
Page 1 of 23 CENTRALSQUARE EXHIBIT 1007

MOBILE • •
APPLICATION
DEVELOPMENT
with SMS and the SIM Toolkit

Building
Smart
Phone -
Applications

SCOTT B. -auTHERY . MARY J. CRONIN

Page 2 of 23

_Mobile Application
Development

withSMSand
the SIM Toolkit

Scott B. Guthery

Mary J. Cronin

McGraw-Hill
New York • Chicago • San Francisco • Lisbon

London• Madrid• Mexico City• Milan• New Delhi

San Juan• Seoul• Singapore• Sydney• Toronto

Page 3 of 23

McGraw-Hill ~
A Division ofTheMcGraw-HillCompanies

Copyright© 2002 by McGraw-Hill Companies, Inc. All rights reserved. Printed in the United States of

America. Except as permitted under the United States Copyright Act of 1976, no part of this publication

may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system,

without the prior written permission of the publisher.

1 2 3 4 5 6 7 8 9 0 DOC/VOC U 9 8 I 6) 4 J 2 1

ISBN 0-07-137540-6

The sponsoring editor for this book w;zs Marjorie Spencer, the editing supervisor was Steven Melvin, and the produc

tion supervisor was Sherri Sou ff ranee. ft was set in Vcndome by Patricia Wallen burg.

Printed and bound by R.R. Donnelley & Sons Company.

McGraw-Hill books are available at special quantity discounts to use as premiums and sales promotions, or

for use in corporate training programs. For more information, please write to the Director of pecial Sales,

Professional Publishing, McGraw-Hill, Two Peno Plaza, New York, NY 10121-2298. Or contact your local

bookstore.

Throughout this book, trademarked names are used. Rather than put a trademark symbol after every

occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the

trademark owner, with no intention of infringement of the trademark. Where such designations appear

in this book, they have been printed with initial caps. The 3GPP TS 31.102 Third Generation Mobile ystem

Release 1999, v3.20 is the property of ARID, CWT , ET I, T1, TIA andITC who jointly own the copyright

in it. It is subject to furtherrnodificacions and is therefore provided co you "as is'' forinformation purpose

only. Further use is strictly prohibited.

Information contained in this book has been obtained by The McGraw-Hill Companies, Inc.,

("McGraw-Hill") from sources believed to be reJiable. However, neither McGraw-Hill nor its

authors guarantee the accuracy or completeness of any information published herein, and

neither McGraw-Hill nor its authors shall be responsible for any errors, omissions, or damages

arising out of use of this information. This work is published with the understanding that

McGraw-Hill and its authors are supplying information, but are not attempting to render

engineering or other professional services. If such services are required, the assistance of an

appropriate professional should be sought.

This book is printed on recycled, acid-free paper containing a minimum of 50 percent recycled,

de-inked fiber.

Page 4 of 23

CHAPTER

Basic.SMS
Messaging

Page 5 of 23

20 Chapter 2

There are many software development kits and products on the market

that you can use to connect your application to SMS messaging. These

range is from very low-level packages that simply connect a serial line

port to the mobile phone: up Lu all-singing, all-dancing packages that

provide all sorts of message management services. In between are pack

ages that provide various APis to SMS messaging such as Telephone

Aplication Program Interface (TAP!) that make it easy to integrate SMS

messaging into existing application suites.
We will begin with basic, low-level messaging and work our way up

the food chain. You may never actually build an application using

these low-level commands but it's good to know what's under the

hood and what's possible just in case you get stuck and have to reach

for the spanners. The higher-level packages are essentially fancy ways

of generating those low-level commands.
In the next couple of paragraphs we: discuss selling up your mobile

application development workbench.

Connecting the Handset

Every GSM and 3GPP handset is an air interface modem and a plain

old telephone handset. This means you can connect the handset to an

external interface on your computer and send it AT commands just as

you did with your dial-up modem. The physical connection can be

any one that your computer offers such as a serial port, a USB port, or

an IrDA port. We are going to use a serial COM port for the examples

in this chapter because it is the most widely used one at present.

Besides an activated GSM phone you'll need a cable that connects

the phone and the serial port on your computer. You'll also need to

install a modem driver on your computer that knows how to talk to

the phone. The cable and the driver depend on the model of -the

handset you are using. Most handset manufacturers offer a data kit of

some sort for their handsets that includes the right cable and the driv

er. Examples in this chapter use a Nokia 5190 handset and the SoftRa

dius driver and cable for that handset from Option Inc. Nokia pro

duces several very nice data kits called the Nokia Data Suite and the

Nokia PC Connectivity SDK, which accomplish the same thing.

After you've installed the driver, you can use the same terminal pro

gram that you use for dial-up modems to test the connection. On a

Windows system, just use HyperTerminal. Type MAr on the COM

Page 6 of 23

Basic SMS Messaging 21

Figure 2-1
Message flow from
desktop PC to mobile
handset.

port connected to the phone. If everything is working properly, you should see "OK" Now you're ready to start building SMS applications.

p C

I Air -
AT Commands Modem

I

Wired ("Copper") Connection
-·-·-·-· Wireless ("Air") Connection

I

'·-· - ·-·-·-· -+ Target
Mobile

SMS-DELIVER

Communicating with the Handset
In addition to many of the standard V.32ter and Hayes modem dialup modem AT commands, your mobile handset supports a set of AT commands that are particular to connecting to the GSM network and sending short messages. If you're a gnarly old Hayes modem hacker, you'll feel right at home. The standard handset AT commands ar.e described in the following two documents:

3GPP 27.005-DTE-DCE interface for SMS and CBS
3GPP 27.007-AT command set for 3G UE

Page 7 of 23

22 Chapter 2

The big difference between using a dial-up modem connected to

the landline telephone network and a handset connected to the GSM

network is how much you can see and say to the network itself.

About the only thing you said to the network through your dial-up

modem was "Connect me to the following number." You did this with

the Hayes ATDT command.

ATDT 61 72345678

This caused the dial-up modem to generate the right dual tone

mulit-frequency (DTMF) tones on the line to cause the telephone net

work to set up a dedicated circuit connection between your modem

and the modem that answered at the other end. Once the connection

was established, all the wired network did was move an analog signal

from one end to the other. The modems on both ends took care of

turning the analog signal into bits, frames, packets, and messages.

A mobile network is continuously and more intimately involved in

the bit stream if for no other reason than the modem you are trying

to communicate with-the mobile handset out there somewhere

keeps moving around.
In the 27.007 AT command set you will find some old friends such

as ...

ATD

ATE

ATH

ATA

ATS

ATQ

ATZ

Dial command

Command echo

Hang up call

Answer call

Select an S-register

Result code surpression

Recall stored profile

But you'll also find lots of commands that are more about you talk

ing to and about the network than to and about the handset modem

such as ...

AT+CSCS

AT+WS46

AT+CBST

Select character set

Select wireless network

Select bearer service type

Basic SMS Mei

Page 8 of 23

Chapter 2

m connected to
:ted to the GSM
network itself.
gh your dial-up
ou did this with

right dual tone
e telephone net
::n your modem
; the connection
an analog signal
1ds took care of
d messages.
ttely involved in
r1 you are trying
re so mew here-

old friends such

~ about you talk
handset modem

Basic SMS Messaging

AT+CRLP

AT+CR

AT+CRC

AT+COPS

AT+CSCA

Radio link protocol

Service reporting protocol

Cellular result codes

Operator selection

Service center address

23

Finally, because a mobile handset is a much more capable device
than the old V.32 Hayes modem, there are many commands that you
can use to mani ulate it such as ...

AT+CPBF

AT+CPBR

AT+CPBW

AT+CMGL

AT+CMGR

AT+CMGS

Find phone book entries

Read phone book entry

Write phone book entry

List messages

Read messages

Send message

For example, after I connected my mobile phone to my PC and
fired up HyperTerminal, ·I used AT+ CMGL to get a list of the mes
sages that were stored in the SIM:

AT
OK
AT+CMGL
+CMGL: 1,1,24
07919171095710F0040B917118530400F900001030804065535805C8

329BFD06
+CMGL: 2,1,30
07919171095710F0040B917118530400F900001Q3011104180580CC8

329BFD6681EE6F399B0C
+CMGL: 3,1,23
07919171095710F0040B917118530400F900001030111061255804E5

B2BC0C
+CMGL: 4,1,25
07919171095710F0040B917118530400F90000103011100203580665

79595E9603
+CMGL: 5,1,24

Page 9 of 23

24 Chapter 2

07919171095710F0040B917118530400F900001030111064545805C8
329BFD06

+CMGL: 6,1,28
07912160130300F4040B917118530400F90000108050709244690AD4

F29C0E8A8164A019
+CMGL: · 7,1,37
07912160130300F4040B917118530400F900001080507003516914D7

329BCD02AlCB6CF61B947FD7
E5F332DB0C

OK

There were seven messages stored in the SIM. In Chapter 3, we will
analyze the numbers and find not only the message but also lots of
interesting information about the message such as who sent it and
when it arrived.

Communicating with the Network
Because the mobile network is an active participant in moving mes
sages between your application and a mobile device, you have to be
much more concerned with the details of formatting the messages
you send. Remember the mobile network actually looks at the bytes
in your message (actually in the headers on your message) to figure
out what to do with it. "Please tell Sally Green wherever she is that
dinner won't be ready until 7" just doesn't hack it.

We will discover that there are lots of things besides who should
receive the message that you can tell the GSM network and its SMS
centers (SMSC). The string of bytes that you send into the network
contains not only the message but also lots of other information that
instructs the network as to how and when you want this to happen.

The two standards that govern the construction of SMSs what we
will be using are:

3GPP 23.040-Technical realization of SMS

;, 3GPP 24.011-PP SMS support on the mobile radio interface

These standards cover the encoding of the message that gets deliv
ered to the destination handset and the encoding of the instructions
to the GSM network and the SMSC.

Basic SMS Mess~

Figure 2-2
SMS message
headers.

Page 10 of 23

Chapter 2

110 64545805C8

0709244690AD4

0700351691407

1apter 3, we will
but also lots of

who sent it and

etwork
in moving mes-

. you have to be
ng the messages
Joks at the bytes
Lessage) to figure
rever she is that

ides who should
·ork and its SMS
nto the network
information that
his to happen.
,f SMSs what we

J interface

:e that gets deliv
• the instructions

Basic SMS Messaging 25

-figure 2-2
SMS message
headers.

-

Remember our discussion in Chapter i about the encapsulation of
protocols? In building low-level commands for sending SMSs, we are
in fact talking to three separate entities: the local handset to which we
are sending AT commands, the network and its SMSC, and the end
point mobile that will receive the message.

Figure 2-2 shows the complete SMS header diagram. We are cover
ing only the outermost two in this chapter and will get to the others
in later chapters. You build all the headers, so you will have to
remember whom you are talking to and what you are saying to them
as you build your SMS message.

Message to Your SIM
Application

I j J Instructions to SIM

I Instructions to Handset

Instructions to SMS-C

Instructions to Air Modem

Hello, Mobile World
Let's start by opening a serial port connection to the local handset. My
Nokia 5190 is connected to COM5, so using the C programming lan
guage I'd write:

handle= CreateFile("COMS",
GENERIC_READ I GENERIC_WRITE, II read and write
0, II exclusive access
NULL, II no security
OPEN_EXISTING,
0, II no overlapped IIO
NULL); II null template

It is on this connection that we will send AT commands to the local
handset that in turn will relay the information to the GSM network

Page 11 of 23

26 Chapter 2

We must set this serial connection to binary so that the operating sys

tem and its drivers don't touch the data as it passes through, for exam

ple, by adding carriage returns and line feeds. We want the data we

construct to get to the handset and to the network exactly as we built

it and not with any "help" from folks along the way.

How this is done changes from handset driver to handset driver.

For the particular driver I'm using, binary information sent on this

connection is hex-encoded as ASCII characters, so if you wanted to

send the byte 0x9D, you'd send the ASCII string "39 44": 39 is the hexa

decimal value for the ASCII character 9 and 44 is the hexadecimal

value for the ASCII character D.
Let's start by sending a simple "Hello, world" message to the mobile

phone at +1 617-n0-1346.
What we do is pack in a hex-encoded byte blob all the information

needed to get this message to its destination along with the message

itself and ship this blob off to the carrier's SMSC which in turn will

get it to where it is going.
The byte blob is an SMS_SUBMIT Transfer Protocol Data Unit

(TPDU). We'll take a detailed look at TPDUs in Chapter 3. The one at

hand consists of the following fields:

1. Transfer protocol parameters = 0x0l (an SMS_SUBMIT TPDU)

2. Message reference number= 0x00 (let the handset assign it)

3. Length of destination number in digits = 0x0B (11 digits)

4. Type of destination number = 0x91 (international format)

5. Destination telephone number (nibble swapped) = 0x6171321043F6

6. Protocol identifier = 0x00 (implicit)

7. Data coding scheme = 0x00 (GSM default alphabet)

8. Message length - 0x0C (there :ire 12 ch:u:icters in "Hello, worlrl")

9. Message = 0xC8329BFD6681EE6F399B0C ("Hello, world")

The coding of the actual message, "Hello, world," requires some

explanation. No stone is left unturned when it comes to optimizing

the use of the air interface. If we had transmitted the ASCII characters

as bytes, we would have wasted a bit for every character we sent

because ASCII characters are coded on 7 bits and sending this message

as an 8-bit byte wastes 1 bit. Now, 1 bit is no big deal if you have

megabytes of memory and gigabytes of disk space, but on an air inter

face this represents a waste of one-eighth of the channel capacity and

this cannot be tolerated.

Page 12 of 23

Basic SMS Messaging 27

What we do is very simple. First, we put the first character into the
first byte. Next, we take the low-order bit of the seven bits of the sec
ond ASCII character and stuff it in the unused high-order bit of the
first byte. Now we put the six remaining bits of the second character
into the second byte. Next, we take the two low-order bits of the seven
bits of the third ASCII character and stick them into the two unused
high-order bits in the second byte, and so forth.

Here's the result of applying this packing algorithm to "Hello,
world":

H
Unpacked 48

Packed C8

e

65

32

I o
6C 6C 6F
9B FD 66

w

2C 20 77

81 EE 6F

0

6F

39

r I
72 6C
9B OC

d

64

In this case, the low-order bit of the ASCII character "e" is 1, so we
put that into the high-order bit of the first byte, which is unused
after we put the seven bits of "H" into the low-order bits of the byte.
This turns Ox48 into OxC8. Now, we take the remaining low-order six
bits of "e," Ox25, and put them into the low-order six bits of the second
byte. We then put the two low-order bits of the seven bits of the
ASCII character ·1; namely O and 0, into the two unused high-order
bits of the second byte. This yields a second byte of Ox32, and so forth.
As a result, we save a complete byte.

Here is some C code that performs this packing and also makes the
hex-encoded ASCII characters that are sent to the handset:

#include <string.h>

void unpack78(char *p, int n, char *s);
void pack78(char *s, char *p, int *n);

#define N (c) (c<=Ox39? ((c) -0x30): ((c)-Ox37))
#define M (c) (c<=Ox09? ((c) +Ox30): ((c) +Ox37))

void pack78(char *s, char *p, int *n)

unsigned char byte[160];
int bits, i, j, k;

k = strlen(s);

Page 13 of 23

28

/* Pack the ASCII characters into bytes*/

for(i = j =bits= 0; i < k; i++, j++) {

it (bits == 7)
bits= 0;
i++;

Chapter 2

byte[j] = (s[i]&0x7F)>>bits I s[i+l]<<(7-bits);

bits= (++bits)%8;

/* Convert bytes to ASCII nibbles*/
for(i = 0; i < 7; i++) {

k = (byte(i]>>4)&0x0F;
*p++ = M(k);
k = byte[i]&0x0F;
*p++ = M(k);

*n j;

For the sake of completeness, here is the corresponding unpacking
routine that we will need when we receive messages from the handset:

void unpack78(char *p, int n, char *s)
{

int bits, i, j;
unsigned c, byte[l60];

/* Convert ASCII nibbles to bytes*/

for(i = 0; i < n; i++) {
byte [i] N (*p) ;p++;
byte[i] = (byte[i]«4) I (N(*p));p++;

/* Extract the ASCII characters from the bytes*/

for(i = j =bits= 0; j < n; i++, j++) {

if(bits > 0)
c = byte[i-1]>>(8-bits);

else

Page 14 of 23

Basic SMS Messaging 29

-

C = 0;
if(bits < 7)

c I= byte[i]<<bits;
*s++ = c&Ox7F;
bits= (++bits)%8;
if (bits == 0)

i -= 1;

*s = '\0';

So the complete SMS_SUBMIT TPDU for "Hello, world" looks like
this:

01000B916171321043F600000CC8329BFD6681EE6F399B0C

All we have to do now is use an AT command to send this TPDU
off to the SMSC. This is the send-message AT command:

AT+CMGS=<TPDU length><CR><SMSC address><TPDU><CTRL-Z>

The SMSC address is the telephone number of the SMSC to which
the handset should send the TPDU. Like the destination telephone
number, the telephone number of the SMSC consists of three sub
fields:

1. Length of the telephone number in octets= 0x07 (7 octets)
2. Format of the SMS telephone number = 0x91 (international for

mat)

3. Telephone number of SMSC (nibble swapped) = 0x9171095710F0
This particular SMSC is in the VoiceStream network, where the

handset set I am using as my air modem is registered. When you test
this example, you·11 have to replace this phone number with the
phone number of the SMSC in the network to which you subscribe.

The following code is what I write to COM5 to send "Hello, world~
to my mobile:

AT+CMGS=24
07919171095710F001000B916171321043F600000CC8329BFD6681EE

6F399BOC"Z

Page 15 of 23

30 Chapter 2

The <CR> is the byte 0x0D and the CTRL-Z is the byte 0xlA in the
actual sequence of bytes sent to the handset. Give it a try. I look for
ward to receiving your SMS!

So what happens if the mobile we send a message to sends one
back? We can list all the messages in the handset using the AT com
mand:

AT+CMGL

and then we can retrieve the one we want by using the AT command:

AT+CMGR=<index>

When using AT+CMGR to retrieve the latest message that arrived,
the handset replies with:

+CMGR: 1,21
07919171095710F0 040B916171321043F6 00 00 10201180234458

02C834

The 1 on the first line indicates the status of the message. The num
ber 1 means this is a received message that has been read. The follow
ing 21 is the number of bytes in the TPDU in the following data. The
following line shows the data comprising the message. It is in the same
general format as the data in the AT+CMGS command, namely the

SMSC telephone number followed by a TPDU. In this case, however,
it is the telephone number of the SMSC delivering the message and an
SMS_DELIVER TPDU rather than an SMS_SUBMIT TPDU. In other
words, the TPDU is being delivered to the handset rather than the
handset submitting a TPDU to the network We'll discover that what
is Jdivefed is not exactly the same as what is submitted.

The SMSC phone number is just like the one we sent to, so let's ana
lyze the SMS_DELIVER TPDU. We'll be using 3GPP TS 23.040 to do
this.

1. Transfer protocol parameters = 0x04 (SMS_DELIVER with no
more coming)

2. Length of originating address = 0x0B (11 bytes)

3. Type of originating address = 0x91 (international format)

4. Originating address (nibble swapped) = 0x6171321043F6 (+1 617 230
1346)

Page 16 of 23

Basic SMS Messaging 31

5. Protocol identifier = 0x00

6. Data coding scheme = 0x00

7. Service center timestamp (nibble swapped) = 0xlO 20 11 80 23 44 58
(Y !MIDIHIMIS!Zone = 2001 February 11, 8:32:44, GMT-5)

8. Length of message = 0x02 (2 bytes)

9. Message = 0xC834 ("Hi")

To unpack 0xC834, just take the top bit from 0xC8 and put it to the
right of 0x34. This turns 0xC8 into 48 and 0x34 into 0x69.

Packed

Unpacked

H

CB 34

48 69

Therefore, at 8:32 Eastern Standard Time the mobile phone +1 617
230 1346 sent me the message "Hi." I'm a fascinating conversationalist
when I'm talking to myself.

You can achieve a variety of special effects by setting various
parameters in the SMS_SUBMIT TPDU. We will cover TPDUs in detail
in Chapter 3, but to give you a feel for what is possible, suppose we'd
like to have our message pop up on the screen and at the same time
provide a way to quickly open up a telephone call back to the sender.
This is useful for sending alerts needing an immediate response. All
the recipient has to do is pick "Use Number" or "Return Call" or what
ever phrase his or her handset uses to indicate the presence of a return
call number in the SMS.

The pop up message is accomplished by setting the Data Coding
Scheme byte to 0xF0 rather than to 0x00. This says "put the message on
the screen don't just store it in the SIM" and tells the user that a new
message has arrived. Creating a return call path is accomplished by set
ting the Protocol Identifier to 0x5F rather than to 0x00. Give it a try.

You can see why we call SMS messaging the assembly language pro
gramming of the wireless network. An SMS header is in a very real
sense an instruction for a very large instruction word (VLIW) comput
er where the computer is the mobile telephone network. Every bit
counts and these bits interact. Further, the network executes many of
the fields of the instruction in parallel as if it were horizontal microc
ode. If you missed the era of bit-slice computers, now's your chance.

Page 17 of 23

32

TABLE 2-1

SMS Error Codes

Chapter 2

There are many other AT commands that you can send to the

handset. We can't go into all of them here. You can download 3GPP

TS 27.005 and 3GPP TS 27.007 for the complete story. All phones that

support data support the major sending and receiving AT commands.

You'll have to experiment to find out which of the more esoteric

commands such as AT+CUSD (unstructured supplementary service

data) and AT+CMER (mobile equipment event reporting) are support

ed with your driver and phone combination.
Table 2-1 lists some of the error codes you might run into when an

AT command returns an error.

En.·01· Ilrror Meaning

0-127 GSM 04.11 Annex E-2 values

128-255 GSM 03.40 section 9.2.3.22 values

300 Phone failure

301 SMS service not available

302 Operation not allowed

303 Operation not supported

304 Invalid PDU mode parameter

305 Invalid text mode parameter

310 SIM not inserted

311 SIM PIN needed

312 SIM PIN2 needed

313 SIM failure

314 SIM busy

315 SIM incorrect

320 Memory failure

322 Memory full

331 No network

332 Network timeout

500 Unknown error

512 Manufacturer specific error

Page 18 of 23

Basic SMS Messaging 33

Table 2-2 gives the GSM 7-bit default alphabet as specified by 3GPP
23.038 and the corresponding 1SO-8859 decimal codes where applicable.

TABLE 2-2 SMS 7-Bit Default Character Encoding

IS0-8859
Hexameter Decimal Character name Character Decimal

0x00 0 Commercial AT sign @ 64

0x01 1 British monetary unit-pound £ 163

0x02 2 US monetary unit-dollar $ 36

0x03 3 Japanese monetary unit-yen ¥ 165

0x04 4 Lowercase e with accent grave e 232

0x05 5 Lowercase e with accent acute e 233

0x06 6 Lowercase u with accent acute u 250

0x07 7 Lowercase i with accent grave 236

0x08 8 Lowercase o with accent grave 0 242

0x09 9 Uppercase C with cedilla (; 199

0x0A 10 Line feed (\n) 10

0x0B 11 Uppercase O with stroke 0 216

0x0C 12 Lowercase o with stroke 0 248

0x0D 13 Carriage return (\r) 13

0x0E 14 Uppercase A with ring A 197

0x0F 15 Lowercase a with ring i 229

0x10 16 Uppercase Greek delta ~

0xll 17 Under line character 95

0x12 18 Uppercase Greek phi <fJ

0x13 19 Uppercase Greek gamma r
0x14 20 Uppercase Greek lambda A
0x15 21 Uppercase Greek omega n
0x16 22 Uppercase Greek pi II
0x17 23 U ppetcase Greek psi qr

0x18 24 Uppercase Greek sigma l
continued on next page

Page 19 of 23

34 Chapter 2

TABLE2-2 SMS 7-Bit Default Character Encoding (continued)

IS0-8859

Hexameter Decimal Character name Character Decimal

0x19 25 Uppercase Greek theta 0

0xlA 26 Uppercase Greek xi t::!,

0xlB 27 Escape to extension table

0xlB0A 2710 Form feed (\f) 12

0x1B14 27 20 Circumflex A 94

0x1B28 27 40 Left curly bracket 123

0x1B29 27 41 Right curly bracket 125

0x1B2F 27 47 Backslash \ 92

0x1B3C 27 60 Left square bracket 91

0x1B3D 27 61 Tilde 126

0x1B3E 27 62 Right square bracket 93

0x1B40 27 64 Vertical stroke 124

0x1B65 27101 Euro sign 164

0xlC 28 Uppercase AE IE 198

0xlD 29 Lowercase ae X 230

0xlE 30 Lowercase German ss _B 223

0xlF 31 Uppercase E with circumflex E 202

0x20 32 Space 32

0x21 33 Exclamation mark 33

0x22 34 Question mark 34

0x23 35 Hash sign # 35

0x24 36 General currency sign a 164

0x25 37 Percent sign % 37

0x26 38 Ampersand & 38

0x27 39 Apostrophe 39

0x28 40 Left parenthesis 40

0x29 41 Right parenthesis 41

0x2A 42 Asterisk 42
continued on next page

Page 20 of 23

Basic SMS Messaging 35

TABLE 2-2 SMS 7-Bit Default Character Encoding (continued)

IS0-8859
Hexameter Decimal Character name Character Decimal

0x2B 43 Plus sign + 43
0x2C 44 Comma 44
0x2D 45 Hyphen and minus sign 45
0x2E 46 Period 46
0x2F 47 Slash I 47
0x30 48 Digit 0 0 48
0x31 49 Digit 1 1 49
0x32 50 Digit 2 2 50
0x33 51 Digit 3 3 51
0x34 52 Digit 4 4 52
0x35 53 Digit 5 5 53
0x36 54 Digit 6 6 54
0x37 55 Digit 7 7 55
0x38 56 Digit 8 8 56
0x39 57 Digit 9 9 57
0x3A 58 Colon 58
0x3B 59 Semicolon 59
0x3C 60 Less-than sign < 60
0x3D 61 Equal sign 61
0x3E 62 Greater-than sign > 62
0x3F 63 Question mark 63
0x40 64 Inverted exclamation mark 161
0x41 65 Uppercase A A 65

l 0x42 66 Uppercase B B 66
0x43 67 Uppercase C C 67
0x44 68 Uppercase D D 68 I.
0x45 69 Uppercase E E 69
0x46 70 Uppercase F F 70

continued on next page

Page 21 of 23

36 Chapter 2

TABLE 2-2 SMS 7-Bit Default Character Encoding (continued)

IS0-8859

Hexameter Decimal Character name Character Decimal

Ox47 71 Uppercase G G 71

0x48 72 Uppercase H H 72

0x49 73 Uppercase I I 73

0x4A 74 Uppercase J J 74

0x4B 75 Uppercase K K 75

0x4(; 76 Uppercase L L 76

0x4D 77 Uppercase M M 77

0x4E 78 Uppercase N N 78

0x4F 79 Uppercase 0 0 79

0x50 80 Uppercase P p 80

0x51 81 Uppercase Q Q 81

0x52 82 Uppercase R R 82

0x53 83 Uppercase S s 83

0x54 84 Uppercase T T 84

Ox55 85 Uppercase U u 85

Ox56 86 Uppercase V V 86

0x57 87 Uppercase W w 87

0x58 88 Uppercase X X 88

0x59 89 Uppercase Y y 89

0.x.5A 90 Uppercase A z 90

0x5B 91 Uppercase A with dieresis A 196

0x5C 92 Uppercase O with dieresis 0 214

0x5D 93 Uppercase N with tilde N 209

0x5E 94 Uppercase U with dieresis 0 220

0x5F 95 Section sign § 167

0x60 96 Inverted question mark 191

0x61 97 Lowercase a a 97

0x62 98 Lowercase b b 98

continued on next page

Page 22 of 23

Basic SMS Messaging 37

TABLE2-2 SMS 7-Bit Default Character Encoding (continued)

IS0-8859
Hexameter Decimal Character name Character Decimal

Ox63 99 Lowercase c C 99
0x64 100 Lowercased d 100
0x65 101 Lowercase e e 101
0x66 102 Lowercase f f 102
Ox67 103 Lowercase g g 103
0x68 104 Lowercase h h 104
0x69 105 Lowercase i 105
0x6A 106 Lowercase j 106
Ox6B 107 Lowercase k k 107

I
Ir 0x6C 108 Lowercase 1 1 108 1:

0x6D 109 Lowercase m m 109 Ii
0x6E 110 Lowercase n n 110 1:

0x6F 111 Lowercase o 0 111
!' 0x70 112 Lowercase p p 112
I! 0x71 113 Lowercase q q 113

0x72 114 Lowercase r r 114 I:
0x73 115 Lowercases s 115
0x74 116 Lowercase t t 116
0x75 117 Lowercase u u 117
0x76 118 Lowercase v V 118
0x77 119 Lowercase w w 119
0x78 120 Lowercase x X 120
0x79 121 Lowercase y y 121
0x7A 122 Lowercase z z 122 I
0x7B 123 Lowercase a with dieresis a 228 i
0x7C 124 Lowercase o with dieresis 0 246
0x7D 125 Lowercase n with tilde fi 241
0x7E 126 Lowercase u with dieresis ti 252
Ox7F 127 Lowercase a with grave a 224

Page 23 of 23

38 Chapter 2

Summary
In this chapter we covered the low-level programming of SMS mes
sages. We sent and received messages using AT commands to commu
nicate with a GSM hamlsel. We built a simple outgoing SMS message
and we interpreted a simple incoming SMS message at the bit and
byte levels using 3GPP standards. In the next chapter, we move
beyond simple messages and explore the range of possibilities that are
available with SMS message encoding.

