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Linear Block Codes

In this chapter basic concepts of block codes are introduced. For ease of code synthesis
and implementation, we restrict our attention to a subclass of the class of all block
codes, the linear block codes. Since in most present digital computers and digital data
communication systems, information is coded in binary digits “0” or “1,” we discuss
only the linear block codes with symbols from the binary field GF(2). The theory
developed for the binary codes can be generalized to codes with symbols from a
nonbinary field in a straightforward manner.

First, linear block codes are defined and described in terms of generator and
parity-check matrices. The parity-check equations for a systematic code are derived.
Encoding of linear block codes is discussed. In Section 3.2 the concept of syndrome is
introduced. The use of syndrome for error detection and correction is discussed. In
Sections 3.3 and 3.4 we define the minimum distance of a block code and show that
the random-error-detecting and random-error-correcting capabilities of a code are
determined by its minimum distance. Probabilities of a decoding error are discussed.
In Section 3.5 the standard array and its application to the decoding of linear block
codes are presented. A general decoder based on the syndrome decoding scheme is
given. Finally, we conclude the chapter by presenting a class of single-error-correcting
linear codes.

References | to 4 contain excel'ent treatments of linear block codes.

3.1 INTRODUCTION TO LINEAR BLOCK CODES

We assume that the output of an information source is a sequence of binary digits
“0” or “1.” In block coding, this binary information sequence is segmented into
message blocks of fixed length; each message block, denoted by wu, consists of &

51
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information digits. There are a total of 2* distinct messages. The encoder, according to
certain rules, transforms each input message u into a binary n-tuple v with n > k.
This binary n-tuple v is referred to as the code word (or code vector) of the message u.
Therefore, corresponding to the 2* possible messages, there are 2* code words. This
set of 2% code words is called a block code. For a block code to be useful, the 2¢ code
words must be distinct. Therefore, there should be a one-to-one correspondence
between a message u and its code word v.

For a block code with 2* code words and length n, unless it has a certain special
structure, the encoding apparatus would be prohibitively complex for large k& and n
since it has to store the 2* code words of length »n in a dictionary. Therefore, we
must restrict our attention to block codes that can be mechanized in a practical
manner. A desirable structure for a block code to possess is the linearity. With this
structure in a block code, the encoding complexity will be greatly reduced, as we will
see.

Definition 3.1. A block code of length n and 2% code words is called a linear
(n, k) code if and only if its 2% code words form a k-dimensional subspace of the vector
space of all the n-tuples over the field GF(2).

In fact, a binary block code is linear if and only if the modulo-2 sum of two code
words is also a code word. The block code given in Table 3.1 is a (7, 4) linear code.
One can easily check that the sum of any two code words in this code is also a code
word.

Since an (n, k) linear code C is a k-dimensional subspace of the vector space V,
of all the binary n-tuples, it is possible to find k& linearly independent code words,

TABLE 3.1 LINEAR BLOCK CODE WITH
k=4 AND n=7

Messages Code words
© 0 0 0 © 00 0000
a 00 0 a101 000
© 100 ©© 110100
a1 0 0 a o111 00
© 01 0 a11001 0
a01 0 ©© 011010
© 110 a 00011 0
a11 0 ©©101110
© 001D a o1 000010
1 0001 @1 110001
© 100 110010010
a 100" © 0011001
© o011 1000101
ao011m aooi1 011
© 1101 © 010111
ai111mn a1111110
52 Linear Block Codes Chap. 3
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80, 15 - - - 5 8k in C such that every code word v in Cis a linear combination of these
k code words, that is,

V= U8 U8 o U 815 G.D

where u, = 0 or 1 for 0 <{i < k. Let us arrange these k linearly independent code
words as the rows of a k X n matrix as follows:

go 8oo 8o1 8oz o &on-1
g1 &0 11 812 et Bi1,n-1

G — . — . . . . . (3'2)
| 8i-1 _8k-1,0 8x-1,1 8rk-1,2 **° 8Ek-1.n-1

where g = (Zigs Gi1s -+ - » Grwoy) fOr 0P <k. If w = (ug, ty,...,u,_,) is the
message to be encoded, the correspording code word can be given as follows:

v=u-G
g
21
= (Mg Uyy e s Uy—y) = | ° (3.3)
_8k-1

= Uo@y T 181 T+ o+ U181

Clearly, the rows of G generate (or span) the (n, k) linear code C. For this reason,
the matrix G is called a generator ma:rix for C. Note that any & linearly independent
code words of an (n, k) linear code can be used to form a generator matrix for the
code. It follows from (3.3) that an (n, k) linear code is completely specified by the &
rows of a generator matrix G. Therefore, the encoder has only to store the k rows of
G and to form a linear combination of these k rows based on the input message

U= (Ug, Up, + « +  Up_1)-

Example 3.1
The (7, 4) linear code given in Table 3.1 hastthe folloging matrix as a generator matrix:
i <
go 1101000
01 0100
G = 81 _ .
g 1110010
g3 101000 1] . o
AR

Ifu=({ 1 0 1)is the message to be encoded, its corresponding code word,
according to (3.3), would be

v=1-go +1-g, +0-g, + 1-8;
=1 101000®+0OM1 10100+ 0100001
=0 0 01 1 0 1,

Sec. 3.1 Introduction to Linear Block Codes 53
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A desirable property for a linear block code to possess is the systematic structure
of the code words as shown in Figure 3.1, where a code word is divided into two parts,
the message part and the redundant checking part. The message part consists of &
unaltered information (or message) digits and the redundant checking part consists of
n — k parity-check digits, which are linear sums of the information digits. A linear
block code with this structure is referred to as a linear systematic block code. The
(7, 4) code given in Table 3.1 is a linear systematic block code, the rightmost four
digits of each code word are identical to the corresponding information digits,

Redundant Message
checking part part

’<~n — k digits h+—7k digits —»-{

Figure 3.1 Systematic format of a code word.

A linear systematic (n, k) code is completely specified by a k& x n matrix G of
the following form:

g, | _qu Do1 s Pon—k-1 I} 1 00 0
8: Do D1 vt Dim—k-1 i 01 0 0
G — gz _ D2o D o Pan-k-1 :I 0 0 1 0 ’ G.4)
e  Prene Pr-1i " Pr-tner-1 0 0 0 oor 1
P matrix k X k ideﬁtﬁy matrix

where p,; = 0 or 1. Let I, denote the & x k identity matrix. Then G = [P I,]. Let
u = (uy, Uy, ..., u,_) be the message to be encoded. The corresponding code word is

V= (09, V1, Vgyerv,¥py)

= (Ugy Uy, ..., Up_y) * G. 3-5)
It follows from (3.4) and (3.5) that the components of v are
Vpo g = U for0<{<k (3.6a)
and *
V; == UgPo; + UsPry o U Pra, (3.6b)

for 0 < j < n — k. Equation (3.6a) shows that the rightmost & digits of a code word
v are identical to the information digits u,, u;, . .., #,_; to be encoded, and (3.6b)
shows that the leftmost n — k redundant digits are linear sums of the information
digits. The n — k equations given by (3.6b) are called parity-check equations of the
code.

54 Linear Block Codes Chap. 3
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Example 3.2
The matrix G given in Example 3.1 is in systematic form. Let u = (uy, 4,, u,, u3) be
the message to be encoded and let v == (vq, vy, v3, ¥3, v4, Us, ¥s) be the corresponding
code word. Then

1101000
0110100
V=l un )l g 0y o
1010001

By matrix multiplication, we obtain the following digits of the code word v:

Ve = U3
Vs = Uy
Vs = Uy
V3 = Uy

vy = Uy + Uy + us
vy = Uy + Uy ’%*uz
Vo = Uy + Uy + Us.

The code word corresponding to the message (1 0 1 1)is(1 0010 1 1).

There is another useful matrix associated with every linear block code. As
stated in Chapter 2, for any & X n matrix G with k linearly independent rows, there
exists an (n — k) X » matrix H with n — k& linearly independent rows such that any
vector in the row space of G is orthogonal to the rows of H and any vector that is
orthogonal to the rows of H is in the row space of G. Hence, we can describe the
(n, k) linear code generated by G in an alternate way as follows: An n-tuple v is a code
word in the code generated by G if and only if v« HT — 0. This matrix H is called a
parity-check matrix of the code. The 2"7* linear combinations of the rows of matrix
H form an (1, n — k) linear code C,. This code is the null space of the (n, k) linear code
C generated by matrix G (i.e., foranyvy € Candanyw € C;, v » w = 0). C, is called
the dual code of C. Therefore, a parity-check matrix for a linear code C is a generator
matrix for its dual code C,.

If the generator matrix of an (n, k) linear code is in the systematic form of (3.4),
the parity-check matrix may take the following form:

H=[,, P]
1 00 0 poe Pio crr DPr-1,0 7
010 0 po P11 Pr-1,1
_ 0 01 0 poz Pz tt Pr-1,2 (3.7
0 0 O -« 1 ponk-r Promik-1 """ Pi-t,n-k-1_
Sec. 3.1 Introduction to Linear Block Codes 55

Security First Innovations, LLC, Exhibit 2032
Page 2032 - 10
IPR2025-01202, Intl. Bus. Machs. Corp. v. Security First Innovations, LLC



where PT is the transpose of the matrix P. Let h, be the jth row of H. We can check
readily that the inner product of the ith row of G given by (3.4) and the jth row of
H given by (3.7) is

g+h,=p,;4+p,;=0

for 0<i< k and 0 < j < n — k. This implies that G « H” = (. Also, the n — k
rows of H are linearly independent. Therefore, the H matrix of (3.7) is a parity-check
matrix of the (n, k) linear code generated by the matrix G of (3.4).

The parity-check equations given by (3.6b) can also be obtained from the parity-
check matrix H of (3.7). Let u = (u,, u,, ..., u,_,) be the message to be encoded.
In systematic form the corresponding code word would be

V= (UOs 7)1, LRI ] vn—k—l? um Uty oo vy uk-—l)'
Using the fact that v « HT = 0, we obtain
Uy + Ugpoy + U Pyt s U1 Dieoy,; =0 (3.3)

for 0 << j << n — k. Rearranging the equations of (3.8), we obtain the same parity-
check equations of (3.6b). Therefore, an (n, k) linear code is completely specified by
its parity-check matrix.

Example 3.3

Consider the generator matrix of a (7, 4) linear code given in Example 3.1. The corre-
sponding parity-check matrix is

i

1t 00'1t 011
H=/010’111 ol
00 1'01 1 1]

o=

]

At this point, let us summarize the foregoing results: For any (n, k) linear block
code C, there exists a k¥ X n matrix G whose row space gives C. Furthermore, there
exists an (n — k) X n matrix H such that an n-tuple v is a code word in C if and only
if v« H" = 0. If G is of the form given by (3.4), then H may take the form given by
(3.7), and vice versa.

Based on the equations of (3.6a) and (3.6b), the encoding circuit for an (n, k)
linear systematic code can be implemented easily. The encoding circuit is shown in
Figure 3.2, where —[_|]— denotes a shift-register stage (e.g., a flip-flop), @ denotes
a modulo-2 adder, and —» denotes a connection if p,; = 1 and no connection
if p;; = 0. The encoding opeTation is very simple. The message u = (uy, Uy, . . . , Uy_;)
to be encoded is shifted into the message register and simultaneously into the channel.
As soon as the entire message has entered the message register, the n — k parity-check
digits are formed at the outputs of the n — k modulo-2 adders. These parity-check
digits are then serialized and shifted into the channel. We see that the complexity of
the encoding circuit is linearly proportional to the block length of the code. The
encoding circuit for the (7, 4) code given in Table 3.1 is shown in Figure 3.3, where
the connection is based on the parity-check equations given in Example 3.2.

56 Linear Block Codes Chap. 3
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LS

O To channel

Message register

Input u
o - ugy IV u, z* uy To.-———» Uy_y -—l
ugy uy up_y 1, uy

L

%?/I Ul y

—- % ¢ 0606 —f +——O To channel

Parity register

Figure 3.2 Encoding circuit for a linear systematic (n, k) code.
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Input u

Message register

Ug > uy Uy — usz —T

i’\ To channel

o

Parity register

Figure 3.3 Encoding circuit for the (7, 4) systematic code given in Table 3.1.

3.2 SYNDROME AND ERROR DETECTION

Consider an (n, k) linear code with generator matrix G and parity-check matrix H.
Letv= (v, v, ...,9, ;) be a code word that was transmitted over a noisy channel.
Letr = (ry, ry5 . - . » roy) be the received vector at the output of the channel. Because
of the channel noise, r may be different from v. The vector sum

e=r-4v (3.9)

= (eo, el, L en—l)
is an n-tuple where ¢, = 1 for r; # v, and ¢; = 0 for r, = »,. This n-tuple is called
the error vector (or error pattern). The 1’s in e are the transmission errors caused by
the channel noise. It follows from (3.9) that the received vector r is the vector sum of
the transmitted code word and the error vector, that is,
r=v-e.
Of course, the receiver does not know either v or e. Upon receiving r, the decoder
must first determine whether r contains transmission errors. If the presence of errors
is detected, the decoder will either take actions to locate the errors and correct them

(FEC) or request for a retransmission of v(ARQ).
When r is received, the decoder computes the following (n — k)-tuple:

s=r«H"
= (509 sla LA ] sn—k—l).
which is called the syndrome of r. Thens = 0 if and only if r is a code word, and s = 0

(3.10)

58 Linear Block Codes Chap. 3
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if and only if r is not a code word. Therefore, when s 5= 0, we know that r is not a
code word and the presence of errors has been detected. When s = 0, r is a code word
and the receiver accepts r as the transmitted code word. It is possible that the errors in
certain error vectors are not detectable (i.e., r contains errors but s =r « H” = 0).
This happens when the error pattern e is identical to a nonzero code word. In this
event, r is the sum of two code words which is a code word, and consequently r - H” =
0. Error patterns of this kind are called undetectable error patterns. Since there are
2¥ — 1 nonzero code words, there are 2¥ — 1 undetectable error patterns. When an
undetectable error pattern occurs, the decoder makes a decoding error. In a later
section of the chapter we derive the probability of an undetected error for a BSC
and show that this error probability can be made very small.
Based on (3.7) and (3.10), the syndrome digits are as follows:

S0 =ro + FeokPoo F Foers1Pro+ -+ + FaciDioy,0

Si="r1F FagPor + Fogsr P+ - Pt Dior 1
: G.1D

Sneimt = Fociot T FackPonoi-1 F Tockst Pimet—1 T 0 Fos i Paot, nmk—1-

If we examine the equations above carefully, we find that the syndrome s is simply the
vector sum of the received parity digits (ro, 7y, ..., F,_x-,) and the parity-check digits
recomputed from the received information digits r,_,, rp_xy1s- .. 7.—;. Therefore,
the syndrome can be formed by a circuit similar to the encoding circuit. A general
syndrome circuit is shown in Figure 3.4.

Example 3.4

Consider the (7, 4) linear code whose parity-check matrix is given in Example 3.3. Let
r = (ro, ry, 2, r3, ¥4, I's, r¢) be the received vector. Then the syndrome is given by

s = (59, 51, 52)

<

=(r01r15r27r3’r4’r5,r6)

_—— D = OO =
O ek m m O = O
— e D e O

The syndrome digits are
So = ry +r3 +rs +rg
Sy ="ty +r3t+rytrs
Sy = Fy A ry +rs + re.

The syndrome circuit for this code is shown in Figure 3.5.

Sec. 3.2 Syndrome and Error Detection 59
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09

— I r I r —I" see —B /., 1 a1

o Tk Tnek+1 Tn- 8} "n-k Tn—k+1 Tn-1 Tnok-1 Thok Tn-k+1 n-1

So 5y Sn-k-1

Figure 3.4 Syndrome circuit for a linear systematic (n, k) code.
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—l 7 »l 7 ra T3 ra [s 3

5o S1 52

Figure 3.5 Syndrome circuit for the (7, 4) code given in Table 3.1.

The syndrome s computed from the received vector r actually depends only on
the error pattern e, and not on the transmitted code word v. Since r is the vector sum
of v and e, it follows from (3.10) that

s=r«H =(v+eH =v+.H" +e. H".

However, v« H” = 0. Consequently, we obtain the following relation between the
syndrome and the error pattern:

s =-e+ H". (3.12)
If the parity-check matrix H is expressed in the systematic form as given by (3.7),

multiplying out e « HT yields the following linear relationship between the syndrome
digits and the error digits:

So = € + €, xPoo T €nkirProt 0 F € 1Pt

§;=e + en—'kp(]l + ol g1 Pr1 o Doy
: (3.13)

Suck-t = Cppot T €upDon-r-1t Cocgs1Plip—i—1 + " T 1Pt noi1-

The syndrome digits are simply linear combinations of the error digits. Clearly, they
provide information about the error digits and therefore can be used for error correc-
tion.

At this point, one would feel that any error correction scheme is a method of
solving the n — k linear equations of {3.13) for the error digits. Once the error pattern
e has been found, the vector r + e is taken as the actual transmitted code word.
Unfortunately, determining the true error vector e is not a simple matter. This is
because the n — k linear equations of (3.13) do not have a unique solution but have
2% solutions (this will be proved in Theorem 3.6). In other words, there are 2% error

Sec. 3.2 Syndrome and Error Detection 61
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patterns that result in the same syndrome, and the true error pattern e is just one of
them. Therefore, the decoder has to determine the true error vector from a set of 2%
candidates. To minimize the probability of a decoding error, the most probable error
pattern that satisfies the equations of (3.13) is chosen as the true error vector. If the
channel is a BSC, the most probable error pattern is the one that has the smallest
number of nonzero digits.

The notion of using syndrome for error correction may be clarified by an

example.

Example 3.5

62

Again, we consider the (7, 4) code whose parity-check matrix is given in Example 3.3.
Letv=(100101 1) be the transmitted code word andr =(1 001 0 0 1) be
the received vector. Upon receiving r, the receiver computes the syndrome:

s=r-H' =1 1 1.

Next, the receiver attempts to determine the true error vector e = (e, q{, €y, €3, €4, €5
e¢), which yields the syndrome above. It follows from (3.12) or (3.13) that the error
digits are related to the syndrome digits by the following linear equations:

1 =ep fe;+es +es
1 =e¢; +e;+es+es
1282+E4+35 + e¢.

There are 24 = 16 error patterns that satisfy the equations above. They are

©000O0T10, (010011,
(1 101010, (11101 1),
© 110110, (11007111,
1011110, ©O0O0T1T111,
@ 110000, ©10000 1),
© 011000, (100100 1),
(1 000100, ©OT10T10 1,
© 101100, (11110 1.

The error vector e =(0 0 0 0 0 1 0) has the smallest number of nonzero
components. If the channelisa BSC, e = (0 0 0 0 0 1 0) is the most probable error
vector that satisfies the equations above. Taking e = (0 0 0 0 0 1 0) as the true
error vector, the receiver decodes the received vector r =(1 0 0 1 0 0 1) into the
following code word:

v¥=r-e
=1 00100 1H4+©O© 000010
=1 00101 1)

We see that v* is the actual transmitted code word. Hence, the receiver has made a
correct decoding. Later we show that the (7, 4) linear code considered in this example
is capable of correcting any single error over a span of seven digits; that is, if a code
word is transmitted and if only one digit is changed by the channel noise, the receiver
will be able to determine the true error vector and to perform a correct decoding.

Linear Block Codes Chap. 3
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More discussion on error correction based on syndrome is given in Section 3.5.
Various methods of determining the true error pattern from the » — k linear equa-
tions of (3.13) are presented in later chapters.

3.3 THE MINIMUM DISTANCE OF A BLOCK CODE

In this section an important parameter of a block code called the minimum distance
is introduced. This parameter determines the random-error-detecting and random-
error-correcting capabilities of a code. Let v = (vy, v, . . ., v,-,) be a binary n-tuple.
‘The Hamming weight (or simply weight) of v, denoted by w(v), is defined as the
number of nonzero components of v. For example, the Hamming weight of
v=(1001011)is4. Let vand w be two n-tuples. The Hamming distance (or
simply distance) between v and w, denoted d(v, w), is defined as the number of places
where they differ. For example, the Hamming distance betweeny =(1 0 0 1 0 1 1)
andw=(0100011)is 3; they differ in the zeroth, first, and third places. The
Hamming distance is a metric function that satisfies the zriangle inequality. Let v, w,
and x be three n-tuples. Then

d(v, w) + d(w, x) > d(v, x). (3.149)

(The proof of this inequality is left as a problem.) It follows from the definition of
Hamming distance and the definition of modulo-2 addition that the Hamming distance
between two n-tuples, v and w, is equal to the Hamming weight of the sum of v and
w, that is,

d(v,w) = w(v + w). (3.15)
For example, the Hamming distance between v=(1 00101 1) and w=
(111001 0)is4and the weightofvy+w=(0 11100 1)isalso 4.

Given a block code C, one can compute the Hamming distance between any
two distinct code words. The minimum distance of C, denoted d;,, is defined as

dmie = min {d(v, w): v, w € C, v W}. (3.16)
If C is a linear block code, the sum of two vectors is also a code vector. It follows

from (3.15) that the Hamming distance between two code vectors in C is equal to
the Hamming weight of a third code vector in C. Then it follows from (3.16) that

) LN

( Al o dyy =min{wv +w):v,w e C, v w PR
' = min {w(x): x € C, x % 0} (3.17)
é Whin- o |
The parameter w,;, 2 {w(x):x € C, x % 0} is called the minimum weight of the
linear code C. Summarizing the result above, we have the following theorem.

Theorem 3.1. The minimum distance of a linear block code is equal to the
minimum weight of its nonzero code words.

Therefore, for a linear block code, to determine the minimum distance of the
code is equivalent to determining its minimum weight. The (7, 4)code given in Table
3.1 has minimum weight 3; thus, its minimum distance is 3. Next, we prove a number
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of theorems that relate the weight structure of a linear block code to its parity-check
matrix.

Theorem 3.2. Let C be an (n, k) linear code with parity-check matrix H.
For each code vector of Hamming weight /, there exist / columns of H such that the
vector sum of these / columns is equal to the zero vector. Conversely, if there exist /
columns of H whose vector sum is the zero vector, there exists a code vector of
Hamming weight / in C.

Proof. Let us express the parity-check matrix in the following form:
H = [hm h]s LI ] hn-—l]’
where h, represents the ith column of H. Let v = (v,, v,, ..., v,_,) be a code vector
of weight /. Then v has / nonzero components. Let v, v, ..., v, be the / nonzero

components of v, where 0 <i, <i, < ---<i{<n—1 Then v, =v,=---
= v, = 1. Since v is a code vector, we must have

0=v.H"
=vhy +vhy + -+ + 9, /h,_,
=, +vh, + .- 4+ 2.h,
=h,+h,+ - +h,

This proves the first part of the theorem.
Now suppose that h;, h,,, . . ., h;, are / columns of H such that

h, +h,+ -+ +h,=0. (3.18)
Let us form a binary a-tuple x = (x,, x,, ..., x,.,) whose nonzero components are
Xis Xigs « -+ » X, The Hamming weight of x is /. Consider the product

x« H" = x,hy + x;h, + -+ 4+ x,_;h,_;
=x.h;, +x.h, + -« 4 xh,
=h,+h,+ -+ +h,
It follows from (3.18) that x « H” = 0. Thus, x is a code vector of weight /in C. This
proves the second part of the theorem. Q.E.D.

It follows from Theorem 3.2 that we have the following two corollaries.

/ Corollary 3.2.1. Let C be a linear block code with parity-check matrix H.
If nod — 1 or fewer columns of H add to 0, the code has minimum weight at least d.

y Corollary 3.2.2. Let C be a linear code with parity-check matrix H. The
minimum weight (or the minimum distance) of C is equal to the smallest number of
columns of H that sum to 0.

Consider the (7, 4) linear code given in Table 3.1. The parity-check matrix of
this code is

1 001 011
H=|0 1 01 1 1 0].
0 01 0111
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We see that all columns of H are nonzero and that no two of them are alike. Therefore,
no two or fewer columns sum to 0. Hence, the minimum weight of this code is at
least 3. However, the zeroth, second and sixth columns sum to 0. Thus, the minimum
weight of the code is 3. From Table 3.1 we see that the minimum weight of the code
is indeed 3. It follows from Theorem 3.1 that the minimum distance is 3.

Corollaries 3.2.1 and 3.2.2 are generally used to determine the minimum distance
or to establish a lower bound on the minimum distance of a linear block code.

3.4 ERROR-DETECTING AND ERROR-CORRECTING
CAPABILITIES OF A BLOCK CODE

When a code vector v is transmitted over a noisy channel, an error pattern of / errors
will result in a received vector r which differs from the transmitted vector v in / places
[i.e., d(v, r) = []. If the minimum distance of a block code C is d;,, any two distinct
code vectors of C differ in at least d,,;, places. For this code C, no error pattern of
d.. — 1 or fewer errors can change one code vector into another. Therefore, any
error pattern of d,;, — 1 or fewer errors will result in a received vector r that is not a
code word in C. When the receiver detects that the received vector is not a code word
of C, we say that errors are detected. Hence, a block code with minimum distance
a’mm is capable ofﬁetectmg all the error patterns of d,;,, — 1 or fewer errors. However,
it cannot detect all the error patterns of d,,;, errors because there exists at least one
pair of code vectors that differ in d_,;, places and there is an error pattern of dy;,
errors that will carry one into the other. The same argument applies to error patterns
of more than d,;, errors. For this reason, we say that the random-error-detecting
capability of a block code with minimum distance d;, iS dpia — 1.

Even though a block code with minimum distance d,,;, guarantees detecting all
the error patterns of d;, — 1 or fewer errors, it is also capable of detecting a large
fraction of error patterns with d;, or more errors. In fact, an (n, k) linear code is
capable of detectmg 2" — 2% error patterns of length . This can be shown as follows.
Among the 27 — 1 p0551ble nonzero error patterns, there are 2% — 1 error
patterns that are identical to the 2 -— 1 nonzero code words. If any of these 2 — 1
error patterns occurs, it alters the transmitted code word v into another code word
w. Thus, w will be received and its syndrome is zero. In this case, the decoder accepts
w as the transmitted code word and thus commits an incorrect decoding. Therefore,
there are 2 — 1 undetectable error patterns. If an error pattern is not identical to a
nonzero code word, the received vector r will not be a code word and the syndrome
will not be zero. In this case, error will be detected. There are exactly 2" — 2% error
patterns that are not identical to the code words of an (n, k) linear code. These
2" — 2% error patterns are detectable error patterns. For large n, 2¥ — 1 is in general
much smaller than 2. Therefore, only a small fraction of error patterns pass through
the decoder without being detected.

Let C be an (n, k) linear code. Let A4; be the number of code vectors of weight i
in C. The numbers Ay, 4,, ..., A, are called the weight distribution of C. If C 1s used
only for error detection on a BSC, the probability that the decoder fails to detect the
presence of errors can be computed from the weight distribution of C. Let P,(E)
denote the probability of an undetected error. Since an undetected error occurs only
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when the error pattern is identical to a nonzero code vector of C,
PE) = 3, Ap(1 —p)™, (3.19)

where p is the transition probability of the BSC. If the minimum distance of C is
dins then 4, to 4, _, are zero.

Consider the (7, 4) code given in Table 3.1. The weight distribution of this
codeis A, =1, A, =A4,=0, A;, =7, A,=7, A;=A; =0, and A, = 1. The
probability of an undetected error is

P(E) =Tp*(1 — p)* + Tp*(L — p)* + p.
If p = 10-2, this probability is approximately 7 X 1075, In other words, if 1 million
code words are transmitted over a BSC with p = 1072, there are on the average seven

erroneous code words passing through the decoder without being detected.

If a block code C with minimum distance d.;, is used for random-error correction,
one would like to know how many errors that the code is able to correct. The minimum

distance d;, is either odd or even. Let ¢ be a positive integer such that
Clan ;00T U4+ < dyy < 2t + 2. (3.20)

NACAL AL Y .
Next, we show that the code C is capable of correcting all the error patterns of
t or fewer errors. Let v and r be the transmitted code vector and the received vector,
respectively. Let w be any other code vector in C. The Hamming distances among v,
r, and w satisfy the triangle inequality:
/
AW x) + d(w, 1) > d(v, W). (3.21)
Suppose that an error pattern of ¢’ errors occurs during the transmission of v. Then
the received vector r differs from v in ¢’ places and therefore d(v, r) = ¢’. Since v and
w are code vectors in C, we have
AV, W) > dpia > 2t 4 1. (3.22)
Combining (3.21) and (3.22) and using the fact that d(v, r) = ¢’, we obtain the follow-
ing inequality:
dw,r) >2t+1—r.
If ¢/ < ¢, then
d(w, 1) > 1.

The inequality above says that if an error pattern of ¢ or fewer errors occurs, the
received vector r is closer (in Hamming distance) to the transmitted code vector v
than to any other code vector w in C. For a BSC, this means that the conditional
probability P(r|v) is greater than the conditional probability P(r|w) for w == v. Based
on the maximum likelihood decoding scheme, r is decoded into v, which is the actual
transmitted code vector. This results in a correct decoding and thus errors are
corrected.

On the other hand, the code is not capable of correcting all the error patterns
of l errors with / > ¢, for there is at least one case where an error pattern of / errors
results in a received vector which is closer to an incorrect code vector than to the
actual transmitted code vector. To show this, let v and w be two code vectors in C
such that

d(v, w) = duin.
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Let e, and e, be two error patterns that satisfy the following conditions:

(e +e,=v+w

(ii) e, and e, do not have nonzero components in common places.

Obviously, we have

w(e,) + wiey) = w(v + w) = d(v, W) = dpy. (3.23)
Now suppose that v is transmitted and is corrupted by the error pattern e,. Then the
received vector is

r=v-+e,.
The Hamming distance between v and r is
d(v, r) = w(v -+ r) = w(e,). (3.24)
The Hamming distance between w and r is
dw,r) = w(w + 1) == w(w + v + e,) = w(e,). (3.25)

Now suppose that the error pattern e, contains more than ¢ errors [i.e., w(e,) > t].
Since 2t + 1 < d;, << 2t + 2, it follows from (3.23) that

wle,) <t -+ 1.

Combining (3.24) and (3.25) and using the fact that w(e,) > ¢ and w(e,) <t + 1, we
obtain the following inequality:

d(v,r) > d(w, r).

This inequality says that there exists an error pattern of / (/ > ¢) errors which results
in a received vector that is closer to an incorrect code vector than to the transmitted
code vector. Based on the maximum likelihood decoding scheme, an incorrect
decoding would be committed.

Summarizing the results above, a block code with minimum distance dnin
guarantees correcting all the error patterns of ¢ = |(dn, — 1)/2] or fewer errors,
where | (dni,, — 1)/2] denotes the largest integer no greater than (dn;,, — 1)/2. The
parameter ¢ = | (d,, — 1)/2] is called the random-error-correcting capability of the
code. The code is referred to as a t-error-correcting code. The (7, 4) code given in
Table 3.1 has minimum distance 3 end thus 7z = 1. It is capable of correcting any
error pattern of single error over a block of seven digits.

A block code with random-error-correcting capability ¢ is usually capable of
correcting many error patterns of ¢+ + 1 or more errors. For a t-error-correcting
(n, k) linear code, it is capable of correcting a total 2*°* error patterns, including
those with ¢ or fewer errors (this will be seen in the next section). If a #-error-correcting
block code is used strictly for error correction on a BSC with transition probability
P, the probability that the decoder commits an erroneous qecoding is upper bounded
by

PEY< 3 ()t —pr. (3.26)

In practice, a code is often used for correcting A or fewer errors and simultane-
ously detecting / (/ > A) or fewer errors. That is, when A or fewer errors occur, the
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code is capable of correcting them; when more than A but fewer than / 4 1 errors
occur, the code is capable of detecting their presence without making a decoding
error. For this purpose, the minimum distance d_;, of the code is at least A -+ /4 1
(left as a problem). Thus, a block code with d_,;, = 10 is capable of correcting three or
fewer errors and simultaneously detecting six or fewer errors.

From the discussion above, we see that random-error-detecting and random-
error-correcting capabilities of a block code are determined by the code’s minimum
distance. Clearly, for given n and k, one would like to construct a block code with
minimum distance as large as possible, in addition to the implementation considera-
tions.

3.5 STANDARD ARRAY AND SYNDROME DECODING

ity
In this section a scheme for decoding linear block codes is presented. Let C be an
(n, k) linear code. Let v, v,, . . ., v,. be the code vectors of C. No matter which code

vector is transmitted over a noisy channel, the received vector r may be any of the
2" n-tuples over GF(2). Any decoding scheme used at the receiver is a rule to partition
the 2" possible received vectors into 2* disjoint subsets D,, D,, ..., D,. such that the
code vector v, is contained in the subsemr 1 << i << 2%, Thus, each subset D, is
one-to-one correspondence to a code vector v,. If the received vector r is found in the
subset D,, r is decoded into v,. Correct decoding is made if and only if the received
vector r is in the subset D, that corresponds to the actual code vector transmitted.

A method to partition the 2" possible received vectors into 2 disjoint subsets
such that each subset contains one and only one code vector is described here. The
partition is based on the linear structure of the code. First, the 2* code vectors of C
are placed in a row with the all-zero code vector v, = (0,0, . . ., 0) as the first (left-
most) element. From the remaining 2* — 2% p-tuples, an n-tuple e, is chosen and is
placed under the zero vector v,. Now, we form a second row by adding e, to each code
vector v, in the first row and placing the sum e, -+ v, under v,. Having completed the
second row, an unused n-tuple e, is chosen from the remaining n-tuples and is placed
under v,. Then a third row is formed by adding e, to each code vector v, in the first
row and placing e; + v; under v,, We continue this process until all the n-tuples are
used. Then we have an array of rows and columns as shown in Figure 3.6. This array
is called a standard array of the given linear code C.

It follows from the construction rule of a standard array that the sum of any
two vectors in the same row is a code vector in C. Next, we prove some important
properties of a standard array.

Theorem 3.3. No two n-tuples in the same row of a standard array are iden-
tical. Every n-tuple appears in one and only one row.

Proof. The first part of the theorem follows from the fact that all the code
vectors of C are distinct. Suppose that two s-tuples in the /th rows are identical, say
e, + v, = ¢, + v, with / 2= ;. This means that v, = v;, which is impossible. Therefore,
no two n-tuples in the same row are identical.

It follows from the construction rule of the standard array that every n-tuple
appears at least once. Now suppose that an n-tuple appears in both /th row and the
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Figure 3.6 Standard array for an
eyn-k  en—k t V2 ceyn-ktVirTrtyn-k t V2K (n, k) linear code.

mth row with / < m. Then this n-tuple must be equal to e, 4 v, for some i and equal
to e, + v, for some j. As a result, ¢, + v, = e,, + v,. From this equality we obtain
e, = ¢, + (v, + v,). Since v; and v, are code vectors in C, v, + v, is also a code vector
in C, say v,. Then e,, = ¢, -+ v,. This implies that the n-tuple e, is in the /th row of
the array, which contradicts the construction rule of the array that e,,, the first element
of the mth row, should be unused in any previous row. Therefore, no n-tuple can
appear in more than one row of the array. This concludes the proof of the second part
of the theorem. Q.E.D.

From Theorem 3.3 we see that there are 27/2% = 2"~ disjoint rows in the
standard array, and that each row consists of 2% distinct elements. The 2*7* rows are
called the cosets of the code C and the first n-tuple e, of each coset is called a coset
leader. Any element in a coset can be used as its coset leader. This does not change

the elements of the coset; it simply permutes them.
Example 3.6
Consider the (6, 3) linear code generated by the following matrix:

011100
G={1 0101 0}
110001

The standard array of this code is shown in Figure 3.7.

A standard array of an (n, k) linear code C consists of 2* disjoint columns. Each
column consists of 2% n-tuples with the topmost one as a code vector in C. Let D,
denote the jth column of the standard array. Then

D; = {vja € + Ve Vo, €+ v]}’ (3.27)

where v, is a code vector of C and e,, e, . . ., e, are the coset leaders. The 2* disjoint
columns D,, D,, ..., D,: can be used for decoding the code C as described earlier
in this section. Suppose that the code vector v, is transmitted over a noisy channel.
From (3.27) we see that the received vector r is in D, if the error pattern caused by
the channel is a coset leader. In this event, the received vector r will be decoded
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Coset

leader

000000 011100 101010 110001 110110 101101 011011 000111
100000 111100 001010 010001 010110 001101 111011 100111
010000 001100 111010 100001 100110 111101 001011 010111
001000 010100 100010 111001 111110 100101 010011 001111
000100 011000 101110 110101 110010 101001 011111 000011
000010 011110 101000 110011 110100 101111 011001 000101
000001 011101 101011 110000 110111 101100 011010 000110
100100 111000 001110 010101 010010 001001 111111 100011

Figure 3.7 Standard array for the (6, 3) code.

correctly into the transmitted code vector v,. On the other hand, if the error pattern
caused by the channel is not a coset leader, an erroneous decoding will result. This

can be seen as follows. The error pattern x caused by the channel must be in some
coset and under some nonzero code vector, say in the /th coset and under the code
vector v; % 0. Then x = e, + v, and the received vector is
r=v,+x=e¢ -+, +v)=¢e v,

The received vector r is thus in D, and is decoded into v,, which is not the transmitted
code vector. This results in an erroneous decoding. Therefore, the decoding is correct
if and only if the error pattern caused by the channel is a coset leader. For this reason,
the 2"~* coset leaders (including the zero vector 0) are called the correctable error
patterns. Summarizing the results above, we have the following theorem:

Theorem 3.4. Every (n, k) linear block code is capable of correcting 2"~*
error patterns.

To minimize the probability of a decoding error, the error patterns that are
most likely to occur for a given channel should be chosen as the coset leaders. For a
BSC, an error pattern of smaller weight is more probable than an error pattern of
larger weight. Therefore, when a standard array is formed, each coset leader should
be chosen to be a vector of least weight from the remaining available vectors. Choosing
coset leaders in this manner, each coset leader has minimum weight in its coset. As
a result, the decoding based on the standard array is the minimum distance decoding
(i.e., the maximum likelihood decoding). To see this, let r be the received vector.
Suppose that r is found in the ith column D, and /th coset of the standard array.
Then r is decoded into the code vector v;. Since r = e, 4 v,, the distance between
randyv, is

d(r,v) = w(r + v,) = wle, + v, + v,) = w(e). (3.28)
Now, consider the distance between r and any other code vector, say v,,
d(r,v;) = w(r + v;) = w(e, + v, + v).
Since v; and v, are two different code vectors, their vector sum, v, 4 v,, is a nonzero
code vector, say v,. Thus,

da(r,v,) = we, + v,). (3.29)
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Since, e, and e, -- v, are in the same coset and since w(e;) <C w(e; + v,), it follows from
(3.28) and (3.29) that

d(r,v) <d(r,v)).
This says that the received vector is decoded into a closest code vector. Hence, if
each coset leader is chosen to have minimum weight in its coset, the decoding based
on the standard array is the minimum distance decoding or MLD.

Let a; denote the number of coset leaders of weight i. The numbers o, a,, . . ., &,
are called the weight distribution of the coset leaders. Knowing these numbers, we
can compute the probability of a decoding error. Since a decoding error occurs if and
only if the error pattern is not a coset leader, the error probability for a BSC with
transition probability p is

P(E)=1— Sa,p(l — py-. (3.30)

Example 3.7
Consider the (6, 3) code given in Example 3.6. The standard array for this code is shown
in Figure 3.7. The weight distribution of the coset leaders is 00y = 1, 0, = 6, 0, = 1,
and 0y =0y = Os = O = 0. ThUS,
P(EY=1-(1 —p)¥ —6p(1l —p)* —p(1 — p)*.
For p = 10~2, we have P(E) = 1.37 x 1073,

An (n, k) linear code is capable of detecting 2" — 2* error patterns; however,
it is capable of correcting only 2"~* error patterns. For large n, 2*7* is a small fraction
of 2" — 2%, Therefore, the probability of a decoding error is much higher than
the probability of an undetected error.

Theorem 3.5. For an (n, k) linear code C with minimum distance d.,;,, all the
n-tuples of weight of t = | (d.. — 1)/2] or less can be used as coset leaders of a stan-
dard array of C. If all the n-tuples of weight ¢ or less are used as coset leaders, there
is at least one n-tuple of weight ¢ -+ 1 <hat cannot be used as a coset leader.

Proof. Since the minimum distance of C is d;,, the minimum weight of C is
also d;,. Let x and y be two n-tuples of weight 7 or less. Clearly, the weight of x + y
is
w(x +y) < w(x) + w(y) < 2t < doo.

Suppose that x and y are in the same coset; then x -+ y must be a nonzero code vector
in C. This is impossible because the weight of x + y is less than the minimum weight
of C. Therefore, no two n-tuples of weight ¢ or less can be in the same coset of C,
and all the n-tuples of weight ¢ or less can be used as coset leaders.

Let v be a minimum weight code vector of C [i.e., w(v) = d,;,]. Let x and y be
two n-tuples which satisfy the following two conditions:

@) x+y=v.
(ii) x and y do not have nonzero components in common places.

It follows from the definition that x and y must be in the same coset and

w(x) + w(y) = W) = dun.
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Suppose we choose y such that w(y) =1t 4 1. Since 2t + 1 < d;, <2t + 2, we
have w(x) = t or ¢ + 1. If x is used as a coset leader, then y cannot be a coset leader.
Q.E.D.

Theorem 3.5 reconfirms the fact that an (n, k) linear code with minimum
distance d,,;, is capable of correcting all the error patterns of | (duw, — 1)/2] or fewer
errors, but it is not capable of correcting all the error patterns of weight ¢ - 1.

A standard array has an important property that can be used to simplify the
decoding process. Let H be the parity-check matrix of the given (n, k) linear code C.

Theorem 3.6. All the 2% n-tuples of a coset have the same syndrome. The
syndromes for different cosets are different.

Proof. Consider the coset whose coset leader is e;. A vector in this coset is the
sum of e; and some code vector v; in C. The syndrome of this vector is

(e, +v)H” = ¢H” + vH" = ¢,H”

(since v,HT = 0). The equality above says that the syndrome of any vector in a coset
is equal to the syndrome of the coset leader. Therefore, all the vectors of a coset have
the same syndrome.

Let e, and e, be the coset leaders of the jth and /th cosets, respectively, where
Jj << I. Suppose that the syndromes of these two cosets are equal. Then

e, H" = ¢ H,
(e; + e)HT = 0.
This implies that e, - e, is a code vector in C, say v,. Thus, e, +- ¢, = v, and ¢, =
e, -+ v,. This implies that e, is in the jth coset, which contradicts the construction rule

of a standard array that a coset leader should be previously unused. Therefore, no
two cosets have the same syndrome. Q.E.D.

We recall that the syndrome of an n-tuple is an (n — k)-tuple and there are
2% distinct (n — k)-tuples. It follows from Theorem 3.6 that there is a one-to-one
correspoudence between a coset and an (n — k)-tuple syndrome. Or, there is a one-
to-one correspondence between a coset leader (a correctable error pattern) and a
syndrome. Using this one-to-one correspondence relationship, we can form a decoding
table, which is much simpler to use than a standard array. The table consists of 2%
coset leaders (the correctable error patterns) and their corresponding syndromes.
This table is either stored or wired in the receiver. The decoding of a received vector
consists of three steps:

Step 1. Compute the syndrome of r, r « H”.

Step 2. Locate the coset leader e, whose syndrome is equal to r - H”, Then e,
is assumed to be the error pattern caused by the channel.

Step 3. Decode the received vector r into the code vectorv=r + e,.

The decoding scheme described above is called the syndrome decoding or table-
lookup decoding. In principle, table-lookup decoding can be applied to any (n, k) linear
code. It results in minimum decoding delay and minimum error probability. However,
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for large n — k, the implementation of this decoding scheme becomes impractical,
and either a large storage or a complicated logic circuitry is needed. Several practical
decoding schemes which are variations of table-lookup decoding are discussed in
subsequent chapters. Each of these decoding schemes requires additional properties
in a code other than the linear structure.

Example 3.8
Consider the (7, 4) linear code given in Table 3.1. The parity-check matrix, as given in
Example 3.3, is

1 001011
H=|01 01110
0010111

The code has 23 = 8 cosets and, therefore, there are eight correctable error patterns
(including the all-zero vector). Since the minimum distance of the code is 3, it is capable
of correcting all the error patterns o” weight 1 or 0. Hence, all the 7-tuples of weight 1

or 0 can be used as coset leaders. There are ( (7) ) + ( Z ) = 8 such vectors. We see that,

for the (7, 4) linear code considered in this example, the number of correctable error
patterns guaranteed by the minimum distance is equal to the total number of correctable
error patterns. The correctable error patterns and their corresponding syndromes are
given in Table 3.2.

TABLE 3.2 DECODING TABLE FOR THE
(7, 4) LINEAR COD= GIVEN IN TABLE 3.1

Syndrome Coset leaders

a o0 o0 @ 000000
© 1 0) © 10000 0
O 01 @ 01 0 0 0 0
a1 0 © 00100 0
o1 n © 0001 00
a1 1 @O0 0 001 0O
ad 01 © 0 000 0D

Suppose that the code vector v=(1 001 0 1 1) is transmitted and r =
(100111 1)isreceived. For decoding r, we compute the syndrome of r,

1 0 07

s=(1 00111 1)

_0 = O O
i R = T
— e O e O

l

—~

(=)

[

—

~—r

10 1

From Table 3.2 we find that (0 1 1) is the syndrome of the coset leadere = (0 0 0 0
100). Thus, ©0 001 00)is assumed to be the error pattern caused by the
channel, and r is decoded into
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vE=r+e
=1 00111 H)4@O 00 01 0 0
=1 0 01 0 1 1),

which is the actual code vector transmitted. The decoding is correct since the error
pattern caused by the channel is a coset leader.

Now suppose that v =(0 0 0 0 0 0 0) is transmittedandr =(1 0 0 0 1 0 0)
is received. We see that two errors have occurred during the transmission of v. The
error pattern is not correctable and will cause a decoding error. When r is received,
the receiver computes the syndrome

s=r-HT=(1 1 1).

From the decoding table we find that the coset leader e =(0 000 0 1 0) cor-
responds to the syndrome s = (1 1 1). As a result, r is decoded into the code vector

vE=r-+e
=1 00 01 0 0+ 0 00 01 0
=1 0 0 0 1 1 0.

Since v* is not the actual code vector transmitted, a decoding error is committed.
Using Table 3.2, the code is capable of correcting any single error over a block
of seven digits. When two or more errors occur, a decoding error will be committed.

The table-lookup decoding of an (n, k) linear code may be implemented as
follows. The decoding table is regarded as the truth table of » switching functions:

eO = fO(SOs sh cv sn—k—1)7

ey = f1(Sas 81y v vy Sogo1)s

en—l :frrl(soa Sy eers sn—k—l)i

where s, §;,..., S,_x_; are the syndrome digits, which are regarded as switching
variables, and e, €4, . . ., e,_, are the estimated error digits. When these » switching
functions are derived and simplified, a combinational logic circuit with the n — k
syndrome digits as inputs and the estimated error digits as outputs can be realized.
The implementation of the syndrome ¢ircuit has been discussed in Section 3.2. The
general decoder for an (n, k) linear code based on the table-lookup scheme is shown
in Figure 3.8. The cost of this decoder depends primarily on the complexity of the
combinational logic circuit.

Example 3.9
Again, we consider the (7, 4) code given in Table 3.1. The syndrome circuit for this code
is shown in Figure 3.5. The decoding table is given by Table 3.2. From this table we
form the truth table (Table 3.3). The switching expressions for the seven error digits are

eo = soAs’ Ash, e; = sy AsiAsh,
e; = shAs| As,, e; = soAs; Ash,
es = shAsiAsy, es = soAs; Asa,

€ = SoAS’l ASz,
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r > Received vector
buffer register r

ry r s o0

! ! 3

Syndrome calculation circuit

So Sy Sp-k 1

Error-pattern-detecting circuit
(a combinational logic circuit)

Vg vy

T
Corrected output

Figure 3.8 General decoder for a linear block code.
TABLE 3.3 TRUTH TABLE FOR THE ERROR DIGITS OF THE

CORRECTABLE ERROR PATTERNS OF THE (7, 4) LINEAR CODE
GIVEN [N TABLE 3.1

Syndromes Correctable error patterns (coset leaders)
S0 51 52 €o €1 €z €3 €4 és €g
0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0
1 1 0 0 0 0 1 0 0 0
0 1 1 0 0 0 0 1 0 0
1 1 1 0 0 0 0 0 1 0
1 0 1 0 0 0 0 0 0 1

where A denotes the logic-AND operation and s’ denotes the logic-COMPLEMENT
of s. These seven switching expressions can be realized by seven 3-input AND gates.
The complete circuit of the decoder is shown in Figure 3.9.
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Received
vector

o » 71 1 72 1 73 1 74 o 75 1 T
@ +
So 51 52
fo J) l
I e 23 ey e, es €6
ro rl ra r3 ra '5 43

Corrected output

Figure 3.9 Decoding circuit for the (7, 4) code given in Table 3.1.

3.6 PROBABILITY OF AN UNDETECTED ERROR
FOR LINEAR CODES OVER A BSC

If an (n, k) linear code is used only for error detection over a BSC, the probability of
an undetected error, P,(E), can be computed from (3.19) if the weight distribution of
the code is known. There exists an interesting relationship between the weight distribu-
tion of a linear code and the weight distribution of its dual code. This relationship
often makes the computation of P,(E) much easier. Let {4,, 4,, ..., 4,} be the weight
distribution of an (n, k) linear code C and let {B,, B,, . . ., B,} be the weight distribu-
tion of its dual code C,. Now we represent these two weight distributions in polynomial

form as follows:
A=A, + Az + --- + A,2°,

(3.31)
B(z)=B,+B,z+ --- + B,z"
Then A(z) and B(z) are related by the following identity:
1—=z
— N-(n-k) n
A(2) = 27%P(1 + z) B(l E Z). (3.32)
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This identity is known as the MacWilliams identity [5]. The polynomials A(z) and
B(z) are called the weight enumerators for the (n, k) linear code C and its dual C,.
From the MacWilliams identity, we see that if the weight distribution of the dual of
a linear code is known, the weight distribution of the code itself can be determined.
As a result, this gives us more flexibility of computing the weight distribution of a
linear code.

Using the MacWilliams identity, we can compute the probability of an un-
detected error for an (n, k) linear code from the weight distribution of its dual. First,
we put the expression of (3.19) into the following form:

P(E) = 3 4p'(1 — py~*
= (1 —pr R4t ip)‘.

Substituting z = p/(1 — p) in A(z) of (3.31) and using the fact that 4, = 1, we obtain
the following identity:

(3.33)

Ar) -1 - £l 630

Combining (3.33) and (3.34), we have the following expression for the probability of
an undetected error:

PAE) = (1 — p)"[A(]——i—l—)) _ 1]. (3.35)

From (3.35) and the MacWilliams identity of (3.32), we finally obtain the following
expression for P,(E):

P(E)=2"""B(1 —2p)— (1 —p), (3.36)
where

B(1 — 2p) = gB,.(l — 2p).

Hence, there are two ways for computing the probability of an undetected error for
a linear code; often one is easier than the other. If n — k is smaller than k, it is much
easier to compute P,(E) from (3.36); otherwise, it is easier to use (3.35).

Example 3.10
Consider the (7, 4) linear code given in Table 3.1. The dual of this code is generated by
its parity-check matrix,

1 001011
H={01 01110
201 01 11
(see Example 3.3). Taking the linear combinations of the rows of H, we obtain the

following eight vectors in the dual code:

© 0 00 0 0 0), a100101,
1 o001 01 D, @ 0111 0 0,
© 1 0111 0, © 11100,
© 01 011 1, a 11001 0.
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Thus, the weight enumerator for the dual code is B(z) = 1 -+ 7z¢. Using (3.36), we
obtain the probability of an undetected error for the (7, 4) linear code given in Table
3.1,

P(E) =271 +7(1 — 2p)y*] — (1 — p)".

This probability was also computed in Section 3.4 using the weight distribution of the
code itself.

Theoretically, we can compute the weight distribution of an (n, k) linear code
by examining its 2* code words or by examining the 2* % code words of its dual and
then applying the MacWilliams identity. However, for large n, k, and n — k, the
computation becomes practically impossible. Except for some short linear codes and
a few small classes of linear codes, the weight distributions for many known linear
codes are still unknown. Consequently, it is very difficult, if not impossible, to compute
their probability of an undetected error.

Although it is difficult to compute the probability of an undetected error for a

specific (n, k) linear code for large n and k, it is quite easy to derive an upper bound
on the average probability of an undetected error for the ensemble of all (n, k) linear
systematic codes. As we have shown earlier, an (n, k) linear systematic code is com-
pletely specified by a matrix G of the form given by (3.4). The submatrix P consists of
k(n — k) entries. Since each entry p,; can be either a 0 or a 1, there are 2% distinct
matrices G’s of the form given by (3.4). Let I denote the ensemble of codes generated
by these 2¥™~% matrices. Suppose that we choose a code randomly from I' and use it
for error detection. Let C; be the chosen code. Then the probability of C, being chosen
is

P(C)) = 27Fn-P, (3.37)
Let A, denote the number of code words in C; with weight i. It follows from (3.19)
that probability of an undetected error for C; is given by

P(E] Cj) = ; Ajipi(] —pyi (3.38)
The average probability of an undetected error for a linear code in I is defined as
Ir|
P,(E) = 3. P(C)PLEIC), (3.39)
=

where | I'| denotes the number of codes in I'. Substituting (3.37) and (3.38) into (3.39),
we obtain
n fr|
P,(E) = 2740 3 pi(1 — py=t 5 Ay, (3.40)
i=1 j=1

A nonzero n-tuple is either contained in exactly 2% ~1V@~% codes in I" or contained in

none of the codes (left as a problem). Since there are ( :1 ) n-tuples of weight 7, we have

EIA,.,. <(7 )2<k-“<n-k>. (3.41)
z

Substituting (3.41) into (3.40), we obtain the following upper bound on the average
probability of an undetected error for an (n, k) linear systematic code:
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Rz 20 5 (7)ot -

= 2791 — (1 — py].
Since [1 — (1 — p)"] < 1, it is clear that P,(E) < 27" %),

The result above says that there exist (n, k) linear codes with probability of an
undetected error, P,(E), upper bounded by 2-*~®_ In other words, there exist (n, k)
linear codes with P(E) decreasing exponentially with the number of parity-check digits,
n — k. Even for moderate n — k, these codes have a very small probability of an
undetected error. For example, let n — k == 30. There exist (n, k) linear codes for
which P,(E) is upper bounded by 2739 = 10~°. Many classes of linear codes have been
constructed for the past three decades. However, only a few small classes of linear
codes have been proved to have P,(E) satisfying the upper bound 2°""%_ It is stiil
not known whether the other known linear codes satisfy this upper bound. A class of
linear codes that satisfies this upper bound is presented in the next section. Other
codes with probability of an undetected error decreasing exponentially with n — k
are presented in subsequent chapters.

(3.42)

3.7 HAMMING CODES

Hamming codes are the first class of linear codes devised for error correction [6].
These codes and their variations have been widely used for error control in digital
communication and data storage systems.

For any positive integer m > 3, there exists a Hamming code with the following
parameters:

Code length: n=2m—1
Number of information symbols: k=27 —m — 1
Number of parity-check symbols: n — k=m
Error-correcting capability : t = 1(dp = 3).

The parity-check matrix H of this code consists of all the nonzero m-tuples as its
columns. In systematic form, the columns of H are arranged in tke following form:

H=[I, Ql,

where I, is an m X m identity matrix and the submatrix Q consists of 2" —m — 1
columns which are the m-tuples of weight 2 or more. For example, let m = 3. The
parity-check matrix of a Hamming code of length 7 can be put in the form

1 001011
H=|0 1 01 1 1 0}
0210111
which is the parity-check matrix of the (7, 4) linear code given in Table 3.1 (see

Example 3.3). Hence, the code given in Table 3.1 is a Hamming code. The columns of
Q may be arranged in any order witaout affecting the distance property and weight
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distribution of the code. In systematic form, the generator matrix of the code is

G=[Q" I,
where Q7 is the transpose of Q and I,n_,,_;isan Q" —m —1) X 2" —m — 1)
identity matrix.
Since the columns of H are nonzero and distinct, no two columns add to zero.
It follows from Corollary 3.2.1 that the minimum distance of a Hamming code is at
least 3. Since H consists of all the nonzero m-tuples as its columns, the vector sum of
any two columns, say h, and h,, must also be a column in H, say h,. Thus,

h,+h, +h —0.

It follows from Corollary 3.2.2 that the minimum distance of a Hamming code is
exactly 3. Hence, the code is capable of correcting all the error patterns with a single
error or of detecting all the error patterns of two or fewer errors.

If we form the standard array for the Hamming code of length 2™ — 1, all the
(2™ — 1)-tuples of weight 1 can be used as coset leaders (Theorem 3.5). The number
of (2™ — I)-tuples of weight 1 is 2 — 1. Since » — k = m, the code has 2™ cosets.
Thus, the zero vector 0 and the (2* — 1)-tuples of weight 1 form all the coset leaders
of the standard array. This says that a Hamming code corrects only the error patterns
of single error and no others. This is a very interesting structure. A f-error-correcting
code is called a perfect code if its standard array has all the error patterns of ¢ or fewer
errors and no others as coset leaders. Thus, Hamming codes form a class of single-
error-correcting perfect codes. Perfect codes are rare [3]. Besides the Hamming codes,
the only other nontrivial binary perfect code is the (23, 12) Golay code (see Section
5.3).

Decoding of Hamming codes can be accomplished easily with the table-lookup
scheme described in Section 3.5. The decoder for a Hamming code of length 2™ — 1
can be implemented in the same manner as that for the (7,4 ) Hamming code given in
Example 3.9.

We may delete any / columns from the parity-check matrix H of a Hamming
code. This deletion results in an m X (2 — [ — 1) matrix H’. Using H’ as a parity-
check matrix, we obtain a shortened Hamming code with the following parameters:

Code length: n=2"-]-—1
Number of information symbols: k=2"—m—1—1
Number of parity-check symbols: 7 — k=m
Minimum distance: dai > 3.

If we delete columns from H properly, we may obtain a shortened Hamming code
with minimum distance 4. For example, if we delete from the submatrix Q all the
columns of even weight, we obtain an m X 27! matrix

H =[, QI
where Q' consists of 27~! — m columns of odd weight. Since all the columns of H’

have odd weight, no three columns add to zero. However, for a column h, of weight
3in Q’, there exists three columns h,, h;, and h, in I, such that h, + h;, + h; 4+ h, = 0.
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Thus, the shortened Hamming code with H’ as a parity-check matrix has minimum
distance exactly 4.

The distance 4 shortened Hamming code can be used for correcting all error
patterns of single error and simultaneously detecting all error patterns of double
errors. When a single error occurs during the transmission of a code vector, the
resultant syndrome is nonzero and it contains an odd number of 1’s. However, when
double errors occur, the syndrome is also nonzero, but it contains even number of
1’s. Based on these facts, decoding can be accomplished in the following manner:

1. If the syndrome s is zero, we assume that no error occurred.

2. If s is nonzero and it contains odd number of 1’s, we assume that a single error
occurred. The error pattern of a single error that corresponds to s is added to
the received vector for error correction,

3. If sis nonzero and it contains even number of 1’s, an uncorrectable error pattern
has been detected.

A class of single-error-correcting and double-error-detecting shortened Ham-
ming codes which is widely used for error control in computer main/or control storages
is presented in Chapter 16.

The weight distribution of a Hamming code of length » = 2™ — 1 is known
[1-4]. The number of code vectors of weight i, A4,, is simply the coefficient of z* in the
expansion of the following polynomial:

AG) = (L + 27 n(l = (L — 22Yebn) (3.43)

This polynomial is the weight enumerator for the Hamming codes.

Example 3.11
Let m = 3. Then n = 23 — 1 = 7 and the weight enumerator for the (7, 4) Hamming
code is
A=A + 27 + 701 —2)(1 — 233} =1 + 723 + Tz¢ + 27,

Hence, the weight distribution for the (7, 4) Hamming code is 4 = 1, 4; = 4, =7,
and 4, = 1.

The dual code of a (2™ — 1,2™ — m — 1) Hamming code is a (2™ — 1, m) linear code.
This code has a very simple weight distribution; it consists of the all-zero code word
and 2™ — 1 code words of weight 27!, Thus, its weight enumerator is

B() =1+ (" — 1)z2™", (3.44)

The duals of Hamming codes are discussed further in Chapter 7.

If a Hamming code is used for error detection over a BSC, its probability of an
undetected error, P(E), can be computed either from (3.35) and (3.43) or from (3.36)
and (3.44). Computing P,(E) from (3.36) and (3.44) is easier. Combining (3.36) and
(3.44), we obtain

PAE)=2"{14 (@2~ — D1 —2p)" "} — (1 — py*"~1. (3.49)
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The probability P,(F) for Hamming codes does satisfy the upper bound 2-¢® =
2-m for p < ) [i.e., P,(E) << 27"] [7]. This can be shown by using the expression of
(3.45) (see Problem 3.21).

PROBLEMS

< 3.1, Consider a systematic (8, 4) code whose parity-check equations are

r3.2.

»

34

35

3.6

3.7

82

»
w

vo = Uy + Uy + us,

vy = Uy + Uy + Uy,

vy = Uy + Uy + Uz,

vy = Ug + uy + us.
where uq, uy, u,, and u, are message digits and v,, v, v,, and v; are parity-check digits.
Find the generator and parity-check matrices for this code. Show analytically that the
minimum distance of this code is 4.
Construct an encoder for the code given in Problem 3.1.
Construct a syndrome circuit for the code given in Problem 3.1.
Let H be the parity-check matrix of an (r, k) linear code C that has both odd- and even-

weight code vectors. Construct a new linear code C; with the following parity-check
matrix:

0
0

t
{
f

H; = .

0

1

(Note that the last row of H; consists of all 1’s)

(a) Show that C; is an (n + 1, k) linear code. C, is called an extension of C.

(b) Show that every code vector of C; has even weight.

(¢) Show that C; can be obtained from C by adding an extra parity-check digit, denoted
v.., to the left of each code vector v as follows: (1) if v has odd weight, then v, = 1,
and (2) if v has even weight, then v, = 0. The parity-check digit v.. is called an
overall parity-check digit.

Let C be a linear code with both even-weight and odd-weight code vectors. Show that

the number of even-weight code vectors is equal to the number of odd-weight code

vectors.

Consider an (n, k) linear code C whose generator matrix G contains no zero column.

Arrange all the code vectors of C as rows of a 2%-by-n array.

(a) Show that no column of the array contains only zeros.

(b) Show that each column of the array consists of 2¥~1 zeros and 2¥~! ones.

(c) Show that the set of all code vectors with zeros in a particular component forms
a subspace of C. What is the dimension of this subspace?

Prove that the Hamming distance satisfies the triangle inequality; that is, let x, y, and

z be three n-tuples over GF(2), and show that

dix,y) +d(y, z) = d(x, z).
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3.8. Prove that a linear code is capable of correcting A or fewer errors and simultaneously
detecting /(I > A) or fewer errors if its minimum distance dyja > A + 1 + 1.
Determine the weight distribution o the (8, 4) linear code given in Problem 3.1. Let the
transition probability of a BSC be p = 10-2. Compute the probability of an undetected
error of this code.

3.10. Since the (8, 4) linear code given in Problem 3.1 has minimum distance 4, it is capable
of correcting all the single-error patterns and simultaneously detecting any combination
of double errors. Construct a decoder for this code. The decoder must be capable of
correcting any single error and detecting any double errors.

3.11. Let I" be the ensemble of all the binary systematic (, k) linear codes. Prove that a
nonzero binary n-tuple v is either contained in exactly 2%-1-k) codes in I" or contained
in none of the codes in I".

3.12. The (8, 4) linear code given in Problem 3.1 is capable of correcting 16 error patterns
(the coset leaders of a standard array). Suppose that this code is used for a BSC. Devise
a decoder for this code based on the table-lookup decoding scheme. The decoder is
designed to correct the 16 most probable error patterns.

3.13. Let Cy be an (ny, k) linear systematic code with minimum distance d; and generator
matrix G; =[Py I]. Let C, be an (n,, k) linear systematic code with minimum
distance d, and generator matrix G, = [P, I;]. Consider an (n; + n,, k) linear code
with the following parity-check matrix:

39

B

Show that this code has minimum distance at least d; + d,.
Show that the dual code of the (8, 4) linear code C given in Problem 3.1 is identical to
C. C is said to be self-dual.

3.15. Form a parity-check matrix for a (15, 11) Hamming code. Devise a decoder for this
code.

3.16. For any binary (n, k) linear code with minimum distance (or minimum weight)
2t+ 1 or greater, show that the number of parity-check digits satisfies the follow-

ing inequality:
n—k=log [t +(1)+(5)++(1)]

The inequality above gives an upper bound on the random error-correcting capability
t of an (n, k) linear code. This bound is known as the Hamming bound [5]. [Hint: For
an (n, k) linear code with minimum distance 2¢ 4 1 or greater, all the n-tuples of weight
t or less can be used as coset leaders in a standard array.]

3.17. Show that the Hamming codes achieve the Hamming bound.

3.18. Show that the minimum distance dn;, of an (n, k) linear code satisfies the following
inequality:

3.14

dmin < gk'z—i;
(Hint: Use the result of Problem 3.5(b). The bound above is known as the Plotkin bound
[1-31)
3.19. Show that there exists an (n, k) linear code with minimum distance at least d if

dil ( '.') < ok,

=1\ 1
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[Hint: Use the result of Problem 3.11 and the fact that the nonzero n-tuples of weight
d — 1 or less can be at most in

{ig ('lz)} o 2= 1)n=k)

(n, k) systematic linear codes.]

3.20. Show that there exists an (n, k) linear code with minimum distance at least d.;, which

3

3

satisfies the following inequality:
dmin—1 dunin
£ (1) <<Z(1)
i=1 i =1\ 1
(Hint: See Problem 3.19. The second inequality provides a lower bound on the minimum
distance attainable with an (n, k) linear code. This bound is known as Varsharmov-
Gilbert bound [1-3].)

.21. Show that the probability of an undetected error for Hamming codes on a BSC with
transition probability p satisfies the upper bound 2~ for p <C 1. [Hint: Use the inequal-
ity(1 —2p) < (1 —p)2]

.22. Compute the probability of an undetected error for a (15, 11) Hamming code on a
BSC with transition probability p = 102,
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