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Karen Uvescu, Eric Fosler-Lussier, and Florian Metze 

Subword Modeling 
for Automatic 

Speech Recognition 
Past, present, and emerging approaches 

M 
odern autornatk speech reco,gnilion sys­
ltms handle 1a~e YOcabuJarl1!$ of words. 
tt\c'lking it infeasible to coiled enough repe.. 
Lilioos of each word to lrain individual word 
models. ln-.tead, large-\o'Oeabulary recogntt~ 

tn rcprtsent each word in term., of subword units. Typicall>• 
Lhe su.bword unit is lhe phone, a ba.,ic spttch sound such a. .. a 
single consonant or vo•,1.-el. Each word is lhen rcpresenl-ed a." a 
st:quence, or se,•eral altem.1tive scquence1., of phone:$ specified 
in a pronunciation dictionary. Olher choice., of :ubword unib 
ha\1£: been studied as we.II. The choice of subword ·.mits., and the 
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way in which the recognizer represtnts words in terms of com­
binations of thost units. is the nroblem of rubword modelinjt. 
Different subword models rna>• be preferable in difforent set­
Lings, such as high -variability convc.rsational s.pe.ecll, high. 
noise conditions, low-rtsource settings, or r:iultilingual speech 
recognition. This article reviews pa.-.t, pres?nl, and emerging 
approaches to subword modeling,. To make dean comparisons 
between many approaches, the review uses the unifying lan­
guage. of graphical mode.ls.. 

INTRODUCTION 
Automatic speech recognition has enjoyed decades ol progress, 
induding the !mCcc:;:;ful in troduction c,f commcrdal .,-oice 
ba.wd ~rvices. Mcw..-evcr, then: are still unsd:Ued ql.l(stions in 
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the speech recognition research community, and one of these 
is how to model the internal structure of words. The main 
questions are 

■ What are the basic units that should be modeled? 
■ How should the structure over these units be modeled, 
parameterized, and trained? 

This article discusses potential answers to these questions, includ­
ing a historical overview, a description of the current state of this 
research area, and presentation of emerging techniques that may 
affect the future state of the art. 

Throughout the article, we assume that the task of interest is 
word recognition. That is, given an acoustic recording of a 
sequence of one or more spoken words, the task is to infer the 
word(s). We implicitly assume that the language is known but 
not necessarily that the speaker identity is known (i.e., we consid­
er speaker-independent recognition). We begin in this section by 
setting the stage: why subword units are needed, what the most 
common subword models are, and why alternatives have been 
considered. 

WHY SUBWORD MODELS? 
Why should words be broken up into smaller units at all? The 
word recognition problem could be framed as a comparison 
between a test pattern-typically a spectral representation of an 
input waveform-and stored ref-

Phones and syllables, then, are potential types of subword 
units. Additional alternatives are subphonetic features ("batra­
chophagous" starts with a stop consonant, which is also voiced 
and produced at the lips); graphemes ("batrachophagous" starts 
with the same two letters as "bar," so it might also start with sim­
ilar sounds); and automatically learned subword units, which are 
units corresponding to acoustic segments that have been consis­
tently observed in training data. 

Good subword units should be 1) trainable, i.e., they should be 
sufficiently frequent in typical corpora, 2) generalizable, i.e., they 
should be able to represent previously unseen words during test­
ing, and 3) invariant, i.e., they should be robust to changes in 
environment and context. Choosing the best type of unit, and the 
best associated model of word structure, is a critical decision 
point in the speech recognition problem: Virtually all other com­
ponents and algorithms in speech recognition presuppose the 
existence of a fixed set of units. 

PHONES AND CONTEXT-DEPENDENT PHONES 
The most commonly used subword units are phones. Linguists 
distinguish phones-acoustic realizations of speech sounds­
from phonemes-abstract sound units, each possibly corre­
sponding to multiple phones, such that a change in a single 
phoneme can change a word's identity. In speech recognition 

research, these terms are often 
erence patterns for words. To 
account for variations in produc­
tion, we should have many stored 
examples of each word. 

For any recognition task with 
a large vocabulary, this whole­
world approach is impractical. 
Words are distributed approxi-

CHOOSING THE BEST TYPE OF 
SUBWORD UNIT, AND THE BEST 
ASSOCIATED MODEL OF WORD 

STRUCTURE, IS A CRITICAL DECISION 
POINT IN SPEECH RECOGNITION. 

used interchangeably, and recog­
nition dictionaries often include 
a mix of phones and phonemes. 
We will use the term phone 
throughout as it is more typical 
in speech recognition, although 
we will distinguish between 

mately according to Zipfs law, i.e., the frequency of a word is 
roughly inversely proportional to its rank in the frequency table. 
In the 3-million-word Switchboard-I Corpus of telephone con­
versations, the 43 most frequent word types account for half of 
the word tokens, while the other half of the tokens are distribut­
ed across about 33,000 word types. Some words-many names, 
new coinages, words related to current events-may not occur at 
all in any finite corpus of recorded speech. Unfortunately, these 
words are often relevant in practice. 

This observation motivates the use of subword units that 
occur often in reasonably sized speech corpora. If we have no 
recordings of, say, the word "batrachophagous," we may 
hypothesize that it starts with the same consonant sound as 
"bar," continues with the same vowel sound as in "hat," and so 
on. If we have sufficiently many recordings of these individual 
sounds, so-called phones, perhaps we can build a model of the 
word out of models of the phones, and collect pronunciations 
in a phonetic dictionary. Alternatively, we could note that the 
word starts with the same entire first syllable as "batter" does, 
ends with the same syllable as "analogous," and so on. If we 
have sufficiently many recordings of all possible syllables, we 
can then build word models by concatenating syllable models. 

canonical phones (found in a dic­
tionary) and surface phones (that are observed). The entire dis­
cussion applies similarly to phones and phonemes. (We use the 
ARPA phonetic alphabet for English examples.) There are typi­
cally 30-80 phones per language. In today's recognizers, words 
are usually represented as one or more phone sequences, often 
referred to as the "beads-on-a-string" representation [l], [2]. 
Common variants may be listed ("going" - [g ow ih ng], [g ow 
ih n]) or generated by rule ("-ing'' - [ih ng], [ih n]). We use 
the ARPA phonetic alphabet for English examples. 

The same phone may be realized differently in different con­
texts, due to coarticulation, stress, and other factors. For 
example, [kl is usually articulated with the tongue farther for­
ward in the word "keep" and farther back in the word "coop," 
resulting in very different signals. To take such effects into 
account, each phone in each relevant context can be considered 
a separate unit. This is the context-dependent phone unit used 
in most speech recognizers [3]. Automatically learned decision 
trees are used to partition the data into roughly homogeneous 
acoustic units, usually based on the preceding and following 
phones; depending on the context window size, the resulting 
units are called triphones (for a ±1 phone context), quin­
phones (for ±2 phones), and so on. Each context-dependent 
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unit is typically represented by a hidden Markov model (HMM) 
with Gaussian mixture observation densities, which account for 
the remaining acoustic variation among different instances of 
the same unit. For further details about the architecture of 
standard HMM-based recognizers, see [4). 

CHALLENGES FOR SUBWORD MODELS 
Given the above discussion, why is subword modeling not a 
closed case? 1\vo main challenges dominate the discussion: pro­
nunciation variability and data sparseness. 

PRONUNCIATION VARIABILITY 
Spoken words, especially in conversational speech, are often 
pronounced differently from their dictionary pronunciations 
(also referred to as canonical pronunciations or baseforms) [5), 
[6). This variability is the result of many factors-the degree of 
formality of the situation, the familiarity of speakers with their 
conversation partners and relative seniority, the (presumed) 
language competency of the listener, and the background noise 
[7)-and is one of the main challenges facing speech recogni­
tion [8). Context-dependent phones and Gaussian mixtures 
cover a great deal of the variation, in particular substitutions 
of one sound for another; but some common pronunciation 
phenomena, such as apparent deletions of sounds, are poorly 
accounted for [9). The performance of speech recognizers 
degrades sharply on conversa-

alphabet (SAMPA)], but can be pronounced as [ham a) or [h 
a m v a) in colloquial speech. Similar examples occur in 
French, e.g., "cinema" is [s i n em a] - [s i nm a), "c'est pas" is 
[s E pa) -[spa) [14). 

However, pronunciation changes do not necessarily occur at 
the level of entire phones. Instead, changes often occur at a 
subphonetic level, such as devoicing of voiced consonants, 
spreading of rounding to phones near a rounded phone, or 
nasalization of vowels near nasal consonants. 

DATA SPARSENESS 
Another challenge is the number of subword units relative to 
the amount of training data available. For example, there are 
tens of thousands of triphone units that occur in a typical lan­
guage. This makes it difficult to train conventional models for 
languages or dialects in which few resources (audio data, dic­
tionaries) are available. A recent interest in open-vocabulary and 
spoken-term detection systems, in which the vocabulary (or 
even the precise dialect or language) may not be known in 
advance, creates an additional incentive to investigate models 
based on units that are more language independent and robust 
to data sparseness. Such considerations have also motivated 
approaches using smaller inventories of universal subphonetic 
units that can be combined in many ways to form the sounds of 
the world's languages and dialects. 

These two challenges-pro­
tional speech relative to read 
speech, even when exactly the 
same word sequences are spo­
ken by the same speakers in the 
same acoustic environment; in 
other words, conversational pro-

TWO MAIN CHALLENGES DOMINATE 
THE DISCUSSION ON SUBWORD 
MODELING: PRONUNCIATION 

VARIABILITY AND DATA SPARSENESS. 

nunciation variability and data 
sparseness-contribute to keep­
ing speech recognition from 
being used for unrestricted 
applications, such as court room 

nunciation style alone is responsible for large performance 
losses [5). Even within a single sentence, different words may 
be pronounced more or less canonically, and the ones that are 
pronounced noncanonically tend to be misrecognized more 
often [10). 

Perhaps more surprisingly, hyperclear, or overemphasized, 
speech degrades recognition performance as well [ 11), 
although it can improve intelligibility for humans [12) . That 
speech recognition is worse for both conversational and hyper­
clear speech suggests that the representations used in today's 
recognizers may still be flawed, despite impressive progress 
made over the years. 

Figure 1 shows an example of the types of variation seen in 
the Switchboard conversational speech corpus, as transcribed 
by expert phonetic transcribers [13). Other examples from the 
same corpus include the word "probably" with such pronuncia­
tions as [pr aa b iy], [pray], and [pr aw I uh], and "everybody" 
with pronunciations such as [eh verb ah d iy], [eh bah iy], and 
[eh r uw ay]. Overall, fewer than half of the word tokens in this 
corpus are pronounced canonically. 

This variability is not language specific. In German, "haben 
wir" ("we have") is canonically pronounced [h a: b @ n v i:6) 
[using the speech assessment methods international phonetic 

transcription, closed captioning, 
free-style dialogue systems, and quickly portable cross-lan­
guage applications. For example, large-vocabulary English con­
versational telephone speech is currently recognized at roughly 
20% word error rate; this is sufficient for some tasks, like 
searching for content words, but does not make for a reliable, 
readable transcript. 

Besides these two challenges, some researchers feel that 
speech recognition in general would be improved by using sub­
word models that are more faithful to knowledge from linguis­
tics and speech science. This consideration has also motivated 
some of the approaches described here, although we focus on 
the motivations presented by the pronunciation variation and 
data challenges, and will not comment on the fidelity of the 
approaches to human speech processing. 

HISTORICAL REVIEW 
Since the first large-vocabulary speech recognition systems of 
the mid-1970s, the predominant type of subword model has 
been the representation of a word as one or more strings of 
phones [15). Throughout the intervening years, however, a vari­
ety of alternative subword models have been studied in parallel, 
with the basic units including syllables [16), [17], acoustically 
defined units [18), [19), graphemes [20), and subphonetic 
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I ih dx el ("Liddle") .. 
Little 

~ 

I uh dx el ("Ludd le") 

I ax el ("Lull") 

Little 

I ih t el 

"Liddle" 

,....... ........................ ..,:tJII), "Luddle" 

Little 

dx el 

dx el 

I ax el 

Little 

1:::: u2 

u2 

u6 u17 u4 

Little 

+ 
I ih t el 

"Lull" 

► I "Liddle" 

► I "Luddle" 

•I "Lull" 

►· I "Liddle" 

►· I "Luddle" 

►· I "Lull" 

I "Liddle" 

I "Luddle" 

I "Lull" 

The word "little" has many pronunciations in 
the Switchboard corpus, including these top 
three. How do different pronunciation 
modeling techniques handle this variation? 

A standard pronunciation dictionary usually 
has one entry per word; the acoustic models 
for [ih] and [ti are assumed to handle the 
pronunciation variation. [See Figure 2(a).] 

Using multiple pronunciations per word can 
reduce the variability handled by the acoustic 
model; these pronunciations can be learned by 
observing data or using phonological rules for 
general pronunciation patterns across words. 
[See Figure 2(b).] 

Automatically learned subword units can be 
used to create pronunciation models that 
make no assumption about the linguistic 
meaning of the units. 

Acoustic pronunciation modeling steers the 
acoustic models to account for pronunciation 
variation. In this example of state-level 
pronunciation modeling, different Gaussian 
mixture components account for the variants 
of [ih] and [t] , color coded in the pronunciation 
gloss. 

Subphonetic feature models decompose 
phones into vectors of attributes such as 
articulatory features. Variation is described as 
changes in parts of the vectors or asynchronous 
transitions in different vector elements. 
(See Figure 3.) 

[FIG1] An example of pronunciation variation in conversational speech, a standard dictionary representation, and four alternative 
approaches to describing this variation, serving as an informal description of techniques described in the sections "Historical Review" 
and "Subword Models as Graphical Models." 

features [21]-[26]. Figure 1 serves as an informal summary of 
some of the main subword modeling approaches described in 
this article. 

DICTIONARY EXPANSION 

In the 1990s and early 2000s, interest in conversational speech 
recognition led to several studies on the properties of the con-

versational style and its effects on recognition performance [51, 
[10], [71, [131, [9], [2] . This led to a great deal of activity on 
modeling pronunciation variation, including two workshops 
sponsored by the International Speech Communication 
Association [271, [28] . The majority (but by no means all) of the 
proposed approaches during this period kept the phone as the 
basic subword unit, and focused on ways of predicting the 
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possible phonetic sequences for any given word using phono­
logical rules or other means [29]-[33], [71, [341, [10]. 

In Figure 1, the first vowel of the word "little" exhibits varia­
tion from the expected [ih] phone to the sounds [ax] and [uh] 
that are produced farther back in the mouth. In addition, in 
American English, the "t" sound in this context is usually real­
ized as the flap [dx] (with the tongue briefly touching the roof of 
the mouth), but it can also be deleted. 

One way to account for such variation is to include all 
observed variants in the pronunciation dictionary, perhaps 
along with the probability of seeing each variant. A large 
amount of work in subword modeling has involved such 
expansion of the baseform dic-

recognition in response to unpredictable context such as the 
speaking rate [10]. 

Leaming the distribution over phonetic baseforms or rules 
requires phonetically labeled training data. This can be obtained 
from manual transcriptions [30] or using a phonetic recognizer. 
The learning has typically been done by maximizing the model 
likelihood over the training data [31], although in some work a 
discriminative objective is optimized instead [35], [32]. 

IMPACT OF PHONETIC DICTIONARY EXPANSION 
Phonetic dictionary expansion has produced improvements in 
some systems [30], [10], [33]. However, the improvements have 

been more modest than hoped, 
tionary with additional pronun­
ciations [31], [71, [35] . However, 
when pronunciation variants 
are learned separately for each 
word, frequently observed words 
may develop a rich inventory of 
variants, while infrequent words 
may be poorly modeled: Unless 
some capability for generaliza-

INTEREST IN CONVERSATIONAL 
SPEECH RECOGNITION LED TO 

SEVERAL STUDIES ON THE 
PROPERTIES OF THE CONVERSATIONAL 

STYLE AND ITS EFFECTS ON 
RECOGNITION PERFORMANCE. 

considering the very large 
difference in performance on read 
and conversational renditions of 
the same word sequences [5] . 
One issue is the tradeoff between 
coverage and confusability. As 
pronunciations are added to a 
dictionary, coverage of alternative 

tion is built in, learning new variants for "little" will not 
inform about variants for ''whittle" and "spittle." 

One common approach to increase generalization is to 
model pronunciation changes as transformations from one 
phone sequence (a canonical pronunciation) to another (an 
observed surface pronunciation) via phonological rules [83]. A 
phonological rule can be represented as a transduction from a 
string of phones X to a string of phones Y when surrounded by a 
particular context. For example, the flapping of [ti in "little" 
could be generated by the rule { ih tax -dx} (read "[ti can be 
realized as a flap between the vowels [ih] and [ax]"). Such rules 
can be specified manually from linguistic knowledge [33] or 
learned automatically, typically using decision trees [30], [10] . 
Once a set of rules is specified or learned, it can be used to 
expand a dictionary to form a single new dictionary (a static 
expansion) or to expand the dictionary dynamically during 

[TABLE 1] RECOGNITION RESULTS {ERROR RATE IS THE SUM 
OF DELETION RATE AND SUBSTITUTION RATE) FOR WORDS 
PRONOUNCED CANONICALLY AND NONCANONICALLY. 
BOTTOM TWO ROWS: OVERALL INSERTION RATES AND 
OVERALL WORD ERROR RATES. 

REFERENCE TYPE OF ERROR ERROR RATE (%) 

ERR 14.2 

CANONICAL DEL 2.4 

SUB 11.8 

ERR 20.7 

NONCANONICAL DEL 4.2 

SUB 16.5 

NONE INS 10.8 

ALL ERR 27.2 

pronunciations is improved, 
while at the same time, words become more confusable due to 
increasing overlap in their allowed pronunciations. Several 
researchers have tried to quantify confusability [361, [37] to limit 
the amount of variation to just the minimum needed [381, or to 
use discriminative training to eliminate error-causing confusions 
[35], but balancing confusability and coverage remains an active 
area of research. 

The current mainstream approach-that is, the approach 
typically used in state-of-the-art systems in benchmark com­
petitions-uses a phonetic baseform dictionary with a single 
pronunciation for most words and a small number of variants 
for remaining, frequent words. Dictionaries are typically man­
ually generated, but can also be generated in a data-driven 
way [39], [40]. 

To show the influence that pronunciation variation still has 
on today's systems, we analyze the hypotheses of a state-of-the­
art conversational speech recognizer. Some technical details are 
as follows. The recognizer is speaker-independent, without adap­
tation but with discriminative training using a maximum mutu­
al information criterion on a standard 350-h training set [41], 
using a trigram language model and a vocabulary of 50,000 
words. The dictionary contains multiple pronunciations for a 
subset of the words, for a total of 95,000 variants, derived from 
the Carnegie Mellon University (CMU) dictionary using knowl­
edge-based phonological rules. 

Table 1 shows the results of testing the recognizer on phoneti­
cally transcribed data from the Switchboard Transcription Project 
[13]. Approximately 60% of the word tokens in the test set were 
manually labeled as having a noncanonical pronunciation. There 
is approximately a 50% increase in errors when a word is pro­
nounced noncanonically, similarly to earlier findings [10]. 

We now continue our historical review with some alterna­
tives to phonetic dictionary expansion. 
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ACOUSTICS-BASED MODELS 
Investigations of the acoustic realizations of phones labeled by 
linguists as noncanonical have shown that the acoustics are 
often closer to the canonical phone than to the putative tran­
scribed phone (42), so a replacement of an entire phone in the 
dictionary may be an inaccurate representation of the change. 
Given this continuous nature of pronunciation variation, com­
bined with the limited improvements seen from dictionary 
expansion, some proposed that the handling of pronunciation 
variation may be better done using acoustically defined units 
(43), (18] or by modifying the acoustic model of a phone-based 
recognizer (44], (45]. 

In acoustically defined subword unit models, an alternative to 
the phone is sought that better describes speech sound segments. 
One typical approach (43), (18] is 

acoustic models that are accounting for some of the phonetic 
variation. Nevertheless, most state-of-the art systems use dic­
tionaries with multiple variants for frequent words with variable 
pronunciation, rather than tuning a single-pronunciation dic­
tionary to a specific data set and acoustic model. 

SUBPHONETIC FEATURE MODELS 
One of the primary differences between explicit phone-based 
models and acoustics-based models is the granularity: phone­
based models describe variation as discrete changes in phonetic 
symbols, but may not capture subtle acoustic variation; acous­
tics-based models give a fine-grained, continuous view of pro­
nunciation variation, but may miss opportunities for 
generalization. A middle ground is to factor the phonetic space 

into subphonetic feature units. 
to first segment observed word 
tokens into a number of coherent 
regions, then cluster these regions 
to produce a set of units that gen-

GOOD SUBWORD UNITS SHOULD 
BE TRAINABLE, GENERALIZABLE, 

AND INVARIANT. 

Typical subphonetic features are 
articulatory features, which may 
be binary or multivalued and 
characterize in some way the 

eralize across the words in the 
vocabulary (like the numbered units, e.g., u6, in Figure 1). The 
appeal of such an approach is that, since the pronunciations are 
derived directly from audio, it should be better tuned to the task 
than a dictionary model. However, there are a few challenges as 
well: deriving representations for words not seen in training is dif­
ficult since the usual prior mapping from words to sounds is 
unavailable; building context-dependent acoustic models is also 
problematic, as the typical decision tree clustering algorithms ask 
questions about the linguistic nature of neighboring units, which 
is unavailable here. Another active research direction is the use of 
alternative modeling techniques that do not follow the segment­
then-cluster approach (46), (19), (47]. 

Acoustic pronunciation modeling, in contrast, uses modified 
acoustic models combined with a basic phone-based dictionary. 
One such strategy is state-level pronunciation modeling (45). 
This technique starts with standard mixture of Gaussian obser­
vation models trained using a canonical pronunciation diction­
ary, and then combines Gaussians from phones that are found 
to be frequent variants of each other in phonetic transcriptions. 
For example, in Figure 1, the pronunciation of the vowel in "lit­
tle" may borrow Gaussians from both the [ih) model and the 
[ax) model seen in one of the variants. 

A similar intuition led to the hidden model sequence HMM 
(HMS-HMM) approach proposed by Hain (48), (49], in which 
each phone is represented by a mixture of HMM state sequences 
corresponding to different variants. Both state-level pronuncia­
tion modeling and hidden model sequences, then, account for 
the continuous nature of pronunciation variation by making 
"soft" decisions about phone changes. Hain also proposed a pro­
cedure for iteratively collapsing multiple dictionary pronuncia­
tions to a single pronunciation per word, based on observed 
frequencies in training data, and extrapolating to unseen words, 
which produced the same performance on conversational 
speech as the original multipronunciation dictionaries (44), 
(49). Such a procedure tunes lexical representations to the 

configuration of the vocal tract. 
We use the term articulatory features to refer to both dis­
cretized positions of speech articulators and more perception­
based phonological features such as manner and place of 
articulation. (These terms are sometimes distinguished, but not 
consistently so in the speech recognition literature; for this rea­
son we use a single term for both.) Roughly 80% of phonetic 
substitutions of consonants in the Switchboard Transcription 
Project data consist of a single articulatory feature change (10). 
In addition, effects such as nasalization, rounding, and stop 
consonant epenthesis can be the result of asynchrony between 
articulatory trajectories (50]. A factored representation may 
allow for a more precise and parsimonious explanation of these 
phenomena. In addition, such a representation may allow for 
reuse of data across languages that share subphonetic features 
but not phone sets, thus helping in multilingual or low­
resource language settings (51). 

Two general approaches have been used for subphonetic 
modeling in speech recognition. The first is what we refer to as 
factored-observation models (26), (53], (25), (54), where a stan­
dard phonetic dictionary is used, but the acoustic model con­
sists of a product of distributions or scores, one per subphonetic 
feature, and possibly also a standard phonetic acoustic model. 
Factored-observation models address the challenge of robust­
ness in the face of data sparseness, and may also be more robust 
to noise (26). They do not, however, explicitly account for 
changes in articulatory feature values or asynchrony. To address 
this, some have proposed representing the dictionary explicitly 
in terms of subphonetic features. In this approach, sometimes 
inspired by the theory of articulatory phonology (55), many 
effects in pronunciation variation are described as the result of 
articulatory asynchrony and/or individual feature changes. We 
refer to this as a factored-state approach because the hidden 
phonetic state is factored into multiple streams. 

One of the first series of investigations into a factored-state 
approach was by Deng and colleagues (21), (56), (57), using 

Authorized licensed use limited to: KlarquistlSl)Ell!k~IJ..lt®QISil~<HIACli..Q!IIIIIOn~,2111e6'~QefflUTC from IEEE Xplore. Restrictions apply. 

49



HMMs similar to those of standard phone-based models, but 
with each state corresponding to a vector of articulatory feature 
values. All possible value combinations are possible states, but 
transitions are constrained to allow only a certain amount of 
asynchrony. More recently, a more general approach to articula­
tory pronunciation modeling has been formulated, in which 
graphical models represent both articulatory asynchrony and 
deviations from articulatory targets [58)-[60). In factored mod­
els using articulatory features, it is possible to use articulatory 
inversion as a form of observation modeling [61), or to use gen­
erative observation models [21), [59) (see, e.g., [24) for a review 
of techniques). Here, however, we restrict our attention to the 
mapping between words and subword units. 

CONDITIONAL MODELS 
In the approaches described thus far, each word consists of 
some combination of subword units that must be present. 
Another recent line of work involves conditional models (also 
referred to as direct models [621), which changes the nature 
of the relationship between words and subword units. In this 
approach, subword representations are thought of as evi­
dence of the presence of the word [63)-[65). In contrast to 
generative models like HMMs, conditional models directly 
represent posterior probabilities, or more generally scores, of 
the unknown labels (words, states) given observations 
(acoustics) and are trained by optimizing criteria more close­
ly related to the prediction task. Such approaches have been 
developed as extensions of conditional models for phonetic 
recognition [66), [671, but they serve as new forms of sub­
word modeling in their own right (although they are not nec­
essarily framed in this way). The conditional approach allows 
for multiple, overlapping subword representations that can 
be combined in ways that are difficult to do in traditional 
HMM-based models [65) . 

SUBWORD MODELS AS GRAPHICAL MODELS 
Many of the approaches reviewed above fit into the standard 
speech recognition framework of HMM-based modeling, but 
some do not. The development of some of the subphonetic and 
conditional models discussed above has been facilitated by the 
rise of graphical model techniques, which generalize HMMs 
and other sequence models. Graphical models have been gain­
ing popularity in speech recognition research since the late 
1990s, when dynamic Bayesian networks (DBNs) were first 
used to represent HMM-based speech recognizers and then to 
introduce additional structure [68)-[70) . To easily compare 
various approaches, this section unifies much of the prior and 
current work on subword modeling in a graphical model rep­
resentation. We first define graphical models, and then formu­
late several types of subword models in this representation. 

BRIEF INTRODUCTION TO GRAPHICAL MODELS 
A graphical model [71) is a representation of a probability distri­
bution over N variables X1, ... ,XN via a graph, in which each 
node is associated with a variable X;. The graph encodes the 

factorization of the distribution as a product of functions, each 
of which depends on only a subset of the variables. Graphical 
models have become a lingua franca of machine learning and 
artificial intelligence [72), because they can parsimoniously rep­
resent complex models and because there are uniform algo­
rithms for doing computations with large classes of graphical 
models. The main type of computation is inference-"given the 
values of the variables in set A, what is the distribution (or most 
probable values) of the variables in set B?"-which is required 
for both testing (doing prediction with) and training (learning 
parameters for) a graphical model. 

In directed graphical models, or Bayesian networks (BNs), 
the joint distribution is given by the product of the "local" con­
ditional distributions of each variable X; given its parents in the 
graph pa (X;) 

We use lowercase letters to denote the values of random vari­
ables, e.g., x is a value of X and pa (x;) is a collection of values 
of pa (X;). A DBN consists of repeating subgraphs, or frames. 
DBNs are appropriate for modeling stochastic processes over 
time, such as speech (where the frame may correspond to the 
usual 10 ms frame of speech). An HMM is a special case of a 
DBN in which each frame consists of a state variable and an 
observation variable. 

Conditional random fields (CRFs) (73) are undirected mod­
els of a conditional distribution p ( Q I 0). Given the observed 
variables O = (01, ... ,OL), the joint distribution over the hidden 
variables Q = (Q1, ... ,QM) is given by the product of local 
potential functions If/ k ( Qrkh O) over cliques of variables 
Q[kl, k E {l, . .. ,K} 

p(q1, ... ,qMIO) = Z~o)n:=1lflk(q1kJ,O), (2) 

where Z(o) is a normalizing constant. The potential functions 
are typically assumed to have a log-linear form 
lf/k(qrki,o) = exp{Li0Jki(qrki,o)) , where the feature func­
tions fki are fixed and ~nly the weights 0ki are learned. This 
means that the predictor function for the hidden variables, 
argmaxq,, ... ,qMp (q1, ... ,qM Io) , has the form of a summation 
over the weighted feature functions, similarly to other discrimi­
native models like structured support vector machines (SVMs) 
(74). A recent variant is segmental CRFs (SCRFs) (65), in which 
each hidden variable may be associated with a varying number 
of frames. 

We do not address the important problem of effective and 
efficient inference for different types of models; the reader is 
referred to previous review articles and texts (70), (72). The 
parameters of generative graphical models can be learned either 
with the classic expectation-maximization (EM) algorithm (75) 
or with discriminative training algorithms (e.g., (761). For dis­
criminative models, a number of learning approaches such as 
maximum conditional likelihood (as in CRFs (731) or large-mar­
gin training (as in structured SVMs [741) are used. 
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Directed models are particularly useful when interpretability 
is important. Undirected models are useful for combining many 
different information sources (via the feature functions). 

PHONE-BASED MODELS AS DBNs 
Figure 2 shows several phone-based models represented as 
DBNs (although they are not typically implemented as DBNs). 
Figure 2(a) represents a standard HMM-based speech recog­
nizer with a single baseform pronunciation per word. This 
DBN is simply an encoding of a typical HMM-based recognizer. 
Without loss of generality, we refer to the subword variable q1 
as the phone state; however, this variable may represent either 
a subphonetic monophone state 

state variables q/, each of which is associated with a separate 
observation distribution p (01 I q/) (e.g., Gaussian mixtures as in 
[25) and [231) or separate discriminative classifier [26), [77) for 
each subphonetic feature i, and optionally an additional stan­
dard observation distribution per phone state p (01 I q1). If classi­
fiers are used, their outputs are either scaled to produce scaled 
likelihoods exp (01 I qi} [26) or used as new observation vectors 
over which Gaussian mixture distributions are trained [77). 
These distributions/scaled likelihoods are multiplied to produce 
the final observation model. 

Figure 3(b) shows a factored-state model, with no phone state 
variable at all, based on [60). Each subphonetic feature follows its 

own trajectory through the state 
([ihl], [ih2], [ih3]) or a context­
dependent phone ( e.g., tri­
phone) state. 

The DBN of Figure 2(a) is a 
complete speech recognizer, 
except for certain details of the 
language model. The subword 
model is that portion that con-

THERE ARE UNSETTLED QUESTIONS IN 
THE SPEECH RECOGNITION RESEARCH 
COMMUNITY, AND ONE OF THESE IS 

HOW TO MODEL THE INTERNAL 
STRUCTURE OF WORDS. 

sequence of each word. In this 
case, the feature streams corre­
spond to specific articulators such 
as the lips, tongue, glottis, and 
velum. Note that the subword 
substructure for each feature is anal­
ogous to the structure of the phone-

cerns the mapping between words and phone states. In the 
remaining models below, we will only present the variables and 
dependencies involved in subword modeling; that is, we will 
not show the word and observation variables. 

The remainder of Figure 2 shows alternative phone-based 
subword models. Figure 2(b) shows a subword model with 
multiple pronunciations per word-which represents, more 
or less, the mainstream approach-and Figure 2(c) shows a 
model in which the multiple pronunciations are generated by 
applying context-dependent probabilistic phonological rules 
represented as decision trees, which involves adding variables 
to the DBN corresponding to the desired context. In Fig­
ure 2(c), the context variables are deterministic given the 
subword state (e.g. , properties of the previous and next 
phones). In general, the context variables may be more com­
plex-e.g., higher-level context such as word frequency or 
speaking rate-and may require different dependencies. The 
distribution of the context-dependent phone state variable 
p (q1 I u1,cl,c¥, ... )is typically not learned jointly with the other 
parameters, but rather decision trees are separately learned 
for predicting the phone distribution given the context vari­
ables [30], [10). In other work, rule "firing" probabilities are 
learned separately or as part of the complete recognizer [33). 
In addition, the same model structure can describe certain 
acoustics-based models; for example, the HMS-HMM approach 
(see the section "Acoustics-Based Models") [48) has the same 
structure except that the "surface phone state" is an abstract 
HMM model state and is not shared across canonical phones 
with similar surface realizations. 

SUBPHONETIC FEATURE MODELS AS DBNs 
Figure 3 shows subphonetic feature models represented as 
DBNs. Figure 3(a) represents factored-observation models, in 
which the phone state variable q, is mapped to multiple feature 

based model of Figure 2(c). As in 
phone-based models, context-dependent deviations from canoni­
cal values can be modeled using decision trees. Note the similari­
ty between the structure in Figure 2(c) and the feature-specific 
substructures in Figure 3(b). In Figure 3(b), each surface feature 
value depends on its canonical target as well as the previous and 
next canonical targets, which takes into account the tendency of 
articulators to assimilate with their past/future states. Many 
additional context variables are possible [60). Since the features 
now each have their own subword state variable, they may pro­
ceed through the word synchronously. The model probabilisti­
cally constrains the asynchrony between features via the 
asynchrony variables yli-jJ_ Such models have a fairly complex 
graphical structure, but by virtue of factoring the state distribu­
tion, they can have fewer parameters than analogous phone­
based models (Figure 2) and than factored-state models 
represented as HMMs [21), [22). 

CONDmONAL MODELS 
As mentioned in the section "Historical Review," conditional 
models are becoming increasingly popular for representing 
various aspects of speech recognition, including subword mod­
els. In terms of their graphical model structure, the models 
that have been developed thus far are essentially the undirect­
ed equivalents of the models in Figures 2 and 3. The key point 
in these models is how the feature functions over cliques of 
variables are defined. 

PHONE-BASED CRFs 
The most commonly used conditional models are CRFs, defined 
in (2). Analogues of the basic phone-based model of Figure 2(a) 
have been investigated extensively for phonetic recognition [66), 
[671, [54) . A direct analogue of a single-Gaussian HMM corre­
sponds to using the Gaussian sufficient statistics (the acoustic 
observations and their inner products) as feature functions. If a 
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Wt= "Little" 

St 2 3 4 

qt 11 12 13 ih1 

p(otl qt) 

11 

12 

ih1 

Frame t 

5 6 

ih2 ih3 

Frame t+1 

Word 

Subword 
State 

Phone 
State 

Acoustic 
Observation 
Vector 

A standard phone-based speech recognizer. The portion corresponding to the subword model is boxed in yellow; subsequent 
figures include only the subword model. The subword state variable steps through the integers 1, 2, .. . , L where Lis the 
number of states in the word's canonical pronunciation. In each frame, the state may stay constant or increment, depending 
on the transition probability of the current phonetic state q~ To the left are depictions of the distributions of the phone state and 
observation vector variables. The phone is given deterministically by the current word and subword state. The observation 
vector has a Gaussian mixture distribution conditioned on the phone state. 

Vt= 1 

Vt =2 

Vt =3 

~~:~rn=-1 
o. oWJlrr.oJ 

1 2 3 4 
V 

Wt= "Little" 

St 1 2 3 4 5 

qt 11 12 13 ih1 ih2 

qt 11 12 13 uh1 uh2 

qt 11 12 13 ax1 ax2 

(a) 

6 ... 
ih3 ... 
uh3 ... 
ax3 ... 

Frame t Frame t+1 

1--------.i v Pronunciation 
t+1 Variant 

Subword 
State 

A model with a multiple-pronunciation dictionary. Word and observation variables, and edges to/from them, have been omitted. 
This model differs from the baseline above in the addition of one variable, the pronunciation variant, which is an additional parent 
to the phone state variable and stays constant within a word. To the left is an example distribution of the pronunciation variant 
variable, as well as a table mapping from the word, pronunciation variant, and subword state variables to the phone state. 

Target= [t] 
(b) 

t 0.4 Frame t Frame t+1 
tel 0.3 
dx 0.2 
00.1 Subword 

Previous Phone State 
Stressed Vowel? 

dx0.4 00.5 
Canonical t 0.4 tel 0.3 

tel 0.1 t 0.15 Phone State 

Next Phone 0 0.1 dx 0.05 
Prev Phone, 

Unstressed Next Phone, ... 
Vowel? 

dx 0.8 00.4 Surface 

t 0.1 tel 0.3 Phone State 

tel 0.05 t0.2 
00.05 dx 0.0 

A subword model with context-dependent phonological rules. This model differentiates between the canonical phone in the 
dictionary and the surface phone produced, depending on context variables such as the next or previous phone. The distribution 
of the surface phone is often modeled using a decision tree; an example tree for (all states of) the target phone [t] is shown at left. 

(c) 

[FIG2] Parts {aHc) show phone-based subword models as DBNs. Notation: square/circular nodes correspond to discrete/continuous 
variables, shaded nodes are observed, and nodes with thick outlines are deterministic given their parents. Here and throughout, we 
omit certain details, such as the special cases of the initial and final frames, distinctions between training and decoding models, and 
precise representation of the language model [in fact, part {a) is a precise representation of an isolated-word recognizer]. See [70) for 
more information about DBNs for speech recognition. 
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qJ 
qt Manner 
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ih2 Vowel 

dx1 Flap 
... ... 

Place 

Lateral 

High Front 

Alveolar 

.. . 

qf3 ... 

Voi. ... 
+ ... 
+ .. . 
+ .. . 
... .. . 

Frame t Frame t+1 
Subword 
State 

Phone 
State 

Manner, 
Place, 
Voicing, .. . 

A factored-observation model where the factors correspond to subphonetic features. The table at left shows a portion of a 
possible mapping from phones to articulatory features. When using such a model in a complete recognizer, the observation 
vector depends on the articulatory features, as well as possibly the phone. 

w1= Little 
s, 1 2 3 

r,1 Lat High Alv 
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Tongue Tip 
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Tongue Tip 
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Voicing 

r,2 clo mid nar 

r.3 voi voi 
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"S 
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= Closed 
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cri 0.1 

nar 0.1 
... 0.0 

clo 0.7 
cri 0.2 

nar 0.1 
... 0.0 

voi 

... 

(a) 

Frame t 

4 

Lat 

clo 

voi 

... 

4 

Frame t+1 

Subword 
State1 

Canonical 1 

Prev Canon1 , 
Next Canon1 , 

Surface 1 

Async 1-2 

Subword 
State 2 

Canonical 2 

Prev Canon 2, 
Next Canon 2, 

Surface 2 

Async 2-3 

Subword 
State 3 

Canon 3 

Prev Canon 3, 
Next Canon 3, 

Surface 3 

A factored-state model, which models observed pronunciations as the result of asynchrony between articulators and substitutions 
in each articulatory feature stream. Here the subword units that the acoustics ultimately depend on are the actual articulatory 
feature values. Each articulatory feature stream is associated with its own subword state variable; given the word and subword 
state, the target positions of the articulators are given by the dictionary pronunciation(s) shown in the table on the left. If the articulators 
move async~ronously, those subword state variables have different values. The amount of asynchrony is controlled by asynchrony 
variables y/-J , accounting for effects like anticipatory nasalization, rounding, and epenthetic stop consonants. The articulators may 
also fail to reach their target positions. The distribution of actual articulatory positions, given the targets and possibly other context 
variables, is here described by a decision tree, similarly to context-dependent phone-based models. 

(b) 

[FIG3] Parts (a) and (b) show subworcl models based on subphonetic features. 
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hidden state variable is also added [66), [67], the model becomes 
analogous to a HMM with a Gaussian mixture acoustic model. The 
key differences are the conditional training and the ability to 
include additional feature functions. 

Different choices of feature functions can give rise to different 
types of models; for example, using posteriors over subphonetic 
feature classes as feature functions results in a system that is 
analogous to the factored-observa-

EMPIRICAL MODEL COMPARISONS 
To give an idea of the current state of subword modeling 
research, we provide selected results from the literature in 
Table 2. A head-to-head comparison has not been done for most 
of the models discussed here, so reported performance improve­
ments are specific to a particular type of recognition system, task 
(e.g., larger versus smaller vocabulary), and choice of data. We 

provide a sample of the reported 
tion model of Figure 3(a) [54]. 
CRF models with similar struc­
ture to the articulatory DBN of 
Figure 3 have also recently been 
introduced [78]. 

Segmental CRFs (SCRFs) have 
also been used as a form of sub­
word modeling. For example, in 
[65], the authors define SCRF fea-

IT IS SOMETIMES USEFUL TO TEST 
A SUBWORD MODEL SEPARATELY 

FROM A COMPLETE RECOGNIZER TO 
ISOLATE ITS EFFECTS FROM THOSE 

OF THE OBSERVATION AND 
LANGUAGE MODELS. 

results in terms of relative im­
provement, the percentage of 
errors made by a baseline system 
corrected by a proposed ap­
proach. Some of the approaches 
have been applied to phonetic 
recognition; here we include only 
word recognition results. The 

ture functions that correspond to aligned pairs of expected phone 
sequences and observed ones, which is the analogue of context­
dependent phonological rules in prior phone-based work (see the 
section "Dictionary Expansion"). They also use additional new fea­
ture functions, such as co-occurrence (without an explicit align­
ment) of baseform phone sequences and surface phone sequences. 
This framework allows for a very rich set of feature functions, 
since any functions spanning a word unit can be used. Models of 
the same form as SCRFs can in principle be trained with other dis­
criminative criteria and features functions, as done in [79] with 
large-margin training and feature functions combining phone­
based and articulatory information. 

first four lines in Table 2 describe 
phone-based dictionary expansion techniques. The next three 
lines refer to acoustics-based approaches. Here the goals of the 
approaches differ somewhat: While all aim to improve recogni­
tion performance, automatically learned units also allow learning 
the pronunciation dictionary from data. The next three lines give 
results of subphonetic feature-based models. While these have 
shown some gains in performance, they have largely not yet been 
incorporated into large-scale state-of-the-art systems. Finally, the 
last line gives an example of a conditional model with feature 
functions encoding subword structure. While many of the 
approaches show significant improvement over single-/multiple­
pronunciation phone-based systems, at least 75% of the errors 

[TABLE 2] SAMPLE OF RESULTS FROM THE LITERATURE ON SUBWORD MODELS IN SPEECH RECOGNITION. ALL NUMERICAL 
RESULTS REFER TO RELATIVE IMPROVEMENTS (E.G., ERROR RATE REDUCTION FROM 20% TO 18% IS A 10% IMPROVEMENT). 

APPROACH 

DECISION TREE-BASED PHONOLOGICAL RULES [30] [FIGURE 2(c)] 

DYNAMIC PHONOLOGICAL RULES USING PHONETIC, PROSODIC, ETC. 
CONTEXT [10] [FIGURE 2(c)] 

SEGMENT-BASED SYSTEM WITH PHONOLOGICAL RULES [33] [FIGURE 2(c)] 

DISCRIMINATIVE SELECTION OF PRONUNCIATION VARIANTS [35] 
[FIGURE 2(b)] 

AUTOMATICALLY LEARNED SUBWORD UNITS [18], [80] [FIGURE 2(a)] 

STATE-LEVEL PRONUNCIATION MODELING [42] [FIGURE 2(a)] 

HIDDEN MODEL SEQUENCES [49] [FIGURE 2(a)] 

FACTORED ARTICULATORY OBSERVATION MODEL USING MULTILAYER 
PERCEPTRONS [26] [FIGURE 3(a)] 

FACTORED ARTICULATORY OBSERVATION MODEL USING GAUSSIAN 
MIXTURES [25], [11], [51], [23] [FIGURE 3(a)] 

FACTORED-STATE MODEL USING ARTICULATORY FEATURES [22] 
[FIGURE 3(b)] 

SEGMENTAL CRFs WITH PHONE-BASED FEATURE FUNCTIONS [65] 

RESULT 

IMPROVEMENTS OVER BASELINE DICTIONARY BY 1-3% ON CONVERSATIONAL 
SPEECH AND BROADCAST NEWS RECOGNITION 

IMPROVEMENTS OVER BASELINE DICTIONARY BY 3-5% ON CONVERSATIONAL 
SPEECH 

IMPROVEMENT OVER BASELINE DICTIONARY BY 9% ON 
MEDIUM-VOCABULARY WEATHER QUERY TASK 

IMPROVEMENT OVER BASELINE DICTIONARY BY 7% ON RECOGNITION FOR 
VOICE SEARCH 

ALLOWS AUTOMATICALLY INDUCING DICTIONARY FROM DATA; 3% 
IMPROVEMENT OVER PHONETIC BASELINE SYSTEM FOR CONVERSATIONAL 
SPEECH, LARGER IMPROVEMENTS ON SMALL-VOCABULARY TASK 

IMPROVEMENT OVER STANDARD HMMs BY 5% ON CONVERSATIONAL AND 
READ SPEECH 

IMPROVEMENT BY UP TO 4% OVER STANDARD HMMs ON CONVERSATIONAL 
TELEPHONE SPEECH 

IMPROVEMENT OF -5% OVER UNFACTORED PHONE-BASED MODEL IN NOISY 
MEDIUM-VOCABULARY SPEECH RECOGNITION 

IMPROVEMENTS ON LARGE-VOCABULARY AND CROSS-LINGUAL RECOGNI­
TION, HYPERARTICULATED SPEECH RECOGNITION, AND SMALL-VOCABULARY 
RECOGNITION IN NOISE BY 5-10% 

IMPROVEMENT OF -25% IN COMBINATION WITH A BASELINE HMM ON 
MEDIUM-VOCABULARY ISOLATED WORDS 

IMPROVEMENT OF -10% OVER STATE-OF-THE-ART BASELINE GENERATIVE 
MODEL ON BROADCAST NEWS RECOGNITION 
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are not corrected by any of the approaches, leaving this area still 
open for wide-ranging research. 

It is sometimes useful to test a subword model separately from 
a complete recognizer to isolate its effects from those of the obser­
vation and language models. It is also sometimes necessary to do 
so, when testing newer, more speculative approaches for which 
various engineering details have not yet been addressed. One such 
measure is performance on the 

described here, in particular most of the work cited in Tables 2 and 
3, have not entered the mainstream; the area of subword modeling 
is still actively searching for solutions to its challenges. 

Certain themes are clear, however. First, the most natural ideas 
of expanding phonetic dictionaries, heavily studied in the late 
1990s and early 2000s, are surprisingly difficult to tum into suc­
cessful subword models. One reason is the continuous nature of 

pronunciation variation. The 
task of lexical access (also some­
times referred to as "pronuncia­
tion recognition" [811), consisting 
of predicting a word given a 
human-labeled phonetic (or any 
subword) transcription. Other 
measures include phonetic error 
rate of predicted pronunciations 
[10] and perplexity of surface sub-

ONE OF THE CRUCIAL PROPERTIES 
OF SUBWORD MODELING, WHICH 
DIFFERENTIATES IT FROM OTHER 

ASPECTS OF SPEECH RECOGNITION, 
IS THAT IT IS MODELING SOMETHING 

THAT IS NEVER OBSERVED. 

alternative of modeling all varia­
tion at the acoustic level has 
achieved similar, but not 
improved, results to phonetic dic­
tionary expansion. The "interme­
diate" approaches of subphonetic 
feature models have the potential 
to both cover the continuum of 

word units given the canonical units [30], [60]. These measures 
are not necessarily indicative of eventual performance in a com­
plete speech recognition system, but they help to analyze the 
effects of different modeling choices. Some measures, such as pho­
netic error rate and perplexity, are difficult to compare across mod­
els that use different types of units. Here we present a sample of 
results on lexical access for a subset of the phonetically transcribed 
portion of Switchboard [13]. Table 3 shows the performance of a 
few basic baselines, a phone-based model using context-dependent 
decision trees (an implementation by Jyothi et al. [60] of a model 
similar to that of Riley et al. [301), and several articulatory and dis­
criminative models. The top half of the table shows that this task is 
not trivial: a naive dictionary lookup, or a lookup with rules, does 
very poorly (though note that a complete speech recognizer with 
an acoustic model would recover some of the errors made by the 
lexical access models). The remaining results show the potential 
advantages of subphonetic features, context modeling, and dis­
criminative learning for subword modeling. As these approaches 
have not been tested in complete speech recognizers (except for 
highly constrained variants, e.g., [591), their results must be con­
sidered suggestive at this poinl 

DISCUSSION 
The challenges of subword modeling are some of the factors that 
have kept speech recognition from progressing beyond restricted 
applications and beyond high-resource settings and languages. We 
have motivated the need for breaking up words into subword units 
and surveyed some of the ways in which the research community 
has attempted to address the resulting challenges, including tradi­
tional phone-based models and less traditional models using 
acoustic units or subphonetic features. Through the unifying rep­
resentation of graphical models, we have noted the commonalities 
and differences among the approaches. We have highlighted a few 
of the main existing results, showing that different types of models 
have benefits in certain settings. We cannot yet conclude which 
models are preferred in which circumstances, and certain 
approaches are yet to be scaled up for use in state-of-the-art sys­
tems. It is important to note that many of the approaches 

pronunciation variation and be 
more robust to low-resource settings, but have yet to be tested in 
large-scale recognition. Modeling context is important-whether 
it is phonetic context in phone-based models [30], word-level con­
text that changes the prior distribution of pronunciations [10], [2], 
[7], or articulatory context in subphonetic models [60]. Finally, 
conditional or discriminative modeling has received relatively lit­
tle attention in subword modeling research but can potentially 
improve performance significantly [35], [65], [79]. 

The field is starting to benefit from combining some of the 
ideas discussed here, in particular through much tighter coupling 
between subword modeling, observation modeling, and machine 
learning techniques. New work on discriminative sequence mod­
els is making it possible to incorporate much richer structure 
than has been possible before [63]-[651, [791, [82] . 

We have not explored all issues in subword modeling in 
detail. In particular, the interactions between subword modeling, 
observation modeling, and the choice of acoustic observations 
deserve more study. For example, phonetic dictionary expansion 
may affect different systems differently (e.g., possibly achieving 
greater improvements in a segment-based recognizer [33] than 
in HMM-based recognizers [30], [101), but to our knowledge 
there have been no direct comparisons on identical tasks and 

[TABLE 3] LEXICAL ACCESS ERROR RATES (PERCENTAGES OF 
INCORRECTLY CLASSIFIED WORDS) ON A PHONETICALLY 
TRANSCRIBED SUBSET OF THE SWITCHBOARD DATABASE. 

MODEL 

BASEFORM LOOKUP [50] 

KNOWLEDGE-BASED RULES [50] 

BASEFORMS + LEVENSHTEIN DISTANCE [79] 

CONTEXT-INDEPENDENT ARTICULATORY DBN [50] 

CONTEXT-DEPENDENT PHONE MODEL [60] 

CONTEXT-DEPENDENT ARTICULATORY DBN [60] 

CRF + PHONETIC/ARTICULATORY FEATURE 
FUNCTIONS [79] 

LARGE-MARGIN + PHONETIC/ARTICULATORY 
FEATURE FUNCTIONS [79] 

ERROR RATE (%) 

59.3 

56.4 

41 .8 

39.0 

32 .1 

29.1 

21.5 

14.8 
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data sets. We have also only briefly touched on automatic sub­
word unit learning and the related task of automatic dictionary 
learning [391, [40], [47]. 

In some domains there is now an explosion of data, making it 
possible to learn very rich models with large context. At the same 
time, there is great interest in multilingual and low-resource 
domains, where data is scarce and parsimonious models are par­
ticularly appealing. 

One of the crucial properties of subword modeling, which dif­
ferentiates it from other aspects of speech recognition, is that it is 
modeling something that is never observed: There is no way to 
obtain absolute ground-truth subword unit labels, and we do not 
know precisely what these units should be. However, as we have 
discussed here, except in rare cases (e.g., very small vocabularies), 
it is necessary to break up words into subword units and confront 
the resulting challenges. 
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