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1. I am the Director, Board Governance & Policy Development at The Institute of 

Electrical and Electronics Engineers, Incorporated (“IEEE”). 

2. IEEE is a neutral third party in this dispute. 

3. I am not being compensated for this declaration and IEEE is only being reimbursed for 

the cost of the article I am certifying. 

4. Among my responsibilities as Director of Board Governance & Policy Development, I 

act as a custodian of certain records for IEEE. 

5. I make this declaration based on my personal knowledge and information contained in 

the business records of IEEE. 

6. As part of its ordinary course of business, IEEE publishes and makes available 

technical articles and standards. These publications are made available for public 

download through the IEEE digital library, IEEE Xplore. 

7. It is the regular practice of IEEE to publish articles and other writings including article 

abstracts and make them available to the public through IEEE Xplore. IEEE maintains 

copies of publications in the ordinary course of its regularly conducted activities. 
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Munich, Germany, 1997, pp. 987-990 vol.2, doi: 

10.1109/ICASSP.1997.596105. 
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in the ordinary course of IEEE’s business. Exhibit A-Exhibit E are true and correct 

copies of the Exhibits as they existed on or about June 12, 2025. 

10. The article and abstract from IEEE Xplore show the date of publication. IEEE Xplore 

populates this information using the metadata associated with the publication. 

11. I. Bazzi and J. Glass, "Heterogeneous Lexical Units for Automatic Speech Recognition: 

Preliminary Investigations," was published in 2000 IEEE International Conference on 

Acoustics, Speech, and Signal Processing Proceedings (Cat. No.00CH37100), held on 

June 5-9, 2000, in Istanbul, Turkey. Copies of the conference proceedings were made 

available no later than the last day of the conference. This article was added to the IEEE 

digital library Xplore on August 6, 2002, as shown from the abstract from IEEE Xplore, 

and was publicly available for download from IEEE Xplore by August 6, 2002, and is 

currently available for public download from the IEEE digital library, IEEE Xplore. 

12. J. Glass, J. Chang and M. McCandless, "A Probabilistic Framework for Feature-Based 

Speech Recognition," was published in Proceeding of Fourth International Conference 

on Spoken Language Processing ICSLP '96, held on October 3-6, 1996, in 

Philadelphia, PA, USA.  Copies of the conference proceedings were made available no 

later than the last day of the conference. This article was added to the IEEE digital 

library Xplore on August 6, 2002, as shown from the abstract from IEEE Xplore, and 

was publicly available for download from IEEE Xplore by August 6, 2002, and is 
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13. J. R. Glass, T. J. Hazen and I. L. Hetherington, "Real-Time Telephone-Based Speech 

Recognition in the Jupiter Domain," was published in 1999 IEEE International 

Conference on Acoustics, Speech, and Signal Processing Proceedings ICASSP99 (Cat. 

No. 99CH36258), held on March 15-19, 1999, in Phoenix, AZ, USA. Copies of the 

conference proceedings were made available no later than the last day of the 

conference. This article was added to the IEEE digital library Xplore on August 6, 

2002, as shown from the abstract from IEEE Xplore, and was publicly available for 

download from IEEE Xplore by August 6, 2002, and is currently available for public 

download from the IEEE digital library, IEEE Xplore. 
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14. Jilei Tian, J. Nurminen and I. Kiss, "Optimal Subset Selection from Text Databases," was 

published in Proceedings (ICASSP '05) IEEE International Conference on Acoustics, 

Speech, and Signal Processing, 2005, held on March 23, 2005, in Philadelphia, PA, USA. 

Copies of the conference proceedings were made available no later than the last day of the 

conference. This article was added to the IEEE digital library Xplore on May 9, 2005, as 

shown from the abstract from IEEE Xplore, and was publicly available for download from 

IEEE Xplore by May 9, 2005,  and is currently available for public download from the IEEE 

digital library, IEEE Xplore. 

15. Su-Lin Wu, M. L. Shire, S. Greenberg and N. Morgan, "Integrating Syllable Boundary 

Information into Speech Recognition," was published in 1997 IEEE International 

Conference on Acoustics, Speech, and Signal Processing, held on April 21-24, 1997, in 

Munich, Germany. Copies of the conference proceedings were made available no later 

than the last day of the conference. This article was added to the IEEE digital library 

Xplore on August 6, 2002, as shown from the abstract from IEEE Xplore, and was 

publicly available for download from IEEE Xplore by August 6, 2002,  and is currently 

available for public download from the IEEE digital library, IEEE Xplore. 
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Abstract:
This paper explores the use of the phone and syllable as primary units of representation in the first stage of a two-stage
recognizer. A finite-state transducer speech recognizer is utilized to configure the recognition as a two-stage process,
where either phone or syllable graphs are computed in the first stage, and passed to the second stage to determine the
most likely word hypotheses. Preliminary experiments in a weather information speech understanding domain show
that a syllable representation with either bigram or trigram language models provides more constraint than a phonetic
representation with a higher-order n-gram language model (up to a 6-gram), and approaches the performance of a
more conventional single-stage word-based configuration.
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Abstract:
Most current speech recognizers use an observation space which is based on a temporal sequence of "frames" (e.g.
Mel-cepstra). There is another class of recognizer which further processes these frames to produce a segment-based
network, and represents each segment by fixed-dimensional "features". In such feature-based recognizers, the
observation space takes the form of a temporal network of feature vectors, so that a single segmentation of an
utterance uses a subset of all possible feature vectors. In this paper, we examine a maximum a-posteriori decoding
strategy for feature-based recognizers and develop a normalization criterion that is useful for a segment-based Viterbi
or A* search. We report experimental results for the task of phonetic recognition on the TIMIT corpus, where we
achieved context-independent and context-dependent (using diphones) results on the core test set of 64.1% and
69.5% respectively.
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Abstract:
This paper describes our experiences with developing a real-time telephone-based speech recognizer as part of a
conversational system in the weather information domain. This system has been used to collect spontaneous speech
data which has proven to be extremely valuable for research in a number of different areas. After describing the corpus
we have collected, we describe the development of the recognizer vocabulary, pronunciations, language and acoustic
models for this system, the new weighted finite-state transducer-based lexical access component, and report on the
current performance of the recognizer under several different conditions. We also analyze recognition latency to verify
that the system performs in real-time.
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Hide First Page Preview 

SECTION 1
Introduction

Most automatic speech recognition (ASR) and text-to-speech (TTS) systems contain models that have to be
trained with text data. Typical examples can be found from many parts of the systems. In pronunciation
modeling, some data-driven approach, such as neural network based methods or decision tree based methods
[6], are often applied, especially for languages like English. These statistical models are trained using a
pronunciation dictionary containing grapheme-to-phoneme entries. In text-based language identification [8],
the model is trained using a multilingual text corpus that consists of word entries from the target languages.
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In the data-driven syllabification task [7], the model is trained using text-based pronunciations and the
corresponding syllable structures.

In all data-driven approaches, the selection of a suitable training set can be regarded as a very important step
in the training process. In general, the performance of any trained model depends quite strongly on the
quality of the text data used in the training. With text-based data, the importance of the training set selection
is very pronounced since the generation of the training data entries is often very time and resource consuming
and requires language-specific skills. In this paper, we show that systematic training set selection results in
enhanced model performance and/or offers the possibility to use a smaller training set size. In practice, the
reduced training set size brings two significant additional benefits. First, the amount of manual annotation
work is reduced, which in turn decreases the probability of errors and inconsistencies in the annotations.
Second, the memory consumption and the computational load caused by the training process are lowered. In
some cases this advantage propagates to the trained model as well; the size of a decision tree model, for
example, depends on the size of the training set.

Despite the evident importance of the training set selection, this step is often neglected in practice. Usually,
the training set is obtained by collecting a set of random entries from a larger text database or by decimating a
sorted corpus. The drawback of these solutions is that the amount of meaningful information in the selected
text data set is not maximized. The random selection method is rather coarse and does not produce consistent
results. The method of decimating a sorted data corpus, on the other hand, only uses a limited number of the
initial characters of the strings and thus does not guarantee good performance.

In this paper, we present a method that can quasi-optimally select a subset from a text database in such a
manner that the text coverage is maximized. To achieve this, we define an objective function that is optimized
in the subset selection. The objective function measures the “subset distance”. using the generalized
Levenshtein distances between the text strings. This paper also introduces an algorithm for optimizing the
objective function. For practical applications with large databases, the algorithm can be modified in order to
speed up the processing or to lower the memory consumption, but the main idea and the objective function
will remain useful in all cases. To demonstrate the usefulness of the proposed approach, we evaluate it in the
syllabification task.

The text subset selection method introduced in this paper can be used in a wide variety of different
applications. One good example is the language identification task [8], in which the proposed approach makes
it possible to easily balance the number of training set entries from each target language while at the same
time giving a good coverage for every target language. In addition to the training set selection task discussed
extensively in this paper, it is possible to employ the same techniques for clustering a text database. Moreover,
when used together with a meaningful distance measure, such as the generalized Levenshtein distance, the
proposed approach enables the use of vector quantization techniques on text data.

The remainder of the paper is organized as follows. We first describe the generalized Levenshtein distance
and introduce the basic principles of the text database selection algorithm in Section 2. In Section 3, we
describe the syllabification task used as the practical example by briefly reviewing the syllable structure
grammar and the neural network based syllabification method. The performance of the proposed subset
selection approach is evaluated in the syllabification task in Section 4. Finally, some concluding remarks are
presented in Section 5.

SECTION 2
Selection Algorithm

In order to be able to select a subset from a text database in a systematic and meaningful manner, an objective
function measuring the quality of the subset must be defined. The objective function should somehow
measure the similarity or the dissimilarity of the entries. In the proposed approach, we base the objective
function on the generalized Levenshtein distance. In this section, we first describe the basic properties of this
distance measure and then continue by defining an objective function measuring the average distance within
a subset and by introducing an algorithm for selecting subsets of different sizes in a quasi-optimal manner.

2.1 Generalized Levenshtein distance
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The generalized Levenshtein distance (GLD) is defined as the minimum cost of transforming one string into
another by means of a sequence of basic transformations: insertion, deletion and substitution [4]. The
transformation cost is determined by the costs assigned to each basic transformation.

Let  and  be strings of length  and , respectively, whose symbols belong to a finite alphabet of size .
Let  be the th symbol of string , with , and  be the prefix of the string  of length , i.e. the
substring containing the first  symbols of . In addition, let  be the distance between  and ,
and  be an empty string. Furthermore, we denote by ,  and  the cost of substituting
the symbol  with the symbol , the cost of deleting  and the cost of inserting , respectively. The distance

 is recursively computed based on the definitions of ,  and
, representing the initial distance, the cost of deleting the prefix  and the

cost of inserting the prefix , respectively, as follows:

View Source

The original Levenshtein distance is characterized by the following costs: , , and
 is 0 if  is equal to  and 1 otherwise. Its generalized version assumes that different costs can be

associated to transformations involving different symbols. In the case of an alphabet of  symbols, this
requires a table of size  times , called the cost table, to store all the substitution, insertion and
deletion costs. It can be shown that the defined distance is a metric if the cost table is symmetric.

2.2 Objective function and selection algorithm

In our approach, we measure the quality of a text subset using an objective function based on the generalized
Levenshtein distance. As described in Section 2.1, the Levenshtein distance can be used for measuring the
distance between any pair of entries. Similarly, the distance for the whole text data set can be calculated by
averaging the distances of all the string pairs in the set. Suppose that there are  entries in the database and
the th entry is denoted by . With these definitions, we can compute the overall “subset distance”.  as:

View Source

where  is the GLD between the th and th entries.

Based on the above objective function, it is possible to design an algorithm that selects a subset from a text
database in such a manner that the distance  is maximized. The following algorithm recursively constructs
the subset by always selecting the new entry that maximizes the distance to the other selected entries.

1. Calculate the Levenshtein distances for all the pairs; ;

2. Initially select the pair that has the largest distance among all pairs in the database,

View Source

x y m n S

xi i x 1 ≤ i ≤ m x(i) x i

i x d(i, j) x(i) y(j)

E w(a, b) w(a, ε) w(E, b)

a b a b

d(m,n) d(0, 0) d(i, 0)

d(0, j)(i = 1 …m, j = 1 …n) x(i)

y(j)

d(0, 0) = 0

d( 0) = d(i − 0) + w( , ε)∀i = 1 … ,mi2 12 xl

d(0, j) = d(0, j − 1) + w(ε, )∀j = 1 … ,nyj

d(i, j) = min
⎧
⎩⎨

d(i − 1, j) + w( , e)xi
d(i, j − 1) + w(e, )yj
d(i − 1, j − 1) + w( , )xi yj

(1)

(2)

w(a, ε) = 1 w(ε, b) = 1

w(a, b) a b

S

(s + 1) (s + 1)

m

i e(i) D

D = ,

2 ⋅ ld(e(i), e(j))∑
i=1

m

∑
j>i

m

m ⋅ (m − 1)
(3)

ld(e(i), e(j)) i j

D

ld(e(i), e(j))

((subse e(1), subse e(2)) = arg {ld(e(i), e(j))}.t− t− max
(l≤m,j>i)

(4)

6/12/25, 3:20 PM Optimal subset selection from text databases | IEEE Conference Publication | IEEE Xplore

https://ieeexplore.ieee.org/document/1415111 4/10

Page 13 of 46

javascript:void()


3. Assuming that the selected subset has  entries (in the first time ), the target now is to find the
-th entry to the subset. The selection that approximately maximizes the amount of new

information brought into the subset can be done using the following formula.

View Source

The selected entry  is added into the subset as .

4. Repeat step 3 until the preset subset size is reached.

k k = 2

k + 1

p = arg { , subse e(j)}⋅max
(l≥i≥m)

∑
j=1,e(i)≠subse e(j)t−

k

t− (5)

p subse e(k + 1)t−

SECTION 3
Example Application: Syllabification Task

The development of speech synthesizers and speech recognizers often requires working with sub-word units
such as syllables [5]. We have earlier described a neural network based approach for the automatic
assignment of syllable boundaries in [7]. In this paper, we revisit the topic and use this syllabification task for
verifying the usefulness of the proposed subset selection approach. The first part of this section gives some
basic information on the task and the second part discusses the neural network approach. The practical
results achieved in this task are presented in Section 4.

3.1 Syllable structure

A syllable is a basic unit of word studied on both the phonetic and phonological levels of analysis [2]. The
syllable information can be described using grammars [3]. The simplest grammar is the phoneme grammar,
where a syllable is tagged with the corresponding phoneme sequence. The consonant-vowel grammar
describes a syllable as a consonant-vowel-consonant (CVC) sequence. The syllable structure grammar, on the
other hand, divides a syllable into onset, nucleus and coda (ONC) as shown in Figure 1. The nucleus is an
obligatory part that can be either a vowel or a diphthong. The onset is the first part of a syllable consisting of
consonants and ending at the nucleus of the syllable, e.g. in the syllable ,  is the onset and the
vowel part  is the nucleus. The part of a syllable that follows the nucleus forms the coda. The coda is
constructed of consonants, e.g.  in our example syllable. The nucleus and coda are combined to form
the rhyme of a syllable. A syllable has a rhyme, even if it doesn't have a coda.

In the syllable structure grammar, the consonants are assigned as onset or coda. The ONC representation
used in the syllable structure grammar contains more information than the CVC structure for multi-syllable
words. The syllable structure grammar was used in [7] and it is also used in this paper.

In the automatic syllabification task, the phoneme sequences are mapped into their ONC representations.
The data-driven syllabification model is trained on the mapping information. In the decoding phase, given a
phoneme sequence, the ONC sequence is first generated, and then the syllable boundaries are uniquely
decided on the ONC sequence. For invalid ONC sequences, a self-correction algorithm [7] can be applied to
solve the problem by utilizing certain common linguistic rules. The whole syllabification task can be
summarized as follows:

1 Each pronunciation phoneme string in the training set is mapped into the corresponding ONC string,
for example: (word)  (pronunciation) 

2 The model is trained on the data in the format of “pronunciation -> ONC”. 3. Given a pronunciation
string, the corresponding ONC sequence is generated using the model. Then, the syllable boundaries are
placed at the location starting with symbol “ ,” or with “ ” if it is not preceded with symbol “ ”.

[tehkst] /t/

/eh/

/kst/

text− > tehkst− > (ONC)ONCCC

O N O

6/12/25, 3:20 PM Optimal subset selection from text databases | IEEE Conference Publication | IEEE Xplore

https://ieeexplore.ieee.org/document/1415111 5/10

Page 14 of 46

javascript:void()
javascript:void()
javascript:void()
javascript:void()
javascript:void()
javascript:void()


3.2 Neural network based syllabification approach

The basic neural network based ONC model presented in [7] is a standard multi-layer perceptron (MLP)
shown in Figure 2. The input phonemes are presented to the MLP network in a sequential manner. The
network gives estimates of ONC posterior probabilities for each presented phoneme. In order to take the
phoneme context into account, a number of phonemes on each side of the phoneme in question are also used
as inputs to the network. Thus, a window of phonemes is presented to the neural network as input. Figure 2
shows a typical MLP with a context size of  phonemes,  centered at phoneme . The
centermost phoneme  is the phoneme that corresponds to the output of the network. Therefore, the
output of the MLP is the estimated ONC probability  for the
centermost phoneme  in the given context . A phonemic null is defined in the phoneme set
and is used for representing phonemes to the left of the first phoneme and to the right of the last phoneme in
a pronunciation.

The ONC neural network is a fully connected MLP, which uses a hyperbolic tangent sigmoid shaped function
in the hidden layer and a softmax normalization function in the output layer. The softmax normalization
ensures that the network outputs are in the range [0], [1] and sum up to unity,

View Source

In Equation (6),  and  denote the th output value before and after softmax normalization. It has been
shown in [1] that a neural network with softmax normalization will approximate class posterior probabilities
when trained for one-out-of-  classification and when the network is sufficiently complex and trained to a
global minimum. Since the neural network input units are text-valued, the phonemes in the input window
need to be transformed to some numeric quantity. This can be done, for example, using an orthogonal
codebook representing the alphabet used for the ONC mapping task, as shown in Table 1. The last row in the
table is the code for the phonemic null. An important property of the orthogonal coding scheme is that it
does not introduce any correlation between the different letters.

Figure 1. Diagram of the syllable structure grammar.



w p … phi−w hi+w phi

phi

P(on |p … , p )(on ∈ {O,N ,C})ck hi−w hi+w ck

phi …pi−w pi+u

= ⋅Pi

eyi

∑
j=1

3

eyj

(6)

yi Pi i

N
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The ONC neural network is trained using the standard back-propagation (BP) algorithm augmented by a
momentum term. Each phoneme with context and the corresponding ONC tag of the pronunciation make up
one training example. Weights are updated in a stochastic on-line fashion. All parameters are rounded off to
eight bits as this was found sufficient for representing model parameters.

The outputs of the ONC neural network approximate the ONC posterior probabilities corresponding to the
centermost phoneme. The ONC sequence of a pronunciation is obtained by combining the network outputs
for each individual phoneme in the pronunciation. Given a pronunciation with its phonemic representation,
the ONC tag of phoneme  is given by

View Source

where  is the network output corresponding to  given the input phonemes
, and variable  denotes the phoneme window context size, respectively. The variable 

takes its values from the set .

Figure 2. Two-layer neural network architecture.



Table 1. Orthogonal phoneme coding scheme.



phi

onc = arg {P(on |p , … , p )},max
nock

ck hi−w hi+w (7)

P(on |p , … , p )ck hi−w hi+w onck

p … phi−w hi+w w onc

[ONC]
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SECTION 4
Experimental Results

The neural network based syllabification method is evaluated using the CMU dictionary for US English. The
dictionary contains 10,801 words with their pronunciations and labels with ONC information. The
pronunciations and the mapped ONC sequences are extracted to form the training data. The training set is
selected from the whole database by using the following methods:

Decimation of the sorted dictionary (denoted as DECIMATE);

Subset selection from the text database using the selection approach proposed in this paper (denoted as
SELECT).

With both methods, the data not selected to the training set constitutes the test set.

Figure 3 shows the experimental results achieved using the two data selection methods. The efficiency of the
training set selection approach can be studied by evaluating the generalization capability. The general rule of
thumb is that the more training data is available, the better performance can be expected. However, the
selection of the training data affects the generalization capability: if the training data is well selected, the
performance can be improved without increasing the size of the training set. The results clearly show that the
proposed subset selection technique outperforms the commonly used decimation method; the average
improvement achieved using the proposed approach is 38.8%.

Figure 4 illustrates the “subset distance”. (see Section 2.2) of datasets extracted using the two different data
selection methods: the decimation technique and the proposed selection algorithm. It is easy to see that the
average distance  is more or less even when the decimation method is used. With the proposed method, the
average distance decreases monotonically with increasing data size. Furthermore, the difference between the
two methods is large with small subset sizes, and converges to zero when the whole data set is used. Thus,
these results indicate that the proposed method can extract data more efficiently, i.e. the selected data has
better coverage. Naturally, this explains the better generalization capability of the trained model.

Figure 3. ONC accuracy on test set with different training set sizes using the two data selection
methods.
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Figure 4. Average distance  inside the subsets extracted using the two different data
selection methods, with respect to the percentage of the subset size vs. the whole data size.
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SECTION 5
Conclusions

Training data selection from a text database is a crucial, but often neglected, step in the development of ASR
and TTS systems. In this paper, we define an objective function that effectively measures the quality of a
selected subset. Moreover, we introduce a subset selection algorithm that optimizes the objective function.
Our experimental results obtained in the syllabification task show that the proposed approach is a very
promising technique that makes it possible to select subsets with good coverage in a systematic and
meaningful way. The presented idea can be used in many different applications that require training with a
text database.
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HETEROGENEOUS LEXICAL UNITS 
FOR AUTOMATIC SPEECH RECOGNITION: 

PRELIMINARY INVESTIGATIONS 

I s sam Bazxi and James  Glass 

Spoken Language Systems Group 
Laboratory for Computer Science 

Massachusetts Institute of Technology 
Cambridge, Massachuset ts 02 139 USA 

ABSTRACT 

This paper explores the use of the phone and syllable 
8s primary units of representation in the first stage of a 
two-stage recognizer. A finite-state transducer speech rec- 
ognizer is utilized to  configure the recognition as a two- 
stage process, where either phone or syllable graphs are 
computed in the first stage, and passed to the second stage 
to  determine the most likely word hypotheses. Prelirriinary 
experiments in a weather information speech understanding 
domain show that  a syllable representation with either bi- 
gram or trigram language models provides more constraint 
than a phonetic representation with a higher-order n-gram 
language model (up to a 6-gram), and approaches t h e  per- 
formance of a more conventional single-stage word-based 
configuration. 

L 

1. INTRODUCTION 

Most conventional speech recognition systems represent the 
search space as a directed graph of phone-like units. These 
graphs are typically determined by the allowable pronun- 
ciations of a given word vocabulary, with word (and thus 
phone) sequences being prioritized by word-level constraints 
such as n-grams. This framework has proven to  be very ef- 
fective, since i t  combines multiple knowledge sources into 
a single search space, rather than decoupling the search 
into multiple stages, each with the potential to  introduce 
errors. Although multi-stage searches have been explored, 
they typically all operate with the word as a basic unit. 

Although this framework has worked extremely well, 
* the  use of the word as the main unit of representation has 

some difficulties in certain situations. One common prob- 
lem is that  for any reasonably-sized domain, it is essentially 
impossible to  predefine a word vocabulary. For example, 
in our weather information system, we are constantly faced 
with new words spoken by users (e.g., city names, concepts). 
we would have this problem no matter how large our vo- 
cabulary was, since the vocabulary of the English language 
1s constantly growing and changing. I t  is thus not possible 
to  define a word vocabulary, no matter how large, tha t  will 
forever cover all conceivable spoken words. One problem 

This material is based upon work supported by the National 
Science Foundation under Grant No. IRI-9618731 

with out-of-vocabulary words, is that  they introduce errors 
into the recognition system (typically more than one), since 
the recognizer will fit the phonetic sequence with the best- 
fitting set of words which exist in its vocabulary. 

A similar phenomenon to  out-of-vocabulary words is 
that of partially spoken words, which are typically produced 
in more conversational or spontaneous speech applications. 
These phenomena also teiid to  produce errors since the rec- 
ognizer matches the phonetic sequence with the best fitting 
words in its active vocabulary. 

Since the domains we work on tend to  have both of 
these properties, we have begun to  explore methods that  
can be used to  model out-of-vocabulary and partial words 
which are based on the use of more flexible sub-word units 
(such as phones or syllables, which are not constrained to  
match the active word vocabulary). Sub-word units such as 
phones and syllables have the attractive property of being 
a closed set, and thus will be able to  cover new words, and 
can conceivably cover most partial word utterances as well. 
While these methods can conceivably fit within a domain- 
dependent word-brtsed recognition architecture, we are also 
interested in exploring their use as a separate first stage, 
operating independently of a given vocabulary. 

One of the main reasons for exploring the utility of 
a domain-independent first stage is to  attempt to separate 
domain-independent constraints from domain-dependent one 
in the speech recognition process. Currently, most speech 
recognizers are tuned to  a particular domain, for both 
acoustic and linguistic modeling. In our experience, this 
is especially true of the language model, which can provide 
tremendous constraint to  the search space. We are inter- 
ested in exploring the viability of incorporating domain- 
independent constraints in a first-stage process, and leaving 
domain-dependent constraints to  a second-stage search. 

For speech understanding systems, a two-stage recog- 
nizer might enable alternative integration strategies with 
natural language understanding. To date, most such sys- 
tems are loosely coupled a t  the word-level via N-best or 
word graph interfaces. An alternative unit might allow for 
more integrated search strategies (e.g., [I]), with a unified 
word-based language model. 

A two-stage recognizer configuration might also provide 
for a more flexible deployment strategy. For example, a 
user interacting with several different spoken dialogue do- 
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mains (e.g., weather, travel, entertainment), might have where L,, and G, are the phone lexicon and grammar, re- 
their speech initially processed by a domain-independent spectively, while L and G are the corresponding word lexi- 
first stage, and thcn subsequently processed by domain- con and grammar, which are the same as those in tlie basic 
dependent recognizers. For client/server architectures, a word recognizer configuration. For our phone recognizer, 
two-stage recognition process could be configured to have L, is a trivial FST and can be discardcd, since tlie phone 
the first stage run locally on small client devices (e.g., hand- units in P are already the basic units of the word lexicon. 
held portables) and thus potentially require less bandwidth The phone grammar, G,, can consist of a phone-level 71- 

to  communicate with remote servers for the second stage. gram language model. Since the phone inventory size is 
In this work we have begun to  examine whether we can small we are able to  run with higher-order n-grams than we 

create a two-stage recognizer with a domain-independent would be able to  with words. 
first stage, without sacrificing accuracy due to the lack Although there are many possible ways to  explore the 
of word-level constraints in the first stage. In particular phone composition, S ,  we have only explored one way thus 
we were interested in understanding whether better-trained far. In our experiments, we precompose L and G as in the 
(due to  fewer units) sub-word models could provide a useful baseline word recognizer. During the first stage of recogni- 
source of information to  our recognizer. tion, we compute a phone graph from the composition of P 

Although we are ultimately interested in out-of-vocab- and G,. This graph is then composed with the word FST to 
ulary and partial word phenomena, as well as domain- produce the best word hypothesis. We express this search 
independence, these topics have not been part of these order in the following expression: 
initial investigations. Instead we have examined only the 
best-case scenario for a word-based recognizer [i.e.% within- S = ( P o  G,) o ( L  o G )  (3) 

L 

v , .  

vocabulary utterances only). Our motivation was to  estab- 
lish that a two-stage system could at least be competitive in 
this environment, since we hope that it can surpass a.word- 
based approach in non-optimal situations. We have also 
allowed our first-stage recognizers to  be domain-dependent, 
to  establish at least an  upper bound on performance. The 
following sections outline our strategy and report prelim- 
inary experiments with two possible sub-word representa- 
tions, namely the phone and the syllable. 

2. RECOGNIZER ARCHITECTURE 

In this work we use the SUMMIT segment-based speech 
recognition system [2]. Typical recognizer configurations 
deploy a bigram language model in a forward Viterbi search, 
while a trigram (or higher-order) language model is used in 
a backward A' search. The S U M M I T  system uses a weighted 
finite-state transducer (FST) representation of the search 
space (31. In this framework, recognition can be viewed as 
finding the best path(s) in the composition: 

S = P o L o G ,  (1) 
where P represents the scored phonetic graph, L is the lex- 
icon mapping pronunciations to  lexical units, and G is the 
language model. Equation (1) shows how a typical recog- 

j nizer is formulated as a compositions of three FST's. How- 
ever, this FST framework allows for a variety of composi- 
tions and  flexibility in the composition order. In typical 
recognizer configurations, L and G are precomposed prior 
to recognition, and are then composed with P during recog- 
nition to create one single large search space. In the follow- 
ing sections, we describe how we can divide this composi- 
tion into two stages, using either phones or syllables as the 
first-stage unit of representation. 

2.1. The Phone Recognizer 

A two-stage search using phones as the first-stage unit of 
representation can be represented in FST notation as: 

S = P o L p o G p o L o G  (2) 

Since the phone vocabulary is quite small, the first stage can 
potentially be much faster than the baseline word recogni- 
tion system. We wished to understand how much the phone 
grammar G, could compensate for the loss of higher-level 
word constraints during the first stage, and whether the 
two-stage search would suffer higher word error rates. 

2.2. The Syllable Recognizer 

A two-stage search using syllables as the first-stage unit of 
representation can be represented in FST notation as: 

S = P O L ,  oG, o L,  o G  

where L, and G, are the syllable lexicon and grammar, 
respectively. The syllable lexicon, L,, is created from the 
word lexicon, L,  through a direct mapping from phonetic 
units to  syllabic units. For each word in the lexicon, we par- 
tition the phone sequence into syllables using an automatic 
syllabification procedure [5]. Entries in the second-stage 
word lexicon, L,, are represented by sequences of syllable 
units. Syllable graphs are used to  represent words with 
multiple pronunciations. 

To build the syllable language model, C,, we start with 
a word-based training set, and partition the words into syl- 
lables to  obtain syllable sequences for training a syllable bi- 
gram or trigram. For words with multiple pronunciations, 
we randomly select one of the allowed pronunciations and 
use the corresponding sequence of syllables. 

The two-stage search configuration for the syllable-based 
recognizer is similar to  the phone-based recognizer. In the 
first stage we compute a syllable graph by searching the 
composition of P with the precomposed FST L, o G,. The 
second-stage search composes this FST with the precom- 
posed word FST L,  o G. We describe this search as: 

(4) 

S = ( P o  L, o G,) o ( L ,  o G )  (5) 

For the syllable-based experiments, we were interested 
in learning whether syllable constraints in the first stage 
could better compensate for the loss of word information 
than could phonetic constraints alone. 
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I Recognition unit I n-gram order I PER (%) I 
I Word I 2 1  5.9 I 

Phone 4 1  19.5 

0 M O O  IOW0 15000 
Syllable Vocabulary Sire 

Phone 

Figure 1: Word coverage versus syllable vocabulary size. 

6 1  15.9 

In order to explore the  degradation of splitting the 
search into two stages, we also examined a single compo- 
sition and search for the syllable representation. In these 
experiments, L,  oG,, and L,  oG were precomposed, but the 
final composition with P was done dynamically in a single 
search. The dynamic composition allowed us to  explore the 
full search space in a single pass. 

Although a closed-set syllable recognizer would require 
all possible syllables for a given language, in practice it 
might be desirable to  utilize a subset of syllables which 
provide good coverage for a particular domain. The subset 
could be created via a selection criterion which maximizes 
coverage of a particular vocabulary. 

To better understand vocabulary coverage with syl- 
lables, we examined the LDC PRONLEX dictionary which 
contains 90,694 words with 99,202 unique pronunciations. 
When these pronunciations were syllabified we obtained a 
total of 14,570 syllables. Figure 1 plots the vocabulary cov- 
erage as a function of the number of syllables. Our selection 
criterion was based on the most frequently occurring sylla- 
bles in the lexicon. The figure indicates that  the coverage 
quickly increases as we add more syllables to the inventory. 
For example, using a syllable inventory of 1,000 syllables 
covers around 45,000 words, a fairly large coverage for a 
relatively small syllable vocabulary. 

3. EXPERIMENTS AND RESULTS 

The experiments described in this section are all within the 
JUPITER weather information domain [3]. In the following 
sections we first give a brief description of the baseline sys- 
tem and report both word and phonetic error rates. We 
then present phonetic error rates for the first stage of the 
phone and syllable recognizers. Finally, we report word er- 
ror rates of the  full two-stage systems. 

Table 1: Phonetic error rates for first stage recognizers. 

3.1. The Baseline System 

The baseline system used a similar configuration to that 
which has been reported previously [3]. A set of context- 
dependent diphone acoustic models were used, whose fea- 
ture representation was based on the first 14 MFCC’s aver- 
aged over 8 regions near hypothesized phonetic boundaries. 
Diphones were modeled using diagonal Gaussians with a 
maximum of 50 mixtures per model. The word lexicon con- 
sisted of a total of 1957 words, many of which have multiple 
pronunciations [3]. The training set used for these experi- 
ments consists of 46,685 utterances used to train both the 
acoustic and the language models. The test set consists 
of 1169 utterances. This test data consists of sets of calls 
randomly selected over our data collection period (31. 

3.2. Phonetic Recognit ion Experiments 

Since we wanted to  be able to compare performance across 
our different recognizer configurations, we first evaluated 
the phonetic error rate (PER) for each system. Reference 
phonetic transcriptions were computed by creating forced 
paths (i.e., constrained by the orthography). The PER for 
the baseline word-based system was computed by taking 
the best phonetic sequence of the top word hypothesis (i.e., 
Viterbi output). As shown in Table 1, we obtained a 5.9% 
PER for the baseline word-based system. 

For the phone-based recognizer, the phone lexicon, L,, 
consisted of all phonetic units in JUPITER. The resulting vo- 
cabulary size of the phone recognizer was 61 phones. We ex- 
perimented with four different phone n-gram models (n=3- 
6) for G,. Table 1 shows the PER as a function of the 
n-gram order. Going from a trigram to  a 6-gram, we note 
around 32% reduction in PER (from 24.0% to 15.9%). 

For the syllable-based recognizer, we started with the 
JUPITER vocabulary of 1957 words. Breaking the words 
into syllables, we obtained a syllable lexicon, L,, of 1624 
syllables. For the syllable n-gram, G, , we experimented 
with both a bigram and a trigram on sequences of syllables. 
As we can see from Table 1, we obtained a PER of 14.3% 
with a syllable bigram, and 12.1% with a syllable trigram. 

3.3. Word Recognition Experiments 

Following the first-stage experiments, we evaluated the word 
error rate (WER) performance for the baseline word-based 
system, and the phone- and syllable-based systems. As 
shown in Table 2, the WER for the baseline system using a 
bigram word-level language model is 10.4%. 
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Condition 
Baseline, word-level 
Phone maDhs 

WER (%) 

10.4 
15.7 

Table 2: Word error rates for word-, phone-, and syllable- 
based recognizers. 

Syllable graphs 

For the phone-based recognizer, we considered a two- 
stage search which used the best performing n-gram for G, 
(i.e., n=6). When the phone graph output was composed 
with the word-level lexicon and grammar, L o G, the WER 
was 15.7%. For the syllable-based two-stage search, we used 
a syllable trigram for G,. When the syllable graph was 
composed with the word-level lexicon and grammar, L ,  oG, 
the WER was reduced to 13.2%. Finally, when the syllable- 
based representation was dynamically searched in a single 
pass, the WER was reduced further t o  11.7%. 

An important aspect of the two-stage system is the size 
of the graph. Usually, the bushier (more arcs and states) 
the graph is, the better the recognition performance. In the 
limit, if there were no pruning during search, the two stage 
search would produce identical results to a single stage. 
However, as the graph size increases, the computation can 
become quite expensive and does not justify the extra gain 
in performance. For the experiments we reported, the graph 
size varied from 1,000 to 10,000 states (and around twice 
that for the number of arcs) depending on the length of the 
utterance and uncertainty of the decoder. 

13.2 

4. DISCUSSION 

One of the most striking observations from our experiments 
is the significantly lower phonetic error rate for the word- 
based recognizer (5.9%) compared to  the other recogniz- 
ers (>12%). However, the WER is only around 11% more 
(10.4% compared to 11.7%). This suggests that  the con- 
straint imposed from using words as the unit of represen- 
tation does not add significantly to the recognition per- 
formance. Thus, a syllable-based representation has some 
promise as a first-stage unit of representation, due to  its 
increased flexibility. 

Despite the use of high-order n-grams, the phone-based 
recognizer was not as competitive as the  syllable-based rec- 
ognizer, a t  either of the phonetic or word levels. Even 
though the use of the 6-gram may capture some informa- 
tion across words, it appears to be less constraining than 
either the word bigram or the syllable bigram or trigram. 

An analysis of the syllable-graph outputs indicates tha t  
there remain additional gains to  be made for the syllable 
recognizer. Our word syllabification produced a single pos- 
sible syllable sequence. In practice, however, we observed 
that a correct phone sequence would often be represented 
by a syllable sequence which did not match the underlying 
sequence because an ambisyllabic consonant had moved to 
a neighboring syllable. This effect introduced word recogni- 
tion errors, which we believe can be reduced by representing 
words as syllable graphs, rather than single sequences. 

5. CONCLUSIONS 

There are still several computational and modeling issues 
to  resolve that we believe are behind the degradation in 
word recognition performance for the two-stage framework. 
Considering the fact that  the syllable-based framework is 
less constrained than the word-based framework, we believe 
that these preliminary results are quite encouraging. 

One of the problems with a two-stage search is the in- 
troduction of errors when the correct sub-word sequence is 
pruned from the intermediate graph. We have been inves- 
tigating the use of a more flexible matching process in the 
second stage to  compensate for these errors. The matching 
is done via a confusion FST, which allows for substitution, 
insertion, and deletion of sub-word units in the graph, and 
which has been used successfully elsewhere [4]. 

The experiments performed in this paper were con- 
ducted within the context of a single domain. Both the  
phonetic and syllable recognizers took advantage of the 
constraints of the domain (e.g., syllable inventory, n-gram 
grammars). For our future work, we plan to examine the 
use of a more domain-independent syllable recognizer with 
a larger inventory of syllables, and a more generic language 
model. Such a recognizer could easily be combined with 
a domain-specific word-level lexicon and language model. 
A domain-independent first stage would not necessarily be 
composed of a single type of unit. We plan to explore 
integrating several different lexical units within the same 
recognizer (e.g., words and syllables). The most frequently 
spoken words in most domains are function words or par- 
ticles, and could conceivably add constraint to a language 
model. Such words also tend to be domain-independent. 

Finally, we have not yet examined the behavior of our 
systems on out-of-vocabulary or partial words. The perfor- 
mance of our word-based systems are significantly worse on 
these kinds of data, so it is conceivable that recognizer con- 
figurations with closed-set units are better able to process 
these data. We plan to  develop a mechanism for handling 
these phenomena in our second-stage recognizers in the  near 
future. 
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ABSTRACT 
Most current speech recognizers use an observation space which is 
based on a temporal sequence of “frames” (e.g., Mel-cepstra). There 
is another class of recognizer which further processes these frames 
to produce a segment-based network, and represents each segment 
by fixed-dimensional “features.” In such feature-based recognizers 
the observation space takes the form of a temporal network of fea- 
ture vectors, so that a single segmentation of an utterance will use 
a subset of all possible feature vectors. In this work we examine 
a maximum a posteriori decoding strategy for feature-based recog- 
nizers and develop a normalization criterion useful for a segment- 
based Viterbi or A’ search. We report experimental results for the 
task of phonetic recognition on the TIMIT corpus where we achieved 
context-independent and context-dependent (using diphones) results 
on the core test set of 64.1% and 69.5% respectively. 

1. INTRODUCTION 
The SUMMIT speech recognizer developed by our group uses a 
segment-based framework for its acoustic-phonetic representation 
of the speech signal [22]. Feature vectors are extracted both over 
hypothesized segments and at their boundaries for phonetic analysis. 
The resulting observation space (the set of all feature vectors) takes 

the form of an acoustic-phonetic network, whereby different paths 
through the network are associated with different sets of feature vec- 
tors. This framework is quite different from prevailing approaches 
which employ a temporal sequence of observations. The segmen- 
tal and feature-extraction characteristics of this recognizer provide 
us with a framework within which we try to incorporate knowledge 
of the speech signal. They enable us to explore different strategies 
for where to extract information from the speech signal, and allow 
us to consider a larger variety of observations than we could with 
traditional frame-based observations. 

We have always tried to cast the recognizer within a probabilis- 
tic framework in order to account for our incomplete knowledge. 
We have been troubled, however, that different paths through our 
segment-network compute likelihoods on essentially different ob- 
servation spaces (different segments have different feature vectors), 

’This W ~ S  SUP~OIWJ by DARF’A Under Contract “1-94-C- 
6040, monitored though Naval Command, Control and Ocean Surveillance 
Center. 1. Chang nceives support from Lucmt T e c h n O l O f 5 ~ .  

yet our decoder compares the likelihoods of each path to decide on 
the most-likely word sequence. Additionally, while we train mod- 
els based on positive examples of our lexical units (e.g., phones), 
we compute and rank model likelihoods on segments which are not 
valid units during decoding. This problem is especially serious if 
likelihoods are converted to posterior probabilities, since apoo? like- 
lihood could result in a very good posterior probability only because 
it happens to be a little better than the (positive) altematives. 

Recently we have reexamined the probabilistic framework we have 
been using and have adopted a new strategy which we believe better 
accounts for our feature-based observation space, is intuitively a p  
pealing, and reauceS the number of tuning parameters required by 
our system. We now utilize the entire network of hypothesized seg- 
ments (both positive and negative examples) during training, and try 
to account for the entire observation space during decoding. 

In this paper we show how we derived this framework from ba- 
sic MAP decoding principles, and present a normalization criterion 
which can be used to implement efficient decoding for a feature- 
based recognizer. We then report experimental evidence on phonetic 
recognition which we have used to evaluate the framework. 

2. MAPDECODING 
In most probabilistic formulations of speech recognition the goal is 
to find the sequence of words W’ = w1,. . . , YN, which has the 
maximum aposreriori (MAP) probability P(W1A). where A is the 
set of acoustic observations associated with the speech utterance: 

W’ = argmpP(WJA) 

In most speech recognizen, MAP decoding is accomplished by hy- 
pothesizing (usually implicitly) a segmentation S of the utterance 
into a connected sequence of lexical states or units. In these cases 
P(WIA) can be rewritten as 

The latter approximation assumes that there is a single “correct” seg- 
mentation s’ associated with W’. This approximation simplifies 
the decoding process by allowing the use of dynamic programming 
algorithms which seek only the “best” path (e.g., Viterbi, or A’). 
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The expression for P(WSIA) is typically converted to the form: 

Since the denominator is independent of S or W, it is usually ig- 
nored during decoding. The remaining terms P(AS1W) and P(W) 
are usually estimated separately by acoustic and language models, 
respectively. In many formulations, such as hidden Markov models 
(HMMs), the term P(AS1W) is further decomposed into 

P(AS[W) = P(AISW)P(SIW) 

where P(SJW) determines the probability of a particular segmen- 
tation (e.g.. the HMM state sequence likelihood). P(AISW) deter- 
mines the likelihood of seeing the acoustic observations given a par- 
ticular segmentation (or state sequence). 

2.1. Frame-based Observations 
Most speech recognizers take as input a temporal sequence of vec- 
tors or frames, 0 = (01,. . . , OT}. which are normally computed at 
regular time intervals (e.g., 10 ms). In most cases a frame contains 
some form of short-term spectral information (e.g., Mel-cepstra). 
When the observation space consists of a sequence of frames, A = 
0, and acoustic likelihoods are computed for every frame during de- 
coding. Thus, the term P(AISW) accounts for all observations, and 
competing word hypotheses can be compared directly to each other 
since their acoustic likelihood is derived from the same observation 
space. Note that by definition A includes all observations so the de- 
nominator term P ( A )  can be ignored. 

As mentioned previously, most recognizers use frame-based obser- 
vations for input to the decoder. Thus aI1 discrete and continuous 
HMMs, including those using artificial neural networks for classifi- 
cation, fit under this framework [7,12,15, 16,211. Many segment- 
based techniques also use a common set of fixed observation vec- 
tors as well. Marcus for example, predetermines a set of acoustic- 
phonetic sub-segments, represents each by an observation vector, 
which is then modelled with an HMM [Ill. Other segment-based 
techniques hypothesize segments, but compute likelihoods on a set 
of observation frames [2,6.10, 191. 

2.2. Feature-based Observations 
In contrast to came-based approaches, in afeum-based frame- 
work, each segment Si is represented by a single fixed-dimensional 
feature vector zi. Typically, there is an extra stage of processing to 
convert the frame sequence 0 to corresponding features. Explicit 
segment or boundary hypotheses are necessary to compute the fea- 
ture vector. A given n unit segmentation S = $1,. . . , Sn will have 
a set of corresponding n feature vectors X = 21,. . . , Zn. As illus- 
trated in Figure 1, the observation space is transformed from a tem- 
poral sequence to a network, where different segmentations of the 
utterance will be associated with different feature-vectors. 

Since alternative Segmentations will consist of d@em observation 
spaces, it is incorrect to compare the resulting likelihoods directly. 
in order to compare WO paths we must consider the entire obser- 
vation space. Thus, in addition to the feature vectors X associated 

a; 

a2 a4 

a2 a4 
Figure 1: Two segmentations through a segment network with as- 
sociated feature vectors {al, . . . , as}. The top path uses vectors 
{al,a3,45}, whilethebottom path uses (u~,u2,u4,u5}. 

with the segmentation S, we must consider all other possible fea- 
ture vectors in the space Y ,  corresponding to the set of all other pos- 
sible segments R. In the top path in Figure 1, X = {a1,a3, as}, 
and Y = (a2, a4). In the bottom path, X = {UI, 02, a4, as}, and 
Y = {as}. The total observation space A, contains both X and Y ,  
so for MAP decoding it is necessary to estimate P(XY ISW). Note 
that since S implies X we can say P(XYlSW) = P(XYlW). 

In practice, most feature-based recognition systems have nor esti- 
mated a probability for P(XY )W) but have only estimated the like- 
lihood of X ,  P(XJW)  [4,9, 13,221. The following section dis- 
cusses one method for estimating P(XYlW) in an efficient manner. 

3. MODELLING NON-LEXICAL UNITS 
One approach to modelling P(XY1W) i s  to add an extra class to 
the lexical units which is defined to map to all segments which do 
nor correspond to one of the existing units. Consider the case where 
acoustic-modelling is done at the phonetic level, so that we build 
probabilistic models forindividual phones, (a}. In thisapproach we 
can view the the segments in R as corresponding to the extra am*- 
phone class 6. This class contains all types of sounds which are not 
a phonetic unit as they are either too large, too small, or overlapping 
etc. Two competing paths must therefore account for all segments, 
either as normal acoustic-phonetic units or as the anti-phone 6. In 
tbe example shown in Figure I ,  the top path therefore would map 
feature vectors {aa, 44)  to &. whereas the bottom path would only 
map feature {as} to 6. 

We can avoid classifymg all the segments in the search space by rec- 
ognizing that P(XYlii), the probability that all segments are not a 
lexical unit, is a constant K, and has no effect on decoding. Assum- 
ing independence between X and Y ,  noting that P(Y1W) depends 
only on 6, we can decompose and rearrange P(XY1W) 

Thus, when we consider a par&icular segmentation S we need only 
concern ourselves with the Ns feature vectors corresponding to S, 
but we must combine WO terms for each segment S i .  The first term 
is the standard phonetic likelihood P(siIcr). The second term is the 
likelihood that the segment is the anti-phone unit, P(zil6). The net 

2278 

Authorized licensed use limited to: IEEE - Staff. Downloaded on June 12,2025 at 19:13:28 UTC from IEEE Xplore.  Restrictions apply. 

Page 29 of 46



result which must be maximized during search is: 

Note that this formulation remains the same whether context- 
independent or context-dependent modelling is used. The term 
P(zilW) would be reduced accordingly. 

4. MODELLING LANDMARKS 
In addition to modelling segments, it is often desirable to provide 
additional information about segment boundaries, or landmarks. If 
we call the feature-vectors extracted at landmarks 2, we must now 
consider the joint space X Y Z  as our observation space. It thus be- 
comes necessary to estimate the probability P(XYZ(SW). If we 
assume independence between the feature vectors XY representing 
segments and 2 representing landmarks, we can further simplify: 

P(XYZ(SW) = P ( X Y ~ S W ) P ( Z ~ S W )  

If Z corresponds to a set of observations taken at landmarks or 
boundaries, then a particular segmentation will assign some of the 
landmarks to rrunsirions between lexical units, while the remainder 
will be considered to occur internal to a unit (i.e., within the bound- 
aries of a hypothesized segment). Since any segmentation accounts 
for all of the landmark observations 2, there is no need for the nor- 
malization criterion discussed for segment-based feature vectors. If 
we assume independence between the NZ individual feature-vectors 
in 2, P(2lSW) can be written as 

NZ 
P(2lSW) = J-JP(Zilsw) 

i=l 

where zi is the feature vector extracted at the ith landmark. 
Again, there is no assumption about whether context-independent or 
context-dependent (diphone) boundary models are used. 

5. EXPERIMENTS 
Our initial evaluations of this framework were based on phonetic 
recognition experiments using the TIMIT corpus [3]. Models were 
built using the TIMIT 61 label set and collapsed down to the 39 labels 
used by others to report recognition results [4,7,8,14,15,21]. Mod- 
els were trained on the designated training set of 462 speakers, and 
results are reported on the 24 speaker core test set. A 50 speaker de- 
velopment set (taken from the remaining 144 speakers in the full test 
set) was used for intermediate experiments so that the core test set 
was used only for final testing. Reported results are phonetic accu- 
racy which includes substitution, deletion, and insertion errors. The 
language model used in all experiments was a phone bigram based 
on the training data with perplexity 15.8 on the development set (us- 
ing 61 labels). A single parameter (optimized on the development 
set) controlled the trade-off between insertions and deletions. 

All utterances were represented by 14 Mel-scale cepstral coefficients 
(MFCCs) and log energy, computed at 5 msec intervals. Acoustic 
landmarks were determined by looking for local maxima in spectral 

change in the MFCCs [22]. Segment networks were created by fully 
connecting landmarks within acoustically stable regions. An analy- 
sis of the networks showed that on the development set there were 
2.4 boundaries per transcription boundary and 7.0 segments per tran- 
scription segment on average. 

Our research was greatly facilitated by SAPPHIRE, a graphical 
speech analysis and recognition tool based on TcyTk that is being 
developed in our group f5]. SAPPHIRE’S flexibility and expressive- 
ness allows us to quickly test novel ideas and frameworks. 

5.1. Context-Independent Recognition 
The first set of experiments we performed used 62 labels (61 TIMIT 
labels plus the anti-phone “not”) to explore context-independent 
(CI) phonetic recognition using segment-based information only. 
The feature vector consisted of MFCC and energy averages over 
segment thirds as well as two derivatives computed at segment 
boundaries. Duration was also included, as was a count of the num- 
ber of internal landmarks in the segment. The resulting segment fea- 
ture vector contained 77 dimensions. Mixtures of up to 50 diagonal 
Gaussians (400 for the anti-phone) were used to model the phone 
distributions on the training data. An initial principal components 
analysis (PCA) was done to normalize the feature space for the mix- 
ture generation (which uses K-means clustering as an initial step), 
though no dimensionality reduction was done. In order to reduce 
training computation, 20% of the possible anti-phone examples were 
randomly selected to train the anti-phone model. The CI segment 
models achieved 64.1% accuracy on the core test set. 

5.2. Context-Dependent Recognition 
The second set of experiments we performed used a set of context- 
dependent (CD) diphone models based on f e a m  vectors extracted 
at hypothesized landmarks. The feature vector consisted of eight av- 
erages of MFCC and energy resulting in a 120 dimensional feature 
vector 1141. PCA was used to normalize the feature space and re- 
duce the dimensionality to 50. A set of lo00 diphone classes (tran- 
sition and internal) was created based on frequency of occurrence in 
the training data and simple similarity measures. Up to 50 mixture 
of diagonal Gaussians were used to model each class. When the di- 
phone models were used by themselves, they achieved a phonetic 
recognition accuracy of 67.2% on the core test set. When combined 
with the CI segment models, the accuracy rose to 69.5%. 

6. DISCUSSION 
As shown in Table 1, there are a number of published results on pho- 
netic recognition using the core test set. There are still differences 
regarding the complexity of the acoustic and language models, thus 
making a direct comparison somewhat difficult. Nevertheless, we 
believe our results are competitive with those obtained by others, 
and that our performance will improve when we increase the com- 
plexity of our models. Internally, both the CI and CD results (64.1 
and 69.5%) represent a significant improvement over our previously 
reported results of 55.3 and 68.5%, respectively [14]. Our previous 
CD results were achieved by hypothesizing segment boundaries at 
every frame and perfonning an exhaustive segment-based search. 
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Group I Description I %Accuracy 
Goldenthal 141 I Trimam. TriDhone STM I 69.5 

73.4 
SUMMIT Bigram, Diphone 69.5 

Table 1: Reported recognition accuracies on the TIMIT core test set. 

The word recognition experiments we have performed to date have 
shown a consistent increase in word accuracy as well. In addition, 
we have been able to reduce the number of parameters which need to 
be optimized for recognition. For example, the weights between the 
segment. boundary, and language model components all optimize to 
I .O, whereas in the past, we have optimized each separately. 

The framework we have outlined in this paper provides flexibility to 
explore the relative advantages of segment versus landmark repre- 
sentations. As we have shown, it is possible to use only segment- 
based feature vectors, or landmark-based feature vectors (which 
could reduce to frame-based processing), or a combination of both. 

The normalization criterion used for segment-based decoding can 
be interpreted as a likelihood ratio. Acoustic log likelihood scores 
are effectively normalized by the anti-phone. Phones which score 
better than the anti-phone will have a positive score, while those 
which are worse will be negative. In cases of segments which are 
truly not a phone, the phone scores are typically all negative. Note 
that the anti-phone is not used during lexical access. Its only role 
is to serve as a form of normalization for the segment scoring. In 
this way, it has similarities with techniques being used in word- 
spotting, which compare acoustic likelihoods with those of “filler” 
models [17, 18,201. The likelihood or odds ratio was also used by 
Cohen to use HMMs for segmenting speech [ 11. 

The independence assumption between X and Y made to enable 
efficient decoding is somewhat suspect since overlapping segments 
are likely correlated with each other. It would thedore be WO- CX- 

amining alternative methods for modelling the joint XY space. 

The framework holds whether or not the segmentation is done im- 
plicitly or explicitly, or whether the segmentation space is exhaus- 
tive, or resmcted in some way. The experiments reported here used 
a constrained network, since this is what we use to achieve near real- 
time perfonnance for our understanding systems. We are exploring 
alternative segmentation frameworks to better understand the com- 
putation vs. performance tradeoff. 

The anti-phone unit we have used in these experiments was based 
on a single unit which was required to model all possible forms of 
non-phonetic segments. We have begun to explore the use of multi- 
ple anti-phone units to provide better discrimination between “good” 
and “bad” phones. Finally, we plan to explore CD segment models 
to improve upon our current performance with diphone models. 
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ABSTRACT larger variation in environment and channel conditions (often with 

This paper describes our experiences with developing a real- 
time telephone-based speech recognizer as part of a conversational 
system in the weather information domain. This system has been 
used to collect spontaneous speech data which has proven to be 
extremely valuable for research in a number of different areas. Af- 
ter describing the corpus we have collected, we describe the de- 
velopment of the recognizer vocabulary, pronunciations, language 
and acoustic models for this system, the new weighted finite-state 
transducer-based lexical access component, and report on the cur- 
rent performance of the recognizer under several different condi- 
tions. We also analyze recognition latency to verify that the system 
performs in real time. 

1. INTRODUCTION 

Over the past year and a half, we have developed a telephone- 
based, weather information system called JUPITER [14], which 
is available via a toll-free number for users to query a relational 
database of current weather conditions using natural, conversa- 
tional speech.' Using information obtained from several different 
intemet sites, JUPITER can provide weather forecasts for approx- 
imately 500 cities around the world for three to five days in ad- 
vance, and can answer questions about a wide range of weather 
properties such temperature, wind speed, humidity, precipitation, 
sunrise etc., as well as weather advisory information. 

The JUPITER system makes use of our GALAXY conversa- 
tional system architecture which incorporates speech recognition, 
language understanding, discourse and dialog modelling, and lan- 
guage generation [12]. JUPITER has been particularly useful for 
our research on displayless interaction, information on demand, 
and robust spontaneous speech recognition and understanding. 
Since we attempt to understand all queries (i.e., not spot words), 
and do not constrain the user at any point in the dialog, it is crucial 
to have a high accuracy speech recognizer that covers, as much as 
possible, the full range of user queries. This paper describes our 
work in developing a robust recognizer in this domain. 

When the system was first deployed in late April 1997, the 
error rates of our recognizer initially more than tripled our labora- 
tory baselines, due in part to the mismatch between the laboratory 
training and actual testing conditions. The real data had a much 

I 

very poor signal conditions), as well as a much wider range of 
speakers (we had no children in our training data for example, and 
had mainly trained on native speakers without regional accents), 
speaking style (spontaneous speech vs. read speech), language 
(both for within-domain queries, and out-of-domain queries), and 
other artifacts such as non-speech sounds and clipped speech due 
to the user interface (we do not currently allow for barge-in). 

As we have collected more data we have been able to better 
match the users' vocabulary, and build more robust acoustic and 
language models. The result is that we have steadily reduced word 
and sentence error rates, to the point of cutting the initial error rates 
by over two thirds. In this paper, we describe the methods we have 
used to develop this recognizer and report on the lessons we have 
learned in moving from a laboratory environment to dealing with 
real data collected from real users. Our experience has shown us 
clearly that while there is no data like more data, there is also no 
data like real data! 

2. CORPUS 

Several different methods have been employed to gather data for 
the JUPITER weather information system. Beginning in February 
and March 1997, we created an initial corpus of approximately 
3,500 read utterances collected from a variety of local telephone 
handsets and recording environments, augmented with over 1,OOO 
utterances collected in a wizard environment [ 141. These data were 
used to create an initial version of a conversational system which 
users could call via a toll-free number and ask for weather informa- 
tion. The benefit of this setup is that it provides us with a continu- 
ous source of data from users interested in obtaining information. 
Currently, we average over 70 calls per day, and have recorded 
and orthographically transcribed over 60,000 utterances from over 
11 ,000 callers, all without widely advertising the availability of the 
system. On average, each call contains 5.6 utterances, and each 
utterance has an average of 5.2 words. The data are continually 
orthographically transcribed (seeded with the system hypothesis), 
and marked for obvious non-speech sounds, spontaneous speech 
artifacts, and speaker type (male, female, child) [4]. 

3. VOCABULARY 

This research was supported by DARPA under contract N66001-96- 
C-8526, monitored through Naval Command, Control and Ocean surveil- 
lance Center. 

'In the United states and Canada please call 888 573-8255 or visit 
http://www.sls.lcs.mit.edu/jupiter. 

The Vocabulary used by the JUPITER system has evolved as peri- 
odic analyses are made of the growing corpus. The current vocab- 
U l q  Contains 1893 words, including 638 cities and 166 countries. 
Nearly half of the vocabulary contains geography-related words. 
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clear-up 
heat-wave 
pollen-count 
warm-up 

Table 1: Examples of multi-word units in the JUPITER domain. 

The design of the geography vocabulary was based on the 
cities for which we were able to provide weather information, as 
well as commonly asked cities. Other words were incorporated 
based on frequency of usage and whether or not the word could 
be used in a query which the natural language component could 
understand. The 1893 words had an out-of-vocabulary (OOV) rate 
of 2.0% on a 2506 utterance test set. 

Since the recognizer makes use of a bigram grammar in the 
forward Viterbi pass, several multi-word units were incorporated 
into the vocabulary to provide for greater long-distance constraint 
and, in some cases, to allow for specific pronunciation modelling. 
This would allow for explicit modelling of word sequences such as 
“going to” or “give me” to be pronounced as “gonna” or “gimme” 
respectively. Common contractions such as “what’s” were rep- 
resented as multi-word units (e.g., “whatis”) to reduce language 
model complexity, and because these words were often a source 
of transcription error anyway. Additional multi-word candidates 
were identified using a mutual information criterion which looked 
for word sequences which were likely to occur together. Table 1 
shows examples of multi-word units in the current vocabulary. 

4. PHONOLOGICAL MODELING 

In the current JUPITER recognizer, words are initially represented 
as sequences of phonetic units augmented with stress and syllabifi- 
cation information. The initial baseform pronunciations are drawn 
from the LDC PRONLEX dictionary. The baseforms are repre- 
sented using 41 different phonetic units with three possible levels 
of stress for each vowel. The baseforms have also been automat- 
ically syllabified using a basic set of syllabification rules. After 
drawing the pronunciations for the JUPITER vocabulary from the 
PRONLEX dictionary, d l  baseform pronunciations were then veri- 
fied by hand. Vocabulary words missing from the dictionary were 
hand coded. Alternate pronunciations are explicitly provided for 
some words. In addition to the standard pronunciations for sin- 
gle words provided by PRONLEX, the baseform file was also aug- 
mented with common multi-word sequences which are often re- 
duced, such as “gonna”, “wanna”, etc. 

A series of phonological rules were applied to the phonetic 
baseforms to expand each word into a graph of alternate pro- 
nunciations. These rules account for many different phonological 
phenomena such as place assimilation, gemination, epenthetic si- 
lence insertion, alveolar stop flapping, and schwa deletion. These 
phonological rules utilize stress, syllabification, and phonetic con- 
text information when proposing alternate pronunciations. We 
have made extensive modification to these rules, based on our ex- 
amination of the JUPITER data. 

The final pronunciation network does not represent the words 
using the original 41 phonetic units utilized in PRONLEX. In- 
stead, a set of 105 different units were used which include sub- 

phonetic, supra-phonetic and non-phonetic units in addition to 
standard phonetic units. For example, the recognizer treats most 
within-syllable vowel-semivowel sequences and some semivowel- 
vowel sequences as single units in order to better model the highly 
correlated dynamic characteristics of these sequences. Thus, the 
phonetic sequence [ow] followed by [r] is represented as a single 
segmental unit [or]. The recognizer also incorporates various non- 
phonetic units to account for non-linguistic speech transitions and 
speech artifacts, silences, and non-speech noise. The 105 units 
also retain two levels of stress for each vowel unit. An example 
pronunciation graph for the word “reports” is shown in Figure 1. 

Figure 1: Pronunciation graph for the word “reports.” 

The arcs in the pronunciation graph can further be augmented 
with transition weights which give preference to more likely pro- 
nunciations and penalize less likely pronunciations. For JUPITER 
these weights were set using an error correcting algorithm on de- 
velopment data [13]. This algorithm adjusted the arc weights in an 
iterative fashion in order to reduce the error rate of the recognizer 
on development data. 

5. LANGUAGE MODELLING 

A class bigram language model was used in the forward Viterbi 
search, while a class trigram model was used in the backwards 
A* search to produce the 10-best outputs for the natural language 
component. A set of nearly 200 classes were used to improve the 
robustness of the bigram. The majority of the classes involved 
grouping cities by state or country (foreign), in order to encourage 
agreement between city and state. In cases where a city occurred 
in multiple states or countries, separate entries were added to the 
lexicon (e.g., Springfield, Illinois vs. Springfield, Massachusetts). 
Artificial sentences were created in order to provide complete cov- 
erage of all of the cities in the vocabulary. Other classes were 
created semi-automatically using a relative entropy metric to find 
words which shared similar conditional probability profiles. 

Since filled pauses (e.g., uh, um) occurred both frequently and 
predictably (e.g., start of sentence), they were incorporated explic- 
itly into the vocabulary, and modelled by the bigram and trigram. 
Original orthographies were modified for training and testing pur- 
poses by removing non-speech and clipped word markers. When 
trained on a 26,000 utterance set, and tested on a 2506 utterance 
set the word-class bigram and trigram had perplexities of 18.4 and 
17.1, respectively. These are slightly lower than the respective 
word bigram and trigram perplexities of 19.5 and 18.8. Note that 
the class bigram also improved the speed of the recognizer as it 
had 22% fewer connections to consider during the search. 

6. ACOUSTIC MODELLING 

The JUPITER system makes use of the segment-based SUMMIT 
recognizer which can utilize acoustic models based on segments 
or landmarks [3]. The nature of the acoustic models has varied 
over the course of system development, depending in large part on 
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the amount of available training data. The current JUPITER config- 
uration makes use of context-dependent landmark-based diphone 
models which require the training of both transition and intemal 
diphone models. Intemal diphones model the characteristics of 
landmarks occurring within the boundaries of a hypothesized pho- 
netic segment, while transition diphones model the characteristics 
of landmarks occurring at the boundary of two hypothesized pho- 
netic segments. 

Given the 105 phonetic units used in the JUPITER system, 
and the constraints of the full pronunciation graph, there were 
4,822 possible diphone transition models and 105 intemal mod- 
els needed. We have explored two different methods of modelling 
transitions. The first method trained models for frequently oc- 
curring transitions, and used one “catch-all” model for remaining 
transitions. This method worked well, and was simple to train. We 
currently use a reduced set of 782 equivalence classes which were 
determined manually to insure that an adequate amount of training 
existed for each class and that the elements of each class exhibited 
contextual similarity. This method performs slightly better than 
the “catch-all” method. 

For each landmark, 14 MFCC averages were computed for 8 
different regions surrounding the landmark, creating 112 differ- 
ent features. This initial feature set was then reduced from 112 
features to 50 features using principal component analysis. The 
acoustic models for each class modeled the 50 dimensional feature 
vectors using diagonal Gaussian mixture models. Each mixture 
model consisted of a variable number of mixture components, de- 
pendent on the number of available training vectors for that class, 
with a maximum of 50 mixture components. 

The diphone models were trained on a subset of data which 
excludes utterances with out-of-vocabulary words, clipped speech, 
cross-talk, and various types of noise. The training data also ex- 
cludes all speech from speakers deemed to have a strong foreign 
accent. The full set of within-domain training utterances used for 
acoustic modelling consisted of 20,064 utterances, which was 76% 
of the available data at the time. 

7. LEXICAL ACCESS 

We have recently re-implemented the lexical access search compo- 
nents of SUMMIT to use weighted finite-state transducers with the 
goals of increasing recognition speed while allowing more flexibil- 
ity in the types of constraints. We view recognition as finding the 
best path(s) through the composition A o U ,  where A represents 
the scored (on demand) acoustic segment graph and U the com- 
plete model of an utterance from acoustic model labels through the 
language model. We compute U = C o P o  L o G, where C maps 
context-independent labels on its right to context-dependent (di- 
phone in the case of JUPITER) labels on its left, P applies phono- 
logical rules, L is the lexicon mapping pronunciations to words, 
and G is the language model. Any of these transductions can be 
weighted. A big advantage of this formulation is that the search 
components operate on a single transducer U ;  the details of its 
composition are not a concem to the search. As such, U can be 
precomputed and optimized in various ways or it can be computed 
on demand as needed. This use of a cascade of weighted finite- 
state transducers is heavily inspired by work at AT&T [8, lo]. 

We have achieved our best recognition speed by precomputing 
U = C o minimize(determinize((P o L)  o G)) for G a word- 
class bigram. This yields a deterministic (modulo homophones), 
minimal transducer that incorporates all contextual, phonological, 

In domain 
Male (In domain) 
Female (In domain) 
Child (In domain) 

1806 13.1 28.6 
1290 9.8 24.1 
274 13.6 31.8 
242 26.3 48.8 

I 

354 1 2.3 1 7.1 

Table 2: Current JUPITER performance on various test sets. 

lexical, and language model constraints [8]. For JUPITER, U has 
89,452 states and 699,172 arcs. We apply a word-class trigram and 
compute N-best in a second pass utilizing an A“ search. 

For greater system flexibility, we can compute U = (C o 
minimize(determinize(P o L ) ) )  o G, performing the composition 
with G on the fly during the search. For example, the use of a 
dynamic language model that changes during a dialogue would 
require this approach. However, with on-the-fly composition we 
have found that the system runs about 40% slower than for the 
fully composed and optimized U .  

8. EXPERIMENTS 

Over the course of the past year the JUPITER recognizer has had 
a steady improvement in its performance; this has been a result of 
both an increase in training data and improvements to the system’s 
modeling techniques. The test data consists of sets of calls ran- 
domly selected over our data collection period. The current test set 
consists of 2506 utterances, of which 1806 were considered to be 
“in domain” as they were covered by the vocabulary, were free of 
partial words, crosstalk, etc. Of these sentences, 1290 were from 
male speakers, 274 from females, and 242 from children. Table 2 
shows the performance of the JUPITER recognizer on this test set 
using word error rate (WER) and sentence error rate (SER) as the 
evaluation metrics.2 As can be seen in the table, the system tends 
to perform reasonably when it encounters queries spoken by adults 
without a strong accent, that are covered by the domain, and that 
do not contain spontaneous, or non-speech artifacts. Females had 
50% more word errors than males, while children had 300% more 
word errors than males. This is probably a reflection of the lack 
of training material for females and children. The system has con- 
siderable trouble (64.5% W R )  with “out of domain” utterances 
containing out-of-vocabulary words, partial words, crosstalk, or 
other disrupting effects. This rate is artificially high, however, due 
to the nature of the alignment procedure with reference orthogra- 
phies (e.g., partial words always cause an error for example, due 
to the nature of our mark-up scheme). 

Table 2 also shows the performance on speakers judged to 
have strong foreign accents, who were not included in the standard 
test set. These data consisted of 3,225 in-domain utterances, and 
had an error rate more than double the baseline in-domain error 
rate. Finally, we also evaluated the recognizer on “expert” users 
(i.e., mainly staff in our group) who have considerable experience 
using the JUPITER system, but were not used for training. The sys- 
tem had extremely small error rates for these users. This behavior 

2These error rates are slightly different from those reported in [4]. The 
reason is that we have increased pruning to achieve real-time performance. 
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Figure 2: Histogram of JUPITER recognition latency. 

is typical of users who become familiar with the system capabili- 
ties (a case of users adapting to the computer!). 

Since JUPITER is a conversational system, rapid system re- 
sponse is critical. We consider a recognizer to run in real time if its 
latency (time after utterance is complete) is independent of utter- 
ance duration. An initial analysis of latency showed that while the 
latency was generally less than Is, the worst cases took substan- 
tially longer. Not surprisingly, most of the worst cases were due to 
out-of-domain utterances containing out-of-vocabulary words. To 
combat the worst-case latency, we have added count-based beam 
pruning to limit the number of active nodes kept at any given point 
in time. Previously. we limited the beam solely with a score- 
based pruning threshold. With aggressive count-based pruning on 
a 300MHz Pentium 11, we find a correlation coefficient between 
latency and utterance length of only -0.08, meaning that they are 
independent and we are achieving real-time performance. Figure 2 
shows a histogram of the latency: 85% of the time the latency is 
less than Is, and 99% of the time it is less than 2s. 

9. DISCUSSION & FUTURE WORK 

The speech recognizer described in this paper is only one com- 
ponent of the full JUPITER conversational system [11,14]. The 
current interface between the recognizer and our language under- 
standing component is via an N-best interface. Although we have 
reported only first-choice error rates in this paper, the understand- 
ing error rates are typically better, since many word confusions do 
not impact understanding. 

There remain a considerable number of ongoing areas of re- 
search we are presently pursuing, which should help improve per- 
formance. Recent developments in probabilistic segmentation [7], 
near-miss modelling [ 11, heterogeneous classifiers [SI, and tighter 
integration of linguistic knowledge [2], have shown improvements 
in our JUPITER baseline, although they have not yet been propa- 
gated to the data collection system. 

The system to date has used a pooled speaker model for all 
acoustic modelling. It should be possible to achieve gains through 
speaker normalization, short-term speaker adaptation, and better 
adaptation to the channel conditions of individual phone calls. 
Adaptation may also be useful to help improve performance on 
non-native speakers. Since a phone call could have multiple speak- 

ers, we are exploring within-utterance consistency techniques that 
have given us gains elsewhere [6]. 

The data collection efforts have produced a gold-mine of spon- 
taneous speech effects which are often a source of both recogni- 
tion and understanding errors. For example, partial words typi- 
cally cause problems for the speech recognizer. Another source 
of recognition errors is out-of-vocabulary words, which are often 
cities not covered in the vocabulary. These issues have caused us 
to begin work in confidence scoring, which was an area we had 
not previously addressed [9]. Finally, we plan to explore the use 
of dynamic vocabulary and language models, which may help to 
alleviate some of the unknown city problems. 
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ABSTRACT 

Speech and language processing techniques, such as automatic 

speech recognition (ASR), text-to-speech (TTS) synthesis, 

language understanding and translation, will play a key role in 

tomorrow’s user interfaces. Many of these techniques employ 

models that must be trained using text data. In this paper, we 

introduce a novel method for training set selection from text 

databases. The quality of the training subset is ensured using 

an objective function that effectively describes the coverage 

achieved with the strings in the subset. The validity of the 

subset selection technique is verified in an automatic 

syllabification task. The results clearly indicate that the 

proposed systematic selection approach maximizes the quality 

of the training set, which in turn improves the quality of the 

trained model. The presented idea can be used in a wide 

variety of language processing applications that require 

training with text databases. 

1 INTRODUCTION 

Most automatic speech recognition (ASR) and text-to-speech 

(TTS) systems contain models that have to be trained with text 

data. Typical examples can be found from many parts of the 

systems. In pronunciation modeling, some data-driven 

approach, such as neural network based methods or decision 

tree based methods [6], are often applied, especially for 

languages like English. These statistical models are trained 

using a pronunciation dictionary containing grapheme-to-

phoneme entries. In text-based language identification [8], the 

model is trained using a multilingual text corpus that consists 

of word entries from the target languages. In the data-driven 

syllabification task [7], the model is trained using text-based 

pronunciations and the corresponding syllable structures.  

In all data-driven approaches, the selection of a suitable 

training set can be regarded as a very important step in the 

training process. In general, the performance of any trained 

model depends quite strongly on the quality of the text data 

used in the training. With text-based data, the importance of 

the training set selection is very pronounced since the 

generation of the training data entries is often very time and 

resource consuming and requires language-specific skills. In 

this paper, we show that systematic training set selection 

results in enhanced model performance and/or offers the 

possibility to use a smaller training set size. In practice, the 

reduced training set size brings two significant additional 

benefits. First, the amount of manual annotation work is 

reduced, which in turn decreases the probability of errors and 

inconsistencies in the annotations. Second, the memory 

consumption and the computational load caused by the 

training process are lowered. In some cases this advantage 

propagates to the trained model as well; the size of a decision 

tree model, for example, depends on the size of the training 

set.  

Despite the evident importance of the training set 

selection, this step is often neglected in practice. Usually, the 

training set is obtained by collecting a set of random entries 

from a larger text database or by decimating a sorted corpus. 

The drawback of these solutions is that the amount of 

meaningful information in the selected text data set is not 

maximized. The random selection method is rather coarse and 

does not produce consistent results. The method of decimating 

a sorted data corpus, on the other hand, only uses a limited 

number of the initial characters of the strings and thus does 

not guarantee good performance. 

In this paper, we present a method that can quasi-

optimally select a subset from a text database in such a 

manner that the text coverage is maximized. To achieve this, 

we define an objective function that is optimized in the subset 

selection. The objective function measures the “subset 

distance” using the generalized Levenshtein distances 

between the text strings. This paper also introduces an 

algorithm for optimizing the objective function. For practical 

applications with large databases, the algorithm can be 

modified in order to speed up the processing or to lower the 

memory consumption, but the main idea and the objective 

function will remain useful in all cases. To demonstrate the 

usefulness of the proposed approach, we evaluate it in the 

syllabification task. 

The text subset selection method introduced in this paper 

can be used in a wide variety of different applications. One 

good example is the language identification task [8], in which 

the proposed approach makes it possible to easily balance the 

number of training set entries from each target language while 

at the same time giving a good coverage for every target 

language. In addition to the training set selection task 

discussed extensively in this paper, it is possible to employ 

the same techniques for clustering a text database. Moreover, 

when used together with a meaningful distance measure, such 

as the generalized Levenshtein distance, the proposed 

approach enables the use of vector quantization techniques on 

text data. 

The remainder of the paper is organized as follows. We 

first describe the generalized Levenshtein distance and 

introduce the basic principles of the text database selection 

algorithm in Section 2. In Section 3, we describe the 

syllabification task used as the practical example by briefly 

reviewing the syllable structure grammar and the neural 

network based syllabification method. The performance of the 

proposed subset selection approach is evaluated in the 
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syllabification task in Section 4. Finally, some concluding 

remarks are presented in Section 5. 

2 SELECTION ALGORITHM 

In order to be able to select a subset from a text database in a 

systematic and meaningful manner, an objective function 

measuring the quality of the subset must be defined. The 

objective function should somehow measure the similarity or 

the dissimilarity of the entries. In the proposed approach, we 

base the objective function on the generalized Levenshtein 

distance. In this section, we first describe the basic properties 

of this distance measure and then continue by defining an 

objective function measuring the average distance within a 

subset and by introducing an algorithm for selecting subsets of 

different sizes in a quasi-optimal manner. 

2.1 Generalized Levenshtein distance 

The generalized Levenshtein distance (GLD) is defined as the 

minimum cost of transforming one string into another by 

means of a sequence of basic transformations: insertion, 

deletion and substitution [4]. The transformation cost is 

determined by the costs assigned to each basic transformation. 

Let x and y be strings of length m and n, respectively, 

whose symbols belong to a finite alphabet of size s. Let xi be 

the ith symbol of string x, with 1  i  m, and x(i) be the prefix 

of the string x of length i, i.e. the substring containing the first 

i symbols of x. In addition, let d(i,j) be the distance between 

x(i) and y(j), and ε be an empty string. Furthermore, we 

denote by w(a,b), w(a,ε) and w(ε,b) the cost of substituting the 

symbol a with the symbol b, the cost of deleting a and the 

cost of inserting b, respectively. The distance d(m,n) is 

recursively computed based on the definitions of d(0,0), d(i,0) 

and d(0,j) (i = 1…m, j = 1…n), representing the initial 

distance, the cost of deleting the prefix x(i) and the cost of 

inserting the prefix y(j), respectively, as follows: 
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The original Levenshtein distance is characterized by the 

following costs: w(a, ε) = 1, w(ε,b) = 1, and w(a, b) is 0 if a is 

equal to b and 1 otherwise. Its generalized version assumes 

that different costs can be associated to transformations 

involving different symbols. In the case of an alphabet of s

symbols, this requires a table of size (s+1) times (s+1), called 

the cost table, to store all the substitution, insertion and 

deletion costs. It can be shown that the defined distance is a 

metric if the cost table is symmetric. 

2.2 Objective function and selection algorithm 

In our approach, we measure the quality of a text subset using 

an objective function based on the generalized Levenshtein 

distance. As described in Section 2.1, the Levenshtein distance 

can be used for measuring the distance between any pair of 

entries. Similarly, the distance for the whole text data set can 

be calculated by averaging the distances of all the string pairs 

in the set. Suppose that there are m entries in the database and 

the ith entry is denoted by e(i). With these definitions, we can 

compute the overall “subset distance” D as: 
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where ld(e(i), e(j)) is the GLD between the ith and jth entries. 

Based on the above objective function, it is possible to 

design an algorithm that selects a subset from a text database 

in such a manner that the distance D is maximized. The 

following algorithm recursively constructs the subset by 

always selecting the new entry that maximizes the distance to 

the other selected entries. 

1. Calculate the Levenshtein distances for all the pairs; 

ld(e(i), e(j));

2. Initially select the pair that has the largest distance among 

all pairs in the database, 
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3. Assuming that the selected subset has k entries (in the 

first time k = 2), the target now is to find the k+1-th entry 

to the subset. The selection that approximately maximizes 

the amount of new information brought into the subset 

can be done using the following formula.  

=
≠=≤≤

k

jesubsetiejmi

jesubsetieldp
)(_)(,1)1(

)(_),((argmax . (5) 

The selected entry p is added into the subset as 

subset_e(k+1). 

4. Repeat step 3 until the preset subset size is reached. 

3 EXAMPLE APPLICATION: 

SYLLABIFICATION TASK 

The development of speech synthesizers and speech 

recognizers often requires working with sub-word units such 

as syllables [5]. We have earlier described a neural network 

based approach for the automatic assignment of syllable 

boundaries in [7]. In this paper, we revisit the topic and use 

this syllabification task for verifying the usefulness of the 

proposed subset selection approach. The first part of this 

section gives some basic information on the task and the 

second part discusses the neural network approach. The 

practical results achieved in this task are presented in 

Section 4. 

3.1 Syllable structure 

A syllable is a basic unit of word studied on both the phonetic 

and phonological levels of analysis [2]. The syllable 

information can be described using grammars [3]. The 

simplest grammar is the phoneme grammar, where a syllable is 

tagged with the corresponding phoneme sequence. The 

consonant-vowel grammar describes a syllable as a consonant-

vowel-consonant (CVC) sequence. The syllable structure 

grammar, on the other hand, divides a syllable into onset, 

nucleus and coda (ONC) as shown in Figure 1. The nucleus is 

an obligatory part that can be either a vowel or a diphthong. 

The onset is the first part of a syllable consisting of consonants 

and ending at the nucleus of the syllable, e.g. in the syllable 

[t eh k s t], /t/ is the onset and the vowel part /eh/ is the 

nucleus. The part of a syllable that follows the nucleus forms 

the coda. The coda is constructed of consonants, e.g. /k s t/ in 
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our example syllable. The nucleus and coda are combined to 

form the rhyme of a syllable. A syllable has a rhyme, even if it 

doesn't have a coda. 

In the syllable structure grammar, the consonants are 

assigned as onset or coda. The ONC representation used in the 

syllable structure grammar contains more information than the 

CVC structure for multi-syllable words. The syllable structure 

grammar was used in [7] and it is also used in this paper. 

In the automatic syllabification task, the phoneme 

sequences are mapped into their ONC representations. The 

data-driven syllabification model is trained on the mapping 

information. In the decoding phase, given a phoneme 

sequence, the ONC sequence is first generated, and then the 

syllable boundaries are uniquely decided on the ONC 

sequence. For invalid ONC sequences, a self-correction 

algorithm [7] can be applied to solve the problem by utilizing 

certain common linguistic rules. The whole syllabification task 

can be summarized as follows: 

1. Each pronunciation phoneme string in the training set is 

mapped into the corresponding ONC string, for example: 

(word) text -> (pronunciation) t eh k s t -> (ONC) O N C C C

2. The model is trained on the data in the format of 

“pronunciation -> ONC” 

3. Given a pronunciation string, the corresponding ONC 

sequence is generated using the model. Then, the syllable 

boundaries are placed at the location starting with symbol “O”,

or with “N” if it is not preceded with symbol “O”.

Figure 1. Diagram of the syllable structure grammar. 

3.2 Neural network based syllabification approach 

The basic neural network based ONC model presented in [7] is 

a standard multi-layer perceptron (MLP) shown in Figure 2. 

The input phonemes are presented to the MLP network in a 

sequential manner. The network gives estimates of ONC 

posterior probabilities for each presented phoneme. In order to 

take the phoneme context into account, a number of phonemes 

on each side of the phoneme in question are also used as inputs 

to the network. Thus, a window of phonemes is presented to 

the neural network as input. Figure 2 shows a typical MLP 

with a context size of w phonemes, phi-w…phi+w centered at 

phoneme phi. The centermost phoneme phi is the phoneme that 

corresponds to the output of the network. Therefore, the output 

of the MLP is the estimated ONC probability 

P(onck|phi−w,…,phi+w) ( { }CNOonck ,,∈ ) for the centermost 

phoneme phi in the given context pi-w…pi+w. A phonemic null 

is defined in the phoneme set and is used for representing 

phonemes to the left of the first phoneme and to the right of 

the last phoneme in a pronunciation. 

The ONC neural network is a fully connected MLP, 

which uses a hyperbolic tangent sigmoid shaped function in 

the hidden layer and a softmax normalization function in the 

output layer. The softmax normalization ensures that the 

network outputs are in the range [0,1] and sum up to unity, 

=

=
3

1j

y

y

i
j

i

e

e
P .        (6) 

In Equation (6), yi and Pi denote the ith output value 

before and after softmax normalization. It has been shown in 

[1] that a neural network with softmax normalization will 

approximate class posterior probabilities when trained for 

one-out-of-N classification and when the network is 

sufficiently complex and trained to a global minimum. Since 

the neural network input units are text-valued, the phonemes 

in the input window need to be transformed to some numeric 

quantity. This can be done, for example, using an orthogonal 

codebook representing the alphabet used for the ONC 

mapping task, as shown in Table 1. The last row in the table is 

the code for the phonemic null. An important property of the 

orthogonal coding scheme is that it does not introduce any 

correlation between the different letters. 

o u t p u t  l a y e r

h i d d e n  l a y e r

i n p u t  l a y e r

P ( o n c
1
| p h

i - w
, . . . , p h

i+ w
) P ( o n c

3
| p h

i - w
, . . . , p h

i+ w
)

c o d e  v e c t o r s  o f  i n p u t  l e t t e r s

p h
i - w

p h
i

p h
i+ w

Figure 2. Two-layer neural network architecture. 

The ONC neural network is trained using the standard 

back-propagation (BP) algorithm augmented by a momentum 

term. Each phoneme with context and the corresponding ONC 

tag of the pronunciation make up one training example. 

Weights are updated in a stochastic on-line fashion. All 

parameters are rounded off to eight bits as this was found 

sufficient for representing model parameters. 

Table 1. Orthogonal phoneme coding scheme. 

Letter Code 

aa 100...0000 

ae 010...0000 

... ... 

B 000...1000 

P 000...0100 

T 000...0010 

# 000...0001 

The outputs of the ONC neural network approximate the 

ONC posterior probabilities corresponding to the centermost 

phoneme. The ONC sequence of a pronunciation is obtained 

by combining the network outputs for each individual 

phoneme in the pronunciation. Given a pronunciation with its 

   [Syllable] 

NucleusOnset Coda

   /t/   /eh/ /k/   /s/    /t/

Word: 

text

I - 307
Authorized licensed use limited to: IEEE - Staff. Downloaded on June 12,2025 at 19:20:28 UTC from IEEE Xplore.  Restrictions apply. 

Page 40 of 46



phonemic representation, the ONC tag of phoneme phi is 

given by 

{ }),...,|(argmax wiwik
onc

phphoncPonc

k

+−= , (7)

where ),...,|( wiwik phphoncP +−  is the network output 

corresponding to onck given the input phonemes phi-w…phi+w,

and variable w denotes the phoneme window context size, 

respectively. The variable onc takes its values from the set 

[O N C]. 

4 EXPERIMENTAL RESULTS 

The neural network based syllabification method is evaluated 

using the CMU dictionary for US English. The dictionary 

contains 10,801 words with their pronunciations and labels 

with ONC information. The pronunciations and the mapped 

ONC sequences are extracted to form the training data. The 

training set is selected from the whole database by using the 

following methods: 

• Decimation of the sorted dictionary (denoted as 

DECIMATE); 

• Subset selection from the text database using the selection 

approach proposed in this paper (denoted as SELECT). 

With both methods, the data not selected to the training set 

constitutes the test set. 
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Figure 3. ONC accuracy on test set with different training set 

sizes using the two data selection methods. 

Figure 3 shows the experimental results achieved using 

the two data selection methods. The efficiency of the training 

set selection approach can be studied by evaluating the 

generalization capability. The general rule of thumb is that the 

more training data is available, the better performance can be 

expected. However, the selection of the training data affects 

the generalization capability: if the training data is well 

selected, the performance can be improved without increasing 

the size of the training set. The results clearly show that the 

proposed subset selection technique outperforms the 

commonly used decimation method; the average improvement 

achieved using the proposed approach is 38.8%. 

Figure 4 illustrates the “subset distance” (see Section 2.2) 

of datasets extracted using the two different data selection 

methods: the decimation technique and the proposed selection 

algorithm. It is easy to see that the average distance D is more 

or less even when the decimation method is used. With the 

proposed method, the average distance decreases 

monotonically with increasing data size. Furthermore, the 

difference between the two methods is large with small subset 

sizes, and converges to zero when the whole data set is used. 

Thus, these results indicate that the proposed method can 

extract data more efficiently, i.e. the selected data has better 

coverage. Naturally, this explains the better generalization 

capability of the trained model. 
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Figure 4. Average distance D inside the subsets extracted 

using the two different data selection methods, with respect to 

the percentage of the subset size vs. the whole data size. 

5 CONCLUSIONS 

Training data selection from a text database is a crucial, but 

often neglected, step in the development of ASR and TTS 

systems. In this paper, we define an objective function that 

effectively measures the quality of a selected subset. 

Moreover, we introduce a subset selection algorithm that 

optimizes the objective function. Our experimental results 

obtained in the syllabification task show that the proposed 

approach is a very promising technique that makes it possible 

to select subsets with good coverage in a systematic and 

meaningful way. The presented idea can be used in many 

different applications that require training with a text database. 
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ABSTRACT 

In this paper we examine the proposition that knowledge 
of the timing of syllabic onsets may be useful in improving 
the performance of speech recognition systems. A method 
of estimating the location of syllable onsets derived from 
the analysis of energy trajectories in critical band chan- 
nels has been developed, and a syllable-based decoder has 
been designed and implemented that incorporates this on- 
set information into the speech recognition process. For a 
small, continuous speech recognition task the addition of 
artificial syllabic onset information (derived from advance 
knowledge of the word transcriptions) lowers the word error 
rate by 38%. Incorporating acoustically-derived syllabic on- 
set information reduces the word error rate by 10% on the 
same task. The latter experiment has highlighted represen- 
tational issues on coordinating acoustic and lexical syllabi- 
fications, a topic we are beginning to explore. 

1. INTRODUCTION 

Automatic speech recognition (ASR) systems typically rely 
upon phoneme- or sub-phoneme-based Hidden Markov 
models (HMMs) that are concatenated into word and sen- 
tence elements. Although syllable-based recognition has 
been successfully used in several languages (including Span- 
ish [l] and Chinese [2]), the syllable has been not been fully 
exploited for the automatic recognition of English. In this 
paper we investigate the possibility that syllabic onsets can 
be derived from the acoustic speech signal, and that this 
onset information can be incorporated into the decoding 
process in a manner sufficient to improve recognition per- 
formance. 

Evidence from both psychoacoustic and psycholinguisti- 
cal research [3, 4, 51, as well as a model by one of the au- 
thors [6], suggests that the syllable is a basic perceptual unit 
for speech processing in humans. The syllable was proposed 
as a basic unit of automatic (computer) speech recognition 
as early as 1975 [7,8], and this idea has been periodically re- 
examined (e.g. in [9, 10, 11, 12, 131). The syllabic level con- 
fers several potential benefits; for one, syllabic boundaries 
are more precisely defined than phonetic segment bound- 
aries in both the speech waveform and in spectrographic 
displays. Additionally, the syllable may serve as a natural 
organizational unit useful for reducing redundant computa- 
tion and storage in decoding. The syllabic abstraction may 
also be appropriate for the incorporation of suprasegmental 
prosodic information. 

English is considered to possess a highly complex syllabic 
structure not readily amenable to automatic segmentation 
or identification. Detailed statistical analyses of sponta- 

0-8186-7919-0197 $10.00 8 1997 IEEE 

Figure 1. Major processing steps for the syllable 
onset features . 
neous informal discourse indicate that the syllabic struc- 
ture of conversational English is not as complicated as has 
been generally supposed. For example, data gathered from 
telephone conversations in [14] and the Switchboard cor- 
pus [15, 161 indicate that over 80% of the word tokens in 
these corpora are monosyllabic, and more than 85% of the 
syllables are of the canonical consonant-vowel (CV), vowel- 
consonant (VC), V, or CVC varieties. These structural reg- 
ularities can, in principle, be exploited to reliably estimate 
syllabic boundaries. 

Previous research on detecting syllable boundaries and 
using this information to improve recognition accuracy is re- 
ported for English [8, 9, 101 and for German [la, 131. In this 
communication we describe a perceptually-oriented method 
for the automatic delineation of syllabic onsets. Artificial 
neural networks (NNs) are used to classify both phonetic 
segments and potential syllabic onsets. In a departure from 
previous research, we focus on continuous, naturally-spoken 
English. 

2. DETECTING SYLLABLE ONSETS 
Syllable onsets are typically characterized by a pattern of 
synchronized rises in subband energy spanning adjacent 
subbands. The time course of these coordinated rises and 
falls in energy correspond to syllable-length intervals, on 
the order of 100-250 ms. 

Figure 1 illustrates the signal processing procedures de- 
signed to enhance and extract these acoustic properties. 
The speech waveform is decomposed via short-time Fourier 
analysis into a narrow-band spectrogram, which is con- 
volved with both a temporal and a channel filter, effec- 
tively creating a two-dimensional filter. The temporal fil- 
ter (a high-pass filter analogous to a Gaussian derivative) 
smoothes and differentiates along the temporal axis, and is 
tuned for enhancing changes in energy on the order of 150 
ms. The (Gaussian) channel filter performs a smoothing 
function across the channels, providing weight to regions of 
the spectrogram where adjacent channels are changing in 
coordinated fashion. Half-wave rectification is used to pre- 
serve the positive changes in energy, thus emphasizing the 
syllable onsets. 

Large values in this representation correspond to positive- 
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seven seven oh four live 4. R E C O G N I T I O N  EXPERIMENTS 
Recognition experiments were performed on a subset of the 
OGI Numbers corpus [24]. This corpus contains continuous, 
naturally spoken utterances of many different speakers say- 

utterance from the database is “eighteen thirty one.” The 
example in Figure 2 is also derived from the Numbers cor- 
pus. Collected over telephone lines, the utterances exhibit 

20 40 60 60 100 120 140 160 180 200 220 large variations in speaking rate and acoustic environmental 
conditions. The subset includes approximately three hours 
(3500 sentences) of training data, and one hour (1200 sen- 
tences) each of development-test-set and final-test-set data. 
The training data, with its cross-validation subset, was used 
for tuning the parameters. The development test set (re- 
ferred to as the “test set” in the sections below) was used 
for the results reported below. 

8 

t 6  

2 4  

3 ing numbers from a vocabulary of thirty words. A sample 74 

2 

frame 

Figure  2. Example of onset features derived for the 
utterance ‘seven seven oh four  five’. The vertical 
lines denote syllable onsets as derived f rom hand- 
t ranscr ibed  phone labels. 

going energy regions where hypothesized syllable onset 
characteristics occur. The channel outputs are subsequently 
averaged over a region spanning nine critical bands [17], the 
result of which is illustrated in Figure 2. 

Features derived from this procedure are updated every 
10 ms. The resulting vectors are concatenated with log- 
RASTA [18] features computed over a 25-ms frame every 
10 ms, and this combination is used as the input to a neu- 
ral network classifier for estimating the location of syllabic 
onsets. A single-hidden layer, fully connected, feed-forward 
multilayer perceptron with 400 hidden units was trained 
to estimate the probability that a given frame is a sylla- 
ble onset, given the acoustic patterns described above. For 
the purposes of training, the syllable onset (as derived from 
phonetically transcribed segmentation) was represented as a 
series of five frames, in which the initial frame corresponded 
to the actual onset. 

A simple numeric threshold applied to the probability es- 
timates generated by the neural net determined the identifi- 
cation of any given frame as a syllabic onset. This procedure 
correctly detected 94% of the onsets computed from phc+ 
netically transcribed data (within the five-frame tolerance 
window defined for training). The procedure also mistak- 
enly inserted syllabic onsets where there were none (false 
positives) in 15% of the frames outside the tolerance win- 
dow of any onset. These onset decisions were used by a 
syllable-based decoder as frames corresponding to syllable 
onsets. 

3. SYLLABLE-BASED DECODING 

A speech decoder was designed to incorporate an interme- 
diate syllabic level of abstraction between the phone and 
word/sentence tiers. The decoder processes phonetic prob- 
abilities from a neural network using a conventional Viterbi 
algorithm using a bigram syllable grammar and creates a 
syllable graph (a derivative of the word graph as defined 
in 1191). The syllable graph serves as input to the program’s 
stack decoder [20, 211, along with a bigram word grammar, 
to determine the most likely sequence of words. This pro- 
cedure is a variation on the multiple-pass decoding method 
(related to the approach used in 1221 and [23]) and enables 
the use of a complex language model at a higher stage of 
linguistic representation. The additional complexity of the 
decoder design permits the explicit representation of the 
relationship of phones to syllables and syllables to words. 
Syllabic onset information is introduced as an additional 
probability input into the decoder at the level of the sylla- 
ble graph. 

4.1. Experiments with Syllabic Onsets Deter- 
mined from Forced-Viterbi Alignment 

In order to ascertain the potential value of syllabic onset 
timing, this information (derived from advance knowledge 
of the word-transcriptions of the test utterances) was incor- 
porated into the decoding process. 

A forced-Viterbi technique was used to generate phone 
alignment labels based on word transcriptions of the corpus 
provided for all the utterances in the test set. Artificial syl- 
labic onsets were derived from these forced-Viterbi labels. 
The resulting syllabic onset information was only approxi- 
mate. Many of the onsets were as much as 50 ms distant 
from the labelled segment boundary. 

The experimental lexicon included 32 single-pronuncia- 
tion words, comprising 30 different syllables. The pro- 
nunciations were derived from those developed at Carnegie 
Mellon University for large vocabulary recognition. The 
context-dependent phonetic durations used were derived 
from the training data using an embedded training process. 

The recognition procedure used a highly restrictive crite- 
rion for syllabic decoding. A syllable was presumed to occur 
only when the beginning frame for the syllabic model coin- 
cided precisely with a predetermined onset. No restriction 
was placed on a syllable’s termination; it was theoretically 
possible for the end point of a postulated syllable to occur 
after the next Viterbi-derived onset of the following sylla- 
ble. Only syllabic onset information from the test set was 
included in our recognition experiments. No prior knowl- 
edge of phonetic information from the test set was used. 

If the dynamic programming (Viterbi) procedure and the 
speech decoding input elements were of the ideal form, the 
addition of artificially-derived syllabic boundary informa- 
tion would, in theory, provide little or no improvement in 
recognition performance. In principle the decoding process 
assumes that models can begin at any frame, including the 
ones we specified as incorporating syllabic onsets. In our ex- 
periment, incorporation of artificially-derived syllable seg- 
mentation information reduces the word error rate by 38%, 
from 10.8% to 6.7%, as shown in Table 1. This large re- 
duction in word error suggests that syllabic boundary in- 
formation can significantly improve speech recognition per- 
formance when directly incorporated into the decoding pro- 
cess. 

A second series of experiments was conducted with the 
aim of delineating the precision required for syllabic on- 
set information to be of significant utility in the decoding 
process. The temporal precision of the syllabic onset was 
systematically varied over several frames, as shown for se- 
lected values in Table 2. There is a small, but significant 
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I System I Word Error Rate I 

no onset information 
with data-derived lexicon 
onset used with threshold only 

I sub./ins./del. I 
10.8% I no onset information I 

5.3%1.3%2.4% 
8.2% 

4.8%1.3%2.1% 

I 5.8%/3.1%/1.8% 
with known svllable I 6.7% 

centered on onset 
Total frs./onset = 9 
centered on onset 

centered on onset 
Total frs./onset = 13 

onset times 1 4.4%/0.7%1.6% 
Total frs./onset = 1 

4.9%/0.9%/1.5% 
7.8% 

5.1%/1.3%/1.4% 
8.5% 

5.2%/1.9%/1.4% 

Table 1. Word-error rates for decoding using a 
single-pronunciation lexicon, with and without arti- 
ficial syllabic onsets derived from forced alignment. 

I Number of frames about I Error Rate 1 
I each onset I sub./ins./del. I 
I Total frs./onset = 5 I 7.3% 1 

Table 2. Word-error rates €or single-pronunciation 
decoding, using syllable hypotheses that are allowed 
to begin within several frames of artificial onsets 
derived from forced alignment. 

increase in word error rate as the onset window is increased 
from one to thirteen frames, consistent with the hypothesis 
that syllabic onset information of intermediate accuracy is 
of potential utility in speech recognition systems. 

4.2. Experiments with Acoustically Determined 

Speech recognition systems do not typically possess detailed 
a priori  information concerning the temporal loci of syllabic 
boundaries. Rather, they must infer the syllable boundaries 
from other information sources. We are in the initial stages 
of integrating the acoustically-derived onset information de- 
scribed above into the decoding process. 

In order to provide a closer match between the phonet- 
ically transcribed material and the syllabic onsets derived 
from the neural network training procedure, a new set of 
lexicons and grammars were developed, specifically based 
on the transcription data from the training set. These mate- 
rials included 32 words (and their range of 178 possible pro- 
nunciations), comprising 118 separate syllabic forms. The 
spectrum of pronunciations included cover approximately 
90% of the pronunciation variations in the corpus, as re- 
flected in the phonetic transcription material. The dura- 
tions of phonetic segments were also computed from the 
transcription of the training materials. The word gram- 
mar (derived from the word transcriptions of the training 
set) was identical to the one described for the initial series 
of recognition experiments in the last section. However, 
the syllable-level grammar was, by necessity, specifically 
adapted to this language model set. 

The decoder used a simple threshold applied to the out- 
put of the neural network in order to ascertain the occur- 
rence of a syllabic onset. The algorithm set temporal re- 
strictions on the syllabic models such that they were re- 
quired to begin no sooner than five frames preceding the 
time of the estimated syllabic onset. By this metric it was 
possible to reduce the number of potential starting frames 
for syllabic models by 58%. 

Syllabic Onsets 

I sub./ins./del. I 
I l l  9.1 0 

Table 3. Word-error rates for multiple-pronun- 
ciation (data-derived) decoding, with and without 
acoustically-derived onsets. 

When such acoustically-derived syllabic onset informa- 
tion is incorporated into the decoding process the recog- 
nition performance improves slightly. The word error rate 
decreases by 10% which, while not quite reaching statistical 
significance (for p < 0.05), is still indicative of the potential 
performance benefit to be derived from including temporal 
information pertaining to syllabic boundaries. 

The incorporation of multiple pronunciations in the 
recognition lexicon improved the performance of the base- 
line system and served to provide further details concerning 
the specific relationship between syllabic boundary informa- 
tion and word models. 

5. DISCUSSION 
The experiments described in the section above illuminated 
certain limitations in the present recognition system that 
necessarily impact its performance. One such limitation 
of the current experimental paradigm pertains to the mis- 
match between the acoustic-phonetic and phonological rep- 
resentations of the syllable forms used for word recognition. 
The syllabic segmentation method was based largely on 
acoustic-phonetic criteria, while the syllabification of lexical 
items was derived from a more abstract phonological repre- 
sentation. An instance where this distinction is of particular 
significance for word sequences is one in which the syllable 
coda of the first word is consonantal and the onset of the 
following word is vocalic, as in “five eight.” The phono- 
logical representation of such a sequence would be /fayv/ 
/eyt/, while the phonetic realization is more typically [fay] 
[veyt]. Such “re-syllabification” phenomena are not easily 
accommodated within the present syllabic representational 
framework. Future efforts will be devoted to resolving such 
issues within a single, coherent representational framework. 

6. SUMMARY AND FUTURE WORK 

Incorporation of information pertaining to syllabic onsets 
has the potential to significantly increase the accuracy of 
word-level recognition. This syllabic information was ob- 
tained in our study from two different sources - artificial 
boundaries derived from prior phonetic transcriptions of the 
corpus materials, and acoustic segmentation derived from 
a signal processing method based on general principles of 
auditory analysis. The word-error rate was reduced by 38% 
for the artificially-derived boundaries and by 10% for the 
boundary information derived from the acoustic segmen- 
tation method. These results indicate the potential util- 
ity of incorporating syllable boundary information in fu- 
ture speech recognition systems. We are now working to- 
wards improving the accuracy of the acoustically-based seg- 
mentation algorithm via the incorporation of the computed 
probability estimates from the neural net and through op- 
timization of the decision criterion derived from such signal 
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detection theoretic parameters as the false alarm rate and 
response bias. 
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