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Abstract

In vivo gene transduction with adeno-associated virus (AAV)-based vectors depends on laborious procedures for
the production of high-titer vector stocks. Purification steps for efficient clearance of impurities such as host cell
proteins and empty vector particles are required to meet end-product specifications. Therefore, the development
of alternative, realistic methods to facilitate a scalable virus recovery procedure is critical to promote in vivo
investigations. However, the conventional purification procedure with resin-based packed-bed chromatography
suffers from a number of limitations, including variations in pressure, slow pore diffusion, and large bed volumes.
Here we have employed disposable high-performance anion- and cation-exchange membrane adsorbers to ef-
fectively purify recombinant viruses. As a result of isoelectric focusing analysis, the isoelectric point of empty
particles was found to be significantly higher than that of packaged virions. Therefore, AAV vector purification
with the membrane adsorbers was successful and allowed higher levels of gene transfer in vivo without re-
markable signs of toxicity or inflammation. Electron microscopy of the AAV vector stocks obtained revealed
highly purified virions with as few as 0.8% empty particles. Furthermore, the membrane adsorbers enabled
recovery of AAV vectors in the transduced culture supernatant. Also, the ion-exchange enrichment of retroviral
vectors bearing the amphotropic envelope was successful. This rapid and scalable viral purification protocol using
disposable membrane adsorbers is particularly promising for in vivo experimentation and clinical investigations.

Introduction

Adeno-associated virus (AAV) and retroviral vectors
are commonly used for gene transduction experiments.

With the increasing utility of recombinant AAV (rAAV) or
retrovirus as a gene therapy vector, routine production and
purification of large amounts of highly purified vector parti-
cles for preclinical studies are prerequisite to future clinical
investigations. However, the production and purification of
recombinant virus stocks by current techniques entail cum-
bersome procedures not suited to the clinical setting.

In most situations, large-scale propagation of recombinant
AAV uses transduction of HEK-293 cells and follows a
streamlined concept of cell harvest, purification through
CsCl density centrifugation, and concentration of the viral
particle fraction. Conventionally, rAAV particles have been
purified by rounds of isopycnic banding in CsCl density
gradients (Merten et al., 2005). This method of purification is

inconvenient because the development of the linear gradient
takes greater than 24 hr per round in a standard ultracen-
trifuge. Consequently, the method of purification based on
rounds of CsCl density centrifugation is not scalable and
yields product of insufficient purity and transduction po-
tency (Gao et al., 2000). Therefore, an alternative scalable
purification procedure that is able to clear impurities in-
cluding host cell proteins and empty particles is needed to
meet end-product specifications.

Defined serum-free conditions have great conceptual ad-
vantages for biological safety and standardization of the
production of clinical gene transfer vectors (Glimm et al.,
1998). Although a conventional protocol to concentrate the
retroviral vector can provide a high-titer stock (Tamura et al.,
2001), accomplishment of the serum-free conditions has not
yet been established. In addition, unlike the pseudotyped ret-
roviral vectors bearing the vesicular stomatitis virus glycopro-
tein G (VSV-G), retroviral vectors bearing the amphotropic

1Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
187-8502.

2Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan 329-0498.

HUMAN GENE THERAPY 20:1013–1021 (September 2009)
ª Mary Ann Liebert, Inc.
DOI: 10.1089=hum.2009.006

1013

D
ow

nl
oa

de
d 

by
 U

C
L

A
 D

IG
IT

A
L

 C
O

L
L

 S
V

C
S 

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 1

2/
05

/2
4.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 

Sarepta Exhibit 1049, page 1



envelope protein cannot withstand the shearing forces im-
posed by ultracentrifugation. Efficient transduction with
a high-titer serum-free vector stock can be realized only
by using chromatographic approaches, making the virus-
based vectors ideally suited for applications in clinical gene
therapy.

Chromatography is widely used in the downstream pu-
rification steps of vector production (Sommer et al., 2003).
However, the resin-based, packed-bed chromatography
suffers from a number of limitations in practice. These are
associated with pressure drops across the bed, slow pore
diffusion, long cycle times, and difficulties in scaling up
purification procedures (Knudsen et al., 2001). In this study,
we have sought to develop an effective and convenient al-
ternative for the removal of empty viral particles and
enrichment of viral vector particles. We have adapted dual
ion-exchange membrane chromatography to eliminate empty
particles from cleared lysates containing recombinant viru-
ses, using disposable ion-exchange membrane adsorbers.
Although a previous report suggested the utility of the
membrane-based technology in small-scale work (Duffy et al.,
2005), scalable production as well as high-grade purification
for in vivo experimentation were not distinctly demonstrated.
In combination with our large-scale transduction technique
using active gassing (Okada et al., 2005), we now have at
hand a simple and highly efficient system to produce puri-
fied vector stocks. Furthermore, the membrane adsorbers
enable effective recovery of the AAV vector in the superna-
tant of the transduced cell culture. Here, we present a high-
throughput method for scalable purification of recombinant
AAV or retrovirus, using disposable membrane adsorbers to
establish a labor- and cost-effective purification system.

Materials and Methods

Cell culture

Propagation of vectors was based on transfection of human
embryonic kidney-derived 293 (HEK-293) cells using a 10-tray
cell factory (CF10; Nalge Nunc International, Rochester,
NY) with a surface area of 6320 cm2 associated with an active
gassing system, as described previously (Okada et al., 2005).
Briefly, cells were cultured in Dulbecco’s modified Eagle’s
medium and nutrient mixture F-12 (D-MEM=F-12; Invitrogen,
Grand Island, NY) with 10% fetal bovine serum (Sigma-
Aldrich, St. Louis, MO), penicillin (100 units=ml), and strep-
tomycin (100mg=ml) at 378C in a 5% CO2 incubator. First, cells
were plated at 6.5�107 cells per CF10 to achieve a monolayer
of 20 to 40% confluency when cells initially attached to surface
of the flask. The volume of medium used per flask was
1120 ml. Subsequently, cells were grown for 48–72 hr until
reaching 70–90% confluence and were then transfected with
appropriate plasmids. An aquarium pump (Nisso, Tokyo,
Japan) was used to circulate the air through the CF10 with 5%
CO2 with humidity in an incubator.

Canine skeletal myoblasts were isolated from a neonatal
Beagle dog. Two grams of hind limb muscle was minced and
dissociated with intermittent trituration to make a fine slur-
ry. The mixture was filtrated with a BD Falcon cell strainer
(100 mm; BD Biosciences, San Jose, CA) and was collected
by centrifugation at 800�g for 5 min. The cell pellet was
resuspended with F-10 medium (Invitrogen) with 20% fetal
calf serum (Sigma-Aldrich) and cultured on a collagen

I-coated dish at 378C in a 5% CO2 incubator. Three rounds of
preplating were applied to diminish fibroblasts.

Construction and propagation of AAV vectors

A proviral plasmid harboring the EGFP gene (pAAV-
EGFP) under the control of the CAG promoter, a modified
chicken b-actin promoter with cytomegalovirus immediate-
early (CMV-IE) enhancer, has been described previously
(Okada et al., 2005). The rat interleukin (IL)-10 cDNA frag-
ment was inserted into the EcoRI site of p3.3CAG-WPRE,
which contains the CAG promoter and woodchuck post-
transcriptional regulatory element (WPRE). The entire ex-
pression cassette was inserted between the AAV2-derived
inverted terminal repeats (ITRs) in a pUC-based proviral
plasmid, pAAVLacZ, to obtain pAAV1-IL-10.

Half the medium in the CF10 tissue culture flask was ex-
changed with fresh D-MEM=F-12 containing 10% fetal bo-
vine serum (FBS), 1 hr before transfection of HEK-293 cells.
Subsequently, the cells were cotransfected with 650 mg of
each plasmid: proviral vector plasmid pAAV-EGFP, AAV-1
chimeric helper plasmid or AAV-8 chimeric helper plasmid,
as well as adenoviral helper plasmid pAdeno, using calcium
phosphate coprecipitation. Each plasmid was added to
112 ml of 300 mM CaCl2. This solution was gently added to
the same volume of 2�HBS (290 mM NaCl, 50 mM HEPES
buffer, 1.5 mM Na2HPO4; pH 7.0) and gently inverted three
times to form a uniform solution. This solution was imme-
diately mixed with fresh D-MEM=F-12 containing 10% FBS
to produce a homogeneous plasmid solution mixture. Sub-
sequently, the medium in the culture flask was replaced with
this plasmid solution mixture. At the end of a 6-hr incuba-
tion, the plasmid solution mixture in the culture flask was
replaced with prewarmed fresh D-MEM=F-12 containing 2%
FBS. Cell suspensions were collected 72 hr after transfection
and centrifuged at 300�g for 10 min. Cell pellets were re-
suspended in 30 ml of Tris-buffered saline (TBS: 100 mM
Tris-HCl [pH 8.0], 150 mM NaCl). Recombinant AAV was
harvested by five cycles of freeze–thawing of the re-
suspended pellet. The crude viral lysate was initially con-
centrated by a brief two-tier CsCl gradient centrifugation for
3 hr (Okada et al., 2002) and then the vector fraction was
dialyzed in MHA buffer (3.3 mM morpholinoethanesulfonic
acid [MES], 3.3 mM HEPES [pH 6.5, 7.0, 7.5, or 8.0], 3.3 mM
sodium acetate).

In parallel with processing the cell pellets, the culture su-
pernatant sample was also processed for the dual ion-exchange
procedure by centrifugation and filtration. The culture super-
natant fluid, 72 hr after transduction, was sampled and clari-
fied with an appropriate amount of activated charcoal (Wako
Pure Chemical Industries, Osaka, Japan). Insoluble debris was
removed by centrifugation at 3000�g for 15 min and filtration.
The elucidated culture supernatant was desalted as well as
enriched with a hollow fiber cross-flow membrane (100,000
nominal molecular weight cutoff [NMWC]; GE Healthcare,
Piscataway, NJ). The sample was concentrated by a brief two-
tier CsCl gradient centrifugation for 3 hr and then the vector
fraction was dialyzed in MHA buffer.

Construction and propagation of retroviral vectors

Luciferase cDNA was cloned from the pGL3-Basic vector
(Promega, Madison, WI), and inserted into pGCDNsap
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(Suzuki et al., 2002) to obtain pDNLuc. To generate a retro-
viral vector bearing the amphotropic envelope protein or a
VSV-G-pseudotyped retroviral vector on a large scale, HEK-
293 cells were transduced with 650 mg of pDNLuc, 325mg of
pGag-pol (Ory et al., 1996), and 325 mg of pEnv (Okada et al.,
2004) or pVSV-G (Ory et al., 1996) in the CF10 culture flask.
Culture supernatant was collected 48 hr after transduction
and centrifuged at 300�g for 3 min to remove cell debris. To
enrich the recombinant retrovirus, vector-containing super-
natant was centrifuged at 50,000�g for 2 hr or at 6,000�g for
16 hr at 48C. Alternatively, the vector was concentrated and
purified by ion-exchange chromatography.

Dual ion-exchange chromatography

Chromatography was performed with an ÄKTAexplorer
10S fast protein liquid chromatography (FPLC) system (GE
Healthcare Life Sciences) equipped with a 50-ml Superloop
(GE Healthcare Life Sciences). A dialyzed vector-containing
fraction was loaded onto a cation-exchange membrane with
a column volume of 0.18 ml (Acrodisc unit with Mustang S
membrane; Pall, East Hills, NY) equilibrated with MHA
buffer. After loading at a rate of 3 ml=min, the membrane
was washed with 10 column volumes of MHA buffer. Bound
samples on the Mustang S membrane was eluted over a 50-
column volume span with a 0–2 M linear NaCl gradient in
MHA buffer and 1-ml fractions were collected. The eluted
sample from the Mustang S membrane was concentrated
with a Macrosep 100K Omega filter (Pall) and used for
electron microscopic assessment.

The flow-through sample that passed through the Mus-
tang S membrane was diluted with 10 volumes of MHA
buffer and further loaded at a rate of 3 ml=min onto an
anion-exchange membrane with a bed volume of 0.18 ml
(Acrodisc unit with Mustang Q membrane; Pall) equilibrated
with MHA buffer. The membrane was then washed with 10
column volumes of MHA buffer. Bound virus on the Mus-
tang Q membrane was eluted over a 50-column volume span
with a 0–2 M linear NaCl gradient in MHA buffer and 1-ml
fractions were collected. Recombinant rAAV particle number
was determined by quantitative polymerase chain reaction
(Q-PCR) of DNase I-treated stocks with plasmid standards.

Sodium dodecyl sulfate–polyacrylamide
gel electrophoresis and staining

A peak vector-containing fraction from the anion-
exchange membrane (typically fraction 3) was desalted with
a Macrosep 100K Omega filter and separated in 0.9-mm-
thick 4–20% gradient polyacrylamide gels (Daiichi Pure
Chemicals, Tokyo, Japan) with a sodium dodecyl sulfate
(SDS) running buffer. Negative staining of the gel was
performed with a Snow White kit (Mo Bi Tec, Göttingen,
Germany) as per the manufacturer’s instructions. Purity of
viral band (VP1, VP2, and VP3) was analyzed with NIH
Image (version 1.63) software.

Electron microscopy

Samples (10 ml) were spotted onto a carbon-stabilized
copper specimen grid and incubated for 1 min. Excess sam-
ple was removed with a small piece of filter paper. The
samples were then negatively stained for 1 min with 1%

uranyl acetate solution. After removal of excess uranyl ace-
tate, the air-dried grids were viewed with a JEM 2000EX
transmission electron microscope ( JEOL, Tokyo, Japan) at an
accelerating voltage of 100 kV.

Isoelectric focusing

Isoelectric focusing (IEF) is an electrophoresis molecular
diagnostic operation that separates protein in a pH gradient
according to their isoelectric points (pI). Samples containing
empty particles as well as fully packaged virions certified by
electron microscopy were desalted with Amicon-30 (Milli-
pore, Billerica, MA), and evaluated by IEF. Small-format
Novex pH 3–10 IEF gels (EC6655A; Invitrogen, Carlsbad,
CA) were used in a Novex XCell SureLock mini-cell (In-
vitrogen) to separate samples and Serva IEF protein mark-
ers 3–10 (39212-01; Invitrogen) as per the manufacturer’s
instructions.

Transduction experiments

To confirm transgene expression by the propagated vector
in vivo, 3-week-old male Wistar rats were injected via the
anterior tibial muscle with either CsCl-purified vectors
(control, n¼ 12) or ion-exchange membrane-purified AAV1-
IL-10 (CsClþMustang S=Q [MtgS=Q], n¼ 8) at 6�1010 ge-
nome copies per animal. Eight weeks after injection, serum
IL-10 concentration was estimated by enzyme-linked im-
munosorbent assay (ELISA) (GE Healthcare Life Sciences;
R&D Systems, Minneapolis, MN). Histological analysis of
the muscle injection site was performed to examine the tissue
for signs of toxicity or inflammation. To analyze the indica-
tion in muscle, which is susceptible to virus-mediated in-
flammation, we used mdx mice, a mouse model of Duchenne
muscular dystrophy (DMD). Dystrophic muscles injected
with the AAV vector reveal drastic immune response, which
might be associated with the dystrophin-deficient sarco-
lemma of muscle fibers (Yuasa et al., 2002). To avoid the
effect of transgene, viruses were inactivated by ultraviolet
irradiation for 30 min before injection. Male mdx mice were
injected with either PBS, CsCl-purified particles, or ion-
exchange membrane-purified particles of AAV1-IL-10 at
1�1011 genome copies per animal via the tibialis anterior
muscle at 2 weeks old (n¼ 2, each), when the pathology is
indistinct. Two weeks after injection, the mice were killed
and muscle samples were stained with hematoxylin and
eosin (H&E) to analyze the pathology.

Canine myoblasts were transduced with rAAV-EGFP at
1�105 or 3�105 genome copies per cell to observe transgene
expression under a fluorescence microscope (IX-70; Olym-
pus, Tokyo, Japan) 3 days after infection. U251MG human
glioma cells were transduced with luciferase-expressing re-
combinant retroviruses to evaluate the effect of the various
purification procedures. At 96 hr after transduction, lucifer-
ase expression in the cells was analyzed with the Bright-Glo
luciferase assay system (Promega).

Results

Effect of pH on rAAV recovery

The ion-exchange procedure as a downstream purification
was compatible with the initial CsCl density centrifugation
when vector-containing fractions were desalted by dialysis.

SCALABLE VECTOR PURIFICATION BY ION-EXCHANGE MEMBRANES 1015
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rAAV type 1 (rAAV-1) was successfully recovered by ion-
exchange chromatography and pH was an effective parameter
to control viral particle affinity for the membrane (Table 1).
Optimal recovery of vector genomes by the cation-exchange
procedure was achieved at pH 6.5, whereas favorable recovery
by the anion-exchange procedure was observed at pH 7.5–8.0.

Characterization of rAAV purified by dual
ion-exchange chromatography

rAAV-1-containing samples collected by a quick two-tier
CsCl gradient centrifugation were dialyzed and applied to a
cation-exchange membrane, to capture the impurities includ-
ing particles. Figure 1a demonstrates the chromatogram of
the cation-exchange procedure. Subsequently, the unbound
flow-through sample in the cation-exchange procedure was

applied to an anion-exchange membrane. The chromatogram
in Fig. 1b demonstrates the resolution and dynamic binding
capacity of the anion-exchange membrane. The eluted sam-
ples were desalted and concentrated by ultrafiltration. Elution
profiles of the samples were stably maintained over the re-
peated purification procedures, although the fraction number
of the vector-containing sample can be altered when the elu-
tion speed or gradient conditions are modified.

Electron microscopic analysis of the samples collected from
the two-tier CsCl centrifugation revealed virions with more
than 6% empty particles (Fig. 2a; 91 empty particles out of
1350 virion particles, 6.7%). Interestingly, analysis of the
sample eluted from the cation-exchange membrane revealed
that the vast majority of the sample was empty particles
(Fig. 2b; 694 of 713 particles, 97.3%). On the other hand, the un-
bound flow-through sample in the cation-exchange procedure

Table 1. Effect of pH on Recombinant Adeno-associated Virus Serotype 1 Recovery,

Using Ion-Exchange Membranes

Mustang S (cation exchange) Mustang Q (anion exchange)

pH
Particles loaded

(�1011 GC)
Particles recovered

(�1011 GC)
Recovery
rate (%)

Particles recovereda

(�1011 GC)
Recovery
rate (%)

6.5 35 18 52 8.7 25
7.0 31 5.2 17 13 42
7.5 34 3.4 10 31 90
8.0 39 5 13 34 86

Abbreviation: GC, genome copies.
aParticles in the flow-through sample from the cation-exchange procedure were bound and eluted during anion exchange.

FIG. 1. Elution profile of rAAV-1, using the dual ion-exchange method. (a) Virus-containing dialyzed samples of rAAV-1
enriched by CsCl density centrifugation were pumped through a cation-exchange membrane and analyzed. (b) Subsequently,
the flow-through sample was pumped through an anion-exchange membrane. The graph demonstrates the resolution and
binding capacity of the 25-mm Acrodisc unit with an ion-exchange membrane at pH 8.0. The chromatography conditions
were as follows: loading and wash buffer, 3.3 mM MES, 3.3 mM HEPES, 3.3 mM sodium acetate; elution buffer, 0 to 2 M NaCl
gradient in loading buffer in 50 column volumes; and flow rate, 3 ml=min. Red line, OD260 (mAU); blue line, OD280 (mAU);
green line, salt concentration (%); light blue line, percent conductivity (%).
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was sequentially applied to an anion-exchange procedure, as
dual ion-exchange purification. The samples obtained after
the dual ion-exchange purification revealed highly purified
virions with as few as 0.8% empty particles (Fig. 2c; 26 of 3365
particles). The analysis was repeated with similar results.

When the viral lysate was purified using dual ion-
exchange adsorptive membranes after CsCl centrifugation,
vector stocks with greater than 90% purity, as judged by
SDS–PAGE analysis, were produced (Fig. 2d).

To estimate the difference in net charge of empty particles
and packaged virions, IEF was performed. As the samples
move through the gradient, they encounter a point where the
pH is equal to their pI and they stop migrating. The pI of the
empty particles was significantly higher than that of pack-
aged virions (Fig. 2e).

Effect of purification on transduction efficiency

To confirm transgene expression by the propagated vector
in vivo, 3-week-old male Wistar rats were injected via the
anterior tibial muscle with either CsCl-purified vectors
(n¼ 12) or ion-exchange membrane-purified AAV1-IL-10
(n¼ 8) at 6�1010 genome copies per animal. Serum IL-10
concentrations in animals transduced with the ion-exchange
membrane-purified vectors were significantly higher than in
the controls transduced with CsCl-purified vectors (519� 261
vs. 148� 83 pg=ml; p< 0.001) (Fig. 3a).

Injection of the ion-exchange membrane-purified vector
particles into dystrophic muscles verified minimal inflam-
mation. To analyze the effect on the histology of the tissue that
is susceptible to virus-mediated inflammation, we used mdx

FIG. 2. Electron microscopic assessment of empty particle contamination by dual ion-exchange chromatography. (a) rAAV-1
sample semipurified by two-tier CsCl density centrifugation. Arrows show empty particles (91 empty particles of 1350 virion
particles; 6.7%). (b) rAAV-1 sample captured by a cation-exchange membrane. The partially purified sample from (a) was
desalted and passed through a cation-exchange membrane to remove cellular proteins and empty particles. A sample enriched
in empty particles (694 of 713 particles; 97.3%) was eluted from the cation-exchange membrane with sodium chloride. (c) The
flow-through sample was sequentially applied to an anion-exchange membrane to capture the vector particles. Viral particles
were eluted with increasing concentrations of sodium chloride, desalted, and concentrated by ultrafiltration. Electron mi-
croscopy of the resultant purified stocks revealed virions with less than 1% empty particles (26 of 3365 particles). Scale bar,
50 nm. (d) When the crude viral lysate (CVL) was purified with ion-exchange adsorptive membranes (Mustang S=Q [MtgS=Q])
after the brief two-tier CsCl centrifugation, vector stocks with greater than 90% purity were produced, as indicated by SDS–
PAGE analysis. (e) Samples consisting of empty particles (EP) as well as packaged vector virions (Vec) were desalted and
evaluated by isoelectric focusing (IEF). Small-format Novex pH 3–10 IEF gels were used to separate samples and Serva IEF
protein markers 3–10.
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FIG. 3. Improved transduction of muscle. (a) Male Wistar rats (3 weeks old) were injected with either CsCl-purified
(Control, n¼ 12) or ion-exchange membrane-purified (CsClþMtgS=Q, n¼ 8) AAV1-IL-10 at 6�1010 genome copies per
animal via the tibialis anterior muscle. Eight weeks after injection, serum IL-10 concentration was estimated by ELISA. Values
represent means� SD. The asterisk indicates p< 0.05. Histological analysis of the muscle injection site was performed by
using ultraviolet-inactivated AAV1-IL-10 vector particles to examine the tissue for signs of toxicity or inflammation. Male
mdx mice were injected with either (b) PBS or (c) CsCl-purified particles or (d) ion-exchange membrane-purified particles at
1�1011 genome copies per animal via the tibialis anterior muscle at 2 weeks of age. Two weeks after injection, the mice were
sacrificed and muscle samples were examined by H&E staining. Scale bar, 50mm.

Table 2. Comparison of Recombinant Adeno-associated Virus Serotype 8 Obtained

from Transduced Cells and Supernatants

Yields of rAAV8 in cell pellet or supernatant of transduction culture

Cell pellet Supernatant

Experiment
Total particles

(�1013 GC)
Particles per

cell (�104 GC)
Total particles

(�1013 GC)
Particles per

cell (�104 GC) Ratioa

1 3.2 2.2 26.8 18.1 8.4
2 5.7 7.1 32.6 40.8 5.7
3 3.9 1.7 25.2 11.3 6.5
4 3.5 3.2 18.4 17.0 5.3
5 2.2 1.5 47.6 31.3 21.4
6 2.7 1.2 25.6 12.0 9.6
7 7.8 3.6 43.2 19.9 5.6

Average 4.1 2.9 31.3 21.5 7.3

aRatio of particle numbers in supernatant to those in cell pellet.
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mice, a mouse model of DMD. The tibialis anterior muscle
of control mice injected with PBS showed scarce inflamma-
tory cell infiltration, along with myofibers with central nuclei
(Fig. 3b). mdx mice injected with CsCl-purified particles
demonstrated extensive cellular infiltration with polymor-
phonuclear and mononuclear cells at the site of injection
(Fig. 3c). In contrast, mice injected with the ion-exchange
membrane-purified particles revealed manifestation similar
to that of the PBS-treated control at 4 weeks of age (Fig. 3d).

Scalable vector preparations with dual
ion-exchange chromatography

The average recovery of purified recombinant AAV-1 from
four different crude virus lysates was 17.4% (data not shown).
Although vector yield was dependent on the transgene and
construct, recovery up to 2.0�1014 vector particles per dual
Acrodiscs was achieved. Interestingly, we found that the yield
from the supernatant was significantly higher than that
from the cell pellet (Table 2). The amount of DNase-resistant
particles in the supernatant was 7.3-fold higher than that
obtained from the cell pellet (n¼ 7, p< 0.001). Furthermore,
the ion-exchange protocol using adsorptive membranes was
tried to realize effective purification. The bed volume of the
adsorptive membrane was only 0.18 ml and this is much less
than that of a conventional resin-based column with identi-
cal protein capture capacity. Therefore, every step, including
capture, wash, and elution procedure, was performed quickly.
Consequently, the membrane adsorbers enabled the efficient
recovery of rAAV-8 in the 500-ml supernatant of the trans-
duced cells culture (Table 3). To confirm the transduction
activity, canine myoblasts were infected with the rAAV8-
EGFP produced (Fig. 4). Efficiency of transduction of myo-
blasts with vectors derived from the culture supernatant was
equivalent to that from the cells.

U251MG human glioma cells were transduced with the
luciferase-expressing recombinant retroviruses obtained
from the various purification procedures (see Supplementary
Table 1 at www.liebertonline.com=hum). As expected, unlike
retroviral vectors pseudotyped with VSV-G protein, retro-
viral vectors bearing the amphotropic envelope protein
could not withstand the shear forces during ultracentrifu-
gation. In contrast, the amphotropic vector was successfully
enriched by ion-exchange chromatography without ultra-
centrifugation. When the transduction efficiency of the en-
riched sample was compared with that of the initial viral
supernatant, the ion-exchange chromatography resulted in
good recovery of biologically active amphotropic vectors.
Furthermore, a higher recovery rate was observed in trans-
duction with vectors prepared by dual ion-exchange chro-
matography, relative to transduction with vectors prepared
by anion-exchange chromatography alone. The experiment
was repeated with similar results.

Discussion

In this study, we have described an effective and scal-
able method for the purification and concentration of rAAV
particles as well as amphotropic retroviral vectors. This
straightforward method uses cation-exchange followed by
anion-exchange chromatography to obtain purified rAAV
particles. The AAV vector preparation with dual ion-
exchange chromatography allowed higher levels of gene
transfer in vivo without remarkable signs of toxicity or in-
flammation. Furthermore, this scalable strategy enabled the
recovery of rAAV particles from the transduction culture
supernatant, which is normally discarded in the course of the
purification procedure. Also, the chromatographic method
of concentrating amphotropic retroviral vectors successfully
generated serum-free viral stocks with efficient recovery.

FIG. 4. Myoblast transduction with rAAV8 purified from cell pellet or culture supernatant. rAAV8-EGFP was purified from
the (a–c) cell pellet or (d–f) supernatant of transduced 293 cell culture. Canine myoblasts were transduced with rAAV8-EGFP
at 0 (vehicle; a and d), 1�105 (b and e), or 3�105 (c and f) genome copies per cell. Color images available online at
www.liebertonline.com=hum.
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Membrane adsorbers provide an attractive alternative to
traditional bead-based chromatography columns used to
remove impurities in various applications (Phillips et al.,
2005). Bead ligands in the packed columns are reached only
by long-distance diffusion through pores. Therefore, the
purification procedure with resin-based packed-bed chro-
matography is lengthy, including equilibration, sample ap-
plication, washing, and elution. In addition, contamination
with the distinct vectors will often recur if cost-effective
disposable material has not been prepared. In contrast,
binding sites in the membrane adsorbers are exposed to the
molecules within short diffusion distances. This improved
accessibility to the adsorber material makes vector purifica-
tion processing much easier than with packed-bed chroma-
tography and minimizes the essential bed volume. These
characteristics of the disposable ion-exchange membrane
save substantial time as well as viral viability. AAV vector
purification with membrane adsorbers was effective and al-
lowed higher levels of gene transfer in vivo without any signs
of toxicity or inflammation. Electron microscopy of the AAV
vector stocks obtained revealed highly purified virions with
as few as 0.8% empty particles.

IEF is an electrophoresis molecular diagnostic operation
that separates protein in a pH gradient according to their pI.
Because of differences in pI, different proteins will focus at
different points in the gradient. The pI is the specific pH at
which the net charge of the protein is zero. The net charge of
a virus is the sum of all the negative and positive charges of
its amino acid side chains and amino and carboxyl termini
along with the packaged DNA in the virion. In this study,
we have shown that the pI of empty particles was signifi-
cantly higher than that of packaged virions. Because proteins
are positively charged at pH values below their pI and
negatively charged at pH values above their pI, the net
positive charge of empty particles would be higher than that
of packaged virions at a constant pH below the pI of empty
particles (see Supplementary Figure 1 at www.liebertonline.
com=hum). On the other hand, the net negative charge of
packaged virions would be stronger than that of empty
particles at a constant pH above the pI of packaged virions.

Interestingly, we found that the yield from the superna-
tant was significantly higher than that from the cell pellet.
This is probably due to the transduction event in that
crumpled transduced cells released a considerable amount of
rAAV particles into the culture medium. Therefore, it is
practically and theoretically reasonable to use the superna-
tant of the transduction culture for rAAV production.

However, conventional ion-exchange chromatography, using
resin bead-based columns with a huge bed volume size, is a
time-consuming procedure. In this respect, the protocol de-
scribed here, in which small membrane absorbers are used, is
an effective and quicker technique.

The method described herein also has several other at-
tractive features. First, purification of rAAV particles with
disposable membrane obviates concerns about vector con-
tamination by other infectious agents potentially trapped in
an ion-exchange column used for multiple purification pro-
cedures. Although a brief centrifugation on CsCl density
gradients is used as an initial step, the method reported here
does not require high-speed centrifugation over 24 hr, and
avoids rounds of isopycnic banding steps to collect vector-
containing fractions. In addition, the vector binding and
elution properties achieved with the buffers and membrane
adsorptive chromatography system produced high-titer
vector. Dual ion-exchange chromatography with a brief
centrifugation on two-tier CsCl density gradients can effec-
tively avoid destruction of viral particles, which may con-
tribute to the improved transduction efficiency in vivo
(Kaludov et al., 2002). Future improvements of this method
could be made by devising a method to eliminate the initial
concentration step by CsCl density gradient. Potentially, the
use of detergents, optimized ultrafiltration, or an affinity
chromatography could remove a larger percentage of the
impurities in the crude lysate so that we may be able to skip
the initial two-tier CsCl density gradients.

As a result of our purification procedure, pure stocks with
less than 1% empty particles were successfully produced.
Although a previous protocol using conventional resin-based
anion-exchange chromatography showed reduced contami-
nation by empty particles in the rAAV-1 stock, empty par-
ticle contamination of samples was approximately 5% (Urabe
et al., 2006). In our study here, elimination of the various
impurities might be associated with the better transduction
efficiency and minimal inflammatory reaction by dual ion-
exchange chromatography compared with CsCl centrifuga-
tion. In addition to the effective reduction of empty particles,
this protocol also successfully avoided lengthy exposure to
CsCl. The conventional method of purification based on
rounds of CsCl density centrifugation yields vectors with
reduced transduction activity (Gao et al., 2000).

Unlike pseudotyped retroviral vectors bearing the VSV-G
protein, retroviral vectors bearing the amphotropic envelope
protein cannot withstand the shearing forces of ultracentri-
fugation. Therefore, the utility of the concentrated ampho-
tropic retroviral vector is limited in the in vivo transduction
experiment, although it is less toxic compared with the VSV-
G-pseudotyped retroviral vector. Besides, suitable transduc-
tion medium usually varies with the target cells, although
retroviral vector is collected as a vector-containing soup with
medium used for 293 cells transduction. However, selection of
the medium for 293 cell transfection frequently conflicts with
the culture conditions for hematopoietic cells, although it is
difficult to replace the suspension medium after harvest of the
vector. In contrast, the quick ion-exchange chromatography
resulted in good recovery of biologically active recombinant
viruses with the amphotropic envelope protein. Elimination
of the various impurities might be associated with better
recovery of vectors by dual ion-exchange chromatography
compared with anion exchange alone.

Table 3. Effective Recovery of Recombinant

Adeno-associated Virus Serotype 8
from Transduced Cell Culture Supernatant

Experiment

Particles
loadeda

(�1013 GC)

Particles
recovered

(�1013 GC)
Recovery
rateb (%)

1 7.1 3.2 45
2 8.9 5.8 65
3 8.2 3.0 37

aParticles loaded, vector genomes applied to the dual-ion exchange
procedure.

bData are from cation exchange at pH 6.5 and anion step at pH 8.0.
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The production and purification procedures described in
this report will expedite gene therapy research by providing
a simple, rapid, and effective method for the generation of
highly purified vectors. In addition, these procedures may
potentially be applied to the production and purification of
other vector systems. This closed viral production protocol
using disposable membranes is particularly promising, as it
easily interfaces with standard FPLC systems as well as sy-
ringe pumps. Moreover, the disposable material represents
an advantage to meet GMP specifications. This system will
provide the basis for further in vivo experiments and future
clinical investigations.
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Supplementary Table 1. Efficient Concentration and Purification of the Amphotropic Retrovirus Vector

Centrifugation Ion-exchange

(50k g�2 hr) (6k g�16 hr) (SþQ) (Q)

env 1.3 4.4 43.0 24.3
VSV-G 45.9 52.2 50.9 22.0

The amphotropic or VSV-G-pseudotyped vector was centrifuged at 50,000 g for 2 h or 6000 g for 16 h at 48C. Alternatively, the sample was
concentrated and purified with a dual ion-exchange chromatography procedure (SþQ) or an anion-exchange procedure (Q). U251MG cells
were transduced with the luciferase expressing recombinant retroviruses to evaluate the effectiveness of the various purification procedures.
At 96 h after transduction, luciferase expression in the cells was analyzed. Transgene expression identified as relative light unit was analyzed
to calculate recovery rate of the biologically active vector (%). Recovery rates for the amphotropic-enveloped (env) or VSV-G-pseudotyped
(VSV-G) vector were compared to the viral supernatant before enrichment.

SUPPLEMENTARY FIG. 1. The pI is the specific pH at which the net charge of the protein is zero. The net charge of a virus
is the sum of all the negative and positive charges of its amino acid side chains and amino- and carboxyl-termini along with
the packaged DNA in the virion. We showed that pI of empty particles is higher than that of packaged virions. Since proteins
are positively charged at pH values below their pI and negatively charged at pH values above their pI, the net positive charge
of empty particles would be higher than that of packaged rAAV particles at a constant pH below the pI of empty particles. On
the other hand, the net negative charge of packaged virions would be stronger than that of empty particles at a constant pH
above the pI of packaged virions.

Sarepta Exhibit 1049, page 16




