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Foreword

Recognition and understanding of spontane-
ous unrehearsed speech remains an elusive goal. To understand speech, a human considers
not only the specific information conveyed to the ear, but also the context in which the in-
formation is being discussed. For this reason, people can understand spoken language even
when the speech signal is corrupted by noise. However, understanding the context of speech
is, in turn, based on a broad knowledge of the world. And this has been the source of the
difficulty and over forty years of research.

It is difficult to develop computer programs that are sufficiently sophisticated to under-
stand continuous speech by a random speaker. Only when programmers simplify the prob-
lem—by isolating words, limiting the vocabulary or number of speakers, or constraining the
way in which sentences may be formed—is speech recognition by computer possible.

Since the early 1970s, researchers at AT&T, BBN, CMU, IBM, Lincoln Labs, MIT,
and SRI have made major contributions in Spoken Language Understanding Research. In
1971, the Defense Advanced Research Projects Agency (DARPA) initiated an ambitious
five-year, $15 million, multisite effort to develop speech understanding systems. The goals
were to develop systems that would accept continuous speech from many speakers, with
minimal speaker adaptation, and operate on a 1000-word vocabulary, artificial syntax, and a

xxi
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N ¢ domain. Two of the systems, Harpy and‘Hearsay'-II, both developed at Car-
constrained task COMY +v. achieved the original goals and in some instances surpassed them.
negie Mel’lon Umlverts:h{;:e decades I have been at Carnegie Mellon, I have been very fortu-

During (e :’sork with many brilliant students and researchers. Xuedong Huang, Alex
nate (0 be abltt to.ern Hon were arguably among the outstanding researchers in the speech
Acero, and Hsiao- they have moved to Microsoft and have put together a world-
group at CMU. Since then, they e e £ .
class team at Microsoft Research. Over the years, th'ey have: contributed stan ards for build-
ing spoken language understanding systems with Microsoft’s SAPI_ISDK family of prod'u(:ts

and pushed the technologies forward with the rest of the corr‘lmumty.. ’I"oday, they continue
to play a premier leadership role in both the research cpmmumty and in industry. N

This new book, Spoken Language Processing, represents a welcome addition to the
technical Jiterature on this increasingly important emerging area of Information Technology.
As we move from desktap PCs to personal digital assistants (PDAs), wearable computers,
and Internet cell phones, speech becomes a central, if not the only, means of communication
between the human and machine! Huang, Acero, and Hon have undertaken a commendable
task of creating a comprehensive reference that covers theoretical, algorithmic, and systems
aspects of the spoken language tasks of recognition, synthesis, and understanding.

The task of spoken language communication requires a system to recognize, intespret,
execute, and respond to a spoken query. This task is complicated by the fact that the speech
signal is corrupted by many sources: noise in the background, characteristics of the micro-
phone, vocal tract characteristics of the speakers, and differences in pronunciation. In addi-
tion, the system has to cope with non-grammaticality of spoken communication and
ambiguity of language. An effective system must strive to utilize all the available sources of
knowledge—acoustics, phonetics and phonology, lexical, syntactic, and semantic structure
of language, and task-specific context-dependent information.

Speech is based on a sequence of discrete sound segments that are linked in time.
These segments, called phonemes, are assumed to have unique articulatory and acoustic
ChE.lracterislics. While the human vocal apparatus can produce an almost infinite number of

;‘;‘::la;m? gestures, the number of phonemes is limited. English as spoken in the United
guistfz;b;: ::;rjrslsle, ;ontams_ 1§ vowel e.md 24 consonant §ounds, Each phoneme has distin-
units such as < lllixbcl aracteristics and, in combination with oth.er phonemes, forms larger
sound units is e)srsemit:j ;"3_ \f:ords.. Knowledge about the acoustic fiifferences among these

When speech sounds l::;nfglsh one word from anotper, say, bzt.from pit. '
teristics of a given phoneme ]nn;cted to form lar_ger l1ng.u1s.uc umt's, the acous‘tlc chgrac—
Mment because of the interaction a:; ange as a function .of its immediate phonetic environ-
s, and vocal chords) and their difforent dops oy S reS (such as the tongue,
phonemic information in the aC()ul t.ere‘m degrees of sluggishness. The result is an overlap of
same underlying phoneme can h:‘:c ;13“21 from one segment to the other. For example, the
words, say, in ea, tree, ciry bear: rastically different acoustic characteristics in different
oecur within a given word o;- ac ™ and steep. This effect, known as coarticulation, can

. ] m
different acoustic propertie ; o word boundary. Thus, the word this will have very
. In phrases such ag this car and this ship
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This book is self-contained for those who wish to familiarize themselves with the cur-
rent state of spoken language systems technology. However, a researcher or a professional in
the field will benefit from a thorough grounding in a number of disciplines, including:

o Signal processing: Fourier Transforms, DFT, and FET
o Acoustics: physics of sounds and speech, models of vocal tract
e Paitern recognition: clustering and pattern matching techniques

e Artificial intelligence: knowledge representation and search, natural language
processing

o Computer science: hardware, parallel systems, algorilhm optimization
o Statistics: probability theory, hidden Markov models, dynamic programming
e Linguistics: acoustic phonetics, lexical representation, syntax, and semantics

A newcomer to this field, easily overwhelmed by the vast number of different algo-
rithms scattered across many conference proceedings, can find in this book a set of tech-
niques that Huang, Acero, and Hon have found to work well in practice. This book is unigue
in that it includes both the theory and implementation details necessary to build spoken lan-
guage systems. If you were able to assemble all the individual material that is covered in the
book and put it on a shelf, it would be several times larger than this volume and yet you
would be missing vital information. You would not have the material that is in this book that
threads it all into one story, one context. If you need additional resources, the authors in-
clude extensive references to get that additional detail. Spoken Language Processing is very
appealing both as a textbook and as a reference book for practicing engineers. Some readers
familiar with a specific topic may decide to skip a few chapters; others may want to focus in
other chapters. This is not a book that you will pick up and read once from cover to cover,
but one you will keep near you for reference as long as you work in this field.

Raj Reddy
Dean, School of Computer Science
Carnegie Mellon University






Preface

0ur primary motivation in writing this book
is to share our working experience to bridge the gap between the knowledge of industry gu-
rus and newcomers to the spoken language processing community. Many powerful tech-
niques hide in conference proceedings and academic papers for years before becoming
widely recognized by the research community or the industry. We spent many years pursu-
ing spoken language technology research at Carnegie Mellon University before we started
spoken language R&D at Microsoft. We fully understand that it is by no means a small un-
dertaking to transfer a state-of-the-art spoken language research system into a commercially
viable product that can truly help people improve their productivity. Our experience in both
industry and academia is reflected in the context of this book, which presents a contempo-
rary and comprehensive description of both theoretic and practical issues in spoken language
processing, This book is intended for people of diverse academic and practical backgrounds.
Speech scientists, computer scientists, linguists, engineers, physicists, and psychologists all
have a unique perspective on spoken language processing. This book will be useful to all of
these special interest groups.

Spoken language processing is a diverse subject that relies on knowledge of many lev-
els, including acoustics, phonology, phonetics, linguistics, semantics, pragmatics, and dis-
course. The diverse nature of spoken language processing requires knowledge in computer
science, electrical engineering, mathematics, syntax, and psychology. There are a number of
excellent books on the subfields of spoken language processing, including speech recogni-
tion, text-to-speech conversion, and spoken language understanding, but there is no single
book that covers both theoretical and practical aspects of these subfields and spoken lan-
guage interface design. We devote many chapters systematically introducing fundamental
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theories needed to understand how speech recognition, [ext-to~spee;:| ngt;(ef:,s’h?nd Spoken
language understanding work. Even more impoﬁant is the fact l.hat € boo : ighlights what
works well in practice, which is invaluable if you want to build a practical speech recog-
nizer, a practical text-to-speech synthesizer, or a ?ractxcal spoken language system. Using
numerous real examples in developing Microsoft’s spoke_n language sysltems,]we concen-
trate on showing how the fundamental theories can be applied to solve real problems in spo-
ing.

rer lanwg: a\fzurl,aoliiistogthank many people who helped us during our spoken language proc-
essing R&D careers. We are particularly indebted to Profes_sor Raj Refjdy at the -School of
Computer Science, Camegie Mellon University. Under his leadership, Carnegle.Mcllon
University has become a center of research excellence on spoken la.nguage prf)cessmg. To_-
day’s computer industry and academia benefit tremendously from his leadership and contri-
butions.

Special thanks are due to Microsoft for its encouragement of spoken language R&D.
The management team at Microsoft has been extremely generous to the speech technology
group. We are pacticularly grateful to Bill Gates, Nathan Myhrvold, Rick Rashid, Dan Ling,
and Jack Breese for the great environment they have created for us at Microsoft Research.
We would also like to thank Bob Muglia and Kai-Fu Lee for their leadership role in Micro-
soft’s speech product development,

Scott Meredith helped us write 2 number of chapters in this book and deserves to be a
co-author. His insight and experience in text-to-speech synthesis enriched this book a great
deal. We also owe gratitude to many colleagues we worked with in the speech technology
group of Microsoft Research. In alphabetic order, Jim Adcock, Bruno Alabiso, Fil Alleva,
Eric Bidstrup, Antonio Bigazzi, Ciprian Chelba, Li Deng, James Droppo, Doug Duchene,
Josh.ua Goodman, Mei-‘{uh Hwang, Larry Israel, Derek Jacoby, Li Jiang, Yun-Cheng Ju,
David Larson, Kevin Larson, Jingsong Liu, Ricky Loynd, Milind Mahajan, Peter Mau, John

Merrill, Yunus Mohammed Salman Mugh i i i
; . ghal, Mike Plumpe, Scott )
Mike Rozak, Kevin Schofield, Rox P Quinn, Bill Rockenbeck

ana Teodorescu, Gina V i -Yi
Wang, and Shenzhij Zhang, etolia, Kuansan Wene, YeX
han In ;ﬂfilmon. we \afanf to thank.bas Atlas, Jeff Bilmes, Alan Black, David Caulton, Eric
Hemga,mk yl Ig::;;uD::]:lj Flox;et;c;o, Allen Gersho, Francisco Gimenez-Galanes, Hynek

' e var, Julian Odell, Mari i
'tl;:ower, and Chles Wegne o . ari Ostendorf, Joseph Pentheroudakis Tandy
is book. Tim Moore, Russ Hall i
book in a finite gy op oot and Jane Bonnell at Prentice Hall helped us finish this
Finalty, writing this book

the support of our 5 e Denarathon

that could not have b i i
pouses, Yingzhi D C een finished without
ends we spent on this Project. 82, Donna, and Phen, during the many evenings and week-

Xuedong Huang
Alex Acero
Hsiao-Wuen Hon
Redmond, wA



CHAPTER 1

Introduction

F rom human prehistory to the new media of
the future, speech communication has been and will be the dominant mode of human social
bonding and information exchange. The spoken word is now extended, through technologi-
cal mediation such as telephony, movies, radio, television, and the Intemet. This trend re-
flects the primacy of spoken communication in human psychology.

In addition to human-human interaction, this human preference for spoken language
communication finds a reflection in human-machine interaction as well. Most computers
currently utilize a graphical user interface (GUI}, based on graphically represented interface
objects and functions such as windows, icons, menus, and pointers. Most computer operat-
ing systems and applications also depend on a user’s keyboard strokes and mouse clicks,
with a display monitor for feedback. Today’s computers lack the fundamental human abili-
ties to speak, listen, understand, and leamn. Speech, supported by other natural modalities,
will be one of the primary means of interfacing with computers, And, even before speech-
based interaction reaches full maturity, applications in home, mobile, and office segments
are incorporating spoken language technology to change the way we live and work.
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speech recognition and speech synthesis capa.
A spoken langu2Ee systzr:] ngsgrsntsobhymtll:ebr:ilvz are not sufficient to build.a useful Spol}:en
bilities. However, those ;\V(;tzndigg and dialog component is required to manage mtgractions with
language system. An L;; oe»iledge st be provided to guide the system’s interpretation of speech
the user; apd dodmﬂl“ ine the appropriate action. For all these components, mgmﬁczmt chalienges
anfj allow g-to e::g;ess flexibility, ease of integration, and engineenng efﬁmenf:y. The goal of
Etli?;ug:;nigeiiajly viat;le spoken language systems has lgng attracted the atiention of S‘C‘CHUS}S
and engineers alt over the world. The pumose_of this book I.S to share our ;;/orkmg exge nence m
developing advanced spoken language processing systﬁms with both our co eflgues an qew§om-
ers. We devote many chapters to systematically introducing fum.jamental th.eones.and to ’hlghhgh[-
ing what works well based on numerous lessons we learned in developing Microsoft’s spoken
language systems.

1.1.  MOTIVATIONS

What motivates the integration of spoken language as the primary interface modality? We
present a number of scenarios, roughly in order of expected degree of technical challenges
and expected time to full deployment.

1.1.1. Spoken Language Interface

There are generally two categories of users who can benefit from adoption of speech as a
control modality in parallel with others, such as the mouse, keyboard, touch-screen, and
joystick. For novice users, functions that are conceptually simple should be directly accessi-
ble. For example, raising the voice output volume under software control on the desktop

speakers, a conceptually simple operation, in some GUI systems of today requires opening
one or more windows or menus, and manipulating sliders, check-bo

] : . xes, or other graphical
elements. This requires some knowledge of the system’s interface

conventions and struc-

orientation, natural and dey

ed on mo
‘ € complete user modeling, including speech, visual
dinated with detailed syste

ice-based i
i fg.ftuljes, and facial expression, and these will be coor-
YPical user tagkg and activity patterns
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In some situations you must rely on speech as ar input or output medium. For exam-
ple, with wearable computers. it may be impossible to incorporate a large keyboard. When
driving, safety is compromised by any visual distraction, and hands are required for control-
ling the vehicle. The ultimate speech-only device, the telephone, is far more widespread than
the PC. Certain manual tasks may also require full visual attention to the focus of the work.
Finally, spoken language interfaces offer obvious benefits for individuals challenged with a
variety of physical disabilities, such as loss of sight or limitations in physical motion and
motor skills. Chapter 18 contains a detailed discussion on spoken language applications.

1.1.2. Speech-to-Speech Translation

Speech-to-speech translation has been depicted for decades in science fiction stories. Imag-
ine questioning a Chinese-speaking conversattonal partner by speaking English into an un-
obtrusive device, and hearing real-time replies you can understand. This scenario, like the
spoken language interface, requires both speech recognition and speech synthesis technol-
ogy. In addition, sophisticated multilingual spoken language understanding is needed. This
highlights the need for tightly coupled advances in speech recognition, synthesis, and under-
standing systems, a point emphasized throughout this book.

1.1.3. Knowledge Partners

The ability of computers to process spoken language as proficient as humans will be a land-
mark to signal the arrival of truly intelligent machines. Alan Turing [29] introduced his fa-
mous Turing test. He suggested a game, in which a computer's use of language would form
the criterion for intelligence. If the machine could win the game, it would be judged intelli-
gent. In Turing’s game, you play the role of an interrogator. By asking a series of questions
via a teletype, you must determine the identity of the other two participants: 2 machine and a
person. The task of the machine is to fool you into believing it is a person by responding as a
person to your questions. The task of the other person is to convince you the other partici-
pant is the machine. The critical issue for Turing was that using language as humans do is
sufficient as an operational test for intelligence.

The ultimate use of spoken language is to pass the Turing test in allowing futwre ex-
tremely intelligent systems to interact with human beings as knowledge partners in all as-
pects of life. This has been a staple of science fiction, but its day will come. Such systems
require reasoning capabilities and extensive world knowledge embedded in sophisticated
search, communication, and inference tools that are beyond the scope of this book. We ex-
pect that spoken language technologies described in this book will form the essential ena-
bling mechanism to pass the Turing test.
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1.2 SPOKEN LANGUAGE SYSTEM ARCHITECTURE

Spoken language processing refers to te_chn01‘3'gi¢3k relz]ated ut: :P:es‘i]; nﬁ e}‘i:gﬂililom text-o-
speech, and spoken language understanding. A spo' E_:n anguag hy s a‘t east On? of
the following three subsystems: a speech recognition system that converts speech inig
words, a text-to-speech system that conveys _spoken information, and a .S[')okcn 1a'nguage
understanding system that maps words into actions and that p]ans_system-mltiated actions,
There is considerable overlap in the fundamental technologies for these .lhree subareas,
Manually created rules have been developed for spoken language systems with limited suc-
cess. But, in recent decades, data-driven statistical approaches have achieved encouraging
results, which are usually based on modeling the speech signal using well-defined statistica]
algorithms that can automatically extract knowledge from the data. The data-driven gp.
proach can be viewed fundamentally as a pattern recognition problem. In fact, speech recog-
nition, text-to-speech conversion, and spoken language understanding can ail be regarded as
pattern recognition problems. The pattems are either recognized during the runtime opera-
tion of the system or identified during system construction to form the basis of runtime gen-
erative models such as prosodic templates needed for text-to-speech synthesis. While we use
and advocale the statistical approach, we by no means exclude the knowledge engineering
approach from consideration. If we have a good set of rules in a given problem area, there is
no need to use the statistical approach at all. The problem is that, at time of this writing, we
do not have enough knowledge to produce a complete set of high-quality rules. As scientific
and theoretical generalizations are made from data collected to construct data-driven sys-

tems, better rules may be constructed. Therefore, the rule-based and statistical approaches
are best viewed as complementary.

1.2.1. Automatic Speech Recognition

A source-channel mathematical model described in Chapter 3 is often used to formulate
speech recognition problems. As illustrated in Figure 1.1, the speaker's mind decides the
source word sequence W that is delivered through hisfher text generator. The source is
Passed through a noisy communication channel that consists of the speaker’s vocal appara-
i“s ‘thmdllce‘ the Speech waveform and the speech signal processing component of the
Pe:; recognizer. sza]ly', the speech decoder aims o decode the acoustic signal X into 2

wo sj:quer.we W, which is hopefully close to the original word sequence W.
the dottegrlj;cal practical speech recognition system consists of basic components shown in
ox of Figure 1.2. Applications interface with the decoder to get recognition -

sults that
may be used to adapt other components in the system. Acoustic models include the

Iepresentati . i
P 1on of knowledge about acoustics, phonetics, microphone and environment vark

ability, gend i :
t¥» gender and dialect differences among speakers, etc. Language models refer to 2 8y

tem’s know .

in what sequ:ngce:fi[‘;-.v:a; ::;mst_ﬂutes a possi!)le word, what words are likely to co-occur, and

perform may aiso be ncces::ucsf and functions related to an operation a user may wish 10

areas, associated with speak [y Jor the ‘f’“_g“age model. Many uncertainties exist in these
Peaker characteristics, speech style and rate, recognition of basic
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speech segments, possible words, likely words, unknown words, grammatical variation,
noise interference, nonnative accents, and confidence scoring of results. A successful speech
recognition system must contend with all of these uncer(ainties. But that is only the begin-
ning. The acoustic uncertainties of the different accents and speaking styles of individual
speakers are compounded by the lexical and grammatical complexity and variations of spo-
ken language, which are all represented in the language model.

Communication Channel

LR AR L L Ly N R YT Ty Y

5 Signal

Generator Processing

Text
Generator

Speech
Decoder 9

svevasusnonavenies

..-wi-n-c.---------cn-i’ouon-c--.------n- ------ x

Srarnan

Speech Recognizer

Figure 1.1 A source-channel model for a speech recognition system {15].

The speech signal is processed in the signal processing module that extracts salient
feature vectors for the decoder. The decoder uses both acoustic and language models to gen-
erate the word sequence that has the maximum posterior probability for the input feature
vectors. It can also provide information needed for the adaptation component to modify ei-
ther the acoustic or language models so that improved performance can be obtained.

l Voice Signal Processing '
> Decoder :
2 SRS <5l
o ' > e = ‘
- v ] z a o [1 -] ]
a 2 , e o o £ |
jt = . o = - = .
(39 : 22 s |
= o * -~ = :

- ; Adaptation >4:i = .

Figure 1.2 Basic system architecture of a speech recognition system [12].
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TTS Engine
Text Analysis _
Document Structure Detection
—{> Text Normalization
Raw r;ﬂ 1 Linguistic Analysis
or tagged rex
tagged text

Phonetic Analysis .
Grapheme-to-Phoneme Conversion

tagged phones
v

Prosodic Analysis
Pitch & Duration Attachment

controls l

Speech Synthesis
Voice Rendering

Figure 1.3 Basic system architecture of a TTS system.

1.2.2.  Text-to-Speech Conversion

The term fext-to-speech, often abbreviated as TTS, is easily understood. The task of a text-to-
speech system can be viewed as speech recognition in reverse — a process of building a machin-
ey Sysiem that can generate human-like speech from any text input to mimic human speakers.
TTS is sometimes L:.alled speech synthesis, particularly in the engineering community.

The: conversion of words in written form into speech is nontrivial. Even if we can store
‘:1” :llhug:“ ﬁl_ctlonafry for most common words in English; the TTS system still needs to deal
e seme:u?::z :(:1 ur:tn;l:s; ;;:loacronyms. Moreover, in order to sound natural, the intonation of

priately generated.
The development of

TTS synthesis
Voder, developed by Bell 1, Y 1S can be tr

advantage of increasing ¢
been abie to generate hig

: aced back to the 1930s when Dudley’s
aborat_ones. was demonstrated a\ the World’s Fair [18). Taking
omputation power and storage technology, TTS researchers have

h- - - =3
- ;:a;hty commercial multitingual text-to-speech systems, although
speech for general-purpose applications.



Spoken Language System Architecture A 7

either raw text or tagged. These tags can be used to assist text, phonetic, and prosodic anal y-
sis. The phonetic analysis component converts the processed text into the corresponding
phonetic sequence, which is followed by prosodic analysis to attach appropriate pitch and
duration information to the phonetic sequence. Finally, the speech synthesis component
takes the parameters from the fully tagged phonetic sequence to generate the corresponding
speech waveform,

Various applications have different degrees of knowledge about (he structure and con-
tent of the text that they wish to speak so some of the basic components shown in Figure 1.3
can be skipped. For example, some applications may have certain broad requirements such
as rate and pitch. These requirements can be indicated with simple command tags appropri-
ately located in the text. Many TTS systems provide a set of markups (tags), so the text pro-
ducer can beuter express their semantic intention. An application may know a lot about the
structure and content of the text to be spoken to greatly improve speech output quality. For
engines providing such support, the text analysis phase can be skipped, in whole or in part.
If the system developer knows the phonetic form, the phonetic analysis module can be
skipped as well. The prosodic analysis module assigns a numeric duration to every phonetic
symbol and calculates an appropriate pitch contour for the utterance or paragraph. In some
cases, an application may have prosodic contours precalculated by some other process. This
situation might arise when TTS is being used primarily for compression, or the prosody is
transplanted from a real speaker’s utterance. In these cases, the quantitative prosodic con-
trols can be treated as special tagged field and sent directly along with the phonetic stream to
speech synthesis for voice rendition.

1.2.3. Spoken Langnage Understanding

Whether a speaker is inquiring about flights to Seattle, reserving a table at a Pittsburgh res-
taurant, dictating an article in Chinese, or making a stock trade, a spcken language under-
standing systermn is needed to interpret utterances in context and carry out appropriate
actions. Lexical, syntactic, and semantic knowledge must be applied in a manner that per-
mits cooperative interaction among the various levels of acoustic, phonetic, linguistic, and
application knowledge in minimizing uncertainty. Knowledge of the characteristic vocabu-
lary, typical syntactic patterns, and possible actions in any given application context for both
interpretation of user utterances and planning system activity are the heart and soul of any
spoken language understanding system.

A schematic of a typical spoken language understanding system is shown in Figure
1.4. Such a systern typically has a speech recognizer and a speech synthesizer for basic
speech input and output, and a sentence interpretation component to parse the speech recog-
nition results into semantic forms, which often need discourse analysis to track context and
resolve ambiguities. The Dialog Manager is the central component that communicates with
applications and the spoken language understanding modules such as discourse analysis,
sentence interpretation, and response generation.

While most components of the system may be partly or wholly generic, the dialog
manager controls the flow of conversation tied to the action. The dialog manager is respon-
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sible for providing status needed for formulating responses, and maintaining the sy siem'’s
- tate of the discourse. The discourse state rec'ords _the current transaction, dialog
!gtﬁsotfht:te:lotivated the current tmnsactiop. current objects in focus ((lif:mt[:lorﬂr‘y center of
attention), the object history list for resolving dependent neferences,' and other status infor-
mation. The discourse information is crucial for sentence mtcrpll'emt'lon fo Il:llcrp-)ret utter-
ances in context. Various systems may alter the flow of mformatlon. 1mphed.m Flgur'e 1.4,
For example, the dialog manager may be able to supp]_y cc?ntextuai t’inscourse information or
pragmatic inferences, as feedback to guide the recognizer’s evaluation of hypotheses at the

aarliest level of search.
| Application k—m‘

x -

‘ Discourse Analysis lf-bi Dialog Manager H Dialog Strategy l

j'\t

l Response Generation l [Sentence Interpretation '

A

l Text-To-Speech I | Speech Recognizer ]

e

Access Device

Figure 1.4 Basic system architecture of a spoken language understanding system.

1.3. Boox ORGANIZATION

We attemnpt to present a comprehensive introduct

includes not only fundamentals but also a practi
requires knowledge in speech si

ion to spoken language processing, which
cal guide to build a working system thal
: gnal processing, recognition, text-to-speech, spoken lan-
guage understanding, and application integration. Since there is considerable overlap in the
Eun_damental spoken language processing technologies, we have devoted Part I to the foun-
aigoi?.;omr;:;gf;n I contains background on speech production and perception, probability
Speech proceertn eory, at?d partelrn- Tecogmition. Parts II, IfI, IV, and V include chapters on
apectivery. & £ spe:ec recogmnon, speech synthesis, and spoken Janguage systems, re-
pectively. A reader with sufficient background can skip Part I, referring back to it later as

sion of speech recognition in Part III relies on the pattern
d in Part 1. Algorithms tha are used in several chapters
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within Part ILI are also included in Parts I and [I. Since the field is still evolving, at the end
of each chapter we provide a historical perspective and list further readings to facilitate fu-
ture research.

1.3.1. Part I: Fundamental Theory

Chapters 2 to 4 provide you with a basic theoretic foundation to better understand tech-
niques that are widely used in modem spoken language systems. These theories include the
essence of linguistics, phonetics, probability theory, information theory, and pattern recogni-
tion. These chapters prepare you fully to understand the rest of the book.

Chapter 2 discusses the basic structure of spoken language including speech science,
phonetics, and linguistics. Chapter 3 covers probability theory and information theory,
which form the foundation of moder pattem recognition. Many important algorithms and
principles in pattern recognition and speech coding are derived based on these theories.
Chapter 4 introduces basic pattern recognition, including decision theory, estimation theory,
and a number of algorithms widely used in speech recognition. Pattern recognition forms the
core of most of the algorithms used in spoken language processing.

1.3.2. Part I1: Speech Processing

Part II provides you with necessary speech signal processing knowledge that is critical to
spoken language processing. Most of what discuss here is traditionally the subject of electri-
cal engineering.

Chapters 5 and 6 focus on how to extract useful information from the speech signal.
The bastc principles of digital signal processing are reviewed and a number of useful repre-
sentations for the speech signal are discussed. Chapter 7 covers how to compress these rep-
resentations for efficient transmission and storage.

1.3.3. Part I11: Speech Recognition

Chapters 8 to 13 provide you with an in-depth look at modern speech recognition systems.
We highlight techniques that have been proven to work well in real systems and explain in
detail how and why these techniques work from both theoretic and practical perspectives.

Chapter 8 introduces hidden Markov models, the most prominent technique used in
modern speech recognition systems. Chapters 9 and 11 deal with acoustic modeling and
language modeling respectively. Because environment robustness is critical to the success of
practical systems, we devote Chapter 10 to discussing how to make systems less affected by
environment noises. Chapters 12 and 13 deal in detail with how to efficiently implement the
decoder for speech recognition. Chapter 12 discusses a number of basic search algorithms,
and Chapter 13 covers large vocabulary speech recognition. Throughout our discussion,
Microsoft’s Whisper speech recognizer is used as a case study to illustrate the methods -
troduced in these chapters.
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1.34. Part IV: Text-to-Speech Systems

In Chapters 14 through 16, we discuss proven techniques in b’uilding text—to-sp.egch systems.
The synthesis system consists of major components found in speech recognition systems,
except that they are in the reverse order.

Chapter 14 covers the analysis of written documents and the text ne‘eded to support
spoken rendition, including the interpretation of audio markup commands, interpretation of
numbers and other symbols, and conversion from orthographic to phonetic symbols. Chapter
15 focuses on the generation of pitch and duration controls for linguistic and emotional ef-
fect. Chapter 16 discusses the implementation of the synthetic voice, and presents algo-
rithms to manipulate a limited voice data set to support a wide variety of pitch and duration
controls required by the text analysis. We highlight the importance of trainable synthesis,
with Microsoft’'s Whistler TTS system as an example.

1.3.5. Part V: Spoken Language Systems

As discussed in Section 1.1, spoken language applications motivate spoken language R&D.
The central component is the spoken language understanding system. Since it is closely re-
lated to applications, we group it together with application and interface design.

Chapter 17 covers spoken language understanding. The output of the recognizer re-
quires interpretation and action in a particular application context. This chapter details useful
strategies for dialog management, and the coordination of all the speech and system re-
sources to accomplish a task for a user. Chapter 18 concludes the book with a discussion of
important principles for building spoken language interfaces and applications, including
general human interface design goals, and interaction with other modalities in specific appli-
cation contexts. Microsoft’s MiPad is used as a case study to illustrate a number of issues in
developing spoken language and multimodal applications.

1.4. TARGET AUDIENCES

This book can serve a variety of audiences:

Integration engineers: Software engineers who want to build spoken language sys-
tems, but who‘do not want to learn detailed speech technology internals, will find plentiful
releyant rqatenal, i.ncluding application design and software interfaces. Anyone with a pro-
fessnlonal interest in aspects of speech applications, integration, and interfaces can also
achieve enough understanding of how the core technologies work, to allow them to take full
advantage of state-of-the-art capabilities.

S‘pec'ach te.ch.nology engineers: Engineers and researchers working on various subspe

cialties wn-l.hm the speech field will find this book a useful guide to understanding re-
lated technologies in sufficient depth to help them gain insight on where their own ap-
proaches overlap with, or diverge from, their neighbors’ common practice
. ;;raduate students: This boo?c can serve as a primary textbook in a graduate or ad-

anced undergraduate speech analysis or language engineering course. It can serve as a sup-
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plementary textbook in some applied linguistics, digital signal processing, computer science,
artificial intelligence, and possibly psycholinguistics course.

Linguists: As the practice of linguistics increasingly shifts to empirical analysis of
real-world data, students and professional practitioners alike should find a comprehensive
introduction to the technical foundations of computer processing of spoken language help-
ful. The book can be read at different levels and through different paths, for readers with
differing technical skills and background knowledge.

Speech scientists: Researchers engaged in professional work on issues related to nor-
mal or pathological speech may find this complete exposition of the state-of-the-art in com-
puter modeling of generation and perception of speech interesting.

~ Business planners: Increasingly, business and management functions require some
fevel of insight into the vocabulary and common practices of technology development.
While not the primary audience, managers, marketers, and others with planning responsibili-
ties and sufficient technical background will find portions of this book useful in evaluating
competing proposals, and in making business decisions related to the speech technology
components,

1.5. HISTORICAL PERSPECTIVE AND FURTHER READING

Spoken language processing is a diverse field that relies on knowledge of language at the
levels of signal processing, acoustics, phonology, phonetics, syntax, semantics, pragmatics,
and discourse. The foundations of spoken language processing lie in computer science, ele c-
trical engineering, linguistics, and psychology. In the 1970s an ambitious speech under-
standing project was funded by DARPA, which led to many seminal systems and
technologies [17]. A number of human language technology projects funded by DARPA in
the 1980s and 1990s further accelerated the progress, as evidenced by many papers pub-
lished in The Proceedings of the DARPA Speech and Natural Language/Human Language
Workshop. The field is still rapidly progressing and there are a number of exceilent review
articles and introductory books. We provide a brief list here. More detailed references can be
found within each chapter of this book. Gold and Morgan’s Speech and Audio Signal Proc-
essing [10] also has a strong historical perspective on spoken language processing.

Hyde [14] and Reddy [24] provided an excellent review of early speech recognition
work in the 1970s. Some of the principles are still applicable to today’s speech recognition
research. Waibel and Lee assembled many seminal papers in Readings in Speech Recogni-
tion Speech Recognition [31]. There are a number of excellent books on modern speech
recognition {1, 13, 15, 22, 23]

Where does the state of the art speech recognition system stand today? A number of
different recognition tasks can be used to compare the recognition error rate of people vs.
machines. Table 1.1 shows five typical recognition tasks with vocabularies ranging from 10
to 5000 words speaker-independent continuous speech recognition. The Wall Street Journal
Dictation (WSJ) Task has a 5000-word vocabulary as a continuous dictation application for
the WSJ articles, In Table 1.1, the error rate for machines is based on state of the art speech
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recognizers such as systems described in Chapter 9, and the error rate of humans iS_based on
a range of subjects tested on the similar task. We can see the error rate of humans is at least
5 times smaller than machines except for the sentences that are generated from a trigram
language model, where the sentences have the pe'rfeCl match. betweep hulmans and machines
so humans cannot use high-level knowledge that is not used in machines.

Table 1.1 Word error rate comparisons between human and machines on similar tasks.

Tasks Vocabulary | Humans Machines
Connected digits 10 0.009% 0.72%
Alphabet letters 26 1% 5%
Spontaneous telephone speech 2000 3.8% 36.7%
WSJ with clean speech 5000 0.9% 4.5%
WSJ with noisy speech (10-db SNR) 5000 1.1% 8.6%
Clean speech based on trigram sentences | 20,000 7.6% 4.4%

We can see that humans are far more robust than machines for normal tasks. The error
rate for machine spontaneous conversational telephone speech recognition is above 35%,
more than a factor 10 higher than humans on the similar task. In addition, the error rate of
humans does not increase as dramatically as machines when the environment becomes noisy
(from quiet to 10-db SNR environments on the WSJ task). The relative error rate of humans
increases from 0.9% to 1.1% (1.2 times), while the error rate of CSR systems increases from
4.5% to 8.6% (1.9 times). One interesting experiment is that when we generated sentences
using the WSJ trigram language model (cf. Chapter 11), the difference between humans and
machines disappears (the last row in Table 1.1). In fact, the error rate of humans is even
higher than machines. This is because both humans and machines have the same high-level
syntactic and semantic models. The test sentences are somewhat random to humans but per-
fect to machines that used the same trigram model for decoding. This experiment indicates
humans make more effective use of semantic and syntactic constraints for improved speech
recognition in meaningful conversation. In addition, machines don’t have attention problems
as humans do on random sentences.

Fant [7] gave an excellent introduction to speech production. Early reviews of text-to-
speech synthesis can be found in [3, 8, 9]. Sagisaka [26] and Carlson [6] provide more re-

ggx]n reviews of progress in speech Synthesis. A more detailed treatment can pe found in [19,

Where does the state of the art
speech recognition, this is not a soly

ties are improving, the quality remai
the Turing test.
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ed problem either. Although machine storage capabili-
1s a challenge for many researchers if we want to pass
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Spoken language understanding is deeply rooted in speech recognition research. There
are a number of good books on spoken language understanding [2, 5, 16]. Manning and
Schutze [20] focuses on statistical methods for language understanding. Like Waibel and
Lee, Grosz et al. assembled many foundational papers in Readings in Natural Language
Processing [11]. More recent reviews of progress in spoken language understanding can be
found in [25, 28]. Related spoken language interface design issues can be found in [4, 21,
27, 32].

In comparison to speech recognition and text to speech, spoken language understand-
ing is further away from approaching the level of humans, especially for general-purpose
spoken language applications.

A number of good conference proceedings and journals report the latest progress in
the field. Major results on spoken language processing are presented at the International
Conference on Acoustics, Speech and Signal Processing (ICASSP), International Confer-
ence on Spoken Language Processing (ICSLP), Eurospeech Conference, the DARPA Speech
and Human Language Technology Workshops, and many workshops organized by the
European Speech Communications Associations (ESCA) and IEEE Signal Processing Soci-
ety. Journals include JEEE Transactions on Speech and Audio Processing, IEEFE Transac-
tions on Pattern Analysis and Machine Intelligence (PAMI), Computer Speech and
Language, Speech Comrmunication, and Journal of Acoustical Society of America (JASA).
Research results can also be found at computational linguistics conferences such as the As-
sociation for Computational Linguistics (ACL), International Conference on Computational
Linguistics (COLING), and Applied Natural Language Processing (ANLP). The journals
Computational Linguistics and Natural Language Engineering cover both theoretical and
practical applications of language research. Speech Recognition Updare published by TMA
Associates is an excellent industry newsletter on spoken language applications.
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PART 1

FUNDAMENTAL THEORY






CHAPTER 2

Spoken Language Structure

S poken language is used to communicate in-
formation from a speaker to a listener. Speech production and perception are both important
components of the speech chain. Speech begins with a thought and intent to communicate in
the brain, which activates muscular movements to produce speech sounds. A listener re-
ceives it in the auditory system, processing it for conversion to neurological signals the brain
can understand. The speaker continuously monitors and controls the vocal organs by receiv-
ing his or her own speech as feedback.

Considering the universal components of speech communication as shown in Figure
2.1, the fabric of spoken interaction is woven from many distinct elements. The speech pro-
duction process starts with the semantic message in a person’s mind to be transmitted to the
listener via speech. The computer counterpart to the process of message formulation is the
application semantics that creates the concept to be expressed. After the message is created,
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where 7 and /I, are the two intensity levels, with intensity being proportional to the square of

the sound pressure P. .
Sound pressure level (SPL) is a measure 0

r N

P
SPL(dB) =20 1og,0LFJ 2.2)
0

f absolute sound pressure P in dB:

where the reference 0 dB corresponds to the threshold of hearing, which is F, = 0.0002ubar
for a tone of 1kHz. The speech conversation level at 3 feet is al::out 60 dB SPL, and a jack-
hammer’'s level is about 120 dB SPL. Alternatively, watts/meter” units are often used to indj-
cate intensity. We can bracket the limits of human hearing as shown in Table 2.1, On the
low end, the human ear is quite sensitive. A typical person can detect sound waves having
an intensity of 10" W/m’ (the threshold of hearing or TOH). This intensity corresponds to a
pressure wave affecting a given region by only one-billionth of a centimeter of molecular
motion. On the other end, the most intense sound that can be safely detected without suffer-
ing physical damage is one trillion times more intense than the TOH. 0 dB begins with the
TOH and advances logarithmically. The faintest audible sound is arbitrarily assigned a value
of 0 dB, and the loudest sounds that the human ear can tolerate are about 120 dB.

Table 2.1 Intensity and decibel levels of various sounds.

Sound dB Level | Times > TOH
Threshold of hearing (TOH: 1072W /m?) 0 10°
Light whisper 10 10’
Quiet living room 20 10°
Quiet conversation 40 10*
Average office 50 100 |
Normal conversation 60 10°
Busy city street 70 10
Acoustic guitar - 1 ft. away 80 10"
Heavy truck traffic 90 10°
Subway from platform 100 10" —
Power tools 110 10"
Pain threshold of ear 120 IOT”
Airport runway 130 10”
Sonic boom 140 10"
Permanent damage to hearing 150 10°
Jet engine, close up roll
Rocket engine 160 ]%r__,
| Twelve ft. from artillery cannon muzzle (10" W /m?) .}&gg :_0‘3:—j
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The absolute threshold of hearing is the maximum amount of energy of a pure tone
that cannot be detected by a listener in a noise free environment. The absolute threshold of
hearing is a function of frequency that can be approximated by

T,(f) =3.64(f /1000)°% - 6.5/ /035 4 1033 £/ 1000)*  (dB SPL) (2.3)

and is plotted in Figure 2.3.
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Figure 2.3 The sound pressure level (SPL) level in dB of the absolute threshold of hearing as a
function of frequency. Sounds below this level are inaudible. Note that below 100 Hz and
above 10 kHz this level rises very rapidly. Frequency goes from 20 Hz to 20 kHz and is plotted
in a logarithmic scale from Eq. (2.3).

Let’s compute how the pressure level varies with distance for a sound wave emitted by
a point source located a distance r away. Assuming no energy absorption or reflection, the
sound wave of a point source is propagated in a spherical front, such that the energy is the
same for the sphere’s surface at all radius r. Since the surface of a sphere of radius r is
4xr* , the sound’s energy is inversely proportional to 72, so that every time the distance is
doubled, the sound pressure level decreases by 6 dB. For the point sound source, the energy
(E) transported by a wave is proportional to the square of the amplitude (A) of the wave and
the distance (r) between the sound source and the listener:
Eel (2.4)

,

The typical sound intensity of a speech signal one inch away (close-talking micro-
phone) from the talker is 1 Pascal = [Oubar, which corresponds to 94 dB SPL. The typical
sound intensity 10 inches away from a talker is 0.1 Pascal = 1pbar, which corresponds to
74 dB SPL.
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2.1.2. Speech Production

We review here basic human speech production systems, which have influenced research gy
speech coding, synthesis, and recognition.

2.1.2.1. Articulators

Speech is produced by air-pressure waves emanating from the mouth and the nostrils of a
speaker. In most of the world’s languages, the inventory of phonemes, as discussed in Sec-
tion 2.2.1, can be split into two basic classes:

e consonants — articulated in the presence of constrictions in the throat or ob-
structions in the mouth (tongue, teeth, lips) as we speak.

e vowels — articulated without major constrictions and obstructions,

The sounds can be further partitioned into subgroups based on certain articulatory
properties. These properties derive from the anatomy of a handful of important articulators
and the places where they touch the boundaries of the human vocal tract. Additionally, a
large number of muscles contribute to articulator positioning and motion. We restrict our-
selves 10 a schematic view of only the major articulators, as diagrammed in Figure 2.4. The

Tooth-ridge (atveolar):
back part Nasal Cavity
front part
Hard Palate
Upper Teeth {
\ -~ Velum
.\ ~
Upper Lip \ =g -~ Nasal Passage
Lower Lip “
Lower Teeth ‘ Tongue:
. back
middle
Jaw front
tip
Vocal Cords

e

Figure 2.4 A sch ic di
Chematic diagram of the human speecp producti
on apparatus.
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gross components of the speech production apparatus are the lungs, trachea, larynx (organ of
voice production), pharyngeal cavity (throat), oral and nasal cavity. The pharyngeal and oral
cavities are typically referred to as the vocal tract, and the nasal cavity as the nasal tract. As
illustrated in Figure 2.4, the human speech production apparatus consists of:

e Lungs: source of air during speech.

e Vocal cords (larynx): when the vocal folds are held ¢lose together and oscil-
late against one another during a speech sound, the sound is said to be voiced.
When the folds are too slack or tense to vibrate periodically, the sound is said
to be unvoiced. The place where the vocal folds come together is called the
glottis.

o Velum (soft palate): operates as a valve, opening to allow passage of air (and
thus resonance) through the nasal cavity. Sounds produced with the flap open
include /1 and n.

® Hard palate: a long relatively hard surface at the roof inside the mouth,
which, when the tongue is placed against it, enables consonant articulation.

o Tongue: flexible articulator, shaped away from the palate for vowels, placed
close to or on the palate or other hard surfaces for consonant articulation.

o Teeth: another place of articulation used to brace the tongue for certain con-
sonants.

e Lips: can be rounded or spread to affect vowel quality, and closed completely
to stop the oral air flow in certain consonants {p, b, m).

2.1.2.2. The Voicing Mechanism

The most fundamental distinction between sound types in speech is the voiced/voiceless
distinction. Voiced sounds, including vowels, have in their time and frequency structure a
roughly regular pattern that voiceless sounds, such as consonants like s, lack. Voiced sounds
typically have more energy as shown in Figure 2.5. We see here the waveform of the word
sees, which consists of three phonemes: an unvoiced consonant /s/, a vowel /iy/, and a
voiced consonant /z/.

What in the speech production mechanism creates this fundamental distinction? When
the vocal folds vibrate during phoneme articulation, the phoneme is considered voiced; oth-
erwise it is unvoiced. Yowels are voiced throughout their duration. The distinct vowel tim-
bres are created by using the tongue and lips to shape the main oral resonance cavity in
different ways. The vocal folds vibrate at slower or faster rates, from as low as 60 cycles per
second (Hz) for a large man, to as high as 300 Hz or higher for a small woman or child. The
rate of cycling (opening and closing) of the vocal folds in the larynx during phonation of
voiced sounds is called the fundamental frequency. This is because it sets the periodic base-
line for all higher-frequency harmonics contributed by the pharyngeal and oral resonance
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ndamental frequency also contributes more than any other single fac.
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tor to the perception of pitch (
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Figure 2.5 Waveform of sees, showing a voiceless phoneme /s/, followed by a voiced sound,
the vowel /iy/. The final sound, /2, is a type of voiced consonant.

The glottal cycle is illustrated in Figure 2.6, Al stage (a), the vocal folds are closed and
the air strcam from the lungs is indicated by the arrow. At some point, the air pressure on the
underside of the barrier formed by the vocal folds increases until it overcomes the resistance
of the vocal fold closure and the higher air pressure below blows them apart (b). However,
the tissues and muscles of the larynx and the vocal folds have a natural elasticity which
tends to make them fall back into place rapidly, once air pressure is temporarily equalized
(). The successive airbursts resulting from this process are the source of energy for all
voiced sounds. The time for a single open-close cycle depends on the stiffness and size of
the vocal folds and the amount of subglottal air pressure. These factors can be controlled by
a speaker (o raise and lower the perceived frequency or pitch of a voiced sound.

Figure 2.6 Vocal fold cyclin
trans-glottal pressure differen
sue elasticity forcing tempora

g at the .la.rynx. (a) Closed with sub-glottal pressure buildup; (b)
tial causing folds to blow apart; (c) pressure equalization and tis-
ry reclosure of vocal folds, ready to begin next cycle.

the time bracketed as o tn;leters per second (after [15]). As shown in Figure 2.7, during
ne cycle, there is no air flow during the initial closed portion. Then as
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the glottis opens (open phase), the volume of air flow becomes greater. After a short peak,
the folds begin to resume their original position and the air flow declines until complete clo-
sure is attained, beginning the next cycle. A common measure is the number of such cycles
per second (Hz), or the fundamental frequency (F0). Thus the fundamental frequency for the
waveform in Figure 2.7 is about 120 Hz.

1"' Cycle ",
i )
% 5000 5 Open_;
'] :
) '
2 P
= 1000 f
- |
0 £,
] T

Figure 2.7 Waveform showing air flow during laryngeal cycle.

2.1.2.3. Spectrograms and Formants

Since the glottal wave is periodic, consisting of fundamental frequency (F0) and a number
of harmonics (integral multiples of F0), it can be analyzed as a sum of sine waves as dis-
cussed in Chapter 5. The resonances of the vocal tract (above the glottis) are excited by the
glottal energy. Suppose, for simplicity, we regard the vocal tract as a straight tube of uni-
form cross-sectional area, closed at the glottal end, open at the lips. When the shape of the
vocal tract changes, the resonances change also. Harmonics near the resonances are empha-
sized, and, in speech, the resonances of the cavities that are typical of particular articulator
configurations (e.g., the different vowel timbres) are called formants. The vowels in an ac-
tual speech waveform can be viewed from a number of different perspectives, emphasizing
either a cross-sectional view of the harmonic responses at a single moment, or a longer-term
view of the formant track evolution over time. The actual spectral analysis of a vowel at a
single time-point, as shown in Figure 2.8, gives an idea of the uneven distribution of energy
in resonances for the vowel /iy/ in the waveform for see, which is shown in Figure 2.5.

Another view of sees of Figure 2.5, called a spectrogram, is displayed in the lower part
of Figure 2.9. It shows a long-term frequency analysis, comparable to a complete series of
single time-point cross sections (such as that in Figure 2.8) ranged alongside one another in
time and viewed from above.
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2.1.3. Speech Perception

There are two major components in the auditory perception system: the peripheral auditory
organs (ears) and the auditory nervous system (brain). The ear processes an acoustic pres-
sure signal by first transforming it into a mechanical vibration pattern on the basilar mem-
brane, and then representing the pattern by a series of pulses to be transmitted by the
auditory nerve. Perceptual information is extracted at various stages of the auditory nervous
system. In this section we focus mainly on the auditory organs. ’

2.1.3.1. Physiology of the Ear

The human ear, as shown in Figure 2.10, has three sections: the outer ear, the middle ear,
and the inner ear. The outer ear consists of the external visible part and the external auditory
canal that forms a tube along which sound travels. This tube is about 2.5 cm long and is
covered by the eardrum at the far end.- When air pressure variations reach the eardrum from
the outside, it vibrates, and transmits the vibrations to bones adjacent to its opposite side.
The vibration of the eardrum is at the same frequency (alternating compression and rarefac-
tion) as the incoming sound pressure wave. The middle ear is an air-filled space or cavity
about 1.3 cm across, and about 6 cm® volume. The air travels to the middle ear cavity along
the tube (when opened) that connects the cavity with the nose and throat. The oval window
shown in Figure 2.10 is a small membrane at the bony interface to the inner ear (cochlea).
Since the cochlear walls are bony, the energy is transferred by mechanical action of the
stapes into an impression on the membrane stretching over the oval window.

S Audiory aerve

-

Figure 2.10 The structure of the peripheral auditory system with the outer, middle, and inner ear.
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The relevant structure of the inner ear for soun('i perception lf che c?chleaa Which
communicates directly with the auditory nerve, conduct{ng a r.t;,p rebs e:tazlgnti:)n SOL;;‘ to _the
brain. The cochlea is a spiral tube about 3.5 cm long, u'rh1ch col ; av SOe in'to ths.ﬂ 'Z Sff""“'
is divided, primarily by the basilar membrane running lenglt( W'h ’ out uid-filled
chambers. The cochlea can be roughly regarded as a ﬁ]te.:r bank, w %sedotlr Eu fs: lalre ordered
by location, so that a frequency-to-place transformation 1S accomplished. The filters closest
to the cochlear base respond to the higher frequencies, and those closest to its apex respond
to the lower.

2.1.3.2. Physical vs. Perceptual Attributes

In psychoacoustics, a basic distinction is made betheen the pergeptual attributes _of a sound,
especially a speech sound, and the measurable physical properties that charactenze.lt. Ea.ch
of the perceptual attributes, as listed in Table 2.2, seems to have a strong corr<?1at10n with
one main physical property, but the connection is complex, because other physical proper-
ties of the sound may affect perception in complex ways.

Table 2.2 Relation between perceptual and physical attributes of sound.

Physical Quantity Perceptual Quality
Intensity Loudness
Fundamental frequency Pitch
Spectral shape Timbre
Onset/offset time Timing
Phase difference in binaural hearing Location

Although sounds with a greater intensity level usually sound louder, the sensitivity of
the ear varies with the frequency and the quality of the sound. One fundamental divergence
between physical and perceptual qualities is the phenomenon of non-uniform equal loudness
perception of tones of varying frequencies. In general, tones of differing pitch have different
1nhe.rent perceived loudness. The sensitivity of the ear varies with the frequency and the
quality of the sound. The graph of equal loudness contours adopted by ISO is shown in Fig-

ure 2.11. These curves demonstrate the relative insensitivity of the ear to sounds of low fre-
quency at moderate to low intensit

g y levels. Hearing sensitivity re imum around
4000 Hz, which is near the first res s y reaches a maxi

onance frequency of the outer ear canal, and peaks again
around 13 kHz, the frequency of the second resonance [38]. ’ ’

Pitch ic ;

dament;[f?r;:lllr;?lz;dtrl?: ;t';lllosetllz’ reiated 1o the fundamental frequency. The higher the fun-
- ’ 1gher the pit ; R

pitches depends on the frequency o? ;hihlwe oy owever, discrimination between (0

P ower pitch. Percei i i i i
18 Increased and frequency is kept constant P ereetved pitch will change as intensit
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hoacoustics, the concept of .u'mbre (of a sounfi or instrument) is ge.

that attribute of auditory sensation by which 2 'sub_]ect ca_m :]que that two Sonds
ﬁnef! as that d and having the same loudness and pitch are dissimilar. In other waords,
similarly Prese"t,e; measured differences are controlled, the remaining perception of differ.
when_all the:;ac?ltz timbre. This is heard most easily in music, where the same note in (e
ence is ascr ja ed for the. same duration on a violin sounds different from a flute. The tim.
samefoasa::n% d{apends on many physical variables including a sound’s spectral power -
'?rri‘la)uotioe:l, its temporal envelope, rate and depth of amplitude or frequency modulation, and

the degree of inharmonicity of its harmonics.

effects as well. In psyc

2.1.33.  Frequency Analysis

Researchers have undertaken psychoacoustic experimental work to derive frequency scales
that attempt to model the natural response of the human perceptual system, since the cochlea
of the inner ear acts as a spectrum analyzer. The complex mechanism of the inner ear and
auditory nerve implies that the perceptual attributes of sounds at different frequencies may
not be entirely simple or linear in nature. It is well known that the western musical pitch is
described in octaves' and semi-tones.’ The perceived musical pitch of complex tones is basi-
cally proportional to the logarithm of frequency. For complex tones, the just noticeable dif-
ference for frequency is essentially constant on the octave/semi-tone scale. Musical pitch
scales are used in prosodic research (on speech intonation contour generation).
AT&T Bell Labs has contributed many influential discoveries in hearing, such as criti-
cal band and articulation index, since the turn of the 20th century [3]. Fletcher’s work [14]
pointed to the existence of critical bands in the cochlear response. Critical bands are of great
importance in understanding many auditory phenomena such as perception of loudness,
pitch, and timbre. The auditory system performs frequency analysis of sounds into their
component frequencies. The cochlea acts as if it were made up of overlapping filters having
bandwidths equal to the critical bandwidth. One class of critical band scales is called Bark
frequency scale. It is hoped that by treating spectral energy over the Bark scale, a more natu-
fr:i:it lﬁghzipg::;]s information Pprocessing 1" the ear can be achieved. The Bark scale ranges
shown in Figare 2 ]» ;Otr;esmndmg o 24 cnpca]. bands 9f hearing as shown in Table 2.3. A
noted that the ear;s (;riti?::lc{)cepmal resolut.xon is finer in the lower frequencies. It should be
ands are continuous, and a tone of any audible frequency al-

ways finds a critical band centered on i ' f
the linear frequency (in He) by it. The Bark frequency & can be expressed in terms 0

b =
(f)=13arctan(0.00076 £) + 3.5 * arctan (c f17500)*) (Bark) @3

TTT——
1 ?.}:o"e of frequency £, is
e are 12 semitones j

-

said t
0 be an octave above g tone with frequency £, ifand only if f, =25

Ji is said to be a semitone above a tone With fre-
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Table 2.3 The Bark frequency scale.

Bark Band # Edge (Hz) Center (Hz)
1 100 30
2 200 150
3 300 250
4 400 350
5 510 450
6 630 570
7 770 700
8 920 840
9 1080 1000
10 1270 1170
11 1480 1370
12 1720 1600
13 2000 1850
14 2320 2150
15 2700 2500
16 3150 2900
17 3700 3400
18 4400 4000
19 5300 4800
20 6400 5800
21 7700 7000
22 9500 8500
23 12000 10500
24 15500 13500
14000 -

> 12000

[$)

S 10000 -

gf 8000 A

L 6000

[

£ 4000 -

© 2000 -

0 . , , .
0 5 10 15 20

Figure 2.12 The center frequency of 24 Bark frequency filters as illustrated in Table 2.3.
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Another such perceptually motivated scale is the mel frequency scale [41], which is
linear below 1 kHz, and logarithmic above, with equal numpers of samp]ffs takc.:n bt?]ow afnd
above 1 kHz. The mel scale is based on experiments with simple tones (sinusoids) in \yhlch
subjects were required to divide given frequency ranges into four perceptually equal Jl?ler-
vals or to adjust the frequency of a stimulus tone to be half as high as that of a comparison
tone. One mel is defined as one thousandth of the pitch of a 1 kHz tone. As with all such
attempts, it is hoped that the mel scale more closely models the sensitivity of the human ear
than a purely linear scale and provides for greater discriminatory capability between speech
segments. Mel-scale frequency analysis has been widely used in modern speech recognition

systems. It can be approximated by:
B(f)=1125In(1+ £/700) (2.6)

The mel scale is plotted in Figure 2.13 together with the Bark scale and the bilinear trans-
form (see Chapter 6).

1 : : — T
>'08|' "_.""/’ y
i -
T
T
% '//
0.6} 4
3 2
E 7
A 7
0.4 / ]
2 —— Bark scale
0.2 — — meiscale
*+ -+ bilinear transform -
0 : )

transform for o = (.6 . ark scale, ERB scale, mel- ili
or @=0.6: linear frequency in the x-axis ang normalized freqiilc;ciilih:n ,)Sal:: }lnear
is.

2- 1.3.4- Maski n g

Frequency maskin
€ 15 2 phenomenon d ;
sound close - on under which one o L
¢ In frequency has a high enough level, The ﬁrlsl?goflar?dn(r:azispgcewg crone. Frr
e other one. Fre-
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quency-masking levels have been determined empirically, with complicated models that
take into account whether the masker is a tone or noise, the masker’s level, and other con-
siderations.

We now describe a phenomenon known as tone-masking noise. It has been determined
empirically that noise with energy E, (dB) at Bark frequency g masks a tone at Bark fre-
guency b if the tone’s energy is below the threshold

T, (b)=E, -6.025-0.275g+ S, (b-g) (dB SPL) @n

where the spread-of-masking function S

LU

(b) is given by

S, (0) =15.81+7.5(b+0.474)~17.5\/1+(b+0.474)* (dB) 2.8

We now describe a phenomenon known as noise-masking tone. It has been determined
empirically that a tone at Bark frequency g with energy E; (dB) masks noise at Bark fre-
quency b if the noise energy is below the threshold

T, (b)=E; -2.025-0.175g +S,(b—g) (dBSPL) 2.9)

Masking thresholds are commonly referred to in the literature as Bark scale functions
of just noticeable distortion (JND). Equation (2.8) can be approximated by a triangular
spreading function that has slopes of +25 and ~10 dB per Bark, as shown in Figure 2.14.

S.(b-8)

t
1
]
—
g b (Barks)
Figure 2.14 Contribution of Bark frequency g to the masked threshold S,,(b) .

In Figure 2.15 we show both the threshold of hearing and the masked threshold of a
tone at 1 kHz with a 69 dB SPL. The combined masked threshold is the sum of the two in
the linear domain

T(f)=10log,, (10> +10*7") (2.10)

which is approximately the largest of the two.

In addition to frequency masking, there is a phenomenon called temporal masking by
which a sound too close in time to another sound cannot be perceived. Whereas premasking
tends to last about 5 ms, postmasking can last from 50 to 300 ms. Temporal masking level of
a masker with a uniform level starting at 0 ms and lasting 200 ms is shown in Figure 2.16.



———

/ Spoken Language Struetyp,

__________
..........
.........

SPL (B)

Figure 2.15 Absolute threshold of hearing and spread of masking threshf)ld for a 1 kHz sine-
wave masker with a 69 dB SPL. The overall masked threshold is approximately the largest of

the two thresholds.
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Figure 2.16 Temporal masking level of a masker with a uniform level starting at ¢ ms and
lasting 200 ms.

2.2.  PHONETICS AND PHONOLOGY

We now discuss basic phonetics and phonology needed for spoken language processing
Phgne_»tics refers to the study of speech sounds and their production, classification, and frad-
Scription. Phonology is the study of the distribution and patterning of speech sounds in 2
language and of the tacit rules governing pronunciation.

22.1. Phonemes

Linguist Ferdinand de Saussere (1857-1913) is credited with the observation that the relatio?

" and the object signified by it i arbitrary. The same concept, a certain yello¥
honeybee in English and mitsubachi in Japanes®
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There is no particular relation between the various pronunciations and the meaning, nor do
these pronunciations per se describe the bee’s characteristics in any detail. For phonetics,
this means that the speech sounds described in this chapter have no inherent meaning, and
should be randomly distributed across the lexicon, except as affected by extraneous histori-
cal or etymological considerations. The sounds are just a set of arbitrary effects made avail-
able by human vocal anatomy. You might wonder about this theory when you observe, for
example, the number of words beginning with sn that have to do with nasal functions in
English: sneeze, snort, sniff, snor, snore, snuffle, etc. But Saussere’s observation is generally
true, except for obvious onomatopoetic (sound) words like buzz.

Like fingerprints, every speaker’s vocal anatomy is unique, and this makes for unique
vocalizations of speech sounds. Yet language communication is based on commonality of
form at the perceptual level. To allow discussion of the commonalities, researchers have
identified certain gross characteristics of speech sounds that are adequate for description and
classification of words in dictionaries. They have also adopted various systems of notation
to represent the subset of phonetic phenomena that are crucial for meaning.

As an analogy, consider the system of computer coding of text characters. In such sys-
tems, the character is an abstraction, e.g. the Unicode character U+0041. The identifying
property of this character is its Unicode name LATIN CAPITAL LETTER A. This is a genu-
ine abstraction; no particular realization is necessarily specified. As the Unicode 2.1 stan-
dard [1] states:

The Unicode Standard does not define glyph images. The standard defines how char-
acters are interpreted, not how glyphs are rendered. The software or hardware-rendering
engine of a computer is responsible for the appearance of the characters on the screen. The
Unicode Standard does not specify the size, shape, nor orientation of on-screen characters.

Thus, the U+0041 character can be realized differently for different purposes, and in
different sizes with different fonts:

U+00419 A, A, AL A A, .

The realizations of the character U+0041 are called glyphs, and there is no distin-
guished uniquely correct glyph for U+0041. In speech science, the term phoneme is used to
denote any of the minimal units of speech sound in a language that can serve to distinguish
one word from another. We conventionally use the term phone to denote a phoneme’s
acoustic realization. In the example given above, U+0041 corresponds to a phoneme and the
various fonts correspond to the phone. For example, English phoneme /¢/ have two very dif-
ferent acoustic realizations in the words sat and meter. You had better treat them as two dif-
ferent phones if you want to build a spoken language system. We will use the terms phone
or phoneme interchangeably to refer to the speaker-independent and context-independent
units of meaningful sound contrast. Table 2.4 shows a complete list of phonemes used in
American English. The set of phonemes will differ in realization across individual speakers.
But phonemes will always function systematically to differentiate meaning in words, just as
the phoneme /p/ signals the word pat as opposed to the similar-sounding but distinct bat.
The important contrast distinguishing this pair of words is /p/ vs. /b/.
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actual realizations by different speakers and in different contexts.
Table 2.4 English phonemes used for typical spoken language systems.

Examples Description
I')honemes ;:;(;rgve. me front close unrounded
ih #ill, hit, lid front close unrounded (Jax)
; at ’car’rv gas front open unrounded (tense)
py father, ah, car back open unrounded
a;z cut, bud, up open-mid back unrounded
p doé. lawn, caught open-mid back rounfi .
e tie, ice, bite diphthong with quality: aa + ih
Pt ago, comply central close mid (schwa)
:x ate, day, tape front close-mid unrounded (tense)
ei pet, berry, ten front open-mid unrounded .
er turn, fur, meter central open-mxd unrounded rhoti-
ow 80, own, tone back close-rr_ud rounded
aw foul, how, our diphthong with qual!ty: aa +uh
oy toy, coin, oil diphthong with quality: ao + ih
uh book, pull, good back close-mid unrounded (lax)
uw tool, crew, moo back close round

Yo, - tn "N"‘!tﬁ\’?‘h""h_'ﬁb‘
[seassgec~~ygss

big, able, 1ab

put, open, tap

dig, idea, wad
talk, sat

meter

gut, angle, tag

cut, ken, take
fork, after, if

vat, over, have

sit, cast, toss

zap, lazy, haze
thin, nothing, truth
then, father, scythe
she, cushion, wash
genre, azure

lid

elbow, sail

red, part, far
yacht, yard

with, away

help, ahead, hote;
mat, amid, qim

nol end, pan

sing, anger

chin, archer, march
Joy, agile, edge

voiced bilabial plosive
voiceless bilabial plosive
voiced alveolar plosive
voiceless alveolar plosive &
alveolar flap

voiced velar plosive
voiceless velar plosive
voiceless labiodental fricative
voiced labiodental fricative
voiceless alveolar fricative
voiced alveolar fricative
voiceless dental fricative
voiced dental fricative
voiceless postalveolar fricative
voiced postalveolar fricative
alveolar latera| approximant
velar lateral approximant
retroflex approximant
palatal sonorant glide
labiovelar Sonorant glide
voiceless glottal fricative
bilabial nasa]

alveolar nasa|

velar nasal

vo_icelcss alveolar affricate: ¢ + sh
voiced alveolar affricate: d + zh
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2.2.1.1. VYowels

The tongue shape and positioning in the oral cavity do not form a major constriction of air
flow during vowel articulation. However, variations of tongue placement give each vowel its
distinct character by changing the resonance, just as different sizes and shapes of bottles
give rise to different acoustic effects when struck. The primary energy entering the pharyn-
geal and oral cavities in vowel production vibrates at the fundamental frequency. The major
resonances of the oral and pharyngeal cavities for vowels are called Fl and F2 - the first and
second formants, respectively. They are determined by tongue placement and oral tract
shape in vowels, and they determine the characteristic timbre or quality of the vowel.

The relationship of F1 and F2 to one another can be used to describe the English vow-
els. While the shape of the complete vocal tract determines the spectral outcome in a com-
plex, nonlinear fashion, generally Fi1 corresponds to the back or pharyngeal portion of the
cavity, while F2 is determined more by the size and shape of the oral portion, forward of the
major tongue extrusion. This makes intuitive sense — the cavity from the glottis to the tongue
extrusion is longer than the forward part of the oral cavity, thus we would expect its reso-
nance to be lower. In the vowel of see, for example, the tongue extrusion is far forward in
the mouth, creating an exceptionally long rear cavity, and correspondingly low F1. The for-
ward part of the oral cavity, at the same time, is extremely short, contributing to higher F2.
This accounts for the wide separation of the two lowest dark horizontal bands in Figure 2.9,
corresponding to Fl and F2, respectively. Rounding the lips has the effect of extending the
front-of-tongue cavity, thus lowering F2. Typical values of F1 and F2 of American English
vowels are listed in Table 2.5.

Table 2.5 Phoneme labels and typical formant values for vowels of English.
VYowel Labels Mean F1 (Hz) Mean F2 (Hz)

iy (feel) 300 2300
ih (fill) 360 2100
ae {(gas) 750 1750
aa (father) 680 1100
ah (cut) 720 1240
ao (dog) 600 900
ax (comply) 720 1240
eh (pet) 570 1970
er(turn) 580 1380
ow (tone) 600 900
wh (good) 380 950
uw (tool) 300 940

The characteristic F1 and F2 values for vowels are sometimes called formant targets,
which are ideal locations for perception. Sometimes, due to fast speaking or other limitations
on performance, the speaker cannot quite attain an ideal target before the articulators begin
shifting to targets for the following phoneme, which is phonetic context dependent. Addi-
tionally, there is a special class of vowels that combine two distinct sets of F1/F2 targets.
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i the initial vowel targets glide
;  As the articulators move, . : .
These &€ called d:Ph‘;;‘.:gﬁfmion. Since the articulators are working faster in production of
smoothly to the ﬁ;‘i‘m‘;‘; he ideal formant target values of the compor;egt values are not fuily
: dipht:o'lll‘i)isg;] diphthongs of American English are listed in Table 2.6.
attain€d.

Table 2.6 The diphthongs of English.
Diphthong Labels Components

ay (tie) faad/ 9/1:)'/
:)}l' (ate) fel/ P /iyl
oy (coin) fao! D fiy/
aw (foul) faal P /uw/

Figure 2.17 shows the first two formants for a number of typical vowels.

2500

g

2

FEquency
g

o
3

T

o

fiy/ (feel) [in/ {fill) Jae/ (gas) /aaf (father) fah/(cut)  [aof (dog)
Vowel Phonemes

Figure 2.17 F1 and F2 values for articulations of some English vowels.

The major articulator for English vowels is the middle to rear portion of the tongue.
The position of the tongue’s surface is manipulated by large and powerful muscles in 1ts
root, which move it as a whole within the mouth. The linguistically important dimensions qf
movement are generally the ranges [front <> back] and [high < low]. You can feel th_ls
movement easily. Say mentally, or whisper, the sound /iy/ (as in see) and then faal (as 1
Jather). Do it repeatedly, and you will get a clear perception of the tongue movement from
high to low. Now try /iy/ and then /uw/ (as in blue), repeating a few times. You will get2
clear perception of place of articulation from front /iy/ to back /uw/. Figure 2.18 shows 2
schematic characterization of English vowels in terms of relative tongue positions. There aré
two kinds of vowels: those in which tongue height is represented as a point and those in
which it is represented as a vector,
Come'li:‘;”g?athe [0“8];13Thump is the major actor in vowel articulation, other arti(?ulatm;
many oth pl y as well. The most important secondary vowel mechanism for English "
er languages is lip rounding. Repeat the exercise above, moving from the /iy/ (see)



Phonetics and Phonology 41

to the /uw/ (blue) position. Now rather than noticing the tongue movement, pay attention to
your lip shape. When you say /iy/, your lips will be flat, slightly open, and somewhat spread.
As you move to /uw/, they begin to round our, ending in a more puckered position. This
lengthens the oral cavity during /uw/, and affects the spectrum in other ways.

high
e hw
—_— .
® «h
® ax back
\ -f_ {ow
' 7
uh aw ®a0
® qa
low

Figure 2.18 Relative tongue positions of English vowels [24].

Though there is always some controversy, linguistic study of phonetic abstractions,
called phonology, has largely converged on the five binary features: +/- high, +/- low, +/-
front, +/- back, and +/- round, plus the phonetically ambiguous but phonologically useful
feature +/- tense, as adequate to uniquely characterize the major vowel distinctions of Stan-
dard English (and many other languages). Obviously, such a system is a little bit too free
with logically contradictory specifications, such as [+high, +low], but these are excluded
from real-world use. These features can be seen in Table 2.7.

Table 2.7 Phonological (abstract) feature decomposition of basic English vowels.

Vowel high low front back round tense

iy + - + - - +
th + - + - - -
ae - + + - - +
aa - + - - - +
ah - - - - - +
ao - + + + +
ax - - - - - -
eh - - + - - -
ow - - - + + +
uh + - - + - -
uw + - - + - +
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This kind of abstract analysis allows researchers to make convenient statements about
is ki : iti

Jasses of vowels that behave similarly under certain conditions. For example, one may
classe

speak simply of the high vowels to indicate the set /iy, ilt, uh, uwl.

2.2.1.2. Consonantis

Consonants, as opposed to vowels, are characterized by significant cor'Istrif:tion or obstruc-
tion in the pharyngeal and/or oral cavities. Some consonants are vorc?d, others_ are not.
Many consonants occur in pairs, that is, they share the. same configuration of an1cu1at9r§,
and one member of the pair additionally has voicing which the o'ther lacks. On'e sych pair is
/s, 2/, and the voicing property that distinguishes them shows up in the non-periodic noise of
the initial segment /s/ in Figure 2.5 as opposed to the voiced consonant end-phone, /z/. Man-
ner of articulation refers to the articulation mechanism of a consonant. The major distinc-
tions in manner of articulation are listed in Table 2.8.

Table 2.8 Consonant manner of articulation.

Sample | Example
Manner Phone Words Mechanism
Plosive o/ tat, tap Closure in oral cavity
Nasal m/ team, meet i Closure of nasal cavity
Fricative /s/ sick, kiss Turbulent airstream noise
Retroflex liquid Vi rat, tar Vowel-like, tongue high and curled back
Lateral liquid A/ lean, kneel | Vowel-like, tongue central, side airstream
Glide N | yes, well Vowel-like

The English phones that typically have voicing without complete obstruction or nar-
rowing of the vocal tract are called semivowels and include /1, r/, the ligquid group, and /y, w,
the' glide group. Liquids, glides, and vowels are all sonorant, meaning they have continuous
voicing. Liquids /I/ and /r/ are quite vowel-like and in fact may become syllabic or act en-
tirely as vowels in certain positions, such as the / at the end of edible. In /l/, the airstream
flows around the sides of the tongue, leading to the descriptive term lareral. In /r/, the tip of

the tongue is curled back slightly, leading to the descriptive term retroflex. Figure 2.19
shows some semivowels.

. Glides /y, w/ are basically vowels /iy,
Quire them to be a little shorter and to lac
different enough from true vowels that the

uw/ whose initial position within the syllable re-
k the ability to be stressed, rendering them just
Pre-vocalic ol ey are classed as a special category of consonant
Il in ;: ]scefll:gs t111al share the syllable-injtial position with another consonant, such as the
are sometimes c:zjlyecliacb;lri3 c‘lf' ; Om?tter/k o 1w . £ €, O the fuf in quick Ik » 1 "
- l : /
mants, meaning o 1 gkmes. he semivowels, as a class, are sometimes called approxt-

Bue€ approac i -
Pletel);zcontaCt 50 as to obstruct thep;)ir ﬂot\::s e 10p of the orl v bt doss 1T
ven the non-sonora \
nt consonants that requij
on-5: 1S quire comple ~to- o
sonorant ants plete or close-to-complete obs

Ore or during the obstruction, until the pressure dif-
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. Table 2.9 Manner of articulation of English consonants.

Consonant Labels  Consonant Examples Yoiced? Manner
b big, able, tab + plosive
D put, open, tap - plosive
d dig, idea, wad + plosive
t talk, sat - plosive
g gut, angle, tag + plosive
k cut, oaken, take - plosive
v vat, over, have + fricative
f fork, after, if - fricative
2z zap, lazy, haze + fricative
s sit, cast, toss - fricative
dh then, father, scythe + fricative
th thin, nothing, truth - fricative
zh genre, azure, beige + fricative
sh she, cushion, wash - fricative
Jh joy, agile, edge + affricate
ch chin, archer, march - affricate
I lid, elbow, sail + lateral
r red, part, far + retroflex
y yacht, onion, yard + glide
w with, away + glide
hh help, ahead, hotel + fricative
m mat, amid, aim + nasal
n no, end, pan + nasal
ng sing, anger, drink + nasal
Alveolar: Palatal:
Labiodental: tdnsznl sh, zh, ¥
vf
q [ Velar
Dental: k, g ng
th, dh
Labial:
mp, bw

Figure 2.21 The major places of consonant articulation with respect to the human mouth.
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e The labial consonants have their major constriction at the lips. This includeg
Ipl, 1B/ (these two differ only by manner of articulation) and /m/ and /w/.

e The class of dental or labio-denial consonants includes /f, v/ and /th, di/ (the
members of these groups differ in manner, not place).

e Alveolar consonants bring the front part of the tongue, called the tip or the
part behind the tip called the blade, into contact or approximation to the al-
veolar ridge, rising semi-vertically above and behind the teeth. These include
I, d, n, s, z 1, . The members of this set again differ in manner of articula-
tion (voicing, continuity, nasality), rather than place.

e Palatal consonants have approximation or constriction on or near the roof of
the mouth, called the palate. The members include /sk, zh, y/.

e Velar consonants bring the articulator (generally the back of the tongue), up to
the reanmnost top area of the oral cavity, near the velar flap. Velar consonants in
English include /k, g/ (differing by voicing) and the nasal continuant /ng/.

With the place terminology, we can complete the descriptive inventory of English
consonants, arranged by manner (rows), place (columns), and voiceless/voiced (pairs in
cells) as illustrated in Table 2.10.

Table 2.10 The consonants of English arranged by place (columns) and manner (rows).

Labio-

Labial dental Dental | Alveolar | Palatal | Velar Glottal
Plosive pb td kg ?
Nasal Ht n ng
Fricative fv th dh sz sh zh h
Retroflex r
sonorant .
Lateral !
sonorant
Glide w y

2.2.1.3. Phonetic Typology

The oral, nasal, pharyngeal, and glottal mechanisms actually make available a much wider
range of effects than English happens to use. So, it is expected that other languages wquld
utilize other vocal mechanisms, in an internally consistent but essentially arbitrary fashlt_m-
to represent their lexicons. In addition, often a vocal effect that is part of the systematic‘ lin-
guistic phonetics of one language is present in others in a less codified, but still percﬁpnb]e’
form. For example, Japanese vowels have a characteristic distinction of length that can ¢
hard for non-natives to perceive and to use when learning the language. The words kado
(corner) and kaado (card) are specirally identical, differing only in that kado is much shortef
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in all contexts. The existence of such minimally-contrasting pairs is taken as conclusive evi-
dence that length is phonemically distinctive for Japanese. As noted above, what is linguisti-
cally distinctive in any one language is generally present as a less meaningful signaling
dimension in other languages. Thus, vowel length can be manipulated in any English word
as well, but this occurs either consciously for emphasis or humorous effect, or unconsciously
and very predictably at clause and sentence end positions, rather than to signal lexical iden-
tity in all contexts, as in Japanese.

Other interesting sounds that the English language makes no linguistic use of include
the trilled r sound and the implosive. The trilled r sound is found in Spanish, distinguishing
(for example) the words pero (but) and perro (dog). This trill could be found in times past as
a non-lexical sound used for emphasis and interest by American circus ringmasters and other
showpersons.

While the world’s languages have all the variety of manner of articulation exemplified
above and a great deal more, the primary dimension lacking in English that is exploited by a
large subset of the world’s languages is pitch variation. Many of the huge language families
of Asia and Africa are tonal, including all varieties of Chinese. A large number of other lan-
guages are not considered strictly tonal by linguistics, yet they make systematic use of pitch
contrasts. These include Japanese and Swedish. To be considered tonal, a language should
have lexical meaning contrasts cued by pitch, just as the lexical meaning contrast between
pig and big is cued by a voicing distinction in English. For example, Mandarin Chinese has
four primary tones (tones can have minor context-dependent variants just like ordinary
phones, as well) as shown in Table 2.11.

Table 2.11 The contrastive tones of Mandarin Chinese,

Tone Shape Example Chinese Meaning
1 High level ma LE} mother
2 High rising ma R numb
3 Low rising ma 5 horse
4 High falling ma k- to scold

Though English does not make systematic use of pitch in its inventory of word con-
trasts, nevertheless, as we always see with any possible phonetic effect, pitch is systemati-
cally varied in English to signal a speaker’s emotions, intentions, and attitudes, and it has
some linguistic function in signaling grammatical structure as well. Pitch variation in Eng-
lish will be considered in more detail in Chapter 135.

2.2.2, The Allophone: Sound and Context

The vowel and consonant charts provide abstract symbols for the phonemes — major sound
distinctions. Phonemic units should be correlated with potential meaning distinctions. For
example, the change created by holding the tongue high and front (/iy/) vs. directly down



" Spoken Language Structure-

from the (frontal) position for /e#/, in the consonant context /m - n{, corresponds to an g
portant meaning distinction in the lexicon of English': mean /m iy n{ vs. men ln-: eh n/. This
meaning contrast, conditioned by a pair of rather similar sounds, in an identical context,
justifies the inclusion of /iy/ and /eh/ as logically separate c!lst{nctlons. ' 3

However, one of the fundamental, meaning-distinguishing sour}ds is f)ften modified in
some systematic way by its phonetic neighbors. The process by which nelghl_)oring sounds
influence one another is called coarticulation. Sometimes, when the variations resulting
from coarticulatory processes can be consciously perceived, the qulﬁed phonemes are
called allophones. Allophonic differences are always categorical, that is, they ca'n.be under-
stood and denoted by means of a small, bounded number of symbols or diacritics on the
basic phoneme symbols.

As an experiment, say the word fike to yourself. Feel the front of the tongue touching
the alveolar ridge (cf. Figure 2.21) when realizing the initial phoneme /I/. This is one atlo-
phone of /I/, the so-called light or clear /Il. Now say kill. In this word, most English speakers
will no longer feel the front part of the tongue touch the alveolar ridge. Rather, the /I/ is real-
ized by stiffening the broad midsection of the tongue in the rear part of the mouth while the
continuant airstream escapes laterally. This is another allophone of /l/, conditioned by its
syllable-final position, called the dark /l/. Predictable contextual effects on the realization of
phones can be viewed as a nuisance for speech recognition, as will be discussed in Chapter
9. On the other hand, such variation, because it is systematic, could also serve as a cue to the
syllable, word, and prosodic structure of speech.

Now experiment with the sound /p/ by holding a piece of tissue in front of your mouth
while saying the word pin in a normal voice. Now repeat this experiment with spin. For
most English speakers, the word pin produces a noticeable puff of air, called aspiration. But
the same phoneme, /p/, embedded in the consonant cluster /sp/ loses its aspiration (burst, see
the lines bracketing the /p/ release in pin and spin in Figure 2.22), and because these two
types of /p/ are in complementary distribution (completely determined by phonetic and syl-
labic context), the difference is considered allophonic. ‘

_ Try to speak the word bat in a framing phrase say bat again, Now speak say bad
again. Can you feel the length difference in the vowel /ae/? A vowel before a voiced conso-

pant,' e.g., /d/, seems typically longer than the same vowel before the unvoiced counterpart,
in this case /¢/.

A sound phonemicized as /¢/ or 2/, that is, a stop made with the front part of the

tongue, may be reduced to a quick tongue tap that has a different sound than either /t/ or /d/

in fuller contexts. This process is called flapping. It occurs when /t! or /d/ closes a stressed
vowel (coda position) followed by an unstressed v

ter, humidiry, and can even occur across words as
you can say that again. Sometimes the velar flap
charactenst.ically nasal quality to some pre-nasal v
have a more detailed discussion on allophones in Ch

long as the preconditions are met, as iP

apter 9.
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Frequency (Hz)

pin (/p ih v/) Time (seconds)  spin (/s p ih n/)

Figure 2.22 Spectrogram: bursts of pin and spin. The relative duration of a p-burst in different
phonetic contexts is shown by the differing width of the area between the vertical lines.

2.2.3. Speech Rate and Coarticulation

In addition to allophones, there are other variations in speech for which no small set of es-
tablished categories of variation can be established. These are gradient, existing along a
scale for each relevant dimension, with speakers scattered widely. In general, it is harder to
become consciously aware of coarticulation effects than of allophonic alternatives.

Individual speakers may vary their rates according to the content and setting of their
speech, and there may be great inter-speaker differences as well. Some speakers may pause
between every word, while others may speak hundreds of words per minute with barely a
pause between sentences. At the faster rates, formant targets are less likely to be fully
achieved. In addition, individual allophones may merge.

For example [20], consider the utterance Did you hit it to Tom? The pronunciation of
this utterance is /d ih d y uw h ik t ih t t uw t aa m/. However, a realistic, casual rendition of
this sentence would appear as /d ih jh ax hh ih dx ih t ix t aa m/, where /ix/ is a reduced
schwa /ax/ that is short and often unvoiced, and /dx/ is a kind of shortened, indistinct stop,
intermediate between /d/ and /t/. The following five phonologic rules have operated on alter-
ing the pronunciation in the example:

o Palatalization of /d/ before /y/ in did you
e Reduction of unstressed /u/ to schwa in you
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Syllable centers can be thought of as peaks in sonority (high-amplitude, periodic se,.
tions of the speech waveform). These sonority peaks have fifﬁhated shoulders of strictly
non-increasing sonority. A scale of sonority can be used, rénkmg cons:onants along a contip-
uum of stops, affricates, fricatives, and approximants. So, in a word .hke verbal, thc? syllab.
fication would be ver-bal, or verb-al, but not ve-rbal, because pumng. the approxirmant /y/
before the stop /b/ in the second syllable would violate the non-decreasing sonority require.
ment heading into the syllable. o '

As long as the sonority conditions are met, the exact affiliation of a given consonang
that could theoretically affiliate on either side can be ambiguous, unless determined by
higher-order considerations of word structure, which may block affiliation. For example, in
a word like beekeeper, an abstract boundary in the compound between the component words
bee and keeper keeps us from accepting the syllable parse: beek-eeper, based on lexical i.
terpretation. However, the same phonetic sequence in beaker could, depending on one’s
theory of syllabicity, permit affiliation of the k: beak-er. In general, the syllable is a unit that
has intuitive plausibility but remains difficult to pin down precisely.

Syllable
Onset Rime
Nucleus Coda
! |
Str eh

nxths

Figure 2.25 The word/syllable stren

8ths (/s t r eh nx g s/)is the 1o ;
)¢} t .
Syllables are thought (by linguij gest syllable of English

stic theor .
used are worth Knowing, Consider 2 big w1 011s15) 10 have internal structure, and the terms
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2.3.2. Words

The concept of words seems intuitively obvious to most speakers of Indo-European lan-
guages. It can be loosely defined as a lexical item, with an agreed-upon meaning in a given
speech community, that has the freedom of syntactic combination allowed by its type (noun,
verb, etc.).

In spoken language, there is a segmentation problem: words run together unless af-
fected by a disfluency (unintended speech production problem) or by the deliberate place-
ment of a pause (silence) for some structural or communicative reason. This is surprising to
many people, because literacy has conditioned speakers/readers of Indo-European languages
to expect a blank space between words on the printed page. But in speech, only a few true
pauses (the aural equivalent of a blank space) may be present. So, what appears to the read-
ing eye as never give all the heart, for love would appear to the ear, if we simply use letters
to stand for their corresponding English speech sounds, as nevergivealitheheart forlove or,
in phonemes, as neh vergihvah!ldh axlhaart\\fao r!ahv. The \\ symbol marks a lin-
guistically motivated pause, and the units so formed are sometimes called intonation
phrases, as explained in Chapter 15.

Certain facts about word structure and combinatorial possibilities are evident to most
native speakers and have been confirmed by decades of linguistic research. Some of these
facts describe relations among words when considered in isolation, or concern groups of
related words that seem intuitively similar along some dimension of form or meaning —
these properties are paradigmatic. Paradigmatic properties of words include part-of-speech,
inflectional and derivational morphology, and compound structure. Other properties of
words concern their behavior and distribution when combined for communicative purposes
in fully functioning utterances — these properties are synfagmatic.

23.2.1. Lexical Part-of-Speech

Lexical part-of-speech (POS) is a primitive form of linguistic theory that posits a restricted
inventory of word-type categories, which capture generalizations of word forms and distri-
butions. Assignment of a given POS specification to a word is a way of summarizing certain
facts about its potential for syntagmatic combination. Additionally, paradigms of word for-
mation processes are often similar within POS types and subtypes as well. The word proper-
ties upon which POS category assignments are based may include affixation behavior, very
abstract semantic typologies, distributional patterns, compounding behavior, historical de-
velopment, productivity and generalizabilty, and others.

A typical set of POS categories would include noun, verb, adjective, adverb, interjec-
tion, conjunction, determiner, preposition, and pronoun. Of these, we can observe that cer-
tain classes of words consist of infinitely large membership. This means new members can
be added at any time. For example, the category of noun is constantly expanded to accom-
modate new inventions, such as Velcro or Spandex. New individuals are constantly being
born, and their names are a type of noun called proper noun. The proliferation of words us-
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x cyber is another recent set of exan_nples: (.:yber.sjcojﬁaw, Cybersey
e the infinite creativity of humans in manipulating word structyy,
frequently by analogy with, and using fragments of, ex.

. i ologism sheeple, a noun combining the f,
isting voclabulary. Anotl;s; e;;;:,r‘l.?i’h’;olsré?:r ':g larze masses of people who lack the capg;nt;
and ;'ne_amngs ?j f:lf:’;ndepgndem action. We can create new words whenever we like, but
o w:llmgbn estsfall within the predictable paradigmatic and syntagmatic patterns of use sy
they hzdb e:he existing POS generalizations, or there will be little hope of their adoption by
zg;rx;;] . Zpeakeﬂ These open POS categories are listed in Table 2.12. 'Nm.ms are inperently
referential. They refer to persons, places, and thmgs. Velrbs are .predl‘catlye; they indicate
relations between entities and properties of entitie§, including participation in events. Adjec.
tives typically describe and more completely specify poun reference, while adverbs describe,
intensify, and more completely specify verbal relations. Open-class words are somelimes

called content words, for their referential properties.

ing the descriptive: prefi
and even cyberia illustra i
to express new shades of meaning,

Table 2.12 Open POS categories.

| Tag Description Function Example
N Noun Names entity cat
\ Verb Names event or condition forget
Adj Adjective Descriptive yellow
Adv Adverb Manner of action quickly
Inter Interjection Reaction oh!

In contrast to the open-class categories, certain other categories of words only rarely
and very slowly admit new members over the history of English development. These closed
P_OS categories are shown in Table 2.13. The closed-category words are fairly stable over
time. Conjunctions are used 1o join larger syntactically complete phrases. Determiners help
lrzl:[?(r)r;;\z:ggp reference possibilities. Prepositions denote common spatial and temporal
ot phrases tjlf:tts ancrl zlllcuons to one another. Pronouns provide a convenient substitute for
tions of olhc;.r worz:i;etou ¥ understood from context. These words denote grammatical reld-
mans understand i, Thc;nza:n(ﬁ?i;::i fundamental properties of the world and how hue

, » Change stowly; for example, the Middle English

pronoun ihee is ng | i
) 2 s onger in ¢ ‘
ey e i g ommon use. The closed-class words are sometimes called

W\_\_:ble 2.13 Closed POS categories.
—=8___ | Description

pal) Conjunct;

et Dclcrmit;:“ ] Coardinates phrases

Prep L Indi =

p.'L" Preposition oy z}tes definiteness

Prog —— clations of lime, space direction

e ] Pronoun | i
I Frono Slmgliﬁed reference

— Function
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The set of POS czftegories can be extended indefinitely. Examples can be drawn from
the Penn Tmebank project (http://www.cis.upenn.edu/ldc) as shown in Table 2.14, where
you can find the proliferation of sub-categories, such as Verb, base form and Verb, past

tense. These categories incorporate morphological attributes of words into the POS label
system discussed in Section 2.3.2.2.

Table 2.14 Treebank POS categories - an expanded inventory.

String | Description Example
CC Coordinating conjunction and
CD Cardinal number two
DT Determiner the
EX Existential there there (There was an old lady)
FW Foreign word omerta
IN Preposition, subord. conjunction over, but
1 Adjective yellow
JJR Adjective, comparative better
JIS Adjective, superlative best
LS List item marker
MD Modal might
NN Noun, singular or mass rock, water
NNS Noun, plural rocks
NNP Proper noun, singular Joe
NNPS Proper noun, plural Red Guards
PDT Predeterminer all (all the girls)
POS Possessive ending 'S
PRP Personal pronoun 1
PRP$ Possessive pronoun mine
RB Adverb _quickly
'RBR Adverb, comparative higher (shares closed higher.)
RBS Adverb, superlative highest (he jumped highest of all.)
RP Particle up ( take up the cause)
TO 1o to
UH Interjection hey!
VB Verb, base form choose
VBD Verb, past tense chose
VBG Verb, gerund, or present participle choosing
VBN Verb, past participle chosen
VBP Verb, non-third person sing. present | jump
VBZ Verb, third person singular present | jumps
WDT Wh-determiner which
WP Wh-pronoun who
WP$ Possessive wh-pronoun whose
WRB Wh-adverb when (When he came, it was lale.)
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art-of-speech or other lexical class marker

, automatically tag input sentenceg
i re many algorithms to au \
to each wo;d in Q;L?I?;:s;h ::ﬂiods [45], hidden Markov models (see Chapler 8) [23, 29,
into a set of tags. -

is purpose.
46}, and machine-learning methods [6] are used for this purpo

POS tagging is the process of assigning a8 p

2.3.2.2. Morphology

e subparts of words, 1.e.,
d the formation of compou

inflection, derivation, an: tion !
ffixes to express inflection and derivational morphf)logy
. with variations in word form that reflect the contextual

2t orphology deals - .
B verd n phrase tence syntax, and that rarely have direct effect on inter-

ituation of a word in phrase or sen ve ¢ ;
Slrletation of the fundamental meaning expressed by the word. English inflectional morphol-
ggy is relatively simple and includes person and number agreement and tense markings

only. The variation in cats (vs. caf) is an examw‘?- The plural form is 'used. to refer to an i'}'
definite number of cats greater than one, depending on a particular situation. 'But the basic
POS category (noun) and the basic meaning (felis domesticus) are not substantially affected.
Words related to a common lemma via inflectional morphology are said to belong to a
common paradigm, with a single POS category assignment. In English, common paradigm
types include the verbal set of affixes (pieces of words): -5, -ed, -ing; the noun set: -s; and
the adjectival -er, -est. Note that sometimes the base form may change spelling under affixa-
tion, complicating the job of automatic textual analysis methods. For historical reasons, cer-
tain paradigms may consist of highly idiosyncratic irregular variation as well, e.g., go,
going, went, gone or child, children. Furthermore, some words may belong to defective
paradigms, where only the singular (noun: equipment) or the plural (noun: scissors) is pro-
vided for.
wordslno‘::s;iv:;’il;:];é) nswrﬁhology, a‘given root -word may serve as the source for wholly new
. m,cm hough resu;:n aa;lge.; as ;llustrau?d in Table 2.15. For examp!e, the terms racqu
bilities (adjecti P o7 based on a single root word race, have different POS possi-
S Jechive vs. noun-adjective) and meanings. Derivational processes may induce pro-
\ciation change or stress shift (e.g., electric vs. elecirici i ical
derivational affixes (pieces of words) that are highl od GC{Nley)- o English, bPE
fixes: re-, pre-, -ial, -ism, -ish, -ity, -tion, -ness _l’gm,y pro dUC[l'Ve m.clude prefixes and suf
cases, these can be added successively to ’create ,a cor:lm oLy, tze, and others. In mat)
plex layered form.

the pattemns of word formation including

Morphology is about th nds. English mainly uses prefixes and

Tab .
le 2.15 Examples of stems and their related forms across POS categories.

Noun

p— V‘?r'b‘ Adjective Adverb

’T Criticize (_‘ritica[ cn‘u‘ca”y

industry, industrialization | — oolish oolishly

enploy, employee, emp] industrialize industrial,industrious |industriously _

@MM@_\ employable employabl)’_.
certify | certifiable certifiably |
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Generally, word formation operates in layers, according to a kind of word syntax: (de-
riv-prefix)* root (root)* (deriv-suffix)* ( infl-suffix). This means that one or more roots can
be compounded in the inner layer, with one or more optional derivational prefixes, followed
by any number of optional derivational suffixes, capped off with no more than one inflec-
tional suffix. There are, of course, limits on word formation, deriving both from semantics of
the component words and simple lack of imagination. An example of a nearly maximal word
in English might be autocyberconceptualizations, meaning (perhaps!) multiple instances of
automatically creating computer-related concepts. This word lacks only compounding to be
truly maximal. This word has a derivational prefix auto-, two root forms compounded (cyber
and concept, though some may prefer to analyze cyber- as a prefix), three derivational suf-
fixes (-ual, -ize, -ation), and is capped off with the plural inflectional suffix for nouns, -s.

2.3.2.3. Word Classes

POS classes are based on traditional grammatical and lexical analysis. With improved com-
putational resources, it has become possible to examine words in context and assign words
to groups according to their actual behavior in real text and speech from a statistical point of
view. These kinds of classifications can be used in language modeling experiments for
speech recognition, text analysis for text-to-speech synthesis, and other purposes.

One of the main advantages of word classification is its potential to derive more re-
fined classes than traditional POS, while only rarely actually crossing traditional POS group
boundaries. Such a system may group words automatically according to the similarity of
usage with respect to their word neighbors. Consider classes automatically found by the
classification algorithms of Brown et al. [7]:

{Friday Monday Thursday Wednesday Tuesday Saturday Sunday weekends}

{ great big vast sudden mere sheer gigantic lifelong scant colossal }

{down backwards ashore sideways southward northward overboard aloft adrift)
{mother wife father son husband brother daughter sister boss uncle}

{John George James Bob Robert Paul William Jim David Mike)

{feet miles pounds degrees inches barrels tons acres meters bytes}

You can see that words are grouped together based on the semantic meaning, which is
different from word classes created purely from syntactic point of view. Other types of clas-
sification are also possible, some of which can identify semantic relatedness across tradi-
tional POS categories. Some of the groups derived from this approach may include follows:

{problems problem solution solve analyzed solved solving]
{ write writes writing written wrote pen}

{question questions asking answer answers answering}
{published publication author publish writer titled}
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2.4. SYNTAX AND SEMANTICS

Syntax is the study of the patterns of formation of sentences and phrases from words and the
rules for the formation of grammatical sentences. Semantics is another branch of linguistics
dealing with the study of meaning, including the ways meaning is structured in language ang
changes in meaning and form over time.

24.1. Syntactic Constituents

Constituents represent the way a sentence can be divided into its grammatical subpart a5
constrained by common grammatical patterns (which implicitly incorporate normative
judgments on acceptability). Syntactic constituents at least respect, and at best explain, the
linear order of words in utterances and text. In this discussion, we will not strictly follow
any of the many theories of syntax but will instead bring out a few basic ideas common to
many approaches. We will not attempt anything like a complete presentation of the grammar
of English but instead focus on a few simple phenomena.

Most work in syntactic theory has adopted machinery from traditional grammatical
work on written language. Rather than analyze toy sentences, let’s consider what kinds of
superficial syntactic patterns are lurking in a random chunk of serious English text, ex-
cerpted from David Thoreau's essay Civil Disobedience [43]:

The authority of government, even such as I am willing to submit to — for I will cheer-
[fully obey those who know and can do better than I, and in many things even those who nei-
ther know nor can do so well — is still an impure one: to be strictly just, it must have the
sanction and consent of the governed. It can have no pure right over my person and prop-
erty but what I concede 1o it. The progress from an absolute to a limited monarchy, from a
limited monarchy to a democracy, is a progress toward a true respect for the individual.

24.1.1. Phrase Schemata

Words may be combined to form phrases that have internal structure and unity. We use gen-
eralized schemata to describe the phrase structure. The goal is to create a simple, uniform
template that is independent of POS category. )

Let’s first consider nouns, a fundamental category referring to persons, places, and
things in the world. The noun and its immediate modifiers form a constituent called the nout
phrase (NP). To generalize this, we consider a word of arbitrary category, say category X
(which could be a noun N or a verb V). The generalized rule for a phrase XP is XP =
(modifiers) X-head (post-modifiers), where X is the head, since it dominates the configura-
tion and names the phrase. Elements preceding the head in its phrase are premodifiers and
elements following the head are postmodifiers. XP, the culminating phrase node, is called 2
maximal projection of category X. We call the whole structure an x-femplare. Maximal pro-
Jections, XP, are the primary currency of basic syntactic processes. The post-modifiers are
usually maximal projections {another head, with its own post-modifiers forming an XP on is
own) and are sometimes termed complements, because they are often required by the lexical
properties of the head for a complete meaning to be expressed (e.g., when X is a preposition
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or verb). Complements are typically noun phrases (NP), prepositional phrases (PP), verb
phrases (VP), or sentence/clause (S), which make an essential contribution to the head’s ref-
erence or meaning, and which the head requires for semantic completeness. Premodifiers are
likely to be adverbs, adjectives, quantifiers, and determiners, i.e., words that help to specify
the meaning of the head but may not be essential for completing the meaning. With minor
variations, the XP template serves for most phrasal types, based on the POS of the head (N,
V, ADJ, etc.).

For NP, we thus have NP = (det) (modifier) head-noun (post-modifier). This rule
describes an NP (noun phrase — left side of arrow) in terms of its optional and required in-
ternal contents (right side of the arrow). Dert is a word like the or a that helps 1o resolve the
reference to a specific or an unknown instance of the noun. The modifier gives further in-
formation about the noun. The head of the phrase, and the only mandatory element, is the
noun itself. Post-modifiers also give further information, usually in a more elaborate syntac-
tic form than the simpler pre-modifiers, such as a relative clause or a prepositional phrase
(covered below). The noun phrases of the passage above can be parsed as shown in Table
2.16. The head nouns may be personal pronouns (/, if), demonstrative and relative pronouns
(those), coordinated nouns (sanction and consen:), or common nouns (individual). The
modifiers are mostly adjectives (impure, pure) or verbal forms functioning as adjectives
(limited). The post-modifiers are interesting, in that, unlike the (pre-)modifiers, they are
typically full phrases themselves, rather than isolated words. They include relative clauses
(which are a kind of dependent sentence, e.g., {those] who know and can do better than I),
as well as prepositional phrases (of the governed).

Table 2.16 NPs of the sample passage.

NP | Det | Mod Head Noun Post-Mod

1 the authority of government

2 even such as I am willing to submit to

3 |

4 those who know and can do beiter than I

5 many things

6 even those who neither know nor can do so well
7 an | impure | one

8 it

9 the sanction and consent | of the governed

10 | no | pure right over my person ... concede to it.

11 | the progress from an absolute to a limited monarchy
12 | an | absolute | [monarchyl

13 |a limited | monarchy

14 |a democracy

15 |a progress

16 |a true respect for the individual

17 | the individual
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Table 2.17 PPs of the sample passage.

Head Prep Complement (Postmodifier)
of Government

as I am willing to submit to
than 1

in many things

of the govermed

over my person and property

to it

from an absolute [monarchy]

to a limited monarchy

to a democracy

toward a true respect [for the individual]
for the individual

Prepositions express spatial and temporal relations, among others. These are also said
to project according to the X-template, but usually lack a pre-modifier. Some examples from
the sample passage are listed in Table 2.17. The complements of PP are generally NPs,
which may be simple head nouns like government. However, other complement types, such
as the verb phrase in after discussing it with Jo, are also possible.

For verb phrases, the postmodifier (or complement) of a head verb would typically be
one or more NP (noun phrase) maximal projections, which might, for example, function as a
direct object in a VP like pet the car. The complement may or may not be optional, depend-
ing on characteristics of the head. We can now make some language-specific generalizations
about English. Some verbs, such as give, may take more than one kind of complement. So
an appropriate template for a VP maximal projection in English would appear abstractly as
VP = (modifier) verb (modifier) (Complementl, Complement2 ComplementN). Comple-
ments are usually regarded as maximal projections, such as NP, ADJP, etc., and are enumer-
ated in the template above, to cover possible multi-object verbs, such as give, which take
both direct and indirect objects. Certain types of adverbs (really, quickly, smoothly, etc.)
could be considered fillers for the VP modifier slots (before and after the head). In the sam-
ple passage, we find the following verb phrases as shown in Table 2.18.

VP presents some interesting issues. First, notice the multi-word verb submit to. Multi-
wor.d. verbs such as look after and put up with are common. We also observe a number of
auxiliary elements clustering before the verb in sentences of the sample passage: am willing
lo su_bmit to, will cheerfully obey, and can do better. Rather than considering these as simple
?:;illif;:rtshg :IIZ \:)t’;:tt;-"l(lj htzﬁd, they can be taken to haYe scope over the VP as a whole, which
heads n ot e lhte fe h‘: Smce. they are outside the VP, we can assume them to be
mainly express ten seg(ti :1 phrases v'vhnch require a V.P as their complement. These elements
abilit ; e or duration of verbal action) and modality (likelihood or prob-
4uiity of verbal action). In a full sentence the VP h icit or implicit i ion (pro-
jected from its verba] head) and indrengee | as explicit or implicit inflection (p

. es the person, number, and other context-dependent
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features of the verb in relation to its arguments. In English, the person (first, second, third)
and number (singular, plural) attributes, collectively called agreement features, of subject
and verb must match. For simplicity, we will lump all these considerations together as in-
flectional elements, and posit yet another phrase type, the Inflectional Phrase (/P): IP =
premodifier head VP-complement.

Table 2.18 VPs of the sample passage.

Pre-mod Verb Head | Post-mod | Compilement

submit to [the authority of govemment]
cheerfully | obey those who know and can do better than |

is still an impure one

be strictly just

have the sanction

have no pure right

concede to it

is a progress

The premodifier slot (sometimes called the specifier position in linguistic theory) of an
IP is often filled by the subject of the sentence (typically a noun or NP). Since the /P unites
the subject of a sentence with a VP, IP can also be considered simply as the sentence cate-
gory, often written as § in speech grammars.

2.4.1.2. Clauses and Sentences

The subject of a sentence is what the sentence is mainly about. A clause is any phrase with
both a subject and a VP (predicate in traditional grammars) that has potentially independent
interpretation — thus, for us, a clause is an /P, a kind of sentence. A phrase is a constituent
lacking either subject, predicate, or both. We have reviewed a number of phrase types
above. There are also various types of clauses and sentences.

Even though clauses are sentences from an internal point of view (having subject and
predicate), they often function as simpler phrases or words would, e.g., as modifiers (adjec-
tive and adverbs) or nouns and noun phrases. Clauses may appear as post-modifiers for
nouns (so-called relative clauses), basically a kind of adjective clause, sharing their subjects
with the containing sentence. Some clauses function as NPs in their own right. One common
clause type substitutes a wh-word like who or what for a direct object of a verb in the em-
bedded clause, to create a guestioned noun phrase or indirect question: (I don't know who Jo
saw.). In these clauses, it appears to syntacticians that the questioned object of the verb [VP
saw who] has been extracted or moved to a new surface position (following the main clause
verb know). This is sometimes shown in the phrase-structure diagram by co-indexing an
empty ghost or trace constituent at the original position of the question pronoun with the
question-NP appearing at the surface site:

1don’t know [y, [,p Ly Who] Jo saw [y, _ 111

[ypuiy [ ,» Whoever wins the game]] is our hero.
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There are various characteristic types of sentences. Some typical types include:

e Declarative: I gave her a book.

e Yes-no question: Did you give her a book?

Wh-question: What did you give her?

Alternatives question: Did you give her a book, a scarf, or a knife?

Tag question: You gave it to her, didn’t you?

Passive: She was given a book.
Cleft: It must have been a book that she got.
Exclamative: Hasn't this been a great birthday!

Imperative: Give me the book.

24.1.3. Parse Tree Representations

Sentences can be diagrammed in parse trees to indicate phrase-internal structure and linear
precedence and immediate dominance among phrases. A typical phrase-structure tree for
part of an embedded sentence is illustrated in Figure 2.26.

IP(S)
%\
NP Inflection vP
/\
N v NP
/R
Det Pre-mod N Post-Mod (PP)
| |

y can have no pure right over my person

Figure 2.26 A simplified phrase-structure diagram.



Syntax and Semantics 63

For brevity, the same information illustrated in the tree can be represented as a brack-
eted string as follows:

[ip Lup [ 2t Tidye [ can 1, [, [ have ], [, no pure right [,, over my person |

With such a bracketed representation, almost every type of syntactic constituent can be
coordinated or joined with another of its type, and usually a new phrase node of the common
type is added to subsume the constituents such as NP: We have [ we [ tasty berries] and {,,
tart juices]l, IP/S: [, [, Many have come] and [ » MOSt have remained]], PP: We went [ oo Lop
over the river] and [,, into the trees]], and VP: We want to v+ [, climb the mountains] and
[ . sail the seas]].

PP. NP] vr] '3

2.4.2. Semantic Roles

In traditional syntax, grammatical roles are used to describe the direction or control of action
relative to the verb in a sentence. Examples include the ideas of subject, object, indirect ob-
ject, etc. Semantic roles, sometimes called case relations, seem similar but dig deeper. They
are used to make sense of the participants in an event, and they provide a vocabulary for us
to answer the basic question who did what to whom. As developed by [13] and others, the
theory of semantic roles posits a limited number of universal roles. Each basic meaning of
each verb in our mental dictionary is tagged for the obligatory and optional semantic roles
used to convey the particular meaning. A typical inventory of case roles is given below:

Agent cause or initiator of action, often intentional
Patient/Theme undergoer of the action

Instrument how action is accomplished

Goal to whom action is directed

Result result of action

Location location of action

These can be realized under various syntactic identities, and can be assigned to both
required complement and optional adjuncts. A noun phrase in the Agentive role might be the
surface subject of a sentence, or the object of the preposition by in a passive. For example,
the verb put can be considered a process that has, in one of its senses, the case role specifica-
tions shown in Table 2.19.

Table 2,19 Analysis of a sentence with put.

Analysis Example
Kim put the book on the table.
Grammatical Subject (NP) Predicate (VP) | Object (NP) Adverbial
unctions - (ADVP)
Semantic roles | Agent Instrument Theme Location
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Now consider this passive-tense example, where the semantic roles align with differ.
ent grammatical roles shown in Table 2.20. Words that look and sound identical cap have
different meaning or different senses as shown in Table 2.21. The sporting sense of put (ag
in the sport of shot-put) illustrates the meaning/sense-dependent nature of the role Patterng
because in this sense the Locative case is no longer obligatory, as it is in the original Sense:
illustrated in Table 2.19 and Table 2.20.

Table 2.20 Analysis of passive sentence with put.

Analysis Example

The book was put on the table.
Grammatical Subject (NP) Predicate (VP) Adverbial (ADVP)
functions
Semantic roles Agent Instrument Location

Table 2,21 Analysis of a different pattern of put.

Analysis Example

Kim put the shot.
Grammatical Subject (NP) Predicate (VP) | Object (NP)
functions
Semantic roles Agent Instrument Theme

The lexical meaning of a verb can be further decomposed into primitive semantic rela-
tions such as CAUSE, CHANGE, and BE. The verb open might appear as
CAUSE(NP1,PHYSICAL-CHANGE(NP2,NOT-OPEN,OPEN)). This says that for an agent
(NP1) to open a theme (NP2) is to cause the patient to change from a not-opened state to an
opened state. Such systems can be arbitrarily detailed and exhaustive, as the application re-
quires.

2.4.3. Lexical Semantics

The specification of particular meaning templates for individual senses of particular words is
called lexical semantics. When words combine, they may take on propositional meanings
zesulting from the composition of their meanings in isolation. We could imagine that 2
speaker starts with a proposition in mind (logical form as will be discussed in the next sec-
tion), creating a need for particular words to express the idea (lexical semantics); the PTOP(*
sition is then linearized (syntactic form) and spoken (phonological/phonetic form). Lexica
semantics is the level of meaning before words are composed into phrases and sentences:
and it may heavily influence the possibilities for combination.

Words can be defined in a large number of ways including by relations to otiet ’
in terms of decomposition semantic primitives, and in terms of non-linguistic cognti¥e cor
structs, such as perception, action, and emotion. There are hierarchical and non-hierar® $
relations. The main hierarchical relations would be familiar to most object-orieflled Pfg;
grammers. One is is-a taxonomies (a crow is-a bird), which have transitivity of proper

ther wor ds,
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from type to subtype _(inht_eritance). Another is has-a relations (a car has-a windshield),
which are of several differing qualities, including process/subprocess (feaching has-a sub-
process giving exams), and arbitrary or natural subdivisions of part-whole relations (bread
has-a division into slices, meter has-a division into centimeters). Then there are non-
branching hierarchies (no fancy name) that essentially form scales of degree, such as fro-
zen=» cold = lukewarn = hot = burning. Non-hierarchical relations include synonyms,
such as big/large, and antonyms such as good/bad.

Words seem to have natural affinities and disaffinities in the semantic relations among
the concepts they express. Because these affinities could potentially be exploited by future
tanguage understanding systems, researchers have used the generalizations above in an at-
tempt to tease out a parsimonious and specific set of basic relations under which to group
entire lexicons of words. A comprehensive listing of the families and subtypes of possible
semantic relations has been presented in [10]. In Table 2.22, the leftmost column shows
names for families of proposed relations, the middle column differentiates subtypes within
each family, and the rightmost column provides examples of word pairs that participate in
the proposed relation. Note that case roles have been modified for inclusion as a type of se-
mantic relation within the lexicon.

We can see from Table 2.22 that a single word could participate in multiple relations
of different kinds. For example, knife appears in the examples for Similars: invited attribute
(i.e., a desired and expected property) as: knife-sharp, and also under Case Relations: ac-
tion-instrument, which would label the relation of knife to the action cut in He cut the bread
with a knife. This suggests that an entire lexicon could be viewed as a graph of semantic
relations, with words or idioms as nodes and connecting edges between them representing
semantic relations as listed above. There is a rich tradition of research in this vein.

The biggest practical problem of lexical semantics is the context-dependent resolution
of senses of words — so-called polysemy. A classic example is bank — bank of the stream as
opposed to money in the bank. While lexicographers try to identify distinct senses when they
write dictionary entries, it has been generally difficult to rigorously quantify exactly what
counts as a discrete sense of a word and to disambiguate the senses in practical contexts.
Therefore, designers of practical speech understanding systems generally avoid the problem
by limiting the domain of discourse. For example, in a financial application, generally only
the sense of bank as a fiduciary institution is accessible, and others are assumed not to exist.
It is sometimes difficult to make a principled argument as to how many distinct senses a
word has, because at some level of depth and abstraction, what might appears as separate
senses seem to be similar or related, as face could be face of a clock or face of person.

Senses are usually distinguished within a given part-of-speech (POS) category. Thus,
when an occurrence of bank has been identified as a verb, the shore sense might be auto-
matically eliminated, though depending on the sophistication of the system’s lexicon and
goals, there can be sense differences for many English verbs as well. Within a POS cate-
gory, often the words that occur near a given ambiguous form in the utterance or discourse
are clues to interpretation, where links can be established using semantic relations as de-
scribed above. Mutual information measures as discussed in Chapter 3 can sometimes pro-
vide hints. In a context of dialog where other, less ambiguous financial terms come up



66

frequently, the
fails, often senses can

sense of bank as fiduciary institution is more likely. Finally,
be ranked in terms of their a priori likelihood of occurrence 1t shoy)g
- 1l shoy

—
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always be borne in mind that language is not Ftatic; it can. change form under 3 Biven any
sis at any time. For example, the stable English form spinster, a somewhat Pejorative 1 .
for an older, never-married female, has recently taken on a new morphologically comy

form, with the new sense of a high political official, or media spokesperson, Employegetg

provide bland disinformation {spin) on a given topic.

Table 2.22 Semantic relations.

Family Subtype Example

Contrasts Contrary old-young
Contradictory alive-dead
Reverse buy-sell
Directional front-back
Incompatible happy-morbid
Asymmetric contrary hot-cool
Attribute similar rake-fork

Similars Synonymity car-auto

Dimensional similar

smile-laugh

Necessary attribute

bachelor-unmarried

Invited attribute

knife-sharp

Action subordinate

talk-lecture

Class Inclusion

Perceptual subord.

animal-horse

Functional subord.

furniture-chair

State subord. disease-polio
Activity subord. game-chess
Geographic subord. country-Russia
Place Germany-Hamburg
Case Relations Agent-action artist-paint
Agent-instrument ‘armer-tractor
Agent-object baker-bread _
Action-recipient sit-chair
Action-instrument cut-knife
Part-Whole Functional object engine-car __4
[Collection forest-tree ]
Group choir-singer |
Ingredient table-wood

1

Functional location

kitchen-stove

Organization

college-admissions

Measure

mile-yard

SNy
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2.4.4. Logical Form

Becuuse of all the lexical, syntactic, and semantic ambiguity in language, some of which
requires external co.ntext for resolution, it is desirable to have a metalanguage in which to
concretely and succinctly express all linguistically possible meanings of an utterance before
discourse and world knowledge are applied to choose the most likely interpretation. The
favored metalanguage for this purpose is called the predicate logic, used to represent the
logical form, or context-independent meuning, of an utterance. The semantic component of
many SLU architectures builds on a substrate of two-valued, first-order, logic. To distin-
guish shades of meaning beyond truth and falsity requires more powerful formalisms for
knowledge representation.

In a typical first-order system, predicates correspond to events or conditions denoted
by verbs (such as Believe or Like), states of identity (such as being a Dog or Cat), and prop-
erties of varying degrees of permanence (Happy). In this form of logical notation, predicates
have open places, filled by arguments, as in a programming language subroutine definition.
Since individuals may have identical names, subscripting can be used to preserve unique
reference. In the simplest systems, predication ranges over individuals rather than higher-
order entities such as properties and relations.

Predicates with filled argument slots map onto sets of individuals (constants) in the
universe of discourse, in particular those individuals possessing the properties, or participat-
ing in the relation, named by the predicate. One-place predicates like Soldier, Happy, or
Sleeps range over sets of individuals from the universe of discourse. Two-place predicates,
like transitive verbs such as loves, range over a set consisting of ordered pairs of individual
members (constants) of the universe of discourse. For example, we can consider the universe
of discourse to be U = {Romeo, Juliet, Paris, Rosaline, Tybalt}, people as characters in a
play. They do things with and to one another, such as loving and killing. Then we could
imagine the relation Loves interpreted as the set of ordered pairs: {<Romeo, Julier>, <Juliet,
Romeo>, <Tybalt, Tybalt>, <Paris, Julier>}, a subset of the Cartesian product of theoreti-
cally possible love matches Ux U. So, for any ordered pair x, y in U, Loves(x, y) is true if
the ordered pair <x,y> is a member of the extension of the Loves predicate as defined, e.g.,
Romeo loves Juliet, Juliet loves Romeo, etc.. Typical formal properties of relations are some-
times specially marked by grammar, such as the reflexive relation Loves(Tybalt, Tybalt),
which can rendered in natural language as Tybalt loves himself. Not every possibility is pre-
sent; for instance in our example, the individual Rosaline does not happen to participate at
all in this extensional definition of Loves over U, as her omission from the pairs list indi-
cates. Notice that the subset of Loves(x, y) of ordered pairs involving both Romeo and Juliet
is symmetric, also marked by grammar, as in Romeo and Juliet iove each other. This general
approach extends to predicates with any arbitrary number of arguments, such as intransitive
verbs like give.

Just as in ordinary propositional logic, connectives such as negation, conjunction, dis-
junction, and entailment are admitted, and can be used with predicates to denote common

natural language meanings:
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Romeo isn’t happy = —Happy(Romeo)
Romeo isn’t happy, but Tybalt is (happy) = —Happy(Romeo) A HaPPY(Tybah)
Either Romeo or Tybalt is happy = Happy(Romeo) v Happy(Tybait)
If Romeo is happy, Juliet is happy = Happy(Romeo) — Happy(Juliet)

Formulae, such as those above, are also said to bear a binary truth value, trye o false
with respect to a world of individuals and relations. The determination of the truth value i;
compositional, in the sense that the truth value of the whole depends on the truth vajye of
the parts. This is a simplistic but formally tractable view of the relation between language
and meaning.

Predicate logic can also be used to denote quantified noun phrases. Consider a simple
case such as Someone killed Tybalr, predicated over our same U = {Romeo, Juliet, Paris,
Rosaline, Tybalt}. We can now add an existential quantifier, 3, standing for there exists or
there is at least one. This quantifier will bind a variable over individuals in U, and will at-
tach to a proposition to create a new, quantified proposition in logical form. The use of vari-
ables in propositions such as killed(x, y) creates open propositions. Binding the variables
with a quantifier over them closes the proposition. The quantifier is prefixed to the original
proposition: 3x Killed(x, Tybalt).

To establish a truth (semantic) value for the quantified proposition, we have to satisfy
the disjunction of propositions in U: Killed(Romeo, Tybalt) v Killed(Juliet, Tybalt) v
Killed(Paris, Tybalt) v Killed(Rosaline, Tybalt) v Killed(Tybalt, Tybalt). The set of all such
bindings of the variable x is the space that determines the truth or falsity of the proposition.
In this case, the binding of x = Romeo is sufficient to assign a value true to the existential
proposition.

2.5. HISTORICAL PERSPECTIVE AND FURTHER READING

Motivated to improve speech quality over the telephone, AT&T Bell Labs has contributed
many influential discoveries in speech hearing, including the critical band and articulation
index [2, 3]. The Auditory Demonstration CD prepared by Houtsma, Rossing, and
Wagenaars [18] has a number of very interesting examples on psychoacoustics and its €x-
planations. Speech, Language, and Communication [30] and Speech Communication ~ Hu-
man and Machine [32] are two good books that provide modern introductions t the
structure of spoken language. Many speech perception experiments were conducted by €x
ploring how phonetic information is distributed in the time or frequency domain. In addition
to the formant structures for vowels, frequency importance function [12] has been developed
to study how features related to phonetic categories are stored at various frequencies. In ¢
time domain, it has been observed [16, 19, 42] that salient perceptual cues may 1ot be
CVCnl)Adl.f.tn’bu[ed over the speech segments and that certain perceptual critical points exish

that lexfc;?t::: tf as speech and acoustic perception may be, there are also strong evider®®
ic nes. For insance, it s Jong bure g7 &€ 1Ot always consistent with S50
guishing non-native , hon g been observ.ed that humans exhibit difficulties it o

phionemes. Human subjects also carry out categorical goodn
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difference assimilation based (?n their mother tongue (34}, and such perceptual mechanism
f:un l.we ob.served as early as m‘ six-month-old infants [22]. On the other hand, hearing-
impaired listeners are able to effortlessly overcome their acoustical disabilities for speech
perception [8]. Speech perception is not simply an auditory matter. McGurk and MacDonald
(1976) [27, 28] dramatically demonstrated this when they created a videotape on which the
auditory information (phonemes) did not match the visual speech information. The effect of
this mismatch between the auditory signal and the visual signal was to create a third pho-
neme different from both the original auditory and visual speech signals. An example is
dubbing the phoneme /ba/ to the visual speech movements /ga/. This mismatch results in
hearing the phoneme /da/. Even when subjects know of the effect, they report the McGurk
effect percept. The McGurk effect has been demonstrated for consonants. vowels, words,
and sentences.

The earliest scientific work on phonology and grammars goes back to Panini, a San-
skrit grammarian of the fifth century B.C. (estimated), who created a comprehensive and
scientific theory of phonetics, phonology, and morphology, based on data from Sanskrit (the
classical literary language of the ancient Hindus). Panini created formal production rules and
definitions to describe Sanskrit grammar, including phenomena such as construction of sen-
tences, compound nouns, etc. Panini’s formalisms function as ordered rules operating on
underlying structures in a manner analogous to modern linguistic theory. Panini's phono-
logical rules are equivalent in formal power to Backus-Nauer form (BNF). A general intro-
duction to this pioneering scientist is Cardona [9].

An excellent introduction to ail aspects of phonetics is A Course in Phonetics [24]. A
good treatment of the acoustic structure of English speech sounds and a through introduction
and comparison of theories of speech perception is to be found in [33]. The basics of pho-
nology as part of linguistic theory are treated in Understanding Phonology [17]. An interest-
ing treatment of word structure (morphology) from a computational point of view can be
found in Morphology and Computation [40). A comprehensive yet readable treatment of
English syntax and grammar can be found in English Syntax {4] and A Comprehensive
Grammar of the English Language [36). Syntactic theory has traditionally been the heart of
linguistics, and has been an exciting and controversial area of research since the 1950s. Be
aware that almost any work in this area will adopt and promote a particular viewpoint, often
to the exclusion or minimization of others. A reasonable place to begin with syntactic theory
is Syntax: A Minimalist Introduction [37]. An introductory textbook on syntactic and seman-
tic theory that smoothly introduces computational issues is Syntactic Theory: A Formal In-
troduction [39]. For a philosophical and entertaining overview of various aspects of
linguistic theory, see Rhyme and Reason: An Introduction to Minimalist Syntax [44). A good
and fairly concise treatment of basic semantics is Introduction to Natural Language Seman-
tics [11]. Deeper issues are covered in greater detail and at a more advanced level in The
Handbook of Contemporary Semantic Theory [25). The intriguing area of lexical semantics
(theory of word meanings) is comprehensively presented in The Generative L.exicon [35].
Concise History of the Language Sciences [21] is a good edited book if you are interested in
the history of linguistics. :
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CHAPTER 12

Basic Search Algorithms

Continuous speech recognition (CSR) is both
4 paltern recognition and search problem. As described in previous chapters, the acoustic
and language models are built upon a statistical pattern recognition framework. In speech
recognition, making a search decision is also referred to as decoding. In fact, decoding got
s name from information theory (see Chapter 3) where the idea is to decode a signal that
has Presumably been encoded by the source process and has been transmitted through the
COmmunication channel, as depicted in Chapter I, Figure 1.1. In this chapter, we first review
the genera| decoder architecture that is based on such a source-channel model,

The decoding process of a speech recognizer is to find a sequence of words whose cor-
Tesponding acoustic and language models best match the input signal. Therefore, the process
Pf Such a decoding process with trained acoustic and language models is often referred to as
Just a search process. Graph search algorithms have been explored extensively in the fields
of artificia] intelligence, operation research, and game theory. In this chapter first we present
Several basic search algorithms, which serve as the basic foundation for CSR.
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a search algorithm is highly correlated with the search space, which
aints imposed by the language models. We discuss the impact of
including finite-state grammars, context-free grammars, and »-

The complexity of
is determined by the constr
different language models,

rams. ' o )
* Speech recognition search is usually done with the Viterbi or A* stack decoders, The

reasons for choosing the Viterbi decoder involve a‘rgumcnts that point to speech as a left-to-
right process and to the efficiencies afforded by a mne-sypchronous process. Thg reasons for
choosing a stack decoder involve its ability to more effectively exploit th.e. A¥ criteria, which
holds out the hope of performing an optimal search as well as the ability to handle huge
search spaces. Both algorithms have been successfully applied 'to various speech recognition
systems. The relative merits of both search algorithms were quile controversial in the 1980s.
Lately, with the help of efficient pruning techniques. Viterbi beam search has been the pre-
ferred method for almost all speech recognition tasks. Stack decoding, on the other hand,
remains an important strategy to uncover the »-best and lattice structures.

12.1. BASIC SEARCH ALGORITHMS

Search is a subject of interest in artificial intelligence and has been well studied for expert
systems, game playing, and information retrieval. We discuss several general graph search
methods that are fundamental to spoken language systems. Although the basic concept of
graph search algorithms is independent of any specific task. the efficiency often depends on
how we exploit domain-specific knowledge.

The idea of search implies moving around, examining things, and making decisions
about whether the sought object has yet been found. In general, search problems can be rep-
resented using the state-space search paradigm. It is defined by a triplet (S, O, G), where §
i§ a set of initial states, O a set of operators (or rules) applied on a state to generate a transi-
tion with its corresponding cost to another state, and G a set of goal states. A solution in the
state-space search paradigm consists in finding a path from an initial state to a goal state.
The state-space representation is commonly identified with a directed graph in which each
node_c'orresponds to a state and each arc to an application of an operator {or a rule), which
transttions from one state to another. Thus, the state-space search is equivalent to searching
through the graph with some objective function.

, Before we present any graph search algorithms, we need to remind the readers of the
importance of the dynamic programming algorithm described in Chapter 8. Dynamic Pro”
gramming should be applied whenever possible and as early as possible because (1) unlike

any heuristics, it will not sacrifi imali ; : into
. ce optimality; (2) it onential search In
a polynomial search, ¥; (2) it can transform an exp
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1211 General Graph Searching Procedures

Although dynamic programming is a powerfu ;
A obiems cannot be handled by it.pA classilcl:lg;:r:;?; isse:z:lr]c;h algorithm, many interest-
len. We need to find a sho;test-distance tour, starting at one of[faVelmg_ 'salesman's prob-
city ex;;:;ly once, and returning to the starting city. This is one of t;?any cities, visiting each
e sl 1 0 pace N cueens on an NN N-aueens proviem (ypicaly
o een 'can Cﬂpturegany l;t:lc; rp]ace N queens on an NxN chessboard ii)n su:lf]na(!yplcally
o column, or fiagonal. Man qfuien, Le., there is no more than one queen in aWay 'tha[
e best algorithms curre;nl ki of these puzzles have the same characteristics. As \: ) kgnm:rI
oblem size. Most graph siarcl(:w?ofo'r solving the NP-hard problem are CXP(".)nenti:l i ot: ‘
P id or moderate such a combs a aQHIhms try to solve those problems using heuri s 16
natorial explosion. g heuristics to

Figure 12.1 A hi i
. ghway distance map for cities S, A, B
01088 pth o ol e iy top(:iw g [4; ; ,A,B, C,D,E,F, and G. The salesman needs

Let's : .
fem [42], F:gt?l:-teo;lzr clhscussmn of graph search procedure with a simple city-traveling prob-
John needs 1o travel. fShOWS a hlgl_‘way.distance map for all the cities. A salesman named
Path is to derive a ro:ln the starting city S to the end city G. One obvious way to find a
shows the graph th agtrap that allows or_der]y exploration of all possible paths. Figure 12.2
121 Although the .t"acef out all po'smble paths in the city-distance map shown in Figure
8raph in this case m City-city connection is bi-directional, we should note that the search
in this scenario, ust not contain cyclic paths, because they would not lead to any progress

If
search pr‘::;e?jif;l:e the search space as the potential o
rithm (described ; the search space for finding the optim
15 the length of in Chapter 8) is N xT , where N is the nu
be 27, the observation. Similary, the search space for John's traveling

umber of nodes (states) in the graph
al state sequence in the Viterbi algo-
mber of states for the HMM and T
problem will

factor, defined as the

is the branching
arch graph

Another j
er important measure for a search graph
he number of nodes of a se

aVera
£€ num
ber of successors for each node. Since ¢
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(or tree) grows exponentially with base equal to this branching factor, we certainly neeq o
watch out for search graphs (or trees) with a large branching factor. Sometimes they can e
too big to handle (even infinite, as in game playing). We often trade the optimal solutiop for
improved performance and feasibility. That is, the goal for such search problems s 1o find
one satisfactory solution instead of the optimal one. In fact, most Al (artifical intelligence)
search problems belong to this category.

The search tree in Figure 12.2 may be implemented either explicitly or implicitly. In
an explicit implementation, the nodes and arcs with their corresponding distances (or costs)
are explicitly specified by a table. However, an explicit implementation is clearly impractj-
cal for large search graphs and impossible for those with infinite nodes. In practice, most
parts of the graph may never be explored before a solution is found. Therefore, a sensible
strategy is to dynamically generate the search graph. The part that becomes explicit is often
referred to as an active search space. Throughout the discussion here, it is important to keep
in mind this distinction between the implicit search graph that is specified by the start node
S and the explicit partial search graphs that are actually constructed by the search algo-
rithm.

To expand the tree, the term successor operator (or move generator, as it is often
called in game search) is defined as an operator that is applied to a node to generate all of
the successors of that node and to compute the distance associated with each arc. The suc-
cessor operator obviously depends on the topology (or rules) of the problem space. Expand-
ing the starting node S, and successors of §, ad infinitum, gradually makes the implicitly

F ig“;e 12.2 The search tree (graph) for the salesman problem illustrated in Figure 12.1. T
numoer next to each node is the accumulated distance from start city to end city [42).
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defined graph explicit. Thi§ recursive procedure is 'straightforward, and the search graph
(ree) can be constructed without the extra bookkeeping. However, this process would only
generate 2 search tree where the same node might be generated as a part of several possible

ths.
" For example, node E is being generated in four different paths. If we are interested in
finding an optimal path to travel from S to G, it is more efficient to merge those different
paths that lead to the same node E. We can pick the shortest path up to C, since everything
following E is the same for the rest of the paths. This is consistent with the dynamic pro-
gramming principle—when looking for the best path from S to G, alt partial paths from S to
any nede E, other than the best path from S to E, should be discarded. The dynamic pro-
gramming merge also eliminates cyclic paths implicitly, since a cyclic path cannot be the
shortest path. Performing this extra bookkeeping (merging different paths leading into the
same node) generates a search graph rather than a search tree.

Although a graph search has the potential advantage over a tree search of being more
efficient, it does require extra bookkeeping. Whether this effort is justified depends on the
individual problem one has to address.

Most search strategies search in a forward direction, i.e., build the search graph (or
ree) by starting with the initial configuration (the starting state S) from the root. In the gen-
eral Al literature, this is referred to as forward reasoning [43], because it performs rule-base
reasoning by matching the left side of rules first. However, for some specific problem do-
mains, it might be more efficient to use backward reasoning [43], where the search graph is
built from the bottom up (the goal state G). Possible scenarios include:

® There are more initial states than goal states. Obviously it is easy to start
with a small set of states and search for paths leading to one of the bigger sets
of states. For example, suppose the initial state S is the hometown for Joh_n_ln
the city-traveling problem in Figure 12.1 and the goal state G is an unfam.xhar
city for him. In the absence of a map, there are certainly more locations
(neighboring cities) that John can identify as being close' to h.is home city §
than those he can identify as being close to an unfamitiar location. In a sense,
all of those locations being identified as close (0 John’s home city S are
equivalent to the initial state S. This means John might want to cgnsxder rea-
soning backward from the unfamiliar goal city G for the trip planning.

* The branching factor for backward reasoning is smaller than 'that‘ Sor ﬁ;
ward reasoning. In this case it makes sense (0 search in the direction

lower branchin g factor. . |
ds simultaneously, until two partial

It is in princi : both en .

ple possible to search from BO o 3]. Bi-

fuls ™Meet somewhere in the middle. This strategy is called bi-directiona Saegt:c:te[: g]rows
Irectional search seems particularly appealing if the number of nodes at &

— lh
———

1
cities, he can easily remember the best patn 10

Bﬂ'ng clo . .
S€ means that, once Joh h f those neighboring . d configuration,
e ) ohn reaches one o board config
h::;ﬂnl‘;.ome. It is similar to the killer book for chess play. Once the player reaches a particular
ollow the killer book for moves that can guarantee a victory.
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mhﬂ 12.1; THE GRAPH-SEARCH ALGORITHM

step 1: Iniialization: PutS inthe OPEN list and create an initi i
Ste: 2: Ifthe OPEN list s :mpty. exit and declare failure. telly emply CLOSE i
Step 3: Pop up the first node N in the OPEN list, remove it 1 ; o
thez‘LOSE list. t from the OPEN list and put it into
Step 4: Ifnode N s a goal node, exit successfully with the solution obtained by tracing back the
path along the pointers from N 10 S.
Step 5: Expand node N by applying the successor operator to generate the successor set
S5 of node N. Be sure to eliminate the ancestors of A from SS(N).
Step 6: Vv e SS(N) do
ga. (optional) If ve OPEN and the accumulated distance of the new path is smaller than
that far the one in the OPEN list, do
(i) change the traceback (parent) pointer of v to N and adjust the accumulated
distance for v .
(ii) go to Step 7.
6b. (optional) Iif v e CLOSE and the accumulated distance of the new path is smaller
than the partial path ending at v in the CLOSE list, do
(i) change the traceback (parent) pointer of v to N and adjust the accumulated
distance for all paths that containv .
(i) go to Step 7.
§c. Create a pointer pointing to NV and push it into the OPEN fist.
Step 7: Reorder the OPEN list according to search strategy or some heuristic measurement.
gep 8: Goto Step 2.

1212.  Blind Graph Search Algorithms

fthe aim of the search problem is to find an acceptable path instead of the best path, blind

search is often used. Blind search treats every node in the OPEN list the same and blindly

. - - . h
eids the order to be expanded without using any domain knowledge. Smc_e blu;i ;fa;ce i
1eals every node equally, it is often referred to as uniform search of flezausuvel e I

’ people are typically not interested In

Cuuse it exhaustively tri i ths. In Al .
. y tries out all possible paths. » PeC -

blind search, However, it does pl:ovide a lot of insight into many SoPhés uca[?xgol::;lynsllr:c.

mmh.algoﬁthms. You should note that blind search does not expa“‘?r no ez r:lar 1ypés of

ste.ad. It follows some systematic way to explore the search graph. Two pop

b
lind search are depth-first search and breadth-first search.
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12.1.2.1. Depth-First Search

When we are in a maze, the most natural way to find a way out is to mark the branch v
take whenever we reach a branching point. The marks allow us to go back to a choice poin;
with an unexplored alternative, withdraw the most recently made choice and undo all conse.
quences of the withdrawn choice whenever a dead-end is reached. Once the alternaiye
choice is selected and marked, we go forward based on the same procedure, This intuive
search strategy is called backrracking. The famous N-queens puzzle [32] can be handily
solved by the backtracking stralegy.

Depth-first search picks an arbitrary alternative at every node visited. The search
sticks with this partial path and works forward from the partial path. Other aiternatives at the
same level are ignored completely (for the time being) in the hope of finding a solution
based on the current choice. This strategy is equivalent to ordering the nodes in the OPEN
list by their depth in the search graph (tree). The deepest nodes are expanded first and nodes
of equal depth are ordered arbitrarily.

Although depth-first search hopes the current choice leads to a solution, sometimes the
current choice could lead to a dead-end (a node which is neither a goal node nor can be ex-
panded further). In fact, it is desirable to have many short dead-ends. Otherwise, the algo-
rithm may search for a very long time before it reaches a dead-end, or it might not ever
reach a solution if the search space is infinite. When the search reaches a dead-end, it goes
back to the last decision point and proceeds with another alternative.

Figure 12.4 shows all the nodes being expanded under the depth-first search algorithm
for the city-traveling problem illustrated in Figure 12.1. The only differences between the
graph search and the depth-first search algorithms are:

1. The graph search algorithm generates all successors at a time (although all

except one are ignored first), while depth-first search generates only one suc-
cessor at a time,

2. The graph search, when successfully finding a path, saves only one path from
the starting node to the goal node, while depth-first search in general saves
the entire record of the search graph.

. Depth-first search could be dangerous because it might search an impossible patd that
is actually an infinite dead-end. To prevent exploring of paths that are too long, 3 depth
bound can be placed to constrain the nodes to be expanded, and any node reaching that
depth limit is treated as a terminal node (as if it had no successor).

_ The general graph search algorithm can be modified into a depth-first search slgor®?
as illustrated in Algorithm 12.2.
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Figure 12.4 The node-expanding procedure of the depth-first search for the path search prob-
lem in Figure 12.1. When it fails to find the goal city in node C, it backiracks to the parent and
continues the search until it finds the goal city. The gray nodes are those that are explored. The
dotted nodes are not visited during the search [42].

ALGORITHM 12.2: THE DEPTH-FIRST SEARCH ALGORITHM

Step 1: Initialization: Put S in the OPEN list and create an initially empty the CLOSE list.
Step 2: If the OPEN list is empty, exit and declare failure.
Step 3: Pop up the first node N in the OPEN list, remove it from the OPEN list and put itinto the
CLOSE list.
Step 4: If node N is a goal node, exit successfully with the solution cbtained by tracing back the
path along the pointers from N to S.
4a. !f the depth of node N is equal to the depth bound, go to Step 2.

Step 5: Expand node N by applying the successor operator to generate the successor set
SS(N) of node N. Be sure to eliminate the ancestors of N from SS(N).
Step 6: v e SS(N) do

€. Create a pointer pointing to N and push it into the OPEN list.
Step 7: Reorder the the OPEN list in descending order of the depth of the nodes.

Step 8: Go 1o Step 2.

\;
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ALGORITHM 12.3: THE BREADTH-FIRST SEARCH ALGORITHM

Step 1: Initialization: Put Sin the OPEN list and create an initially empty the CLOSE list.
Step 2: If the OPEN list is empty, exit and declare failure.
Step 3: Pop up the first node Nin the OPEN ist, remove it from the OPEN list and put it into the
CLOSE list.
Step 4: If node Nis a goal node, exit successfully with the solution obtained by tracing back the
path along the pointers from Nio S.
Step 5: Expand node N by applying the successor operator to generate the successor set
S5(N) of node N. Be sure to eliminate the ancestors of N, from SS(M).
Step6: Vv e SS(N) do
6¢. Create a pointer pointing to N and push it into the OPEN list.
Step 7: Reorder the OPEN list in increasing order of the depth of the nodes.
Step 8. Go o Step 2.

12.1.3. Heuristic Graph Search

Blind search methods, like depth-first search and breadth-first search, have no sense (or
guidance) of where the goal node lies ahead. Consequently, they often spend a lot of time
searching in hopeless directions. If there is guidance, the search can move in the direction
that is more likely to lead to the goal. For example, you may want to find a driving route to
the World Trade Center in New York. Without a map at hand, you can still use a straight-
line distance estimated by eye as a hint to see if you are closer to the goal (World Trade
Center). This hill-climbing style of guidance can help you to find the destination much’ more
efficiently.

Blind search finds only one arbitrary solution instead of the optimal solution. To f}nd
the optimal solution with depth-first or breadth-first search, you must not stop searching
when the first solution is discovered. Instead, the search needs to continue until it rcache.s all
the solutions, so you can compare them to pick the best. This strategy for finding the opu{nal
solution is called British Musewm search or brute-force search. Obviously, it is unfeasible
When the search space is large. Again, to conduct selective search and yet still be able to find
the optimal solution, some guidance on the search graph is necessary. .

The guidance obviously comes from domain-specific knowledge. Such knowledge is
usually referred to as heuristic information, and search methods taking advanwge.of it are
Called heuristic search methods. There is usually a wide variety of diffefem_ heuristcs .for
the problem domain. Some heuristics can reduce search effort without sacnﬁcm_g optimality,
while other can greatly reduce search effort but provide only sub-optimal solutions. In r:lc?st
Practical problems, the choice of different heuristics is usually 3 tradeoff between the quality

of the solution and the cost of finding the solution.
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Heuristic information works like an evaluation fupction h(N) that maps each node y
and which serves to indicate the relative goodness (or cost) of continuing
at node. Since in our city-travel problem. straight-line distance is 5
h. we can use the heuristic function A(N) for

to a real number,
the search path from th
natural way of measuring the goodness of a pat

the distance evaluation as:
h(N)=Heuristic estimate of the remaining distance from node N to goal G (12.1)

Since g(N), the distance of the partial path to the current node N, is generally known, we

have:
g(N)=The distance of the partial path already traveled fromroot Stonode N (12.2)

We can define a new heuristic function, f(N), which estimates the total distance for the
path (not yet finished) going through node N.

S(N)=g(N}+h(N) (12.3)

A heuristic search method basically uses the heuristic function f(N) to re-order the
OPEN list in the Step 7 of Algorithm 12.1. The node with the best heuristic value is ex-
plored first (expanded first). Some heuristic search strategies also prune some unpromising
partial paths forever to save search space. This is why heuristic search is often referred to as
heuristic pruning.

The choice of the heuristic function is critical to the scarch results. If we use one that
overestimates the distance of some nodes, the search results may be suboptimal. Therefore,
heuristic functions that do not overestimate the distance are often used in search methods
aiming to find the optimal solution.

To close'this section, we describe two of the most popular heuristic search methods:
best-first (or A" Search) [32, 43] and beam search [43]. They are widely used in many com-
ponents of spoken language systems,

12.1.3.1.  Best-First (A’ Search)

Once we have a reasonable heuristic function to evaluate the goodness of each node in the
OPEN list, we can explore the best node (the node with smallest F(N) value) first, since i
offers the best hope of leading to the best path. This natural search strategy is called bes”
Jirst search. To implement best-first search based on the Algorithm 12.1, we need 10 first
a’:‘:}z‘e S (dN) for each successor before putting the successors in the OPEN list in Step &
e isoi:i;e ;cr) SOrt the elements in the OPEN list based on (N in Step 7, so that the P&
for performin ;’::;?05[ POSmOfl \f-'aiting to be expanded in Step 3. The modified Proced::
in the OPEN ]g_ “Hrst search is illustrated in Algorithm 12.4. To avoid duplicating 1
'St We include Steps 6a and 6b to take advantage of the dynamic programminé

principle. They perf ‘ ' 0
into the same ;’oge. orm the needed bookkeeping process to merge different paths leading
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ALGORITHM 12.4: THE BEST-FIRST SEARCH ALGORITHM

step 1: Initialization: Put §in the OPEN list and create an initj ;
Stes 2. {f the OPEN list is empty, exit and declare failure. Velly empty the CLOSE st
Step 3. Pop up the first node A'in the OPEN list, remova it from the OPEN list and put it into the
CLOSE list.
step 4: If node Nis a goal node, exit successfully with the solutio i i
pat??along the pointers from Nto S. ! " obiained by racing back the
step 5: Expand node N by applying the successor operalor 1o generate the successor set
SS(M of node N. Be sure to eliminate the ancestors of N, from SS(N).
Step 6: Vv e SS(N) do
6a. (optional) If ve OPEN and the accumulated distance of the new path is smaller than
that for the one in the the OPEN list, do
(i) Change the traceback (parent) pointer of v to N and adjust the accumulated
distance for v .
(i) Evaluate heuristic function f(v) for v and goto Step 7.
6b. {optional) if ve CLOSE and the accumuiated distance of the new path is small than
the partial path ending atv in the the CLOSE list,
(i) Change the traceback (parent) pointer of v to N and adjust the accumulated
distance and heuristic function £ for all the paths containing v .
{i) go to Step 7.
6c. Create a pointer pointing to N and push it into the OPEN list.
Step 7; Reorder the the OPEN list in the increasing order of the heuristic function f(N).

Step 8: Go to Step 2.

A search algorithm is said to be admissible if it can guarantee to find an optimal solu-

lion, if one exists. Now we show that if the heuristic function h(N) of es_timating the re-
maining distance from N to goal node G is an underestimate’ of the true distance from N
' goal node G, the best-first search illustrated in Algorithm 124 is adrplss1ble. In fact,
when h(N) satisfies the above criterion, the best-first algorithm is called A* (pronounced as

lehi-star) Search.
The proof can be carried out informally as follows. When the frontmost
implies that

OPEN list is the goal node G in Step 4, it immediately

ode in the

YWEOPEN f(v)2 f(G)=g(G)+MG) =8O (12.4)

'\

H
F - -
For adrmssnhlhly, we actually require only that the heunstic

ince jt i .
iy, :115 Vvery tare lo have an exact estimate, we use underesu
limes we refer to an underestimate function a5 2 lower-

function not overestimate the distance from N 1© S
mate throughout this chapter without loss of general-
bound estimate of the rue value.
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Equation (12.4) says that the distance estimate of any incomplete path is no shorter
than the first found complete path. Since the distance estimate for any incomplete path js
underestimated, the first found complete path in Step 4 must be the optimal path. A similar
argu.mf_:nt can 2.1150 be use_d to prove that the Step 6b is actually not necessary for admissible
heur_xsnc functions; that is, there cannot be another path with a shorter distance from the
star.tmg.: node to a node that ha_s been e):(pandefl. This is a very important feature since Step
6b is, in general, very expensive and it requires significant updates of many already ex-
panded paths.

The A’search methoq is actually a family of search algorithms. When h(N)=0 for all
N, the §earch degenerates into an uninformed search’ [40]. In fact, this type of uninformed
sFarch is the famous branch-and-bound search algorithm that is often used in many opera-
tions research problems. Branch-and-bound search always expands the shortest path leading
into an open node until there is a path reaching the goal that is of a length no longer than all
incomplete paths terminating at open nodes. When g(N) is defined as the depth of the node
N, the use of heuristic function f(N) makes the search method identical to breadth-first
search. In Section 12.1.2.2, we mention that breadth-first search is guaranteed to find a
minimum length path. This can certainly be derived from the admissibility of the A" search
method.

When the heuristic function is close to the true remaining distance, the search can usu-
ally find the optimal solution without too much effort. In fact, when the true remaining dis-
tances for all nodes are known, the search can be done in a totally greedy fashion without
any search at all, i.e., the only path explored is the solution. Any non-zero heuristic function
is then called an informed heuristic function, and the search using such a function is called
informed search. A heuristic function 4 is said to be more informed than a heuristic func-
tion A, if the estimate A is everywhere larger than A, and yet still admissible (underesti-
mate). Finding an informed admissible heuristic function (guaranteed to underestimate for
all nodes) is, in general, a difficult task. The heuristic often requires extensive analysis of the
domain-specific knowledge and knowledge representation.

Let’s look at a simple example—-the 8-puzzle problem. The 8-puzzle consists of eig!lt
numbered, movable tiles set in a 3x3 frame. One cell of this frame is always empty, so itis
possible to move an adjacent numbered tile into the empty cell. A solution for the 8-puzzle
is to find a sequence of moves to change the initial configuration into a given goal configu-
ration as shown in Figure 12.6. One choice for an informed admissible heuristic function _h|
is the number of misplaced tiles associated with the current configuration. Since each' mis-
placed tile needs to move at least once to be in the right position, this heuristic function 15
clearly a lower bound of the true movements remaining. Based on this heuristic function, the
value for the initial configuration will be 7 in Figure 12.7. If we examine this problem fur-
ther, a more informed heuristic function 4, can be defined as the sum of all row and column
distances of all misplaced tiles and their goal positions. For example, the row and colu“;“
distance between the tile 8 in the initial configuration and the goal position is 24 1=

® In some literature an uninformed search is referred to as uniform-cost search.
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Figure 12.6 Initial and goal configurations for the 8-puzzle problem.

which indicates that one must move tile 8 at least 3 times in order for it to be in the right
position. Based on the heuristic function A, , the value for the initial configuration will be 16
in Figure 12.6. A, is again admissible.

In our city-travel problem, one natural choice for the underestimating heuristic func-
tion of the remaining distance between node N and goal G is the straight-line distance since
the true distance must be no shorter than the straight-line distance.

Figure 12.7 shows an augmented city-distance map with straight-line distance to goal
node attached to each node. Accordingly, the heuristic search tree can be easily constructed
for improved efficiency. Figure 12.8 shows the search progress of applying the A’ search
algorithm for the city-traveling problem by using the straight-line distance heuristic function
t0 estimate the remaining distances.

~
N
oo

8.5 5.

Ejigure 12.7 The city-travel problem augmented with heuristic info;mation. The numbers be-
$ide each node indicate the straight-line distance to the goal node G [421:
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Figure 12.8 The search progress of applying A’ search for the city-travel problem. The search
determines that path $-A-C-E-G is the optimal one. The number beside the node is f values on

which the sorting of the OPEN list is based [42].

12.1.3.2. Beam Search

Sometimes, it is impossible to find any effective heuristic estimate, as required in A* search,
particularly when there is very little (or no) information about the remaining paths. For ex-
ample, in real-time speech recognition, there is little information about what the speaker will
Emer for the remaining speech. Therefore, an efficient uninformed search strategy is very
important to tackie this type of problem.

Breadth-first style search is an important strategy for heuristic search. A breadth-first
searc!u virtually explores all the paths with the same depth before exploring deeper paths. In
practice, paths of the same depth are often easier to compare. It requires fewer heuristics 10
rank the goodness of each path. Even with uninformed heuristic function (A(N}=0), the
direct comparison of g (distance so far) of the paths with the same length should be a re3-
sonable choice,

3.1 tBiesa;nbsrf:acri ill; l; 2 widely used search technique for speech recognition systems (26 3;

breadth-first s:arch- I;St style search and progresses along with the depth. Unlike mdl(:inat

each level. Only théseoroilveesrﬁ:tn Setamh only expands nodes lhat. are likely @ S:)cigr jm-

proved efficioney. ept in the beam, and the rest are ignored (pruné

rest 011 rl‘.lfce;::hai’:reb;?z;;amh only keeps up to w best paths at each stage (level): andu‘::

ber of nod rded. The number w is often referred to as beam width, The Ut
es explored rema . : ace 15

ins manageable in beam search even if the whole search P

igantic. ; . \
BIg If a beam width w 15 used in a beam search with an average branching factor &

onl X
Y wxb nodes need 1o be explored at any depth, instead of the exponential numbét
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peeded for bread(h—ﬁr_st search. Suppose that a beam width of 2 is used for the city-travel
oblem. Figure 12.9 illustrates how beam search progresses to find the path. We can also
see that the beam search saved a large number of unneeded nodes, as shown by the dotted

des.
" The beam search algorithm can be easily modified from the breadth-first search algo-
rithm and is illustrated in Algorithm 12.5. For simplicity, we do not include the merging step
here. In Algorithm 12.5, Step 4 obviously requires sorting, which is time-consuming if the
number wxb is huge. In practice, the beam is usually implemented as a flexible list where
nodes are expanded if their heuristic functions f(N)are within some threshold (ak.a., beam
threshold) of the best node (the smallest value) at the same level. Thus, we only need to
identify the best node and then prune away nodes that are outside of the threshold. Although
this makes the beamn size change dynamically, it significantly reduces the effort for sorting
of the Beam-Candidate list. In fact, by adjusting the beam threshold, the beam size can be
controlled indirectly and yet kept manageable.

Unlike A’ search, beam search is an approximate heuristic search method that is not
admissible. However, it has a number of unique merits. Because of its simplicity in both its
search strategy and its requirement of domain-specific heuristic information, it has become
one of the most popular methods for complicated speech recognition problems. It is particu-
larly attractive when integration of different knowledge sources is required in a time-
synchronous fashion. It has the advantages of providing a consistent way of exploring nodes
level by level and of offering minimally needed communication between different paths. It
is also very suitable for parallel implementation because of its breadth-first seacch nature.

s with gray color are the ones

Figure 15 .
o B b o d because of higher cost. The

ent i
o‘:tte;" the be:am. The transparent nodes were explored but prune
nodes indicate ali the savings because of pruning [42]-
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ALGORITHM 12.5: THE BEAM SEARCH ALGORITHM
Step 1 Initialization: Put Sin the OPEN list and create an initially empty CLOSE list,

Step 2: If the OPEN list is empty, exit and declare failure.
Step 3: YN € OPEN do ‘ .
3a. Pop up node N in the OPEN list, remove it from the OPEN list and put it into the

CLOSE lisL.
3b. I node Nis a goal node, exit successfully with the solution obtained by tracing back the

path along the pointers from N'to .

3c. Expand node N by applying a successor operator to generate the successor set SS(M)
of node N, Be sure to eliminate the successors, which are ancestors of N, from SS(N).

3d. Vv e SS(N) Create a pointer pointing to N and push it into Beam-Candidate list.
Step 4: Sort the Beam-Candidate list according to the heuristic function f(A) so that the best
wnodes can be pushed into the the OPEN list. Prune the rest of nodes in the Beam-Candidate

list.
Step 5: Go fo Step 2.

12.2. SEARCH ALGORITHMS FOR SPEECH RECOGNITION

As described in Chapter 9, the decoder is basically a search process to uncover the word
sequence W=ww,..w, that has the maximum posterior probability P(WIX) for the given
acoustic observation X =X X,..X, . Thatis,

P(W)P(X|W)

W=argmax P(WIX) =argmayx
. . P(X)

=argmax P(W)P(X|W)  (12.5)

One o.bwous way is to search all possible word sequences and select the one with the best

posterior probability score.

vocab'f]l;ery t;r;ge:; racoust.Kf model P(XIW) is not necessary a word model. For la.rge'

s oy ”ableecogmtmn systems, subword models, which include phonemes, demisyl-

P(XIV7V) i Zn Obms_ aiie often used, When subword models are used, the word mo(?el

tion tr . ined by Cconcatenating the subword models according to the pronuncid-
:;xislcnpuon of the words in a lexicon or dictionary.

goal for S;z e\:l?l;icr:o:;:s are available, speech recognition becomes a search problem. The

out et agaign " tzn is thus 1o find a sequence of word models that best describes the

of each word or phone e- word _models. As neither the number of words nor the bou?dm

deal with these variable lon, the input waveform is known, appropriate search strategies ©
When HnL arz—uenith nonstationary patterns are extremely important.

expanded to form the sta{: for speech recognition systems, the states in the HMM cat be

speech models. Al N Search space in the search. In this chapter, we use HMMs as ouf

ough the HMM framework is used to describe the search algorithms: a
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echniques mentioned in this and the following chapter can be used for systems based
other modeling techniques, including template matching and neural n. o
carch techniques had been invented before HMMs were applied
Moreover, the HMMSs state transition network is actually general e
general search framework for all modeling approaches.

etworks. In fact, many
to speech recognition.
nough to represent the

12.2.1. Decoder Basics

The lessons leamed from dynamic programming or the Viterbi algorithm introduced in
Chapter 8 tell us that the exponential blind search can be avoided if we can store some in-
termediate optimal paths (results). Those intermediate paths are used for other paths without
being recomputed each time. Moreover, the beam search described in the previous section
shows us that efficient search is possible if appropriate pruning is employed to discard
highly unlikely paths. In fact, all the search techniques use two strategies: sharing and prun-
ing. Sharing means that intermediate results can be kept, so that they can be used by other
paths without redundant re-computation. Pruning means that unpromising paths can be dis-
carded reliably without wasting time in exploring them further.

Search strategies based on dynamic programming or the Viterbi algorithm with the
help of clever pruning, have been applied successfully to a wide range of speech recognition
tasks [31], ranging from small-vocabulary tasks, like digit recognition, to unconstraint large-
vocabulary (more than 60,000 words) speech recognition. All the efficient search algon'th.ms
we discuss in this chapter and the next are considered as variants of dynamic programming
or the Viterbi search algorithm.

In Section 12.1, cost (distance) is used as the measure of goodness for graph search a‘l-
gorithms. With Bayes’ formulation, searching the minimum-cost path (word s?quence) 15
¢quivalent 1o finding the path with maximum probability. For the s'ake of consistency, we
use the inverse of Bayes” posterior probability as our objective funcuon. Furthermore, long
rithms are used on the inverse posterior probability 10 avoid multiplications. That is, the fol-
lowing new criterion is used 1o find the optimal word sequence W:

C(WIX)=1log I-_‘—-} = ~log[P(W)P(X|W)] (12.6)
( P(W)P(X, W) §
: (12.7)
W=argmin C(WX)
w
) o Lal p
For Simplicity, we also define the following cost measures 1o mirror the Jikelihood for
¥oustic models and lenguage models: -
C(X W)=—log[P(X W] ~
(12.9)

CtW) = —joa [ Prw))]
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12.2.2. Combining Acoustic and Language Models

Although Bayes’ equation [Eq. (12.5)] suggests that the acoustic model probability (cong;.
tional probability) and language model probability (prior probability) can be combipeg
through simple multiplication, in practice some weighting is desirable. For example, whep
HMMs are used for acoustic models, the acoustic probability is usually underestimated, gw.
ing to the fallacy of the Markov and independence assumptions. Combining the language
model probability with an underestimated acoustic model probability according to Eq. (12.5)
would give the language model too little weight. Moreover, the two quantities have vastly
different dynamic ranges particularly when continuous HMMs are used. One way to balance
the two probability quantities is to add a language model weight LW to raise the language
model probability P(W) to that power P(W)*" [4, 25]. The language model weight LW is
typically determined empirically to optimize the recognition performance on a development
set. Since the acoustic model probabilities are underestimated, the language model weight
LW is typically >1.

Language model probability has another function as a penalty for inserting a new word
(or existing words). In particular, when a uniform language model (every word has an equal
probability for any condition) is used, the language model probability here can be viewed as
purely the penalty of inserting a2 new word. If this penalty is large, the decoder will prefer
fewer longer words in general, and if this penalty is small, the decoder will prefer a greater
number of shorter words instead. Since varying the language model weight to match the
underestimated acoustic model probability will have some side effect of adjusting the pen-
alty of inserting a new word, we sometimes use another independent insertion penalty t0
adjust the issue of longer or short words. Thus the language model contribution becomes:

P(W) Jp¥W) (12.10)

where /P is the insertion penalty (generally 0 < /P <1.0) and N(W) is the number of words
in sentence W. According to Eg. (12.10), insertion penalty is generally a constant that is
added to the negative-logarithm domain when extending the search to another new word. In
Chapter 9, we described how to compute errors in a speech recognition system and intro-
duced three types of error: substitutions, deletions and insertions. Insertion penalty is s0
named because it usually affects only insertions. Similar to language model weight, the in-

sertion penalty is determined empirically to optimize the recognition performance on 3 de-
velopment set.

12.2.3.  Isolated Word Recognition

With isolated word recognition, word boundaries are known. If word HMMs are available:
the acgusnc model] probability P(XIW) can be computed using the forward algorithm intro-
duced in Chapter 8. The search becomes a simple pattern recognition problem, and the WO
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W with highest forward probability is then chosen as the reco
models are used. word HMMs can be easily constructed by
phoneme HMMs or other types of subword HMMs according
Chapter 9.

gnized word. When subword
concatenating corresponding
to the procedure described in

1224. Continuous Speech Recognition

Search in contintuous §peech recognition is rather complicated, even for a small vocabulary.
since the search algorithm has to consider the possibility of each word starting at any arbi-
trary time frame. Some of the earliest speech recognition systems took a two-stage approach
towards continuous speech recognition, first hypothesizing the possible word boundaries and
then using pattern matching techniques for recognizing the segmented patterns. However.
due to significant cross-word co-articulation, there is no reliable segmentation algorithm for
detecting word boundaries other than doing recognition itself.

Let's illustrate how you can extend the isolated-word search technique to continuous
speech recognition by a simple example, as shown in Figure 12.10. This system contains
only two words, w, and w,. We assume the language model used here is an uniform unigram
(P(w)=P(w,)=1/2).

It is important to represent the language structures in the same HMM framework. In
Figure 12.10, we add one starting state S and one collector state C. The starting state has a
null transition to the initial state of each word HMM with corresponding language model
probability (1/2 in this case). The final state of each word HMM has a nuil transition to the
collector state. The collector state then has a null transition back to the starting state in order
to allow recursion. Similar to the case of embedding the phoneme (subword) HMMs into the
word HMM for isolated speech recognition, we can embed the word HMMs. for w, and w,
into a new HMM corresponding to structure in Figure 12.10. Thus, the continuous speech
search problem can be solved by the standard HMM formulations.

HMM of

two words w, and

, _ _ it ith
Figure 12.10 A simple example of continuous speech recognition task W, he starting state

“’z-_A uniform unigram language model is assumned for Fhese words. State S ::(:rd it
While state C is a collector state to save fully expanded links between every
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- 12.10 can be viewed as a stochas‘txc ﬁl:lite State
The comp OSi.t © HMM; sl,r;;::sl:n?iﬁ;ul distributions. The search allg_onthm is essen-
DO et & ?ween the acoustic observation-X and a path” in thg §tochasnc
tially producing a matcl'f be, lated word recognition, contmupus speech recognmon'needs
fiite state nenworke Lnee o ce W. The Viterbi algorithm is cletarly a natural choice for
to find the optimal wgrd Sequ;nsequence S corresponds to the optimal word sequemfe W.
this task since ¢ optrmall:ﬁM Viterbi trellis computation for the two-\yord contmuo:.}s
e s st_lows - in Figure 12.10. There is a cell for each stzfte in the s.tochasuc
speech recognition examplehlnﬁms frame ¢ in the trellis. Each cell C,, in the 'trell:s_ can be
e comoens ding to time ¢ or f+1 and to states in the :stochastlc ﬁm.te_ state
e oo COUC;Pgnﬁ:mﬁ 5. To make a word transition, there is a null transition to
T e oo rcacre d HMM to the initial state of the next word HMM that can
e Eolowed, The Stﬂt;;Of eaChuv:a(:on is done time-synchronously from left to right, i.e., each
is com ' -
tl:):llﬂi)’gro ::1(: t'Ii':]i:rflpletely fomputed before proceeding to time f+1.

® o ® e

Figure 12.11 HMM ey

_ :ne) is linked
the final state of the word HMM is reached, a null arc (indicated by a dashed line)
from it to the initjal state of the following word.

* A path here means a sequence of states and transitjons,
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123. LANGUAGE MODEL STATES

The slate-space is a good indicator of search complexity. Since the HMM representation for
cach word in the lexicon is fixed, the state-space is determined by the language models. Ac-
cording to Chapter 11, every language model (grammar) is associated with a state machine
(automata). Such a state machine is expanded to form the state-space for the recognizer, The
states in such a state machine are referred to as langnage models states. For simplicity, we
will use the concepts of state-space and language model states interchangeably. The expan-
sion of language model states to HMM states will be done implicitly. The language model
states for isolated word recognition are trivial. They are just the union of the HMM states of
each word. In this section we look at the language model states for various grammars for

continuous speech recognition.

123.1.  Search Space with FSM and CFG

As described in Chapter 8, the complexity for the Viterbi algorithm is O(N’T), where N is
the total number of states in the composite HMM and T is the length of input observation. A
full time-synchronous Viterbi search is quite efficient for moderate tasks (vocabulary <
300). We have already demonstrated in Figure 12.11 how to search for a two-word continu-
ous speech recognition task with a uniform language model. The uniform language model,
which allows all words in the vocabulary to follow every word with the same probability, is
Suitable for connected-digit task. In fact, most small vocabulary tasks in speech recognition
applications usually use a finite state grammar {(FSG).

_ Figure 12.12 shows a simpie example of an FSM. Similar to the process described in
Sections 12.2.3 and 12.2.4, each of the word arcs in an FSG can be expanded as a network
oF phoneme (subword) HMMs. The word HMMs are connected with null transitions with
the grammar state. A large finite state HMM network that encodes all the legal sentences
€an be constructed based on the expansion procedure. The decoding process is achieved by
performing g time-synchronous Viterbi search on this composite finite state HMM.

) In practice, FSGs are sufficient for simple tasks. However, when an FSG is made t0
Salsfy the constraints of sharing of different sub-grammars for compactness and support for
d¥namic modifications, the resulting non-deterministic FSG is very similar to context-free
grammar (CFG) in terms of implementation. The CFG grammar consists of a set of Pf‘_’duc'
005 or rules, which expand nonterminals into a sequence of terminals and nonterminals.

Onterminalg jn the grammar tend to refer to high-level task-specific concepts such as dates,
;Zm . and commands, The terminals are words in the vocabulary. A grammar also has a

O-tefmina] designated as its start state. ) oo 1), are
avaﬂabAlm‘O“gh efficient parsing algorithms, like chart parsing (described in Chapter 11),
Proces  for CFG, they are not suitable for speech recognition, )

SINg. A context-free grammar can be formulated with 2 recursive

TN). RTNs ae more powerful and complicated than the finite state mac

which requires left-to-right
transition network
hines described in
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Chapter 11 because they allow arc labels to refer to other networks as well as words. We use
Figure 12.13 to illustrate how to embed HMM into a recursive transition network.
Figure 12.13 is an RTN representation of the following CFG:

S5— NP VP

NP— sam | sam davis
VP — VERB tom

VERB — likes | hates

There are three types of arcs in an RTN, as shown in Figure 12.13: CAT(x), PUSH (x),
and POP(x). The CAT(x) arc indicates that x is a terminal node (which is equivalent 1o a
word arc). Therefore, all the CAT(x) arcs can be expanded by the HMM network for x, The
word HMM can again be a composite HMM built from phoneme (or subword) HMMs,
Similar to the finite state grammar case in Figure 12.12, each grammar state acts as a state
with incoming and outgoing null transitions to connect word HMMs in the CFG.

During decoding, the search pursues several paths through the CFG at the same time.
Associated with each of the paths is a grammar state that describes completely how the path
can be extended further. When the decoder hypothesizes the end of the current word of a
path, it asks the CFG module to extend the path further by one word. There may be several
alternative successor words for the given path. The decoder considers all the successor word
possibilities. This may cause the path to be extended to generate several more paths to be
considered, each with its own grammar state,

Iw/ n
/ah/ /silence/
/silence/
Iwl + fah/ + It/ {optional)
W hat is Seattle's /L/ weather
Boston's populanon
Show Denver's latitude

Figure 12.12 Ar illustration of how to compile a speech recognition task with finite state
grammar into a composite HMM.
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}S_H(N{. PUSH(VP) pop
S: @ @/—\ T

CAT (sam) CAT (davis) pop
- /\‘

CAT (Sam) CAT

CAT (likes) CAT (tom) pop

O OO
VP:
CAT (hates)

Figure 12.13 A simple RTN example with three types of arcs: CAT(x), PUSH (x), POP.

_ Readers should note that the same word might be under consideration by the decoder
In the context of different paths and grammar states at the same time. For example, there are
tWo word arcs CAT (Sam) in Figure 12.13. Their HMM states should be considered as dis-
tinct states in the trellis because they are in completely different grammar states. Two differ-
ent states in the trellis also means that different paths going into these two states cannot be
‘T_lefged. Since these two partial paths will lead to different successive paths, the search deci-
Sion needs to be postponed until the end of search. Therefore, when embedding HMMs into
word arcs in the grammar network, the HMM state will be assigned a new state identity,
although the HMM parameters (transition probabilities and output distributions) can still be
shared aeross different grammar arcs.

_ Each path consists of a stack of production rules. Each element of the stack also con-
1ins the position within the production rule of the symbol that is currently being explored.

€ search graph (trellis) started from the initial state of CFG (state S). When the path needs
o be extended, we look at the next arc (symbol in CFG) in the production. When the search
enters a CAT(x) arc (terminal), the path gets extended with the terminal, anc-i the HMM tre.l-
lis Computation js performed on the CAT(x) arc to match the model x against th'e acoustic
data. When the final state of the HMM for x is reached, the search moves on via the null
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transition to the destination of the CAT(x) arc., When the search enters a PUSH(x) arc, it
indicates a nonterminal symbol x is encountered. In effect, the search is about to enter a sub-
network of x; the destination of the PUSH(x) arc is stored in a last-in first-out (LIFO) stack.
When the search reaches a POP arc that signals the end of the current network, the contro]
should jump back to the calling network. In other words, the search returns to the state ex-
tracted from the top of the LIFO stack. Finally, when we reach the end of the production rule
at the very botlom of the stack, we have reached an accepting state in which we have seen g
complete grammatical sentence. For our decoding purpose, that is the state we want to pick
as the best score at the end of time frame T to get the search result.

The problem of connected word recognition by finite state or context-free graminars is
that the number of states increases enormously when it is applied to more complex gram-
mars. Moreover it remains a challenge to generate such FSGs or CFGs from a large corpus,
either manually or automatically. As mentioned in Chapter 11, it is questionable whether
FSG or CFG is adequate to describe natural languages or unconstrained spontaneous lan-
guages. Instead, n-gram language models are often used for natural languages or uncon-
strained spontaneous languages. In the next section we investigate how to integrate various
n-grams into continuous speech recognition.

12.3.2.  Search Space with the Unigram

The simplest n-gram is the unigram that is memory-less and depends only on the current
word.

PeW) =] [ Pow) az.1

i=]

Figure 12.14 shows such a unigram grammar network. The final state of each word
HMM is connected to the collector state by a null transition, with probability 1.0. The col-
lector state is then connected to the starting state by another null transition, with transition
probability equal to 1.0. For word expansion, the starting state is connected to the initial
state of each word HMM by 2 null transition, with transition probability equal to the corre-
sponding unigram probability. Using the collector state and starting state for word expansion
allows efficient expansion because it first merges all the word-ending paths’ (only the best
one survives) before expansion. It can cut the total cross-word expansion from N 210N

s . . -
_ In graph search, a pertial path still under consideration is also referred 1o as a theory, although we will vse paths
instead of theories in this book.
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Figure 12.14 A unigram grammar network where the unigram probability is attached as the
transition probability from starting state S to the first state of each word HMM.

1233. Search Space with Bigrams

When the bigram is used, the probability of a word depends only on the immediately preced-
ing word. Thus, the language model score is:

P(W)=P(w, | <s>)f[ P(w, | w,_) (12.12)

f=2

Where <s> represents the symbol of starting of a sentence.

Figure 12.15 shows a grammar network using a bigram language model. Because of
the bigram constraint, the merge-and-expand framework for unigram search no longt?r ap-
plies here. Instead, the bigram search needs to perform expand-and-merge. Thus, b'lgram
expansion is more expensive than unigram expansion. For a vocabulary size N, the bigram
would need N? word-to-word transitions in comparison to N for the unigmm-_l';aCh word
ransition has a transition probability equal to the corresponding bigram probability. Fortu-

nately, the total number of states for bigram search is stll proportional to the vocabulary
size N,
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P(W, | W,)

P(W, | W,) \

P(W, | W)

P(W,| W)

P(Wy W)

R —
P(Wy 1 W)

Figure 12.15 A bigram grammar network where the bigram probability P(w, |w,) is at-
tached as the transition probability from word w; to W, [19].

Because the search space for bigram is kept manageable, bigram search can be imple-
mented very efficiently. Bigram search is a good compromise between efficient search and
effective language models. Therefore, bigram search is arguably the most widely qsed
search technique for unconstrained large-vocabulary continuous speech recognition. Particu-

larly for the multiple-pass search techniques described in Chapter 13, a bigram search is
often used in the first pass search.

12.3.3.1. Backoff Paths

When the vocabulary size N is large, the total bigram expansion N* can become computa-
tionally prohibitive. As described in Chapter 11, only a limited number of bigrams are ob-
servable in any practical corpora for a large vocabulary size. Suppose the probabilities for
unseen bigrams are obtained through Katz’s backoff mechanism. That is, for unseen bigram

P(w/ w),
P(w; lw,) = a(w,)P(w)) (12.13)

where a(w,) is the backoff weight for word w,.
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Using the backoff mechanism for unseen bigrams, the bigram expansion can be sig-
nificantly reduced [12). Figure 12.16 shows the new word expansion scheme. Instead of fuil
bigram expansion, only observed bigrams are connected by direct word transitions with cor-
respondent bigram probabilities. For backoff bigrams, the last state of word w, is first con-
nected to a central backoff node with transition probability equal to backoff w'eight alw,)
The backoff node is then connected to the beginning of each word w, with transition préb:
ability equal to its corresponding unigram probability P( w,). Readers/ should note that there
are now two paths from w, to w, for an observed bigram P(w, |w,). One is the direct link
representing the observable bigram P{w, |w,), and the other is the two-link backoff path
representing e(w,)P(w,) . For a word pair whose bigram exists, the two-link backoff path is
likely to be ignored since the backoff unigram probability is almost always smaller than the
observed bigram P(w; {w,)}. Suppose there are only N, different observable bigrams, this
scheme requires N, +2N instead of N* word transitions. Since under normal circumstance
N, << N ! this backoff scheme significantly reduces the cost of word expansion.

backofT node

Figure 12.16 Reducing bigram expansion in 2 search by using the backoff node. In addition to
rams, the last state of word w; is first con-

normal bigram expansion arcs for all observed big :
nected 1o a central backoff node with transition probability equal to backoff weight a(¥) -
The backoff node is then connected to the beginning of each word w; withits corresponding

unigram probability P(w,) [12).

1234.  Search Space with Trigrams

For a trigram language model, the language model score is:

n .14
P(W) - P(Wl '<S>)P(W2 | <s>, W, )H P(W,- | W;_szi-l) (12 14)

i=3
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The search space is considerably more complex, as shown in Figure 12.17. Since ¢he equiva.
lence grammar class is the previous two words w, and w,, the total number of grammar
states is M. From each of these grammar states, there is a transition to the next word [19]

Obviously, it is very expensive to implement large-vocabulary trigram search giv.en
the complexity of the search space. It becomes necessary to dynamically generate the tr-
gram search graph (trellis) via a graph search algorithm. The other alternative is (o perform a
multiple-pass search strategy, in which the first-pass search uses less detailed language
models, like bigrams, to generate an n-best list or word lattice, and then a second-pass de-
tailed search can use trigrams on a much smaller search space. Multiple-pass search strategy
is discussed in Chapter 13.

P(W, W, W)

P(W,|W,, W) P(W, W, W)

P(W,{W,, W,)
P(W, W, , W)
— W,
P(Wy W, W) P(W, |W,, W)
W, >
P(W,|W,, W,)

f"gh“‘;j e 12.17 A trigram grammar network where the trigram probability P{w, w25 is.a:
ached to transition from grammar state word w,, w; to the next word W, . INustrated here 13
wo-word vocabulary, 5o there are four grammar states in the trigram network [19]
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12.3.5. How to Handle Silences Between Words

In continuous speech rfaf:ognil'ion. there are una'\foidable pauses (silences) between words or
senlences. The_ pause is ofEen referred to as 'SIIence Or a non-speech event in continuous
speech rccogmuon: Acoustically, the pz?use 15 modeled by a silence model® that models
baci'cground acoustic phenomena, The‘: silence model is usvally modeled with a topology
flexible enough to accommoditte a wide range of lengths, since the duration of a pause is
arbilrary.

[t can be argut?d that silences are actually linguistically distinguishable events, which
contribute to prosodic and meaning representation. For example, peaple are likely to pause
more often in phrasal boundaries. However, these patterns are so far not well understood for
anconstrained natural speech (particularly for spontancous speech). Therefore, the design of
almost all automatic speech recognition systems today allows silences occurring just about
anywhere between two lexical tokens or between sentences. It is relatively safe to assume
that people pause a little bit between sentences to catch breath, 5o the silences between sen-
tences are assumed mandatory while silences between words are optional. In most systems,
silence is often modeled as a special lexicon entry with special language mode! probability.
This special language model probability is also referred to as silence insertion penalty that is
set to adjust the likelihood of inserting such an optional silence between words.

It is relatively straightforward to handle the optional silence between words. We need
only to replace all the grammar states connecting words with a small network like the one
shown in Figure 12.18. This arrangement is similar to that of the optional silence in training
continuous speech, described in Chapler 9. The small network contains two parallel paths.
One is the original null transition acting as the direct transition from one word to another,
while the other path will need to go through a silence model with the silence insertion pen-
alty attached in the transition probability before going to the next word. o

One thing to clarify in the implementation of Figure 12.18 is that thlS' silence expan-
sion needs to be done for every grammar state connecting words. In the unigram grammar
network of Figure 12.14, since there is only one collector node to conpect wovrds. the silence
expansion is required only for this collector node. On the other hand, in the blgram_gmmmmar
network of Figure 12.15, there is a collector node for every word before expanding to the
rext word. In this case, the silence expansion is required for_ every collector ,HO?:' FOZ;":(;
cabu]ary size |V |, this means there are |V| numbers 9f sr}ence networks in en gtr o
Search network. This requirement Jies in the fact that in bigram search we chli o
Paths before expanding into the next word. Optional silence can then be regarded 3 P

i r finish-
fhe search effort for the previous word, so the word expansion nped: to beog:igcleea;t; finish-
e op i e treat each word as having two p ' :
Wit the sence o the end This viewpoint integrates silence in

tlons, one with the silence at the end and one without. Thi$ point
the worg pronunciation network like the example shown in Figure 12.1%.

—

— |
! l“dels bﬂs | context- Ellell(lcllt ]]1(K|G]][lg to silence models. In at case, there are Sevelﬂl stlence
ear hers extend the ., d ] d 1 that b - o

dlllg contextis.
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Isill

Figure 12.18 Incorporating optional silence (a non-speech event) in the grammar search net-
work where the grammar state connecting different words is laced by two parallel paths. One
is the original null transition directly from one word to the other, while the other first goes
through the silence word to accommodate the optional silence.

For efficiency reasons, a single silence is sometimes used for large-vocabulary con-
tinuous speech recognition using higher order n-gram language model. Theoretically, this
could be a source of pruning errors.” However, the error could turn out to be so small as to
be negligible because there are, in general, very few pauses between word for contingous
speech. On the other hand, the overhead of using multiple silences should be very minimal
because it is less likely to visit those silence models at the end of words due to pruning.

" luw/

O- NG Isil

Figure 12.19 An example of treating silence as of the pronunciation network of word TWO.

The shaded nodes represent possible word-endi ng nodes: one without silence and the other one
with silence.

12.4. TIME-SYNCHRONOUS VITERBI BEAM SEARCH

When HMMs are used for acoustic models, the acoustic model score (likelihood) used in

search is by definition the forward probability, That s, all possible state sequences must be
considered. Thus,

7 .. . hich
Speech recognition errors due 1o sub-optimal search or heuristic pruning are referred to as pruning €rrors: w

will be described in detai) in Chapter 13,
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px|Wy= ), P(Xs |W) (12.15)

«ll possiblo .v.,’

ghere the summation is to be taken over all possible state sequences § with the word se-
quence W under consideration. However, under the treilis framework (as in Figure 12.11),
more bookkeeping must be performed since we cannot add scores with different word se-
quence history. Since theT goal'of decoding is to uncover the best word sequence, we could
approximate the summation with the maximum to find the best state sequence instead. The
Bayes' decision rule, Eq. (12.5), becomes

\r;’ =argmax P(W)P(X| W) = arg max {P(W)1113x P(X,s{ | W)} (12.16)

Equation (12.16) is often referred to as the Virerbi approximation. 1t can be literally
wansiated to “the most likely word sequence is approximated by the most likely state se-
quence.” Viterbi search is then sub-optimal. Although the search results by using forward
probability and Viterbi probability could, in principle, be different, in practice this is rarely
the case. We use this approximation for the rest of this chapter.

The Viterbi search has already been discussed as a solution to one of the three funda-
mental HMM problems in Chapter 8. It can be executed very efficiently via the same trellis
framework, To briefly reiterate, the Viterbi search is a time-synchronous search algorithm
that completely processes time ¢ before going on to time 7+1. For time ¢, each state is up-
dated by the best score (instead of the sum of all incoming paths) from all states in at time
I-1. This is why it is often called fime-synchronous Viterbi search. When one update occurs,
1t also records the backtracking pointer to remember the most probable incoming state. At
the end of search, the most probable state sequence can be recovered by tracing back thfese
backtracking pointers. The Viterbi algorithm provides an optimal solution for. handling
Monlinear time warping between hidden Markov models and acoustic observation, word
b?““dﬂfy detection and word identification in continuous speech recognition. Th_ls unified
Viterbi search algorithm serves as the basis for all search algorithms as described in the rest
of [he Chﬂpter, ) )
Itis necessary to clarify the backtracking pointer for time-synchronous Yltel‘bl sea:;lf
Ontinuous word recognition. We are generally not interested in the optimal state -
dUence for speech recognition.* Instead, we are only interested in the optimal word sequcnr q
icated by Eq. (12.16). Therefore, we use the backtrack pointer just to remember the wo ;
history fop the current path th , timal word sequence can be recovered at the en do
%arch, To pe D final state of a word, we create 2 history
e s more specific, when we reach t.he l-n L this history node 0 the

- -oMaining the word identity and current time index and appen : deif it
®Xisting back, : . : ‘< then passed onto the successor no
rack pointer, This backtrack pointer is p

for ¢

I - .
. o in aptiml in deriving phonetic
uE'::!:la“,’e e not interested in optimal state sequentes for ASR_, they are \lre:nys useful i

lion, which could provide important information for developing ASR sysiems-
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is the optimal path leading to the successor node for both intra-word and inter-word trangj-
tion. The side benefit of keeping this backtrack pointer is that we no longer need to keep the
entire trellis during the search. Instead, we only need space to keep two successive time
slices (columns) in the trellis computation (the previous time slice and the current time slice)
because all the backtracking information is now kept in the backtrack pointer. This simplifi-
cation is a siguificant benefit in the implementation of a time-synchronous Viterbi search,

Time-synchronous Viterbi search can be considered as a breadth-first search with dy-
namic programming. Instead of performing a tree search algorithm, the dynamic program-
ming principle helps create a search graph where multiple paths leading to the same search
state are merged by keeping the best path (with minimum cost). The Viterbi trellis is a repre-
sentation of the search graph. Therefore, all the efficient techniques for graph search algo-
rithms can be applied to time-synchronous Viterbi search. Although so far we have
described the trellis in an explicit fashion—the whole search space needs to be explored
before the optimal path can be found—it is not necessary to do so. When the search space
contains an enormous number of states, it becomes impractical to pre-compile the composite
HMM entirely and store it in the memory. It is preferable to dynamically build and allocate
portions of the search space sufficient to search the promising paths. By using the graph
search algorithm described in Section 12.1.1, only part of the entire Viterbi trellis is gener-
ated explicitly. By constructing the search space dynamically, the computation cost of the
search is proportional only to the number of active hypotheses, independent of the overall
size of the potential search space. Therefore, dynamically generated trellises are key to heu-
ristic Viterbi search for efficient large-vocabulary continuous speech recognition, as de-
scribed in Chapter 13.

12.4.1. The Use of Beam

Based on Chapter 8, the search space for Viterbi search is O(NT) and the complexity is
O(N’T), where N is the total number of HMM states and T is the length of the utterance.
For large-vocabulary tasks these numbers are astronomically large even with the help of
dynamic programming. In order to avoid examining the overwhelming number of possible
cells in the HMM trellis, a heuristic search is clearly needed. Different heuristics generate or
explore portions of the trellis in different ways.

A simple way (o prune the search space for breadth-first search is the beam search de-
scribed in Section 12.1.3.2, Instead of retaining all candidates (cells) at every time frame, 2
threshold T is used to keep only a subset of promising candidates. The state at time ¢ with the
lowest cost D, is first identified. Then each state at time r with cost >D_ +T is dis-
carded from further consideration before moving on to the next time frame +1. The use of
the .bearp alleviates the need to process all the cells. In practice, it can lead to substantial
$avings in computation with little or no loss of accuracy. .

Although beam search is a simple idea, the combination of time-synchronous Viterdl
and beam search algorithins produces the most powerful search strategy for larges
vocabulary speech recognition. Comparing paths with equal length under & time-
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synchronous search framework malf:es beam search possible. That is, for two different word
sequences W, and W,, the posterior probabilities P(W,|x;) and P(W,|x]) are always
compared based on the same partial acoustic observation Xp. This makes the comparison
straightforward because the denominator P(x,) in Eq. (12.5) is the same for both terms and
can be ignored. Since the score comparison for each time frame is fair, the only assumption
of beam search is that an optimal path should have a good enough partial-path score for each
time frame to survive under beam pruning.

The time-synchronous framework is one of the aspects of Viterbi beam search that is
critical to its success. Unlike the time-synchronous framework, time-asynchronous search
algorithms such as stack decoding require the normalization of likelihood scores over fea-
tre streams of different time lengths. This, as we will see in Section 2.5, is the Achilles’
heel of that approach.

The straightforward time-synchronous Viterbi beam search is ineffective in dealing
with the gigantic search space of high perplexity tasks. However, with a better understand-
ing of the linguistic search space and the advent of techniques for obtaining n-best lists from
time-synchronous Viterbi search, described in Chapter 13, time-synchronous Viterbi beam
search has turned out to be surprisingly successful in handling tasks of all sizes and all dif-
ferent types of grammars, including FSG, CFG, and n-gram [2, 14, 18, 28, 34, 38, 44].
Therefore, it has become the predominant search strategy for continuous speech recognition.

124.2.  Viterbi Beam Search

To explain the time-synchronous Viterbi beam search in a formal way [31], we first define
some quantities:

D(t;s,;w) = total cost of the best path up to time ¢ that ends in state s, of gram-
mar word state w.

h(t;s,;w)= backtrack pointer for the best path up to time ¢ that ends in state s, of
grammar word state w.

Readers should be aware that w in the two quantities above represents a grammar
Word state in the search space. It is different from just the word identity since the same wo'ni
could occyr i many different language model states, as in the trigram search space shown 1n
Figure 12,17,

. There are two types of dynamic programming (DP)
°rd and inter-word transition. The intra-word transitio

Sand can be expressed as follows:

transition rules [301, nmely intra-
n is just like the Viterbi rule for

. . 12.17)
Dltis,iwy=min{d(x,,s, | 5,43w) + Dt =T, W)} (

12.18)
htsswy=hi =15 |

min (35,3 W) W)
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where d(x,.s,}s,_;w) is the cost associated with taking the transition from state 5, to
state s, while generating output observation x,, and &, (f;5,;w) is the optimal predecessor
state of cell D(1;s,:w) . To be specific, they can be expressed as follows:

d(X,.5, |5, ;W) =—log P(s, | 5,..sw)—log P(x, | 5,: W) (12.19)
b (t:5,3w) =argmin{d(x,,s, | 5,.;W) + DUt 15, w)} (12.20)
St

The inter-word transition is basically a null transition without consuming any observa-
tion. However, it needs to deal with creating a new history node for the backtracking
pointer. Let’s define F(w) as the final state of word HMM w and / () as the initial state of
word HMM w. Moreover, state 1 is denoted as the pseudo initial state. The inter-word tran-
sidon can then be expressed as follows:

D{(r;n:w) = min{log PO | v) + D(;; F();v)} (12.21)

M w) = (0 1) A F (Vg )3 V) (12.22)

where v, =argmin {log Piwiv)+ Dy F(v); v)} and :: is a link appending operator.

The time-synchronous Viterbi beam search algorithm assumes that all the intra-word
wransitons are evalvated before inter-word null wansidons take place. The same time index
is used intentionally for inter-word transition since the null language model staie wansition
does not consume an observation vector. Since the initial state J(w) for word HMM w could
have a self-mransiton. the cell D(#;/(w);w) might already have an active path. Therefore,
we need to perform the following check to advance the inter-word ransitions.

if D{r, W) < D1 (w); w)

(12.23)
D(r;I(w):w) = D(r:w) and A(t; 1(w)iw) = h(1: 5 w)
The time-synchronous Viterbi beam search can be summarized as in Algoritam 126-
For large-vocabulary speech recognition, the experimental results show that only 3 smal
percentage of the entire search space (the beam) needs to be kept for each time interval /
without increasing ervor rates. Empirically, the beam size has typically been found .lo be
berween 5% and 10% of the entire search space. In Chapter 13 we describe swategies ol
using different level of beams for more effecdvely pruning.

12.5. STACK DECODING (A’ SEARCH)

If some reliable heuristics are available to guide the decoding. the search can be done e
depth-first fashion around the best v

. . jsing
e vi ! path early on. instead of wasting efforts on unprom 10
paths via the time-synchronous beam search. Stack decoding represents the best atiempt
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ALGORITHM 12.6: TIME-SYNCHRONOUS VITERBI BEAM SEARCH
Step 1: Initlalization: For all the grammar word states w which can stan a sentence
D(0; 1 (w)w)=0 '
W0; 1(w); w) = rad]
Step 2: Induction: For times =1 to T do

For all active states do
Inira-word transitions according to Eq. (12.17) and (12.18)

D(t;s,;w) = min{d(x,.s, | s._;;w)+ D(t ~1;s,_;w)}

h(t;s,;w) = h(t =16, (;5,;w); w)

For all active word-fina! states do
Inter-word transitions according to Eq. (12.21), (12.22) and (12.23)
D(t;;w) = min {log P(w | v)+ D(t; F(v); v}

T W)= (1) 12 B0, F (900 Ve )
if D(t;m;w) < D(t; I(w); w)
D(;; 1(w); w) = D(t;n; w) and A(r; L(w); w) = h(t;n; w)
Pruning: Find the cost for the best path and decide the beam threshold
Prune unpromising hypotheses
Step 3: Termination: Pick the best path among all the possible final states of grammar at time
T'. Obtain the optimal word sequence according to the backtracking pointer A(s;n; w)

use A* search instead of time-synchronous beam search for continuous speech recognition.
Unfortunately, as we will discover in this section, such a heuristic function h(e) (defined in
Section 12.1.3) is very difficult to auain in continuous speech recognition, so search algo-
rithms based on A* search are in general less efficient than time-synchronous beam search.
Stack decoding is a variant of the heuristic A* search based on the forward algorithm,

“.’hem the evaluation function is based on the forward probability. It is a tree search algo-
nfhm. which takes 2 slightly different viewpoint than the time-synchronous V?terbi search,
l hime-s)'nchronous beam search is basically a breadth-first search, so i.t is crucial to conltrzi
lare fumber of alf possible language model states as described in Section 1‘2.3. in a.ty;;u;)

Be-vocabulary Viterbi search with n-gram language models, this number is determined by
tr; ®Quivalent classes of language model histories. On the other hand, stack :ecocll:ai :;e?sl
CO"::amh algorithm treats the search as a task for finding a path in a tree w gsnt: T en
tencespond 0 words in the vocabulary V, non-terminal nodes correspond to mltl:as apconstant
branch'-and terminal nodes correspond to complete sentences. The search crere;i B B 20
il S actor of IVA, if we allow every word to be followed by every word. Fig

SE2tes such a search tree for a vocabulary with three words [19]-
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In the following section we describe these two critical components. Readers will note that
the solutions to these two issues are virtually the same—using a normalization scheme ¢o
compare paths of different lengths.

12.5.1. Admissible Heuristics for Remaining Path

The key issue in heuristic search is the selection of an evaluation function, As described in
Section 12.1.3, the heuristic function of the path H, going through node N includes the cost
up to the node and the estimate of the cost to the target node from node N. Suppose path #,
is going through node N at time f; then the evaluation for path H, can be expressed as fol-
lows:

FH) =g(HY)+R(HT) (12.24)

where g(H,) is the evaluation function for the partial path of H, up to time ¢, and
h(H}T) is the heuristic function of the remaining path from f+1 to T for path H, . The
challenge for stack decoders is to devise an admissible function for A(e).

According to Section 12.1.3.1, an admissible heuristic function is one that always un-
derestimates the true cost of the remaining path from ¢+1 to T for path H, . A trivially
admissible function is the zero function. In this case, it results in a very large OPEN list. In
addition, since the fonger paths tend to have higher cost because of the gradually accumu-
lated cost, the search is likely to be conducted in a breadth-first fashion, which functions
very much like a plain Viterbi search. The evaluation function g(s) can be obtained easily by
using the HMM forward score as the true cost up to current time r. However, how can we
find an admissible heuristic function A(s) ? We present the basic concept here {19, 35].

The goal of A(e)is to find the expected cost for the remaining path. If we can obtain
the expected cost per frame y for the remaining path, the total expected cost, (T —1}*y , is
simply the product of w and the length of the remaining path. One way to find such ex-
pected cost per frame is to gather statistics empirically from training data.

1. After the final training iteration, perform Viterbi forced alignment’ with each
training utterance to get an optimal time alignment for each word.

2. Randomly select an interval to cover the number of words ranging from two
to ten. Denote this interval as [i... ).

3. Compute the average acoustic cost per frame within this selected interval ac-
cording to the following formula and save the value in a set A:

* Viterbi forced alignment means that the Viterbi is performed on the HMM model constructed from the known
word transcription. The term “forced” is used because the Viterbi alignment is forced to be performed on the co{:
rect model. Viterbi forced alignment is a very useful 100l in spoken language processing as it can provide the OPl;
mal state-time alignment with the utterances. This detailed alignment can then be used for different purposes:
including discriminant training, concatenated speech synthesis, etc.
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where W, ; is the word string corresponding to interval [;... jl.
4. Repeat Steps 2 and 3 for the entire training set.
5. Define W, and ¥, as the minimum and average value found in set A.

Clearly, ¥, should be a good under-estimate of the expected cost per frame for the
fuure unknown path. Therefore, the heuristic function /(H;") can be derived as:

WHT) = (T =W i (12.26)

Although ¥, 1S obtained empirically, stack decoding based on Eq. (12.26) will generally
find the optimal solution. However, the search using y . usually runs very slowly, since
Eq. (12.26) always under-estimates the true cost for any portion of speech. In practice, a
heuristic function like y,, that may over-estimate has to be used to prune more hypotheses.
This speeds up the search at the expense of possible search errors, because y,,, should rep-
resent the average cost per frame for any portion of speech. In fact, there is an argument that
one might be able to use a heuristic function even more than .. The argument is that v,
is derived from the correct path (training data) and the average cost per frame for all paths
during search should be more than ¥, because the paths undoubtedly include correct and
incorrect ones.

1252.  When to Extend New Words

Since stack decoding is executed asynchronously, it becomes necessary to detect when a
Phouc/word ends, so that the search can extend to the next phone/word. If we have a cost
Mmeasure that indicates how well an input feature vector of any length matches the evaluat_ed
Model Sequence, this cost measure should drop slowly for the correct phone/word and rise
sharply for an incorrect phone/word. In order to do so, it implies we must be able to compare
hypotheses of different lengths.
g The, first thing that comes to mind for this cost measure is simplyl the forwa_rd cos,t
MZ%P(XI'SJ |w'), which represents the likelihood of producing acoustic Obsewauo.?a;l;
c ,On. word sequence w! and ending at state s, . However, it is def_‘mntely not su; g
o :l::; 't1s deemed to be smaller for a shorter acoustic input vector. Thls cauitsas 'trhhz :efore,
we musf[ dﬂl\_vays prefer short phones/words, resulting in many insertion e;(;cﬁbe 4 above.

eng étive some normalized score that satisfies the desired PTOP‘"'_“Y

Malized ogt C(x!,s, | w*) can be represented as follows [6, 24]:

Alyt 12.27)
C(XpS, |w|‘t)=_[0g (

4

P(x},s, | wf)]:—log[P(x{,S, |wf)]+rlogjf

Whel'e B
H . .
(0< Y<1)isa constant normalization factor.
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Suppose the search is now evaluating a particular word w, ; we can define C,, (1) as

k .
the minimum cost for C(x),s, | W, ) for all the states of w, , and o, (1) as the maximum

forward probability for P(x,s, |w/) for all the states of w, . That is,

C"mi"g) =min [é(x’, 5, | wi )] (12.28)
Gpen (1) = mex| P} | w!5,)] (12.29)

~

We want C,, (1) to be near O just as long as the phone/word we are evaluating is the correct
one and we have not gone beyond its end. On the other hand, if the phone/word we are
evaluating is the incorrect one or we have already passed its end, we want the C_ (f) to be
rising sharply. Similar to the procedure of finding the admissible_heuristic function, we can
set the normalized factor ¥ empirically during training so that C_, (T)=0 when we know
the correct word sequence W that produces acoustic observation sequence x; . Based on Eq.
(12.27), ¥ should be set to:

y=Ifa_ (T) (12.30)

Figure 12.22 shows a plot of C_, (#) as a function of time for correct match. In addi-
tion, the cost for the final state FS(w,) of word w,, é’(x:,s, = FS(w,)|w!), which is the
score for w, -ending path, is also plotted. There should be a valley centered around 0 for
C(x},s, = FS(w,)}w!), which indicates the region of possible ending time for the correct
phone/word. Sometimes a stretch of acoustic observations may match better than the aver-
age cost, pushing the curve below 0. Similarly, a stretch of acoustic observations may match
worse than the average cost, pushing the curve above 0. v

There is an interesting connection between the normalized factor y and the heuristic
estimate of the expected cost per frame, y , defined in Eq. (12.25). Since the cost is simply
the logarithm on the inverse posterior probability, we get the following equation:

~1 -
w:FlogP(x,T | W) =~log[ @, (1) ]=-log¥ (12.31)

Equation (12.31) reveals that these two quantities are basically the same estimate. In
fact, if we subtract the heuristic function f(H) defined in Eq. (12.24) by the constant
log.(f), we get exactly the same quantity as the one defined in Eq. (12.27). Decisions on
which path to extend first based on the heuristic function and when to extend the search to
the next word/phone are basically centered on comparing partial theories with different
lengths. Therefore, the normalized cost C(x,s, |w!) can be used for both purposes.

~ Based on the connection we have established, the heuristic function, F(HY), which
estimates the goodness of a path is simply replaced by the normalized evaluation function

i k
Clxi,s, {w) . If we plot the un-normalized cost C(x! ,5, |w*) for the optimal path and other
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Figure 12.22 é,,,i,, () and C(x',s, = FS(w,)|w/) as functions of time 1. The valiey region

represents possible ending times for the correct phone/word.

competing paths as the function time ¢, the cost values increase as paths 8;31: 10*"',%?;]:"':';;‘
trted in Figure 12.23) because every frame adds some non-negative cost to : t:i(:1 erall cost
Itis clear that using un-normalized cost function C(x;,s, |w;) .genera]ly resu imal path
first search. What we want is an evaluation that decreases slightly alonﬂg]-thtzl ?:E;st functiol;
and hopefully increases along other competing paths. Clearly, the normalizé

Clxiys, 1wy ) fulfills this role, as shown in Figure 12.24.

optimal path

ing paths as a
. : ath and other cornpelin
Figure 12.23 Unnormalized cost C(x.,s, |w) for optimal p

nction of time,
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optimal path

Figure 12.24 Normalized cost é’(x{,s, |w}) for the optimal path and other competing paths a5
a function of time.

Equation (12.30) is a context-less estimation of the normalized factor, which is also re-
ferred to as zero-order estimate. To improve the accuracy of the estimate, you can use con-
text-dependent higher-order estimates like [24]):

Y, =¥(X;) first-order estimate
7, =Y(X,X,,) second-order estimate
Y =Y (X Xpogs s Xpoiwa) n-order estimate

Since the normalized factor 7 is estimated from the training data that is also used to
train the parameters of the HMM:s, the normalized factor ¥, tends to be an overestimate. A
aresuit, @, () might rise slowly for test data even when the correct phone/word model is
evaluated. This problem is alleviated by introducing some other scaling factor & <1 s0 that
0y, () falls slowly for test data for when evaluating the correct phone/word model. The
best solution for this problem is to use an independent data set other than the training daia to
derive the normalized factor ¥, .

125.3. Fast Match
Even with an efficient heuristic function and mechanism to determine the ending time fqr;’:
phone/word, stack decoding could still be too slow for large-vocabulary speech rgcogﬂ'“;e
tasks.. AS described in Section 12.5.1, an effective underestimated heuristic function f oi,sti-
Temaining portion of speech is very difficult to derive. On the other hand, 2 heuri 0
mate for the immediate short segment that usually corresponds to the next phoe ordwuces
may be feasible to attain. In this section, we describe the fast-match mechanism that 1€
phone/word candidates for detailed match (expansion). ubpath
For o Ill;raSYnchronous stack decoding, the most expensive step is to extend meﬁ?zsé:drc vor
cabul Be-vocabulary search, it implies the calculation of P(x;™ |W) OVEf ossible
abulary size |V'|. It is desirable to have a fast computation to quickly reduce (17
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words starting at a given time 7 to reduce the search space. This process is often referred to
g5 fast match [15, 35]. In falct, fast match is crucial to stack decoding, of which it becomes
an integral part. Fast match is a method for the rapid computation of a Jist of candidates that
constrain successive search phases. The expensive detailed match can then be performed
after fast match. In this sense, fast match can be regarded as an additional pruning threshold
1o meet before new word/phone can be started.

Fast match, by definition, needs to use only a small amount of computation. However,
it should also be accurate enough not to prune away any word/phone candidates that partici-
pate in the best path eventually. Fast match is, in general, characterized by the approxima-
tions that are made in the acoustic/language models in order to reduce computation. There is
an obvious trade-off between these two objectives. Fortunately, many systems [15] have
demonstrated that one needs to sacrifice very little accuracy in order to speed up the
computation considerably.

Similar to admissibility in A" search, there is also an admissibility property in fast
maich. A fast maich method is called admissible if it never prunes away the word/phone
candidates that participate in the optimal path. In other words, a fast match is admissible if
the recognition errors that appear in a system using the fast match followed by a detailed
match are those that would appear if the detailed match were carried out for all
words/phones in the vocabulary. Since fast match can be applied to either word or phone
level, as we describe in the next section, we explain the admissibility for the case of word-
level fast match for simplicity. The same principle can be easily extended to phone-level fast
match,

Let V be the vocabulary and C(X|w) be the cost of a detailed match between input X
and word w. Now F(X|w) is an estimator of C(X|w) that is accurate enough and fast to
tompute. A word list selected by fast match estimator can be attained by first computing
F(X|w) for each word w of the vocabulary. Suppose w, is the word for which the fast

Match has a minimum cost value:
W, =argmin F(X | w) (12.32)
el
I_Xfter computing C(X|w,), the detailed match cost for w,, we form the fast match word
lis, A, from the word w in the vocabulary such that F(X|w) is no greater than C(X|w,).
In other worgs,
A={we V| F(X|w)<C(X|w,)} (12.33)
Similar to the admissibility condition for A”search [3, 33], the fast match estimaor
: (*) conducted in the way described above is admissible if and only if F(X{w) is always
" Under-estimator (lower bound) of detailed match C(X | w) . That s,

Flwscxiw)  vxw

e proot i straightforward. If the word w, has a lower detailed match cost C
Prove that it must be included in the fast match list A because

(12.34)

(xl wc) » you
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CX|w) < C(X|w,) and F(X| w) SC(X|w) = F(X|%,)SC(X|w,)

Therefore, based on the definition of A, w, € A.
Now the task is to find an admissible fast match estimat
<15 . or. Bahi et al. [6

fast.mat_ch- approxnmgnon for discrete HMMs. As we will see later, this fas[t rlngtr;fzsedr o
mation is mdeed‘equwalent to a simplification of the HMM structure. Given the mi‘r:do:;
word w _and an input sequence x, of codebook symbols describing the input signal, the
prog;ablhty that the HMM w produces the VQ sequence x' is given by (according to C,hap-
ter 8):

P(xlrhv): z [R‘,(s,,sz,...s,.)fl}’w(xr|s’)] (12.35)

SpeSaa 51 i=1

Since we often use Viterbi approximation instead of the forward probability, the equation
above can be approximated by:

T
P(xlT fw) = :’I'E?')ﬁr [Pw(s, ySayeesSy )H P, (x, |S,):| (12.36)

i=l

The detailed match cost C(X|w) can now be represented as:

C(X|w)= min {—-log[P,(s,,sz,...ST)IT-[Pw(x,.]s,)jl} (12.370)

594534257

Since the codebook size is finite, it is possible to compute, for each model w, the high-
est output probability for every VQ label ¢ among all states s, in HMM w. Let’s define
m,(c) to be the following:

m,(c)=max P, (c}s,)=max b,(c) (12.38)

We can further define the g, (w) as the maximum state sequence with respect to T, ie. the

maximum probability of any complete path in HMM w.

12.39
qmax(w)=m’@X[Ph?(Sl’S2""ST)] ( )
Now let’s define the fast match estimator F(A [w) as the following:

' i 12.40)
F<XIw)=—1og[qm.x(w)nm,,(x,)] ¢
i=]

i issi Eq.
It is easy to show the fast match estimator F(X|w) S CX|w) is admissible based on

(12.38) 10 Eq. (12.40).
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Figure 12.25 The equivalent one-state HMM corresponding to fast match computation defined
in Eq. (12.40) [15].

The fast match estimator defined in Eq. (12.40) requires T+1 additions for a vector se-
quence of length T. The operation can be viewed as equivalent to the forward computation
with a one-state HMM of the form shown in Figure 12.25. This correspondence can be in-
erpreted as a simpliftcation of the original multiple-state HMM into such a one-state HMM.
It thus explains why fast match can be computed much faster than detailed match. Readers
should note that this HMM is not actually a true HMM by strict definition, because the out-
put probability distribution m,(c) and the transition probability distribution do not add up
loone,

The fast match computation defined in Eq. (12.40) discards the sequence information
with the model unit since the computation is independent of the order of input vectors.
Therefore, one needs to decide the acoustic unit for fast match. In general, the longer the
unit, the faster the computation is. and, therefore, the smaller the under-estimated cost
F(X]w) is. It thus becomes a trade-off between accuracy and speed.

Now let’s analyze the real speedup by using fast match to reduce the vocabulary V to
lhelist A, followed by the detailed match. Let V1 and | A1 be the sizes for the vocabulary 14
and the fast match short list A. Suppose ¢, and ¢, are the times req_ulred to compute one
fest match score and one detailed match score for one word, respectively. Then, the total
lime required for the fast match followed by the detailed match is .|V |+, [A, :,vhe;.‘as
the time required in doing the detailed match alone for the entire vocabulary is £, { V. The

$peed-up ratio is then given as follows:
| (12.41)

TRTO
3]
a
o be much smaller than IV to have a sig-

W
©%eed £, to be much smaller than 7, and |Alt h estimator in Eq. (12.40),

niﬁca . . tocy
o pocd-up using fast match, Using our adTt s w) is T instead of NT for C(X|w),

savin
¥ere N is the number of states in the detailed acoustic model. Therefore, the ¢, /1, g

is 3b0l.lt NZ
. very accurate fast
May hln general, in order to make | A | much smaller tha}l: I‘:;eogit;‘:cgei:x mfé’ constraint of
ch esti ; is i :
" SStimator that could result in ¢, =1, - This is why ice, most real-time speech
g iti j - ith the fast match.
TeCoon:: A issibility principle with :
8nmon Systems don’t necessarlly obey the adm_l];oe et Z.l" [36] used several techmques

% example, Bap} e al. {10], Laface et al., (22] and
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line groups of acoustically similar words. {\rmed with this grouping, they
can use an aggressive fast match to select only a very short list of words., and words acoustj-
cally similar to the words in this list are added to form the short word list A' for further de.
tailed match processing. By doing so, they are able to report a very efficient fast match
method that misses the correct word only 2% of the time. When non-admissible fast marc,
is used, one needs to minimize the additional search error introduced by fast match empiri.

to construct off-

cally. . .
Bahl et al. [6] use a one-state HMM as their fast match units and a tree-structure Jex;.

con similar to the lexical tree structures introduced in Chapter 13 to construct the short word
list A for next-word expansion in stack decoding. Since the fast match tree search is also
done in an asynchronous way, the ending time of each phone is detected using normalized
scores similar to those described in Section 12.5.2. 1t is based on the same idea that this
normalized score rises slowly for the correct phone, while it drops rapidly once the end of
phone is encountered (so the model is starting to go toward the incorrect phones). During the
asynchronous lexical tree search, the unpromising hypotheses are also pruned away by a
pruning threshold that is constantly changing once a complete hypothesis (a leaf node) is
obtained. On a 20,000-word dictation task, such a fast match scheme was about 100 times
faster than detailed match and achieved real-time performance on a commercial workstation
with only 0.34% increase in the word error rate being introduced by the fast match process.

12.54. Stack Pruning

Even with efficient heuristic functions, the mechanism to determine the ending time for
phone/word, and fast match, stack decoding might still be too slow for large-vocabulary
speech recognition tasks. A beam within the stack, which saves only a small number of
promising hypotheses in the OPEN list, is often used to reduce search effort. This stack
pruning is very similar to beam search. A predetermined threshold & is used to eliminate
hypotheses whose cost value is much worse than the best path so far.

. Both fast match and stack pruning could introduce search errors where the eventual
optimal path is thrown away prematurely. However, the impact could be reduced to a mini-
mum by en_lpirically adjusting the thresholds in both methods.

The implementation of stack decoding is, in general, more complicated, particularly
'\;:er:j.s ome inevitable pruning strategies are incorporated to make the search more efficient
effzctil\fgc:slgm:ft _de"“;ng both an effectively admissible heuristic function for #(*) and an
advante o 1on of normalization factors for boundary determination has limlted_ the

age a stack decoders have over Viterbi decoders. Unlike stack decoding, tme
syncpronous Viterbi beam search cap us¢ an easy compari , - th without

parison of same-length pa )

of word boundaries. As described in the earlier sections, these S

sound techniques to ; s of Viterbi beam search allow researchers to incorporate Varios
0 Improve the efficiency of search. Therefore, time-synchronous Viterb

Beam ; ,

principi:a;(f:hs[:giogs ‘ r_nuch broader popularity in the speech community. Howeveh the

scribe in Chapter I;COdmg 1S essential particularly for n-best and lattice search. AS We de-
» stack decoding plays a very crucial part in multiple-pass search strat€”



—_—
stack Decoding (A¥ Search) 639

gies for n-best and lattice search because the early pass is able to establish a near-perfect
estimate of the remaining path.

12.5.5. Multistack Search

Even with the help of normalized factor ¥ or heuristic function h(®), it is still more effec-
tive to compare hypotheses of the same length than those of different lengths, because hy-
potheses with the same length are compared based on the true forward malching score.
inspired by the time-synchronous principle in Viterbi beam search, researchers (8, 35] pro-
pose a variant stack decoding based on multiple stacks.

Multistack search is equivalent to a best-first search algorithm running on multiple
stacks time-synchronously. Basically, the search maintains a separate stack for each time
frame 1, so it never needs to compare hypotheses of different lengths. The search runs time-
synchronously from left to right just like time-synchronous Viterbi search. For each time
frame t, multistack search extracts the best path out of the z-stack, computes one-word ex-
tensions, and places all the new paths into the corresponding stacks. When the search fin-
ishes, the top path in the last stack is our optimal path. Algorithm 12.7 illustrates the
multistack search algorithm.

This time-synchronous multistack search is designed based on the fact that by the time
the 1" stack is extended, it already contains the best paths that could ever be placed into it.
This phenomenon is virtually a variant of the dynamic programming principle introduced in
Chapter 8. To make multistack more efficient, some heuristic pruning can be applied to re-
duce the computation. For example, when the top path of each stack is extended for one
more word, we could only consider extensions between minimum and maximum duration.
On the other hand, when some heuristic pruning is integrated into the multistack search, one
might need to use a small beam in Step 2 of Algorithm 12.7 to extend more than just the best
path to guarantee the admissibility.

—
ALGORITHM 12.7: MULTISTACK SEARCH

Step 1: Initialization: for each word v in vocabulary ¥
forr=1,2,.... 1
Compute C(x}|v) andinsertitto 7 stack
Step 2: teration: for ¢ =1,2,...,7 1
Sortthe 1 stack and pop the top path C(x} | wi' )out of the stack
for each word v in vocabulary ¥
fore=r41,e42,....7
+1
Extend the path C(x! |wf ) by word v fo get C(x} [w™)
Where w*! = ||y and Il means string concatenation
Place C(x? |w**') in 7" stack o
i Step 3: Termination: Sortthe T stack and the top path is the optimal word sequen
—
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12.6. HISTORICAL PERSPECTIVE AND FURTHER READING

Search has been one of the most important topics in artiﬁgial intelligence since the origins of
the field. It plays the central role in general problem solving [29] a"d. computer games. [43],
Nilsson’s Principles of Artificial Intelligence [32] and Barr anc? Feigenbaum’s The Hand-
book of Artificial Intelligence [11] contain a comprehensive introduction to state-space
search algorithms. A* search was first proposed by Hart et al. [17]. A* was thought to be
derived from Dijkstra’s algorithm [13] and Moore’s algorithm [27]. A* search is similar to
the branch-and-bound algorithm [23, 39], widely used in operations research. The proof of
admissibility of A* search can be found in [32].

The application of beam search in speech recognition was first introduced by the
HARPY system [26]. It wasn’t widcly popular until BBN used it for their BYBLOS system
[37}. There are some excellent papers with detailed description of the use of time-
synchronous Viterbi beam search for continuous speech recognition [24, 31]. Over the years,
many efficient implementations and improvements have been introduced for time-
synchronous Viterbi beam search, so real-time large-vocabulary continuous speech recogni-
tion can be realized on a general-purpose personal computer.

On the other hand, stack decoding was first developed by IBM [9]. It is successfully
used in IBM’s large-vocabulary continuous speech recognition systems [3, 16]. Lacking a
time-synchronous framework, comparing theories of different lengths and extending theo-
ries are more complex as described in this chapter. Because of the complexity of stack de-
coding, far fewer publications and systems are based on it than on Viterbi beam search [16,
19, 20, 35]. With the introduction of multistack search [8], stack decoding in essence has
actually come very close to time-synchronous Viterbi beam search.

Stack decoding is typically integrated with fast match methods to improve its effi-
ciency. Fast match was first implemented for isolated word recognition to obtain a list of
poterlltial word candidates [5, 7]. The paper by Gopalakrishnan et al. [15] contains a compre-
!1ens1ve description of fast match techniques to reduce the word expansion for stack decod-
ng. Be-sides the fast match techniques described in this chapter, there are a number of
alternative approaches [5, 21, 41). Waast's fast match [41], for example, is based on a binary

classification tree built automatically from data that comprise both phonetic transcription
and acoustic sequence.
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Large-Vocabulary Search Algorithms

niques for . Chapter 12 discussed the basic search tech-
Fecognition pe.ech fecognition. However, the search complexity for large-vocabulary speech
describe eﬂ_“flth high-order la.nguage models is still difficult to handle. _In tl}is chapter we
which bec Icient sea:cf! techniques in the context of time-synchronous Vue'rbn beam search,
We use Mf)mes the ch.01ce for most speech recognition systems because it is very efficient.
techp; icrosoft Whisper as our case study to illustrate the effectiveness of various search
mqu.es, Most of the techniques discussed here can also be applied to stack decoding.
o en:iNIlh th‘? help of beam search, it is unnecessary to explore the entire search space or
eep inm trellis. Ins_tead, only the promising search state-space needs to be explored. Please
etwork mind the distinction between the implicit search graph specified by th'e grammar
se aHd, the explicit partial search graph that is actually constructed by the Viterbi beam
areh algorithm,
Vocabll:; this chapter we first introduce the most critical search organization for large-
Searc ary speech recognition—tree lexicons. Tree lexicons s:gmﬁcantl'y reduce potential
*pace, although they introduce many practical problems. In particular. we need to

645
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address problems such as reentrant lexicall trees, factored language model probabilities, sy
tree optimization, and subtree pOIYWO"phlsm' : ,

Various other efficient techniques also are introduced. Most of these techniques aim
for clever pruning with the hope of sparing the correct paths. F or more efffactive Pruning,
different layers of beams are usually uset{l. Wh.lle‘fast match techniques qescrlbed in Chapter
12 are typically required for stack decoding, similar concepts'and techniques can be applied
to Viterbi beam search. In practice, the look-ahead strategy is equally effective for Viterh
beam search.

Although it is always desirable to use all the knowledge sources (KSs) in the search
algorithm, some are difficult to integrate into the left-to-right time-synchronous search
framework. One alternative strategy is to first produce an ordered list of sentence hypotheses
(ak.a. n-best list), or a lattice of word hypotheses (a.k.a. word lattice) using relatively inex-
pensive KSs. More expensive KSs can be used to rescore the n-best list or the word lattice to
obtain the refined result. Such a multipass strategy has been explored in many large-
vocabulary speech recognition systems. Various algorithms to generate sufficient n-best lists
or the word lattices are described in the section on multipass search strategies.

Most of the techniques described in this chapter rely on nonadmissible heuristics.
Thus, it is critical to derive a framework to evaluate different search strategies and pruning
parameters. )

13.1. EFFICIENT MANIPULATION OF A TREE LEXICON

The lexicon entry is the most critical component for large-vocabulary speech recognition,
since the search space grows linearly along with increased linear vocabulary. Thus an effi-
cient framework for handling large vocabulary undoubtedly becomes the most critical issue
for efficient search performance.

13.1.1. Lexical Tree

The search space for n-gram discussed in Chapter 12 is organized based on a straightforward

linear lexicon, i.e., each word is represented as a linear sequence of phonemes, independent

of other words. For example, the phonetic similarity between the words fask and tasks is not

leveraged. In a large-vocabulary systecz, many words may share the same beginning pi

;E?r?:;n?s tree tS)Lructure is a n.an'lral representation for a large-vocabulary lexicon, as “’agg

search ; thcan c sh?red to EIIImllnate redundant acoustic evaluations. The lexic_al tree-bas
18 thus essential for building a real-time' large-vocabulary speech recognizer.

)

The term real-ime od-
) > means th : :nce the dec
ing process ¢ decoding process takes no longer than the duration of the speech. S'ln;::swmuneou

can take place as soq
8 n - 1
fesponses after speakers finish, talkin:s the speech starts, such a real-time decoder can provide rea
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Figure 13.1 An example of a lexical tree, where each branch corresponds to a shared phoneme
and the leaf corresponds to a word.

Figure 13.1 shows an example of such a lexical tree, where common beginning pho-
nemes are shared. Each leaf corresponds to a word in the vocabulary. Please note that an
extra nulf arc is used to form the leaf node for each word. This null arc has the following
two functions:

1. When the pronunciation transcription of a word is a prefix of other ones, the
null arc can function as one branch to end the word.

2. When there are homophones in the lexicor, the null arcs can function as lin-
guistic branches to represent different words such as two and ro.

The advantage of using such a lexical tree representation is obvious: it can effectively
educe the state search space of the trellis. Ney et al. [32] reported that a lexical tree repre-
eniation of a 12,306-word lexicon with only 43,000 phoneme arcs had a saving of a factor
of 2.5 over the linear lexicon with 100,800 phoneme arcs. Lexical trees are also referred 10
B prefix trees, since they are efficient representations of lexicons with sharing among lexi-
€@l enries that have a common prefix. Table 13.1 shows the distribution of phoneme arcs for
:hr::s 12,306-word texical tree. As one can see, even in the fifth levsal the number of phoneme

*15 only about one-third of the total number of words in the lexicon.

. 06-
:Zﬂe 1?.1 Distribution of the tree phoneme arcs and active tree phoneme arc fora 12,3
lexicon using a lexical tree representation [32].

Level

Phoneme arcs 28 331 | 1511

A .
—etveaes (23 |33 | 489
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The saving by using a lexical tree is substantial, because it not only results in cong;g.
erable memory saving for representing state-search space but also saves tr 'emt?ndous time by
searching far fewer potential paths. Ney et al. [32] report lha't a tree o'rgamzauol? of the lexi-
con reduces the total search effort by a factor of 7 over the linear lexicon organization, Thig

‘is because the lion’s share of hypotheses during a typical large-vocabulary search is on the
first and second phonemes of a word. Haeb-Umbach et al. [23] report that for a 12,306-word
dictation task, 79% and 16% of the state hypotheses are in the first and second phonemes,
when analyzing the distribution of the state hypotheses over the state position within a word,
Obviously, the effect is caused by the ambiguities at the word boundaries. The lexical tree
representation reduces that effort by evaluating common phonetic prefixes only once. Table
13.1 also shows the average number of active phoneme arcs in the layers of the lexical tree
[32]. Based on this table, you can expect that the overall search cost is far less than the size
of the vocabulary. This is the key reason why lexical tree search is widely used for large-
vocabulary continuous speech recognition systems.

The lexical tree search requires a sophisticated implementation because of a funda-
mental deficiency—a branch in a lexical tree representation does not correspond 10 a single
word with the exception of branches ending in a leaf. This deficiency translates to the fact
that a unique word identity is not determined until a leaf of the tree is reached. This means
that any decision about the word identity needs to be delayed until the leaf node is reached,
which results in the following complexities.

¢ Unlike a linear lexicon, where the language model score can be applied when
starting the acoustic search of a new word, the lexical tree representation has
to delay the application of the language model probability until the leaf is
reached. This may result in an increased search effort, because the pruning
needs to be done on a less reliable measure, unless a factored language model
is used, as discussed in Section 13.1.3.

e Because of the delay of language mode} contribution by one word, we need to

ﬁeep a separate copy of an entire lexical tree for each unique language model
istory.

13.1.2.  Multiple Copies of Pronunciation Trees

3 : ]:;E ::i:)emclal. tree is sufficient if no language model or a unigram is used. This is because
models th: ;iln time t depends on the current word only. However, for higher—f)rder n-gl'afﬁ
languag’e modelglsl:;ttlc lS:tate cannot be determined locally. A tree copy is required for ;?l::'s
04y seem (o be o e ;r bigrams, a tree copy is required for each predecessor word. abl;—
lary size. Fortunateloms ing, because the potential search space is increased by th'e voc .
quired, because effi Y» €xp erimental results show only a small number of tree COpies am:;Z]
report that the Icient prun.mg can eliminate most of the unneeded ones. Ney €t a]j [
search effort using bigrams is increased by only a factor of 2 over the unigra™
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case. In general, when more detailed (better) acoustic and/or language models are used, the

effect of a potentially increased search space is often compensated by a more focused b
sarch from the use qf more accurate models. In other words, although the st:tis eanl:
space might increase sngmﬁf:amly by using more accurate models, the dynamic search Zea;:::e
can be under control (sometimes even smaller), thanks to improved evaluation functionsp

To deal with tree copies [19, 23, 37), you can create redundant subtrees. When cg ies
of lexical trees are used to disambiguate active linguistic contexts, many of tl-me active sIl)ate
hypotheses comrespond to the same redundant unigram state. due to the postponed applica-
tion of language models. To apply the language model sooner, and to eliminate redundant
ynigram state computations, a successor tree, T, can be created for each linguistic context /.
T encodes the nonzero n-grams of the linguistic context i as an isomorphic subgraph of the
unigram tree, T, Figure 13.2 shows the organization of such successor trees and unigram
wree for bigram search. For each word w a successor tree, T, is created with the sel of suc-
cessor words that have nonzero bigram probabilities. Suppose w is a successor of w: the bi-
gram probability P(t | w) is attached to the transition connecting the leaf corresponding to u
in the successor tree T, with the root of the successor tree T,. The unigram tree is a full-
size lexical tree and is shared by all words as the back-off lexical tree. Each leaf of the uni-
gram tree corresponds to one of IVl words in the vocabulary and is linked to the root of its
bigram successor tree (7, ) by an arc with the corresponding unigram probability P(u}. The
backoff weight, ¢r(w) , of predecessor u is attached to the arc which links the root of succes-
sortree T, to the root of the unigram tree.

bigram successor
trees

unigram tree

. i search {13].
Figure 13.2 Successor trees and unigram trees for bigram
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A careful search organization is required to avoid computational overhegd and to
guarantee a linear time complexity for exploring state hypotheses. In the following sections
we describe techniques to achieve efficient lexical tree recognizers. These technigues -
clude factorization of language model probabilities, tree optimization, and exploiting subiree
dominance.

13.1.3.  Factored Language Probabilities

As mentioned in Section 13.1.2, search is more efficient if a detailed knowledge source can
be applied at an early stage. The idea of factoring the language model probabilities across
the tree is one such example [4, 19]). When more than one word shares a phoneme arc, the
upper bound of their probability can be associated to that arc.” The factorization can be ap-
plied to both the full lexical tree (unigram) and successor trees (bigram or other higher-order
language models).

An unfactored tree only has language model probabilities attached to the leaf nodes,
and all the internal nodes have probability 1.0. The procedure for factoring the probabilities
across the tree computes the maximum of each node n in the tree according to Eq. (13.1).
The tree can then be factored according to Eq. (13.2) so when you traverse the tree you can
multiply F(n) along the path to get the needed language probability.

P(n)= max P(x) (13.1)

xechild(m)

F'(,,)-__f.:(_"_)_

- (132)
P (parent(n))

An illustration of the factored probabilities is shown in Table 13.2. Using this lexicon,
we create the tree depicted in Figure 13.3(a). In this figure the unlabeled intemnal nodes have
a probability of 1.0. We distribute the probabilities according to Eq. (13.1) in Figure 13.3(),
which is factored according to Eq. (13.2), resulting in Figure 13.3(c).

Table 13.2 Sample probabilities P(w,)and their pseudoword pronunciations [4].

w, Pronunciation P(w)
w, [/abc/ 0.1
w, labc/ 0.4
w, lacz/ 0.3
w, | /de/ 0.2

] . . . osen
I Tehe choice of upper bound is because it is an admissible estimate of the path no matter which word will be ¢h
ater,
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(b) ©

Figure 13.3 (a) Unfactored lexical tree; (b) distributed probabilities with computed P'(n);
(c) factored tree F'(m) [4).

Using the upper bounds in the factoring algorithm is not an approximation, since the
correct language model probabilities are calculated by the product of values traversed along
each path from the root to the leaves. However, you should note that the probabilities of alt
the branches of a node do not sum to one. This can solved by replacing the upper-bound
{max) function in Eq. (13.1) with the sum.

Pn)= ;m )P(x) (13.3)

To guarantee that all the branches sum to one, Eq. (13.2) should also be replaced by
the following equation:

Fin) =t (™ e (13.4)

x& child{ pareni ()}

sing sum instead of up-

A . . ST robabilities by u )
new illustration of the distribution of LM p own that the factoring

Per bound js shown in Figure 13.4. Experimental results have sh
method with either sum or upper bound has comparable search performance.

(c)
(b)

. . corresponding {a) un-
E'G“l‘e 13.4 Using sum instead of upper bound when factonngd";":'(%e; © faglol'ed tree with
actored lexical tree; (b) distributed probabililies with compute

mputed F* (1) {4).
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One interesting observation is that the language model score can be regarded as a hey.-
ristic function to estimate the linguistic expectation of the current word to be searched. In a
linear representation of the pronunciation lexicon, application of the linguistic expectation
was straightforward, since each state is associated with a unique word. Therefore, given the
context defined by the hypothesis under consideration, the expectation for the first phone of
word w, is just P(w, | w{™') . After the first phone, the expectation for the rest of the phones
becomes 1.0, since there is only one possible phone sequence when searching the word w, .
However, for the tree lexicon, it is necessary to compute E(p, | p/™,w/™"), the expectation
of phone p; given the phonetic prefix p;™ and the linguistic context w{™. Let  ¢(j,w,)
denote the phonetic prefix of length j for w, . Based on Egs. (13.1) and (13.2), we can com-
pute the expectation as:

9 - P(wclw")
E(p, i pi™ W™ =—P(w—_"T

2 | W

(13.5)

where ¢ =argmax(w, | w,",0(j,w,) = p) and p =argmax(w, lw;”,¢(j—Lw,)=p/™"). Based
on Eq. (13.5), an arbitrary n-gram model or even a stochastic context-free grammar can be
factored accordingly.

13.1.3.1. Efficient Memory Organization of Factored Lexical Trees

A major drawback to the use of successor trees is the large memory overhead required to
store the additional information that encodes the structure of the tree and the factored lin-
guistic probabilities. For example, the 5.02 million bigrams in the 1994 NABN (North
American Business News) model require 18.2 million nodes. Given a compact binary tree
representation that uses 4 bytes of memory per node, 72.8 million bytes are required to store
the predecessor-dependent lexical trees. Furthermore, this tree representation is not as ame-
nable to data compression techniques as the linear bigram representation.

The factored probability of successor trees can be encoded as efficiently as the n-gram
mode! based on Algorithm 13.1, i.e., one #-gram record results in one constant-sized record.
Step 3 is illustrated in Figure 13.5(b), where the heavy line ends at the most recently visited
node that is not a direct ancestor. The encoding result ts shown in Table 13.3.

ALGORITHM 13.1: ENCODING THE LEXICAL SUCCESSOR TREES (LST)

For each linguistic context:

Step 1: Distribute the probabilities according to Eq. (13.1).

Step 2: Factor the probabilities according to Eq. (13.2).

Step 3: Perform a depth-first traversal of the ST and encode each leaf record,
(a) the depth of the most recently visited node that is not a direct ancesor,
(b) the probability of the direct ancestor at the depthin (a),
(c) the word identity.
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() (b)
Figure 13.5 (a) Factored tree; (b) tree with common prefix-length annotation.

Clearly the new data structure meets the requirements set forth, and, in fact, it only re-
quices additional log(n) bits per record (n is the depth of the tree). These bits encode the
common prefix length for each word. Naturally this requires some modification to the de-
coding procedure. In particular, the decoder must scan a portion of the n-gram successor list
in order to determine which tree nodes should be activated. Depending on the structure of
the tree (which is determined by the acoustic model, the lexicon, and language model), the
Iree structure can be interpreted at runtime or cached for rapid access if memory is available.

Table 13.3 Encoded successor lexical tree; each record corresponds to one augmented factored
n-gram.

w, | Depth F'(w)
w, |0 0.4
w, |4 0.25
w, |2 0.75
W, 1 0.5

B14. Optimization of Lexical Trees

We now investigate ways to handle the huge search network formed by tr'ne multiple ctc:lpxlcl:s
W lexical trees i different linguistic contexts. The factorization of lexical trees ac :I BZ
mak?S. It easier to search. First, after the factorization of the language model, gzill;‘;ecause
@nsitions shown in Figure 13.2 no longer have the language model scores ana'?nuslrated in
ey are already applied completely before leaving the leaves. Moreover, as 1

ssociated

Zliusr: - Sany ansitions toward the end of 2 single-wofdlpzti‘hf;?‘:;l::zoﬁ; be many
L s . . : i

d“plic;:: dpmbab"'fy that is equal to 1. This observation impile e merged to save

. e

. Subtrees in the network. Those duplicated subtrees can tshtat
g Pace and computation by eliminating redundant (um.lecess?ry') i
g, this saving is based on the dynamic programming principle,

o Potentia] error,

e evaluation. Unlike
without introducing
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13.1.4.1.  Optimization of Finite State Network

One way to compress the lexical tree network is to use a similar algorithm for Optimizing (he
number of states in a deterministic finite state automaton. The optimization algorithm s
based on the indistinguishable property of states in a finite state automaton. Suppose thg
and s, are the initial states for automata 7j and 7,. then s, and s, are said to be indistinl-
guishable if the languages accepted by automata T, and T, are exactly the same. If we con-
sider our lexical tree network as a finite state automaton, the symbol emitted from the
transition arc includes not only the phoneme identity, but also the factorized language mode|
probability.

The general set-partitioning algorithm [1] can be used for the reduction of finite state
automata, The algorithm starts with an initial partition of the automaton states and iteratively
refines the partition so that two states 5, and s, are put in the same block B, if and only if
f(s,) and f(s,) are both in the same block B, . For our purpose, f{(s;} and f(s,) canbe
defined as the destination state given a phone symbol (in the factored trees, the pair <phone,
LM-probability> can be used). Each time a block is partitioned, the smaller subblock is used
for further partitioning. The algorithm stops when all the states that transit to some state ina
particular block with arcs labeled with the same symbol are in the same block. When the
algorithm halts, each block of the resulting partition is composed of indistinguishable states,
and those states within each block can then be merged. The algorithm is guaranteed to find
the automaton with the minimum number of states. The algorithm has a time complexity of
O(MN log N), where M is the maximum number of branching (fan-out) factors in the lexi-
cal tree and N is the number of states in the original tree network.

Although the above algorithm can give optimal finite state networks in terms of num-
ber of states, such an optimized network may be difficult to maintain, because the original
lexical tree structure could be destroyed and it may be troublesome to add any new word
into the tree network [1].

13.1.4.2. Subtree Isomorphism

The finite state optimization algorithm described above does not take advantage of the tre¢
structure of the finite state network, though it generates a network with a ﬂﬂ“im"m. nurber
of states. Since our finite state network is a network of trees, the indistinguishability RmP;
erty is actually the same as the definition of subtree isomorphism. Two subtrees ar¢ said t‘
be isomorphic to each other if they can be made equivalent by permuting the succes§0fl;-eir
should be straightforward to prove that two states are indistinguishable, if and only if
subtrees are isomorphic. ic, For
There are efficient algorithms [1] to detect whether two subtrees are isomorphic: Me
?ll possible pairs of states u and v, if the subtrees starting at u and v, ST(x) and ST(V);)dCS
1somorphic, v is merged into u and ST(v) can be eliminated. Note that only intennal "

. , i algo-
need to be considered for subtree isomorphism check. The time complexity for this £5
rithm is O(N*) [1].
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(3143, Sharing Tails

A linear rail in a lexical tree. is defined as a subpath ending in a leaf and
yith a unique SUCCESSOr. Itis oft_e.n referred as a single-word subpath. 1t can be proved th
such a linear tail has unit pr_o.bablllty attached to its arcs according to Eqs. (13 l)i od (Ht,)at
This is because LM probability factorization pushes Jornvard the LM probabi.lil tach -d.-).
ihe last arc of the linear tail, leaving arcs with unit probability. Since all the tailsycorres eonctl0
ing to the same word w in different successor trees are linked to the root of successoz trec:,
7. the subtree starting from the first state of each linear tait is isomorphic to the subtree
starting from one of the states forming the longest linear tail of w. A simple algorithm to
uke advantage of this share-tail topology can be employed to reduce the lexical tree net-
work.

Figure 13.6 and Figure 13.7 show a lexical tree network before and after shared-1ail
opiimization. For each word, only the longest linear tail is kept. All other tails can be re-
moved by linking them to an appropriate state in the longest tail, as shown in Figure 13.7.

Shared-tail optimization is not global optimization, because it considers only some
special topology optimization. However, there are some advantages associated with shared-
tail optimization. First, in practice, duplicated linear tails account for most of the redundancy
in lexical tree networks [12]. Moreover, shared-tail optimization has a nice property of
mainining the basic lexical tree structure for the optimized tree network.

going through states

T,=¢{
Ty= {
7. ={
us=Jab]
Yy = lacd/
2= /ace]

12]. The

timization
P and

Fi i "
vlgu“* 13.6 An example of a lexical tree network without shared .t:uI Osor wrees for i, ¥
Wabulary includes three words, u, v, and 2. T, T,» and T, are the succes

< TeSpectively (13).

\

!we \\‘—_

T . o
bigram is used in the discussion of “sharing tails.
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lexicon linear successor
tree transcriptions trees

Figure 13.7 The lexical tree network in Figure 13.6 after shared-tail optimization {12].

13.1.5. Exploiting Subtree Polymorphism
The techniques of optimizing the network of successor lexical trees can only eliminate iden-
tical subtrees in the network. However, there are still many subtrees that have the same
nodes and topology but with different language model scores attached to the arcs. Thf‘-
acoustic evaluation for those subtrees is unnecessarily duplicated. In this section we exploit
subtree dominance for additional saving.
A subtree instance is dominated when the best outcome in that subtree is not better
than the worst outcome in another instance of that subtree. The evaluation becomes mdun;
dant for the dominated subtree instance. Subtree isomorphism and shared-tail are casgs Ud
subtree dominance, but they require prearrangement of the lexical tree network as descr be
in the previous section. oo pion gl
If we need to implement lexical tree search dynamically, the network ophmxzat}(’_“ ax
gorithms are not suitable. Although subtree dominance can be computed using ml-mm
search [35] during runtime, this requires that information regarding subtree isomOTPh‘SH;( is
available for all corresponding pairs of states for each successor tree T, - Unfortunalel)
not practical in terms of either computation or space. .
_ In place of computing strict subtree dominance, a pelymorphic linguis o
Si gnment to reduce redundancy is employed by estimating subtree domina:!ce based[ asSigh”
information and ignoring the subgraph isomorphism problem. Polymorphic contex o
ment involves keeping a single copy of the lexical tree and allowing each state 19 assis that i
linguistic context of the most promising history. The advantage of this approac the reé i
employs maximum sharing of data structures and information, sO each node 11



cient Manipulation of a Tree Lexicon

EfMi 657

juated, at most, once. However, the use of local know i i
z;:lext could inuoc}uce significant errors because of premallic:fz:t?n‘ij:gtenwnllﬂ: ?re[:]ommam
4 65.7% increase In error rate when only the dominant context is I;ept bg.sed or:efonsl
knowledge. ' .

To recover the errors created by using local linguistic information to estimaie subtr
Jominance, you need to delay the decision regarding which linguistic context is most ro::
ising. This can be done by keeping a heap of contexts at each node in the tree Thephea
maintains all contexts (linguistic paths) whose probabilities are within a constan't lhresholg
¢, of that of the best global path. The effect of the ¢ -heap is that more contexts are retained
for high-probability states in the lexical tree. The pseudocode fragment in Algorithm 13.2
{3} illustrates a transition from state s, in context ¢ to state s, . The terminology used in
Algorithm 13.2 is listed as follows:

o (-logP(s, |s,,c)) is the cost associated with applying acoustic model
matching and language model probability of state s, transited from s, in
context c.

o InHeap(s,,c) is true if context ¢ is in the heap corresponding to state s,,.

o Costi(s,,c) is the cost for context ¢ in state s,,.

o Statelnfo(s,,c) is the auxiliary state information associated with context ¢ in
state s_ .

s Add(s,,c) adds context c to the state s, heap.

o Delete(s_,c) deletes context ¢ from state s,, heap.

WorstContext(s,,) retrieves the worst context from the heap of state s,,.

ALGORITHM 13.2: HANDLING MULTIPLE LINGUISTIC CONTEXTS
INA LEXICAL TREE

1. d=Cost(s,,c) + (~log P(s,, | 5,,¢))
21t InHeap(s,,c) then
it d < Cost(s,,,c) then
Cost(s_,c)=d
Statelnfo(s,, ,c) = Statelnfo(s,,c)
¥seil d < BestCost (s, ) +¢ then
Add(s,,c); Statelnfo(s,,,c) = Statelnfo(s,€)
Cost(s_,c)=d
else
w=WorstContext(s,)
fd< Cost(s,,,w) then
Delete(s,_, w)
Add(s. ,¢); Statelnfo(s,,,c) = Statelnfo(s,»¢)

\35’(5. pc) =d /—/——_-
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' When higher-order n-gram is used for lexical tree search, the potential heap size for
lex1cal. tree nodes (some also refer to prefix nodes) could be unmanageable. With decent
acoustic models and efficient pruning, as illustrated in Algorithm 13.2, the average heap size
for active nodes in the lexical tree is actually very modest. For example, Whisper’s average
heap size for active nodes in the 20,000-word WSJ lexical tree decoder is only about 1.6 [3.

13.1.6.  Context-Dependent Units and Inter-Word Triphones

So far, we have implicitly assumed that context-independent models are used in the lexical
tree search. When context-dependent phonetic or subphonetic models, as discussed in Chap-
ter 9, are used for better acoustic models, the construction and use of a lexical tree become
more complicated.

Since senones represent both subphonetic and context-dependent acoustic models, this
presents additional difficulty for use in lexical trees. Let's assume that a three-state context-
dependent HMM is formed from three senones, one for each state. Each senone is context-
dependent and can be shared by different allophones. If we use allophones as the units for
lexical tree, the sharing may be poor and fan-out unmanageable. Fortunately, each HMM is
uniquely identified by the sequence of senones used to form the HMM. In this way, different
context-dependent allophones that share the same senone sequence can be treated as the
same. This is especially important for lexical tree search, since it reduces the order of the
fan-out in the tree.

Interword triphones that require significant fan-ins for the first phone of a word and
fan-outs for the last phones usually present an implementation challenge for large-
vocabulary speech recognition. A common approach is to delay full interword modeling
until a subsequent rescoring phase.’ Given a sufficiently rich lattice or word graph, this is a
reasonable approach, because the static state space in the successive search has been reduced
significantly. However, as pointed out in Section 13.1.2, the size of the dynamic state space
can remain under control when detailed models are used to allow effective pruning. In addi-
tion, a multipass search requires an augmented set of acoustic models to effectively model
the biphone contexts used at word boundaries for the first pass. Therefore, it might be desir-
able to use genuine interword acoustic models in the single-pass search.

Instead of expanding all the fan-ins and fan-outs for inter-word context-dependent
phone units in the lexical tree, three metaunits are created.

1. The first metaunit, which has a known right context corresponding to the sec-
ond phone in the word, but uses open left context for the first phone of a
word (sometimes referred to as the word-initial unif). In this way, the fan-in

is represented as a subgraph shared by all words with the same initial left-
context-dependent phone.

* Multipass search strategy is described in Section 13.3.5.
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5. Another metaunit, which has a known left context corresponding to the sec-
ond-to-last phone of the word, but uses open right context for the fast phone
of a word (sometimes referred to as the word-final unir). Again, the fan-out is
represented as a subgraph shared by all words with the same final right-
context-dependent phone.

3, The third metaunit, which has both open left and right contexts, and is used
for single-phone word unit.

By using these metaunits we can keep the states for the lexical trees under control, because
the fan-in and fan-out are now represented as a single node.

During recognition, different left or right contexts within the same metaunit are han-
died using Algorithm 13.2, where the different acoustic contexts are treated similarly as dif-
ferent linguistic contexts. The open left-context metaunit (fan-ins) can be dealt with in a
straightforward way using Aglorithm 13.2, because the left context is always known (the last
phone of the previous word) when it is initiated. On the other hand, the open right-context
metaunit (fan-out) needs to explore all possible right contexts because the next word is not
known yet. To reduce unnecessary computation, fast match algorithms (described in Section
13.2.3) can be used to provide both expected acoustic and language scores for different con-
texi-dependent units to result in early pruning of unpromising contexts.

13.2. OTHER EFFICIENT SEARCH TECHNIQUES

Tree structured lexicon represents an efficient framework of manipulation of search space.
In this section we present some additional implementation techniques, which can be used to
futher improve the efficiency of search algorithms. Most of these techniques can be applied
o both Viterbi beam search and stack decoding. They are essential ingredients for a practi-
cal large-vocabulaxy continuous speech recognizer.

1321, Using Entire HMM as a State in Search

MM.-trellis computation is, by definition,
h recognizers. Even

the search is

The state ip state-search space based on H 2
lhﬁrkov State. Phonetic HMM models are the basic unit in most Speec
OUgh subphonetic HMMs, like senones, might be used for such a system,

often bye ;
d on phonetic HMM:s. search has many advantages. The

Treating the enti i in state-
K -41Ng the entire phonetic HMM as a state 10 8 ith is
S:;s‘l;!bvmus advantage is that the number of states the search program needs :}c’) dﬁzlm“gler of
°er. Note that using the entire phonetic HMM does not in effect reduce the

ithi netic
he search, The entire search space is unchanged. All the. states wtxtil'll:l:h E:: %:Zm, i
e hare Now bundled together. This means that all of them aré either kep o rany given
o the . TINiMUM cost among all the states within the phonetic : e the promising

" phonetic HMM. For pruning purposes, this cost s used to determi

SlaIES in t
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degree of this phonetic HMM, i.e., the fate of all the states within ll:liS p!lonetic HMM. Al
though this does not actually reduce the beam beyond n.onna] pruning, it has the effect of
processing fewer candidates in the beam. In programming, this means less checking and
bookkeeping, so some computation savings can pe expe?ted. .

You might wonder if this organization might be meffectwe for beam sez.lrch, since it
forces you to keep or prune all the states within a phonetic HMM. In. theory, it is possible
that only one or two states in the phonetic HMM need to be kept, wl.uJe other states can be
pruned due to high cost score. However, this is, in reality, very rare, since a phone is a small
unit and all the states within a phonetic HMM should be relatively promising when the
search is near the acoustic region corresponding to the phone.

During the trellis computation, all the phonetic HMM states need to advance one time
step when processing one input vector. By performing HMM computation for all states to-
gether, the new organization can reduce memory accesses and improve cache locality, since
the output and transition probabilities are held in common by all states. Combining this or-
ganization strategy with lexical tree search further enhances the efficiency. In lexical tree
search, each hypothesis in the beam is associated with a particular node in the lexical tree.
These hypotheses are linked together in the heap structure described in Algorithm 13.2 for
the purposes of efficient evaluation and heuristic pruning. Since the node corresponds to a
phonetic HMM, the HMM evaluation is guaranteed to execute once for each hypothesis
sharing this node.

In summary, treating the entire phonetic HMM as a state in state-search space allows
you to explore the effective data structure for better sharing and improved memory locality.

13.2.2. Different Layers of Beams

Because of the complexity of search, it often requires pruning of various levels of search to
make searf:IT feasible. Most systems thus employ different pruning thresholds to control what
states participate, The most frequently used thresholds are listed below:

® 7, controls what states (either phone states or senone states) to retain. This is
the most fundamental beam threshold.

® 1, controls whether the next phone is extended. Although this might not be
necessary for both stack decoding and linear Viterbi beam search, it is crucial
fOr'le}Hcal tree search, because pruning unpromising phonetic prefixes in the
lexical trees could improve search efficiency significantly.

® % controls whether hypotheses are extended for the next word, Since the
pra{mchmg factor for word boundaries is very large, we need this threshold to
limit search to only the promising ones.

[ ] : [ . .
7. controls where a linguistic context is created in a lexical tree search using

lllgg;er—order language models. This is also known as ¢ -heap in Algorithm
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Pruning can introdtfce .seurch errors if a state is pruned tha would have b

globally best patl}. The pr1nc1p_le applied here is that the more constraints you hfw: 23391" b(:'ne
e more aggressively you decide whether this path will participate in the globally best nurr
[n this case, at the state level, you have the least constraints. At the phonetic levgl the path.
more, and there are the most at the word level. In general, the number of word h otrhe s
(ends to 4rop significantly at word boundauries. Different thresholds for different le\?é)ls aﬁze‘:
the search designer to fine-tune those thresholds for their tasks to achieve best search
performance without significant increase in error rates.

132.3. Fast Match

As described in Chapter 12, fast match is a crucial part of stack decoding, which mainly
reduces the number of possible word expansions for each path. Similarly, fast match can be
applied to the most expensive part—extending the phone HMM fan-outs within or between
lexical trees. Fast match is a method for rapidly deriving a list of candidates that constrain
successive search phases in which a computationally expensive detailed match is performed.
In this sense, fast match can be regarded as an additional pruning threshold to meet before a
new word/phone can be started.

Fast match is typically characterized by the approximations that are made in the acous-
ticlanguage models to reduce computation. The factorization of language model scores
among tree branches in lexical trees described in Section 13.1.3 can be viewed as fast match
using a language model. The factorized method is also an admissible estimate of the lan-
guage model scores for the future word. In this section we focus on acoustic model! fast
match,

13231, Look-Ahead Strategy

- - tegy.
Fast match, when applied in time-synchronous search, is also called éOOLfa:;(;i fg?ietg-
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© o words or phones are likely o extend. Typ 'yn with another specialized beam

“nd the fast match is al ne in time-synchronous fashio )
o efficient Pruning, Yzz gz?n also use si{npliﬁed models, like th'e one-s_tateli}f{MtI;iS l:/ glogf
tindependent models [4, 32]. Some systems [21, 22] have tried (0 S":pr ai’nes nto One.
details ip the input feature v,ecto;s by aggregating infonnatiOP from :sever romer e of

“sightforward way for compressing the feature strearm 1 © skip Ever)i{n computation
eech for fagy match. This allows a longer-range look-ahead, while ee:pd if o itying
Undep Contro]. The api)roach of simplifying the input featu.re streamhmstea

" #40UStic models can reuse the fast match results for qe[aﬂe‘d Tfrlge search, in which prun-
isper [4] uses phoneme Jook-ahead fast match 1n 1§x1ca one fan-outs that may fol-
Plied based on the estimation of the score of possible p

ing iS al )
: ly with the
. onously
o BIVen phone, A context-independent phone-net is searched synchr
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search process but offset N frames into the future. In practice, significant savings can be
obtained in search efforts without increase in error rates.

The performance of word and phoneme look-ahead clearly depends on the length of
the look-ahead frames. In general, the larger the look-ahead window, the longer is the com-

on and the shorter the word/phone A list. Empirically, the window is a few tens of

utati Iy,
p d and a few hundreds of milliseconds for word look-ahead.

milliseconds for phone look-ahea

13.2.3.2. The Rich-Get-Richer Strategy

For systems employing continuous-density HMMs, tens of mixtures of Gaussians are often
used for the output probability distribution for each state. The computation of the mixtures is
one of the bottlenecks when many context-dependent models are used. For example, Whis-
per uses about 120,000 Gaussians. In addition to using various beam pruning thresholds in
the search, there could be significant savings if we have a strategy to limit the number of
Gaussians to be computed.

The Rich-Get-Richer (RGR) strategy enables us to focus on most promising paths and
treat them with detailed acoustic evaluations and relaxed path-pruning thresholds. On the
contrary, the less promising paths are extended with less expensive acoustic evaluations and
less forgiving path-pruning thresholds. In this way, locally optimal candidates continue to
receive the maximum attention while less optimal candidates are retained but evaluated us-
ing less precise (computiationally expensive) acoustic and/or linguistic models. The RGR
strategy gives us finer control in the creation of new paths that has potential to grow expo-
nentially.

RGR is used to control the level of acoustic details in the search. The goal is to reduce
the number of context-dependent senone probability (Gaussian) computations required. The
context-dependent senones associated with a phone instance p would be evaluated according
to the following condition:

Min [ci( p)] * a+LookAhead [cz‘( p)] < threshold
where Min|ci( p)]= min {cost(s)|s€ ci_ phone( »} (13.6)
and  Lookdhead ci( p)]=look-ahead estimate of ci( p)

These cor?ditions state that the context-dependent senones associated with p should be
evaluated if there exists a state s corresponding to p, whose cost in linear combination with 2
;o]c;k-a‘he.ad cost score corresponding to p falls within a threshold. In the event that p does not
t:xt-‘;’r:(ti}:;e::ji ltll;lrtashold, the senone scores corresponding to p are estimated using the con-
evaluated only ifs:,: ones corresponding to p. :I'his means the context-dependent senones aré
showing promise RZEOITESpOndmg COmCXt-Jr.ldependem senones and the look-ahead start
promising, pathe -Whis strategy should save significant senone computation for clear]y. unc;
without introd - YYhsper [26] reports that 80% of senone computation can be avoide
oducing significant errors for a 20,000-word WSJ dictation task.



— :
_pest and Muitipass Search Strategies
N-best _ 663

{33. N-BEST AND MULTIPASS SEARCH STRATEGIES

[geally, @ search algorithm should consider all possible hypotheses based on a unified prob
abilistic framework that integraies all knowledge sources (KSs)." These KSs such as alc)oz i
ic models. language models, and lexical pronunciation models, can be i,nlegrated in :n
HMM state search framework. It is desirable to use the most detaited models, such as con-
iext-dependent models, interword context-dependent models, and high-order n-grams, in the
search as early as possible. When the explored search space becomes unmanageable,'due o
e increasing size of vocabulary or highly sophisticated KSs, search might be infeasible to
implement.

As we develop more powerful techniques, the complexity of models tends to increase
dramatically. For example, language understanding models in Chapter 17 require long-
distance relationships. In addition, many of these techniques are not operating in a left-to-
nght manner. A possible alternative is to perform a multipass search and apply several KSs
at different stages, in the proper order to constrain the search progressively. In the initial
pass, the most discriminant and computationally affordable KSs are used to reduce the num-
ber of hypotheses. In subsequent passes, progressively reduced sets of hypotheses are exam-
ined, and more powerful and expensive KSs are then used until the optimal solution is
found.

The early passes of multipass search can be considered fast match that eliminates
those unlikely hypotheses. Multipass search is, in general, not admissible because the opti-
mal word sequence could be wrongly pruned prematurely, due to the fact that not aJl. KSs are
used in the earlier passes. However, for complicated tasks, the benefits of t':Oumaﬂon com-
plexily reduction usually outweigh the nonadmissibility. In practice, multipass search strat-
egy using progressive KSs could generate better results than a search algorithm forced to use
less powerful models due to computation and memory constraints. b oara-

~ The most straightforward multipass search strategy is the so-called n-best searc g re-
digm. The idea is to use affordable KSs to first produce a list of n most Probable “('jor ls .
duences in a reasonable time. Then these n hypotheses are rescored using more fet:tlh er
models to obtain the likely word sequence. The idea of the n-best list can be u e

. most likely wo q ion—namely word lattice or
Xetded 0 create a more compact hypotheses representation— hypotheses. N-best or
Ig::::iz SA word lattice is 2 more efficient way to represent alslc:c:calt::co)gr)lition systems (20,

u“ carch is used for many large-vocabulary continuous sp

»

the n-best list and word lattice. Sev-

In this sect: ) . .
section we describe the representation O .
: aftice are discussed.

[+ .
il algorithms to generate such an n-best-list of word |

— d networl of various

'In i an inegrate
the fielg o artificial inteiligence, the process of performing scarch throvgh
Wledge 5o gence.

TCes is called constraint satisfuction.
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13.3.1.  N-best Lists and Word Lattices

Table 13.4 shows an example n-best (10-best) list generated for a North American Business
(NAB) sentence. N-best search framework is effective only for n of the order of tens or hun-
dreds. If the short n-best list that is generated by using less optimal models does not include
the correct word sequence, the successive rescoring phases have no chance to generate the
correct answer. Moreover, in a typical n-best list like the one shown in Table 13.4, many of
the different word sequences are just one-word variations of each other. This is not surpris-
ing, since similar word sequences should achieve similar scores. In general, the number of -
best hypotheses might grow exponentially with the length of the utterance. Word lattices and
word graphs are thus introduced to replace n-best list with a more compact representation of
alternative hypotheses.

Word lattices are composed by word hypotheses. Each word hypothesis is associated
with a score and an explicit time interval, Figure 13.8 shows an example of a word lattice
corresponding to the n-best list example in Table 13.4. It is clear that a word lattice is more
efficient representation. For example, suppose the spoken utterance contains 10 words and
there are 2 different word hypotheses for each word position. The n-best list would need to
have 2'° =1024 different sentences to include all the possible permutations, whereas the
word lattice requires only 20 different word hypotheses.

Word graphs, on the other hand, resemble finite state automata, in which arcs are la-
beled with words. Temporal constraints between words are implicitly embedded in the to-
pology. Figure 13.9 shows a word graph corresponding to the n-best list example in Table
13.4. Word graphs in general have an explicit specification of word connections that don't
allow overlaps or gaps along the time axis. Nonetheless, word lattices and graphs are simi-
lar, and we often use these terms interchangeably.® Since an n-best list can be treated as a
simple word lattice, word lattices are a more general representation of alternative hypothe-
ses. N-best lists or word lattices are generally evaluated on the following two parameters:

Table 13.4 An example 10-best list for a North American Business sentence.

I will tell you would I think in my office

I will tell you what I think in my office

I will tell you when I think in my office

I would sell you would I think in my office
I would sell you what I think in my office
1 would sell you when I think in my office
I will tell you would I think in my office

I will tell you why I think in my office

I will tell you what I think on my office

I Wilson you I think on my office

o I N

—

“ We will use the term word lattice in the rest of this chapter..
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o Density: In the n-best case, it is measured by how many alternative word se-
quences are kept in the n-best list. In the word lattice case, it is measured by
the number of word hypotheses or word arcs per utiered word. Obviously, we
want the density to be as small as possible for successive rescoring modules,
provided the correct word sequence is included in the n-best list or word lat-
tice.

o The lower bound word error rate: Tt is the lowest word error rate for any
word sequence in the n-best list or the word lattice.

| will tell you  what | think in my office
would sell when
Wilson _\_V_[IL
would

Figure 13.8 A word lattice example. Each word has an explicit time interval associated with it.

you

would

in my @O

. nstraints are
Figure 13.9 A worg graph example for the n-best list in Table 13.4. Temporal co

mplicit in the topology.
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Rescoring with highly similar n-best alternatives duplicates computation on common
parts. The compact representation of word lattices allows both data structure and computa-
tion sharing of the common parts among similar altemmative hypotheses, so it is generally
computationally less expensive to rescore the word lattice.

Figure 13.10 illustrates the general n-best/lattice search framework. Those KSs pro-
viding most constraints, at a lesser cost, are used first to generate the n-best list or word lat-
tice. The n-best list or word lattice is then passed to the rescoring module, which uses the
remaining KSs to select the optimal path. You should note that the n-best and word-lattice
generators sometimes involve several phases of search mechanisms to generate the n-best
list or word lattice. Therefore, the whole search framework in Figure 13.10 could involve
several (> 2) phases of search mechanism.

Does the compact n-best or word-lattice representation impose constraints on the
complexity of the acoustic and language models applied during successive rescoring mod-
ules? The word lattice can be expanded for higher-order language models and detailed con-
text-dependent models, like inter-word triphone models. For example, to use higher-order
language models for word lattice entails copying each word in the appropriate context of
preceding words (in the trigram case, the two immediately preceding words). To use inter-
word triphone models entails replacing the triphones for the beginning and ending phone of
each word with appropriate interword triphones. The expanded lattice can then be used with
detailed acoustic and language models. For example, Murveit et al. [30] report this can
achieve trigram search without exploring the enormous trigram search space.

o
Speech -~ N-Best list Results
—Pb N Best or —» Rescoring L ———p
Input Lattice Generator Word Lattice

Figure 13.10 N-best/attice search framework. The most discriminant and ine_x[_:;ensive knowl-
edge sources (KSs 1) are used first to generate the n-best/lattice. The remaining knowledge
sources (KSs 2, usually expensive to apply} =r= used in the rescoring phase to pick up the 0f-

timal solution [40].

13.3.2.  The Exact N-best Algorithm
Stack decoding is the choice of generating a-best candidates because of its best-first P“s“:;.
ple. We can keep it generating results until it finds n complete paths; these n complete best
tences form the n-best list. However, this algorithm usually cannot generate lhe' n el
candidates efficiently. The efficient n-best algorithm for time-synchronous Yl[el'bl se.me—
was first introduced by Schwartz and Chow [39]. It is a simple extension of uaths
synchronous Viterbi search. The fundamental idea is to maintain separate records for P
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with distinct histories. .The history is defined as the whole word sequence up to the current
ime t and word w. This exact n-best algorithm is also called sentence-dependent n-best al-
gorithm. When two or more path_s come to the same state at the same time, paths having the
same history are merged and their probabilities are summed together; otherwise, only the n-
pest paths are retained for each state. As commonly used in speech recognition, a typical
HMM state has 2 or 3 predecessor states within the word HMM. Thus, for each time frame
and each state, the n-best search algorithm needs to compare and merge 2 or 3 sets of 7 paths
into n new paths. At the end of the search, the n paths in the final state of the trellis are sim-
ply re-ordered to obtain the n-best word sequences.

This straightforward n-best algorithm can be proved to be admissible’ in normal cir-
cumslances [40]. The complexity of the algorithm is proportional to O(n), where n is the
number of paths kept at each state. This is often too slow for practical systems.

1333, Word-Dependent N-best and Word-Lattice Algorithm

Since many of the different entries in the n-best list are just one-word variations of each
other, as shown in Table 13.4, one efficient algorithm can be derived from the normal 1-best
Viterbi algorithm to generate the n-best hypotheses. The algorithm runs just like the normal
time-synchronous Viterbi algorithm for all within-word transitions. However for each time
frame 1, and each word-ending state, the algorithm stores all the different words that can end
at current time £ and their corresponding scores in a fraceback list. At the same time, the
store of the best hypothesis at each grammar state is passed forward, as in the normal time-
synchronous Viterbi search, This obviously requires almost no extra computation above the
normal time-synchronous Viterbi search. At the end of search, you can simply searc!t
trough the stored traceback list to get all the permutations of word sequences with their
tonesponding scores. If you use a simple threshold, the traceback can be implemented very
efficiently to only uncover the word sequences with accumulated cost scores below the
Ureshold, This algorithm is often referred as rraceback-based n-best algorithm [29, 42} be-
Cause of the use of the traceback list in the algorithm.

_ However, there is a serious problem associated wit
Miss some low-cost hypotheses. Figure 13.11 illustrates an

Preceded by two different words w, and w; in different ti _
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I ;
®ked, since the path has a different starting time for word #; -
Se—

N \‘—_-___
Mlht!u . H i ve near i
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Phl W
"__L._——- 2nd best path
[
3 /
Ph Can only keep ane
2 W, : s
i : path within 8 word so
N g this path Is lost,
/ ; i / 7
/ NEN /
/ X
- a—
~
Ph, best path w, >

time

Figure 13.11 Deficiency in traceback-based n-best algorithm. The best subpath, w;-w, , will
prune away subpath w,-w, while searching the word w, ; the second-best subpath cannot be

recovered [40].
Phl w 2nd best path with
"/ | different ending word
|
: ]
Ph; Preceding word is
f Y; different so both
/ : theories are kept,
- 1
Ph, best path
time ——

Figure 13.12 Word-dependent n-best algorithm. Both subpaths w, - w, and w;-, 2 kept

under the word-dependent assumption [40].
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The word-dependent n-best algorithm [3 .
back-baS?d n'_bCFt algorithm, in which only cEnz ]sfaax:inag"(:ivr:::e' t'll(e ceficioncy of the trace-
starting time 15 mdepgndent of the preceding words. On the ‘Sthepl for ea_ch word, so the
dependt?nt n-best-algo'nthm. the starting time for a word dep. endo er hand, in the sentence-
since different hlst.ones are kept separately. A good compro:nc')n a!l the preceding words,
dependent assurpptic?n: The starting time of a word depends onl ise is tha so-called word-
ing word. That is, given a word pair and its ending time, the by on the immediate preced-
words is independent of further predecessor words , oundary between these two

In the word-dependent assumption, the hi ‘ .
no longer the entire word sequence;pinstead, it il: tggyt?h:i;::;?:::f for a di.fferem path is
allows you to.keep'k (<< n) different records for each state and eact? tP receding vs.ford._This
::;c:]e l;:::l::sr:r:g tsllgrt;:ly from the exact n-best algorithm, a traceback nl'nn;:l f;:mer;-n Ve
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onable if the preceding word is long. The loss it entails is insignifica:: 6] ion is

1333.1. One-Pass N-best and Word-Lattice Algorithm

As prese; i i ;
cienplly u::f‘: 1: Lf::t]lg:‘ 13.1, one-pass Viterbi beam search can be implemented very effi-
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At the end of the utterance, the word lattice or n-best list is constructed by tracing back

all the permutations of word pairs recorded during the search. The algorithm is summarized
in Algorithm 13.3,

ALGORITHM 13.3: ONE-PASS PREDECESSOR-DEPENDENT LEXICAL TREE
SEARCH FOR N-BEST OR WORD-LATTICE CONSTRUCTION

Step1:For r=1.T,
1-best predecessor-dependent lexical tree search;
V(w;,w,) ending at/
record word-dependent crossing time (f;w,,w,);
record cumulative word score A(w ;T(f;w,,w;).1);

Step 2: Output 1-best result;
Step 3: Construct n-best or word-lattice by tracing back the word-pair records (7 and 4 ).

13.34. The Forward-Backward Search Algorithm

As described Chapter 12, the ability to predict how well the search fares in the future for the
remaining portion of the speech helps to reduce the search effort significantly. The one-pass
search strategy, in general, has very little chance of predicting the cost for the portion that it
has not seen. This difficulty can be alleviated by multipass search strategies. In successive
phases the search should be able to provide good estimates for the remaining paths, since the
entire utterance has been examined by the earlier passes. In this section we investigate a
special type of multipass search strategy—forward-backward search.

The idea is to first perform a forward search, during which partial forward scores
for each state can be stored. Then perform a second pass search backward—that is, the sec-
ond pass starts by taking the final frame of speech and searches its way back until it reaches
the start of the speech. During the backward search, the partial forward scores ¢ can be
used as an accurate estimate of the heuristic function or the fast match score for the remain-
ing path. Even though different KSs might be used in forward and backward phases, this
estimate is usually close to perfect, so the search effort for the backward phase can be sig-
nificantly reduced.

The forward search must be very fast and is generally a time-synchronous Viterbi
search. As in the multipass search strategy, simplified acoustic and language models are
often used in forward search. For backward search, either time-synchronous search or time-
asynchronous A* search can be employed to find the n-best word sequences or word lattice.
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1334.1. Forward-Backward Search

gtack decoding. as described in Chapter 12, is based on the admissible A*
complete hypothesis found with a cost below that of alj the hypotheses in
anteed to be the best word sequence. It is straightforward to extend stack
duce lht’: n-t'nest' hypotl_leses PY continuing to extend the partial hypotheses according to the
same A¥ criterion until »r different hypotheses are found. These different hypotheses are
destined to be the n-best hypotheses under a proof similar to that presented in Chapter l;
Therefore, stack decoding is a natural choice for producing the n-best hypotheses. B

However, as described in Chapter 12, the difficulty of finding a goad heuristic fune-
tion that can accurately under-estimate the remaining path has limited the use of stack de-
coding. Fortunately, this difficulty can be alleviated by tree-treliis forward-backward search
algorithms (41]. First, the search performs a time-synchronous forward search. At each time
frame 1, it records the score of the final state of each word ending. The set of words whose
final states are active (surviving in the beam) at time ¢ is denoted as A,. The score of the
final state of each word w in A, is denoted as ¢, (w), which represents the sum of the cost
of matching the utterance up to time 7 given the most likely word sequence ending with
word w and the cost of the language model score for that word sequence. At the end of the
forward search, the best cost is obtained and denoted as & .

After the forward pass is completed, the second search is run in reverse (backward),
i, considering the last frame T as the beginning one and the first frame as the final one.
Both the acoustic models and language models need to be reversed. The backward search is
based on A* search. At each time frame 7, the best path is removed from the stack and a list
of possible one-word extensions for that path is generated. Suppose this best path at time ¢ is
ph,’, where w , is the first word of this partial path (the last expanded during backward A*
search). The exit score of path ph, at time ¢, which now corresponds to the score of the
initial state of the word HMM w,, is denoted as [)',(ph..., ). )

Let us now assume we are concerned about the one-word extension of Wo o
path ph, . Remember that there are two fundamental issues for the implementation of A
Search aléorithm—(l) finding an effective and efficient heuristic function for estimating the

future remaining input feature stream and (2) finding the best crossing time between

W‘_ . )

_-~.The stored forward score @ can be used for solving both issues effectlvelyfa[lsli ft:)fefzt

“enlly. For each time 1, the sum o, (w,)+ B (ph) represents the cost score oms ooy

Complete path including word w, and partial path ph, - O (w) clearly repre§;3the ond of

80od heuristic estimate of the renflaining path from the start of the utterance unt; O e
©Word w,, because it is indeed the best score computed in the forward path for

. . be easily com-
Quantity, Moreover, the optimal crossing time ! between w, and w; can y

Puted by the following equation:

ro= arg’min [(X, (w)+5, (phw, ):|

search, so the first
the stack is guar-
decoding to pro-

f word w, for

w; and

(13.7)
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Finally, the new path pk', including the one-word (w, ) extension, is inserted into the stack,
ordered by the cost score a.(w)+ ﬁf.( ph, ). The heuristic function (forward scores cr)
allows the backward A* search to concentrate search on extending only a few truly promis-
ing paths.

As a matter of fact, if the same acoustic and language models are used in both the for-
ward and backward search, this heuristic estimate (forward scores « ) is indeed a perfect
estimate of the best score the extended path will achieve. The first complete hypothesis
generated by backward A* search coincides with the best one found in the time-synchronous
forward search and is truly the best hypothesis. Subsequent complete hypotheses correspond
sequentially to the n-best list, as they are generated in increasing order of cost. Under this
condition, the size of the stack in the backward A* search need only be N. Since the estimate
of future is exact, the (N +1)" path in the stack has no chance to become part of the n-best
list, Therefore, the backward search is executed very efficiently to obtain the n-best hy-
potheses without exploring many unpromising branches. Of course, tree-trellis forward-
backward search can also be used like most other multipass search strategies—inexpensive
KSs are used in the forward search to get an estimate of o, and more expensive KSs are
used in the backward A* search to generate the n-best list.

The same idea of using forward score ¢ can be applied to time-synchronous Viterbi
search in the backward search instead of backward A* search [7, 34]. For large-vocabulary
tasks, the backward search can run 2 to 3 orders of magnitude faster than a normal Viterbi
beamn search. To obtain the n-best list from time-synchronous forward-backward search, the
backward search can also be implemented in a similar way as a time-synchronous word-
dependent n-best search.

13.3.4.2. Word-Lattice Generation

The forward-backward n-best search algorithm can be easily modified to generate word lat-
tices instead of n-best lists. A forward time-synchronous Viterbi search is performed first to
compute «, (@), the score of each word @ ending at time ¢. At the end of the search, this
best score @' is also recorded to establish the global pruning threshold. Then, a backward
time-synchronous Viterbi search is performed to compute (@), the score of each word @
beginning at time 2. To decide whether to include word juncture @, -@; in the word lat-
tice/graph at time ¢, we can check whether the forward-backward score is below a global
pruning threshold. Specifically, supposed bigram probability P, |®,) is used, if

&(@)+f,(@,)+[-log P(@, | )| <o +6 (13.8)

where 8 is thfe pruning threshold, we will include @, — @, in the word lattice/graph at time
1. Once word juncture @, -, is kept, the search continues looking for the next word-pair,
where the first word @, will be the second word of the next word-pair.
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The above formulation is based on the assumption of using the same acoustic and lan-
unge models in Dot forward and backward search. If different KSs are used jn forward and
packward search, the normalized & and f scores should be used instead.

1335, One-Pass vs. Multipass Search

There are several real-time one-pass search engines [4, 5]. Is it necessary to build a multi-
s search engine based on n-best or word-lattice rescoring? We address this issue by dis-
cussing the disadvantages and advantages of multipass search strategies.

One criticism of multipass search strategies is that they are not suitable for real-time
applications. No matter how fast the first pass is, the successive (backward) passes cannot
start until users finish speaking. Thus, the search results need to be delayed for at least the
time required to execute the successive (backward) passes. This is why the successive passes
must be extremely fast in order to shorten the delay. Fortunately, it is possible to keep the
delays minimum (under one second) with clever implementation of multipass search algo-
rithms, as demonstrated by Nguyen et al. [18].

Another criticism for multipass search strategies is that each pass has the potential to
introduce inadmissible pruning, because decisions made in earlier passes are based on sim-
plified models (KSs). Search is a constraint-satisfaction problem. When a pruning decision
ineach search pass is made on a subset of constraints (KSs), pruning error is inevitable and
is unrecoverable by successive passes. However, inadmissible pruning, like beam pruning
and fast match, is often necessary to implement one-pass search in order to cope with the
large active search space caused jointly by complex KSs and large-vocabulary tasks. Thus,
the problem of inadmissibility is actually shared by both real-time one-pass search and mul-
lipass search for different reasons. Fortunately, in both cases, search errors can be‘reduced to
i minimum by clever implementation and by empirically designing all the pruning thresh-
olds carefully, as demonstrated in various one-pass and multipass systems [4, 5, 18].

Despite these concerns regarding multipass search strategies, they remain im :
“mponents i developing spoken language systems. We list here several important aspects:

incorporate very

portant

L It might be necessary to use multipass search strategies o :
€xpensive KSs. Higher-order n-gram, long-distance context-dependent mod-
¢ls, and natural language parsing are examples that make the‘searcr_l ls]pa!(;‘:
Unmanageable for one-pass search. Multipass search strategies mig tare
¢ompelling even for some small-vocabulary tasks. For example., tt3eretaSk
only a couple of million legal credit card numbers for the authentication o5k
of 16-digit credit card numbers. However, it is very expensive 10 lﬂcorp‘;uce
all the legal numbers explicitly in the recognition grammar. To ﬁrs(,jt :ierable
Seatch space down to an n-best list or word lattice/graph might be & d¢
approach,

 Multipags search strategies could be very compel
understanding systems. It is problematic to incorpora

ling for spoken language
te most natural language
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understanding technologies in one-pass search. On the other hand, n-best lists
or word lattices provide a trivial interface between speech recognition and
natural language understanding modules. Such an interface also provides a
convenient mechanism for integrating different KSs in a modular way. This is
important because the KSs could come from different modalities (like video
or pen) that make one-pass integration almost infeasible. This high degree of
modality allows different component subsystems to be optimized and imple-
mented independently.

3. N-best lists or word lattices are very powerful offline tools for developing
new algorithms for spoken language systems. It is often a significant task to
fully integrate new modeling techniques, such as segment models, into a one-
pass search. The complexity could sometimes slow down the progress of the
development of such techniques, since recognition experimenis are difficult
to conduct. Rescoring of n-best list and lattice provides a quick and conven-
ient alternative for running recognition experiments. Moreover, the computa-
tion and storage complexity can be kept relatively constant for offline n-best
or word lattice/graph search strategies even when experimenting with highly
expensive new modeling techniques. New modeling techniques can be ex-
perimented with using n-best/word-graph framework first, being integrated
into the system only after significant improvement is demonstrated.

4. Besides being an alternative search strategy, n-best generation is also essen-
tial for discriminant training. Discriminant training techniques, like MMIE,
and MCE described in Chapter 4, often need to compute statistics of all pos-
sible rival hypotheses. For isolated word recognition using word models, it is
easy to enumerate all the word models as the rival hypotheses. However, for
continuous speech recognition, one needs to use an all-phone or all-word
model to generate all possible phone sequences or all possible word se-
quences during training. Obviously, that is too expensive. Instead, one can
use n-best search to find all the near-miss sentence hypotheses that we want
to discriminate against [15, 36].

13.4. SEARCH-ALGORITHM EVALUATION

Throughout this chapter we are careful in following dynamic programming principles, using
admissible criteria as much as possible. However, many heuristics are still unavoidable to
implement large-vocabulary continuous speech recognition in practice. Those nonadmissible
heuristics include:

* Viterbi score instead of forward score described in Chapter 12.
» Beam pruning or stack pruning described in Section 13.2.2 and Chapter 12.
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o Subtrec dominance pruning described in Section 13.1.5.
o Fast match pruning described in Section 13.2.3.

¢ Rich-get-richer pruning described in Section 13.2.3.2,

o Multipass search strategies described in Section 13.3.3,

Nonadmissible heuristics generate suboptimal searches where the found path is not
pecessarily the path with the minimum cost. The question is. how differen is this subopti-
mal from the true optimal path? Unfortunately. there is no way 10 know the opiimal ﬁath
unless an exhaustve search is conducted. The practcal question is whether the suboptimal
wearch hurts the search result. In a test condition where the true result is specified. von can
easily compare the search result with the true result to find whether any error occurs. Errors
could be due 1o inaccurate models dncluding acoustic and language modals). subopimal
search. or end-point detection. The error caused by a suboptimal search algorithm is refarad
10 as search error or pruning errer.

How can we find out whether the search commits a pruning error? Onz of the proce-
dures most ofien used 15 straighdorward. Let W be the recognized word sagoencs TTom e
recomizer and W be the true word seguence. We need 10 compare the cost for these ™o
word sequencas:

~ g (W Xj=—loz' P(WIP(X W )} (12.9)
~log AW Xjx—log PAWIP(X W) (1330

The quanzity in Eg. (12.9, is supposed 10 be minimum among i} possidiz word s2quensss
e search is admissible. Thus. if the quantty in Eq. (13.10) is greater than hat In B (139
¢ error is 2ot atribuzed 1o sezrch pruning. On the other hand. if the goenday mEg. 43I
i smaller then that in Eq. (13.9). there is a search eror. The ragonaie bekind 2 procedure
described here 35 obrions. In the case of search errors. the subopimal searsh (OF AoRAZMIS-
ibie Prunizg; kas obviopsiy prunad the comrect perh. becauss the cast of D corresi path 18
Smaller haa e one fﬁmd.b;‘ the recocnizer. Although we oo conctude ;tz.rﬂ:::rch SITOrS
2 found in tiv's cese. 3t dozs oot guzrentee that the search RN is SO X I search =
Wk 0fr2]. The rezson is simply that there might be cae pruped path Wi &n egivet
%O secriznee and lower cost under the same suboprimal search. Tosmefors, the S2a7eh =
rors epresent onhy the wooer bound that one cap improve o0 if an l:“;‘um-a} ssarch ?b lelgle_
:UL Noocteless. finding seerch errors by comparing GUARTEES i Egs (139 20d (1310035
EOOdmezs:ra in differem search zigorthms. e it is 2 sood idea 1o 2hways include the
E 1o deve speeci enizer. g =T
et pah i ﬂlcde;e;.b—:‘;m;izf ;9;‘; Sdz?;uch a peth. zad some boos'keipm.:e- one thca_n
U2 the - N 1 o resholds. If the corract pa 15
Pruzed

CUTeCt peth 16 belp in determining all the PRIEE TS L 10 relax sucha
TS &gy during sezrch by some threshold. s0mE adfusom2nl Sab b
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threshold to retain the correct path. For examplg. one can adjust the pruning thresholq
fast match if a word in W fails to appear on the list supplied by the fast maich, for

13.5. CASE STUDY—MICROSOFT WHISPER

We use the decoder of Microsoft’s Whisper [26, 27] discussed in Chupter 9 as 5 case stug
for reviewing the search techniques we have presented in this chapter, Whisper can handli
both context-free grammars for small-vocabulary tasks and n-gram language models for
large-vocabulary tasks. We describe these two different cases.

13.5.1. The CFG Search Architecture

Although context-free grammars (CFGs) have the disadvantage of being too restrictive and
unforgiving, particularly with novice users, they are stjll one of the most popular configura-
tions for building limited-domain applications because of the following advantages:

e Compact representation results in a small memory footprint.
o Efficient operation during decoding in terms of both space and time.
o Ease of grammar creation and modification for new tasks.

As mentioned in Chapter 12, the CFG grammar consists of a set of productions or
rules that expand nonterminals into a sequence of terminals and nonterminals. Nonterminals
in the grammar tend to refer to high-level task-specific concepts such as dates, font names,
and commands. The terminals are words in the vocabulary. A grammar also has a nontermi-
nal designated as its start state. Whisper also allows some regular expression operaiors ot
the right-hand side of the production for notational convenience. These operators are. or_l,
repeat zero or more times “*’; repeat one or more times ‘+; and optional ({ ). The following

is a simple CFG example for binary number:

%start BINARY NUMBER
BINARY_NUMBER: (zero | one)*

Without losing generality, Whisper disallows the left recursion for ease offl”;l:::[nﬂ.
tation [2]. The grammar is compiled into a binary linked list format. The binary eﬁts but
rently has a direct one-to-one correspcnden.a with the text grammar compo:ing The b
more compact. The compiled format is used by the search engine during deco ma} "
nary representation consists of variable-sized nodes linked togeth‘?r' 'me.f_gl_’;f;’n nles.
achieves sharing of subgrammars through the use of shared nonterminal de “‘:er 12), During

The CFG search is conducted according to RTN framework (se€ ch::,)me time. ASSY
decoding, the search engine pursues several paths through the CFG at ﬂ;e how the path €2°
ciated with each of the paths is a grammar state that describes completely ord of apath !
be extended further. When the decoder hypothesizes the en be seve g
asks the grammar module to extend the path further by one WO

] ceessor WO
ternative successor words for the given path. The decoder const

d of the current ¥
rd. There may
ders all the $U
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possibilities. This may cause the path to be extended tg
considered, each with its own grammar state, Also note (
consideration by the decoder in the context of different pa
time.

The decoder uses begm search to prune unpromising paths with three different beam
thresholds, The s.tate pruning threshold 7_ and new phone pruning threshold 7. work as
described in Section 13.2.2. When extending a path, if the score of the extended"palh does
not exceed lthe threshold 7,, the p.ath. to be extended is put into a pool. At each frame, for
each word in the vocabulary, a winning path that extends to that word is picked from the
pool, based on the score. All the remaining paths in the pool are pruned. This level of prun-
ing gives us finer control in the creation of new paths that have potential to grow exponen-
tially.

When (wo paths representing different word sequences thus far reach the end of the
current word with the same grammar state at the same time, only the better path of the two is
allowed (o continue on. This optimization is safe, except that it does not take into account
the effect of different interword left acoustic contexts on the scores of the new word that is
started,

Besides beam pruning, the RGR strategy, described in Section 13.2.3.2, is used to
avoid unnecessary senone computation. The basic idea is to use the linear combination of
context-independent senone score and context-independent look-ahead score to determine
whether the context-dependent senone evaluation is worthwhile to pursue.

All of these pruning techniques enable Whisper to perform typical 100- to 200-word
CFG tasks in real time running on a 486 PC with 2 MB RAM. Readers might think it is not
critical to make CFG search efficient on such a low-end platform.” However, it is indeed
important to keep the CFG engine fast and lean. The speech recognition engine is eventually
only part of an integrated application. The application will benefit if the resources (both
CPU and memory) used by the speech decoder are kept as small as possibie, s0 there are
more resources left for the application module to use. Moreover, in recognition server elepph-
cations, several channels of speech recognition can be performed ona single server platform
ifeach speech recognition engine takes only a small portion of the total resources.

generate several more paths 1o be
hat the same word might be under
ths and grammar states at the same

13.5.2.  The N-gram Search Architecture

The CFG decoder is best suited for limited domain command and control aPPllcat;g:?&;oar
dictation or natural conversational systems, a stochastic grammar SUCI';,BS nt:gs:z:: I:o be con-
More natural choice. Using bigrams or trigrams leads to large number O

Sidereq by the search process, requiring an alternative search architecture.

‘\;

lu-lc;hﬂnks 1 the progress predicted by Moore’s law, th
¢ More powerful than the configuration we list here

m PC configuration is an order of magni-

instrea
e curfent mains RAM) in both speed 13 d memory.

(486 PC with 2 MB
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Whisper’s n-gram search architecture is based on lexical tree search as described in
Section 13.1. To keep the runtime memory" as small as possible, Whisper does not need to
allocate the entire Jexical tree network statically. Instead, it dynamically builds only the por-
tion that needs to be active. To cope with the problem of delayed application of language
model scores, Whisper uses the factorization algorithm described in Section 13.1.3 to dis-
tribute the language model probabilities through the tree branches. To reduce the memory
overhead of the factored language model probabilities, an efficient data structure is used for
representing the lexical tree as described in Section 13.1.3.1. This data structure allows
Whisper to encode factored language model probabilities in no more than the space required
for the original n-gram probabilities. Thus, there is absolutely no storage overhead for using
factored lexical trees.

The basic acoustic subword model in Whisper is a context-dependent senone. It also
incorporates inter-word triphone models in the lexical tree search as described in Section
13.1.6. Table 13.5 shows the distribution of phoneme arcs for 20,000-word WSJ lexical tree
using senones as acoustic models. Context-dependent units certainly prohibit more prefix
sharing when compared with Table 13.1. However, the overall arcs in the lexical tree still
represent quite a saving when compared with a linear lexicon with about 140,000 phoneme
arcs. Most importantly, similar to the case in Table 13.1, most sharing is realized in the be-
ginning prefixes where most computation resides. Moreover, with the help of context-
dependent and interword senone models, the search is able to use more reliable knowledge
to perform efficient pruning. Therefore, lexical tree with context-dependent models can still
enjoy all the benefits associated with lexical tree search.

The search organization is evaluated on the 1992 development test set for the Wall
Street Journal corpus with a back-off trigram language model. The trigram language model
has on the order of 10’ linguistic equivalent classes, but the number of classes generated is
far fewer due to the constraints provided by the acoustic model. Figure 13.13(a) illustrates
that the relative effort devoted to the trigram, bigram, and unigram is constant regardless of
total search effort, across a set of test utterances. This is because the ratio of states in the
language model is constant. The language model is using ~2 x10° trigrams, ~2 X 10° bi-
grams, and 6 x 10" unigrams. Figure 13.13(b) illustrates different relative order when word
hypotheses are considered. The most common context for word hypotheses is the unigram
context, followed by the bigram and trigram contexts. The reason for the reversal from the
state-level transitions is the partially overlapping evaluations required by each bigram con-
text. The trigram context is more common than the bigram context for utterances that gener-

ate few hypotheses overall. This is likely because the language model models those
utterances well.

10 v
Here the runtime memory means the virtal memory for the decoder that is the entire image of the decoder.
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Table 13.5 Configuration of the first seven fevels of the 20,000.word WSI (Wall Streer Jour.
al) tree; the Jarge initial fan-out is due to the use of tontext-dependent acoustic models 4] ur-

Tree Level | Number of Nodes Fan-Out
| 655 655.0
2 3174 4.85
3 9388 2.96
4 13,703 1.46
5 14,918 1.09
6 13,907 0.93
7 11,389 0.82

To improve efficiency in dealing with tree copies due 1o the use of higher-order n-
gram, one needs to reduce redundant computations in subtrees that are not explicitly part of
the given linguistic context. One solution is to use successor trees to include only nonzero
successors, as described in Section 13.1.2. Since Whisper builds the search space dynami-
cally, it is not effective for Whisper to use the optimization techniques of the successor-tree
network, such as FSN optimization, subtree isomorphism, and sharing tail optimization.
[nstead, Whisper uses polymorphic linguistic context assignment to reduce redundancy, as
described in Section 13.1.5. This involves keeping a single copy of the lexical tree, so that
each node in the tree is evaluated at most once. To avoid early inadmissible pruning of dif-
ferent linguistic contexts, an & -heap of storing paths of different linguistic contexts is cre-
ted for each node in the tree. The operation of such & -heaps is in accordance with
Algorithm 13.2. The depth of each heap varies dynamically according to a changing thresh-
old hat allows more contexts to be retained for promising nodes.
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Table 13.6 illustrates how the depth of the £-heap, the active states per frame of
speech, word error rate, and search time change when the value of threshold ¢ increases for
the 20,000-word WSJ dictation task. As we can see from the table, the average heap size for
active nodes is only about 1.6 for the most accurate configuration. Figure 13.14(a) illustrates
the distribution of stack depths for a large data set, showing that the stack depth is smal
even for tree initial nodes. Figure 13.14(b) illustrates the profile of the average stack depth
for a sample utterance, showing that the average stack depth remains small across an utter.
ance.

Whisper also employs look-ahead techniques to further reduce the search effort. The
acoustic look-ahead technique described in Section 13.2.3.1 attempts to estimate the prob-
ability that a phonetic HMM will participate in the final result [3]). Whisper implements
acoustic look-ahead by running a CI phone-net synchronously with the search process but
offset N frames in the future. One side effect of the acoustic look-ahead is to provide infor-
mation for the RGR strategy, as described in Section 13.2,3.2, so the search can avoid un-
necessary Gaussian computation. Figure 13.15 demonstrates the effectiveness of varying the
frame look-ahead from 0 to N frames in terms of states evaluated.

When the look-ahead is increased from 0 to 3 frames, the search effort, in terms of real
time, is reduced by ~40% with no loss in accuracy; however, most of that is due to reducing
the number of states evaluated per frame. There is no effect on the number of Gaussians
evaluated per frame (the system using continuous density) until we begin to negatively im-
pact error rate, indicating that the acoustic space represented by the pruned states is redun-
dant and adequately covered by the retained states prior to the introduction of search errors.

With the techniques discussed here, Whisper is able to achieved real-time performance
for the continuous WSJ dictation task (60,000-word) on Pentium-class PCs. The recognition
accuracy is identical to that of a standard Viterbi beam decoder with a linear lexicon.

Table 13.6 Effect of heap threshold on contexts/node, states/frame-of-speech (fos), word eror
rate, and search time [4).

(3 Context/ node | states/fos | %error | search time
0 1.000 8805 16.4 1.0x
1.0 1.001 8808 15.5 1.0x
| 2.0 1.008 8898 14.4 1.0x
3.0 1.018 9252 12.4 1.07x
4,0 1.056 10224 10.5 1.16x
5.0 1.147 11832 10.3 1.36x
| 6.0 1.315 13749 10.0 1.60x
7.0 1.528 15342 9.9 1.81x
8.0 1.647 15984 9.9 1.86x
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work. It has become the most widely used search technique today. The lexical tree represep-
tation was first used by IBM as part of its allophonic fast match system [10]. Ney proposed
the use of the lexical tree as the primary representation for the search space [32]. The ideas
of language model factoring [4, 19] {5] and subtree polymorphism [4] enabled real-time
single-pass search with higher-order language models (bigrams and trigrams). Alleva [3
and Ney [33] are two excellent articles regarding the detailed Viterbi beam search algorithm
with lexical tree representation.

As mentioned in Chapter 12, fast match was first invented to speed up stack decoding
[8, 9). Ney and Ortmanns [33] and Alleva [3] extended the fast match idea to phone look-
ahead in time-synchronous search by using context-independent model evaluation. In Haeb-
Umbach et al. [22], a word look-ahead is implemented for a 12.3k-word speaker-dependent
continuous speech recognition task. The look-ahead is performed on a lexical tree, with
beam search executed every other frame. The results show a factor of 3-5 times of reduction
for search space compared to the standard Viterbi beam search, while only 1-2% extra er-
rors are introduced by word look-ahead.

The idea of multipass search strategy has long existed for knowledge-based speech
recognition systems [17], where first a phone recognizer is performed, then a lexicon hy-
pothesizer is used to locate all the possible words to form a word lattice, and finally a lan-
guage model is used to search for the most possible word sequence. However, HMM’s
popularity predominantly shifted the focus to the unified search approach to achieve global
optimization. Computation concerns led many researchers to revisit the multipass search
strategy. The first n-best algorithm, described in Section 13.3.2, was published by research-
ers at BBN [39]. Since then, n-best and word-lattice based multipass search strategies have
become important search frameworks for rapid system deployment, research tools, and spo-
ken language understanding systems. Schwartz et al.’s paper {40] is a good tutorial on the n-
best or word-lattice generation algorithms. Most of the n-best search algorithms can be made
to generate word lattices/graphs with minor modifications. Other excellent discussions of
multipass search can be found in [14, 24, 30].
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codi ) nxt-to-speech can be viewed as a speech

oi;gﬁizs;;':hthat _Yle]ds an exfremely high compression ratio coupled with a high degre? of

of TTS, the texfofsll n8 Styl,e’ Vvoice, rate, pitch range, and other playback effects. In this view

Sttbgy ',e that is input to a speech synthesizer is a form of coded speech. Thus,
mes coding technologies discussed in Chapter 7 with the following goals:

. -
feam:zres:; ion ratios superior to digitized wave files—Compression yields
sag":slts In many areas, including fast Intemet transmission of spoken mes-
S Flexibitin, -
ge[i';'b’!"y in_output characteristics—Flexibility includes easy change of
givi €I average pitch, pitch range, etc., enabling application developers to
als: th €Ir systems” spoken output a unique individual personality.'. Flexibility
text :me]-] €S easy change of message content; it is generally easier to retype
o Apin 3N 1tis to record and deploy a digitized speech file.
[hel!"y Jor perfect indexing between text and speech forms—Preservation of
al!ocorresp ondence between textual representation and the speech wave fc;nn
ww:s $ynchronization with other media and output modes, such as word-by-
foverse video highlighting in a literacy tutor reading aloud.
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o Alternative access of text content—TTS is the most effective alternative ac-
cess of text for the blind, hands-free/eyes-free and displayless scenarios.

At first sight, the process of converting text into speech looks strai_ghtf.orwellrd. How-
ever, when we analyze how complicated speakers l:ead ? text aloud: this simplistic view
quickly falls apart. First, we need to convert words in written forms into speakable forms,
This process is clearly nontrivial. Second, to sound natur_a], the system needs to convey the
intonation of the sentences properly. This second process is clearly an extremely challenging
one. One good analogy is to think how difficult it is to drop a foreign accent when speaking
a second language—a process still not quite understood by human beings.

The ultimate goal of simulating the speech of an understanding, effective human
speaker from plain text is as distant today as the corresponding Holy Grail goals of the fields
of speech recognition and machine translation. This is because such humanlike rendition
depends on common-sense reasoning about the world and the text’s relation to it, deep
knowledge of the language itself in all its richness and variability, and even knowledge of
the actual or expected audience—its goals, assumptions, presuppositions, and so on. In typi-
cal audio books or recordings for the visually challenged today, the human reader has
enough familiarity with and understanding of the text to make appropriate choices for rendi-
tion of emotion, emphasis, and pacing, as well as handling both dialog and exposition.
While computational power is steadily increasing, there remains a substantial knowledge
gap that must be closed before fully human-sounding simulated voices and renditions can be
created.

While no TTS system to date has approached optimal quality in the Turing test,' a
large number of experimental and commercial systems have yielded fascinating insights.
Even the relatively limited-quality TTS systems of today have found practical applications.

The basic TTS system architecture is illustrated in Chapter 1. In the present chapter we
discuss text analysis and phonetic analysis whose objective is to convert words into speak-
able phonetic representation. The techniques discussed here are relevant to what we dis-
cussed for language modeling in Chapter 11 (like text normalization before computing n-
g-ram) and for pronunciation modeling in Chapter 9. The next two modules—prosodic analy-
sis and speech synthesis—are treated in the next two chapters.

14.1. MODULES AND DATA FLOW

The .te'xt analysis component, guided by presenter controls, is typically responsible for de-
termining document structure, conversion of nonorthographic symbols, and parsing of lan-
guage structure anq meaning. The phonetic analysis component converts orthographic words
to phones (unambiguous speech sound symbols). Some TTS systems assume dependency
between text analysis, phonetic analysis, prosodic analysis, and speech synthesis, particu-
larly systems based on very large databases containing long stretches of original, unmodified

" A test proposed by British mathematici
! ematician Allan Turi il imi A
performance on a given speech or language task [29). "8 ofthe ity of  compute o flawlessly imiate 1
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digitized speech with their original pitch contours. We discus i

ription of those modules, based on modularity, u-ansparenc:S o etlevel finguistic de-
qents, although some aspects of text and phonetic analysis n-{ b vty of compo-
Pmicumr e ay be unnecessary for some

We a.ssumf- that the entire text (word, sentence, paragraph, d

contained in a smgi.e, wholly visible buffer. Some systems rl;a‘ t‘:c‘lmeﬂt) ; o opoxn s
quirements ff" continuous flow-through or visibility of only stll o o specal e
rhnn’fs at a time, of exFremely complex timing and synchronizznion(:V cuirememte The oo
functional processes within the text and phonetic analysis are shown ehematical '_ic _bﬂsic
e schematically in Figure

raw text
orragged rext

Document Structure Detection

v

Text Normalization Text Analysis
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Linguistic Analysis
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Lexicon
[\\ tagged rext

Homograph Disambiguation

Morphologica] Analysis
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e mmm——
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tagged text & phones

Figure 14,1 Modularized functional blocks for text and phonetic analysis components:
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The architecture in Figure 14.1 brings the stand.ard benefits of modularity ang trans.
parency. Modularity in this case means Fhat the :fmalysw at each level can be supplied by the
most expert knowledge source, or a vanety qf different sources, as long as the markup con-
ventions for expressing the analysis are uniform. Transparency means that the results of
each stage could be reused by other processes for other purposes.

14.1.1. Modules

The text analysis module (TAM) is responsible for indicating all knowledge about the text or
message that is not specifically phonetic or prosodic in nature. Very simple systems do little
more than convert nonorthographic items, such as numbers, into words. More ambitious
systems attempt to analyze whitespaces and punctuations to determine document structure,
and perform sophisticated syntax and semantic analysis on sentences to determine attributes
that help the phonetic analysis to generate correct phonetic representation and prosodic gen-
eration to construct superior pitch contours. As shown in Figure 14.1, text analysis for TTS
involves three related processes:

® Document structure detection—Document structure is important to provide a
context for all later processes. In addition, some elements of document struc-
ture, such as sentence breaking and paragraph segmentation, may have direct
implications for prosody.

® Text normalization—Text normalization is the conversion from the variety of
symbols, numbers, and other nonorthographic entities of text into a common
orthographic transcription suitable for subsequent phonetic conversion.

® Linguistic analysis—Linguistic analysis recovers the syntactic constituency
and semantic features of words, phrases, clauses, and sentences, which is im-

portant for both pronunciation and prosodic choices in the successive proc-
esses.

. The task gf the phonetic analysis is to convert lexical orthographic symbols to p! hone-
mic representation along with possible diacritic information, such as stress placement. Pho-
n‘etl.c analy‘ms is thus often referred to as grapheme-to-phoneme conversion. The purpose 18
?hmrlous. since phonemes are the basic units of sound, as described in Chapter 2. Bve?
tc:}:l,il)]] (fuit::e }']I‘TS systems_migh? be based on word sounding units with increasing Storag:
toch wo% b, | ongograph d:samb_xguation and phonetic analysis for new words (e{ther tw_

Tds being invented over time o morphologically transformed words) are still neces
sary f(g Systems to correctly utter every word.
tionsmpr::);:}tl‘i’r::r;tog;wneme conversion is trivial for languages where there is 2 simPl;=i fal;_
o handmo fography and phonology. Such a simple relationship can be We ory
and are v of rules. L_anguages such as Spanish and Finnish belong t0 this calegho-
¢d to as phonetic languages. English, on the other hand, is remote from P
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¢ language pecause English words often have many distinct origins. [t is generally be-

el : -
; owing three services are necessary to produce accurate pronunciations

figved that the foll

o Homograph disambiguation—Tt is important to disambiguate words with dif-
ferent senses to determine proper phonetic pronunciations, such as object (/al
b jh eh k /) as a verb or as a noun (/aa b jl el k 1),

o Morphological analysis-—Analyzing the component morphemes provides
important cues to attain the pronunciations for inflectional and derivational

words.

o Lener-10-sound conversion—The last stage of the phonetic analysis generally
includes general letter-to-sound rules (or modules) and a dictionary lookup to
produce accurate pronunciations for any arbitrary word.

All'the processes in text and phonetic analysis phases above need not to be determinis-
tic, although most TTS systems today have deterministic processes. What we mean by not
deterministic is that each of the above processes can generate multiple hypotheses with the
hope that the later process can disambiguate those hypotheses by using more knowledge.
For example, often it might not be trivial to decide whether the punctuation “.” is a sentence
ending mark or abbreviation mark during document structure detection. The document struc-
ture detection process can pass both hypotheses to the later processes, and the decision can
then be delayed until there is enough information to make an informed decision in later
Modules, such as the text normalization or linguistic analysis phases. When generating mul-
tiple hypotheses, the process can also assign probabilistic information if it comprehel?ds the
inderlying probabilistic structure. This flexible pipeline architecture avoids the mistakes
made by early processes based on insufficient knowledge. _

Much of the work done by the text/phonetic analysis phase of a TTS system mirrors the
Pocessing attempted by narural language process (NLP) systems for other purposes, such as
?:;?;‘;“Chlpf?ot'reading, machine translation, database document indexing, ::gssign?inh;::::
amples ill!l“:::cateq L analysis is n?eded © make'cg rain 15 proctzs§mi and probabilistic in
e, i z;ted in Table 14.1. Ultimately all decisions are context drive

» 2 Tor example, dogs might be cooked and eaten 1n some cultures.

Table 14.1 Examples of several ambiguous text normalization cases.
Exa I
\E‘Eﬁ-—_\ Alterpatives Technigues I
Dr, Smi(h — . . a[ysi< case analysis
-‘;ﬁ;\ doctor or drive? abbrevnaM
_I___you Bo? yes-no or wh-question? syntactic analysis -

= ; i biect likelihoo

I\M&g'___}ient on dog? semantic, verb/direct o) : L
ﬁLhotd&-__ accent on dog? discourse, pra_g_Tﬂc_:—zﬂa_lzﬂs______—-———
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Most TTS systems today employ specialized natural l.anglfage processing modules for
front-end analysis. In the future, itis likely that less emphasis will be pla<_:ed on construction
of TTS-specific text/phonetic analysis components such as those? described m.[27], while
more resources will likely go to general-purpose NLP system§ with cross-fu.ncuonal poten-
tial [23]. In other words, all the modules above only perform simple processing and pass all
possible hypotheses to the later modules. At the end of the te_xtlphonetlc phase, a unified
NLP module then performs extensive syntactic/semantic analysis for the best decisions. The
necessity for such an architectural approach is already visible in markets where language
issues have forced early attention to common lexical and tokenization resources, such as
Japan. Japanese system services and applications can usually expect to rely on common
cross-functional linguistic resources, and many benefits are reaped, including elimination of
bulk, reduction of redundancy and development time, and enforcement of systemwide con-
sistent behavior. For example, under Japanese architectures, TTS, recognition, sorting, word
processing, database, and other systems are expected to share a common language and
dictionary service.

14.1.2. Data Flows

It is arguable that text input alone does not give the system enough information to express
and render the intention of the text producer, Thus, more and more TTS systems focus oo
providing an infrastructure of standard set of markups (tags), so that the text producer can
better express their semantic intention with these markups in addition to plain text. These
kinds of markups have different levels of granularity, ranging from simple speed settings
specified in words per minute up to elaborate schemes for semantic representation of con-
cepts that may bypass the ordinary text analysis module altogether.” The markup can be
done by intemal proprietary conventions or by some standard markup, such as XML (Exten-
sible Markup Language [35]). Some of these markup capabilities will be discussed in Sec-
tions 14.3 and 14.4.

For example, an application may know a lot about the structure and content of the text
to be spoken, and it can apply this knowledge to the text, using common markup conven-
tions, to greatly improve spoken output quality. On the other hand, some applications may
have certain broad requirements such as rate, pitch, callback types, etc. For engines provid-
Ing such supports, the text and/or phonetic analysis phase can be skipped, in whole or in
part. Whether_ the application or the system has provided the text analysis markup, the Struc”
tural conventions should be identical and must be sufficient to guide the phonetic analysis.
The phonetu.: analysis module should be presented only with markup tags indicating stru'c-
ture or functions of textual chunks, and words in standard orthography. The similar phoneti®

marku . .
ko peﬁs could also be presented to the phonetic analysis modale, the module could be

1 .
This later of system § . o od it
Chapter 17, ;{p:enernl{y m 15 sometimes called concept-to-speech or message-to-speech, which 18 d‘;:: o the

system, generates better speech rendering when domain-specific knowledge is provi
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Internal architectures, data Slructures, and interfaces may v
system. However, most modern TTS sysiemg initially constryct
utterance or paragraph based on observable attributes, typically ¢
perhaps augmented by control annotations, This minima) initiai

ary widely from system to
a simple description of an
€Xt words and punctuation,
skeleton is then augmented

Beginning with a surface stream of words, punctuation, and other symbols, typical layers of

o Phonemes

o Syllables

* Morphemes

s Words derived from nonwords (such as dates like “9/ 10/99™)
 Syntactic constituents

¢ Relative importance of words and phrases

* Prosodic phrasing

¢ Accentuation

® Duration controls

¢ Pitch controls

We can now consider how the information needed to support syn_th_esis of a sengance is
developed in processing an example sentence such as: “A skilled eleclmfxan _reponed.

In Figure 14.2, the information that must be inferred from text is diagrammed. The
flow proceeds as follows:

* W(ords) 9 Z, C(ontrols): the syllabic structure (Z) and the basic _pho.nemnct:_
form of a word are derived from lexical lookup aqd/or the application g_
rules. The X tier shows the syllable divisions (written in text form ffrt?c;n::ch
ience), The C tier, at this stage, shows the basic phonemic symbols fo
word’s syllables. ; infer

" yviords)  S(yntaxisemantics): The word siream from ext is used t Sym
a syntactic and possibly semantic structure (S tier) for an l;lpde svnactic con-
tactic and semantic structure above the word would inclu d in semantic
Stituents such as Noun Phrase (NP), Verb Phrase (VP), etc. an al s)i’s of other
features that can be recovered from the current fsentence gp:norydocument).
Contexts that may be available (such as an entire garagrouped into broader
The lower-level phrases such as NP a"‘.’ Vb may be ign architecture.
constituents such as Sentence (S), depending on .me {Jar? aglso called the sym-

* Syntax/semantics) 9 P(rosody): The Plrosodic) uernl;nt in a sentence, that
bolic prosodic module. If a word is semantically impo rominence.

: i tra phonetic p
'portance can be reflected in speech wnd_1 a Ilt_t]lgiﬁ; a ; rosodic structure by
Called an accent. Some synthesizers begin bul
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placing metrical foot boundaries to the left of every acce.nted' syllable. The re-
sulting metrical foot structure is shown as Fl, F2, etc. in Flgl.!re 14.2 (some
feet lack an accented head and are ‘degenerate’). Over the metrical foot struc-
ture, higher-order prosodic constituents, with their own characteristic relative
pitch ranges, boundary pitch movements, etc. can be constructed, shown in
the figure as intonational phrases IP1, IP2. The details of prosodic analysis,
including the meaning of those symbols, are described in Chapler 15.

The final phonetic form of the words to be spoken will reflect not only the original
phonetics, but decisions made in the S and P tiers as well. For example, the P(rosody) tier
adds detailed pitch and duration controls to the C(ontrol) specification that is passed to the
voice synthesis component. Obviously, there can be a huge variety of particular architec-
tures and components involved in the conversion process. Most systems, however, have

some analog to each of the components presented above.

— S | sin.f2 ...t
NPIH, 2, ..., 1n] VP, f2, ... fn]
W | Wi w2 W3 w4
T, A skilled | ¢ lec tri cian e por fed
ax ] In ! t sh r p t
k eh r ax iy ae ax
] k ih n r d
|
d
P IFl F2 F3 F4 F5
L P11, %2, ..., fn] P2{11,12, ... . fn)
U, %, ..., i}

Figure 14.2 Annotation tiers indicating incremental analysis based on an input (1ext) sentence

;‘3 Sl_‘;"ed electrician reported.” Flow of incremental annotation is indicated by arraws on the
t side,

14.1.3. Localization Issues

A.ma;or issue in the text and phonetic analysis components of a TTS system is internation-
alization anfi localization. While most of the language processing technologies in this book
are exemplified t?y English case studies, an internationalized TTS architecture enabling
minimal expense in localization is highly desirable. From a technological point of view, the
te)‘;t‘ conventions and \fvnl_mg sy§tems of language communities may differ substantially in
arbitrary ways, necessitating serious effort in both specifying an internationalized architec-
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wre for (ext and phonetic analysis, and localizing that architecture for any particular lan
uage.

guag For example, in Japanese and Chinese, the unit of yo;
spaces in text. In French, interword dependencies in pronunciation realization exist (Jia
Conventions for writing numerical forms of dates, times, money, etc. may differ acro:ssloann) .
guages. In French, number groups separated by spaces may need to be integrated as sin [(;
amounts, which rarely occurs in English. Some of these issues may be more szrious for cir-
tin types of TTS architectures than others. In general, it is best to specify a rule architecture
for text processing and phonetic analysis based on some fundamental formalism that allows
for language-particular data tables, and which is powerful enough 1o handle a wide range of
relations and alternatives.

'd is not clearly identified by

14.2. LEXICON

The most important resource for text and phonetic analysis is the TTS system lexicon (also
referred 1o as a dictionary). As illustrated in Figure 14.1, the TTS system lexicon is shared
with almost all components. The lexical service should provide the following kinds of con-
tent in order to support a TTS system:

¢ Inflected forms of lexicon entries

e Phonetic pronunciations (support multiple pronunciations), stress and syllabic
structure features for each lexicon entry

¢ Morphological analysis capability

* Abbreviation and acronym expansion and pronunciation

* Atributes indicating word status, including proper-name tagging, and other
special properties

* List of speakable names of all common single characters. Under modern op-
erating systems, the characters should include all Unicode characters.

* Word part-of-speech (POS) and other syntactic/semantic attributes

* Other special features, e.g., how likely a word is to be accented, elc.

. . il
It should be clear that the requirements for a TTS system lexical service overlap heavily

With those for more general-purpose NLP. . : -to-
Traditionally, gI'I"S syspterlfls have been rule oriented, in parucu]ardforC .—%;I:ihiin;z;il
Phoneme conversion. Often, tens of so called letter-to-sound (L’[:S) tules Eh es le of the lexi-
 Section 14.8) are used first for grapheme-to-phoneme conversion, and fg; predicted on
o0 has been minimized as an exception list, whose pronupcmflons canno! : Esingly been
"he basis of such LTS rules, However, this view of the lexicon's role hs 11n[c TTS systems
“usted a5 the requiremeni of a sophisticmed NLP analy-fwls'fOf h'gh;%ﬁ:yysystem. For a
2 become apparent. There are a number of ways to optimize a dictl
8%0d overview of lexical organization issues, please se€ [4]-
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To expose different contents about a lexicon entry ljsted above for different TTS mod-
ule, it calls for a consistent mechanism. It can be done either through _a database query or g
function call in which the caller sends a key (usually the orthographic representation of 4
word) and the desired attribute. For example, a TTI'S module_ can use the following function
call to look up a particular attribute (like phonenc. pronunciations or POS) by passing the
attribute a#r and the result will be stored in the pointer val upon successful lookup. More-
over. when the lookup is successful (the word is found in the dictionary) the function returng

true, otherwise it will return false instead.

BOOLEAN DictLookup (string word, ATTTYPE att, (VOID *) val)

We should also point out that this functional view of dictionary could further expand
the physical dictionary as a service. The morphological analysis and letter-to-sound modules
(described in Sections 14.7 and 14.8) can all be incorporated into the same lexical service.
That is, undemeath dictionary lookup, operation and analysis is encapsulated from users to
form a uniform service.

Another consideration in the system’s runtime dictionary is compression. While many
standard compression algorithms exist, and should be judiciously applied, the organization
and extent of the vocabulary itself can also be optimized for small space and quick search.
The kinds of American English vocabulary relevant to a TTS system include:

o Grammatical function words (closed class)—about several hundred

¢ Very common vocabulary—about 5,000 or more

¢ College-level core vocabulary base forms—about 60,000 or more

¢ College-level core vocabulary inflected form—about 120,000 or more

o Scientific and technical vocabulary, by field—e.g., legal, medical, engineer-
ing, etc.

* Personal names—e.g., family, given, male, female, national origin, etc.

¢ Place names—e.g., countries, cities, rivers, mountains, planets, stars, etc.
o Slang

® Archaisms

from :‘ 2:‘;);? nczl oizes Of' reasonably complete lists of the above types of vocabulary ruf
120,000 un red function or closed-class words (such as prepositions and pron(?uns) to
U000 or so inflected forms of college-level vocabulary items, up to several million sur-
:::ez ;nc:_ pll]ace names, Car_eful analysis of the likely needs of typical target applications
mainlzainna]: ); red(;l_Ce. the size of the runtime dictionary. In general, most TTS system;
technalo giesyisn o ;cnonary with a size between 5000 and 200,000 entries. With advance
addition, since n::S : *¢ and hashing, search is typically a nonissue for dictionary Jookup-
acronyms, borrowt Orms are constantly produced by various creative processes, Such &
» borrowing, slang acceptance, compounding, and morphological manipulatton

Some means of analyzip ! e (opiC
of Sections 14.7 andy l‘l.g,words that have not been stored must be provided. This 1s the top
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143. DOCUMENT STRUCTURE DETECTION

: the purpose of discussion, we assume that all input to the TAM i

];:)ugh perhaps l:argely unmarked, and the output is also a (more exte;lssiil::])y(ﬁgr::g; 2;:;:
document. That 1s 10 say, all 'the knowledge recovered during the TAM phase is to be
pressed s XML m_arkup. T hl§ COﬂﬁlTl'.lS the independence of the TAM from phonetic :nxci
prosodic considerations, allowing a variety of resources, some perhaps not crafted with TTS
in mind, to be brought to bear by the TAM on the text. It also implies that that output of the
TAM is potentially usable by other. non-TTS processes, such as normalization of language-
model training data for building statistical language models (see Chapter 11). This fully
modular and transparent view of TTS ailows the greatest flexibility in document analysis,
provides for direct authoring of structure and other customization, while allowing a split
between expensive, multipurpose natural language analysis and the core TTS functionality.
Although other text format or markup language, such as Adobe Acrobat or Microsoft Word,
can be used for the same purpose, the choice of XML is obvious because it is the widely
open standard, particularly for the Internet,

XML. is a set of conventions for indicating the semantics and scope of various entities
that combine to constitute a document. It is conceptually somewhat similar to Hypertext
Markup Language (HTML), which is the exchange code for the World Wide Web. In these
markup systems, properties are identified by tags with explicit scope, such as “<b>make
this phrase bold</b>" to indicate a heavy, dark print display. XML in particular
amempts o enforce a principled separation between document structure and content, on one
hand, and the detailed formatting or presentation requirements of various uses of documents,
o the other. Since we cannot provide a tutorial on XML here, we freely introduce example
tags that indicate document and linguistic structure, The interpretations of Lhe.sc-a are |ntEut1ve
o most readers, though, of course, the analytic knowledge underlyipg decisions to insert
1ags may he very sophisticated. It will be some time before commercial TTS engines com;:
102 common understanding on the wide variety of text attributes that should be mar_ked, ;:}111
;Ccep‘ 2 common set of conventions. Nevertheless, it is reasonable to adop! t:;ec lld::e e:f
pi’t\gdﬂ:ould b? independent and reusable, thus. allowinf X?ul,‘erd 0:12?;?ltises(,was indicated
« ematigaﬁ;'oil:nf;{ate) t;) 4 gunc{ion for speech just as tor

. lgure 14.3. . lysis perhaps
Canieq oS ‘E regarded in Figure 14.3 as a factored proc?ssjs\*sflt:‘[e‘:’n‘;[;’:eaﬁeyof t?w 'nl‘)S
Enging ) uman editors or by atural language e sr: of);tructural tags and provision
of ph(,:;fse. may eventually be reduced to the lnfel'Pfet?t:]:’e resent day are 1ot structured
i theselc lﬂform? tion. While commercial engines © C pare likely to become increas-
gl 1 assumptions in mind, modularity and UaDSP‘}'e?dZas underlying an XML docu-
mce.,g,fma"" The increasing acceptance of the basic TTS can be seen in the recent
C approach to text and phonetic analysis for

' i f
Prolifergy; . " While ot presenting any o
e iy 0N of XML-like speech markup proposals [24’a13¢3;3)nventioﬂ5 hat reflect and ex-

leng 'detail_, in the discussion below we adopt informal ¢ by the TTS systems of the
Cir basic assumptions. The structural markup exploite Y
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future may be imposed by XML authoring systems at document creation time, or may be
inserted by independent analytical procedures. In any case the distinction between purely
automatic structure creation/detection and human annotation and authoring will increasingly
blur—just as in natural language translation and information retrieval domains, the distine-
tion between machine-produced results and human-produced resuits has begun to blur.

Automatic Language Automatic Structure Automatic

Generation Detection/creation Parsing

— Content
N Document

Authoring \ —p Structure N
Z Language
\ / —» Structure

XML
Other
Document Stylesheets...

Aural Stylesheet ' |
4

‘ DB stylesheet gonnt Doc,
TTS engine LM stylesheet ' Groupware'
j l Dac, etc.
\., ’
b Y ——
Sound Docu- LM Training Database Doc
ment (TTS) Doc (ASR) IRr)

Figure 14.3 A documentcentric view of TTS.

143.1.  Chapter and Section Headers

S::t::n headers are a standard convention in XML document markup, and TTS systems can
;leSSiosa?urléz;u;al nlrildli‘t:atf:an:s tlc: control prlosody'and to regulate prosodic style, just as a pro-
on comprenser ingtended fc apter headings differently. Increasingly, a document created
markup, and the TTS g Oa_aﬂ)’ Kind of electronic circulation incorporates structural
exploit this (in longer docu::"::I 15, T oo R nocfuce e avigh
ton, specdup, and Shiopine) eF?ts, the document structure markup assists in audio naviga-
might follow conventior[:s f . hOr cxample, the XML annotation of a book at a high k.:vel
lead a TTS Systom o § shown in Figure 14.4. Viewing a document in this way might

Insert pauses and emphasis correctly, in accordance with the structure
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narked. Furthermore, an audio interface system would work jointly with a TTS system to
gliow easy navigauon.and orientation within such a structure. If future docum};ms ar
marked up in this fashion, the concept of audio books, for example, would change to rele
jess o unstructured prerecorded speech and more on smart, XML-av;are high-qua?it audiz
avigation and TTS systems, with the output customization flexibility the,y provide ’

For documents without explicit markup information for section and chapter t;eaders it
is in general a nontrivial task to detect them automatically. Therefore, most TTS syster’ns
odey do not make such an attempt.

<Book>
<Title>The Pity of War</Title>
<Subtitle>Explaining World War I</Subtitle>
<Author>Niall Ferguson</Author>
<TableOfContents>...</T ableOfContents>
<Introduction>
<Para>...</Para>

</Introduction™>
<Chapter>
<ChapterTitle>The Myths of Militarism</ChapterTitle>
<Section>
<SectionTitle>Prophets</SectionTitle>
<Para> ... </Para>

</Section>
</Chapter>

</Boeok>

Figure 14.4 An example of the XML annotation of a book.

1432, Lists

:;]i“s or bulleted iterns may be rendered with distinct intonational contours t© :::?ti: af‘:-‘:;:lr);
Bir Speci .o : 3 dica[ed in XML as §
pecial status. This kind of structure might be 10 i, such markup for

145, Agai . . idea of accep
‘. Again, TT, t used to the rdea
S engine designers need 10 ¢ tect and insert such markup as needed

in : . -
yte;p;re;auon, or incorporating technoloBlcs that can °° ilar to chapter and section headers,
¢t dow ; i es. Similar .
nstream phonetic processing modul stures auto matically-

m .
%L TTS systems today do not make an attempt to detect list stU
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<UL>

<LI>compression</LI>

<LI>flexibility</LI>

<[ ]>text-waveform correspondence</LI>
</UL>

<Caption>The advantages of TTS</Caption>

Figure 14.5 An example of a list marked by XML.

14.3.3. Paragraphs

The paragraph has been shown to have direct and distinctive implications for pitch assign-
ment in TTS [26). The pitch range of good readers or speakers in the first few clauses at the
start of a new paragraph is typically substantially higher than that for mid-paragraph sen-
tences, and it narrows further in the final few clauses, before resetting for the next para-
graph. Thus, to mimic a high-quality reading style in future TTS systems, the paragraph
structure has to be detected from XML tagging or inferred from inspection of raw format-
ting. Obviously, relying on independently motivated XML tagging is, as always, the supe-
rior option, especially since this is a very common structural annotation in XML documents.

In contrast to other document structure information, paragraphs are probably among
the easiest to detect automatically. The character <CR> (carriage return) or <NL> (new line}
is usually a reliable clue for paragraphs.

14.3.4. Sentences

While sentence breaks are not normally indicated in XML markup today, there is no reason
to exclude them, and knowledge of the sentence unit can be crucial for high-quality TTS. In
fact, some XML-like conventions for text markup of documents to be rendered by synthe-
sizers (e.g., SABLE) provide for a DIV (division) tag that could take paragraph, sentence,
clause, etc. as attribute [24]. If we define sentence broadly as a primal linguistic unit that
makes up paragraphs, attributes could be added to a Sent tag to express whatever linguistic
xnowieage exists about the type of the sentence as a whole:

<Sent type="yes-no question"> )
Is life so dear, or peace so sweet, as to be purchased at the price of chains and slavery-
</Sent>

. . : ied
_ Agam: as emphasized throughout this section, such annotation could be.either apphes
during creation of the XML documents (of the future) or inserted by independent processe_s;
Such structure-detection processes may be motivated by a variety of needs and may ext

outside the TTS system per se.
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If no independent markup of sentence structure s availa
ndently motivated document analysis or natural language system, a TTS s st .

¢lies on simple internal heuristics to guess at sentence divisions. -1n email )z,msn;t;xyeplca:ly
fively informal writien communications. sentence boundaries may be very hard to detfr:crte ?-
conirast to English, sentence breaking could be trivial for some other written langua es- In
Chinese, there is a designated symbol (a small circle ~ ) for marking the end of 3 senter%ce' sg
the sentence breaking could be done in a totally straightforward way. However, for m'ost
Asian languages, such as Chinese, Japanese, and Thai, there is in general no spac:: within a
sentence. Thus, tokenization is an important issue for Asian languages,

In more formal English writing, sentence boundaries are often signaled by terminal
punctuation from the set: {. ! 2} followed by whitespaces and an upper-case initial word.
Sometimes additional punctuation may trail the ‘?” and °!" characters, such as close
quotation marks and/or close parenthesis. The character *." is particularly troubling, because
it is, in programming terms, heavily overloaded. Apart from its uses in numerical
expressions and Internet addresses, its other main use is as a marker of abbreviation, itseif a
difficult problem for text normalization (see Section 14.4). Consider this pathological
jumble of potentially ambiguous cases:

Mr. Smith came by. He knows that it costs $1.99, but T don’t know when he’ll be

back (he didn’t ask, “when should I reum?’)... His Web site is

www.mrsmithhhhhh.com. The car is 72.5 in. long (we don’t know which park-

ing space he’ll put his car in.) but he said **...and the truth shall set you free,” an

interesting quote.

Some of these can be resolved in the linguistic analysis module. However t"or some
cases, only probabilistic guesses can be made, and even a human reader.may have qlfﬁCUIIY-
The ambiguous sentence breaking can also be resolved in an abbreviation-processing mod-
ule (described in Section 14.4.1). Any period punctuation that is not taken to signal an ab-
breviation and is not part of a number can be taken as end-of-sentence. Of course, as we
have seen above, abbreviations are also confusable with words that can naturally end seE-
lences, ¢.g., “in.” For the measure abbreviations, an examination of the left context (c:;c_: -
g for numeric) may be sufficient. In any case, the complexity of sent"'“celb(rieeagi
lustrates the value of passing multiple hypotheses and letting later, more knowledg

: isions. Algorithm
Modules (s iati - ouistic analysis module) make decisions
pooch as an abbreviation or linguistt 4T 1d be able to handle most cases.

M. shows a & ) .+ that shou
simple sentence-breaking algorithm that SHOWE = > inds of

_F°f advanced sentence breakers, a weighted combination of the follo;z;nﬁoundaﬁcs
“Oisiderationg may be used in constructing algorithms for

e from easiest/most common to most sophisticated): |
ing is one of the most impor-

bed in detail in Section 14.4.
ased on: document structure,

ble from an external, inde-

determining sente

* Abbreviation processing—Abbreviation process!
tant tasks in text normalization and will be descrl

* Rules or CART built (Chapter 4) upon features b

Wwhitespace, case conventions, etc.

isti s ikelihood
* Statistical frequencies on sentence-initial word likeli
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e Statistical frequencies of typical lengths of sentences for various genres

e Streaming syntactic/semantic (linguistic) analysis—Syntactic/semantic anal
sis is also essential for providing critical information for phonetic and pr}ci-
sodic analysis. Linguistic analysis will be described in Section 14.5

As you can see, a deliberate sentence breaking requires a fair amount of linguistic pr

ing, like abbreviation processing and syntactic/semantic analysis. Since this type Of};noac;es§-
is typically included in the later modules (text normalization or linguistic analysis), it m_ys]l]s
be a sensible decision to delay the decision for sentence breaking until later modul,es eilugx ;
text normalization or linguistic analysis. In effect, this arrangement can be Lreatcd’as t}:
document structure module passing along muitiple hypotheses of sentence boundaries, and jt
allows later modules with deeper linguistic knowledge (text normalization or Iin’guistic
analysis) to make more intelligent decisions.

Finally, if a long buffer of unpunctuated words is presented, TTS systems may impose
arbitrary limits on the length of a sentence for later processing. For example, the writings of
the French author Marce] Proust contain some sentences that are several hundred words long
(average sentence length for ordinary prose is about 15 to 25 words).

ALGORITHM 14.1: A SIMPLE SENTENCE-BREAKING ALGORITHM

1. If found punctuation ./'/? advance one character and goto 2.
else advance one character and goto 1.
2. If not found whitespace advance one character and goto 1.
3. If the character is period (.) goto 4.
else goto 5.
4, Perform abbreviation analysis.
If not an abbreviation goto 5.
else advance one character and goto 1.
5. Declare a sentence boundary and sentence type M
Advance one character and goto 1.

14.3.5. Emalil

ne or in an eyes-busy situation such as

peculate that XML-tagged e{nail struc-
will be essential for high-quallty
kips and speedups of areas the

TTS could be ideal for reading email over the pho
when driving a motor vehicle. Here again we can s
ture, minimally something like the example in Figure 14.6,

; io i allowing s
rosody, and for controlling the audio interface, . of each
ll;ser ha}:’; defined as less critical, and allowing the system to announce the function :

i i i emantic
block. For example, the sig (signature) portion of email c.ertau_ﬂy has a dllf]fe(r)e:r;tk ?pped. N
functi.on than the main message text and should be clearly {dfanut'fed as gucl, Y ophistics
the listener’s discretion. Moderm email systems are providing increasingly
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qgpen for structure annotation such as that exemplified in Figure 14,6, Obviously, the
enail document structure can be detected only with appropriate tags (like XML). 1t is very
dificult fora TTS system to detect it automatically,

<message”
<fheader>
<date>11 June 1998</date>

<from>Leslie</from>
<to>Jo</to>
<subject>Surf’s Up!</subject>
<header>
<body> ... </body>
<sig>Freedom’s just another word for nothing left to lose</sig>
</message>

Figure 14,6 An example of email marked by XML.

1436 Web Pages

Al the commengs about TTS reliance on XML markup of document structure can be applied
[0 the case of HTML-marked Web page content as well. In addition to sections, headers,
hﬂ.?, Piragraphs, etc., the TTS systems should be aware of XML/HTML conventions such
% links (<a href=*,,.”>link name</a>) and perhaps apply some distinctive voice quality or
Prosadic piteh contour to highlight these. The size and color of the section of text also pro-
Yles usefu) hings for emphasis. Moreover, the TTS system should also integrate the render-
g of audio ang video contents on the Web page to create a genuine multimedia experience
Fthe users, More could be said about the rendition of Web content, whether from underly-
8 XML documents or HTML-marked documents prepared specifically for Web presenta-
lion, I addition, the World Wide Web Consortium has begun work on standards for' aul."al
Mesheets thyy can work in conjunction with standard HTML to provide special direction in
vra Iendition [33]

! .
437, Dialog Turns and Speech Acts

ol fext to be rendered by a TTS system is standard writte!l pmsfi. 5':0: ‘i)r:e aes’;%rﬁf::x‘:
", Ystemg Could be tasked with rendering natural conversation ar(; 4 by XML markup of
iusjsme- 3 vith written documents, the TTS system has t0 e ):ispeech acts (the
npu, Varioys Systems for marking, dialog turns (cha"gc. of spe a::r,),,?: these annotations
will 21 functiona) intent of an utterance)’ are used for this purpo The speech act coding
Tigger Particular phonetic and prosodic rules in TTS systems.

)
b; bed in detail in Chapter 17.
alog modeling and the concepts of dialog mums and speech acts arc described in
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schemes can help, for example, in identifying the speaker's intent with respect to an utter.
ance, as opposed to the utterance’s structural attributes. The prosodic contour and vojce
quality selected by the TTS system might be highly dependent on this functional knowledge.
For example, a syntactically well-formed question might be used as information
solicitation, with the typical utterance-final pitch upturn as shown in the following:

<REQUEST_INFO>Can you hand me the wrench?</REQUEST_INFO>
But if the same utterance is used as a command, the prosody may change drastically.
<DIRECTIVE>Can you hand me the wrench.</DIRECTIVE>

Research on speech act markup-tag inventories (see Chapter 17) and automatic meth-
ods for speech act annotation of dialog is ongoing, and this research has the property consid-
ered desirable here, in that it is independently motivated (useful for enhancing speech
recognition and language understanding systems). Thus, an advanced TTS system should be
expected to exploit dialog and speech act markups extensively.

14.4. TEXT NORMALIZATION

Text often include abbreviations (e.g., FDA for Food and Drug Administration) and acro-
nyms (SWAT for Special Weapons And Tactics). Novels and short stories may include spo-
ken dialog interspersed with exposition; technical manuals may include mathematical
formulae, graphs, figures, charts and tables, with associated captions and numbers; email
may require interpretation of special conventional symbols such as emoticons [e.g., :-)
means smileys], as well as Web and Intemet address formats, and special abbreviations
(e.g., IMHO means in my humbie opinion). Again, any text source may include part num-
bers, stock quotes, dates, times, money and currency, and mathematical expressions, as well
as standard ordinal and cardinal formats. Without context analysis or prior knowledge, even
a human reader would sometimes be hard pressed to give a perfect rendition of every se-
quence of nonalphabetic characters or of every abbreviation. Text normalization (TN) is the
process of generating normalized orthography (or, for some systems, direct generation of
phones) from text containing words, numbers, punctuation, and other symbols. For example,
a simple example is given as follows:

The 7% Solution <» THE SEVEN PER CENT SOLUTION

Text normalization is an essential requirement not only for TTS, but also for4lh?-
preparation of training text corpora for acoustic-model and lan guage-model construction.
addition, speech dictation systems face an analogous problem of inverse text normalizatuod
for document creation from recognized words, and such systems may depend on kr‘o“"e.d 8o
sources similar to those described in this section. The example of an inverse (ext normaliza-
tion for the example above is given as follows:

For details of acousti¢ and language modeling, please refer to Chapters 9 and 11.
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THE SEVEN PER CENT SOLUTION <> The 7% Solution

Modular text normalization components, which may produce output for multiple dow
sieam consumers, mark up the exemplary text along the following lines: n-

The <tn snor="SEVEN PER CENT">7%</tn> Solution

The snor tag .smnds for S.'tandard Normalized Orthographic Representation® For
TTS, input {ext may include mu.lusenteqce paragraphs, numbers, dates, times, punctuation,
symbols of all kinds, as well as interpretive annotations in a TTS markup language, such as
1ags for word emphasis or pi.tch range. Text analysis for TTS is the work of converting such
fext into a stream of norrnahzed orthography, with all relevant input tagging preserved and
new markup added to guide the subsequent modules. Such interpretive annotations added by
text analysis are critical for phonetic and prosodic generation phases to produce desired out-
put. The output of the text normalizer may be deterministic, or may preserve a full set of
interpretations and processing history with or without probabilistic information to be passed
along to later stages. We once again assume that XML markup is an appropriate format for
expressing knowledge that can be created by a variety of external processes and exploited by
anumber of technologies in addition to TTS.

Since today's TTS systems typically cannot expect that their input be independently
marked up for text normalization, they incorporate internal technology to perform this func-
tion. Future systems may piggyback on full natural language processing solutions develc_)ped
for independent purposes. Presently, many incorporate minimal, TTS-specific hand-written
rales {1], while others are loose agglomerations of modular, task-specific statistical evalua-
tors [3].

For some purposes, an architecture that ajlows for a
tive expansions may be preferable to deterministic text nqr o own
word graph offered by the speech recognizers described in Chapter 13. Altemam;es ata
to the system can be listed and ranked by probabilities that may be l.eamable k“’m led N
Later stages of processing (linguistic analysis or speech synthesis) can either afdd n:!:r\:t, “mgg
to the lattice structure or recover the best alternative, if needed. CO.nS_Ifief “f‘e “:gn conven-
am1... " in some informal writing such as email. Given the flexibility o c‘:; elxtgseems .
tions for pronunciation, am could be realized as either A. M. (the ““:":rzﬁ a descriptive lat-
e &t times) o the auxiliary verb am. Both alternatives could be noTZble %
tice of covering interpretations, with confidence measures if known ( ' "
ons for sentence fragment “Ar 8am I

set or lattice of possible alterna-
malization, like the n-best lists or

Table 14.2 Two aiternative interpretati

AtBaml... At <time> eight am </time>1..-
At8aml... At <number> eight </number>am1 ...

—

1
SNOR, or Standard Normalized Orthographic Representation.
! comespands to spoken rendition. SNOR-format senience (exts
dan:mc Advanced Research Project Agency and Nationd
Speech technology evaluation procedures.

writing words and sentences
ateral for many
d stan-

is a uniform way of .
are required as reference m

| Institutes of Standards and Technology-sponsore
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If the potential ambiguity in the .interpretation of am in the above pai.r of examples is
simply noted, and the alternatives Fetamed rz?ther than suppre..ssed, the chon.ce can be made
by a later stage of syntactic/semantic processing. Note .anothex featu}'e pf this exan.lple&.me
rough irregular abbreviation form for antemenc'.han, which by prescnphye comenglon hopes
that high-quality TTS processing can rely enn‘rely on standaraf stylistic conventions. That
observation also applies to the obligatory use of ‘:?" for all questions.

Specific architectures for the text normalization component of TTS may be highly

variable, depending on the system architect’s answers to the following questions:

e Are cross-functional language processing resources mandated, or available?
o If so, are phonetic forms, with stress or accent, and normalized orthography,

available?
o Is a full syntactic and semantic analysis of input text mandated, or available?

e Can the presenting application add interpretive knowledge to structure the in-
put (text)?

o' Are there interface or pipelining requirements that preclude lattice alterna-
tives at every stage?

Because of this variability in requirements and resources, we do not attempt to for-
mally specify a single, all-purpose architectural solution here. Rather, we concentrate on
describing the text normalization challenges any system has to face. We note where solu-
tions to these challenges are more readily realized under particular architectural assump-
tions.

All text normalization consists of two phases: identification of type, and expansion 10
SNOR or other unambiguous representation. Much of the identification phase, dealing with
Phenomena of sentence boundary determination, abbreviation expansion, number spell-out,
etc., can be modeled as regular expression (see Chapter 11). This raises an interesting archi-
tectural issue. Imagine a system based entirely on regular finite state transducers (FST, see
Chapter 11), as in [27], which enforces an appealing uniformity of processing mechanism
and internal structure description. The FST permits a lattice-style representation that does
not require premature resolution of any structural choice. An entire text analysis system can
pe based on such a representation. However, as long as a system confines its attention 10
1ssues that commonly come under the heading of text normalization, such as number for-
mats, a!)breviations. and sentence breaking, a simpler regular-expression-based uniform
mechanism fo'r rule specification and structure representation may be adequate.
the ]e)?g:(;";:;’:]t}; 'II'I‘SI systems cou]d_make use of advanced tools such as, for ‘?xample:
lyzers and Context-;:':e[ 7], which provide frame?works for writing customized Jexical aI;:_
malization ret?{uirementsgr I::I];n“?r poTsers, resp.e ctively. In. the discussion of typice texft [Il’erl
patiern-matching code wil] be of examples will be provided and then a fragment © ot
tion [36] is used 1l be ShOW_n that allows matching of the examples given. Perl B o
exPressionparsin‘g § ::: @ convenient short-hand representing any equivalent -regdub)’
any regular expressi):) r;ls?d can be regarded as a subset of the functionality Pm‘”de.[ ect
may choose to empl R, EST, or context-free grammar tool set that a TTS software archl g

ploy. Only a small subset of the simple, fairly standard Perl conventon
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(o employ. Only a small subset of the simple, fairly standf'xrd P(?rl conventions for regular
exprcssion matching are used, and comments are provided in our discussion of text
pormalization. _

A text nonmalization system typically adds identification information to assist subse-
quent stages in their task's. Fc?r ex.ample, if the TN subsystem has determined with some con-
fidence that & given digit string lS. a phone number, it can associate XML-like tags with its
output, identifying the corresponding .normalized orthographic chunk as a candidate for spe-
cial phone—number intonation. In addition, the identification tags can guide the lexical dis-
ambiguation of terms for other processes, like phonetic analysis in TTS systems and training
data preparation for speech recognition.

Table 14.3 shows some examples of input fragments with a relaxed form of output
sormalized orthography. It illustrates a possible ambiguity in TN output. In the (contrived)
example, the ambiguity is between a place name and a hypothetical individual named per-
haps Steve or Samuel Asia. Two questions arise in such cases. The first is format of specifi-
caion. The data between submodules in a TTS system can be passed (or be placed in a
centrally viewable blackboard location) as tagged text or in a binary format. This is an im-
plementation detail. Most important is that all possibilities known to the TN system be
specified in the output, and that confidence measures from the TN, if any, be represented.
For example, in many contexts, South Asia is the more likely spell-out of S. Asia, and this
should be indicated implicitly by ordering output strings, or explicitly with probability num-
bers. The decision could then be delayed until one has enough information in the later mod-
sle (like linguistic analysis) to make the decision in an informed manner.

Table 14.3 Examples of the normalized output using XML-like tags for text normalization.

Dr.King | <title> DOCTOR <title> KING

| 7% <number>SEVEN<ratio>PERCENT</ratio> </number>
8. Asia <toponym> SOUTH ASIA </toponym>

OR <psn_name><initial>S</initial>ASIA</psn_name>

441 Abbreviations and Acronyms

A noted above, a period is an important but not completely reliable clue to the presence of
:?m‘;:;‘;fe\liatign. Periods may be omitted or misplaced in text for a variety of ref'zsc;nsa.tilgtl)lr
ot neason§ of stylistic variability and a \ydter’s (lack of) care and skill, trt:ap:ta ::sema_.
tions orf mtem'a“y_impoﬂam clue, can be variable as well. For example, .all :' ;;a;l)n g
eMmai] Athe abbreviation for post script listed below have been qbserved in tacx o
Such z;s(] System must therefore combine knowledge from a variety of conte

Ocument structure and origin, when resolving abbreviations:
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PS. Don't forget your hat.
Ps. Don't forget your hat.
P.S. Don’t forget your hat.
P.s. Don't forget your hat.

And P.S., when examined out of context, could be personal name initials as well. Of
course, a given TTS system’s user may be satisfied with the simple spoken output Miyaes/
in cases such as the above, obviating the need for full interpretation. But at a minimum,
when fallback to letter pronunciation is chosen, the TTS system must attempt to ensure that
some obvious spell-out is not being overlooked. For example, a system should not render the
title in Dr. Jones as letter names /d iy aa r/.

Actually, any abbreviation is potentially ambiguous, and there are several distinct
types of ambiguity. For example, there are abbreviations, typically quantity and measure
terms, which can be realized in English as either plural or singular depending on their nu-
meric coefficient, such as mm for millimeter(s). This type of ambiguity can get especially
tricky in the context of conventionally frozen items. For example, 9mm ammunition is typi-
cally spoken as nine millimeter ammunition rather than nine millimeters ammunition.

Next, there are forms that can, with appropriate syntactic context, be interpreted either
as abbreviations or as simple English words, such as in (inches), particularly at the end of
sentences.

Finally, many, perhaps most, abbreviations have entirely different abbreviation spell-
outs depending on semantic context, such as DC for direct current or District of Columbia.
This variability makes it unlikely that any system ever performs perfectly. However, with
sufficient training data, some statistical guidelines for interpretation of common abbrevia-
tions in context can be derived. Table 14.4 shows a few more examples of this most difficult
type of ambiguity.

An advanced TTS system should attempt to convert reliably at least the following ab-
breviations:

e Title—Dr., MD, Mr., Mrs., Ms., St. (Saint), ... etc.
® Measure—ft., in., mm, cm (centimeter), kg (kilogram), ... etc.
e Place names—CO, LA, CA, DC, USA, St. (street), Dr. (drive), ... etc.

Table 14.4 Some ambiguous abbreviations.

co Colorado commanding officer
conscientious objector carbon monoxide

IRA Individual Retirement Account Irish Republican Army

MD Maryland doctor of medicine
muscular dystrophy




//“"-——_
Teat Normnlizntion ]

Abbreviation disnmbiguat'iou usually can be resolved by POS (part-of-speech) analy-
. For example, whether Dr. 1s Pnc!or or Drive can be' resolved by examining the POS
fequres of the previous and following words. If the abbreviation is followed by a capitalized

nonal name, it can be expanded as Dactor. whereas if the abbreviation is preceded by a
pitalized place name, a number, or an alphanumeric (like 120"), it will be expanded as
Drive. Although the example above is resolved via a series of heuristic rules, the disam-
iguation (POS analysis) can also be done by a statistical approach. In [6], the POS tags are
deiermined based on the most likely POS sequence using POS trigram and lexical-POS uni-
gram, Since ail abbreviation can often be distinguished by its POS feature, the most likely
POS sequence of the sentence discovered by the trigram search then provides the best guess
of the POS (thus the usage) for abbreviations. We describe POS tagging in more detail in
Section 14.5.

Other than POS information, the lexical entries for abbreviations should include all
features and alternatives necessary to generate a lattice of possible analyses. For example, a
typical abbreviation’s entry might include information as to whether it could be a word (like
i), whether period(s) are optional or required, whether plural variants must be generated
and if so under what circumstances, whether numerical specification is expected or required,
elc.

Acronyms are words created from the first letters or parts of other words. For example,
SCUBA is an acronym for self-contained underwater breathing apparatus. Generally, to
Qualify as a true acronym, a letter sequence should reflect normal language phonotactics,
uch as a reasonable alternation of consonants and vowels. From a TTS system’s point of
view, the distinctions between acronyms, abbreviations, and plain new or unknown words
tan be unclear. Many acronyms can be entered into the TTS system Jexicon just as ordinary
%ords would be. However, unknown acronyms (not listed in the lexicon) may occasionally
zeen'cc{untered. Although an acronym’s case property can be a significant clue to identifica-
I°“: it 1S F)ften unclear how to speak a given sequence.of. upper-case lgtters. Most TTS sys-
°ms, failing to locate the sequence in the acronym dictionary, spell it out letter-by -letter.

ther systems attempt to determine whether the sequence is inherently spealfable. For ex-
:me' }?EC might be inherently speakable, while FCC is not formeg a.ccg]r:xlog rr::)alnl?e]:t?:-l
l&soui dOnOtaCIICS.‘ When something speakable is found, it is processed via Yet other

tules, while something wnspeakable would be spelled out letter-by-letter. Yet otl
SYStem.s might simply feed the sequence directly to the letter-to-sound rules (see Section
cofl)l‘s.::;; i, the_y would any other unknown word. As with all such problems. a larger lexi-

Y provides superior results. i rext normalization
sur e .gene.ral algorithm for abbreviatioqs and acronyms expzns:_m;‘;gn X POS tagging
ave bl:anmd n Algorithm 14.2. The algorlthm'as§umes that_.lo ?: ]dzelermined by the POS
lags of :r': done fo_r the who!e .sentence.A B o expan:ll(:;on is done exclusively by
table looke potential abbreviation candldat.es. Acrongm e’c‘:ll:',onyms cannot be found in the
erop Up, and letter-by-letter spell-out is used when a

Ym table,
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ALGORITHM 14.2: ABBREVIATIONS AND ACRONYMS EXPANSION
4. If word token wis not in abbreviation table and w contains only capital letters goto 3.

2. Abbreviation Expansion o
If the POS tag of wand the correspondent abbreviation match

Abbreviation expansion by inserting SNOR and interpretive annotation tags

Advance one word and goto 1.
3, Acronym Expansion
If wis in the predefined acronym table
Acronym expansion by inserting SNOR and interprelive annolation tags
according to acronym expansion table
else spell out w letter-by-letter
4. Advance one word and goto 1.

14.4.2. Number Formats

Numbers occur in a wide variety of formalts and have a wide variety of contextually depend-
ent reading styles. For example, the digits 370 in the context of the product name IBM 370
mainframe computer typically are read as three seventy, while in other contexts 370 would
be read as three hundred seventy or three hundred and seventy. In a phone number, such as
370-1111, the string would normally be read as three seven oh, while in still other contexts it
might be rendered as three seven zero. A text analysis system can incorporate rules, perhaps
augmented by probabilities, for these situations, but might never achieve perfection in all
cases. Phone numbers are a practical place to start, and their treatment illustrates some of the
general issues relevant to the other number formats which are covered below.

14.4.2.1. Phone Numbers

Phone numbers may include prefixes and area codes and may have dashes and parentheses
as separators. Examples are shown in Table 14.5.

The first two examples have prefix codes, while the next four have area codes with
mmnor formatting differences. The final two examples are possible intemational-format
phone numbers. A basic Perl Tegular expression pattern to subsume the commonality in all
the local domestic numbers can be defined as follows:

$us_basic = ([0-91{3}\~[0-9]{4)}) Yy

lowed'ghls defines a pattern subpart to match 3 digits, followed by a separator dash, fol-
y another 4 digits. Then the pattern to match the prefix type would be:

/(10-91{1}) [\/ =) {$us_basic)/
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Table 14.5 Some different written representations of phone numbers.

9-999-4118

9 345-5555

(617) 932-9209
(617) 932-9209

716-123-4568

409/845-2274

+49 (228) 550-381

+49-228-550-381

In the first example above, this jeaves the system pattern variabie $1 (corresponding to
the first set of capture parentheses in the pattern) set to 9, and 32 (the second set of capture
parentheses) set to 999-4118. Then a separate set of tables, indexed by the rule name and the
pattemn variable contents, could provide orthographic spell-outs for the digits. Clearly a bal-
ance has to be struck between the number of pattern variables provided in the expression and
the overall complexity of the expression, vis-a-vis the complexity and sophistication of the
indexing scheme of the spell-out tables. For example, the $us_basic could be defined to in-
corporate parentheses capture on the first three digits and the remaining four separately,
which might lead to a simpler spell-out table in some cases.

The pattern to match the area code types could be:

FON(10-91{3}\)) [\/ -] (Sus_basic)/

match strings of almost

These patterns could be endlessly refined, expanded, and layered to : m
complexity of distinct

abiteary complexity. A balance has to be struck between number and con .
Patierns. In any case, no matter how sophisticated the matching mechanism, arbltrarylor at
best probabilistic decisions have to be made in constructing a TTS system. For example, zr;
Matching an area code type, the rule architect must decide how much and what kind 0

i st of
Whitespace i i m tolerates between the area code and the re
s batoa o o g as another example,

e number before a phone-number match is considered unlikely. Or,

does the rule architecfallow new lines or other formatting characters to appear I?fltwsgzsgl:ﬁ
a code and the basic phone number? These kinds of decisions must bt? exphc:’ zumema-
16, or made by default, and should be specified to @ reasonable degree in user bc; menta-
ton. There are great many other phone number formats and issues that are bey

5£0pe of this treatment, . ) hy, the

Once a certain type of pattern requires a conversion to .normahzzi r(;n(-;ha(:nglr)ipal)i’gned
dusstion of how to perform the conversion arises. The conversion 'char; P atohing
¥ith the identification, so that conversion occurs implicitly during 'enP e This may
Brocess. Another way i's to separate the conversion from the identificatio dgpend;ng e
% may not lead to gains in efficiency and elimination of redundancy,
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overall architecture of the system and whether and how components are expected to be re.
used. A version of this second approach is sketched here.

Suppose that the pattern match variable $1 has be.en set to 617 by one of the identificg.
tion-phase pattern matches described above. Another llSt- can provide pointers to conversion
tables, indexed by the rule name or number and the variable name. So for the rule that cap

match area codes, the relevant entry would be:

Identification rule Variable Spellout table
Area~-Phone $1 LITERAL_DIGIT

The LITERAL_DIGIT spell-out rule set, when presented with the 617 character se-
quence (the value of $1), simply generates the normalized orthography six one seven, by
table lookup. In this simple and straightforward approach, spell-out tables such as LIT-
ERAL_DIGIT can be reused for portions of a wide variety of identification rules. Other
simple numeric spell-out tables would cover different styles of numeric reading, such as
pairwise style (e.g., six seventeen), full decimal with tens, hundreds, thousands units (six
hundred seventeen), and so on. Some speilout tables may require processing code to sup-
plement the basic table lookup. Additional examples of spell-out tables are not provided for
the various other types of text normalization entities exemplified below, but would function
similarly.

14.4.2.2. Dates

Dates may be specified in a wide variety of formats, sometimes with a mixture of ortho-
graphic and numeric forms. Note that dates in TTS suffer from a mild form of the century-
date-change uncertainty (the infamous Y2K bug), so a form such as 5/7/37 may in the future
be ambiguous, in its full form, between 1937 and 2037. The safest course is to say as little as
possible, i.e., “five seven thirty seven”, or even “May seventh, thirty seven”, rather than at-
tempt “May seventh, nineteen thirty seven”. Table 14.6 shows a variety of date formats and
associated normalized orthography.

Table 14.6 Various date formats.

12/19/94 (US) December nineteenth ninety four

19/12/94 (European) December nineteenth ninety four

04/27/1992 April twenty seventh nineteen ninety two

May 27, 1995 May twenty seventh nineteen ninety five ]
July 4,94 July fourth ninety four

:999944 one thousand nine hundred and ninety four |

nineteen ninety four
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One issue that comes up with certain number formats, including dates, is range check
i, A form like 1 ?/19/94 is basicglly uninterpretable as a date. This kind of checking i;
included in the initial pattern m.atchmg. may be slow and may increase formal requireme.nts
for power of the pattern matching system. Therefore, range checking can be done at spell-
out time (see below) during normalized orthography generation, as long as a backtracking or
redo option is present. If range checking is desired as part of the basic identification phase of
ext normalization, some regular expression matching systems allow for extensions. For
example, the following pattern variable matches only numbers less than or equal o 12, the
valid month specifications. It can be included as part of a larger, more complex date match-

ing pattern:

smonth = '/(0[123456789]/1(012]/"

14423. Times

Times may include hours, minute, seconds, and duration specifications as shown in Table
147. Time formats exemplify yet another area where linguistic concerns have to intersect
with architecture. If simple, flat normalized orthography is generated during a text normali-
zation phase, a later stage may still find a form like am ambiguous in pronunciation. If a
lattice of alternative interpretations is provided, it should be supplemented with interpretive
information on the linguistic status of the alternative text analyses. Altematively, a single
best guess can be made, but even in this case, some kind of interpretive information indjcat-
ing the status of the choice as, e.g., a time expression, should be provided for later stages of
Syntactic, semantic, and prosodic interpretation. This reiterates the importance of TT.? text
analysis systems to generate interpretive annotations tags for subsequent mod'ules use
whenever possible, as discussed in Section 14.4. In some cases, unique text formatting of the
choice, corresponding to the system’s lexical contents, may be sufficient. That‘ is, t,n some
Systems, generation of A.M., for example, may uniquely correspond to the ]f’monds e;:])_’
for that portion of a time expression, which specifies the desired pronunciation and gr

Watical treatment.

Table 14.7 Several examples for time expressions. .

[ “——
__l_h_L eleven fifteen -
| 830pm | eight thiny pm
.As;zo_al five twenty am 4____,_—;——-—-——""—‘
_‘2115:20 twelve hours fifteen minutes wﬂi———’————

N ) -six seconds -
97:55:46 | seven hours fifty-five minutes and forty S 22—
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14.4.2.4. Money and Currency

As illustrated in Table 14.8, money and currency processing should correctly handle at least
the currency indications $, £, DM, ¥, and €, standing for dollars, British pounds, deutsche
marks, Japanese yen, and euros, respectively. In general, $ and £ have to precede the ny-
meral; DM, ¥, and € have to follow the numeral. Other currencies are often written in fyJ)
words and have to follow the numeral, though abbreviations for these are sometimes found,
such as 100 francs and 20 lira.

Table 14.8 Several money and currency expressions.

540 forty dollars

£200 two hundred pounds

5¥% five yen

25 DM twenty five deutsche marks
300 € three hundred euros

14.4.2.5. Account Numbers

Account numbers may refer to bank accounts or social security numbers. Commercial prod-
uct part numbers often have these kinds of formats as well. In some cases these cannot be
readily distinguished from mathematical expressions or even phone numbers. Some exam-
ples are shown below:

123456-987-125456
000-1254887-87
049-85-5489

The other popular number format is that of credit card number, such as

4446-2289-2465-7065
3745-122267-22465

To process formats like these, it may eventually be desirable for TTS systems (0 P ro-
vide customization capabilities analogous to the pronunciation customization features f"c‘l'
words found in current TTS systems. Regular expression formalisms of the type exemp_l ifie
above for phone number, would, if exposed to applications and developers through suitable
editors, be adequate for most such needs.
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144.2.6. Ordinal Numbers

Ordinal numbers are those referring to rank or placement in a series. Examples include:

l“, 2-]] 3111, 4lh. lom' l llh , ]2m’ '20"', IOOHI, 1000”.' etc.
tst, 2nd, 3rd, 4th, 10th, 11th, 12th, 20th, 21st, 32nd, 100th, 1000th, etc.

The system's ordinal processing may also be used to generate the denominators of
fractions, except for halves, as shown in Table 14.9. Notice that the ordinal must be plural

for numerators other than 1.

Table 14.9 Some examples of fractions.

12 one half

173 one third

14 one quarter or one fourth
/10 one tenth

3/10 three tenths

14427,  Cardinal Numbers

Cardinal numbers are, loosely speaking, those forms used in simple counting or the state-
ment of amounts. If a given sequence of digits fails to fit any of the more 'complcx fqmacs
above, it may be a simple cardinal number. These may be explicitly negative or positive 0‘;
dssumed positive. They may include decimal or fractional specifications. They may be rea

" several different styles, depending on context and/or aesthetic Plr.efef“:ﬁs- ;l;ﬁ_]l; 14.10
BIVEs some ex ' nd alternatives for normalized orthography.
amples of cardinal numbers a o Algorithm 14.3. In ‘His algorithm

The number-expansion algorithm is summarized 3 rerm in the table
the text normalization module maintains an extensive pattern table. Each p b 2 pointer 0.2
€ontains its assocjated pattern in regular expression or Perl format along W
ule in the conversion table, which guides the expansion process.

Table 14.16 Some cardinal number types.

hundred (and) twe
one two three | one hundred

one thousand two hundred (and) thirty o ————
' rwenty four twenty Six

two four two six I S
two thousand four hundred (in_c_i)_g\'_\fﬂly___s_‘i__

nty three
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o match well-formed cardinals with commas grouping chunkg of

lar expression t 5
A reguat 2P 1 000,000 to 999,999,999 might appear as:

three digits of the type from

if (Sitem =~ /“([0—9]{1,3}).([0—9]{3}),([0~9]{3})/
{ $NewFra.me—>{"millions"} = $§1;
$NewFrame->{" thousands"} = $2;
$NewFrame->{" hundreds"} = §3;

print "Grouped cardinal found: S$item\n";
return $NewFrame; }

ALGORITHM 14.3: NUMBER EXPANSION

1. Pattern Matching
If a match is found goto 2.
else goto 3.
2. Number Expansion
Insert SNOR and interpretive annotation tags according to the associated rule
Advance the pointer to the right of the match pattem and goto 1.
3. Finish

14.4.3. Domain-Specific Tags

In keeping with the theme of this section—that is, the increasing importance of independ-

ently generated precise markup of text entities—we present a littie-used but interesting ex-
ample.

144.3.1. Mathematical Expressions

Mathematical expressions are regarded by some systems as the domain of special-purPose
processors. It is a serious question how far to go in mathematical expression passing, $n¢®
providing some capability in this area may raise users’ expectations to an uarealistic level.
'[1'3}:3] “"v‘:'::hwlde .:Veb Consortium has developed MathML (mathematical markup Janguage)
extension forl-) :;;::: ?’;.a standard way of describing math expressions. MathML is al:hemat'
ic$ to be servod noing mathematical expression structure and content to enable m2 per-
formed for tcxt, j:gil(m and proce.ssed on the Web, similar to the function HTML T: use
to guide int - As . becomes increasingly pervasive, MathML could Possib]y ‘ble
 erpretation of mathematical expressions. For the notation (x + 2) 2 poss

MathML representati ke
ntati . e s : spo
rendition. P on such as that below might serve as an initial guide for a sp
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<EXPR>
<EXPR>
X
<PLUS/>
2
</EXPR>
<POWER/>
2

</EXPR>

This might be generated by an application or by a specialized preprocessor within the TTS
system itself. Prosodic rules or data tables appropriate for math expressions could then be
triggered.

1443.2. Chemical Formulae

As XML becomes increasingly common and exploitable by TTS text normalization, other
areas follow. For example, Chemical Markup Language (CML [22]) now provides a stan-
dard way to describe molecular structure or chemical formulae. CML is an example of how
standard conventions for text markup are expected increasingly to replace ad hoc, TTS-
intemal heuristics.

In CML, the chemical formula C,0COH, would appear as:

<FORMULA>
<XVAR BUILTIN="STOICH”">
CCOCOHHHEH
</XVAR>

</FORMULA>

It seems reasonable to expect that TTS engines of the future will be 1_ﬂcrea51[ri1]§i)f[ ::n
voted 1o imerpreting such precise conventions in high-quality sPeeCl_‘ rendm_ons H'fe identity
tndlessty replicating NL heuristics that fail as often as they succeed in guessing

of raw texy Strings.

1444, Miscellaneous Formats

phenomena for which an English-

A -
[andom list illustrating the range of other types of »ed orthography might include:

(4] .
Nented TTS text analysis module must generate normali

is spoken as app
t is the character

' oximately before (Ara-
. ApProxlmately/tilde: The symbol ~ r e

bic) numeral or currency amount, otherwise 1
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e Folding of accented Roman characters to nearest plain version: If the TTS
system has no knowledge of dealing with foreign languages, like French or
German, a table of folding characters can be provided so that for a term such
as Uber-mensch, rather than spell out the word Uber, or ignore it, the system
can convert it to its nearest English-orthography equivalent: Uber. The ulti-
mate way to process such foreign words should integrate a language identifi-
cation module with a multi-lingual TTS system, so that language-specific
knowledge can be utilized to produce appropriate text normalization of all
text.

e Rather than simply ignore high ASCII characters in English (characters from
128 to 255), the text analysis lexicon can incorporate a table that gives char-
acter names to all the printable high ASCII characters. These names are ej-
ther the full Unicode character names, or an abbreviated form of the Unicode
names. This would allow speaking the names of characters like © (copyright
sign), ™ (trademark), @ (at), ® (registered mark), and so on.

e Asterisk: in email, the symbol ‘*’ may be used for emphasis and for setting
off an item for special attention. The text analysis module can introduce a lit-
tle pause to indicate possible emphasis when this situation is detected. For the
example of “Larry has *never* been here,” this may be suppressed for aster-
isks spanning two or more words. In some texts, a word or phrase appearing
completely in UPPER CASE may also be a signal for special emphasis.

¢ Emoticons: There are several possible emoticons (emotion icons).

1. :=)or:) SMILEY FACE (humor, laughter, friendliness, sarcasm)
2. -(ory FROWNING FACE (sadness, anger, or disapproval)

3. ;-)ory) WINKING SMILEY FACE (naughty)

4. :-D OPEN-MOUTHED SMILEY FACE (laughing out loud)

Smileys, of which there are dozens of types, may be tacked onto word start or word
end or even occur interword without spaces, as in the following examples.

hi!
Hi:)
Hi:)Hi!

14.5. LINGUISTIC ANALYSIS

Linguistic analysis (sometimes also referred to as syntactic and semantic parsing) of natural
language (NL) constitutes a major independent research field. Often commercial TTS 8yS-
tems incorporate some minimal parsing heuristics developed strictly for TTS. Alternatively,
the TTS systems can also take advantage of independently motivated natural language proc-
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wsing (NLP) systems, which can produce structural and semantic information about sen.
ences. Such linguistically analyz?d documents can be used for many purposes other than
Trs__;nfonnation retrieval, machine translation system training, etc.

Provision of some parsing capability is useful to TTS systems in several areas. Parsers
may be used in disambiguating the text normalization alternatives described above. Addi-
jonally, syntactic/semantic analysis can help to resolve grammatical features of individual
words {hat may vary in pronunciation according to sense or abstract inflection, such as read.
Finally, parsing can lay a foundation for derivation of a prosodic structure useful in deter-
mining segmental duration and pitch contour.

The fundamental types of information desired for TTS from a parsing analysis are

summarized below:
¢ Word part of speech (POS) or word type, €.g., proper name or verb.
o Word sense, e.g., river bank vs. money bank.
e Phrasal cohesion of words, such as idioms, syntactic phrases, clauses, sen-
tences.
¢ Modification relations among words.
¢ Anaphora (co-reference) and synonymy among words and phrases.
s Syntactic type identification, such as questions, quotes, commands, etc.
o Semantic focus identification (emphasis).

o Semantic type and speech act identification, such as requ
narrating, etc.

esting, informing,

¢ Genre and style analysis.

_Here we confine ourselves to discussion of the kind of information that a good parse
in principle, provide to enable the TTS-specific functionality. ) .
Linguistic analysis supports the phonetic analysis and prosodic generation ih?.s esug‘::
modules of phonetic analysis are covered in Sections 14.6, 14.7, and .14'8i‘ (li?:gfonns
Parser can contribute in several ways to the process of gcneraung_(sy mboll(% P on;mte art-
from orthographic words found in text. One function of a parser 1 ©op rovice aC(;] hungircd
Ofspeech (POS) labels. This can aid in resolving the. pronunciation of seveclriscussed in
American English homographs, such as object and absent. Hpmographs a:‘r; S her special
greater detail in Section 14.6. Parsers can also aid in identifying "ames'a: [32]
classes of vocabulary for which specialized pronunciation rule sets $ad)|(1::i:) h and' pitch con-
Prosody generation deals mainly with assignment of segment
four that have close relationship with prosodic phrasing (P2

use placement) and accentuation.
B3Ing can contribute useful information,

uch as the syntactic type of an utterl;m;::).th(e.agr;
4 urs, thoug

Ym0 question contours typically differ from wh-question conto

Marked simply by ‘7 in text), as well as Sem

i hora, and

i synonymy., anap! s

antic relations of . nd
i from discourse anaty

s(')cLls that may affect accentuation and prosodic >

'S and tex{ genre characterization may affect pitch rang

r could,

ing. Information .
phras e nd voice quality settings. Further
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examination of the contribution of parsing §PeCiﬁC3]lY to prosodic phrasing, accentuation,
and other prosodic interpretation is provided m.Chapter 15.

As mentioned earlier, TTS can employ either a general-purpose NL analysis engine or
a pipeline of a number of very narrowly.targeted, special-purpose I_\JL n_lo_du!es together for
the requirement of TTS linguistic analysis. A]thoggh we focus on lnngu.lsuc mf(?rmation for
supporting phonetic analysis and prosody generation here, a lot of t.he 'mformatlon and ser-
vices are beneficial to document structure detection and text normalization described in pre-
vious sections.

The minimum requirement for such a linguistic analysis module is to include a lexicon
of the closed-class function words, of which only several hundred exist in English (at most),
and perhaps homographs. In addition, a minimal set of modular functions or services would
include:

e Sentence breaking—Sentence breaking has been discussed in Section 14.3.4

above.

o POS tagging—POS tagging can be regarded as a two-stage process. The first

is POS guessing, which is the process of determining, through a combination
of a (possibly small) dictionary and some morphological heuristics or a spe-
cialized morphological parser, the POS categories that might be appropriate
for a given input term in isolation. The second is POS choosing—that is, the
resolution of the POS in context, via local short-window syntactic rules, per-
haps combined with probabilistic distribution for the POS guesses of a given
word. Sometimes the guessing and choosing functions are combined in a sin-
gle statistical framework. In [6], lexical probabilities are unigram frequencies
of assignments of categories to words estimated from corpora. In the original
formulation of the model, the lexical probabilities [ P(c; | w,) , where ¢, is the
hypothesized POS for word w, ], were estimated from the hand-tagged Brown
corpus [8]. For Example, the word see appeared 771 times as a verb and
once as an interjection. Thus the probability that see is a verb is estimated to
be 7717772 or 0.99. Trigrams are used for contextual probability
[Ple|cincinc)=P (¢, ¢,4¢.5) ). Lexical probabilities and trigrams over
Category sequences are used to score all possible assignments of categories {0
words for a given input word sequence. The entire set of possible assign-
ments of c.ategon'es to words in sequence is calculated, and the best-scoring
sequence 1s used. Likewise, simple methods have been used to detect noun
g ::‘;3; (?: E:S);n“t’:iCh can _be u§efu1 in ::lssigning pronunciation_. 'sf:ress, a'nd
serting an NP b: _Odbdescnb?d, in (6] relies on a table of probabilities for in-
larly for an NP f::i bracket *[ ,bet“.veen any two POS cafegories, 2 Slrlmci
Brown corpus, with f r:;cket r. This was also trained on the POS-labe ﬂele
probability e urther augmentation for the NP labels. For example,
inserting an NP begin bracket after an article was found to b
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much lower than that of begin-bracket insertion between a verh and & noun
thus automatically replicating human intuition, ,

Homograph disambiguation—Homograph disambiguation in general refers
to the case of words with the same orthographic representation (written form)
but having different semantic meanings and sometimes even differens pro-
punciations. Sometimes it is also referred as sense disambiguation. Examples
include “The boy used the bat to hit a home run” vs. “We saw a large bat in
the zoo” (the pronunciation is the same for two bar) and “You record your
voice” vs. “I'd like to buy that record™ (the pronunciations are different for
the two record). The linguistic analysis module should at least try to resoive
the ambiguity for the case of different pronunciations because it is absolutely
required for correct phonetic rendering. Typically, the ambiguity can be re-
solved based on POS and lexical features. Homograph disambiguation is de-
scribed in detail in Section 14.6.

* Noun phrase (NP) and clause detection—Basic NP and clause information
could be critical for a prosodic generation module to generate segmental du-
rations. It also provides useful cues to introduce necessary pauses for intelli-
gibility and naturainess. Phrase and clause structure are weil covered in any
parsing techniques.

® Sentence rype identification—Sentence types (declarative, yes-no question,
etc.) are critical for macro-level prosody for the sentence. Typical techniques
for idemiifying sentence types have been covered in Section 14.34.

It 2 more sophisticated parser is available, a richer analysis can be derived. A so-called
Shallow parse is one that shows syntactic bracketing and phrase type, based on the P OS of
Words contained in the phrases. A training corpus of shallow-parsed sentences has been cre-
td for the Linguistic Data Consortium [16]. The following example illustrates a shailow
Parse for sentence : “For six years, Marshall Hahn Jr. has made corporate acquisitions in the

George Bush mode: kind and gentle.”

For/IN[six/cD years/NNS],/, [T./NNP Marshall/NNP ..
Hahn/NNP gr. /NNP1has/VBZ made/VEN[corporate/JJ acquists
tlons/NNS]in/IN[the/DT George/NNP Bush/NNP mode/NN]

t/ (kind/33)and/cc [gentle/JJ] ./ -

SYStemT?,es POS labels used in this example are described ir? Chap
il (;:s the POS labels in the parse to decide alternative pron oht assis
ing wheg ®8rees of prosodic prominence. Additionally, the bracketing n; dgin corpo
higher.olrlz 0 place pauses for great intelligibility. A full?r parse wot;e oot
inejyge - STUCture, including sentence type identification. and mo

"8 Co-referenge,

ter 2 (Table 2.14). A TTS
nunciations and to asm_gn
t in decid-
rate more
analysis,
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14.6. HOMOGRAPH DISAMBIGUATION

For written languages, sense ambiguities occur when words have different syntac.
tic/semantic meanings. Those words with different senses f'ire called Rolysemous words, For
example, bat could mean either a kind of animal or the.equu.)ment to hit a baseball. Since the
pronunciations for the two different senses of bat are identical, we are in general only cop.
cerned® about the other type of polysemous words that are homogr.aphs (spelled alike byt
vary in pronunciation), such as bass for a kind of fish (/b ae s/} or aq mnstrument (/b ey sf).

Homograph variation can often be resolved on POS (grammatical) category. Examples
include object, minute, bow, bass, absent, etc. Unfortunately, correct determination of POS
(whether by a parsing system or statistical methods) is not always sufficient to resolve pro-
nunciation alternatives. For example, simply knowing that the form bow is a noun does not
allow us to distinguish the pronunciation appropriate for the instrument of archery from that
for the front part of a boat. Even more subtle is the pronunciation of read in “If you read the
book, he’ll be angry.” Without contextual clues, even human readers cannot resolve the pro-
nunciation of read from the given sentence alone. Even though the past tense is more likely
in some sense, deep semantic and/or discourse analysis would be required to resolve the
tense ambiguity,

Several hundred English homographs extracted from the 1974 Oxford Advanced
Learners Dictionary are listed in [10]. Here are some examples:

e Stress homographs: noun with front-stress vowel, verb with end-stress vowel
“an abseni boy” vs. “Da you choose to absent yourself?”

* Voicing: noun/verb or adjective/verb distinction made by voice final conso-
nant

“They will abuse him.” vs, “They won’t take abuse.”

—ate words: noun/adjective sense uses schwa, verb sense uses a full vowel
“He will graduate.” vs, “He is a graduate.”

Double stress: front-stressed before noun, end-stressed when final in phrase
“an overnight bag” vs. “Are you staying overnight?”*
-ed a_clject.ives with matching verb past tenses

“He is a learned man.” vs, “He learned to play piano.”

{Ambiguous abbreviations: already described in Section 14.4.1
i, am, SAT (Saturday vs. Standard Aptitude Test)

° Bo'rrowed words from other languages—They could sometimes be distiz-
guishable based on capitalization.
‘El Camino Rea/ road in California”

[ - 111 vs- “real wor]d"
polish shoes™ vs, “Polish accent”

peration becav®

* Sometimes, i
2 polysemous word with the same Pronunciation could have impact for prosodic ge an
TTS system ©

different semantic properties could h i -
definitely be benefited from word- ave different accentuation effects. Therefore, a high-quality

sense disambiguation beyond homograph disambiguation.
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o Miscellaneous
wThe sewer overflowed.” vs. “a sewer is not a tailor.”

“He moped since his parents refused to buy a moped.”
“Agape is & Greek word.” vs. “His mouth was agape.”

As discussed eaclier, abbreviation/acronym expansion and linguistic analysis described
in Sections 14.4.1 and 14.5 are two main sources of information for TTS systems to resolve
homograph ambiguities.

We close this section by introducing two special sources of pronunciation ambiguity
that are not fully addressed by current TTS systems. The first one is a variation of dialects
{or even personal dialect-—idiolect). For example, some might say fomfeylro, while some
athers might say rom{aalto. Another example is that Boston natives tend to reduce the /r/
sound in sentences like “Park your car in Harvard yard,” Similarly, some people use the
spelling pronunciation in-rer-es-ting as opposed to inristing. Finally, speech rate and for-
mality level can influence proununciation. For example, the /g/ sound in recognize may be
oaitted in faster speech. It might be a sensible decision to output all possible pronunciations
as a multiple pronunciation list and hope the synthesis back end picks the one with better
aoustic/prosodic voice rendition. While true homographs may be resolved by lmguistic and
iscourse analysis, achieving a consistent presentation of dialectal and stylistic variation is

even more difficult research challenge.

The other special source of ambiguity in TTS is somewhat different from what we
h.ave considered so far, but may be a concern in some markets. Most borrowed or foregh
single words and place names are realized naturally with pronunciation normalized to the
méin presentation Yanguage. Going beyond that, language detection refers to the ability 011’ a
TTS‘system to recognize the intended language of a multiword stretch c?f text. For exampie,
consider the fragment “Well, as for the next department head, that is simply une chose en-

fendue.” The Fre w » (something clearly understood) might be
nch phrase “une chose entendue” ( ton by a bilingual E nglish/French

r M . .
r:::jlwi In @ proper French accent and phone pronuncia ust have:
ér. For a TTS system to mimic the best performance, the system m

* language identification capability
* dictionaries and rules for both languages
* voice rendition capability for both languages

147, MORPHOLOGICAL ANALYSIS

nsider issues of relating
Genery) issues in morphology are covered in Chapter 2. Here, W€i= ;ocomponent S ohemes
;;?ﬁace Orthographic fon: to its pronunciation by analgz:slgpreﬁxes o siem
1ch are min f words, suc s S e 8]
selyer ] ! elements & . hological analysis 120k

Words themsel\.resalTl{lTi]se il]::ogg;osixion process 15 feferred a: 'l'ilzirtfy, it;'gs, o s possl-
ol ' . hographlc fo horter forms

ictionary does not list a given Ort " These sho

eady presel
¢ © analyze the new word in terms of shorter forms alreacy P
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may combine as prefixes, one or more stems or roots, and suffixes to generate new formg, If
a word can be so analyzed, the listed pronunciations of the pieces can be combined, perhaps
with some adjustment (phonological rules), to yield a phonetic form for the word as a whole.

The prefixes and suffixes are generally considered bound, in the sense that they cannoq
stand alone but must combine with a stem. A stem, however, can stand alone. A word sych
as establishmeni may be decomposed into a “stem” establish and a suffix -ment. In practice,
it is not always clear where this kind of analysis should stop. That is, should a system a-
tempt to further decompose the stem establish into establ and -ish? These kinds of questions
ultimately belong to etymology, the study of word origins, and there is no final answer.
However, for practical purposes, having three classes of entries corresponding to prefixes,
stems, and suffixes, where the uses of the affixes are intuitively obvious to educated native
speakers, is usually sufficient. In practical language engineering, a difference that makes no
difference is no difference, and unless there is a substantial gain in compression or analytical
power, it is best to be conservative and list only obvious and highly productive affixes.

The English language presents numerous genuine puzzles in morphological analysis.
For example, there is the issue of abstraction: is the word geese one morpheme, or two (base
goose + abstract pluralizing morpheme)? For practical TTS systems, relying on large dic-
tionaries, it is generally best to deal with concrete, observable forms where possible. In such
a lexically oriented system, the word geese probably should appear in the lexicon as such,
with attached grammatical features including plurality. Likewise, it is simpler to include
children in the lexical listing rather than create a special pluralizing suffix -ren whose use is
restricted to the single base child.

The morphological analyzer must attempt to cover an input word in terms of the af-
fixes and stems listed in the morphological lexicon. The covering(s) proposed must be legal
sequences of forms, so that often a word grammar is supplied (o express the allowable pat-
terns of combinations. A word grammar might, for example, restrict suffixation to the final
or rightmost stem of a compound, thus allowing plurality on the final element of business-
men but not in the initial stem (businessesman). In support of the word grammar, all stems
and affixes in the lexicon would be listed with morphological combinatory class specifica-
tions, usually subtyped in accordance with the base POS categories of the lexicon entries.
That is, verbs would typically accept a different set of affixes than nouns or adjectives. In
addition, spelling changes that sometimes accompany affixation must be recognized and
undone during analysis. For example, the word stopmizg has undergone final consonant
doubling as part of accommodating the suffix ing.

A morphological analysis system might be as simple as a set of suffix-stripping ru.les
for English. If a word cannot be found in the lexicon, a suffix-stripping rule can be applied
to first strip out the possible suffix, including —s, -’s, -ing, -ed, -est, -ment, etc. If the stripped
form can be found in the lexicon, a morphological decomposition is attained. Similarly, pré:
Jfix-stripping rules can be applied to find prefix-stem decomposition for prefixes like in~ 1"
non-, pre-, sub-, etc., although in general prefix stripping is less reliable.

Suffix and prefix stripping gives an analysis for many common inflected and som
rived words such as helped, cats, establishment, unsafe, predetermine, subword, etc- 1t helps
in saving system storage. However, it does not account for compounding, issues of legality

e de-
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of sequence (word grammar), or spelling chan
chronic point of view: basement is not base +
in TTS rendition. A more sophisticated vers

However, a truly robust morphological capability would re

into 2 system dictionary is always a desirable solution.

Finally, sometimes in commercial product names the compounding structure is sig-
naled by word-medial case differences, e.g., AlaVista™, which can aid phonetic conversion
algorithms. These can be treated as two separate words and will often sound more natural if
rendered with two separate main stresses. This type of decomposition can be expanded to
fing compound words that are formed by two separate nouns. Standard morphological
analysis algorithms employing suffix/prefix stripping and compound word decomposition
are summarized in Algorithm 14.4. Note that the algorithm can be easily modified to handle

words constructed by a combination of prefix, suffix, and compound.

8es. It can also make mistakes (from a syn-
.-mem). isome of which will have consequences
1on could be constructed b adding el

wch as POS type on each suffix/prefix for a rudimentary legality checky on cmﬁb?n?:;;gf

( quire more powerful formal ma-
chinery and a more thorough analysis. Therefore, adding irregular morphological formation

ALGORITHM 14.4: MORPHOLOGICAL ANALYSIS

—

. Dictionary Lookup
Look up word w in lexicon
I found
Output atiributes of the found lexical entry and exit
. Suffix Stripping
If word ends in -3, -'s, -ing, -ed, -esl, -ment, etc.
Strip the suffix from word w to form u
It stripped form u found in lexicon
Output attributes of the stem and suffix and exit
Prefix Stripping
If word begins with in-, un-, non-, pra-, sub-, etc.
Strip the prefix from word w to form u
It stripped form u found in lexicon '
Qutput atiributes of the prefix and stem and exit
4 Ccl:mpound word decomposition i word W
f detect word-medial case differences within wo _
Break word w into a multiple WOrds U,, U, Uy -.-according 0 6ase changes
For words u,, u,, u,, goto 1. N
Else if word w‘carzl bé 3ecomposed into two nouns b, U, I lexicon
Output attributes of the u,, u,and exit

[ o4

L3

e

5. Pass word w to letier-to-sound module -
‘\‘
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14.8. LETTER-TO-SOUND CONVERSION

The best resource for generating (symbolic) phonetic _forfns. from words is an ‘eXtensive word
list. The accuracy and efficiency of such a solution is 'lumted only by the u.me, effort, and
knowledge brought to bear on the dictionary construction process. As described in Section
14.2, a general lexicon service is 4 critical resource for .the 'ITS sy.stem. Thus, the first and
the most reliable way for grapheme-to-phoneme conversion 1s via dictionary lookup.

Where direct dictionary lookup fails, rules may be used to generate phonetic forms.
Under earlier naive assumptions about the regularity and coverage of simple descriptions of
English orthography, rules have traditionaily been viewed as the primary source of phonetic
conversion knowledge, since no dictionary covers every input form and the TTS system
must always be able to speak any word. A general lefter-to-sound (LTS) conversion is thus
required to provide phonetic pronunciation for any sequence of letters.

Inspired by the phonetic languages, letter-to-sound conversion is usually carried out
by a set of rules. These rules can be thought of as dictionaries of fragments with some spe-
cial conventions about lookup and context. Typically, rules for phonetic conversion have
mimicked phonological rewriting in phonological theory [5], including conventions of
ordering, such as most specific first. In phonological rules, a target is given and the rewrite is
indicated, with context following. For example, a set of rules that changes orthographic & to
a velar plosive &/ except when the & is word-initial (‘[“) followed by n might appear as:

k -> /sil/ % [ _n
k -> /k/

The rule above reads that k is rewritten as (phonetic) silence when in word initial position
and followed by n, otherwise k is rewritten as (phonetic) /k/. The underscore in the first line
is a placeholder for the k itself in specifying the context. This little set property treats & in
knight, darkness, and kitten. These are formally powerful, context-sensitive rules. Generally
? 'ITS system require hundreds or even thousands of such rules to cover words not appear-
Ing in the system dictionary or exception list. Typically rules are specified in terms of single-
letter targets, such as the example for k above. However, some systems may have rules for
lor?ger fragments, such as the special vowel and consonant combinations in words like
neighbor and weigh. In practice, a binary format for compression, a corresponding fragment
matching capabil_ity, and a rule index must be defined for efficient system deployment.
_— E)Ules-of this type are tedious to develop manually. As with any expert system, ?t is dif-
anticipate all possible relevant cases and sometimes hard to check for rule interfer-
;Egivz"g redundancy. In any case, the rules must be verified over a test list of words with
ules migilzs:;gzﬁ?;)?:m:ral?lg, if prediction o.f main stress location is not att.emPted' s"_ch
tion of main stress is attepmoted%thOf the words in a est corpus of general Engh-Sh' If-Prei]:h
lower, perhaps below 50% EI’he,c e percent:.age‘ of correct phonetic pronunciations 15 M
- : orrect prediction of stress depends in part on morphology:

which is not typically explicitly atiempted in this type of simple rule system (though frag-

ments corresponding to affixes :
are frequen ion - _ Certainly
such rules can be made to quently used, such as zion -> /ah ax nf)

approach dictionary accuracy, as longer and more explicit mOF
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Lelier-to s

hological fragments are included. One extreme case is to create one specific rule (contain-

ing exact contexts .for th? whole word). for each word in the dictionary. Obviously this is not
desirable, since it is equivalent to putting the word along with its phonetic pronunciation in
the dictionary.

In view of how costly it is to develop LTS rules, particularly for a new language, at-
empts have been made recently to automate the acquisition of LTS conversion rules. These
«lf-organizing methods believe that, given a set of words with correct phonetic transcrip-
ons (the offline dictionary), an automated learning system could capture significant gener-
slizations. Among them, classification and regression trees (CART) have been demonstrated
(o give satisfactory performances for letter-to-sound conversion. For basic and theoretic de-
scription of CART, please refer to Chapter 4.

In the system described in [14], CART methods and phoneme trigrams were used to
construct an accurate conversion procedure. All of the experiments were carried on two da-
tabases. The first is the NETALK [25], which has hand-labeled alignment between letter and
phoneme transcriptions. The second is the CMU dictionary, which does not have any align-
ment information. The NETALK database consists of 19,940 entries, of which 14,955 were
randomly selected as a training set and the remaining 4951 were reserved for testing. Those
4951 words correspond to 4985 entries in the database because of multiple pronunciations.
The hand-labeled alignments were used directly to train the CART for LTS conversion. The
CMU dictionary has more than 100,000 words, of which the top 60,000 words were selected
based on unigram frequencies trained from North American Business l\{ews. Among them,
52,415 were used for training and 9719 reserved for testing. Due to mulup!c pronunciations,
those 9719 words have 10,520 entries in the dictionary. Due to lack of all_gnment informa-
tion, dynamic programming was used to align each letter to the corresponding phoneme be-

fore raining the LTS CART. ‘
The basic CART component includes a set of yes-ro questions and a procedure to se-
lect the best question at each node to grow the tree from the root. Ths basic yes-no questmr;
for LTS conversion looks like “Is the second right letter 'p’?" or “Is the first lef_fd"“’g“r
Phoneme /ay/?” The questions for letters could be on either the left or the right side. o

o i i implicity. The range of question posi-
o1y e e o g ot hgnological variations. It was found

tions must be lon the long-distance p
g enough to cover the fong : t) and 3-
0 . sufft - . .
fong . Vindow for left phoneme context £/7 generzb)c/)m each letter or phoneme identity.

tions wa i uestions
uld be the set of all the singleton q e entropy reduction was chosen at e.ach
¢ ion that is a combina-

e ‘¢’ in common suffix “tion” and convert
ate the data fragment problem
finding such complex ques-
puilt using the above tech-

[E[[er Ii) Iy I
. and the first right letter ‘n’?" can captu )

::l © the right phoneme, Complex questions can als a‘liz‘uof
(iameq by greedy nature of the CART algorithm. T};m S );tem
M IS similar to those used in Chapter 4. The baselin® ¥

]
'AUes has error rates as listed in Table 14.11.
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Table 14.11 LTS baseline results using CART [13].

Database Phoneme Word
CMU Lexicon 9.7% 35.0%
NETTALK 9.5% 42.3%

The CART LTS system [14] further improved the accuracy of the system via the fol-
lowing extensions and refinements:

e Phoneme trigram rescoring: A statistical model of phoneme co-occurrence,
or phonotactics, was constructed over the training set. A phonemic trigram
was generated from the training samples with back-off smoothing, and this
was used to rescore the n-best list generated by LTS.

e Multiple tree combination: The training data was partitioned into two parts
and two trees were trained. When the performance of these two trees was
tested, it was found that they had a great overlap but also behaved differently,
as each had a different focus region. Combining them together greatly im-
proved the coverage. To get a better overall accuracy, the iree trained by all
the samples was used together with two other trees, each trained by half of
the samples. The leaf distributions of three trees were interpolated together
with equal weights and then phonemic trigram was used to rescore the n-best
output lists.

By incrementally experimenting with addition of these extensions and refinements, the re-
sults improved, as shown in Table 14.12.

These experiments did not include prediction of stress location. Stress prediction is
difficult problem, as we pointed out earlier. It requires information beyond the letter string.
In principle, one can incorporate more lexical information, including POS and morphologic
information, into the CART LTS framework, so it can be more powerful to learn the pho-
netic correspondence between the letter string and lexical properties.

Table 14.12 LTS using multiple trees and phonemic trigram rescoring [13].

Database Phoneme Word
CMU Lexicon 8.2% 26.9%
NETTALK 8.1% 34.2%

14.9. EVALUATION

Ever since the early days of TTS research [21, 31], evaluation has been considered an in"
gral part of the development of TTS systems. End users and application developers &
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qusly interested in the end-to-end evaluation of TTS systems. This monolithic type of
whole-system evaluation is oi:'ten referred to as black-box evaluation. On the other hand,
modular (component) testing 1s more appropriate for TTS researchers when working with
icolated components of the TTS system, for diagnosis or regression testing. We often refer
(o this type of evaluation as glass-box evaluation. We discuss the modular evaluations in
cach modutar TTS chapter, while leaving the evaluation of the whole system to Chapter 16.

For text and phonetic analysis, automated, analytic, and objective evaluation is usually
feasible, because the input and output of such module is relatively well defined. The evalua-
ion focuses mainly on symbolic and linguistic level in contrast to the acoustic level, with
which prosodic generation and speech synthesis modules need to deal. Such tests usually
invalve establishing a test corpus of correctly tagged examples of the tested materials, which
can be automatically checked against the output of a text analysis module. It is not particu-
larly productive to discuss such testing in the abstract, since the test features must closely
track each system’s design and implementation. Nevertheless, a few typical areas for testing
can be noted. In general, tests are simultaneously testing the linguistic model and content as
well as the software implementation of a system, so whenever a discrepancy arises, both
possible sources of error must be considered.

For automatic detection of document structures, the evaluation typically focuses on
sentence breaking and sentence type detection. Since the definitions of these two types of
?t:ument structures are straightforward, a standard evaluation database can be easily estab-
ished.

In the basic level, the evaluation for the text normalization component Sho”_ld include
large regression test databases of text micro-entities: addresses, Internet and emaJl. entities,
Wmbers in many formats (ordinal, cardinal, mathematical, phone, currency, etc.), titles, and
bbreviations in a variety of contexts. These would be paired with the correct refererhc_e
forms in something like the SNOR used in ASR output cva]uation.l In lLs simplest form, e‘f
%ould consist of a database of automatically checkable paired entries like 7% vS- Se;z'::g ;_
‘ent, and $1.20 vs, one dollar and twenty cents. If you want to evaluate the se;nan marﬁic
bility of text normalization, the regression database might include markups Tor s d
la ! : ENT</ratio></number>", an

85,50 that we have 7% vs. “<number>SEVEN<ratio>PERC

s g “<m0ne)'>oNE DOLLAR AND TWENTY CENTS</money>". The re%hrzsz;osr-l
obes coulg include domain-specific entries. This implies some c‘iepen‘;ilen;:: ;):;1 the sy5
o APL—its markup capabilities or tag set. In the examples given in T: ee is.su;mb]e st
One s g desirable output for domain-independent in second on

"malization of the same expression in mathematica
dependenrldependent text normal

put, while the -
| formula domain.

jzation.

Table 14.13 Two examples to test domain i

three to four

three minusfour
ree

|

34

<math_exp> 3-4 </math_exp>
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Some systems may not have a discrete level of orthographic or SNOR representatig,
that easily lends itself to the type of evaluation described in this section. Such systems man
have to evaluate their text normalization component in terms of LTS conversjon, 4

An automated test framework for the LTS conversion analysis minimally incluges a
set of test words and their phonetic transcriptions for automated lookup and comparison
tests. The problem is the infinite nature of language: there are always new words thyt the
system does not convert correctly, and many of these will initially lack a transcription of
record even to allow systematic checking. Therefore, a comprehensive test program for feg(
of phonetic conversion accuracy needs to be paired with a data development effort. The data
effort has two goals: to secure a continuous source of potential new words, such as a 24-hou
newswire feed, and to maintain and construct an offline test dictionary, where reference
transcriptions for new words are constantly created and maintained by human experts, This
requirement illustrates the codependence of automated and manual aspects of evaluation.
Different types and sources of vocabulary need to be considered separately, and they may
have differing testing requirements, depending, again, on the nature of the particular system
to be evaluated. For example, some systems have elaborate subsystems targeted specifically
for name conversion. Such systems may depend on other kinds of preprocessing technolo-
gies, such as name identification modules, that might be tested independently.

The correct phonetic representation of a word usually depends on its sentence and
even discourse contexts, as described in Section 14.6. Therefore, the adequacy of LTS con-
version should not, in principle, be evaluated on the basis of isolated word pronunciations.
However, a list of isolated word pronunciations is often used in LTS conversion because qf
its simplicity. Discourse contexts are, in general, difficult to represent unless specific app}l-
cations and markup tags are available to the evaluation database. A reasonable compromise
is to use a list of independent sentences with their corresponding phonetic representation for
the evaluation of grapheme-to-phoneme conversion.

Error analysis should be treated as equally important as the evaluation itself. For ex-
ample, if a confusability matrix shows that a given system frequently confuses central and
schwa-like unstressed vowels, this may be viewed as less serious than other kinds of erfors.
Other subareas of LTS conversion that could be singled out for special diagnosis and‘teslmg-
include morphological analysis and stress placement. Of course, testing with phonemic m_
scriptions is the ultimate unit fest in the sense that it contains nothing to insure that the c::e
rectly franscribed words, when spoken by the system’s artificial voice and prosod)’.ola
intelligible or pleasant to hear. Phone transcription accuracy is, thus, a necessary but 1
sufficient condition of quality.

14.10, CASE STUDY: FESTIVAL

. . . Odular
Thg University of Edinburgh’s Festival [3] has been designed to take advantage (:fal:
Subcomponents for various standard functions. Festival provides a complete € ,chﬁ'

33“;::‘31)’sis with modules organized in sequence roughly equivalent to F igure e defaul
Puts speech of quality comparable to many commercial synthesizers-
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qulines ar¢ PFOVided for ez.lch stage of pro'cessing, the system is architecturally designed to
eptalemative routines 1 modular fashion, as long as the data transfer protocols are fo.
laowé 1 This variant of the tradlupnal TTS arch}lecture 1s particularly attractive for commer-
(il PUPOSES (develgpment, malrlltenance,‘ testing, s_calablhty) as well as research. Festival
an be called in various ways Wl!h a variety of switches and filters, set from a variety of
anctioned programming and scripting languages. These control options are beyond the

scope of this overview.

1410.1. Lexicon

Festival employs phonemes as the basic sounding units, which are used not only as the at-
oms of word transcriptions in the lexicons, but also as the organizing principle for unit selec-
iion (see Chapter 16) in the synthesizer itself. Festival can support a number of distinct
phone sets and it supports mapping from one to another. A phone defined in a set can have
various associated phonological features, such as vowel, high, low, etc.

The Festival lexicon, which may contain several components, provides pronunciations
for words. The addenda is an optional list of words that are unique to a particular user,
dxcument, or application. The addenda is searched linearly. The main system lexicon is ex-
pected to be large enough to require compression and is assumed to reside on a disk or other
extgmal storage. It is accessed via binary search. The lexical entry also contains POS infoy-
mation, which can be modified according to the preference of the system configurer. A typi-
tllexical entry consists of the word key, a POS tag, and phonetic pronunciation (with stress
#dpossible syllabification indicated in parentheses):

(‘walkers” N (((w a0 ) 1) (( ker z Y0))

ation rule component can

If _ |
ﬂ?CSYIlables structure is not shown with parentheses, a syllabific om
le pronunciations and/or

mvo:,Ed' Separate entry lines are used for words with multip
»Which can be resolved by later processing.

4102, Text Analysis

Fesii P i ion of
L s beep partialy integrated with research on the use of automatic identificati

OCUment o arate component,
c;.uh‘-d SOLE(Eldllscourse structures. The discourse tagging is ot byn?a;elr:ave relevance for

J. The tags produced by SOLE indicate features that b ee
c ust be
°g"ize3n:‘;" and_ phrasing in later stages of synthesis (see Chapter 15). ];Ih;sz r:le N oetival
Hhen hg Partally interpreted at the text analysis phrase. The SO? togold ' new in-
f lip: Xt is comparing or contrasting two objects, when it's referring O Feutival vill
teeiq. ™ When g using a parenthetical or starting a new paragraph‘, etc.,r a(;leemphaSiZe' o
Wity i =0 on this information, that it needs to pause, to emphasize 0
Pitch range etc.
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Additionally, as discussed in Section 14.3, when document creators have knowledge
about the structure or content of documents, they can express the .knowledge through an
XML-based synthesis markup language. A documept to be spokpn is ﬁrst. analyzed for al|
such tags, which can indicate alternative pronunciations, semantic or quasi-semantic attrib-
utes (different uses of numbers by context for example), as well as document structures,

such as explicit sentence or paragraph divisions. The kinds of information potentially sup-

plied by the SABLE tags’ are exemplified in Figure 14.7.
<SABLE>

<SPEAKER NAME="malel">
The boy saw the girl in the park <BREAK/> with the telescope.

The boy saw the girl <BREAK/> in the park with the telescope.

Good morning <BREAK /> My name is Stuart, which is spelled
<RATE SPEED="-40%">

<SAYAS MODE="literal">stuart</SAYAS> </RATE>

though some people pronounce it

<PRON SUB="stoo art">stuart</PRON>. My telephone number
is <SAYAS MODE="1iteral">2787</SAYAS>.

[ used to work in <PRON SUB="Buckloo">Buccleuch</PRON> Place,
but no one can pronounce that.
</SPEAKER>

</SABLE>

Figure 14.7 A document fragment augmented with SABLE tags can be processed by the Fes-
tival system [3].

For untagged input, or for input inadequately tagged for text division (<BREAK/>),
sentence breaking is performed by heuristics, similar to Algorithm 14.1, which observe
whltes.pacc, punctuation, and capitalization. A linguistic unit roughly equivalent to a sen-
tence is crea'ted by the system for the subsequent stages of processing.

Tokfamzation is performed by system or user-supplied routines. The basic function i
to recognize potentially speakable items and to strip irrelevant whitespace or other non-
:l’):f;ablc text features. Note that some punctuation is retained as a feature on its nearest
thogr:);?; I:chag]ziuon is_ implemem?d by token-to-word rules, which return a standard of-
word rules have toil c?n' In turn, be input to the phonetic analysis module. The token-10-
14.4. As part of thisea with text nomallznuqn issues similar to those presentc@ in SFcuon
tokens whose pronungrgcl:ess, tokeq-type-spemﬁc rule sets may be applied to dlsarrfblgu?:te
routine may be re Ui":dutons are 'hlghly context dependent. For example, a disamblguauoﬂ
Saint or street Fgr o pamine context for deciding whether St. should be reahze('i as

' general English-language phenomena, such as numbers and various

' SABLE
and other TTS markup systems are discussed further in Chapter 15,
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symbols, 2 standarC_l loken-to-\.;vord routine is provided. One interesting feature of the Fesii
val system is a utility for helping to automatically construct decision trees to serve text o
malization rules, when system integrators can gather some labeled training data Trer

The linguistic analysis module for the Feslival system is inainly a POS an'alyzer An n-
gram based trainable POS tagger is used to predict the likelihoods of POS tags from. alim-
ited set given an input sentence. The system uses both a priori probabilities of tags given a
word and #-grams for sequences of tags. The basic underlying technology is similar to the
work in [6] and is described in Section 14.5. When lexical lookup occurs, the predicted most
likely POS tag for a given word is input with the word orthography, as a compound lookup
key. Thus, the POS tag acts as a secondary selection mechanism for the several hundred
words whose pronunciation may differ by POS categories.

14.10.3. Phonetic Analysis

The homograph disambiguation is mainly resolved by POS tags. When lexical lookup oc-
curs, the predicted most likely POS tag for a given word is input with the word orthography
as a compound lookup key. Thus, the POS tag acts as a secondary selection mechanism for
the several hundred words whose pronunciation may differ by POS categories.

If a word fails lexical lookup, LTS rules may be invoked. These rules may be created

by hand, formatted as shown below:

(#[ch]C=/k/) /N ch at word start, followed by a consonant, is /K/, e.g.,
Chris
Altematively, LTS rules may be constructed by automatic statistical methods, much as;i::;
scribed in Section 14.8 above, where CART LTS systems were ‘""°d“°°d'c‘i[;.}l.yn:f: corl-
e provided to assist in using a system lexicon as a training database for

Siruction, le context coarticula-

In addition, Festival system employs post-lexical rules 10 h“"dg' § well as speech
fion. Context coarticulation occurs when surrounding words and sounEs, as e cluds re-
Syle, affect the final form of pronunciation of a particular phom‘:me- ; xnrggme coarticula-
d.uclion of consonants and vowels, phrase final devoicing, and r-.mse:‘l;i)[lil‘-ma] les.
lion rules are provided for these processes, and users may also wrile a

READING

l4.11. HisTORICAL PERSPECTIVE AND FURTHER
jew almost
Xto-speech has a long and rich history. You can hedt s“.'“’ii?;i?f Projoct [19]. A g008

Y's worth of work at the Smithsonian's Speech S)’"_th‘[’;(‘)s]

s for multilingual samples of vatious TTS eng ™o lsS ha's been From Text 10 Speech:
e most influential single published work on TT from which a large number
The MiTali System [1). This book describes the MITalk system,

a cen-
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of research and commercial systems were derived during the 1980s, including the widely
used DECTalk system [9]. The best compact overall historical survey is Klatt’s Review of
Text-to-Speech Conversion for English [15]. For deeper coverage of more recent architec-
tures, refer to [7]. For an overview of some of the most promising current approaches and
pressing issues in all areas of TTS and synthesis, see [30]. One of the biggest upcoming is-
sues in TTS text processing is the architectural relation of specialized TTS text processing as
opposed to general-purpose natural language or document structure analysis. One of the
most elaborate and interesting TTS-specific architectures is the multilingual text processing
engine described in [27]. This represents a commitment to providing exactly the necessary
and sufficient processing that speech synthesis requires, when a general-purpose language
processor is unavailable.

However, it is expected that natural language and document analysis technology will
become more widespread and important for a variety of other applications. To get an idea of
what capabilities the natural language analysis engines of the future may incorporate, refer
to [12] or [2]. Such generalized engines would serve a variely of clients, including TTS,
speech recognition, information retrieval, machine translation, and other services which may
seem exotic and isolated now but will increasingly share core functionality. This conver-
gence of NL services can be seen in a primitive form today in Japanese input method editors
(IME), which offload many NL analysis tasks from individual applications, such as word
processors and spreadsheets, and unify these functions in a single common processor [18].

For letter-to-sound rules, NETalk [25], which describes automatic learning of LTS
processes via neural network, was highly influential. Now, however, most systems have
converged on decision-tree systems similar to those described in [14].
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Applications:
accessibility, 929
automobile, 930
classes of, 921-31
computer command and control, 921-24
dictation, 926-29
handheld devices, 930
hands-busy, eyes-busy, 927
speaker recognition, 931
telephony applications, 924-26
Approximants, 42
Articulation, of English consonants, 42, 45
Articulators, 24-25
Articulatory speech synthesis, 793, 803-4, 846
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Backward prediction error, 297
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breadth-first, 600-601
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graph-search algorithm, 597
historical perspective, 640
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Colored noise, 270
Combination models, 456-57
COMLEX dictionary (LDC), 436-37
Command and control speech recognition, 921-24
application ideas/uses, 923
situations for, 922-23
Commissives, 861
Comimunicative prosody, 858
Compact Disc-Digital Audio (CD-DA), 342
Compander, 342
Comparison Category Rating (CCR) method, 842
Cornplements, 58, 59
Complex cepstruim, 307-8
Complexity parameter, 185
Compressiens, 21
Computational delay, 339
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Concatenative speech synthesis, 793-94
choice of unit, 805-8
context-dependent phonemes. 808-9
context-independent phonemes, 806-7
diphones, 867-8
with no waveform modification, 794
optimal unit string, 810-17

data-driven transition cost, 815-16
data-driven unit cost, 816-17
empirical transition cost, 812-13
empirical unit cost, 813-15
objective function, 810-12
subphonetic units (senones), 809
syllables, 809
unit inventory design, 817-18
with waveform modification, 795
word and phrase, 809

Concept-to-speech rendition, 899-901

Conceptual graphs, 872-73

Condenser microphone, 486-89

Conditional entropy, 123-24

Conditional expectation, 81

Conditional likelihood, 151

Conditional maximum likelihood estimator (CMLE),

151

Conditional probability, 75-76

Conditional risks, 136

Conditioning, 320

Conference of European Posts and Telegraphs

(CEPT), 360

Confidence models, 453-57
combination models, 456-57
filler models, 453-54
transformation models, 454-55

Conflict resolution procedure, 182

Conjugate quadrature filters, 251-54

Conjunctions, 54

Connotation, message, 739

Consonants, 24, 42-46
affricates, 44
alveolar, 46
dental, 46
fricatives, 42, 44
labiai, 46
labio-dental, 46
nasal, 43-44

obstruent, 43
palatal, 46
plosive, 42-43
stop, 43
velar, 46
Consumer audio, 351-52
Content words, 54
Context coarticulation, 735
Context dependency, 430-31
Context-dependent phonemes, 808-9

Index

Context-dependent units and inter-word triphones,
658-59
Context-free grammar (CFG), 465, 547, 921
vs. n-gram models, 580-84
search space, 613-16
Context-free grammars (CFGs), search architecture,
676-77
Context-independent phonemes, 806-7
Context variability, 417
Continuation rise, 749
Continuous distribution, 78
Continuous-frequency transforms, 209-16
Fourier transforms, 208-10
o-transforms, 211-15
Continuously listening model, 422
Continuously variable slope delta modulation
(CVSDM), 347
Continuous mixture density HMMs, 39496
Continuous random variable, 78
Continuous speech recognition (CSR), 591, 611-12,
945
Continuous speech training, vs. isolated speech
training, 441-43
Continuous-time stochastic processes, 260
Contrastive stress, 431
Contrasts, 66
Convolution operater, 207
Co-references, 882
Corpora, 545-46
Corpus-based FO generation, 779-82
FO contours indexed by parsed text, 779-81
FO contours indexed by ToBI, 781-82
transplanted prosody, 779
Corrective training, 158
Correlation, 82-83
Correlation coefficient, 82-83
Covariance, 82-83
Covariance matrix, 84
Critical region, 114
Cross-validation, 188-89
Cumulative distribution function, 79
Currency, 716
Curse of dimensionality, 144-46

D

DAMSL system, See Dialog Act Markup in Several
Layers (DAMSL)

Dark /l/, 48

DARPA, 11

DARPA ATIS programs, 913

Data-directed search, 549

Data-driven parallel model combination (DPMC), 533

Data-driven speech synthesis, 794, 803

Data flow, 694-97

DAVOQ, 846

DCT, See Discrete Cosine Transform (DCT)

Decibels (dB), 22
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Digital signal processing, stochastic
processes (cont.)
LTI systems with stochastic inputs, 267
noise, 269-70
power spectral density, 268-69
stationary processes, 264-67
statistics of, 261-64
Digital Signal Processing (DSP), 202-3, 339
Digital signals/systems, 202-8
digital systems, 206-8
linear time-invariant (LTI) systems, 207
linear time-varying systems, 208
nonlinear systems, 208
other digital signals, 206
sinusoidal systems, 203-5
Digital systems, defined, 202
Digital-to-analog conversion, 246-48
Digital wireless telephony applications, 925
Diphones, 807-8
Diphthongs, 40
Directionality patterns, 489-96
Directives, 861
Disambiguation, 876
Discourse analysis, 7, 753, 855, 881-86
resolution, 882-85
Discourse memories, 882
Discourse segments, 857
Discrete Cosine Transform (DCT), 228-29
Discrete distribution, 77
Discrete-frequency transforms, 216-29
discrete Fourier transform (DFT), 218-19
Fourier transforms of periodic signals, 219-22
Discrete joint distribution, 83-84
Discrete random variables, 77
Discrete-time Fourier transform, 209, 210
Discrete-time stochastic processes, 260
Discriminative training, 150-63
gradient descent, 153-55
maximum mutual information estimation (MMIE),
150-52
minimum-error-rate estimation, 156-58
multi-layer perceptrons, 160-63
neural networks, 158
single-layer perceptrons, 159-60
Disfluency, 857
Distortion measures, 164-66
Distribution function, 79
Document structure detection, 692, 699-706
chapter and section headers, 700-701
dialog turns and speech acts, 705-6
email, 704-5
lists, 701-2
paragraphs, 702
sentences, 702-4
Web pages, 705
Dolby Digital, 351
Domain knowledge, 2

Index

Domain-specific tags, 718-20
chemical formulae, 719
mathematical expressions, 718-19
miscellaneous formats, 719-20

Dragon NaturallySpeaking, 926

Dr. Who case study, 906-13
dialog manager, 910-13
discourse analysis, 909-10
semantic parser (sentence interpolation), 908
semantic representation, 906-8

Dr. Who Project, 869, 876-77

DTS, 351-52

Duration assignment, 761-63
CART-based durations, 763
rule-based methods, 762-63

Dynamic microphones, 497

Dynamic time warping (DTW), 383-85

Ear:
cachlea, 30
eardrum, 29
middle ear, 29
outer ear, 29
oval window, 29
physiology of, 29-32
sensitivity of, 30
Eardrum, 29
Earley algorithm, 584
Eigensignais, 209
Eigenvalue, 209
Electret microphones, 487
Electroglottograph (EGG), 828
signals, 319-20
Electromagnetic microphones, 497
Electronic Industries Alliance (EIA), 360
Electrostatic microphones, 497
Ellipsis, 882
EM algorithm, 134, 170-72
Embedded ADPCM, 348
Emotion, and prosody, 744-45
Emphatic stress, 431
End-point detection, 422-24
Entropy, 120-22
conditional, 123-24
Entropy coding, 350-51
Environmental model adaptation, 528-38
model adaptation, 530-31
paraliel model combination, 531-34
retraining on compensated features, 537-38
retraining on corrupted speech, 528-39
vector Taylor series, 535-37
Environmental robustness, 477-544
acoustical environment, 477, 478-86
additive noise, 478-80
babble noise, 479
cocktail party effect, 479
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bard effect, 480
nngel of the environment, 482-86
pirk noise 478
reverberation, 480-82
white noise, 478-79
acoustical transducers, 486-97
active microphones, 496
bidirectional microphones, 490-94
carbon button microphones, 497
condenser microphone, 486-89
directionality patterns, 489-96
dynamic microphones, 497
electromagnetic microphones, 497
electrostatic microphones, 497
passive microphones, 496
piezoelectric microphones, 497
piezoresistive microphones, 497
pressure gradient microphones, 496
pressure microphones, 496
ribbon microphones, 497
unidirectional microphones, 494-96
adaptive echo cancellation (AEC), 497-504
convergence properties of the LMS algorithim,
500-501
LMS algorithm, 499-500
normalized LMS algorithm (NLMS), 501-2
RLS algorithm, 503-4
transform-domain LMS algorithm, 502-3
environmental model adaptation, 528-38
meodel adaptation, 530-31
paraliel model combination, 531-34
retraining on compensated features, 537-38
retraining on corrupted speech, 528-39
vector Taylor series, 535-37
environment compensation preprocessing, 515-28
cepstral mean normalization (CMN), 522-24
frequency-domain MMSE from stereo data, 519-20
real-time cepstral normalization, 525
spectral subtraction, 516-19
use of Gaussian mixture models, 525-28
Weiner filtering, 520-22
multimicrophone speech enhancement, 504-15
blind source separation (BSS), 510-15
microphone arrays, 505-10
nonstationary noise, modeling, 538-39
Environment compensation preprocessing, 515-28
cepstral mean normalization (CMN), 522-24
frequency-domain MMSE from stcreo data, 519-20
real-time cepstral normalization, 525
spectral subtraction, 516-19
use of Gaussian mixmre models, 525-28
Wiener filtering, 520-22
Environment variability, 419
Epoch detection, 828-29
Equal-loudness curves, 31
Ergodic processes, 265-67
Ergonomics of Software User Interface, 932

963

Error handling, 937-41
error detection and correction, 938-39
feedback and confirmation, 9394 ]
Estimation, 98-99
Estimation theory, 98-113
Bayesian estimation, 107-13
general, 109-i0
prior and posterior estimation, 108-9
least squared error (LSE) estimation, 99-100
for constant functions, 100
for linear functions, 101-2
for nonlinear functions, 102-4
MAP estimation, 111-13
maximum likelihood estimation (MLE), 104-7
minimum mean squared error (MMSE), 95-104
for constant functions, 100
for linear functions, 101-2
for nonlinear functions, 1024
Euclidean distortion measure, 165-66
Fureka 147 DAB specification, 352
European Telecommunication Standards Institute
(ETSI), 360
Evaluation of understanding and dialog, 901-3
and ATIS task, 901-3
PARADISE framework, 903-6
Exact n-best algorithm, 666-67
Exception list, 697, 728
Excitation signal, 301
Exclamative sentence, 62
Exhaustive search, 597
Expectation (mean) vector, 84
Expectation of a random variable, 79
Exponential distribution, 98

F
FO contour interpolation, 772-73
FO jumps, 330
F1/F2 targets, 39
Factored language probabilities, 650-53
Factored lexical trees, 652-53
Fast Fourier Transforms (FFT), 222-27
FFT subroutines, 224-27
prime-factor algorithm, 224
radix-2 FFT, 222, 223
radix-4 algonthm, 223
radix-6 algorithm, 223
radix-8 algorithm, 223
split-radix algorithm, 223
Fast match, 634-38, 661-62
look-ahead strategy, 661-62
Rich-Get-Richer (RGR) strategy, 662
Fear, and speech, 745
Feedback, 490
Feedforward adaptation, 345
Fenones, 467
Festival, 732-35
FFT, See Fast Fourier Transforms (FFT)
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ular noise. 346 .
gg;heme-m-phoneme conversion. 692-93

Graphical user intc{face (C_rL'l ).-l
Gr.:ph-seamh algorithuns, 591, 397
Greedy symbols. 558

Ground, 00

Grovnding, 861

H
H.323.359
Half duplex sound cards, 936
Half phone, 809
Hamming window, 232, 258, 278-80, 283
generalized, 231-32
Handheld devices, 930
Hands-busy. eves-busy applications. 527
Hanning window, See Hamming window
Hard palate, 23
Harmonic coding, 363-67
parameter estiination, 364-65
parameter quantization, 366-67
phase modeling. 365-66
Harmonic errors, 330
Harmonic sinusoids, 218
Harmonic/Stochastic (H/S) model, 847
Harvard Psychoacoustic Sentences, 839
Has-a relations, 65
Haskins Syntactic Sentence Test, 839
Head-noun, 59
Head of a phrase, 59
Headset microphone, 936
Heanng sensitivity, 30
Hermitian function, 265
Hertz (Hz), 21
Hessian of the least-squares function, 504
Hessian mairix, 154
Heuristic graph search, 60]-8
beam search, 606-8
best-first (A* search), 602-6
Heuristic information, 601-2
Heuristic search methods, 601
Hidden Markov models (FIMM), 56, 134, 170,
377413, 416, 547.931
Baum-Welch algorithm, 389-03
continuous mixture density, 394-96
decoding, 387-89
definition of, 380.93
deleted interpolation, 401-3
dynamic programming, 384-85
advantage of, 384
algorithm, 385
dynamic time warping (DTW), 383-85
estimating parameters, 389-93
evaluating, 385-87
forward algorithm, 385-87
fqnvard-backward algorithm, 389-93
historical perspective, 409-10

initial estimates, 398-99
limitations of, 405-9
conditional independence assumption, 409
duration modeling. 406-8
first-order assumption, 408
Markov chain, 37§-80
Madkov assumption for, 382
output-independence assumption, 382
model topology, 399-401
observable Markov model, 379-80
parameter smoathing, 403-4
practical issues, 398-405
probability representations, 404-5
sernicontinuous, 396-98
training criteria, 401
Viterbi algorithm, 387-89
Hidden understanding model (HUM), 879-80
High-frequency sounds, 31
High-pass filters, 235
Hill-climbing style of guidance, 601
H method, 147
HMM, See Hidden Markov models (HMM)
Holdout method, 147
Home applications, 921
Homograph disambiguation, 693, 723, 724-25
Hormographs, 721
Homomosphic transformation, 306, 312
Huffman coding, 125-26
Human Factors and Ergonomic Society (HFES),
931-32
Human-machine interaction, |

I
Ideal low-pass filter, 229-30
HIR filters, 238-42
first-order, 239-41
second-order, 24 1-42
Imperative sentence, 62
Implicit confirmation, 892-93
Iinplicit memory, 882-83
Impulse response, 207
Inconsistency checking, 885-86
Inconsistency detection, 881
Independent component analysis (ICA), 510
Independent identically distributed (iid), 82
Independent processes, 264
Independent test samnple estimation, 187-88
Indistinguishable states, 654

965

Infinite-impulse response (1[R) filters, Sce IR filters

Inflectional morphology, 56
Inflectional suffix, 57
Infomax rule, 5§12-13
Information theory, 73-131
channel coding, 126-28
conditional entropy, [23-24
entropy, 120-22
mutual information, 126-28
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Information theory (cont.}
origin of, 74
source coding theorem, 124-26
Informed search, 604
Infovox TTS system, 846-47
Inner ear, 29
Input method editors (IME), 736
Insertion errors, 420
Insettion penalty, 610
Inside constituent probability, 555
Inside-outside algorithm, 555
Instance definition, 868
Instantaneous coding, 125
Instantaneous mixing, 510
Instantaneous muiual information, 151
Institute of Electrical and Electronic Engineers (IEEE).
272
Institute of Radio Engineers (IRE), 272
Intelligibility tests, 837-39
Intentional state, 859
Interactive voice response (IVR) systems, 924
Intenmediate phrase break, 751
International Conference on Acoustic, Speech and
Signal Processing (ICASSP), 272
Internationalization, 943-45
International Telecommunication Union (ITU), 343
International Telecommunication
Union-Radiocommunication (ITU-R), 352
Interpolated models, 564-65
Interword-context-dependent phones, 430
Inter-word triphones, 658-59
Intonational phrase break, 751
Intonational phrases, 53, 749
INTSINT, 760
Inverse fiiter, 290
Inverse-square-law effect, 494
Inverse z-transform, 212
of rational functions, 213-15
Is-a taxonomies, 64-66
Isolated vs. continuous speech training, 441-43
Isolated word recognition, 610-11

J

Japanese vowels, 46-47

Jensen’s inequality, 122

Jitter, 768

Joint distribution function, 84
Jointly strict-sense stationary, 264
Joint probability, 74

Joy, and speech, 745

JSAPI, 921

Juneture, 74647

Just noticeable distortion (JND), 35

K
Kalman filter, 522
Karhunen-Loeve transform, 426

Index

Katz’ backoff mechanism, 618
Katz smoothing, 565-67

Klattalk system. 846
Klatt's cascade/parallel formant synthesizer, 797-802

parameter values for, 799
targets used in, 801-2
C-means algorithm, 166-69
Kneser-Ney smoothing, 568-70, 573
Knowledge sources (KSs), 646, 663, 673-74
Kolmogorov-Smimov test, 118
Kronecker delta, 220
Kth moment, 80
Kullback-Leibler (KL) distance, 122, 581

L
Labial consonants, 46
Labio-dental consonants, 46
Lancaster/IBM Spoken English Corpus, 751-52
Language modeling, 545-90
adaptive, 575-78
cache language models, 574-75
maximum entropy models, 576-78
topic-adaptive models, 575-76
CFG vs. n-gram models, 580-84
complexity measure of, 560-62
formal, 546-53 ’
chart parsing for context-free grammars, 549-53
Chomsky hierarchy, 547-48
historical perspective, 584
n-gram pruning, 580-81
n-gram smoothing, 562-74
backoff smoothing, 565-70
class n-grams, 570-74
deleted interpolation smoothing, 564-65
performance of, 573-74
stochastic language models, 554-60
n-gram language models, 558-60
probabilistic context-free grammars, 554-58
vocabulary selection, 578-80
Language model probability, 610
Language models, 4, 949
Language model states, 613-22
backoff paths, 618-19
search space:
with bigrams, 617-18
with FSM and CFG, 613-16
with trigrams, 619-20
with the unigram, 616-17
silences between words, 621-22
Lapped Orthogonal Transform (LOT), 260
Large-vocabulary search algorithms, 645-85
context-dependent units and inter-word triphones,
658-59
exact n-best algorithm, 666-67
factored language probabilities, 650-53
factored lexical trees, 652-53
finite state network, G54
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Low-bit rate speech coders, 361-70
harmonic coding, 363-67
parameter estimation, 364-65
parameter quantization, 366-67
phase modeling, 365-66
mixed-excitation LPC vocoder, 362
waveform interpolation, 367-70
Lower bound of probability, 74
Low-frequency sounds, lateralization of, 31
Low-pass filter, bandwidth of, 240
Low-pass filters, digital, 229-30, 235
Low probability of intercept (LP1), 361
LPC, See Linear predictive coding (LPC)
LPC-cepstrurn, 309-11
LPC vocoder, 353
LP-PSOLA, 832-33
LSE estimation, See Least squared ermor (LSE)
estimation
LTl systems, See Linear time-invariant (LTI) systems
LTS conversion, 437, 728-30
LTS rules, 697
Lungs, 25

M
McGurk effect, 69
Machine-leaming methods, 56
McNemar’s test, 148-49, 190
Magnitude-difference test, 119-20
Magnitude subtraction rule, 519
Mahalanobis distance, 166, 168
MAP, See Maximum a posteriori (MAP)
MAP estimation, 111-13
Marginal probability, 76, 77-78
Markov chain, 378-80
Masking, 30-31, 34-36, 349-50
Bark scale functions, 35
just noticeable distortion (JND), 35
spread-of-masking function, 35-36
temporal masking, 35-36
tone-masking noise, 35
Matched pairs test, 118-20, 148
Mathematical expressions, 718-19
MathML, 718
Maximal piojection, 58
Maximum entropy models, 576-78
Maximum likelihood estimation (MLE), 73, 104-7,
134, 141, 168-69
Maximum likelihood estimator, 99
Maximum likeiihood linear regression (MLLR),
447-50
vs. MAP, 450-51
Maximum mutual information estimation (MMIE),
134, 150-52, 156
defined, 151
Maximum phase signals, 309
Maximum a posteriori (MAP), 73, 111, 141, 331,
445-47, 854

Index

Maximum substring matching problem, 420
MBROLA technique, 829
Mean, 79-81
Mean-ergodic process, 266
Mean opinion score (MOS), 338-39, 840
Mean squared error (MSE), 99
Mean vector, 84
Median, 81
Median smoother of order, 208
Mel-frequency cepstral coefficients (MFCC), 424-26
Mel frequency scale, 34
Message generation, 894-901
See also Response generation
Message generation box, 897
Metaunits, 658-59
Microphone, 936
Microphone arrays, 505-10
delay-and-sum beamformer, 505-6
goals of, 505
steering, 505

. Microprosody, 767-68

Microsoft Dictation, 928-29
Microsoft Speech SDK 4.0, 937
Microsoft’s speech API (SAPI), 921
Microsoft Whisper case study, 676-81
CFQG search architecture, 676-77
n-gram search architecture, 677-81
Middle ear, 29
Mid-riser quantizer, 340
Mid-tread quantizer, 340
Minimum-classification-error (MCE), 156
Minimum cost-complexity pruning, 185-87
Minimum-error-rate decision rules, 135-38
Minimum-error-rate estimation, 134, 156-58
Minimum mean squared error (MMSE), 73, 99-104
for constant functions, 100
for linear functions, 101-2
for nonlinear functions, 1024
Minimum mean square estimator, 99
Minimum phase signals, 309
Minimum squared error (MSE) estimation, 100
Minor phrase break, 751
MiPad case study, 945-52
cvaluation, 949-51
iterations, 951-52
rapid prototyping, 948-49
specifying the application, 946-48
MITalk System, 735-36, 846
Mixed-excitation LPC vocoder, 362
Mixed excitation model, 289
Mixed initiative systems, 860
Mixture density estimation, 172
MMIE, See Maximum mutual information estimation
(MMIE)
MMSE, Se¢ Minimum mean squared error (MMSE)
Mobile applications, 921
Mode, 81
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Octaves, 32
Office applications, 921
Omnidirectional condenser microphones, 489-90
One-pass 1-best and word-lattice algorithm, 669-70
One-pass vs. multipass search, 673-74
One-place predicates, 67
On-glides, 42
Onset, 52
Open-loop estimation, 356
Open POS categories, 54
Operations research problems, 604
Oral cavity, 25
Ordinal numbers, 717
Orthogonality principle, 291-92
Orthogonal processes, 263
Orthogonal variables, 83
Outer ear, 29
Out-Of-Vocabulary (0OV) word rate, 578
Outside probability, 556
Oval window, ear, 29
Overall quality tests, 840-41
Absolute Category Rating (ACR), 841
Listening Effort Scale, 841
Listening Quality Scale, 841
Mean Opinion Score (MOS), 840
Overlap-and-add (OLA) technique, 818-19
Overlapped evaluation scheme, 463
Oversampling, 246
Oversubtraction, 519

P
Paired observations test, 114
Palatal consonants, 46
Palate, 46
Paradigmatic properties, 53
PARADISE framework, 903-6
Paragraphs, 702
Paralinguistic, use of terin, 764
Parameter space, 98
Parametric Artificial Talker (PAT), 845
Parks McClellan algorithm, 236-38
Parsers, 721
Parse tree representations, 62-63
Parseval’s theorem, 216

for random processes, 268
Parsing algorithm, 545
Partial correlation coefficients (PARCORY), 299
Partition, 74
Part-whole, 66
Passive microphones, 496
Passive sentence, 62
Pattemn recognition, 133-97
Pauses, 747-49
Pausing, 740
Penn Treebank project, 55
Perceived loudness, 30
Perceived pitch, 30

Index

Perceptron training algorithm, 159
Perceptual aftributes, sounds, 30
Perceptual Audio Coder (PAC}), 351, 371
Perceptual linear prediction (PLP), 318-19
Perceptusily-based distortion measures, 166
Perceptually motivated representations, 315-19
bilinear transforms, 315-16
mel-frequency cepstrum coefficients (MFCC),
316-18
perceptual linear prediction (PLP), 318-19
Perceptual Speech Quality Measurement (PSQM), 844
Perceptual weighting, 357-58
Pertodic lobe, 26
Periodic signals, 203
cepstrum of, 311-12
Perplexity, 122, 560-62, 579
Personal Digital Assistants (PDAs), 930, 945
Phantom power, 488
Phantom trajectories, 463
Pharyngeal cavity, 25
Pharynx, 288
Phonemes, 20, 24, 36-38, 611
Phoneme trigram rescoring, 730
Phone numbers, 712-14
Phonetically balanced word list test, 839
Phonetic FO (microprosody), 767-68
Phonetic languages, 692-93
Phonetic modeling, 428-39
clustered acoustic-phonetic units, 432-36
comparison of different units, 429-30
context dependency, 430-31
lexical baseforms, 436-39
Phonetics, 36-50
allophones, 4749
clauses, 61-62
coarticulation, 49-51
consonants, 42-46
lexical part-of-speech (POS), 53-56
lexical semantics, 64-66
logical form, 67-68
morphology, 56-57
parse tree representations, 62-63
phonemes, 36-38
phonetic typology, 4647
phrase schemata, 58-61
semantic roles, 63-64
semantics, 58
Sentences, 61-62
speech rate, 49-51
syllables, 51-52
syntactic constituents, 58
syntax, defined, 58
vowels, 39-42
word classes, 57
words, 53-57
Phonetic typology, 4647
Phonological phrases, 749
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honology, 36-50
shmse schemata, 58-61

tructure diagram, §3
;E:;{;s: vs. perceptual attributes of sounds, 30-32

iology of the ear, 29-32
Pichupparem, microphone, 489
Piezoelectric microphones, 9 .
piczoresistive microphones, 49
Pink noise, 270,478
Pitch, 25, 30,47, 740

autocorrelation met

normalized cross-corre

role of, 324-32

signal conditioning, 329-30

tracking, 330-32
Pitch generation, 763-82

accent termination, 770

attributes of pitch contours, 764-68

baseline FO contour generation, 768-69

corpus-based FO generation, 779-82

FO contours indexed by parsed text, 779-81
FO contours indexed by ToBI, 781-82
transplanted prosody, 779

declination, 766-67

evaluations/improvements, 773-74

FO contour interpolation, 772-73

gradient prominence, 765-66

interface to synthesis module, 773

parametric FO generation, 774-75

phonetic FO (microprosody), 767-68

pitch range, 764-65, 770-71

prominence determination, 771-72

superposition models, 775-76

ToBI realization models, 777-78

tone determination, 770
Pitch prediction, 356-57
Pitch range, 764-65, 77071
Pitch-scale modification epoch calcuiation, 825
Pitch-scale time-scale epoch calculation, 827
Pitch synchronous analysis, 283, 302-3
Pitch syézsclh:g:;us overlap and add (PSOLA), 82023

problems with, 829-3]

amplitude mismatch, 830
buzzy voiced fricatives, 830
phase mismatches, 829
Pitch mismatches, 830-31
Spectral behavior of, §22-23
B mcking, 330.3)
man-basmig.-,f:,?“' 32#
Modeling, 914
';‘l:“‘l'?aseq systems, §88.93
N libraries, 839
::oswe, 42
0Sive consonant, 4243
};ﬂi:’ l;Idzis“'“-"utions. 89

hod, 324-27
tation method, 327-29

r
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Pole-zero filters, cepstrum of, 308-98
Polymorphic linguistic context assignment, 656-57
Polysemy, 65

Positive correlation, 83
Positive-definite function, 262

POS tagging, 56, 722-23

Posterior probability, 135, 142, 156
Postfiltering, 357-58

Post-lexical rules, 735
Postmodifiers, 58-61

Power function, 114

Power spectral subtraction rule, 519
Power spectrum, 216

Predicate, 61, 67

Predicate logic, 68

Pre-emphasis filtering, 235, 320
Preference tests, 842

Prefix nodes, 658

Prefix trees, 647

Premodifiers, 58-59

Prepositions, 54, 60

Pressure gradient microphones, 496
Pressure microphones, 496
Prime-factor algorithm, 224
Principal-component analysis (PCA), 426
Priority entity memory, 882-83

Prior probability, 133, 135, 140

Probabilistic CFGs (PCFGs), 554
Prababilistic context-free grammars, 554-58
Probability density function (pdf), 78, 261
Probability function (pf), 77
Probability mass function (pmf), 77
Probability theory, 73-131
Bayes’ rule, 75-78
binomial distributions, 86
chain rule, 75, 77-78
conditional probability, 75-76
carrelation, 82-83
covariance, 82-83
gamma distributions, 90-91, 95
Gaussian distributions, 92-98
geometric distributions, 86-87
law of large numbers, 82
marginal probability, 76, 77-78
mean, 79-81
multinomial distributions, 87-89
multivariate distributions, 83.85
Poisson distributions, 89
probability density function
random variablest,y77-79 (pdD, 78
random vectors, 83-85
uni form distributions, 85
variance, 79-8]
Promingnce detcrmination, 771-72
Prompting strategy, 943
Pronouns, 54
Pronunciation trees, 648-50
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Proper noun, 53-54
Property inheritance, 871
Propositional phrases (PPs}), 59-60
Prosodic analysis module, 7
Prosodic modification of speech, 818-31
epoch detection, 828-29
evaluation of TTS systems, 834-44
automated tests, 843-44
Diagnostic Rhyme Test (DRT), 837
functional tests, 84243
glass-box vs. black-box evaluation, 835-36
global vs. analytic assessment, 836
Haskins Syntactic Sentence Test, 839
human vs. automated, 835
intelligibility tests, 837-39
judgment vs. functional testing, 835-36
laboratory vs. field, 835
Modified Rhyme Test (MRT), 838
overall quelity tests, 840-41
phonetically balanced word list test, 839
preference tests, 842
Sernantically Unpredictable Sentence Test, 837
symbolic vs. acoustic level, 835
pitch-scale modification epoch calculation, 825
pitch-scale time-scale epoch calculation, 827
pitch synchronous overlap and add (PSOLA),
820-23, 831, 847
problems with, 829-31
spectral behavior of, 822-23
source-filter models for prosody modification,
831-34
LP-PSOLA, 832-33
mixed excitation models, 832-34
prosody modification of the LPC residual, 832
voice effects, 834
synchronous overtap and add (SOLA), 818-19
synthesis epoch calculation, 823-24
time-scale modification epoch calculation, 826-27
waveform mapping, 827-28
Prosodic phrases, 749-51
Prosodic transcription systems, 759-61
Prosody, 739-91, 943
and character, 744
duration assignment, 761-63
CART-based durations, 763
rule-based methods, 762-63
generation, 721-22
generation schematic, 74344
loudness, 740
pausing, 740
pitch, 740
pitch generation, 763-82
accent termination, 770
attributes the pitch contours, 764-68
baseline FO contour generation, 768-69
corpus-based F0 generation, 779-82
declination, 766-67

Index

evaluations/improvements, 773-74
FO contour interpolation, 772-73
gradient prominence, 765-66
interface to synthesis module, 773
parametric FO generation, 774-75
phonetic FO (microprosody), 767-68
pitch range, 764-65, 770-71
prominence determination, 771-72
superposition models, 775-76
ToBI realization models, 777-78
tone determination, 770
prosody markup langnages, 783-85
rate/relative duration, 740
role of understanding, 740-44
speaking style, 744-45
character, 744
emotion, 74445
symbolic, 745-61
accent, 751-53
pauses, 74749
prosodic phrases, 749-51
prosodic transcription systems, 759-61
tone, 753-57
tune, 757-59
Prosody markup langnages, 783-85
PROSPA, 759
Pruning, 609
Pruning error, 675
PSOLA, See Pitch synchronous overlap and add
(PSOLA)
Psychoacoustics, 30
Pulse code modulation (PCM), 271, 34042
Pure tones, 31
Push-down automation, 548
Push-to-talk model, 422-23
P-value, 115-16

Q

Quantization noise, 246
Questioned noun phrase, 61

R
Radix-2 FFT, 222, 223
Randomness, 72
Random noise, 276
Random variables, 77-79

expectation of, 79
Random vectors, 83-85
Rapidly evolving waveforms (REW), 368-70
Rapid prototyping, 948-49
Rate/relative duration, 740
Read speech acoustic models, 857
Real cepstrum, 307-8
Real-time cepstral normalization, 525
Recognition problem, 554
Rectangular window, 230-31
Recurrent neural networks, 457-58
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ursive least squares (RLS) algorithm, 504
g:ursive transition network (RTN), 548, 613-14
Reflection coefficients, 296, 299, 305
Region of convergence (ROC), 211-12
Regular Pulse Excited-Linear Predictive Coder

(RPE-LPC), 360
Relative clauses, 61
Relative ex pmsions_}fﬂ
Relative frequency.
Relative spectral processing (RASTA), 525
Renditions, 899-901
Repetitive stress injury (RSI), 929
Residual signal, 301
Rescnances of vocal tract, excitation of], 27
Response generation, 894-901
message generation box, 897
natural language generation from abstract semantic
input, 898
response content generation, 895-99
template systems for, 897
Retraining on compensated features, 537-38
Retraining on corrupted speech, 528-39
Retroflex liquid, 42
Reverberation, 480-82
Ribbon microphones, 497
Rich-Get-Richer (RGR) strategy, 662
Right-sized tree, 184-89
cross-validation, 188-89
independent test sample estimation, 187-88
minimum cost-complexity pruning, 185-87
RLS algorithm, 5034
Robust parsing, 874-78
Roll-off, 281
Rule-based duration-modeling methods, 56
Rule-based speech synthesis systems, 795-96
CPU resources, 795
delay, 795
memory resources, 795
pitch control, 795
varizble speed, 795
voice characteristics, 796

S

Sadness, and speech, 745

Sample mean, 82

Sample variance, 82

Sampling theorem, 243-45

SAM system, 913-14

Scalable coders, 371

Scalar frequency domain coders, 348-52
consumer audio, 351-52
Digital Audio Broadcasting (DAB), 352
frequency domain, advantages of, 348-49
masking, 349-50
transform coders, 350-5)

Scalar waveform coders, 34048
adaptive PCM, 34445

differential quantization, 345-48
linear pulse code modulation (PCM), 340-42
p-law and A-law PCM, 34244, 348
Screen reader, 929
Search, defined, 592
Search-algorithm evaluation, 674-76
Search algorithms:
beam, 606-8
best-first, 602-6
blind graph, 597601
breadth-first, 600-601
depth-first, 598-99
forward-backward, 670-73
large vocabulary, 645-85
speech-recognition, 608-12
combining acoustic and language models,
610
continuous speech recognition, 611-12
decoder basics, 609
isolated word recognition, 610-11
tree-trellis forward-backward, 671
Search error, 675
Second-order IR filters, 241-42
Second-order resonators, 242
Segment models, 459-60
Segment-model weight, 462
Selectivity, of grammar, 546
Semantically Unpredictable Sentence Test, 837
Semantic authoring, 862
Semantic classes, 948-49
Semantic grammars, 585
Semantic language model, 879
Semantic parser, 854-55
Semantic representation, 867-73
conceptunl graphs, 872-73
functionality encapsulation, 871-72
property inheritance, 871
semantic frames, 867-69
type abstraction, 869-71
Semaatic roles, 63-64
Scmantics:
defined, S8
language, 545
lexical, 64-66
Semicontinuous HMMs, 396-98
Semi-tones, 32
Semivowels, 42
Senones, 433-36, 467, 809
Senone sequence, 658
Sentence interpolation, 873-80
robust parsing, 874-78
defined, 875
statistical pattern matching, 878-80
syntactic grammars, 877
Sentence interpretation, 7
Sentence interpretation module, 855
Sentence-level stress, 431

973
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Sentences, 61-62, 7024
diagramming in parse trees, 63

Sentence tagging, 722

Sentence type identification, 723

Shades of meaning. 67

Shallow parse. 723

Shannon’s channel coding thearem, 127

Shannon’s source coding theorem, 124-23, 128

Sharing, 609

Sharing tails, 655-56

Shimmer, 768

Short-term prediction, 353

Short-time Fourier analysis, 276-83
pitch-synchronous analysis, 283
spectrograms, 281-83

Sigma-delta A/D. 246

Sigma-delta modulation, 346

Signal acquisition, 422

Signal conditioning, 329-30

Signal processing module, 421-28
end-point detection, 422-24
feature transformation, 426-28
mel-frequency cepstral coefficients (MFCC),

424-26

signal acquisition, 422

Signals, 201

Signal-to-noise ratio (SNR), 339, 486, 489

Significance testing, 98, 113-20
goodness-of-fit test, 116-18
level of significance, 114-15
magnitude-difference test, 119-20
matched pairs test, 118-20
normal test, 115-16

signtest, 119 "
Z test, 115-16
Sign test, 119

Silences between words, handling, 621-22

Similars, 65-66

Simple questions, 177

Sinc function, 229-30

Single-layer perceptrons, 159-60

Singleton questions, 177

Single-word subpath, 655

Sinusoidal coding, 371

Sinusoidal systems, 203-5

Slope overload distortion, 346

Slot inheritance, 885

Slowly evolving waveform (SEW), 367-70

SLU, See Spoken language understanding (SLU)
systems

Smart phones, 930

SNR, See Signal-to-noise ratio (SNR)

Soft palate, 25

Sound, 21-23

Sound Blaster, 936

Sound pressure level (SPL), 23

Source coding theorem, 124-2¢

Index

Source-filter models for prosedy modification,
831-34
Source-filter models of speech production, 288-90
Source-filter separation, via the cepstrum, 314-15
Speak & Spell, 271
Speaker-adaptive training techniques. 419
Speaker-dependent speech recognition, 418-19
Speaker-independent speech recognition, 418
Speaker recognition, 931
Speaker variability, 418-19
Speaking style, 74445
character, 744
emotion, 744-45
Speaking tumn, 86
Specificity ordering conflict resolution strategy, 182
Specifier position, 61
Spectral analysis via linear predictive coding (1.PC),
300-301
Spectral leakage, 279
Spectral subtraction, 516-19
Spectrograms, 27-28, 276, 281-83
Speech:
defined, 283
interfacing with computers, 1
prosodic modification of, 818-31
supplemented by information streams, 2
using as an add-on feature, 941
Speech acts, 705-6
Speech-act theory, 914
Speech coding, 337-74
code excited linear prediction (CELP), 353-61
adaptive codebook, 356-57
analysis by synthesis, 353-56
LPC vocoder, 353
parameter quantization, 358-59
perceptual weighting/postfiltering, 357-58
pitch prediction, 356-57
standards, 359-61
coder delay, 339
low-bit rate speech coders, 361-70
harmonic coding, 363-67
mixed-excitation LPC vocoder, 362
waveform interpolation, 367-70
scalar frequency domain coders, 348-52
consumer audio, 351-52
Digital Audio Broadcasting (DAB), 352
masking, 349-50
transform coders, 350-5]
scalar waveform coders, 340-48
adaptive PCM, 344-45
differential quantization, 345-48
linear pulse code modulation (PCM), 340-42
p-law and A-law PCM, 34244, 348
speech coder attributes, 338-39
Speech communication, history of, !
Speech end-point detector, 423
Speech interaction, modes of, 933-34
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Speech interface desigm. 93311 ;—1_}3

Pgencml principles of., 91 -
human limitations. 932 -
modes of interaction 93._ -3
wehnological con;;:dcmuons.

accommodation. 933

rs. 93741

935-36

user

dling erro! )
h:rrinr diteclion and comrection. 938-39

feedback and confirmation, 9391
infernasionalization, 93345
Speech inversion problem, #03-4
Speech perception. 29-36
Speech processing:
digital signal processin
speech coding. 337.74 .
speech signal rep:e:e;ganons. 275-33
h production. 24-2
Sp:g;us;t‘ical model of, 283-90
articulators, 24-25
formants, 27-28
frequency analysis, 32-34
masking, 34-36

g, 201-73

physical vs. perceptual attributes of sounds, 30-32

physiology of the ear, 29-32
spectrograns, 27-28
speech perception, 29-36
voicing mechanism, 25-27
See aiso Acoustical model of speech production
Speech production process, start of, 19
Speech rate, 49-51
Speech recognition, 2, 3, 375-685, 862
acoustic modeling, 415-75
context variability, 417
environment variability, 419
scoring acoustic features, 439-43
speaker variability, 418-19
speech recognition errors, 419-21
style variability, 418
vaniability in speech signals, 416-19
hidden Markov models (HMM), 377413, 416
Baum-Welch algorithm, 389-93
continuous mixture density, 394-96
decoding, 387-89
definition of, 380-93
deleted interpolation, 401.3
dynam'ic programming, 38485
dynamic time warping (DTW), 383-85
estimating parameters, 389-93
evaluating, 385.87
forward algorithm, 385-87
forward-backwargd algorithm, 389.93
intial estimates, 398-99
limitations of, 405-9
Markov chain, 378-80
model topology, 39949
observable Markov model, 379.80
Parameter sinoothing, 4034

975

practical issues concerning, 398405
probability representations, 404-3
scniicontinuous, 396-98
training criteria, 401
Viterbi algorithm, 387-89
phonetic modeling. 428-39. )
clustered acoustic-phonetic units, 432-36
comparison of different units, 429-30
context dependency, 430-31
lexical baseforms. 436-39
signal processing module, 421-28
end-point detection, 422-24
feature transformation. 426-28
mel-frequency cepstral coefficients (MFCC),
424-26
signal acquisition, 422
speech recognition errors, 419-21
word error rate, 420
word recognition errors, types of, 420
Speech recognition search algorithms, 608-12
combining acoustic and language models, 610
continuous speech recognition, 611-12
decoder basics, 609
isolated word recognition, 610-11
Speech recognition system, 4-5
basic system architecture of, 5
components of, 4
source-channel model for, 5
vocabulary, 58
Speech signal representations, 275-336
acoustical model of speech production, 283-9¢
glottal excitation, 284
lossless tube concatenation, 284-88
mixed excitation model, 289
source-filter models of speech production, 288-90
cepsirum, 306-15
cepstrum vector, 309
complex, 307-8
LPC-cepstrum, 309-11
of periodic signals, 311-12
of pole-zero filters, 308-98
real, 307-8
source-filter separation via, 314-15
of speech signals, 312-13
formant frequencies, 3 19-23
.slatislical formant tracking, 320-23
linear predictive coding (LPC), 290-306
autocorrelation method, 295-0¢
covariance method, 293-94
equivalent representations, 303-6
lattice fonnulation, 297-300
:me speclm! frequencies (LSF), 303-5
0g-area ratios, 305-6
orthogonality principle, 291-92
prediction error, 301-3
reflection coefficients, 305
roots of the polynomial, 306
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Speech signal representations, linear predictive
coding (cont.)
solution of the LPC equations, 292-300
spectral analysis via, 300-301

perceptually motivated representations, 315-19
bilinear transforms, 315-16
mel-frequency cepstrum coefficients (MFCC),

316-18
perceptual linear prediction (PLP), 318-19
itch:

Pautoc:orrelation method, 324-27
normalized cross-correlation method, 327-29
pitch tracking, 330-32
role of, 324-32
signal conditioning, 329-30

short-time Fourier analysis, 276-83
pitch-synchronous anaiysis, 283
spectrograms, 281-83

Speech signals, 5, 20

cepstrum of, 312-13

context variability, 417

environment variability, 419

speaker vaniability, 418-19

style variability, 418

variability in, 416-19

Speech synthesis, 6, 793-852
articulatory speech synthesis, 793, 803-4
attributes of, 794-96
concatenative synthesis with no waveform modifi-
cation, 794

concatenative synthesis with waveform modifica-
tion, 795

limited-dornain waveform concatenation, 794

rule-based systems, 795-96

concatenative speech synthesis, 793-94
choice of unit, 805-8
context-dependent phonemes, 808-9
context-independent phonemes, 806-7
diphones, 807-8
optimal unit string, 810-17
subphonetic units (senones), 809
syllables, 809
unit inventory design, 817-18
word and phrase, 809

data-driven synthesis, 794, 803

formant speech synthesis, 793, 796-804
cascade model, 797
formant generation by rule, 800-803
Klatt’s cascade/parallel formant synthesizer,

797-802

locus theory of speech production, 800
parallel model, 797
waveform generation from formant values, 797-99

prosedic modification of speech, 818-31

epoch detection, 828-29
pitch-scale modification epoch calculation, 825

pitch-scale time-scale epoch calculation, 827

Index

pitch synchronous overlap and add (PSOLA),
820-23, 847
synchronous overlap and add (SOLA), 818-819
synthesis epoch calculation, 823-24
time-scale modification epoch calculation, 826-27
waveform mapping, 827-28
synthesis by rule, 794 -
Speech-to-speech translation, 3
Split-radix algorithm, 223
Splits, 182
Spoken language, 19
Spoken language interface, 2-3
Spoken language processing, 4, 133
Spoken language structure, 19-72
Spoken language system, 2
Spoken language system architecture, 4-8
automatic speech recognition, 4-6
spoken language understanding, 7-8
text-to-speech conversion, 6-7
Spoken language understanding, 7-8
basic system architecture of, 8
Spoken language understanding (SLU) systems,
853-918, 945
assumptions, 854
content, 854
context, 854
dialog management, 886-94
dialog grammars, 887-88
plan-based systems, 888-92
dialog structure, 859-67
attentional state, 859
dialog (speech) acts, 861-66
intentional state, 859
linguistic forms, 859
task knowledge, 859
units of dialog, 860-61
world knowledge, 859
dialog system, 854-55
dialog manager, 855
discourse analysis, 855
semantic parser, 854-55
discourse analysis, 881-86
resolution by NLP, 883-85
resolution of relative expression, 882-85
Dr. Who case study, 906-13
evaluation, 901-6
in the ATIS task, 901-3
PARADISE framework, 903-6
historical perspective, 913-14
intent, 854
rendition, 899-901
response generation, 894-901
concept-to-speech rendition, 899-901
natural language generation from abstract semantic
input, 898
response content generation, 895-99
semantic representation, 867-73
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ceptual graphs, 872-73
(;:clignalig:ncapsulaﬁon, 871-72
pmpeny inheritance, 871
semantic frames, 867-69
type abstraction, 869-71

sentence interpolation, 873-80
robust parsing, 874-78
statistical patten matching, 878-80
syntactic grammars, surface linguistic variations
in, 877
written vs. spoken languages, 855-58
communicative prosody, 858
disfluency, 857
style, 856-57
Spoken menus, 942 ]
Spread-of-masking function, 35-36
Spread spectrum, 360-61
Stable LTI system, 211
Stack decoding, 592
advantage of, 628
defined, 627
formulating in a tree search framework, 629
Stack decoding (A* search), 626-39
admissible heuristics for remaining path, 630-31
extending new words, 631-34
fast match, 634-38
multistack search, 639
stack pruning, 638-39
Stack pruning, 638-39
Standard deviation, 80
Standard Gaussian distributions, 92-93
State-space search paradigm, 592
Stationary processes, 264-67
ergodic processes, 265-67
Stationary signal, 276
Statistical formant tracking, 320-23
Statistical inference, 98, 113
Statistical language models, 583
Suatistical partern matching, 878-80
Statistical partern recognition, 190
Suatistics, 73-131
Stochastic language models, 546, 554-60
n-gram language models, 558-60
probabilistic context-free grammars, 554-58
Stachastic processes, 260-70
continuous-time, 260
discrete-time, 260
LTl systems with stochastic inputs, 267
noise, 269-70
power spectral density, 268-69
slationary processes, 264-67
statistics of, 261-64
Stop, 43
Stress, 751
Slrf:ssed vowels, 430-31
Strict-sense stationary {SS8), 264
Style, 856-57
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Style variability, 418
Subgoals, 894
Sub-harmonic errors, 330
Subject, sentence, 61
Subphonetic units (senones), 809
Subscripting, 67
Substitution errors, 420
Subtree dominance, 656
Subtree isomorphism, 654
Subtree polymorphism, exploiting, 656-58
Successor operator, 594
Sum-of-squared-error (SSE), 99, 160
Superposition models, 775-76
Supervised learning, 134, i41
Surrogate questions, 182
SWITCHBOARD Shallow-Discourse-Function
Annotation SWBD-DAMSL, 865-66
Syllable parse tree, 52
Syllables, 20, 51-52, 430, 809
Syllables centers, 52
Symbolic prosody, 745-61
accent, 751-53
pauses, 747-49
prosodic phrases, 749-51
prosodic transcription systems, 759-61
tone, 753-57
tune, 757-59
Symmetrical loss function, 136
Symmetric channel, 127
Synchronous overiap and add (SOLA), 818-19
Syntactic constituents, 58
Syntactic theory, 69
Syntagmatic properties, 53
Syntax;:
defined, 58
language, 545
Synthesis-by-rule, 794, 796
Synthesis epoch calculation, 8§23-24
System initiative, 860

T

Tag question, 62
Tags, 7
Tail area, 115
Tap and Talk interface, 934, 947-48, 951
Task knowledge, 859
TDMA Interim Standard 54, 360
Telecommunication Industry Association (TILA), 360
Telephone speech, 338
Telephony applications, 924-26
Temporal masking, 35-36
Testing set, 141
Test procedure, 114
Text analysis phase, 7
Text normalization (TN), 692, 706-20
abbreviations, 709-12
acronyms, 711-12
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Text normalization (TN) (cont.)
domain-specific tags, 718-20
chemical formulae, 719
mathematical expressions, 718-19
miscellaneous formats, 719-20
evaluation, 730-32
Festival case study, 732-35
historical perspective, 735-36
letter-to-sound (LTS) conversion, 728-30
linguistic analysis, 720-23
and closed-class function words, 722
homograph disambiguation, 723, 724-25
noun phrase (NP) and clause detection, 723
POS tagging, 722-23 .
sentence tagging, 722
sentence type identification, 723
shallow parse, 723
morphological analysis, 725-27
algorithm, 727
suffix and prefix stripping, 726-27
number formats, 712-20
account numbers, 716
cardinal numbers, 717-18
dates, 714-15
money and currency, 716
ordinal numbers, 717
phone numbers, 712-14
times, 715
Text and phonetic analysis, 689-738
American-English vocabulary relevant to, 698
data flow, 694-97
skeleton, 695
defined, 692
document structure detection, 692, 699-706
grapheme-to-phoneme conversion, 692-93
homograph disambiguation, 693
letter-to-sound (LTS) conversion, 693
lexicon, 697-98
linguistic analysis, 692
localization issues, 696-97
modules, 692-94
morphological analysis, 693
natural language process (NLP) systems,
693-94
phonetic ianguages, 692-93
text normalization (TN), 692, 706-20
Text-to-speech (TTS) conversion, 6-7
Text-to-speech (TTS) system, 687-850
basic system architecture of, 6
goals of, 689-90
phonetic analysis component, 7
prosody, 739-91
speech synthesis, 793-850
speech synthesis component, 7
tags, 7
text analysis component, 6-7
text and phonetic analysis, 689-738

Index

Text-to-speech (TTS) system evaluation, 834-44
automated tests, 843-44
Diagnostic Rhyme Test (DRT), 837
functional tests, 842-43
glass-box vs. black-box evaluation, 835-36
global vs. analytic assessment, 836
Haskins Syntactic Sentence Test, 839
historical perspective, 844-47
human vs. automated, 835
intelligibility tests, 837-39
judgment vs. functional testing, 835-36
laboratory vs. field, 835
Modified Rhyme Test (MRT), 838
overall quality tests, 840-41
Absolute Category Rating (ACR), 841
Listening Effort Scale, 841
Listening Quality Scale, 841
Mean Opinion Score (MOS), 840
phonetically balanced word list test, 839
preference tests, 842
Semantically Unpredictable Sentence Test, 837
symbolic vs. acoustic level, 835
TFIDF information retrieval measure, 576
Third generation (3G) systems, 361
Threshold of hearing (TOH), 22
Threshold value, likelihood ratio, 139
Throat, 25
TIA/EIA/ISS4, 360
TIA/EIA/IS-127-2, 361
TIA/EIA/IS-733-], 361
TILT, 760
Timbre, 25, 32
Time defay neural network (TDNN), 458
Time Division Multiple Access (TDMA), 360
Time-scale modification epoch calculation, 826-27
Time-synchronous Viterbi beam search, 622-26
algorithm, 627
use of beam, 624-25
Time-synchronous Viterbi search, 666-67
TN, See Text normalization (TN)
ToBI realization models, 777-78
ToBI (Tones and Break Indices) system, 749-50, 754,
777
boundary tolerance, 756
intermediate phrasal tones, 756
pitch accent tones, 755
Toeplitz matrix, 296
Toll quality, 344
Tone, 753-57
Tone determination, 770
Tone-masking noise, 35
Tongue, 25
Top-down chart parsing, 549-51
top-down vs., 549-50
Topic-adaptive models, 575-76
Trachea, 25
Trainability, 145
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Training corpus, 559
Training problem, 554
Training set, 141, 419-20
Transducers. acoustic;l. 486-97
Trensfer function, 21
Transformation models, 454-55
Transform coders, 350-51. 371.
Transform-demain LMS algorithm, 502-3
Transition network, 548
Transmission delay, 339
Transparent quality, 358
Tree-banked data, 378 )
Tree lexicon, efficient manipulation of, 646-59
Tree structure, 646 )
Tree-trellis forward-backward search algorithms, 671
Triangular windows, 280
Trigram grammar, 465
Trigrams, 559, 583
search space with, 619-20
Trilled 7 sound, 47
Triphone model, 430
Triphones, 808
TTS models, 949
TTS system, See Text-to-speech (TTS) system
Tune, 757-59
Turing machine, 548
Turing test, 3, 843
Tum memories, 882
Twiddle factors, 224
Two-band conjugate quadrature filters, 251-54
Twoing rule, 181
Two-place predicates, 67
Two-tailed test, 115-16
Type abstraction, 869-71
Type-l filter, 233
Type-n-Talk system, 847

U

U method, 147

Uncenainty, 73, 121

Uncorrelated orthogonal processes, 263

Undergeneration, 876

Understandability, of grammar, 546

Unicode, 36

Unidirectional microphones, 494-96

Unification grammar, 584

Unified frame- and segment-based models, 462-64

Uniform distributions, 85

- Uniform prior, 112

Uniform quantization, 340

Uniform search, 597

Unigram, 559

search space with, 616-17

Unimodal distribution, 95

Un!quely decipherable coding, 125

United States Public Switched Telephone Network
(PSTN), 371
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Units, choice of, in concatenative spcech synthesis,
805-8
Units of dialog, 860-61
Universal encoding scheme, 126
Universal Mobile Telecommunications System
(UMTS), 361
Unknown word, defined, 563
Unstressed vowels, 430
Unsupervised estimation methods, 163-75
EM algorithm, 170-72
multivariate Gaussian mixture density estimation,
172-75
vector quantization (VQ), 164-70
Unsupervised leaming, [41
Upper bound of probability, 74
U.S. Defense Advanced Research Projects Agency
(DARPA), 467
User expectations, managing, 942
User initiative, 860, 867
Utterance unit, 861

|
Variance, 79-81
Vector quantization (VQ), 164-70, 191
distortion measures, 164-66
EM algonthm, 170-72
K-means algorithm, 166-69
LBG algorithm, 169-70
Vector Taylor series, 535-37
Velar consonants, 46
Velum, 25
Verbs, 54
Verbs phrases (VPs), 56-61
V-fold cross-delegation, 188-89
V-fold cross validation, 147
ViaVoice (IBM), 926
Viterbi algorithm, 387-89, 409, 609
Viterbi approximation, 623
Viterbi beam search, 625-26
Viterbi decoder, 592
Viterbi forced alignment, 630
Viterbi stack deecoder, 592
Viterbi trellis, 624
Vocabulary independence, 433
Vocabulary selection, 578-80
Vocal cords, 25
Vocal foid cycling at the lamyx, 26
Vocal fry, 330
Vocal tract nommalization (VTN), 427
Voder, 6
Voice conversion, 834
Voice effects, 834
Voice FONCARD (Sprint), 931
Voiceless plosive consonants, 43
Voice over Intemnet protocol (Voice over IP), 359
Voice porals, 925
VoiceXML, 921
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Voice Xpress, 926
Voicing mechanism, 25-27
Vowels, 24, 3942
Japanese, 46-47
VQ, See Vector quantization (VQ)

w
Wall Street Journal (WSJ) Dictation Task, 11-12
Waveform-approximating coders, 361
Waveform interpolation, 367-70, 371
Waveform mapping, 827-28
Waveforms, fundamental frequency, 27
Web pages, 705
Whisper case study, 464-65
Whispering effect, 834
White noise, 269-70, 478-79
Whole-word models, difficulty in building, 428
Wh-question, 62
Wide-band spectrograms, 282
Wideband speech, 338
Wide-sense stationary (WSS), 265
Wiener filtering, 520-22, 540
noncausal, 522
Wiener-Hopf equation, 521
Wiener-Khinchin theorem, 269
Window design filter, 235-36
Window design FIR lowpass filters, 235-36
Window function, 255, 277-78
Window functions, 230-32
generalized Hamming window, 231-32
rectangular window, 230-31
Wizard-of-Oz (WOZ) experimentation, 950
Word classes, 57
Word-dependent n-best and word-lattice algorithm,
667-70
Word error rate, 420-21
algorithm to measure, 421
Word error rate comparisons, humans vs. machines, 12
Word-final unit, 659
Word graphs, 664-66

Index

Word-initial unit, 658
Word-lattice algorithm:
one-pass r-best and, 669-70
word-dependent n-best and, 667-70
Word-lattice generation, 672-73
Word lattices, 664-66
Word-level stress, 431
Word recognition errors, types of. 420
Words, 20, 53-57
natural affinities/disaffinities, 65
Word-spotting applications, 454
World knowledge, 859
Written vs. spoken languages, 855-58
disfluency, 857
style, 856-57

X

%" distributions, 95-96
X-bar theory, 885
XML, 699-700
X-template, 58

Y
Yes-no question, 62
Yule-Walker equations, 291-92, 299

Zz

Zero-mean process, 262
Zero-one loss function, 136
Zero padding, 227, 280
Zeros, 213
Z test, 115-16
Z-transforms, 211-12
of elementary functions, 212-15
inverse z-transform of rational functions, 213-15
left-sided complex exponentials, 213
right-sided complex exponentials, 212-13
properties of, 215-17
convolution property, 215
power spectrum and Parseval’s thecrem, 216
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