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Foreword 

Recognition and understanding of spontane­
ous unrehearsed speech remains an elusive goal. To understand speech, a human considers 
not only the specific information conveyed to the ear, but also the context in which the in­
formation is being discussed. For this reason, people can understand spoken language even 
when the speech signal is corrupted by noise. However, understanding the context of speech 
is, in tum, based on a broad knowledge of the world. And this has been the source of the 
difficulty and over forty years of research. 

It is difficult to develop computer programs that are sufficiently sophisticated to under­
stand continuous speech by a random speaker. Only when programmers simplify the prob­
lem-by isolating words, limiting the vocabulary or number of speakers, or constraining the 
way in which sentences may be formed-is speech recognition by computer possible. 

Since the early 1970s, researchers at AT&T, BBN, CMU, IBM, Lincoln Labs, MIT, 
and SRI have made major contributions in Spoken Language Understanding Research. In 
1971, the Defense Advanced Research Projects Agency (DARPA) initiated an ambitious 
five-year, $15 million, multisite effort to develop speech understanding systems. The goals 
were to develop systems that would accept continuous speech from many speakers, with 
minimal speaker adaptation, and operate on a I 000-word vocabulary, artificial syntax, and a 

xxi 



Foreword 

xx.ii 

. T f the systems Harpy and Hearsay-II, both developed at Car-
• d rask domain. wo o ' 

constnune . . h'eved the original goals and in some instances surpassed them . 
• Mellon University, ac 1 . 

negie . 
1 

h decades r have been at Carnegie Mellon, I have been very fortu-
Dunng the ast t ree 

bl O
rk with many brilliant students and researchers. Xuedong Huang, Alex 

nate to be a e to w • h • h 
d H 

· Wuen Hon were arguably among the outstandmg researc ers m t e speech 
Acero an stao· 

' CMU s·nce then they have moved to Microsoft and have put together a world-
group at • 1 ' • • 

t MJ·crosoft Research Over the years, they have contnbuted standards for build-class team a • . . , . 
ing spoken language understanding systems with Microsoft s SAP~/SDK family of prod_ucts 
and pushed the technologies forward with the rest of the co~mumty.' ~oday, they contmue 

10 play a premier leadership role in both the research community and m rndustry. 
This new book, Spoken La11guage Processing, represents a welcome addition to the 

technical literature on this increasingly important emerging area of Information Technology. 
As we move from desktop PCs to personal digital assistants (PDAs), wearable computers, 
and Internet cell phones, speech becomes a central, if not the only, means of communication 
between the human and machine! Huang, Acero, and Hon have undertaken a commendable 
task of creating a comprehensive reference that covers theoretical, algorithmic, and systems 
aspects of the spoken language tasks of recognition, synthesis, and understanding. 

The task of spoken language communication requires a system to recognize, interpret, 
execute, and respond to a spoken query. This task is complicated by the fact that the speech 
signal is corrupted by many sources: noise in the background, characteristics of the micro­
phone, vocal tract characteristics of the speakers, and differences in pronunciation. In addi­
tion, the system has to cope with non-grammaticality of spoken communication and 
ambiguity of language. An effective system must strive to utilize all the available sources of 
knowledge-acoustics, phonetics and phonology, lexical, syntactic, and semantic structure 
of language, and task-specific context-dependent infonnation. 

Speech is based on a sequence of discrete sound segments that are linked in time. 
These segments, called phonemes, are assumed to have unique articulatory and acoustic 
ch~racteristics. While the human vocal apparatus can produce an almost infinite number of 
aruculatory gestures, the number of phonemes is limited. English as spoken in the United 
st~tes, for example, contains 16 vowel and 24 consonant sounds. Each phoneme has distin-
guishable acoustic charact • • d • • • · . enstics an , m combmat1on with other phonemes forms larger 
umts such as syllabl d d ' 

d . . es an wor s. Knowledge about the acoustic differences among these 
soun umts ts esse f I d' • -Wh n ia to tstmgutsh one word from another, say, bit from pit. 

en speech sounds are d fi . . . . . teristics of a iv ~onnecte to orm larger hngmst1c umts, the acoustic charac-
g en phoneme will chang f . f . . . ment because of th . . e as a unct10n o tts immediate phonetic environ-

. e mteractton am • . 
hps, and vocal chords) d h . . ong vanous anatomical structures (such as the tongue, 
h . . an t eir different d f ) • · f P onerruc information in th . egrees o s ugg1shness. The result 1s an overlap o 

. e acoustic sign l f same underlying phonem a rom one segment to the other. For ex.ample, the 
et can have dr f 11 d' Words, say, in tea, tree c·ty b as ica Y 1fferent acoustic characteristics in different 

o 'th' ' i ' eaten and t Th' ccur Wt m a given word or ' s eep. 1s effect, known as coarticulation can 
d'rn . across a WO d b , 1 erent acousuc properties in ph r oundary. Thus, the word this will have very 

• rases such as this car and this ship. 



Foreword xxiii 

This book is self-contained for those who wish to familiarize themselves with the cur­
rent state of spoken language systems technology. However, a researcher or a professional in 
the field will benefit from a thorough grounding in a number of disciplines, including: 

• Signal processing: Fourier Transfonns, DFT, and FFT 

• Acoustics: physics of sounds and speech, models of vocal tract 

• Pattern recognition: clustering and pattern matching techniques 

• Artificial intelligence: knowledge representation and search, natural language 
processing 

• Computer science: hardware, parallel systems, algorithm optimization 

• Statistics: probability theory, hidden Markov models, dynamic programming 

• Linguistics: acoustic phonetics, lexical representation, syntax, and semantics 

A newcomer to this field, easily overwhelmed by the vast number of different algo­
rithms scattered across many conference proceedings, can find in this book a set of tech­
niques that Huang, Acero, and Hon have found to work well in practice. This book is unique 
in that it includes both the theory and implementation details necessary to build spoken lan­
guage systems. If you were able to assemble all the individual material that is covered in the 
book and put it on a shelf, it would be several times larger than this volume and yet you 
would be missing vital information. You would not have the material that is in this book that 
threads it all into one story, one context. If you need additional resources, the authors in­
clude extensive references to get that additional detail. Spoken Language Processing is very 
appealing both as a textbook and as a reference book for practicing engineers. Some readers 
familiar with a specific topic may decide to skip a few chapters; others may want to focus in 
other chapters. This is not a book that you will pick up and read once from cover to cover, 
but one you will keep near you for reference as long as you work in this field. 

Raj Reddy 
Dean, School of Computer Science 
Carnegie Mellon University 





Preface 

0 ur primary motivation in writing this book 
is to share our working experience to bridge the gap between the knowledge of industry gu­
rus and newcomers to the spoken language processing community. Many powerful tech­
niques hide in conference proceedings and academic papers for years before becoming 
widely recognized by the research community or Lhe industry. We spent many years pursu­
ing spoken language technology research at Carnegie Mellon University before we started 
spoken language R&D at Microsoft. We fully understand that it is by no means a small un­
dertaking to transfer a state-of-the-art spoken language research system into a commercially 
viable product that can truly help people improve their productivity. Our experience in both 
industry and academia is reflected in the context of this book, which presents a contempo­
rary and comprehensive description of both theoretic and practical issues in spoken language 
processing. This book is intended for people of diverse academic and practical backgrounds. 
Speech scientists, computer scientists, linguists, engineers, physicists, and psychologists all 
have a unique perspective on spoken language processing. This book will be useful to all of 
these special interest groups. 

Spoken language processing is a diverse subject that relies on knowledge of many lev­
els, including acoustics, phonology, phonetics, linguistics, semantics, pragmatics, and dis­
course. The diverse nature of spoken language processing requires knowledge in computer 
science, electrical engineering, mathematics, syntax, and psychology. There are a number of 
excellent books on the subfields of spoken language processing, including speech recogni­
tion, text-to-speech conversion, and spoken language understanding, but there is no single 
book that covers both theoretical and practical aspects of these subfields and spoken lan­
guage interface design. We devote many chapters systematically introducing fundamental 
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theories needed to understand how speech recognition, text-to-speech synthesis, and spoken 
language understanding work. Even more important is the fact ~at the bo?k highlights what 
works well in practice, which is invaluable if you want to bmld a practical speech recog­
nizer, a practical text-to-speech synthesizer, or a practical spoken language system. Using 
numerous real examples in developing Microsoft's spoken language systems, we concen­
trate on showing how the fundamental theories can be applied to solve real problems in spo-

ken language processing. 
We would like to thank many people who helped us during our spoken language proc-

essing R&D careers. We are particularly indebted to Professor Raj Reddy at the School of 
Computer Science, Carnegie Mellon University. Under his leadership, Carnegie Mellon 
University has become a center of research exceJlence on spoken language processing. To­
day's computer industry and academia benefit tremendously from his leadership and contri­
butions. 

Special thanks are due to Microsoft for its encouragement of spoken language R&D. 
The management team at Microsoft has been extremely generous to the speech technology 
group. We are particularly grateful to Bill Gates, Nathan Myhrvold, Rick Rashid, Dan Ling, 
and Jack Breese for the great environment they have created for us at Microsoft Research. 
We would also like to thank Bob Muglia and Kai-Fu Lee for their leadership role in Micro­
soft's speech product development. 

Scott ~e:ed~th helped us write a number of chapters in this book and deserves to be a 
co-author. Hts ms1ght and experience in text-to-speech synthesis enriched this book a great 
deal. We al~o owe gratitude to many colleagues we worked with in the speech technology 
gr?up ~f Microsoft Research. In alphabetic order, Jim Adcock Bruno Al b" p ·1 All 
Enc Bidstru An · B" . . , a tso, 1 eva, 

J h G od
p, tom? igazzi, Ciprian Chelba, Li Deng, James Droppo Doug Duchene 

os ua o man, Met-Yuh Hwang L I I D ' , Dav·d Lars K · L . ' arry srae • erek Jacoby, Li Jiang Yun-Cheng Ju 
i on, evm arson, Jmgsong Liu Ri ky L • . ' ' 

Menill, Yunus Mohammed Sal ' c . oyod, Mihnd Mahajan, Peter Mau, John 
Mike Rozak Kevin Schofi~ld ;i; Muiha~ Mike Plumpe, Scott Quinn, Bill Rockenbeck, 
Wang, and s'henzhi Zhang. ' ana eo orescu, Gina Venolia, Kuansan Wang, Ye-Yi 

In addition, we want to thank Le A . 
Chang, Phil Chou, Dinei Florencio, sAll~~

s
•~:~:IlmeS, ':Ian Bl~ck, David Caulton, Eric 

Hennansky, Henrique Malvar, Julian Odell M . o, Francisco G1menez-Galanes, Hynek 
Trower, and Charles Wayne Th . ' an ~Slend0rf, Joseph Pentheroudakis Tandy 
th" b k • • ey provided us with • is oo . Tim Moore, Russ Hall d J many wonderful comments to refine 
book in_ a finite amount of time. ' an ane Bonnell at Prentice Hall helped us finish this 

Fmally, Writing this book was a maratho 
:~:~~on of our s~uses, Yingzhi, Donna, an: p~at c~ul? not have been finished without 

spent on this project en, unng the many evenings and week-

Xuedong Huang 
Alex Acero 
Hsiao-Wuen Hon 
Redmond, WA 



CHAPTER 1 

Introduction 

From human prehistory to the new media of 
the future, speech communication has been and will be the dominant mode of human social 
bonding and information exchange. The spoken word is now extended, through technologi­
cal mediation such as telephony, movies, radio, television, and the Internet. This trend re­
flects the primacy of spoken communication in human psychology. 

In addition to human-human interaction, this human preference for spoken language 
communication finds a reflection in human-machine interaction as well. Most computers 
currently utilize a graphical user interface (GUI), based on graphically represented interface 
objects and functions such as windows, icons, menus, and pointers. Most computer operat­
ing systems and applications also depend on a user's keyboard strokes and mouse clicks, 
with a display monitor for feedback. Today's computers lack the fundamental human abili­
ties to speak, listen, understand, and learn. Speech, supported by other natural modalities, 
will be one of the primary means of interfacing with computers. And, even before speech­
based interaction reaches full maturity, applications in home, mobile, and office segments 
are incorporating spoken language technology to change the way we live and work. 

1 
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both speech recognition and speech synthesis capa-
1eeds to have · · d f A spoken language sySlem I th . Ives are not sufficient to buil a use ul spoken 

mponents by ernse . · · . 
b'lities However, those two co . ponent is required to manage mteract1ons with 1 • d' g and dialog com . 
language system. An underSlan m • .d d to guide the system's interpretauon of speech 

~ • kn ledge must be prov1 e . . 
the user; and dornam ow . . For all these components, s1gmficant challenges • the appropnate action. . 
and allow it to determine f • t grati·on and engineering efficiency. The goal of fl ·blty ease o in e , 
exis~ including robuSmess, exi 1 1 ' terns has long attracted the attention of scientists 

·a11 • ble spoken language sys . . . 
building commerc1 Y via f this book is to share our working expenence m 
and engineers all over dle world. The purposei~ systems with both our colleagues and newcom­
developing advanced spoken language processall ·mgtr~r1ucing fundamental theories and to highlight-

h pters to systematic Y vu . 
ers. We devote many c a 1 sons we learned in developing Microsoft's spoken 
ing what works well based on numerous es 
language systems. 

1.1. MOTIVATIONS 

What motivates the integration of spoken language as the primary interface. modality? We 
present a number of scenarios, roughly in order of expected degree of technical challenges 
and expected time to full deployment. 

1.1.1. Spoken Language Interface 

There are generally two categories of users who can benefit from adoption of speech as a 
control modality in parallel with others, such as the mouse, keyboard, touch-screen, and 
joystick. For novice users, functions that are conceptually simple should be directly accessi­
ble. For example, raising the voice output volume under software control on the desktop 
speakers, a conceptually simple operation, in some GUI systems of today requires opening 
one or more windows or menus, and manipulating sliders, check-boxes, or other graphical 
elements. This requires some knowledge of the system's interface conventions and struc­
tures. For the novice user, to be able to say raise the volume would be more direct and natu­
ral. For expert users, the GUI paradigm is sometimes perceived as an obstacle or nuisance 
and shortcuts are sought. Frequently these shortcuts allow the power user's hands to remain 
on the keyboard or mouse while mixing content creation with system commands. For exam­
ple, ~n operator of a graphic design system for CAD/CAM might wish to specify a text for-
matting command while keep· th · · · .. 

mg e pomter device m pos1t10n over a selected screen element. 

d Speech ~as the potential to accomplish these functions more powerfully than keyboard 
an mouse clicks Speech becom . 
streams encoding ~ther d namic es more powerful when supplemented by inforrnatron 
the semantic corn y f aspects of user and system status, which can be resolved by 

ponent o a complete m It' d l - · al 
interactions to proceed based u imo a mtertace. We expect such multrmod 

on more complete use d 1 · · · l o~entation, natural and device-based estu _r mo e rn~, mcluding spe:ch, v1sua 
dtnated with detailed system fil gf res, and facial expression, and these will be coor-

pro I es o typical us k . . 
er tas sand aclivity patterns. 
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In some situations you must rely on speech as an input or output medium. For ex.am­
ple, with wearable computers. it may be impossible to incorporate a large keyboard. When 
driving, safety is compromised by any visual distraction, and hands are required for control­
ling the vehicle. The ultimate speech-only device, the telephone, is for more widespread than 
the PC. Certain manual tasks may also require full visual attention to the focus of the work. 
Finally, spoken language interfaces offer obvious benefits for individuals challenged with a 
variety of physical disabilities, such as loss of sight or limitations in physical motion and 
motor skills. Chapter 18 contains a detailed discussion on spoken language applications. 

1.1.2. Speech-to-Speech Translation 

Speech-to-speech translation has been depicted for decades in science fiction stories. Imag­
ine questioning a Chinese-speaking conversational partner by speaking English into an un­
obtrusive device, and hearing real-time replies you can understand. This scenario, like the 
spoken language interface, requires both speech recognition and speech synthesis technol­
ogy. In addition, sophisticated multilingual spoken language understanding is needed. This 
highlights the need for tightly coupled advances in speech recognition, synthesis, and under­
standing systems, a point emphasized throughout this book. 

1.1.3. Knowledge Partners 

The ability of computers to process spoken language as proficient as humans will be a land­
mark to signal the arrival of truly intelligent machines. Alan Turing [29] introduced his fa­
mous Turing test. He suggested a game, in which a computer's use of language would form 
the criterion for intelligence. If the machine could win the game, it would be judged intelli­
gent. In Turing's game, you play the role of an interrogator. By asking a series of questions 
via a teletype, you must detennine the identity of the other two participants: a machine and a 
person. The task of the machine is to fool you into believing it is a person by responding as a 
person to your questions. The task of the other person is to convince you the other partici­
pant is the machine. The critical issue for Turing was that using language as humans do is 
sufficient as an operational test for intelligence. 

The ultimate use of spoken language is to pass the Turing test in allowing future ex­
tremely intelligent systems to interact with human beings as knowledge partners in all as­
pects of life. This has been a staple of science fiction, but its day will come. Such systems 
require reasoning capabilities and extensive world knowledge embedded in sophisticated 
search, communication, and inference tools that are beyond the scope of this book. We ex­
pect that spoken language technologies described in this book will form the essential ena­
bling mechanism to pass the Turing test. 
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1.Z. SPOKEN LANGUAGE SYSTEM ARCHITECTURE 

l 
•rocessillg refers to technologies related to speech recognition, text-to. 

Spoken anguage prv • 

h d ken language understanding. A spoken language system has at least one of 
speec , an spo . . 
the following three subsystems: a speech recogmt10~ syste~ that converts speech into 

d text-to-speech system that conveys spoken mfonnat1on, and a spoken language 
wor s, a . d h 1 • • • 
understanding system that maps words into actions an t at p ans_ system-101t1ated actions. 

There is considerable overlap in the fundamental technologies for these three subareas. 
Manually created rules have been developed for spoken language systems with limited suc­
cess. But, in recent decades, data-driven statistical approaches have achieved encouraging 
results, which are usually based on modeling the speech signal using well-defined statistical 
algorithms that can automatically extract knowledge from the data. The data-driven ap­
proach can be viewed fundamentally as a pattern recognition problem. In fact, speech recog­
nition, text-to-speech conversion, and spoken language understanding can all be regarded as 
pattern recognition problems. The patterns are either recognized during the runtime opera­
tion of the system or identified during system construction to fonn the basis of runtime gen­
erative models such as prosodic templates needed for text-to-speech synthesis. While we use 
and advocate the statisticaJ approach, we by no means exclude the knowledge engineering 
approach from consideration. If we have a good set of rules in a given problem area, there is 
no need to use the statistical approach at all. The problem is that, at time of this writing, we 
do not have enough knowledge to produce a complete set of high-quality rules. As scientific 
and theoretical generalizations are made from data collected to construct data-driven sys­
tems, better rules may be constructed. Therefore, the rule-based and statistical approaches 
are best viewed as complementary. 

1.2.1. Automatic Speech Recognition 

A source-channel mathematical model described in Chapter 3 is often used to formulate 
speech recognition problems. As illustrated in Figure 1.1, the speaker's mind decides the 
source word sequence W that is delivered through his/her text generator. The source is 
passed through a noisy communication channel that consists of the speaker's vocal appara­
tus to produce the speech waveform and the speech signal processing component of the 
speech recognize!- Finally, the speech decoder aims to decode the acoustic signal X into a 
word sequence W wh • h • h fi . , ic 1s ope ully close to the original word sequence W. 
th d A typical practical speech recognition system consists of basic components shown in 

e otted box of Figure l 2 A 1• • . 
suits th t • • PP ications mterface with the decoder to get recognition re-

a may be used to adapt th · · th 
representation of knowled e O er com~onents m the system. Acoustic models mclude _e 
ability gender and d' 

1 
g . about acouSttcs, phonetics, microphone and environment van-

• 1a ect d1ffere tern's knowledge of h . nces among speakers, etc. Language models refer to a sys-
. w at constitutes a 'bl d m what sequence Th . possi e word, what words are likely to co-occur, an 

• e semantics and fu • • h perfonn may also b nctions related to an operation a user may w1s to 
e necessary for th 1 . 

areas, associated with k e anguage model. Many uncertainties exist m these 
spea er characte • • • 0stJcs, speech style and rate, recognition of basic 



Spoken Language System Architecture 5 

speech segments, possible words, likely words, unknown words, grammatical vanat10n, 
noise interference, nonnative accents, and confidence scoring of results. A successful speech 
recognition system must contend with all of these uncertainties. But that is only the begin­
ning. The acoustic uncertainties of the different accents and speaking styles of individual 
speakers are compounded by the lexical and grammatical complexity and variations of spo­
ken language, which are all represented in the language model. 

Text 
Generator 

Communication Channel ............................................... 
• --------·~,----
.-----. ~ : 

Speech ,--~.i Signal Speech 
: Generator : Processing : Decoder • 

w L ..•..•.............. .l .. ·: ·: ...... ·: ...... ·: j _x .... _ ............................. _. _ _j 

................ ~ 
! 

Speech Recognizer 

w 

Figure 1.1 A source-channel model for a speech recognition system [ 15]. 

The speech signal is processed in the signal processing module that extracts salient 
feature vectors for the decoder. The decoder uses both acoustic and language models to gen­
erate the word sequence that has the maximum posterior probability for the input feature 
vectors. It can also provide information needed for the adaptation component to modify ei­
ther the acoustic or language models so that improved performance can be obtained . 

. .. . .. . ---· -· .............. ··- -- .... ·------. . 

r Voice Signal Processing 

> Decoder r 
"O ~ .,., 
"O > 

1 > 0 
::, 

"O 3:: 00 n 0. 
0 "O 

0 0 ... C 
fO 

0. C ;;;-
.,., 

-· 0 0 "' 
00 

0 "' - 0 - .. ::I 
0 

Adaptation 
.,...... 

' . . ·-------·······-···-···----···-----·-······ 
Figure 1.2 Basic system architecture of a speech recognition system (12]. 
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TTS Engine 

Text Analysis . 
Document Structure Detection 

-
Text Normalization ~ ... 

Raw text r-

or ragged text 
Linguistic Analysis 

ragged text l 
Phonetic Analysis . 

Grapheme-to-Phoneme Conversion 

tagged phones 
,, 

Prosodic Analysis 
Pitch & Duration Attachment 

controls 
, , 

Speech Synthesis 
Voice Rendering 

Figure 1.3 Basic system architecture of a TIS system. 

1.2.2. Text-to-Speech Conversion 

The teon text-to-speech, often abbreviated as TI'S, is easily understood. The task of a text-~o­
speech system can be viewed as speech recognition in reverse - a process of building a machtn· 
ery system that can generate human-like speech from any text input to mimic human speakers. 
'ITS is sometimes called speech synthesis, particularly in the engineering community. 

The conversion of words in written form into speech is nontrivial. Even if we can store 
a huge dictionary for most common words in English; the ITS system still needs to deal 
with millions of names and acronyms. Moreover, in order to sound natural, the intonation of 
the sentences must be appropriately generated. 

The development of TTS synthesis can be traced back to the 1930s when Dudley's 
Voder, developed by Ben Laboratories, was demonstrated at the World's Fair (18). Taking 
~dvantage of increasin? computation power and storage technology, ITS researchers have 
;:n ;:i1t t~ ~ener~te high-quality commercial multilingual text-to-speech systems, although 

q Thty bis t~fenor to human speech for general-purpose applications. 
e as1c TTS components h · · t 

nonnalizes the text to the a . are s own m Figure 1.3. The text analysis componen 
ppropnate fonn so that it becomes speakable. The input can be 
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either raw text or tagged. These tags can be used to assist text, phonetic, and prosodic anal y­
sis. The phonetic analysis component converts the processed text into the corresponding 
phonetic sequence, which is followed by prosodic analysis to attach appropriate pitch and 
duration information to the phonetic sequence. Finally, the speech synthesis component 
takes the parameters from the fully tagged phonetic sequence to generate the corresponding 
speech waveform. 

Various applications have different degrees of knowledge about the structure and con­
tent of the text that they wish to speak so some of the basic components shown in Figure 1.3 
can be skipped. For example, some applications may have certain broad requirements such 
as rate and pitch. These requirements can be indicated with simple command tags appropri­
ately located in the text. Many TIS systems provide a set of markups (tags). so the text pro­
ducer can better express their semantic intention. An application may know a lot about the 
structure and content of the text to be spoken to greatly improve speech output quality. For 
engines providing such support, the text analysis phase can be skipped, in whole or in part. 
If the system developer knows the phonetic form, the phonetic analysis module can be 
skipped as well. The prosodic analysis module assigns a numeric duration to every phonetic 
symbol and calculates an appropriate pitch contour for the utterance or paragraph. In some 
cases, an application may have prosodic contours precalculated by some other process. This 
situation might arise when TIS is being used primarily for compression, or the prosody is 
transplanted from a reaJ speaker's utterance. In these cases, the quantitative prosodic con­
trols can be treated as special tagged field and sent directly along with the phonetic stream to 
speech synthesis for voice rendition. 

1.2.3. Spoken Language Understanding 

Whether a speaker is inquiring about flights to Seattle, reserving a table at a Pittsburgh res­
taurant, dictating an article in Chinese, or making a stock trade, a spoken language under­
standing system is needed to interpret utterances in context and carry out appropriate 
actions. Lexical, syntactic, and semantic knowledge must be applied in a manner that per­
mits cooperative interaction among the various levels of acoustic, phonetic, linguistic, and 
application knowledge in minimizing uncertainty. Knowledge of the characteristic vocabu­
lary, typical syntactic patterns, and possible actions in any given application context for both 
interpretation of user utterances and planning system activity are the heart and soul of any 
spoken language understanding system. 

A schematic of a typical spoken language understanding system is shown in Figure 
l.4. Such a system typically has a speech recognizer and a speech synthesizer for basic 
speech input and output, and a sentence interpretation component to parse the speech recog­
nition results into semantic forms, which often need discourse analysis to track context and 
resolve ambiguities. The Dialog Manager is the central component that communicates with 
applications and the spoken language understanding modules such as discourse analysis, 
sentence interpretation, and response generation. 

While most components of the system may be partly or wholly generic, the dialog 
manager controls the flow of conversation tied to the action. The dialog manager is respon-
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I rng responses, and maintaining the system's • 1eeded for fonnu a 1 · d' J l'ble 'or providing status 
1 

• state records the current transaction, 1a og s 1• • The discourse 
idea of the state of the discourse. . current objects in focus (temporary center of 

• d the current tnmsact1on. h . " goals that motivate . 1 • dependent references, and ot er status m1or-• h • tory hst for reso vmg . . 
attention), the obJect is . . • 1 for sentence interpretation to interpret utter-• • fom1at1011 is crucra . . . F' 
mation. The discourse m I th flow of information 1mphed m 1gure 1.4. 

V • us systems may a ter e . . 
ances in context. . ano r ma be able to supply contextual discourse mfonnat1on or 
For example, the dialog manage y 'd the recoonizer's evaluation of hypotheses at the 
pragmatic inferences, as feedback to gm e o 

earliest level of search. 

I Discourse Analysis 

Application J◄ {D•tabosej 

; -·--
~ Dialog Strategy Dialog Manager 

Response Generation ) Sentence Interpretation 

I j Text-To-Speech 
:f 

Speech Recognizer 

7 
Access Device 

Figure 1.4 Basic system architecture of a spoken language understanding system. 

1.3. BOOK ORGANIZA TI0N 

We attempt to present a comprehensive introduction to spoken language processing, which 
includes not only fundamentals but also a practical guide to build a working system that 
requires knowledge in speech signal processing, recognition, text-to-speech, spoken lan­
guage understanding, and application integration. Since there is considerable overlap in the 
fundamental spoken language processing technologies, we have devoted Part I to the foun­
dations needed. Part I contains background on speech production and perception, probability 
and information theory, and pattern recognition. Parts II, III, IV, and V include chaprers on 
speech processing, speech recognition, speech synthesis, and spoken language systems, re­
spectively. A reader with sufficient background can skip Part I, refening back to it later as 
needed. For example, the discussion of speech recognition in Part III relies on the pattern 
recognition algorithms presented in Part I. Algorithms that are used in several chapters 



Book Organization 9 

within Pait III are also included in Parts I and II. Since the field is still evolving, at the end 
of each chapter we provide a historical perspective and list further readings to facilitate fu­
ture research. 

1.3.1. Part I: Fundamental Theory 

Chapters 2 to 4 provide you with a basic theoretic foundation to better understand tech­
niques that are widely used in modern spoken language systems. These theories include the ~ 
essence of linguistics, phonetics, probability theory, information theory, and pattern recogni­
tion. These chapters prepare you fully to understand the rest of the book. 

Chapter 2 discusses the basic structure of spoken language including speech science, 
phonetics, and linguistics. Chapter 3 covers probability theory and information theory, 
which form the foundation of modem pattern recognition. Many important algorithms and 
principles in pattern recognition and speech coding are derived based on these theories. 
Chapter 4 introduces basic pattern recognition, including decision theory, estimation theory, 
and a number of algorithms widely used in speech recognition. Pattern recognition forms the 
core of most of the algorithms used in spoken language processing. 

1.3.2. Part II: Speech Processing 

Part II provides you with necessary speech signal processing knowledge that is critical to 
spoken language processing. Most of what discuss here is traditionally the subject of electri­
cal engineering. 

Chapters 5 and 6 focus on how to extract useful information from the speech signal. 
The basic principles of digital signal processing are reviewed and a number of useful repre­
sentations for the speech signal are discussed. Chapter 7 covers how to compress these rep­
resentations for efficient transmission and storage. 

1.3.3. Part III: Speech Recognition 

Chapters 8 to 13 provide you with an in-depth look at modern speech recognition systems. 
We highlight techniques that have been proven to work well in real systems and explain in 
detail how and why these techniques work from both theoretic and practical perspectives. 

Chapter 8 introduces hidden Markov models, the most prominent technique used in 
modem speech recognition systems. Chapters 9 and 11 deal with acoustic modeling and 
language modeling respectively. Because environment robustness is critical to the success of 
practical systems, we devote Chapter IO to discussing how to make systems less affected by 
environment noises. Chapters 12 and 13 deal in detail with how to efficiently implement the 
decoder for speech recognition. Chapter 12 discusses a number of basic search algorithms, 
and Chapter 13 covers large vocabulary speech recognition. Throughout our discussion, 
Microsoft's Whisper speech recognizer is used as a case study to illustrate the methods in­
troduced in these chapters. 
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1.3.4. Part IV: Text-to-Speech Systems 

In Chapters J 4 through 16, we discuss proven techniques in ~uilding text-to-sp_e~ch systems. 
The synthesis system consists of major components found m speech recognition systems, 

except that they are in the reverse order. 
Chapter 14 covers the analysis of written documents and the text needed to suppon 

spoken rendition, including the interpretation of audio markup commands, interpretation of 
numbers and other symbols, and conversion from orthographic to phonetic symbols. Chapter 
15 focuses on the generation of pitch and duration controls for linguistic and emotional ef­
fect. Chapter 16 discusses the implementation of the synthetic voice, and presents algo­
rithms to manipulate a limited voice data set to support a wide variety of pitch and duration 
controls required by the text analysis. We highlight the importance of trainable synthesis, 
with Microsoft's Whistler TIS system as an example. 

1.3.5. Part V: Spoken Language Systems 

As discussed in Section 1.1, spoken language applications motivate spoken language R&D. 
The central component is the spoken language understanding system. Since it is closely re­
lated to applications, we group it together with application and interface design. 

Chapter 17 covers spoken language understanding. The output of the recognizer re­
quires interpretation and action in a particular application context. This chapter details useful 
strategies for dialog management, and the coordination of all the speech and system re­
sources to accomplish a task for a user. Chapter 18 concludes the book with a discussion of 
important principles for building spoken language interfaces and applications, including 
general human interface design goals, and interaction with other modalities in specific appl i­
cation contexts. Microsoft's MiPad is used as a case study to illustrate a number of issues in 
developing spoken language and multimodal applications. 

1.4. TARGET AUDIENCES 

This book can serve a variety of audiences: 
Integration engineers: Software engineers who want to build spoken language sys­

tems, but who _do ~ot w~t to learn detailed speech technology internals, will find plentiful 
rele~ant ~atenal, ~ncludmg application design and software interfaces. Anyone with a pro­
fess_ional interest m aspects of speech applications, integration, and interfaces can also 
achieve enough understanding of how the core technologies work, to allow them to take full 
advantage of state-of-the-art capabilities. 

Speech technology engm· eers· E • d · . . . . • ngmeers an researchers working on various subspe 
c1alt1es w1thm the speech field ·11 fi d th" b 

1 d . . . wi m is ook a useful guide to understanding re-
p::ac::honv~~=ie:.1; su~~ient dfrepth to ~elp _them gain insight on where their own ap­

p t ' or ive~ge om, thetr neighbors' common practice. 
Graduate students: This book can serve as a • . 

vanced undergraduate speech anal . I ~nm~ textbook m a graduate or ad-
ysis or anguage engmeenng course. It can serve as a sup-
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plementary textbook in some applied linguistics, digital signal processing, computer science, 
artificial intelligence, and possibly psycholinguistics course. 

Linguists: As the practice of linguistics increasingly shifts to empirical analysis of 
real-world data, students and professional practitioners alike should find a comprehensive 
introduction to the technical foundations of computer processing of spoken language help­
ful. The book can be read at different levels and through different paths, for readers with 
differing technical skills and background knowledge. 

Speech scientists: Researchers engaged in professional work on issues related to nor­
mal or pathological speech may find this complete exposition of the state-of-the-art in com­
puter modeling of generation and perception of speech interesting. 

Business planners: Increasingly, business and management functions require some 
level of insight into the vocabulary and common practices of technology development. 
While not the primary audience, managers, marketers, and others with planning responsibili­
ties and sufficient technical background will find portions of this book useful in evaluating 
competing proposals, and in making business decisions related to the speech technology 
components. 

1.5. HISTORICAL PERSPECTIVE AND FURTHER READING 

Spoken language processing is a diverse field that relies on knowledge of language at the 
levels of signal processing, acoustics, phonology, phonetics, syntax, semantics, pragmatics, 
and discourse. The foundations of spoken language processing lie in computer science, ele c­
trical engineering, linguistics, and psychology. In the 1970s an ambitious speech under­
standing project was funded by DARPA, which led to many seminal systems and 
technologies (17]. A number of human language technology projects funded by DARPA in 
the 1980s and 1990s further accelerated the progress, as evidenced by many papers pub­
lished in The Proceedings of the DARPA Speech and Natural Language/Human Language 
Workshop. The field is still rapidly progressing and there are a number of excellent review 
articles and introductory books. We provide a brief list here. More detailed references can be 
found within each chapter of this book. Gold and Morgan's Speech and Audio Signal Proc­
essing [10] also has a strong historical perspective on spoken language processing. 

Hyde [14] and Reddy [24] provided an excellent review of early speech recognition 
work in the 1970s. Some of the principles are still applicable to today's speech recognition 
research. Waibel and Lee assembled many seminal papers in Readings in Speech Recogni­
tion Speech Recognition [31 ]. There are a number of excellent books on modem speech 
recognition [l, 13, 15, 22, 23]. 

Where does the state of the art speech recognition system stand today? A number of 
different recognition tasks can be used to compare the recognition error rate of people vs. 
machines. Table 1. 1 shows five typical recognition tasks with vocabularies ranging from IO 
to 5000 words speaker-independent continuous speech recognition. The Wall Street Journal 
Dictation (WSJ) Task has a 5000-word vocabulary as a continuous dictation application for 
the WSJ articles. In Table 1.1, the error rate for machines is based on state of the art speech 
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• h ystems described in Chapter 9, and the error rate of humans is based on recognizers sue as s f . 
f b• t t sted on the similar task. We can see the error rate o humans 1s at least a range o su 1ec s e . 

5 times smaller than machines except for the sentences that are generated from a trigram 

1 od I Where the sentences have the perfect match between humans and machines anguage m e , . h. 1 

so humans cannot use high-level knowledge that is not used m mac mes. 

Table I.I Word error rate comparisons between human and machines on similar tasks. 

Tasks Vocabulary Humans Machines 
Connected digits 10 0.009% 0.72% 
Alphabet letters 26 1% 5% 
Spontaneous telephone speech 2000 3.8% 36.7% 
WSJ with clean speech 5000 0.9% 4.5% 
WSJ with noisy speech (l 0-db SNR) 5000 1.1% 8.6% 
Clean speech based on trigram sentences 20,000 7.6% 4.4% 

We can see that humans are far more robust than machines for nonnal tasks. The error 
rate for machine spontaneous conversational telephone speech recognition is above 35%, 
more than a factor 10 higher than humans on the similar task. In addition, the error rate of 
humans does not increase as dramatically as machines when the environment becomes noisy 
(from quiet to 10-db SNR environments on the WSJ task). The relative error rate of humans 
increases from 0.9% to 1.1 % (1.2 times), while the error rate of CSR systems increases from 
4.5% to 8.6% (1.9 times). One interesting experiment is that when we generated sentences 
using the WSJ trigram language model (cf. Chapter 11), the difference between humans and 
machines disappears (the last row in Table 1.1). In fact, the error rate of humans is even 
higher than machines. This is because both humans and machines have the same hlgh-level 
syntactic and semantic models. The test sentences are somewhat random to humans but per­
fect to machines that used the same trigram model for decoding. This experiment indicates 
humans make more effective use of semantic and syntactic constraints for improved speech 
recognition in meaningful conversation. In addition, machines don't have attention problems 
as humans do on random sentences. 

Fant [7] gave an excellent introduction to speech production. Early reviews of text-to­
speech ~ynthesis can be ~ound in [3, 8, 9]. Sagisaka [26] and Carlson [6] provide more re­
cent reviews of progress m speech synthesis. A more detailed treatment can be found in [19, 
30). 

s Where d~~s the ~t~te of the art text to speech system stand today? Unfortunately, like 
?eech ~ecogni~on, this 1s not a solved problem either. Although machine storage capabili­

ties are_ tmprovmg, the quality remains a challenge for many researchers if we want to pass 
the Turmg test. 

I 

Some of these experiments were conducted t M' ft . 
which is not statistically s·agn·li N Ith a icroso with only a small number of human subjects (3-5 people), 

1 IC&nL eve eless the ex • , . . . . 
of humans and machines. • penments give some mteresllng ms1ght on the performance 
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Spoken language understanding is deeply rooted in speech recognition research. There 
are a number of good books on spoken language understanding [2, 5, 16]. Manning and 
Schutze [20] focuses on statistical methods for language understanding. Like Waibel and 
Lee, Grosz et al. assembled many foundational papers in Readings in Natural Language 
Processing [11 ]. More recent reviews of progress in spoken language understanding can be 
found in [25, 28]. Related spoken language interface design issues can be found in [4, 21, 
27, 32]. 

In comparison to speech recognition and text to speech, spoken language understand­
ing is further away from approaching the level of humans, especially for general-purpose 
spoken language applications. 

A number of good conference proceedings and journals report the latest progress in 
the field. Major results on spoken language processing are presented at the International 
Conference on Acoustics, Speech and Signal Processing (JCASSP), International Confer­
ence on Spoken Language Processing (ICSLP), Eurospeech Conference, the DARPA Speech 
and Human Language Technology Workshops, and many workshops organized by the 
European Speech Communications Associations (ESCA) and IEEE Signal Processing Soci­
ety. Journals include IEEE Transactions on Speech and Audio Processing, IEEE Transac­
tions on Pattern Analysis and Machine Intelligence (PAM/), Computer Speech and 
Language, Speech Communication, and Journal of Acoustical Society of America (JASA). 
Research results can also be found at computational linguistics conferences such as the As­
sociation for Computational Linguistics (ACL), International Conference on Computational 
Linguistics (COUNG), and Applied Natural Language Processing (ANLP). The journals 
Computational Linguistics and Natural Language Engineering cover both theoretical and 
practical applications of language research. Speech Recognition Update published by TMA 
Associates is an excellent industry newsletter on spoken language applications. 
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FUNDAMENTAL THEORY 





CHAPTER 2 

Spoken Language Structure 

Spoken language is used to communicate in­
formation from a speaker to a listener. Speech production and perception are both important 
components of the speech chain. Speech begins with a thought and intent to communicate in 
the brain, which activates muscular movements to produce speech sounds. A listener re­
ceives it in the auditory system, processing it for conversion to neurological signals the brain 
can understand. The speaker continuously monitors and controls the vocal organs by receiv­
ing his or her own speech as feedback . 

Considering the universal components of speech communication as shown in Figure 
2.1, the fabric of spoken interaction is woven from many distinct elements. The speech pro­
duction process starts with the semantic message in a person's mind to be transmitted to the 
listener via speech. The computer counterpart to the process of message formulation is the 
application semantics that creates the concept to be expressed. After the message is created, 

19 
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the next step is to convert the message into a sequence of words. Each word consists of a 
sequence of phonemes that corresponds to the pronunciation of the words. Each sentence 
also contains a prosodic pattern that denotes the duration of each phoneme, intonation of the 
sentence, and loudness of the sounds. Once the language system finishes the mapping, the 
talker executes a series of neuromuscular signals. The neuromuscular commands perform 
articulatory mapping to control the vocal cords, lips, jaw, tongue, and velum, thereby pro­
ducing the sound sequence as the final output. The speech understanding process works in 
reverse order. First the signal is passed to the cochlea in the inner ear, which performs fre­
quency analysis as a filter bank. A neural transduction process follows and converts the 
spectral signal into activity signals on the auditory nerve, corresponding roughly to a feature 
extraction component. Currently, it is unclear how neural activity is mapped into the lan­
guage system and how message comprehension is achieved in the brain. 

Speech Generation 

.fpp//('ul/011 U mtJ11lic.f , <JCIIOIIY L......... 
...___~,..,. 

Language System Phonem~ . wotds. prosaJJ,· 

Prahl~ t'Xlf<IC/Wn 

Neuromuscular Mapping 
Arl/c:ulalory parorrmer • 

Vocal Tract System 

Speech Understanding 

' 
Message Comprehension 

Cochlea Motion 

SJ;t>ech 
wra(~,•is 

Figure 2.1 The underlying d t • 
boxes indicate the c d' e ermmants of speech generation and understanding. The gray 

orrespon mg computer sy te ti s m components or spoken language processing. 

Speech signals are composed of al 
crete, symbolic representation of the :n og sound patterns that serve as the basis for a di s-
The production and interpretaf f th poken language - phonemes, syllables, and words. 
of the language spoken In th' ionh o ese sounds are governed by the syntax and semantics 

• 1s c apter we take a b tt . . 
concepts from sound to phonetics and ' ho O om up approach to introduce the basic 
tax and semantics which f, h P nology. Syllables and words are followed by syn-
th' b ' orm t e structure of k l 15 00k are drawn primarily from E r h spo en anguage processing. The examples in 

ng is , though they are relevant to other languages. 
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2.1. SOUND AND HUMAN SPEECH SYSTEMS 

In this section, we briefly review human speech production and perception systems. We 
hope spoken language research will enable us to build a computer system that is as good as 
or better than our own speech production and understanding system. 

2.1.1. Sound 

Sound is a longitudinal pressure wave formed of compressions and rarefactions of air mole­
cules, in a direction parallel to that of the application of energy. Compressions are zones 
where air molecules have been forced by the application of energy into a tighter-than-usual 
configuration, and rarefactions are zones where air molecules are less tightly packed. The 
alternating configurations of compression and rarefaction of air molecules along the path of 
an energy source are sometimes described by the graph of a sine wave as shown in Figure 
2.2. In this representation, crests of the sine curve correspond to moments of maximal com­
pression and troughs to moments of maximal rarefaction. 

Air Molecules 

Wavelength 

Figure 2.2 Application of sound energy causes alternating compression/rarefaction of air 
molecules, described by a sine wave. There are two important parameters, amplitude and 
wavelength, to describe a sine wave. Frequency [cycles/second measured in Hertz (Hz)) is also 
used to measure of the waveform. 

The use of the sine graph in Figure 2.2 is only a notational convenience for charting 
local pressure variations over time, since sound does not form a transverse wave, and the air 
particles are just oscillating in place along the line of application of energy. The speed of a 
sound pressure wave in air is approximately 331.5 + 0.6T,.ml s, where T0 is the Celsius tem­
perature. 

The amount of work done to generate the energy that sets the air molecules in motion 
is reflected in the amount of displacement of the molecules from their resting position. This 
degree of displacement is measured as the amplitude of a sound as shown in Figure 2.2. Be­
cause of the wide range, it is convenient to measure sound amplitude on a logarithmic scale 
in decibels (dB) . A decibel scale is a means for comparing the intensity of two sounds: 
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(2. !) 

where J and / 
0 

are the two intensity levels, with intensity being proportional to the square of 

the sound pressure P. 
Sound pressure level (SPL) is a measure of absolute sound pressure Pin dB: 

r ' 

SPL(dB) = 20 log,0 l ~ J (2.2) 

where the reference O dB corresponds to the threshold of hearing, which is P0 = 0.0002µbar 
for a tone of 1 kHz. The speech conversation level at 3 feet is about 60 dB SPL, and a jack­
hammer's level is about 120 dB SPL. Alternatively, watts/meter'units are often used to indi­
cate intensity. We can bracket the limits of human hearing as shown in Table 2.1. On the 
low end, the human ear is quite sensitive. A typical person can detect sound waves having 
an intensity of 10·12 W/m2 (the threshold of hearing or TOH). This intensity corresponds to a 
pressure wave affecting a given region by only one-billionth of a centimeter of molecular 
motion. On the other end, the most intense sound that can be safely detected without suffer­
ing physical damage is one trillion times more intense than the TOH. 0 dB begins with the 
TOH and advances logarithmically. The faintest audible sound is arbitrarily assigned a value 
of 0 dB, and the loudest sounds that the human ear can tolerate are about I 20 dB. 

Table 2.1 Intensity and decibel levels of various sounds. 

Sound dB Level Times>TOH 
Threshold of hearing (TOH: 10-12 w / m2

) 0 100 

Li!!ht whisoer 10 101 

Quiet livinl! room 20 102 
Quiet conversation 40 104 

A veraQe office 50 105 
Nonna! conversation 60 106 
Busv city street 70 10' 
Acoustic l?Uitar - 1 ft. awav 80 IOI! 

Heavy truck traffic 90 109 
Subwav from olatform 100 !010 
Power tools 110 1011 
Pain threshold of ear 120 1012 
Airoort runwav 130 toll 

Sonic boom 
Permanent damage to hearing 

140 1014 

150 1015 
Jet enl!ine, close up 
Rocket eneine 160 10'6 

Twelve ft. from artillery cannon muzzle ( 1010 WI m2) 
180 1018 

220 10:?.2 
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The absolute threshold of hearing is the maximum amount of energy of a pure tone 
that cannot be detected by a listener in a noise free environment. The absolute threshold of 
hearing is a function of frequency that can be approximated by 

T/f) = 3.64(! /1000)--0.s -6.5e--o·6
<f"lXXl-J.Jiz + 10-3(/ / l 000)4 ( dB SPL) (2.3) 

and is plotted in Figure 2.3. 
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~ 50 ·,· • • • • •• • • .-;- . 
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---· _/' 
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Frequency (Hz) 
10' 

Figure 2.3 The sound pressure level (SPL) level in dB of the absolute threshold of hearing as a 
function of frequency. Sounds below this level are inaudible. Note that below 100 Hz and 
above JO kHz this level rises very rapidly. Frequency goes from 20 Hz to 20 kHz and is plotted 
in a logarithmic scale from Eq. (2.3). 

Let's compute how the pressure level varies with distance for a sound wave emitted by 
a point source located a distance r away. Assuming no energy absorption or reflection, the 
sound wave of a point source is propagated in a spherical front, such that the energy is the 
same for the sphere's surface at all radius r. Since the surface of a sphere of radius r is 
4nr2

, the sound' s energy is inversely proportional to r 2
, so that every time the distance is 

doubled, the sound pressure level decreases by 6 dB. For the point sound source, the energy 
(E) transported by a wave is proportional to the square of the amplitude (A) of the wave and 
the distance (r) between the sound source and the listener: 

A2 
Eoc­

r2 
(2.4) 

The typical sound intensity of a speech signal one inch away ( close-talking micro­
phone) from the talker is l Pascal == IOµbar, which corresponds to 94 dB SPL. The typical 
sound intensity 10 inches away from a talker is 0.1 Pascal == Iµbar, which corresponds to 
74 dB SPL. 
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2.1.2. Speech Production 

. h b • h an speech production systems, which have influenced research on we review ere as1c um 
speech coding, synthesis, and recognition. 

2.1.2.1. Articulators 

s eech is produced by air-pressure waves emanating from the mouth and the nostrils of a 
s!eaker. In most of the world's languages, the inventory of phonemes, as discussed in Sec­
tion 2.2.1, can be split into two basic classes: 

• consonants - articulated in the presence of constrictions in the throat or ob­
structions in the mouth (tongue, teeth, lips) as we speak. 

• vowels - articulated without major constrictions and obstructions. 

The sounds can be further partitioned into subgroups based on certain articulatory 
properties. These properties derive from the anatomy of a handful of important articulators 
and the places where they touch the boundaries of the human vocal tract. Additionally, a 
large number of muscles contribute to articulator positioning and motion. We restrict our­
selves to a schematic view of only the major articulators, as diagrammed in Figure 2.4. The 

Tooth-ridge (alveolar): 
back part 
front part 

Upper Teeth 

Upper Lip 

Lower Lip 

Lower Teeth 

Vocal Cords 

Nasal Cavity 

Hard Palate 

Nasal Pa~sage 

Tongue: 
back 
middle 
front 
tip 

Figure 2.4 A schem 1· d" a tc iagram of th h 
e uman speech production apparatus. 
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gross components of the speech production apparatus are the lungs, trachea, larynx (organ of 
voice production), pharyngeal cavity (throat), oral and nasal cavity. The pharyngeal and oral 
cavities are typically referred to as the vocal tract. and the nasal cavity as the nasal tract. As 
illustrated in Figure 2.4, the human speech production apparatus consists of: 

• Lungs: source of air during speech. 

• Vocal cords (larynx): when the vocal folds are held close together and oscil­
late against one another during a speech sound, the sound is said to be voiced. 
When the folds are too slack or tense to vibrate periodically, the sound is said 
to be unvoiced. The place where the vocal folds come together is called the 
glottis. 

• Velum (soft palate): operates as a valve, opening to allow passage of air (and 
thus resonance) through the nasal cavity. Sounds produced with the flap open 
include m and n. 

• Hard palate: a long relatively hard surface at the roof inside the mouth, 
which, when the tongue is placed against it, enables consonant articulation. 

• Tongue: flexible articulator, shaped away from the palate for vowels, placed 
close to or on the palate or other hard surfaces for consonant articulation. 

• Teeth: another place of articulation used to brace the tongue for certain con­
sonants. 

• Lips: can be rounded or spread to affect vowel quality, and closed completely 
to stop the oral air flow in certain consonants (p, b, m). 

2.1.2.2. The Voicing Mechanism 

The most fundamental distinction between sound types in speech is the voiced/voiceless 
distinction. Voiced sounds, including vowels, have in their time and frequency structure a 
roughly regular pattern that voiceless sounds, such as consonants likes, lack. Voiced sounds 
typically have more energy as shown in Figure 2.5. We see here the wavefonn of the word 
sees, which consists of three phonemes: an unvoiced consonant Isl, a vowel /iy/, and a 
voiced consonant 17.J. 

What in the speech production mechanism creates this fundamental distinction? When 
the vocal folds vibrate during phoneme articulation, the phoneme is considered voiced; oth­
erwise it is unvoiced. Vowels are voiced throughout their duration. The distinct vowel tim­
bres are created by using the tongue and lips to shape the main oral resonance cavity in 
different ways. The vocal folds vibrate at slower or faster rates, from as low as 60 cycles per 
second (Hz) for a large man, to as high as 300 Hz or higher for a small woman or child. The 
rate of cycling (opening and closing) of the vocal folds in the larynx during phonation of 
voiced sounds is called thefundamentalfrequency. This is because it sets the periodic base­
line for all higher-frequency harmonics contributed by the pharyngeal and oral resonance 
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. . Th f d ntal frequency also contributes more than any other single fac-
cav1t1es above. e un ame . . . d f 11· f • ) . 

. f •1 h (the semi-musical nsmg an a mg o voice tones m speech. 
tor to the perception o P1 c 

s (Isl) ee (liyl) s (hf) 

Figure 2.5 Waveform of sees, showing a voiceless phoneme Isl, followed by a voiced sound, 
the vowel liyl. The final sound,/;/, is a type of voiced consonant. 

The glottal cycle is illustrated in Figure 2.6. At stage (a), the vocal folds are closed and 
the air stream from the lungs is indicated by the arrow. At some point, the air pressure on the 
underside of the barrier formed by the vocal folds increases until it overcomes the resistance 
of the vocal fold closure and the higher air pressure below blows them apart (b). However, 
the tissues and muscles of the larynx and the vocal folds have a natural elasticity which 
tends to make them fall back into place rapidly, once air pressure is temporarily equalized 
(c). The successive airbursts resulting from this process are the source of energy for all 
voiced sounds. The time for a single open-close cycle depends on the stiffness and size of 
the vocal folds and the amount of subglottal air pressure. These factors can be controlled by 
a speaker to raise and lower the perceived frequency or pitch of a voiced sound. 

(a) (b) (c) 

Figure 2.6 Vocal fold eyer I th 1 . 
mg a e arynx. (a) Closed with sub-glottal pressure buildup; (b) 

trans-glottal pressure differe f al • ~ 1 . 
I . . n 1 causing JO ds to blow apart· (c) pressure equalization and us-

sue e asucny forcing te 1 ' 
mporary rec osure of vocal folds, ready to begin next cycle. 

The wavefonn of air pressure • • 
Periodic fl . b. . vanations created by this process can be described as a 

ow, m cu 1c centimeters p d (af • 
the time bracketed as on 

I 
th ~r seco~ ter [15]). As shown in Figure 2.7, dunng 

e eye e, ere 15 no air flow during the initial closed portion. Then as 
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the glottis o~ens (open phase), the volume of air flow becomes greater. After a short peak, 
the f~lds b~gm to re~u~e their original position and the air flow declines until complete clo­
sure 1s attained, begmnmg the next cycle. A common measure is the number of such cycles 
per second (Hz). or the fundamental frequency (FO). Thus the fundamental frequency for the 
wavefonn in Figure 2.7 is about 120 Hz. 

2.1.2.3. 
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~ 5000 
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Figure 2.7 Waveform showing air flow during laryngeal cycle. 

Spectrograms and Formants 

Since the glottal wave is periodic, consisting of fundamental frequency (FO) and a number 
of hannonics (integral multiples of FO), it can be analyzed as a sum of sine waves as dis­
cussed in Chapter 5. The resonances of the vocal tract (above the glottis) are excited by the 
glottal energy. Suppose, for simplicity, we regard the vocal tract as a straight tube of uni­
fonn cross-sectional area, closed at the glottal end, open at the lips. When the shape of the 
vocal tract changes, the resonances change also. Harmonics near the resonances are empha­
sized, and, in speech, the resonances of the cavities that are typical of particular articulator 
configurations (e.g., the different vowel timbres) are calledjonnants. The vowels in an ac­
tual speech waveform can be viewed from a number of different perspectives, emphasizing 
either a cross-sectional view of the harmonic responses at a single moment, or a longer-term 
view of the fonnant track evolution over time. The actual spectral analysis of a vowel at a 
single time-point, as shown in Figure 2.8, gives an idea of the uneven distribution of energy 
in resonances for the vowel /iy/ in the waveform for see, which is shown in Figure 2.5. 

Another view of sees of Figure 2.5, called a spectrogram, is displayed in the lower part 
of Figure 2.9. It shows a long-tenn frequency analysis, comparable to a complete series of 
single time-point cross sections (such as that in Figure 2.8) ranged alongside one another in 
time and viewed from above. 
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ln the spectrogram of Figure 2.9, the darkness o, lightness of a band m 1ca the • d ' tes the rela-
ti,e amplitude o, ene,gy p<esen1 at a given frequency. The da,k horiwntal bands show 

1 fonnants, which are hannonics of the fundamental at natural resonances of the vocal trac 
cavity position for the vowel liy/ in see. The mathematical methods for deriving analyses 
and representations such as those illustrated above are covered in Chapters 5 and 6. 
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2.1.3. Speech Perception 

There are two major components in the auditory perception system: the peripheral auditory 
organs (ears) and the auditory nervous system (brain). The ear processes an acoustic pres­
sure signal by first transforming it into a mechanical vibration pattern on the basilar mem­
brane, and then representing the pattern by a series of pulses to be transmitted by the 
auditory nerve. Perceptual information is extracted at various stages of the auditory nervous 
system. In this section we focus mainly on the auditory organs. 

2.1.3.1. Physiology of the Ear 

The human ear, as shown in Figure 2.10, has three sections: the outer ear, the middle ear, 
and the inner ear. The outer ear consists of the external visible part and the external auditory 
canal that forms a tube along which sound travels. This tube is about 2.5 cm long and is 
covered by the eardrum at the far end. · When air pressure variations reach the eardrum from 
the outside, it vibrates, and transmits the vibrations to bones adjacent to its opposite side. 
The vibration of the eardrum is at the same frequency (alternating compression and rarefac­
tion) as the incoming sound pressure wave. The middle ear is an air-filled space or cavity 
about 1.3 cm across, and about 6 cm3 volume. The air travels to the middle ear cavity along 
the tube (when opened) that connects the cavity with the nose and throat. The oval window 
shown in Figure 2.10 is a small membrane at the bony interface to the inner ear (cochlea). 
Since the cochlear walls are bony, the energy is transferred by mechanical action of the 
stapes into an impression on the membrane stretching over the oval window. 

Figure 2.10 The structure of the peripheral auditory system with the outer, middle, and inner ear. 
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The relevant structure of the inner ear for sound perception is the cochlea, which 
communicates directly with the auditory nerve. conducting a representation of sound to the 
brain. The cochlea is a spiral tube about 3.5 cm long, which coils about 2.6 times. The spiral 
is divided, primarily by the basilar membrane running lengthwise, into two fluid-filled 
chambers. The cochlea can be roughly regarded as a filter bank, whose outputs are ordered 
by location, so that a frequency-to-place transformation is accomplished. The filters closest 
to the cochlear base respond to the higher frequencies, and those closest to its apex respond 

to the lower. 

2.1.3.2. Physical vs. Perceptual Attributes 

In psychoacoustics, a basic distinction is made between the perceptual attributes of a sound 
especially a speech sound, and the measurable physical properties that characterize it. Each 
of the perceptual attributes, as listed in Table 2.2, seems to have a strong correlation with 
one main physical property, but the connection is complex, because other physical proper­
ties of the sound may affect perception in complex ways. 

Table 2.2 Relation between perceptual and physical attributes of sound. 

Phvsical Quantity Perceptual Qualitv 
Intensity Loudness 

Fundamental freouencv Pitch 
Soectralshaoe Timbre 

Onset/offset time Timing 
Phase difference in binaural hearing Location 
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as an upward shift in the hearing threshold of the weaker tone by the louder tone. Pure tones, 
complex sounds, narrow and broad bands of noise all show differences in their ability to 
mask other sounds. In general, pure tones close together in frequency mask each other more 
than tones widely separated in frequency. A pure tone masks tones of higher frequency more 
effectively than tones of lower frequency. The greater the intensity of the masking tone, the 
broader the range of the frequencies it can mask ( 18, 31 ). 

Binaural listening greatly enhances our ability to sense the direction of the sound 
source. The sense of localization attention is mostly focused on side-to-side discrimination 
or lateralization. Time and intensity cues have different impacts for low frequency and high 
frequency, respectively. Low-frequency sounds are lateralized mainly on the basis of inte­
raural time difference, whereas high-frequency sounds are localized mainly on the basis of 
interaural intensity differences (5). 
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Figure 2.11 Equal-loudness curves indicate that the response of the human hearing mechanism 
is a function of frequency and loudness levels. This relationship again illustrates the difference 
between physical dimensions and psychological experience (after ISO 226). 

Finally, an interesting perceptual issue is the question of distinctive voice quality. 
Speech from different people sounds different. Partially this is due to obvious factors, such 
as differences in characteristic fundamental frequency caused by, for example, the greater 
mass and length of adult male vocal folds as opposed to female. But there are more subtle 
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t. the concept of timbre (of a sound or instrument) is de-
ll In psychoacous 1cs, . . d 

effects as we • . d' ensation by which a subJect can JU ge that two sounds 
d th t attnbute of au itory s h d ' . ·1 I 

fine as a . th same loudness and pitc are 1ss1m1 ar. n other words 
similarly presen~ed a

nd 
havtdngd_ff;rences are controlled, the remaining perception of differ~ 

h all the easily measure 1 . . • h th . 
w en . b Th's 1·s heard most easily m music, w ere e same note m the 

• cribed to um re. 1 . 
ence is as d & h ame duration on a violin sounds different from a flute. The tim-

octave playe .or t e s . , 
same d d d n many physical variables including a sound s spectral power dis-
b~e 0

~ a s~un epenl s 
0
velope rate and depth of amplitude or frequency modulation, and 

tnbutton, 1ts tempora en , . 
the degree of inharmonicity of its harmonics. 

2.1.3.3. Frequency Analysis 

Researchers have undertaken psychoacoustic experimental work to derive frequency scales 
that attempt to model the natural response of the human perceptual system, since the cochlea 
of the inner ear acts as a spectrum analyzer. The complex mechanism of the inner ear and 
auditory nerve implies that the perceptual attributes of sounds at different frequencies may 
not be entirely simple or linear in nature. It is well known that the western musical pitch is 
described in octaves' and semi-tones.2 The perceived musical pitch of complex tones is basi­
cally proportional to the logarithm of frequency. For complex tones, the just noticeable dif­
ference for frequency is essentially constant on the octave/semi-tone scale. Musical pitch 
scales are used in prosodic research (on speech intonation contour generation). 

AT&T Bell Labs has contributed many influential discoveries in hearing, such as criti­
cal band and articulation index, since the turn of the 20th century [3J. Fletcher's work [14] 
pointed to the existence of critical bands in the cochlear response. Critical bands are of great 
importance in understanding many auditory phenomena such as perception of loudness, 
pitch, and timbre. The auditory system performs frequency analysis of sounds into their 
compo~ent frequencies. The cochlea acts as if it were made up of overlapping filters having 
bandwidths equal to the critical bandwidth. One class of critical band scales is called Bark 
frequen~y scale. It is hoped that by treating spectral energy over the Bark scale, a more natu­
ral fit with spectral information processing in the ear can be achieved. The Bark scale ranges 
from 1 _to 2~ Barks, corresponding to 24 critical bands of hearing as shown in Table 2.3. As 
shown m Figure 2.12, the perceptual resolution is finer in the lower frequencies. It should be 
noted that the e • • • al b 

fi . ~ s cntic ands are continuous, and a tone of any audible frequency al-
ways mds a cnt1cal band cent d • Th f 
th r f . ere on tt. e Bark frequency b can be expressed in terms 0 
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Table 2.3 The Bark frequency scale. 
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Ed!!e (Hz) Center (Hz) 
100 50 
200 150 
300 250 
400 350 
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770 700 
920 840 
1080 1000 
1270 1170 
1480 1370 
1720 1600 
2000 1850 
2320 2150 
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Figure 2.12 The center frequency of 24 Bark frequency filters as illustrated in Table 2.3. 
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Another such perceptually motivated scale is the me! frequency scale [ 41 ], which is 
linear below J kHz, and logarithmic above, with equal numbers of samples taken below and 
above J kHz. The mel scale is based on experiments with simple tones (sinusoids) in which 
subjects were required to divide given frequency ranges into four perceptua1ly equal inter­
vals or to adjust the frequency of a stimulus tone to be half as high as that of a comparison 
tone. One mel is defined as one thousandth of the pitch of a 1 kHz tone. As with all such 
attempts, it is hoped that the mel scale more closely models the sensitivity of the human ear 
than a purely linear scale and provides for greater discriminatory capability between speech 
segments. Mel-scale frequency analysis has been widely used in modem speech recognition 
systems. It can be approximated by: 

B(f) = l 125ln(l + f /700) (2.6) 

The me! scale is plotted in Figure 2.13 together with the Bark scale and the bilinear trans­
form (see Chapter 6). 
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quency-masking levels have been determined empirically, with complicated models that 
take into account whether the masker is a tone or noise, the masker's level, and other con­
siderations. 

We now describe a phenomenon known as tone-masking noise. It has been determined 
empirically that noise with energy E.v (dB) at Bark frequency g masks a tone at Bark fre­
quency b if the tone's energy is below the threshold 

Tr(b) = E.v -6.025-0.275g+S,.(b-g) (dB SPL) (2.7) 

where the spread-of-masking function S
111 

(b) is given by 

Sm(b) = 15.81 + 7.5(b+ 0.474)- I 7.5✓1 + (b+ 0.474)2 (dB) (2.8) 

We now describe a phenomenon known as noise-masking tone. It has been determined 
empirically that a tone at Bark frequency g with energy Er (dB) masks noise at Bark fre­
quency b if the noise energy is below the threshold 

TN(b) = E7 -2.025-0.175g+Sm(b-g) (dB SPL) (2.9) 

Masking thresholds are commonly referred to in the literature as Bark scale functions 
of just noticeable distortion (JND). Equation (2.8) can be approximated by a triangular 
spreading function that has slopes of +25 and-10 dB per Bark, as shown in Figure 2.14. 

Slll(b-g) 

----------------~ 25 dB I Bark : 10 dB/ Bark 
I 
I 

g b (Barks) 

Figure 2.14 Contribution of Bark frequency g to the masked threshold Sm(b). 

In Figure 2.15 we show both the threshold of hearing and the masked threshold of a 
tone at 1 kHz with a 69 dB SPL. The combined masked threshold is the sum of the two in 
the linear domain 

(2.10) 

which is approximately the largest Qf the two. 
In addition to frequency masking, there is a phenomenon called temporal masking by 

which a sound too close in time to another sound cannot be perceived. Whereas premasking 
tends to last about 5 ms, postmasking can last from 50 to 300 ms. Temporal masking level of 
a masker with a uniform level starting at Oms and lasting 200 ms is shown in Figure 2.16. 
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Figure 2.16 Temporal masking level of a mask~r ~ith a uniform level starting at O ms and 
lasting 200 ms. 

2.2. PHONETICS AND PHONOLOGY 

We now discuss basic phonetics and phonology needed for spoken language processing. 
Phonetics refers to the study of speech sounds and their production, classification, aod ~­
scription. Phonology is the study of the distribution and patterning of speech soufidS 10 3 

language and of the tacit rules governing pronunciation. 

2.2.1. Phonemes 

LinguiSl Ferdinand de Saussere (1857-1913) is credited with the observation that the relation 
between a sign and the object signified by it is arbitrary. The same concept, a certain yeJloW 
and black fly' ·a1 • . . - Japanese. mg soc1 insect, has the sign honeybee in English and mitsubachc 1fl 
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There is no particular relation between the various pronunciations and the meaning, nor do 
these pronunciations per se describe the bee's characteristics in any detail. For phonetics, 
this means that the speech sounds described in this chapter have no inherent meaning, and 
should be randomly distributed across the lexicon, except as affected by extraneous histori­
cal or etymological considerations. The sounds are just a set of arbitrary effects made avail­
able by human vocal anatomy. You might wonder about this theory when you observe, for 
example, the number of words beginning with sn that have to do with nasal functions in 
English: sneeze, snort, sniff, snot, s11ore, snuffle, etc. But Saussere's observation is generally 
true, except for obvious onomatopoetic (sound) words like buzz. 

Like fingerprints, every speaker's vocal anatomy is unique, and this makes for unique 
vocalizations of speech sounds. Yet language communication is based on commonality of 
fonn at the perceptual level. To allow discussion of the commonalities, researchers have 
identified certain gross characteristics of speech sounds that are adequate for description and 
classification of words in dictionaries. They have also adopted various systems of notation 
to represent the subset of phonetic phenomena that are crucial for meaning. 

As an analogy, consider the system of computer coding of text characters. In such sys­
tems, the character is an abstraction, e.g. the Unicode character U+0041. The identifying 
property of this character is its Unicode name LATIN CAPITAL LETTER A. This is a genu­
ine abstraction; no particular realization is necessarily specified. As the Unicode 2.1 stan­
dard [I] states: 

The Unicode Standard does not define glyph images. The standard defines how char­
acters are interpreted, not how glyphs are rendered. The software or hardware-rendering 
engine of a computer is responsible for the appearance of the characters 011 the screen. The 
Unicode Standard does not specify the size, shape, nor orientation of on-screen characters. 

Thus, the U+0041 character can be realized differently for different purposes, and in 
different sizes with different fonts: 

U+004! .+ A, A, A, A, A, ... 

The realizations of the character U+0041 are called glyphs, and there is no distin­
guished uniquely correct glyph for U+0041. In speech science, the term phoneme is used to 
denote any of the minimal units of speech sound in a language that can serve to distinguish 
one word from another. We conventionally use the tenn phone to denote a phoneme's 
acoustic realization. In the example given above, U+0041 corresponds to a phoneme and the 
various fonts correspond to the phone. For example, English phoneme It/ have two very dif­
ferent acoustic realizations in the words sat and meter. You had better treat them as two di f­
ferent phones if you want to build a spoken language system. We will use the terms phone 
or phoneme interchangeably to refer to the speaker-independent and context-independent 
units of meaningful sound contrast. Table 2.4 shows a complete list of phonemes used in 
American English. The set of phonemes will differ in realization across individual speakers. 
But phonemes will always function systematically to differentiate meaning in words, just as 
the phoneme /pl signals the word pat as opposed to the similar-sounding but distinct bat. 
The important contrast distinguishing this pair of words is Ip/ vs. lb/. 
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In this section we concentrate on the basic qualities that define and differentiate ab­
stract phonemes. In Section 2.2.1.3 below we consider why and how phonemes vary in their 
actual realizations by different speakers and in different contexts. 

Table 2.4 English phonemes used for typical spoken language systems. 

Phonemes Word Examples Description 
iy feel, eve, me front close unrounded 
ih fill, hit, lid front close unrounded (lax) 
ae at, carry, gas front open unrounded (tense) 
aa father, ah, car back open unrounded 
ah cut, bud, up open-mid back unrounded 
ao dog, lawn, caught open-mid back round 
ay tie, ice, bite diphthong with quality: aa + ih 
ax ago, comply central close mid (schwa) 
ey ate, day, tape front close-mid unrounded (tense) 
eh pet, berry, ten front open-mid unrounded 
er turn, fur, meter central open-mid unrounded rhoti-
ow go, own, tone back close-mid rounded 
aw foul, how, our diphthong with quality: aa + uh 
oy toy, coin, oil diphthong with quality: ao + ih 
uh book, pull, good back close-mid unrounded (Jax) 
uw tool, crew, moo back close round 
b big, able, tab voiced bilabial plosive 
p put, open, tap voiceless bilabial plosive 
d dig, idea, wad voiced alveolar plosive 
r talk, sat voiceless alveolar plosive & 
r meter alveolar flap 
f gut, angle, tag voiced velar plosive 

cur, ken, take voiceless velar plosive 
I fork, after, if voiceless labiodental fricative 
v var, over, have voiced labiodental fricative 
s sit, cast, toss voiceless alveolar fricative 
;h zap, lazy, haze voiced alveolar fricative 
dh thin, nothing, truth voiceless dental fricative 

then.father, scythe voiced dental fricative 
sh she, cushion, · wash · 1 zh voi_ce ess postalveolar fricative genre, azure d 
l lid v01ce postalveolar fricative 
l elbow, sail alveolar lateral approximant 
r red, part, far velar lateral approximant 
Y yacht, yard retroflex approximant 
w with, away pal~tal sonorant glide 
hh help, ahead, hotel la~1ovelar sonorant glide 
m mat, amid, aim voiceless glottal fricative 
n no, end, pan bilabial nasal 
ng sing, a11ger alveolar nasal Jt ~hin, archer, march velar nasal 

Joy, agile, edge vo!celess alveolar affricate· t + sh 
voiced alveolar affricate: d·+ zh 
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2.2.1.1. Vowels 

The tongue shape and positioning in the oral cavity do not form a major constriction of air 
flow during vowel articulation. However, variations of tongue placement give each vowel its 
distinct character by changing the resonance, just as different sizes and shapes of bottles 
give rise to different acoustic effects when struck. The primary energy entering the pharyn­
geal and oral cavities in vowel production vibrates at the fundamental frequency. The major 
resonances of the oral and pharyngeal cavities for vowels are. called Fl and F2 - the first and 
second fom1ants, respectively. They are determined by tongue placement and oral tract 
shape in vowels. and they detennine the characteristic timbre or quality of the vowel. 

The relationship of Fl and F2 to one another can be used to describe the English vow­
els. While the shape of the complete vocal tract determines the spectral outcome in a com­
plex, nonlinear fashion, generally Fl corresponds to the back or pharyngeal portion of the 
cavity, while F2 is determined more by the size and shape of the oral portion, forward of the 
major tongue extrusion. This makes intuitive sense - the cavity from the glottis to the tongue 
extrusion is longer than the forward part of the oral cavity, thus we would expect its reso­
nance to be lower. In the vowel of see, for example, the tongue extrusion is far forward in 
the mouth, creating an exceptionally long rear cavity, and correspondingly low Fl. The for­
ward part of the oral cavity, at the same time, is extremely short, contributing to higher F2. 
This accounts for the wide separation of the two lowest dark horizontal bands in Figure 2.9, 
corresponding to Fl and F2, respectively. Rounding the lips has the effect of extending the 
front-of-tongue cavity, thus lowering F2. Typical values of Fl and F2 of American English 
vowels are listed in Table 2.5. 

Table 2.5 Phoneme labels and typical formant values for vowels of English. 

Vowel Labels Mean Fl (Hz) Mean F2 (Hz) 
iy (feel) 300 2300 
ih (fill) 360 2100 

ae (gas) 150 1750 
aa (father) 680 1100 

ah ( cut) 720 1240 
ao (dog) 600 900 

ax (comply) 720 1240 
eh (pet) 570 1970 
er ( turn) 580 1380 
ow (tone) 600 900 
uh (good) 380 950 
uw (tool) 300 940 

The characteristic Fl and F2 values for vowels are sometimes called formant targets, 
which are ideal locations for perception. Sometimes, due to fast speaking or other limitations 
on performance, the speaker cannot quite attain an ideal target before the articulators begin 
shifting to targets for the following phoneme, which is phonetic context dependent. Addi­
tionally, there is a special class of vowels that combine two distinct sets of FI/F2 targets. 
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• Jators move the initial vowel targets glide 
. As the art1cu • . . . 

are called diphthongs. . h rt'iculators are workmg faster m production of 
These fi tion Smee t e a 

thly to the final con igura • et values of the component values are not fully 
smoo . he ideal formant targ ' . 

diphthong, someumes l . English are listed m Table 2.6. 
a . T ical diphthongs of Amencan . 
attained. yp Table 2.6 The diphthongs of English. 

Diphthong Labels Compone_nts 
ay (tie) laa/ -# /~yl 
ey (ate) /eh/ -# /1!/ 
oy (coin) /ao/-# /ryl 
aw (foul) /aal -# /uwl 

Figure 2.17 shows the first two formants for a number of typical vowels. 
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/iy/ (feel) /ih/ {fill) 

-+-F2 (Hz) 

-F1 (Hz) 

• 

/ae/ (gas) /aa/ (father) /ah/ {cut) 
Vowel Phonemes 

Figure 2.17 Fl and F2 values for articulations of some English vowels. 

.. 
/ao/ {dog) 

The major articulator for English vowels is the middle to rear portion of the to~g~e. 
The position of the tongue's surface is manipulated by large and powerful muscles m its 

root, which move it as a whole within the mouth. The linguistically important dimensions ~f 
movement are generally the ranges [front ~ back] and [high ~ low]. You can feel th_15 

movement easily. Say mentally, or whisper, the sound /iyl (as in see) and then /aal (as m 
father). Do it repeatedly, and you will get a clear perception of the tongue movement from 
high to low. Now try liyl and then luwl (as in blue), repeating a few times. You will get a 
clear perception of place of articulation from front /iyl to back /uwl. Figure 2.18 shows a 
schematic characterization of English vowels in terms of relative tongue positions. There ~e 
two kinds of vowels: those in which tongue height is represented as a point and those in 
which it is represented as a vector. 

Though the tongue hump is the major actor in vowel articulation other articulators 
co • ' d me mto play as well. The most important secondary vowel mechanism for English an 
many olher languages is lip rounding. Repeat the exercise above, moving from the fiy/ (see) 
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to the !uw/ (blue) position. Now rather than noticing the tongue movement. pay attention to 
your lip shape. When you say liyl, your lips will be flat, slightly open, and somewhat spread. 
As you move to luw!, they begin to round out, ending in a more puckered position. This 
lengthens the oral cavity during luwl, and affects the spectrum in other ways. 

high 

yuw e /IW 

-.. 

. "" 
t/.w back 

I 

• ao 

• aa 

low 

Figure 2.18 Relative tongue positions of English vowels [24). 

Though there is always some controversy, linguistic study of phonetic abstractions, 
called phonology, has largely converged on the five binary features: +/- high, +/- low, +/­
front, +/- back, and +/- round, plus the phonetically ambiguous but phonologically useful 
feature +/- tense, as adequate to uniquely characterize the major vowel distinctions of Stan­
dard English (and many other languages). Obviously, such a system is a little bit too free 
with logically contradictory specifications, such as [+high, +low], but these are excluded 
from real-world use. These features can be seen in Table 2.7. 

Table 2.7 Phonological (abstract) feature decomposition of basic English vowels. 

Vowel high low front back round tense 
iy + + + 
ih + + 
ae + + + 
aa + + 
ah + 
ao + + + + 
ax 
eh + 
ow + + + 
uh + + 
uw + + + 
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. 11 searchers to make convenient statements about . f b t analysis a ows re 
This kmd o a strac . .1 1 under certain conditions. For example, one may 

f ls that behave s1m1 ar y 
classes o vowe . h ls to indicate the set /iy, ih, uh, uwl. 
speak simply of the h1g vowe 

2.2.1.2. Consonants 

I are characterized by significant constriction or obstruc-
c nants as opposed to vowe s, . d h 

onso • 1 di oral cavities Some consonants are voice ; ot ers are not. f n ·n the pharyngea an or • . f . 10 1 
• • that is they share the same configurahon o articulators, Many consonants occur m pairs, • . . k O . . 

f h • dd'tionally has voicmg which the other lac s. ne such pair 1s and one member o t e patr a I . . . . 
• • rty that distinguishes them shows up m the non-penod1c noise of Is, zl, and the vo1cmg prope . d h /z/ 

• . • 1 t I I • p1·gure 2 5 as opposed to the v01ced consonant en -p one, . Man-the m1t1a segmen s m • . . . . 
• I • &'. rs to the articulation mechamsm of a consonant. The maJor d1stmc-ner of art1cu at1on re,e 

tions in manner of articulation are listed in Table 2.8. 

Table 2.8 Consonant manner of articulation. 

Sample Example 
Manner Phone Words Mechanism 

Plosive /pl tat, tap Closure in oral cavity 

Nasal /ml team, meet Closure of nasal cavity 
Fricative Isl sick, kiss Turbulent airstream noise 
Retroflex liquid Ir/ rat, tar Vowel-like, tongue high and curled back 
Lateral liquid Ill lean, kneel Vowel-like, tongue central, side airstream 
Glide /yl,/w/ yes, well Vowel-like 

The English phones that typically have voicing without complete obstruction or nar­
rowing of the vocal tract are called semivowels and include IL, rl, the liquid group, and /y, wl, 
the glide group. Liquids, glides, and vowels are all sonorant, meaning they have continuous 
voicing. Liquids Ill and Ir! are quite vowel-like and in fact may become syllabic or act en­
tirely as vowels in certain positions, such as the / at the end of edible. In Ill, the airstream 
flows around the sides of the tongue, leading to the descriptive term lateral. In Ir/, the tip of 
the tongue is curled back slightly, leading to the descriptive term retroflex. Figure 2.19 
shows some semivowels. 

. Glides ly, wl are basically vowels liy, uwl whose initial position within the syllable re­
q~ue them to be a little shorter and to lack the ability to be stressed, rendering them ju5l 

different :-nou~h from true vowels that they are classed as a special category of consonant. 
;re~vocahc glides that share the syllable-initial position with another consonant such as the 
y/ m lhe ~econd syllable of computer lk uh m . p y uw . t er/, or the /wl in qui;k lk w ih kl, 
are sometimes called on- l 'd Th . . 

• g I es. e semivowels, as a class are sometimes called approxt-mants, meaning that th t , 
pletely co ta e ongue approaches the top of the oral cavity but does not com-

n ct so as to obstruct the air flow. , 
Even the non-sonorant cons th . 

tion may still maintai . ?nants at require complete or close-to-complete obstrUC-
n some voicmg before or during the obstruction, until the pressure dif-



Phonetics and Phonology 43 

ferential across the glottis starts to disappear, due to the closure. Such voiced consonants 
include lb,d,g, Z, zh, vi. They have a set of counterparts that differ only in their characteristic 
lack of voicing: lp,t,k, s, sh, fl. 

0.5 -

0 0.1 0.2 0.3 0.4 0.5 0.6 

o Ul.!IIIIIMll .... illiiliiiltilllii,-.11,ajillll~liaiiIMMl6Mllill..Ailll!:.:.r...--.-1L;;~ 
0 0.2 0.3 0.4 0.5 0.6 

Time (seconds) 
!yl Ill /er/ 

Figure 2.19 Spectrogram for the word yeller, showing semivowels ly/, ll!, fer/ (approximate 
phone boundaries shown with vertical lines). 

Nasal consonants /m,11/ are a mixed bag: the oral cavity has significant constriction (by 
the tongue or lips), yet the voicing is continuous, like that of the sonorants, because, with the 
velar flap open, air passes freely through the nasal cavity, maintaining a pressure differential 
across the glottis. 

A consonant that involves complete blockage of the oral cavity is called an obstruent 
stop, or plosive consonant. These may be voiced throughout if the trans-glottal pressure drop 
can be maintained long enough, perhaps through expansion of the wall of the oral cavity. In 
any case, there can be voicing for the early sections of stops. Voiced, unvoiced pairs of stops 
include: lb.pl, /d,tl, and lg.kl. In viewing the waveform of a stop, a period of silence corre­
sponding to the oral closure can generally be observed. When the closure is removed (by 
opening the constrictor, which may be lips or tongue), the trapped air rushes out in a more or 
less sudden manner. When the upper oral cavity is unimpeded, the closure of the vocal folds 
themselves can act as the initial blocking mechanism for a type of stop heard at the very 
beginning of vowel articulation in vowel-initial words like atrophy. This is called a glottal . 
stop. Voiceless plosive consonants in particular exhibit a characteristic aperiodic burst of 
energy at the (articulatory) point of closure as shown in Figure 2.20 just prior to Iii. By com-
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Figure 2.20 Spectrogram: stop release burst of /pl in the word pin. 

parison, the voicing of voiced plosive consonants may not always be obvious in a spectro­
gram. 

A consonant that involves nearly complete blockage of some position in the oral cav­
ity creates a narrow stream of turbulent air. The friction of this air stream creates a non­
periodic hiss-like effect. Sounds with this property are called fricatives and include Is, 1). 
There is no voicing during the production of s, while there can be voicing (in addition to the 
frication noise), during the production of z, as discussed above. Is, v have a common place 
of articulation, as explained below, and thus form a natural similarity class. Though contro­
versial, /hi can also be thought of as a (glottal) fricative. / sf in word-initial position and /1} in 
word-final position are exemplified in Figure 2.5. 

Some sounds are complex combinations of manners of articulation. For example, the 
affricates consist of a stop (e.g., It/), followed by a fricative [e.g., /sh/) combining to make_ a 
unified sound with rapid phases of closure and continuancy (e.g., {t + sh} == ch as 10 

church). The affricates in English are the voiced/unvoiced pairs: /j/ (d + zh) and /chi (t + sh). 
The complete consonant inventory of English is shown in Table 2.9. 

Consider the set Im/, In/, Ing/ from Table 2.9. They are all voiced nasal consonants, yet 
they sound distinct to us. The difference lies in the location of the major constriction along 
~he top of ~e oral cavity (from lips to velar area) that gives each consonant its unique qual· 
tty. The articulator used to touch or approximate the given location is usually some spot 
along lhe length of the tongue. As shown in Figure 2.21 the combination of articulator and 
place of articulation gives each consonant its characteristic sound: 
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. Table 2.9 Manner of articulation of English consonants. 

Consonant Labels Consonant Examples 

b big. able, tab 

p put, open. tap 
d dig, idea, wad 
t talk, sat 
g gut, angle. tag 
k cut, oaken, take 
V vat, over, have 
f fork, after, if 
z zap, lazy, haze 
s sit, cast, toss 

dh then, father, scythe 
th thin. nothing, truth 

zh genre, azure, beige 

sh she, cushion, wash 

jh joy, agile, edge 

ch chin, archer, march 

l lid, elbow, sail 

r red, part, far 

y yacht, onion, yard 

w with, away 

hh help, ahead, hotel 

m mat, amid, aim 

n no,end,pan 

ng sing, anger, drink 

Alveolar: 

Labiodental: t, d, n, s, z, r, l 

I ~v,rf . Dental, 

\_,,) \ th, dh 
Labial:. 

m,p,b, w 

Voiced? 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

Palat~ 

sh, zh,y \ 

Velar: 
k,g, ng 

Manner 

plosive 
plosive 
plosive 
plosive 
plosive 
plosive 
fricative 
fricative 
fricative 
fricative 
fricative 
fricative 
fricative 
fricative 
affricate 
affricate 
lateral 

retroflex 
glide 
glide 

fricative 
nasal 
nasal 
nasal 

Figure 2.21 The major places of consonant articulation with respect to the human mouth. 

45 
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• The lnbial consonants have their major constriction at the lips. This includes 
/pl, /bl (these two differ only by manner of articulation) and Im/ and /w/. 

• The class of dentnl or labio-dental consonants includes If, vi and Ith, dlz! (the 
members of these groups differ in manner, not place). 

• Alveolar consonants bring the front part of the tongue, called the tip or the 
part behind the tip called the blade, into contact or approximation to the al­
veolar ridge, rising semi-vertically above and behind the teeth. These include 
It, d, n, s, z, r, ll. The members of this set again differ in manner of articula­
tion (voicing, continuity, nasality), rather than place. 

• Palatal consonants have approximation or constriction on or near the roof of 
the mouth, called the palate. The members include /sh, z)i, yl. 

• Velar consonants bring the articulator (generally the back of the tongue), up to 
the reannost top area of the oral cavity, near the velar flap. Velar consonants in 
English include lk, gl (differing by voicing) and the nasal continuant Ing/. 

With the place terminology, we can complete the descriptive inventory of English 
consonants, arranged by manner (rows), place (columns), and voiceless/voiced (pairs in 
cells) as illustrated in Table 2.10. 

Table 2.10 The consonants of English arranged by place (columns) and manner (rows). 

Labio-
Labial dental Dental Alveolar Palatal Velar Glottal 

Plosive vb td kg ? 

Nasal m n ng 
Fricative fv th dh sz sh zh h 

Retroflex r 
sonorant 
Lateral I 
sonorant 
Glide w y 

2.2.1.3. Phonetic Typology 

The oral, nasal, pharyngeal, and glottal mechanisms actually make available a much wider 
range of effects than English happens to use. So, it is expected that other languages w~u!d 
utilize other vocal mechanisms, in an internally consistent but essentially arbitrary fashi~n, 
to represent their lexicons. In addition, often a vocal effect that is part of the systematic_ hn· 
guistic phonetics of one language is present in others in a less codified, but still percepttble, 
form. For example, Japanese vowels have a charactetistic distinction of length that can be 
hard for non-natives to perceive and to use when learning the language. The words kado 
(corner) and kaado (card) are spectrally identical, differing only in that kado is much shorter 
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in all contexts. The existence of such minimally-contrasting pairs is taken as conclusive evi­
dence that length is phonemically distinctive for Japanese. As noted above, what is linguisti­
cally distinctive in any one language is generally present as n less me,mingful signaling 
dimension in other languages. Thus, vowel length can be manipulated in any English word 
as well, but this occurs either consciously for emphasis or humorous effect, or unconsciously 
and very predictably at clause and sentence end positions, rather than to signal lexical iden­
tity in all contexts, as in Japanese. 

Other interesting sounds that the English language makes no linguistic use of include 
the trilled r sound and the implosive. The trilled r sound is found in Spanish, distinguishing 
(for example) the words pero (but) and perm (dog). This trill could be found in times past as 
a non-lexical sound used for emphasis and interest by American circus ringmasters and other 
showpersons. 

While the world's languages have all the variety of manner of articulation exemplified 
above and a great deal more, the primary dimension lacking in English that is exploited by a 
large subset of the world's languages is pitch variation. Many of the huge language families 
of Asia and Africa are tonal, including all varieties of Chinese. A large number of other lan­
guages are not considered strictly tonal by linguistics, yet they make systematic use of pitch 
contrasts. These include Japanese and Swedish. To be considered tonal, a language should 
have lexical meaning contrasts cued by pitch, just as the lexical meaning contrast between 
pig and big is cued by a voicing distinction in English. For example, Mandarin Chinese has 
four primary tones (tones can have minor context-dependent variants just like ordinary 
phones, as well) as shown in Table 2.11. 

Table 2.11 The contrastive tones of Mandarin Chinese. 

Tone Shane Example Chinese Meaning 
] High level ma ~Yi mother 
2 High rising ma ~ numb 

3 Low rising ma ~ horse 
4 High falling ma "" Qi to scold 

Though English does not make systematic use of pitch in itc; inventory of word con­
trasts, nevertheless, as we always see with any possible phonetic effect, pitch is systemati­
cally varied in English to signal a speaker's emotions, intentions, and attitudes, and it has 
some linguistic function in signaling grammatical structure as well. Pitch variation in Eng­
lish will be considered in more detail in Chapter 15. 

2.2.2. The Allophone: Sound and Context 

The vowel and consonant charts provide abstract symbols for the phonemes - major sound 
distinctions. Phonemic units should be correlated with potential meaning distinctions. For 
example, the change created by holding the tongue high and front (liy/) vs. directly down 
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from the (frontal) position for /eh/, in the consonant context Im _ nl, corresponds to an im­
portant meaning distinction in the lexicon of English_: 1~1ean Im iy n~ vs. m_en '"! eh nl. This 
meaning contrast, conditioned by a pair of rather s1m1lar_ s~un~s, m an 1dent1cal context, 
justifies the inclusion of liyl and /eh/ as logically separate d1stmct10ns. 

However, one of the fundamental, meaning-distinguishlng sounds is often modified in 
some systematic way by its phonetic neighbors. The process by which neighboring sounds 
influence one another is called coarticulation. Sometimes, when the variations resulting 
from coarticulatory processes can be consciously perceived, the modified phonemes are 
called allophones. Allophonic differences are always categorical, that is, they can be under­
stood and denoted by means of a small, bounded number of symbols or diacritics on the 

basic phoneme symbols. 
As an experiment, say the word like to yourself. Feel the front of the tongue touching 

the alveolar ridge ( cf. Figure 2.21) when realizing the initial phoneme Ill. This is one allo­
phone of Ill, the so-called light or clear Ill. Now say kill. In this word, most English speakers 
will no longer feel the front part of the tongue touch the alveolar ridge. Rather, the Ill is real­
ized by stiffening the broad midsection of the tongue in the rear part of the mouth while the 
continuant airstream escapes laterally. This is another allophone of Ill, conditioned by its 
syllable-final position, called the dark Ill. Predictable contextual effects on the realization of 
phones can be viewed as a nuisance for speech recognition, as will be discussed in Chapter 
9. On the other hand, such variation, because it is systematic, could also serve as a cue to the 
syllable, word, and prosodic structure of speech. 

Now experiment with the sound /pl by holding a piece of tissue in front of your mouth 
while saying the word pin in a normal voice. Now repeat this experiment with spin. For 
most English speakers, the word pin produces a noticeable puff of air, called aspiration. But 
the s'.1111e phone~e, Ip/, embedded in the consonant cluster tsp/ loses its aspiration (burst, see 
the lmes bracketmg the /pl release in pin and spin in Figure 2.22), and because these two 
typ~s of Ip/ are in c~mpleme~tary distribution (completely determined by phonetic and syl-
lab1c context), the difference 1s considered allophonic. · 

. Try to speak the word bat in a framing phrase say bat again. Now speak say bad 
again. Can you feel the length difference in the vowel / ael? A vowel before a voiced conso­
~antht,_ e.g., Id/, seems typically longer than the same vowel before the unvoiced counterpart. 
m ts case /ti. 

t A sound phonemicized as It/ or Id/, that is, a stop made with the front part of the 

i~nru:;~r~~~t::t:e~i:d to a qui~k tongue tap _that has a different sound than either /ti or /di 

vowel (coda posi~ion) /~i°ces~ ~ called flappmg. It occurs when /ti or Id/ closes a stressed 
ter humidity and ca o owe y an unstressed vowel, as in: bitter, batter, murder, quar-

, , n even occur across w d I • 
you can say that again So ti' th or s as ong as the preconditions are met, as in 

• me mes e velar flap ope t ( . • • • • g a characteristically nasal quality t ns oo soon ant1c1pat1on), g1v1n 
have a more detailed discuss· o saloml e pre-n~al vowels such as /ae/ in ham vs. had. We 

rnn on ophones m Chapter 9. 
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Figure 2.22 Spectrogram: bursts of pin and spin. The relative duration of a p-burst in different 
phonetic contexts is shown by the differing width of the area between the vertical lines. 

2.2.3. Speech Rate and Coarticulation 

49 

In addition to allophones, there are other variations in speech for which no small set of es­
tablished categories of variation can be established. These are gradient, existing along a 
scale for each relevant dimension, with speakers scattered widely. In general, it is harder to 
become consciously aware of coarticulation effects than of allophonic alternatives. 

Individual speakers may vary their rates according to the content and setting of their 
speech, and there may be great inter-speaker differences as well. Some speakers may pause 
between every word, while others may speak hundreds of words per minute with barely a 
pause between sentences. At the faster rates, formant targets are less likely to be fully 
achieved. In addition, individual allophones may merge. 

For example (20), consider the utterance Did you hit it to Tom? The pronunciation of 
this utterance is Id ih d y uw h ih t ih t t uw t aa ml. However, a realistic, casual rendition of 
this sentence would appear as Id ih jh a.x hh ih dx ih t ix t aa ml, where Ii.xi is a reduced 
schwa lax/ that is short and often unvoiced, and Id.xi is a kind of shortened, indistinct stop, 
intermediate between /di and /ti. The following five phonologic rules have operated on alter­
ing the pronunciation in the example: 

• Palatalization of/ di before lyl in dirJ. you 

• Reduction of unstressed /ul to schwa in yQu 
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• Flapping of intervocalic /ti in hil it 

• Reduction of schwa and devoicing of /u/ in ta 

• Reduction of geminate (double consonant) It/ in iLJo 

There are also coarticulatory influences in the spectral appearance of speech sounds 
which can only be understood at the level of spectral analysis. For example, in vowels, con~ 
sonant neighbors can have a big effect on formant trajectories near the boundary. Consider 
the differences in Fl and F2 in the vowel /eh/ as realized in words with different initial con­
sonants bet, debt, and get, corresponding to the three major places of articulation (labial 
alveolar, and velar), illustrated in Figure 2.23. You can see the different relative spreads of 
Fl and F2 following the initial stop consonants. 
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Figure 2.24 Spectrogram: ebb, head, and egg. Note the increasing relative spread of Fl and 
F2 at the final vowel-consonant transition in each word. 

2.3. SYLLABLES AND W OROS 
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Phonemes are small building blocks. To contribute to language meaning, they must be or­
ganized into longer cohesive spans, and the units so formed must be combined in character­
istic patterns to be meaningful, such as syllables and words in the English language. 

2.3.1. Syllables 

An intermediate unit, the syllable, is sometimes thought to interpose between the phones and 
the word level. The syllable is a slippery concept, with implications for both production and 
perception. Here we will treat it as a perceptual unit. Syllables are generally centered around 
vowels in English, giving two perceived syllables in a word like tomcat: ltOm-cAtl. To com­
pletely parse a word into syllables requires making judgments of consonant affiliation (with 
the syllable peak vowels). The question of whether such judgments should be based on ar­
ticulatory or perceptual criteria, and how they can be rigorously applied, remains unre­
solved. 



52 Spoken Language Structure 

Syllable centers can be thought of as peaks in sonority (hig_h-amplitude, periodic sec. 
tions of the speech waveform). These sonority peaks have ~ffiliated shoulders of strictly 
non-increasing sonority. A scale of sonority can be used, ranking consonants along a contin­
uum of stops, affricates, fricatives. and approximants. So, in a word like verbal, the syllabi­
fication would be ver-bal, or verb-al, but not ve-rbal, because putting the approximant Ir/ 
before the stop /bl in the second syllable would violate the non-decreasing sonority require­
ment heading into the syllable. 

As long as the sonority conditions are met, the exact affiliation of a given consonant 
that could theoretically affiliate on either side can be ambiguous, unless detennined by 
higher-order considerations of word structure, which may block affiliation. For example, in 
a word like beekeeper, an abstract boundary in the compound between the component words 
bee and keeper keeps us from accepting the syllable parse: beek-eeper, based on lexical in­
terpretation. However, the same phonetic sequence in beaker could, depending on one's 
theory of syllabicity, permit affiliation of the k: beak-er. In general, the syllable is a unit that 
has intuitive plausibility but remains difficult to pin down precisely. 

/ Syllable / 

,-.-..::;....._~ ~ Ir-R-ime--,I 

~ 
~ 

Onset 

Nucleus 

str eh nxths 

Figure 2.25 The word/syllable strengths (Is tr eh . 
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sists of a o owing. Consider a big syllable s ho ave mternaJ structure, and the tenns 
positions vThoweI peak, called the nucleus surrou udc dasbstrengths Is tr eh n.x th sf. This con-
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tt an~, and the rime is the nucleus with 

consonants • th . ers m dete • • . Th 
consonant in a fin I I m e nme following th nnmmg poetic rhyme). e 
lab!e parse l11ee ahc uster would belong to an e ~ucleus (in some treatments the last 

as s own • p· appentbx) Th· ' 
domain of coarticulatio m i~ure 2.25. The syllable is • ~s can be diagrammed as a syl-
more than the sam n. that is, sounds within a II b sometimes thought to be the primar}' 

e sounds sy a le i fl 
separated by a syllabi b n uence one another's realization 

e oundary. 
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2.3.2. Words 

The concept of words seems intuitively obvious to most speakers of Indo-European lan­
guages. It can be loosely defined as a lexical item, with an agreed-upon meaning in a given 
speech community, that has the freedom of syntactic combination allowed by its type (noun, 
verb, etc.). 

In spoken language, there is a segmentation problem: words run together unless af­
fected by a disfluency (unintended speech production problem) or by the deliberate place­
ment of a pause (silence) for some structural or communicative reason. This is surprising to 
many people, because literacy has conditioned speakers/readers of Indo-European languages 
to expect a blank space between words on the printed page. But in speech, only a few true 
pauses (the aural equivalent of a blank space) may be present. So, what appears to the read­
ing eye as never give all the heart, for love would appear to the ear, if we simply use letters 
to stand for their corresponding English speech sounds, as nevergivealltheheart forlove or, 
in phonemes, as n eh v erg ih v ah l dh ax h aa rt \\f ao r l ah v. The \\ symbol marks a lin­
guistically motivated pause, and the units so formed are sometimes called intonation 
phrases, as explained in Chapter 15. 

Certain facts about word structure and combinatorial possibilities are evident to most 
native speakers and have been confirmed by decades of linguistic research. Some of these 
facts describe relations among words when considered in isolation, or concern groups of 
related words that seem intuitively similar along some dimension of form or meaning -
these properties are paradigmatic. Paradigmatic properties of words include part-of-speech, 
inflectional and derivational morphology, and compound structure. Other properties of 
words concern their behavior and distribution when combined for communicative purposes 
in fully functioning utterances - these properties are syntagmatic. 

2.3.2.1. Lexical Part-of-Speech 

Lexical part-of-speech (POS) is a primitive form of linguistic theory that posits a restricted 
inventory of word-type categories, which capture generalizations of word forms and distri­
butions. Assignment of a given POS specification to a word is a way of summarizing certain 
facts about its potential for syntagmatic combination. Additionally, paradigms of word for­
mation processes are often similar within POS types and subtypes as well. The word proper­
ties upon which POS category assignments are based may include affixation behavior, very 
abstract semantic typologies, distributional patterns, compounding behavior, historical de­
velopment, productivity and generalizabilty, and others. 

A typical set of POS categories would include noun, verb, adjective, adverb, interjec­
tion, conjunction, determiner, preposition, and pronoun. Of these, we can observe that cer­
tain classes of words consist of infinitely large membership. This means new members can 
be added at any time. For example, the category of noun is constantly expanded to accom­
modate new inventions, such as Velcro or Spandex. New individuals are constantly being 
born, and their names are a type of noun called proper noun. The proliferation of words us-
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Table 2.12 Open POS categories. 

Tag Description Function Example 
N Noun Names entity cat 
V Verb Names event or condition forget 
Adj Adjective Descriptive yellow 
Adv Adverb Manner of action auickly 
Interj Interiection Reaction oh! 

In contrast to the open-class categories, certain other categories of words only rarely 
and very slowly admit new members over the history of English development. These closed 
POS categories are shown in Table 2.13. The closed-category words are fairly stable over 
time. Conjunctions are used to join larger syntactically complete phrases. Determiners help 
lo narrow noun reference possibilities. Prepositions denote common spatial and tempera! 
relations of objects and actions to one another. Pronouns provide a convenient substitute for 
n_oun phrases that are fully understood from context. These words denote grammatical rela­
ltons of other words to one another and fundamental properties of the world and how hu­
mans undcrstand it. They can, of course, change slowly· for example the Middle English 

fipron~un rht•e is no longer in common use. The closed-~lass words ~e sometimes called 
1111c·1w11 words. 

~r'~- ~ 

Dcscriution 
Function Example _ ConJ· C . , .-.~----_ _ on1unctton 

Coordinates phrases and Dc1 D . - -,.. •• - l)lcrmmer 
Indicates definiteness rhe 

l'rq1 -1-,- .- - ·- _rrl~Position 
Rdations of time. space, direction from _ 100 \l -··---- - mnoun 

Simplified reference she -

Table 2.13 Closed POS categories 
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The set of POS categories can be extended indefinitely. Examples can be drawn from 
1he Penn Treebank project (http://www.cis.upenn.edu/ldc) as shown in Table 2.14, where 
you can find the proliferation of sub-categories, such as Verb, base form and Verb, past 
tense. These categories incorporate morphological attributes of words into the POS label 
system discussed in Section 2.3.2.2. 

Table 2.14 Treebank POS categories - an expanded inventory. 

String Description Example 
cc Coordinating conjunction and 
CD Cardinal number two 
OT Determiner the 
EX Existential there there (There was an old lady) 
FW Foreign word omerta 
TN Preposition, subord. conjunction over, but 
JJ Adiective vellow 
JJR Adjective, comparative better 
JJS Adjective, superlative best 
LS List item marker 
MD Modal might 
NN Noun, singular or mass rock, water 
NNS Noun, plural rocks 
NNP Proper noun, singular Joe 
NNPS Proper noun, plural Red Guards 
PDT Predeterminer all (all the girls) 
POS Possessive ending 's 
PRP Personal pronoun I 
PRP$ Possessive pronoun mine 
RB Adverb quickly 
RBR Adverb, comparative higher (shares closed higher.) 
RBS Adverb, superlative highest (he jumped hiJ?hest of all.) 
RP Particle up ( take up tlze cause) 
TO to to 
UH Interjection hev! 
VB Verb, base form choose 
VBD Verb, past tense chose 
VBG Verb, gerund, or present participle choosing 
VBN Verb, past particiole chosen 
VBP Verb, non-third oerson sing. present iumo 
VBZ Verb, third person singular present iumps 
WOT Wh-detenniner which 
WP Wh-pronoun who 
WP$ Possessive wh-pronoun whose 
WRB Wh-adverb when (Wizen he came, it was late.) 
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f Speech or other lexical class marker • • a part-o -
POS tagging is the process of assignm~ "thms to automatically tag input sentences 

to each word in a corpus. There are rn[~~y] ~~:n Markov models (see Chapter 8) (23, 29, 
R I based methods • . 

into a set of tags. u e~ ti ads (6) are used for this purpose. 
46], and machiue-Iearnmg me 1 

2.3.2.2. Morphology 

f ds i e the patterns of word formation including 
. bout the subparts o wor ' •• , . fi Morphology 1s a . of compounds. English mamly uses pre 1xes and 

inflection derivation, and the formation 
' . fl (on and deri,•ational morphology. 

suffixes 10 express 11! ec 1

1 
d 1 • with variations in word form that reflect the contextual 

Jnjlectional morpho ogy ea s d. ff · 
• . h entence syntax and that rarely have irect e. ect on mter-

siluation of a word m p rase or s , . . fl . I 
. f d t I meaning expressed by the word. Enghsh m ect10na morphol-

pretauon of the un amen a d k. 
. 1 • 1 • le and includes person and number agreement an tense mar mgs ogy 1s re auve y s1mp . ~ . 

I Th · t·on 1·n cats (vs cat) is an example. The plural form 1s used to rejer to an m-on y. e vana 1 • . . . . 
definite number of cats greater than one, depending on a particular s1tuat1on. _But the basic 
POS category (noun) and the basic meaning (felis domesticus) are not sub~tant1ally affected. 
Words related to a common lemma via inflectional morphology are said to belong to a 
common paradigm, with a single POS category assignment. In English, common paradigm 
types include the verbal set of affixes (pieces of words): -s, -ed, -ing; the noun set: -s; and 
the adjectival -er, -est. Note that sometimes the base fonn may change spelling under affixa­
tion, complicating the job of automatic textual analysis methods. For historical reasons, cer­
tain paradigms may consist of highly idiosyncratic irregular variation as well, e.g., go, 
going, went, gone or child, children. Furthermore, some words may belong to defective 
paradigms, where only the singular (noun: equipment) or the plural (noun: scissors) is pro­
vided for. 

In derivat_ional morphology, a given root word may serve as the source for wholly new 
words, ~ften with POS changes as illustrated in Table 2.15. For example, the tenns racial 
~~ _ractSt, _though presumably based on a single root word race, have different POS possi-
b1ht1es (ad;ective vs noun-adiJ·ect· ) d • D · · · . . • ive an meanmgs. envational processes may mduce pro-

d
nu~cia~ion change or stress shift (e.g., electric vs. electricity). In Enolish typical 
envat1onal affixes (pieces of wo d ) th t h' h O 

' 

fi . . . r s a are 1g ly productive include prefixes and suf-
uces. re-, pre-, -1al, -ism -ish _ •ry _ . . , . 

cases these can b dd d' , z_ ' tw11, -ness, -mem, -wus, -ify, -zze, and others. In many 
' e a e successively to create a complex layered fonn. 

Table 2.15 Examples of stems and their related fonn POS 
Noun 

s across categones. 

criticism 
Verb Adjective Adverb 

fool criticize critical critically 

industry, industrialization 
fool foolish foolishly 
industrialize 

eme_~o~, eme_loyee, eme_lo£_er industrial, industrious industriously 
employ employable .£!rtification employably 
certify certifiable certifiably -
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Generally, word formation operates in layers, according to a kind of word syntax: (de­
riv-prejix)* root (root)* (deriv-suffix)* (i,zfl-suffix). This means that one or more roots can 
be compounded in the inner layer, with one or more optional derivatio11al prefixes, followed 
by any number of optional derivational suffixes, capped off with no more than one inflec­
tional suffix. There are, of course, limits on word formation, deriving both from semantics of 
the component words and simple lack of imagination. An example of a nearly maximal word 
in English might be autocyberconceptualizations, meaning (perhaps!) multiple instances of 
automatically creating computer-related concepts. This word lacks only compounding to be 
truly maximal. This word has a derivational prefix auto-, two root forms compounded (cyber 
and concept, though some may prefer to analyze cyber- as a prefix), three derivational suf­
fixes (-ual, -ize, -ation), and is capped off with the plural inflectional suffix for nouns, -s. 

2.3.2.3. Word Classes 

POS classes are based on traditional grammatical and lexical analysis. With improved com­
putational resources, it has become possible to examine words in context and assign words 
to groups according to their actual behavior in real text and speech from a statistical point of 
view. These kinds of classifications can be used in language modeling experiments for 
speech recognition, text analysis for text-to-speech synthesis, and other purposes. 

One of the main advantages of word classification is its potential to derive more re­
fined classes than traditional POS, while only rarely actually crossing traditional POS group 
boundaries. Such a system may group words automatically according to the similarity of 
usage with respect to their word neighbors. Consider classes automatically found by the 
classification algorithms of Brown et al. [7): 

{Friday Monday Thursday Wednesday Tuesday Saturday Sunday weekends} 
{ great big vast sudden mere sheer gigantic lifelong scant colossal} 
{ down backwards ashore sideways southward northward overboard aloft adrift} 
{ mother wife father son husband brother daughter sister boss uncle} 
{John George James Bob Robert Paul William Jim David Mike} 
{ feet miles pounds degrees inches barrels tons acres meters bytes} 

You can see that words are grouped together based on the semantic meaning, which is 
different from word classes created purely from syntactic point of view. Other types of clas­
sification are also possible, some of which can identify semantic relatedness across tradi­
tional POS categories. Some of the groups derived from this approach may include follows: 

{problems problem solution solve analyzed solved solving} 
{ write writes writing written wrote pen} 
{ question questions asking answer answers answering} 
{ published publication author publish writer titled} 
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2.4. SYNTAX AND SEMANTICS 

Spoken Language Stru-t 
c Ure 

Syntax is the study of the patterns ~f formation of sentenc~s ~nd phrases from words and the 
rules for the fonnation of grammatical sentences. Semantics 1s another branch of linguisti 
dealing with the study of meaning, including the ways meaning is structured in language an~ 
changes in meaning and form over time. 

2.4.1. Syntactic Constituents 

Constituents represent the way a sentence can be divided into its grammatical subparts as 
constrained by common grammatical patterns (which implicitly incorporate nonnative 
judgments on acceptability). Syntactic constituents at least respect, and at best explain, the 
linear order of words in utterances and text. In this discussion, we will not strictly follow 
any of the many theories of syntax but will instead bring out a few basic ideas common to 
many approaches. We will not attempt anything like a complete presentation of the grammar 
of English but instead focus on a few simple phenomena. 

Most work in syntactic theory has adopted machinery from traditional grammatical 
work on written language. Rather than analyze toy sentences, let's consider what kinds of 
superficial syntactic patterns are lurking in a random chunk of serious English text, ex­
cerpted from David Thoreau's essay Civil Disobedience [43]: 

The authority of government, even such as I am willing to submit to - for I will cheer­
fully obey those who know and can do better than /, and in many things even those who nei­
ther know nor can do so well - is still an impure one: to be strictly just, it must have the 
sanction and consent of the governed. It can have no pure right over my person and prop· 
erty but what I concede to it. The progress from an absolute to a limited monarchy, from a 
limited monarchy to a democracy, is a progress toward a true respect for the individual. 

2.4.1.1. Phrase Schemata 

Words may be combined to form phrases that have internal structure and unity. We use gen­
eralized schemata to describe the phrase structure. The goal is to create a simple, unifonn 
template that is independent of POS category. _ 

Let's first consider nouns, a fundamental category refening to persons, places, and 
things in the world. The noun and its immediate modifiers form a constituent called the noun 
phrase (NP). To generalize this, we consider a word of arbitrary category, say category X 
(which could be a noun N or a verb V). The generalized rule for a phrase XP is XP => 
(modifiers) X-head (post-modifiers), where Xis the head, since it dominates the configura­
tion and names the phrase. Elements preceding the head in its phrase are premodifiers and 
elements following the head are postmodifiers. XP, the culminating phrase node, is called a 
maximal projection of category X. We call the whole structure an x-template. Maximal pro· 
jections, XP, are the primary currency of basic syntactic processes. The post-modifiers ~ 
usually maximal projections (another head, with its own post-modifiers forming an XP on its 
own) and are sometimes termed complements, because they are often required by the lexical 
properties of the head for a complete meaning to be expressed (e.g., when Xis a preposition 
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or verb). Complements are typically noun phrases (NP), prepositional phrases (PP), verb 
phrases (VP), or sentence/clause (S), which make an essential contribution to the head's ref­
erence or meaning, and which the head requires for semantic completeness. Premodifiers are 
likely to be adverbs, adjectives, quantifiers, and determiners, i.e., words that help to specify 
the meaning of the head but may not be essential for completing the meaning. With minor 
variations, the XP template serves for most phrasal types, based on the POS of the head (N, 
V. ADJ, etc.). 

For NP, we thus have NP ⇒ (det) (modifier) head-noun (post-modifier). This rule 
describes an NP (noun phrase - left side of arrow) in terms of its optional and required in­
ternal contents (right side of the arrow). Det is a word like the or a that helps to resolve the 
reference to a specific or an unknown instance of the noun. The modifier gives further in­
formation about the noun. The head of the phrase, and the only mandatory element, is the 
noun itself. Post-modifiers also give further information, usually in a more elaborate syntac­
tic form than the simpler pre-modifiers, such as a relative clause or a prepositional phrase 
(covered below). The noun phrases of the passage above can be parsed as shown in Table 
2.16. The head nouns may be personal pronouns (/, it) , demonstrative and relative pronouns 
(those), coordinated nouns (sanction and consent), or common nouns (individual) . The 
modifiers are mostly adjectives (impure, pure) or verbal forms functioning as adjectives 
(limited). The post-modifiers are interesting, in that, unlike the (pre-)modifiers, they are 
typically full phrases themselves, rather than isolated words. They include relative clauses 
(which are a kind of dependent sentence, e.g., [those] who know and can do better than/), 
as well as prepositional phrases (of the governed). 

Table 2.16 NPs of the sample passage. 

NP Det Mod Head Noun Post-Mod 
l the authority of government 
2 even such as I am willing to submit to 
3 I 
4 those who know and can do better than I 
5 many thines 
6 even those who neither know nor can do so well 
7 an impure one 
8 it 
9 the sanction and consent of the governed 
10 no pure right over my person ... concede to it. 
11 the progress from an absolute to a limited monarchy 
12 an absolute [monarchy] 
13 a limited monarchy 
14 a democracy 
15 a progress 
16 a true respect for the individual 
17 the individual 
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Table 2.17 PPs of the sample passage. 

Head Prep Complement (Postmodifier) 

of Government 

as I am willin2 to submit to 

than I 
in many things 

of the governed 

over mv oerson and property 
to it 
from an absolute [monarchy] 

to a limited monarchy 

to a democracy 
toward a true respect [for the individual] 
for the individual 

Prepositions express spatial and temporal relations, among others. These are also said 
to project according to the X-template, but usually lack a pre-modifier. Some examples from 
the sample passage are listed in Table 2.17. The complements of PP are generally NPs, 
which may be simple head nouns like government. However, other complement types, such 
as the verb phrase in after discussing it with Jo, are also possible. 

For verb phrases, the postmodifier (or complement) of a head verb would typically be 
one or more NP (noun phrase) maximal projections, which might, for example, function as a 
direct object in a VP like pet the cat. The complement may or may not be optional, depend­
ing on characteristics of the head. We can now make some language-specific generalizations 
about English. Some verbs, such as give, may take more than one kind of complement. So 
an appropriate template for a VP maximal projection in English would appear abstractly as 
VP ⇒ (modifier) verb (modifier) (Complement}, Complement2 ComplementN). Comple­
ments are usually regarded as maximal projections, such as NP, ADJP, etc., and are enumer­
ated in the template above, to cover possible multi-object verbs, such as give, which take 
both direct and indirect objects. Certain types of adverbs (really, quickly, smoothly, etc.) 
could be considered fillers for the VP modifier slots (before and after the head). In the sam­
ple passage, we find the following verb phrases as shown in Table 2.18. 

VP presents some interesting issues. First, notice the multi-word verb submit to. Multi­
word verbs such as look after and put up with are common. We also observe a number of 
auxiliary elements clustering before the verb in sentences of the sample passage: am willing 
10 su_bmit to, will cheerfully obey, and can do better. Rather than considering these as simple 
~od~fiers of the verbal head, they can be taken to have scope over the VP as a whole, which 
implies they are outside the VP. Since they are outside the VP we can assume them to be 
hea_ds in their own right, of phrases which require a VP as their ~omplement. These elements 
~~tly express tense (time or duration of verbal action) and modality (likelihood or prob· 
~ 1 

itdy fof ve~al action). In a full sentence, the VP has explicit or implicit inflection (pro· 
Jecte rom tts verbal h d) d . . 

. ea an indicates the person, number, and other context-dependent 
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features of the verb in relation to its arguments. In English, the person (first, second, third) 
and number (singular, plura_l) at~~butes, collectively called agreement features, of subject 
and ~erb must match. For s1_mphc1ty, we will lump all these considerations together as in­
flectional elements, and posit yet another phrase type, the Inflectional Phrase (JP): /P => 
premodifier head VP-complement. 

Table 2.18 VPs of the sample passage. 

Pre-mod Verb Head Post-mod Comolement 
submit to [the authority of !!OVemment] 

cheerfully obcv those who know and can do better than I 
is still an impure one 
be strictly iust 
have the sanction 
have no pure ri~ht 
concede to it 
is a proJ;?ress 

The premodifier slot (sometimes called the specifier position in linguistic theory) of an 
IP is often filled by the subject of the sentence (typically a noun or NP) . Since the IP unites 
the subject of a sentence with a VP, IP can also be considered simply as the sentence cate­
gory, often written as Sin speech grammars. 

2.4.1.2. Clauses and Sentences 

The subject of a sentence is what the sentence is mainly about. A clause is any phrase with 
both a subject and a VP (predicate in traditional grammars) that has potentially independent 
interpretation - thus, for us, a clause is an IP, a kind of sentence. A phrase is a constituent 
lacking either subject, predicate, or both. We have reviewed a number of phrase types 
above. There are also various types of clauses and sentences. 

Even though clauses are sentences from an internal point of view (having subject and 
predicate), they often function as simpler phrases or words would, e.g., as modifiers (adjec­
tive and adverbs) or nouns and noun phrases. Clauses may appear as post-modifiers for 
nouns (so-called relative clauses), basically a kind of adjective clause, sharing their subjects 
with the containing sentence. Some clauses function as NPs in their own right. One common 
clause type substitutes a wh-word like who or what for a direct object of a verb in the em­
bedded clause, to create a questioned noun phrase or indirect question: (/don't know who Jo 
saw.). In these clauses, it appears to syntacticians that the questioned object of the verb [VP 
saw who] has been extracted or moved to a new surface position (following the main clause 
verb know). This is sometimes shown in the phrase-structure diagram by co-indexing an 
empty ghost or trace constituent at the original position of the question pronoun with the 
question-NP appearing at the surface site: 

I don't know [,,,,.i,;f,,,[,,,,1 who] Jo saw[,,,,,_ 111 
[,,,,,.b/,,, Whoever wins the game]] is our hero. 
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There are various characteristic types of sentences. Some typical types include: 

• Declarative: I gave her a book. 

• Yes-no question: Did you give her a book? 

• Wh-question: What did you give her? 

• Alternatives question: Did you give her a book, a scarf, or a knife? 

• Tag question: You gave it to her, didn't you? 

• Passive: She was given a book. 

• Cleft: It must have been a book that she got. 

• Exclamative: Hasn't this been a great birthday! 

• Imperative: Give me the book. 

2.4.1.3. Parse Tree Representations 

Sentences can be diagrammed in parse trees to indicate phrase-internal structure and linear 
precedence and immediate dominance among phrases. A typical phrase-structure tree for 
part of an embedded sentence is illustrated in Figure 2.26. 

IP(S) 

~ 
NP Inflection VP 

I 
N V NP 

Det Pre-mod N Post-Mod (PP) 

It can have no pure right over my person 

Figure 2.26 A simplified phrase-structure diagram. 
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For brevity, the same infonnation illustrated in the tree can be represented as a brack­
eted string as follows: 

[,,. f.v,. [,,It]~.],,,.[, can], fv,,frhave J,, [N,, no pure right[,,,, over my person ],.PJN,,fv,,l,,. 

With such a bracketed representation, almost every type of syntactic constituent can be 
coordinated or joined with another of its type, and usually a new phrase node of the common 
type is added to subsume the constituents such as NP: We have [N,, [NP tasty berries] and f Nr 
tart juices]], !PIS:[,,,[,,. Many have come] and fi,. most have remained}), PP: We went[,.,. fn 
over the river] and {p,, into the trees]J, and VP: We want to fv, [ vp climb the mountains) and 
[ vp sail the seas]J. 

2.4.2. Semantic Roles 

In traditional syntax, grammatical roles are used to describe the direction or control of action 
relative to the verb in a sentence. Examples include the ideas of subject, object, indirect ob­
ject, etc. Semantic roles, sometimes called case relations, seem similar but dig deeper. They 
are used to make sense of the participants in an event, and they provide a vocabulary for us 
to answer the basic question who did what to whom. As developed by [ 13] and others, the 
theory of semantic roles posits a limited number of universal roles. Each basic meaning of 
each verb in our mental dictionary is tagged for the obligatory and optional semantic roles 
used to convey the particular meaning. A typical inventory of case roles is given below: 

Agent 
Patient/Theme 
Instrument 
Goal 
Result 
Location 

cause or initiator of action, often intentional 
undergoer of the action 
how action is accomplished 
to whom action is directed 
result of action 
location of action 

These can be realized under various syntactic identities, and can be assigned to both 
required complement and optional adjuncts. A noun phrase in the Agentive role might be the 
surface subject of a sentence, or the object of the preposition by in a passive. For example, 
the verb put can be considered a process that has, in one of its senses, the case role specifica­
tions shown in Table 2.19. 

Table 2.19 Analysis of a sentence with put. 

Analysis Example 
Kim put the book on the table. 

Grammatical Subject (NP) Predicate (VP) Object (NP) Adverbial 
functions (ADVPJ 
Semantic roles ARent Instrument Theme Location 
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Now consider this passive-tense example, where the semantic roles align with differ­
ent grammatical roles shown in Table 2.20. Words that look and sound identical can h 
different meaning or different senses as shown in Table 2.21. The sporting sense of put ~ve 
in the sport of shot-put) illustrates the meaning/sense-dependent nature of the role pattern as 
because in this sense the Locative case is no longer obligatory, as it is in the original sens~ 
illustrated in Table 2.19 and Table 2,20. 

Table 2.20 Analysis of passive sentence with put. 

Analysis Example 
The book was put on the table. 

Grammatical Subject (NP) Predicate (VP) Adverbial (ADVP) 
functions 
Semantic roles Af!ent Instrument location 

Table 2.21 Analysis of a different pattern of put. 

Analysis Examole 
Kim J)Ut the shot. 

Grammatical Subject (NP) Predicate (VP) Object(NP) 
functions 
Semantic roles A2ent Instrument Theme 

The lexical meaning of a verb can be further decomposed into primitive semantic rela­
tions such as CAUSE, CHANGE, and BE. The verb open might appear as 
CAUSE(NPI,PHYSJCAL-CHANGE(NP2,NOT-OPEN,OPEN)). This says that for an agent 
(NP 1) to open a theme (NP2) is to cause the patient to change from a not-opened state to an 
opened state. Such systems can be arbitrarily detailed and exhaustive, as the application re­
quires. 

2.4.3. Lexical Semantics 

The specification of particular meaning templates for individual senses of particular words is 
called lexical semantics. When words combine, they may take on propositional meanings 
::esulting from the composition of their meanings in isolation. We could imagine that a 
speaker starts with a proposition in mind (logical form as will be discussed in the next sec­
tion), creating a need for particular words to express the idea (lexical semantics); the pro:"°" 
sition is then linearized (syntactic form) and spoken (phonological/phonetic form). Le,tical 
semantics is the level of meaning before words are composed into phrases and sentences, 
and it may heavily influence the possibilities for combination. 
. Words can be defined in a large number of ways including by relations to olh~'. W0rd~ 
10 terms of decomposition semantic primitives, and in terms of non-linguistic cogmuve c_o~ 
structs, such as perception, action, and emotion. There are hierarchical and non-hierarchic 
relations. The main hierarchical relations would be familiar to most object-oriented p~ 
&rammers. One is is-a taxonomies (a crow is-a bird), which have transitivity of properue 
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from type to subtype (inheritance). Another is has-a relations (a car has-a windshield), 
which are of several differing qualities, including process/subprocess (teaching has-a sub­
process giving exams), and arbitrary or natural subdivisions of part-whole relations (bread 
has-a division into slices, meter has-a division into centimeters). Then there are non­
branching hierarchies (no fancy name) that essentially fom1 scales of degree, such as Jro­
:en =>cold=> lukewarm=> hot=> bu ming. Non-hierarchical relations include synonyms. 
such as big/large, and antonyms such as good/bad. 

Words seem to have natural affinities and disaffinities in the semantic relations among 
the concepts they express. Because these affinities could potentially be exploited by future 
language understanding systems, researchers have used the generalizations above in an at­
tempt to tease out a parsimonious and specific set of basic relations under which to group 
entire lexicons of words. A comprehensive listing of the families and subtypes of possible 
semantic relations has been presented in [10]. In Table 2.22, the leftmost column shows 
names for families of proposed relations, the middle column differentiates subtypes within 
each family, and the rightmost column provides examples of word pairs that participate in 
the proposed relation. Note that case roles have been modified for inclusion as a type of se­
mantic relation within the lexicon. 

We can see from Table 2.22 that a single word could participate in multiple relations 
of different kinds. For example, knife appears in the examples for Similars: invited attribute 
(i.e., a desired and expected property) as: knife-sharp, and also under Case Relations: ac­
tion-instrument, which would label the relation of knife to the action cut in He cut the bread 
with a knife. This suggests that an entire lexicon could be viewed as a graph of semantic 
relations, with words or idioms as nodes and connecting edges between them representing 
semantic relations as listed above. There is a rich tradition of research in this vein. 

The biggest practical problem of lexical semantics is the context-dependent resolution 
of senses of words - so-called polysemy. A classic example is bank - bank of the stream as 
opposed to money in the bank. While lexicographers try to identify distinct senses when they 
write dictionary entries, it has been generally difficult to rigorously quantify exactly what 
counts as a discrete sense of a word and to disambiguate the senses in practical contexts. 
Therefore, designers of practical speech understanding systems generally avoid the problem 
by limiting the domain of discourse. For example, in a financial application, generally only 
the sense of bank as a fiduciary institution is accessible, and others are assumed not to exist. 
It is sometimes difficult to make a principled argument as to how many distinct senses a 
word has, because at some level of depth and abstraction, what might appears as separate 
senses seem to be similar or related, as face could be face of a clock or face of person. 

Senses are usually distinguished within a given part-of-speech (POS) category. Thus, 
when an occurrence of bank has been identified as a verb, the shore sense might be auto­
matically eliminated, though depending on the sophistication of the system's lexicon and 
goals, there can be sense differences for many English verbs as well. Within a POS cate­
gory, often the words that occur near a given ambiguous form in the utterance or discourse 
are clues to interpretation. where links can be established using semantic relations as de­
scribed above. Mutual information measures as discussed in Chapter 3 can sometimes pro­
vide hints. In a context of dialog where other, less ambiguous financial terms come up 
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frequently, the sense of bank as fiduciary institution is more likely. Finally, whe 
. f h • • • l'k 1·h n all else 

fails often senses can be ranked m terms o t eir a pnon I e I ood of occurrence It h 
, . . . ·.• h · SouJd 

always be borne m mmd that language 1s not static, 1t can c ange fonn under a give 
sis at any time. For example, the stable English form spinster, a somewhat pejorati::~: 
for an older, never-married female, has recently taken on a new morphologically co 

h. h 1· • I ffi • I ct· rnplex form, with the ~~w sense_ of a _1g po 1t1_ca o 1~ia , or me ia spokesperson, employed to 
provide bland d1smforrnat1on (spm) on a given topic. 

Table 2.22 Semantic relations. 

Family Subtype Example 
Contrasts Contrary old-young 

Contradictory alive-dead 

Reverse buy-sell 

Directional front-back 

Incompatible happy-morbid 

Asymmetric contrary hot-cool 

Attribute similar rake1ork 

Similars Synonymity car-auto 

Dimensional similar smile-laugh 
Necessary attribute bachelor-unmarried 
Invited attribute knife-sharp 
Action subordinate talk-lecture 

Class Inclusion Perceptual subord. animal-horse 
Functional subord. furniture-chair 
State subord. disease-polio 
Activity subord. game-chess 
Geographic subord. country-Russia 
Place Gennany-Hamburg 

Case Relations Agent-action artist-paint 
Agent-instrument rarmer-tractor 
Agent-object baker-bread 
Action-recipient sit-chair 
Action-instrument cut-knife 

Part-Whole Functional object engine-car 
Collection forest-tree 
Group choir-singer 
Ingredient table-wood 
Functional location kitchen-stove 
Organization college-admissions -

Measure mile-yard 
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2.4.4. Logical Form 

Because of all the lexical, syntactic, and semantic ambiguity in language, some of which 
requires external context for resolution, it is desirable to have a metalanouage in which to 

. 0 

concretely and succ111ctly express all linguistically possible meanings of an ullerance before 
discourse and world knowledge are applied to choose the most likely interpretation. The 
favored metalanguage for this purpose is called the predicate logic, used to represent the 
logical fonn, or context-independent meaning, of an utterance. The semantic component of 
many SLU architectures builds on a substrate of two-valued, first-order, logic. To distin­
guish shades of meaning beyond truth and falsity requires more powerful formalisms for 
knowledge representation. 

In a typical first-order system, predicates correspond to events or conditions denoted 
by verbs (such as Believe or Like), states of identity (such as being a Dog or Cat), and prop­
erties of varying degrees of permanence (Happy). In this form of logical notation, predicates 
have open places, filled by arguments, as in a programming language subroutine definition. 
Since individuals may have identical names, subscripting can be used to preserve unique 
reference. In the simplest systems, predication ranges over individuals rather than higher­
order entities such as properties and relations. 

Predicates with filled argument slots map onto sets of individuals (constants) in the 
universe of discourse, in particular those individuals possessing the properties, or participat­
ing in the relation, named by the predicate. One-place predicates like Soldier, Happy, or 
Sleeps range over sets of individuals from the universe of discourse. Two-place predicates, 
like transitive verbs such as loves, range over a set consisting of ordered pairs of individual 
members (constants) of the universe of discourse. For example, we can consider the universe 
of discourse to be U = {Romeo, Juliet, Paris, Rosaline, Tybalt}, people as characters in a 
play. They do things with and to one another, such as loving and killing. Then we could 
imagine the relation Loves interpreted as the set of ordered pairs: ( <Romeo, Juliet>, <Juliet, 
Romeo>, <Tybalt, Tybalt>, <Paris, Juliet>), a subset of the Cartesian product of theoreti­
cally possible love matches Ux U. So, for any ordered pair x, yin U, Loves(x, y) is true if 
the ordered pair <x,y> is a member of the extension of the Loves predicate as defined, e.g ., 
Romeo loves Juliet, Juliet loves Romeo, etc .. Typical formal properties of relations are some­
times specially marked by grammar, such as the reflexive relation Loves(Tybaft, Tybalt), 
which can rendered in natural language as Tybalt loves himself. Not every possibility is pre­
sent; for instance in our example, the individual Rosaline does not happen to participate at 
all in this extensional definition of Loves over U, as her omission from the pairs list indi­
cates. Notice that the subset of Loves(x, y) of ordered pairs involving both Romeo and Juliet 
is symmetric, also marked by grammar, as in Romeo and Juliet love each other. This general 
approach extends to predicates with any arbitrary number of arguments, such as intransitive 
verbs like give. 

Just as in ordinary propositional logic, connectives such as negation, conjunction, dis­
junction, and entailment are admitted, and can be used with predicates to denote common 
natural language meanings: 
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Romeo isn't happy= -,Happy(Romeo) 

Romeo isn't happy, but Tybalt is (happy)= -,Happy(Romeo) /\ Happy(Tybalt) 
Either Romeo or Tybalt is happy= Happy(Romeo) v Happy(Tybalt) 

If Romeo is happy, Juliet is happy= Happy(Romeo) ➔ Happy(Juliet) 

cture 

Fonnulae, such as those above, are also said to bear a binary truth value, true or fat 
with respect to a world of individuals and relations. The determination of the truth value~: 
compositional, in the sense that the truth value of the whole depends on the truth value of 
the parts. This is a simplistic but fonnally tractable view of the relation between language 

and meaning. 
Predicate logic can also be used lo denote quantified noun phrases. Consider a simple 

case such as Someone killed Tybalt, predicated over our same V = I Romeo, Juliet, Paris, 
Rosaline, Tybalt}. We can now add an existential quantifier, 3, standing for there exists or 

there is at least one. This quantifier will bind a variable over individuals in V, and will at­
tach to a proposition to create a new, quantified proposition in logical fonn. The use of vari­
ables in propositions such as killed(x, y) creates open propositions. Binding the variables 
with a quantifier over them closes the proposition. The quantifier is prefixed to the original 
proposition: 3.x Killed(x, Tybalt). 

To establish a truth (semantic) value for the quantified proposition, we have to satisfy 
the disjunction of propositions in V: Killed(Romeo, Tybalt) v Killed(Juliet, Tybalt) v 
Killed(Paris, Tybalt) v Killed(Rosaline, Tybalt) v Killed(Tybalt, Tybalt) . The set of all such 
bindings of the variable x is the space that detennines the truth or falsity of the proposition. 
In this case, the binding of x = Romeo is sufficient to assign a value true to the existential 
proposition. 

2.5. HISTORICAL PERSPECTIVE AND FuRTHER READING 

Motivated to improve speech quality over the telephone, AT&T Bell Labs has contributed 
many influential discoveries in speech hearing, including the critical band and articulation 
index [2, 3]. The Auditory Demonstration CD prepared by Houtsma, Rossing, and 
Wagenaars [18) has a number of very interesting examples on psychoacoustics and its ex­
planations. Speech, Language, and Communication [30] and Speech Communication - Hu­
man and Machine [32] are two good books that provide modem introductions to the 
stru~ture of spoken. la~guage. Many speech perception experiments were conducted b~ _ex· 
plonng how phonetic mfonnation is distributed in the time or frequency domain. In add1uon 
to the formant structures for vowels, frequency importance function [12] has been developed 
1? studY ho~ f~atures related to phonetic categories are stored at various frequencies. In !he 
time do~ru.~, tt has been observed [16, 19, 42) that salient perceptual cues may not be 
evenly d1~tn_buted over the speech segments and that certain perceptual critical points exist 

th 
A_s mtJmate as speech and acoustic perception may be there are also strong evidences 

at leXtcal and r • · f ' . -
t. . mguJStlc e fects on speech perception are not always consistent with acous 
1c ones. For mstance it ha I b • d' tin· · h. . ' s ong een observed that humans exhibit difficulties rn is 

gms mg non-native phonem H . odness es. uman subJects also carry out categorical go 
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difference assimilation based ~n t~eir mother tongue [34], and such perceptual mechanism 
~an ~1e ob~erved as early as m_ six-month-old infants [22). On the other hand, hearing-
1mpaire_d listeners are able to _etf~rtlessl~ overcome their acoustical disabilities for speech 
perception (8). Speech perception 1s not simply an auditory matter. McGurk and MacDonald 
(1976) [27, 28} dramatically demonstrated this when they created a videotape on which the 
auditory information (phonemes) did not match the visual speech information. The effect of 
this mismatch between the auditory signal and the visual signal was to create a third pho­
neme different from both the original auditory and visual speech signals. An example is 
dubbing the phoneme Iba/ to the visual speech movements /gal. This mismatch results in 
hearing the phoneme Ida/. Even when subjects know of the effect, they report the McGurk 
effect percept. The McGurk effect has been demonstrated for consonants. vowels, words, 
and sentences. 

The earliest. scientific work on phonology and grammars goes back to Panini, a San­
skrit grammarian of the fifth century B.C. (estimated). who created a comprehensive and 
scientific theory of phonetics, phonology, and morphology. based on data from Sanskrit (the 
classical literary language of the ancient Hindus). Panini created formal production rules and 
definitions to describe Sanskrit grammar, including phenomena such as construction of sen­
tences, compound nouns, etc. Panini's formalisms function as ordered rules operating on 
underlying structures in a manner analogous to modem linguistic theory. Panini's phono­
logical rules are equivalent in formal power to Backus-Nauer fonn (BNF). A general intro­
duction to this pioneering scientist is Cardona [91. 

An excellent introduction to all aspects of phonetics is A Course in Phonetics [24]. A 
good treatment of the acoustic structure of English speech sounds and a through introduction 
and comparison of theories of speech perception is to be found in [33]. The basics of pho­
nology as part of linguistic theory are treated in Understanding Phonology [17]. An interest­
ing treatment of word structure (morphology) from a computational point of view can be 
found in Morphology and Computation [40]. A comprehensive yet readable treatment of 
English syntax and grammar can be found in English Syntax [4] and A Comprehensive 
Grammar of the English Language (36}. Syntactic theory has traditionally been the heart of 
linguistics, and has been an exciting and controversial area of research since the I 950s. Be 
aware that almost any work in this area will adopt and promote a particular viewpoint, often 
to the exclusion or minimization of others. A reasonable place to begin with syntactic theory 
is Syntax: A Minimalist Imroduction [37]. An introductory textbook on syntactic and seman­
tic theory that smoothly introduces computational issues is Syntactic Theory: A Formal In­
troduction [39]. For a philosophical and entertaining overview of various aspects of 
linguistic theory, see Rhyme and Reason: An Introduction to Minimalist Syntax [44]. A good 
and fairly concise treatment of basic semantics is Introduction to Natural Language Seman­
tics [l l]. Deeper issues are covered in greater detail and at a more advanced level in The 
Handbook of Contemporary Semamic Theory [25]. The intriguing area of lexical semantics 
(theory of word meanings) is comprehensively presented in The Generative lexicon (35]. 
Concise History of the Language Sciences [21] is a good edited book if you are interested in 

the history of linguistics. 
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CHAPTER 1 2 

Basic Search Algorithms 

Continuous speech recognition (CSR) is both 
a pattern recognition and search problem. As described in previous chapters, the acoustic 
and language models are built upon a statistical pattern recognition framework. In speech 
~ecognition, making a search decision is also referred to as decoding. In fact, decoding got 
lls name from infonnation theory (see Chapter 3) where the idea is to decode a signal that 
has presumably been encoded by the source process and has been transmitted through the 
communication channel, as depicted in Chapter I, Figure 1.1. In this chapter, we first review 
the general decoder architecture that is based on such a source-channel model. 

The decoding process of a speech recognizer is to find a sequence of words whose cor­
responding acoustic and language models best match the input signal. Therefore, the process 
?f such a decoding process with trained acoustic and language models is often referred to as 
JUSt a search process. Graph search algorithms have been explored extensively in the fields 
of artificial intelligence, operation research, and game theory. In this chapter first we present 
several basic search algorithms, which serve as the basic foundation for CSR. 

591 
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The complexity of a search algorithm is highly correlated with the ~earch spa~e, which 

d 
• d by the constraints imposed by the language models. We discuss the impact of is etermme ~ 

different language models, including finite-state grammars, context-free grammars, and 11_ 

grams. • 1 I V' b' A"• Speech recognition search is usual!~ done wit 1 t 1e 1ter I o~ •· stack decoders. The 
reasons for choosing the Viterbi decoder involve arguments Lhat pomt to speech as a left-to­
right process and to the efficiencies aff?~ded by a time-sy?ch.-onous ~rocess. :h~ re~sons for 
choosing a stack decoder involve its ab1hty to more effectively exploit the N · cntena, which 
holds out the hope of performing an optimal search as well as the ability to handle huge 
search spaces. Both algorithms have been successfully applied to various speech recognition 
systems. The relative merits of both search algorithms were quite controversial in the 1980s. 
Lately, with the help of efficient pruning techniques. Viterbi beam search has been the pre­
ferred method for almost all speech recognition tasks. Stack decoding, on the other hand, 
remains an important strategy to uncover the n-best and lattice structures. 

12.1. BASIC SEARCH ALGORITHMS 

Search is a subject of interest in artificial intelligence and has been well studied for expert 
systems, game playing, and information retrieval. We discuss several general graph search 
methods that are fundamental to spoken language systems. Although the basic concept of 
graph search algorithms is independent of any specific task. the efficiency often depends on 
how we exploit domain-specific knowledge. 

The idea of search implies moving around, examining things, and making decisions 
about whether the sought object has yet been found. In general, search problems can be rep· 
resented using the state-space search paradigm. It is defined by a triplet (S, 0 , G), where S 
i~ a se~ of_initial states, 0 a set of operators (or rules) applied on a state to generate a transi­
t10n with its corresponding cost to another state, and G a set of goal states. A solution in the 
state-space search paradigm consists in finding a path from an initial stale to a goal state. 
The state-space representation is commonly identified with a directed graph in which each 
node_~orresponds to a state and each arc to an application of an operator (or a rule), which 
transitions from one_ state to another. Thus, the state-space search is equivalent to searching 
through the graph with some objective function. 
. Before we present any graph search algorithms, we need to remind the readers of the 
impo~nce of lhe dynamic programming algorithm described in Chapter 8. Dynamic pro· 
;:ammm_g ~ho~ld ~e applied :,Vhenever possible and as early as possible because (1) un!ike 

Y heuns~1cs, it will not sacnfice optimality; (2) it can transform an exponential search mto 
a polynomial search. 
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2 11 General Graph Searching Procedures 1 ... 

Although dynamic programming is a powerful polynomial search algorithm, many interest­
ing problems cannot be handled b~ it. A classical e~ample is the traveling salesman's prob­
len1. We need to find a shortest•dtstance tour, startmg at one of many cities, visiting each 
city exactly once., and returning to the starting city. This is one of the most famous problems 
in the NP-hard class [ I, 32]. Another classical example is the N-queens problem (typically 
8.queens), where the goal is to place N queens on an NxN chessboard in such a way that 
no queen can capture any other queen, i.e., there is no more than one queen in any given 
row, column, or diagonal. Many of these puzzles have the same characteristics. As we know, 
the best algorithms currently known for solving the NP-hard problem are exponential in the 
problem size. Most graph search algorithms try to solve those problems using heuristics to 
avoid or moderate such a combinatorial explosion. 

i----3--....;0 ~--3----1 v 

Figure 12.1 A highway distance map for cities S, A, B, C, D, E, F, and G. The salesman needs 

to find a path to travel from city S to city G [42). 

Let's start our discussion of graph search procedure with a simple city-traveling prob­
lem [42]. Figure 12.1 shows a highway distance map for all the cities. ~ salesman named 
John needs to travel from the starting city S to the end city G. One obvious wa~ to find a 
palh is to derive a graph that allows orderly exploration of all possible paths. Fi~ure. 12•2 

shows the graph that traces out all possible paths in the city-distance map shown m Figure 
12 I Alth . . . • al hould note that the search • • ough the city-city connection 1s b1-direct1on , we s 
?raph in this case must not contain cyclic paths, because they would not lead to any progress 
1a this scenario 

If • · b f odes (states) in the graph 
we define the search space as the potential mun er o n . h v·terbi algo-

search • • al state sequence in t e 1 
. procedure, the search space for findmg the opttm ~ h HMM and T 

~Ihm (described in Chapter 8) is N x T • where N is the number of states o~_t e roblem will 
~ i; length of the observation. Similary, the search space for John's trave mg P 

• . b hing factor defined as the 
av Another important measure for a search graph is the ~anc f odes of a search graph 

erage number of successors for each node. Since the num er O n 
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(or tree) grows exponentially with base equal to this branching factor, we certainly need t 
watch out for search graphs (or trees) with a large branching factor. Sometimes they can~ 
too big to handle (even infinite. as in game playing). We often trade the optimal solution for 
improved perfomrnnce and feasibility. That is, the goal for such search problems is 10 find 
one satisfactory solution instead of the optimal one. In fact, most AI (artifica1 intelligence) 
search problems belong to this category. 

The search tree in Figure 12.2 may be implemented either explicitly or implicitly. In 
an explicit implementation, the nodes and arcs with their corresponding distances (or costs) 
are explicitly specified by a table. However, an explicit implementation is clearly impracti­
cal for large search graphs and impossible for those with infinite nodes. In practice, most 
parts of the graph may never be explored before a solution is found. Therefore, a sensible 
strategy is to dynamically generate the search graph. The part that becomes explicit is often 
referred to as an active search space. Throughout the discussion here, it is important to keep 
in mind this distinction between the implicit search graph that is specified by the start node 
S and the explicit partial search graphs that are actually constructed by the search algo­
rithm. 

To expand the tree, the term successor operator (or move generator, as it is often 
called in game search) is defined as an operator that is applied to a node to generate all of 
the successors of that node and to compute the distance associated with each arc. The suc­
cessor operator obviously depends on the topology (or rules) of the problem space. Expand­
ing the starting node S, and successors of S, ad infinitum, gradually makes the implicitly 

Figure 12•2 The search tree (graph) for the salesman problem illustrated in Figure 12· J. The 
number next to each node is the accumulated distance from start city to end city [42]. 
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defined graph explicit. Thi~ recursive procedure is _straightforward, and the search graph 
(tree) can be constructed without the extra b~kkeepmg. However, this process would only 
generare a search tree where the same node might be generated as a part of several possible 

paths. . . . . 
For example, node E ,s being generated m four different paths. If we are interested in 

finding an optimal path to travel from S to G, it is more efficient to merge those different 
paths that lead to the same node E. We can pick the shortest path up to C, since everything 
following E is the same for the rest of the paths. This is consistent with the dynamic pro­
gramming principle-when looking for the best path from S to G, all partial paths from s to 
any node E, other than the best path from S to E, should be discarded. The dynamic pro­
gramming merge also eliminates cyclic paths implicitly, since a cyclic path cannot be the 
shortest path. Performing this extra bookkeeping (merging different paths leading into the 
same node) generates a search graph rather than a search tree. 

Although a graph search has the potential advantage over a tree search of being more 
efficient, it does require extra bookkeeping. Whether this effort is justified depends on the 
individual problem one has to address. 

Most search strategies search in a forward direction, i.e., build the search graph (or 
tree) by starting with the initial configuration (the starting state S) from the root. In the gen­
eral AI literature, this is referred to as forward reasoning (43], because it perfonns rule-base 
reasoning by matching the left side of rules first. However, for some specific problem do­
mains, it might be more efficient to use backward reasoning (43], where the search graph is 
built from the bottom up (the goal state G). Possible scenarios include: 

• There are more initial states than goal states. Obviously it is easy to start 
with a small set of states and search for paths leading to one of the bigger se_rs 
of states. For example, suppose the initial state S is the homet~wn for Joh~-10 

the city-traveling problem in Figure 12.1 and the goal state G 1s an unfam~ltar 
city for him. In the absence of a map, there are certa~nly ~ore loca~ions 
(neighboring cities) that John can identify as being close to his home city S 
than those he can identify as being close to an unfamiliar location. I~ a sense, 
all of those locations being identified as close to John's home ct~ S are 
equivalent to the initial state S. This means John might want to c~n5ider rea­
soning backward from the unfamiliar goal city G for the trip planning. 

• Tl • • lier than that for Jor-ie branching factor for backward reasonmg is sma . . 'th 
d . t arch in the direct1on w1 wa~ reasoning. In this case 1t makes sense o se 

lower branching factor. . 
I . . . . d • Itaneously, until two partial 
t is m pnnc1ple possible to search from both en s simu . 1 h [43) B'1-path . d b • d' 11ona searc • 

dire:teet somewhere in the middle. This s!1'at~gy ts calle '~/::des at each step grows 
ionaJ search seems particularly appealmg 1f the number --' Bting cl_o __________ . . ities he can easily remember 1he best pa~ to 

rciu h se means that, once John reaches one of those neighboring c • h aru· cular board configurauon, 
Ill ome I · . . 0 th player reac es a P he • 11S s1m1lar 10 the killer book for chess play. nee e 

can follow th • • t ry e killer book for moves 1ha1 can guarantee a v,c O • 
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exponentially with the depth that needs to be explored. However, som~times bi-directional 
search can be devastating. The two searches may cross each other, as illustrated in Figure 

12.3. 
The process of explicitly generating part of an implicitly defined graph fonns the es-

sence of our general graph search procedure. The procedure is summarized in Algorithm 
12.1. Jt maintains two lists: OPEN, which stores the nodes waiting for expansion, and 
CLOSE, which stores the already expanded nodes. Steps 6a and 6b are basically the book­
keeping process to merge different paths going into the same node by picking the one that 
has the minimum distance. Step 6a handles the case where v is in the OPEN list and thus is 
not expanded. The merging process is straightforward, with a single comparison and change 
of traceback pointer if necessary. However, when V is in the CLOSE list and thus is already 
expanded in Step 6b, the merging requires additional forward propagation of the new score 
if the current path is found to be better than the best subpath already in the CLOSE list. This 
forward propagation could be very expensive. Fortunately, most of the search strategy can 
avoid such a procedure if we know that the already expanded node must belong in the best 
path leading to it. We discuss this in Section 12.5. 

As described earlier, it may not be worthwhile to perform bookkeeping for a graph 
search, so Steps 6a and 6b are optional. If both steps are omitted, the graph search algorithm 
described above becomes a tree search algorithm. To illustrate different search strategies, 
tree search is used as the basic graph search algorithm in the sections that follows. However, 
you should note that all the search methods described here could be easily extended to graph 
search with the extra bookkeeping (merging) process as illustrated in Steps 6a and 6b of 
Algorithm 12. l . 

• Forward search explored· area 
... . .-. '. 

0 
• ;. . • Backward .search explored area 

--- • -~- .• • • ◄◄--- . 

Figure 12,3 A bad case for bi-directional search, where the forward search and the backward 
search crossed each other [42]. 
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ALGORITHM 12.1: THE GRAPH-SEARCH ALGORITHM 
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Step 1: Initialization: ~ut _s in the O~EN list and create an initially empty CLOSE list 
step 2: If the OPEN list 1s empty, exit and declare failure. 
Step 3: Pop up the first node Nin the OPEN list remove it from the OPEN list and put it into 
the CLOSE list. 
Step 4: If node N is a goal node, exit successfully with the solution obtained by tracing back the 
path along the pointers from N to s. . 
Step 5: Expand node N by applying the successor operator to generate the successor set 
SS(N) of node N. Be sure to eliminate the ancestors of N from SS(N). 
Step 6: Vv e SS(N) do 

Sa. (optional) If v e OPEN and the accumulated distance of the new path is smaller than 
that for the one in the OPEN list, do 

(i) change the traceback (parent) pointer of v to N and adjust the accumulated 
distance for v . 

(ii) go to Step 7. 
Sb. (optional) ff v e CLOSE and the accumulated distance of the new path is smaller 

than the partial path ending at v in the CLOSE list, do 
(i) change the traceback (parent) pointer of v to N and adjust the accumulated 

distance for all paths that contain v . 
(ii) go to Step 7. 

6c. Create a pointer pointing to N and push it into the OPEN fist. .. 
Step 7: Reorder the OPEN list according to search strategy or some heunst,c measurement. 
Step 8: Go to Step 2. 

12.1.2. Blind Graph Search Algorithms 

If · bl th ·nstead of the best path, blind 
the aim of the search problem is to find an accepta e pa 1 

. h d blindly 
search • d • th~ OPEN ltst t e same an 

. 1s often used. Blind search treats eve?' no e 10 
. _ wledae. Since blind search 

decides the order to be expanded without usmg any domain kno, 0 

1 ust,·ve search be-
tre ts ifi m searc tor ex za ' 

a every node equally, it is often referred to as um 01 
• ally not interested in 

~a_use it exhaustively tries out all possible paths. 1~ A!, pe~p:; ::;yp;~phisticated heurisLic 
hnd search. However, it does provide a lot of insight 10 y d nodes randomly. In-

search algorithms. You should note that blind search does n;t exp: Two popular Lypes of 
s~ad, it follows some systematic way to explore the searc grap • 
bhnd search are depth-first search and breadth-firSt search. 
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12.1.2.1. Depth-First Search 

When we are in a maze, the most natural way to find a way out is to mark the branch we 
take whenever we reach a branching point. The marks allow us to go back to a choice point 
with an unexplored alternative, withdraw the most recently made. choice and undo all conse­
quences of the withdrawn choice whenever a dead-end is reached. Once the alternative 
choice is selected and marked, we go forward based on the same procedure. This intuitive 
search strategy is called backtracking. The famous N-queens puzzle [32] can be handily 
solved by the backtracking strategy. 

Depth-first search picks an arbitrary alternative at every node visited. The search 
sticks with this partial path and works forward from the partial path. Other alternatives at the 
same level are ignored completely (for the time being) in the hope of finding a solution 
based on the current choice. This strategy is equivalent to ordering the nodes in the OPEN 
list by their depth in the search graph (tree). The deepest nodes are expanded first and nodes 
of equal depth are ordered arbitrarily. 

Although depth-first search hopes the current choice leads to a solution, sometimes the 
current choice could lead to a dead-end (a node which is neither a goal node nor can be ex­
panded further). In fact, it is desirable to have many short dead-ends. Otherwise, the algo­
rithm may search for a very long time before it reaches a dead-end, or it might not ever 
reach a solution if the search space is infinite. When the search reaches a dead-end, it goes 
back to the last decision point and proceeds with another alternative. 

Figure 12.4 shows all the nodes being expanded under the depth-first search algorithm 
for the city-traveling problem illustrated in Figure 12.1. The only differences between the 
graph search and the depth-first search algorithms are: 

l . The graph search algorithm generates all successors at a time (although all 
except one are ignored first), while depth-first search generates only one suc­
cessor at a time. 

2. The graph search, when successfully finding a path, saves only one path from 
the starting node to the goal node, while depth-first search in general saves 
the entire record of the search graph. 

. Depth-first search could be dangerous because it might search an impossible path th31 

is actually an infinite dead-end. To prevent exploring of paths that are too long, a deplh 
b d b • that oun _ca~ . e placed to constrain the nodes to be expanded, and any node reaching 
depth hmit 1s treated as a terminal node (as if it had no successor). . 

. The ge~eral graph search algorithm can be modified into a depth-first search algonthm 
as illustrated m Algorithm J 2.2. 
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,:' c ': ~_A_: . . .. . . . ... 
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\···. ,, •·• : 

~ B:• ~D : 
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Figure 12.4 The node-expanding procedure of the depth-first search for the path search prob­
lem in Figure 12.1. When it fails to find the goal city in node C, it backtracks to the parent and 
continues the search until it finds the goal city. The gray nodes are those that are explored. The 
dotted nodes are not visited during the search [42]. 

ALGORITHM 12.2: THE DEPTH-FIRST SEARCH ALGORITHM 

Step 1: Initialization: Put Sin the OPEN list and create an initially empty the CLOSE list. 
Step 2: If the OPEN list is empty, exit and declare failure. 
Step 3: Pop up the first node N in the OPEN list, remove it from the OPEN list and put it into the 
CLOSE list. 
Step 4: If node N is a goal node, exit successfully with the solution obtained by tracing back the 
path along the pointers from N to S. 

4a. If the depth of node N is equal to the depth bound, go to Step 2. 
Step 5: Expand node N by applying the successor operator to generate the successor set 
SS(N) of node N. Be sure to eliminate the ancestors of N from SS(N). 
S!ep 6: \iv e SS(N) do 

6c. Create a pointer pointing to N and push it into the OPEN list. 
step 7: Reorder the the OPEN list in descending order of the depth of the nodes. 

~Slep 8: Go to Step 2. 

599 
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12.1.2.2. Breadth-First Search 

One natural alternative to the depth-first search strategy is breadth-first search. Breadth-first 
search examines all the nodes on one level before considering any of the nodes on the next 
level (depth). As shown in Figure 12.5, node B would be examined just after node A. The 
search moves on level-by-level, finally discovering G on the fourth level. 

Breadth-first search is guaranteed to find a solution if one exists, assuming that a finite 
number of successors (branches) always follow any node. The proof is straightfoiward. If 
there is a solution, its path length must be finite. Let's assume the length of the solution is 
M. Breadth-first search explores all paths of the same length increasingly. Since the number 
of paths of fixed length N is always finite, it eventually explores all paths of length M. By 
that time it should find the solution. 

It is also easy to show that a breadth-first search can work on a search tree (graph) 
with infinite depth on which an unconstrained depth-first search will fail. Although a 
breadth-first might not find a shortest-distance path for the city-travel problem, it is guaran­
teed to find the one with fewest cities visited (minimum-length path). In some cases, it is a 
very desirable solution. On the other hand, a breadth-first search may be highly inefficient 
when all solutions leading to the goal node are at approximately the same depth. The 
breadth-first search algorithm is summarized in Algorithm 12.3. 

> 
2 

> 
3 

> 
4 

~ F : 
Figure 12.5 The node e d. • • • • • h ob-
lem in Figure 

12 1 
- x.pan mg procedure of a breadth-first search for the path searc pr 

are those that • • It searches thr0ugh each level until the goal is identified. The gray nodes 
are explored The d tt d d . . ) • o e no es are not v1s1ted during the search [42 • 
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ALGORITHM 12.3: THE BREADTH-FIRST SEARCH ALGORITHM 

Step 1: Initialization: ~u~ S in the O~EN list and create an initially empty the CLOSE list. 
step 2: If the OPEN 11st 1s empty, exit and declare failure. 
Step 3: Pop up the first node Nin the OPEN list, remove it from the OPEN list and put it into th 
CLOSE list. e 
Step 4: If node N is a goal node, exit successfully with the solution obtained by tracing back the 
path along the pointers from N to S. 
Step 5: Expand node N by applying the successor operator to generate the successor set 
SS(N) of node N. Be sure to eliminate the ancestors of N, from SS(N). 
Step 6: Vv E SS(N) do 

6c. Create a pointer pointing to N and push it into the OPEN list. 
Step 7: Reorder the OPEN list in increasing order of the depth of the nodes. 
Step 8. Go to Step 2. 

12.1.3. Heuristic Graph Search 

Blind search methods, like depth-first search and breadth-first search, have no sense (or 
guidance) of where the goal node lies ahead. Consequently, they often spend a lot of time 
searching in hopeless directions. If there is guidance, the search can move in the direction 
that is more likely to lead to the goal. For example, you may want to find a driving route to 
the World Trade Center in New York. Without a map at hand, you can still use a straight­
line distance estimated by eye as a hint to see if you are closer to the goal (World Trade 
Center). This hill-climbing style of guidance can help you to find the destination much· more 
efficiently. 

Blind search finds only one arbitrary solution instead of the optimal solution. To find 
the optimal solution with depth-first or breadth-first search, you must not stop searching 
when the first solution is discovered. Instead, the search needs to continue until it reaches all 
the solutions, so you can compare them to pick the best. This strategy for finding the opti~al 
solution is called British Museum search or brute-force search. Obviously, it is unfeasible 
when the search space is large. Again, to conduct selective search and yet still be able to find 

the optimal solution, some guidance on the search graph is necessary. . 
The guidance obviously comes from domain-specific knowledge. Such knowle~ge is 

usually referred to as heuristic information, and search methods taking advantage. 0 ~ tt are 
Called heuristic search methods. There is usually a wide varie~ of diffe~en~ heun~tic~tor 
the problem domain. Some heuristics can reduce search effort without sacnficmg optlm ty, 
Wh'l • 1 l ti In most 1 e 0ther can greatly reduce search effort but provide only sub-optima so u ons. . 
practical problems, the choice of different heuristics is usually a tradeoff between the quahty 

of the solution and the cost of finding the solution. 
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... , ·maci·o11 works like an evaluation function h(N) that maps each node N Heunst1c m101 . 
b d Whl.ch serves to indicate the relative goodness (or cost) of continuing to a real num er, an . . . . 

I h f that node Since in our city-travel problem. straight-line distance is a the searc 1 pat rom • • . . 
I f easurl·ng the goodness of a path. we can use the heunst1c function h(N) for natura way o m · 

the distance evaluation as: 

h(N)=Heuristic estimate of the remaining distance from node N to goal G ( 12.1) 

Since g(N), the distance of the partial path to the current node N, is generally known, we 

have: 

g(N)=The distance of the partial path already traveled from root S to node N ( I 2.2) 

We can define a new heuristic function, f (N) , which estimates the total distance for the 
path (not yet finished) going through node N. 

/(N) = g(N)+h(N) (l 2.3) 

A heuristic search method basically uses the heuristic function f (N) to re-order the 
OPEN list in the Step 7 of Algorithm 12. l. The node with the best heuristic value is ex­
plored first (expanded first). Some heuristic search strategies also prune some unpromising 
partial paths forever to save search space. This is why heuristic search is often referred to as 
heuristic pruning. 

The choice of the heuristic function is critical to the search results. If we use one that 
overestimates the distance of some nodes, the search results may be suboptimal. Therefore, 
heuristic functions that do not overestimate the distance are often used in search methods 
aiming to find the optimal solution. 

To close .this section, we describe two of the most popular heuristic search methods: 
best-first (or A Search) [32, 43] and beam search (43]. They are widely used in many com­
ponents of spoken language systems. 

12.1.3.1. Best-First (A. Search) 

Once w~ have a reasonable heuristic function to evaluate the goodness of each node in 1h.e 
OPEN hst, we can explore the best node (the node with smallest f(N) value) first, since it 

offers the best hope of leading to the best path. This natural search strate0 y is called best-
firsr search. To implement best-first search based on the Algorithm 12.l c we need to first 
evaluate f (N) for h ' . • St p 6 eac successor before putting the successors in the OPEN list tn e • 
W~ al.so. need to sort the elements in the OPEN list based on f(N) in Step 7, so that the t,eSI 

~o e 1~ m t~e front-most position waiting to be expanded in Step 3. The modified procedure i~::: 
0
~rr;~n~ best-~rst search is illustrated in Algorithm 12.4. To avoid duplicating no~es 

P
rincipl Th hS

t, we include Sfeps 6a and 6b to take advantage of the dynamic programm~ng 
e. ey perform the ne d d b . . ths 1ead1ng • t th e e ookkeepmg process to merge different pa m o e same node. 
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ALGORITHM 12.4: THE BEST-FIRST SEARCH ALGORITHM 

Step 1: Initialization: '.u~ Sin the O~EN list and create an initially empty the CLOSE list. 
Step 2: If the OPEN hst 1s empty, exit and declare failure. 
Step 3. Pop up the first node Nin the OPEN list, remove it from the OPEN list and put it into the 
CLOSflist. 
Step 4: If node N is a goal node, exit successfully with the solution obtained by tracing back the 
path along the pointers from N to S. 
Step 5: Expand node N by applying the successor operator to generate the successor set 
SS(N) of node N. Be sure to eliminate the ancestors of N, from SS(N'). 
Step 6: 'rive SS(N) do 

6a. (optional) If v e OPEN and the accumulated distance of the new path is smaller than 
that for the one in the the OPEN list, do 

(i) Change the traceback (parent) pointer of v to N and adjust the accumulated 
distance for v . 

(ii) Evaluate heuristic function /(v) for v and go to Step 7. 
6b. (optional) If v e CLOSE and the accumulated distance of the new path is small than 

the partial path ending at v in the the CLOSE list, 
(i) Change the traceback (parent) pointer of v to N and adjust the accumulated 

distance and heuristic function J for all the paths containing v • 

(ii) go to Step 7. 
6c. Create a pointer pointing to N and push it into the OPEN list. 

Step 7: Reorder the the OPEN list in the increasing order of the heuristic function /(N). 

Step 8: Go to Step 2. 

. . . . . 'f • arantee to find an optimal solu-
A search algorithm 1s said to be adm1ss1ble 1 1t can gu . . 

t. . - • f t' h(N) of estimating the re-
ion, if one exists. Now we show that if the heunstlc unc 10

~ . N 
• - . . d • ate- of the true distance from 

mammg distance from N to goal node G 1s an un ere5cim . . . 1 f 
t 

. Al 'thm 12 4 1s adm1ss1ble. n act, 
0 goal node G the best-first search illustrated 10 gon • • d 
h 

' 1 • h • called A {pronounce as 
w en h(N) satisfies the above criterion, the best-first a gont m is 
lehf-star) Search -• When the frontmost node m the 

The proof can be carried out infonnally as follows. 
OPEN list is the goal node G in Step 4, it immediately implies that 

'rive OPEN f(v)?:. /(G) = g(G)+h(G) == g(G) 
( 12.4) 

1 ----------- - !he distance from N to G. 
For ad • . . . . , r ction not overesumate al 

S
. . m1ss1b1hty, we actually require only that the heunsuc un h t 1his chapter without loss of gener • 
•nee II is d -t' mate throug ou 

ily So _very rare lo have an exact estimate, we use un eres I d (mate of the trUe value. 
• rncumes we refer to an underestimate function as a lower-boun es 

1 
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Equation (I 2.4) says that the di_stance est!mate of a?y incomplete path is no shorter 
than the_ first found complete path. Smee the _distance estimate for any incomplete path is 
underest11nated, the first found complete path m Step 4 must be the optimal path. A similar 
argument can also be used to prove that the Step 6b is actually not necessary for admis "bl 
h . . f . h . th s1 e 

eur_1st1c unctions; t at 1s, ere cannot be another path with a shorter distance from the 
starting node to a node that has been expanded. This is a very important feature since St 
6b is, in general, very expensive and it requires significant updates of many already e:~ 
panded paths. 

The A · search method is actually a family of search algorithms. When h(N) = o for all 
N, the search degenerates into an uninfonned search3 [40] . .In fact, this type of uninformed 
search is the famous branch-and-bound search algorithm that is often used in many opera­
tions research problems. Branch-and-bound search always expands the shortest path leading 
into an open node until there is a path reaching the goal that is of a length no longer than all 
incomplete paths terminating at open nodes. When g( N) is defined as the depth of the node 
N, the use of heuristic function f(N) makes the search method identical to breadth-first 
search. In Section 12.1.2.2, we mention that breadth-first search is guaranteed to find a 
minimum length path. This can certainly be derived from the admissibility of the A' search 
method. 

When the heuristic function is close to the true remaining distance, the search can usu­
ally find the optimal solution without too much effort. In fact, when the true remaining dis­
tances for all nodes are known, the search can be done in a totally greedy fashion without 
any search at all, i.e., the only path explored is the solution. Any non-zero heuristic function 
is then calJed an informed heuristic function, and the search using such a function is called 
informed search. A heuristic function hi is said to be more informed than a heuristic func­
tion h,_ if the estimate hi is everywhere larger than hi and yet still admissible (underesti­
mate). Finding an informed admissible heuristic function (guaranteed to underestimate for 
all nodes) is, in general, a difficult task. The heuristic often requires extensive analysis of the 
domain-specific knowledge and knowledge representation. 

Let's look at a simple example-the 8-puzzle problem. The 8-puzzle consists of eight 
numbered, movable tiles set in a 3 x 3 frame. One cell of this frame is always empty, so it is 
possible to move an adjacent numbered tile into the empty cell. A solution for the 8-puzzle 
is to find a sequence of moves to change the initial configuration into a given goal configu­
ration as shown in Figure 12.6. One choice for an informed admissible heuristic function _h. 
is the number of misplaced tiles associated with the current configuration. Since eac~ mi~­

placed tile needs to move at least once to be in the right position, this heuristic function is 
clearly a lower bound of the true movements remaining. Based on this heuristic function, the 
value for the initial configuration will be 7 in Figure 12.7. If we examine this problem fur­
ther a more infonned heuristic function h,_ can be defined as the sum of all row and column 
dist~nces of all misplaced tiles and their goal positions. For example, th~ _row_ and col~; 
distance between the tile 8 in the initial configuration and the goal pos1t10n is 2 + I- ' 

' In some literature an uninformed search is referred to as uniform-cost search. 
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8 2 1 1 2 3 

6 4 4 5 6 

5 3 7 7 8 
Figure 12.6 Initial and goal configurations for the 8-puzzle problem. 

which indicates that one must move tile 8 at least 3 times in order for it to be in the right 
position. Based on the heuristic function h2, the value for the initial configuration will be 16 
in Figure 12.6. h2 is again admissible. 

In our city-travel problem, one natural choice for the underestimating heuristic func­
tion of the remaining distance between node N and goal G is the straight-line distance since 
the true distance must be no shorter than the straight-line distance. 

Figure 12.7 shows an augmented city-distance map with straight-line distance to goal 
node attached to each node. Accordingly, the heuristic search tree can be easily constructed 
for improved efficiency. Figure 12.8 shows the search progress of applying the A' search 
algorithm for the city-traveling problem by using the straight-line distance heuristic function 
to estimate the remaining distances. 

8.5 5.7 28 
;,.....-__ 3 _ __,;fc'L---3--~ 

\.::._J 

7 
Figur 12 7 . . . , • • ~ t' on The numbers be-
. e · The city-travel problem auomented with heuristic 10 orma 1 • 

side h o G [4'1 eac node indicate the straight-line distance to the goal node - • 
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Figure 12.8 The search progress of applying A" search for the city-travel problem. The search 
detennines that path S-A-C-E-G is the optimal one. The number beside the node is/values on 
which the sorting of the OPEN list is based [42]. 

12.1.3.2. Beam Search 

Sometimes, it is impossible to find any effective heuristic estimate, as required in A* search, 
particularly when there is very little (or no) information about the remaining paths. For ex­
ample, in real-time speech recognition, there is little information about what the speaker will 
utter for the remaining speech. Therefore, an efficient uninformed search strategy is very 
important to tackle this type of problem. 

Breadth-first style search is an important strategy for heuristic search. A breadth-first 
search virtually explores all the paths with the same depth before exploring deeper paths. In 
practice, paths of the same depth are often easier to compare. It requires fewer heuristics to 
rank the goodness of each path. Even with uninformed heuristic function ( h(N) = 0 ), lhe 
direct comparison of g (distance so far) of the paths with the same length should be 3 rea­
sonable choice. 

~eam search is a widely used search technique for speech recognition systems l:~• 31. 
37). It is a breadth-first style search and progresses along with the depth. Unlike tradiuonal 
breadlb-firSl search, however, beam search only expands nodes that are likely to succe~ at 
each level. Only these nodes are kept in the beam and the rest are ignored (pruned) for im· 
proved efficiency. ' 

In general, a beam search only keeps up to w best paths at each stage (level), and !he 
rest of the paths are d' d d Th . h ,n..e num· b iscar e • e number w is often referred to as beam wtdt • 111 

• 

~r of_nodes explored remains manageable in beam search even if the whole search space: 
~1~anuc. ~f a beam width w is used in a beam search with an average branching faccorbe; 
n Y wx nodes need to be explored at any depth, instead of the exponential num 
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needed for breadth-fir~t search. Suppose that a beam width of 2 is used for the city-travel 
problem. figure 12.9 1llustrales how beam search progresses to find the path. We can also 
see that the beam search saved a large number of unneeded nodes, as shown by the dotted 

nodes. 
The beam search. algorith~1 cun be eusily. mo~i~ied from the breadth-first search algo­

rithm and is illustrated m Algonthm _l 2.5. For s1'.11phc1ty, we do not include the merging step 
here. In Algorithm 12.5, Step 4 obviously requires sorting, which is time-consuming if the 
number wxb is huge. In practice, the beam is usually implemented as a flexible list where 
nodes are expanded if their heuristic functions J (N) are within some threshold (a.k.a., beam 
threshold) of the best node (the smallest value) at the same level. Thus, we only need to 
identify the best node and then prune away nodes that are outside of the threshold. Although 
this makes the beam size change dynamically, it significantly reduces the effort for sorting 
of the Beam-Candidate list. In fact, by adjusting the beam threshold, the beam size can be 
controlled indirectly and yet kept manageable. 

Unlike A' search, beam search is an approximate heuristic search method that is not 
admissible. However, it has a number of unique merits. Because of its simplicity in both its 
search strategy and its requirement of domain-specific heuristic information, it has become 
one of the most popular methods for complicated speech recognition problems. It is particu­
larly attractive when integration of different knowledge sources is required in a time­
synchronous fashion. It has the advantages of providing a consistent way of exploring nodes 
level by level and of offering minimally needed communication between different paths. It 
is also very suitable for parallel implementation because of its breadth-first search nature. 

7 

11 

• ... . .. . 
~ C : .. . .. 

. ·· •: 
; B •. ·. : 

,: D : ... .. 

Figure 12 'th ray color are the ones 
kepi . •9 Beam search for the city-travel problem. The nodes wi g f h'igher cos!. The 

in the b d b t ned because o d eam. The transparent nodes were explore u pru 
OIied node • d' • [42] s in 1cate all the savings because of pruning • 
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ALGORITHM 12.5: THE BEAM SEARCH ALGORITHM 

Step 1: Initialization: Put Sin the ~PEN list and cr?ate an initially empty CLOSElist. 
Step 2: If the OPEN list is empty, ex,t and declare failure. 
Step 3: VN e OPEN do 

3a. Pop up node N in the OPEN list, remove it from the OPEN list and put it into the 

CLOSE list. 
3b. If node N is a goal node, exit successfully with the solution obtained by tracing back the 

path along the pointers from N to S. 
3c. Expand node N by applying a successor operator to generate the successor set SS{N) 

of node N. Be sure to eliminate the successors, which are ancestors of N, from SS(N/. 
3d. Vv e SS(N) Create a pointer pointing to N and push it into Beam-Candidate list. 

Step 4: Sort the Beam-Candidate list according to the heuristic function J (N) so that the best 
w nodes can be pushed into the the OPEN list. Prune the rest of nodes in the Beam-Candidate 
list. 
Step 5: Go to Step 2. 

12.2. SEARCH ALGORITHMS FOR SPEECH RECOGNITION 

As described in Chapter 9, the decoder is basically a search process to uncover the word 
sequence W = w, w2 ••• w., that has the maximum posterior probability P(WIX) for the given 
acoustic observation X = X1X2 .•• X,,. That is, 

W=argmaxP(WI X) =argmax P(W)P(X I W) ==argmax P(W)P(XI W) (12.5) 
• ,. P(X) ,. 

One obvious way is to search all possible word sequences and select the one with the beSt 
posterior probability score. 

The unit of acoustic model P(XIW) is not necessary a word model. For large­
vocabulary speech recognition systems, subword models which include phonemes, demisyl­
lables, ~d syllables are often used. When subword ~odels are used, the word model 
P(XIW) ts th bta" db · • . . ~n ° me Y concatenating the subword models according to the pronuocra· 
lion transcnpt1on of the words in a lexicon or dictionary. 

When word models are available, speech recognition becomes a search problem. Toe 
goal for speech recogn • t' • th · the 
• 

1 ton is us to find a sequence of word models that best descnbes 
tnput waveform agai t th d d~rV 
f h 

ns e wor models. As neither the number of words nor the boun "' 1 

o eac word or phone • th • • to 
d I .th h . me 10 e mput waveform is known appropriate search strategies 
ea w1 t ese vanable I h . , 

When HMM • engt nonstatmnary patterns are extremely important. 
expanded to i ~ are used for speech recognition systems, the states in the HMM can be 
speech model~~l~h e st~te-search space in the search. In this chapter, we use HMMs as o~~ 

• oug the HMM framework is used to describe the search algorithms, a 
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techniques mentioned in this and the followino chapter can be u d .- b 
. . . _ e- se 1or systems ased on 

Other modeling techmques, mcludmg template matchino and neural tw k 1 .-
- . o ne or s. n 1act, many 

-~~,...h iechmques had been invented before HMMs were appl·ied t h . -,.,....~ . . o speec recogmt1on. 
Moreover, the HMMs state tr..tns111on network is actually general enough lo represent the 
general search framework for all modeling approaches. 

12.2.1. Decoder Basics 

The lessons learned from dynamic programming or the Viterbi algorithm introduced in 
Chapter 8 tell us that the exponential blind search can be avoided if we can store some in­
termediate optimal paths (results). Those intermediate paths are used for other paths without 
being recomputed each time. Moreover, the beam search described in the previous section 
shows us that efficient search is possible if appropriate pruning is employed to discard 
highly unlikely paths. In fact., all the search techniques use two strategies: sharing and prun­
ing. Sharing means that intermediate results can be kept. so that they can be used by other 
paths without redundant re-computation. Pruning means that unpromising paths can be dis­
carded reliably without wasting time in exploring them further. 

Search strategies based on dynamic programming or the Viterbi algorithm with the 
help of cleYer pruning, have been applied successfully to a wide range of speech recognjtion 
tasks (31], ranging from small-vocabulary tasks, like digit recognition, to unconstraint large­
vocabulary (more than 60,000 words) speech recognition. All the efficient search algorithms 
we discuss in this chapter and the next are considered as variants of dynarruc programming 
or the Viterbi search algorithm. 

In Section 12.1, cost (distance) is used as the measure of goodness for graph search a~­
gorithms. With Bayes' fonnulation, searching the minimum-cost path (word ~quence) 15 

equivalent to finding the path with maximum probability. For the s~ke of constStency, we 
use the inverse of Baves' posterior probability as our objective funcuon. Furthem.ore, loga­
• • . . ·d 1 • 1· • s That 1s the fol-nthms are used on the inverse posterior probab1hty to avo1 mu ~•P icauon • ' 

lowing new criterion is used to find the optimal word sequence W : 

C(W ]X)=log j _ 1 _ . l=-log[P(W)P(XlW)] 
LP(W )P(X ; W) J 

(12.6) 

W = argmin C(W l X) 
(12.7) 

... 

~ . mirror the likelihood for 
Or SUllplicity, we also define the following cost measures 10 

<lcoustic models and language models: 
(12.8) 

C(X • WJ=-log[P<X • W;] 

(12.9) 

C{WJ ==-log[P<W)] 
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12.2.2. Combining Acoustic and Language Models 

Although Bayes' equation [Eq. (12.5)] suggests that the acoustic model probability (condi­
tional probability) and language model probability (prior probability) can be combined 
through simple multiplication, in practice some weighting is desirable. For example, when 
HMMs are used for acoustic models, the acoustic probability is usually underestimated, ow­
ing to the fallacy of the Markov and independence assumptions. Combining the language 
model probability with an underestimated acoustic model probability according to Eq. (12.5) 
would give the language model too little weight. Moreover, the two quantities have vastly 
different dynamic ranges particularly when continuous HMMs are used. One way to balance 
the two probability quantities is to add a language model weight L W to raise the language 
model probability P(W) to that power P(W/w [4, 25]. The language model weight LW is 
typically detennined empirically to optimize the recognition performance on a development 
set. Since the acoustic model probabilities are underestimated, the language model weight 
L W is typically > l . 

Language model probability has another function as a penalty for inserting a new word 
(or existing words). In particular, when a uniform language model (every word has an equal 
probability for any condition) is used, the language model probability here can be viewed as 
purely the penalty of inserting a new word. If this penalty is large, the decoder will prefer 
fewer longer words in general, and if this penalty is small, the decoder will prefer a greater 
number of shorter words instead. Since varying the language model weight to match the 
underestimated acoustic model probability will have some side effect of adjusting the pen­
alty of inserting a new word, we sometimes use another independent insertion penalty to 
adjust the issue of longer or short words. Thus the language model contribution becomes: 

(12.10) 

where IP is the insertion penalty (generally 0 <JP~ l .0) and N(W) is the number of words 
in sentence W. According to Eq. (12.10), insertion penalty is generally a constant that is 
added to the negative-logarithm domain when extending the search to another new word. In 
Chapter 9, we described how to compute errors in a speech recognition system and intro· 
duced three types of error: substitutions, deletions and insertions. Insertion penalty is so 
named because it usually affects only insertions. Similar to language moue! weight, the in­
sertion penalty is detennined empirically to optimize the recognition perfonnance on a de­
velopment set. 

12.2.3. Isolated Word Recognition 

W• h • I • · ·1 ble, It iso ated word recogmt1on, word boundaries are known. If word HMMs are avai a 
!he acoustic model probability P(XIW) can be computed usino the forward algorithm intro· 
d d' Ch 8 Th O dtheword 

uce m apter • e search becomes a simple pattern recognition problem, an 
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w with highest forward probability is then chosen as the reco • d d 
d d HMM . gmze wor . When subword 

models are use • wor s can be easily constructed by concate t· . . h na mg correspondmg 
Phoneme HMMs 01 ot er types of subword HMMs according to th d d . . e proce ure escnbed in 
Chapter 9. 

12.2.4. Continuous Speech Recognition 

Search in continuous :peech recognition is rather complicated, even for a small vocabulary. 
since the search algonthm has to consider the possibility of each word starting at any arbi­
trary time frame. Some of the earliest speech recognition systems took a two-stage approach 
towards continuous speech recognition, first hypothesizing the possible word boundaries and 
then using pattern matching techniques for recognizing the segmented patterns. However, 
due to significant cross-word co-articulation, there is no reliable segmentation algorithm for 
detecting word boundaries other than doing recognition itself. 

Let's illustrate how you can extend the isolated-word search technique to continuous 
speech recognition by a simple example, as shown in Figure 12.10. This system contains 
only two words, w1 and w2• We assume the language model used here is an unifonn unigram 
(P(w1)= P(w2 );;::;1/2). 

It is important to represent the language structures in the same HMM framework. In 
Figure 12.10, we add one starting state S and one collector state C. The starting state has a 
null transition to the initial state of each word HMM with corresponding language model 
probability (1/2 in this case). The final state of each word HMM has a null transition to the 
collector state. The collector state then has a null transition back to the starting state in order 
to allow recursion. Similar to the case of embedding the phoneme (subword) HMMs into the 
word HMM for isolated speech recognition, we can embed the word HMMs for w. and wi 

inlo a new HMM corresponding to structure in Figure 12.10. Thus, the continuous speech 
search problem can be solved by the standard HMM formulations. 

HMM of 
w, 

r· • • t k with two words 1111 and 
•gure 12.10 A simple example of continuous speech recognition as S . h ·tarting state 

w A -~ . . d f th words State 1st es :· un11orm umgram language model 1s assume or ese • rd • 
wh·1 d 1· k b t een every wo pair. 1 e state C is a collector state to save fully expande m s e w 
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The composite HM Ms shown in Figure 12. IO can be viewed as a stochastic finite state 
network with transition probabilities and output distributions. The search algorithm is essen­
tially producing a match between the acoustic observation X and a path' in the stochastic 
finite state network. Unlike isolated _word recognition, continuous speech recognition needs 
to find the optimal word sequence W . Th~ Viterbi algorithm is clearly a natural choice for 
this task since the optimal state sequence S corresponds to the optimal word sequence w. 
Figure 12.J l shows the HMM Viterbi trellis computation for the two-word continuous 
speech recognition example in Figure 12.10. There is a cell for each state in the stochastic 
finite state network and each time frame t in the trellis. Each cell C,., in the trellis can be 
connected to a cell corresponding to time t or t+ I and to states in the stochastic finite state 
network that can be reached from s. To make a word transition, there is a null transition to 
connect the final state of each word HMM to the initial state of the next word HMM that can 
be followed. The trellis computation is done time-synchronously from left to right, i.e., each 
cell for time tis completely computed before proceeding to time t+ 1. 
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Figure 12.11 HMM trellis for . 
the final state of the d HM con_ttnuous speech recognition example in Figure l 2. IO. ~en 
from it to the initial tor f M is r~ched, a null arc (indicated by a dashed line) is hnked 

s ate o the following word. 

'A 
path here means a sequence of stares and transitions. 
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The state-space is a good indicator of search complexity. Since the HMM representation for 
each word in the lexicon is fixed, the state-space is detennined by the language models. Ac­
cording to Chapter 11, every language model (grammar) is associated with a state machine 
(automata). Such a state machine is expanded to form the state-space for the recognizer. The 
states in such a state machine are referred to as language models states. For simplicity, we 
will use the concepts of state-space and language model states interchangeably. The expan­
sion of language model states to HMM states will be done implicitly. The language model 
states for isolated word recognition are trivial. They are just the union of the HMM states of 
each word. In this section we look at the language model states for various grammars for 
continuous speech recognition. 

12.3.1. Search Space with FSM and CFG 

As described in Chapter 8, the complexity for the Viterbi algorithm is O(N2T), where N is 
the total number of states in the composite HMM and Tis the length of input observation. A 
full time-synchronous Viterbi search is quite efficient for moderate tasks (vocabulary ~ 
500). We have already demonstrated in Figure 12. ll how to search for a two-word continu­
ous speech recognition task with a uniform language model. The uniform language model, 
which allows all words in the vocabulary to follow every word with the same probability, is 
suitable for connected-digit task. In fact, most small vocabulary tasks in speech recognition 
applications usually use a finite state grammar (FSG). 

Figure 12.12 shows a simple example of an FSM. Similar to the process described in 
Sections 12.2.3 and 12.2.4, each of the word arcs in an FSG can be expanded as a network 
of phoneme (subword) HMMs. The word HMMs are connected with null transitions with 
the grammar state. A large finite state HMM network that encodes all the legal sentences 
can be constructed based on the expansion procedure. The decoding process is achieved by 
performing a time-synchronous Viterbi search on this composite finite state HMM. 

. In practice, FSGs are sufficient for simple tasks. However, when an FSG is made to 
sal!sfy the constraints of sharing of different sub-grammars for compactness and support for 
dynamic modifications, the resulting non-deterministic FSG is very similar to context-free 
~rammar (CFG) in terms of implementation. The CFG grammar consists of a set of pr~duc­
hons or rules, which expand nonterminals into a sequence of terminals and nontennmals. 
Nonterminals in the grammar tend to refer to high-level task-specific concepts such as dates, 
names, and commands. The terminals are words in the vocabulary. A grammar also has a 
non-tenn1· I d . . na es1gnated as its start state . 

. Altbough efficient parsing algorithms, like chart parsing (described in Chapter 11 ),_ are 
avatlab]e for CFG, they are not suitable for speech recognition, which require~ _ left-to-ngh: 
r;Ocessing. A context-free grammar can be formulated with a recursive ~Slt~On n~~w:~n 

TN). RTNs are more powerful and complicated than the finite state machines escn e • 
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Chapter 11 because they allow arc labels to refer to other networks as well as words. We use 
Figure 12.13 to illustrate how to embed HMMs into a recursive transition network. 

Figure 12.13 is an RTN representation of the following CFG: 

S➔ NP VP 

NP➔ sam I sam davis 
VP ➔ VERB tom 

VERB ➔ likes I hates 

There are three types of arcs in an RTN, as shown in Figure 12.13; CAT(x), PUSH (x), 
and POP(x). The CAT(x) arc indicates that x is a tenninal node (which is equivalent to a 
word arc). Therefore, all the CAT(x) arcs can be expanded by the HMM network for x. The 
word HMM can again be a composite HMM built from phoneme (or subword) HMMs. 
Similar to the finite state grammar case in Figure 12.12, each grammar state acts as a state 
with incoming and outgoing null transitions to connect word HMMs in the CFG. 

During decoding, the search pursues several paths through the CFG at the same time. 
Associated with each of the paths is a grammar state that describes completely how the path 
can be extended further. When the decoder hypothesizes the end of the current word of a 
path, it asks the CFG module to extend the path further by one word. There may be several 
alternative successor words for the given path. The decoder considers all the successor word 
possibilities. This may cause the path to be extended to generate several more paths to be 
considered, each with its own grammar state. 

/w/ /ti 

..-------;~ 

/ah/ /silence/ 

/w/ + /ah/ + It! -------' 
/silence/ 

(optional) 

i 
Seattle's I weather 

:--_B_o_st_o_n_'s_'\--;J/ popu la ti on ~ 
Denver's ~ latitude / 

Figure 12.12 An illustration of how to compile a speech recognition task with finite state 
grammar into a composite HMM. 
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S: 

PUSH(NP) PUSH(VP) 

r:'\~ pop 

V ~~ 
CAT (sam) 

CAT (davis) 

NP: 0 
CAT (Sam) 

CAT 

CAT (likes) CAT(tom) 

VP: 

CAT (hates) 

Figure 12.13 A simple RTN example with three types of arcs: CAT(x), PUSH (x), POP. 

. Readers should note that the same word might be under consideration by the decoder 
•n the context of different paths and grammar states at the same time. For example, there are 
t~o word arcs CAT (Sam) in Figure 12.13. Their HMM states should be considered as dis­
tmct states in the trellis because they are in completely different grammar states. Two differ­
ent states in the trellis also means that different paths going into these two states cannot be 
~erged. Since these two partial paths will lead to different successive paths, the search deci­
sion needs to be postponed until the end of search. Therefore, when embedding HMMs into 
word arcs in the grammar network, the HMM state will be assigned a new state identity, 
alth0ugh the HMM parameters (transition probabilities and output distributions) can still be 
shared across different grammar arcs. 

. Each path consists of a stack of production rules. Each element of the stack also con­
tains the position within the production rule of the symbol that is currently being explored. 
The search graph (trellis) started from the initial state of CFG (state S). When the path needs 
to be extended, we look at the next arc (symbol in CFG) in the production. When the search 
~nters a CAT(x) arc (tenninal), the path gets extended with the terminal, an~ the HMM tre_l-
15 computation is perfonned on the CAT(x) arc to match the model x agamst the acoustic 

data. When the final state of the HMM for x is reached, the search moves on via the null 
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transition to the destination of the CAT(x) arc. When the search enters a PUSH(x) arc, it 
indicates a nontem1inal symbol xis encountered. In effect, the search is about to enter a sub­
network of x; the. destination of the PUSH(x) arc is stored in a last-in first-out (LIFO) stack. 
When the search reaches a POP arc that signals the end of the current network, the control 
should jump back to the calling network. In other words, the search returns to the state ex­
tracted from the top of the LIFO stack. Finally, when we reach the end of the. production rule 
at the very bottom of the stack, we have reached an accepting state in which we have seen a 
complete grammatical sentence. For our decoding purpose, that is the state we want to pick 
as the best score at the end of time frame T to get the search result. 

The problem of connected word recognition by finite state or context-free grammars is 
that the number of states increases enormously when it is applied to more complex gram­
mars. Moreover it remains a challenge to generate such FSGs or CFGs from a large corpus, 
either manually or automatically. As mentioned in Chapter 11, it is questionable whether 
FSG or CFG is adequate to describe natural languages or unconstrained spontaneous lan­
guages. Instead, n-gram language models are often used for natural languages or uncon­
strained spontaneous languages. In the next section we investigate how to integrate various 
n-grams into continuous speech recognition. 

12.3.2. Search Space with the Unigram 

The simplest n-grarn is the unigram that is memory-less and depends only on the current 
word. 

II 

P(W) = IT P(w,) (12.11) 
i•l 

Figure 12.14 shows such a unigram grammar network. The final state of each word 
HMM is connected to the collector state by a null transition, with probability 1.0. The col­
lector state is then connected to the starting state by another null transition, with transition 
probability equal to 1.0. For word expansion, the starting state is connected to the initial 
state of each word HMM l:,y a null transition, with transition probability equal to the corre­
sponding unigram probability. Using the collector state and starting state for word expansion 
allows efficient expansion because it first merges all the word-ending paths~ (only the best 
one survives) before expansion. It can cut the total cross-word expansion from N2 to N. 

' In graph ~carch, a panial path still under consideration is also referred to as a theory. although we will use palhs 
instead of theories in this book. 
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Figure 12.14 A unigram grammar network where the unigram probability is attached as the 
transition probability from staning state S to the first state of each word HMM. 

12.3.3. Search Space with Bigrams 

617 

When the bigram is used, the probability of a word depends only on the immediately preced­

ing word. Thus, the language model score is: 

n 

P(W)=P(w1 l<s>)IlP(w, lw1-1) 
(12.12) 

/:a2 

where <s> represents the symbol of starting of a sentence. 
Figure 12.15 shows a grammar network using a bigram language model. Because of 

~~ bigram constraint, the merge-and-expand framework for unigram search no long:r ap­
P •es here. Instead, the bigram search needs to perfonn expand-and-merge. Thus, bigram 
expansion is more expensive than unigram expansion. For a vocabulary size N, the bigram 
would need N1 word-to-word transitions in comparison to N for the unigram. Each wo

rd 

transition has a transition probability equal to the corresponding bigram probability. Fortu­
n_ately, the total number of states for bigram search is still proportional to the vocabulary 
s1zeN. 
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Figure 12.15 A bigrarn grammar network where the bigram probability P(w1 I w;) is at­
tached as the transition probability from word W; to w1 ( I 9). 

Because the search space for bigram is kept manageable, bigram search can be imple­
mented very efficiently. Bigram search is a good compromise between efficient search and 
effective language models. Therefore, bigram search is arguably the most widely used 
search technique for unconstrained large-vocabulary continuous speech recognition. Particu­
larly for the multiple-pass search techniques described in Chapter 13, a bigram search is 
often used in the first pass search. 

12.3.3.1. Backoff Paths 

When the vocabulary size N is large, the total bigram expansion N 2 can become computa­
tionaUy prohibitive. As described in Chapter 11, only a limited number of bigrams are ob­
servable in any practical corpora for a large vocabulary size. Suppose the probabilities for 
unseen bigrams are obtained through Katz's backoff mechanism. That is, for unseen bigram 
P(w1 I w,), 

(12.13) 

where a(w,) is the backoff weight for word w,. 
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Using the backoff mechanism for unseen bigrams, the bigram expansion can be sig­
nificantly reduced [ 12]. Figure 12.16 shows the new word expansion scheme. Instead of full 
bigram expansion, only ob_s~~ved bigrams are c_onnected by direct word transitions with cor­
respondent bigram probab1httes. F~r backo'.~ b1grams, t~e last state of word w, is first con­
nected to a central backoff node wuh trans,uon probability equal to backoff weight a( 111, ). 
The backoff node is then connected to the beginning of each word III with transition prob­
ability equal to its corresponding uni gram probability P( w1) . Readeri should note that there 
are now two paths from w, to w1 for an observed big ram P( w1 1 w, ). One is the direct link 
representing the observable bigram P( wi \ w,), and the other is the two-link backoff path 
representing a(w,)P(w1) . For a word pair whose bigram exists, the two-link backoff path is 
likely to be ignored since the backoff unigram probability is almost always smaller than the 
observed bigram P( wi I W;). Suppose there are only N6 different observable bigrams, this 
scheme requires Nh + 2N instead of N2 word transitions. Since under normal circumstance 
N « N2 , this backoff scheme significantly reduces the cost of word expansion. 

6 

backoff node 

Figure 12.16 Reducing bigram expansion in a search by using the backoff node. In_ addition to 
· d b' th I t state of word w 1s first con-nonnal b1gram expansion arcs for all observe 1grams, e as , . 

nected to a central backoff node with transition probability equal to backoff weight a(w! ) • 
• h ·1 espondmg 

The backoff node is then connected to the beginning of each word w J wtt 1 5 corr 

unigramprobability P(w1) [12]. 

12.3.4. Search Space with Trigrams 

For a trigram language model, the language model score is: 

P(W) = P(w1 I <s>)P(w
2 

I <S>, w1)I1 P(w, I w,-2, W;_,) 
i=-3 

()2. 14) 
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The search space is considerably more complex, as shown in Figure 12.17. Since the equ· 
!Va­

lence grammar class is the previous two words w, ~d w1 , ~e. total number of grammar 
states is N 2

• From each of these grammar states, there 1s a trans1t1on to the next word [ 
191

_ 
Obvio~sly, it is very expensive to implement large-vocabulal)_' trigram search given 

the complexity of the search space. It becomes necessary to dynamically generate the tri­
gram search graph (trellis) via a graph search algorithm. The other alternative is to perform 

3 
multiple-pass search strategy, in which the _first-pass sear~h uses less detailed language 
models, like bigrarns, to generate an n-best hst or word lattice, and then a second-pass de­
tailed search can use trigrams on a much smaller search space. Multiple-pass search strategy 
is discussed in Chapter 13. 

• I ______ __. 

P(W1 IW2 ,W 

Figur 1217 A • . . . ) is at· e • tngram grammar network where the tngram probab1hty P(w, I w,. wi . 
tached to transition from grammar state word w w . to the next word w . Illustrated here is a 
tw d ,, J t 

o-wor vocabulary, so there are four grammar states in the trigram network [19]. 



Longuage Model States 
621 

12.3.5. How to Handle Silences Between Words 

Jn continuous speech r~cognition. there are unavoidable pauses (silences) between words or 
sentences. The pause 1s often referred to as silence or a non speech e t • • . . . - ven in contmuous 
speech recognition: Acoust1cally, the pause is modeled by a silence model" that models 
background acoustic phenomena. The silence model is usually modeled with a topolo 
flexible. enough to accommodate a wide range of lengths, since the duration of a pause~~ 
arbitrary. 

It can be argued that silences are actually linguistically distinguishable events, which 
contribute to prosodic and meaning representation. For example, people are likely to pause 
more often in phrasal boundaries. However, these pauerns are so far not well understood for 
unconstrained natural speech (particularly for spontaneous speech). Therefore, the design of 
almost all automatic speech recognition systems today allows silences occurring just about 
anywhere between two lexical tokens or between sentences. It is relatively safe to assume 
that people pause a little bit between sentences to catch breath, so the silences between sen­
tences are assumed mandatory while silences between words are optional. In most systems, 
silence is often modeled as a special lexicon entry with special language model probability. 
This special language model probability is also referred to as silence insertion penalty that is 
set to adjust the likelihood of inserting such an optional silence between words. 

It is relatively straightforward to handle the optional silence between words. We need 
only to replace all the grammar states connecting words with a small network like the one 
shown in Figure 12. 18. This arrangement is similar to that of the optional silence in training 
continuous speech, described in Chapter 9. The small network contains two parallel paths. 
One is the original null transition acting as the direct transition from one word to another, 
while the other path will need to go through a silence model with the silence insertion pen­
alty attached in the transition probability before going to the next word. 

One thing to clarify in the implementation of Figure 12.18 is that this. silence expan­
sion needs to be done for every grammar state connecting words. In the umgram gr~mmar 
network of Figure I 2.14, since there is only one collector node to connect words, the silence 
expansion is required only for this collector node. On the other hand, in the bigram. gra~mth: 
network of Figure 12.15 there is a collector node for every word before expandmg 0 

next word. In this case, the silence expansion is required for every collector ~ode. For a vo­
cabulary size IV I , this means there are I V I numbers of silence networks m the grammar 

. h • b'gram search we cannot merge 
search network. This requirement lies m the fact t at m I f 

th . al ·1 can then be regarded as part o 
pa s before expanding into the next word. Option si ence f fi · h 
th • needs to be done a ter mis -

e search effort for the previous word so the word expansion . . 
• • d h ving two possible pronunc1a-1~g the optional silence. Therefore, we treat each wor a~ a. . t integrates silence in 
lions, one with the silence at the end and one without. This v,ewpom 
the word pronunciation network like the example shown in Figure 12• 19

• 

;-S- ----- - ----- . d 1. In that case there are several silence 
01ne od 1· to silence mo e 0

• ' researcher:; extend the context-dependent m c mg 
Olodels bas •d . c on ~urroundmg contexts. 
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w; ~-
-------->0------- > 

/si/1 

w; ~ 
-------> 

Figure 12.18 Incorporating optional silence (a non-speech event) in the grammar search net­
work where the grammar state connecting different words is laced by two parallel paths. One 
is the original null transition directly from one word to the other, while the other first goes 
through the silence word to accommodate the optional silence. 

For efficiency reasons, a single silence is sometimes used for large-vocabulary con­
tinuous speech recognition using higher order n-gram language model. Theoretically, this 
could be a source of pruning errors.7 However, the error could turn out to be so small as to 
be negligible because there are, in general, very few pauses between word for continuous 
speech. On the other hand, the overhead of using multiple silences should be very minimal 

because it is less likely to visit those silence models at the end of words due to pruning. 

It/ luwl 

Figure 12.19 An example of treating silence as of the pronunciation network of word TWO. 
The shaded nodes represent possible word-ending nodes: one without silence and the other one 
with silence. 

12.4. TIME-SYNCHRONOUS VITERBI BEAM SEARCH 

When ~Ms are used for acoustic models, the acoustic model score (likelihood) used in 
sear~h 15 by definition the forward probability. That is, all possible state sequences must be 
considered. Thus, 

1 
Speech recognition errors d b- • . rs which -11 bed . . ue to su opllmal search or heuristic pruning are referred to as pn111111g erro • 

wi escnbcd 1n detail in Chapter 13. 
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P(XIW)= L, P(X,s~IW) 
,,II possible .,·J 

(12.15) 

where the summation is to be taken over all possible state sequences s with the word se­
quence w unde_r consideration. Howeve~, under the trellis framework (as in Figure J 2.11 ), 
more bookkeeping must be performed smce we cannot add scores with different word se­
quence history. Since th~ goal. of decodin? is to uncover the best word sequence, we could 
approximate the summation with the maximum to find the best state sequence instead. The 
Bayes' decision rule, Eq. (12.5), becomes 

(12.16) 

Equation (12.16) is often referred to as the Viterbi approximation. It can be literally 
translated to "the most likely word sequence is approximated by the most likely state .te­

quence." Viterbi search is then sub-optimal. Although the search results by using forward 
probability and Viterbi probability could, in principle, be different, in practice this is rarely 
the case. We use this approximation for the rest of this chapter. 

The Viterbi search has already been discussed as a solution to one of the three funda­
mental HMM problems in Chapter 8. It can be executed very efficiently via the same trellis 
framework. To briefly reiterate, the Viterbi search is a time-synchronous search algorithm 
that completely processes time t before going on to time t+ I. For time t, each state is up­
dated by the best score (instead of the sum of all incoming paths) from all states in at time 
H. This is why it is often called time-synchronous Viterbi search. When one update occurs, 
it also records the backtracking pointer to remember the most probable incoming state. At 
the end of search, the most probable state sequence can be recovered by tracing back th~se 
backtrnck.ing pointers. The Viterbi algorithm provides an optimal solution for handling 
nonlinear time warping between hidden Markov models and acoustic observati?n, ':~rd 
boundary detection and word identification in continuous speech recognition. This unified 
Viterbi search algorithm serves as the basis for a11 search algorithms as described in the rest 
of the chapter. 

It • . . , • h onous Viterbi search is necessary to clarify the backtracking pointer ior time-sync r . 
for conu· • d • the opnmal state se-nuous word recognition We are generally not mtereSte 10 
qu • . • I rd sequence 
i e_nce for speech recognition.k Instead, we are only interested m the opuma wo e word 

h
~d1cated by Eq. ( 12.16). Therefore we use the backtrack pointer just to rememberhth d of 
1s1ory ~ th ' b recovered at t e en or e current path so the optimal word sequence can e h' tory 

search T b ' f word we create a 1s 
• 0 e more specific when we reach the final state O a '. . d to the 

ROde co ta· • ' . • d nd thts history no e 
. . n mmg the word identity and current time index an appe ode if it 

ex1s11ng b . d to the successor n 
acktrack pointer. This backtrack pointer 1s then passe on 

1 ,,. . • d ·v·na pho11etic 
"hiic we . he are very useful rn en 1 0 

sea,.. . are no1 interested in optimal stale sequences for ASR, 1 Y 
~ .... ntauon h' . 1 • ASR systems. 

'w ich could provide important informauon for deve opmg 
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is the optimal path leading to the successor node for both intra-word and inter-word transi­
tion. The side benefit of keeping this backtrack pointer is that we no longer need to keep the 
entire trellis during the search. Instead, we only need space to keep two successive time 
slices (columns) in the trellis computation (the previous time slice and the current time slice) 
because all the backtracking information is now kept in the backtrack pointer. This simplifi­
cation is a significant benefit in the implementation of a time-synchronous Viterbi search. 

Time-synchronous Viterbi search can be considered as a breadth-first search with dy­
namic programming. Instead of performing a tree search algorithm, the dynamic program­
ming principle helps create a search graph where multiple paths leading to the same search 
state are merged by keeping the best path (with minimum cost). The Viterbi trellis is a repre­
sentation of the search graph. Therefore, all the efficient techniques for graph search algo­
rithms can be applied to time-synchronous Viterbi search. Although so far we have 
described the trellis in an explicit fashion-the whole search space needs to be explored 
before the optimal path can be found-it is not necessary to do so. When the search space 
contains an enormous number of states, it becomes impractical to pre-compile the composite 
HMM entirely and store it in the memory. It is preferable to dynamically build and allocate 
portions of the search space sufficient to search the promising paths. By using the graph 
search algorithm described in Section I 2.1.1, only part of the entire Viterbi trellis is gener­
ated explicitly. By constructing the search space dynamically, the computation cost of the 
search is proportional only to the number of active hypotheses, independent of the overall 
size of the potential search space. Therefore, dynamically generated trellises are key to heu­
ristic Viterbi search for efficient large-vocabulary continuous speech recognition, as de­
scribed in Chapter 13. 

12.4.1. The Use of Beam 

Based on Chapter 8, the search space for Viterbi search is O(NT) and the complexity is 
O(N

2
T), where N is the total number of HMM states and Tis the length of the utterance. 

For large-vocabulary tasks these numbers are astronomically large even with the help of 
dynamic programming. In order to avoid examining the overwhelming number of possible 
cells in the HMM trellis, a heuristic search is clearly needed. Different heuristics generate or 
explore portions of the trellis in different ways. 

A simple way to prune the search space for breadth-first search is the beam search de­
scribed in Section 12.1.3.2. Instead of retaining all candidates (cells) at every time frame, a 
threshold Tis used to keep only a subset of promising candidates. The state at time t with the 
lowest cost Dmin is first identified. Then each state at time r with cost > Dmin + T is dis­
carded from further consideration before moving on to the next time frame t+ I. The use of 
the _bea~ alleviates the need to process all the cells. In practice, it can lead to substantial 
savings m computation with little or no loss of accuracy. . 

Al though beam search is a simple idea, the combination of time-synchronous Viterbi 
and beam search algorithms produces the most powerful search strategy for large­
vocabulary speech recognition. Comparing path·s with equal length under a time-
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synchronous search framework ma~es beam search possible. That is, for two different word 
sequences W1 and Wi, the posterior probabilities P(W1 Ix~) and P(W

2 
j x~) are always 

compared based on the same partial acoustic observation x~. This makes the comparison 
straightforward because the denominator P(x~) in Eq. (12.5) is the same for both tenns and 
can be ignored. Since the score comparison for each time frame is fair, the only assumption 
of beam search is that an optimal path should have a good enough partial-path score for each 
time frame to survive under beam pruning. 

The time-synchronous framework is one of the aspects of Viterbi beam search that is 
critical to its success. Unlike the time-synchronous framework, time-asynchronous search 
algorithms such as stack decoding require the nonnalization of likelihood scores over fea­
ture streams of different time lengths. This, as we will see in Section 12.5, is the Achilles' 
heel of that approach. 

The straightforward time-synchronous Viterbi beam search is ineffective in dealing 
with the gigantic search space of high perplexity tasks. However, with a better understand­
ing of the linguistic search space and the advent of techniques for obtaining n-best lists from 
time-synchronous Viterbi search, described in Chapter 13, time-synchronous Viterbi beam 
search has turned out to be surprisingly successful in handling tasks of all sizes and all dif­
ferent types of grammars, including FSG, CFG, and n-gram [2, 14, 18, 28, 34, 38, 44). 
Therefore, it has become the predominant search strategy for continuous speech recognition. 

12.4.2. Viterbi Beam Search 

To explain the time-synchronous Viterbi beam search in a formal way [31], we first define 
some quantities: 

D(t;s,; w) = total cost of the best path up to time I that ends in state s, of gram­
mar word state w. 

h(t;s,; w) = backtrack pointer for the best path up to time I that ends in state s, of 
grammar word state w. 

Readers should be aware that w in the two quantities above represents a grammar 
word state in the search space. It is different from just the word identity since the same wo~d 
c~uld occur in many different language model states, as in the trigram search space shown m 
Figure 12.17. 

There are two types of dynamic programming (DP) transition rules [30],_ n~ely intra­
Word and inter-word transition. The intra-word transition is just like the V1terb1 rule for 

liMMs and can be expressed as follows: 

D(t;s, ;w)=min{d(x s Is ·w)+D(t-l;s,_,;w)} ', ' ,-1, s,.. 

h(t;s,;w) = h(t-1 b . (t·s ·w)·w) 
, min ' ,, ' 

(I 2.17) 

(l 2.18) 
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where d(x, .s, I s,_1; w) is the cost associated with taking the transition from state s,_, to 
state s, while generating omput observation x,, and bmin (t; s,; w) is the optimal predecessor 
state of cell D(r;s,; w). To be specific, they can be expressed as follows: 

dtx, , s, ls,_, ; w)=-logP(s, ls,_,;w)-logP(x, ls,;w) (12.19) 

bmin (r; s,; w) = arg min { d(x,, s, I s,_1; w) + D(t - l; s,_,; w)} .... ( 12.20) 

The inter-word transition is basically a null transition without consuming any observa­
tion. However. it needs to deal with creating a new history node for the backtracking 
pointer. Let's define F(w) as the final state of word HMM wand /( w) as the initial state of 
word ID1M w. ~foreover, state '7 is denoted as the pseudo initial state. The inter-word tran­
sition can then be expressed as follows: 

D(r;Tj; w) = min{logP(w I\')+ D(r; F(\·); ,·)} 
r 

(12.21) 

Jr(r; 1]; w) =( ,·,,.., ,r) :: h(r, F(v~ ); '°.,.;. ) (12.22) 

where ,.r:m: = arg min {log P(w ! v) + D(l; F( ,·); \")} and :: is a link appending operator. 
The time-s;'llchronous Viterbi beam search algorithm assumes that all the inaa-word 

transitions are evaluate-d before inter-word null transitions take place. The same rime index 
is used incentionallv for inter-word transition since the null lan2:ua2:e model state transition 
does not consume~ observation vector. Since the initial state J(w)-for word IDl\f w could 
have a self-transition. the cell D(r; I ( w); w) might already have an active path. Therefore, 
we need to perform the follo,,ing check to advance the inrer-word transitions. 

ifD(r;,r,w) < D(r;l(w);w) 

D(r;J(w): w) = D(t; 1T, w) and h(t; l(w); w) = h(r; TT, w) 
(12.23) 

The time-synchronous Viterbi be.am search can be summarized as in Algorithm 12•6• 
For large-vocabulary speech recognition, the experimental resulcs show that only 8 sroall 
perrentage of the entire search space (the beam) ~ to be kepi: for e2ch rime interval 1 

without i~creasing error rates. Empirically, the be3IIl size has typically been found _t~: 
between :,~ and lO'k of the entire search space. In Chapter 13 we describe srrategte.s 
using different level of beams for more effectively pruning. 

1,, -... :,. STACK DECODING (A• SEARCH) 

If some reliable heuristics are available to guide the decodino the search can be done_ i~ a 
de th firs f h' - ,,. m1SU12 

P • . t as ion around the best path early on. instead of wastin2: effortS on unpro 10 
path$ via the time-synchronous beam search. Stack decoding rep~nts the best auempl 
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ALGORITHM 12.6: TIME-SYNCHRONOUS VITERBI BEAM SEARCH 

Step 1: lnltlallzatlon: For all the grammar word states w which can start a senten 
D(O;I(w);w)=O ce, 

h(O; J(w); 111) = nu/J 

Step 2: Induction: For time t = 1 to r do 
For all active states do 
Intra-word transitions according to Eq. (12.17) and (12.18) 
D(t;s,;w) = "]in {d(x,,s, I s,_1; w) + D(t-l;st-1; w)} 

H 

h(t;s,; w) = h(t- l, bmin (t;s,; w); w) 

For all active word-final states do 
Inter-word transitions according to Eq. (12.21), (12.22) and (12.23) 
D(t;77; w) = mJn {log P(w Iv)+ D(t; F(v); v)} 

h(t;1]; w) = ( Vmin ,t) :: h(I, F(vrnin ); Vmin ) 

if D(1;17; w) < D(t;l(w); w) 

D(t;J(w);w) = D(t;17; w) and h(r;l(w); w) = h(t;T/; w) 

Pruning: Find the cost for the best path and decide the beam threshold 
Prune unpromising hypotheses 

Step 3: Termination: Pick the best path among all the possible final states of grammar at time 
T • Obtain the optimal word sequence according to the backtracking pointer h(r;11; w) 
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use A* search instead of time-synchronous beam search for continuous speech recognition. 
Unfortunately, as we will discover in this section such a heuristic function h(•) (defined in 
~ection 12.1.3) is very difficult to attain in continuous speech recognition, so search algo­
nlhms based on A* search are in general less efficient than time-synchronous beam search. 

Srack decoding is a variant of the heuristic A• search based on the forward algorithm, 
~here lhe evaluation function is based on the forward probability. lt is a tree search algo­
nlbm, which takes a slightly different viewpoint than the time-synchronous Viterbi search. 
Time-synchronous beam search is basically a breadth-first search, so it is crucial to control 
th

e number of all possible language model states as described in Section 123· In a typical 
large-vocabulary Viterbi search with n-gram language models, this number is determined by 
the • d. equivalent classes of language model histories. On the other hand, stack deco ing as a 
tree search algorithm treats the search as a task for finding a path in a tree whose branches 
correspond to words in the vocabulary V non-tenninal nodes correspond to incomplete sen­
tences and . ' h h tree has a constant b '. tennmal nodes correspond to complete sentences. T e searc . 

12 20 ranchino- tact f . II d b every word. Figure • ill 6 or o IVI, 1f we allow every word to be fo owe Y 
Ustfaies such a search tree for a vocabulary with three words (] 91-
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An important advantage of stack decoding is its consistency with the forward­
backward training algorithm. Viterbi search is a graph search, and paths cannot be easily 
summed because they may have different word histories. In general, the Viterbi search finds 
the optimal state sequence instead of optimal word sequence. Therefore, Viterbi approxima­
tion is necessary to make the Viterbi search feasible, as described in Section 12.4. Stack 
decoding is a tree search, so each node has a unique history, and the forward algorithm can 
be used within word model evaluation. Moreover, all possible beginning and ending times 
(shaded areas in Figure 12.21) are considered (24). With stack decoding, it is possible to use 
an objective function that searches for the optimal word string, rather than the optimal state 
sequence. Furthermore, it is in principle natural for stack decoding to accommodate long­
range language models if the heuristics can guide the search to avoid exploring the over­
whelmingly large unpromising grammar states . 

.. c..i;;...--___;;, __ ......,O~IIIE=========-­

()-,~ ::::::::=-------'0 

~ 

0 

Figure 12.20 Asta k d d" 
c eco mg search tree for a vocabulary size of three [19J. 
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By fo~mul~ting st_ack decoding in. a tree search framework, the graph search algo­
rithms described 1~ Section I ~-1 can be direct!~ applied to stack decoding. Obviously, blind­
search methods, like depth-first and breadth-first search, that do not take advantage of the 
goodness measure~nent of how close_ ~'e are getting to the goal. are usually computationally 
infeasible in practical speech recogn1tron systems. A* search is clearly attractive for speech 
recognition, given the hope of a sufficient heuristic function 10 guide the tree search in a 
favorable direction without exploring too many unpromising branches and nodes. In contrast 
10 the Viterbi search. it is not time-synchronous and extends paths of different lengths. 

The search begins by adding all possible one-word hypotheses to the OPEN list. Then 
the best path is removed from the OPEN list, and all paths from it are extended, evaluated, 
and placed back in the OPEN list. This search continues until a complete path that is guaran­
teed to be better than all paths in the OPEN list has been found. 

Unlike Viterbi search, where the acoustic probabilities being compared are always 
based on the same partial input, it is necessary to compare the goodness of partial paths of 
different lengths to direct the A* tree search. Moreover, since stack decoding is done asyn­
chronously, we need an effective mechanism to determine when to end a phone/word 
evaluation and move on to the next phone/word. Therefore, the heart and soul of the stack 
decoding are clearly in 

I. Finding an effective and efficient heuristic function for estimating the future 
remaining input feature stream and 

2. Determining when to extend the search to the next word/phone. 

: '-:-, 
: '7 

. • . Each grid poinl corresponds to a 
Figure 12.21 The forward trellis space for stack decoding. ts the values con1ribu1ing to 

. . h I d d area represen 
trelhs cell in the forward computauon. T es 13 e d quence it' 11, w, , .. . [24). 
h re • al wor se " 2 • , 1 e computation of lhe forv,iard score for t opum 
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In the fo1lowing section we describe these two critical components. Readers will note that 
the solutions to these two issues are virtually the same-using a normalization scheme 10 
compare paths of different lengths. 

12.5.1. Admissible Heuristics for Remaining Path 

The key issue in heuristic search is the selection of an evaluation function . As described in 
Section 12.1.3, the heuristic function of the path H N going through node N includes the cost 
up to the node and the estimate of the cost to the target node from node N. Suppose path H.v 
is going through node Nat time t; then the evaluation for path HN can be expressed as fol­
lows: 

(12.24) 

where g(H~.) is the evaluation function for the partial path of H N up to time t, and 
h(H~r) is the heuristic function of the remaining path from t + I to T for path H N. The 
challenge for stack decoders is to devise an admissible function for h( •) . 

According to Section 12.1.3.1, an admissible heuristic function is one that always un­
derestimates the true cost of the remaining path from t + 1 to T for path H N • A trivially 
admissible function is the zero function. In this case, it results in a very large OPEN list. In 
addition, since the longer paths tend to have higher cost because of the gradually accumu­
lated cost, the search is likely to be conducted in a breadth-first fashion, which functions 
very much like a plain Viterbi search. The evaluation function g( •) can be obtained easily by 
using the HMM forward score as the true cost up to current time t. However, how can we 
find an admissible heuristic function h( •)? We present the basic concept here [19, 35J. 

The goal of h( •) is to find the expected cost for the remaining path. If we can obtain 
the expected cost per frame l/f for the remaining path, the total expected cost, (T -1) * If/ , is 
simply the product of l/f and the length of the remaining path. One way to find such ex­
pected cost per frame is to gather statistics empirically from training data. 

1. After the final training iteration, perform Viterbi forced alignmentq with each 
training utterance to get an optimal time alignment for each word. 

2. Randomly select an interval to cover the number of words ranging from two 
to ten. Denote this interval as [i ... j). 

3. Compute the average acoustic cost per frame within this selected interval ac­
cording to the following formula and save the value in a set A: 

' Viterbi forced alignment means that the Viterbi is perfom1ed on the HMM model constructed from tile }alown 
word transcription. The term "forced" is used because the Viterbi alignment is forced to be pcrfonned on ihe co~-

od I V• _,_." d 1· · • · v·de the opti-rect m e • 1teiu1 ,orce a 1gnment 1s a very useful tool in spoken language processing as 1t can pro 1 

ma! state-time alignment with lhe uuerances. This detailed alignment can then be used for different purposes, 
including discriminant training, concatenated speech synthesis, etc. 
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where w, ... J is the word string corresponding to interval [i ... j]. 

4. Repeat Steps 2 and 3 for the entire training set. 

S. Define 1f/.,;. and l/fmx as the minimum and average value found in set A. 
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( I 2.25) 

Clearly, V' min should be a good under-estimate of the expected cost per frame for the 
future unknown path. Therefore, the heuristic function h(H?) can be derived as: 

( 12.26) 

Although 1/!min is obtained empirically, stack decoding based on Eq. (12.26) will generally 
find the optimal solution. However, the search using 1/f min usually runs very slowly, since 
Eq. (12.26) always under-estimates the true cost for any portion of speech. In practice, a 
heuristic function like l/f,.'11 that may over-estimate has to be used to prune more hypotheses. 
This speeds up the search at the expense of possible search errors, because 1/lmi should rep­
resent the average cost per frame for any portion of speech. In fact, there is an argument that 
one might be able to use a heuristic function even more than IJI avi:. The argument is that IJI avg 
is derived from the correct path (training data) and the average cost per frame for all paths 
during search should be more than 111 because the paths undoubtedly include correct and "Y civg 

incorrect ones. 

12.5.2. When to Extend New Words 

Since stack decoding is executed asynchronously, it becomes necessary to detect when a 
phone/word ends, so that the search can extend to the next phone/word. If we have a coSt 

measure that indicates how well an input feature vector of any length matches the evalua~ed 
model sequence, this cost measure should drop slowly for the correct phone/word and nse 
~harply for an incorrect phone/word. In order to do so, it implies we must be able to compare 

YP0theses of different lengths. 
The first thing that comes to mind for this cost measure is simply the forwa:d co~t 

-logP(x' I , ) . . . d • tic observation X1 b 1,s, 1111 , which represents the hkehhood of pro ucmg acous . 

be
ased on word sequence wk and ending at state s . However, it is definitely not smtable 
cause •1 • d 1 ' Th' ses the search 

t 1 15 eemed to be smaller for a shorter acoustic input vector. 15 cau 
0 almost al . • • errors Therefore, 
we ways prefer short phones/words resulting m many mseruon ·.b d bove 
'I'\. muS! derive some normalized score that' satisfies the desired property descn e a • 
',ie normal· ' 6 24] • ized cost C(x;,s, I wt) can be represented as follows [ • • 

C(x;,s, I WI~):: -log[ P(x;,;; I Wik) l = -log [Pcx; ,s, I w{)] + t Iogr 

Wherer(o . 
< Y < l ) 1s a constant normalization factor. 

(12.27) 
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Suppose the searc~ is now evaluating a particular word wt ; we can define Cmin ~t) as 
the minimum cost for C(x; ,s, I w1t ) for all the states of w• • and . am:u (t) as the maximum 
forward probability for P(x;. s, I w1

1
) for all the states of w• • That 1s, 

( 12.28) 

anu, (t)=max[P(x; lwt,s,)] 
S, lil W't 

(12.29) 

We want C . (t ) to be near O just as long as the phone/word we are evaluating is the correct 
one and wem

1

ttave not gone beyond its end. On the other hand, if the phone/~ord we are 
evaluating is the incorrect one or we have already passed its end, we want the Cmin (t) to be 
rising sharply. Similar to the procedure of finding the admissibleA heuristic function, we can 
set the normalized factor y empirically during training so that Cm;n(T) = 0 when we know 
the correct word sequence W that produces acoustic observation sequence x; . Based on Eq. 
(12.27), r should be set to: 

r = {)a'""' (T) (12.30) 

Figure 12.22 shows a plot of Crnin (t) as a functio1! of time for correct match. In addi­
tion, the cost for the final state FS( wk) of word wk , C(x; ,s, = FS( wk) I wt ) , which is the 
score for wk -ending path, is also plotted. There should be a valley centered around O for 
C(x; ,s, = FS(w1) I wt) , which indicates the region of possible ending time for the correct 
phone/word. Sometimes a stretch of acoustic observations may match better than the aver­
age cost, pushing the curve below 0. Similarly, a stretch of acoustic observations may match 
worse than the average cost, pushing the curve above 0. . 

There is an interesting connection between the normalized factor r and the heuristic 
estimate of the expected cost per frame, 'I' , defined in Eq. (12.25). Since the cost is simply 
the logarithm on the inverse posterior probability, we get the following equation: 

-1 A [ 

lJl = TlogP(xr IW) = -log a • ..,. (T)I/T] =-log r (12.31) 

_Equation (12.31) reveals that these two quantities are basically the same estimate. In 
fact, 1f we subtract the heuristic function f(H~.) defined in Eq. (1 2.24) by the constant 
lo~ ( 'Y), we get exactly the same quantity as the one defined in Eq. ( 12.27). Decisions on 
which path to extend first based on the heuristic function and when to extend the search to 
the next word/phone are basically centered on comparing partial theories with different 
lengths. Therefore, the normalized cost C(x; ,s, I wt) can be used for both purposes. 

. Based on the connection we have established, the heuristic function, f (H.~ ), which 
e~tui;1ates ~e goodness of a path is simply replaced by the normalized evaluation function 
C(x1 ,s, I W1 ) • If we plot the Un-normalized cost C(x; ,s, I wt ) for the optimal path and other 
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Figure 12.22 cmin (t) and C(x:,s, = FS(wi) I wt) as functions of timer. The valley region 
represents possible ending times for the correct phone/word. 
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competing paths as the function time t the cost values increase as paths get longer (illus­
tr~ted in Figure 12.23) because every fr~me adds some non-negative cost to the overall cost. 
~ is clear that using on-normalized cost function C(x; ,s, I wt) generally results in a breadth­
lTSI search. What we want is an evaluation that decreases slightly along the optimal path, 
~d ~opefupy increases along other competing paths. Clearly, the normalized cost function 
C(x,,s, I w,) fulfills this role, as shown in Figure 12.24. 

optimal path 

---

F· d th c mpeting paths as a 
•gu~e 12.23 Unnormalized cost C(x;,s, I w:) for optimal path an o er o 

functton of time. 
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--- . 
optimal path 

Figure 12.24 Nonnalized cost C(x;,s, I wt) for the optimal path and other competing paths as 
a function of time. 

Equation (12.30) is a context-less estimation of the normalized factor, which is also re­
ferred to as zero-order estimate. To improve the accuracy of the estimate, you can use con• 
text-dependent higher-order estimates like [24): 

Y; =r(x,.) 
r, =r(x;,x,._,) 

Y1 = r(x,-, X1-P- • • , Xi-N+I) 

first-order estimate 

second-order estimate 

n-order estimate 

Since the nonnalized factor r is estimated from the training data that is also used to 
train the parameters of the HMMs, the normalized factor r,. tends to be an overestimate. ~s 
a result, alTW( (t) might rise slowly for test data even when the correct phone/word model is 
evaluated. This problem is alleviated by introducing some other scaling factor 8 < l so lhat 
afflll)( (t) falls slowly for test data for when evaluating the correct phone/word model. Toe 
best solution for this problem is to use an independent data set other than the training data to 
derive the normalized factor r, . 

12.5.3. Fast Match 

E ' th · · · • . d' time for 3 
ven wi an efficient heunst1c function and mechanism to determine the en mg . · n 

phone/word, stack decoding could still be too slow for large-vocabulary speech r~cogniu;e 

tasks: ~s desc~bed in Section 12.5. l, an effective underestimated heuristic funcu~:::~ti­
remammg portion of speech is very difficult to derive. On the other hand, a heu word 
mate for the immediate short segment that usually corresponds to the next phone orduces 

b .- 'bl • . • thatre may e ,easi e to attam. In this section, we describe the fast-match mechants!ll 
phone/word candidates for detailed match (expansion) bpath-

In h • d th !)est su 
async ronous stack decoding, the most expensive step is to exten e entire vo· 

Fo~ a larg~-vocabulary search, it implies the calculation of P(x:+k I w) over th~e possible 
ca ulary size I V 1- It is desirable to have a fast computation to quickly reduce 
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words starting at u given time 1 to reduce the search space. This process is often referred to 
asfast match [15, 35). In fa_ct, fast match is crucial to stack decoding, of which it becomes 
an integral part. Fast match is a method for the rapid computation of a list of candidates that 
constrain successive search phases. The expensive detailed match can then be perfonned 
afier fast match. In this sense, fast match can be regarded as an additional pruning threshold 
to meet before new word/phone can be started. 

Fast match, by definition, needs to use only a small amount of computation. However, 
it should also be accurate enough not to prune away any word/phone candidates that partici­
pate in the best path eventually. Fast match is, in general, characterized by the approxima­
tions that are made in the acoustic/language models in order to reduce computation. There is 
an obvious trade-off between these two objectives. Fortunately, many systems [15J have 
demonstrated that one needs to sacrifice very little accuracy in order to speed up the 
computation considerably. 

Similar to admissibility in A' search, there is also an admissibility property in fast 
match. A fast match method is called admissible if it never prunes away the word/phone 
candidates that participate in the optimal path. In other words, a fast match is admissible if 
the recognition errors that appear in a system using the fast match followed by a detailed 
match are those that would appear if the detailed match were carried out for all 
words/phones in the vocabulary. Since fast match can be applied to either word or phone 
level, as we describe in the next section, we explain the admissibility for the case of word­
level fast match for simplicity. The same principle can be easily extended to phone-level fast 
match. 

Let V be the vocabulary and C(X I w) be the cost of a detailed match between input X 
and word w. Now F(X I w) is an estimator of C(X I w) that is accurate enough and fast to 
compute. A word list selected by fast match estimator can be attained by first computing 
F(X/ w) for each word w of the vocabulary. Suppose w0 is the word for which the fast 
match has a minimum cost value: 

wb ==argmin F(X I w) (12.32) 
kEI' 

~fter computing C(X I wb) ' the detailed match cost for wb, we fonn the fast match word 
hst, A, from the word w in the vocabulary such that F( XI w) is no greater than C(X I wb) • 
In other words, 

(12.33) 

Similar to the admissibility condition for A' search [3, 33], the_ faSt match ~Slimator 
F(•) conducted in the way described above is admissible if and on_ly if F(XI w) is always 
an 11nder-estimator (lower bound) of detailed match C(X I w) · That is, 

F(X I w) S C(X I w) \f'X, w 
(12.34) 

!e Proof is straightforward. If the word we has a l~wer detailed match cost C(X I wJ ' you 
Prove that it must be included in the fast match hst A because 
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C(X I w,) S C(X I wb) and F(X I w,) s; C(X I w,) ⇒ F(X I w,) s; C(X I wh) 

Therefore, based on the definition of A, w, e A. 
Now the task is to find an admissible fast match estimator. Bahl et al. [6] proposed one 

fast match approximation for discrete HMMs. As we will see later, this fast match approxi­
mation is indeed equivalent to a simplification of the HMM structure. Given the HMM for 
word w and an input sequence x; of codebook symbols describing the input signal, the 
probability that the HMM w produces the VQ sequence x; is given by (according to Chap­
ter 8): 

(12.35) 

Since we often use Viterbi approximation instead of the forward probability, the equation 

above can be approximated by: 

P(xi f w): ,?,!:"',, r P.(,,, ,, , ... ,, ) TIP. (x, I,,)] (12.36) 

The detailed match cost C(X I w) can now be represented as: 

C(X I w) =, ':;'("., {-log[ P,(s., s,, ... s,) TI P,(x, Is,)]} 
(12.37) 

th hi h­
Since the codebook size is finite, it is possible to compute, fo~ each mo~l ~;t's ede~ne 

est output probability for every VQ label c among all states st m HMM • 

m,.(c) to be the following: 

m (c)==max.P (c!st)==maxbt(c) 
'H' S,tl=t1' W S1EW 

. T • the 
We can further define the qnw< (w) as the m~ximum s:te sequence with respect to , i.e., 

maximum probability of any complete path m HMM • 

qmax (w) = mF [P .. (s1 ,s2 ,. • •5r)] 

(12.38) 

(12.39) 

. F(A I w) as the following: 
Now let's define the fast match estimator 

F(XI w)=-log[ q.~(w)U m,(x,)] 

(12.40) 

XI ) is admissible based on Eq. 
. to show the fast match estimator F(X I w) s; C( w 

It 1s easy 
(12.38) to Eq. (12.40). 
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Figure 12.25 The equivalent one-state HMM con-esponding to fast match computation defined 
in Eq. (12.40) [ I 5 ]. 
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The fast match estimator defined in Eq. ( 12.40) requires T + I additions for a vector se­
quence of length T. The operation can be viewed as equivalent to the forward computation 
with a one-state HMM of the form shown in Figure 12.25. This correspondence can be in­
terpreted as a simplification of the original multiple-state HMM into such a one-state HMM. 
It thus explains why fast match can be computed much faster than detailed match. Readers 
should note that this HMM is not actually a true HMM by strict definition, because the out­
put probability distribution mw(c) and the transition probability distribution do not add up 
to one. 

The fast match computation defined in Eq. (12.40) discards the sequence information 
with the model unit since the computation is independent of the order of input vectors. 
Therefore, one needs to decide the acoustic unit for fast match. In general, the longer the 
unit, the faster the computation is. and, therefore, the smaJler the under-estimated cost 
F(X I w) is. It thus becomes a trade-off between accuracy and speed. 

Now let's analyze the real speedup by using fast match to reduce the vocabulary V to 
the list A, followed by the detailed match. Let !VI and I A I be the sizes for the vocabulary V 

and the fast match short list A. Suppose t f and td are the times required to compute o~~ 
fast match score and one detailed match score for one word, respectively. Then, the to 
time required for the fast match followed by the detailed match is t f I V I +td _I A I, whereas 
the time required in doing the detailed match alone for the entire vocabulary is td I VI- The 

speed-up ratio is then given as follows: 

1 (12.41) 

(:: ·:t:] 
We h maJier than !VI to have a sig­
nificlleed ,, to be much smaller than td and I A I _to _be muc ~atch estimator in Eq. (12.40), 

th ~nt speed-up using fast match. Using our admissible_ faS
t . d f N2T for C(X I w), 

e lime co 1 • • i F(X I w) 1s T mstea o 
Wher . mp ex1ty of the com~utauon ~r . del. Therefore, the t 1 /td saving 
• e N is the number of states m the deta.1Ied acouStlC mo 
1s about N2 

• I VI one needs a very accurate fast 
.,, In general, in order to make I A I much smaller than ' fit 

O 
relax the constraint of 

.. ,atch • h" • why we o e 
adrnis ~s_tt_mator that could result in t 1 .= Id • T is is In ractice, most real-time speech 
reco 5'.~ihty, although it is a nice principle to adher~ t?. ilit p rinciple with the fast match. 
Fo &nition systems don't necessarily obey the admissib Y/ [361 used several techniques 

rexample, Bahl et al. (10], Laface et al., [22] and Roe et a·• 
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to construct off-line groups of acoustically similar words. ~nned with this grouping, they 
can use an aggressive fast match to select only a very short hst of word~, and words acousti­
cally similar to the words in this_ list are added to fonn the short word hst A_ for further de­
tailed match processing. By domg so, they are able _to report a very ef~c1ent fast match 

th d that misses the correct word only 2% of the time. When non-admissible fast march 
me o • d 
is used, one needs to minimize the additional search error mtro uced by fast match empiri-

cally. 
Bahl et al. [6] use a one-state HMM as their fast match units and a tree-structure lexi-

con similar to the lexical tree structures introduced in Chapter 13 to construct the short word 
list A for next-word expansion in stack decoding. Since the fast match tree search is also 
done in an asynchronous way, the ending time of each phone is detected using normalized 
scores similar to those described in Section 12.5 .2. It is based on the same idea that this 
nonnalized score rises slowly for the correct phone, while it drops rapidly once the end of 
phone is encountered (so the model is starting to go toward the incorrect phones). During the 
asynchronous lexical tree search, the unpromising hypotheses are also pruned away by a 
pruning threshold that is constantly changing once a complete hypothesis (a leaf node) is 
obtained. On a 20,000-word dictation task, such a fast match scheme was about I 00 times 
faster than detailed match and achieved real-time performance on a commercial workstation 
with only 0.34% increase in the word error rate being introduced by the fast match process. 

12.5.4. Stack Pruning 

Even with efficient heuristic functions, the mechanism to determine the ending time for 
phone/word, and fast match, stack decoding might still be too slow for large-vocabulary 
speech recognition tasks. A beam within the stack, which saves only a small number of 
promising hypotheses in the OPEN list, is often used to reduce search effort. This stack 
pruning is very similar to beam search. A predetermined threshold e is used to eliminate 
hypotheses whose cost value is much worse than the best path so far. 

. Bolh faSt match and stack pruning could introduce search errors where the eventual 
optimal path _is_ thrown away prematurely. However, the impact could be reduced to a mini· 
mum by e~pmcally adjusting the thresholds in both methods. 

The 1~plementation of stack decoding is, in general more complicated, particularly 
when some inevitable • • . ' ffi • t . prumng strategies are incorporated to make the search more e ,c,en • 
The difficulty of dev·s· b th · d 
f" . . . 1 mg O an effectively admissible heuristic function for h( •) an an 

e 1 ect1ve est1matton of 1· • · • d th 
d norma izatton factors for boundary determination has 1tm1te e 

a vantage that stack d d h . . • -
h . . eco ers ave over Viterbi decoders. Unlike stack decodmg, time 

sync ronous V1terb1 beam s h 'th ut 
he · t' d . . earc can use an easy comparison of same-length path wi 0 

uns 1c etermmat1on of w d b . ·m-
ple and uni'fi d " or oundanes. As described in the earlier sections, these si 

1e 1eatures of v·t b' b ·ous 
sound techni ue t . 1 er I earn search allow researchers to incorporate van . 
Beam searchq ~ o improve the efficiency of search. Therefore time-synchronous Viterbi 

enJoys a much b d . . ' . the 
principle of stack decodin is roa ~r popu_lanty 111 the speech community. However, de-
scribe in Chapter 13 kg essential parttcularly for n-best and lattice search. As we 

, stac decodi I h trate-ng P ays a very crucial patt in multiple-pass searc s 
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gies for u-best and !a~tice search because the early pass is able to establish a near-perfect 
estimate of the remaining path. 

12.S.S. Multistack Search 

Even with the help of normalized factor y or heuristic function /,( •), it is still more effec­
tive to compare hypotheses of the same length than those of different lengths, because hy­
potheses with the same length are compared based on the true forward matching score. 
Inspired by the time-synchronous principle in Viterbi beam search, researchers (8, 35 J pro­
pose a variant stack decoding based on multiple stacks. 

Multistack search is equivalent to a best-first search algorithm running on multiple 
stacks time-synchronously. Basically, the search maintains a separate stack for each time 
frame t, so it never needs to compare hypotheses of different lengths. The search runs time­
synchronously from left to right just like time-synchronous Viterbi search. For each time 
frame t, multisrack search extracts the best path out of the t-stack, computes one-word ex­
tensions, and places all the new paths into the corresponding stacks. When the search fin­
ishes, the top path in the last stack is our optimal path. Algorithm 12.7 illustrates the 
multistack search algorithm. 

This time-synchronous multistack search is designed based on the fact that by the time 
the t'h stack is extended, it already contains the best paths that could ever be placed into it. 
This phenomenon is virtually a variant of the dynamic programming principle introduced in 
Chapter 8. To make multistack more efficient, some heuristic pruning can be applied to re­
duce the computation. For example, when the top path of each stack is extended for one 
more word, we could only consider extensions between minimum and maximum duration. 
On the other hand, when some heuristic pruning is integrated into the multistack search, one 
might need to use a small beam in Step 2 of Algorithm 12.7 to extend more than just the beSt 

path to guarantee the admissibility. 

ALGORITHM 12.7: MULTISTACK SEARCH 

Step 1: Initialization: for each word v in vocabulary V 
fort=l,2, ... ,T 

Compute C(x; J v) and insert it to t'h stack 
step 2: Iteration: for t = 1, 2, . .. , T - I 

Sort the t'" stack and pop the top path C( x; J w; ) out of the stack 

for each word v in vocabulary V 

for r = t + l,t + 2, .. . ,T 
E r J k+l) xtend the path qx; I w;) by word v to get C(x, w, 

Where w,1+1 = w: II v and II means string concatenation 

Place C(x~ I w;+I) in 1:11
' stack 

step 3: Termination: Sort the T'" stack and the top path is the optimal wo,ct sequence 
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12.6. HISTORICAL PERSPECTIVE AND FURTHER READING 

Search has been one of the most important topics in artificial intelligence since the origins of 
the field. It plays the central role in general problem solving [29] and computer games. [43), 
Nilsson's Principles of Artificial Intelligence (32] and Barr and Feigenbaum's The Ha11d­
book of Artificial Intelligence [ 11] contain a comprehensive introduction to state-space 
search algorithms. A* search was first proposed by Hart et al. (17]. A* was thought to be 
derived from Dijkstra's algorithm [13] and Moore's algorithm [27). A* search is similar to 
the branch-and-bound algorithm (23, 39], widely used in operations research. The proof of 
admissibility of A* search can be found in (32]. 

The application of beam search in speech recognition was first introduced by the 
HARPY system (26]. It wasn't widely popular until BBN used it for their BYBLOS system 
(37]. There are some excellent papers with detailed description of the use of time­
synchronous Viterbi beam search for continuous speech recognition (24, 31 ]. Over the years, 
many efficient implementations and improvements have been introduced for time­
synchronous Viterbi beam search, so real-time large-vocabulary continuous speech recogni­
tion can be realized on a general-purpose personal computer. 

On the other hand, stack decoding was first developed by IBM (9) . It is successfully 
used in IBM's large-vocabulary continuous speech recognition systems (3, 16). Lacking a 
time-synchronous framework, comparing theories of different lengths and extending theo­
ries are more complex as described in this chapter. Because of the complexity of stack de­
coding, far fewer publications and systems are based on it than on Viterbi beam search [16, 
19, 20, 35). With the introduction of multistack search (8), stack decoding in essence has 
actually come very close to time-synchronous Viterbi beam search. 

Stack decoding is typically integrated with fast match methods to improve its effi­
ciency. Fast match was first implemented for isolated word recognition to obtain a list of 
potential word candidates (5, 7). The paper by Gopalakrishnan et al. ( 15] contains a compre­
~ensive ~escription of fast match techniques to reduce the word expansion for stack decod­
ing. Be_s1des the fast match techniques described in this chapter, there are a number of 
alte~ativ~ approaches [5, 21, 41]. Waast' s fast match [41), for example, is based on a binary 
classificatJ?n tree built automatically from data that comprise both phonetic transcription 
and acoustic sequence. 
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CHAPTER 1 3 

Large-Vocabulary Search Algorithms 

n· t Chapter 1 ~ discussed the basic search tech­
~ques. ?r speech recognition. However, the search complexity for large-vocabulary speech 
decog_: 10n ~ith high-order language models is still difficult to handle. In this chapter we 
w:n efficient search techniques in the context of time-synchronous Viterbi beam search, 
W ch bec?mes the choice for most speech recognition systems because it is very efficient. 
te ~ u~ Microsoft Whisper as our case study to illustrate the effectiveness of various search 

c nrqu_es. Most of the techniques discussed here can also be applied to stack decoding. 
th ~ 1th the help of beam search, it is unnecessary to explore the entire search space or 
k e e~ttre ~ellis. Instead, only the promising search state-space needs to be explored. Please 
eep '" mind the distinction between the implicit search graph specified by the grammar 

network and the explicit partial search graph that is actually constructed by the Viterbi beam 
search algorithm. 

In th' • • & I is chapter we first introduce the most critical search orgamzat1on ,or arge-
vocabutary . • "fi I d t t"al speech recognition-tree lexicons. Tree lexicons s1gni ,cant y re uce po en 1 
search sp • I d t ace, although they introduce many practical problems. In parucu ar, we nee o 
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bl S Such as reentrant lexical trees, factored language model probabilities sub address pro em . • • 
tree optimization, and subtree poly~orph1sm. . . . 

Various other efficient techniques also are introduced. Most of these techniques aim 

f I Pruning with the hope of sparing the correct paths. For more effective pnming or c ever . , 
different layers of beams are usually use~. Wh!le_fast match techniques ~escribed in Chapter 

12 are typically required for stack decodmg, s1m1lar concepts_ and techniques can be applied 
to Viterbi beam search. In practice, the look-ahead strategy 1s equally effective for Viterbi 

beam search. 
Although it is always desirable to use all the knowledge sources (KSs) in the search 

algorithm, some are difficult to integrate into the left-to-right time-synchronous search 
framework. One alternative strategy is to first produce an ordered list of sentence hypotheses 
(a.k.a. n-best list), or a lattice of word hypotheses (a.k.a. word lattice) using relatively inex­
pensive KSs. More expensive KSs can be used to rescore the n-best list or the word lattice to 
obtain the refined result. Such a multipass strategy has been explored in many large­
vocabulary speech recognition systems. Various algorithms to generate sufficient 11-best lists 
or the word lattices are described in the section on multipass search strategies. 

Most of the techniques described in this chapter rely on nonadmissible heuristics. 
Thus, it is critical to derive a framework to evaluate different search strategies and pruning 
parameters. 

13.1. EFFICIENT MANIPULATION OF A TREE LEXICON 

The lexicon entry is the most critical component for large-vocabulary speech recognition, 
since the search space grows linearly along with increased linear vocabulary. Thus an effi­
cient framework for handling large vocabulary undoubtedly becomes the most critical issue 
for efficient search perfonnance. 

13.1.1. Lexical Tree 

~e searc~ space for n-gram discussed in Chapter 12 is organized based on a straightforward 
lmear lexicon, i.e., each word is represented as a linear sequence of phonemes, independent 
of 0ther words. For example, the phonetic similarity between the words task and tasks is not 
leveraged. In a large-vocabulary ~yst~r.1, many words may share the same beginning pho­
nemes. A tree structure is a natural representation for a large-vocabulary lexicon, as manY 
phonemes can be shared t 1· • . 1 t e based . 0 e immate redundant acoustic evaluations. The lex1ca re • 
search is thus essential i b ·1d· • • or ui mg a real-time large-vocabulary speech recognizer. 

'. The term real-time means the decocr . ce ihe decod· 
mg process can talce I mg process takes no longer than the duration of the speech. Sin_ . neo~s 

P ace as soon as th h "d al mswn1u responses after speakers fi . h • . e speec starts, such a real-time decoder can prov1 e re 
nus talkmg. 
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,,. 

/el 

,,. 
,,. ,,. 

,,. ,,. W 2 = label 

W ~=label 

Figure 13.1 An example of a lexical tree, where each branch corresponds to a shared phoneme 
and the leaf corresponds 10 a word. 
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Figure 13.1 shows an example of such a lexical tree, where common beginning pho­
nemes are shared. Each leaf corresponds to a word in the vocabulary. Please note that an 
extra null arc is used to fonn the leaf node for each word. This null arc has the following 
two functions: 

l. When the pronunciation transcription of a word is a prefix of other ones, the 
null arc can function as one branch to end the word. 

2. When there are homophones in the lexicon, the null arcs can function as lin­
guistic branches to represent different words such as two and to. 

The advantage of using such a lexical tree representation is obvious: it can effectively 
reduce the state search space of the trellis. Ney et al. [32) reported that a lexical tree repre­
sentation of a 12,306-word lexicon with only 43,000 phoneme arcs had a saving of a factor 
of 2•5 over the linear lexicon with l 00,800 phoneme arcs. Lexical trees are also referred 1.0 

as prefix trees, since they are efficient representations of lexicons with sharing among Iexi­
ca_l entries that have a common prefix. Table 13.1 shows the distribution of phoneme arcs for 
this ~2,306-word lexical tree. As one can see, even in the fifth level the number of phoneme 
arcs 18 only about one-third of the total number of words in the lexicon. 

Table 131 o· . . . h e arc for a 12,306-• 1s1nbut1on of the tree phoneme arcs and active tree P onem 
Word lexico • n using a lexical tree representation [32] ,_ 

level 4 s 6 ?.7 
i---,__ 1 2 3 

1~nemearcs 3116 4380 4950 29.200 
28 331 I 511 

Average • 470 329 178 206 
~ cs 23 233 485 
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The saving by using a lexical tree is substantial, because it not only results in consid­
erable memory saving for representing state-search space but also saves tr~m~ndous time by 
searching far fewer potential paths. Ney et al. [32] report tha~ a tree o:gamzat10~ of the lexi­
con reduces the total search effort by a factor of 7 over the linear lexicon organization. This 

• is because the lion 's share of hypotheses during a typical large-vocabulary search is on the 
first and second phonemes of a word. Haeb-Umbach et al. (23] report that for a 12,306-word 
dictation task, 79% and I 6% of the state hypotheses are in the first and second phonemes, 
when analyzing the distribution of the state hypotheses over the state position within a word. 
Obviously, the effect is caused by the ambiguities at the word boundaries. The lexical tree 
representation reduces that effort by evaluating common phonetic prefixes only once. Table 
13.l also shows the average number of active phoneme arcs in the layers of the lexical tree 
[32]. Based on this table, you can expect that the overall search cost is far less than the size 
of the vocabulary. This is the key reason why lexical tree search is widely used for large­
vocabulary continuous speech recognition systems. 

The lexical tree search requires a sophisticated implementation because of a funda­
mental deficiency--a branch in a lexical tree representation does not correspond to a single 
word with the exception of branches ending in a leaf This deficiency translates to the fact 
that a unique word identity is not determined until a leaf of the tree is reached. This means 
that any decision about the word identity needs to be delayed until the leaf node is reached, 
which results in the following complexities. 

• Unlike a linear lexicon, where the language model score can be applied when 
starting the acoustic search of a new word, the lexical tree representation has 
to delay the application of the language model probability until the leaf is 
reached. This may result in an increased search effort, because the pruning 
needs to be done on a less reliable measure, unless a factored language model 
is used, as discussed in Section 13.1.3. 

• Because of the delay of language model contribution by one word, we need to 
k~ep a separate copy of an entire lexical tree for each unique language model 
history. 

13.1.2. Multiple Copies of Pronunciation Trees 

A simple lexical tree 1·s suffi • "f • • b use . . icient I no language model or a unigram is used. This 1s eca 
the dec1s1on at time t d d ram epen s on the current word only However for higher-order n-g 
models, the linguist" t • ' . h 
l ic sate cannot be determined locally. A tree copy is required for ea~ 
anguage model state F b' d nus • or igrams, a tree copy is required for each predecessor wor • 

may seem to be astonish· b abu-
1 . F mg, ecause the potential search space is increased by the voe 
ary size. ortunately ex • · are re-

g · d b .' penmental results show only a small number of tree copies 
uire , ecause efficient • al [32] 

report that th pruning can eliminate most of the unneeded ones. Ney et • 
e search effort • b' . . h igraJll 

USmg igrams 1s increased by only a factor of 2 over t e un 
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e In general, when more detailed (better) acoustic and/or l"ngu"ge d 
1 cas • . . .. u mo e s are used the 

f'ect of a potentially mcreased search space is often compensated by a ~ d b, e 1• more 1ocuse earn 
earch from the use of more accurate models. In other words although th t • h s . . . , e s at1c searc 

space might increase s1gnrfi~antly by using more accurate models, the dynamic search space 
Can be under control (sometimes even smaller), thanks to improved evaluation tiu 

1
-. [ 9 2 nc ions. 

To deal with tree copies l , 3, 37}, you can create redundant subtrees. When c · 
d d. b' . . . . op1es 

of lexical trees are use to 1sam tguate active hngu1st1c contexts, many of the active state 
hypotheses correspond to the same redundant unigram state. due to the postponed applica­
tion of language models. To apply the language model sooner, and to eliminate redundant 
unigram state computations, a successor tree, I';_, can be created for each linguistic context i. 
r; encodes the nonzero 11-grams of the linguistic context i as an isomorphic subgraph of the 
unigram tree, TQ. Figure 13.2 shows the organization of such successor trees and unigram 
tree for bigram search. For each word w a successor tree, T., is created with the set of suc­
cessor words that have nonzero bigram probabilities. Suppose u is a successor of w; the bi­
gram probability P(u I w) is attached to the transition connecting the leaf corresponding to u 
in the successor tree T.,, with the root of the successor tree T,,. The unigram tree is a full­
size lexical tree and is shared by all words as the back-off lexical tree. Each leaf of the uni­
gram tree corresponds to one of !VI words in the vocabulary and is linked to the root of its 
bigram successor tree ( T.) by an arc with the corresponding unigram probability P(u). The 
backoffweight, a(u), of predecessor u is attached to the arc which links the root of succes­
sortree r. to the root of the unigram tree. 

o(u) 

bigram successor 
trees 

T,.. 

T,. 

. . trees for bigram search [13). 
Figure 13.2 Successor trees and unigram 
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A careful search organiz~tion is requi:ed to avoid computational overhead and to 
guarantee a linear time complexity for explonng state hypotheses. In the following sectio 
we describe techniques to achieve efficient lexical tree recognizers. These techniques i~~ 
elude factorization of language model probabilities, tree optimization, and exploiting subtree 
dominance. 

13.1.3. Factored Language Probabilities 

As mentioned in Section 13.1.2, search is more efficient if a detailed knowledge source can 
be applied at an early stage. The idea of factoring the language model probabilities across 
the tree is one such example [4, 19]. When more than one word shares a phoneme arc, the 
upper bound of their probability can be associated to that arc.

2 
The factorization can be ap­

plied to both the full lexical tree (unigram) and successor trees (bigram or other higher-order 
language models). 

An unfactored tree only has language model probabilities attached to the leaf nodes, 
and all the internal nodes have probability 1.0. The procedure for factoring the probabilities 
across the tree computes the maximum of each node n in the tree according to Eq. (13.1). 
The tree can then be factored according to Eq. (13.2) so when you traverse the tree you can 
multiply F

0 

(n) along the path to get the needed language probability. 

p' (n) = max P(x) 
rerhtld(n) 

(13.1) 

F"(n)= • P'(n) 
P (parent(n)) 

(I 3.2) 

An illustration of the factored probabilities is shown in Table 13.2. Using this lexicon, 
we create the tree depicted in Figure J 3.3(a). In this figure the unlabeled internal nodes have 
a probability of 1.0. We distribute the probabilities according to Eq. (13.1) in Figure 13.3(b), 
which is factored according to Eq. (13.2), resulting in Figure l 3.3(c). 

Table 13.2 Sample probabilities P(w}and their pseudoword pronunciations (4]. 

Wl Pronunciation P(w} 

W O lab cl 0.1 

w, /ab cl 0.4 

w 2 la C z/ 0.3 

W3 Ide/ 0.2 

'Th h • f • . . ·n be cnosen e c oice O upper bound 15 because Jt 1s an admissible estimate of the path no matter which wore! WI 
later. 
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0.4 

(c) 

Figure 13.3 (a) Unfactored lexical tree; (b) distributed probabilities with computed p· (n); 
(c)factored treeF'(n) (4]. 

Using the upper bounds in the factoring algorithm is not an approximation, since the 
correct language model probabilities are calculated by the product of values traversed along 
each path from the root to the leaves. However, you should note that the probabilities of all 
the branches of a node do not sum to one. This can solved by replacing the upper-bound 
(max) function in Eq. ( 13.1) with the sum. 

p' (n) = L P(x) (13.3) 
XE<hi/d(11) 

To guarantee that all the branches sum to one, Eq. (13.2) should also be replaced by 
the following equation: 

p'(n) F' (n) = __ _.:.._.:.....__ L P
0

(x) 

(13.4) 

XE<hild(porc:nt(n)) 

b·1· • b s"ng sum instead of up-
A new illustration of the distribution of LM proba 1 1t1es Y u 1 

• 

per bound is shown in Figure 13.4. Experimental results have shown that the factonng 
method with either sum or upper bound has comparable search performance. 

1.0 
1.0 

(c) 
(a) (b) 

F' . ng tree, the corresponding (a} ~n-
•gure 13.4 Using sum instead of upper bound wh_en facton d p' (n) ; (c} factored tree with 

~actored lexi~al tree; (b) distributed probabilities wich compute 
0mputed F (n) [4]. 
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One interesting observation is that the language model score can be regarded as a heu­
ristic function to estimate the linguistic expectation of the current word to be searched. In a 
linear representation of the pronunciation lexicon, application of the linguistic expectation 
was straightforward, since each state is associated with a unique word. Therefore, given the 
context defined by the hypothesis under consideration, the expectation for the first phone of 
word w, is just P( w, I w;-•) . After the first phone, the expectation for the rest of the phones 
becomes 1.0, since there is only one possible phone sequence when searching the word w,. 
However, for the tree lexicon, it is necessary to compute E(p I I Pt', w;-') , the expectation 
of phone p1 given the phonetic prefix pt' and the linguistic context w;-• . Let 4'(j, w1;) 
denote the phonetic prefix of length j for w~ . Based on Eqs. (13.1) and ( 13.2), we can com­
pute the expectation as: 

£( I 1-1 w'-') = P(wr I w:-') 
P1 Pi ' , P(wP I wt') 

(13.5) 

where c = arg riax( w, I w;-', ¢(j, wt)= p{) and p = arg max(wk I w;-1
, ¢(} -1, wk) = Pt') . Based 

on Eq. (13.5), an arbitrary n-gram model or even a itochastic context-free grammar can be 
factored accordingly. 

13.1.3.1. Efficient Memory Organization of Factored Lexical Trees 

A major drawback to the use of successor trees is the large memory overhead required to 
store the additional information that encodes the structure of the tree and the factored lin­
guistic probabilities. For example, the 5.02 million bigrams in the 1994 NABN (North 
American Business News) model require 18.2 million nodes. Given a compact binary tree 
representation that uses 4 bytes of memory per node, 72.8 million bytes are required to store 
the predecessor-dependent lexical trees. Furthermore, this tree representation is not as ame­
nable to data compression techniques as the linear bigrarn representation. 

The factored probability of successor trees can be encoded as efficiently as the n-gram 
model based on Algorithm 13.1, i.e., one n-gram record results in one constant-sized record. 
Step 3 is illustrated in Figure I 3.5(b), where the heavy line ends at the most recently visited 
node that is not a direct ancestor. The encoding result is shown in Table 13.3. 

ALGORITHM 13.1: ENCODING THE LEXICAL SUCCESSOR TREES (LST) 

For each linguistic context: 
Step 1: Distribute the probabilities according to Eq. (13.1). 
Step 2: Factor the probabilities according to Eq. (13.2). 
Step 3: Perform a depth-first traversal of the LST and encode each leaf record, 

(a) the depth of the most recently visited node that is not a direct ancestor, 
(b) the probability of the direct ancestor at the depth in (a), 
(c) the word identity. 

L-----------------------------
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Figure 13.5 (a) Factored lree; (b) tree with common prefix-length annotation. 
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Clearly the new data structure meets the requirements set forth, and, in fact, it only re­
quires additional log(n) bits per record (11 is the depth of the tree). These bits encode the 
common prefix length for each word. Naturally this requires some modification to the de­
coding procedure. In particular, the decoder must scan a portion of the n-gram successor list 
in order to determine which tree nodes should be activated. Depending on the structure of 
the tree (which is detennined by the acoustic model, the lexicon, and language model), the 
tree structure can be interpreted at runtime or cached for rapid access if memory is available. 

Table 13.3 Encoded successor lexical tree; each record corresponds to one augmented factored 
n-gram. 

WI Depth F·(w
1
) 

w, 0 0.4 

Wo 4 0.25 

w_, 2 0.75 

IY1 I 0.5 

l3,1.4. Optimization of Lexical Trees 
W • k f d by the multiple copies 

e now investigate ways to handle the huge search networ • orme . 
1 1 

s actually 
of Jex· 1 . . . . f ·zation of lex1ca ree 1

~3 trees m different lingmst1c contexts. The acton d I the intertree 
mak~s. rt easier to search. First, after the factorization of the language mo ;~ched because 
lransn1on h . . h 1 uage model scores a 
th s s own m Figure I 3.2 no longer have t e ang M er as illustrated in 
/Y are already applied completely before leaving the leaves. thoreo; h;ve an associated 
igure 13 3 d f • gle word pa no 

Ira • . • • many transitions toward the en o a sm . - . r that there could be many 
du n;_n,on probability that is equal to I . This observauon imp ies then be merged to save 
bo~1cated subtrees in the network. Those duplicated subtrees can) tale evaluation. Unlike 

Pn, _space and computation by eliminating redundant (unnecess~ry- sl without introducing 
••ning th. . . . ming pnnc1p e, an ' 15 savmg rs based on the dynanuc program 
Y llOlential error. 
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13.1.4.1. Optimization of Finite State Network 

One way to compress the lexical tree network is to use a similar algorithm for optimizin th 
number of states in a deterministic finite state automaton. The optimization algorith~ _e 

f . fi . ~ 
based on the indistinguishable property o states m a mite state automaton. Suppose that s 
and s2 are the initial states for automata 7; and T2 • then s1 and s2 are said to be indisti,i'­
guishable if the languages accepted by automata 7; and T~ are exactly the same. If we con­
sider our lexical tree network as a finite state automaton, the symbol emitted from the 
transition arc includes not only the phoneme identity, but also the factorized language model 
probability. 

The general set-partitioning algorithm [I] can be used for the reduction of finite state 
automata. The algorithm starts with an initial partition of the automaton states and iteratively 
refines the partition so that two states s1 and s2 are put in the same block B, if and only if 
/(s1 ) and /(s2 ) are both in the same block B1 • For our purpose, f(s1) and /(s2 ) can be 
defined as the destination state given a phone symbol (in the factored trees, the pair <phone, 
IM-probability> can be used). Each time a block is partitioned, the smaller subblock is used 
for further partitioning. The algorithm stops when all the states that transit to some state in a 
particular block with arcs labeled with the same symbol are in the same block. When the 
algorithm halts, each block of the resulting partition is composed of indistinguishable states, 
and those states within each block can then be merged. The algorithm is guaranteed to find 
the automaton with the minimum number of states. The algorithm has a time complexity of 
O(MN log N), where Mis the maximum number of branching (fan-out) factors in the lexi­
cal tree and N is the number of states in the original tree network. 

Although the above algorithm can give optimal finite state networks in terms of num­
ber of states, such an optimized network may be difficult to maintain, because the original 
lexical tree structure could be destroyed and it may be troublesome to add any new word 

into the tree network [1]. 

13.1.4.2. Subtree Isomorphism 

The finite state optimization algorithm described above does not take advantage of !he tree 
t f th fi . . • • m number s ructure o e mite state network, though it generates a network with a m1mmu_. _ 

of states. Since our finite state network is a network of trees, the indistinguishabJhty ~rop 
• 11 are said 10 

erty IS actua Y the same as the definition of subtree isomorphism. Two subtrees 1 b • I . h . . h uccessors. t e isomorp uc to eac other 1f they can be made equivalent by permuting t es •. · 
h ld b • • d Jy 1f their s ou e straightforward to prove that two states are indistinguishable, if an on 

subtrees are isomorphic 
Th . • . . orphic. for 

ere are efficient algonthms [1] to detect whether two subtrees are isorn e 
~II possib~e pa(rs of states u and v, if the subtrees starting at u and v, ST(u) a~d srn~:s 
isomorphic, v is merged into u and ST(v) can be eliminated. Note that only mterna_ Jgo· 
~eed t_o be c~nsidered for subtree isomorphism check. The time complexity for th1s a 
nthm 1s O(N·) [I]. 
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A/• •ir mil in a lexical tree is defined as a subpath ending in u l~af d . 
tllli • '" an gomg throu0 h states 

.th a unique successor. It 1s often referred as a single-word s11t,,,a,I It b "' 
w1 • • . • • . 1- can e pro\'ed that 

ch a linear tail has umt probab1hty attached to its arcs according to E ( 1., 1) d 
su . b·b·1· f . . . qs •. ,. an (13.2). 
Th·s 1-5 because LM p10 a 1 1ty actonzauon pushes forward the LM b b"I' 

1 . • • . . pro a I lly attached to 
lhe last arc of the linear t~tl, l~avmg arcs with unit probability. Since all the tails correspond-
ing to the same word_ w m d1fferen~ successor trees are linked to the root of successor tree 
r .. ' the subtree start111g from the first state of each linear tail is isomorphic to the subtree 
starting from one of _the states _forming the longest linear tail of w. A simple algorithm 10 
take advantage of this share-tat] topology can be employed to reduce the lexical tree net­
work. 

Figure 13.6 and Figure 13.7 show a lexical tree network before and after shared-tail 
op1imization. For each word, only the longest linear tail is kept. All other tails can be re­
moved by linking them to an appropriate state in the longest tail, as shown in Figure 13.7. 

Shared-tail optimization is not global optimization, because it considers only some 
special topology optimization. However, there are some advantages associated with shared­
tail optimization. First, in practice, duplicated linear tails account for most of the redundancy 
in lexical tree networks [ 12]. Moreover, shared-tail optimization has a nice property of 
maintaining the basic lexical tree structure for the optimized tree network. 

r. = { u, y} 
Tr = {y, z} 
T, = { u} 

u = /ab/ 
Y = /acd/ 
z = /ace/ 

·-a--bJ 
Fi r . a.red-tail optimization [I 2]. The 

gu e 13.6 An example of a lexical tree network w1thout sh . sor trees for 11, y, and 
vocabulary • I T d T are the succes " inc udes three words, u, v, and ::. T.. ,., an , 

respectively [ 13]. • • 

;--
Wei\s,\ 

urne bigram is used in the discussion of ·'sharing tails." 



656 

lex icon 
tree 

ii C e 

linear 
transcriptions 

Large-Vo('abulary Search Al--:-­gonth111s 

successor 
trees 

Figure 13.7 The lexical tree network in Figure 13.6 after shared-tail optimization [12]. 

13.1.5. Exploiting Subtree Polymorphism 

The techniques of optimizing the network of successor lexical trees can only eliminate iden­
tical subtrees in the network. However, there are still many subtrees that have the same 
nodes and topology but with different language model scores attached to the arcs. Th_e 
acoustic evaluation for those subtrees is unnecessarily duplicated. In this section we exploit 
subtree dominance for additional saving. 

A subtree instance is dominated when the best outcome in that subtree is not be«er 
than the worst outcome in another instance of that sulJtree. The evaluation becomes redun; 
dant for the dominated subtree instance. Subtree isomorphism and shared-tail are case_s;d 
subtree dominance, but they require prearrangement of the lexical tree network as descn 
in the previous section. . al • ·zat1on • 

If we need to implement lexical tree search dynamically, the network optimi .. ax 
gorithms are not suitable. Although subtree dominance can be computed. using ~

1
i:: be 

search [35] during runtime, this requires that information regarding subtree isomorp I it is 
available for all corresponding pairs of states for each successor tree T,,. Unfortunate y, 
not practical in terms of either computation or space. xi as· . . • tic conte 

In place of computing strict subtree dominance, a polymorpluc hnguis d n local 
· d • ebase 0 

s1gnment to re uce redundancy is employed by estimating subtree dom1na~c assign· 
• & • d . . hie context 
m1ormat1on an 1gnonng the subgraph isomorphism problem. Polymorp urne the 

t • I k · · • h state to ass • men mvo ves eepmg a smgle copy of the lexical tree and allowmg eac h • thal ti 

I. . . th. approac ,s . 
mgmsuc context of the most promising history. The advantage of is . th uee 1s 

1 • h · • • h node tn e emp oys maximum s anng of data structures and mformauon, so eac 
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evaluated, at most, once._ H~wever, the use of local knowledge to detennine the dominant 
context could intro~uce significant errors because of premature pruning. Whisper [4] repons 
3 65.7'n: increase JO error rate when only the dominant context is kept, based on local 
knowledge. . 

To recover the errors created by usmg local linguistic infonnation to estima1e subtree 
dominance, you net!d to delay th~ decision regarding which linguistic context is most prom­
ising. This can be done by ~e~pmg a heap of contexts at each node in lhe tree. The heap 
maintains all contexts (lingu1s11c paths) whose probabilities are within a constant threshold 
e of that of the best global path. The effect of the e -heap is that more comexts are retained 
fo; high-probability states in the lexical tree. The pseudocode fragment in Algorithm 13.2 
[3) illustrates a transition from state s11 in context c to state s., . The terminology used in 
Algorithm I 3.2 is listed as follows: 

, (-logP(s., I s
11
,c)) is the cost associated with applying acoustic model 

matching and language model probability of state s., transited from s. in 
context c. 

, /nHeap(s.,,c) is true if context c is in the heap corresponding to state s.,. 

, Cost(s.,,c) is the cost for context c in state s.,. 

, Statelnfo(s., c) is the auxiliary state infonnation associated with context c in 
state s • . 

• Add(s.,c) adds context c to the state s., heap. 

• Delete(s.,c) deletes context c from state s., heap. 

• WorstContext(s'") retrieves the worst context from the heap of state s. • 

ALGORITHM 13.2: HANDLING MULTIPLE LINGUISTIC CONTEXTS 
IN A LEXICAL TREE 

1. d=Cost(s
11
,c)+(-logP(s., ls,,,c)) 

2. H lnHeap(s,.,c) then 
If d < Cost(s .. , c) then 

Cost(s,,,,c) = d 
Statelnfo(s,,,,c) = Statelnfo(s,.,c) 

elself d<BestCost(s,,,)+e then 
Add(s.,c); Statelnfo(s,,. ,c) = Statelnfo(s.,c) 
Cost(s.,,c)=d 
else 
W= WorstContext(s,.) 
if d < Cost(s,., w) then 

Delete(s , w) 
Add(s,,.,~); Statelnfo(s,,,,c) = Statelnfo(s11 ,c) 
Cost(s,,.,c) d 
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. When higher-order n-gram is used for lexical tree search, the potential heap size for 
lexical_ tree nodes (some also refer to prefix nodes) could be unmanageable. With decent 
acoust~c models ~nd effici~nt pruning, as illustrated in Algorithm 13.2, the average heap size 
for act~ve nodes _m the lex'.cal tree is actually very modest. For example, Whisper's average 
heap size for active nodes m the 20,000-word WSJ lexical tree decoder is only about 1.6 [3]. 

13.1.6. Context-Dependent Units and Inter-Word Triphones 

So far, we have implicitly assumed that context-independent models are used in the lexical 
tree search. When context-dependent phonetic or subphonetic models, as discussed in Chap­
ter 9, are used for better acoustic models, the construction and use of a lexical tree become 
more complicated. 

Since senones represent both subphonetic and context-dependent acoustic models, this 
presents additional difficulty for use in lexical trees. Let's assume that a three-state context­
dependent HMM is formed from three senones, one for each state. Each senone is context­
dependent and can be shared by different allophones. If we use allophones as the units for 
lexical tree, the sharing may be poor and fan-out unmanageable. Fortunately, each HMM is 
uniquely identified by the sequence of senones used to form the HMM. In this way, different 
context-dependent allophones that share the same senone sequence can be treated as the 
same. This is especially important for lexical tree search, since it reduces the order of the 
fan-out in the tree. 

Interword triphones that require significant fan-ins for the first phone of a word and 
fan-outs for the last phones usually present an implementation challenge for large­
vocabulary speech recognition. A common approach is to delay full interword modeling 
until a subsequent rescoring phase.4 Given a sufficiently rich lattice or word graph, this is a 
reasonable approach, because the static state space in the successive search has been reduced 
significantly. However, as pointed out in Section 13.1.2, the size of the dynamic state space 
can remain under control when detailed models are used to allow effective pruning. In addi­
tion, a multipass search requires an augmented set of acoustic models to effectively model 
the biphone contexts used at word boundaries for the first pass. Therefore, it might be desir­
able to use genuine interword acoustic models in the single-pass search. 

Instead of expanding all the fan-ins and fan-outs for inter-word context-dependent 
phone units in the lexical tree, three metaunits are created. 

1. The first metaunit, which has a known right context corresponding to the sec­
ond phone in the word, but uses open left context for the first phone of a 
word (sometimes referred to as the word-initial unit). In this way, the fan-in 
is represented as a subgraph shared by all words with the same initial left­
context-dependent phone. 

' Mulcipass search strategy is described in Section 13.3.S. 
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2_ Another metaunit, which has a known left context corresponding to the sec­
ond-to-last phon~ of the word, but uses open right context for the last phone 
of a word (sometimes referred to as the word-final unit). Again, the fan-out is 
represented as a subgraph shared by all words with the same final right­
context-dependent phone. 

3. The third metaunit, which has both open left and right contexts, and is used 
for single-phone word unit. 
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By using these metaunits we can keep the states for the lexical trees under control, because 
lhe fan-in and fan-out are now represented as a single node. 

During recognition, different left or right contexts within the same metaunit are han­
dled using Algorithm 13.2, where the different acoustic contexts are treated similarly as dif­
ferent linguistic contexts. The open left-context metaunit (fan-ins) can be dealt with in a 
straightforward way using Aglorithm 13.2, because the left context is always known (the last 
phone of the previous word) when it is initiated. On the other hand, the open right-context 
metaunit (fan-out) needs to explore all possible right contexts because the next word is not 
known yet. To reduce unnecessary computation, fast match algorithms (described in Section 
13.2.3) can be used to provide both expected acoustic and language scores for different coo­
text-dependent units to result in early pruning of unpromising contexts. 

13.2. OTHER EFFICIENT SEARCH TECHNIQUES 

Tree structured lexicon represents an efficient framework of manipulation of search space. 
In this section we present some additional implementation techniques, which can be use~ to 
funher improve the efficiency of search algorithms. Most of these techniques can be apphe_d 
to both Viterbi beam search and stack decoding. They are essential ingredients for a pracb­
cal large-vocabulary continuous speech recognizer. 

13-2.t, Using Entire HMM as a State in Search 
The state • 11- t t·on 1·s by definition, a m state-search space based on HMM-tre 1s compu a 1 , . 
Markov state. Phonetic HMM models are the basic unit in most speech recognizers. Ev~n 
though subphonetic HMMs like senones might be used for such a system, the search is 
often b d ' ' ase on phonetic HMMs. Th 
" Treating the entire phonetic HJvtM as a state in state-search has many advantagles._th _e 
urst obv· h am needs to dea w1 is 
srn II ,ous advantage is that the number of states the searc progr th mber of 
sta~t Note that using the entire phonetic HMM does not in effect reduc:thi: :uphonetic 
HMM in the search. The entire search space is unchanged. All the_ state~ w; . the beam. if 
lhe h are now bundled together. This means that all of them are e1thder ep i;or any given 

p onetic HMM . . . II f them are prune away. 
tirne th 1s regarded as promising, or a o . HMM is used as the cost 
for th' e minimum cost among all the states within the phonetic d t nnine the promising 

e Phonet· H th. t 1·s used to e e ic MM. For pruning purposes, ts cos 
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degree of this phonetic HMM, i.e., the fate of all the states within t~is p?onetic HMM. Al-

th h this does not actually reduce the beam beyond nonnal prunmg, 1t has the effect of 
oug . th" I . 

processing fewer candidates in_ the be~m. In programmmg, 1s means ess check mg and 
bookkeeping, so some computation savings can ~ expe~ted. . 

You might wonder if this organization might be meffect1ve for beam search, since it 
forces you to keep or prune all the states within a phonetic HMM. In theory, it is possible 
that only one or two states in the phonetic HMM need to be kept, while other states can be 
pruned due to high cost score. However, this is, in reality, very rare, since a phone is a small 
unit and all the states within a phonetic HMM should be relatively promising when the 
search is near the acoustic region corresponding to the phone. 

During the trellis computation, all the phonetic HMM states need to advance one time 
step when processing one input vector. By perfonning HMM computation for all states to­
gether, the new organization can reduce memory accesses and improve cache locality, since 
the output and transition probabilities are held in common by all states. Combining this or­
ganization strategy with lexical tree search further enhances the efficiency. In lexical tree 
search, each hypothesis in the beam is associated with a particular node in the lexical tree. 
These hypotheses are linked together in the heap structure described in Algorithm 13.2 for 
the purposes of efficient evaluation and heuristic pruning. Since the node corresponds to a 
phonetic HMM, the HMM evaluation is guaranteed to execute once for each hypothesis 
sharing this node. 

In summary, treating the entire phonetic HMM as a state in state-search space allows 
you to explore the effective data structure for better sharing and improved memory locality. 

13.2.2. Different Layers of Beams 

Because of the complexity of search, it often requires pruning of various levels of search to 
make search feasible. Most systems thus employ different pruning thresholds to control what 
states participate. The most frequently used thresholds are listed below: 

• f, controls what states (either phone st.ates or senone st.ates) to retain. This is 
the most fundamental beam threshold. 

• TP controls whether the next phone is extended. Although this might not be 
necessary for both stack decoding and linear Viterbi beam search it is crucial 
for_ lexical tree search, because pruning unpromising phonetic pr~fixes in the 
lexical trees could improve search efficiency significantly. 

• i-. con~ols whether hypotheses are extended for the next word. Since the 
~r~chmg factor for word boundaries is very large, we need this threshold to 
hm1t search to only the promising ones. 

• -r~ controls where a linguistic context is created in a lexical tree search using 
higher-order language models. This is also known as e -heap in Algorithm 
13.2. 
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Pruning can introduce search errors if a state is pruned th t Id 
Th . • I 1 • a wou have been on the 

I bally best path. e pnnc1p e app 1ed here is that the more const • • . 
go . , • . . . rarnts you have available, 
1he more aggressn ely you decide whether this path will participate in the globally best ath 

1 diis case at the state level, you have the least constraints At the 1 . 1 P • 
n • . - • P 10net1c eve! there are 

more and there are the most at the word level. In gent"!r-il the nuinber f d h , . . . . . . . • • o wor ypotheses 
,ends to drop s1~rnficantl~ at w01d boundaries. Different thresholds for different levels allow 
the search designer to fine-tune those thresholds for their tasks to achieve b t h • · · fi • . es searc perfonnance without s1grn 1cant mcrease Ill error rates. 

13.2.3. Fast Match 

As described in Chapter 12, fast match is a crucial part of stack decoding, which mainly 
reduces the number of possible word expansions for each path. Similarly, fast match can be 
applied to the most expensive part-extending the phone HMM fan-outs within or between 
lexical trees. Fast match is a method for rapidly deriving a list of candidates that constrain 
successive search phases in which a computationally expensive detailed match is performed. 
In this sense, fast match can be regarded as an additional pruning threshold to meet before a 
new word/phone can be started. 

Fast match is typically characterized by the approximations that are made in the acous­
tic/language models to reduce computation. The factorization of language model scores 
among tree branches in lexical trees described in Section 13.1.3 can be viewed as faS t match 
using a language model. The factorized method is also an admissible estima~e of the lan­
guage model scores for the future word. In this section we focus on acouSt1c model fast 
match. 

13.2.3.1. Look-Ahead Strategy 

F • I lied look-ahead strategy. 
_ast match, when applied in time-synchronous search, is a so ca f t deter-

sin • b . arch by a few rames o ce it as1cally searches ahead of the time-synchronous se fi d 
min h' . all the look-ahead frames are ixe • 

e w lch words or phones are likely to extend. Typtc Y . th speci·a11·zed beam 
and th ~ f h' n with ano er , e . ast match is also done in time-synchronous as 10. t te HMMs or con-
1or effi • . . "fi d d Is hke the one-s a 
t . icient pruning. You can also use s1mph ie mo e ' . d to simplify the level of 

d
ex1-_1ndependent models [4, 32]. Some systems [21, 22] h_aveftne several frames into one. 
elails i th • • • f nnat1on rom 

A . n e mput feature vectors by aggregating m O 
. t kip every other frame of 

s1ra1ghtf; . & e stream is O s -spe 0rward way for compressing the 1eatur d hile keeping computation 
unctech for fast match. This allows a longer-range look-ahea ,trweam instead of simplifying 

er contr I Th . . . h • put feature s 
the ac . o • e approach of s1mphfymg t e m ailed match. 

ousttc models can reuse the fast match results for det . I tree search in which pron-
WJt· t h in lex1ca ' f I 

ing. isper [4] uses phoneme look-ahead fast mac 'bl hone fan-outs that may O -
IS appr d of poSSI e p • h th lo ie based on the estimation of the score h d synchronously wit e 

w a g· t is searc e iven phone. A context-independent phone-ne 
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h but Offset N frames into the future. In practice, significant savings can be searc process . 
obtained in search efforts without increase m error rates. 

Th erfoimance of word and phoneme look-ahead clearly depends on the length of 
the look-::ead frames. In general, the larger the look-ahead window, the longer is the com­
putation and the shorter the word/phone A list. Empirical_lY: the window is a few tens of 
milliseconds for phone look-ahead and a few hundreds of m1lhseconds for word look-ahead. 

13.2.3.2. The Rich-Get-Richer Strategy 

For systems employing continuous-density HMMs, tens of mixtures of Gaussians are often 
used for the output probability distribution for each state. The computation of the mixtures is 
one of the bottlenecks when many context-dependent models are used. For example, Whis­
per uses about 120,000 Gaussians. In addition to using various beam pruning thresholds in 
the search, there could be significant savings if we have a strategy to limit the number of 
Gaussians to be computed. 

The Rich-Get-Richer (RGR) strategy enables us to focus on most promising paths and 
treat them with detailed acoustic evaluations and relaxed path-pruning thresholds. On the 
contrary, the less promising paths are extended with less expensive acoustic evaluations and 
less forgiving path-pruning thresholds. In this way, locally optimal candidates continue to 
receive the maximum attention while less optimal candidates are retained but evaluated us­
ing less precise (computationally expensive) acoustic and/or linguistic models. The RGR 
strategy gives us finer control in the creation of new paths that has potential to grow expo­
nentially. 

RGR is used to control the level of acoustic details in the search. The goal is to reduce 
the number of context-dependent senone probability (Gaussian) computations required. The 
context-dependent senones associated with a phone instance p would be evaluated according 
to the following condition: 

Min[ci(p)] • a+LookAhead[ci(p)] < threshold 

where Min[ci(p)] = m}n{cost(s) Is E ci _ phone(p)} 

and Look.Ahead [ ci(p)] = look-ahead estimate of ci(p) 

(13.6) 

These co~ditions state that the context-dependent senones associated with p should be 
evaluated if there exists a states corresponding top, whose cost in linear combination with a 
look-~he~d cost score corresponding top falls within a threshold. In the event that p does not 
fall w1thm the threshold th • · · h • . • e senone scores corresponding to p are estimated usmg t e con 
text-mdependent senones c d' . e . orrespon mg top. This means the context-dependent senones ar 
evaluated only 1f the corr d" • d rt . . espon mg context-independent senones and the look-ahea sta 
showmg promise RGR strat h Id · • 1 . . • egy s ou save s1gn1ficant senone computation for clear Y un-
prom1smg paths Whisp [26] 'd d · h . : er reports that 80% of senone computation can be avot e 
wit out mtroducmg significant errors for a 20,000-word WSJ dictation task. 
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Ideally a search algorithm should consider all possible hypotheses based .fi d ' . on a uni 1e prob-
abilistic framework that integrates all knowledge sources (KSs).i These KSs h . , sue as acous-
tic models. language models. an? lex1~al pronunciation models, can be integrated in an 
HMM state search framework. It 1s desirable lo use the most detailed models s h . , uc as con-
text-dependent models,_ mterword context-dependent models, and high-order n-grams, in the 
search as early as possible. When the explored search space becomes unmanageable, due to 
the increasing size of vocabulary or highly sophisticated KSs, search might be infeasible to 
implement. 

As we develop more powerful techniques, the complexity of models tends to increase 
dramatically. For example, language understanding models in Chapter 17 require long­
distance relationships. In addition, many of these techniques are not operating in a left-to­
right manner. A possible alternative is to perform a multipass search and apply several KSs 
at different stages, in the proper order to constrain the search progressively. In the initial 
pass, the most discriminant and computationally affordable KSs are used to reduce the num­
ber of hypotheses. In subsequent passes, progressively reduced sets of hypotheses are exam­
ined, and more powerful and expensive KSs are then used until the optimal solution is 
found. 

The early passes of multipass search can be considered fast match that eliminat~s 
those unlikely hypotheses. Multi pass search is, in general, not admissible because the opti­
mal word sequence could be wrongly pruned prematurely, due to the fact that not all_ KSs are 
used in the earlier passes. However, for complicated tasks, the benefits of computauon com­
plexity reduction usually outweigh the nonadmissibility. In practice, multipass search strat­
egy using progressive KSs could generate better results than a search algorilhm forced to use 
less powerful models due to computation and memory constraints. 

Th • th called 11-best search para-e most straightforward multipass search strategy is e so- d 
d' • f st probable wor se-
igm. The idea is to use affordable KSs to first produce a 11st O 11 mo . d -1 d 

q . ored using more eta1 e uences IO a reasonable time. Then these 11 hypotheses are resc . " rth 
m d I . f th n-best hst can be 1u er 0 e s to obtain the most likely word sequence. The idea O e I d lattice or 
extended to create a more compact hypotheses representation-:--na;e ~th:::s. N-best or 
gl ra~h. A word lattice is a more efficient way to represent alternahuve oygpn,·t·1on systems {20, 
att,ce s h • • ous speec rec earc ts used for many large-vocabulary continu 

30, 44]. 
I . . . -best list and word lattice. Sev-
n this section we describe the representation of the 11 

. d 
erdl algo ·th . d I ttice are d1scusse • n ms to generate such an 11-best-hst or wor a 

--- •• 'In --------- • rated network of vanous lhe field . . • search through an mteg 
~WI of an1fic1al intelligence. the process of perfonnmg 

edge sou . 
rces 1s called crmsrminl smisfaction. 



664 
Large-Vocabulary Search Algorithms 

13.3.1. N-best Lists and Word Lattices 

Table 13.4 shows an example n-best (JO-best) list generated for a North American Business 
(NAB) sentence. N-best search framework is effective only for n of the order of tens or hun­
dreds. If the short n-best list that is generated by using less optimal models does not include 
the correct word sequence, the successive rescoring phases have no chance to generate the 
correct answer. Moreover, in a typical 11-best list like the one shown in Table 13.4, many of 
the different word sequences are just one-word variations of each other. This is not surpris­
ing, since similar word sequences should achieve similar scores. In general, the number of ii­
best hypotheses might grow exponentially with the length of the utterance. Word lattices and 
word graphs are thus introduced to replace 11-best list with a more compact representation of 
alternative hypotheses. 

Word lattices are composed by word hypotheses. Each word hypothesis is associated 
with a score and an explicit time interval. Figure 13.8 shows an example of a word lattice 
corresponding to the n-best list example in Table 13 .4. It is clear that a word lattice is more 
efficient representation. For example, suppose the spoken utterance contains IO words and 
there are 2 different word hypotheses for each word position. The n-best list would need to 
have 210 = l 024 different sentences to include all the possible permutations, whereas the 
word lattice requires only 20 different word hypotheses. 

Word graphs, on the other hand, resemble finite state automata, in which arcs are la­
beled with words. Temporal constraints between words are implicitly embedded in the to­
pology. Figure 13.9 shows a word graph corresponding to the n-best list example in Table 
13.4. Word graphs in general have an explicit specification of word connections that don't 
allow overlaps or gaps along the time axis. Nonetheless, word lattices and graphs are simi­
lar, and we often use these terms interchangeably.6 Since an n-best list can be treated as a 
simple word lattice, word lattices are a more general representation of alternative hypothe­
ses. N-best lists or word lattices are generaJly evaluated on the following two parameters: 

Table 13.4 An example 10-best list for a North American Business sentence. 

I. I will tell you would l think in my office 
2. I will tell you what I think in my office 
3. I will tell you when I think in my office 
4. I would sell you would I think in my office 
5. I would sell you what I think in my office 
6. I would sell you when I think in my office 
7. I will tell you would I think in my office 
8. I will tell you why I think in my office 
9. I will tell you what I think on my office 

I 0. I Wilson you I think on my office 

• We will use the term word la1tice in the rest of this chapter .. 
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• Dellsiry: In then-best case, it is measured by how many alternative word se­
quences are kept in the 11-best list. In the word lattice case, it is measured by 
the number of word hypotheses or word arcs per uttered word. Obviously, we 
want the density to be as small as possible for successive rescoring modules, 
provided the correct word sequence is included in then-best list or word lat­
tice. 

, The lower bound word error rati•: It is the lowest word error rate for any 
word sequence in the. 11-best list or the word lattice. 

will tell you what think in my office 

would sell when 

Wilson why 

would 
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Figure 13.8 A word lattice example. Each word has an explicit time interval associated with it. 

office 

I . are 
Fi - . . le 13.4. Temporal constramts 
. cure 13-9 A word graph example for the 11-best llSl 10 Tab 
l!l\ (" • 

P •cu in the topology. 
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Rescoring with highly similar 11-best alternatives duplicates computation on com 
~arts. Th~ compact representation of word l_au_ices allows _both data structure and comp:~~ 
tion sharmg of the common parts among s1m1lar altemat1ve hypotheses, so it is generall 
computationally less expensive to rescore the word lattice. y 

_ _ Figure I 3. IO ~llustrates the general n-best/lattice search framework. Those KSs pro­
v1dmg most constraints, at a lesser cost, are used first to generate then-best list or word lat­
tice. The n-best list or word lattice is then passed to the rescoring module, which uses the 
remaining KSs to select the optimal path. You should note that the n-best and word-lattice 
generators sometimes involve several phases of search mechanisms to generate the n-best 
list or word lattice. Therefore, the whole search framework in Figure 13.10 could involve 
several (> 2) phases of search mechanism. 

Does the compact n-best or word-lattice representation impose constraints on the 
complexity of the acoustic and language models applied during successive rescoring mod­
ules? The word lattice can be expanded for higher-order language models and detailed con­
text-dependent models, like inter-word triphone models. For example, to use higher-order 
language models for word lattice entails copying each word in the appropriate context of 
preceding words (in the trigram case, the two immediately preceding words). To use inter­
word triphone models entails replacing the triphones for the beginning and ending phone of 
each word with appropriate interword triphones. The expanded lattice can then be used with 
detailed acoustic and language models. For example, Murveit et al. [30] report this can 
achieve trigram search without exploring the enormous trigram search space. 

Soeech 
► 

Input 

KS Set 1 

N-Best or 
Lattice Generator 

G0 
N-Best list Results 

Rescoring 
Word Lattice 

Figure 13.10 N-best/lattice search framework. The most discriminant and inexpensive knowl· 
• • knowledge edge sources (KSs 1) are used first to generate the n-best/lattice. The remaining 

sources (KSs 2, usually expensiYe to apply~ cre used in the rescoring phase to pick up !he op­
timal solution [40]. 

13.3.2. The Exact N-best Algorithm 

Stack decoding is the choice of generating n-best candidates because of its beSt·first pri;:~: 
pie. We can keep it generating results until it finds n complete paths; these n complete best 
tences form the n-best list. However, this algorithm usually cannot generat~ th: 

11
earch 

candidates efficiently. The efficient n-best algorithm for time-synchronous ~iter 1/ tirne­
was first introduced by Schwartz and Chow [39]. It is a simple extension ; paths 
synchronous Viterbi search. The fundamental idea is to maintain separate record5 or 
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'th distinct histories. The history is defined as the whole word sequence up t th w1 . . . o e current 
time 1 and word w. This exact 11-best algorithm 1s also called sentence-dependent n-best al-
gorithm. When two or more path_s come t~ _t~e same state at the same time, paths having the 
same history are m_erged and their probab1ht1es are summed. together; otherwise, only the n­
besl paths are retained for each state. As commonly used 111 speech recognition, a typical 
HMM state has 2 or 3 predecessor states within the word HMM. Thus, for each time frame 
and each state, the 11-best search algorithm needs to compare and merge 2 or 3 sets of 11 paths 
into n new paths. At the end of the search, the n paths in the final state of the trellis are sim­
ply re-ordered to obtain the 11-best word sequences. 

This straightforward n-best algorithm can be proved to be admissible' in normal cir­
cumstances [40]. The complexity of the algorithm is proportional to O(n), where II is the 
number of paths kept at each state. This is often too slow for practical systems. 

13.3.3. Word-Dependent N-best and Word-Lattice Algorithm 

Since many of the different entries in the n-best list are just one-word variations of each 
other, as shown in Table 13.4, one efficient algorithm can be derived from the normal I-best 
Viterbi algorithm to generate then-best hypotheses. The algorithm runs just like the normal 
time-synchronous Viterbi algorithm for all within-word transitions. However for each time 
frame 1, and each word-ending state, the algorithm stores all the different words that can end 
at current time t and their corresponding scores in a traceback list. At the same time, the 
score of the best hypothesis at each grammar state is passed forward, as in the normal time­
synchronous Viterbi search. This obviously requires almost no extra computation above the 
nonnal time-synchronous Viterbi search. At the end of search, you can simply search 
through the stored traceback list to get all the permutations of word sequences with their 
corresponding scores. If you use a simple threshold, the traceback can be implemented very 
efficiently to only uncover the word sequences with accumulated cost scores below lhe 
threshold. This algorithm is often referred as traceback-based 11-best algorithm [29, 421 be-
cause of the use of the traceback list in the algorithm. . 

. However, there is a serious problem associated with this algorith~. It could easily 
miss some low-cost hypotheses. Figure 13. J l illustrates an example in which ~0rd 

Wi can 
be preceded by two different words w and w. in different time frames. Assummg path w, -
w, has a lower cost than path w - w 'when b~th paths meet during the trellis search of W1' 
the p th J k l'. fi ct· the n-best word se-a W1-w, will be pruned away. During traceback ,or 10 mg d 
quenc h . d • d by the best boun ary 
be es, 1 ere 1s only one best starting time for word wk, erennme low 

twee h th might have a very co n t e best preceding word w, and it. Even though pa wJ - wk b I tely over-
I st (let•~ say only marginally higher than that of w, - w, ), it could e comp e 
OOked, since the path has a different starting time for word W1 • 

' A ---------- • • al coies for each llhough . . h' ries have near 1denuc 5 . 
s1a,. 1h one can show in the worst case when paths wnh different 1s10 d ·ss1'bility Under this worst 

"'• e sc h ' ' absolute a m1 • ~ th arc actually needs to keep all paths (> N) in order to guarantee , th tterance since all pennuta-
• e adtni • be f words ,or e u • lio111 r ssible algorithm is clearly exponential in the num r 0 
0 Words.,, k -.uences for the whole sentence need to be ept. 
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~ 't b•,t path 

: J 

I 

1~ 
best path 

I Can only keep one 
path within a word so 

this path Is lost. 
I I , , I '---, 

'--

' ' 

time 

Figure 13.11 Deficiency in traceback-based n-best algorithm. The best subpath, w; - wt , will 
prune away subpath w1 - w. while searching the word w• ; the second-best subpath cannot be 
recovered {40]. 

I 

1~ 
best path 

w 2nd best path with 
1 ---- I different ending word 

' 
l 

I Preceding word is 
different so both 
theories are kept. 

I I 

',.± ..... , J 
'--

' ' ' ' .... _, 
~ 

time ----...,. 

Figure 13.12 Word-dependent n-best algorithm. Both subpaths W; - wt and W1 - w, are kept 
under the word-dependent assumption (40). 
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The word-dependent n-best algorithm [38] can alleviate the deficiency of th t _ 
· h • h" h 1 e race 

back-based 11-best algont m, m w tc on ~ one starting time is kept for each word, so the 
starting time is independent of the preceding words. On the other hand, in the sentence­
dependent n-best _algo_rithm, the starting time for a word depends on all the preceding words, 
since different htstones are kept separately. A good compromise is the so-called word­
dependent assumption: The starting time of a word depends only on the immediate preced­
ing word. That is, given a word pair and its ending time, the boundary between these two 
words is independent of further predecessor words. 

In the word-dependent assumption, the history to be considered for a different path is 
no longer the entire word sequence; instead, it is only the immediately preceding word. This 
allows you to keep k (<< n) different records for each state and each time frame in Viterbi 
search. Differing slightly from the exact n-best algorithm, a traceback must be perfonned to 
find the 11-best list at the end of search. The algorithm is illustrated in Figure 13. J 2. A word­
dependent n-best algorithm has a Lime complexity proportional to k. However, it is no longer 
admissible because of the word-dependent approximation. In general, this approximation is 
quite reasonable if the preceding word is long. The loss it entails is insignificant [6]. 

13.3.3.1. One-Pass N-best and Word-Lattice Algorithm 

As presented in Section 13.1, one-pass Viterbi beam search can be implemented very effi­
ciently using a tree lexicon. Section 13.1.2 states that multiple copies of lexical trees are 
necessary for incorporating language models other than the unigram. When bigram is used 
in lexical tree search, the successor lexical tree is predecessor-dependent. This predecessor­
dependent property immediately translates into the word-dependent property: as defined in 
Section 13.3.3, because the starting time of a word clearly depends on the immediately pre­
ceding word. This means that different word-dependent partial paths are automatically saved 
uoder the framework of predecessor-dependent successor trees. Therefore, one-pass prede­
cessor-dependent lexical tree search can be modified slightly to output n-beSl lists or wofd 
graphs. 

Ney et al. [31] used a word graph builder with a one-pass predecessor-dependent lexi­
cal tree search. The idea is to exploit the word-dependent property inherited from the prede­
cess_o_r-dependent lexical tree search. During predecessor-dependent lexical tree search, two 
additional quantities are saved whenever a word ending state is processed. 

r(t; w" w)-Representing the optimal word boundary between word w, a
nd 

wi, given word w
1 

ending at time t. 
h(w,;-r(t;w,.w1),t)=-logP(x~ I w)-Representing the cumulative cost that 
word w1 produces acoustic vector x1',xf+l'···X, • --1 \VJicn hi h- -------- . be n more significanl. For exnmple, 

\\'hen lri g er order n-gram models are used the boundary dependence will ~ve rds Since we generally 
&rams arc Used th ' d d on the previous 1wo wo • n want a fas , e boundary for a word juncture epen 5 d f higher order 11-gram 10 gc • 

cra1c won1\ m~thod of generating word lattices/graphs, bigram is often used inStea 
0 

atucestgraphs. 
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At the end of the utterance, the word lattice or 11-best list is constructed by tracing back 
all the pennutations of word pairs recorded during the search. The algorithm is summarized 
in Algorithm 13.3. 

ALGORITHM 13.3: ONE-PASS PREDECESSOR-DEPENDENT LEXICAL TREE 
SEARCH FOR N-BEST OR WORD-LA TT/CE CONSTRUCT/ON 

Step 1: For t = l .. T, 
1-best predecessor-dependent lexical tree search; 
'v'( w;, w1 ) ending at I 

record word-dependent crossing time -r( t; w,, wj) ; 

record cumulative word score h(w1 ;-r(t;w1, wj ),t); 

Step 2: Output 1-best result; 
Step 3: Construct n-best or word-lattice by tracing back the word-pair records ( T and h ). 

13.3.4. The Forward-Backward Search Algorithm 

As described Chapter 12, the ability to predict how well the search fares in the future for the 
remaining portion of lhe speech helps to reduce the search effort significantly. The one-pass 
search strategy, in general, has very little chance of predicting the cost for the portion that it 
has not seen. This difficulty can be alleviated by multipass search strategies. In successive 
phases the search should be able to provide good estimates for the remaining paths, since the 
entire utterance has been examined by the earlier passes. In this section we investigate a 
special type of multipass search strategy-forward-backward search. 

The idea is to first perform a forward search, during which partial forward scores a 
for each state can be stored. Then perform a second pass search backward-that is, the sec­
ond pass starts by taking the final frame of speech and searches its way back until it reaches 
the start of the speech. During the backward search, the partial forward scores a can be 
used as an accurate estimate of the heuristic function or the fast match score for the remain­
ing path. Even though different KSs might be used in forward and backward phases, this 
estimate is usually close to perfect, so the search effort for the backward phase can be sig­
nificantly reduced. 

The forward search must be very fast and is generally a time-synchronous Viterbi 
search. As in the multipass search strategy, simplified acoustic and language models are 
often used in forward search. For backward search, either time-synchronous search or time• 
asynchronous A* search can be employed to find the n-best word sequences or word lattice. 
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3 3 4 1 Forward-Backward Search 1 ...• 

Stack decoding. as described in Chapter 12, is based on the admis .·bt A* h 
• " d · si e searc so the first 

complete hypothesis 1ou11 with a cost below that of all the hypotl . 1 ' . . 1eses m t 1e stack 1s guar-
anteed to be the best word sequence. It ts straightforward to extend st k d d' . . ac eco mg to pro-
duce the 11-best hypotheses by contmumg to extend the partial hypotheses ac d' th 

· • ·1 d"fr h cor mg to e 
Same A* cntenon unt1 11 1 ,erent ypotheses are found These 11 di'f•e I h h 

• 1' ren ypot eses are 
destined to be the n-best hypotheses under a proof similar to that presented in Ch t I? 

d d
. . 

1 
. . ap er __ 

Therefore, stack eco m~ 1s a_ natura choice tor producing the 11-best hypotheses. 
However, as described m Chapter 12, the difficulty of finding a good heuristic func­

tion that can accurately under-estimate the remaining path has limited the use of stack de­
coding. Fortunately, this difficulty can be alleviated by tree-trellis forward-bachvard search 
algorithms [41). First, the search perfonns a time-synchronous forward search. At each time 
frame t, it records the score of the final state of each word ending. The set of words whose 
final states are active (surviving in the beam) at time t is denoted as Do,. The score of the 
final state of each word w in A, is denoted as a, ( w) , which represents the sum of the cost 
of matching the utterance up to time t given the most likely word sequence ending with 
word w and the cost of the language model score for that word sequence. At the end of the 
forward search, the best cost is obtained and denoted as ar. 

After the forward pass is completed, the second search is run in reverse (backward), 
i.e., considering the last frame T as the beginning one and the first frame as the final one. 
Both the acoustic models and language models need to be reversed. The backward search is 
based on A* search. At each time frame t, the best path is removed from the stack and a list 
of possible one-word extensions for that path is generated. Suppose this best path at time t is 
ph.,

1
, where w

1 
is the first word of this partial path (the last expanded during backward A* 

search). The exit score of path phw at time t, which now corresponds to the score of the 
initial state of the word HMM w

1 
, it denoted as /3, (pit,.. ) • 

Let us now assume we are concerned about the ~ne-word extension of wo~d w, for 
path Ph..;. Remember that there are two fundamental issue~ f~r the i'.11plement~tion_ of~: 
search algorithm-( I) finding an effective and efficient heunsuc function for eSlimatmg 
fut . . . h b ss·ng time between w and ure remammg input feature stream and (2) findmg t e eSt cro 1 1 

w,. 
• . b h • sues effectively and effi-

.... Jhe ~~ored forward score a can be used for solving ot is f the best 
c1ent1y. For each time t the sum a ( w.) + /3, (ph.,. ) represents the cost score o 
co I , ' , ' J h (w ) clearly represents a very 

mp ete path including word w. and partial path P "• • a, 1 t'I the end of 
gaod h • . ' t of the utterance un 1 

h 
euns11c estimate of the remaining path from the star , d ath for the same 

t e wo d . . . ted in the 1orwar P r w1, because 1t 1s mdeed the best score compu d can be easily com-
quantity M . - · • b tween w. an w. • oreover, the opumal crossmg ume t e ' 1 

PUied by th ti . . e ollowmg equallon: 

r' == arg :Oin [ a, ( w,) + /31 (ph ... 1 ) ] 
( I 3.7) 
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Finally, the new path ph', including the one-word ( w,) extension, is inserted into the stack, 
ordered by the cost score a. ( w,) + R. (ph ) . The heurisric function (forward scores a) 

I /Jr w, 

allows the backward A* search to concentrate search on extending only a few truly promis-
ing paths. 

As a matter of fact, if the same acoustic and language models are used in both the for­
ward and backward search, this heuristic estimate (forward scores a) is indeed a perfect 
estimate of the best score the extended path will achieve. The first complete hypothesis 
generated by backward A* search coincides with the best one found in the time-synchronous 
forward search and is truly the best hypothesis. Subsequent complete hypotheses correspond 
sequentially to the n-best list, as they are generated in increasing order of cost. Under this 
condition, the size of the stack in the backward A* search need only be N. Since the estimate 
of future is exact, the (N + 1) th path in the stack has no chance to become part of the 11-best 
list. Therefore, the backward search is executed very efficiently to obtain the n-best hy­
potheses without exploring many unpromising branches. Of course, tree-trellis forward­
backward search can also be used like most other multipass search strategies-inexpensive 
KSs are used in the forward search to get an estimate of a , and more expensive KSs are 
used in the backward A* search to generate the n-best list. 

The same idea of using forward score a can be applied to time-synchronous Viterbi 
search in the backward search instead of backward A* search [7, 34]. For large-vocabulary 
tasks, the backward search can run 2 to 3 orders of magnitude faster than a normal Viterbi 
beam search. To obtain the n-best list from time-synchronous forward-backward search, the 
backward search can also be implemented in a similar way as a time-synchronous word­
dependent n-best search. 

13.3.4.2. Word-Lattice Generation 

The forward-backward n-best search algorithm can be easily modified to generate word lat­
tices instead of n-best lists. A forward time-synchronous Viterbi search is performed first to 
compute a,(m), the score of each word m ending at time t. At the end of the search, this 
best score ar is also recorded to establish the global pruning threshold. Then, a backward 
time-synchronous Viterbi search is performed to compute /3,((J)), the score of each word (J) 

beginning at time t. To decide whether to include word juncture (J)
1 

-(J) . in the word lat­
tice/graph at time t, we can check whether the forward-backward score 

1
is below a global 

pruning threshold. Specifically, supposed bigram probability P((J)i I co,) is used, if 

(13.8) 

where 8 is the pruning threshold, we will include co -co . in the word lattice/graph at time 
t. Once word juncture co, -co1 is kept, the search co~tin~es looking for the next word-pair, 
where the first word co, will be the second word of the next word-pair. 
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The above formulation is based on the assumption of using the s . ame acoustic and lan-
guage models in both forwar~ and backward search. If different KSs are used in forward and 
backward search, the normalized a and /3 scores should be used instead. 

3 3 5 One-Pass vs. Multipass Search 1 ..• 

Toere are several real-time one-pass search engines [ 4, 5]. Is it necessary to build a multi­
pass search engine based on n-best or word-lattice rescoring? We address this issue by dis­
cussing the disadvantages and advantages of multipass search strategies. 

One criticism of multipass search strategies is that they are not suitable for real-time 
applications. No matter how fast the first pass is, the successive (backward) passes cannot 
start until users finish speaking. Thus, the search results need to be delayed for at least the 
time required to execute the successive (backward) passes. This is why the successive passes 
must be extremely fast in order to shorten the delay. Fortunately, it is possible to keep the 
delays minimum (under one second) with clever implementation of multipass search algo­
rithms, as demonstrated by Nguyen et al. [ 18]. 

Another criticism for multipass search strategies is that each pass has the potential to 
introduce inadmissible pruning, because decisions made in earlier passes are based on sim­
plified models (KSs). Search is a constraint-satisfaction problem. When a pruning decision 
in each search pass is made on a subset of constraints (KSs), pruning error is inevitable and 
is unrecoverable by successive passes. However, inadmissible pruning, like beam pruning 
and fast match, is often necessary to implement one-pass search in order to cope with the 
large active search space caused jointly by complex KSs and large-vocabulary tasks. Thus, 
the problem of inadmissibility is actually shared by both real-time one-pass search and mul­
tipass search for different reasons. Fortunately, in both cases, search errors can be reduced to 
a minimum by clever implementation and by empirically designing all the pruning thresh­
olds carefully, as demonstrated in various one-pass and multipass systems [4, 5, 18]. 

Despite these concerns regarding multipass search strategies, they remain important 
components in developing spoken language systems. We list here several important aspects: 

I. It might be necessary to use multipass search strategies to incorporate very 
e • • text dependent mod-xpens1ve KSs. Higher-order n-gram, long-distance con -
el5, and natural language parsing are examples that make the . searc~ space 
u • h strategies might be nmanageable for one-pass search. Multlpass searc 
compelling even for some small-vocabulary tasks. For exampl~, t~ere ~ 
only a couple of million legal credit card numbers for the authent~cation tas 
f l • . . . ·ve to incorporate 0 6-dtgit credit card numbers. However, it is very expenSJ fi d e 

all th l • • ammar To lfSt re uc 
e egal numbers explicitly in the recogmtion gr . • b d ·rable 

search space down to an n-best list or word lattice/graph might e a esi 
approach. 

2 M 1 . 11 . for spoken language 
• u tipass search strategies could be very compe mg rural language 

understanding systems. It is problematic to incorporate rnoSt na 
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understanding technologies in one-pass search. On the other hand, 11-best lists 
or word lattices provide a trivial interface between speech recognition and 
natural language understanding modules. Such an interface also provides a 
convenient mechanism for integrating different KSs in a modular way. This is 
important because the KSs could come from different modalities (like video 
or pen) that make one-pass integration almost infeasible. This high degree of 
modality allows different component subsystems to be optimized and imple­
mented independently. 

3. N-besl lists or word lattices are very powerful offline tools for developing 
new algorithms for spoken language systems. It is often a significant task to 
fully integrate new modeling techniques, such as segment models, into a one­
pass search. The complexity could sometimes slow down the progress of the 
development of such techniques, since recognition experiments are difficult 
to conduct. Rescoring of n-best list and lattice provides a quick and conven­
ient alternative for running recognition experiments. Moreover, the computa­
tion and storage complexity can be kept relatively constant for offline n-best 
or word lattice/graph search strategies even when experimenting with highly 
expensive new modeling techniques. New modeling techniques can be ex­
perimented with using 11-best/word-graph framework first, being integrated 
into the system only after significant improvement is demonstrated. 

4. Besides being an alternative search strategy, n-best generation is also essen­
tial for discriminant training. Discriminant training techniques, like MMJE, 
and MCE described in Chapter 4, often need to compute statistics of all pos­
sible rival hypotheses. For isolated word recognition using word models, it is 
easy to enumerate all the word models as the rival hypotheses. However, for 
continuous speech recognition, one needs to use an all-phone or all-word 
model to generate all possible phone sequences or all possible word se­
quences during training. Obviously, that is too expensive. Instead, one can 
use 11-best search to find all the near-miss sentence hypotheses that we want 
to discriminate against [ I 5, 36]. 

13.4. SEARCH-ALGORITHM Ev ALUATION 

Throughout this chapter we are careful in following dynamic programming principles, using 
admissible criteria as much as possible. However, many heuristics are still unavoidable to 
implement large-vocabulary continuous speech recognition in practice. Those nonadmissible 
heuristics include: 

• Viterbi score instead of forward score described in Chapter 12. 

• Beam pruning or stack pruning described in Section I 3.2.2 and Chapter 12. 
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• Subtree dominance pruning described in Section 13.1.5. 

• fast match pruning described in Section 13.2.3. 

• Rich-get-richer pruning described in Section 13.2.3.2. 

• Multipass search s1T3tegie_.; de.s.<"-ribed in Section 13.3.5. 
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Nonadmissible ~euristics _g~nerate ~uhoptimal searches where the found path is not 
necessarily the p:lth with the mm1mum cosL The question is. how differem is this subooti­
mal from the true optimal p~th? l"nfomm:nely. there is no way to know the optimal path 
unless an exhausti,·e se..1rch ts conducted. The pr.ictical question is whether the subcmtimal 
swch blllt5 the search result. In a test condition where the Ulle result is sre-cified.. y~u can 
~ily compare the seJ.rch result with the true result to find whether any error occurs. Errors 
could be due to inacct:rate models tincluding acoustic and language mooelst sub.:iptir:ial 
search. or end-point detection. The error caused by a suboptimal se~ch 2.lgorithm is refe:red 
to as search error or pruning error. 

How ~ we find out whether the search. commits a pruning error? One of me p:-.:i-..--e-­
dure; most o~n used is stnigto·orward. Let W ~ the recognized worj ~Jenee t-om ~ 
recognizer and \\' be !he true word sequence. We n~'"d to comp::re !he cost for u~ ~·o 
iron! sequences: 
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threshold to retain the correct path. For example, one can adjust the pruning th h 
· - · h 1· • res old i fast match if a word m W fails to appear on t e 1st supplied by the fast match. or 

13.5. CASE STUDY-MICROSOFT WHISPER 

We use the decoder of Microsoft's Whisper [26, 27] discussed in Chapter 9 as a case 
. h h h • h d • h. study for reviewing t e searc tee mques we ave presente m t 1s chapter. Whisper can handle 

both context-free grammars for small-vocabulary tasks and n-gram language model i 
large-vocabulary tasks. We describe these two different cases. s or 

13.5.1. The CFG Search Architecture 

Although context-free grammars (CFGs) have the disadvantage of being too restrictive and 
unforgiving, particularly with novice users, they are still one of the most popular configura­
tions for building limited-domain applications because of the following advantages: 

• Compact representation results in a small memory footprint. 

• Efficient operation during decoding in tenns of both space and time. 

• Ease of grammar creation and modification for new tasks. 

As mentioned in Chapter 12, the CFG grammar consists of a set of productions or 
rules that expand nonterminals into a sequence of terminals and nonterminals. Nonterminals 
in the grammar tend to refer to high-level task-specific concepts such as dates, font names, 
and commands. The terminals are words in the vocabulary. A grammar also has a nontenni­
nal designated as its start state. Whisper also allows some regular expression operators on 
the right-hand side of the production for notational convenience. These operators are: or _'I'; 
repeat zero or more times '*'; repeat one or more times • +'; and optional ([ ]). The following 

is a simple CFG example for binary number: 

%start BINARY_NUMBER 
BINARY_NUMBER: (zero I one)* 

. . i se of implernen-
W1thout losing generality, Whisper disallows the left recursion ore~ ~ at cur-

tation [2]. The grammar is compiled into a binary linked list format. The binary 
0

; but is 
rently has a direct one-to-one correspc~der,..,~ with the text grammar compod~en The bi· 

• d • g deco mg. 
more compact. The compiled format is used by the search engine unn ar fo1t11at 

. . . . . k d ther The orarnm 
nary representation consists of vanable-s1zed nodes Im e toge • r/''· . n rules. 
achieves sharing of subgrarnmars through the use of shared nonterminal de imuo IZ) During 

The CFG search is conducted according to RTN framework (see Chapter cirn~- ;...sso-
d d• . th h th CFG at the same an eco mg, the search engme pursues several paths roug e h w the path c . 
ciated with each of the paths is a grammar state that describes completely 

O
rd of a path, 11 

be extended further. When the decoder hypothesizes the end of the current :oy be several ardl· 
b ord There m wo asks the grammar module to extend the path further Y one w • 1 the successor 

• . d d nsiders al temattve successor words for the given path. The eco er co 
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possibilities. This may cause the path to be extended to 
. · h · generate several more paths to be 

considered, each wit its own grammar state. Also note th t th .. . 
· h d d · a e same word might be under consideration by t e eco er 111 the context of different paths a d . n grammar states at the same 

time. 
The decoder uses beam search to prune unpromising paths w·th th d"fr . 1 ree 1 1erent beam 

thresholds. The state prunmg threshold i- and new phone pruning th h Id k _ . . :' ~ res o r,, wor as 
descnbed m Section 13.2.2. When extending a path, if the score of the extended path does 
not exceed _the threshold Th, the ~ath_ to be extended is put into a pool. At each frame, for 
each word m the vocabulary, a wmnmg path that extends to that word is picked from the 
~ol,_based on the score. ~II the rem~ining paths in the pool are pruned. This level of prun­
rng gives us finer control m the creation of new paths that have potential to grow exponen­
tially. 

When two paths representing different word sequences thus far reach the end of the 
current word with the same grammar state at the same time, only the better path of the two is 
allowed to continue on. This optimization is safe, except that it does not take into account 
the effect of different interword left acoustic contexts on the scores of the new word that is 
started. 

Besides beam pruning, the RGR strategy, described in Section 13.2.3.2, is used to 
avoid unnecessary senone computation. The basic idea is to use the linear combination of 
context-independent senone score and context-independent look-ahead score to determine 
whether the context-dependent senone evaluation is worthwhile to pursue. 

All of these pruning techniques enable Whisper to perform typical 100- to 200-word 
CFG tasks in real time running on a 486 PC with 2 MB RAM. Readers might think it is not 
critical to make CFG search efficient on such a [ow-end platform.9 However, it is indeed 
important to keep the CFG engine fast and lean. The speech recognition engine is eventually 
only part of an integrated application. The application will benefit if the resources (both 
CPU and memory) used by the speech decoder are kept as sma!l as pos~i~le, so there ar_e 
more resources left for the application module to use. Moreover, m rec~gmtion server appli­
cations, several channels of speech recognition can be perfonned on a smgle server platform 
if each speech recognition engine takes only a small portion of the total resources. 

13.S.2. The N-gram Search Architecture 

Th C . and and control applications. For 
e FG decoder is best suited for limited domam comm 'd 

d" · • mar such as 11-grams provt es a ictation or natural conversational systems, a stochaSUC gram b _ 
rn . d large number of states to e con . ore natural choice. Using bigrams or tngrams lea s to a . 
s1dered by the search process, requiring an alternative search architecture. 

'Th • scream PC configuration is an order of magni-

1 
d anks 10 the progress predicted by Moore's law, che cun"Cnl mam

2 
MB RAM) in both speed nnd memory. 

u e more powerful than the configuration we list here (486 PC wilh 



678 Large-Vocabulary Search Algorithms 

Whisper's n-gram search architecture is based on lexical tree search as described in 
Section 13.1. To keep the runtime memory

10 
as small as possible, Whisper does not need to 

allocate the entire lexical tree network statically. Instead, it dynamically builds only the por­
tion that needs to be active. To cope with the problem of delayed application of language 
model scores, Whisper uses the factorization algorithm described in Section 13. 1.3 to dis­
tribute the language model probabilities through the tree branches. To reduce the memory 
overhead of the factored language model probabilities, an efficient data structure is used for 
representing the lexical tree as described in Section I 3.1.3.1. This data structure allows 
Whisper to encode factored language model probabilities in no more than the space required 
for the original 11-gram probabilities. Thus, there is absolutely no storage overhead for using 
factored lexical trees. 

The basic acoustic subword model in Whisper is a context-dependent senone. It also 
incorporates inter-word triphone models in the lexical tree search as described in Section 
13. 1.6. Table J 3.5 shows the distribution of phoneme arcs for 20,000-word WSJ lexical tree 
using senones as acoustic models. Context-dependent units certainly prohibit more prefix 
sharing when compared with Table 13.1. However, the overall arcs in the lexical tree still 
represent quite a saving when compared with a linear lexicon with about 140,000 phoneme 
arcs. Most importantly, similar to the case in Table 13. I, most sharing is realized in the be­
ginning prefixes where most computation resides. Moreover, with the help of context­
dependent and interword senone models, the search is able to use more reliable knowledge 
to perfonn efficient pruning. Therefore, lexical tree with context-dependent models can still 
enjoy all the benefits associated with lexical tree search. 

The search organization is evaluated on the 1992 development test set for the Wall 
Street Joumal corpus with a back-off trigram language model. The trigram language model 
has on the order of 107 linguistic equivalent classes, but the number of classes generated is 
far fewer due to the constraints provided by the acoustic model. Figure 13.13(a) illustrates 
that the relative effort devoted to the trigram, bigram, and unigram is constant regardless of 
total search effort, across a set of test utterances. This is because the ratio of states in the 
language model is constant. The language model is using -2 xlOb trigrams, -2 x 10° bi­
grams, and 6 x IO~unigrams. Figure 13.13(b) illustrates different relative order when word 
hypotheses are considered. The most common context for word hypotheses is the unigram 
context, followed by the bigram and trigram contexts. The reason for the reversal from the 
state-level transitions is the partially overlapping evaluations required by each bigram con­
text. The trigram context is more common than the bigram context for utterances that gener­
ate few hypotheses overall. This is likely because the language model models those 
utterances well. 

"H h • ere I e runtime memory means the virtual memory for the decoder thnt is the entire imnge of the decoder. 
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bl 13.5 Configuration of the first seven levels of the 20,000-word WSJ (W. II S 
To e . . . f • d . h a treet Jour-
ililfJ tree; ihe large 1mt1al an-out 1s ue 10 t e use of context-dependent acoustic models [

4
). 

Tree Level Number or Nodes Fan-Out 
I 655 655.0 
2 3174 4.85 
3 9388 2.96 
4 13,703 1.46 
5 14,9 I 8 1.09 
6 13,907 0.93 
7 11,389 0.82 
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To improve efficiency in dealing with tree copies due to the use of higher-order n­
gram, one needs to reduce redundant computations in subtrees that are not explicitly part of 
the given linguistic context. One solution is to use successor trees to include only nonzero 
successors, as described in Section 13.1.2. Since Whisper builds the search space dynami­
cally, it is not effective for Whisper to use the optimization techniques of the successor-tree 
network, such as FSN optimization, subtree isomorphism, and sharing tail optimization. 
Instead, Whisper uses polymorphic linguistic context assignment to reduce redundancy, as 
described in Section 13.1.5. This involves keeping a single copy of the lexical tree, so that 
each node in the tree is evaluated at most once. To avoid early inadmissible pruning of dif­
ferent linguistic contexts, an e -heap of storing paths of different linguistic contexts is cre­
ated for each node in the tree. The operation of such e -heaps is in accordance with 
Algorithm 13.2. The depth of each heap varies dynamically according to a changing thresh­
old that allows more contexts to be retained for promising nodes. 
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Figure 13 d b number of active 
Slate . •13 (a) Search effort for different linguistic contexts meas~re yh b·oram then the 

s 1n each f h eries JS for t e 1,, • unigr O t e three different linguistic contexts. The top 5 d . lotted on the sec-
am and tri T . . . . ff utterance an JS P ondary _ . gram. he remamrng series 1s the e ort pe~ to their context. The top 

line is thy axis. (b) The distribution of word hypotheses with respec~ . n·es is the average 
e unig . • The remammg se . l nurnbe f ram context, then the b1gram and tngram. h ndary )'•aXJS [3 • r o hy th • 1 d 00 t e seco po eses per frame for each utterance and 1s P otce 
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Table 13.6 illustrates how the depth of the e -heap, the active states per frame of 
speech, word error rate, and search time change when the value of threshold e increases for 
the 20 000-word WSJ dictation task. As we can see from the table. the average heap size for 
active 'nodes is only about 1.6 for the most accurate configuration. Figure l 3.14(a) illustrates 
the distribution of stack depths for a large data sel, showing that the stack depth is small 
even for tree initial nodes. Figure 13.14(b) illustrates the profile of the average stack depth 
for a sample utterance, showing that the average stack depth remains small across an utter­

ance. 
Whisper also employs look-ahead techniques to further reduce the search effort. The 

acoustic look-ahead technique described in Section 13.2.3.1 attempts to estimate the prob­
ability that a phonetic HMM will participate in the final result [3). Whisper implements 
acoustic look-ahead by running a CI phone-net synchronously with the search process but 
offset N frames in the future. One side effect of the acoustic look-ahead is to provide infor­
mation for the RGR strategy, as described in Section 13.2.3.2, so the search can avoid un­
necessary Gaussian computation. Figure 13.15 demonstrates the effectiveness of varying the 
frame look-ahead from Oto N frames in terms of states evaluated. 

When the look-ahead is increased from O to 3 frames, the search effort, in terms of real 
time, is reduced by -40% with no loss in accuracy; however, most of that is due to reducing 
the number of states evaluated per frame. There is no effect on the number of Gaussians 
evaluated per frame (the system using continuous density) until we begin to negatively im­
pact error rate, indicating that the acoustic space represented by the pruned states is redun­
dant and adequately covered by the retained states prior to the introduction of search errors. 

With the techniques discussed here, Whisper is able to achieved real-time performance 
for the continuous WSJ dictation task (60,000-word) on Pentium-class PCs. The recognition 
accuracy is identical to that of a standard Viterbi beam decoder with a linear lex.icon. 

Table 13.6 Effect of heap threshold on contexts/node, states/frame-of-speech (fos), word error 
rate, and search time [4]. 

£ Context I node states I fos %error search time 
0 1.000 8805 16.4 I.Ox 

1.0 l.001 8808 15.5 I.Ox 
2.0 1.008 8898 14.4 I.Ox 
3.0 l.018 9252 12.4 l.07x 
4.0 1.056 10224 10.5 l.16x 
5.0 l.147 l 1832 10.3 J.36x 
6.0 1.315 13749 10.0 1.60x 
7.0 1.528 15342 9.9 l.8lx 
8.0 1.647 15984 9.9 l.86x 
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ates evaluated per frame [3]. 

13.6. HISTORICAL PERSPECTIVE AND FURTHER READING 

Large-vocab I • time syste u ary continuous speech recognition is a computationally intensive task. Real-
lime perfo: starte~ to emerge in the late l 980s. Before that, most systems achieved real­
and Vario anc~ with the help of special hardware [11, 16, 25, 28). Thanks to Moore's law 

us efficient • • I h" &eneraJ-pu search techniques, real-time systems became a reality on a sing e-c 1p 

Com~se p~rsonal computer in the 1990s [4, 34, 43]. 
continua on wisdom in 1980s saw stack decoding as more efficient for large-vocabulary 
search ausdspeech recognition with higher-order n-grams. T ime-synchronous Viterbi beam 

' s escrib d • • fi e m Sections 13.1 and 13.2, emerged as the most efficient search rame-
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work. It has become the most widely used search technique today. The lexical tree represe _ 
tation was first used by IBM as part of its allophonic fast match system [10). Ney propos:d 
the use of the lexical tree as the primary representation for the search space [32]. The ideas 
of language model factoring [4, I 9] [5] and subtree polymorphism [4] enabled real-time 
single-pass search with higher-order language models (bigrams and trigrams). Alleva [3] 
and Ney [33] are two excellent articles regarding the detailed Viterbi beam search algorithm 
with lexical tree representation. 

As mentioned in Chapter 12, fast match was first invented to speed up stack decoding 
[8, 9]. Ney and Ortmanns [33] and Alleva [3] extended the fast match idea to phone look­
ahead in time-synchronous search by using context-independent model evaluation. In Haeb­
Umbach et al. [22], a word look-ahead is implemented for a l 2.3k-word speaker-dependent 
continuous speech recognition task. The look-ahead is performed on a lexical tree, with 
beam search executed every other frame. The results show a factor of 3-5 times of reduction 
for search space compared to the standard Viterbi beam search, while only 1-2% extra er­
rors are introduced by word look-ahead. 

The idea of multipass search strategy has long existed for knowledge-based speech 
recognition systems [17], where first a phone recognizer is performed, then a lexicon hy­
pothesizer is used to locate all the possible words to form a word lattice, and finaJly a lan­
guage model is used to search for the most possible word sequence. However, HMM's 
popularity predominantly shifted the focus to the unified search approach to achieve global 
optimization. Computation concerns led many researchers to revisit the multipass search 
strategy. The first n-best algorithm, described in Section 13.3.2, was published by research­
ers at BBN [39). Since then, n-best and word-lattice based multipass search strategies have 
become important search frameworks for rapid system deployment, research tools, and spo­
ken language understanding systems. Schwartz et al.'s paper [40] is a good tutorial on then­
best or word-lattice generation algorithms. Most of the n-best search algorithms can be made 
to generate word lattices/graphs with minor modifications. Other excellent discussions of 
multipass search can be found in [14, 24, 30]. 

REFERENCES 

[1) 

[2] 

[3] 

[4] 

[5] 

Aho, A., J. Hopcroft, and J. Ullman, The Design and Analysis of Computer Algo­

rithms, 1974, Addison-Wesley Publishing Company. . d 
Aho, A.V., R. Sethi, and J.D. Ullman, Compilers: Principles, Techniques, an 
Tools, 1985, Addison-Wesley. . . 
Alleva, F., "Search Organization in the Whisper Continuous Speech Recogmtton 
System," IEEE Workshop on Automatic Speech Recognition, 1997. 

• • Pre-Alleva, F., X. Huang, and M.Y. Hwang, "Improvements on the Pronunciation h 
fix Tree Search Organization," Proc. of the IEEE Int. Conj 011 Acoustics, Speec 

and Signal Processing, 1996, Atlanta, Georgia, pp. 133-136. . . Wall 
Aubert, X., et al., "Large Vocabulary Continuous Speech Recognition of Si _ 
Street Journal Corpus," Proc. of the IEEE Int. Conj 011 Acoustics, Speech and g 
nal Processing, 1994, Adelaide, Australia, pp. 129-132. 



---:--caJ;erspeclive and Further Reading 
Histon 

[6] 

[7] 

[8] 

(91 

[10] 

(II] 

(12] 

(13] 

[14] 

(15] 

(16] 

!17] 

llBJ 

119] 

[20] 

683 

Aubert, X. and H. Ney, "Large Vocabulary Co t' 
Word Graphs," Proc. of the IEEE Int. Con' 0 nAmuou~ Speech Recognition Usino 

• '1• n coustics Sp h . 0 

essing, 1995, Detrolt, MI, pp. 49-52. ' eec and Signal Proc-

Austin, S., R. Schwartz, and P. Placeway "The F 
R I T • S ' orward-Backward s h Al 

rithm for ea - ,me peech Recognition," Proc. of the IEEE I, earc go-
tics Speech and Signal Processing J 991 Toronto C d 11

• Conj. 0 11 Acous-
' " . . , . ' ' ana a, pp. 697-700 

Bahl, L.R., et al., Obtammg Candidate Words by Poll· · La • 
Speech Recognition System," Proc. of the IEEE Int ~:~/n a A rge ~ocabulary 
and Signal Processing, 1988, pp. 489-492. • • 

11
J· on couSt1cs, Speech 

Bahl, L.R., et al., "Matrix Fast Match: a Fast Method for Identifying a Sh L' f 
d.d W d f D d' " p art ist o Can I ate or s or eco mg, roe. of tire IEEE Im Conif. 011 Aco 1 • s 1 • • . llS ICS, peec I 

and Signal Processing, 1989, Glasgow, Scotland, pp. 345-347. 
Bahl, L.R., P.S. Gopalakrishnan, and R.L. Mercer, "Search Issues in Large 
Vocabulary Speech Recognition," Proc. of the 1993 IEEE Workshop 011 Automatic 
Speech Recognition, 1993, Snowbird, UT. 
Bisiani, R., T. Anantharaman, and L. Butcher, "BEAM: An Accelerator for Speech 
Recognition," Int. Conf on Acoustics, Speech and Signal Processing, 1989, pp. 
782-784. 
Brugnara, F. and M. Cettolo, "Improvements in Tree-Based Language Model Rep­
resentation," Proc. of the European Conj. on Speech Communication a11d Tec/1110[­

ogy, 1995, Madrid, Spain, pp. 1797-1800. 
Cettolo, M., R. Gretter, and R.D. Mori, "Knowledge Integration" in Spoken Dia­
logues with Computers, R.D. Mori, ed., Academic Press, 1998, London, pp. 231-
256. 
Cettolo, M., R. Gretter, and R.D. Mori, "Search and Generation of Word Hypothe­
ses" in Spoken Dialogues with Computers, R.D. Mori, ed., 1998, London, Aca-

demic Press, pp. 257 -310. . . 
Chou, W., C.H. Lee, and B.H. Juang, "Minimum Error Rate Training Based on_N­
best String Models," IEEE Int. Conf. on Acoustics, Speech and Signal Processmg, 

1993, Minneapolis, MN, pp. 652-655. . . t " 
Chow, Y.L., et al., "BYBLOS: The BBN Continuous Speech Recogni~ion Sy;

7
em, 

Proc. of the IEEE Int. Conj on Acoustics, Speech and Signal Processing, 19 'pp. 
~n . 
C I d R coonition of Enghsh 

oe, R.A., et al., "Feature-Based Speaker Indepen ent _e O 

731_734, 
Letters," Int. Conf on Acoustics, Speech and Signal Processmg, 1983•!tTime De­
Davenport, J.C., R. Schwartz, and L. Nguyen, "Towards A Robus~ R 1999 Phoe-
c~er," IEEE Int. Conf on Acoustics, Speech and Signal Processing, ' 
DIX Ari F • . zona, pp. 645-648. . Search," Computer 
/denco, M., et al., "Language Modeling for Efficient Beam-

G
peech and language, 1995, pp. 353-379. 

1 
ts ,·n Continuous 

auva· J k "Deve opmen 
S m, . • L., L. Lamel, and M. Adda-Dec .~r, .r h IEEE /Ill. Conj. on 
peech Dictation using the ARPA WSJ Task, Proc. 01 t e 

65 68 Aco • • Ml pp. • • llStics, Speech and Signal Processing, 1995, Detroit, ' 



684 

[21] 

[22] 

[23] 

[24] 

[25J 

[26] 

[27] 

[28] 

[29] 

[30J 

[3 l] 

[32) 

[33] 

[34] 

(35] 

Large-Vocabulary Search Algorithms 

Gillick, L.S. and R. Roth, "A Rapid Match Algorithm for Continuous Speech Rec­
ognition," Proc. of the Speech and Natural Language Workshop, 1990, Hidden 
Valley, PA, pp. 170-172. 
Haeb-Umbach, R. and H. Ney, "A Look-Ahead Search Technique for Large Vo­
cabulary Continuous Speech Recognition," Proc. of the European Conj. 011 Speech 
Communication and Technology, 1991, Genova, Italy, pp. 495-498. 
Haeb-Umbach, R. and H. Ney, "Improvements in Time-Synchronous Beam-Search 
for 10000-Word Continuous Speech Recognition," IEEE Trans. on Speech and Au­
dio Processing, 1994, 2(4), pp. 353-365. 
Hetherington, I.L., et al., "A* Word Network Search for Continuous Speech Rec­
ognition," Proc. of the European Conj on Speech Communication and Technology, 
1993, Berlin, Germany, pp. 1533-1536. 
Hon, H.W., A Survey of Hardware Architectures Designed for Speech Recognition, 
1991, Carnegie Mellon University, Pittsburgh, PA. 
Huang, X., et al., "From Sphinx II to Whisper: Making Speech Recognition Us­
able," in Automatic Speech and Speaker Recognition, C.H. Lee, F.K. Soong, and 
K.K. Paliwal, eds. 1996, Norwell, MA, Kluwer Academic Publishers, pp. 481-508. 
Huang, X., et al., "Microsoft Windows Highly Intelligent Speech Recognizer: 
Whisper," IEEE Int. Conj. on Acoustics, Speech and Signal Processing, 1995, pp. 
93-96. 
Jelinek, F., "The Development of an Experimental Discrete Dictation Recognizer," 
Proc. of the IEEE, 1985, 73(1), pp. 1616-1624. 
Marino, J. and E. Monte, "Generation of Multiple Hypothesis in Connected Pho­
netic-Unit Recognition by a Modified One-Stage Dynamic Programming Algo­
rithm," Proc. of EuroSpeech, 1989, Paris, pp. 408-411. 
Murveit, H., et al., "Large Vocabulary Dictation Using SRI's DECIPHER Speech 
Recognition System: Progressive Search Techniques," Proc. of the IEEE Int. Conf 
on Acoustics, Speech and Signal Processing, 1993, Minneapolis, MN, pp. 319-322. 
Ney, H. and X. Aubert, "A Word Graph Algorithm for Large Vocabulary," Proc. of 
the Int. Conf. on Spoken lAnguage Processing, 1994, Yokohama, Japan, pp. 1355-
1358. 
Ney, H., et al., "Improvements in Beam Search for 10000-Word Continuous 
Speech Recognition," Proc. of the IEEE Int. Conf on Acoustics, Speech and Signal 
Processing, 1992, San Francisco, California, pp. 9-12. 
Ney, H. and S. Ortmanns, Dynamic Programming Search for Continuous Speech 
Recognition, in IEEE Signal Processing Magazine, 1999, pp. 64-83. 
Nguyen, L., et al., "Search Algorithms for Software-Only Real-Time Recognition 
with Very Large Vocabularies," Proc. of ARPA Human Language Technology 
Workshop, 1993, Plainsboro, NJ, pp. 91-95. 
Nilsson, N.J., Problem-Solving Methods in Artificial Intelligence, 1971, New York, 
McGraw-Hill. 



-- . 1 p rspective and Further Reading 
flistor1ca e 685 

[36) 

[37) 

[38) 

[39] 

[40] 

[41] 

[42] 

[43] 

[44] 

Nonnandin, Y., "M_aximum Mutual Information Estimation of Hidden Markov 
Models" in Automa!lc Speech and Speaker Recognition C H Lee p K s . • • • , . . oong, and 
K.K. Pahwal, eds. 1996, Norwell, MA, Kluwer Academic Publishers. 
Odell, J.J., et al., "A One Pass Decoder Design for Large Vocabulary Recognition,, 
Proc. of the ARPA Human Language Technology Workshop, 1994, Plainsboro, NJ, 
pp. 380-385. 
Schwartz, R. and S. Austin, "A Comparison of Several Approximate Algorithms 
for Finding Multiple (N-BEST) Sentence Hypotheses," Proc. of the IEEE Int. Conf 
011 Acoustics, Speech and Signal Processing, 199 J, Toronto, Canada, pp. 701-704. 
Schwartz, R. and Y.L. Chow, "The N-Best Algorithm: an Efficient and Exact Pro­
cedure for Finding the N Most Likely Sentence Hypotheses," Proc. of the IEEE Int. 
Conj. 011 Acoustics, Speech and Signal Processing, 1990, Albuquerque, New Mex­
ico, pp. 81-84. 
Schwartz, R., L. Nguyen, and J. Makhoul, "Multiple-Pass Search Strategies" in 
Automatic Speech and Speaker Recognition, C.H. Lee, F.K. Soong, and K.K. Pali­
wal, eds., 1996, Norwell, MA, Klewer Academic Publishers, pp. 57-81 . 
Soong, F.K. and E.F. Huang, "A Tree-Trellis Based Fast Search for Finding the N 
Best Sentence Hypotheses in Continuous Speech Recognition," Proc. of the IEEE 
Int. Conf on Acoustics, Speech and Signal Processing, 1991, Toronto, Canada, pp. 
705-708. 
Steinbiss, V., "Sentence-Hypotheses Generation in a Continuous Speech Recogni­
tion," Proc. of EuroSpeech, 1989, Paris, pp. 51-54. 
Steinbiss, V., et al., "The Philips Research System for Large-Vocabulary Continu­
ous-Speech Recognition," Proc. of the European Conj on Speech Communication 
a11d Tech11ology, I 993, Berlin, Germany, pp. 2125-2128. . . . 
Woodland, P.C., et al. , "Large Vocabulary Continuous Speech Recogmtton Us_mg 
HTK," Proc. of the IEEE Int. Conj. on Acoustics, Speech and Signal Processing, 

1994, Adelaide, Australia, pp. 125-128. 





PART IV 

TEXT-TO-SPEECH SYSTEMS 





CHAPTER 1 4 

Text and Phonetic Analysis 

coding . Text-to-speech can be viewed as a speech 
llexibTsys~m lhat _yields an extremely high compression ratio coupled with a high degree of 
of1T~

1
~m choosing style, voice, rate, pitch range, and other playback effects. In this view 

rrs b e text file that is input to a speech synthesizer is a fonn of coded speech. Thus, 
su sumes coding technologies discussed in Chapter 7 with the following goals: 

• Compression ratios superior to digitized wave files--Compression yields 
benefits in many areas, including fast Internet transmission of spoken mes­
sages. 

• Flexib 'I' • f 1 tty m output characteristics-Flexibility includes easy change 0 

g~otler, average pitch pitch range etc. enabling application developers to 
give th • ' ' ' • 'bT . eir systems' spoken output a unique individual personality. Flexi 1 •ty 
also 1m r · etype P ies easy change of message content; it is generally easier to r 
text Iha • . 

• . . n it 1s to record and deploy a digitized speech file. 

~b,t,ry for perfect indexing between text and speech forms-Preservation of 

li
e correspondence between textual representation and the speech wave fonn 

a ows syn h • . d ch as word-by-e ronizat10n with other media and output mo es, su 
ward reverse video highlighting in a literacy tutor reading aloud. 

689 
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Al t • ·cess o·•text content-TIS is the most effective alternative ac-• tema ive a, 'J . . 
cess of text for the blind, hands-free/eyes-free and display less scenanos. 

At first sight, the process of converting text into speech looks strai~h~orw~r~. H~w-

when we analyze how complicated speakers read a text aloud, this simpltst,c view 
ever, • t · 
quickly falls apart. First, we need to convert words in wntten orms mto speakable fonns. 
This process is clearly nontrivial. Second, to sound natural, the system needs to convey the 
intonation of the sentences properly. This second process is clearly an extremely challenging 
one. One good analogy is to think how difficult it is to drop a foreign accent when speaking 
a second language-a process still not quite understood by human beings. 

The ultimate goal of simulating the speech of an understanding, effective human 
speaker from plain text is as distant today as the corresponding Holy Grail goals of the fields 
of speech recognition and machine translation. This is because such humanlike rendition 
depends on common-sense reasoning about the world and the text's relation to it, deep 
knowledge of the language itself in all its richness and variability, and even knowledge of 
the actual or expected audience-its goals, assumptions, presuppositions, and so on. In typi­
cal audio books or recordings for the visually challenged today, the human reader has 
enough familiarity with and understanding of the text to make appropriate choices for rendi­
tion of emotion, emphasis, and pacing, as well as handling both dialog and exposition. 
While computational power is steadily increasing, there remains a substantial knowledge 
gap that must be closed before fu11y human-sounding simulated voices and renditions can be 
created. 

While no TIS system to date has approached optimal quality in the Turing test, 1 a 
large number of experimental and commercial systems have yielded fascinating insights. 
Even the relatively limited-quality ITS systems of today have found practical applications. 

The basic ITS system architecture is illustrated in Chapter I. In the present chapter we 
discuss text analysis and phonetic analysis whose objective is to convert words into speak­
able phonetic representation. The techniques discussed here are relevant to what we dis­
cussed for language modeling in Chapter 11 (like text normalization before computing n­
g_ram) and for pronunciation modeling in Chapter 9. The next two modules-prosodic analy­
sis and speech synthesis-are treated in the next two chapters. 

14.1. MODULES AND DATA FLow 

The ~~t analysis component, guided by presenter controls, is typically responsible for de­
tennmmg document structure, conversion of nonorthographic symbols and parsing of lan-
guage structure and meaning Th h • · • · d . • e P onet1c analysis component converts orthographic wor s 
to phones (unambiguous speech sound symbols). Some ITS systems assume dependency 
between text analysis phonetic J • • · · • • ana ysis, prosodic analysis, and speech synthesis, particu-
larly systems based on very large d t b · • 'fi d a a ases contammg long stretches of original, unmod1 ,e ------ ----

A lest proposed by British mathematician All T • 
performance on a given h 

I 
an unng of the ability of a computer to flawlessly imitate human 

speec or anguage task [29]. 
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digitized speech with their original pitch conto_urs. We discuss our high-level linguistic de­
• t'on of those modules, based on modularity, transparency, and reusability of compo scnp i . . -

although some aspects of text and phonetic analysis may be unnecessary for some nents, 
articular systems. . 

P We assume that the entire text (word, sentence, paragraph, document) to be spoken is 
rained in a single, wholly visible buffer. Some systems may be faced with special re­

co~rements for continuous flow-through or visibility of only small (word, phrase, sentence) 
;~,mks at a time, or extremely complex timing and synchronization requirements. The basic 
functional processes within the text and phonetic analysis are shown schematically in Figure 
14.1. 

EJ 

raw text 
or ragged text 

r---------------- ---------------------- - ' 

Document Structure Detection 

Text Nonnalization Text Analysis 

Linguistic Analysis 

----------------- ---------------

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

ta,:ged text ------------------
r---------------- ---------
1 
I 
I 
I 
I 
I 

Homograph Disambiguation 

I 
I 
I 
I 
I 

Morphological Analysis 

L----,----JPhonetic Analysis 

d t ... , & phones tagge '"" 
. analysis components. 

k for text and phonetic 
Figure 14.1 Modularized functional bloc s 
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YSIS 

The architecture in Figure 14.1 brings the stand_ard benefits of modularity and trans-

M dulan·ty in this case means that the analysis at each level can be supplied by the parency. o . . 
most expert knowledge source, or~ vanety ~f different sources, as long as the markup con-
ventions for expressing the analysis are umfonn. Transparency means that the results of 
each stage could be reused by other processes for other purposes. 

14.1.1. Modules 

The text analysis module (TAM) is responsible for indicating all knowledge about the text or 
message that is not specifically phonetic or prosodic in nature. Very simple systems do little 
more than convert nonorthographic items, such as numbers, into words. More ambitious 
systems attempt to analyze whitespaces and punctuations to detennine document structure, 
and perfonn sophisticated syntax and semantic analysis on sentences to detennine attributes 
that help the phonetic analysis to generate correct phonetic representation and prosodic gen­
eration to construct superior pitch contours. As shown in Figure 14.1, text analysis for TIS 
involves three related processes: 

• Document structure detection-Document structure is important to provide a 
context for all later processes. In addition, some elements of document struc­
ture, such as sentence breaking and paragraph segmentation, may have direct 
implications for prosody. 

• Text normalization-Text nonnalization is the conversion from the variety of 
symbols, numbers, and other nonorthographic entities of text into a common 
orthographic transcription suitable for subsequent phonetic conversion. 

• Linguistic analysis-Linguistic analysis recovers the syntactic constituency 
and semantic features of words, phrases, clauses, and sentences, which is im­
portant for both pronunciation and prosodic choices in the successive proc­
esses. 

. The task ?f the phonetic analysis is to convert lexical orthographic symbols to phone· 
mi~ representation along with possible diacritic information such as stress placement. Ph~­
netic analysis is thus often referred to as grapheme-to-phon~me conversion. The purpose is 
ol:,v· , • E 

,ou->, since phonemes are the basic units of sound as described in Chapter 2· ven 
though future TTS syst • h b ' . . . . • torage . ems mig t e based on word sounding umts with mcreasmg 5 
technologies homogra h d' b' . d ( ·ther trUe ' P isam 1guat:1on and phonetic analysis for new wor s ei 
new words being invented over time or morphologically transformed words) are still neces· 
sary for systems to correctly utter every word. 

Grapheme-to-phonem c . . . . ·mple rela· 
tt• h' b e onvers1on 1s tnvial for languages where there 1s a st 

ans 1P etween orthog h d b ell cap· 
tured b h rap Y an phonology. Such a simple relationship can e w 
and ar:r:fe::f~l of rules. L_anguages such as Spanish and Finnish bel_ong to this categ~;, 

0 as phonetic languages. English, on the other hand, 1s remote from p 
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. 1 guage because English words often have many distinct origins It is gen 11 b ne11c an • . • era y e-
lieved that the following three services are necessary to produce accurate pronunciations. 

, Homograph disambiguation-It is important to disambiguate words with dif-
ferent senses to determine proper phonetic pronunciations, such as object (/ah 
b Jh eh k ti) as a verb or as a noun (/aa b jli eh k rl). 

, Morphological a1wlysis--Analyzing the component morphemes provides 
important cues to attain the pronunciations for inflectional and derivational 
words. 

, Lerter-to-sound conversion-The last stage of the phonetic analysis generally 
includes general letter-to-sound rules (or modules) and a dictionary lookup to 
produce accurate pronunciations for any arbitrary word. 

All the processes in text and phonetic analysis phases above need not to be determinis­
tic, although most TIS systems today have deterministic processes. What we mean by not 
detem1i11istic is that each of the above processes can generate multiple hypotheses with the 
hope that the later process can disambiguate those hypotheses by using more knowledge. 
For example, often it might not be trivial to decide whether the punctuation"." is a sentence 
ending mark or abbreviation mark during document structure detection. The document struc­
ture detection process can pass both hypotheses to the later processes, and the decision can 
then be delayed until there is enough information to make an infonned decision in later 
~odules, such as the text normalization or linguistic analysis phases. When generating mul­
ople hypotheses, the process can also assign probabilistic information if it comprehe~ds the 
0nderlying probabilistic structure. This flexible pipeline architecture avoids the miStaJces 
made by early processes based on insufficient knowledge. 

Much of the work done by the text/phonetic analysis phase of a ITS syStem mirrors lhe 
processing attempted by natural language process (NLP) systems for other purposes, such as 
automatic f . . • d • and so on Increas­. proo readmg, machine translation, database document m exmg, . . : ex 
mgly sophisticated NL analysis is needed to make certain ITS processing decisions 1~ ~~ . -

:~ i~lu5tcated in Table 14.1. Ultimately all decisions are context driven aod probabihStlC m 
' smce, for example, dogs might be cooked and eaten in some cultures. 

,_ Table 141 Ex amp es o f severa am biguous text normalization cases. 

Examples 
I--.:. Alternatives Techniques 

~-Smith -- doctor or drive? abbreviation analysis, case analysis 

~You go? yes-no or wh-question? syntactic analysis 
I ate a hot do semantic, verb/direct object likelihood 
~- accent on dog? 
~a hot dog. • a}ysis 

accent on dog? discourse, pragmatic an 
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M t TIS systems today employ specialized natural language processing modules for 
front-en~sanalysis. In the future, it is likely that less emphasis will be pla~ed o~ construction 
of TIS-specific text/phonetic analysis components such as thos~ descnbed m. [27], while 

ore resources will likely go to general-purpose NLP systems with cross-functional poten­
:a1 (23]. In other words, all the modules above only perform simple proc_essing and pass all 
possible hypotheses to the later modules. At the end of the text/phonetic phase, a unified 
NLP module then performs extensive syntactic/semantic analysis for the best decisions. The 
necessity for such an architectural approach is already visible in markets where language 
issues have forced early attention to common lexical and tokenization resources, such as 
Japan. Japanese system services and applications can usually expect to rely on common 
cross-functional linguistic resources, and many benefits are reaped, including elimination of 
bulk, reduction of redundancy and development rime, and enforcement of systemwide con­
sistent behavior. For example, under Japanese architectures, TIS, recognition, sorting, word 
processing, database, and other systems are expected to share a common language and 
dictionary service. 

14.1.2. Data Flows 

It is arguable that text input alone does not give the system enough information to express 
and render the intention of the text producer. Thus, more and more TIS systems focus on 
providing an infrastructure of standard set of markups (tags), so that the text producer can 
better express their semantic intention with these markups in addition to plain text. These 
kinds of markups have different levels of granularity, ranging from simple speed settings 
specified in words per minute up to elaborate schemes for semantic representation of con­
cepts that may bypass the ordinary text analysis module altogether.2 The markup can be 
d~ne by internal proprietary conventions or by some standard markup, such as XML (Exten­
sible Markup Language [35]). Some of these markup capabilities will be discussed in Sec­
tions 14.3 and 14.4. 

For example, an application may know a lot about the structure and content of the text 
t? be spoken, an~ it can apply this knowledge to the text, using common markup conven­
tions, to ~atly lnlprove spoken output quality. On the other hand, some applications m_ay 
~ave certain broad requirements such as rate, pitch, callback types, etc. For engines provtd­
mg such supports, the text and/or phonetic analysis phase can be skipped, in whole or in 
part. Whethe~ the application or the system has provided the text analysis markup, the stru_c­
tural conventions should be identical and must be sufficient to guide the phonetic analYs•S­

The phoneti? analysis module should be presented only with markup tags indicating stru~· 
ture or functions of textual chunks, and words in standard orthography The similar phonetic 
:~;~~ could also be presented to the phonetic analysis module, ·the module could be 

• This latter type of system is sorneti call • • (lescribed in 
Chapter 17 It general! mes ed concept-to-spuch or message-to-speech, which is ed I the 
system. • y generates better speech rendering when domain-specific knowledge is provid 

0 
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Internal architectures, data structures and · .4'. 

H d ' ,nee, ,aces may va .d I 
sysrem. owever, most mo em ITS systems in"t• 11 ry w, e y from system to 

h b 
I ra Y construct • 1 utterance or paragrap ased on observable attrib t . a simp e description of an 

perhaps augmented by control annotations This u _e~, tylp~c~l!y text words and punctuation 
I f • mrnrma rnitral rk J t · ' with many ayers o structure hypothesized by the TTS , • . c e on is then augmented 

Beginning with a surface stream of words, punctuation :~~tern s rntemal analysis modules. 
detected structure that may be added include: ' 0ther symbols, typical layers of 

• Phonemes 

• Syllables 

• Morphemes 

• Words derived from non words (such as dates like .. 9110199,,) 
• Syntactic constituents 

• Relative importance of words and phrases 
• Prosodic phrasing 

• Accentuation 

• Duration controls 

• Pitch controls 

We c_an now consider how the information needed to support synthesis of a sentence is 
developed_rn processing an example sentence such as: "A skilled electrician reponed." 

n ln Figure 14.2, the information that must be inferred from text is diagrammed. The 
ow proceeds as follows: 

• W(ords) + l:, C(ontroJs): the syllabic structure (1:) and the basic phonemic 
fonn of a word are derived from lexical lookup and/or the application of 
~les. The 1: tier shows the syllable divisions (written in rext form for conven­
ience). The C tier, at this stage, shows the basic phonemic symbols for each 
word's syllables. 

• W(ords) + S(yntax/semantics): The word stream from text is used to infer 
a syntactic and possibly semantic structure (S tier) for an input sentence. Syn­
tactic and semantic structure above the word would include syntactic con­
stituents such as Noun Phrase (NP), Verb Phrase (VP), etc. and any semantic 
features that can be recovered from the current sentence or analysis of other 
contexts that may be available (such as an entire paragraph or document). 
The lower-level phrases such as NP and VP may be ~rouped_ into broader 
constituents such as Sentence (S), depending on the parsing archnecture. 

• S(y_ntaxJsemantics) + P(rosody): The P(rosodic) tier is al~o called the sym­
?oltc prosodic module. If a word is semantically important rn ~ senten~e, that 
rmponance can be reflected in speech with a little extra phonet_,c prominence, 
called an accent. Some synthesizers begin building a prosodic structure by 
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placing metrical foot boundaries to the left of every accented syllable. The re­
sulting metrical foot structure is shown as Fl, F2, etc. in Figure 14.2 (some 
feet lack an accented head and are 'degenerate'). Over the metrical foot struc­
ture, higher-order prosodic constituents, with their own characteristic relative 
pitch ranges, boundary pitch movements, etc. can be constructed, shown in 
the figure as intonational phrases IPI, IP2. The details of prosodic analysis, 
including the meaning of those symbols, are described in Chapter 15. 

The final phonetic form of the words to be spoken will reflect not only the original 
phonetics, but decisions made in the S and P tiers as well. For example, the P(rosody) tier 
adds detailed pitch and duration controls to the C(ontrol) specification that is passed to the 
voice synthesis component. Obviously, there can be a huge variety of particular architec­
tures and components involved in the conversion process. Most systems, however, have 
some analog to each of the components presented above. 

- s s I 11, 12, ... , In l 

• NP[f1, 12, ... , fn] VP I f1 , 12, ... , In I 

- w WI W2 W3 W4 ..... 
... :t A skilled e lee trl cian re por led 

► C ax s lh I I sh r p I 

► 
k eh r ax iy ao ax 
ih k ih n r d 
I 
d 

- p Fl F2 F3 F4 F5 

~ IP1 (11, 12, .. . , In) !P2 (11, 12, ... , fn) 

U[f1, 12, ... , In] 

Figure 14 2 Annot t' 1· • d' • • .. . • . _a ion 1ers m 1ca11ng mcrementa1 ana1ysis based on an input (text) sentence 
A skilled electnc1an reported " A f • • • • • . • ow o incremental annotation 1s md1cated by arrows on the 

left side. 

14.1.3. Localization Issues 

A major issue in the text and ph • 1 • • 
I
. . . . onetic ana ys1s components of a TIS system is intemat1on-

a 1zauon and localization Wh'l f 
are exem lified b E •. 1 e moSt ~ the la_nguage processing technologies in this book 
minimal epx . y 

I 
ngl_ish . case studieS, an internationalized TIS architecture enabling 

pense m ocahzation is h' hi d • • 
text conventions a d . . ig Y eSirable. From a technological point of view, ~e 
arbitrary wa n ~nt_mg sy~tems of language communities may differ substantially in 

ys, necessitating senous effiort • b th . . • m o specifying an internationalized arch1tec-
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lure for text and phonetic analysis, and localizing that architecture '"or a . I I ,, ny parttcu ar an-
g~g~ . . 

For example, m Ja~anese and Chinese, the unit of word is not clearly identified b ' 
spaces in text. In French, mterword dependencies in pronunciation realization ~,··st (.1.. . )) 

• • • I " ""' ia1son . Conventions for wntmg numenca ,orms of dates, times, money, etc. may differ across lan-
guages. In F~ench, number gr~ups se~arated by spaces may need Lo be integrated as single 
amounts, wl11ch rarely occurs Ill English. Some of these issues may be more S:!rious forcer­
tain types of ITS architectures than others. In general, it is best to specify a rule architecture 
for text processing and phonetic analysis based on some fundamental formalism that allows 
for language-particular data tables, and which is powerful enough to handle a wide range of 
relations and altematiYes. 

14.2. LEXICON 

The most important resource for text and phonetic analysis is the TIS system lexicon (also 
referred to as a dictionary). As illustrated in Figure 14.1, the ITS system lexicon is shared 
with almost all components. The lexical service should provide the following kinds of con­
tent in order to support a TIS system: 

• Inflected forms of lexicon entries 

• Phonetic pronunciations (support multiple pronunciations), stress and syllabic 
structure features for each lexicon entry 

• Morphological analysis capability 

• Abbreviation and acronym expansion and pronunciation 

• Attributes indicating word status, including proper-name tagging, and other 
special properties 

• List of speakable names of all common single characters. Under modem op-
• h Id • I de all Unicode characters. eratmg systems, the characters s ou me u 

• Word part-of-speech (POS) and other syntactic/semantic attributes 

l.k I ord is to be accented, etc. • Other special features, e.g., how 1 e Y a w . 

I m lexical service overlap heavily 
t should be clear that the requirements for a TIS syste 

with those for more general-purpose NLP. . d . ticular for orapheme-to-
Traditionally, TIS systems have been rule onente d 1~ ;; rules (described in detail 

~honeme conversion. Often tens of so called letter-to-soul! ( . d the role of the lexi-
m Sec· • honeme convers10n, an 

lion 14.8) are used first for grapheme-to-p . r· ns cannot be predicted on 
con h b 1 • t whose pronuncia to b as een minimized as an exception zs, . 's role has increasingly een 
th~ basis of such LTS rules. However, this view of the lex1_co; hioh-quality TIS systems 
adjusted as the requirement of a sophisticated NLP analy~,s. or a dictionary system. For a 
has become apparent. There are a number of ways to optimize 
good overview of lexical organization issues, please see (4]-
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To expose different contents about a lexicon entry l!sted above for different ITS mod-

I •t tis for 8 consistent mechanism. It can be done either through a database query or a 
u e, 1 ca I h h · 
function call in which the caller sends a key (usual Y t e ort ographtc representation of a 

d) and rhe desired attribute. For example, a TIS module can use the following function 
wor . • • PO 
call to look up a particular attribute (like phonetic pronunciations or S) by passing the 
attribute att and the result will be stored in the pointer val upon successful lookup. More­
over. when the lookup is successful (the word is found in the dictionary) the function returns 
true, otherwise it will retum false instead. 

BOOLEAN DictLookup (string word, ATTTYPE att, (VOID*) val) 

We should also point out that this functional view of dictionary could further expand 
the physical dictionary as a service. The morphological analysis and letter-to-sound modules 
(described in Sections 14.7 and 14.8) can all be incorporated into the same lexical service. 
That is, underneath dictionary lookup, operation and analysis is encapsulated from users to 

form a unifonn service. 
Another consideration in the system's runtime dictionary is compression. While many 

standard compression algorithms exist, and should be judiciously applied, the organization 
and extent of the vocabulary itself can also be optimized for small space and quick search. 
The kinds of American English vocabulary relevant to a TIS system include: 

• Grammatical function words (closed class)-about several hundred 

• Very common vocabulary-about 5,000 or more 

• College-level core vocabulary base forms-about 60,000 or more 

• College-level core vocabulary inflected form-about 120,000 or more 

• Scientific and technical vocabulary, by field-e.g., legal, medical, engineer-
ing, etc. 

• Personal names-e.g., family, given, male, female, national origin, etc. 

• Place names-e.g., countries, cities, rivers, mountains, planets, stars, etc. 
• Slang 

• Archaisms 

Tht·a1 · e ypic SJZes of reasonably complete lists of the above types of vocabulary run 
f~m 8 few hu~dred function or closed-class words (such as prepositions and pronouns) to 
LO,OOO or so inflected forms of college-level vocabulary items up to several million sur-
names and place nam c f 1 . ' . • . es. are u analysis of the likely needs of typical target apphcauons 
can potentially reduce the • f th • . . TTS terns . . size o e runttme d1ct1onary In general most sys 
mamtam a syst d. • - . • ' d 

h I 
. . em icttonary With a size between 5000 and 200 000 entries. With advance 

tee no og1es m database d h h. . . ' . . k In 
add.1. . an as mg, search 1s typically a nonissue for dictionary Joo up. 

1 ion, smce new form h as 
acronyms b . 5 are constantly produced by various creative processes, sue . 
some m , orrf owmg: slang acceptance, compounding and morphological manipulatto~, 

eans o analyzmg w d h ' . . h topic 
of Sections 14.7 and 

14
_
8

_ or s I at have not been stored must be provided. This 1st e 
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14.3, DOCUMENT STRUCTURE DETECTION 

For the purpose of discussion, we assume that all input to the TAM · XML 
ts an document 

!hough perhaps l~rgely unmarked, and the output is also a (more extensively marked) XML 
J.,-ument. That 1s to say, all the knowledge recovered during the TAM ph . 
lJU'. • fi . ase 1s to be ex-
pressed as XML markup. This con 1m1s the independence of the TAM f h . . . . . rom p onet1c and 
prosodic cons1derauons, allowing a vanety of resources, some perhaps not crafted with TIS 
in mind, to be ?rought to bear by the TAM on the text. It also implies that that output of the 
TAM is pot~nually usable ~y ?ther. n?n~TTS processes, such as normalization of language­
model traimng data for b~Ilding stat1st1cal language models (see Chapter JI). This fully 
modular and transparent view of ITS allows the greatest flexibility in document analysis, 
provides for direct authoring of structure and other customization, while allowing a split 
between expensive, multipurpose natural language analysis and the core TIS functionality. 
Although other text format or markup language, such as Adobe Acrobat or Microsoft Word, 
can be used for the same purpose, the choice of XML is obvious because it is the widely 
open standard, particularly for the Internet. 

XML is a set of conventions for indicating the semantics and scope of various entities 
that combine to constitute a document. It is conceptually somewhat similar to Hypertext 
Markup Language (HTML), which is the exchange code for the World Wide Web. In these 
markup systems, properties are identified by tags with explicit scope, such as "<b>make 
this phrase bold< /b>" to indicate a heavy, dark print display. XML in particular 
anempts to enforce a principled separation between document structure and content, on one 
hand, and the detailed fonnatting or presentation requirements of various uses of documents, 
on the other. Since we cannot provide a tutorial on XML here, we freely introduce ~xa~~le 
tags that indicate document and linguistic structure. The interpretations of lhese are mt~iuve 
10 most readers, though of course the analytic knowledge underlying decision~ to insert 
tags be . ' ' . r cial TIS engines come may very sophisticated It will be some time beiore commer d 
10 a common understanding on .the wide variety of text attributes that should be mar~ded, athn t 
accept • • nable to adopt the I ea a a common set of conventions. Nevertheless, it 1s reaso h" h x-
TAM h I • XML documents (w 1c are e 5 ou d be independent and reusable, thus allowing d r • as indicated 
!)eeted to proliferate) to function for speech just as for other mo a ,ueS, 
schematicall i F" 

. Y n 1gure 14.3. .th the text analysis perhaps 
c•..: liS is regarded in Figure 14.3 as a factored process, wi The role of the TIS 
... ,,ed out b h . lysis systems. . . 

engine Y uman editors or by natural Jan~uage ana. f stroctural tags and prov1s1on 
of ph pe~ s~ may eventually be reduced to the interpretauon ° t day are not structured 
With ~netic infonnation. While commercial engines of lhe prese~kely to become increas­
ingly . ese assumptions in mind, modularity and transparency are tderlying an XML docu-

1mpon T . . f h basic ideas un lllent ant. he mcreasmg acceptance o t e be seen in the recent 
centri . • ~ TTS can . f 

Prolifcra . c approach to text and phonetic analysis or While not presentmg any o 
these . hon of XML-like speech markup proposals [24• 331• tions that reflect and ex-

tn deta"I • • r nnal conven f the lend th . 1, m the discussion below we adopt mio . b the TTS systems o 
eir basic assumptions. The structural markup explmted y 
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• XML thoring systems at document creation time, or may be 
future may ?e imposed by . ~u edures. In any case the distinction between purely 
inserted by indepe

nd
ent . ana~ytJca . pro~d human annotation and authoring will increasingly 

autom~tic s~cture creat'.on/~:t:c~~~s~ation and information retrieval domains, the distinc-
blur-Just as in na!ural ladng dg Its and human-produced results has begun to blur. tion between machine-pro uce resu 

Authoring 

Sound Docu- ,, 
ment ITTS) 

Automatic Language 
Generation 

LM stylesheet 

XML 
Document 

LMTraining 
Doc (ASR) 

Automatic Structure 
Detection/creation 

Document 
Structure 

DB stylesheet 

Database Doc 
(IR) 

Figure 14.3 A documentcentric view of ITS. 

14.3.1. Chapter and Section Headers 

' 

Automatic 
Parsing 

Natural 
Language 
Structure 

Other 
StylesheelS .. . 

Print Doc, 
Screen Doc, 
Groupware 
Doc, etc. 

' 

; 

Section headers are a standard convention in XML document markup, and TIS systems can 
use the structural indications to control prosody and to regulate prosodic style, just as a pro­
fessional reader might treat chapter headings differently. Increasingly, a document created 
on computer or intended for any kind of electronic circulation incorporates structural 
markup, and the ITS and audio human-computer-interface systems of the future lean:1 10 
exploit this (in longer documents, the document structure markup assists in audio naviga­
tion, speedup, and skipping). For example, the XML annotation of a book at a high l~vel 
might follow conventions as shown in Figure )4.4. Viewing a document in this way might 
lead a ITS system to insert pauses and emphasis correctly, in accordance with the Strocture 
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ked. Furthennore, an audio interface system would work jointly with a TIS system to 
~:w easy navigation. and orientation withi~ such a structure. If future documents are 
marked up in this fashion, the concept of audio books. for example, would change to rely 
less on unstructured prerecorde~ speech and more on smart, XML-aware, high-quality audio 
navigation and TIS sys~ems, with .t~e output c~stomiz~tion flexibility they provide. 

For documents without exphcit markup mformation for section and chapter headers, it 
is in general a nontrivial task to detect them automatically. Therefore, most TIS systems 
today do not make such an attempt. 

<Book> 
<Title>The Pity of War</fitle> 

<Subtitle>Explaining World War !</Subtitle> 
<Author>Niall Ferguson</ Author> 
<TableOfContents> ... <ffableOfContents> 
<Introduction> 

<Para> ... </Para> 

</Introduction> 
<Chapter> . 
<ChapterTitle>The Myths of Militarism</ChapterTttle> 

<Section> 
<SectionTitle>Prophets</SectionTitle> 
<Para> ... </Para> 

</Section> 
</Chapter> 

</Book> 

Figure 14.4 An example of the XML annotation of a book. 

14.3.2. Lists 
. . . . . tonational contours to indicate a~rally 

Lists or bulleted items may be rendered with dtStmct 1~ . d . XML as shown in Figure 
lheir spec!al status. This kind of strUcture might be m:~c~~:a :r accepting such markup for 
!4·5• Again, TTS engine designers need to get used to d • sert such markup as needed 
~nterpretation, or incorporating technologies that can ~et~~~~o :apter and section headers, 
Y the downstream phonetic processing modules. Simi I' tructures automatically. 

rnost liS systems today do not make an attempt to detect 
1st 

s 
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<UL> 
<Ll>compression</LI> 
<Ll>flexibi I ity</LI> 
<LI>text-waveform correspondence</Ll> 
</UL> 
<Caption> The advantages of TTS</Caption> 

Figure 14.5 An example of a list marked by XML. 

14.3.3. Paragraphs 

Text and Phonetic Ana-I. ys1s 

The paragraph has been shown to have direct and distinctive implications for pitch assign­
ment in TIS [26] . The pitch range of good readers or speakers in the first few clauses at the 
start of a new paragraph is typically substantially higher than that for mid-paragraph sen­
tences, and it narrows further in the final few clauses, before resetting for the next para­
graph. Thus, to mimic a high-quality reading style in future TIS systems, the paragraph 
structure has to be detected from XML tagging or inferred from inspection of raw fonnat­
ting. Obviously, relying on independently motivated XML tagging is, as always, the supe­
rior option, especially since this is a very common structural annotation in XML documents. 

In contrast to other document structure infonnation, paragraphs are probably among 
the easiest to detect automatically. The character <CR> (carriage return) or <NL> (new line) 
is usually a reliable clue for paragraphs. 

14.3.4. Sentences 

While sentence breaks are not normally indicated in XML markup today, there is no reason 
to exclude them, and knowledge of the sentence unit can be crucial for high-quality TIS. In 
fact, some XML-like conventions for text markup of documents to be rendered by synthe­
sizers (e.g., SABLE) provide for a DIV (division) tag that could take paragraph, sentence, 
clause, etc. as attribute [24). If we define sentence broadly as a primal linguistic unit _th~t 
makes up paragraphs, attributes could be added to a Sent tag to express whatever lingui5t1c 
!CT,0-"·iccige exists about the type of the sentence as a whole: 

<Sent type="yes-no question"> 
ls life so dear, or peace so sweet, as to be purchased at the price of chains and slavery? 
</Sent> 

Again, as emphasized throughout this section, such annotation could be.either applied 
during creation of the XML documents (of the future) or inserted by independent process~s. 
Such structure-detection processes may be motivated by a variety of needs and may exiSI 
outside the ITS system per se. 
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If 00 independent markup of sentence structure is available 1: • . . 1rom an external, inde-
pendently motivated document analysis or natural language system a ITS . . 

. . . . , . . . . • , system typically 
relies on simple mtemal heunst1cs to guess at sentence divisions. ln erna·i d h 

1 • . • 1 an ot er re a-
tively infonnal written commumcat1ons. sentence boundaries may be very hard t d 

1 I• h b k' o etect. n 
con1rast to En~ is ' se_ntence rea mg could be_ trivial for some other written languages. In 
Chinese, there 1s a ~es1gnated symbol (~ small circle ~) for marking the end of a sentence, so 
!he sentence breaking could be done m a totally straightforward way. However, for most 
Asian languages, such as Chinese, Japanese, and Thai. there is in general no space within a 
sentence. Thus, tokenization is an important issue for Asian languages. 

In more fonnal English writing. sentence boundaries are often signaled by terminal 
punctuation from the set: { . ! ? ) followed by whitespaces and an upper-case initial word. 
Sometimes additional punctuation may trail the '?' and • !' characters, such as close 
quotation marks and/or close parenthesis. The character '.' is particularly troubling, because 
it is, in programming tenns, heavily overloaded. Apart from its uses in numerical 
expressions and Internet addresses, its other main use is as a marker of abbreviation, itself a 
difficult problem for text normalization (see Section 14.4). Consider this pathological 
jumble of potentially ambiguous cases: 

Mr. Smith came by. He knows that it costs $1 .99, but I don't know when he'll be 
back (he didn't ask, "when should I return?")... His Web site is 
www.mrsmithhhhhh.com. The car is 72.5 in . long (we don't know which park­
ing space he'll put his car in.) but he said" ... and the truth shall set you free," an 
interesting quote. 
Some of these can be resolved in the linguistic analysis module. However for some 

cases, only probabilistic guesses can be made, and even a human reader may have d_ifficulty. 
The ambiguous sentence breaking can also be resolved in an abbreviation-proc~sSmg mod­
ule (described in Section 14.4.1 ). Any period punctuation that is not taken to signal an ab-
b • . d f tence Of course, as we reviat1on and is not part of a number can be taken as en -o -sen • d 
h • d that can naturally en sen-ave seen above abbreviations are also confusable with wor s ( h k 

• • • f the left context c ec -
lences, e.g., "in." For the measure abbreviations, an exammauon ~ f t ce breaking 
• r h omplexrty o sen en 
mg ior numeric) may be sufficient. In any case, t e c knowledgeable 
ill . d letting later, more ustrates the value of passing multiple hypotheses an • • Algorithm 

. . . • dule) make dec1s1ons. 
modules (such as an abbreviation or lmgu1st1c analysis mo bl t handle most cases 
14 I h • . • h hould be a e o • • s ows a simple sentence-breakmg algonthm t at s . . f the following kinds of 

F d • ht d combmauon o . or a vanced sentence breakers, a weig e d . 
1
·ng sentence boundanes 

cons·ct • . • runs for etennm 1 erat1ons may be used in constructing algont 
(ordered from easiest/most common to most sophiSticated): . 

. ·s one of the most impor-
• Abbreviation processing-Abbreviation process_mgd

1
. detail in Section 14.4. 

t • . • d ·11 be descnbe m ant tasks m text nonnahzauon an WI . d ment structure, 
'" based on. ocu • Rules or CART built (Chapter 4) upon 1eatures 

Whitespace, case conventions. etc. d 
• S • • • • • I word likelihoo tatrsttcal frequencies on sentence-mttra 
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• Statistical frequencies of typical lengths of sentences for various genres 

• Streaming syntactic/semantic (linguistic) analysis-Syntactic/semantic analy­
sis is also essential for providing critical information for phonetic and pro­
sodic analysis. Linguistic analysis will be described in Section 14.5. 

As you can see, a deliberate sentence breaking requires a fair amount of linguistic process­
ing, like abbreviation processing and syntactic/semantic analysis. Since this type of analysis 
is typically included in the later modules (text normalization or linguistic analysis), it might 
be a sensible decision to delay the decision for sentence breaking until later modules, either 
text normalization or linguistic analysis. In effect, this arrangement can be treated as the 
document structure module passing along multiple hypotheses of sentence boundaries, and it 
allows later modules with deeper linguistic knowledge (text nonnalization or linguistic 
analysis) to make more intelligent decisions. 

Finally, if a long buffer of unpunctuated words is presented, TIS systems may impose 
arbitrary limits on the length of a sentence for later processing. For example, the writings of 
the French author Marcel Proust contain some sentences that are several hundred words long 
(average sentence length for ordinary prose is about 15 to 25 words). 

ALGORITHM 14.1 : A SIMPLE SENTENCE-BREAKING ALGORITHM 

1. ff found punctuation ./!/? advance one character and goto 2. 
else advance one character and goto 1. 

2. If not found whitespace advance one character and goto 1. 
3. If the character is period (.) goto 4. 

else goto 5. 
4. Perform abbreviation analysis. 

If not an abbreviation goto 5. 
else advance one character and goto 1. 

5. Declare a sentence boundary and sentence type ./!/? 
Advance one character and goto 1. 

14.3.5. Email 
• n eyes-busy situation such as 

TIS could be ideal for reading email over the phone orl m ath t XML-tagged email s1r11c-
h. 1 Here again we can specu ate a h ality 

when driving a motor ve IC e. . F 14 6 will be essential for big -qu 
ture minimally something like the ex_~ple ~n igalu~:wi~g• skips and speedups of areas thhe 

' fi tr Irng the audio mteuace, f n of eac prosody and or con o I . to announce the func io . 
user ha; defined as less critical, and allow:!!eo?:::1 certainly has a different sem~t~~ 

block. For example, ~e sig (signatur1 lould be clearly identified as ~uch, or s~ifsrca;ed 
function than the mam message text an_l stems are providing increasrngly sop 
the listener's discretion. Modem ema1 sy 
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Port for s1ructure annotation such as that exemplified in Figure 
14 6 

Ob . 
sup be d . • • v1ously, the 
mail document structure can etected only with appropriate tags (like XML) 

1 
. 

t t d • • . t 1s very difficult for a TIS system o etect at automat,cally. 

<message> 
<header> 

<date> I I June I 998</date> 
<from> Leslie</from> 
<to>Jo</to> 
<subject>Surrs Up!</subject> 

</header> 
<body> ... </body> 

<sig>Freedom'sjust another word for nothing left to lose</sig> 
</message> 

Figure 14.6 An example of email marked by XML. 

14J.6. Web Pages 

All lhe comments about ITS reliance on XML markup of document structure can be applied 
: lbe case of IITML-marked Web page content as well. In addition to sections, headers, 
~ paragraphs, etc., the ITS systems should be aware of XML/HTML conventions such 

as bnk~ (<~ href=" ... ">link name</a>) and perhaps apply some distinctive voice quality or 
P:

0sadt
c patch contour to highlight these. The size and color of the section of text also pro­

_v1des useful hints for emphasis. Moreover the ITS system should aJso integrate the render-
mg of d. ' · · 

au to and video contents on the Web page to create a genuine multimedia expenence 
_forlhe users. More could be said about the rendition of Web content, whether from underly-1

~g XML documents or HTML-marked documents prepared specifica!Jy for Web presenta­
bon. In addition, the World Wide Web Consortium has begun work on standards fo~ au~ 5
tyleshee1s th HTML • d special direcuon in at can work in conjunction with standard to provi e 

aurai rendition [33]. 

14.3.7, 
Dialog Turns and Speech Acts 

Not all t . The more expressive 
l'rs s ext to be rendered by a TIS system is standard wntte~ pros~ dialog in a spontane-
ous s~stems c~uld be tasked with rendering natural conversanon ~ d by XML markup of 
its input¢s_w1th written documents, the TIS system has to :,C g:e;) and speech acts (the 
illOO(j • anous systems for marking dialog turns (chang~ 0 spe and these annotations 

and funcr • )3 ed for this purpose, od' Will lri tonal intent of an utterance are us The speech act c mg 
&&er Particular phonetic and prosodic rules in TIS systems. 

' lli~lllode . are described in de1ail in Chapter 17. 
ling and the concepts of dialog rums and spuch acts 
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schemes can help, for example, in identifying the speaker's intent with respect to an utter­
ance, as opposed to the utterance's structural attributes. The prosodic contour and voice 
quality selected by the TIS system might be highly depe_ndent ?n this functional knowledge. 

For example, a syntactically well-fanned question might be used as infonnation 
solicitation, with the typical utterance-final pitch upturn as shown in the following: 

<REQUEST_INFO>Can you hand me the wrench?<IREQUEST_INFO> 

But if the same utterance is used as a command, the prosody may change drastically. 

<DIRECTIVE>Can you hand me the wrench.<IDIRECTIVE> 

Research on speech act markup-tag inventories (see Chapter 17) and automatic meth­
ods for speech act annotation of dialog is ongoing, and this research has the property consid­
ered desirable here, in that it is independently motivated (useful for enhancing speech 
recognition and language understanding systems). Thus, an advanced TIS system should be 
expected to exploit dialog and speech act markups extensively. 

14.4. TEXT NORMALIZATION 

Text often include abbreviations (e.g., FDA for Food and Drug Administration} and acro­
nyms (SWAT for Special Weapons And Tactics). Novels and short stories may include spo­
ken dialog interspersed with exposition; technical manuals may include mathematical 
fonnulae, graphs, figures, charts and tables, with associated captions and numbers; email 
may require interpretation of special conventional symbols such as emoticons (e.g., :-) 
means smileys], as well as Web and Internet address formats, and special abbreviations 
(e.g., IMHO means in my humble opinion). Again, any text source may include part num­
bers, stock quotes, dates, times, money and currency, and mathematical expressions, as well 
as standard ordinal and cardinal formats. Without context analysis or prior knowledge, even 
a human reader would sometimes be hard pressed to give a perfect rendition of every se­
quence of nonalphabetic characters or of every abbreviation. Text nonnalization (TN) is the 
process of generating nonnalized orthography (or, for some systems, direct generation of 
phones) from text containing words, numbers, punctuation, and other symbols. For example, 
a simple example is given as follows: 

The 7% Solution ~ THE SEVEN PER CENT SOLUTION 

Text normalization is an essential requirement not only for TIS, but also for the 
pre~~ation of training text corpora for acoustic-model and language-model constructi?0 ·~ ~ 
additwn, speech dictation systems face an analogous problem of inverse text nonnahzaoo 
for docu~e~t creation from recognized words, and such systems may depend on knowle_dge 
s_ources s1m1lar to those described in this section. The example of an inverse text norma1tza­
t1on for the example above is given as follows: 

• For details of acoustic and language modeling, please refer to Chapters 9 and 11 . 
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THE SEVEN PER CENT SOLUTION ➔ The 7% Solution 

•fodular text normalization components, which may produce out t ~ 1 . in k h pu ,or mu t1ple down-
stream consumers, mar, up l e exemplary text along the following lines: 

The <tn snor="SEVEN PER CENT">7%</tn> Solution 

The snor tag stands for Standard Nonnalh!d Orthogr,~pti,·c Rei·•r , ,· s F . . ~ " , esen a um. or 
TIS, input text _may mclude mu_lttsenten_ce paragraphs, numbers, dates, times, punctuation. 
symbols of all kmds, ~s we!~ as mterpret1ve annotations in a TIS markup language. such as 
tags for word emphasis or p1_tch range. Text analysis for ITS is the work of converting such 
text into a stream of normalized orthography, with all relevant input tagging preserved and 
new markup added to guide the subsequent modules. Such interpretive annotations added by 
text analysis are critical for phonetic and prosodic generation phases to produce desired out­
put. The output of the text normalizer may be deterministic, or may preserve a full set of 
interpretations and processing history with or without probabilistic infonnation to be passed 
along to later stages. We once again assume that XML markup is an appropriate fonnat for 
expressing knowledge that can be created by a variety of external processes and exploited by 
a number of technologies in addition to TIS. 

Since today's TIS systems typically cannot expect that their input be independently 
marked up for text normalization, they incorporate internal technology to perform this func­
tion. Future systems may piggyback on full natural language processing solutions developed 
for independent purposes. Presently, many incorporate minimal, TIS-specific hand-written 
rules[!], while others are loose agglomerations of modular, task-specific statistical evalua­
tors [3]. 

For some purposes, an architecture that allows for a set or lattice of possible al~ema­
tive expansions may be preferable to detenninistic text normalization, like the n-~eSl hSlS or 

d . •b d • Chapter 13 Altemattves known wo~ graph offered by the speech recognizers descn e m • 
I h b•1• • th t may be Jeamable from data. 0 I e system can be listed and ranked by proba I ities a . 1 d 
L . • h thesis) can either add know e ge ater stages of processing (linguistic analysis or speec syn . .. 8 
10 the lattice structure or recover the best alternative, if needed. ConSider the fr_a~ment at 

. h fl "bTty of wntmg conven-
am I • . . " in some informal writing such as email. Given t e hex1 , t ·c context seems to 
tions fi · • r d ·ther A M (t e numen o~ pronunciation, am could be rea 1ze as ei . • • d be noted in a descriptive lat-
cue at limes) or the auxiliary verb am. Both alternatives coul T bl 14 2) 
f f es if known ( a e • • ice O covering interpretations, with confidence measur .. 

fragment "At 8 am I • -• • Tabl 14 2 elations for sentence e Two altemauve mterpr 

At 8 am I ... At <time> eight am </time> I ••• 

At 8 am I ... At <number> eight </number> am I ••• 

;------------- -~ nn way of writing words and sentences 
SNQR, or Standard Normalized Onhographic Represenrntion, is a uni o uired as reference material for many 

tlia1 e texts are req d stan-
Dc 

corrcsponds to spoken rendition. SNOR-format sentenc . f Standards and Technology-sponsore 
fense Ad N • al Insuwtes o d vanced Research Project Agency and auon 

am speech technology evaluation procedures. 
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If the potential ambiguity in the ~nterpretation ,of am in the above pai_r of examples is 
. d . d the alternatives retained rather than suppressed, the choice can be made simply note . an . . . , . 

1 ·t of syntactic/semantic processmg. Note anothe1 1eature of this example-the 
by a ater s age . . 1 • h b · · · 

h . 1 ,,bbreviation form for antemendian, w 11c y prescnpt1ve convention hopes roug 1rregu ar u . . . . 

that high-quality rrs processing can rely ent1_rely on standar~ stylistic conventions. That 
observation also applies to the obligatory use ot "?" for all questions. 

Specific architectures for the text normalization componen_t of TT~ may be highly 
variable, depending on the system architect' s answers to the following questions: 

• Are cross-functional language processing resources mandated, or available? 

• If so, are phonetic forms, with stress or accent, and nonnalized orthography, 

available? 

• Js a full syntactic and semantic analysis of input text mandated, or available? 

• Can the presenting application add interpretive knowledge to structure the in­
put (text)? 

• · Are there interface or pipelining requirements that preclude lattice alterna­
tives at every stage? 

Because of this variability in requirements and resources, we do not attempt to for­
mally specify a single, all-purpose architectural solution here. Rather, we concentrate on 
describing the text nonnalization challenges any system has to face. We note where solu­
tions to these challenges are more readily realized under particular architectural assump­
tions. 

All text nonnalization consists of two phases: identification of type, and expansion to 
SNOR or other unambiguous representation. Much of the identification phase, dealing with 
phenomena of sentence boundary determination, abbreviation expansion, number spell-out, 
etc., can be modeled as regular expression (see Chapter JI) . This raises an interesting archi­
tectural issue. Imagine a system based entirely on regular finite state transducers (FST, see 
Cha~ter 11 ), as in (27], which enforces an appealing unifonnity of processing mechanism 
and mte~al structure description. The FST pennits a lattice-style representation that does 
not require premature resolution of any structural choice. An entire text analysis system can 
~e based on such a representation. However, as long as a system confines its attention to 
issues that c~m~only come under the heading of text nonnalization, such as number for­
mats, a~breviations, and sentence breaking, a simpler regular-expression-based uniform 
mechanism for rule specification and structure representation may be adequate. 

Alternatively, ITS systems could make use of advanced tools such as, for example, 
the lex and yacc tools [17], which provide frameworks for writing customized lexical ana­
lyze_rs ~nd context-free grammar parsers, respectively. In the discussion of typical text nor­
mahzat1on re~uirements below, examples will be provided and then a fragment of Perl 
~attern-mat~hmg code will be shown that allows matching of the examples given. Perl nota-
llOn (36] 1s used as · . gular . . • a convenient short-hand representing any equivalent re 
expressmnparsmg system and can be regarded as a subset of the functionality provided by 
any regular expression FST rchitect 

• • or context-free grammar tool set that a TTS software a 
may choose to employ. Only a small subset of the simple, fairly standard Perl conventions 
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to employ. Only a small subset of the simple, fairly standard Perl conventions for regular 
expression matching are used, and comments are provided in our discussion of text 
normalization. 

A text nonnalizntion system typically adds identification information to assist subse-
uent stages in their tasks. For example, if the TN subsystem has determined with some con­

idence that a given digit string is a phone number, it can associate XML-like tags with its 
output, identifying the corresponding normalized orthographic chunk as a candidate for spe­
cial phone-number intonation. In addition, the identification tags can guide the lexical dis­
ambiguation of tenns for other processes. like phonetic analysis in TIS systems and training 
data preparation for speech recognition. 

Table 14.3 shows some examples of input fragments with a relaxed form of output 
normalized orthography. It illustrates a possible ambiguity in TN output. In the (contrived) 
example, the ambiguity is between a place name and a hypothetical individual named per­
haps Steve or Samuel Asia. Two questions arise in such cases. The first is format of specifi­
cation. The data between submodules in a TI'S system can be passed (or be placed in a 
centrally viewable blackboard location) as tagged text or in a binary format. This is an im­
plementation detail. Most important is that all possibilities known to the TN system be 
specified in the output, and that confidence measures from the TN, if any, be represented. 
For example, in many contexts, South Asia is the more likely spell-out of S. Asia, and this 
should be indicated implicitly by ordering output strings, or explicitly with probability num­
bers. The decision could then be delayed until one has enough information in the later mod­
ule (like linguistic analysis) to make the decision in an infonned manner. 

Table 14.3 Examples of the normalized output using XML-like tags for text nonnalization . 

. Dr~ King <title> DOCTOR </title> KING 

7% <number>SEVEN<ratio>PERCENT</ratio> </number> 

S.Asia <toponym> SOUTH ASIA </toponym> 

OR <psn name><initial>S</initial>ASIA</psn_name> 

14,4.1. Abbreviations and Acronyms 

As noted above, a period is an important but not completely reliable clue to the presence of 
~ ~bbreviation. Periods may be omitted or misplaced in text for a variety of reasons. For 
s1m l • 1· • 1 ar reasons of stylistic variability and a writer's (lack of) care and skill, capita ization, 
3:"0ther potentially important clue can be variable as well. For example, all the repre~enta­
llons of th ' d • tu I mrul and . e abbreviation for post script listed below have been observe in ac a 
email A • f ntextual sources, • system must therefore combine knowledge from a vanety O co 
-~~ • • cument structure and origin, when resolving abbrev1at1ons: 
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PS. Don 'tforget your hat. 
Ps. Don 't forget your hat. 
P.S. Don't forget your hat. 
P.s. Don 'tforget your hat. 

Text and Phonetic Analysis 

And P.S., when examined out of context, could be personal name initials as well. Of 
course, a given TIS system's user may be satisfied with the simple spoken output 11, iy ae sf 

in cases such as the above, obviating the need for full interpretation. But at a minimum 
when fallback to letter prommciation is chosen, the TIS system must attempt to ensure tha~ 
some obvious spell-out is not being overlooked. For example, a system should not render the 
title in Dr. Jones as Jetter names Id iy aa rl. 

Actually, any abbreviation is potentially ambiguous, and there are several distinct 
types of ambiguity. For example, there are abbreviations, typically quantity and measure 
terms, which can be realized in English as either plural or singular depending on their nu­
meric coefficient, such as mm for millimeter(s). This type of ambiguity can get especially 
tricky in the context of conventionally frozen items. For example, 9mm ammu11itio11 is typi­
cally spoken as nine millimeter ammunition rather than nine millimeters ammunition. 

Next, there are forms that can, with appropriate syntactic context, be interpreted either 
as abbreviations or as simple English words, such as in (inches), particularly at the end of 
sentences. 

Finally, many, perhaps most, abbreviations have entirely different abbreviation spell­
outs depending on semantic context, such as DC for direct current or District of Columbia. 
This variability makes it unlikely that any system ever performs perfectly. However, with 
sufficient training data, some statistical guidelines for interpretation of common abbrevia­
tions in context can be derived. Table 14.4 shows a few more examples ofthis most difficult 
type of ambiguity. 

An advanced ITS system should attempt to convert reliably at least the following ab· 
breviations: 

• Title-Dr., MD, Mr., Mrs., Ms., St. (Saint), . . . etc. 

• Measure-ft., in., mm, cm (centimeter), kg (kilogram), ... etc. 

• Place names-CO, LA, CA, DC, USA, St. (street), Dr. (drive), . .. etc. 

Table 14.4 Some ambiguous abbreviations. 

co Colorado commanding officer 

conscientious objector carbon monoxide 

IRA Individual Retirement Account Irish Republican Army 

MD Maryland doctor of medicine 

muscular dystrophy 
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Abbreviation disambiguation usually can be resolved by POS (part-of-speech) analy­
. For example, whether Dr. is Doctor or Dri1·e can be resolved by examining the POS 

;~:tures of the previous and following words. Tf the abbreviation is followed by a capitalized 
~onal name, it can be expanded as Doctor. whereas if the abbreviation is preceded by a 

:pitalized place name, a number, or_ an alphanm~eric (li~e I 20'"). i~ ~ill be expanded as 
Dril'e. Although the example above 1s resolved via a series of heuristic rules, the disam­
biguation (POS analysis) can also be done by a statistical approach. In [6], the POS Lags are 
determined based on the most likely POS sequence using POS trigram and lexical-POS uni­
gran1. Since an abbreviation can often be distinguished by its POS feature, the most likely 
POS sequence of the sentence discovered by the trigram search then provides the best guess 
of lhe P0S (thus the usage) for abbreviations. We describe POS tagging in more detail in 
Section 14.5. 

Other than POS information, the lexical entries for abbreviations should include all 
features and alternatives necessary to generate a lattice of possible analyses. For example, a 
typical abbreviation's entry might include information as to whether it could be a word (like 
in), whether period(s) are optional or required, whether plural variants must be generated 
and if so under what circumstances, whether numerical specification is expected or required, 
etc. 

Acronyms are words created from the first letters or pans of other words. For example, 
SCUBA is an acronym for selj:contained underwater breathing apparatus. Generally, to 
qualify as a true acronym, a Jetter sequence should reflect norn1al language phonotactics, 
such as a reasonable alternation of consonants and vowels. From a TTS system's point of 
view, the distinctions between acronyms, abbreviations, and plain new or unknown words 
can be unclear. Many acronyms can be entered into the ITS system lexicon just as ordinary 
words would be. However, unknown acronyms (not listed in the lexicon) may occasionally 
~en:~untered. Although an acronym's case property can be a significant clue to identifica-
on, 111s often unclear how to speak a given sequence of upper-case letters. Most TIS sys­

tems, failing to locate the sequence in the acronym dictionary, spell it out letter-by-letter. 
Other systems attempt to detennine whether the sequence is inherently speakable. For ex­
ample, DEC might be inherently speakable, while FCC is not formed according to nonnal 
~0rd phonotactics. When something speakable is found, it is processed via the nonnal letter­
o..sound rules, while something ims•)eakable would be spelled out letter-by-letter. Yet other 
ij~ . t s . 

em_s might simply feed the sequence directly to the letter-to-sound rules (see ecuo_n 
14.8), Just as they would any other unknown word. As with all such problems. a larger lexi-
con usuall . Y provides superior results. . • 
· The general al 0 orithm for abbreviations and acronyms expansion in text normahzat~on 

h
is summarized in Al;or1'thm 14 2 The algorithm assumes that tokenization and POS taggmsg 
av be O • • ' • • • d b the PO ta e en done for the whole sentence. Abbreviation expanSion is determine Y . 1 b 

ta:: of the potential abbreviation candidates. Acronym expansion is don\ extus;~: th~ 
e lookup, and letter-by-letter spell-out is used when acronyms cannot e oun 

acronym table. 



712 
Text and Phonetic Analysis 

ALGORITHM 14.2: ABBREVIATIONS AND ACRONYMS EXPANSION 

1. If word token w is not in abbreviation table and w contains only capital letters goto 3. 
2. Abbreviation Expansion 

If the POS tag of wand the correspondent abbreviation match 
Abbreviation expansion by inserting SNOR and interpretive annotation lags 
Advance one word and goto 1. 

3. Acronym Expansion 
If w is in the predefined acronym table 
Acronym expansion by inserting SNOR and interpretive annotation tags 
according to acronym expansion table 
else spell out w letter-by-letter 

4. Advance one word and goto 1. 

14.4.2. Number Formats 

Numbers occur in a wide variety of formats and have a wide variety of contextually depend­
ent reading styles. For example, the digits 370 in the context of the product name IBM 370 
mainframe computer typically are read as three seventy, while in other contexts 370 would 
be read as three hundred seventy or three hundred and seventy. In a phone number, such as 
370-1111, the string would normally be read as three seven oh, while in still other contexts it 
might be rendered as three seven zero. A text analysis system can incorporate rules, perhaps 
augmented by probabilities, for these situations, but might never achieve perfection in all 
cases. Phone numbers are a practical place to start, and their treatment i1lustrates some of the 
general issues relevant to the other number formats which are covered below. 

14.4.2.1. Phone Numbers 

Phone numbers may include prefixes and area codes and may have dashes and parentheses 
as separators. Examples are shown in Table J 4.5. 

~e first_ two examples have prefix codes, while the next four have area codes witb 
mmor tonnattmg differences. The final two examples are possible international-format 
phone numbers. A basic Perl regular expression pattern to subsume the commonality in all 
the local domestic numbers can be defined as foJiows: 

$us_basic = • ([0-9]{ 3 }\-[Q-gJ{4 }) '; 

This defines a pattern subpart to match 3 digits followed by a separator dash, fol-
lowed by another 4 dig· t Th th ' 1 s. en e pattern to match the prefix type would be: 

/({0-9 ] {l}) [\/ -] ($us_basic)/ 
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Table 14.5 Some different written representations of phone numbers. 

9-999-4118 

9 345-5555 

( 617) 932-9209 

(6 I 7) 932-9209 

716-123-4568 

409/845-2274 

+49 (228) 550-381 

+49-228-550-381 

In the first example above, this leaves the system pattern variable $1 (corresponding to 
the first set of capture parentheses in the pattern) set to 9, and $2 (the second set of capture 
parentheses) set to 999-4118. Then a separate set of tables, indexed by the rule name and the 
pattern variable contents, could provide orthographic spell-outs for the digits. Clearly a bal­
ance has to be struck between the number of pattern variables provided in the expression and 
the overall complexity of the expression, vis-a-vis the complexity and sophistication of the 
indexing scheme of the spell-out tables. For example, the $us_basic could be defined to in­
corporate parentheses capture on the first three digits and the remaining four separately, 
which might lead to a simpler spell-out table in some cases. 

The pattern to match the area code types could be: 

/(\([0-9]{3)\)) [\/ -) ($us_basic)/ 

Th~se patterns could be endlessly refined, expanded, and layered to match stri~gs of ~l~oSt 

arbl!rary complexity. A balance has to be struck between number and complexity of d•Stmct 
partems. In any case, no matter how sophisticated the matching mechanism, arbitrary or ~t 
beSt probabilistic decisions have to be made in constructing a TIS syStem. For exam~le, m 
matching an area code type the rule architect must decide how much and what Jcjnd of 
Whitespace separation the m;tching system tolerates between the area code and the reSt of 
lhe number before a phone-number match is considered unlikely. Or, as another example, 
does the rule architect allow new lines or other fonnatting characters to apperu: ~etween ~e 
area code and the basic phone number? These kinds of decisions must be exphc1tly cons1d-

d d • er documenta-
~re 'or made by default and should be specified to a reasonable egree m us d th 
hon Th ' r d issues that are beyon e 

• ere are a great many other phone number ionnats an 
scope of this tre atment. . rmalized orthography, the 

Once a certain type of pattern requires a conversion to no be aligned 
quest" . . Th version characters can 

. 10n of how to perform the conversion anses. e con . th pattern matching 
With th ·ct . . . • p!icitly dunng e e I ent1fication so that converswn occurs •m . .fi · hase This may 
proces A ' • f m the 1dentl 1cauon P • 

s. nother way is to separate the conversion ro d depending on the 
or may not lead to gains in efficiency and elimination of redun ancy, 
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overall architecture of the system and whether and how components are expected to be re­
used. A version of this second approach is sketched here. 

Suppose that the pattern match variable $1 has b~en set to 617 by o_ne of the identifica­
tion-phase pattern matches described above. Another hst can provide pointers to conversion 
tables, indexed by the rule name or number and the variable name. So for the rule that can 
match area codes, the relevant entry would be: 

Identification rule 
Area-Phone 

Variable 
$1 

Spellout table 
LITERAL_DIGIT 

The LITERAL_DIGIT spell-out rule set, when presented with the 617 character se­
quence (the value of $I), simply generates the nonnalized orthography six one seven, by 
table lookup. In this simple and straightforward approach, spell-out tables such as LIT­
ERAL_DIGIT can be reused for portions of a wide variety of identification rules. Other 
simple numeric spell-out tables would cover different styles of numeric reading, such as 
pairwise style (e.g., six seventeen), full decimal with tens, hundreds, thousands units (six 
hundred seventeen), and so on. Some spellout tables may require processing code to sup­
plement the basic table lookup. Additional examples of spell-out tables are not provided for 
the various other types of text normalization entities exemplified below, but would function 
similarly. 

14.4.2.2. Dates 

Dates may be specified in a wide variety of formats, sometimes with a mixture of ortho­
graphic and numeric forms. Note that dates in TIS suffer from a mild form of the century• 
date-change uncertainty (the infamous Y2K bug), so a fonn such as sn /37 may in the future 
be ambiguous, in its full form, between 1937 and 2037. The safest course is to say as little as 
possible, i.e., "five seven thirty seven", or even "May seventh, thirty seven", rather than at­
tempt "May seventh, nineteen thirty seven". Table 14.6 shows a variety of date fonnats and 
associated normalized orthography. 

Table 14.6 Various date formats. 

12/19/94 (US) December nineteenth ninety four 
19/12/94 (European) December nineteenth ninety four 
04/27/1992 April twenty seventh nineteen ninety two 
May 27, 1995 

May twenty seventh nineteen ninety five 
July 4, 94 July fourth ninety four 
1,994 

one thousand nine hundred and ninety four 
1994 

nineteen ninety four 



WI Normalization 
71S 

One issue that comes up with certain number formats, including date • 
9/94 · b · . s, 1s range check-

·ng. A fonn like 13/1 1s as1cally uninterpretable as a date. This kind of h k' ·r 
1 . • " al h' b . c ec mg, , 
·ocluded m the mill pattern mate mg, may e slow and may increase t·ormal . 
1 . requirements 
for power of the pattern matching system. Therefore, range checking can be do t 11_ 

d · 1· ne a spe 
out time (se~ below) unng norma 1z~d ~rthog'.aphy generation, as Jong as a backtracking or 
redo option 1s p'.esent. If range checking 1s_desired as part of the basic identification phase of 
text normalization, _some regular ~xpress1on matching systems allow for extensions. For 
example, the foll?wm~ pattern vana~le matches only numbers less than or equal to 12, the 
valid month spec1ficauons. It can be included as part of a larger, more complex date match­
ingpattem: 

$month= '/(0[ 1 23456789]/1[012)/' 

14.4.2.3. Times 

Times may include hours, minute, seconds, and duration specifications as shown in Table 
14.7. Time fonnats exemplify yet another area where linguistic concerns have Lo intersect 
with architecture. If simple, flat normalized orthography is generated during a text normali­
zation phase, a later stage may still find a fonn like am ambiguous in pronunciation. If a 
lattice of alternative interpretations is provided, it should be supplemented with interpretive 
information on the linguistic status of the alternative text analyses. Alternatively, a single 
best guess can be made, but even in this case, some kind of interpretive information indicat­
ing the status of the choice as, e.g., a time expression, should be provided for later stages of 
syntac~ic, semantic, and prosodic interpretation. This reiterates the importance of TT~ text 
analysis systems to generate interpretive annotations tags for subsequent mod~les use 
whenever possible, as discussed in Section J 4.4. In some cases, unique text forma_tn~g of the 
ch • ffi • Th t s m some oice, corresponding to the system's lexical contents, may be su icient. a .1 • , 
5Ystems, generation of A.M., for example, may uniquely correspond to th~ l~xicon s entry 
for that • . ' fi th des,·red pronunc1at1on and gram­. portion of a time expression, which spec1 1es e 
tnahcal treatment. 

Table 14 7 Several examples for time expressions. -_!,1:15 eleven fifteen 

~8:30 pm eight thirty pm 
5:20 am ·- five twenty am 

_12:15:20 . d twenty seconds twelve hours fifteen minutes an 

~7:55:46 
. d forty-six seconds 

seven hours fifty-five minutes an -
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14.4.2.4. Money and Currency 

As illustrated in Table 14.8, money and currency processing should correctly handle at least 
the currency indications $, £, DM, ¥, and €, standing for dollars, British pounds, deutsche 
marks, Japanese yen, and euros, respectively. In general, $ and £ have to precede the nu­
meral; DM, ¥, and € have to follow the numeral. Other currencies are often written in full 
words and have to follow the numeral, though abbreviations for these are sometimes found, 
such as JOO francs and 20 lira. 

Table 14.8 Several money and currency expressions. 

$40 forty dollars 

£200 two hundred pounds 

5¥ five yen 

25DM twenty five deutsche marks 

300 € three hundred euros 

14.4.2.5. Account Numbers 

Account numbers may refer to bank accounts or social security numbers. Commercial prod­
uct part numbers often have these kinds of fonnats as well. In some cases these cannot be 

readily distinguished from mathematical expressions or even phone numbers. Some exam­
ples are shown below: 

123456-987-125456 
000-1254887-87 
049-85-5489 

The other popular number format is that of credit card number, such as 

4446-2289-2465-7065 
3745-122267-22465 

To process formats like these, it may eventually be desirable for TIS systems to pro­
vide customization capabilities analogous to the pronunciation customization feature~ fo; 
words found in current ITS systems. Regular expression formalisms of the type exemphfie 
b & • • • gh suitable a ove ,or phone number, would, 1f exposed to apphcallons and developers throu 

editors, be adequate for most such needs. 
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14.4.2,6. Ordinal Numbers 

Ordinal numbers are those referring to rank or placemenl in • • E • a series. xamples include: 
• ?.i 3•• 4th , o•h 11th 12~· ., th th 1,- I > ' t t I -_o ! 100, 100011

', etc. 
1st, 2nd, 3rd, 4th, 10th, 11th, 12th, 20th, 21st. 32nd, I 00th, I 000th. etc. 

The system's ordinal processing may also be used to h • • ~ 
1 

. generate t e denommators of 
froctrons, except or haves, as shown in Table 14.9. Notice that the ord' I 
for numerators other than 1. ma must be plural 

Table 14.9 Some examples of fractions. 

1/2 one half 

1/3 one third 

1/4 one quarter or one fourth 

l/10 one tenth 

3/10 three tenths 

14•4•2,7, Cardinal Numbers 

C d. ar ma! numbers are, loosely speaking, those forms used in simple counting or the state-
ment of amo ts If • abo . un • a given sequence of digits fails to fit any of the more complex fonnats 

ve, It may be a simple cardinal number. These may be explicitly negative or positive or 
~sumed positive. They may include decimal or fractional specifications. They may be read 
1~ several different styles, depending on context and/or aesthetic preferences. Table 14.10 
gives some examples of cardinal numbers and alternatives for normalized orthography. 
th The number-expansion algorithm is summarized in Algorithm J 4.3. In this algorithm 

e le~t normalization module maintains an extensive pattern table. Each pattern in the table 
contains it • • 1 • th • ter to a ru . s associated pattern in regular expression or Perl format a ong wi a pom 

le in the co • • nvers1on table, which guides the expansion process. 

Table 14.10 Some cardinal number types. 

123 
i-__ one two three 

one hundred (and) twenty three 

1,230 one thousand two hundred (and) thirty _ --=---
2426 

L two four two six 
twenty four twenty six -

------ two thousand four hundred (and) twenty six 
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I ession to match well-formed cardinals with commas grouping chunks of A regu ar expr . 
three digits of the type from 1,000,000 to 999,999,999 might appear as: 

" f ($item=- /"((0-9]{1,3}), ((0-9]{3}), ([0-9]{3})/ 
1 

{ $NewFrame-> {"millions"} ;:: $1; 
$NewFrame->{"thousands"} = $2; 
$NewFrame->{"hundreds"} = $3; 

d d • 1 found· $1"tem\n",· print "Groupe car ina -
return $NewFrame; } 

ALGORITHM 14.3: NUMBER EXPANSION 

1. Pattern Matching 
If a match is found goto 2. 
else goto 3. 

2. Number Expansion 
Insert SNOR and interpretive annotation tags according to the associated rule 
Advance the pointer to the right of the match pattern and goto 1. 

3. Finish 

14.4.3. Domain-Specific Tags 

In keeping with the theme of this section-that is, the increasing importance of independ• 
ently generated precise markup of text entities-we present a little-used but interesting ex­
ample. 

14.4.3.1. Mathematical Expressions 

Mathematical expressions are regarded by some systems as the domain of speciaJ-pu~ose 
processors. It is a serious question how far to go in mathematical expression parsing, since 
providing some capability in this area may raise users' expectations to an unrealistic level. 
The World Wide Web Consortium has developed MathML (mathematical markup language) 
£341. which provides a standard way of describing math expressions. MathML is an XML 
extension for desc ·b· h . bl mathemat· . n mg mat emattcal expression structure and content to ena e 
ics to be served, received, and processed on the Web similar to the function HTML has per~ 
formed for text As XML b . . • "bly be use 

. . • ecomes mcreasmgly pervasive MathML could possi "ble 
to guide 1nterpretaf f . ' 2)~ a poss1 
M thM ton o mathematical expressions. For the notation (x + k 11 a L represe t • . , spo e . . n ation such as that below might serve as an initial guide ,or a 
rendition. 
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<EXPR> 
<EXPR> 

X 

<PLUS/> 

2 
</EXPR> 
<POWER/> 

2 
</EXPR> 

719 

This might be generated by an application or by a specialized preprocessor within the ITS 
system itself. Prosodic rules or data tables appropriate for math expressions could then be 
triggered. 

14.4.3.2. Chemical Formulae 

As XML becomes increasingly common and exploitable by TIS text normalization, other 
areas follow. For example, Chemical Markup Language (CML [221) now provides a stan­
dard way to describe molecular structure or chemical formulae. CML is an example of how 
standard conventions for text markup are expected increasingly to replace ad hoc, ITS­
intemal heuristics. 

In CML, the chemical formula cpCOH~ would appear as: 

<FORMULA> 

<XVAR BUILTIN="STOICH"> 
ccocoHHHH 
</XVAR> 

</FORMULA> 

I . f th f rure will be increasingly de-1 seems reasonable to expect that TIS engines O e u . . th h 
voted to interpreting such prec1se conventions in high-quality speec~ rendttl?nsthra _edr tt~tny 
end! I • th ceed in auessrng e I en 1 

ess Y replicating NL heuristics that fail as often as ey sue "' 
of raw text strings. 

14•4•4• Miscellaneous Formats 
h• h an En"lish­A rand . . f henomena for w ic o 

0 
• om hst illustrating the range of other types O P d hography might include: 

nented Trs text analysis module must generate normalize ort 
a rvximately before (Ara-

• ~pproximately/tilde: The symbol - is s~ok~ni::h::haracter named tilde. 
bic) numeral or currency amount, otherwise it 
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• Folding of accented Roman characters to nearest plain version: If the ITS 
system has no knowledge of dealing with foreign languages, like French or 
German, a table of folding characters can be provided so that for a term such 
as Uber-mensch, rather than spell out the word Uber, or ignore it, the system 
can convert it to its nearest English-orthography equivalent: Uber. The ulti­
mate way to process such foreign words should integrate a language identifi­
cation module with a multi-lingual ITS system, so that language-specific 
knowledge can be utilized to produce appropriate text no1malization of all 
text. 

• Rather than simply ignore high ASCII characters in English (characters from 
128 to 255), the text analysis lexicon can incorporate a table that gives char­
acter names to all the printable high ASCII characters. These names are ei­
ther the full Unicode character names, or an abbreviated form of the Unicode 
names. This would allow speaking the names of characters like © (copyright 
sign), ™ (trademark), @ (at), ® (registered mark), and so on. 

• Asterisk: in email, the symbol '*' may be used for emphasis and for setting 
off an item for special attention. The text analysis module can introduce a lit­
tle pause to indicate possible emphasis when this situation is detected. For the 
example of "Larry has *never* been here," this may be suppressed for aster­
isks spanning two or more words. In some texts, a word or phrase appearing 
completely in UPPER CASE may also be a signal for special emphasis. 

• Emoticons: There are several possible emoticons (emotion icons). 

1. :-) or:) 

2. :-(or:( 

3. ;-)or;) 

SMILEY FACE (humor, laughter, friendliness, sarcasm) 

FROWNING FACE (sadness, anger, or disapproval) 

WINKING SMILEY FACE (naughty) 

4. :-D OPEN-MOUTHED SMILEY FACE (laughing out loud) 

Smileys, of which there are dozens of types, may be tacked onto word start or word 
end or even occur interword without spaces, as in the following examples. 

:)hi! 

Hi:) 

Hi:)Hi! 

14.5. LINGUISTIC ANALYSIS 

Linguistic analysis (sometimes also referred to as syntactic and semantic parsing) of natural 
language (NL) constitutes a major independent research field. Often commercial TTS sys­
tems incorporate some minimal parsing heuristics developed strictly for TIS. Alternatively, 
the ITS systems can also take advantage of independently motivated natural language proc-
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essing (NLP) system_s, which can produce structural and semantic information about sen­
tences. Such 1inguist1c~lly analyz~d docume~ts can be used for many purposes other than 
'!1S-infonnation retneval, '.11achme t:~nsl~t,on system training, etc. 

Provision of some parsing capabtltty ts useful to TIS systems in several areas. Parsers 
may be used in _disambig_uating th~ text normalization altemativ~s described above. Addi­
tionally, syntacttc/semanttc analysis can help to resolve grammatical features of individual 
words that may vary in pronunciation according to sense or abstract inflection. such as read. 
Finally. parsing can lay a foundation for derivation of a prosodic structure useful in deter­
mining segmental duration and pitch contour. 

The fundamental types of infonnation desired for TIS from a parsing analysis are 
summarized below: 

• Word part of speech (POS) or word type, e.g., proper name or verb. 

• Word sense, e.g., river bank vs. money bank. 

• Phrasal cohesion of words, such as idioms, syntactic phrases, clauses, sen-
tences. 

• Modification relations among words. 
• Anaphora (co-reference) and synonymy among words and phrases. 

• Syntactic type identification, such as questions, quotes, commands, etc. 

• Semantic focus identification (emphasis). 
• Semantic type and speech act identification, such as requesting, informing, 

narrating, etc. 

• Genre and style analysis. 

H . f . , t' n that a good parser could, 
ere we confine ourselves to discussion of the kind o in,onna 10 

in principle, provide to enable the TIS-specific functionality· . • bases The 
Linguistic analysis supports the phonetic analysis and proso4d71c genderla4u8on AP ling~istic 

d • s • 14 6 1 an • • mo ules of phonetic analysis are covered 10 ecuons • •. (. ' mbolic) phonetic forms 
Parse • • th ocess of generaung sy r can contnbute in several ways to e pr . rovide accurate part-
from orthographic words found in text. One function of a parser 1~ tu~ ~ of several hundred 
of s h - • lving the pronunc1a O • • peec (POS) labels. This can aid tn reso H ographs are discussed in 

American English homographs, such as object a_nd . a~se11t~if io;1 names and other special 
greater detail in Section 14.6. Parsers can also aid_,~ idenle ~el; may exist [32). 
classes of vocabulary for which specialized pronunc1auonfru ntal duration and pitch con-

p ' th 'gnment o segme • rosody generation deals mainly w1 ass1 . 1 cement) and accentuauon. 
lour that have close relationship with prosodic phrasing (pauset.~ ~ype of an utterance. (e.g., 
Pars· . ch as the syntac t h b th are tng can contribute useful information, su • contours, thoug 0 

Yes/no question contours typically differ from wh-que_stton of synonymy. anaphora, and 
ma k d antic relattons aly r e simply by '?' in text) as well as sem . I r rmation from discourse an -
focu th • ' d'c phrasing. nlo • Further . s at may affect accentuation and proso 1 . d voice quality settmgs. 
sis and ff t pitch range an text genre characterization may a ec 
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. • f the contribution of parsing specifically to prosodic phrasing, accentuation exammat1on o , 
and other prosodic interpretation is provided in_Chapter 15. . . 

As mentioned earlier, TIS can employ either a general-purpose NL analysis engine or 
• r e of a number of very narrowly targeted, special-purpose NL modules together for 

a pipe m h t r · · · 
the requirement of TIS linguistic analysis . Altho~g we ocus on mgu_1st1c mf~rmation for 
supporting phonetic analysis and prosody gener~t1on here, a lot of ~e '.nformat1_on and ser­
vices are beneficial to document structure detection and text normahzat1on descnbed in pre-

vious sections. 
The minimum requirement for such a linguistic analysis module is to include a lexicon 

of the closed-class function words, of which only several hundred exist in English (at most), 
and perhaps homographs. In addition, a minimal set of modular functions or services would 

include: 

• Sentence breaki11g-Sentence breaking has been discussed in Section 14.3.4 
above. 

• POS tagging-POS tagging can be regarded as a two-stage process. The first 
is POS guessing, which is the process of determining, through a combination 
of a (possibly small) dictionary and some morphological heuristics or a spe­
cialized morphological parser, the POS categories that might be appropriate 
for a given input term in isolation. The second is POS choosing-that is, the 
resolution of the POS in context, via local short-window syntactic rules, per­
haps combined with probabilistic distribution for the POS guesses of a given 
word. Sometimes the guessing and choosing functions are combined in a sin­
gle statistical framework. In (6), lexical probabilities are unigram frequencies 
of assignments of categories to words estimated from corpora. In the original 
formulation of the model, the lexical probabilities [ P( c; I w;) , where C; is the 
hypothesized POS for word w, ], were estimated from the hand-tagged Brown 
corpus [8]. For Example, the word see appeared 771 times as a verb and 
once as an interjection. Thus the probability that see is a verb is estimated to 
be 77In72 or 0.99. Trigrams are used for contextual probability 
[ P(c, I c,_,c,_2 • • ·C1) = P(c, I c,_,c,_2) ]. Lexical probabilities and trigrams over 
category sequences are used to score all possible assignments of categories to 
worcis for a given input word sequence. The entire set of possible assign­
ments of :ategories to words in sequence is calculated, and the best-scoring 
sequence is used. Likewise, simple methods have been used to detect noun 
phrases (NPs), which can be useful in assigning pronunciation, stress, and 
pro~ody. The method described in (6] relies on a table of probabilities for in­
serting an NP begin bracket '(' between any two POS categories, and simi­
larly for an NP end bracket ']'. This was also trained on the POS-labeled 
Brown _c_orpus, with further augmentation for the NP labels. For example, tbe 
probability of inserting an NP begin bracket after an article was found to be 
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much lower than that of begin-bracket insertion between a verb and a 
thus automatically replicating human intuition. noun, 

, Homograph disambiguation-Homograph disambiguation in general refers 
to the case of_ words with the_ same o~hographic representation (written form) 
but having d1ffere~t sen~a~ttc meanmgs and sometimes even different pro­
nunciations. Sometimes 1t ts also r~ferred as sense disambiguation. Examples 
include "The boy used the bat to htt a home run" vs. "We saw a large bat in 
the zoo" (the pronunciation is the same for two bat) and "You record your 
voice" vs. "I'd like to buy that recorcf' (the pronunciations are different for 
the two record). The linguistic analysis module should at least try to resolve 
the ambiguity for the case of different pronunciations because it is absolutely 
required for correct phonetic rendering. Typically, the ambiguity can be re­
solved based on POS and lexical features. Homograph disambiguation is de­
scribed in detail in Section 14.6. 

• Noun phrase (NP) and clause detection-Basic NP and clause information 
could be critical for a prosodic generation module to generate segmental du­
rations. It also provides useful cues to introduce necessary pauses for intelli­
gibility and naturalness. Phrase and clause structure are well covered in any 
parsing techniques. 

• Sentence type identification-Sentence types (declarative, yes-no question, 
etc.) are critical for macro-level prosody for the sentence. Typical techniques 
for identifying sentence types have been covered in Section 14.3.4. 
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If a more sophisticated p·arser is available, a richer analysis can be derived. A so-called 
shallow parse is one that shows syntactic bracketing and phrase type, based on lhe POS of 
words contained in the phrases. A training corpus of shallow-parsed sentences has been cre­
ated for the Linguistic Data Consortium [ 16]. The following example illuSlra~e.s. a sh~llow 
parse for sentence: "For six years, Marshall Hahn Jr. has made corporate acqms1ttons m the 
George Bush mode: kind and gentle." 

For/IN[six/CD years/NNS] / [T. /NNP Marshall/NNP . . 
H hn ' ' J quisi-
a INNP Jr./NNP)has/VBZ made/ VBN[corporate/J ac 

tions / NNS] in/IN[the/DT George/ NNP Bush/NNP mode / NN] 

:/: [kind/JJ] and/CC [gentle/JJ] . / . 

The POS . · Ch t r 2 (Table 2.14). A TIS 
system labels used in this example are described m ap e . t· 

5 
and to assign 

uses the POS I . 'd lt tive pronuncia ion differi abets m the parse to dec1 e a ema . . ht assist in decid-
. ng degrees f • . dd' • II the bracketmg mtg ing Wh o prosodic prominence. A 1t1ona Y, Id •ncorporate more 
higher erect to place pauses for great intelligibility. A fuller parse wou s:mantic analysis, 
. ·or er stru t . . 'd .fi t1'on and more •ncludin c ure, mcludmg sentence type I entl 1ca • 

g co-reference. 
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14.6. HOMOGRAPH DISAMBIGUATION 

For written languages, sense ambiguities occur when words have different syntac­
tidsemantic meanings. Those words with different senses are called polysemous words. For 
example, bat could mean either a kind of animal or the equipment to hit a baseball. Since the 
pronunciations for the two different senses of bat are identical, we are in general only con­
cerned6 about the other type of polysemous words that are homographs (spelled alike but 
vary in pronunciation), such as bass for a kind of fish (lb ae sl) or an instrument (lb ey s/). 

Homograph variation can often be resolved on POS (grammatical) category. Examples 
include object, minute, bow, bass, absent, etc. Unfo11unately, correct determination of P0S 
(whether by a parsing system or statistical methods) is not always sufficient to resolve pro­
nunciation alternatives. For example, simply knowing that the form bow is a noun does not 
allow us to distinguish the pronunciation appropriate for the instrument of archery from that 
for the front part of a boat. Even more subtle is the pronunciation of read in "If you read the 
book, he'll be angry." Without contextual clues, even human readers cannot resolve the pro­
nunciation of read from the given sentence alone. Even though the past tense is more likely 
in some sense, deep semantic and/or discourse analysis would be required to resolve the 
tense ambiguity. 

Several hundred English homographs extracted from the 1974 Oxford Advanced 
Learners Dictionary are listed in [10]. Here are some examples: 

• Stress homographs: noun with front-stress vowel, verb with end-stress vowel 
"an absem boy" vs. "Do you choose to absent yourself?" 

• Voicing: noun/verb or adjective/verb distinction made by voice final conso­
nant 

"They will abuse him." vs. "They won't take abuse." 

• -ate words: noun/adjective sense uses schwa, verb sense uses a full vowel 
"He will graduate." vs. "He is a graduate." 

• Double stress: front-stressed before noun, end-stressed when final in phrase 
"an overnight bag" vs. "Are you staying overnight?" 

• ~.ed a_djectives with matching verb past tenses 
He is a learned man." vs. "He leamed to play piano." 

• ~mbiguous abbreviations: already described in Section 14.4.1 
111' am, SAT (Saturday vs. Standard Aptitude Test) 

• B~rrowed words from other languages-They could sometimes be diSlin­
gu1shable based on capitalization 
"El C • · • 
" . ammo Real road m California" vs. "real world" 
polish shoes" vs. "Polish accent" 

• Sometimes, a polysemous word with th . . . ·on l)ecause 
different semantic propeni·es Id h c _same pronunc1a11on could have impact for prosodic generatt can 

cou ave diffe . . 1• ....-5 system 
definitely be benefited fr d . rent accentuauon effects. Therefore, a high-qua Jty 1 • • 

om wor -sense d1samb· • 
iguauon beyond homograph disambiguation. 
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• Miscellaneous 
"The sew,•r overflowed.'' vs. "a sewer is not a tai !or.'' 
•'He moped since his parents refused to buy a moped." 
•'Agape is a Greek word." vs. "His mouth was agape." 
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As discussed earlier, abbreviation/acronym expansion and linguistic analysis described 
in Sections 14.4. l and 14.5 are two main sources of information for TIS systems to resolve 
homograph ambiguities. 

We close this section by introducing two special sources of pronunciation ambiguity 
!hat are not fully addressed by current TIS systems. The first one is a variation of dialects 
(or even personal dialect-idiolect). For example, some might say tomley]to, while some 
01hers might say tom[aa]to. Another example is that Boston natives tend to reduce the Ir/ 
sound in sentences like "Park your car in Harvard yard." Similarly, some people use the 
spelling pronunciation i11-ter-es-ting as opposed to intristing. Finally, speech rate and for­
mality level can influence pronunciation. For example, the lg/ sound in recognize may be 
omitted in faster speech. It might be a sensible decision to output all possible pronunciations 
as a multiple pronunciation list and hope the synthesis back end picks the one with better 
acoustic/prosodic voice rendition. While true homographs may be resolved by linguistic and 
discourse analysis, achieving a consistent presentation of dialectal and stylistic variation is 
an even more difficult research challenge. 

The other special source of ambiguity in ITS is somewhat different from what _we 
have considered so far, but may be a concern in some markets. MoSI borrowed_ or foreign 
• 1 • • • normalized 10 the singe words and place names are realized naturally with pronunciauon .. 
• • ~ to the ab1hty of a 

main presentation language. Going beyond that, language detection re ers 1 
ITS system to recognize the intended language of a multi word stretch of text. For e,xamp e, 

. "' th • ·mply une c zose en-
consider the fragment "Well, as for the next department head, at 15 si d) · ht be 
lend "Th .. ( thing clearly understoo mig 

ue. e French phrase "w1e chose entendue some b.1. al English/French 
rear d • • f n by a I mgu ize m a proper French accent and phone pronuncia 10 . 
read " the system must have. 

er. ror a ITS system to mimic the best performance, 

• language identification capability 

• dictionaries and rules for both languages 

• voice rendition capability for both languages 

I4•7, MORPHOLOGICAL ANALYSIS 
H we consider issues of relating 

General issues in morpholO"'Y are covered in Chapter 2. 1;:~~g its component morphemes, 
a S~rface Orthographic fo~ to its pronunciation by a;:h as prefixes, suffixes, an~ s~em 

W
Wh1ch are minimal meaningful elements of word\ rred as morphological analysis [-8~. 

Ords th ' cess is re,e • • sometimes poss1-% emselves. This decomposition pro h'c fonn explicitly, it is f 
bl en a dictionary does not list a given orthogra~ I s already present. These shorter onns 

e to analyze the new word in terms of shorter onn 
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may combine as prefixes, one or more stems or roots, and suffixes to generate new forms. If 
a word can be so analyzed, the listed pronunciations of the pieces can be combined, perhaps 
with some adjustment (phonological rules), to yield a phonetic form for the word as a whole. 

The prefixes and suffixes are generally considered bound, in the sense that they cannot 
stand alone but must combine with a stem. A stem, however, can stand alone. A word such 
as establishment may be decomposed into a "stem" establish and a suffix -mellt. In practice, 
it is not always clear where this kind of analysis should stop. That is, should a system at­
tempt to further decompose the stem establish into establ and -ish? These kinds of questions 
ultimately belong to etymology, the study of word origins. and there is no final answer. 
However, for practical purposes, having three classes of entries corresponding to prefixes, 
stems, and suffixes, where the uses of the affixes are intuitively obvious to educated native 
speakers, is usually sufficient. In practical language engineering, a difference that makes no 
difference is no difference, and unless there is a substantial gain in compression or analytical 
power, it is best to be conservative and list only obvious and highly productive affixes. 

The English language presents numerous genuine puzzles in morphological analysis. 
For example, there is the issue of abstraction: is the word geese one morpheme, or two (base 
goose + abstract pluralizing morpheme)? For practical TIS systems, relying on large dic­
tionaries, it is generally best to deal with concrete, observable forms where possible. In such 
a lexically oriented system, the word geese probably should appear in the lexicon as such, 
with attached grammatical features including plurality. Likewise, it is simpler to include 
children in the lexical listing rather than create a special pluralizing suffix -ren whose use is 
restricted to the single base child. 

The morphological analyzer must attempt to cover an input word in terms of the af­
fixes and stems listed in the morphological lexicon. The covering(s) proposed must be legal 
sequences of forms, so that often a word grammar is supplied to express the allowable pat­
terns of combinations. A word grammar might, for example, restrict suffixation to the final 
or rightmost stem of a compound, thus allowing plurality on the final element of business­
men but not in the initial stem (businessesman). In support of the word grammar, all stems 
and affixes in the lexicon would be listed with morphological combinatory class specifica­
tions, usually subtyped in accordance with the base POS categories of the lexicon entries. 
That is, verbs would typically accept a different set of affixes than nouns or adjectives. In 
addition, spelling changes that sometimes accompany affixation must be recognized and 
undone during analysis. For example, the word stC1ppi~?g has undergone final consonant 
doubling as part of accommodating the suffix ing. 

A morphological analysis system might be as simple as a set of suffix-stripping ru_les 
for English. If a word cannot be found in the lexicon, a suffix-stripping rule can be apphed 
to first strip out the possible suffix, including -s, -'s, -ing, -ed, -est, -ment, etc. If the stripped 
form can be found in the lexicon, a morphological decomposition is attained. Similarly, pre· 
fu-stripping rules can be applied to find prefix-stem decomposition for prefixes like _in-, 111,-, 

non-, pre-, sub-, etc., although in general prefix stripping is less reliable. 
Suffix and prefix stripping gives an analysis for many common inflected and some de­

rived words such as helped, cats, establishment, unsafe, predetermine, subword, etc. It hel?s 
• • f I ahtY m savmg system storage. However, it does not account for compounding, issues O eg 
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f sequence (word grammar), or spelling changes. It can also mak . k f 
o . • . b , • e m1s1a es ( rom a syn-
hronic point of view. asemt 1111s not base+ -ment) some of which -11 h 

c . • h' • . • wr ave consequences 
• TfS rendil!on. A more sop 1st1cated version could be constructed b dd' 
in • . Y a mg elements 
. ch as POS type on each suffix/prefix for a rudimentary leoality check 

O 
b' . 

su . . . o n com mat1ons. 
However, a truly robust morphological capab1hty would require more powerful formal ma-
chinery and a more thorough analysis. Therefore, adding irregular morphological fonnation 
into a system dictionary is always a desirable solution. 

Finally. sometimes in commercial product names the compounding structure is sig-
naled by word-medial case differences, e.g .. AltaVistan.', which can aid phonetic conversion I 
algorithms. These can be treated as two separate words and will often sound more natural if 
rendered with two separate main stresses. This type of decomposition can be expanded to 
find compound words that are formed by two separate nouns. Standard morphological 
analysis algorithms employing suffix/prefix stripping and compound word decomposition 
are summarized in Algorithm 14.4. Note that the algorithm can be easily modified to handle 
words constructed by a combination of prefix, suffix, and compound. 

ALGORITHM 14.4: MORPHOLOGICAL ANALYSIS 

1. Dictionary lookup 
Look up word w in lexicon 
If found 

Output attributes of the found lexical entry and exit 
2. Suffix Stripping 

If word ends in -s, -'s, -ing, -ed, -est, -ment, etc. 
Strip the suffix from word w to form u 

If stripped form u found in lexicon . 
Output attributes of the stem and suffix and exit 

3. Prefix Stripping 
If word begins with in-, un-, non-, pre-, sub-, etc. 

Strip the prefix from word w to form u 
If stripped form u found in lexicon . 

Output attributes of the prefix and stem and exit 
4. Compound word decomposition 

· h· ordw If detect word-medial case differences wit m w d'ng to case changes 
Break word w into a multiple words u1' U21 U3, ... accor 1 

For words u,, u2, U3, goto 1. . u u in lexicon 
Else if word w can be decomposed into two nouns 10 2 

Output attributes of the u,. u2 and exit 
S. Pass word w to letter-to-sound module 
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14.8. LETTER-TO-SOUND CONVERSION 

The best resource for generating (symbolic) phon~tic _foi:ns. from words is an _extensive word 
list. The accuracy and efficiency of such a solutmn 1s _Inmted only by the h_me, effort, and 
knowledge brought to bear on the dictionary construction process. As descnbed in Section 
I 4.2, a general Jex icon service is a critical resource for _the :1~ sy_st~m. Thus. the first and 
the most reliable way for grapheme-to-phoneme conversion 1s via d1ct10nary lookup. 

Where direct dictionary lookup fails, rules may be used to generate phonetic fonns. 
Under earlier nai've assumptions about the regularity and coverage of simple descriptions of 
English orthography, rules have traditionally been viewed as the primary source of phonetic 
conversion knowledge, since no dictionary covers every input fonn and the ITS system 
must always be able to speak any word. A general letter-to-sound (L TS) conversion is thus 
required to provide phonetic pronunciation for any sequence of letters. 

Inspired by the phonetic languages, letter-to-sound conversion is usually carried out 
by a set of rules. These rules can be thought of as dictionaries of fragments with some spe­
cial conventions about lookup and context. Typically, rules for phonetic conversion have 
mimicked phonological rewriting in phonological theory [5], including conventions of 
ordering, such as most specific first. In phonological rules, a target is given and the rewrite is 
indicated, with context following. For example, a set of rules that changes orthographic k to 
a velar plosive /kl except when the k is word-initial (' [ ') followed by n might appear as: 

k ->/sill% [ _ n 
k -> /kl 

The rule above reads that k is rewritten as (phonetic) silence when in word initial position 
and followed by n, otherwise k is rewritten as (phonetic) /kl. The underscore in the first line 
is a placeholder for the k itself in specifying the context. This little set properly treats kin 
k11ight, darkness, and kiuen. These are fonnally powerful, context-sensitive rules. Generally 
a ITS system require hundreds or even thousands of such rules to cover words not appear­
ing in the system dictionary or exception list. Typically rules are specified in terms of single­
letter targets, such as the example fork above. However, some systems may have rules for 
longer fragments, such as the special vowel and consonant combinations in words like 
neigh~or and w~~gh. In practice, a binary fonnat for compression, a corresponding fragment 
matchmg capab1I_1ty, and a rule index must be defined for efficient system deployment. 

Rules _o~ this type are tedious to develop manually. As with any expert system, it is dif­
ficult to anllcipate all possible relevant cases and sometimes hard to check for rule interfer­
ence and redundancy In a th . . d 'th . . • ny case, e rules must be venfied over a test hst of wor s w, 
known transcnpt10ns Generali 'f ct· • . d uch . • Y, 1 pre 1ction of mam stress location is not attempte , 5 

~!es migh~ account_for up to 70% of the words in a test corpus of general English. If predic­
tion of mam stress 1s attem t d th • · ch 
I P e , e percentage of correct phonetic pronunciations 1s mu 
ower, perhaps below soqi Th - . J y 
h. h . 0

• e correct pred1ct1on of stress depends in part on morpho og ' 
w 1c is not typically e r · I . f -xp icit Y attempted m this type of simple rule system (though rag 
menhts clorresponding to affixes are frequently used, such as tion -> /ah ax n/). Certainly, 
sue rues can be made to appr h d' • 1· · mor-

oac ictionary accuracy, as longer and more exp icit 
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phological fragments are included. One extreme case _is to cr~ate one specific rule (contain­
. exact contexts for the whole word) for each word m the dictionary Obvi·ously th" . ing . . . . • IS IS not 
desirable, since rt 1s equivalent to puttmg the word along with its phonetic pronunciation in 

the dictionary. 
In view of how costly it is to develop LTS rules, particularly for a new language, at­

tempts have been made recently to automate the acquisition of LTS conversion rules. These 
self-organizing methods believe that, given a set of words with correct phonetic transcrip­
tions (the offline dictionary), an automated learning system could capture significant gener­
alizations. Among them, classification and regression trees (CART) have been demonstrated 
to give satisfactory perfonnances for letter-to-sound conversion. For basic and theoretic de­
scription of CART, please refer to Chapter 4. 

In the system described in [14], CART methods and phoneme trigrams were used to 
construct an accurate conversion procedure. All of the experiments were carried on two da­
tabases. The first is the NETALK [25], which has hand-labeled alignment between letter and 
phoneme transcriptions. The second is the CMU dictionary, which does not have any align­
ment infonnation. The NETALK database consists of 19,940 entries, of which 14,955 were 
randomly selected as a training set and the remaining 4951 were reserved for testing. Those 
4951 words correspond to 4985 entries in the database because of multiple pronunciations. 
The hand-labeled alignments were used directly to train the CART for LTS conversion. The 
CMU dictionary has more than 100,000 words, of which the top 60,000 words were selected 
based on unigram frequencies trained from North American Business ~ews. Amon~ ~em, 
52,415 were used for training and 9719 reserved for testing. Due to mult1p!e pronu~ciauons, 
those 9719 words have IO 520 entries in the dictionary. Due to lack of alignment mforma­
tion, dynamic programmin~ was used to align each letter to the corresponding phoneme be­

fore training the L TS CART. 
. f f ons and a procedure to se-The basic CART component includes a set o yes-no ques 1 . . 

lect the best question at each node to grow the tree from the root. The baste yes-no.tesuon 
t . • • ?" r "ls the first lei' output 
or LTS conversion looks like "ls the second right letter P • 0 

. h •ct F 
h .th th left or the ng t s1 e. or 

P oneme lay/?" The questions for letters could be on ei er e . · 
h . r ·t The range of quest10n pos1-
~ ones, only questions on the left side were used, for simp ici y._ . . It was found 
110 d" honolog1cal vanauons. 

ns must be long enough to cover the long- 1stance P I t xt) and 3 h d 5 f right etter con e -1 at the I I-letter window (5 for left letter context an ~r. t A primitive set of ques-
phoneme window for left phoneme context are generally su ic~e~e~ter or phoneme identity. 
:ns would be the set of all the singleton questions about eac duction was chosen at each 

hen growing the tree, the question that had the beSt entrop~ re question that is a combina­
~ode. We observed that if we allow the node to have a comp! ex duced and the perfonnance 
hon of • . • th will be great Y re ,Ft 
. Pnm1tive questions the depth of e tree d 1 ,Ft letter 't' and the first leJ' 
imp ' • "l the secon eJ' roved. For example the complex question s . suffix "tion" and convert 
le11e , ,, ' e • 0 • in common 
. r L and the first right letter 'n '?" can captur 11 ·ate the data fragment problem 
ll to th • • n also a ev1 e nght phoneme. Complex questions ca . f finding such complex ques-
caused b "thm Thts way o h 
I
. Y greedy nature of the CART algon • 

1
. ystem built using the above tee -

ions i • . 4 The base me s . s s1mllar to those used in Chapter • 
niques has error rates as listed in Table 14. i 1. 
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Table 14.11 LTS baseline results using CART (13]. 

Database Phoneme Word 

CMU Lexicon 9.7% 35.0% 

NETTALK 9.5% 42.3% 

The CART LTS system [14] further improved the accuracy of the system via the fol­
lowing extensions and refinements: 

• Phoneme trigram rescoring: A statistical model of phoneme co-occurrence, 
or phonotactics, was constructed over the training set. A phonemic trigram 
was generated from the training samples with back-off smoothing, and this 
was used to rescore then-best list generated by LTS. 

• Multiple tree combination: The training data was partitioned into two parts 
and two trees were trained. When the performance of these two trees was 
tested, it was found that they had a great overlap but also behaved differently, 
as each had a different focus region. Combining them together greatly im­
proved the coverage. To get a better overall accuracy, the tree trained by all 

the samples was used together with two other trees, each trained by half of 
the samples. The leaf distributions of three trees were interpolated together 
with equal weights and then phonemic trigram was used to rescore the n-best 
output lists. 

By incrementally experimenting with addition of these extensions and refinements, the re­
sults improved, as shown in Table I 4.12. 

These experiments did not include prediction of stress location. Stress prediction is a 
difficult problem, as we pointed out earlier. It requires information beyond the letter string. 
In principle, one can incorporate more lexical information, including POS and morphologic 
information, into the CART LTS framework, so it can be more powerful to learn the pho­
netic correspondence between the letter string and lexical properties. 

Table 14.12 LTS using multiple trees and phonemic trigram rescoring [13). 

Database Phoneme Word 

CMULexicon 8.2% 26.9% 

NEITALK 8.1% 34.2% 

14.9. EVALUATION 

E . -~ 
ver smce the early days of TIS research [21 31] evaluation has been considered an 10 • 

I ' ' are gra part of the development of ITS systems. End users and application developers 
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tly interested in the end-to-end evaluation of TIS systems. This monolilhic type of 
mos • 'f "d whole-system evaluation 1_s o _ten re1erre to ~s black-box evaluation. On the other hand, 
modular (component) testing is more appropnate for ITS researchers when working with 
isolated components of the ITS system, for diagnosis or regression testing. We often refer 

10 this type of evaluation as glass-box evaluation. We discuss the modular evaluations in 
each modular TIS chapter, while leaving the evaluation of the whole system to Chapter 16. 

For text and phonetic analysis, automated, analytic, and objective evaluation is usually 
feasible, because the input and output of such module is relatively well defined. The evalua­
tion focuses mainly on symbolic and linguistic level in contrast to the acoustic level, with 
IVhich prosodic generation and speech synthesis modules need to deal Such tests usually 
involve establishing a test corpus of correctly tagged examples of the tested materials, which 
can be automatically checked against the output of a text analysis module. It is not particu­
larly productive to discuss such testing in the abstract, since the test features must closely 
track each system's design and implementation. Nevertheless, a few typical areas for testing 
can be noted. In general, tests are simultaneously testing the linguistic model and content as 
well as the software implementation of a system, so whenever a discrepancy arises, both 
possible sources of error must be considered. 

For automatic detection of document structures, the evaluation typically focuses on 
sentence breaking and sentence type detection. Since the definitions of these two_ types of 
document structures are straightforward, a standard evaluation database can be easily eScab­
lished. 

In the basic level, the evaluation for the text normalization component shou!d in~l~de 
large regression test databases of text micro-entities: addresses, Internet and emru~ enuues, 
numbers in many formats (ordinal, cardinal, mathematical, phone, currency, etc.), utles, and 

abbreviations in a variety of contexts These would be paired with the correct referen~e 
fonns in something like the SNOR used in ASR output evaluation. In its simplest fonn, this 

I • d • J'ke 7o/r. vs seven per-
wou d consist of a database of automatically checkable paire entnes 1 0 

• . 

cem, and $1.20 vs. one dollar and twenty cents. If you want to evaluate the se~anttcmcaanpt~1~ 
birty f • ht • lude markups 1or se 1 0 text normalization the regression database mig me . <./ b r:>" and 
~gs, so that we have 7% vs~ "<number.>SEVEN<ratio>PERCENT<./rauo~. ;~; ;gre;sion 

l.20 vs. "<money>ONE DOLLAR AND TWENTY CENTS<./money>d. the sys-
datab . • • r some depen ence on 

ase could include domain-specific entnes. This imp ies . . T ble 14 13 the first 
teni's API • . . . 1 th amples given in a • ' 
0 

. -Its markup capab1ht1es or tag set. n . e ex . he second one is suitable for 
ne 15 a desirable output for domain-independent input, while t . 

nonna1· . t· 1 formula domain. 1zat1on of the same expression in mathema ica 

I t test domain independent/dependent text nonnalization. Table 1413 T wo examp es o 

3-4 
three to four 

three/our 

<math_exp> 3-4 <lmath_exp> 
three minus four -
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Some systems may not have a discrete level of orthographic or SNOR represe ta . 
f I • d ' bed • h' . n lion that easily lends itself to the type o eva uallon escn m t 1s section. Such systems 

have to evaluate their text nomrnlization component in terms of LTS conversion. may 
An automated test framework for the LTS conversion analysis minimally include 

set of test words a~d thei_r ph?netic transcriptions for automated lookup and comparito: 
tests. The problem 1s the mfimte nature of language: there are always new words that the 
system does not convert correctly, and many of these will initially lack a transcription of 
record even to allow systematic checking. Therefore, a comprehensive test program for test 
of phonetic conversion accuracy needs to be paired with a data development effon. The data 
effort has two goals: to secure a continuous source of potential new words, such as a 24-hour 
newswire feed, and to maintain and construct an offline test dictionary, where reference 
transcriptions for new words are constantly created and maintained by human experts. This 
requirement illustrates the codependence of automated and manual aspects of evaJuation. 
Different types and sources of vocabulary need to be considered separately, and they may 
have differing testing requirements, depending, again, on the nature of the particular system 
to be evaluated. For example, some systems have elaborate subsystems targeted specifically 
for name conversion. Such systems may depend on other kinds of preprocessing technolo­
gies, such as name identification modules, that might be tested independently. 

The correct phonetic representation of a word usually depends on its sentence and 
even discourse contexts, as described in Section 14.6. Therefore, the adequacy of LTS con­
version should not, in principle, be evaluated on the basis of isolated word pronunciations. 
However, a list of isolated word pronunciations is often used in LTS conversion because of 
its simplicity. Discourse contexts are, in general, difficult to represent unless specific appli­
cations and markup tags are available to the evaluation database. A reasonable compromise 
is to use a list of independent sentences with their corresponding phonetic representation for 
the evaluation of grapheme-to-phoneme conversion. 

Error analysis should be treated as equally important as the evaluation itself. For ex­
ample, if a confusability matrix shows that a given system frequently confuses central and 
schwa-like unstressed vow~ls, this may be viewed as less serious than other kinds of err~rs. 
Other subareas of LTS conversion that could be singled out for special diagnosis and .testmg 
include morphological analysis and stress placement. Of course, testing with phonemic tran· 
scriptions is the ultimate unit test in the sense that it contains nothing to insure that tbe cor­
rectly trl\nscri.bed words, when spoken by the system's artificial voice and prosody, are, a 
• 11· 'bl ary but no mte 1&1 e or pleasant to hear. Phone transcription accuracy is, thus, a necess 
sufficient condition of quality. 

14.10. CASE STUDY: FESTIVAL 

Th U • • • f modular 
e mversity of Edmburgh's Festival [3] has been designed to take advantage O d pho· 

subcomponents fo • . . . lete text an . . r vanous standard functions. Festival provides a comp 
4 1 fesU· 

nehc analysis w·th d l . . . Figure 1 • • 1 mo u es organized m sequence roughly equivalent to .1 defaull 
val outputs speech f 1• • rs Wht e 0 qua tty comparable to many commercial synthesize • 
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. are provided for each stage of processing, the system is architecturally d • d rouunes . . . es1gne to 
ltemative routines m modular fashion, as long as the data transfer protocols '" 1_ 

accept a d" . 1 TIS h" . are 10 

d This variant of the tra 1t1ona arc 1tecture 1s particularly attractive for c 10we . . . ommer-
. 1 rposes (development, maintenance, testmg, scalability) as well as research ., t· 1 eta pu . . . . • res 1va 

be called in vanous ways with a vanety of switches and filters, set from a variety f can . . . l o 
)3J1Ctioned programming and scnptmg anguages. These control options are beyond the 
.scope of this overview. 

14.10.l. Lexicon 

festival employs phonemes as the basic sounding units, which are used not only as the at­
oms of word transcriptions in the lexicons, but also as the organizing principle for unit selec­
tion (see Chapter 16) in the synthesizer itself. Festival can support a number of distinct 
phone sets and it supports mapping from one to another. A phone defined in a set can have 
various associated phonological features, such as vowel, high, low, etc. 

The Festival lexicon, which may contain several components, provides pronunciations 
for words. The addenda is an optional list of words that are unique to a particular user, 
document, or application. The addenda is searched linearly. The main system lexicon is ex­
pected to be large enough to require compression and is assumed to reside on a disk or other 
external slorage. It is accessed via binary search. The lexical entry also contains POS infor­
mation, which can be modified according to the preference of the system configurer. A typi­
cal lexical entry consists of the word key, a POS tag, and phonetic pronunciation (with stress 
and possible syllabification indicated in parentheses): 

("walkers" N ((( w ao) 1) (( k er z) 0))) 

be
lf~ syllables structure is not shown with parentheses a syllabification rule component can 

in k ' . • • and/or PO vo _ed. Separate entry lines are used for words with multiple pronunciations 
S, which can be resolved by later processing. 

14,IO 2 T • • ext Analysis 

Festi~aJ has b . . atic identification of 
d0curn een Partially integrated with research on the use of autom t component 

ent and dis • • d ne by a separa e • 
Called SOLE course structures. The discourse ~aggtng is O have relevance for 
llitch c [I I]. The tags produced by SOLE indicate features lhat may ust be rec-

ontour and h . . . ( Chapter 15) These m 
ognized and . P rasmg m later stages of synthesis see OLE tags tell Festival 
When th P_anially interpreted at the text analysis phrase. The S . Id or new in­
I e text is c • . h ·t•s referring too ·11 orrnation ompanng or contrasting two obJects, w en 1 nd Festival w1 
d . • When it' . . paragraph etc., a . ct1de b s using a parenthetical or startmg a new : deemphasize, to 
rn ' ased on th. . t emphasize or 

lldify its . 1s information, that it needs to pause, 0 

pitch range, etc. 
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Additionally, as discussed in Section 14.3, when document creators have knowledge 

h t tu Or Content of documents, they can express the knowledge through an 
about t e s rue re . 
XML

_i.. d thesis markup language. A document to be spoken 1s first analyzed for all 11ase syn . . . . . . 
such tags, which can indicate alternative pronunc1at1ons, semantic or quas1-semant1c attnb-
utes (different uses of numbers by context for exampl~), as v.:etl as d?cument s_tructures, 
such as explicit sentence or paragraph divisions. The kmds of mformat1on potentially sup­
plied by the SABLE tags7 are exemplified in Figure 14.7. 

<SABLE> 
<SPEAKER NAME="male I"> 
The boy saw the girl in the park <BREAK/> with the telescope. 
The boy saw the girl <BREAK/> in the park with the telescope. 

Good morning <BREAK/> My name is Stuart, which is spelled 

<RA TE SPEED="-40%"> 
<SAY AS MODE="literal">stuart</SA Y AS> </RATE> 
though some people pronounce it 
<PRON SUB="stoo art">stuart</PRON>. My telephone number 
is <SAYAS MODE="literal">2787</SA YAS>. 

I used to work in <PRON SUB="Buckloo">Buccleuch</PRON> Place, 
but no one can pronounce that. 
</SPEAKER> 

</SABLE> 

Figure 14.7 A document fragment augmented with SABLE tags can be processed by the Fes­
tival system (3). 

For untagged input, or for input inadequately tagged for text division (<BREAK/>), 
sentence breaking is perfonned by heuristics, similar to Algorithm 14.1 , which observe 
whitespace, punctuation, and capitalization. A linguistic unit roughly equivalent to a sen-
tence is created by the system for the subsequent stages of processing. . 

Tokenization is performed by system or user-supplied routines. The basic function is 
to recognize potentially speakable items and to strip irrelevant whitespace or other non­
speakable text features. Note that some punctuation is retained as a feature on its neareSt 
word. 

Te~t normalization is implemented by token-to-word rules, which return a standard or­
thographic form that can, in turn, be input to the phonetic analysis module. The token-_to­
word rules have to. deal with text normalization issues similar to those presented in S~cuon 
14•4• As part of this process, token-type-specific rule sets may be applied to disambigu_ate 
toke_ns whose pronu~ciations are highly context dependent. For example, a disambi~uauon 
ro~llne may be required to examine context for deciding whether St. should be reahzed as 
Samt or street. For general English-language phenomena, such as numbers and various 

' SABLE and other TI'S m:irk . up sy51ems are discussed further in Chapter 15. 
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symbols, a standard token-to-word routine is provided. One interesting fe t f h F . 
• ·1· " h I • , . a ure o I e es11-

val system ts a utt tty ior e p1~g to automat1cally construct decision trees to serve text nor-
malization rule~, ~hen sys~em integrators can gather some labeled training data. 

The ling~1st1c analysis mod~Ic for the Festi~al system is mainly a POS analyzer. An 11_ 
gram based tram~ble POS tagger 1s used to predict the likelihoods of POS tags from a lim­
ited set given an mput sentence. The system uses both a priori probabilities of tags given a 
word and 11-grams for sequences of tags. The basic underlying technology is similar to the 
work in [6] and is described in Section 14.S. When lexical lookup occurs, the predicted most 
likely P0S tag for a given word is input with the wor<l orthography, as a compound lookup 
key. Thus, the POS tag acts as a secondary selection mechanism for the several hundred 
words whose pronunciation may differ by POS categories. 

14.10.3. Phonetic Analysis 

The homograph disambiguation is mainly resolved by POS tags. When lexical lookup oc­
curs, the predicted most likely POS tag for a given word is input with the word orthography 
as a compound lookup key. Thus, the POS tag acts as a secondary selection mechanism for 
the several hundred words whose pronunciation may differ by POS categories. 

If a word fails lexical lookup, LTS rules may be invoked. These rules may be created 
by hand, formatted as shown below: 

(#(ch)C=/k/) 
Chris 

// ch at word start, followed by a consonant, is /kl, e.g., 

• • • 1 methods much as de-Altematively LTS rules may be constructed by automatic stattSttCa ' . 
' • d d Utility routmes 

scribed in Section 14.8 above, where CART L TS systems were mtro u~e c· ART rule con-
ar • . . . · training database ,or e provided to assist in using a system lexicon as 8 

Slruction · / 
• . I to handle context coart1c11 a-

. In addition, Festival system employs po5r-le:ical n~:\nd sounds, as well as speech 
lion. Context coarticulation occurs when surroundmg. wor Examples include re­
style, affect the final form of pronunciation of a parucular phdon~mert. ,·on Some coarticula-
d • • • g an r-inse • uctton of consonants and vowels phrase final devorcm ' • dd'rt'ronal rules. 
t' ' ay also wnte a ion rules are provided for these processes, and users m 

14,ll. HISTORICAL PERSPECTIVE AND FURTHER READING 

i h samples and review almost a cen-
e:i:t-to-speech has a long and rich history• You can earh •s History Project [ I 9]. A good 

illry' . . . • S eech Synt est s Worth of work at the Sm1thsonran s P . . [20) 
source for multilingual samples of various TIS engines~S ha~ been From Text co Speech: 
Th The most influential single publi~hed wo!rc;alk system, from which a large number 

e MlTalk System [ 1]. This book describes the 
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of research and commercial systems were derived during the 1980s, including the widely 
used DECTalk system [9]. The best compact overall historical survey is Klatt's Review of 
Text-to-Speech Conversion for English [15). For deeper cover~~e of more recent architec­
tures, refer to [7]. For an overview of some of the most prom1smg current approaches and 
pressing issues in all areas of TIS and synthesis, see [30). One of the biggest upcoming is­
sues in TIS text processing is the architectural relation of specialized TIS text processing as 
opposed to general-purpose natural language or document structure analysis. One of the 
most elaborate and interesting TIS-specific architectures is the multilingual text processing 
engine described in [27]. This represents a commitment to providing exactly the necessary 
and sufficient processing that speech synthesis requires, when a general-purpose language 
processor is unavailable. 

However, it is expected that natural language and document analysis technology will 
become more widespread and important for a variety of other applications. To get an idea of 
what capabilities the natural language analysis engines of the future may incorporate, refer 
to [12] or [2]. Such generalized engines would serve a variety of clients, including TIS, 
speech recognition, information retrieval, machine translation, and other services which may 
seem exotic and isolated now but will increasingly share core functionality. This conver­
gence of NL services can be seen in a primitive fonn today in Japanese input method editors 
(IME), which offload many NL analysis tasks from individual applications, such as word 
processors and spreadsheets, and unify these functions in a single common processor [18). 

For letter-to-sound rules, NETalk (25], which describes automatic learning of LTS 
processes via neural network, was highly influential. Now, however, most systems have 
converged on decision-tree systems similar to those described in [14). 
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cross-validation, 188-89 
independent test sample estimation, 187-88 
minimum cost-complexity pruning, 185-87 

splitting criteria, 178-81 
Class inclusion. 66 
Class 11-grams. 570-74 

data-driven classes. 57'2.-73 
rule-based classes. 571-72 

Clauses, 61-62 
relative, 61 

Clear 1/i. 48 
Cleft sentence. 62 
Closed-loop estimation, 356 
Closed-phase analysis. 3 I 9 
Closed POS categories, 54 
Cluster, 572 
Clustered acoustic-phonetic units, 432-36 
Clustered models, 452-53 
CMU Pronunciation Dictionary, 436 
Coarticulation, 47, 49-51 
Cochlea, 30 
Cocke-Younger-Kasmi (CYK) algorithm, 584 
Cocktail party effect, 479 
Codebook, 164-65 
Code Division Multiple Access (CDMA), 

360-61 
Code excited linear prediction (CELP), 353-61 

adaptive codebook, 356-57 
analysis by synthesis. 353-56 
LPC vocoder, 353 
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parameter quantization, 358-59 
perceptual weighting/postfiltering, 357-58 
pitch prediction, 356-57 
standards, 359-61 

Coder delay, 339 
Codeword, I 64-65 
Colored noise, 270 
Combination models. 456-57 
COMLEX dictionary (LDC), 436-37 
Command and control speech recognition, 921-24 

application ideas/uses, 923 
situations for, 922-23 

Commissives, 861 
Communicative prosody, 858 
Compact Disc-Digital Audio (CD-DA), 342 
Compander, 342 
Comparison Category Rating (CCR) method, 842 
Complements, 58, 59 
Complex cepstru1n 307-8 
Complexity parameter, 185 
Compressions, 21 
Computational delay, 339 
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Concatenative speech synthesis, 793-94 
choice of unit, 805-8 
context-dependent phonemes. 808-9 
context-independent phonemes, 806-7 
diphones, 807-8 
with no wavefonn modification, 794 
optimal unit string, 810-17 
data-driven transition cost, 815-16 
data-driven unit cost, 816-17 
empirical transition cost, 812-13 
empirical unit cost, 813-15 
objective function, 810-12 

subphonetic units (senones), 809 
syllables, 809 
unit inventory design, 817-18 
with wavefonn modification, 795 
word and phrase, 809 

Concept-to-speech rendition, 899-901 
Conceptual graphs, 872-73 
Condenser microphone, 486-89 
Conditional entropy, 123-24 
Conditional expectation, 81 
Conditional likelihood, 151 
Conditional maximum likelihood estimator (Cl'vfLE), 

151 
Conditional probability, 75-76 
Conditional risks, 136 
Conditioning, 320 
Conference of European Posts and Telegraphs 

(CEP1), 360 
Confidence models, 453-57 

combination models, 456-57 
filler models, 453-54 
transformation models, 454-55 

Conflict resolution procedure, 182 
Conjugate quadrature filters, 251-54 
Conjunctions, 54 
Connotation, message, 739 
Consonants, 24, 42-46 

affricates, 44 
alveolar, 46 
dental, 46 
fricatives, 42, 44 
labial, 46 
labio-dental, 46 
nasal, 43-44 
obstruent, 43 
palatal, 46 
plosive, 42-43 
stop, 43 
velar, 46 

Consumer audio, 351-52 
Content words, 54 
Context coarticulation, 735 
Context dependency, 430-31 
Context-dependent phonemes, 808-9 

Index 

Context-dependent units and inter-word triphones, 
658-59 

Context-free grammar (CFG), 465,547,921 
vs. n-gram models. 580-84 
search space, 613-16 

Context-free grammars (CFGs), search architecture, 
676-77 

Context-independent phonemes, 806-7 
Context variability, 417 
Continuation rise, 749 
Continuous distribution, 78 
Continuous-frequency transforms, 209-16 

Fourier transforms, 208-10 
;:-transforms, 211-15 

Continuously listening model, 422 
Continuously variable slope delta modulation 

(CVSDM), 347 
Continuous mixture density HMMs, 394-96 
Continuous random variable, 78 
Continuous speech recognition (CSR), 591, 611-12, 

945 
Continuous speech training, vs. isolated speech 

training, 441-43 
Continuous-time stochastic processes, 260 
Contrastive stress, 431 
Contrasts, 66 
Convolution operator, 207 
Co-references, 882 
Corpora, 545-46 
Corpus-based F0 generation, 779-82 

F0 contours indexed by parsed text, 779-81 
F0 contours indexed by ToBI, 781-82 
transplanted prosody, 779 

Corrective training, 158 
Correlation, 82-83 
Correlation coefficient, 82-83 
Covariance, 82-83 
Covariance matrix, 84 
Critical region, 114 
Cross-validation, 188-89 
Cumulative distribution function, 79 
Currency, 716 
Curse of dimensionality, 144-46 

D 
DAMSL system, See Dialog Act Markup in Several 

Layers (DAMSL) 
Dark/I/, 48 
DARPA, 11 
DARPA ATIS programs, 913 
Data-directed search, 549 
Data-driven parallel model combination (DPMC), 533 
Data-driven speech synthesis, 794, 803 
Data flow, 694-97 
DAVO, 846 
DCT, See Discrete Cosine Transfonn (DC1) 
Decibels (dB), 22 
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Decimation-in-frequency, 223 
Decimation-in-time, 223 
Declaratives, 861 
Declarative sentence, 62 
Declination, 766-67 
Decoder, 5 
Decoder basics, 609 
Decoder delay. 3 39 
DECTalk system, 736, 846 
Degree of displacement, 21-22 
Deixis, 882 
Deleted interpolation smoothing, 564-65 
Deletion errors, 420 
Delta modulation (DM), 346 
Denotation, message, 739 
Dental consonants, 46 
Depth-first search, 598-99 
Derivational morphology, 56-57 
Derivational prefixes, 57 
Derivational suffixes, 57 
Descrambling, 224 
Deterministic signals, 260 
Development set, 419-20 
Diagnostic Rhyme Test (DRT), 837 
Dialects, 725 
Dialog Act Markup in Several Layers (DAMSL), 

862-66 
Dialog-act theory, 9 I 4 
Dialog control, 866-67, 949 
Dialog flow, 942-43 

prompting strategy, 943 
prosody, 943 
spoken menus, 942 

Dialog grammars, 887-88 
Dialog management, 886-94 

dialog grammars, 887-88 
plan-based systems, 888-92 

Dialog management module, 881 
Dialog Manager, 7-8, 855 
Dialog repair, 885 
Dialog (speech) acts, 861-66 
Dialog structure, 859-67 

attentional state. 859 
Dialog Act Markup in Several Layers (DAMSL), 

862-66 
intentional state, 859 
linguistic forms, 859 
task knowledge, 859 
units of dialog, 860-61 
world knowledge, 859 

Dialog system, 854-55 
dialog manager, 855 
discourse analysis, 855 
semantic parser, 854-55 

Dialog turns, 705-6 
Dictation, 926-29, 935, 948 
Dielectric, 486 
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Differential pulse code modulation (DPCM), 345-48 
Differential quantization, 345-48 
Digital Audio Broadcasting (DAB), 352 
Digital tilters and windows, 229-42 

generalized Hamming window, 231-32 
ideal low-pass filter, 229-30 
rectangular window, 230-31 
window functions, 230-32 

Digital sign:il proc.issing, 20 I -73 
of analog signals, 242-48 
analog-to-digital conversion, 245-46 
digital-to-analog conversion, 246-48 
Fourier transform of. 243 
sampling theorem, 243-45 

circular convolution, 227 
continuous-frequency transforms, 209-16 
of elementary functions, 212-15 
Fourier transform, 208-10 
properties, 215-16 
: -transforms, 211-12 

digital filters and windows, 229-42 
generalized Hamming window, 231-32 
ideal low-pass filter, 229-30 
rectangular window, 230-31 
window functions, 230-32 

digital signals/systems, 202-8 
Discrete Cosine Transform (DCT), 228-29 
discrete-frequency transforms, 216-29 
discrete Fourier transform (OFT), 218-19 
Fourier transforms of periodic signals, 219-22 

Fast Fourier Transfom1s (FFT), 222-27 
FFT subroutines, 224-27 
prime-factor algorithm, 224 
radix-2 FFT. 222-23 
radix-4 algorithm, 223 
radix-6 algorithm, 223 
radix-8 algorithm, 223 
split-radix algorithm, 223 

filterbanks, 251 -60 
DFTs as, 255-58 
multiresolution, 254-55 
two-band conjugate quadrature filters, 251-54 

FIR filters, 229, 232-38 
first-order, 234-35 
linear-phase, 233-34 
Parks McClellan algorithm, 236-38 
window design FCR lowpass liters, 235-36 

IIR filters, 238-42 
first-order, 239-41 
second-order, 241-42 

multirate signal processing, 248-51 
decimation, 248-49 
interpolation, 249-50 
resampling. 250-51 

stochastic processes, 260-70 
continuous-time. 260 
discrete-time, 260 
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Digital signal processing, stochastic 
processes (cont.) 

L TI systems with stochastic inputs, 267 
noise, 269-70 
power spectral density, 268-69 
stationary processes, 264-67 
statistics of, 261-64 

Digital Signal Processing (DSP), 202-3, 339 
Digital signals/systems, 202-8 

digital systems, 206-8 
linear time-invariant (L TO systems, 207 
linear time-varying systems, 208 
nonlinear systems, 208 

other digital signals, 206 
sinusoidal systems, 203-5 

Digital systems, defined, 202 
Digital-to-analog conversion, 246-48 
Digital wireless telephony applications, 925 
Diphones, 807-8 
Diphthongs, 40 
Directionality patterns, 489-96 
Directives, 861 
Disambiguation, 876 
Discourse analysis, 7,753,855, 881-86 

resolution, 882-85 
Discourse memories, 882 
Discourse segments, 857 
Discrete Cosine Transform (DCI), 228-29 
Discrete distribution, 77 
Discrete-frequency transforms, 216-29 

discrete Fourier transform (OFT), 218-19 
Fourier transforms of pmodic signals, 219-22 

Discrete joint distribution, 83-84 
Discrete random variables, 77 
Discrete-time Fourier transform, 209,210 
Discrete-time stochastic processes, 260 
Discriminative training, 150-63 

gradient descent, 153-55 
maximum mutual information estimation (MMIE), 

150-52 
minimum-error-rate estimation, 156-58 
multi-layer perceptrons, 160-63 
neural networks, 158 
single-layer perceptrons, 159-60 

Disfluency, 857 
Distortion measures, 164-66 
Distribution function, 79 
Document structure detection, 692, 699-706 

chapter and section headers, 700-70 I 
dialog turns and speech acts, 705-6 
email, 704-5 
lists, 701 -2 
paragraphs, 702 
sentences, 702-4 
Web pages, 705 

Dolby Digital, 351 
Domain knowledge, 2 

Domain-specific tags, 718-20 
chemical formulae, 719 
mathematical expressions, 718-19 
miscellaneous formats, 719-20 

Dragon NaturallySpeaking, 926 
Dr. Who case study, 906- 13 

dialog manager, 910-13 
discourse analysis, 909-10 
semantic parser (sentence interpolation), 908 
semantic representation, 906-8 

Dr. Who Project, 869, 876-77 
DTS, 351-52 
Duration assignment, 761-63 

CART-based durations, 763 
rule-based methods, 762-63 

Dynamic microphones, 497 
Dynamic time warping (DTW), 383 -85 

E 
Ear: 

cochlea, 30 
eardrum, 29 
middle ear, 29 
outer ear, 29 
oval window, 29 
physiology of, 29-32 
sensitivity of, 30 

Eardrum, 29 
Earley algorithm, 584 
Eigensignals, 209 
Eigenvalue, 209 
Electret microphones, 487 
Electroglottograph (EGG), 828 

signals, 319-20 
Electromagnetic microphones, 497 
Electronic Industries Alliance (EIA), 360 
Electrostatic microphones, 497 
Ellipsis, 882 
EM algorithm, 134, 170-72 
Embedded ADPCM, 348 
Emotion, and prosody, 744-45 
Emphatic stress, 431 
End-point detection, 422-24 
Entropy, !20-11 

conditional, 123-24 
Entropy coding, 350-51 
Environmental model adaptation, 528-38 

model adaptation, 530-31 
parallel model combination, 531-34 
retraining on compensated features, 537-38 
retraining on corrupted speech, 528-39 
vector Taylor series, 535-37 

Environmental robustness, 477-544 
acoustical environment, 477, 478-86 

additive noise, 478-80 
babble noise, 479 
cocktail party effect, 4 79 

Index 
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Lombard effect, 480 
model of the environment, 482-86 
pink noise. 478 
reverberation, 480-82 
white noise, 478-79 

acoustical transducers, 486-97 
active microphones. 496 
bidirectional microphones, 490-94 
carbon button microphones, 497 
condensermicrophone,486-89 
directionality patterns, 489-96 
dynamic microphones, 497 
electromagnetic microphones, 497 
electrostatic microphones, 497 
passive microphones, 496 
piezoelectric microphones, 497 
piezoresistive microphones, 497 
pressure gradient microphones, 496 
pressure microphones, 496 
ribbon microphones, 497 
unidirectional microphones, 494-96 

adaptive echo cancellation (AEC), 497-504 
convergence properties of the LMS algorithm, 

500-501 
LMS algorithm. 499-500 
normalized LMS algorithm (NLMS), 501 -2 
RLS algorithm, 503-4 
transfonn-domain LMS algorithm. 502-3 

environmental mcxlel adaptation, 528-38 
model adaptation, 530-3 I 
parallel model combination, 531-34 
retraining on compensated features, 537-38 
retraining on comipted speech, 528-39 
vector Taylor series, 535-37 

environment compensation preprocessing, 515-28 
cepstral mean normalization (CMN}, 522-24 
frequency-domain MMSE from stereo data, 519-20 
real-time cepstral normalization, 525 
spectral subtraction, 516-19 
use of Gaussian mixture models, 525-28 
Weiner filtering, 520-22 

multimicrophone speech enhancement, 504-15 
blind source separation ( BSS), 510-15 
microphone arrays, 505-10 

nonstationary noise, modeling, 538-39 
Environment compensation preprocessing, 515-28 

cepstral mean normalization (CMN), 522-24 
frequency-domain MMSE from stereo data 519-20 
real-time cepstral normalization, 525 ' 
spectral subtraction, 516-19 
use of Gaussian mixture mcxlels 525-28 
Wiener filtering, 520-22 ' 

Environment variability, 419 
Epoch detection, 828-29 
Equal-loudness curves 31 
Ergodic processes, 265-67 
Ergonomics of Software User Interface, 932 

Error handling, 937-41 
error detection and correction, 938-39 
feedback and confirmation, 939-4 J 

Estimation, 98-99 
Estimation theory, 98-113 

Bayesian estimation, 107-13 
general, I 09-10 
prior and posterior estimation, 108-9 

least squared error (LSE) estimation, 99-100 
for constant functions, 100 
for linear functions, IO 1-2 
for nonlinear functions, I 02-4 

MAP estimation, 111-13 
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maximum likelihood estimation (MLE}, I 04-7 
minimum mean squared error (MMSE), 99- 104 
for constant functions, 100 
forlinear functions, 101-2 
for nonlinear functions, 102-4 

Euclidean distortion measure, 165-66 
Eureka 147 DAB specification, 352 
European Telecommunication Standards Institute 

(ETSI), 360 
Evaluation of understanding and dialog, 901-3 

and ATIS task, 901-3 
PARADISE framework, 903-6 

Exact n-best algorithm, 666-67 
Exception list, 697, 728 
Excitation signal, 30 I 
Exclamative sentence, 62 
Exhaustive search, 597 
Expectation (mean) vector, 84 
Expectation ofa random variable, 79 
Exponential distribution, 98 

F 
FO contour interpolation, 772-73 
FO jumps, 330 
Fl/F2 targets, 39 
Factored language probabilities, 650-53 
Factored lexical trees, 652-53 
Fast Fourier Transforms (FFT), 222-27 

FFT subroutines, 224-27 
prime-factor algorithm, 224 
radix-2 FFT, 222, 223 
rndix-4 algorithm, 223 
radix-6 algorithm, 223 
radix-8 algorithm, 223 
split-radix algorithm, 223 

Fast match, 634-38, 66 J-62 
look-ahead strategy, 661-62 
Rich-Get-Richer (RGR) strategy, 662 

Fear, and speech, 745 
Feedback, 490 
F eedforward adaptation, 345 
Fenones, 467 
Festival, 732-35 
FFT, See Fast Fourier Transforms (FFT) 
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Filler models, 453-54 
Filterbanks. 251-60 

DFTs as, 255-58 
multiresolution, 254-55 
two-band conjugate quadrature filters, 251-54 

Filters. 210 
Finite-impulse response (FIR), St>e FIR filters 
Finite-state automaton. 547 
Finite-state grammar, 6 I 3-16 
Finite-state machines (FSM), 548 
Finite state network, 654 
FIR filters, 229, 232-38 

first-order, 234-35 
linear-phase, 233-34 
Parks McClellan algorithm, 236-38 
window design, 235-36 

First coding theorem, 124 
First-order FIR filters, 234-35 
First-order IIR filters, 239-41 
First-order moment, 261 
Focus, 883 
Focus shifts, cueing, 892 
Formal language modeling. 546-53 

chart parsing for context-free grammars, 549-53 
bottom-up, 550-53 
top down vs. bottom up, 549-50 

Chomsky hierarchy, 547-48 
Formant frequencies, 319-23 

statistical formant tracking. 320-23 
Formants. 27-28 
Formant speech synthesis, 793, 796-804 

cascade model, 797 
formant generation by rule, 800-803 
Klatt's cascade/parallel formant synthesizer, 797-99 
locus theory of speech production, 800 
parallel model, 797 
waveform generation from formant values, 797-99 

Formant targets, 39 
Forward algorithm, 385-87 
Forward-backward algorithm, 389-93, 442-43, 557 
Forward-backward search algorithm, 670-73 
Forward error correction (FEC), 352 
Forward prediction error, 297 
Forward reasoning, 595 
Fourier series expansion, 218 
Fourier transforms, 208-10 

Fast Fourier Transforms (FFT), 222-27 
FIT subroutines, 224-27 
prime-factor algorithm, 224 
radix-2 FIT, 222-23 
radix-4 algorithm, 223 
radix-6 algorithm, 223 
radix-8 algorithm, 223 
split-radix algorithm, 223 

properties of, 215-17 
Fourier transforms of periodic signals, 219-22 

complex exponential, 219-20 

general periodic signals, 221-22 
impulse train, 221 

Frames, 339 
Free stress, 431 

Index 

Frequency analysis, 32-34 
Frequency domain, advantages of, 348-49 
Frequency-domain MMSE from stereo data, 519-20 
Frequency masking, SL!e Masking 
Frequency response. 210 
Fricatives, 42, 44 
Fujisaki's model, 776 
Full duplex sound cards, 936 
Functionality encapsulation, 871-72 
Functional tests, 842-43 
Function words, 54 
Fundamental frequency, 25 

G 
G.711 standard, 343-44, 348, 359, 371 
G.722 standard, 348, 359 
G.723.1 standard, 359 
G.727 standard, 348 
G.728 standard, 359 
G. 729 standard, 359 
Game search, 594 
Gamma distributions, 90-91, 95 
Gaussian distributions, 92-98 

Central Limit Theorem, 93 
lognonnal distribution, 97-98 
multivariate mixture Gaussian distributions, 93-95 
standard, 92-93 
x' distributions, 95-96 

Gaussian mixture models, 525-28 
Gaussian processes, 264-65 
General graph searching procedures, 593-97 
Generality, of grammar, 546 
Generalized Hamming window, 231-32 
Generalized Lloyd algorithm, 168 
Generalized triphones, 808 
General Packet Radio Service (GPRS), 361 
Geometric distributions, 86-87 
Gibbs phenomenon, 235 
Gini index of diversity, 181 
Glides, 42 
Global Positioning System (OPS), 868, 930 
Glottal cycle, 26 
Glottal excitation, 284 
Glottal stop, 43 
Glottis, 25, 288 
Glyphs, 36 
Goal-directed search, 549 
Goodness-of-fit test, 116-18 
Good-Turing estimates and Katz smoothing, 565-67 
Gradient descent, 153-55, 190 
Gradient prominence, 765-66 
Graham-Harison-Ruzzo algorithm, 584 
Grammar, 545 
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Granular noise. 346 . 
Grapheme-to-phoneme conversion. 692-93 
GrJphical user interface (GL'I). I 
Graph-search algo1i1hms. 59 I, 597 
Greedy symbols. 558 
Ground, <JOO 
Grouuding. 861 

H 
H.3B. 359 
Half duplex sound cards. 936 
Half phone, 809 
Hamming window. 232, 258. 278-80, 283 

generalized, 231-32 
Handheld devices. 930 
Hands-busy. eyes-busy applications. 927 
Hanning window, See Hamming window 
Hard palate, 25 
Hannonic coding, 363-67 

parameter estimation, 364-65 
parameter quantization, 366-67 
phase modeling. 365-66 

Hamtonic errors, 330 
Hannonic sinusoid~, 218 
Hnnnonic/Stochastic (WS) model, 847 
Haivard Psychoacoustic Sentences, 839 
Has-a relations, 65 
Haskins Syntactic Sentence Test, 839 
Head-noun, 59 
Head of a phrase, 59 
Headset microphone, 936 
Hearing sensitivity, 30 
Hermitian function, 265 
Hertz (Hz). 21 
Hessian of the least-squares function , 504 
H~sian matrix, 154 
Heuristic graph search, 601-8 

beam search. 606-8 
best-first (A• search), 602-6 

Heuristic information, 601-2 
Heuristic search methods. 60 I 
Hidden Markov models (HMM), 56, 134, 170, 

377-413, 416,547. 931 
Baum-Welch algorithm, 389-93 
continuous mixture density, 394-96 
decoding, 387-89 
definition of, 380-93 
deleted interpolation, 401-3 
dynamic programming, 384-85 
advantage of, 384 
algorithm. 385 

dynamic time warping (DTW), 383-85 
estimating parameters, 389-93 
evaluating, 385-87 
forward algorithm, 385-87 
forward-backward algorithm, 389-93 
historical perspective, 409-10 

initial estimates, 398-99 
limitations of. 405-9 
conditional independence assumption 409 
duration modeling. 406-8 ' 
first-order assumption. 408 

Marko,· chain, 3 78-80 
Marko,· assumption for, 382 
output-independence assumption, 382 

model topology, 399-401 
observable Markov model, 379-80 
parameter smoothing. 403-4 
practical issues. 398-405 
probability representations, 404-5 
semicontinuous, 396-98 
training crite1ia, 40 I 
Viterbi algorithm, 387-89 

Hidden understanding model lHUM), 879-80 
High-frequencysounds,31 
High-pass filters, 235 
Hi II-climbing style of guidance, 60 I 
H method, 147 
HMM, See Hidden Markov models (HMM) 
Holdout method, 147 
Home applications, 921 
Homograph disambiguation, 693, 723, 724-25 
Homographs, 721 
Homomorphic transformation, 306, 312 
Huffman coding, 125-26 
Human Factors and Ergonomic Society (HFES), 

931-32 
Human-machine interaction, I 

[deal low-pass filter, 229-30 
IIR filters, 238-42 

first-order, 239-41 
second-order, 241-42 

Imperative sentence, 62 
Implicit confirmation, 892-93 
Implicit memory, 882-83 
Impulse response, 207 
Inconsistency checking, 885-86 
Inconsistency detection, 88 I 
Independent component analysis (!CA), 5 I 0 
Independent identically distributed (iid), 82 
Independent processes, 264 
Independent test sample estimation, 187-88 
Indistinguishable states, 654 

96S 

Infinite-impulse response (IIR) filters, See IIR filters 
Inflectional morphology, 56 
Inflectional suffix, 57 
lnfomax rule, 512-13 
Information theory, 73-131 

channel coding, 126-28 
conditional entropy, 123-24 
entropy, 120-22 
mutual infom1ation. 126-28 
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lnfom1ation theory (cont.) 
origin of, 74 
source coding theorem. 124-26 

lnfonned search. 604 
Infovox TTS system, 846-47 
Inner ear, 29 
Input method editors (IME). 736 
Insertion errors, 420 
Insertion penalty, 610 
Inside constituent probability, 555 
Inside-outside algorithm, 555 
Instance definition, 868 
Instantaneous coding, 125 
Instantaneous mixing, 510 
Instantaneous mutual information. 151 
Institute of Electrical and Electronic Engineers (IEEE), 

272 
Institute of Radio Engineers (IRE), 272 
.Intelligibility tests, 837-39 
Intentional state, 859 
Interactive voice response (IVR) systems. 924 • 
Intennediate phrase break, 751 
International Conference on Acoustic, Speech and 

Signal Processing (ICASSP), 272 
Internationalization, 943-45 
International Telecommunication Union (ITU), 343 
International Telecommunication 

Unioo-Radiocommunication (ITU-R), 352 
Interpolated models, 564-65 
lnterword-context-dependent phones, 430 
Inter-word triphones, 658-59 
Intonational phrase break, 751 
Intonational phrases, 53, 749 
INTSINT, 760 
Inverse filter, 290 
Inverse-square-law effect, 494 
Inverse z-transform, 212 

of rational functions, 213-I 5 
ls-a taxonomies, 64-66 
Isolated vs. continuous speech training, 441-43 
Isolated word recognition, 610-11 

J 
Japanese vowels, 46-47 
Jensen's inequality, 122 
Jitter, 768 
Joint distribution function, 84 
Jointly strict-sense stationary, 264 
Joint probability. 74 
Joy, and speech, 745 
JSAPJ, 921 
Juncture, 746-47 
Just noticeable distortion (JND), 35 

K 
Kalman filter, 522 
Karhunen-Loeve transform, 426 

Katz' backoff mech:mism, 618 
Katz smoothing, 565-67 
Klattalk system. 846 

Index 

Klatt's cascade/parallel formant synthesizer, 797-802 
parameter values for, 799 
targets used in, 801-2 

K-means algorithm, 166-69 
Kneser-Ney smoothing, 568-70, 573 
Knowledge sources (KSs), 646,663, 673-74 
KolmogoroY-Smimov test, 118 
Kronecker delta, 220 
Kth moment, 80 
Kullback-Leibler (KL) distance, 122, 581 

L 
Labial consonants, 46 
Labio-dental consonants, 46 
Lancaster/IBM Spoken English Corpus, 751-52 
Language modeling, 545-90 

adaptive, 575-78 
cache language models, 574-75 
maximum entropy models, 576-78 
topic-adaptive models, 575-76 

CFG vs. 11-gram models, 580-84 
complexity measure of, 560-62 
formal, 546-53 
chart parsing for context-free grammars, 549-53 
Chomsky hierarchy, 547-48 

historical perspective, 584 
n-gram pruning, 580-81 
n-gram smoothing, 562-74 

backofTsmoothing, 565-70 
class 11-grams. 570-74 
deleted interpolation smoothing, 564-65 
performance of, 573-74 

stochastic language models, 554-60 
11-gram language models, 558-60 
probabilistic context-free grammars, 554-58 

vocabulary selection, 578-80 
Language model probability, 610 
Language models, 4, 949 
Language model states, 6 I 3-22 

backoff paths, 618-19 
search space: 

with bigrams, 617-18 
with FSM and CFG. 613-16 
with trigrams, 619-20 
with the unigram, 616-17 

silences between words, 621-22 
Lapped Orthogonal Transfonn (LOT), 260 
Large-vocabulary search algorithms, 645-85 

context-dependent units and inter-word triphones, 
658-59 

exact 11-best algorithm, 666-67 
factored language probabilities, 650-53 
factored lexical trees, 652-53 
finite state network, 654 
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forward-backward search algorithm, 670-73 
historical perspective, 681-82 
HMM: 
different layers of beams, 660-61 
fast match, 661-62 

lexical successor trees, 652 
lexical trees. 646-48 
handling multiple linguistic contexts in, 657-58 
linear tail in, 655 
optimization of, 653 

lexical tree search, 648 
Microsoft Whisper, 676-81 
CFG search architecture, 676-77 
n-gram search architecture, 677-81 

n-best and multipass search strategies, 663-74 
one-pass fl-best and word-lattice algorithm, 669-70 
one-pass vs. multipass search, 673-74 
polymorphic linguistic context assignment, 656-57 
prefix trees, 647 
pronunciation trees. multiple copies of, 648-50 
search-algorithm evaluation, 674-76 
sharing tails, 655-56 
single-word subpath, 655 
subtree dominance, 656 
subtree isomorphism, 654 
subtree polymorphism, 656-58 
tree lexicon, 646-59 
word-dependent 11-best and word-lattice algorithm, 

667-70 
word-lattice generation, 672-73 

Lamyx, 25 
vocal fold cycling at, 26 

Laryngograph, 828 
Lateralization, 3 I 
Lateral liquid, 42 
Law oflarge numbers, 82 
LBG algorithm, 169-70 
Least squared error (LSE) estimation, 99-100 

for constant functions, I 00 
for linear functions, IO 1-2 
for nonlinear functions, 102-4 

Least squared regression methods, 180 
Least square error (LSE), 160 
Leave-one-out method, 147 
Left-recursive grammar, 550 
Lempel-Zi v coding, 126 
Lemout&Hauspie's Voice Xpress, 926 
Letter-to-sound (LTS) conversion, 437,693, 728-30 
Letter-to-sound (L TS) rules, 697 
Level of significance, 114-15 
Levinson-Durbin recursion, 297-98, 333 
Lexical baseforms, 436-39 
Lexical knowledge, 545 
Lexical part-of-speech (POS), 53-56 
Lexical successor trees, 652 
Lexical trees, 646-48 

handling multiple linguistic contexts in, 657-58 

linear tail in, 655 
optimization of, 653 

Lexicon, 697-98 
Light Ill, 48 
Likelihood function, I 04 
Likelihood ratio, 139 
Limited-domain waveform concatenation 794 
Linear bounded automaton, 548 ' 
Linear Discriminate Analysis (LDA), 427 
Linear-phase FIR filters, 233-34 
Linear predictive coding (LPC), 290-306 

autoconrelation method, 295-96 
covariance method, 293-94 
equivalent representations, 303-6 
lattice formulation, 297-300 
line spectral frequencies (LSF), 303-5 
log-area ratios, 305-6 
orthogonality principle, 291-92 
prediction error, 301-3 
reflection coefficients, 305 
roots of the polynomial, 306 
solution of the LPC equations, 292-300 
spectral analysis via, 300-301 

Linear pulse code modulation (PCM), 340-42 
Linear time-invariant (L Tl) systems, 207 

eigensignals of, 209 
with stochastic inputs, 267 

Linear time-varying systems, 208 
Line spectral frequencies (LSF), 303-5 
Linguistic analysis, 692, 720-23 

homograph disambiguation, 723, 724-25 
noun phrase (NP) and clause detection, 723 
POS tagging, 722-23 
sentence tagging, 722 
sentence type identification, 723 
shallow parse, 723 

Linguistic Data Consortium (LDC), 467 
Linguistic fonns, 859 
Linguistics, co-references in, 882 
Lips, 25 
Liquid group, 42 
Listening Effort Scale, 841 
Listening Quality Scale, 841 
LMS algorithm, 540 
Load loss of signal level, 488 
Localization issues, 696-97 
Locus theory of speech production, 800 
Log-area ratios, 305-6 
Logical fonn, 6 7-68 
Lognorrnal distribution, 97-98 
Lombard effect, 480 
Long-term prediction, 353 
Look-ahead strategy, 661-62 
Lossless compression, 338 
Lossless tube concatenation, 284-88 
Lossy compression, 338 
Loudness, 740 
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Low-bit rate speech coders, 361-70 
harmonic coding, 363-67 
parameter estimation, 364-65 
parameter quantization, 366-67 
phase modeling, 365-66 

mixed-excitation LPC vocoder, 362 
• waveform interpolation, 367-70 

Lower bound of probability, 74 
Low-frequency sounds, lateralization of, 31 
Low-pass filter, bandwidth of, 240 
Low-pass filters, digital, 229-30, 235 
Low probability of intercept (LPI), 361 
LPC, See Linear predictive coding (LPC) 
LPC-cepstrum, 309-1 I 
LPC vocoder, 353 
LP-PSOLA, 832-33 
LSE estimation, See Least squared error (LSE) 

estimation 
L TI systems, Sl:e Linear time-invariant (LT]) systems 
LTS conversion, 437, 728-30 
LTS rules, 697 
Lungs, 25 

M 
McGurk effect, 69 
Machine-learning methods, 56 
McNemar's test, 148-49, 190 
Magnitude-difference test, 119-20 
Magnitude subtraction rule, 519 
Mahalanobis distance, 166, 168 
MAP, See Maximum a posteriori (MAP) 
MAP estimation, 111 -13 
Marginal probability, 76, 77-78 
Markov chain, 378-80 
Masking, 30-31, 34-36, 349-50 

Bark scale functions, 35 
just noticeable distortion (JND), 35 
spread-of-masking function, 35-36 
temporal masking, 35-36 
tone-masking noise, 35 

Matched pairs test, I 18-20, 148 
Mathematical expressions, 718-19 
MathML, 718 
Maximal p1°>jcctiui., 5e 
Maximum entropy models, 576-78 
Maximum likelihood estimation (MLE), 73, 104-7, 

134,141, 168-09 
Maximum likelihood estimator, 99 
Maximum likelihood linear regression (MLLR), 

447-50 
VS, MAP, 450-51 

Maximum mutual information estimation (MMIE), 
134, 150-52, I 56 

defined, 151 
Maximum phase signals, 309 
Maximum a posteriori (MAP), 73, I 11, 141,331, 

445-47, 854 

Maximum substring matching problem, 420 
MBROLA technique, 829 
Mean. 79-81 
Mean-ergodic process. 266 
Mean opinion score (MOS), 338-39, 840 
Mean squared error (MSE), 99 
Mean vector, 84 
Median, 81 
Median smoother of order, 208 
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Mel-frequency cepstral coefficients (MFCC), 424-26 
Mel frequency scale, 34 
Message generation, 894-90 I 

See also Response generation 
Message generation box, 897 
Metaunits, 658-59 
Microphone, 936 
Microphone arrays. 505-10 

delay-and-sum bearnfom1er, 505-6 
goals of, 505 
steering, 505 

Microprosody, 767-68 
Microsoft Dictation, 928-29 
Microsoft Speech SOK 4.0, 937 
Microsoft's speech AP( (SAPI), 921 
Microsoft Whisper case study, 676-81 

CFG search architecture, 676-77 
n-gram search architecture, 677-81 

Middle ear, 29 
Mid-riser quantizer, 340 
Mid-tread quantizer, 340 
Minimum-classification-error (MCE), 156 
Minimum cost-complexity pruning, 185-87 
Minimum-error-rate decision rules, 135-38 
Minimum-error-rate estimation, 134, 156-58 
Minimum mean squared error (MMSE), 73, 99-104 

for constant functions, I 00 
for linear functions, IO 1-2 
for non I in ear functions, I 02-4 

Minimum mean square estimator, 99 
Minimum phase signals, 309 
Minimum squared error (MSE) estimation, 100 
Minor phrase break, 751 
MiPad case study, 945-52 

evaluation, 949-51 
iterations, 951-52 
rapid prototyping, 948-49 
specifying the application, 946-48 

M!Talk System, 735-36, 846 
Mixed-excitation LPC vocoder, 362 
Mixed excitation model, 289 
Mixed initiative systems, 860 
Mixture density estimation, 172 
MMIB, See Maximum mutual information estimation 

(MMIE) 
MMSE, Sec Minimum mean squared error (MMSE) 
Mobile applications, 921 
Mode; 81 
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Modified Discrete Cosine Transfonn (MDCn, 259 
Modified Rhyme Test (MRT), 838 
Modifiers, 61 
Modular (component) testing, 731 
Modulated Lapped Transform (ML T), 259 
Money and currency, 7 I 6 
Monolithic whole-system evaluation, 731 
Morphological analysis. 693, 725-27 

algorithm, 727 
suffix and prefix stripping, 726-27 • 

Morphological attributes, 55 
Morphology, 56-57 

derivational, 56-57 
inflectional, 56 

Move generator, 594 
MP3, 371 
MPEG, 351-52, 371 
Multi-layer perceptrons, 160-63 
Muhimicrophone speech enhancement, 504-15 

blind source separation (BSS), 510-15 
microphone arrays, 505-10 
delay-and-sum beamformer, 505-6 
steering, 505 

Multinomial distributions, 87-89 
Multipass search, 663-74, 682 

n-best lists and word lattices, 664-66 
n-best search paradigm, 663 

Multipass search vs. one-pass search, 673-74 
Multiple tree combination, 730 
Multiplexing delay, 339 
Multirate signal processing, 248-51 

decimation, 248-49 
interpolation, 249-50 
resampling, 250-51 

Multiresolution filterbanks, 254-254 
Multistack search, 639 
Multistyle training, 419 
Multivariate distributions, 83-85 
Multivariate Gaussian mixture density estimation, 

172-75 
Multivariate mixture Gaussian distributions, 93-95 
Musical noise, 517 
Musical pitch scales, and prosodic research, 32 
MUSICAM, 352 
Mutual information, 126-28 

N 
Narrow-band filtering, 330 
Narrow-band spectrograms, 282 
Nasal, 42 
Nasal cavity, 25 
Nasal consonants, 43-44 
Natural gradient, 513 
Natural language, linguistic analysis of, 720-23 
Natural language generation from abstract semantic 

input, 898 
Natural language process (NLP) systems, 693-94 

N-best lists, 664-66 
N-best search paradigm, 66J 
Near-miss list, 158 
Negative correlation, 83 
Negotiation, 892 
NETALK, 729 
Neural networks. 134, 158, 457-59 

integrating with HMMs, 458-59 
recurrent, 457-58 
time delay neural network (TDNN), 458 

Neural transduction process, 20 
Neural units, 158 
Neuromuscular signals, 20 
Newton's algorithm, I 55 
N-gram language models, 558-60 
N-gram pruning, 580-81 
N-grams, search architecture, 677-81 
N-gram smoothing, 562-74 

backoff smoothing, 565-70 

969 

alternative backoff models, 568-70 
Good-Turing estimates and Katz smoothing, 

565-67 
class n-grams, 570-74 
data-driven classes, 572-73 
rule-based classes, 571-72 

deleted interpolation smoothing, 564-65 
performance of, 573-74 

Noise-canceling microphone, 490 
Noiseless channels, 127 
Noisy conditions, 330 
Nonbranching hierarchies, 65 
Noncausal Wiener filter, 522 
Non-hierarchical relations, 65 
Non-infonnative prior, 112 
Nonlinear systems, 208 
Nonstationary noise, modeling, 538-39 
Normalized cross-correlation method, 327-29 
Normalized LMS algorithm (NLMS), 501-2 
Noun phrases (NPs), 58-59 
Nouns, 54 
NP-hard problem, 593 
N-queens problem, 593, 598 
Nucleus, 52 
Number formats, 712-20 

account numbers, 716 
cardinal numbers, 717-18 
dates, 714-15 
money and currency, 716 
ordinal numbers, 717 
phone numbers, 712-14 
times, 715 

Nyquist frequency, 243, 245 

0 
Object-oriented programming, 869 
Observable Markov model, 379-80 
Obstruent, 43 
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Octaves. 32 
Office applications, 921 
Omnidirectional condenser microphones, 489-90 
One-pass n-best and word-lattice algorithm, 669-70 
One-pass vs. multipass search, 673-74 
One-place predicates, 67 
On-glides, 42 
Onset, 52 
Open-loop estimation. 356 
Open POS categories, 54 
Operations research problems, 604 
Oral cavity. 25 
Ordinal numbers, 717 
Orthogonality principle, 291-92 
Orthogonal processes, 263 
Orthogonal variables, 83 
Outer ear, 29 
Out-Of-Vocabulary (OOV) word rate, 578 
Outside probability, 556 
Oval window, ear, 29 
Overall quality tests, 840-41 

Absolute Category Rating (ACR), 841 
Listening Effort Scale, 841 
Listening Quality Scale, 841 
Mean Opinion Score (MOS), 840 

Overlap-and-add (OLA) technique, 818-19 
Overlapped evaluation scheme, 463 
Oversampling, 246 
Oversubtraction, 519 

p 
Paired observations test, I I 4 
Palatal consonants, 46 
Palate, 46 
Paradigmatic properties, 53 
PARADISE framework, 903-6 
Paragraphs, 702 
Paralinguistic, use oftenn, 764 
Parameter space, 98 
Parametric Artificial Talker (PAT), 845 
Parks McClellan algorithm, 236-38 
Parsers, 72 I 
Parse tree representations, 62-63 
Parseval's theorem, 216 

for random processes, 268 
Parsing algorithm, 545 
Partial correlation coefficients (PARCOR), 299 
Partition, 74 
Part-whole, 66 
Passive microphones, 496 
Passive sentence, 62 
Pattern recognition, 133-97 
Pauses, 747-49 
Pausing, 740 
Penn Treebank project, 55 
Perceived loudness, 30 
Perceived pitch, 30 

Perceptron training algorithm, 159 
Perceptual attributes, sounds, 30 
Perceptual Audio Coder (PAC), 35 I, 371 
Perceptual linear prediction (PLP), 3 I 8-19 
Perceptually-based distortion measures, 166 
Perceptually motivated representations, 315-19 

bilinear transfonns. 315-16 

Index 

mel-frequency cepstrum coefficients (MFCC), 
316-18 

perceptual linear prediction (PLP), 3 18-I 9 
Perceptual Speech Quality Measurement (PSQM), 844 
Perceptual weighting, 357-58 
Periodic lobe, 26 
Periodic signals, 203 

cepstrum of, 311-12 
Perplexity, 122, 560-62, 579 
Personal Digital Assistants (PDAs), 930, 945 
Phantom power, 488 
Phantom trajectories, 463 
Pharyngeal cavity, 25 
Pharynx,288 
Phonemes, 20, 24, 36-38, 611 
Phoneme trigram rescoring, 730 
Phone numbers, 712-14 
Phonetically balanced word list test, 839 
Phonetic FO (microprosody), 767-68 
Phonetic languages, 692-93 
Phonetic modeling, 428-39 

clustered acoustic-phonetic units, 432-36 
comparison of different units, 429-30 
context dependency, 430-31 
lexical basefonns, 436-39 

Phonetics, 36-50 
allophones, 47-49 
clauses, 61-62 
coarticulation, 49-5 I 
consonants, 42-46 
lexical part-of-speech (POS), 53-56 
lexical semantics, 64-66 
logical fonn, 67-68 
morphology, 56-57 
parse tree representations, 62-63 
phonemes, 36-38 
phonetic typology, 46-47 
phrase schemata, 58-61 
semantic roles, 63-64 
semantics, 58 
sentences, 61-62 
speech rate, 49-51 
syllables, 51-52 
syntactic constituents, 58 
syntax, defined, 58 
vowels. 39-42 
word classes, 57 
words, 53-57 

Phonetic typology, 46-47 
Phonological phrases, 749 
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Phonology, 36-50 
Phrase schemata, 58-61 
bras tn1crure diagram, 63 

p . e-s1 vs perceprual attributes of sounds, 30-32 
Phys1ca • ,

9 3
, 

Physiology of the ear, - • -
Pickup panem, microphone, 489 
Piezoelectric microphones, 497 
Piezoresistive microphones, 497 
Pink noise, 270, 4 78 
Pitch, 25, 30, 47, 740 

autocorrelation method, 3_24-27 
normalized cross-correlatton method, 327-29 
role of, 324-32 
signal conditioning, 329-30 
tracking, 330-32 

Pitch generation, 763-82 
accent termin:ition. 770 
attributes of pitch contours, 764-68 
baseline F0 contour generation, 768-69 
corpus-based F0 generation, 779-82 
F0 contours indexed by parsed text, 779-81 
F0 contours indexed by ToBI, 781-82 
transplanted prosody, 779 

declination, 766-67 
evaluations/improvements, 773-74 
FO contour interpolation, 772-73 
gradient prominence, 765-66 
interface to synthesis module, 773 
paramenic F0 generation, 774-75 
phonetic F0 (microprosody), 767-68 
pitch range, 764-6S, 770-71 
prominence determination, 771-72 
superposition models, 775-76 
ToBI realization models, 777-78 
tone determination, 770 

Pitch prediction, 356-S7 
Pitch range, 764-6S, 770-71 
P!tch-scale modification epoch calculation, 82S 
P~tch-scale time-scale epoch calculation, 827 
P~tch synchronous analysis, 283, 302-3 
Pitch synchronous overlap and add (PSOLA) 820-23 

831,847 ' ' 
problems with, 829-31 
amplitude mismatch, 830 
buzzy voiced fricatives 830 
P~ase mismatches, 829' 
pitch mismatches, 830-31 

. spectral behavior of, 822-23 
Pitch tracking, 330-32 
:Itch trackin~ errors, 828 
Plan-based dialog modeling, 9 I 4 

lan-~ased systems, 888-92 
Plan libraries 889 
Plosive, 4 2 ' 
Pl • ~s1ve consonant 42-43 
Poisson d'°'""b • ' i ... , uuons 89 
Poles, 213 ' 

Pole-zero filters, cepstrum of, 308-98 
Polymorphic linguistic context assignment, 656-57 
Polysemy, 65 
Positive correlation, 83 
Positive-definite function, 262 
POS tagging, 56, 722-23 
Posterior probability, 135, 142, 156 
Postfiltering, 357-58 
Post-lexical rules, 735 
Posnnodifiers, 58-61 
Power function, 114 
Power spectral subtraction rule, 519 
Power spectrum, 21 6 
Predicate, 61, 67 
Predicate logic, 68 
Pre-emphasis filtering, 235, 320 
Preference tests, 842 
Prefix nodes, 658 
Prefix trees, 64 7 
Premodifiers, 58-59 
Prepositions, 54, 60 
Pressure gradient microphones, 496 
Pressure microphones, 496 
Prime-factor algorithm, 224 
Principal-component analysis (PCA), 426 
Priority entity memory, 882-83 
Priorprobability, 133, 135, 140 
Probabilistic CFGs (PCFGs), 554 
Probabilistic context-free grammars, 554-58 
Probability density function (pdf), 78, 261 
Probability function (pf), 77 
Probability mass function (pmf), 77 
Probability theory, 73-131 

Bayes' rule, 75-78 
binomial distributions, 86 
chain rule, 75, 77-78 
conditional probability, 75. 76 
correlation, 82-83 
covariance, 82-83 
gamma distributions, 90-91, 95 
Gaussian distributions, 92-98 
geometric distributions, 86-87 
law of large numbers, 82 
marginal probability, 76, 77-78 
mean, 79-81 
mult!nomial distributions, 87-89 
m~ltivariate distributions, 83-85 
Poisson distributions 89 
probability ~ensity function (pdf), 78 
random vanables, 77.79 
ra~dom vectors, 83-85 
um~orm distributions, 85 
vanance, 79-8 I 

Promin~nce determination, 771-72 
Promptrng strategy, 943 
Pronouns, 54 
Pronunciation trees, 648.50 
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Proper noun, 53-54 
Property inheritance, 871 
Propositional phrases (PPs), 59-60 
Prosodic analysis module, 7 
Prosodic modification of speech, 818-31 

epoch detection, 828-29 
evaluation ofTIS systems, 834-44 
automated tests, 843-44 
Diagnostic Rhyme Test (ORT), 837 
functional tests, 842-43 
glass-box vs. black-box evaluation, 835-36 
global vs. analytic assessment, 836 
Haskins Syntactic Sentence Test, 839 
human vs. automated, 835 
intelligibility tests, 837-39 
judgment vs. functional testing, 835-36 
laboratory vs. field, 835 
Modified Rhyme Test (MRT), 838 
overall quality tests, 840-41 
phonetically balanced word list test, 839 
preference tests, 842 
Semantically Unpredictable Sentence Test, 837 
symbolic vs. acoustic level, 835 

pitch-scale modification epoch calculation, 825 
pitch-scale time-scale epoch calculation, 827 
pitch synchronous overlap and add (PSOLA), 

820-23, 831,847 
problems with, 829-31 
spectral behavior of, 822-23 

source-filter models for prosody modification, 
831-34 

LP-PSOLA, 832-33 
mixed excitation models, 832-34 
prosody modification of the LPC residual, 832 
voice effects, 834 

synchronous overlap and add (SOLA), 8 I 8-19 
synthesis epoch calculation, 823-24 
time-scale modification epoch calculation, 826-27 
waveform mapping, 827-28 

Prosodic phrases, 749-51 
Prosodic transcription systems, 759-61 
Prosody, 739-91 , 943 

and character, 744 
duration assignment, 761 -63 
CART-based durations, 763 
rule-based methods, 762-63 

generation, 721-22 
generation schematic, 743-44 
loudness, 740 
pausing, 740 
pitch, 740 
pitch generation, 763-82 

accent termination, 770 
attributes the pitch contours, 764-68 
baseline F0 contour generation, 768-69 
corpus-based F0 generation, 779-82 
declination, 766-67 

evaluations/improvements, 773-74 
F0 contour interpolation, 772-73 
gradient prominence, 765-66 
interface to synthesis module, 773 
parametric F0 generation, 774--75 
phonetic F0 (microprosody), 767-68 
pitch range, 764-65, 770-71 
prominence determination, 771-72 
superposition models, 775-76 
ToBI realization models, 777-78 
tone determination, 770 

prosody markup languages, 783-85 
rate/relative duration, 740 
role of understanding, 740-44 
speaking style, 744-45 
character, 744 
emotion, 744-45 

symbolic, 745-61 
accent, 751-53 
pauses, 747-49 
prosodic phrases, 749-51 
prosodic transcription systems, 759-61 
tone, 753-57 
tune, 757-59 

Prosody markup languages, 783-85 
PROSPA, 759 
Pruning, 609 
Pruning error, 675 
PSOLA, See Pitch synchronous overlap and add 

(PSOLA) 
Psychoacoustics,30 
Pulse code modulation (PCM), 271, 340-42 
Pure tones, 31 
Push-down automation, 548 
Push-to-talk model, 422-23 
P-value, 115-16 

Q 
Quantization noise, 246 
Questioned noun phrase, 61 

R 
Radix-2 FFf, 222, 223 
Randonmes::, 7~ 
Random noise, 276 
Random variables, 77-79 

expectation of, 79 
Random vectors, 83-85 
Rapidly evolving waveforms (REW), 368-70 
Rapid prototyping, 948-49 
Rate/relative duration, 740 
Read speech acoustic models, 857 
Real cepstrum, 307-8 
Real-time cepstral normalization, 525 
Recognition problem, 554 
Rectangular window, 230-31 
Recurrent neural networks, 457-58 
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Recursive least squares (RLS) algorithm, 504 
Recursive transition network (RTN), 548, 613-14 
Reflection coefficients, 296, 299, 305 
Region of convergence (ROC), 211-12 
Regular Pulse Excited-Linear Predictive Coder 

(RPE-LPC), 360 
Relative clauses, 61 
Relative expressions, 871 
Relative frequency, 74 
Relative spectral processing (RAST A), 525 
Renditions, 899-90 I 
Repetitive stress injury (RSI), 929 
Residual signal, 30 I 
Resonances of vocal tract, excitation of, 27 
Response generation, 894-90 I 

message generation box, 897 
natural language generation from abstract serna ntic 

input, 898 
response content generation, 895-99 
template systems for, 897 

Retraining on compensated features, 537-38 
Retraining on corrupted speech, 528-39 
Retroflex liquid, 42 
Reverberation, 480-82 
Ribbon microphones, 497 
Rich-Get-Richer (RGR) strategy, 662 
Right-sized tree, 184-89 

cross-validation, 188-89 
independent test sample estimation, 187-88 
minimum cost-complexity pruning, 18S-87 

RLS algorithm, 503-4 
Robustparsing,874-78 
Roll-off, 28 I 
Rule-based duration-modeling methods, 56 
Rule-based speech synthesis systems, 795-96 

CPU resources, 795 
delay, 79S 

s 

memory resources, 795 
pitch control, 795 
variable speed, 795 
voice characteristics, 796 

Sadness, and speech, 745 
Sample mean, 82 
Sample variance, 82 
Sampling theorem, 243-45 
SAM system, 913-14 
Scalable coders, 3 71 
Scalar frequency domain coders, 348-52 

conswner audio, 351-52 
Digital Audio Broadcasting (DAB) 352 
frequ~ncy domain, advantages of, j43-49 
masking, 349-50 
transform coders, 350-5 J 

Scalar waveform coders 340-48 
adaptive PCM, 344-45 

differential quantization, 345-48 
linear pulse code modulation (PCM), 340-42 
µ-law and A-law PCM, 342-44, 348 

Screen reader, 929 
Search, defined, 592 
Search-algorithm evaluation, 674-76 
Search algorithms: 

beam, 606-8 
best-first, 602-6 
blind graph, 597-601 
breadth-first, 600-601 
depth-first, 598-99 
forward-backward, 670-73 
large vocabulary, 645-85 
speech-recognition, 608-12 
combining acoustic and language models, 

610 
continuous speech recognition, 611-12 
decoder basics, 609 
isolated word recognition, 6 I 0-11 

tree-trellis forward-backward, 671 
Search error, 675 
Second-order HR filters, 241-42 
Second-order resonators, 242 
Segment models, 459-60 
Segment-model weight, 462 
Selectivity, of grammar, 546 
Semantically Unpredictable Sentence Test, 837 
Semantic authoring, 862 
Semantic classes, 948-49 
Semantic grammars, 585 
Semantic language model, 879 
Semantic parser, 854-55 
Semantic representation, 867-73 

conceptual graphs, 872-73 
functionality encapsulation, 871-72 
property inheritance, 871 
semantic frames, 867-69 
type abstraction, 869-71 

Semantic roles, 63-64 
Semantics: 

defined,58 
language, 545 
lexical, 64-66 

Sem!continuous HMMs, 396-98 
Semt-tones, 32 
Semivowels, 42 
Senones,433-36,467,809 
Senonesequence,658 
Sentence interpolation, 873-80 

robust parsing, 874-78 
defined,875 

statisti~al pattern matching, 878-80 
syntacllc grammars, 877 

Sentence interpretation, 7 
Sentence interpretation module, 855 
Sentence-level stress, 431 

973 
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Sentences, 61-62, 702-4 
diagramming in parse trees, 63 

Sentence tagging, 722 
Sentence type identification, 723 
Shades ofme:ming. 67 
Shallow parse, 723 
Shannon's channel coding theorem, 127 
Shannon's source coding theorem, 124-25, 128 
Sharing.609 
Sharing tails, 655-56 
Shimmer, 768 
Short-tem1 prediction, 353 
Short-time Fourier analysis. 276-83 

pitch-synchronous analysis, 283 
spectrograms, 281 -83 

Sigma-delta AID, 246 
Sigma-delta modulation, 346 
Signal acquisition, 422 
Signal conditioning, 329-30 
Signal processing module, 421-28 

end-point detection, 422-24 
feature transformation, 426-28 
mel-frequency cepstral coefficients (MFCC), 

424-26 
signal acquisition, 422 

Signals, 201 
Signal-to-noise ratio (SNR), 339, 486, 489 
Significance testing, 98, I I 3-20 

goodness-of-fit test, 116-18 
level of significance, I I 4-15 
magnitude-difference test, 119-20 
matched pairs test, 118-20 
normal test, 115-16 
sign test, 119 
Z test, 115-16 

Sign test. 119 
Silences between words, handling, 621-22 
Similars, 65-66 
Simple questions, 177 
Sine function, 229-30 
Single-layer p<!rceptrons, 159-60 
Singleton questions, 177 
Single-word subpath, 655 
Sinusoidal coding, 371 
Sinusoidal systems, 203-5 
Slope overload distortion, 346 
Slot inheritance, 885 
Slowly evolving waveform (SEW), 367-70 
SLU, See Spoken language understanding (SLU) 

systems 
Smart phones. 930 
SNR, Sec Signal-to-noise ratio (SNR) 
Soft palate, 25 
Sound, 21-23 
Sound Blaster, 936 
Sound pressure level (SPL), 23 
Source coding theorem, J 24-26 

Index 

Source-filter models for prosody modification, 
831-34 

Source-filter models of speech production, 288-90 
Source-filter separation, via the cepstmm. 314-15 
Speak & Spell, 271 
Speaker-adaptive tmining techniques. 419 
Speaker-dependent speech recognition, 418-19 
Speaker-independent speech recognition, 418 
Speaker recognition, 931 
Speaker variability, 418-19 
Speaking style, 744-45 

character, 744 
emotion. 744-45 

Speaking tum, 861 
Specificity ordering conflict resolution str.itegy, 182 
Specifier position, 61 
Spectral analysis via linear predictive coding (LPC), 

300-301 
Spectral leakage, 279 
Spectral subtraction, 516- I 9 
Spectrograms, 27-28, 276, 281 -83 
Speech: 

defined, 283 
interfacing with computers, I 
prosodic modification of, 8 I 8-3 I 
supplemented by information streams, 2 
using as an add-on feature, 941 

Speech acts, 705-6 
Speech-acttheory,914 
Speech coding, 337-74 

code excited linear prediction (CELP), 353-61 
adaptive codebook, 356-57 
analysis by synthesis, 353-56 
LPC vocoder, 353 
parameter quantization, 358-59 
perceptual weighting/postfiltering, 357-58 
pitch prediction, 356-57 
standards, 359-61 

coder delay, 339 
low-bit rate speech coders, 361-70 
harmonic coding, 363-67 
mixed-excitation LPC vocoder, 362 
wavefom1 interpolation, 367-70 

scalar frequency domain coders, 348-52 
consumer audio, 351-52 
Digital Audio Broadcasting (DAB), 352 
masking, 349-50 
transfonn coders, 350-51 

scalar waveform coders, 340-48 
adaptive PCM, 344-45 
differential quantization, 345-48 
linear pulse code modulation (PCM), 340-42 
µ-law and A-law PCM, 342-44, 348 

speech coder attributes, 338-39 
Speech communication, history of. I 
Speech end-point detector, 423 
Speech interaction, modes of, 933-34 



todex 

h interfuce design, 93 t -43 
SpteC rat principles of. 931-37 cene . . 937 ~ human lirn1ta11on~. - l 34 

odes of inter:ic11on. 93: -. 
::hnological considcruuons. 935-36 

·er accommodation. 933 
us 7-41 

handling errors. 93 . () 3q 
de1ection and correcuon • • 38-. 

error • 9'9-11 f~back :Uld confim1auon. ., 
internationalization. 943-45 

S eech inversion probl.:m. 803-4 
S~eech percept(on. 29-36 
Speech processing: _ 

digital sign a I process mg. :?O I -73 
speech coding. 33 7-74 
speech signal representations. 275-336 

Speech production, :?4-28 
acoustical model of, 283-90 
articulators, 24-25 
formants, 27-28 
frequency analysis, 32-34 
masking, 34-36 
physical vs. perceptual attributes of sounds, 30-32 
physiology of the ear, 29-32 
spectrograms, 27-28 
speech perception, 29-36 
voicing mechanism, 25-27 
SC'e also Acoustical model of speech production 

Speech production process. start of, 19 
Speech rate, 49-5 l 
Speech recognition, 2, 3, 375-685, 862 

acoustic modeling, 415-75 
context variability, 417 
environment variability, 419 
scoring acoustic foatures, 439-43 
speaker variability, 418-19 
speech recognition errors, 419-2 I 
style variabil tty, 418 
variability in speech sil!llals 416-19 

hidden Markov models (HMM). 377-413, 416 
Baur:n-Welch algorithm, 389-Q3 
contmuous mixture density, 394-96 
decoding, 387-89 
definition of, 380-93 
deleted interpolation, 401-3 
dynamic programming, 384-85 
dynami_c time warping (DTW), 383_85 
esumatmg par:ime1ers, 389-93 
evaluating, 385-87 
forward algorithm, 385-87 
'.orward-backward algorithm, 389-93 
t~n~al estimates, 398-99 
hm1tations of, 405-9 
Markov chain, 378-80 
model topology. 399-401 
observable Markov model, 379-80 
parameter smoothing, 403-4 

practical issues conce~ing, 398-405 
probability representations, 4-04-5 
scmicontinuous, 3%-98 
training criteria, 40 l 
Viterbi algorithm, 387-89 

phonetic modeling. 428-39 
clustered acoustic-phonetic units. 432-36 
comparison of different units. 429-30 
context dependency, 430-31 
lexical basefonns. •B6-39 

signal processing module, 421-'.!8 
end-point detection. 422-24 
feantre transfonnation. 426-28 
mel-frequency cepstral coefficients (MFCC), 

424-26 
signal acquisition. 422 

speech recognition errors, 419-21 
word error rate, 420 
word recognition errors, types of, 420 

Speech recognition search algorithms, 608-12 
combining acoustic and language models, 610 
continuous speech recognition, 611-12 
decoder basics, 609 
isolated word recognition, 610-11 

Speech recognition system, 4-5 
basic system architecture of, 5 
components of, 4 
source-channel model for, 5 
vocabulary, 58 

Speech signal representations, 275-336 
acoustical model of speech production, 283-90 
glottal excitation, 284 
lossless tube concatenation, 284-88 
mixed excitation model, 289 
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source-filter models of speech production, 288-90 
cepstrum, 306- l 5 
cepstrum vector, 309 
complex. 307-8 
LPC-cepstrum, 309-11 
of periodic signals. 3 I 1-12 
of pole-zero filters, 308-98 
real, 307-8 
source-filter separation via. 314-15 
of speech signals, 312-13 

fonnant frequencies, 319-23 
_statistical _fonnnnt tracking, 320-23 

hnear predictive coding (LPC), 290_306 
autocorrelation method, 295_96 
covariance method. 293-94 
equ_ivalent representations, 303 _6 
l?1t1ce fonnulation, 297-300 
lme spectral frequencies (LSF) 303-S 
log-area ratios, 305-6 • • 
onh~gonality principle, 291-92 
pred1chon error, 301-3 
reflection coefficiems, 305 
roots of the polynomial, 306 
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Speech signal representations, linear predictive 
coding (cont.) 

solution of the LPC equations, 292-300 
spectral analysis via, 300-30 I 

perceptually motivated representations, 315-19 
bilinear transforms, 315-16 
mel-frequency cepstnun coefficients (MFCC), 

316-18 
perceptual linear prediction (PLP), 318-19 

pitch: 
autocorrelation method, 324-27 
nonnalized cross-correlation method, 327-29 
pitch tracking, 330-32 
role of, 324-32 
signal conditioning, 329-30 

short-time Fourier analysis, 276-83 
pitch-synchronous analysis, 283 
spectrograms, 281-83 

Speech signals, 5, 20 
cepstrum of, 312-13 
context variability, 417 
environment variability, 419 
speaker variability, 4 I 8-19 
style variability, 418 
variability in, 416-19 

Speech synthesis, 6, 793-852 
articulatory speech synthesis, 793, 803-4 
attributes of, 794-96 
concatenative synthesis with no waveform modifi­

cation, 794 
concatenative synthesis with waveform modifica­

tion, 795 
limited-domain waveform concatenation, 794 
rule-based systems, 795-96 

concatenative speech synthesis, 793-94 
choice of unit, 805-8 
context-dependent phonemes, 808-9 
context-independent phonemes, 806-7 
diphones, 807-8 
optimal unit string, 810-17 
subphonetic units (senones}, 809 
syllables, 809 
unit inventory design, 817-18 
word and phrase, 809 

data-driven synthesis, 794, 803 
formant speech synthesis, 793, 796-804 
cascade model, 797 
formant generation by rule, 800-803 
Klatt's cascade/parallel formant synthesizer, 

797-802 
locus theory of speech production, 800 
parallel model, 797 
waveform generation from formant values, 797-99 

prosodic modification of speech, 818-3 I 
epoch detection, 828-29 
pitch-scale modification epoch calculation, 825 
pitch-scale time-scale epoch calculation, 827 

Index 

pitch synchronous overlap and add (PSOLA), 
820-23, 847 

synchronous overlap and add (SOLA), 818-819 
synthesis epoch calculation, 823-24 
time-scale modification epoch calculation, 826-27 
waveform mapping, 827-28 

synthesis by rule, 794 · 
Speech-to-speech translation, 3 
Split-radix algorithm, 223 
Splits, 182 
Spoken language, 19 
Spoken language interface, 2-3 
Spoken language processing, 4, 133 
Spoken language structure, 19-72 
Spoken language system, 2 
Spoken language system architecture, 4-8 

automatic speech recognition, 4-6 
spoken language understanding, 7-8 
text-to-speech conversion, 6-7 

Spoken language understanding, 7-8 
basic system architecture of, 8 

Spoken language understanding (SLlJ) systems, 
853-918, 945 

assumptions, 854 
content, 854 
context, 854 
dialog management, 886-94 

dialog grammars, 887-88 
plan-based systems, 888-92 

dialog structure, 859-67 
attentional state, 859 
dialog (speech) acts, 861-66 
intentional state, 859 
linguistic forms, 859 
task knowledge, 859 
units of dialog, 860-61 
world knowledge, 859 

dialog system, 854-55 
dialog manager, 855 
discourse analysis, 855 
semantic parser, 854-55 

discourse analysis, 881-86 
resolution by NLP, 883-85 
resolution of relative expression, 882-85 

Dr. Who case study, 906-13 
evaluation, 901-6 

in the ATIS task, 901-3 
PARADISE framework, 903-6 

historical perspective, 913-14 
intent, 854 
rendition, 899-901 
response generation, 894-901 

concept-to-speech rendition, 899-90 l 
natural language generation from abstract semantic 

input, 898 
response content generation, 895-99 

semantic representation, 867-73 
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conceptual graphs, 872-?3 ? 
functionality encapsulallon, 871-7 _ 
property inheritance, 871 
semantic rrames, 867-69 
type abstr.icrion, ~69-71 

sentence interpolauon, 873-80 . 
robust parsing, 874-78 . 
statistical pattern matching, 878-8? . . . 

• niars surface linguts!Jc vanattons syntacuc gram , 
in, 877 

written vs. spoken languages, 855-58 
communicative prosody, 858 
disfluency. 857 
style, 856-57 

Spoken menus. ~42 . 
Spread-of-masking function, 35-36 
Spread spectrum, 360-61 
Stable L Tl system, 211 
Stack decoding, 592 

advantage of, 628 
defined,627 
formulating in a tree search framework, 629 

Stack decoding (A• search), 626-39 
admissible heuristics for remaining path, 630-31 
extending new words, 631-34 
fast match, 634-38 
muhistack search, 639 
stack pruning, 638-39 

Stack pruning, 638-39 
Standard deviation, 80 
Standard Gaussian distributions, 92-93 
State-space search paradigm, 592 
Stationary processes, 264-67 

ergodic processes, 265-67 
Stationary signal, 276 
Statistical formant tracking, 320-23 
Statistical inference, 98, I I 3 
Statistical language models, 583 
Statistical pattern matching, 878-80 
Statistical pattern recognition, 190 
Statistics, 73-13 I 
Stochastic language models, 546, 554-60 

n-gram language models, 558-60 
probabilistic context-free grammars, 554-58 

Stochastic processes, 260-70 
continuous-time, 260 
discrete-time, 260 
LTI systems with stochastic inputs, 267 
noise, 269-70 
power spectral density, 268-69 
stationary processes, 264-67 
statistics of, 261-64 

Stop, 43 
Stress, 751 
Stressed vowels, 430-3 J 
Strict-sense stationary (SSS), 264 
Style, 856-57 

Style variability, 418 
Subgoals, 894 
Sub-harmonic errors, 330 
Subject, sentence, 61 
Subphonetic units (senones), 809 
Subscripting, 67 
Substitution errors, 420 
Subtree dominance, 656 
Subtree isomorphism, 654 
Subtree polymorphism, exploiting, 656-58 
Successor operator, 594 
Sum-of-squared-error (SSE), 99, 160 
Superposition models, 775-76 
Supervised learning, 134, 141 
Surrogate questions, 182 
SWITCHBOARD Shallow-Discourse-Function 

Annotation SWBD-DAMSL, 865-66 
Syllable parse tree, 52 
Syllables, 20, 51-52, 430,809 
Syllables centers, 52 
Symbolic prosody, 745-61 

accent, 751-53 
pauses, 747-49 
prosodic phrases, 749-51 
prosodic transcription systems, 759-61 
tone, 753-57 
tune, 757-59 

Symmetrical loss function, 136 
Symmetric charuiel, 127 
Synchronous overlap and add (SOLA), 818-19 
Syntactic constituents, 58 
Syntactic theory, 69 
Syntagmatic properties, 53 
Syntax: 

defined,58 
language, 545 

Synthesis-by-rule, 794, 796 
Synthesis epoch calculation, 823-24 
System initiative, 860 

T 
Tag question, 62 
Tags, 7 
Tail area, 115 
Tap and Talk interface, 934, 947-48, 951 
Task knowledge, 859 
TOMA Interim Standard 54, 360 
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Telecommunication Industry Association (TlA), 360 
Telephone speech, 338 
Telephony applications, 924-26 
Temporal masking, 35-36 
Testing set, 14 I 
Test procedure, 114 
Text analysis phase, 7 
Text normalization {TN), 692, 706-20 

abbreviations, 709-12 
acronyms, 711-12 
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Text nonnalization (TN) (cont.) 
domain-specific tags, 718-20 
chemical fonnulae, 719 
mathematical expressions, 718-19 
miscellaneous formats, 719-20 

evaluation, 730-32 
Festival case study, 732-35 
historical perspective, 735-36 
letter-to-sound (L TS) conversion, 728-30 
linguistic analysis, 720-23 
and closed-class function words, 722 
homograph disambiguation, 723, 724-25 
noun phrase (NP) and clause detection, 723 
POS tagging, 722-23 
sentence tagging, 722 
sentence type identification, 723 
shallow parse, 723 

morphological analysis, 725-27 
algorithm, 727 
suffix and prefix stripping, 726-27 

number formats, 712-20 
account numbers, 716 
cardinal numbers, 717-18 
dates, 714-15 
money and currency, 716 
ordinal numbers, 717 
phone numbers, 712-14 
times, 715 

Text and phonetic analysis, 689-738 
American-English vocabulary relevant to, 698 
data flow, 694-97 
skeleton, 695 

defined,692 
document structure detection, 692, 699-706 
grapheme-to-phoneme conversion, 692-93 
homograph disambiguation, 693 
letter-to-sound (LTS) conversion, 693 
lexicon, 697-98 
linguistic analysis, 692 
localization issues, 696-97 
modules, 692-94 
morphological analysis, 693 
natural language process (NLP) systems, 

693-94 
phoneticlanguages,692-93 
text normalization (TN), 692, 706-20 

Text-to-speech (TTS) conversion, 6-7 
Text-to-speech (TTS) system, 687-850 

basic system architecture of, 6 
goals of, 689-90 
phonetic analysis component, 7 
prosody, 739-91 
speech synthesis, 793-850 
speech synthesis component, 7 
tags, 7 
text analysis component, 6-7 
text and phonetic analysis, 689-738 

Index 

Text-to-speech (TTS) system evaluation, 834-44 
automated tests, 843-44 
Diagnostic Rhyme Test (DRT), 837 
functional tests, 842-43 
glass-box vs. black-box evaluation, 835-36 
global vs. analytic assessment, 836 
Haskins Syntactic Sentence Test, 839 
historical perspective, 844-47 
human vs. automated, 835 
intelligibility tests, 837-39 
judgment vs. functional testing, 835-36 
laboratory vs. field, 835 
Modified Rhyme Test (MRT), 838 
overall quality tests, 840-41 
Absolute Category Rating (ACR), 841 
Listening Effort Scale, 841 
Listening Quality Scale, 841 
Mean Opinion Score (MOS), 840 

phonetically balanced word list test, 839 
preference tests, 842 
Semantically Unpredictable Sentence Test, 837 
symbolic vs. acoustic level, 835 

TFIDF information retrieval measure, 576 
Third generation (JG) systems, 361 
Threshold of hearing (TOH), 22 
Threshold value, likelihood ratio, 139 
Throat, 25 
TIA/EWIS54,360 
TIA/EWIS-127-2, 361 
TIA/EWIS-733-1,361 
TILT, 760 
Timbre, 25, 32 
Time delay neural network (TONN), 458 
Time Division Multiple Access (TOMA), 360 
Time-scale modification epoch calculation, 826-27 
Time-synchronous Viterbi beam search, 622-26 

algorithm, 627 
use of beam, 624-25 

Time-synchronous Viterbi search, 666-67 
TN, See Text normalization (TN) 
ToBI realization models, 777-78 
ToBI (Tones and Break Indices) system, 749-50, 754, 

777 
boundary tolerance, 756 
intermediate phrasal tones, 756 
pitch accent tones, 755 

Toeplitz matrix, 296 
Toll quality, 344 
Tone, 753-57 
Tone determination, 770 
Tone-masking noise, 35 
Tongue,25 
Top-down chart parsing, 549-5 I 

top-down vs., 549-50 
Topic-adaptive models, 575-76 
Trachea, 25 
Trainability, 145 
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Training coipus, 559 
Training problem, 554 
Training set, 141. 419-20 
Transducers. acous1ical, 486-97 
Transfer func1ion. 210 
Transfonnation models, 454-55 
Transfonn coders, 350-51. 371_ 
Transfonn-domain LMS algonlhm, 502-3 
Transition network, 548 
Transmission delay, 339 
Transparenl quality, 358 
Tree-banked data, 878 . . 
Tree Je,cicon, efficien1 mampul:it1on of, 646-59 
Tree strucrure, 646 . 
Tree-trellis forward-backward search algonthms, 671 
Triangular windows, 280 
Trigram grammar, 465 
Trigrams, 559, 583 

search space with, 619-20 
Trilled r sound, 47 
Triphone model, 430 
Triphones, 808 
TIS models, 949 
TTS system, See Te,ct-to-speech (ITS) system 
Tune, 757-59 
Turing m:ich inc, 548 
Turing test, 3, 843 
Turn memories, 882 
Twiddle factors, 224 
Two-band conjuga1e quadrature fillers, 251-54 
Twoing rule, 181 
Two-place predicalcs, 67 
Two-tailed lest, 115-16 
Type abs1raction, 869-71 
Type-I filter, 233 
Type-n-Talk system, 847 

u 
Umethod, 147 
Uncenainty, 73, 121 
Uncorrela1ed orthogonal processes, 263 
Undergeneration, 876 
Understandability, of grammar, 546 
Unicode, 36 
Unidirectional microphones, 494-96 
Unification grnmmar, 584 
Unified frame- and segment-based models, 462-64 
Unifonn distributions, 85 

• Unifonn prior, 112 
Unifonn quantization, 340 
Unifonn search, 597 
Unigram, 559 

search space with, 616-17 
Unimodal distribution, 95 
Uniquely decipherable coding, 125 
United States Public Switched Telephone Network 

(PSTN), 371 
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Units, choice of, in concatenative speech synthesis. 
805-8 

Units of dialog, 860-61 
Universal encoding scheme, 126 
Universal Mobile Telecommunications System 

(liMTS), 361 
Unknown word, defined. 563 
Unstressed vowels, 430 
Unsupervised estimation methods, 163-75 

EM algorithm, 170-72 
multi\'ariate Gaussian mixture density estimation, 

I 7'2.-75 
vector quanti7_ation (VQ), 164-70 

Unsupervised learning, 141 
Upper bound of probability, 74 
U.S. Defense Advanced Research Projects Agency 

(DARPA), 467 
User expectations, managing, 942 
User initia1ive, 860, 867 
Utterance unit, 861 

V 
Variance, 79-81 
Vector quantization (VQ), I 64-70, I 9 I 

distortion measures, 164-66 
EM algonthm. 170-72 
K-means algorithm, 166-69 
LBG algorithm, 169-70 

Vector Taylor series, 535-37 
Velar consonants, 46 
Velum, 25 
Verbs, 54 
Verbs phrases (VPs), 59-61 
V-fold cross-delegation, I 88-89 
V-fold cross validation, 147 
Via Voice (IBM), 926 
Viterbi algori1hm, 387-89, 409, 609 
Viterbi approximation, 623 
Viterbi beam search, 625-26 
Viterbi decoder, 592 
Viterbi forced alignment, 630 
Viterbi slack decoder, 592 
Viterbi 1rellis, 624 
Vocabulary independence, 433 
Vocabulary selection, 578-80 
Vocal cords, 25 
Vocal fold cycling at lhe lamyx, 26 
Vocal fry, 330 
Vocal lract nom1alization (VTN), 427 
Yoder, 6 
Voice conversion, 834 
Voice effects. 834 
Voice FONCARD (Sprint), 931 
Voiceless plosive consonants, 43 
Voice over Internet protocol (Voice over IP), 359 
Voice portals, 925 
VoiceXML, 921 
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Voice Xpress, 926 
Voicing mechanism, 25-27 
Vowels, 24, 39-42 

Japanese, 46-47 
VQ, See Vector quantization (VQ) 

w 
Wall Street Journal (WSJ) Dictation Task, l l -12 
Waveform-approximating coders, 361 
Waveform interpolation, 367-70, 371 
Waveform mapping, 827-28 
Waveforms, fundamental frequency, 27 
Web pages, 705 
Whisper case study, 464-65 
Whispering effect, 834 
White noise, 269-70, 478-79 
Whole-word models, difficulty in building, 428 
Wh-question, 62 
Wide-band spectrograms, 282 
Wideband speech, 338 
Wide-sense stationary (WSS), 265 
Wiener filtering, 520-22, 540 

noncausal, 522 
Wiener-Hopf equation, 52 l 
Wiener-Khinchin theorem, 269 
Window design filter, 235-36 
Window design FIR lowpass filters, 235-36 
Window function, 255, 277-78 
Window functions, 230-32 

generalized Hamming window, 231-32 
rectangular window, 230-31 

Wizard-of-Oz (WOZ) experimentation, 950 
Word classes, 57 
Word-dependent n-best and word-lattice algorithm, 

667-70 
Word error rate, 420-21 

algorithm to measure, 421 
Word error rate comparisons, humans vs. machines, 12 
Word-final unit, 659 
Word graphs, 664-66 

Word-initial unit, 658 
Word-lattice algorithm: 

one-pass 11-best and, 669-70 
word-dependent n-best and, 667-70 

Word-lattice generation, 672-73 
Word lattices, 664-66 
Word-level stress, 431 
Word recognition errors, types of. 420 
Words, 20, 53-57 

natural affinities/disaffinities, 65 
Word-spotting applications, 454 
World knowledge, 859 
Written vs. spoken languages, 855-58 

disfluency, 857 
style, 856-57 

X 
x' disnibutions, 95-96 
X-bar theory, 885 
XML, 699-700 
X-template, 58 

y 
Yes-no question, 62 
Yule-Walker equations, 291-92, 299 

z 
Zero-mean process, 262 
Zero-one loss function, 136 
Zero padding, 227, 280 
Zeros, 213 
Z test, 115-16 
Z-transforms, 211-12 

of elementary functions, 212-15 

Index 

inverse z-transform of rational functions, 213-15 
left-sided complex exponentials, 213 
right-sided complex exponentials, 212-13 

properties of, 215-17 
convolution property, 215 
power spectrum and Parseval's theorem, 216 
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Keep Up-to-Date with 

PH PTR Online~ 
We strive to stay on the cutting edge of what's happening in 
professional computer science and engineering. Here's a bit of what 
you'll find when you stop by www.phptr.com: 

Special interest areas offering our latest books, book series, software, 
features of the month, related links and other useful information to 
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