
United States Patent
Sproat

[19]

[54]

[75]

[73]

[21]

[22]

[51]
[52]
[58]

[56]

COMPILATION OF WEIGHTED FINITE­
STATE TRANSDUCERS FROM DECISION
TREES

Inventor: Richard William Sproat, Berkeley
Heights, N.J.

Assignee: Lucent Technologies Inc., Murray Hill,
N.J.

Appl. No.: 663,767

Filed: Jun. 14, 1996

Int. Cl.6
.. GlOL 9/00

U.S. Cl. 704/255; 704/257; 704/9
Field of Search 395/2.64, 2.54,

395/2.66, 2.69, 2.44; 704/235, 245, 255,
257,260, 9

References Cited

PUBLICATIONS

M.D. Riley, "Some Applications of Tree-based Modelling
To Speech And Language," Proceedings of the Speech and
Natural Language Workshop, Cape Cod, MA, Oct. 1989, pp.
339-352.
M. D. Riley, "A Statistical Model For Generating Pronun­
ciation Networks," Proceedings of the International Con­
ference on Acoustics, Speech, and Signal Processing,
ICASSP91, Oct. 1991, pp. Sll.1-Sll.4.
A Ljolje et al., "Optimal Speech Recognition Using Phone
Recognition and Lexical Access," Proceedings of ICSLP,
Banff, Canada, Oct. 1992, pp. 313-316.
J. Oncina et al., "Learning Subsequential Transducers For
Pattern Recognition Interpretation Tasks," IEEE Transac­
tions on Pattern Analysis and Machine Intelligence, vol. 15,
May 1993, pp. 448-458.
F. Pereira et al., "Weighted Rational Transductions and Their
Application to Human Language Processing," ARPA Work­
shop on Human Language Technology, Mar. 1994, pp.
240---254.

START

I 1111111111111111 11111 111111111111111 1111111111 1111111111111111 Ill lllll llll
US005806032A

[11] Patent Number:

[45] Date of Patent:

5,806,032
Sep. 8, 1998

R. Sproat, "A Finite-State Architecture for Tokenization and
Grapheme-to-Phoneme Conversion in Multilingual Text
Analysis," Proceedings of the EACL SIGDAT Workshop,
Dublin, Ireland, Mar. 1995, pp. 65-72.
R. M. Kaplan et al., Regular Models of Phonological Rule
Systems, Computational Linguistics, vol. 20, Sep. 1994, pp.
331-378.
D. Gildea et al., "Automatic Induction of Finite State
Transducers for Simple Phonological Rules," 33rd Annual
Meeting of the Associates for Computational Linguistics,
Morristown, NJ, 1995, pp. 9-15, (Jun. 1995).
D.M. Magerman, "Statistical Decision-Tree Models For
Parsing," 33rd Annual Meeting of the Association for Com­
putational Linguistics, Morristown, NJ, Apr. 1995, pp.
276-283.
F. Pereira et al., "Speech Recognition by Composition of
Weighted Finite Automata," CMP-LG archive paper
9603001, Mar. 1996, pp. 1-24.

Primary Examiner-David R. Hudspeth
Assistant Examiner-Susan Wieland
Attorney, Agent, or Firm-Kenneth M. Brown

[57] ABSTRACT

A method for automatically converting a decision tree into
one or more weighted finite-state transducers. Specifically,
the method in accordance with an illustrative embodiment of
the present invention processes one or more terminal (i.e.,
leaf) nodes of a given decision tree to generate one or more
corresponding weighted rewrite rules. Then, these weighted
rewrite rules are processed to generate weighted finite-state
transducers corresponding to the one or more terminal nodes
of the decision tree. In this manner, decision trees may be
advantageously compiled into weighted finite-state
transducers, and these transducers may then be used directly
in various speech and natural language processing systems.
The weighted rewrite rules employed herein comprise an
extension of conventional rewrite rules, familiar to those
skilled in the art.

30 Claims, 2 Drawing Sheets

SELECT A TREE TIN FORESTF

S£LECTALEAFNOOELFROMTREET

DETERMINE A PATH P FROfJ THE ROOT NODE
OFTHETREETTOLEAFNODEL

fOREACHNOOENONPATHf,INTESECTTHEREGULAR
EXPRESSION AT N WITH 11,E PREVIOUS NODES ON P

-OBUILOEITHERTHELEFTCONTEXT(LC)ORTHERIGHTCONTEXT(RC)
ASDEFINEOINNODEN

AT LEAF NODE l. GENERATE THE WEIGHTED DISJUNCTION D
OF OUTPUT sr~eoLS DEFINED FOR THE INPUT SYMBOLS s

FORTREET

COMPILE THE WEIGHTED REWRITE RULE
S-D/LUC

TOGENERATEATRANSDUCERFORNODEL

Page 1 of 11

MICROSOFT CORP.
EXHIBIT 1023

U.S. Patent Sep. 8, 1998 Sheet 1 of 2 5,806,032

FIG. 1

aa

~ lseg: 1 lseg:2,3,many 0 102 0103

301/785 2717/2904

ciolv \ vp-1 :cmb,tbml,b~

p 1 :blab,labd,den,pal, vel,pha,n/ a vp-1 :fl, fml, fmh,f h,cml,bmh,n/ a

104 j_I105~~-,106 j_r107 w aa w
119/308 172/477 258/385 2519/2519

rs~:2 \ str:(n \

aa

110/349

b:b/O
m:m/0
p:p/0

201

N:N/0

11 Orseg~l II oo 11 :r:n; o,n~~sec (5

69/128 2080/2080 415/439

N:N/0

Page 2 of 11

U.S. Patent Sep. 8, 1998 Sheet 2 of 2 5,806,032

FIG. 3
-

START

301
SELECT A TREE TIN FOREST F

302
SELECT A LEAF NODE L FROM TREE T

' v3o3
DETERMINE A PATH P FROM THE ROOT NODE

OF THE TREE T TO LEAF NODE L

' v3o4
FOR EACH NODE N ON PATH ,P, INTESECT THE REGULAR

EXPRESSION AT N WITH THE PREVIOUS NODES ON P
TO BUILD EITHER THE LEFT CONTEXT {LC) OR THE RIGHT CONTEXT (RC)

AS DEFINED IN NODE N

' AT LEAF NODE L, GENERATE THE WEIGHTED DISJUNCTION D
./305

OF OUTPUT SYMBOLS DEFINED FOR THE INPUT SYMBOLS S
FOR TREE T

' ./306
COMPILE THE WEIGHTED REWRITE RULE

S-D/LC_RC
TO GENERATE A TRANSDUCER FOR NODE L

' 307
YES MORE LEAF NO

NODES IN TREE T
?

r308

INTERSECT TOGETHER ALL TRANSDUCERS DERIVED
FOR EACH LEAF NODE IN TREE T

' 309
NO MORE TREES YES

IN FOREST F
?

INTERSECT TOGETHER ALL TRANSDUCERS DERIVED
v310

FOR EACH TREE IN FOREST F
__L

STOP

Page 3 of 11

5,806,032
1

COMPILATION OF WEIGHTED FINITE­
STATE TRANSDUCERS FROM DECISION

TREES

2
linguistic data has proven quite successful, and whereas
finite-state based system implementations have been suc­
cessfully developed, no techniques for automatically deriv­
ing finite-state models from decision trees have been

FIELD OF THE INVENTION

The present invention relates generally to the field of
linguistic modeling as used, for example, in speech recog­
nition and/or speech synthesis systems, and more particu­
larly to finite-state methods for implementing such linguistic
models in such systems.

5 developed, and only partial success has been achieved in
attempts to directly infer transducers from linguistic data.
(See, e.g., Daniel Gildea and Daniel Jurafsky, "Automatic
Induction of Finite State Transducers for Simple Phonologi­
cal Rules," 33rd Annual Meeting of the Association for

10
Computational Linguistics, pages 9-15, Morristown, N.J.
June, 1995, also incorporated by reference as if fully set
forth herein.) Thus, if these two techniques could be "mar­
ried" in the form of an automated procedure for converting
the information in decision trees into weighted finite-state
transducers, information inferred from linguistic data and

BACKGROUND OF THE INVENTION

Much attention has been devoted recently to methods for
inferring linguistic models from linguistic data. One pow­
erful inference method that has been used in various appli­
cations are decision trees, and in particular classification and
regression trees ("CART"), well known to those of ordinary
skill in the art. As is also well known to those skilled in the

15 represented in a decision tree could be used directly in a
system that represents other information, such as lexicons or
grammars, in the form of finite-state machines.

art, these decision trees can be "grown" from linguistic data SUMMARY OF THE INVENTION

The use of decision trees for linguistic modelling and the
use of finite-state transducers are advantageously combined
by a method in accordance with an illustrative embodiment
of the present invention, whereby a decision tree is auto-
matically converted into one or more weighted finite-state
transducers. Specifically, the illustrative method processes
one or more terminal (i.e., leaf) nodes of a given decision
tree to generate one or more corresponding weighted rewrite
rules. Then, these weighted rewrite rules are processed to
generate weighted finite-state transducers corresponding to
the one or more terminal nodes of the decision tree. In this
manner, decision trees may be advantageously compiled into
weighted finite-state transducers, and these transducers may
then be used directly in various speech and natural language
processing systems. The weighted rewrite rules employed

by the application of conventional methods, such as are 20

described, for example, in Michael D. Riley, "Some Appli­
cations of Tree-based Modelling to Speech and Language,"
Proceedings of the Speech and Natural Language Workshop,
pages 339-352, Cape Cod, Mass., October 1989. Other
applications of tree-based modeling to specific problems in 25
speech and natural language processing are discussed, for
example, in Michael D. Riley, "A Statistical Model for
Generating Pronunciation Networks," Proceedings of the
International Conference on Acoustics, Speech and Signal
Processing, pages Sll.1-Sll.4, October, 1991, and in David

30 M. Magerman, "Statistical Decision-Tree Models for
Parsing," 33rd Annual Meeting of the Association for Com­
putational Linguistics, pages 276-283, Morristown, N.J.
April, 1995. Each of these references is incorporated by
reference as if fully set forth herein.

35 herein comprise an extension of conventional rewrite rules,
familiar to those skilled in the art. An increasing amount of attention has also been focused

on finite-state methods for implementing linguistic models.
These methods include, in particular, the use of finite-state
transducers and weighted finite-state transducers. See, e.g.,
Ronald M. Kaplan and Martin Kay, "Regular Models of
Phonological Rule Systems," Computational Linguistics, 40

20:331-378, September, 1994, and Fernando Pereira,
Michael Riley and Richard Sproat, "Weighted Rational
Transductions and their Application to Human Language
Processing," ARPA Workshop on Human Language
Technology, pages 249-254, March, 1994. Each of these 45
references is also incorporated by reference as if fully set
forth herein.

One reason for the interest in the use of finite-state
mechanisms is that finite-state machines provide a math­
ematically well-understood computational framework for 50
representing a wide variety of information, both in natural
language processing and in speech processing. Lexicons,
phonological rules, Hidden Markov Models, and regular
grammars, each of which is well known to those of ordinary
skill in the art, are all representable as finite-state machines.

55 Moreover, the availability of finite-state operations such as
union, intersection and composition means that information
from these various sources can be combined in useful and
computationally attractive ways. The above-cited papers

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an illustrative decision tree which may be
provided as input to a procedure for generating weighted
finite-state transducers from decision trees, such as the
illustrative procedure of FIG. 3.

FIG. 2 shows an illustrative weighted finite-state trans­
ducer generated, for example, by the illustrative procedure
of FIG. 3.

FIG. 3 shows a flow diagram of an illustrative procedure
for generating weighted finite-state transducers from deci­
sion trees in accordance with an illustrative embodiment of
the present invention.

DETAILED DESCRIPTION

Tree-based modelling

(among others) provide further justification for the use of
finite-state methods for implementing linguistic models.

Despite the recent attention given to both the use of
decision trees for inferring linguistic models from linguistic
data, and the use of finite-state methods for implementing
linguistic models, there have not heretofore been any viable
techniques whereby these two strands of research have been 65

combined in such a manner as to leverage the advantages of
each. In particular, whereas generating decision trees from

FIG. 1 shows an illustrative decision tree which may be
provided as input to a procedure for generating weighted
finite-state transducers from decision trees, such as the
illustrative procedure of FIG. 3. All of the phones in the
figure are given in "ARPABET," familiar to those of ordi­
nary skill in the art. The tree of FIG. 1 was trained, in
particular, on the "TIMIT" database, also familiar to those

60 skilled in the art, and models the phonetic realization of the
English phoneme /aa/ in various environments. (See, e.g.,
"A Statistical Model for Generating Pronunciation
Networks," cited above.) When the tree of FIG. 1 is used for
predicting the allophonic form of a particular instance of
/aa/, one starts at the root of the tree (i.e., node 101), and asks
questions about the environment in which the /aa/ phoneme
is found, traversing a path "down" the tree, dependent on the

Page 4 of 11

5,806,032
3

answers to the questions. In particular, each non-leaf node
(e.g., nodes 101, 102, 103, 105 and 107), dominates two
daughter nodes. As one traverses a path down the tree, the
decision on whether to go left or right depends on the answer

4
that its predictions specify how to rewrite a symbol (in
context) in an input string. In particular, they specify a
two-level mapping from a set of input symbols (phonemes)

to the question being asked at the given node. The following 5
table provides an explanation of the symbols used to label
the arcs of the decision tree of FIG. 1:

to a set of output symbols (allophones).
Rewrite rule compilation
It is well known to those skilled in the art (and, in

particular, finite-state phonology), that systems of rewrite
rules of the familiar form cp-1.jJ/A_p, where cp, 1.jJ, A and p
are regular expressions, can be represented computationally

cpn place of articulation of consonant n segments to the
right

cp-n place of articulation of consonant n segments to the
left values: alveolar; bilabial; labiodental; dental; pala­
tal; velar; pharyngeal; n/a if is a vowel, or there is no
such segment.

vpn place of articulation of vowel n segments to the right
vp-n place of articulation of vowel n segments to the left

values: central-mid-high; back-low; back-mid-low;
back-high; front-low; front-mid-low; front-mid-high;
front-high; central-mid-low; back-mid-high; n/a if is a
consonant, or there is no such segment.

Iseg number of preceding segments including the segment
of interest within the word

rseg number of following segments including the segment
of interest within the word values: 1, 2, 3, many

str stress assigned to this vowel values: primary,
secondary, no (zero) stress n/a if there is no stress mark

By way of illustration, consider, for example, that the
phoneme /aa/ exists in some particular environment. The
first question that is asked (at the root node-node 101)
concerns the number of segments, including the /aa/ pho­
neme itself, that occur to the left of the /aa/ in the word in
which /aa/ occurs. In this case, if the /aa/ is initial-i.e., Iseg
is 1, one goes left to node 102; if there is one or more
segments to the left in the word, one goes right to node 103.
Let us assume for illustrative purposes that this /aa/ is initial
in the word, in which case we go left to node 102. The next
question (asked at node 102) concerns the consonantal
"place" of articulation of the segment to the right of /aa/-if
it is alveolar go left to node 104; otherwise, if it is of some
other quality, or if the segment to the right of /aa/ is not a
consonant, then go right to node 105. Let us now assume that
the segment to the right is, for example, /z/, which is
alveolar. Thus, we go left to terminal (i.e., leaf) node 104.
The indication of "119/308" at node 104 indicates that in the
training data, 119 out of 308 occurrences of the /aa/ pho­
neme in this particular environment were realized as the
phone [ao]. In other words, we can estimate the probability
of /aa/ being realized as [ao] in this environment as 0.385,
or, equivalently, we can assign a "weight" (equal to the
negative of the logarithm of the probability) of 0.95 thereto.
The full set of realizations at node 104 with estimated
non-zero probabilities is, in fact, as follows:

phone probability weight - -log prob.

ao 0.385 0.95
aa 0.289 1.24
q + aa 0.103 2.27
q + ao 0.096 2.34
ah 0.069 2.68
ax 0.058 2.84

Note that a decision tree in general is a complete
description, in the sense that for any new data point, there
will be some leaf node that corresponds to it. Thus, for the
tree in FIG. 1, each new instance of the phoneme /aa/ will

10 as finite-state transducers (FSTs), and that these rewrite rules
can be automatically converted to such corresponding FSTs.
(Note that cp represents the input to the rewrite rule, 1.jJ
represents the output of the rewrite rule, and A and p
represent the left and right contexts, respectively.) See, e.g.,

15 "Regular Models of Phonological Rule Systems," cited
above, which presents one particular procedure (hereinafter
the Kaplan and Kay, or "KK" procedure) for compiling
systems of such rewrite rules into FSTs. In accordance with
an illustrative embodiment of the present invention, such a

20 procedure can be advantageously extended to include the
compilation of probabilistic or weighted rules into weighted
finite-state-transducers (WFSTs). As is well known to those
skilled in the art, weighted finite-state transducers are
defined as transducers such that, in addition to having

25 standard input and output labels, each transition is further
labeled with a weight. (See, e.g., "Weighted Rational Trans­
ductions and their Application to Human Language
Processing," cited above.)

Instead of the "KK" procedure, familiar to those skilled in
30 the art, an improved procedure for compiling rewrite rules

into finite-state transducers may be advantageously
employed in accordance with one illustrative embodiment of
the present invention. Specifically, in contrast to the "KK"
algorithm which introduces context labelled brackets

35 widely, only to restrict their occurrence subsequently (see
"Regular Models of Phonological Rule Systems," cited
above), the improved procedure introduces context symbols
just when and where they are needed. Furthermore, the
number of intermediate transducers necessary in the con-

40 struction of the rules is smaller than in the "KK" procedure,
and each of the transducers can be constructed more directly
and efficiently from the primitive expressions of the rule, cp,
1.jJ, A and p.

For example, in accordance with the illustrative improved
45 procedure for compiling rewrite rules into finite-state

transducers, a transducer which corresponds to the left-to­
right obligatory rule cp-1.jJ/A_p can be obtained by the
composition of five transducers:

50

55

60

r0 f°replace 0 11 °12

Specifically, these five transducers operate as follows:
1. The transducer r introduces in a string a marker ">"

before every instance of p. This transformation may be
written as follows: ~*p-~*>p.

2. The transducers f introduces markers "<i'' and "<2 "

before each instance of cp that is followed by a ">"
marker: (~U{>})*cp>-(~U{>})*{ <1 ,<2 }cp>. In other
words, this transducer marks just those cp that occur
before p.

be handled by (exactly) one leaf node in the tree, depending 65

upon the environment in which the /aa/ is found. Also note
that each decision tree considered herein has the property

3. The replacement transducer replace replaces cp with 1.jJ
in the context <1 cjl>, simultaneously deleting the ">"
marker in all positions. Since">", "<i'', and "<2 " need
to be ignored when determining an occurrence of cp,
there are loops over the transitions >:E, <1 :E, <2 :E at all
states of cp, or equivalently of the states of the cross
product transducer cpx1.jJ.

Page 5 of 11

5,806,032
5

4. The transducer 11 admits only those strings in which
occurrences of a "<i'' marker are preceded by A and
deletes the "<i'' at such occurrences: ~*A<1 ----;,~*A.

5. The transducer 12 admits only those strings in which
occurrences of a "<2 " marker are not preceded by A and 5

deletes the "<2" at such occurrences: ~*X<2 ----;,~*L
Illustrative extended rewrite rule compilation procedure
In accordance with an illustrative embodiment of the

present invention, a rewrite rule to finite-state transducer
compilation procedure which has been extended to handle 10

weighted rules is employed. With such an extended
procedure, we can allow 1.jJ in the rule cp----;,1.jJ/A_p to repre­
sent a weighted regular expression. That is, the transducer
corresponding to such a weighted rewrite rule (e.g., the
transducer generated by the illustrative extended rule com- 15

pilation procedure described herein) will replace cp with 1.jJ
having the appropriate weights in the context A_p.

Specifically, rewrite rules can be advantageously gener­
alized by letting 1.jJ be a rational power series, familiar to
those skilled in the art (and, in particular, formal language 20

theory). The result of the application of a generalized rule to
a string is then a set of weighted strings which can be
represented by a weighted automaton. The rational power
series considered herein are functions which map ~* to
9!+U{ oo }, which can be described by regular expressions 25

over the alphabet (9!+U{oo})x~. For example, S=(4a)(2b)*
(3b) is a rational power series. It defines a function in the
following way-it associates a non-null number only with
the strings recognized by the regular expression ab*b. This
number may be obtained by adding the coefficients involved 30

in the recognition of the string. For example, the value which
may be associated with abbb is (S,abbb)=4+2+2+3=11.

In general, such extended regular expressions can be
redundant. Some strings can be matched in different ways
with distinct coefficients. The value associated with those 35

strings may then be the minimum of all possible results.
S'=(2a)(3b)(4b)+(5a)(3b*) matches abb, for example, with
the different weights 2+3+4=9 and 5+3+3=11. The minimum
of the two is the value advantageously associated with
abb-that is, (S',abb)=9. Non-negative numbers in the defi- 40

nition of these power series are often interpreted as the
negative logarithm of probabilities. This explains the above
choice of the operations-addition of the weights along the
string recognition, and minimization, since we are interested
in the result which has the highest probability. Note that 45

based on the terminology of the theory of languages, famil-
iar to those skilled in the art, the functions we consider here
are power series defined on the tropical semiring (9!+ U { oo},
min, +, oo, 0).

By way of example, consider the following rule, which 50

states that an abstract nasal, denoted N, is obligatorily
rewritten as m in the context of a following labial:

N-mi_[+labial].

6
automaton. The corresponding operation is similar to that in
the unweighted case. However, the weight of the transducer
and those of the string or automaton need to be combined
too, here added, during composition. The composition
operation has been generalized to the weighted case by
introducing this combination of weights. The procedure
described above can then be advantageously used to compile
weighted rewrite rules into weighted finite-state transducers.

FIG. 2 shows an illustrative weighted finite-state trans­
ducer which may, for example, have been generated by the
illustrative extended rewrite rule procedure described above
(and which may, therefore, have been generated by a deci­
sion tree compilation procedure in accordance with the
illustrative embodiment of the present invention described
below). FIG. 2 shows, in particular, a weighted transducer
representing the weighted obligatory rule shown above (i.e.,
N----;,am+~n/_j +labial]). As used in the figure, the symbol
"@" denotes all letters different from b, m, n, p and N.

An illustrative decision tree to WFST compilation proce­
dure

Two assumptions on the nature of a given decision tree
advantageously enables efficient compilation into a WFST
in accordance with an illustrative embodiment of the present
invention. First, we advantageously assume that the predic­
tions at the leaf nodes specify how to rewrite a particular
symbol in an input string. And, second, we advantageously
presume that the decisions at each node are stateable as
regular expressions over the input string. In accordance with
the illustrative tree compilation procedure, each leaf node
will be considered to represent a single weighted rewrite
rule.

Specifically, the regular expressions for each branch
describe one aspect of the left context A, the right context p,
or both. The left and right contexts for the rule consist of the
intersections of the partial descriptions of these contexts
defined for each branch traversed between the root and the
given leaf node. The input cp is predefined for the entire tree,
whereas the output 1.jJ is defined as the union of the set of
outputs, along with their weights, that are associated with
the given leaf node. The weighted rule belonging to the leaf
node can then be compiled into a transducer using the
illustrative weighted rule compilation procedure described
above. Then, the transducer for the entire tree can be derived
by the intersection of the entire set of transducers generated
from the individual leaf nodes. Note that while regular
relations are not generally closed under intersection, the
subset of same-length (or more strictly speaking length­
preserving) relations is, in fact, closed.

By way of an illustrative example, refer to the sample
decision tree shown in FIG. 1. Since this tree models the
phonetic realization of /aa/, we can immediately set cp to be
aa for the whole tree. Next, consider again the traversal of
the tree from root node 101 to leaf node 104, as described
above. The first decision concerns the number of segments

Now suppose that this is only probabilistically true, and that
while ninety percent of the time N does indeed become m in
this environment, about ten percent of the time in real speech
it becomes n instead. Converting from probabilities to
weights, one would say that N becomes m with weight
a=-log(0.9), and n with weight ~=-log(0.1), in the given
environment. One could represent this by the following
weighted obligatory rule:

55 to the left of the /aa/ in the word, either none for the left
branch, or one or more for the right branch. Assuming that
a symbol, a, represents a single segment, a symbol, #,
represents a word boundary, and allowing for the possibility
of intervening optional stress marks (') which do not count

N-am+i3m/_[+labial].

The result of the application of a weighted transducer to
a string, or more generally to an automaton, is a weighted

60 as segments, these two possibilities can be represented by
the following regular expressions for A:

65

For the left branch, A=#Opt('), and for the right branch,

r,,-(#Opt(')aOpt('))U(#Opt(')aOpt(')aOpt('))U(#Opt(')aOpt(')
aOpt(')(aOpt(')).H#Opt(')a)•opt(').

(Note that the notation used herein is essentially that of
Kaplan and Kay, familiar to those skilled in the art, and

Page 6 of 11

5,806,032
7

defined in "Regular Models of Phonological Rule Systems,"
cited above. Note also that, as per convention, superscript
"+" denotes one or more instances of an expression.)

At this node there is no decision based on the righthand
context, so the righthand context is free. We can represent
this by setting p at this node to be ~*, where ~
(conventionally) represents the entire alphabet. (Note that
the alphabet is defined to be an alphabet of all correspon­
dence pairs that were determined empirically to be possible.)

8
description, it follows that for any leaf node i, and for any
context A_p not subsumed by A;-P;, there is some leaf node
j such that Aj-Pj subsumes A_p. Thus, the transducers
compiled for the rules at nodes 104 and 106, for example,

5 are intersected together, along with the rules for all the other
leaf nodes.

As noted above, and as known to those skilled in the art,
regular relations-the algebraic counterpart of FSTs-are
not in general closed under intersection. However, the subset
of same-length regular relations is closed under intersection,
since they can be thought of as finite-state acceptors
expressed over pairs of symbols. Note, therefore, that one
can define intersection for transducers analogously with
intersection for acceptors-given two machines G1 and G2 ,

with transition functions 111 and 112 , one can define the

Next, the decision at the left daughter of the root node 10

(i.e., node 102) concerns whether or not the segment to the
right is an alveolar. Assuming we have defined classes of
segments alv, blab, and so forth (represented as unions of
segments) we can represent the regular expression for p as
follows: 15 transition function of G, 11, as follows: for an input-output

pair (i,o), 1\((q1 ,q2),(i,o))=(q1,q2) if and only if 1\i(q1,(i,o))=
q1 and 1\/q2 ,(i,o))=q2 . This point can be extended somewhat
to include relations that involve bounded deletions or inser-

For the left branch, p=Opt(')(alv), and for the right branch,

p-(Opt(')(blab))U(Opt(')(labd))U(Opt(')(den))U(Opt(')(pal))
U(Opt(')(vel))U(Opt(')(pha))U(Opt(')(n/a)).

In this case, A is unrestricted, so we can set A at this node to 20

be~*-

tions. This is precisely the interpretation necessary for
systems of two-level rules, where a single transducer
expressing the entire system may be constructed via inter-

We can then derive the A and p expressions for the rule at
leaf node 104 by intersecting together the expressions for
these contexts defined for each branch traversed on the way
to the leaf. In particular, for leaf node 104, A=#Opt(')nP=
#Opt('), and p=PnOpt(')(alv)=Opt(')(alv). (Strictly
speaking, since the As and ps at each branch may define
expressions of different lengths, it is advantageous to left­
pad each A with P, and to right-pad each p with P .) The
rule input cp has already been given as aa. The output 1.jJ is
defined as the union of all of the possible expressions (at the
leaf node in question) that aa could become, with their
associated weights (e.g., negative log probabilities), which
are represented here as subscripted floating-point numbers:

Thus, the entire weighted rule for leaf node 104 may be
written as:

aa-(ao0 _95 Uaa,_24Uq+aa2 _27Uq+ao2 _34Uah2 _68Uax2 _84)/#Opt(')_
Opt(')(alv)

And by a similar construction, the rule for node 106, for
example, may be written as:

aa-(aa0 .40 Uao,_ 11)/(#(Opt(')a)+
Opt('))n(L*((cmh)U(bl)U(bml)U(bh)))_L*

In this manner, each node may be advantageously used to
generate a rule which states that a mapping occurs between

section of the transducers expressing the individual rules.
Indeed, the decision tree represents neither more nor less
than a set of weighted two-level rules. Each of the symbols

25 in the expressions for A and p actually represent (sets of)
pairs of symbols. Thus, alv, for example, represents all
lexical alveolars paired with all of their possible surface
realizations. And just as each tree represents a system of
weighted two-level rules, so a set of trees-for example, a

30 set in which each tree deals with the realization of a
particular phone-represents a system of weighted two­
level rules, where each two-level rule is compiled from each
of the individual trees.

The above description of the illustrative tree compilation
35 procedure may be summarized in more formal terms as

follows. Define a function Compile, which, when given a
weighted rewrite rule as input, returns a WFST computing
that rule as its output. This function may, for example,
comprise the illustrative extended rewrite rule compilation

40 procedure as described above. Alternatively, this function
may comprise the "KK" procedure, well known to those
skilled in the art, also extended as described above so as to
generate a WFST from a weighted rewrite rule. In any event,
the WFST for a single leaf L is thus defined as follows,

45 where <Pr is the input symbol for the entire tree, 1.jJ L is the
output expression defined at L, PL represents the path
traversed from the root node to L, p is an individual branch
on that path, and AP and pp are the expressions for A and p
defined at p:

the input symbol cp and the weighted expression 1.jJ in the 50

condition described by A_p. In cases where cp finds itself in
a context that is not subsumed by A_p, the rule behaves
exactly as a two-level surface coercion rule, familiar to those
of ordinary skill in the art-it freely allows cp to correspond
to any 1.jJ as specified by the alphabet of pairs. These cp:1.jJ
correspondences may, however, be constrained by other
rules derived from the tree, as described below.

55 The transducer for an entire tree T is defined as:

The interpretation of the full tree is that it represents the
conjunction of all such mappings. That is, for rules 1, 2 ..

Ruler - n RuleL
LET

60 And, finally, the transducer for a forest F of trees is: . n, cp corresponds to 1.jJ1 given condition A1_p1 and cp
corresponds to 1.jJ2 given condition A2_p2 . . . and cp
corresponds to 1.jlm given condition An-Pn· But this conjunc­
tion is simply the intersection of the entire set of transducers
defined for the leaves of the tree. Observe now that the cp:1.jJ
correspondences that were left free by the rule of one leaf 65

node, may be constrained by intersection with the other leaf
nodes. Since, as noted above, the tree is a complete

Rulep - n Ruler
TEF

FIG. 3 shows a flow diagram of the above-described
illustrative procedure for generating one or more weighted

Page 7 of 11

5,806,032
9

finite-state transducers from one or more decision trees in
accordance with an illustrative embodiment of the present
invention. The input provided to the procedure comprises:

1. a forest F of one or more decision trees T;

10
devised in application of the principles of the invention.
Numerous and varied other arrangements can be devised in
accordance with these principles by those of ordinary skill in
the art without departing from the spirit and scope of the
invention.

I claim:
2. a regular-expression characterization defining a prop- 5

erty of either the left context, LC or the right context,
RC, or both, of each decision at each node N of each
tree Tin F;

1. An automated method for synthesizing speech sounds
based on a finite-state representation of linguistic data
generated based on one or more decision tree models of said

10 linguistic data, each of the one or more decision tree models
comprising one or more terminal nodes thereof, the method
comprising the steps of:

3. a notation of the input symbol S being transduced by
each tree T in F; and

4. the alphabet of all possible input/output symbol pairs
allowed by all trees T in F.

The output produced by the procedure comprises one or
more transducers representing the forest F of trees.

Specifically, for each tree Tin the forest F (selected in step 15

301), and for each leaf node Lin the given tree T (selected
in step 302), a weighted finite-state transducer is generated
based on the leaf node L (steps 303-306). In particular, the
path P from the root node of tree T to the selected leaf node
Lis determined in step 303. Then, in step 304, for each node 20

N on path P, the regular expression at node N is intersected
with the previous nodes on the path to build either the left
context (LC) or the right context (RC) as defined for the
given node (N). When the leaf node (L) is reached, the
illustrative procedure of FIG. 3 generates the weighted 25

disjunction D of output symbols defined for the input
symbol S for tree T (step 305). And finally, step 306
compiles the weighted rewrite rule S----;,D/LC_RC to gen­
erate a transducer corresponding to leaf node L. The opera­
tion of step 306 may, for example, be implemented with use 30

of one of the illustrative weighted rewrite rule compilation
procedures described above. (For example, either the "KK"
procedure, extended to handle the compilation of weighted
rewrite rules, or the extended improved procedure, as
described above, may illustratively be used to implement 35

step 306 of the illustrative procedure of FIG. 3.)
After the transducer corresponding to a given leaf node

has been generated, the illustrative procedure of FIG. 3
determines in decision box 307 whether a transducer has
been generated for every leaf node in tree T. If not (i.e., if 40

there are more leaf nodes in tree T to process), flow returns

generating one or more weighted rewrite rules based on
one or more of the terminal nodes of the one or more
decision tree models;

generating one or more weighted finite-state transducers
based on one or more of the one or more weighted
rewrite rules; and

synthesizing one or more of said speech sounds based on
said one or more weighted finite-state transducers.

2. The method of claim 1 wherein the decision tree models
comprise classification and regression trees.

3. The method of claim 2 wherein the decision tree models
represent a phonetic realization of one or more phonemes by
specifying a mapping of the phonemes into one or more
allophones.

4. The method of claim 3 wherein one or more of the
decision trees has been trained based on a linguistic data­
base.

5. The method of claim 1 wherein the weighted rewrite
rules comprise rules having a form cp----;,1.jJ/A_p, where cp, A,
and p represent regular expressions, 1.jJ represents a weighted
regular expression, and where the form cp----;,1.jJ/A_p repre-
sents that an occurrence of cp in an input string is to be
replaced by 1.jJ whenever the occurrence of cp is preceded by
A and succeeded by p.

6. The method of claim 5 wherein the weighted regular
expression represented by 1.jJ comprises a rational power
series.

7. The method of claim 5 wherein the step of generating
the weighted finite-state transducers comprises generating a
weighted finite-state transducer for a corresponding
weighted rewrite rule having the form cp----;,1.jJ/A_p by gen-

to step 302 to select another leaf node from which a
transducer will be generated. When transducers have been
generated for all leaf nodes in tree T, step 308 intersects
together all of the transducers so generated, resulting in a
single transducer for tree T as a whole. In other illustrative
embodiments of the present invention, step 308 may be
avoided, thereby resulting in a plurality of transducers (i.e.,
one for each leaf node) for tree T, rather than a single
combined automaton.

45
erating a composition of a first transducer, a second
transducer, a third transducer, a fourth transducer and a fifth
transducer, wherein:

After the generation of the transducer(s) for the given tree
is complete, decision box 309 determines whether transduc-
ers have been generated for every tree in forest F. If not (i.e.,

50

if there are more trees in forest F to process), flow returns to
step 301 to select another tree from which one or more 55

transducers will be generated. When transducers have been
generated for all trees in forest F, step 310 intersects together
all of the transducers so generated, resulting in a single
transducer for forest F as a whole. Note that in other
illustrative embodiments of the present invention, step 310 60

also may be avoided, thereby resulting in a plurality of
transducers (i.e., one or more for each tree) for forest F,
rather than a single combined automaton.

Although a number of specific embodiments of this
invention have been shown and described herein, it is to be 65

understood that these embodiments are merely illustrative of
the many possible specific arrangements which can be

the first transducer introduces a marker ">" before every
occurrence of p;

the second transducer introduces markers "<i'' and "<2 "

before each occurrence of cp that is followed by a ">"
marker;

the third transducer replaces cp with 1.jJ when cp is preceded
by a "<i'' marker and succeeded by a">" marker, and
deletes each of the ">" markers;

the fourth transducer admits only those input strings in
which occurrences of a "<i'' marker are preceded by A,
and deletes the "<i'' marker at each such occurrence;
and

the fifth transducer admits only those input strings in
which occurrences of a "<2 " marker are not preceded
by A, and deletes the "<2 " marker at each such occur­
rence.

8. The method of claim 1 wherein a given one of the
decision tree models represents an input symbol, S, the
given decision tree model further comprising a root node
and a plurality of branches labelled with corresponding

Page 8 of 11

5,806,032
11

regular expressions, and wherein the step of generating the
weighted rewrite rules comprises:

selecting one of the terminal nodes of the given decision
tree model;

determining a path from the root node of the given 5

decision tree model to the selected terminal node
thereof, the path comprising one or more of the
branches of the given decision tree model;

intersecting one or more of the regular expressions which
label the branches of the given decision tree model 10

comprised in the determined path, generating a left
context, LC, and a right context, RC, therefrom;

generating a weighted disjunction, D, of output symbols
based on the selected terminal node; and

generating a weighted rewrite rule having a form S----;,D/
LC_RC, representing that an occurrence of the input
symbol, S, in an input string is to be replaced by the
weighted disjunction, D, whenever the occurrence of S

15

is preceded by the left context, LC, and succeeded by
20

the right context, RC.
9. The method of claim 1 wherein a given one of the

decision tree models comprises a plurality of terminal nodes,
wherein the step of generating the weighted rewrite rules
comprises generating a plurality of weighted rewrite rules

25
corresponding to the plurality of terminal nodes of the given
decision tree model, and wherein the step of generating the
weighted finite-state transducers comprises:

generating a plurality of weighted finite-state transducers
corresponding to the plurality of generated weighted 30
rewrite rules; and

intersecting the plurality of weighted finite-state transduc­
ers to produce a weighted finite-state transducer corre­
sponding to the given decision tree model.

10. The method of claim 9 wherein the step of generating 35
the weighted finite-state transducers further comprises inter­
secting the weighted finite-state transducer corresponding to
the given decision tree model with one or more other
weighted finite-state transducers corresponding to one or
more other decision tree models to produce a weighted 40
finite-state transducer corresponding to a plurality of deci­
sion tree models.

11. An apparatus for automatically generating a finite­
state representation of linguistic data based on one or more
decision tree models of said linguistic data, each of the one 45
or more decision tree models comprising one or more
terminal nodes thereof, the apparatus comprising:

means for generating one or more weighted rewrite rules
based on one or more of the terminal nodes of the one
or more decision tree models; and

means for generating one or more weighted finite-state
transducers based on one or more of the one or more
weighted rewrite rules.

50

12
to be replaced by 1.jJ whenever the occurrence of cp is
preceded by A and succeeded by p.

16. The apparatus of claim 15 wherein the weighted
regular expression represented by 1.jJ comprises a rational
power series.

17. The apparatus of claim 15 wherein the means for
generating the weighted finite-state transducers comprises
means for generating a weighted finite-state transducer for a
corresponding weighted rewrite rule having the form cp----;,1.jJ/
11._p by generating a composition of a first transducer, a
second transducer, a third transducer, a fourth transducer and
a fifth transducer, wherein:

the first transducer introduces a marker ">" before every
occurrence of p;

the second transducer introduces markers "<i'' and "<2 "

before each occurrence of cp that is followed by a ">"
marker;

the third transducer replaces cp with 1.jJ when cp is preceded
by a "<i'' marker and succeeded by a">" marker, and
deletes each of the ">" markers;

the fourth transducer admits only those input strings in
which occurrences of a "<i'' marker are preceded by 11.,
and deletes the "<i'' marker at each such occurrence;
and

the fifth transducer admits only those input strings in
which occurrences of a "<2 " marker are not preceded
by 11., and deletes the "<2 " marker at each such occur­
rence.

18. The apparatus of claim 11 wherein a given one of the
decision tree models represents an input symbol, S, the
given decision tree model further comprising a root node
and a plurality of branches labelled with corresponding
regular expressions, and wherein the means for generating
the weighted rewrite rules comprises:

means for selecting one of the terminal nodes of the given
decision tree model;

means for determining a path from the root node of the
given decision tree model to the selected terminal node
thereof, the path comprising one or more of the
branches of the given decision tree model;

means for intersecting one or more of the regular expres­
sions which label the branches of the given decision
tree model comprised in the determined path, generat­
ing a left context, LC, and a right context, RC, there­
from;

means for generating a weighted disjunction, D, of output
symbols based on the selected terminal node; and

means for generating a weighted rewrite rule having a
form S----;,D/LC_RC, representing that an occurrence of
the input symbol, S, in an input string is to be replaced
by the weighted disjunction, D, whenever the occur­
rence of S is preceded by the left context, LC, and
succeeded by the right context, RC.

19. The apparatus of claim 11 wherein a given one of the 12. The apparatus of claim 11 wherein the decision tree
models comprise classification and regression trees.

13. The apparatus of claim 12 wherein the decision tree
models represent a phonetic realization of one or more
phonemes by specifying a mapping of the phonemes into
one or more allophones.

55 decision tree models comprises a plurality of terminal nodes,
wherein the means for generating the weighted rewrite rules
comprises means for generating a plurality of weighted
rewrite rules corresponding to the plurality of terminal nodes
of the given decision tree model, and wherein the means for

14. The apparatus of claim 13 wherein one or more of the
decision trees has been trained based on a linguistic data­
base.

60 generating the weighted finite-state transducers comprises:
means for generating a plurality of weighted finite-state

transducers corresponding to the plurality of generated
weighted rewrite rules; and 15. The apparatus of claim 11 wherein the weighted

rewrite rules comprise rules having a form cp----;,1.jJ/11._p,
where cp, 11., and p represent regular expressions, 1.jJ represents 65

a weighted regular expression, and where the form cp----;,1.jJ/
11._p represents that an occurrence of cp in an input string is

means for intersecting the plurality of weighted finite­
state transducers to produce a weighted finite-state
transducer corresponding to the given decision tree
model.

Page 9 of 11

5,806,032
13

20. The apparatus of claim 19 wherein the means for
generating the weighted finite-state transducers further com­
prises means for intersecting the weighted finite-state trans­
ducer corresponding to the given decision tree model with
one or more other weighted finite-state transducers corre- 5

sponding to one or more other decision tree models to
produce a weighted finite-state transducer corresponding to
a plurality of decision tree models.

21. An automated method for recognizing speech sounds
based on a finite-state representation of linguistic data 10

generated based on one or more decision tree models of said
linguistic data, each of the one or more decision tree models
comprising one or more terminal nodes thereof, the method
comprising the steps of:

generating one or more weighted rewrite rules based on 15

one or more of the terminal nodes of the one or more
decision tree models;

generating one or more weighted finite-state transducers
based on one or more of

the one or more weighted rewrite rules; and
recognizing one or more of said speech sounds based on

said one or more weighted finite-state transducers.
22. The method of claim 21 wherein the decision tree

models comprise classification and regression trees.
23. The method of claim 22 wherein the decision tree

models represent a phonetic realization of one or more
phonemes by specifying a mapping of the phonemes into
one or more allophones.

20

25

24. The method of claim 23 wherein one or more of the 30
decision trees has been trained based on a linguistic data­
base.

25. The method of claim 21 wherein the weighted rewrite
rules comprise rules having a form cp----;,1.jJ/11._p, where cp, 11.,
and p represent regular expressions, 1.jJ represents a weighted 35
regular expression, and where the form cp----;,1.jJ/11._p repre­
sents that an occurrence of cp in an input string is to be
replaced by 1.jJ whenever the occurrence of cp is preceded by
A and succeeded by p.

14
the fourth transducer admits only those input strings in

which occurrences of a "<i'' marker are preceded by 11.,
and deletes the "1 <" marker at each such occurrence;
and

the fifth transducer admits only those input strings in
which occurrences of a "<2 " marker are not preceded
by 11., and deletes the "<2 " marker at each such occur-
rence.

28. The method of claim 21 wherein a given one of the
decision tree models represents an input symbol, S, the
given decision tree model further comprising a root node
and a plurality of branches labeled with corresponding
regular expressions, and wherein the step of generating the
weighted rewrite rules comprises:

selecting one of the terminal nodes of the given decision
tree model;

determining a path from the root node of the given
decision tree model to the selected terminal node
thereof, the path comprising one or more of the
branches of the given decision tree model;

intersecting one or more of the regular expressions which
label the branches of the given decision tree model
comprised in the determined path, generating a left
context, LC, and a right context, RC, therefrom;

generating a weighted disjunction, D, of output symbols
based on the selected terminal node; and

generating a weighted rewrite rule having a form S----;,D/
LC_RC, representing that an occurrence of the input
symbol, S, in an input string is to be replaced by the
weighted disjunction, D, whenever the occurrence of S
is preceded by the left context, LC, and succeeded by
the right context, RC.

29. The method of claim 21 wherein a given one of the
decision tree models comprises a plurality of terminal nodes,
wherein the step of generating the weighted rewrite rules
comprises generating a plurality of weighted rewrite rules
corresponding to the plurality of terminal nodes of the given

26. The method of claim 25 wherein the weighted regular
expression represented by 1.jJ comprises a rational power
series.

40 decision tree model, and wherein the step of generating the
weighted finite-state transducers comprises:

27. The method of claim 25 wherein the step of generating
the weighted finite-state transducers comprises generating a
weighted finite-state transducer for a corresponding 45
weighted rewrite rule having the form cp----;,1.jJ/11._p by gen­
erating a composition of a first transducer, a second
transducer, a third transducer, a fourth transducer and a fifth
transducer, wherein:

the first transducer introduces a marker ">" before every 50

occurrence of p;
the second transducer introduces markers "<i'' and "<2 "

before each occurrence of cp that is followed by a ">"
marker;

generating a plurality of weighted finite-state transducers
corresponding to the plurality of generated weighted
rewrite rules; and

intersecting the plurality of weighted finite-state transduc­
ers to produce a weighted finite-state transducer corre­
sponding to the given decision tree model.

the third transducer replaces cp with 1.jJ when cp is preceded
by a "<i'' marker and succeeded by a">" marker, and
deletes each of the ">" markers;

30. The method of claim 29 wherein the step of generating
the weighted finite-state transducers further comprises inter­
secting the weighted finite-state transducer corresponding to
the given decision tree model with one or more other
weighted finite-state transducers corresponding to one or
more other decision tree models to produce a weighted
finite-state transducer corresponding to a plurality of deci-

55 sion tree models.

* * * * *

Page 10 of 11

UNITED ST ATES PA TENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 5,806,032
DATED : September 8, 1998
INVENTOR(S) : Richard W. Sprout and Mehryar Mohri

Page 1 of 1

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Title page.
Paragraph (75] please correct the following:
Change "Inventor" to -- Inventors --;
After "Richard William Sprout, Berkeley Heights, N.J.", insert
-- Mehryar Mohri, New York City, N.Y. --

Attest:

Attesting Officer

Signed and Sealed this

Fourteenth Day of August, 2001

NICHOLAS P. GODICI
Acting Director of the United States Patent and Trademark Qffice

Page 11 of 11

