-34
Frequency domain, advantages of, 348-49
Frequency-domain MMSE from stereo data, 519-20
Frequency masking, SL!e Masking
Frequency response. 210
Fricatives, 42, 44
Fujisaki's model, 776
Full duplex sound cards, 936
Functionality encapsulation, 871-72
Functional tests, 842-43
Function words, 54
Fundamental frequency, 25

G
G.711 standard, 343-44, 348, 359, 371
G.722 standard, 348, 359
G.723.1 standard, 359
G.727 standard, 348
G.728 standard, 359
G. 729 standard, 359
Game search, 594
Gamma distributions, 90-91, 95
Gaussian distributions, 92-98

Central Limit Theorem, 93
lognonnal distribution, 97-98
multivariate mixture Gaussian distributions, 93-95
standard, 92-93
x' distributions, 95-96

Gaussian mixture models, 525-28
Gaussian processes, 264-65
General graph searching procedures, 593-97
Generality, of grammar, 546
Generalized Hamming window, 231-32
Generalized Lloyd algorithm, 168
Generalized triphones, 808
General Packet Radio Service (GPRS), 361
Geometric distributions, 86-87
Gibbs phenomenon, 235
Gini index of diversity, 181
Glides, 42
Global Positioning System (OPS), 868, 930
Glottal cycle, 26
Glottal excitation, 284
Glottal stop, 43
Glottis, 25, 288
Glyphs, 36
Goal-directed search, 549
Goodness-of-fit test, 116-18
Good-Turing estimates and Katz smoothing, 565-67
Gradient descent, 153-55, 190
Gradient prominence, 765-66
Graham-Harison-Ruzzo algorithm, 584
Grammar, 545

Index

Granular noise. 346 .
Grapheme-to-phoneme conversion. 692-93
GrJphical user interface (GL'I). I
Graph-search algo1i1hms. 59 I, 597
Greedy symbols. 558
Ground, <JOO
Grouuding. 861

H
H.3B. 359
Half duplex sound cards. 936
Half phone, 809
Hamming window. 232, 258. 278-80, 283

generalized, 231-32
Handheld devices. 930
Hands-busy. eyes-busy applications. 927
Hanning window, See Hamming window
Hard palate, 25
Hannonic coding, 363-67

parameter estimation, 364-65
parameter quantization, 366-67
phase modeling. 365-66

Hamtonic errors, 330
Hannonic sinusoid~, 218
Hnnnonic/Stochastic (WS) model, 847
Haivard Psychoacoustic Sentences, 839
Has-a relations, 65
Haskins Syntactic Sentence Test, 839
Head-noun, 59
Head of a phrase, 59
Headset microphone, 936
Hearing sensitivity, 30
Hermitian function, 265
Hertz (Hz). 21
Hessian of the least-squares function , 504
H~sian matrix, 154
Heuristic graph search, 601-8

beam search. 606-8
best-first (A• search), 602-6

Heuristic information, 601-2
Heuristic search methods. 60 I
Hidden Markov models (HMM), 56, 134, 170,

377-413, 416,547. 931
Baum-Welch algorithm, 389-93
continuous mixture density, 394-96
decoding, 387-89
definition of, 380-93
deleted interpolation, 401-3
dynamic programming, 384-85
advantage of, 384
algorithm. 385

dynamic time warping (DTW), 383-85
estimating parameters, 389-93
evaluating, 385-87
forward algorithm, 385-87
forward-backward algorithm, 389-93
historical perspective, 409-10

initial estimates, 398-99
limitations of. 405-9
conditional independence assumption 409
duration modeling. 406-8 '
first-order assumption. 408

Marko,· chain, 3 78-80
Marko,· assumption for, 382
output-independence assumption, 382

model topology, 399-401
observable Markov model, 379-80
parameter smoothing. 403-4
practical issues. 398-405
probability representations, 404-5
semicontinuous, 396-98
training crite1ia, 40 I
Viterbi algorithm, 387-89

Hidden understanding model lHUM), 879-80
High-frequencysounds,31
High-pass filters, 235
Hi II-climbing style of guidance, 60 I
H method, 147
HMM, See Hidden Markov models (HMM)
Holdout method, 147
Home applications, 921
Homograph disambiguation, 693, 723, 724-25
Homographs, 721
Homomorphic transformation, 306, 312
Huffman coding, 125-26
Human Factors and Ergonomic Society (HFES),

931-32
Human-machine interaction, I

[deal low-pass filter, 229-30
IIR filters, 238-42

first-order, 239-41
second-order, 241-42

Imperative sentence, 62
Implicit confirmation, 892-93
Implicit memory, 882-83
Impulse response, 207
Inconsistency checking, 885-86
Inconsistency detection, 88 I
Independent component analysis (!CA), 5 I 0
Independent identically distributed (iid), 82
Independent processes, 264
Independent test sample estimation, 187-88
Indistinguishable states, 654

96S

Infinite-impulse response (IIR) filters, See IIR filters
Inflectional morphology, 56
Inflectional suffix, 57
lnfomax rule, 512-13
Information theory, 73-131

channel coding, 126-28
conditional entropy, 123-24
entropy, 120-22
mutual infom1ation. 126-28

966

lnfom1ation theory (cont.)
origin of, 74
source coding theorem. 124-26

lnfonned search. 604
Infovox TTS system, 846-47
Inner ear, 29
Input method editors (IME). 736
Insertion errors, 420
Insertion penalty, 610
Inside constituent probability, 555
Inside-outside algorithm, 555
Instance definition, 868
Instantaneous coding, 125
Instantaneous mixing, 510
Instantaneous mutual information. 151
Institute of Electrical and Electronic Engineers (IEEE),

272
Institute of Radio Engineers (IRE), 272
.Intelligibility tests, 837-39
Intentional state, 859
Interactive voice response (IVR) systems. 924 •
Intennediate phrase break, 751
International Conference on Acoustic, Speech and

Signal Processing (ICASSP), 272
Internationalization, 943-45
International Telecommunication Union (ITU), 343
International Telecommunication

Unioo-Radiocommunication (ITU-R), 352
Interpolated models, 564-65
lnterword-context-dependent phones, 430
Inter-word triphones, 658-59
Intonational phrase break, 751
Intonational phrases, 53, 749
INTSINT, 760
Inverse filter, 290
Inverse-square-law effect, 494
Inverse z-transform, 212

of rational functions, 213-I 5
ls-a taxonomies, 64-66
Isolated vs. continuous speech training, 441-43
Isolated word recognition, 610-11

J
Japanese vowels, 46-47
Jensen's inequality, 122
Jitter, 768
Joint distribution function, 84
Jointly strict-sense stationary, 264
Joint probability. 74
Joy, and speech, 745
JSAPJ, 921
Juncture, 746-47
Just noticeable distortion (JND), 35

K
Kalman filter, 522
Karhunen-Loeve transform, 426

Katz' backoff mech:mism, 618
Katz smoothing, 565-67
Klattalk system. 846

Index

Klatt's cascade/parallel formant synthesizer, 797-802
parameter values for, 799
targets used in, 801-2

K-means algorithm, 166-69
Kneser-Ney smoothing, 568-70, 573
Knowledge sources (KSs), 646,663, 673-74
KolmogoroY-Smimov test, 118
Kronecker delta, 220
Kth moment, 80
Kullback-Leibler (KL) distance, 122, 581

L
Labial consonants, 46
Labio-dental consonants, 46
Lancaster/IBM Spoken English Corpus, 751-52
Language modeling, 545-90

adaptive, 575-78
cache language models, 574-75
maximum entropy models, 576-78
topic-adaptive models, 575-76

CFG vs. 11-gram models, 580-84
complexity measure of, 560-62
formal, 546-53
chart parsing for context-free grammars, 549-53
Chomsky hierarchy, 547-48

historical perspective, 584
n-gram pruning, 580-81
n-gram smoothing, 562-74

backofTsmoothing, 565-70
class 11-grams. 570-74
deleted interpolation smoothing, 564-65
performance of, 573-74

stochastic language models, 554-60
11-gram language models, 558-60
probabilistic context-free grammars, 554-58

vocabulary selection, 578-80
Language model probability, 610
Language models, 4, 949
Language model states, 6 I 3-22

backoff paths, 618-19
search space:

with bigrams, 617-18
with FSM and CFG. 613-16
with trigrams, 619-20
with the unigram, 616-17

silences between words, 621-22
Lapped Orthogonal Transfonn (LOT), 260
Large-vocabulary search algorithms, 645-85

context-dependent units and inter-word triphones,
658-59

exact 11-best algorithm, 666-67
factored language probabilities, 650-53
factored lexical trees, 652-53
finite state network, 654

Index

forward-backward search algorithm, 670-73
historical perspective, 681-82
HMM:
different layers of beams, 660-61
fast match, 661-62

lexical successor trees, 652
lexical trees. 646-48
handling multiple linguistic contexts in, 657-58
linear tail in, 655
optimization of, 653

lexical tree search, 648
Microsoft Whisper, 676-81
CFG search architecture, 676-77
n-gram search architecture, 677-81

n-best and multipass search strategies, 663-74
one-pass fl-best and word-lattice algorithm, 669-70
one-pass vs. multipass search, 673-74
polymorphic linguistic context assignment, 656-57
prefix trees, 647
pronunciation trees. multiple copies of, 648-50
search-algorithm evaluation, 674-76
sharing tails, 655-56
single-word subpath, 655
subtree dominance, 656
subtree isomorphism, 654
subtree polymorphism, 656-58
tree lexicon, 646-59
word-dependent 11-best and word-lattice algorithm,

667-70
word-lattice generation, 672-73

Lamyx, 25
vocal fold cycling at, 26

Laryngograph, 828
Lateralization, 3 I
Lateral liquid, 42
Law oflarge numbers, 82
LBG algorithm, 169-70
Least squared error (LSE) estimation, 99-100

for constant functions, I 00
for linear functions, IO 1-2
for nonlinear functions, 102-4

Least squared regression methods, 180
Least square error (LSE), 160
Leave-one-out method, 147
Left-recursive grammar, 550
Lempel-Zi v coding, 126
Lemout&Hauspie's Voice Xpress, 926
Letter-to-sound (LTS) conversion, 437,693, 728-30
Letter-to-sound (L TS) rules, 697
Level of significance, 114-15
Levinson-Durbin recursion, 297-98, 333
Lexical baseforms, 436-39
Lexical knowledge, 545
Lexical part-of-speech (POS), 53-56
Lexical successor trees, 652
Lexical trees, 646-48

handling multiple linguistic contexts in, 657-58

linear tail in, 655
optimization of, 653

Lexicon, 697-98
Light Ill, 48
Likelihood function, I 04
Likelihood ratio, 139
Limited-domain waveform concatenation 794
Linear bounded automaton, 548 '
Linear Discriminate Analysis (LDA), 427
Linear-phase FIR filters, 233-34
Linear predictive coding (LPC), 290-306

autoconrelation method, 295-96
covariance method, 293-94
equivalent representations, 303-6
lattice formulation, 297-300
line spectral frequencies (LSF), 303-5
log-area ratios, 305-6
orthogonality principle, 291-92
prediction error, 301-3
reflection coefficients, 305
roots of the polynomial, 306
solution of the LPC equations, 292-300
spectral analysis via, 300-301

Linear pulse code modulation (PCM), 340-42
Linear time-invariant (L Tl) systems, 207

eigensignals of, 209
with stochastic inputs, 267

Linear time-varying systems, 208
Line spectral frequencies (LSF), 303-5
Linguistic analysis, 692, 720-23

homograph disambiguation, 723, 724-25
noun phrase (NP) and clause detection, 723
POS tagging, 722-23
sentence tagging, 722
sentence type identification, 723
shallow parse, 723

Linguistic Data Consortium (LDC), 467
Linguistic fonns, 859
Linguistics, co-references in, 882
Lips, 25
Liquid group, 42
Listening Effort Scale, 841
Listening Quality Scale, 841
LMS algorithm, 540
Load loss of signal level, 488
Localization issues, 696-97
Locus theory of speech production, 800
Log-area ratios, 305-6
Logical fonn, 6 7-68
Lognorrnal distribution, 97-98
Lombard effect, 480
Long-term prediction, 353
Look-ahead strategy, 661-62
Lossless compression, 338
Lossless tube concatenation, 284-88
Lossy compression, 338
Loudness, 740

967

968

Low-bit rate speech coders, 361-70
harmonic coding, 363-67
parameter estimation, 364-65
parameter quantization, 366-67
phase modeling, 365-66

mixed-excitation LPC vocoder, 362
• waveform interpolation, 367-70

Lower bound of probability, 74
Low-frequency sounds, lateralization of, 31
Low-pass filter, bandwidth of, 240
Low-pass filters, digital, 229-30, 235
Low probability of intercept (LPI), 361
LPC, See Linear predictive coding (LPC)
LPC-cepstrum, 309-1 I
LPC vocoder, 353
LP-PSOLA, 832-33
LSE estimation, See Least squared error (LSE)

estimation
L TI systems, Sl:e Linear time-invariant (LT]) systems
LTS conversion, 437, 728-30
LTS rules, 697
Lungs, 25

M
McGurk effect, 69
Machine-learning methods, 56
McNemar's test, 148-49, 190
Magnitude-difference test, 119-20
Magnitude subtraction rule, 519
Mahalanobis distance, 166, 168
MAP, See Maximum a posteriori (MAP)
MAP estimation, 111 -13
Marginal probability, 76, 77-78
Markov chain, 378-80
Masking, 30-31, 34-36, 349-50

Bark scale functions, 35
just noticeable distortion (JND), 35
spread-of-masking function, 35-36
temporal masking, 35-36
tone-masking noise, 35

Matched pairs test, I 18-20, 148
Mathematical expressions, 718-19
MathML, 718
Maximal p1°>jcctiui., 5e
Maximum entropy models, 576-78
Maximum likelihood estimation (MLE), 73, 104-7,

134,141, 168-09
Maximum likelihood estimator, 99
Maximum likelihood linear regression (MLLR),

447-50
VS, MAP, 450-51

Maximum mutual information estimation (MMIE),
134, 150-52, I 56

defined, 151
Maximum phase signals, 309
Maximum a posteriori (MAP), 73, I 11, 141,331,

445-47, 854

Maximum substring matching problem, 420
MBROLA technique, 829
Mean. 79-81
Mean-ergodic process. 266
Mean opinion score (MOS), 338-39, 840
Mean squared error (MSE), 99
Mean vector, 84
Median, 81
Median smoother of order, 208

Index

Mel-frequency cepstral coefficients (MFCC), 424-26
Mel frequency scale, 34
Message generation, 894-90 I

See also Response generation
Message generation box, 897
Metaunits, 658-59
Microphone, 936
Microphone arrays. 505-10

delay-and-sum bearnfom1er, 505-6
goals of, 505
steering, 505

Microprosody, 767-68
Microsoft Dictation, 928-29
Microsoft Speech SOK 4.0, 937
Microsoft's speech AP((SAPI), 921
Microsoft Whisper case study, 676-81

CFG search architecture, 676-77
n-gram search architecture, 677-81

Middle ear, 29
Mid-riser quantizer, 340
Mid-tread quantizer, 340
Minimum-classification-error (MCE), 156
Minimum cost-complexity pruning, 185-87
Minimum-error-rate decision rules, 135-38
Minimum-error-rate estimation, 134, 156-58
Minimum mean squared error (MMSE), 73, 99-104

for constant functions, I 00
for linear functions, IO 1-2
for non I in ear functions, I 02-4

Minimum mean square estimator, 99
Minimum phase signals, 309
Minimum squared error (MSE) estimation, 100
Minor phrase break, 751
MiPad case study, 945-52

evaluation, 949-51
iterations, 951-52
rapid prototyping, 948-49
specifying the application, 946-48

M!Talk System, 735-36, 846
Mixed-excitation LPC vocoder, 362
Mixed excitation model, 289
Mixed initiative systems, 860
Mixture density estimation, 172
MMIB, See Maximum mutual information estimation

(MMIE)
MMSE, Sec Minimum mean squared error (MMSE)
Mobile applications, 921
Mode; 81

Index

Modified Discrete Cosine Transfonn (MDCn, 259
Modified Rhyme Test (MRT), 838
Modifiers, 61
Modular (component) testing, 731
Modulated Lapped Transform (ML T), 259
Money and currency, 7 I 6
Monolithic whole-system evaluation, 731
Morphological analysis. 693, 725-27

algorithm, 727
suffix and prefix stripping, 726-27 •

Morphological attributes, 55
Morphology, 56-57

derivational, 56-57
inflectional, 56

Move generator, 594
MP3, 371
MPEG, 351-52, 371
Multi-layer perceptrons, 160-63
Muhimicrophone speech enhancement, 504-15

blind source separation (BSS), 510-15
microphone arrays, 505-10
delay-and-sum beamformer, 505-6
steering, 505

Multinomial distributions, 87-89
Multipass search, 663-74, 682

n-best lists and word lattices, 664-66
n-best search paradigm, 663

Multipass search vs. one-pass search, 673-74
Multiple tree combination, 730
Multiplexing delay, 339
Multirate signal processing, 248-51

decimation, 248-49
interpolation, 249-50
resampling, 250-51

Multiresolution filterbanks, 254-254
Multistack search, 639
Multistyle training, 419
Multivariate distributions, 83-85
Multivariate Gaussian mixture density estimation,

172-75
Multivariate mixture Gaussian distributions, 93-95
Musical noise, 517
Musical pitch scales, and prosodic research, 32
MUSICAM, 352
Mutual information, 126-28

N
Narrow-band filtering, 330
Narrow-band spectrograms, 282
Nasal, 42
Nasal cavity, 25
Nasal consonants, 43-44
Natural gradient, 513
Natural language, linguistic analysis of, 720-23
Natural language generation from abstract semantic

input, 898
Natural language process (NLP) systems, 693-94

N-best lists, 664-66
N-best search paradigm, 66J
Near-miss list, 158
Negative correlation, 83
Negotiation, 892
NETALK, 729
Neural networks. 134, 158, 457-59

integrating with HMMs, 458-59
recurrent, 457-58
time delay neural network (TDNN), 458

Neural transduction process, 20
Neural units, 158
Neuromuscular signals, 20
Newton's algorithm, I 55
N-gram language models, 558-60
N-gram pruning, 580-81
N-grams, search architecture, 677-81
N-gram smoothing, 562-74

backoff smoothing, 565-70

969

alternative backoff models, 568-70
Good-Turing estimates and Katz smoothing,

565-67
class n-grams, 570-74
data-driven classes, 572-73
rule-based classes, 571-72

deleted interpolation smoothing, 564-65
performance of, 573-74

Noise-canceling microphone, 490
Noiseless channels, 127
Noisy conditions, 330
Nonbranching hierarchies, 65
Noncausal Wiener filter, 522
Non-hierarchical relations, 65
Non-infonnative prior, 112
Nonlinear systems, 208
Nonstationary noise, modeling, 538-39
Normalized cross-correlation method, 327-29
Normalized LMS algorithm (NLMS), 501-2
Noun phrases (NPs), 58-59
Nouns, 54
NP-hard problem, 593
N-queens problem, 593, 598
Nucleus, 52
Number formats, 712-20

account numbers, 716
cardinal numbers, 717-18
dates, 714-15
money and currency, 716
ordinal numbers, 717
phone numbers, 712-14
times, 715

Nyquist frequency, 243, 245

0
Object-oriented programming, 869
Observable Markov model, 379-80
Obstruent, 43

970

Octaves. 32
Office applications, 921
Omnidirectional condenser microphones, 489-90
One-pass n-best and word-lattice algorithm, 669-70
One-pass vs. multipass search, 673-74
One-place predicates, 67
On-glides, 42
Onset, 52
Open-loop estimation. 356
Open POS categories, 54
Operations research problems, 604
Oral cavity. 25
Ordinal numbers, 717
Orthogonality principle, 291-92
Orthogonal processes, 263
Orthogonal variables, 83
Outer ear, 29
Out-Of-Vocabulary (OOV) word rate, 578
Outside probability, 556
Oval window, ear, 29
Overall quality tests, 840-41

Absolute Category Rating (ACR), 841
Listening Effort Scale, 841
Listening Quality Scale, 841
Mean Opinion Score (MOS), 840

Overlap-and-add (OLA) technique, 818-19
Overlapped evaluation scheme, 463
Oversampling, 246
Oversubtraction, 519

p
Paired observations test, I I 4
Palatal consonants, 46
Palate, 46
Paradigmatic properties, 53
PARADISE framework, 903-6
Paragraphs, 702
Paralinguistic, use oftenn, 764
Parameter space, 98
Parametric Artificial Talker (PAT), 845
Parks McClellan algorithm, 236-38
Parsers, 72 I
Parse tree representations, 62-63
Parseval's theorem, 216

for random processes, 268
Parsing algorithm, 545
Partial correlation coefficients (PARCOR), 299
Partition, 74
Part-whole, 66
Passive microphones, 496
Passive sentence, 62
Pattern recognition, 133-97
Pauses, 747-49
Pausing, 740
Penn Treebank project, 55
Perceived loudness, 30
Perceived pitch, 30

Perceptron training algorithm, 159
Perceptual attributes, sounds, 30
Perceptual Audio Coder (PAC), 35 I, 371
Perceptual linear prediction (PLP), 3 I 8-19
Perceptually-based distortion measures, 166
Perceptually motivated representations, 315-19

bilinear transfonns. 315-16

Index

mel-frequency cepstrum coefficients (MFCC),
316-18

perceptual linear prediction (PLP), 3 18-I 9
Perceptual Speech Quality Measurement (PSQM), 844
Perceptual weighting, 357-58
Periodic lobe, 26
Periodic signals, 203

cepstrum of, 311-12
Perplexity, 122, 560-62, 579
Personal Digital Assistants (PDAs), 930, 945
Phantom power, 488
Phantom trajectories, 463
Pharyngeal cavity, 25
Pharynx,288
Phonemes, 20, 24, 36-38, 611
Phoneme trigram rescoring, 730
Phone numbers, 712-14
Phonetically balanced word list test, 839
Phonetic FO (microprosody), 767-68
Phonetic languages, 692-93
Phonetic modeling, 428-39

clustered acoustic-phonetic units, 432-36
comparison of different units, 429-30
context dependency, 430-31
lexical basefonns, 436-39

Phonetics, 36-50
allophones, 47-49
clauses, 61-62
coarticulation, 49-5 I
consonants, 42-46
lexical part-of-speech (POS), 53-56
lexical semantics, 64-66
logical fonn, 67-68
morphology, 56-57
parse tree representations, 62-63
phonemes, 36-38
phonetic typology, 46-47
phrase schemata, 58-61
semantic roles, 63-64
semantics, 58
sentences, 61-62
speech rate, 49-51
syllables, 51-52
syntactic constituents, 58
syntax, defined, 58
vowels. 39-42
word classes, 57
words, 53-57

Phonetic typology, 46-47
Phonological phrases, 749

Index

Phonology, 36-50
Phrase schemata, 58-61
bras tn1crure diagram, 63

p . e-s1 vs perceprual attributes of sounds, 30-32
Phys1ca • ,

9 3
,

Physiology of the ear, - • -
Pickup panem, microphone, 489
Piezoelectric microphones, 497
Piezoresistive microphones, 497
Pink noise, 270, 4 78
Pitch, 25, 30, 47, 740

autocorrelation method, 3_24-27
normalized cross-correlatton method, 327-29
role of, 324-32
signal conditioning, 329-30
tracking, 330-32

Pitch generation, 763-82
accent termin:ition. 770
attributes of pitch contours, 764-68
baseline F0 contour generation, 768-69
corpus-based F0 generation, 779-82
F0 contours indexed by parsed text, 779-81
F0 contours indexed by ToBI, 781-82
transplanted prosody, 779

declination, 766-67
evaluations/improvements, 773-74
FO contour interpolation, 772-73
gradient prominence, 765-66
interface to synthesis module, 773
paramenic F0 generation, 774-75
phonetic F0 (microprosody), 767-68
pitch range, 764-6S, 770-71
prominence determination, 771-72
superposition models, 775-76
ToBI realization models, 777-78
tone determination, 770

Pitch prediction, 356-S7
Pitch range, 764-6S, 770-71
P!tch-scale modification epoch calculation, 82S
P~tch-scale time-scale epoch calculation, 827
P~tch synchronous analysis, 283, 302-3
Pitch synchronous overlap and add (PSOLA) 820-23

831,847 ' '
problems with, 829-31
amplitude mismatch, 830
buzzy voiced fricatives 830
P~ase mismatches, 829'
pitch mismatches, 830-31

. spectral behavior of, 822-23
Pitch tracking, 330-32
:Itch trackin~ errors, 828
Plan-based dialog modeling, 9 I 4

lan-~ased systems, 888-92
Plan libraries 889
Plosive, 4 2 '
Pl • ~s1ve consonant 42-43
Poisson d'°'""b • ' i ... , uuons 89
Poles, 213 '

Pole-zero filters, cepstrum of, 308-98
Polymorphic linguistic context assignment, 656-57
Polysemy, 65
Positive correlation, 83
Positive-definite function, 262
POS tagging, 56, 722-23
Posterior probability, 135, 142, 156
Postfiltering, 357-58
Post-lexical rules, 735
Posnnodifiers, 58-61
Power function, 114
Power spectral subtraction rule, 519
Power spectrum, 21 6
Predicate, 61, 67
Predicate logic, 68
Pre-emphasis filtering, 235, 320
Preference tests, 842
Prefix nodes, 658
Prefix trees, 64 7
Premodifiers, 58-59
Prepositions, 54, 60
Pressure gradient microphones, 496
Pressure microphones, 496
Prime-factor algorithm, 224
Principal-component analysis (PCA), 426
Priority entity memory, 882-83
Priorprobability, 133, 135, 140
Probabilistic CFGs (PCFGs), 554
Probabilistic context-free grammars, 554-58
Probability density function (pdf), 78, 261
Probability function (pf), 77
Probability mass function (pmf), 77
Probability theory, 73-131

Bayes' rule, 75-78
binomial distributions, 86
chain rule, 75, 77-78
conditional probability, 75. 76
correlation, 82-83
covariance, 82-83
gamma distributions, 90-91, 95
Gaussian distributions, 92-98
geometric distributions, 86-87
law of large numbers, 82
marginal probability, 76, 77-78
mean, 79-81
mult!nomial distributions, 87-89
m~ltivariate distributions, 83-85
Poisson distributions 89
probability ~ensity function (pdf), 78
random vanables, 77.79
ra~dom vectors, 83-85
um~orm distributions, 85
vanance, 79-8 I

Promin~nce determination, 771-72
Promptrng strategy, 943
Pronouns, 54
Pronunciation trees, 648.50

971

972

Proper noun, 53-54
Property inheritance, 871
Propositional phrases (PPs), 59-60
Prosodic analysis module, 7
Prosodic modification of speech, 818-31

epoch detection, 828-29
evaluation ofTIS systems, 834-44
automated tests, 843-44
Diagnostic Rhyme Test (ORT), 837
functional tests, 842-43
glass-box vs. black-box evaluation, 835-36
global vs. analytic assessment, 836
Haskins Syntactic Sentence Test, 839
human vs. automated, 835
intelligibility tests, 837-39
judgment vs. functional testing, 835-36
laboratory vs. field, 835
Modified Rhyme Test (MRT), 838
overall quality tests, 840-41
phonetically balanced word list test, 839
preference tests, 842
Semantically Unpredictable Sentence Test, 837
symbolic vs. acoustic level, 835

pitch-scale modification epoch calculation, 825
pitch-scale time-scale epoch calculation, 827
pitch synchronous overlap and add (PSOLA),

820-23, 831,847
problems with, 829-31
spectral behavior of, 822-23

source-filter models for prosody modification,
831-34

LP-PSOLA, 832-33
mixed excitation models, 832-34
prosody modification of the LPC residual, 832
voice effects, 834

synchronous overlap and add (SOLA), 8 I 8-19
synthesis epoch calculation, 823-24
time-scale modification epoch calculation, 826-27
waveform mapping, 827-28

Prosodic phrases, 749-51
Prosodic transcription systems, 759-61
Prosody, 739-91 , 943

and character, 744
duration assignment, 761 -63
CART-based durations, 763
rule-based methods, 762-63

generation, 721-22
generation schematic, 743-44
loudness, 740
pausing, 740
pitch, 740
pitch generation, 763-82

accent termination, 770
attributes the pitch contours, 764-68
baseline F0 contour generation, 768-69
corpus-based F0 generation, 779-82
declination, 766-67

evaluations/improvements, 773-74
F0 contour interpolation, 772-73
gradient prominence, 765-66
interface to synthesis module, 773
parametric F0 generation, 774--75
phonetic F0 (microprosody), 767-68
pitch range, 764-65, 770-71
prominence determination, 771-72
superposition models, 775-76
ToBI realization models, 777-78
tone determination, 770

prosody markup languages, 783-85
rate/relative duration, 740
role of understanding, 740-44
speaking style, 744-45
character, 744
emotion, 744-45

symbolic, 745-61
accent, 751-53
pauses, 747-49
prosodic phrases, 749-51
prosodic transcription systems, 759-61
tone, 753-57
tune, 757-59

Prosody markup languages, 783-85
PROSPA, 759
Pruning, 609
Pruning error, 675
PSOLA, See Pitch synchronous overlap and add

(PSOLA)
Psychoacoustics,30
Pulse code modulation (PCM), 271, 340-42
Pure tones, 31
Push-down automation, 548
Push-to-talk model, 422-23
P-value, 115-16

Q
Quantization noise, 246
Questioned noun phrase, 61

R
Radix-2 FFf, 222, 223
Randonmes::, 7~
Random noise, 276
Random variables, 77-79

expectation of, 79
Random vectors, 83-85
Rapidly evolving waveforms (REW), 368-70
Rapid prototyping, 948-49
Rate/relative duration, 740
Read speech acoustic models, 857
Real cepstrum, 307-8
Real-time cepstral normalization, 525
Recognition problem, 554
Rectangular window, 230-31
Recurrent neural networks, 457-58

Index

Index

Recursive least squares (RLS) algorithm, 504
Recursive transition network (RTN), 548, 613-14
Reflection coefficients, 296, 299, 305
Region of convergence (ROC), 211-12
Regular Pulse Excited-Linear Predictive Coder

(RPE-LPC), 360
Relative clauses, 61
Relative expressions, 871
Relative frequency, 74
Relative spectral processing (RAST A), 525
Renditions, 899-90 I
Repetitive stress injury (RSI), 929
Residual signal, 30 I
Resonances of vocal tract, excitation of, 27
Response generation, 894-90 I

message generation box, 897
natural language generation from abstract serna ntic

input, 898
response content generation, 895-99
template systems for, 897

Retraining on compensated features, 537-38
Retraining on corrupted speech, 528-39
Retroflex liquid, 42
Reverberation, 480-82
Ribbon microphones, 497
Rich-Get-Richer (RGR) strategy, 662
Right-sized tree, 184-89

cross-validation, 188-89
independent test sample estimation, 187-88
minimum cost-complexity pruning, 18S-87

RLS algorithm, 503-4
Robustparsing,874-78
Roll-off, 28 I
Rule-based duration-modeling methods, 56
Rule-based speech synthesis systems, 795-96

CPU resources, 795
delay, 79S

s

memory resources, 795
pitch control, 795
variable speed, 795
voice characteristics, 796

Sadness, and speech, 745
Sample mean, 82
Sample variance, 82
Sampling theorem, 243-45
SAM system, 913-14
Scalable coders, 3 71
Scalar frequency domain coders, 348-52

conswner audio, 351-52
Digital Audio Broadcasting (DAB) 352
frequ~ncy domain, advantages of, j43-49
masking, 349-50
transform coders, 350-5 J

Scalar waveform coders 340-48
adaptive PCM, 344-45

differential quantization, 345-48
linear pulse code modulation (PCM), 340-42
µ-law and A-law PCM, 342-44, 348

Screen reader, 929
Search, defined, 592
Search-algorithm evaluation, 674-76
Search algorithms:

beam, 606-8
best-first, 602-6
blind graph, 597-601
breadth-first, 600-601
depth-first, 598-99
forward-backward, 670-73
large vocabulary, 645-85
speech-recognition, 608-12
combining acoustic and language models,

610
continuous speech recognition, 611-12
decoder basics, 609
isolated word recognition, 6 I 0-11

tree-trellis forward-backward, 671
Search error, 675
Second-order HR filters, 241-42
Second-order resonators, 242
Segment models, 459-60
Segment-model weight, 462
Selectivity, of grammar, 546
Semantically Unpredictable Sentence Test, 837
Semantic authoring, 862
Semantic classes, 948-49
Semantic grammars, 585
Semantic language model, 879
Semantic parser, 854-55
Semantic representation, 867-73

conceptual graphs, 872-73
functionality encapsulation, 871-72
property inheritance, 871
semantic frames, 867-69
type abstraction, 869-71

Semantic roles, 63-64
Semantics:

defined,58
language, 545
lexical, 64-66

Sem!continuous HMMs, 396-98
Semt-tones, 32
Semivowels, 42
Senones,433-36,467,809
Senonesequence,658
Sentence interpolation, 873-80

robust parsing, 874-78
defined,875

statisti~al pattern matching, 878-80
syntacllc grammars, 877

Sentence interpretation, 7
Sentence interpretation module, 855
Sentence-level stress, 431

973

974

Sentences, 61-62, 702-4
diagramming in parse trees, 63

Sentence tagging, 722
Sentence type identification, 723
Shades ofme:ming. 67
Shallow parse, 723
Shannon's channel coding theorem, 127
Shannon's source coding theorem, 124-25, 128
Sharing.609
Sharing tails, 655-56
Shimmer, 768
Short-tem1 prediction, 353
Short-time Fourier analysis. 276-83

pitch-synchronous analysis, 283
spectrograms, 281 -83

Sigma-delta AID, 246
Sigma-delta modulation, 346
Signal acquisition, 422
Signal conditioning, 329-30
Signal processing module, 421-28

end-point detection, 422-24
feature transformation, 426-28
mel-frequency cepstral coefficients (MFCC),

424-26
signal acquisition, 422

Signals, 201
Signal-to-noise ratio (SNR), 339, 486, 489
Significance testing, 98, I I 3-20

goodness-of-fit test, 116-18
level of significance, I I 4-15
magnitude-difference test, 119-20
matched pairs test, 118-20
normal test, 115-16
sign test, 119
Z test, 115-16

Sign test. 119
Silences between words, handling, 621-22
Similars, 65-66
Simple questions, 177
Sine function, 229-30
Single-layer p<!rceptrons, 159-60
Singleton questions, 177
Single-word subpath, 655
Sinusoidal coding, 371
Sinusoidal systems, 203-5
Slope overload distortion, 346
Slot inheritance, 885
Slowly evolving waveform (SEW), 367-70
SLU, See Spoken language understanding (SLU)

systems
Smart phones. 930
SNR, Sec Signal-to-noise ratio (SNR)
Soft palate, 25
Sound, 21-23
Sound Blaster, 936
Sound pressure level (SPL), 23
Source coding theorem, J 24-26

Index

Source-filter models for prosody modification,
831-34

Source-filter models of speech production, 288-90
Source-filter separation, via the cepstmm. 314-15
Speak & Spell, 271
Speaker-adaptive tmining techniques. 419
Speaker-dependent speech recognition, 418-19
Speaker-independent speech recognition, 418
Speaker recognition, 931
Speaker variability, 418-19
Speaking style, 744-45

character, 744
emotion. 744-45

Speaking tum, 861
Specificity ordering conflict resolution str.itegy, 182
Specifier position, 61
Spectral analysis via linear predictive coding (LPC),

300-301
Spectral leakage, 279
Spectral subtraction, 516- I 9
Spectrograms, 27-28, 276, 281 -83
Speech:

defined, 283
interfacing with computers, I
prosodic modification of, 8 I 8-3 I
supplemented by information streams, 2
using as an add-on feature, 941

Speech acts, 705-6
Speech-acttheory,914
Speech coding, 337-74

code excited linear prediction (CELP), 353-61
adaptive codebook, 356-57
analysis by synthesis, 353-56
LPC vocoder, 353
parameter quantization, 358-59
perceptual weighting/postfiltering, 357-58
pitch prediction, 356-57
standards, 359-61

coder delay, 339
low-bit rate speech coders, 361-70
harmonic coding, 363-67
mixed-excitation LPC vocoder, 362
wavefom1 interpolation, 367-70

scalar frequency domain coders, 348-52
consumer audio, 351-52
Digital Audio Broadcasting (DAB), 352
masking, 349-50
transfonn coders, 350-51

scalar waveform coders, 340-48
adaptive PCM, 344-45
differential quantization, 345-48
linear pulse code modulation (PCM), 340-42
µ-law and A-law PCM, 342-44, 348

speech coder attributes, 338-39
Speech communication, history of. I
Speech end-point detector, 423
Speech interaction, modes of, 933-34

todex

h interfuce design, 93 t -43
SpteC rat principles of. 931-37 cene . . 937 ~ human lirn1ta11on~. - l 34

odes of inter:ic11on. 93: -.
::hnological considcruuons. 935-36

·er accommodation. 933
us 7-41

handling errors. 93 . () 3q
de1ection and correcuon • • 38-.

error • 9'9-11 f~back :Uld confim1auon. .,
internationalization. 943-45

S eech inversion probl.:m. 803-4
S~eech percept(on. 29-36
Speech processing: _

digital sign a I process mg. :?O I -73
speech coding. 33 7-74
speech signal representations. 275-336

Speech production, :?4-28
acoustical model of, 283-90
articulators, 24-25
formants, 27-28
frequency analysis, 32-34
masking, 34-36
physical vs. perceptual attributes of sounds, 30-32
physiology of the ear, 29-32
spectrograms, 27-28
speech perception, 29-36
voicing mechanism, 25-27
SC'e also Acoustical model of speech production

Speech production process. start of, 19
Speech rate, 49-5 l
Speech recognition, 2, 3, 375-685, 862

acoustic modeling, 415-75
context variability, 417
environment variability, 419
scoring acoustic foatures, 439-43
speaker variability, 418-19
speech recognition errors, 419-2 I
style variabil tty, 418
variability in speech sil!llals 416-19

hidden Markov models (HMM). 377-413, 416
Baur:n-Welch algorithm, 389-Q3
contmuous mixture density, 394-96
decoding, 387-89
definition of, 380-93
deleted interpolation, 401-3
dynamic programming, 384-85
dynami_c time warping (DTW), 383_85
esumatmg par:ime1ers, 389-93
evaluating, 385-87
forward algorithm, 385-87
'.orward-backward algorithm, 389-93
t~n~al estimates, 398-99
hm1tations of, 405-9
Markov chain, 378-80
model topology. 399-401
observable Markov model, 379-80
parameter smoothing, 403-4

practical issues conce~ing, 398-405
probability representations, 4-04-5
scmicontinuous, 3%-98
training criteria, 40 l
Viterbi algorithm, 387-89

phonetic modeling. 428-39
clustered acoustic-phonetic units. 432-36
comparison of different units. 429-30
context dependency, 430-31
lexical basefonns. •B6-39

signal processing module, 421-'.!8
end-point detection. 422-24
feantre transfonnation. 426-28
mel-frequency cepstral coefficients (MFCC),

424-26
signal acquisition. 422

speech recognition errors, 419-21
word error rate, 420
word recognition errors, types of, 420

Speech recognition search algorithms, 608-12
combining acoustic and language models, 610
continuous speech recognition, 611-12
decoder basics, 609
isolated word recognition, 610-11

Speech recognition system, 4-5
basic system architecture of, 5
components of, 4
source-channel model for, 5
vocabulary, 58

Speech signal representations, 275-336
acoustical model of speech production, 283-90
glottal excitation, 284
lossless tube concatenation, 284-88
mixed excitation model, 289

975

source-filter models of speech production, 288-90
cepstrum, 306- l 5
cepstrum vector, 309
complex. 307-8
LPC-cepstrum, 309-11
of periodic signals. 3 I 1-12
of pole-zero filters, 308-98
real, 307-8
source-filter separation via. 314-15
of speech signals, 312-13

fonnant frequencies, 319-23
_statistical _fonnnnt tracking, 320-23

hnear predictive coding (LPC), 290_306
autocorrelation method, 295_96
covariance method. 293-94
equ_ivalent representations, 303 _6
l?1t1ce fonnulation, 297-300
lme spectral frequencies (LSF) 303-S
log-area ratios, 305-6 • •
onh~gonality principle, 291-92
pred1chon error, 301-3
reflection coefficiems, 305
roots of the polynomial, 306

976

Speech signal representations, linear predictive
coding (cont.)

solution of the LPC equations, 292-300
spectral analysis via, 300-30 I

perceptually motivated representations, 315-19
bilinear transforms, 315-16
mel-frequency cepstnun coefficients (MFCC),

316-18
perceptual linear prediction (PLP), 318-19

pitch:
autocorrelation method, 324-27
nonnalized cross-correlation method, 327-29
pitch tracking, 330-32
role of, 324-32
signal conditioning, 329-30

short-time Fourier analysis, 276-83
pitch-synchronous analysis, 283
spectrograms, 281-83

Speech signals, 5, 20
cepstrum of, 312-13
context variability, 417
environment variability, 419
speaker variability, 4 I 8-19
style variability, 418
variability in, 416-19

Speech synthesis, 6, 793-852
articulatory speech synthesis, 793, 803-4
attributes of, 794-96
concatenative synthesis with no waveform modifi­

cation, 794
concatenative synthesis with waveform modifica­

tion, 795
limited-domain waveform concatenation, 794
rule-based systems, 795-96

concatenative speech synthesis, 793-94
choice of unit, 805-8
context-dependent phonemes, 808-9
context-independent phonemes, 806-7
diphones, 807-8
optimal unit string, 810-17
subphonetic units (senones}, 809
syllables, 809
unit inventory design, 817-18
word and phrase, 809

data-driven synthesis, 794, 803
formant speech synthesis, 793, 796-804
cascade model, 797
formant generation by rule, 800-803
Klatt's cascade/parallel formant synthesizer,

797-802
locus theory of speech production, 800
parallel model, 797
waveform generation from formant values, 797-99

prosodic modification of speech, 818-3 I
epoch detection, 828-29
pitch-scale modification epoch calculation, 825
pitch-scale time-scale epoch calculation, 827

Index

pitch synchronous overlap and add (PSOLA),
820-23, 847

synchronous overlap and add (SOLA), 818-819
synthesis epoch calculation, 823-24
time-scale modification epoch calculation, 826-27
waveform mapping, 827-28

synthesis by rule, 794 ·
Speech-to-speech translation, 3
Split-radix algorithm, 223
Splits, 182
Spoken language, 19
Spoken language interface, 2-3
Spoken language processing, 4, 133
Spoken language structure, 19-72
Spoken language system, 2
Spoken language system architecture, 4-8

automatic speech recognition, 4-6
spoken language understanding, 7-8
text-to-speech conversion, 6-7

Spoken language understanding, 7-8
basic system architecture of, 8

Spoken language understanding (SLlJ) systems,
853-918, 945

assumptions, 854
content, 854
context, 854
dialog management, 886-94

dialog grammars, 887-88
plan-based systems, 888-92

dialog structure, 859-67
attentional state, 859
dialog (speech) acts, 861-66
intentional state, 859
linguistic forms, 859
task knowledge, 859
units of dialog, 860-61
world knowledge, 859

dialog system, 854-55
dialog manager, 855
discourse analysis, 855
semantic parser, 854-55

discourse analysis, 881-86
resolution by NLP, 883-85
resolution of relative expression, 882-85

Dr. Who case study, 906-13
evaluation, 901-6

in the ATIS task, 901-3
PARADISE framework, 903-6

historical perspective, 913-14
intent, 854
rendition, 899-901
response generation, 894-901

concept-to-speech rendition, 899-90 l
natural language generation from abstract semantic

input, 898
response content generation, 895-99

semantic representation, 867-73

Index

conceptual graphs, 872-?3 ?
functionality encapsulallon, 871-7 _
property inheritance, 871
semantic rrames, 867-69
type abstr.icrion, ~69-71

sentence interpolauon, 873-80 .
robust parsing, 874-78 .
statistical pattern matching, 878-8? . . .

• niars surface linguts!Jc vanattons syntacuc gram ,
in, 877

written vs. spoken languages, 855-58
communicative prosody, 858
disfluency. 857
style, 856-57

Spoken menus. ~42 .
Spread-of-masking function, 35-36
Spread spectrum, 360-61
Stable L Tl system, 211
Stack decoding, 592

advantage of, 628
defined,627
formulating in a tree search framework, 629

Stack decoding (A• search), 626-39
admissible heuristics for remaining path, 630-31
extending new words, 631-34
fast match, 634-38
muhistack search, 639
stack pruning, 638-39

Stack pruning, 638-39
Standard deviation, 80
Standard Gaussian distributions, 92-93
State-space search paradigm, 592
Stationary processes, 264-67

ergodic processes, 265-67
Stationary signal, 276
Statistical formant tracking, 320-23
Statistical inference, 98, I I 3
Statistical language models, 583
Statistical pattern matching, 878-80
Statistical pattern recognition, 190
Statistics, 73-13 I
Stochastic language models, 546, 554-60

n-gram language models, 558-60
probabilistic context-free grammars, 554-58

Stochastic processes, 260-70
continuous-time, 260
discrete-time, 260
LTI systems with stochastic inputs, 267
noise, 269-70
power spectral density, 268-69
stationary processes, 264-67
statistics of, 261-64

Stop, 43
Stress, 751
Stressed vowels, 430-3 J
Strict-sense stationary (SSS), 264
Style, 856-57

Style variability, 418
Subgoals, 894
Sub-harmonic errors, 330
Subject, sentence, 61
Subphonetic units (senones), 809
Subscripting, 67
Substitution errors, 420
Subtree dominance, 656
Subtree isomorphism, 654
Subtree polymorphism, exploiting, 656-58
Successor operator, 594
Sum-of-squared-error (SSE), 99, 160
Superposition models, 775-76
Supervised learning, 134, 141
Surrogate questions, 182
SWITCHBOARD Shallow-Discourse-Function

Annotation SWBD-DAMSL, 865-66
Syllable parse tree, 52
Syllables, 20, 51-52, 430,809
Syllables centers, 52
Symbolic prosody, 745-61

accent, 751-53
pauses, 747-49
prosodic phrases, 749-51
prosodic transcription systems, 759-61
tone, 753-57
tune, 757-59

Symmetrical loss function, 136
Symmetric charuiel, 127
Synchronous overlap and add (SOLA), 818-19
Syntactic constituents, 58
Syntactic theory, 69
Syntagmatic properties, 53
Syntax:

defined,58
language, 545

Synthesis-by-rule, 794, 796
Synthesis epoch calculation, 823-24
System initiative, 860

T
Tag question, 62
Tags, 7
Tail area, 115
Tap and Talk interface, 934, 947-48, 951
Task knowledge, 859
TOMA Interim Standard 54, 360

977

Telecommunication Industry Association (TlA), 360
Telephone speech, 338
Telephony applications, 924-26
Temporal masking, 35-36
Testing set, 14 I
Test procedure, 114
Text analysis phase, 7
Text normalization {TN), 692, 706-20

abbreviations, 709-12
acronyms, 711-12

978

Text nonnalization (TN) (cont.)
domain-specific tags, 718-20
chemical fonnulae, 719
mathematical expressions, 718-19
miscellaneous formats, 719-20

evaluation, 730-32
Festival case study, 732-35
historical perspective, 735-36
letter-to-sound (L TS) conversion, 728-30
linguistic analysis, 720-23
and closed-class function words, 722
homograph disambiguation, 723, 724-25
noun phrase (NP) and clause detection, 723
POS tagging, 722-23
sentence tagging, 722
sentence type identification, 723
shallow parse, 723

morphological analysis, 725-27
algorithm, 727
suffix and prefix stripping, 726-27

number formats, 712-20
account numbers, 716
cardinal numbers, 717-18
dates, 714-15
money and currency, 716
ordinal numbers, 717
phone numbers, 712-14
times, 715

Text and phonetic analysis, 689-738
American-English vocabulary relevant to, 698
data flow, 694-97
skeleton, 695

defined,692
document structure detection, 692, 699-706
grapheme-to-phoneme conversion, 692-93
homograph disambiguation, 693
letter-to-sound (LTS) conversion, 693
lexicon, 697-98
linguistic analysis, 692
localization issues, 696-97
modules, 692-94
morphological analysis, 693
natural language process (NLP) systems,

693-94
phoneticlanguages,692-93
text normalization (TN), 692, 706-20

Text-to-speech (TTS) conversion, 6-7
Text-to-speech (TTS) system, 687-850

basic system architecture of, 6
goals of, 689-90
phonetic analysis component, 7
prosody, 739-91
speech synthesis, 793-850
speech synthesis component, 7
tags, 7
text analysis component, 6-7
text and phonetic analysis, 689-738

Index

Text-to-speech (TTS) system evaluation, 834-44
automated tests, 843-44
Diagnostic Rhyme Test (DRT), 837
functional tests, 842-43
glass-box vs. black-box evaluation, 835-36
global vs. analytic assessment, 836
Haskins Syntactic Sentence Test, 839
historical perspective, 844-47
human vs. automated, 835
intelligibility tests, 837-39
judgment vs. functional testing, 835-36
laboratory vs. field, 835
Modified Rhyme Test (MRT), 838
overall quality tests, 840-41
Absolute Category Rating (ACR), 841
Listening Effort Scale, 841
Listening Quality Scale, 841
Mean Opinion Score (MOS), 840

phonetically balanced word list test, 839
preference tests, 842
Semantically Unpredictable Sentence Test, 837
symbolic vs. acoustic level, 835

TFIDF information retrieval measure, 576
Third generation (JG) systems, 361
Threshold of hearing (TOH), 22
Threshold value, likelihood ratio, 139
Throat, 25
TIA/EWIS54,360
TIA/EWIS-127-2, 361
TIA/EWIS-733-1,361
TILT, 760
Timbre, 25, 32
Time delay neural network (TONN), 458
Time Division Multiple Access (TOMA), 360
Time-scale modification epoch calculation, 826-27
Time-synchronous Viterbi beam search, 622-26

algorithm, 627
use of beam, 624-25

Time-synchronous Viterbi search, 666-67
TN, See Text normalization (TN)
ToBI realization models, 777-78
ToBI (Tones and Break Indices) system, 749-50, 754,

777
boundary tolerance, 756
intermediate phrasal tones, 756
pitch accent tones, 755

Toeplitz matrix, 296
Toll quality, 344
Tone, 753-57
Tone determination, 770
Tone-masking noise, 35
Tongue,25
Top-down chart parsing, 549-5 I

top-down vs., 549-50
Topic-adaptive models, 575-76
Trachea, 25
Trainability, 145

Index

Training coipus, 559
Training problem, 554
Training set, 141. 419-20
Transducers. acous1ical, 486-97
Transfer func1ion. 210
Transfonnation models, 454-55
Transfonn coders, 350-51. 371_
Transfonn-domain LMS algonlhm, 502-3
Transition network, 548
Transmission delay, 339
Transparenl quality, 358
Tree-banked data, 878 . .
Tree Je,cicon, efficien1 mampul:it1on of, 646-59
Tree strucrure, 646 .
Tree-trellis forward-backward search algonthms, 671
Triangular windows, 280
Trigram grammar, 465
Trigrams, 559, 583

search space with, 619-20
Trilled r sound, 47
Triphone model, 430
Triphones, 808
TIS models, 949
TTS system, See Te,ct-to-speech (ITS) system
Tune, 757-59
Turing m:ich inc, 548
Turing test, 3, 843
Turn memories, 882
Twiddle factors, 224
Two-band conjuga1e quadrature fillers, 251-54
Twoing rule, 181
Two-place predicalcs, 67
Two-tailed lest, 115-16
Type abs1raction, 869-71
Type-I filter, 233
Type-n-Talk system, 847

u
Umethod, 147
Uncenainty, 73, 121
Uncorrela1ed orthogonal processes, 263
Undergeneration, 876
Understandability, of grammar, 546
Unicode, 36
Unidirectional microphones, 494-96
Unification grnmmar, 584
Unified frame- and segment-based models, 462-64
Unifonn distributions, 85

• Unifonn prior, 112
Unifonn quantization, 340
Unifonn search, 597
Unigram, 559

search space with, 616-17
Unimodal distribution, 95
Uniquely decipherable coding, 125
United States Public Switched Telephone Network

(PSTN), 371

979

Units, choice of, in concatenative speech synthesis.
805-8

Units of dialog, 860-61
Universal encoding scheme, 126
Universal Mobile Telecommunications System

(liMTS), 361
Unknown word, defined. 563
Unstressed vowels, 430
Unsupervised estimation methods, 163-75

EM algorithm, 170-72
multi\'ariate Gaussian mixture density estimation,

I 7'2.-75
vector quanti7_ation (VQ), 164-70

Unsupervised learning, 141
Upper bound of probability, 74
U.S. Defense Advanced Research Projects Agency

(DARPA), 467
User expectations, managing, 942
User initia1ive, 860, 867
Utterance unit, 861

V
Variance, 79-81
Vector quantization (VQ), I 64-70, I 9 I

distortion measures, 164-66
EM algonthm. 170-72
K-means algorithm, 166-69
LBG algorithm, 169-70

Vector Taylor series, 535-37
Velar consonants, 46
Velum, 25
Verbs, 54
Verbs phrases (VPs), 59-61
V-fold cross-delegation, I 88-89
V-fold cross validation, 147
Via Voice (IBM), 926
Viterbi algori1hm, 387-89, 409, 609
Viterbi approximation, 623
Viterbi beam search, 625-26
Viterbi decoder, 592
Viterbi forced alignment, 630
Viterbi slack decoder, 592
Viterbi 1rellis, 624
Vocabulary independence, 433
Vocabulary selection, 578-80
Vocal cords, 25
Vocal fold cycling at lhe lamyx, 26
Vocal fry, 330
Vocal lract nom1alization (VTN), 427
Yoder, 6
Voice conversion, 834
Voice effects. 834
Voice FONCARD (Sprint), 931
Voiceless plosive consonants, 43
Voice over Internet protocol (Voice over IP), 359
Voice portals, 925
VoiceXML, 921

980

Voice Xpress, 926
Voicing mechanism, 25-27
Vowels, 24, 39-42

Japanese, 46-47
VQ, See Vector quantization (VQ)

w
Wall Street Journal (WSJ) Dictation Task, l l -12
Waveform-approximating coders, 361
Waveform interpolation, 367-70, 371
Waveform mapping, 827-28
Waveforms, fundamental frequency, 27
Web pages, 705
Whisper case study, 464-65
Whispering effect, 834
White noise, 269-70, 478-79
Whole-word models, difficulty in building, 428
Wh-question, 62
Wide-band spectrograms, 282
Wideband speech, 338
Wide-sense stationary (WSS), 265
Wiener filtering, 520-22, 540

noncausal, 522
Wiener-Hopf equation, 52 l
Wiener-Khinchin theorem, 269
Window design filter, 235-36
Window design FIR lowpass filters, 235-36
Window function, 255, 277-78
Window functions, 230-32

generalized Hamming window, 231-32
rectangular window, 230-31

Wizard-of-Oz (WOZ) experimentation, 950
Word classes, 57
Word-dependent n-best and word-lattice algorithm,

667-70
Word error rate, 420-21

algorithm to measure, 421
Word error rate comparisons, humans vs. machines, 12
Word-final unit, 659
Word graphs, 664-66

Word-initial unit, 658
Word-lattice algorithm:

one-pass 11-best and, 669-70
word-dependent n-best and, 667-70

Word-lattice generation, 672-73
Word lattices, 664-66
Word-level stress, 431
Word recognition errors, types of. 420
Words, 20, 53-57

natural affinities/disaffinities, 65
Word-spotting applications, 454
World knowledge, 859
Written vs. spoken languages, 855-58

disfluency, 857
style, 856-57

X
x' disnibutions, 95-96
X-bar theory, 885
XML, 699-700
X-template, 58

y
Yes-no question, 62
Yule-Walker equations, 291-92, 299

z
Zero-mean process, 262
Zero-one loss function, 136
Zero padding, 227, 280
Zeros, 213
Z test, 115-16
Z-transforms, 211-12

of elementary functions, 212-15

Index

inverse z-transform of rational functions, 213-15
left-sided complex exponentials, 213
right-sided complex exponentials, 212-13

properties of, 215-17
convolution property, 215
power spectrum and Parseval's theorem, 216

lnfotm}~ .• Solutions from experts you know and t111st.
.. , ... : ::: .:- --.. -: . • _.,.

www.informit.com

~ -•.a ..-,6, ,!,f-"f ~ -·-- •:--.01" "' ~'-·

li ~•-t-.'!> <in:tU." 1!0 ..,..,1 (.'_- • .-r,~
;-,, ,U~l•r'""••
t , ••(.t;~!,,.,.;

!l1.lll :~~ •S'1t!
, •,:. , ... ;•.ar➔-•-

,:-·::~,;>;;.,~:,,
~. . . , ... , , -

-;t r>y.,.:..~ •· ·- ..,~ ..
"' ,,._, • -en •· ,- .,. ,

:ff: _•:.:•~•-A r.• ,J-!.!...;..U.::~ :.
, ,a ,.. , , y ... , --~

l :;.i:;,.J,:...,! .->i...~t;;

; :· ·..,;/ • • : : : - -,~ .::. ~,,; t.,i;
, ~ :.·....:.~ . J..1,'...'A...J.-#.

--: • ; : -:~ ·· -.:'' •. -: - '1,-

. 1

-.·i:,.,.,.;~~-- -·
.'P.•) :,:, .. :r,
v•t •·,,c.;~
i'." r ;\.-'. I"'"~: ;

~ Free, in-depth articles and
supplements

~ Master the skills you need, when
you need them

(:if', 1f'_J Choose from industry leading
books, ebooks, and training
products

Get answers when you need
them - from live experts or
lnformlT's comprehensive library

~J Achieve industry certification
and advance your career

~
Visit ~rm/T today
and get great content t . • .

from PH _/.:; : __ ,;
PTR / -_ -·- .
--- .,/r'{~: .. : __ -::· ~-

~ Prentice Hall and lnformlT are trademar1<s or Pearson pie/
.., Copyrighl (1;)2000 Pearson

r.·~ ... -~-

__ .gt ... <. • •

.r--!-\:: ·, ••

981

~~ -=.•
j~_¼,.
~~~ 

Ci>;'.\!! · ,.~ 
11,.,.-::.lC .. " 

• ~ ... . I 

--· 
<,;;.;._:_.t-' 

0 

· Prentice ·Hail: Profession.al Technical Reference 

Keep Up-to-Date with 

PH PTR Online~ 
We strive to stay on the cutting edge of what's happening in 
professional computer science and engineering. Here's a bit of what 
you'll find when you stop by www.phptr.com: 

Special interest areas offering our latest books, book series, software, 
features of the month, related links and other useful information to 

help you get the job done. 

Deals, deals, deals! Come to our promotions section for the latest 
bargains offered to you exclusively from our retailers. 

O need to find a boo:kstore? Chances are, there's a bookseller near you 
that carries a broad selection of PTR titles. Locate a Magnet bookstore 
near you at www.phptr.com. 

0 What's new at PH PTR? We don't just publish books for the professional 
community, we're a part of it. Check out our convention schedule, join 
an author chat, get the latest reviews and press releases on topics of 
interest to you. 

e Subscribe toda11! Join PH PTR's monthly email newsletter! 

Want to be kept up-to-date on your area of interest? Choose a targeted 
category on our website, and we'll keep you informed of the latest PH PTR 
products, author events, reviews and conferences in your interest area. 

Visit our mailroom to subscribe today! http://www.phptr.com/mail_lists 

982



 

'IOICalst>eecl) I 

Rr.cogni ion Technologr 

XUEC□Nra tiUANra 

ALEX ,.'\CE RO 

HSI Al:J · W U EN HON 

■ ~ ·ew- adv-mces 
in !'ipOl«'Jl IS11gu.agl.! 

processing: lbeory 
and procltce 

■ ln-depm cm-eraJr:e of 
sptcch pl110.-"isins. 

speecb recognition. 
spiX.'Ch S)11rl1c.-;· , S,C,kC11 

Jangwige understanding. 
Old spt.-ccb UUem.tl! 

design 

■ iUJ1y case Sludit:i (rum 
state of .. lh~•art 

'ifilClrui, including 
examples from 

MJcr~rt•·~ !d,':3Jlctd 

rese:lrth labs 

s p KEN 
LANGUAGE PR 10C ES s ING 

_A (/uuk to Thtory, Algorithm; ond System ll1eivelopmen1 

~ teng11~ Proc~ dJBws oo the atest aai,ances and tcd1.nlq1..KS •mm multlpl 
fief~ i::Cflll)Uter wem:e-, e?ectrical engl'leenn11, acoostlcs. lln~!stlcs. IJ'li8thernatles, 
J15Ytholom•, ind beron~. Slartin~ wittl lhe fundarnentals, it JJ~ts. 811 ttils and rr.ore: 

Es5efrtial hecllp;oul'ld Olli speech production and perref)llon, probablhtr and 
intorma ioo theory. and potte.m reco~ition 

Ewacdne. nfoonatlon from Ule ~eedl signal: usmul re,prlfSflntaDons. .irtd pr.actitcll 
comJJressl1>n soluoons 

Modem~ rllCOgrtjUOJI tHch.nique!.: l"lidda111 ~.alma' mQdss;,. aooustic e-nd 
lar~ge, rooneun.g. lmi:roolng resistance- w errwonlMl:'lt.al nolsas,, .saardl al!,iM'ithrns. 
and large vocabularr ~ recoi,,woo 

Tcd.•to speech: .'!Mlylit\g documon\s, Ji'i,im and itJr-ati:o.n oorttrols, trainallle 
s,rlh~ ani:I !""lore 

Spoki!11 lailJUage uaders1andil:€- dia o,g managemenl, ~po~ l11na,iage 
J¥JllcaUom,. ,and mumnx11.ra1 i~s 

Ta iluS!rate lhs book"s rnirthod'/s., the autho~ p,.~n.t detailed ~ S11Nf iie5. based on 
statt-oUJte-!rl S!i"Smms, in :.idin,g Micmwft's Ml~r speech rWJ,enirer, Wbi5tler 
teg-to,speecll srstcl'I\ Dr. Wllo diillOIJ ~. amf thll MiPad llandhl!fd dl!'lice. \\?}ether 
~u•re l!l,inr m~ desl,gnlng. baildm.l!, or pwchasrnp_ spoken 13111uitR[I tccMulllgf. this 
15 r.he stete of the ort- m:un ol~thl'llS thmuf,11 business proouciMty. 

Aboutthei\ultors 
XUEDONG HLIANG i:5 fu1111der anr;:1 beo,j of~ Speech Teci'tnOlog, Group at ~ 
Researdl. He reoeiJ.'ed his F11,D, m tf-E Un~1'lity al Edinburgh. e s an lflf • · 

JiJH ACERO c1nd IISlMlWUEN HON are Senior Rese8rchi:1'$ at Mlcro~ft Rl!Sl!mh amt 
Se1ior Members of IEE£. Both rece!Yed doeloretes ·from C'.ameg,te Meflon Utm-i.titf. 

~ OON:E Hi\lJ. 
UJllJP.r Saddle Rh-er, NJ 01458 
-.1,Yl'.JJhplI.rQOm I SBN 

I 

983




