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[57] ABSTRACT 

A method for automatically converting a decision tree into 
one or more weighted finite-state transducers. Specifically, 
the method in accordance with an illustrative embodiment of 
the present invention processes one or more terminal (i.e., 
leaf) nodes of a given decision tree to generate one or more 
corresponding weighted rewrite rules. Then, these weighted 
rewrite rules are processed to generate weighted finite-state 
transducers corresponding to the one or more terminal nodes 
of the decision tree. In this manner, decision trees may be 
advantageously compiled into weighted finite-state 
transducers, and these transducers may then be used directly 
in various speech and natural language processing systems. 
The weighted rewrite rules employed herein comprise an 
extension of conventional rewrite rules, familiar to those 
skilled in the art. 
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COMPILATION OF WEIGHTED FINITE­
STATE TRANSDUCERS FROM DECISION 

TREES 

2 
linguistic data has proven quite successful, and whereas 
finite-state based system implementations have been suc­
cessfully developed, no techniques for automatically deriv­
ing finite-state models from decision trees have been 

FIELD OF THE INVENTION 

The present invention relates generally to the field of 
linguistic modeling as used, for example, in speech recog­
nition and/or speech synthesis systems, and more particu­
larly to finite-state methods for implementing such linguistic 
models in such systems. 

5 developed, and only partial success has been achieved in 
attempts to directly infer transducers from linguistic data. 
(See, e.g., Daniel Gildea and Daniel Jurafsky, "Automatic 
Induction of Finite State Transducers for Simple Phonologi­
cal Rules," 33rd Annual Meeting of the Association for 

10 
Computational Linguistics, pages 9-15, Morristown, N.J. 
June, 1995, also incorporated by reference as if fully set 
forth herein.) Thus, if these two techniques could be "mar­
ried" in the form of an automated procedure for converting 
the information in decision trees into weighted finite-state 
transducers, information inferred from linguistic data and 

BACKGROUND OF THE INVENTION 

Much attention has been devoted recently to methods for 
inferring linguistic models from linguistic data. One pow­
erful inference method that has been used in various appli­
cations are decision trees, and in particular classification and 
regression trees ("CART"), well known to those of ordinary 
skill in the art. As is also well known to those skilled in the 

15 represented in a decision tree could be used directly in a 
system that represents other information, such as lexicons or 
grammars, in the form of finite-state machines. 

art, these decision trees can be "grown" from linguistic data SUMMARY OF THE INVENTION 

The use of decision trees for linguistic modelling and the 
use of finite-state transducers are advantageously combined 
by a method in accordance with an illustrative embodiment 
of the present invention, whereby a decision tree is auto-
matically converted into one or more weighted finite-state 
transducers. Specifically, the illustrative method processes 
one or more terminal (i.e., leaf) nodes of a given decision 
tree to generate one or more corresponding weighted rewrite 
rules. Then, these weighted rewrite rules are processed to 
generate weighted finite-state transducers corresponding to 
the one or more terminal nodes of the decision tree. In this 
manner, decision trees may be advantageously compiled into 
weighted finite-state transducers, and these transducers may 
then be used directly in various speech and natural language 
processing systems. The weighted rewrite rules employed 

by the application of conventional methods, such as are 20 

described, for example, in Michael D. Riley, "Some Appli­
cations of Tree-based Modelling to Speech and Language," 
Proceedings of the Speech and Natural Language Workshop, 
pages 339-352, Cape Cod, Mass., October 1989. Other 
applications of tree-based modeling to specific problems in 25 
speech and natural language processing are discussed, for 
example, in Michael D. Riley, "A Statistical Model for 
Generating Pronunciation Networks," Proceedings of the 
International Conference on Acoustics, Speech and Signal 
Processing, pages Sll.1-Sll.4, October, 1991, and in David 

30 M. Magerman, "Statistical Decision-Tree Models for 
Parsing," 33rd Annual Meeting of the Association for Com­
putational Linguistics, pages 276-283, Morristown, N.J. 
April, 1995. Each of these references is incorporated by 
reference as if fully set forth herein. 

35 herein comprise an extension of conventional rewrite rules, 
familiar to those skilled in the art. An increasing amount of attention has also been focused 

on finite-state methods for implementing linguistic models. 
These methods include, in particular, the use of finite-state 
transducers and weighted finite-state transducers. See, e.g., 
Ronald M. Kaplan and Martin Kay, "Regular Models of 
Phonological Rule Systems," Computational Linguistics, 40 

20:331-378, September, 1994, and Fernando Pereira, 
Michael Riley and Richard Sproat, "Weighted Rational 
Transductions and their Application to Human Language 
Processing," ARPA Workshop on Human Language 
Technology, pages 249-254, March, 1994. Each of these 45 
references is also incorporated by reference as if fully set 
forth herein. 

One reason for the interest in the use of finite-state 
mechanisms is that finite-state machines provide a math­
ematically well-understood computational framework for 50 
representing a wide variety of information, both in natural 
language processing and in speech processing. Lexicons, 
phonological rules, Hidden Markov Models, and regular 
grammars, each of which is well known to those of ordinary 
skill in the art, are all representable as finite-state machines. 

55 Moreover, the availability of finite-state operations such as 
union, intersection and composition means that information 
from these various sources can be combined in useful and 
computationally attractive ways. The above-cited papers 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 shows an illustrative decision tree which may be 
provided as input to a procedure for generating weighted 
finite-state transducers from decision trees, such as the 
illustrative procedure of FIG. 3. 

FIG. 2 shows an illustrative weighted finite-state trans­
ducer generated, for example, by the illustrative procedure 
of FIG. 3. 

FIG. 3 shows a flow diagram of an illustrative procedure 
for generating weighted finite-state transducers from deci­
sion trees in accordance with an illustrative embodiment of 
the present invention. 

DETAILED DESCRIPTION 

Tree-based modelling 

( among others) provide further justification for the use of 
finite-state methods for implementing linguistic models. 

Despite the recent attention given to both the use of 
decision trees for inferring linguistic models from linguistic 
data, and the use of finite-state methods for implementing 
linguistic models, there have not heretofore been any viable 
techniques whereby these two strands of research have been 65 

combined in such a manner as to leverage the advantages of 
each. In particular, whereas generating decision trees from 

FIG. 1 shows an illustrative decision tree which may be 
provided as input to a procedure for generating weighted 
finite-state transducers from decision trees, such as the 
illustrative procedure of FIG. 3. All of the phones in the 
figure are given in "ARPABET," familiar to those of ordi­
nary skill in the art. The tree of FIG. 1 was trained, in 
particular, on the "TIMIT" database, also familiar to those 

60 skilled in the art, and models the phonetic realization of the 
English phoneme /aa/ in various environments. (See, e.g., 
"A Statistical Model for Generating Pronunciation 
Networks," cited above.) When the tree of FIG. 1 is used for 
predicting the allophonic form of a particular instance of 
/aa/, one starts at the root of the tree (i.e., node 101), and asks 
questions about the environment in which the /aa/ phoneme 
is found, traversing a path "down" the tree, dependent on the 
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answers to the questions. In particular, each non-leaf node 
(e.g., nodes 101, 102, 103, 105 and 107), dominates two 
daughter nodes. As one traverses a path down the tree, the 
decision on whether to go left or right depends on the answer 

4 
that its predictions specify how to rewrite a symbol (in 
context) in an input string. In particular, they specify a 
two-level mapping from a set of input symbols (phonemes) 

to the question being asked at the given node. The following 5 
table provides an explanation of the symbols used to label 
the arcs of the decision tree of FIG. 1: 

to a set of output symbols (allophones). 
Rewrite rule compilation 
It is well known to those skilled in the art ( and, in 

particular, finite-state phonology), that systems of rewrite 
rules of the familiar form cp-1.jJ/A_p, where cp, 1.jJ, A and p 
are regular expressions, can be represented computationally 

cpn place of articulation of consonant n segments to the 
right 

cp-n place of articulation of consonant n segments to the 
left values: alveolar; bilabial; labiodental; dental; pala­
tal; velar; pharyngeal; n/a if is a vowel, or there is no 
such segment. 

vpn place of articulation of vowel n segments to the right 
vp-n place of articulation of vowel n segments to the left 

values: central-mid-high; back-low; back-mid-low; 
back-high; front-low; front-mid-low; front-mid-high; 
front-high; central-mid-low; back-mid-high; n/a if is a 
consonant, or there is no such segment. 

Iseg number of preceding segments including the segment 
of interest within the word 

rseg number of following segments including the segment 
of interest within the word values: 1, 2, 3, many 

str stress assigned to this vowel values: primary, 
secondary, no (zero) stress n/a if there is no stress mark 

By way of illustration, consider, for example, that the 
phoneme /aa/ exists in some particular environment. The 
first question that is asked (at the root node-node 101) 
concerns the number of segments, including the /aa/ pho­
neme itself, that occur to the left of the /aa/ in the word in 
which /aa/ occurs. In this case, if the /aa/ is initial-i.e., Iseg 
is 1, one goes left to node 102; if there is one or more 
segments to the left in the word, one goes right to node 103. 
Let us assume for illustrative purposes that this /aa/ is initial 
in the word, in which case we go left to node 102. The next 
question (asked at node 102) concerns the consonantal 
"place" of articulation of the segment to the right of /aa/-if 
it is alveolar go left to node 104; otherwise, if it is of some 
other quality, or if the segment to the right of /aa/ is not a 
consonant, then go right to node 105. Let us now assume that 
the segment to the right is, for example, /z/, which is 
alveolar. Thus, we go left to terminal (i.e., leaf) node 104. 
The indication of "119/308" at node 104 indicates that in the 
training data, 119 out of 308 occurrences of the /aa/ pho­
neme in this particular environment were realized as the 
phone [ ao]. In other words, we can estimate the probability 
of /aa/ being realized as [ ao] in this environment as 0.385, 
or, equivalently, we can assign a "weight" ( equal to the 
negative of the logarithm of the probability) of 0.95 thereto. 
The full set of realizations at node 104 with estimated 
non-zero probabilities is, in fact, as follows: 

phone probability weight - -log prob. 

ao 0.385 0.95 
aa 0.289 1.24 
q + aa 0.103 2.27 
q + ao 0.096 2.34 
ah 0.069 2.68 
ax 0.058 2.84 

Note that a decision tree in general is a complete 
description, in the sense that for any new data point, there 
will be some leaf node that corresponds to it. Thus, for the 
tree in FIG. 1, each new instance of the phoneme /aa/ will 

10 as finite-state transducers (FSTs ), and that these rewrite rules 
can be automatically converted to such corresponding FSTs. 
(Note that cp represents the input to the rewrite rule, 1.jJ 
represents the output of the rewrite rule, and A and p 
represent the left and right contexts, respectively.) See, e.g., 

15 "Regular Models of Phonological Rule Systems," cited 
above, which presents one particular procedure (hereinafter 
the Kaplan and Kay, or "KK" procedure) for compiling 
systems of such rewrite rules into FSTs. In accordance with 
an illustrative embodiment of the present invention, such a 

20 procedure can be advantageously extended to include the 
compilation of probabilistic or weighted rules into weighted 
finite-state-transducers (WFSTs). As is well known to those 
skilled in the art, weighted finite-state transducers are 
defined as transducers such that, in addition to having 

25 standard input and output labels, each transition is further 
labeled with a weight. (See, e.g., "Weighted Rational Trans­
ductions and their Application to Human Language 
Processing," cited above.) 

Instead of the "KK" procedure, familiar to those skilled in 
30 the art, an improved procedure for compiling rewrite rules 

into finite-state transducers may be advantageously 
employed in accordance with one illustrative embodiment of 
the present invention. Specifically, in contrast to the "KK" 
algorithm which introduces context labelled brackets 

35 widely, only to restrict their occurrence subsequently (see 
"Regular Models of Phonological Rule Systems," cited 
above), the improved procedure introduces context symbols 
just when and where they are needed. Furthermore, the 
number of intermediate transducers necessary in the con-

40 struction of the rules is smaller than in the "KK" procedure, 
and each of the transducers can be constructed more directly 
and efficiently from the primitive expressions of the rule, cp, 
1.jJ, A and p. 

For example, in accordance with the illustrative improved 
45 procedure for compiling rewrite rules into finite-state 

transducers, a transducer which corresponds to the left-to­
right obligatory rule cp-1.jJ/A_p can be obtained by the 
composition of five transducers: 

50 

55 

60 

r0 f°replace 0 11 °12 

Specifically, these five transducers operate as follows: 
1. The transducer r introduces in a string a marker ">" 

before every instance of p. This transformation may be 
written as follows: ~*p-~*>p. 

2. The transducers f introduces markers "<i'' and "<2 " 

before each instance of cp that is followed by a ">" 
marker: (~U{>} )*cp>-(~U{>} )*{ <1 ,<2 }cp>. In other 
words, this transducer marks just those cp that occur 
before p. 

be handled by ( exactly) one leaf node in the tree, depending 65 

upon the environment in which the /aa/ is found. Also note 
that each decision tree considered herein has the property 

3. The replacement transducer replace replaces cp with 1.jJ 
in the context <1 cjl>, simultaneously deleting the ">" 
marker in all positions. Since">", "<i'', and "<2 " need 
to be ignored when determining an occurrence of cp, 
there are loops over the transitions >:E, <1 :E, <2 :E at all 
states of cp, or equivalently of the states of the cross 
product transducer cpx1.jJ. 
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4. The transducer 11 admits only those strings in which 
occurrences of a "<i'' marker are preceded by A and 
deletes the "<i'' at such occurrences: ~*A<1 ----;,~*A. 

5. The transducer 12 admits only those strings in which 
occurrences of a "<2 " marker are not preceded by A and 5 

deletes the "<2" at such occurrences: ~*X<2 ----;,~*L 
Illustrative extended rewrite rule compilation procedure 
In accordance with an illustrative embodiment of the 

present invention, a rewrite rule to finite-state transducer 
compilation procedure which has been extended to handle 10 

weighted rules is employed. With such an extended 
procedure, we can allow 1.jJ in the rule cp----;,1.jJ/A_p to repre­
sent a weighted regular expression. That is, the transducer 
corresponding to such a weighted rewrite rule (e.g., the 
transducer generated by the illustrative extended rule com- 15 

pilation procedure described herein) will replace cp with 1.jJ 
having the appropriate weights in the context A_p. 

Specifically, rewrite rules can be advantageously gener­
alized by letting 1.jJ be a rational power series, familiar to 
those skilled in the art ( and, in particular, formal language 20 

theory). The result of the application of a generalized rule to 
a string is then a set of weighted strings which can be 
represented by a weighted automaton. The rational power 
series considered herein are functions which map ~* to 
9!+U{ oo }, which can be described by regular expressions 25 

over the alphabet (9!+U{oo})x~. For example, S=(4a)(2b)* 
(3b) is a rational power series. It defines a function in the 
following way-it associates a non-null number only with 
the strings recognized by the regular expression ab*b. This 
number may be obtained by adding the coefficients involved 30 

in the recognition of the string. For example, the value which 
may be associated with abbb is (S,abbb)=4+2+2+3=11. 

In general, such extended regular expressions can be 
redundant. Some strings can be matched in different ways 
with distinct coefficients. The value associated with those 35 

strings may then be the minimum of all possible results. 
S'=(2a)(3b)(4b)+(5a)(3b*) matches abb, for example, with 
the different weights 2+3+4=9 and 5+3+3=11. The minimum 
of the two is the value advantageously associated with 
abb-that is, (S',abb)=9. Non-negative numbers in the defi- 40 

nition of these power series are often interpreted as the 
negative logarithm of probabilities. This explains the above 
choice of the operations-addition of the weights along the 
string recognition, and minimization, since we are interested 
in the result which has the highest probability. Note that 45 

based on the terminology of the theory of languages, famil-
iar to those skilled in the art, the functions we consider here 
are power series defined on the tropical semiring ( 9!+ U { oo}, 
min, +, oo, 0). 

By way of example, consider the following rule, which 50 

states that an abstract nasal, denoted N, is obligatorily 
rewritten as m in the context of a following labial: 

N-mi_[ +labial]. 

6 
automaton. The corresponding operation is similar to that in 
the unweighted case. However, the weight of the transducer 
and those of the string or automaton need to be combined 
too, here added, during composition. The composition 
operation has been generalized to the weighted case by 
introducing this combination of weights. The procedure 
described above can then be advantageously used to compile 
weighted rewrite rules into weighted finite-state transducers. 

FIG. 2 shows an illustrative weighted finite-state trans­
ducer which may, for example, have been generated by the 
illustrative extended rewrite rule procedure described above 
(and which may, therefore, have been generated by a deci­
sion tree compilation procedure in accordance with the 
illustrative embodiment of the present invention described 
below). FIG. 2 shows, in particular, a weighted transducer 
representing the weighted obligatory rule shown above (i.e., 
N----;,am+~n/_j +labial]). As used in the figure, the symbol 
"@" denotes all letters different from b, m, n, p and N. 

An illustrative decision tree to WFST compilation proce­
dure 

Two assumptions on the nature of a given decision tree 
advantageously enables efficient compilation into a WFST 
in accordance with an illustrative embodiment of the present 
invention. First, we advantageously assume that the predic­
tions at the leaf nodes specify how to rewrite a particular 
symbol in an input string. And, second, we advantageously 
presume that the decisions at each node are stateable as 
regular expressions over the input string. In accordance with 
the illustrative tree compilation procedure, each leaf node 
will be considered to represent a single weighted rewrite 
rule. 

Specifically, the regular expressions for each branch 
describe one aspect of the left context A, the right context p, 
or both. The left and right contexts for the rule consist of the 
intersections of the partial descriptions of these contexts 
defined for each branch traversed between the root and the 
given leaf node. The input cp is predefined for the entire tree, 
whereas the output 1.jJ is defined as the union of the set of 
outputs, along with their weights, that are associated with 
the given leaf node. The weighted rule belonging to the leaf 
node can then be compiled into a transducer using the 
illustrative weighted rule compilation procedure described 
above. Then, the transducer for the entire tree can be derived 
by the intersection of the entire set of transducers generated 
from the individual leaf nodes. Note that while regular 
relations are not generally closed under intersection, the 
subset of same-length (or more strictly speaking length­
preserving) relations is, in fact, closed. 

By way of an illustrative example, refer to the sample 
decision tree shown in FIG. 1. Since this tree models the 
phonetic realization of /aa/, we can immediately set cp to be 
aa for the whole tree. Next, consider again the traversal of 
the tree from root node 101 to leaf node 104, as described 
above. The first decision concerns the number of segments 

Now suppose that this is only probabilistically true, and that 
while ninety percent of the time N does indeed become m in 
this environment, about ten percent of the time in real speech 
it becomes n instead. Converting from probabilities to 
weights, one would say that N becomes m with weight 
a=-log(0.9), and n with weight ~=-log(0.1), in the given 
environment. One could represent this by the following 
weighted obligatory rule: 

55 to the left of the /aa/ in the word, either none for the left 
branch, or one or more for the right branch. Assuming that 
a symbol, a, represents a single segment, a symbol, #, 
represents a word boundary, and allowing for the possibility 
of intervening optional stress marks (') which do not count 

N-am+i3m/_[ +labial]. 

The result of the application of a weighted transducer to 
a string, or more generally to an automaton, is a weighted 

60 as segments, these two possibilities can be represented by 
the following regular expressions for A: 

65 

For the left branch, A=#Opt('), and for the right branch, 

r,,-(#Opt(')aOpt('))U(#Opt(')aOpt(')aOpt('))U(#Opt(')aOpt(') 
aOpt(')(aOpt(')).H#Opt(')a)•opt('). 

(Note that the notation used herein is essentially that of 
Kaplan and Kay, familiar to those skilled in the art, and 
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defined in "Regular Models of Phonological Rule Systems," 
cited above. Note also that, as per convention, superscript 
"+" denotes one or more instances of an expression.) 

At this node there is no decision based on the righthand 
context, so the righthand context is free. We can represent 
this by setting p at this node to be ~*, where ~ 
( conventionally) represents the entire alphabet. (Note that 
the alphabet is defined to be an alphabet of all correspon­
dence pairs that were determined empirically to be possible.) 

8 
description, it follows that for any leaf node i, and for any 
context A_p not subsumed by A;-P;, there is some leaf node 
j such that Aj-Pj subsumes A_p. Thus, the transducers 
compiled for the rules at nodes 104 and 106, for example, 

5 are intersected together, along with the rules for all the other 
leaf nodes. 

As noted above, and as known to those skilled in the art, 
regular relations-the algebraic counterpart of FSTs-are 
not in general closed under intersection. However, the subset 
of same-length regular relations is closed under intersection, 
since they can be thought of as finite-state acceptors 
expressed over pairs of symbols. Note, therefore, that one 
can define intersection for transducers analogously with 
intersection for acceptors-given two machines G1 and G2 , 

with transition functions 111 and 112 , one can define the 

Next, the decision at the left daughter of the root node 10 

(i.e., node 102) concerns whether or not the segment to the 
right is an alveolar. Assuming we have defined classes of 
segments alv, blab, and so forth (represented as unions of 
segments) we can represent the regular expression for p as 
follows: 15 transition function of G, 11, as follows: for an input-output 

pair (i,o), 1\((q1 ,q2),(i,o))=(q1,q2) if and only if 1\i(q1,(i,o))= 
q1 and 1\/q2 ,(i,o))=q2 . This point can be extended somewhat 
to include relations that involve bounded deletions or inser-

For the left branch, p=Opt(')(alv), and for the right branch, 

p-(Opt(')(blab))U(Opt(')(labd))U(Opt(')(den))U(Opt(')(pal)) 
U(Opt(')(vel))U(Opt(')(pha))U(Opt(')(n/a)). 

In this case, A is unrestricted, so we can set A at this node to 20 

be~*-

tions. This is precisely the interpretation necessary for 
systems of two-level rules, where a single transducer 
expressing the entire system may be constructed via inter-

We can then derive the A and p expressions for the rule at 
leaf node 104 by intersecting together the expressions for 
these contexts defined for each branch traversed on the way 
to the leaf. In particular, for leaf node 104, A=#Opt(')nP= 
#Opt('), and p=PnOpt(')(alv)=Opt(')(alv). (Strictly 
speaking, since the As and ps at each branch may define 
expressions of different lengths, it is advantageous to left­
pad each A with P, and to right-pad each p with P .) The 
rule input cp has already been given as aa. The output 1.jJ is 
defined as the union of all of the possible expressions ( at the 
leaf node in question) that aa could become, with their 
associated weights ( e.g., negative log probabilities), which 
are represented here as subscripted floating-point numbers: 

Thus, the entire weighted rule for leaf node 104 may be 
written as: 

aa-(ao0 _95 Uaa,_24Uq+aa2 _27Uq+ao2 _34Uah2 _68Uax2 _84)/#Opt(')_ 
Opt(')(alv) 

And by a similar construction, the rule for node 106, for 
example, may be written as: 

aa-(aa0 .40 Uao,_ 11)/(#(Opt(')a)+ 
Opt('))n(L*((cmh)U(bl)U(bml)U(bh)))_L* 

In this manner, each node may be advantageously used to 
generate a rule which states that a mapping occurs between 

section of the transducers expressing the individual rules. 
Indeed, the decision tree represents neither more nor less 
than a set of weighted two-level rules. Each of the symbols 

25 in the expressions for A and p actually represent (sets of) 
pairs of symbols. Thus, alv, for example, represents all 
lexical alveolars paired with all of their possible surface 
realizations. And just as each tree represents a system of 
weighted two-level rules, so a set of trees-for example, a 

30 set in which each tree deals with the realization of a 
particular phone-represents a system of weighted two­
level rules, where each two-level rule is compiled from each 
of the individual trees. 

The above description of the illustrative tree compilation 
35 procedure may be summarized in more formal terms as 

follows. Define a function Compile, which, when given a 
weighted rewrite rule as input, returns a WFST computing 
that rule as its output. This function may, for example, 
comprise the illustrative extended rewrite rule compilation 

40 procedure as described above. Alternatively, this function 
may comprise the "KK" procedure, well known to those 
skilled in the art, also extended as described above so as to 
generate a WFST from a weighted rewrite rule. In any event, 
the WFST for a single leaf L is thus defined as follows, 

45 where <Pr is the input symbol for the entire tree, 1.jJ L is the 
output expression defined at L, PL represents the path 
traversed from the root node to L, p is an individual branch 
on that path, and AP and pp are the expressions for A and p 
defined at p: 

the input symbol cp and the weighted expression 1.jJ in the 50 

condition described by A_p. In cases where cp finds itself in 
a context that is not subsumed by A_p, the rule behaves 
exactly as a two-level surface coercion rule, familiar to those 
of ordinary skill in the art-it freely allows cp to correspond 
to any 1.jJ as specified by the alphabet of pairs. These cp:1.jJ 
correspondences may, however, be constrained by other 
rules derived from the tree, as described below. 

55 The transducer for an entire tree T is defined as: 

The interpretation of the full tree is that it represents the 
conjunction of all such mappings. That is, for rules 1, 2 .. 

Ruler - n RuleL 
LET 

60 And, finally, the transducer for a forest F of trees is: . n, cp corresponds to 1.jJ1 given condition A1_p1 and cp 
corresponds to 1.jJ2 given condition A2_p2 . . . and cp 
corresponds to 1.jlm given condition An-Pn· But this conjunc­
tion is simply the intersection of the entire set of transducers 
defined for the leaves of the tree. Observe now that the cp:1.jJ 
correspondences that were left free by the rule of one leaf 65 

node, may be constrained by intersection with the other leaf 
nodes. Since, as noted above, the tree is a complete 

Rulep - n Ruler 
TEF 

FIG. 3 shows a flow diagram of the above-described 
illustrative procedure for generating one or more weighted 

Page 7 of 11



5,806,032 
9 

finite-state transducers from one or more decision trees in 
accordance with an illustrative embodiment of the present 
invention. The input provided to the procedure comprises: 

1. a forest F of one or more decision trees T; 

10 
devised in application of the principles of the invention. 
Numerous and varied other arrangements can be devised in 
accordance with these principles by those of ordinary skill in 
the art without departing from the spirit and scope of the 
invention. 

I claim: 
2. a regular-expression characterization defining a prop- 5 

erty of either the left context, LC or the right context, 
RC, or both, of each decision at each node N of each 
tree Tin F; 

1. An automated method for synthesizing speech sounds 
based on a finite-state representation of linguistic data 
generated based on one or more decision tree models of said 

10 linguistic data, each of the one or more decision tree models 
comprising one or more terminal nodes thereof, the method 
comprising the steps of: 

3. a notation of the input symbol S being transduced by 
each tree T in F; and 

4. the alphabet of all possible input/output symbol pairs 
allowed by all trees T in F. 

The output produced by the procedure comprises one or 
more transducers representing the forest F of trees. 

Specifically, for each tree Tin the forest F (selected in step 15 

301), and for each leaf node Lin the given tree T (selected 
in step 302), a weighted finite-state transducer is generated 
based on the leaf node L (steps 303-306). In particular, the 
path P from the root node of tree T to the selected leaf node 
Lis determined in step 303. Then, in step 304, for each node 20 

N on path P, the regular expression at node N is intersected 
with the previous nodes on the path to build either the left 
context (LC) or the right context (RC) as defined for the 
given node (N). When the leaf node (L) is reached, the 
illustrative procedure of FIG. 3 generates the weighted 25 

disjunction D of output symbols defined for the input 
symbol S for tree T (step 305). And finally, step 306 
compiles the weighted rewrite rule S----;,D/LC_RC to gen­
erate a transducer corresponding to leaf node L. The opera­
tion of step 306 may, for example, be implemented with use 30 

of one of the illustrative weighted rewrite rule compilation 
procedures described above. (For example, either the "KK" 
procedure, extended to handle the compilation of weighted 
rewrite rules, or the extended improved procedure, as 
described above, may illustratively be used to implement 35 

step 306 of the illustrative procedure of FIG. 3.) 
After the transducer corresponding to a given leaf node 

has been generated, the illustrative procedure of FIG. 3 
determines in decision box 307 whether a transducer has 
been generated for every leaf node in tree T. If not (i.e., if 40 

there are more leaf nodes in tree T to process), flow returns 

generating one or more weighted rewrite rules based on 
one or more of the terminal nodes of the one or more 
decision tree models; 

generating one or more weighted finite-state transducers 
based on one or more of the one or more weighted 
rewrite rules; and 

synthesizing one or more of said speech sounds based on 
said one or more weighted finite-state transducers. 

2. The method of claim 1 wherein the decision tree models 
comprise classification and regression trees. 

3. The method of claim 2 wherein the decision tree models 
represent a phonetic realization of one or more phonemes by 
specifying a mapping of the phonemes into one or more 
allophones. 

4. The method of claim 3 wherein one or more of the 
decision trees has been trained based on a linguistic data­
base. 

5. The method of claim 1 wherein the weighted rewrite 
rules comprise rules having a form cp----;,1.jJ/A_p, where cp, A, 
and p represent regular expressions, 1.jJ represents a weighted 
regular expression, and where the form cp----;,1.jJ/A_p repre-
sents that an occurrence of cp in an input string is to be 
replaced by 1.jJ whenever the occurrence of cp is preceded by 
A and succeeded by p. 

6. The method of claim 5 wherein the weighted regular 
expression represented by 1.jJ comprises a rational power 
series. 

7. The method of claim 5 wherein the step of generating 
the weighted finite-state transducers comprises generating a 
weighted finite-state transducer for a corresponding 
weighted rewrite rule having the form cp----;,1.jJ/A_p by gen-

to step 302 to select another leaf node from which a 
transducer will be generated. When transducers have been 
generated for all leaf nodes in tree T, step 308 intersects 
together all of the transducers so generated, resulting in a 
single transducer for tree T as a whole. In other illustrative 
embodiments of the present invention, step 308 may be 
avoided, thereby resulting in a plurality of transducers (i.e., 
one for each leaf node) for tree T, rather than a single 
combined automaton. 

45 
erating a composition of a first transducer, a second 
transducer, a third transducer, a fourth transducer and a fifth 
transducer, wherein: 

After the generation of the transducer(s) for the given tree 
is complete, decision box 309 determines whether transduc-
ers have been generated for every tree in forest F. If not (i.e., 

50 

if there are more trees in forest F to process), flow returns to 
step 301 to select another tree from which one or more 55 

transducers will be generated. When transducers have been 
generated for all trees in forest F, step 310 intersects together 
all of the transducers so generated, resulting in a single 
transducer for forest F as a whole. Note that in other 
illustrative embodiments of the present invention, step 310 60 

also may be avoided, thereby resulting in a plurality of 
transducers (i.e., one or more for each tree) for forest F, 
rather than a single combined automaton. 

Although a number of specific embodiments of this 
invention have been shown and described herein, it is to be 65 

understood that these embodiments are merely illustrative of 
the many possible specific arrangements which can be 

the first transducer introduces a marker ">" before every 
occurrence of p; 

the second transducer introduces markers "<i'' and "<2 " 

before each occurrence of cp that is followed by a ">" 
marker; 

the third transducer replaces cp with 1.jJ when cp is preceded 
by a "<i'' marker and succeeded by a">" marker, and 
deletes each of the ">" markers; 

the fourth transducer admits only those input strings in 
which occurrences of a "<i'' marker are preceded by A, 
and deletes the "<i'' marker at each such occurrence; 
and 

the fifth transducer admits only those input strings in 
which occurrences of a "<2 " marker are not preceded 
by A, and deletes the "<2 " marker at each such occur­
rence. 

8. The method of claim 1 wherein a given one of the 
decision tree models represents an input symbol, S, the 
given decision tree model further comprising a root node 
and a plurality of branches labelled with corresponding 
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regular expressions, and wherein the step of generating the 
weighted rewrite rules comprises: 

selecting one of the terminal nodes of the given decision 
tree model; 

determining a path from the root node of the given 5 

decision tree model to the selected terminal node 
thereof, the path comprising one or more of the 
branches of the given decision tree model; 

intersecting one or more of the regular expressions which 
label the branches of the given decision tree model 10 

comprised in the determined path, generating a left 
context, LC, and a right context, RC, therefrom; 

generating a weighted disjunction, D, of output symbols 
based on the selected terminal node; and 

generating a weighted rewrite rule having a form S----;,D/ 
LC_RC, representing that an occurrence of the input 
symbol, S, in an input string is to be replaced by the 
weighted disjunction, D, whenever the occurrence of S 

15 

is preceded by the left context, LC, and succeeded by 
20 

the right context, RC. 
9. The method of claim 1 wherein a given one of the 

decision tree models comprises a plurality of terminal nodes, 
wherein the step of generating the weighted rewrite rules 
comprises generating a plurality of weighted rewrite rules 

25 
corresponding to the plurality of terminal nodes of the given 
decision tree model, and wherein the step of generating the 
weighted finite-state transducers comprises: 

generating a plurality of weighted finite-state transducers 
corresponding to the plurality of generated weighted 30 
rewrite rules; and 

intersecting the plurality of weighted finite-state transduc­
ers to produce a weighted finite-state transducer corre­
sponding to the given decision tree model. 

10. The method of claim 9 wherein the step of generating 35 
the weighted finite-state transducers further comprises inter­
secting the weighted finite-state transducer corresponding to 
the given decision tree model with one or more other 
weighted finite-state transducers corresponding to one or 
more other decision tree models to produce a weighted 40 
finite-state transducer corresponding to a plurality of deci­
sion tree models. 

11. An apparatus for automatically generating a finite­
state representation of linguistic data based on one or more 
decision tree models of said linguistic data, each of the one 45 
or more decision tree models comprising one or more 
terminal nodes thereof, the apparatus comprising: 

means for generating one or more weighted rewrite rules 
based on one or more of the terminal nodes of the one 
or more decision tree models; and 

means for generating one or more weighted finite-state 
transducers based on one or more of the one or more 
weighted rewrite rules. 

50 

12 
to be replaced by 1.jJ whenever the occurrence of cp is 
preceded by A and succeeded by p. 

16. The apparatus of claim 15 wherein the weighted 
regular expression represented by 1.jJ comprises a rational 
power series. 

17. The apparatus of claim 15 wherein the means for 
generating the weighted finite-state transducers comprises 
means for generating a weighted finite-state transducer for a 
corresponding weighted rewrite rule having the form cp----;,1.jJ/ 
11._p by generating a composition of a first transducer, a 
second transducer, a third transducer, a fourth transducer and 
a fifth transducer, wherein: 

the first transducer introduces a marker ">" before every 
occurrence of p; 

the second transducer introduces markers "<i'' and "<2 " 

before each occurrence of cp that is followed by a ">" 
marker; 

the third transducer replaces cp with 1.jJ when cp is preceded 
by a "<i'' marker and succeeded by a">" marker, and 
deletes each of the ">" markers; 

the fourth transducer admits only those input strings in 
which occurrences of a "<i'' marker are preceded by 11., 
and deletes the "<i'' marker at each such occurrence; 
and 

the fifth transducer admits only those input strings in 
which occurrences of a "<2 " marker are not preceded 
by 11., and deletes the "<2 " marker at each such occur­
rence. 

18. The apparatus of claim 11 wherein a given one of the 
decision tree models represents an input symbol, S, the 
given decision tree model further comprising a root node 
and a plurality of branches labelled with corresponding 
regular expressions, and wherein the means for generating 
the weighted rewrite rules comprises: 

means for selecting one of the terminal nodes of the given 
decision tree model; 

means for determining a path from the root node of the 
given decision tree model to the selected terminal node 
thereof, the path comprising one or more of the 
branches of the given decision tree model; 

means for intersecting one or more of the regular expres­
sions which label the branches of the given decision 
tree model comprised in the determined path, generat­
ing a left context, LC, and a right context, RC, there­
from; 

means for generating a weighted disjunction, D, of output 
symbols based on the selected terminal node; and 

means for generating a weighted rewrite rule having a 
form S----;,D/LC_RC, representing that an occurrence of 
the input symbol, S, in an input string is to be replaced 
by the weighted disjunction, D, whenever the occur­
rence of S is preceded by the left context, LC, and 
succeeded by the right context, RC. 

19. The apparatus of claim 11 wherein a given one of the 12. The apparatus of claim 11 wherein the decision tree 
models comprise classification and regression trees. 

13. The apparatus of claim 12 wherein the decision tree 
models represent a phonetic realization of one or more 
phonemes by specifying a mapping of the phonemes into 
one or more allophones. 

55 decision tree models comprises a plurality of terminal nodes, 
wherein the means for generating the weighted rewrite rules 
comprises means for generating a plurality of weighted 
rewrite rules corresponding to the plurality of terminal nodes 
of the given decision tree model, and wherein the means for 

14. The apparatus of claim 13 wherein one or more of the 
decision trees has been trained based on a linguistic data­
base. 

60 generating the weighted finite-state transducers comprises: 
means for generating a plurality of weighted finite-state 

transducers corresponding to the plurality of generated 
weighted rewrite rules; and 15. The apparatus of claim 11 wherein the weighted 

rewrite rules comprise rules having a form cp----;,1.jJ/11._p, 
where cp, 11., and p represent regular expressions, 1.jJ represents 65 

a weighted regular expression, and where the form cp----;,1.jJ/ 
11._p represents that an occurrence of cp in an input string is 

means for intersecting the plurality of weighted finite­
state transducers to produce a weighted finite-state 
transducer corresponding to the given decision tree 
model. 
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20. The apparatus of claim 19 wherein the means for 
generating the weighted finite-state transducers further com­
prises means for intersecting the weighted finite-state trans­
ducer corresponding to the given decision tree model with 
one or more other weighted finite-state transducers corre- 5 

sponding to one or more other decision tree models to 
produce a weighted finite-state transducer corresponding to 
a plurality of decision tree models. 

21. An automated method for recognizing speech sounds 
based on a finite-state representation of linguistic data 10 

generated based on one or more decision tree models of said 
linguistic data, each of the one or more decision tree models 
comprising one or more terminal nodes thereof, the method 
comprising the steps of: 

generating one or more weighted rewrite rules based on 15 

one or more of the terminal nodes of the one or more 
decision tree models; 

generating one or more weighted finite-state transducers 
based on one or more of 

the one or more weighted rewrite rules; and 
recognizing one or more of said speech sounds based on 

said one or more weighted finite-state transducers. 
22. The method of claim 21 wherein the decision tree 

models comprise classification and regression trees. 
23. The method of claim 22 wherein the decision tree 

models represent a phonetic realization of one or more 
phonemes by specifying a mapping of the phonemes into 
one or more allophones. 

20 

25 

24. The method of claim 23 wherein one or more of the 30 
decision trees has been trained based on a linguistic data­
base. 

25. The method of claim 21 wherein the weighted rewrite 
rules comprise rules having a form cp----;,1.jJ/11._p, where cp, 11., 
and p represent regular expressions, 1.jJ represents a weighted 35 
regular expression, and where the form cp----;,1.jJ/11._p repre­
sents that an occurrence of cp in an input string is to be 
replaced by 1.jJ whenever the occurrence of cp is preceded by 
A and succeeded by p. 

14 
the fourth transducer admits only those input strings in 

which occurrences of a "<i'' marker are preceded by 11., 
and deletes the "1 <" marker at each such occurrence; 
and 

the fifth transducer admits only those input strings in 
which occurrences of a "<2 " marker are not preceded 
by 11., and deletes the "<2 " marker at each such occur-
rence. 

28. The method of claim 21 wherein a given one of the 
decision tree models represents an input symbol, S, the 
given decision tree model further comprising a root node 
and a plurality of branches labeled with corresponding 
regular expressions, and wherein the step of generating the 
weighted rewrite rules comprises: 

selecting one of the terminal nodes of the given decision 
tree model; 

determining a path from the root node of the given 
decision tree model to the selected terminal node 
thereof, the path comprising one or more of the 
branches of the given decision tree model; 

intersecting one or more of the regular expressions which 
label the branches of the given decision tree model 
comprised in the determined path, generating a left 
context, LC, and a right context, RC, therefrom; 

generating a weighted disjunction, D, of output symbols 
based on the selected terminal node; and 

generating a weighted rewrite rule having a form S----;,D/ 
LC_RC, representing that an occurrence of the input 
symbol, S, in an input string is to be replaced by the 
weighted disjunction, D, whenever the occurrence of S 
is preceded by the left context, LC, and succeeded by 
the right context, RC. 

29. The method of claim 21 wherein a given one of the 
decision tree models comprises a plurality of terminal nodes, 
wherein the step of generating the weighted rewrite rules 
comprises generating a plurality of weighted rewrite rules 
corresponding to the plurality of terminal nodes of the given 

26. The method of claim 25 wherein the weighted regular 
expression represented by 1.jJ comprises a rational power 
series. 

40 decision tree model, and wherein the step of generating the 
weighted finite-state transducers comprises: 

27. The method of claim 25 wherein the step of generating 
the weighted finite-state transducers comprises generating a 
weighted finite-state transducer for a corresponding 45 
weighted rewrite rule having the form cp----;,1.jJ/11._p by gen­
erating a composition of a first transducer, a second 
transducer, a third transducer, a fourth transducer and a fifth 
transducer, wherein: 

the first transducer introduces a marker ">" before every 50 

occurrence of p; 
the second transducer introduces markers "<i'' and "<2 " 

before each occurrence of cp that is followed by a ">" 
marker; 

generating a plurality of weighted finite-state transducers 
corresponding to the plurality of generated weighted 
rewrite rules; and 

intersecting the plurality of weighted finite-state transduc­
ers to produce a weighted finite-state transducer corre­
sponding to the given decision tree model. 

the third transducer replaces cp with 1.jJ when cp is preceded 
by a "<i'' marker and succeeded by a">" marker, and 
deletes each of the ">" markers; 

30. The method of claim 29 wherein the step of generating 
the weighted finite-state transducers further comprises inter­
secting the weighted finite-state transducer corresponding to 
the given decision tree model with one or more other 
weighted finite-state transducers corresponding to one or 
more other decision tree models to produce a weighted 
finite-state transducer corresponding to a plurality of deci-

55 sion tree models. 

* * * * * 
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