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A parsing algorithm must systematically explore every possible state that repr 
· h · If · k 1 esents the intermediate node m t e parsing tree. a m1sta e occurs ear y on in choosing the 

1 
that rewrites S, the intennediate parser results can be quite wasteful if the number of ru~~ 
becomes large. 

The main difference between top-down and bottom-up parsers is the way the granun 
rules are used. For example, consider the rule NP~ADJ NP 1. In a top-down approach ;r 
rule is used to identify an NP by looking for the sequence ADJ NP I. Top-down parsing' ca e 
be very predictive. A phrase or a word may be ambiguous in isolation. The top-down a; 
proach may prevent some ungrammatical combinations from consideration. It never wastes 
time exploring trees that cannot result in an S. On the other hand, it may predict many dif­
ferent constituents that do not have a match to the input sentence and rebuild large constitu­
ents again and again. For example, when the grammar is left-recursive (i.e., it contains a 
non-terminal category that has a derivation that includes itself anywhere along its leftmost 
branch), the top-down approach can lead a top-down, depth-first left-to-right parser to recur­
sively expand the same non-terminal over again in exactly the same way. This causes an 
infinite expansion of trees. In contrast, a bottom-up parser takes a sequence ADJ NP/ and 
identifies it as an NP according to the rule. The basic operation in bottom-up parsing is to 
take a sequence of symbols and match it to the right-hand side of the rules. It checks the 
input only once, and only builds each constituent exactly once. However, it may build up 
trees that have no hope of leading to S since it never suggests trees that are not at least lo­
cally grounded in the actual input. Since bottom-up parsing is similar to top-down parsing in 
terms of overall performance and is particularly suitable for robust spoken language process­
ing as described in Chapter 17, we use the bottom-up method as our example to understand 
the key concept in the next section. 

11.1.2.2. Bottom-Up Chart Parsing 

As a standard search procedure, the state of the search consists of a symbol list, starting with 
the words in the sentence. Successor states can be generated by exploring all possible ways 
to replace a sequence of symbols that matches the right-hand side of a grammar rule with its 
left-hand side symbol. A simple-minded solution enumerates all the possible matches, lead­
ing to prohibitively expensive computational complexity. To avoid this problem, it is neces­
sary to store partially parsed results of the matching, thereb:-,· eliminating duplicate "".ork. 
This is the same technique that has been widely used in dynamic programming, as descn~ed 
in Chapter 8. Since chart parsing does not need to be from left to right, it is more efficient 
than the graph search algorithm discussed in Chapter 12, which can be used to parse tbe 
input sentence from left to right. 

A data structure, called a chart, is used to allow the parser to store the partial res_ults of 
the matching. The chart data structure maintains not only the records of all the conSntuents 
derived from the sentence so far in the parse tree, but also the records of rules th3t bave 
matched partially but are still incomplete. These are called active arcs. Here, matches arhe 
I 'd d fr h · · . . · h resent t e a ways cons1 ere om t e pomt of view of some actzve constituents, wb1c rep 
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b ~rts that the input sentence can be divided into according to ti . . su p.. . 1e rewnte rules Acl!ve 
nstituents are stored m a data structure called an agenda To fiiid ·1 co . . . . . · grammar ru es that 

match a stn~g mvolvmg the active constituent, we need to identify rules that start with the 
active constituent or rul~s that have already been started by earlier active constituents and 

quire the current constituent to complete the rule or to extend the rule Th b - . re . . . . e as1c operation 
ofa chart-based pa:ser mvolv~s com_bmmg these partially matched records (active arcs) with 

3 completed ~onst1n1ent to fo~n either a . new comp~eted constituent or a new partially 
matched (but mc~mplete) constituent that 1~ an extension of the original partially matched 
constituent. Just hke the gr~ph search algonthm, we can use either a depth-first or breadth­
first search strategy, dependmg on how the agenda is implemented. If we use probabilities or 
other heuristics, we take the best-first strategy discussed in Chapter 12 to select constituents 
from the agenda. The chart-parser process is defined more precisely in Algorithm 1 1. l. It is 
possible to combine both top-down and bottom-up. The major difference is how the con­
stituents are used. 

ALGORITHM 11.1: A BOTTOM-UP CHART PARSER 

Step1: Initialization: Define a list called chart to store active arcs, and a list called an agenda 
to store active constituents until they are added to the chart. 
Step 2: Repeat: Repeat Step 2 to 7 until there is no input left. 
Step 3: Push and pop the agenda: If the agenda is empty, look up the interpretations of the 
next word in the input and push them to the agenda. Pop a constituent C from the agenda. If C 
corresponds to position from 111; to w1 of the input sentence, we denote it C{i,j]. 
Step 4: Add Cto the chart: Insert C[i,j]into the chart. 
Step 5: Add key-marked active arcs to the chart: For each rule in the grammar of the fonn 
X-;C Y, add to the chart an active arc (partially matched constituent) of the form X[i,j]""?°CY, 
where • denotes the critical position called the key that indicates that everything before • has 
been seen, but things after O are yet to be matched (incomplete constituent). 
Step 6: Move O forward: For any active arc of the form X{1,j]""? Y ... °C ... Z (everything before 
w,) in the chart, add a new active arc of the form X{1,j] ""? Y ... C0 

•• .Z to the chart. 
Step 7: Add new constituents to the agenda: For any active arc of the form X[1,IJ""? Y ... °C, 
add a new constituent of type X{1,j] to the agenda. . 
Step 8: Exit: If 611,n] is in the chart, where n is the length of the input sentence, we can exit 
successfully unless we want to find ·an possible interpretations of the sentence. The chart may 
contain many S structures covering the entire set of positions. 

Let us look at an example to see how the chart parser parses the sentence Mary loves 
that person using the grammar specified in Figure 1 l. 1. We first create the cha~ and agenda 
data structure as illustrated in Figure 11.2 (a), in which the leaves of the tree-hke chai: data 
S!ructure corresponds to the position of each input word. :he par~nt of each b~o.ck 10 

:: 

chart covers from the position of the left child's correspondmg startmg word position to 
right child's corresponding ending word position. Thus, the root block in the chart covers 
the whole sentence from the first word Mary to the last word person. The chart parser scans 
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through the input words to match against possible rewrite rules in the grammar. For th fi 
word, th~ rule Name~Ma,y can be matched,_ so it is added to the agenda according to ;te;~ 
in Algorithm 11 . l. In Step 4, Name~Mary 1s added to the chart from the agenda. After the 
word Mary is processed, we have Name~Mary, NP~Name, and S~NP0 VP in the chart 
illustrated in Figure 11.2 (b ). NP0 VP in the ~hart. indicates that O has reached the poin~ :~ 
which everything before 0 has been matched (m this case Mary matched NP) but everythin 
after O is yet to be parsed. The completed parsed chart is illustrated in Figure 11 .2 (c). g 

A parser may assign one or more parsed structures to the sentence in the language it 
defines. If any sentence is assigned more than one such structure, the grammar is said to be 
ambiguous. Spoken language is, of course, ambiguous by nature.3 For example, we can have 
a sentence like Ma,)' sold the student bags. It is unclear whether student should be the modi­
fier for bags or whether it means that Mary sold the bags to the student. 

Chart parsers can be fairly efficient simply because the same constituent is never con­
structed more than once. In the worst case, the chart parser builds every possible constituent 
between every possible pair of positions, leading to the worst-case computational complex­
ity of 0( n 3 

), where n is the length of the input sentence. This is still far more efficient than a 
straightforward brute-force search. 

In many practical tasks, we need only a partial parse or shallow parse of the input sen­
tence. You can use cascades of finite-state automata instead of CFGs. Relying on simple 
finite-state automata rather than full parsing makes such systems more efficient, although 
finite-state systems cannot model certain kinds of recursive rules, so that efficiency is traded 
for a certain lack of coverage. 

Name[l ,IJ 4 MaI)' 

Mary loves that person 

(a) The chart is illustrated on the left, and the agenda is on the right. The agenda now has one 
rule in it according to Step 3, since the agenda is empty. 

i Th . .. u I')' Joi•es 1hal e 5?,me parse tree can also mean multiple things, so a parse tree itself does not define mean mg. mo 
person could be sarcastic and mean something different. 
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<
'Name~ Mary 
NP~ Name 

~y~ 

Mazy loves 

V[2,2J~ loves 

that person 

(b) After Mary, the chart now has rules Name~Mary, NP-+Name, and S-+NP0 VP. 

<'Name-+ Mary' 
NP-+ Name 

V 
Mary loves that person 

553 

(c) The chart after the whole sentence is parsed. s~ NP VP covers the whole sentence, indicating that 
the sente . nee 1s parsed successfully by the grammar. 

Figure 11.2 An example of a chart parser with the grammar illustrated in Figure 1 J.1. Parts (a) 
and (b) show the initial chart and agenda to parse the first word; part (c) shows the chart after 
the sentence is completely parsed. 
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11.2. STOCHASTIC LANGUAGE MODELS 

Language Mod -1• e 1ng 

Stochastic language models (SLM) tak_e_a probabilistic ~iewpoint of language modeling. We 
need to accurately estimate the probab1hty P(W) for a given word sequence W == w w 
In the formal language theory discussed in Sectio~ 11.1, P(W) can be regarded as 

1
1 ,~·~·;,,if 

the word sequence is accepted or rejecte~, respectively, by ~he gr~mm~r. This may be inap­
propriate for spoken language systems, smce the grammar_1tself 1s unlikely to have a com­
plete coverage, not to mention that spoken language 1s often ungrammatical in real 
conversational applications. 

The key goal of SLM is t~ provide ad~~uate p~obabilistic information so that likely 
word sequences should have a higher probabthty. This not only makes speech recognition 
more accurate but also helps to dramatically constrain the search space for speech recogni­
tion (see Chapters 12 and 13). Notice that SLM can have a wide coverage on all the possible 
word sequences, since probabilities are used to differentiate different word sequences. The 
most widely used SLM is the so call n-gram model discussed in this chapter. In fact, the 
CFG can be augmented as the bridge between the n~gram and the formal grammar if we can 
incorporate probabilities into the production rules, as discussed in the next section. 

11.2.1. Probabilistic Context-Free Grammars 

The CFG can be augmented with probability for each production rule. The advantages of 
probabilistic CFGs (PCFGs) lie in their ability to more accurately capture the embedded 
usage structure of spoken language to minimize syntactic ambiguity. The use of probability 
becomes increasingly important to discriminate many competing choices when the number 
of rules is large. 

In the PCFG, we have to address the parallel problems we discussed for HMMs in 
Chapter 8. The recognition problem is concerned with the computation of the probability of 
the start symbol S generating the word sequence W = w1, w2 .••• w7 , given the grammar G: 

P(S ~ WIG) (11.1) 

where ~ denotes a derivation sequence consisting of one or more steps. This is equivalent 
to the chart parser augmented with probabilities, as discussed in Section 11.1.2.2. 

The training problem is concerned with determining a set of rules G based on the 
training corpus and estimating the probability of each rule. If the set of rules is fixed, t~e 
simplest approach to deriving these probabilities is to count the number of times each rule 15 

used in a corpus containing parsed sentences. We denote the probability of a rule A ~ a by 
P(A-+ alG). For instance, if there are m rules for left-hand side non-terminal node 
A: A -+ a 1, A -+ a 2, ... A ~ am, we can estimate the probability of these roles as follows: 

(11.2) 

where C(.) denotes the number of times each rule is used. 
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When you have hand-annotated corpora, you can use the maximum likelihood estima­
tion as illustrated by Eq. (11.2) to derive the probabilities. When you don't have hand­
annotated corpora, _you ~an extend the EM algorithm (see Chapter 4) to derive these prob­
abilities. The algorithm 1s also known as the i11side-ou1s;de algorithm. As we discussed in 
Chapter 8, you can develop algorithms similar to the Viterbi algorithm to find the most 
likely parse tree that could have generated the sequence of words P(W) after these probabili­
ties are estimated. 

We can make certain independence assumptions about rule usage. Namely, we assume 
that the probability of a constituent being derived by a rule is independent of how the con­
stituent is used as a subconstituent. For instance, we assume that the probabilities of NP 
rules are the same no matter whether the NP is used for the subject or the object of a verb, 
although the assumptions are not valid in many cases. More specifically, let the word se­
quence W=w1, w2_ ••. Wr be generated by a PCFG G, with rules in Chomsky normal form as 
discussed in Section 11.1. l: 

(l l.3) 

where Am and A" are two possible non-terminals that expand A; at different locations. The 
probability for these rules must satisfy the following constraint: 

1P(A1 ""7 Am A,. I G)+ LP(A; ""7 w1 I G) = I, for all i (11.4) 
"'·" I 

Equation ( 11.4) simply means that all non-tenninals can generate either pairs of non­
tenninal symbols or a single terminal symbol, and all these production rules should satisfy 
the probability constraint. Analogous to the HMM forward and backward probabilities dis­
cussed in Chapter 8, we can define the inside and outside probabilities to facilitate the esti­
mation of these probabilities from the training data. 

A non-terminal symbol A; can generate a sequence of words w j w j+I .. . wk; we define 
the probability of Inside(j,A;,k) = P(A; ~ wiwi .. , . .. wt l G) as the inside constituent ?r~b­
ability, since it assigns a probability to the word sequence inside the constituent. The ms1de 
probability can be computed recursively. When only one word is emitted, the transition rule 
of the form A; ~ w m applies. When there is more than one word, rules of the form 
1-+ A,.A,, must apply. The inside probability of inside(}, A;,k) can be expressed recur­
sively as follows: 

inside(j, A;,k) = P(A; => w1 wj+I ... wk) 

.t-1 

=,LL P(A; ~ Am An )P(Am => w1 . .. w, )P(An =) W1+1 ... Wk) 

11,m [>zj 

k-1 =LL P(A1 ~ Am A,, )inside(}, A,,, ,{)inside(!+ 1, A,, ,k) 
n,m l=j 

( l 1.5) 
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The inside probability is the sum of the probabilities of all derivations for the secf 
over the span of j to k. One possible derivation of the form can be drawn as a parse :~: 
shown in Figure 11.3. 

Another useful probability is the outside probability for a non-terminal node A. cov , er-
ing w, to w,, in which they can be derived from the start symbol S, as illustrated in Figure 
11.4, together with the rest of the words in the sentence: 

outside(s, A;, t) = P(S => w1 ... w s-t A; w,+1--· Wr) (11.6) 

After the inside probabilities are computed bottom-up, we can compute the outside 
probabilities top-down. For each non-terminal symbol A,, there are one of two possible con­
figurations Am ~ A,, A; or Am ~ A; An as illustrated in Figure 11 .5. Thus, we need to con­
sider all the possible derivations of these two forms as follows: 

(11.7) 

The inside and outside probabilities are used to compute the sentence probability as 
follows: 

P(S => w1 ••• wr) = L inside(s, A;, t)outside(s, A;, t) 
I 

for any s 5 t 

... Wt Wt+I ... w ..... 

Figure 11.3 Inside probability is computed recursively as swn of all the derivations. 

(11.8) 
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s 

Figure 11.4 Definition of the outside probability. 

Since outside( 1, A;, T) i~ equal to l for the ~tarting symbol only, the probability for the 
whole sentence can be conveniently computed usmg the inside probability alone as 

P(S => WIG)= inside(!, S, T) (11.9) 

We are interested in the probability that a particular rule, A; -+ Am A,. is used to cover 
a span ws ... w1 , given the sentence and the grammar: 

~(i,m,n,s,t)= P(A, =) w, ... w,,A;-+ A,,,An IS=) W,G) 

I H 

= p S W G _LP(A,-+ An,A,, IG)inside(s,A,,,,k)inside(k+1,An,t)outside(s,A,,t) 
( => I ) A=s 

(11.10) 

These conditional probabilities form the basis of the inside-outside algorithm, which is simi­
lar to the forward-backward algorithm discussed in Chapter 8. We can start with some initial 
probability estimates. For each sentence of training data. we detennine the inside and out­
side probabilities in order to compute, for each production rule, how likely it is that the pro­
duction rule is used as part of the derivation of that sentence. This gives us the number of 
counts for each production rule in each sentence. Summing these counts across sentences 
gives us an estimate of the total number of times each production rule is used to produce the 

s s 

Figure 11.5 Two possible configurations for a non-tenninal node A; · 
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sentences in the training corpus. Dividing by the total counts of productions used for e h 
non-terminal gives us a new estimate of the probability of the production in the M~E 
framework. For example, we have: 

T-1 T 

L L,~(i,m,n,s,t) 
P(A-~ A A IG)=-.::·1~·=:...;l l~=.:..:s+..;l _____ _ 

1 m n T-1 T (11.11) 

LL L~(i,m,n,s,t) 
111,11 s=l t=s+I 

In a similar manner, we can estimate P(A; ~ w,,, I G) . It is also possible to let the in­
side-outside algorithm fonnulate all the possible grammar production rules so that we can 
select rules with sufficient probability values. If there is no constraint, we may have too 
many greedy symbols that serve as possible non-terminals. In addition, the algorithm is 
guaranteed only to find a local maximum. It is often necessary to use prior knowledge about 
the task and the grammar to impose strong constraints to avoid these two problems. The 
chart parser discussed in Section 11.1.2 can be modified to accommodate PCFGs [29, 45]. 

One problem with the PCFG is that it assumes that the expansion of any one non­
terminal is independent of the expansion of other non-terminals. Thus each PCFG rule prob­
ability is multiplied together without considering the location of the node in the parse tree. 
This is against our intuition since there is a strong tendency toward the context-dependent 
expansion. Another problem is its lack of sensitivity to words, although lexical information 
plays an important role in selecting the correct parsing of an ambiguous prepositional phrase 
attachment. In the PCFG, lexical information can only be represented via the probability of 
pre-terminal nodes, such as verb or noun, to be expanded lexically. You can add lexical de­
pendencies to PCFGs and make PCFG probabilities more sensitive to surrounding syntactic 
structure[6, II, 19,31,45]. 

11.2.2. N-gram Language Models 

As covered earlier, a language model can be formulated as a probability distribution P(W) 
over word strings W that reflects how frequently a string W occurs as a sentence. For ex­
ample, for a language model describing spoken language, we might have P(hi) = O.ol, since 
perhaps one out of every hundred sentences a person speaks is hi. On the other hand, we 
would have P(lid gallops Changsha pop) = 0, since it is extremely unlikely anyone would 
utter such a strange string. 

P(W) can be decomposed as 

P(W) = P( w1 , w2 , ... , w n) 

= P(w1 )P(wzlwi)P(w3IW1' W2 ) · .. P(w"lw1' Wz , ... , wn-1) (11.12) 
II 

= TI P(w;lw1, w2 , • • • , w;_,) 
i=l 
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where P( w;I w, , W2' ... , w,_ 1) is the probab~lity that w, will follow, given that the word se­
quence w,. 11•2, ···:. wi-1 wa~ presented pr~v1ously. In Eq. (l l.12). the choice of w, thus de­
pends on t~e e_ntne past history o_f the mput. For a vocabulary of size v there are v1-1 

different h1sto~1es and so, to_ specify P( w,-_l 1_,,!, "'2 •... • wH) completely, / values would 
have to be estunated. In reality, the p~ob~b1ht1es P( H'; I w1• 1112 , .... 11,H) are impossible to 
estimate for even moderat~ values of 1 '. smce m?st histories w1, w2 , ••• , w

1
_

1 
are unique or 

have occun-ed only a few times. A practical solution to the above problems is to assume that 
P(wilw,, w2 , ••• , w1_1) depends only on _ some equivalence classes. The equivalence class 
can be simply based on the several previous words w,_N+I • w,-N+:! , ... , 11,1_

1
• This leads to 

an II-gram language model. If the word depends on the previous two words, we have a tri­
gram: P( w;l'w,_2, 1111_1). _ Simil~rly, ~e can have unigram: P(w1), or bigram: P(w;lw,_,) 
language models. The tngram is particularly powerful, as most words have a strong depend­
ence on the previous two words, and it can be estimated reasonably well with an attainable 
corpus. 

In bigram models, we make the approximation that the probability of a word depends 
only on the identity of the immediately preceding word. To make P(w1 I w,_1) meaningful 
for i = I, we pad the begi1111ing of the sentence with a distinguished token <s>; that is, we 
pretend w0 = <s>. In addition, to make the sum of the probabilities of all strings equal I, it is 
necessary to place a distinguished token <Is> at the end of the sentence. For example, to 
calculate P(Mary loves that person) we would take 

P(Mary loves that person)= 
P(Maryl<s> )P(loveslMa,y )P( thatlloves )P(perso11\that)P( <ls>l,,erson) 

To estimate P(w;)w;_
1
), the frequency with which the word w; occurs g!ven that the 

last word is w;_1, we simply count how often the sequence ( w;_., Ii',) occurs m some text 
and nonnalize the count by the number of times w;_, occurs. 

In general, for a trigram model, the probability of a word de~ends on the two preced­
ing words. The trigram can be estimated by observing the frequencies or counts of the word 
pair C(wH, w,_1) and triplet C(w1_ 2 , 1111_ 1, w1 ) as follows: 

(11.13) 

. 1 d · · g corpus For n-gram models, 
The text available for building a model is cal e a tramm · . f E 

h ·w s of words The estimate o q. 
t e amount of training data used is typically many mi ion h' · . ent ofprobabili-
(l l 13 · . · d · · 1 because t 1s ass1gnm 
. · _) 1s based on the maximum hke!1hoo pn~c,p e, bTt to the training data of all 

hes yields the trigram model that assigns the highest proba I i Y 

possible trigram_models. _ ode! as its order. This terminology 
We sometimes refer to the value n of an_ n gram m models are an instance. In particu-

comes from the area of Markov models, of which n-gram 
1 la M k v model of order n- · r, an n-gram model can be interpreted as a ar 0 
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Consider a small example. Let our training data S be comprised of the three sentences 
John read her book. I read a different book. John r~ad a book by Mulan . and let us calculate 
P(John read a book) for the maximum likelihood b1gram model. We have 

C(< s >,John)_ 2 
P( John I< s >) = C( < s >) - 3 

C(John,read) _ 2 
P(read I John)= C(John) - 2 

C(read,a) 2 
P(a I read)= d) = -

3 C(rea 

b k I ) C(a,book) 1 
P( oo a=...-:.--~=-

C(a) 2 

P(< Is >I book)= C(book,< Is>)=~ 
C(book) 3 

These trigram probabilities help us estimate the probability for the sentence as: 

P(John read a book) 

= P(John I< s >)P(read I John)P(a I read)P(book I a)P( <Is >I book) 

""0.148 

(11.14) 

If these three sentences are all the data we have available to use in training our lan­
guage model, the model is unlikely to generalize well to new sentences. For example, the 
sentence "Mulan read her book" should have a reasonable probability, but the trigram will 
give it a zero probability simply because we do not have a reliable estimate for 
P(reacflMulan ). 

Unlike linguistics, grammaticality is not a strong constraint in the n-gram language 
model. Even though the string is ungrammatical, we may still assign it a high probability if n 
is small. 

11.3. COMPLEXITY MEASURE OF LANGUAGE MODELS 

Language can be thought of as an information source whose outputs are words H\ belonging 
to the vocabulary of the language. The most common metric for evaluating a language 
~~del is the word recognition error rate, which requires the participation of a speech re~og­
mtion system. Alternatively, we can measure the probability that the language model assi~s 
to teSl word strings without involving speech recognition systems. This is the derivative 
measure of cross-entropy known as test-set perplexity. 

. The mea~~re of cross-entropy is discussed in Chapter 3. Given a langua~e model_ th: 
assigns probabihty P(W) to a word sequence W, we can derive a compression algonth 

that encodes the text W using -log2 P(W) bits. The cross-entropy H(W) of a model 
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P(w;lw;-n+i···W;-1) on data W, with a sufficiently long word sequence, can be simply 
approximated as 

1 
H(W)=--log~ P(W) 

Nw (11.15) 

where Nw is the length of the text W measured in words. 
The perplexity PP(W) of a language model P(W) is defined as th · 1 f 

· b b'l' · e rec1proca o the 
(geometric) average pro a 1 1ty assigned by the model to each word in the test set w. This 
is a measure, related to cross-entropy, known as test-set perplexity: 

PP (W) = 2H<W) 
(I 1.16) 

The perplexity can be roughly interpreted as the geometric mean of the branching fac­
tor of the text when presented to the language model. The perplexity defined in Eq. (11.16) 
has two key paramet~rs:. a langua~~ model and a word sequence. The test-set4 perplexity 
evaluates the generalization capab1hty of the language model. The training-set perplexity 
measures how the language model fits the training data, like the likelihood. It is generally 
true that lower perplexity correlates with better recognition performance. This is because the 
perplexity is essentially a statistically weighted word branching measure on the test set. The 
higher the perplexity, the more branches the speech recognizer needs to consider statisti­
cally. 

While the perplexity [Eqs. (11.16) and (11.15)] is easy to calculate for then-gram [Eq. 
(11.12)], it is slightly more complicated to compute for a probabilistic CFG. We can first 
parse the word sequence and use Eq. (11.9) to compute P(W) for the test-set perplexity. 
The perplexity can also be applied to nonstochastic models such as CFGs. We can assume 
they have a unifonn distribution in computing P(W) . 

A language with higher perplexity means that the number of words branching from a 
previous word is larger on average. In this sense, perplexity is an indication of !he complex­
ity of the language if we have an accurate estimate of P(W). For a given language, the dif­
ference between the perplexity of a language model and the true perplexity of !he language 
is an indication of the quality of the model. The perplexity of a particular language model 
can change dramatically in terms of the vocabulary size, the number of states of grammar 
rules, and the estimated probabilities. A language model with perplexity X has roughl~ the 
same difficulty as another language model in which every word can be f~ll~wed by .X. differ­
ent words with equal probabilities. Therefore, in the task of continuous d1~1t r~cogmt10~,. the 
perplexity is 10. Clearly, lower perplexity will generally have less confus10n rn recogmuon. 
TYPicaI perplexities yielded by n-gram models on English text range from about 50_ to al­
most 1000 (corresponding to cross-entropies from about 6 to 10 bi_~word), depending on 
the type of text. In the task of 5 0OO-word continuous speech recogmuon for the Wall Street 
Journal, the test-set perplexitie~ of the trigram grammar and the bigrarn grammar are re-

' W d d that from the training data to de-
. e often distinguish between the word sequence from the unseen teSl ala an 

nve the language model. 
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b t 128 and 176 respectively:1 In the tasks of 2000-word conversational Air 
ported to be a ou · f d · 

I f t
. System (ATIS) the test-set perplexity o the wor tngram model is typi-

Travel n onna 10n ' 
cally Jess than 20. · f b'] ' 

Since perplexity does not take into account acous~ic con usa I ity, we eventually have 
to measure speech recognition accuracy. For example, if the vocabulary of a speech recog. 
nizer contains the E-set of English alphabet: B. C, D, E'. G, P,and T, we can define a CFO 

th h low perplexity value of 7. Such a low perplexity does not guarantee we will have 
at as a . . · f b'l' f 

good recognition performance, because of the intrms1c acoustic con usa i ity o the E-set. 

11.4. N-GRAMSMOOTHING 

One of the key problems in n-gram modeling is the inherent data sparseness of real training 
data. If the training corpus is not large enough, many actually possible word successions 
may n~t be well observed, leading to many extremely small probabilities. For example, with 
several-million-word collections of English text, more than 50% of trigrams occur only 
once, and more than 80% of trigrams occur less than five times. Smoothing is critical to 
make estimated probabilities robust for unseen data. If we consider the sentence Mulan read 
a book in the example we discussed in Section 11.2.2, we have: 

P( di M l ) 
C( Mu/an, read) 0 rea u an = _;..._ ___ --'- = -L C(Mulan, w) 1 
w 

giving us P(Mulan read a book) = 0. 
Obviously, this is an underestimate for the probability of "Mu/an read a book" since 

there is some probability that the sentence occurs in some test set. To show why it is impor­
tant to give this probability a nonzero value, we turn to the primary application for language 
models, speech recognition. In speech recognition, if P(W) is zero, the string W will never 
~e considered as a possible transcription, regardless of how unambiguous the acoustic signal 
1s. Thus, w_henever a string W such that P(W) = O occurs during a speech recognition task, 
an error will be made. Assigning all strings a nonzero probability helps prevent errors in 
spee~h rec~gni~on. This is the core issue of smoothing. Smoothing techniques adjust the 
maximum hkehhood estimate of probabilities to produce more robust probabilities for un­
seen data, although the likelihood for the training data may be hurt slightly. 
. The name s~oo_thing comes from the fact that these techniques tend to make distribu­

llO_n~ _flatter, by adJustmg low probabilities such as zero probabilities upward, and high prob­
abthlles downward. Not only do smoothing methods generally prevent zero probabilities, 

·' Some experimental results show lhat th . . F mple, French E 
1
. h 

1 1
. e teSt·set perplex1ues for different languages are comparable. or exa 

, ng 1s , ta 1an and German h b' per cor-
pora. Italian has a much h' h av~ a igra~ test-set perplexity in the range of 95 to 133 for newspa h. h 
numbe ffi . ig er _perplexity reduction (a factor of 2) from bigram to trigram because of the ig 

r o uncuon words. The tngra 1 . . . 
m perp ex,ty ofltahan 1s among the lowest in these languages [341· 
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h Y also attempt to improve the accuracy of the model 
but t e as a whole Wh 

b bl.lity is estimated from few counts, smoothing has the pot t· 
1 

. · . enever a 
Pro a . 1 en ta to s1gmfica ti · 

the estimation so that tt 1as better generalization capability n Y im-
prove . . · 

To give an example, one simple smooth mg technique is to pret d h . 

Ore than it actually does, yielding en eac btgram occurs 
0ncem 

_ l+C(w,._1,w,.) _ I+C(w,._1,w;) 
P(w,.lw;-1)-"" - ~ 

"'-'(l+C(w,_1,w;)) V+ ~C(111;_,,w;) (11.17) 

W; w, 

where vis the size of the vocabulary. In prac_tice, vocabularies are typically fixed to be tens 
of thousands of words or less. All words not m th~ vocabulary are mapped to a single word, 
usually called the unknown word. Let us reconsider the previous example using this new 
distribution, and let us take our vocabulary V to be the set of all words occurring in the train­
ing data S, so that we have V = 11 ( with both <s> and </s> ). 

For the sentence John read a book, we now have 

P(John read a book) 

= P(John I< Is >)P(read I John)P(a I read)P(book I a)P(< / s >I book) 

= 0.00035 
(11.18) 

In other words, we estimate that the sentence John read a book occurs about once 
every three thousand sentences. This is more reasonable than the maximum likelihood esti­
mate of 0.148 ofEq. (11.14). For the sentence Mu/an read a book, we have 

P(Mulan read a book) 

=P(Mulan I< Is >)P(read I Mulan)P(a I read)P(book I a)P(< Is >I book) 

= 0.000084 

(11.19) 

Again, this is more reasonable than the zero probability assigned by the maximum 
likelihood model. In general, most existing smoothing algorithms can be described with the 
following equation: 

P,..,.,,h ( w,. I wl-n+I ... w,._, ) 
={a(w,. I w,_,,w-,W;-1) 

r(wl-n+1-.. w,_1)P,moo1h(w, I W;-n+2· .. W1-1) 

if C(w,_,,+1 ... w,)>O 

if C(w1_,,+1 ••• w;)=O 

(I 1.20) 

o T~at is, if an n-gram has a nonzero count we use the distribution a( W; I wi-n+I · .. W;-l r 
w~herw,se, we backoff to the lower-order n-gram distribution Psm~!h(wi l~;-~+2·:· :i;~~ 

ere tbe scaling factor r( w. w . ) is chosen to make the cond1t1onal d1stn but10 
to one W ,-n+J ·•· ,-1 b k ,ff odels 

· e refer to algorithms that fall directly in this framework as ac 011 m · 
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Several other smoothing algorithms are expressed as the linear interpolation of higher­

and lower-order n-gram models as: 

P.,,,,.,.,,h(w, I W1-n+I ... W;-1) 

= lPML (w, I W1-n+1··-W1-1) +(1-A)~mootl,(w, I W;-n+2" .. wl-1) 
(11.21) 

where A is the interpolation weight that depends on w,_n+i ••• W;-1 • We refer to models of this 

fonn as interpolated models. . . 
The key difference between backoff and interpolate~ models_ 1s that for the probability 

of n-grams with nonzero counts, interpolated models use mfo~atton from lower-order dis­
tributions while backoff models do not. In both backoff and interpolated models, lower­
order distributions are used in determining the probability of n-grams with zero counts. 
Now, we discuss several backoff and interpolated smoothing methods. Performance com­
parison of these techniques in real speech recognition applications is discussed in Section 

11.4.4. 

11.4.1. Deleted Interpolation Smoothing 

Consider the case of constructing a bigram model on training data where we have that 
C(enliven you) = 0 and C(enliven thou) = 0. Then, according to both additive smoothing of 
Eq. (I 1.17), we have P(youlenliven) = P(thoulenliven). However, intuitively we should have 
P(youjenliven) > P(thoulenliven), because the word you is much more common than the 
word thou in modern English. To capture this behavior, we can interpolate the bigram model 
with a unigram model. A unigram model conditions the probability of a word on no other 
words, and just reflects the frequency of that word in text. We can linearly interpolate a bi­
gram model and a unigram model as follows: 

(11.22) 

where O $AS I. Because P(youjenliven) = P(thoulen/iven)=O while presumably P(you) > 
P(thou), we will have that ~(you I enliven)> ~(thou I enliven) as desired. 

In general, it is useful to interpolate higher-order n-gram models with lower-order n­
gram models, because when there is insufficient data to estimate a probability in the higher­
order m?del, ~he_ lower-order model can often provide useful information. An elegant way of 
perfonnmg tb1s mterpolation is given as follows 

P1 (w; lwi-n+t ··· W;-1) 

=lw,_ft+Lw1-1P (w;lw1-n+l·· ·W;-1)+(1-A.w w )P1 (w-lw- +2 ... w,_1) 
1-11+1~. i-I r r-n 

(11.23) 

That is, the ntb-order_smoo~ed model is defined recursively as a linear interpolation 
between tbe nth-0 rder maximum likelihood model and the (n-l)th-order smoothed model. 
To end the recursion we ca t k th th - likeli-

, 0 a e e smoo ed first-order model to be the maximum 
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hood distribution (unigram), or we can take the smoothed zeroth- d d . 
. · · ff fi d p ( , , . or er mo el to be the uni-

form d1stnbu~ion. rven a ixe_ ¾; I l-1 i-11+1: • · IV;-1 ) , rt is possible to search efficient! for 
the interpolation parameters usmg the deleted mterpolation method d' d . Y 

. h · I , . . rscusse m Chapter 9 
No1tce that t e optuna 11.,,. ,1 " rs different for diffierent hr'sto . . ·- ... ,... nes w w For 

example for a context we have seen thousands of times a high ~ .11 b . 1-•+1 ••• _i-1 • 
' • • • • • • ' 11. wi e suitable smce the 

higher-order d1stnbut1on rs very reltable; tor a history that has occu d 1 ' . . . . rre on y once, a lower )._ 
l·s appropriate. Trammg each parameter A. . independently can b h fi 1 . "•:--· .. ... ",-• e arm u ; we need an 
enormous amount of data to tram so many independent parameters accurately O 'b'I 

. . · h l · . . ne poss1 1 -
ity is to d1v1d~ t e ,..,,,_,. ...... ,... mto a moderate number of partitions or buckets, constraining 
all l . m the same bucket to have the same value thereby reduci·ng th b f ,...,~,.. .... ,., . , e num er o 
independent _parameters to b~ estimated. Idea II~, we should tie together those A,,. •. that 
we have a prior reason to believe should have similar values. ,_ ... ,... 

11.4.2. Backoff Smoothing 

Backoff smoothing is attractive because it is easy to implement for practical speech recogni­
tion systems. The Katz backoff model is the canonical example we discuss in this section. It 
is based on the Good-Turing smoothing principle. 

11.4.2.1. Good-Turing Estimates and Katz Smoothing 

The Good-Turing estimate is a smoothing technique to deal with infrequent n-grams. It is 
not used by itself for n-gram smoothing, because it does not include the combination of 
higher-order models with lower-order models necessary for good performance. However, it 
is used as a tool in several smoothing techniques. The basic idea is to partition n-grams into 
groups depending on their frequency (i.e. how many time the n-grams appear in the training 
data) such that the parameter can be smoothed based on n-gram frequency. 

The Good-Turing estimate states that for any n-gram that occurs r times, we should 
pretend that it occurs ,. • times as follows: 

• 11 
r ==(r+l)...!:±.!.. (11.24) 

n,. 

w~ere n,. is the number of n-grams that occur exactly r times in _the training data. To convert 
th1s count to a probability, we just nonnalize: for an n-gram a with ,. counts, we take 

• r 
P(a)=-

N 

(11.25) 

00 

- - ~ • N · qual to the 
where N == Ln,.r ·. Notice that N = Ln,r" = L(r+ l)nr+, == ~n,r' ,.e., ts e 

r=O r:sO r=:O 

original number of counts in the distribution [28]. 
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. d the intuitions of the Good-Turing estimate by adding the 
Katz smoothing exten s ] . 
. . . h d models with lower-order models [38 . Take the btgram as our 

combmauon of h1g er-or er . . .i: 

1 - gested using the Good-Turmg estnnate 1or nonzero counts as 
example, Katz smoot 11ng sug 
follows: 

rd,- if r>O 
• ) r 

C ( w,_, w, = l a( w,_, )P( W;) ifr=O 
(11.26) 

h d · xi·mately equal to r' Ir. That is, all bigrams with a nonzero count r are w ere , 1s appro . . . 
d

. 
1 

d di·ng to a discount ratio d , which tmphes that the counts subtracted from 1scoun e accor r . . 
the nonzero counts are distributed among the zero-count b1grams a~cordmg to the next 
lower-order distribution, e.g., the unigram model. The valu~ a( w,_1) 1s chosen to equalize 
the total number of counts in the distribution, i.e., L,11,, C ( W1_, w, ! = L,.; ~ ( w,_, w1) . The 
appropriate value for a( w;-i) is computed so that the smoothed b1gram satisfies the prob-
ability constraint: 

(11 .27) 

To calculate p• (w1 I w;_1) from the corrected count, we just normalize: 

. c· ( w,_, w,) 
P (w, I w,_,)= ~ • 

.£..J •. C (w;-r w,) 
' 

( 11.28) 

In Katz implementation, the d, are calculated as follows: large counts are taken to be 
reliable, so they are not discounted. In particular, Katz takes d,. = 1 for all r > k for some k, 
say kin the range of 5 to 8. The discount ratios for the lower counts r $ k are derived from 
the Good-Turing estimate applied to the global bigram distribution; that is, n, in Eq. (11.24) 
denotes the total number of bigrams that occur exactly r times in the training data. These d, 
are chosen such that 

• the resulting discounts are proportional to the discounts predicted by the 
Good-Turing estimate, and 

• the total number of counts discounted in the global bigram distribution is 
equal to the total number of counts that should be assigned to bigrams with 
zero counts according to the Good-Turing estimate. 

The first constraint corresponds to the following equation: 
. 

r 
d, =µ-

r 
(l J .29) 
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for r E {l, ... k} with some constant µ . The Good-Turing f . 

nl
ass assigned to bigrams with zero counts is n, es imate predicts that the total 

no ;- == n. ' and the second constraint corre-
sponds to the equation o 

k 

I,nr(1-d,.)r=n1 

r=l 

Based on Eq. ( 11.30), the unique solution is given by: 

,-• (k+l)nk+I 

r 11 I 
d, = --( k_+_l_)_nk_+_I -

l-----
n1 

(11.30) 

(l l.31) 

Katz smoothing for higher-order 11-gram models is defined analogously. The Katz n­
gram backoff model is defined in tem1s of the Katz (n-1 )-gram model. To end the recursion, 
the Katz unigram model is taken to be the maximum likelihood unigram model. It is usually 
necessary to smooth nr when using the Good-Turing estimate, e.g., for those n, that are 
very low. However, in Katz smoothing this is not essential because the Good-Turing esti­
mate is used only for small counts r<=k, and n, is generally fairly high for these values of r. 
The procedure of Katz smoothing can be summarized as in Algorithm 11 .2. 

In fact, the Katz backoff model can be expressed in terms of the interpolated model 
defined in Eq. ( 11.23 ), in which the interpolation weight is obtained via Eq. (I 1.26) and 
( 11.27). 

ALGORITHM 11.2: KATZ SMOOTHING 

{

C( w;_, w1) IC( w1_1) 

P,...,;(w; I w,_1) = d,C(w1_ 1w,)/C(w;_1) 

a(w,_1 )P(w;) 

• r (k+ J)nk+I 

ifr >k 

if k ~ r > 0 

ifr=O 

where d = r ni 
r 1- (k+l)nk+I 

1-L .; ;r>O p Kat= (w, I w,_, ) 
and a(w1_1) = 1_ ~ P(w.) 

~ "·,.r>O ' 

n1 
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11.4.2.2. Alternative Backoff Models 

In a similar manner to the Katz backoffmodel, there are other ways to discount th b . 
· F · t b I d" · · e pro ab1l-1ty mass. or ms ance, a so ute 1scow1t111g involves su~tractin~ a fixed discount D <== I 
from each nonzero count. !f we express the absolute d1scountmg in term of inte ol 
models, we have the followmg: rp ated 

Pabs ( W; I wi-n+I · · · W;-1) 

max{C(1i•;-n+t ... w; )-D,O} 
= ~ C( . , ) +(1-ilw,_,,.1..w,_1 )Pabs(w;lwi-n+2·· · wi-l) 

£..i w,-n+l · · · l1; w, 
(11.32} 

To make this distribution sum to l, we nonnalize it to detennine il . Absolut 
disc_ount~ng is explaiped wi_th the ~ood-Turing estimate. Empirically ~h~··~~~~age Good~ 
Turmg discount r - r associated with n-grams of larger counts (rover 3) is largely constant 
over r. 

Consider building a bigram model on data where there exists a word that is very com­
mon, say Francisco, that occurs only after a single word, say San. Since C(Francisco) is 
high, the unigram probability P(Francisco) will be high, and an algorithm such as absolute 
discounting or Katz smoothing assigns a relatively high probability to occurrence of the 
word Francisco after novel bigram histories. However, intuitively this probability should not 
be high, since in the training data the word Francisco follows only a single history. That is, 
perhaps Francisco should receive a low unigram probability, because the only time the word 
occurs is when the last word is San, in which case the bigram probability models its prob­
ability well. 

Extending this line of reasoning, perhaps the unigram probability used should not be 
proportional to the number of occurrences of a word, but instead to the number of different 
words that it follows. To give an intuitive argument, imagine traversing the training data 
sequentially and building a bigram model on the preceding data to predict the current word. 
Then, whenever the current bigram does not occur in the preceding data, the unigram prob­
ability becomes a large factor in the current bigram probability. If we assign a count to the 
corresponding unigram whenever such an event occurs, then the number of counts assigned 
to each unigram is simply the number of different words that it follows. In Kneser-Ney 
smoothing [ 40], the lower-order n-gram is not proportional to the number of occurrences of 
a word, but instead to the number of different words that it follows. We summarize the Kne-
ser-Ney backoff model in Algorithm 11.3. . 

Kneser-Ney smoothing is an extension of other backoff models. Most of the previ~us 
models used the lower-order n-grams trained with ML estimation. Kneser-Ney smoolbmg 
instead considers a lower-order distribution as a significant factor in the combined model 
such that they are optimized together with other parameters. To derive the formula, more 
generally, we express it in terms of the interpolated model specified in Eq. (11.23) as: 
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(11.33) 

To make this distribution sum to I, we have: 

1-l,,;_ ..... , ... = ~ C(w w) C(w1-n+1···w,_,•) 
k,.-

1 
1-n+I"' I 

D 
(I 1.34) 

where C{l~,-•+l '"w(_1 •) is the numb~r of unique words that follow the history 
w;-n+l "' w;_1• This equation enables us to interpolate the lower-order distribution with all 
words, not just with words that have zero counts in the higher-order distribution. 

ALGORITHM 11.3: KNESER~NEY 8/GRAM SMOOTHING 

l·max{C(wHw,)-D,O} ifC 
(w1-1w,) > 0 

Pw(w, I w,_1) = ·1 C(wH) 

a(w1_1)Pm(w,) otherwise 

where PKN ( w,) = q •w;) / I, C( •w,) , C( •w,) is the number of unique words preceding w,. 
"'' . 

a(w,_1) is chosen to make the distribution sum to 1 so that we have: 

1
_ L max{C(wHw,)-D,O} 

... ,,q ... ,...,..,>>° C(w. ) 
a(w )= ,-1 

1-1 I-~ P. (w) 
k .. ,.C(M't-1", )>0 KN I 

Now, take the bigi-am case as an example. We need to find a unigram distribution 
PKN (w;) such that the marginal of the bigrarn smoothed distributions should match the 
marginal of the training data: 

(I 1.35) 

For P (w;_1), we simply take the distribution found in the training data 

(11.36) 
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We substitute Eq. (11.33) in Eq. (11.35). For the bigram case, we have: 

C(w;) 

_ '° C( )[max{C(w,_1w;)-D,O} D rr( )P. ( )] - ~ _ w,_1 + '° 11.., w,_1• Ks w, 
"r-1 I .... C(w,_,w,) k,r, C(w,_,w,) 

'° C(w,_1w1)-D '° D = ~ C(w;_,)----'--'-----'---+ ~C(w,_1) C( )C(w,_1•)P,.,v(w;) 
.. ; .. .,C(11;-1u-, i>o C( w1_ 1) •·,-1 w,_1 

(11.37) 

= C( w, )-C( •w1_ 1 )D + DP,._" ( w,) + DPK..iv ( w,) IC( wr-i •) 

Solving the equation, we get 

(11.38) 

... , 

which can be generalized to higher-order models: 

(11.39) 

w, 

where C( •w,_,,+2 ... w;) is the number of different words that precede w,_n+i ... w,. 
In practice, instead of using a single discount D for all nonzero counts as in Kneser­

Ney smoothing, we can have a number of different parameters (D;) that depend on the range 
of counts: 

PKN(w, I W;_,,+1 ... wH) 

= C(w1_n+i· .. w,)-D(C(w1_n+i ... w,)) + 
.L,M', C(wi-n+i · .. W;) 

+r( wi-n+I '" w,_, )PKN ( w, I w,_n+2 ... wi-1 ) 

(11.40) 

This modification is motivated by evidence that the ideal average discount for n-grams 
with one or two counts is substantially different from the ideal average discount for n-grams 
with higher counts. 

11.4.3. Class N-grams 

As cliscussed in Chapter 2, we can define classes for words that exhibit similar semantic or 
grammatical behavior. This is another effective way to handle the data sparsity problem. 
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based language models have been shown to be effective fior 'd d . . . 
Class· d d . rap1 a aptat1on, trammg 

..,all data sets, and re uce memory requirements for real-time speech 1. . on S11• • • f app 1cattons. 
For any given assignment o a word w; to class c. there ma b 

, , Y e many-to-many map-
. gs e g a word w,. may belong to more than one class and a class c . pin , · ·• . . . ' ; may contam more 

ban One word. For the sake of s1mphc1ty, assume that a word w can be u · 1 t ; mque y mapped to 
only one class c;. The ,z-gram model can be computed based on the previous n-l classes: 

P(w,.lc;-11+1-- ·C;-1) = P(w; I c,.)P(c;lc;-n+l· .. ci-1) (11.41) 

where P(w,.lc,-) denotes the probability o~ :word W; given _class c, in the current position, 
and P(c;lc;- n+J ·· .c1_ 1) denotes the pr_obab1hty of class c; given the class history. With such 
a model, we can learn ~he ~lass mapping w-->c from either a training text or task knowledge 
we have about the apphcat1on. In general, we can express the class trigram as: 

P(W)= L n P(w; lc;)P(c, lc,-2.ci-1) 
c1 ••• c11 

I 
(11.42) 

If the classes are nonoverlapping, i.e. a word may belong to only one class, then Eq. 
(11.42) can be simplified as: 

(11.43) 

lfwe have the mapping function defined, we can easily compute the class n-gram. We 
can estimate the empirical frequency of each word C(w,. ), and of each class C(c1 ) . We can 
also compute the empirical frequency that a word from one class will be followed immedi­
ately by a word from another C( c,._ 1 c; ) . As a typical exarnp le, the bi gram probability of a 
word given the prior word ( class) can be estimated as 

(11.44) 

For general-purpose large vocabulary dictation applications, class-based n-grams have 
not significantly improved recognition accuracy. They are mainly used as a bac~o~ model 
10 ~omplement the lower-order n-grams for better smoothing. Nevertheless, for hmite_d do­
mam speech recognition, the class-based n-gram is very helpful as the class can efficie~tly 
encode semantic information for improved key word spotting and speech underSlandmg 
aceuracy. 

11·4·3,l. Rule~Based Classes 

There a d th tactic-semantic in-
r re a number of ways to cluster words together base on e syn 
,onn f f h can be gen-a ton that exists for the language and the task. For example, part-o -speec 

Amazon/VB Assets 
Exhibit 1012 

Page 597



572 
Language Modeling 

erally used to produce a small number of classes although this may lead to signifi . 
creased perplexity. Alternatively, if we have domain knowledge, it is often advantant)y m­
cluster together words that have a similar semantic functional role. For example i;8eous to 

b ·1d . I ' . I . ' . , we need to m a conversat1ona system ,or air trave m,ormauon systems, we can group th 
of different airlines such as Uniled Airlines, KIM, and Air China, into a broad air/in e "tme 
We can do the same thing for the names of different airports such as JFK, Nari;ac ass. 
Heathrow, the names of different cities like Beijing, Pittsburgh, and Moscow and ' and 
~uch a~ approach. is particularly powerful, sin~e the _amount of training data is' alway:

0

1:~ 
1ted. With generalized broad classes of semant1cally interpretable meaning, it is easy to add 
a new airline such as Redmond Air into the classes if there is indeed a start-up airline named 
Redmond Air that the system has to incorporate. The system is now able to assign a reason­
able probability to a sentence like "Show me all flights of Redmond Air from Seattle to Bos­
ton" in a similar manner as "Show me all flights of United Airlines from Seattle to Boston." 
We only need to estimate the probability of Redmond Air, given the airline class c

1
• We can 

use the existing class n-gram model that contains the broad structure of the air travel infor­
mation system as it is. 

Without such a broad interpretable class, it would be extremely difficult to deal with 
new names the system needs to handle, although these new names can always be mapped to 
the special class of the unknown word or proper noun classes. For these new words, we can 
alternatively map them into a word that has a similar syntactic and semantic role. Thus, the 
new word inherits all the possible word trigram relationships that may be very similar to 
those of the existing word observed with the training data. 

11.4.3.2. Data-driven Classes 

For a general-purpose dictation application, it is impractical to derive functional classes in 
the same manner as a domain-specific conversational system that focuses on a narrow task. 
Instead, data-driven clustering algorithms have been used to generalize the concept of word 
similarities, which is in fact a search procedure to find a class label for each word with a pre­
defined objective function. The set of words with the same class label is called a cluster. We 
can use the maximum likelihood criterion as the objective function for a given training cor­
pus and a given number of classes, which is equivalent to minimizing the perplexity ~o~ _the 
training corpus. Once again, the EM algorithm can be used here. Each word can be iruual· 
ized to a random cluster (class label). At each iteration, every word is moved to the class !hat 
produces the model with minimum perplexity [9, 48]. The perplexity modifications can be 
calculated independently, so that each word is evaluated as if all other word classes ~ere 
held fixed. The algorithm converges when no single word can be moved to another class 10 a 
way that reduces the perplexity of the clustered n-gram model. . d ·n 

One special kind of class n-gram models is based on the decision tree as discusse 
1 

Chapt 4 w · . · that can we er · e can use 1t to create equivalent classes for words m the history, so 
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have a compact long-dist~nce 11-gr~m language model (2]. The sequential decomposition, as 
expressed in Eq. ( 11.12). 1s approximated as: 

If II 

P(W) = TI P(wi IE( H"1, 11'2, ... , W;-1 )) = IT P(wi I E(h)) (l l.45) 
i=I i=l 

where E(h) denotes a many-to-one mapping function that groups word histories h into some 
equivalence classes. It is important to have a scheme that can provide adequate information 
about the history so it can serve as a basis for prediction. In addition, it must yield a set of 
classes that can be reliably estimated. The decision tree method uses entropy as a criterion in 
developing the equivalence classes that can effectively incorporate long-distance informa­
tion. By asking a number of questions associated with each node, the decision tree can clas­
sify the history into a small number of equivalence classes. Each leaf of the tree, thus, has 
the probability P(w;IE(w1 ... w;_1)) that is derived according to the number of times the 
word w; is found in the leaf. The selection of questions in building the tree can be infinite. 
We can consider not only the syntactic structure, but also semantic meaning to derive per­
missible questions from which the entropy criterion would choose. A full-fledged question 
set that is based on detailed analysis of the history is beyond the limit of our current comput­
ing resources. As such, we often use the membership question to check each word in the 
history. 

11.4.4. Performance of N-gram Smoothing 

The perfonnance of various smoothing algorithms depends on factors such as the training­
set sizes. There is a strong correlation between the test-set perplexity and word error rate. 
Smoothing algorithms leading to lower perplexity generally result in a lower word error rate. 
Among all the methods discussed here, the Kneser-Ney method slightly outperforms other 
algorithms over a wide range of training-set sizes and corpora, and for both bigram and tri­
gram models. Albeit the difference is not large, the good performance of the Kneser-Ney 
smoothing is due to the modified backoff distributions. The Katz algorithms and deleted 
interpolation smoothing generally yield the next best performance. All these three smooth­
ing algorithms perform significantly better than the n-gram model without any smoothing. 
The deleted interpolation algorithm performs slightly better than the Katz method in sparse 
data situations, and the reverse is true when data are plentiful. Katz's algorithm is particu­
larly good at smoothing larger counts; these counts are more prevalent in larger data sets. 

Class n-grams offer different kind of smoothing. While clustered n-gram models ofte~ 
?ffer no significant test-set perplexity reduction in comparison to the word n-~ram model, it 
15 beneficial to smooth the word n-gram model via either backoff or interpolation meth0ds. 
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For example, the decision-tree based long-distance class language model does 
· d h · · -1 . . . nol of. fer significantly improve speec recogmt1on accuracy unti 1t 1s mterpolated with th 

. . d . "fi I d 1 . e Word trigram. They are effective as a omam-spec1 1c anguage mo e if the class can ace 
. . . . ommo-

date domam-spec1fic mfom1at1011. 
Smoothing is a fundamental technique for statistical modeling, important not on! fi 

language mo~eling but for many other applications a~ ~ell. Whenever data sparsity rs;; 
issue. smoothmg can help performance, and data sparsity 1s almost always an issue in stati _ 
tical modeling. In the extreme case, where there is so much training data that all paramete: 
can be accurately trained without smoothing, you can almost always expand the model, sue: 
as by moving to a higher-order n-gram model, to achieve improved perfom1ance. With more 
parameters, data sparsity becomes an issue again, but a proper smoothing model is usually 
more accurate than the original model. Thus, no malter how much data you have, smoothing 
can almost always help perfonnance, and for a relatively small effort. 

11.5. ADAPTIVE LANGUAGE MODELS 

Dynamic adjustment of the language model parameter, such as n-gram probabilities, vo­
cabulary size, and the choice of words in the vocabulary, is important, since the topic of 
conversation is highly nonstationary [4, 33, 37, 41, 46). For example, in a typical dictation 
application, a particular set of words in the vocabulary may suddenly burst forth and then 
become dormant later, based on the current conversation. Because the topic of the conversa­
tion may change from time to time, the language model should be dramatically different 
based on the topic of the conversation. We discuss several adaptive techniques that can im­
prove the quality of the language model based on the real usage of the application. 

11.5.1. Cache Language Models 

To adjust word frequencies observed in the current conversation, we can use a dynamic 
cache language model [ 41]. The basic idea is to accumulate word n-grams dictated so far in 
the current document and use these to create a local dynamic n-gram model such as bigram 
Pcachc(w;lwi-1 ). Because of limited data and nonstationary nature, we should use a lower· 
order language model that is no higher than a trigram model P 1 (w-1 w,. , w,._1), which can 

• • cac 1e 1 -- ]I 
be interpolated with the dynamic bi!!Tarn and unigram. Empirically we need to nonna Y 

• I:> ' • 't d 
give a high weight to the unigram cache model because it is better trained with the !mu e 
data in the cache. ' 

With the cache trigram, we interpolate it with the static n-gram model 
Ps(wi I w,-_n+J ··· wi-1). The interpolation weight can be made to vary with the size of !be 
cache. 

(11.46) 
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The cache model is desirable in practice because of its impressive empirical perform­
ance improvement. In a dictation application, we often encounter new words that are not in 
the static vocabulary. The same words also tend lo be repealed in the same article. The cache 
model can address this problem effectively by adjusting the parameters continually as rec­
ognition and correction proceed for incrementally improved performance. A noticeable 
benefit is thal' we can belier predict words belonging to fixed phrases such as Wi11dows ;vr 
and Bill Gates. 

11.s.2. Topic-Adaptive Models 

The topic can change over time. Such topic or style infonnation plays a critical role in im­
proving the quality of the static language model. For example, the prediction of whether the 
word following the phrase the operating is system or tahle can be improved substantially by 
knowing whether the topic of discussion is related to computing or medicine. 

Domain or topic-clustered language models split the language model training data ac­
cording to topic. The training data may be divided using the known category information or 
using automatic clustering. In addition, a given segment of the data may be assigned to mul­
tiple topics. A topic-dependent language model is then built from each cluster of the training 
data. Topic language models are combined using linear interpolation or other methods such 
as maximum entropy techniques discussed in Section 11 .5.3. 

We can avoid any pre-defined clustering or segmentation of the training data. The rea­
son is that the best clustering may become apparent only when the current topic of discus­
sion is revealed. For example, when the topic is hand-injury to baseball player, the pre­
segmented clusters of topic baseball & lza11d-injuries may have to be combined. This leads 
to a union of the two clusters, whereas the ideal dataset is obtained by the intersection of 
these clusters. In general, various combinations of topics lead to a combinatorial explosion 
in the number of compound topics, and it appears to be a difficult task to anticipate all the 
needed combinations beforehand. 

We base our determination of the most suitable language model data to build a model 
upon the particular history of a given document. For example, we can use it as a query 
against the entire training database of documents using information retrieval techniques 
[57]. The documents in the database can be ranked by relevance to the query. The most rele­
vant documents are then selected as the adaptation set for the topic-dependent language 
model. The process can be repeated as the document is updated. . 

There are two major steps we need to consider here. The first involves using the av~1 I­
able document history to retrieve similar documents from the database. The second consi~ts 
of using the similar document set retrieved in the first step to adapt the general or topic­
independent language model. Available document history depends upon the desi~ and the 
requirements of the recognition system. If the recognition system is designed for hve-mode 
application, where the recognition results must be presented to the user with a small delay, 
the available document history will be the history of the document user created so far . . On 
the other hand, in a recognition system designed for batch operation, the amount of time 
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taken by the system to recognize speech is of little consequence to the user. In the batch 
mode, therefore, a multi-pass recognition system can be used, and the document history will 
be the recognizer transcript produced in the current pass. 

The well-known information retrieval measure called TFIDF can be used to locate 
similar documents in the training database [57]. The term frequency (TF) tfiJ is defined as 
the frequency of the jth term in the document D;, the unigram count of the term j in the 
document D;. The inverse document frequency (IDF) idfj is defined as the frequency of the 
jth term over the entire database of documents. which can be computed as: 

Total number of documents 
idfj = . . . 

Number of documents contammg termJ 
(11.47) 

The combined TF-IDF measure is defined as: 

TFJDFif = tfif log(id/;) (11 .48) 

The combination of TF and IDF can help to retrieve similar documents. It highlights 
words of particular interest to the query (via TF), while de-emphasizing common words that 
appear across different documents (via IDF). Each document including the query itself, can 
be represented by the TFIDF vector. Each element of the vector is the TFIDF value that cor­
responds to a word (or a term) in the vocabulary. Similarity between the two documents is 
then defined to be the cosine of the angle between the corresponding vectors. Therefore, we 
have: 

(11.49) 

All the documents in the training database are ranked by the decreasing similarity be­
tween the document and the history of the current document dictated so far, or by a topic of 
particular interest to the user. The most similar documents are selected as the adaptation set 
for the topic-adaptive language model [46]. 

11.5.3. Maximum Entropy Models 

The language model we have discussed so far combines different n-gram models via linear 
interpolation. A different way to combine sources is the maximum entropy approach. It con­
Slructs a single model that attempts to capture all the infonnation provided by the various 
knowle?ge sources. Each such knowledge source is reformulated as a set of constraints ~at 
th_e d~srred distribution should satisfy. These constraints can be, for example, marginal dis­
tnbutions of the combined model. Their intersection, if not empty, should contain a set of 
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Probability functions that are consistent with these separate knowledge 
O 

h . sources. nee t e 
desired knowledge sources have been incorporated we make no other as t· b . . . , sump 10n a out 
other con~tramts, which leads to c_hoosmg the flattest of the remaining possibilities, the one 
with the highest entropy. The max11num entropy principle can be stated as follows: 

• Reformul_ate different infonnation sources as constraints to be satisfied by the 
target estimate. 

• Among all probability distributions that satisfy these constraints, choose the 
one that has the highest entropy. 

Given a general event space {X}, let P(X) denote the combined probability function. 
Each constraint is associated with a characteristic function of a subset of the sample space, 
1'i(X). The constraint can be written as: 

L, P(X)J; (X) = Er ( 11.50) 
X 

where E; is the corresponding desired expectation for /; (X), typically representing the re­
quired marginal probability of P(X). For example, to derive a word trigram model, we can 
reformulate Eq. (11.50) so that constraints are introduced for unigram, bigram, and trigram 
probabilities. These constraints are usually set only where marginal probabilities can be es­
timated from a corpus. For example, the unigram constraint can be expressed as 

) {
I ifw=w1 /, (w = 

"I O otherwise 
(11.51) 

The desired value E,.. 
I 

can be the empirical expectation in the training 

data, L f~., (w)I N, and the associated constraint is 
l#.Etrrtinfng data 

LP(h) 2,P(w I h)/,..
1 
(w) = E.., 

k .. 

(11.52) 

Where h is the word history preceding word w. b b'l'ty fu c 
. . · 11 fr me otber known pro a 1 1 n -. We can choose P(X) to diverge mm1ma Y _om so 

hon Q(X), that is, to minimize the divergence function: 

L P(X) log P(X) 
x Q(X) 

(11.53) 

. 'b . the divergence is equal to the nega-
. When Q(X) is chosen as the unif~~ ~i~tn ution: nee function leads to maximiz-

hve of entropy with a constant. Thus mm1m1zmg the diverge 

Amazon/VB Assets 
Exhibit 1012 

Page 603



S78 
Language Modeling 

. h tr Under a minor consistent assumption, a unique solution is guaranteed to 
mg t e en opy. 
exist in the fonn [20]: 

P(X) oc n µf<X) (11.54) 

where µ is an unknown constant to be found. To search the exponential family defined by 
Eq. (11.;4) for theµ,; that make P(X) satisfy all the constraints, an iterative algorithm called 
generalized iterative scaling exists [20]. It guarantee~ to converge to t_he ~ol~tion with _some 
arbitrary initial µ;, Each iteration creates a new estimate P(X), which 1s improved m the 
sense that it matches the constraints better than its previous iteration [20]. One of the most 
effective applications of the maximum entropy model is to integrate the cache constraint into 
the language model directly, instead of interpolating the cache n-gram with the static n­

gram. The new constraint is that the marginal distribution of the adapted model is the same 
as the lower-order n-gram in the cache [56]. In practice, the maximum entropy method has 
not offered any significant improvement in comparison to the linear interpolation. 

11.6. PRACTICAL ISSUES 

In a speech recognition system, every string of words W ;:;; w1 w2 ••• w n taken from the pre­
scribed vocabulary can be assigned a probability, which is interpreted as the a priori prob­
ability to guide the recognition process and is a contributing factor in the detennination of 
the final transcription from a set of partial hypothesis. Without language modeling, the entire 
voca~ulary must be considered at every decision point. It is impossible to eliminate many 
candidates from consideration, or alternatively to assign higher probabilities to some candi­
dates than others to considerably reduce recognition costs and errors. 

11.6.1. Vocabulary Selection 

Fo~ ~ 0st speech recognition systems, an inflected form is considered as a different word· 
This 1s because these inflected fi typ· 11 · · · · I onus 1ca y have different pronunciations syntactic ro es, 

fi
and usage pa~erns. So the words work, works, worked, and working are co~ted as four dif­
erent words m the vocabulary. 

We prefer to have a smalle b I · . . . . · fu ble 
d

'd . r voca u ary size, smce this ehmmates potential con sa 
can I ates m speech recog ·r l d' . th 
1
. · d 01 mn, ea mg to improved recognition accuracy However, e 
nrute vocabulary siz · · 

fl 
'bl 

1 
. e imposes a severe constraint on the users and makes the system less 

exi e. n practice the · I affiect th . ' _Percentage of the Out-Of-Vocabulary (OOV) word rate direct Y 
s e perceived quahty of th the 

OOV rate and th d .. e syStem. Thus, we need to balance two kinds of errors, . 
e wor recognition · ·ro1ze the OOV rate 'fth error rate. We can have a larger vocabulary to mnu 

1 e system resour · f the ces penmt. We can minimize the expected OOV rate 0 
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test data with a given vocabulary size. A corpus of text is used in conjunction with dictionar­
ies to determine appropriate vocabularies. 

The availabili~y of various _types and amounts of training data, from various time peri­
ods, affects the quality o~ the ~enved vocabulary. Given a collection of training data, we can 
create an ordered word list with the lowest possible OOV curve, such that. for any desired 
vocabulary size V, a minimum-OOV-rate vocabulary can be derived by taking the most fre­
quent V words in Lhat list. Viewed this way, Lhe problem becomes one of estimating unigram 
probabilities of the test distribution, and then ordering the words by these estimates. 

As illustrated in Figure 11.6, the perplexity generally increases with the vocabulary 
size, albeit it really does not make much sense to compare the perplexity of different vo­
cabulary sizes. There are generally more competing words for a given context when the vo­
cabulary size becomes big, which leads to increased recognition error rate. In practice, this is 
offset by the OOV rate, which decreases with the vocabulary size as illustrated in Figure 
11.7. If we keep the vocabulary size fixed, we need more than 200,000 words in the vocabu­
lary to have 99.5% English words coverage. For more inflectional languages such as Ger­
man, larger vocabulary sizes are required to achieve coverage similar to that of English.6 

In practice, it is far more important to use data from a specific topic or domain, if we 
know in what domain the speech recognizer is used. In general, it is also important to con­
sider coverage of a specific time period. We should use training data from that period, or as 
close to it as possible. For example, if we know we will talk only about air travel, we benefit 
from using the air-travel related vocabulary and language model. This point is well illus­
trated by the fact that the perplexity of the domain-dependent bigram can be reduced by 
more than a factor of five over the general-purpose English trigram. 

500 --400 ------j 300 -
~ l 200 ,-

100 

0 

10k 30k 40k 60k 
Vocabulary Size 

. . . bulary sizes. The training set consists 
Figure 11.6 The perplexity of bigrrun with different voca . and email The test 
f . . . ·ocJuding newspapers · 

o 500 mtlhon words derive~ from vanous sources, 1 edia that has a wide coverage of dif-
set comes from the whole Microsoft Encart:i, an encyclop 
ferent topics. 

•n. . . Ii h with a 20k-word vocabulary (34]. 
111e OOV rate of German is about twice as high as thal of Eng 5 
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Figure 11.7 The OOV rate with different vocabulary size. The training set consists of 500 mil­
lion words derived from various sources including newspaper and email. The test set came 
from the whole Microsoft Encarta encyclopedia. 

I 

For a user of a speech recognition system, a more personalized vocabulary can be 
much more effective than a general fixed vocabulary. The coverage can be dramatically im­
proved as customized new words are added to a starting static vocabulary of 20,000. Typi­
calJy, the coverage of such a system can be improved from 93% to more than 98% after 
1000-4000 customized words are added to the vocabulary [18]. 

In North American general business English, the least frequent words among the most 
frequent 60,000 have a frequency of about 1 :7 ,000,000. In optimizing a 60,000-word vo­
cabulary we need to distinguish words with frequency of I :7 ,000,000 from those that are 
slightly less frequent. To differentiate somewhat reliably between a 1 :7,000,000 word and, 
say, a 1:8,000,000 word, we need to observe them enough times for the difference in their 
counts to be statistically reliable. For constructing a decent vocabulary, it is important that 
most such words are ranked correctly. We may need 100,000,000 words to estimate these 
parameters. This agrees with the empirical results, in which as more training datd is used, 
the OOV curve improves rapidly up to 50,000,000 words and then more slowly beyond that 
point. 

11.6.2. N-gram Pruning 

Whe~ high order n-gram models are used, the model sizes typically become too large for 
prac~cal applications. It is necessary to prune parameters from n-grarn models such that the 
relative entropy between the original and the pruned model is minimized. You can choose n­
grams ~o as to maximize performance (i.e., minimize perplexity) while minimizing the 
model size [39, 59, 64]. 

1:he criterion to prune n-grams can be based on some well-understood information­
th[ eoret1c measure of language model q11ality. For example the pruning method by Stolcke 
64] removes some n-grarn ti. . • . • . ' ning 

es mates while m1mm1zmg the perf onnance loss. After pru ' 
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the retained explicit 11-gram probabilities are unchanged, but backoff weight 
· h · . s are 

recomputed. Stolc~e prunmg us~s. t e cntenon that minimizes the distance between the 
distribution embodied by the ong~nal model and that of the pruned model based on the 
Kullback-Leibler distance defined m Eq. (3.181 ). Since it is infeasible to maximize over all 
possible subsets ~f n-grams, Stolcke prunning assu~es that the 11-grams affect the relative 
entropy roughly independently, and. compute the distance due to each individual n-gram. 
The n-grams are thus ranked by thelf effect on the model entropy, and those that increase 
relative entropy the least are pruned accordingly. The main approximation is that we do not 
consider possible interactions between selected n-grams, and prune based solely on relative 
entropy due to removing a single n-gram. This avoids searching the exponential space of 11-
gram subsets. 

To compute the relative entropy, KL(p II p'), between the original and pruned n-gram 
models p and p', there is no need to sum over the vocabulary. By plugging in the terms for 
the backoff estimates, the sum can be factored as shown in Eq. ( 11.55) for a more efficient 
computation. 

KL(p II p) =-P(h){P(w I h)[logP(w I h') + loga'(h)-logP(w I h)] 

+[loga'(h)-loga(h)](l- }: P(w, lh))} (11.55) 

w,e-JJnckof{(w,h) 

where the sum in P(w; lh) is over all non-backoff estimates. To compute the 
w,s-.Bnckoff( w;h) 

revised backoff weights a'(h), you can simply drop the term for the pruned n-gram from 

the summation (backoff weight computation is illustrated in Algorithm 11 .1 ). 
In practice, pruning is highly effective. Stokke reported that the trigram model _can be 

compressed by more than 25% without degrading recognition performance. Companng the 
pruned 4-gram model to the unpruned trigram model, it is better to use pruned 4-grams lhan 
to use a much larger number of trigrams. 

11.6.3. CFG vs. N-gram Models 

This h h . . Wh'I CFG emain one of the most . c apter as discussed two maJor language models. 1 e s r .. 
important formalisms for interpreting natural language, word 11-gram models are su~firisdmgfily 
Powerful fi d · - . · Th fi rrnalisms can be um 1e or or omam-mdependent apphcat1ons. ese two O . . f h 
bo!h speech recognition and spoken language understanding. To improve portabGih~ 0 tthe 
doma· · d · specific CF s mto e ID-independent n-gram it is possible to incorporate omam- -ti · f 
domain-independent n-gram 'that can improve generalizability of the CFG and speci ,city 

0 

then-gram, 
Th . f th structure in spoken lan-

e CFG is not only powerful enough to describe most O ~ d d l or o de-
guage, but also restrictive enough to have efficient parsers. P(W) is regar e as r The 
Pending · ted by the gramma · 

upon whether the word sequence is accepted or re3ec 
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nroblem is that the grammar is almost always incomplete. A CFG-based system is good only 
when you know what sentences to speak, which diminishes the system’s value and usability 
of the system The advantage of CFG’s structured analysis is, thus, nullified by the poor 
coverage in most real applications. On the other hand, the fi-gram model is trained with a 
large amount of data, the n-word dependency can often accommodate both syntactic and 
semantic structure seamlessly. The prerequisite of this approach is that we have enough 
training data. The problem for n-gram models is that we need a lot of data and the model 
may not be specific enough.

It is possible to take advantage of both rule-based CFGs and data-driven /7-grams. 
Let’s consider the following training sentences:

Meeting at three with Zhou Li.
Meeting at four PM with Derek.

If we use a word trigram, we estimate P(Zhou\three with) and P(Derek\PM with), etc. 
There is no way we can capture needed long-span semantic information in the training data. 
A unified model has a set of CFGs that can capture the semantic structure of the domain. For 
the example listed here, we have a CFG for {name} and {time}, respectively. We can use 
the CFG to parse the training data to spot all the potential semantic structures in the training 
data. The training sentences now look like:

Meeting {at three:TIME} with {Zhou Li :NAME}
Meeting {at four PM:TIME) with {Derek: NAME}

With analyzed training data, we can estimate our n-gram probabilities as usual. We 
have probabilities, such as P({name}|{time} with), instead of P(Zhou\three with), which is 
more meaningful and accurate. Inside each CFG we also derive P(“Z/?ow Lz”|{name}) and 
P( four PM |{time}) from the existing w-gram (/2-gram probability inheritance) so that they 

normalized. If we add a new name to the existing {name} CFG, we use the existing n- 
gram probabilities to renormalize our CFGs for the new name. The new approach can be 
regarded as a standard «-gram in which the vocabulary consists of words and structured 
classes, as discussed in Section 11.4.3. The structured class can be very simple, such as 
{date}, {time}, and {name}, or can be very complicated, such as a CFG that contains deep 
structured information. The probability of a word or class depends on the previous words or 
cru classes.

It is possible to inherit probability from a word /2-gram LM Let’s take word trigram as 
our exampie here. An input utterance W = w,w2...w„ can be segmented into a sequence 

’ W, _ each li 1S either a word in W or a CFG non-terminal that covers a se- 
q o words u, in W. The likelihood of W under the segmentation T is, therefore,

/>(W,T) = n^ K
1 /

are

(11.56)

Amazon/VB Assets 
Exhibit 1012 

Page 608



Practical Issues 
583 

P(ii, It,). the likelihood of generating a word sequen - _ 
· ' I b · l · - dti . . ce u,, -[11,1 11,2-.. u,k] fromtheCFG 

non-termma I,' can em iente rom the domam-mdependent d, ·. . 
CFG · . . wor Ingram. We can essen-

tially use the constraint to condtt10n the domain-independ t t . . . · s h · fi en ngram mto a domam-
specific trigram. , uc a um 1ed language model can dramaticnll · . 

· d · · • Y improve cross-domam 
performance usmg omam-spec1fic CFGs [66]. 

In summary, the CFG is widely used to specify the permissi"ble w d · . . . or sequences m 
natural language processmg when trammg corpora are unavailable. It is suitable for dealing 
with structured comrr~and and control applications in which the vocabulary is small and the 
semantics of the task 1s well defined. The CFO either accepts the input sentence or re·e 1 ·1 . 1 CSJ. 
There is a senous coverage problem associated with CFGs. In other words, the accuracy for 
the CFG can be extremely high when the test data are covered by the grammar. Unfortu­
nately, unless the task is narrow and well-defined, most users speak sentences that may not 
be accepted by the CFG, leading to word recognition errors. 

Statistical language models such as trigrams assign an estimated probability to any 
word that can follow a given word history without parsing the structure of the history. Such 
an approach contains some limited syntactic and semantic information, but these probabili­
ties are typically trained from a large corpus. Speech recognition errors are much more 
likely to occur within trigrams and ( especially) bigrams that have not been observed in the 
training data. In these cases, the language model typically relies on lower-order statistics. 
Thus, increased n-gram coverage translates directly into improved recogriition accuracy, but 
usually at the cost of increased memory requirements. 

It is interesting to compute the true entropy of the language so that we understand 
what a solid lower bound is for the language model. For English, Shannon [60] used human 
subjects to guess letters by looking at how many guesses it takes people to derive the correct 
one based on the history. We can thus estimate the probability of the letters and hence the 
entropy of the sequence. Shannon computed the per-letter entropy of English with an en­
tropy of 1.3 bits for 26 letters plus space. This may be an underestimate, ~ince it is b_ased on 
a single text. Since the average length of English written words (including space) is ab~ut 
5.5 letters, the Shannon estimate of 1.3 bits per letter corresponds to a per-word perplexity 

of 142 for general English. 
Table 11.2 summarizes the performance of several different n-gram models on. a 

60,000-word continuous speech dictation application. The experiments used about 26_0 mi~­
lion words from a newspaper such as the Wall Street Journal. The speech recogmzer is 
based · . . fr the table when the amount on Whisper described m Chapter 9. As you can see om_ , 
of training data is sufficient both Katz and Kneser-Ney smoothmg offer comparable recog-
. · ' d · ment when the 

mhon performance, although Kneser-Ney smoothing offers a mo eSt improve 

amount of training data is limited. . 1 ·t the trigram 
In comparison to Shannon's estimate of general English word perp ext Y, . 

language for the Wall Street Journal is lower (91.4 vs. 142). This is because theFtext is 
mo 1 . 1 d d usage pattern. or ex-

st Y business oriented with a fairly homogeneous sty e an wor . d 1 am l · d in that 1s relate to persona 
. P e, if we use the trigram language for data from a new_ oma 
information management, the test-set word perplexity can increase to 378 [66]-
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2 N Perplexity and its corresponding speaker-independent speech recognition Table 11. -gram 
word error rate. 

Models Perplexitv Word Error Rate --
Unigram Katz 1196.45 14.85% 

Unigram Kneser-Nev I I 99.59 - 14.86% 

Bieram Katz 176.31 11.38% 

Bil?Tam Kneser-Ney 176.11 11 .34% 

Trigram Katz 95.19 9.69% 

Trigram Kneser-Ney 91.47 I 9.60% 

11.7. HISTORICAL PERSPECTIVE AND FURTHER READING 

There is a large and active area ofresearch in both speech and linguistics. These two distinc­
tive communities worked on the problem with very different paths, leading to the stochastic 
language models and the formal language theory. The linguistics community has developed 
tools for tasks like parsing sentences, assigning semantic relations to the parts of a sentence, 
and so on. Most of these parser algorithms have the same characteristics, that is, they tabu­
late each sub-derivation and reuse it in building any derivation that shares that sub­
derivation with appropriate grammars [22, 65, 67]. They have polynomial complexity with 
respect to sentence length because of dynamic programming principles to search for optimal 
derivations with respect to appropriate evaluation functions on derivations. There are three 
well-known dynamic programming parsers with a worst-case behavior of 0( n3 

), where n is 
the number of words in the sentence: the Cocke-Younger-Kasami (CYK) algorithm (a bot­
tom-up parser, proposed by J. Cocke, D. Younger, and T. Kasami) [32, 67], the Graham­
Harrison-Ruzzo algorithm (bottom-up) [30], and the Earley algorithm (top-down) (21]. 

On t~e other hand, the speech community has developed tools to predict the next word 
on _the basis of what has been said, in order to improve speech recognition accuracy [3S]. 
~eitber a~proach has been completely successful. The formal grammar and the related pars­
mg algon~hms are too brittle for comfort and require a lot of human retooling to port from 
one_ d?mam to another. The lack of structure and deep understanding has taken its toll on 
stat1st1cal technology's ab'l'ty t h . . - · 

1 
. . 1 1_ o c oose the nght words to guide speech recogmtton_. 

. n addition to those discussed in this chapter many alternative formal techmques are 
available. Augment d fr ' ture . e context- ee grammars are used for natural language to cap 
grammatical natural Jangu h I · elude . ages sue as agreement and subcategorization. Ex.amp es m 
generalized phrase stru tur [26 53] 
Y fu 

c e grammars and head-driven phrase structure grammars ' · 
ou can rther general· th h re-. f ize e augmented context-free grammar to the extent that t e 

quirement o contextflree be h 1ifi1ca-
t . comes unnecessary. The entire grammar known as t e un 
1011 grammar can bes e 'fi d ' 62] Most 

of these gr ' h P ci e as a set of constraints between feature structures [ · 
1 ammars ave on) 1 · · d t ns n 

fact no practical d . . y mute success when applied to spoken language sys e1 d .for 
spoken language o~am-mdepeoctent parser of unrestricted text has been dev~Jope f de­
tailed semantic in~~s em~, partly because disambiguation requires the specification ° sts 

nnation. Analysis of the Susanne Corpus with a crude parser sugge 
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that over 80% of s~nten~es are structur~II~ ambiguous. More recently, large treebanks of 
parsed texts have given 1mpet~s to stat1st1c~l approaches to parsing. Probabilities can be 

timated from treebanks or plam text [6, 8, -4, 61] to efficiently rank analyses produced b 
es · I ·h Th y modified chart parsing a gont ms. . ese systems have yielded results of around 75% accu. 
racy in assigning analyses to (unseen) test sentences from the same source as the unambigu­
ous training material. Attempts have also been made to use statistical induction to /ram the 
correct grammar for a given corpus of data (7, 43, 51, 58]. Nevertheless, these techniques 
are limited to simple grammars with category sets of a dozen or so non-tenninals, or to train­
ing on manually parsed data. Furthermore, even when parameters of the grammar and con­
trol mechanism can be learned automatically from training corpora, the required corpora do 
not exist or are too small for proper training. In practice, we can devise grammars that spec­
ify directly how relationships relevant to the task may be expressed. For instance, one may 
use a phrase-structure grammar in which nonterminals stand for task concepts and relation­
ships and rules specify possible expressions of those concepts and relationships. Such se­
ma11tic grammars have been widely used for spoken language applications as discussed in 
Chapter 17. 

It is worthwhile to point out I.hat many natural language parsing algorithms are NP­
comp/ete, a term for a class of problems that are suspected to be particularly difficult to 
process. For example, maintaining lexical and agreement features over a potentially infinite­
length sentence causes the unification-based fonnalisms to be NP-complete [3]. 

Since the predictive power of a general-purpose grammar is insufficient for reasonable 
perfonnance, 11-gram language models continue to be widely used. A complete proof of 
Good-Turing smoothing was presented by Church et al. [17]. Chen and Goodman [13] pro­
vide a detailed study on different n-gram smoothing algorithms. Jelinek's Eurospeech tuto­
~al paper (35] provides an interesting historical perspective on the community's efforts to 
improve trigrams. Mosia and Giachin's paper [48] has detailed experimental results on 
class-based language models. Class-based model may be based on parts of speech or mor­
phology [IO, 16, 23, 47, 63]. More detailed discussion of the maximum entropy language 
model can be found in (5, 36, 42, 44, 52, 55, 56]. . 

One interesting research area is to combine both n-grams and the structure that 15 pre­
sent in language. A concerted research effort to explore strUcture-based language model may 
be tbe key for significant progress to occur in langua0 e modeling. This can be done as anno­
tat d O 

• del e data becomes available. Nasr et al. [50] have considered a new umfied language mo 
composed of several local models and a general model linking the local models to~ether. 
Thf e local model used in their system is based on the stochastic FSA. which is esum~tedd 
ram the tr · · d · ~ nnation are descnbe i aming corpora. Other efforts to incorporate strUcture m 0 

n [12, 25, 27, 49, 66]. 
Yo th cMU open source Web 

sit , u can find tools to build n-gram language models at e d r tool-kit 3nd SRl's language modeling toolkit Web site.8 Bolh contain language mo e mg 
sand documentation. 

;-----. http;{/IYWw ________ _ 

'hltp:J/ -speech.cs.cmu.cdu/sphinx/ 
www speech . · .sn.comtprojccts/srilm/download.html 
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CHAPTER 1 2 

Basic Search Algorithms 

Continuous speech recognition (CSR) is both 
a pattern recognition and search problem. As described in previous chapters, the acoustic 
and language models are built upon a statistical pattern recognition framework. In speech 
~ecognition, making a search decision is also referred to as decoding. In fact, decoding got 
Its name from information theory (see Chapter 3) where the idea· is to decode a signal that 
has presumably been encoded by the source process and has been transmitted through the 
communication channel, as depicted in Chapter I, Figure 1.1. In this chapter, we first review 
the general decoder architecture that is based on such a source-channel model. 

The decoding process of a speech recognizer is to find a sequence of words whose cor­
responding acoustic and language models best match the input signal. Therefore, the process 
?f such a decoding process with trained acoustic and language models is often referred to as 
JUSl a search process. Graph search algorithms have been explored extensively in the fields 
of artificial intelligence, operation research, and game theory. In this chapter first we present 
several basic search algorithms, which serve as the basic foundation for CSR. 

591 
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Basic Search Algorithms 

The complexity of a search algorithm is highly correlated with the ~earch spa~e, which 
. d · d by the constraints imposed by the language models. We discuss the impact of 1s etermme ~ 
different language models, including finite-state grammars, context-free grammars, and 11• 

gramsSpeech recognition search is usuall~ done with the Viterbi o~ A* stack decoders. The 
reasons for choosing the Viterbi decoder involve arguments that pomt to speech as a Ieft-to­
right process and to the efficiencies aff?~ded by a time-sy~chronous ~rocess.}'h~ re~sons for 
choosing a stack decoder involve its ab1hty to more effectively expl01t the A · cntena, which 
holds out the hope of performing an optimal search as well as the ability to handle huge 
search spaces. Both algorithms have been successfully applied to various speech recognition 
systems. The relative merits of both search algorithms were quite controversial in the 1980s. 
Lately, with the help of efficient pruning techniques. Viterbi beam search has been the pre­
ferred method for almost all speech recognition tasks. Stack decoding, on the other hand, 
remains an important strategy to uncover then-best and lattice structures. 

12.1. BASIC SEARCH ALGORIT1™S 

Search is a subject of interest in artificial intelligence and has been well studied for expert 
systems, game playing, and information retrieval. We discuss several general graph search 
methods that are fundamental to spoken language systems. Although the basic concept of 
graph search algorithms is independent of any specific task, the efficiency often depends on 
how we exploit domain-specific knowledge. 

The idea of search implies moving around, examining things, and making decisions 
about whether the sought object has yet been found. In general, search problems can be rep­
resented using the state-space search paradigm. It is defined by a triplet (S, 0, G), where S 
i~ a se~ of_initial states, 0 a set of operators (or rules) applied on a state to generate a transi­
tion with its corresponding cost to another state, and G a set of goal states. A solution in the 
state-space search paradigm consists in finding a path from an initial state to a goal state. 
The state-space representation is commonly identified with a directed graph in which each 
node_~orresponds to a state and each arc to an application of an operator (or a rule), which 
transitions from one_ state to another. Thus, the state-space search is equivalent to searching 
th rough the graph with some objective function. 
. Before we present any graph search algorithms, we need to remind the readers of the 
impo~nce of the dynamic programming algorithm described in Chapter 8. Dynamic pro· 
=~ammm~ ~ho~ld ~e applied ~henever possible and as early as possible because (I) un_like 

Y heuns~ics, It will not sacrifice optimality; (2) it can transform an exponential search mto 
a polynomial search. 
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21 1 General Graph Searching Procedures 1 ... 

Although dynamic programming is a powerful polynomial search algorithm, many interest­
ing problems cannot be handled b~ it. A classical e~ample is the traveling salesman's prob­
lem. we need to find a shortest-distance tour, starting at one of many cities, visiting each 
city exactly once., and returning to the starting city. This is one of the most famous problems 
in the NP-hard class [I, 32]. Another classical example is the N-queens problem (typically 
8-<jueens), where the goal is to place N queens on an N x N chessboard in such a way that 
no queen can capture any other queen, i.e., there is no more than one queen in any given 
row, column, or diagonal. Many of these puzzles have the same characteristics. As we know, 
the best algorithms currently known for solving the NP-hard problem are exponential in the 
problem size. Most graph search algorithms try to solve those problems using heuristics to 
avoid or moderate such a combinatorial explosion. 

:,._ __ 3 __ ..... 0 ~--3-----! v 

Figure 12.1 A highway distance map for cities S, A, B, C, D, E, F, and G. The salesman needs 
to find a path to travel from city S to city G [42]. 

Let' s start our discussion of graph search procedure with a simple city-traveling prob­
lem [42]. Figure 12.1 shows a highway distance map for all the cities. ~ salesman name: 
John needs to travel from the starting city S to the end city G. One obvious wa~ to find 

path is to derive a graph that allows orderly exploration of all possible paths. Fi~ure. 12·2 

sh h · · d" map shown m Figure ows t e graph that traces out all possible paths m the city- tstance 
12 1 Alth . . · · al should note that the search · · ough the city-city connection 1s b1-direct1on , we 
?raph in this case must not contain cyclic paths, because they would not lead to any progress 
10 this scenario 

If · · b f odes (states) in the graph 
we define the search space as the potenllal num er O n . th Viterbi algo-

s~arch procedure, the search space for finding the optimal state sequence;" he HMM and T 
~Ihm (described in Chapter 8) is NxT' where N is the number of states o~_t e problem will 
~~~length of the observation. Similary, the search space for John's trave mg 

·A · branching factor, defined as the 
av nother important measure for a search graph is lhe b f des of a search graph 

erage number of successors for each node. Since the num er O no 
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(or tree) grows exponentially with base equal to this branching factor, we certainly need t 
watch out for search graphs (or trees) with a large branching factor. Sometimes they can~ 
too big to handle (even infinite. as in game playing). We often trade the optima] solution for 
improved perfom1ance and feasibility. That is, the goal for such search problems is 10 find 
one satisfactory solution instead of the optimal one. In fact, most AI (artificaJ intelligence) 
search problems belong to this category. 

The search tree in Figure 12.2 may be implemented either explicitly or implicitly. In 
an explicit implementation, the nodes and arcs with their corresponding distances (or costs) 
are explicitly specified by a table. However, an explicit implementation is clearly impracti­
cal for large search graphs and impossible for those with infinite nodes. In practice, most 
parts of the graph may never be explored before a solution is found. Therefore, a sensible 
strategy is to dynamically generate the search graph. The part that becomes explicit is often 
referred to as an active search space. Throughout the discussion here, it is important to keep 
in mind this distinction between the implicit search graph that is specified by the start node 
S and the explicit partial search graphs that are actually constructed by the search algo­
rithm. 

To expand the tree, the term successor operator (or move generator, as it is often 
called in game search) is defined as an operator that is applied to a node to generate all of 
the successors of that node and to compute the distance associated with each arc. The suc­
cessor operator obviously depends on the topology (or rules) of the problem space. Expand­
ing the starting node S, and successors of S, ad infinitum, gradually makes the implicitly 

Figure 12·2 The search tree (graph} for the salesman problem illustrated in Figure 12.I · The 
number next lo each node is the accumulated distance from start city to end city [42]. 
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defined graph explicit. Thi~ recursive procedure is _straightforward, and the search graph 
(tree) can be constructed without the e,ctra b°<:>kkeepmg. However, this process would only 
generate a search tree where the same node might be generated as a part of several possible 

paths. . . . . 
For example, node E 1s being generated m four different paths. If we are interested in 

finding an optimal path to travel from S to G, it is more efficient to merge those different 
palhs that lead to the same node E. We can pick the shortest path up to C, since everything 
following E is the same for the rest of the paths. This is consistent with the dynamic pro­
gramming principle-when looking for the best path from S to G, all partial paths from s to 
any node £, other than the best path from S to E, should be discarded. The dynamic pro­
gramming merge also eliminates cyclic paths implicitly, since a cyclic path cannot be the 
shortest path. Performing this e,ctra bookkeeping (merging different paths leading into the 
same node) generates a search graph rather than a search tree. 

Although a graph search has the potential advantage over a tree search of being more 
efficient, it does require e,ctra bookkeeping. Whether this effort is justified depends on the 
individual problem one has to address. 

Most search strategies search in a forward direction, i.e., build the search graph (or 
rree) by starting with the initial configuration (the starting state S) from the root. In the gen­
eral AI literature, this is referred to as forward reasoning [43], because it perfonns rule-base 
reasoning by matching the left side of rules first. However, for some specific problem do­
mains, it might be more efficient to use backward reasoning [43], where the search graph is 
built from the bottom up (the goal state G). Possible scenarios include: 

• There are more initial states than goal states. Obviously it is easy to start 
with a small set of states and search for paths leading to one of the bigger se_ts 
of states. For example, suppose the initial state Sis the homet~wn for Joh~. m 
the city-traveling problem in Figure 12.1 and the goal state G is an unfam~har 
city for him. In the absence of a map, there are certa~nly ~ore Ioca~ions 
(neighboring cities) that John can identify as being close to his home city S 
than those he can identify as being cJose to an unfamiliar location. I~ a sense, 
all of those locations being identified as close to John's home ci~ S are 
equivalent to the initial state S. This means John might want to c~nsrder rea­
soning backward from the unfamiliar goal city G for the trip planning. 

• Tl · · lier than that for Jor-ie branching factor for backward reasonmg zs sma . . 'th 
d t arch in the dtrectron wi 

Wat reasoning. In this case it makes sense O se 
lower branching factor. . 

It · · . . d · Itaneously, until two partial 
is tn pnnc1ple possible to search from both en s sim~ . . al search [43]. Bi-

~:~teet somewhere in the middle. This s~at~gy is called bt~11~:::nat each step grows 
ionaJ search seems particularly appeahng if the number --1 Bti11g cl_o __________ . • ities he can easily remember the best pa~ to 

return h se means that, once John reaches one of those neighboring c ' h particular board configurauon, 
he ome. 11 is similar to the killer book for chess play. Once the player reac es a 

can follow h · · t ry t e killer book for moves that can guarantee a vic O · 
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exponentially with the depth that needs to be explored. However, som~times bi-directional 
search can be devastating. The two searches may cross each other, as illustrated in Figure 

12.3. 
The process of explicitly generating part of an implicitly defined graph fonns the es-

sence of our general graph search procedure. The procedure is summarized in Algorithm 
12.1. Jt maintains two lists: OPEN, which stores the nodes waiting for expansion, and 
CLOSE, which stores the already expanded nodes. Steps 6a and 6b are basically the book­
keeping process to merge different paths going into the same node by picking the one that 
has the minimum distance. Step 6a handles the case where v is in the OPEN list and thus is 
not expanded. The merging process is straightforward, with a single comparison and change 
of traceback pointer if necessary. However, when v is in the CLOSE list and thus is already 
expanded in Step 6b, the merging requires additional forward propagation of the new score 
if the current path is found to be better than the best subpath already in the CLOSE list. This 
forward propagation could be very expensive. Fortunately, most of the search strategy can 
avoid such a procedure if we know that the already expanded node must belong in the best 
path leading to it. We discuss this in Section 12.5. 

As described earlier, it may not be worthwhile to perform bookkeeping for a graph 
search, so Steps 6a and 6b are optional. If both steps are omitted, the graph search algorithm 
described above becomes a tree search algorithm. To illustrate different search strategies, 
tree search is used as the basic graph search algorithm in the sections that follows. However, 
you should note that all the search methods described here could be easily extended to graph 
search with the extra bookkeeping (merging) process as illustrated in Steps 6a and 6b of 
Algorithm 12.1. 

· Forward search explore<f area 
. ' . ·. 

0 
0 . 

Figure 12,3 A bad case for bi-directional search, where the forward search and the backward 
search crossed each other [42]. 
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ALGORITHM 12.1: THE GRAPH-SEARCH ALGORITHM 

597 

Step 1: Initialization: ~ut _s in the O~EN list and create an initially empty CLOSE list 
step 2: If the OPEN hst 1s empty, exit and declare failure. 
Step 3: Pop up the first node Nin the OPEN list remove ii from the OPEN list and put it into 
the CLOSE list. 
Step 4: If node N is a goal node, exit successfully with the solution obtained by tracing back the 
path along the pointers from N to S. . 
Step 5: Expand node N by applying the successor operator to generate the successor set 
SS(N) of node N. Be sure to eliminate the ancestors of N from SS(N). 
Step 6: Vv e SS(N) do 

6a. (optional) If v e OPEN and the accumulated distance of the new path is smaller than 
that for the one in the OP EN list, do 

(i) change the traceback (parent) pointer of v to N and adjust the accumulated 
distance for v . 

(ii} go to Step 7. 
6b. (optional) If v e CLOSE and the accumulated distance of the new path is smaller 

than the partial path ending at v in the CLOSE list, do 
(i) change the traceback (parent) pointer of v to N and adjust the accumulated 

distance for all paths that contain v . 
(ii) go to Step 7. 

6c. Create a pointer pointing to N and push it into the OPEN list. . . 
Step 7: Reorder the OPEN list according to search strategy or some heunstlc measurement. 
Step 8: Go to Step 2. 

12.l.2. Blind Graph Search Algorithms 

If . bl th ·nstead of the best path, blind 
the aim of the search problem is to find an accepta e pa 1 

. d bl'ndly 
se h · d · the OPEN hst the same an 1 

~ 1s often used. Blind search treats every no e 10 
• • wledoe Since blind search 

decides the order to be expanded without using any domain kno, 0 
,· stive search be-

treats :~orm sea re tor ex 1au • 
every node equally, it is often referred to as im1:,, ·cally not interested in 

~~-use it exhaustively tries out all possible paths. I~ A!, pe~p:; ::;yp~ophisticated heurisLic 
1nd search. However, it does provide a lot of insight 10 y d nodes randomly. In-

search algorithms. You should note that blind search does nt exp: Two popular types of 
s~ad, it follows some systematic way to explore the searc grap · 
bhnd search are depth-first search and breadth-first search. 
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12.1.2.1. Depth-First Search 

When we are in a maze, the most natural way to find a way out is to mark the branch we 
take whenever we reach a branching point. The marks allow us to go back to a choice point 
with an unexplored alternative, withdraw the most recently made choice and undo all conse­
quences of the withdrawn choice whenever a dead-end is reached. Once the alternative 
choice is selected and marked, we go forward based on the same procedure. This intuitive 
search strategy is called backtracking. The famous N-queens puzzle [32) can be handily 
solved by the backtracking strategy. 

Depth-first search picks an arbitrary alternative at every node visited. The search 
sticks with this partial path and works forward from the partial path. Other alternatives at the 
same level are ignored completely (for the time being) in the hope of finding a solution 
based on the current choice. This strategy is equivalent to ordering the nodes in the OPEN 
list by their depth in the search graph (tree). The deepest nodes are expanded first and nodes 
of equal depth are ordered arbitrarily. 

Although depth-first search hopes the current choice leads to a solution, sometimes the 
current choice could lead to a dead-end (a node which is neither a goal node nor can be ex­
panded further). In fact, it is desirable to have many short dead-ends. Otherwise, the algo­
rithm may search for a very long time before it reaches a dead-end, or it might not ever 
reach a solution if the search space is infinite. When the search reaches a dead-end, it goes 
back to the last decision point and proceeds with another alternative. 

Figure 12.4 shows all the nodes being expanded under the depth-first search algorithm 
for the city-traveling problem illustrated in Figure 12.1. The only differences between the 
graph search and the depth-first search algorithms are: 

1. The graph search algorithm generates all successors at a time (although all 
except one are ignored first), while depth-first search generates only one suc­
cessor at a time. 

2. The graph search, when successfully finding a path, saves only one path from 
the starting node to the goal node, while depth-first search in general saves 
the entire record of the search graph. 

Depth-first search could be dangerous because it might search an impossible path th31 

is actually an infinite dead-end. To prevent exploring of paths that are too long, 3 depth 
b d h. that oun _ca? ~e placed to constrain the nodes to be expanded, and any node reac mg 
depth limit 1s treated as a tenninal node (as if it had no successor). . 

The general graph search algorithm can be modified into a depth-first search algonthm 
as illustrated in Algorithm 12.2. 
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Figure 12.4 The node-expanding procedure of the deplh-first search for the path search prob­
lem in Figure 12. l. When it fails to find the goal c ity in node C, it backtracks to the parent and 
continues the search until it finds the goal city. The gray nodes are those that are explored. The 
dotted nodes are not visited during the search [42]. 

ALGORITHM 12.2: THE DEPTH-FIRST SEARCH ALGORITHM 

Step 1: Initialization: Put Sin the OPEN list and create an initially empty the CLOSE list. 
Step 2: If the OPEN list is empty, exit and declare failure. 
Step 3: Pop up the first node N in the OPEN list, remove it from the OPEN list and put it into the 
CLOSflist. 
Step 4: If node N is a goal node, exit successfully with the solution obtained by tracing back the 
path along the pointers from N to S. 

4a. If the depth of node N is equal to the depth bound, go to Step 2. 
Step 5: Expand node N by applying the successor operator to generate the successor set 
SS{N) of node N. Be sure to eliminate the ancestors of N from SS(N). 
S!ep 6: 'v'v E SS(N) do 

6c. Create a pointer pointing to N and push it into the OPEN list. 
5tep 7: Reorder the the OPEN list in descending order of the depth of the nodes. 
Slep 8: Go to Step 2. 

599 
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12.1.2.2. Breadth-First Search 

0 natural alternative to the depth-first search strategy is breadth-first search. Breadth-first 
ne " 'd · search examines all the nodes on one level be1ore cons1 ermg any of the nodes on the next 

level (depth). As shown in Figure 12.5, node B would be examined just after node A. The 
search moves on level-by-level, finally discovering G on the fourth level. 

Breadth-first search is guaranteed to find a solution if one exists, assuming that a finite 
number of successors (branches) always follow any node. The proof is straightforward. If 
there is a solution, its path length must be finite. Let's assume the length of the solution is 
M. Breadth-first search explores all paths of the same length increasingly. Since the number 
of paths of fixed length N is always finite, it eventually explores all paths of length M. By 
that time it should find the solution. 

It is also easy to show that a breadth-first search can work on a search tree (graph) 
with infinite depth on which an unconstrained depth-first search will fail. Although a 
breadth-first might not find a shortest-distance path for the city-travel problem, it is guaran­
teed to find the one with fewest cities visited (minimum-length path). In some cases, it is a 
very desirable solution. On the other hand, a breadth-first search may be highly inefficient 
when all solutions leading to the goal node are at approximately the same depth. The 
breadth-first search algorithm is summarized in Algorithm 12.3. 

> 
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> 
3 
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~ C: .. . B . 
'·. .: 

. . . . ~· 
; D ·. . : 

~ F : 

. ;: : .. · 
; E ·. i:· G ··:: 
:• ... •: ·: .... · .. ;:· 

:··c··· . 
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: ·A···. 
I : . . .... 

Figurel2.5Thenode d. · ·- ·· h b-
lem in p-

12 
-expan mg procedure of a breadth-first search for the path searc pro 

igure . l. It searches th h - - - - h y nodes are those that are ex 
I 

roug each level until the goal 1s 1denufied. T e gra 
Pored. The dotted nodes are not visited during the search [42]. 
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ALGORITHM 12.3: THE BREADTH-FIRST SEARCH ALGORITHM 

step 1: Initialization: '.u~ Sin the OP_EN list and create an initially empty the CLOSE list. 
Step 2: If the OPEN hst 1s empty, exit and declare failure. 

601 

Step 3: ~op up the first node Nin the OPEN list, remove it from the OPEN list and put it into the 
CLOSEhst. 
Step 4: If node N is a goal node, exit successfully with the solution obtained by tracing back the 
path along the pointers from N to S. 
Step 5: Expand node N by applying the successor operator to generate the successor set 
SS(N) of node N. Be sure to eliminate the ancestors of N, from SS(N). 
Step 6: Vv e SS(N) do 

6c. Create a pointer pointing to N and push ii into the OPEN list. 
Step 7: Reorder the OPEN list in increasing order of the depth of the nodes. 
Step 8. Go to Step 2. 

12.1.3. Heuristic Graph Search 

Blind search methods, like depth-first search and breadth-first search, have no sense (or 
guidance) of where the goal node lies ahead. Consequently, they often spend a lot of time 
searching in hopeless directions. If there is guidance, the search can move in the direction 
that is more likely to lead to the goal. For example, you may want to find a driving route to 
the World Trade Center in New York. Without a map at hand, you can still use a straight­
line distance estimated by eye as a hint to see if you are closer to the goal (World Trade 
Center). This hill-climbing style of guidance can help you to find the destination much· more 
efficiently. 

Blind search finds only one arbitrary solution instead of the optimal solution. To find 
the optimal solution with depth-first or breadth-first search, you must not stop searching 
when the first solution is discovered. Instead, the search needs to continue until it reaches all 
the solutions, so you can compare them to pick the best. This strategy for finding the opti~al 
solution is called British Museum search or brute-force search. Obviously, it is unfeasible 
when the search space is large. Again, to conduct selective search and yet still be able to find 
the optimal solution, some guidance on the search graph is necessary. . 

The guidance obviously comes from domain-specific knowledge. Such knowle~ge is 
usually referred to as heuristic information, and search methods taldng advantage. 0 ~ it are 
called heuristic search methods. There is usually a wide variety of diffe~en~ heun~tics ifor 
lhe problem domain. Some heuristics can reduce search effort without sacnficmg optimal ty, 
While 0ther can greatly reduce search effort but provide only sub-optimal solutions. In m~

st 

practical problems the choice of different heuristics is usually a tradeoff between the quahty 
Of th · ' · e soluhon and the cost of finding the solution. 
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H 
. . . , ·mar,·O11 works like an evaluation function '7( N) that maps each node N euns~c 10101 . 

I b a d Whl.ch serves to indicate the relative goodness (or cost) of continuing to a rea num er, n · . . . . 
I I th fronl that node Since in our city-travel problem. straight-line distance is a 
t 1e searc 1 pa · · . . . . 
natural way of measuring the goodness of a path. we can use the heunst1c function h(N) for 

the distance evaluation as: 

h(N)=Heuristic estimate of the remaining distance from node N to goal G ( 12.1) 

Since g(N), the distance of the partial path to the current node N, is generally known, we 

have: 

g(N)= The distance of the partial path already traveled from root S to node N ( 12.2) 

We can define a new heuristic function, f (N), which estimates the total distance for the 
path (not yet finished) going through node N. 

f(N) = g(N)+h(N) ( 12.3) 

A heuristic search method basically uses the heuristic function f(N) to re-order the 
OPEN list in the Step 7 of Algorithm 12.1. The node with the best heuristic value is ex­
plored first (expanded first). Some heuristic search strategies also prune some unpromising 
partial paths forever to save search space. This is why heuristic search is often referred to as 
heuristic pruning. 

The choice of the heuristic function is critical to the search results. If we use one that 
overestimates the distance of some nodes. the search results may be suboptimal. Therefore, 
heuristic functions that do not overestimate the distance are often used in search methods 
aiming to find the optimal solution. 

To dose ,this section, we describe two of the most popular heuristic search methods: 
best-first (or A Search) [32, 43] and beam search [43]. They are widely used in many com­
ponents of spoken language systems. 

12.1.3.1. Best-First (A· Search) 

Once w~ have a reasonable heuristic function to evaluate the goodness of each node in th_e 
OPEN 11st, we can explore the best node (the node with smallest f(N) value) first, since it 
offers the best hope of leading to the best path. This natural search strate0 y is called best• 
jirSI search. To implement best-first search based on the Algorithm 12.l c we need to tirSl 
evaluate f(N) for h ' . · s 6 W eac successor before putting the successors in the OPEN ltst tn tep · 

~ al_so_ need to sort the elements in the OPEN list hased on f(N) in Step 7, so that the best 
~o e 1~ m t~e front-most position waiting to be expanded in Step 3. The modified procedure 
i~rle 0~rr;~nl~ be5t·~rst search is illustrated in Algorithm 12.4. To avoid duplicating 00?es 
princ~ple Th '

st
• w~ include Seeps 6a and 6b to take advantage of the dynamic programm~ng 

into the s~me e:o~;. orm the needed bookkeeping process to merge different paths Jeadu1g 
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ALGORITHM 12.4: THE BEST-FIRST SEARCH ALGORITHM 

step 1: Initialization: '.u~ Sin the O~EN list and create an initially empty the CLOSE list. 
Step 2: If the OPEN lrst 1s empty, exit and declare failure. 
Step 3. Pop up the first node Nin the OPEN list, remove it from the OPEN list and put it into th 

I
. e 

CLOSE 1st. 
Step 4: If node N is a goal node, exit successfully with the solution obtained by tracing back the 
path along the pointers from N to S. 
Step 5: Expand node N by applying the successor operator to generate the successor set 
SS(f'.IJ of node N. Be sure to eliminate the ancestors of N, from SS(NJ. 
Step 6: 't/ve SS(N) do 

Sa. (optional) If v e OPEN and the accumulated distance of the new path is smaller than 
that for the one in the the OPEN list, do 

(i) Change the traceback (parent) pointer of v to N and adjust the accumulated 
distance for v . 

(ii) Evaluate heuristic function f(v) for v and go to Step 7. 

Sb. (optional) If v e CLOSE and the accumulated distance of the new path is small than 
the partial path ending at v in the the CLOSE list, 

(i) Change the traceback (parent) pointer of v to N and adjust the accumulated 
distance and heuristic function f for all the paths containing v . 

(ii) go to Step 7. 
6c. Create a pointer pointing to N and push it into the OPEN list. 

Step 7: Reorder the the OPEN list in the increasing order of the heuristic function /(N). 

Step 8: Go to Step 2. 

A search algorithm is said to be admissible if it can guarantee to find ~ op~imal solu­
tion, if one exists. Now we show that if the heuristic functio~ h(N} of es~imatmg the re-

. · · - of the true distance from N mammg distance from N to goal node G is an underestimate 
to goal node G the best-first search illustrated in Algorithm 12.4 is adf!1issible. In fdact, 

h ' · h · called A (pronounce as 
w en h(N) satisfies the above criterion, the best-first algont m is 
fehl-star) Search . 

• & I When the frontmost node m the 
The proof can be carried out informally as 101 ows. 

OPEN list is the goal node G in Step 4, it immediately implies that 

'vve OPEN j(v) ~ .f(G) =a g(G)+h(G) = g(G) 
(12.4) 

1,. ~--------- · the distance from N to G. 
ror adni" 'h· . . . function not overesumate al 

S. . issi 1hty, we actually require only that the heunSIIC h t th'is chapier withou1 loss of gener • 
•nee 1t is d · mate chroug ou 

ity So _very rare to have an exact estimate, we use un ereSll d fmaie of the u-ue value. 
· rnetimes we refer 10 an underestimate function as a Jower-boun es 

1 
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Equation (12.4) says that the di_stance est~mate of a~y incomplete path is no shorter 
than the. first found complete path. Smee the _distance estimate for any incomplete path is 
underestimated, the first found complete path m Step 4 must be the optimal path. A similar 
argu?1~nt can ~!so be use_d to prove that the Step 6b is actually not necessary for admissible 
heunsllc functions; that 1s, there cannot be another path with a shorter distance fro th 
starting node to a node that has been expanded. This is a very important feature sinc:St e 
6b is, in general, very expensive and it requires significant updates of many already e?­
panded paths. 

The A ' search method is actually a family of search algorithms. When h(N) = o for all 
N, the search degenerates into an uninfonned search3 [40]. In fact, this type of uninformed 
search is the famous branch-and-bound search algorithm that is often used in many opera­
tions research problems. Branch-and-bound search always expands the shortest path leading 
into an open node until there is a path reaching the goal that is of a length no longer than all 
incomplete paths terminating at open nodes. When g(N) is defined as the depth of the node 
N, the use of heuristic function f(N) makes the search method identical to breadth-first 
search. In Section 12.1.2.2, we mention that breadth-first search is guaranteed to find a 
minimum length path. This can certainly be derived from the admissibility of the A' search 
method. 

When the heuristic function is close to the true remaining distance, the search can usu­
ally find the optimal solution without too much effort. In fact, when the true remaining dis­
tances for all nodes are known, the search can be done in a totally greedy fashion without 
any search at all, i.e., the only path explored is the solution. Any non-zero heuristic function 
is then called an informed heuristic function, and the search using such a function is called 
informed search. A heuristic function hi is said to be more informed than a heuristic func­
tion h,_ if the estimate hi is everywhere larger than hi and yet still admissible (underesti­
mate). Finding an informed admissible heuristic function (guaranteed to underestimate for 
all nodes) is, in general, a difficult task. The heuristic often requires extensive analysis of the 
domain-specific knowledge and knowledge representation. 

Let's look at a simple example-the 8-puzzle problem. The 8-puzzle consists of eight 
numbered, movable tiles set in a 3x3 frame. One cell of this frame is always empty, so it is 
possible to move an adjacent numbered tile into the empty cell. A solution for the 8-puzzle 
is to find a sequence of moves to change the initial configuration into a given goal configu­
ration as shown in Figure 12.6. One choice for an informed admissible heuristic function _h. 
is the number of misplaced tiles associated with the current configuration. Since eac~ nu~­
placed tile needs to move at least once to be in the right position, this heuristic function 15 

clearly a lower bound of the true movements remaining. Based on this heuristic function, lhe 
value for the initial configuration will be 7 in Figure 12.7. If we examine this problem fur­
ther, a more informed heuristic function hi can be defined as the sum of all row and column 
distances of all misplaced tiles and their goal positions. For example, th~ _row_ and col~; 
distance between the tile 8 in the initial configuration and the goal pos1uon 1s 2 + I- ' 

'In some literature an uninfonned search is referred to as uniform-cost search. 
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8 2 1 1 2 3 

6 4 4 5 6 

5 3 7 7 8 
Figure 12.6 Initial and goal configurations for the 8-puzzle problem. 

which indicates that one must move tile 8 at least 3 times in order for it to be in the right 
position. Based on the heuristic function '72 , the value for the initial configuration will be 16 
in Figure 12.6. '12 is again admissible. 

In our city-travel problem, one natural choice for the underestimating heuristic func­
tion of the remaining distance between node N and goal G is the straight-line distance since 
the true distance must be no shorter than the straight-line distance. 

Figure 12.7 shows an augmented city-distance map with straight-line distance to goal 
node attached to each node. Accordingly, the heuristic search tree can be easily constructed 
for improved efficiency. Figure 12.8 shows the search progress of applying the A' search 
algorithm for the city-traveling problem by using the straight-line distance heuristic function 
to estimate the remaining distances. 

8.5 5.7 2.8 
~--3 __ _.fc"';...._ __ 3 __ --; 

\.::_,) 

7 
Figu 12 . · · fi t" on The numbers be-. re .7 The city-travel problem auomented with heuristic in orma 1 • 
Side h . 0 G [42} eac node indicate the straight-line distance to the goal node · 
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Figure 12.8 The search progress of applying A. search for the city-travel problem. The search 
detennines thal path S-A-C-E-G is the optimal one. The number beside the node is/values on 
which the sorting of the OPEN list is based [42]. 

12.1.3.2. Beam Search 

Sometimes, it is impossible to find any effective heuristic estimate, as required in A* search, 
particularly when there is very little (or no) infonnation about the remaining paths. For ex­
ample, in real-time speech recognition, there is little information about what the speaker will 
utter for the remaining speech. Therefore, an efficient uninfonned search strategy is very 
important to tackle this type of problem. 

Breadth-first style search is an important strategy for heuristic search. A breadth-first 
search virtually explores all the paths with the same depth before exploring deeper paths. In 
practice, paths of the same depth are often easier to compare. It requires fewer heuristics 10 

rank the goodness of each path. Even with uninfonned heuristic function ( h(N) = 0 ), tbe 
direct comparison of g (distance so far) of the paths with the same length should be area­
sonable choice. 

~eam search is a widely used search technique for speech recognition systems [~~· 31• 
37J. It is a breadth-first style search and progresses along with the depth. Unlike traditional 
breadlh-first search, however, beam search only expands nodes that are likely to succee<! ac 
each level. Only these nodes are kept in the beam and the rest are ignored (pruned) for im-
proved efficiency. ' 

In general, a beam search only keeps up to w best paths at each stage (level), ao<l lhe 
rest of the paths are d. d d Th . h The nurn· b iscar e · e number w is often referred to as beam w1dt · . 

~r of _nodes explored remains manageable in beam search even if the whole search space bis 
g1ganttc. If a beam w·dth · . · factor • 
0 1 b I w ts used m a beam search with an average branching t,er 
n Y wx nodes need to be explored at any depth, instead of the exponential nurn 
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needed for breadth-fir~t search. Suppose that a beam width of 2 is used for the city-travel 
problem. Figure 12.9 1llustrales how beam search progresses to find the path. We can also 
see that the beam search saved a large number of unneeded nodes, as shown by the dotted 

nodes. 
The beam search_algorith?1 cun be eusily_mo~i~ied from the breadth-first search algo-

rithm and is illustrated m Algonthm _I 2.5. For s1'.11phc1ty: we do not include the merging step 
here. In Algorithm 12.5, Step 4 obv10usly requires sortmg, which is time-consuming if the 
number wxb is huge. In practice, the beam is usually implemented as a flexible list where 
nodes are expanded if their heuristic functions f (N) are within some threshold (a.k.a., beam 
threshold) of the best node (the smallest value) at the same level. Thus, we only need to 
identify the best node and then prune away nodes that are outside of the threshold. Although 
this makes the beam size change dynamically, it significantly reduces the effort for sorting 
of the Beam-Candidate list. In fact, by adjusting the beam threshold, the beam size can be 
controlled indirectly and yet kept manageable. 

Unlike A' search, beam search is an approximate heuristic search method that is not 
admissible. However, it has a number of unique merits. Because of its simplicity in both its 
search strategy and its requirement of domain-specific heuristic information, it has become 
one of the most popular methods for complicated speech recognition problems. It is particu­
larly attractive when integration of different knowledge sources is required in a time­
synchronous fashion. It has the advantages of providing a consistent way of exploring nodes 
level by level and of offering minimally needed communication between different paths. It 
is also very suitable for parallel implementation because of its breadth-first search nature. 

7 
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Figure 12 "th ray color are the ones 
kepi . ·9 Beam search for the city-travel problem. The nodes wi g f higher cost. The 
d 

I 
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ALGORITHM 12.5: THE BEAM SEARCH ALGORITHM 

Step 1: Initialization: Put sin the OPEN list and cr~ate an initially empty CLOSE list. 
Step 2: If the OPEN list is empty, exit and declare failure. 
Step 3: 'v'N e OPEN do . . . . 

la. Pop up node N in the OPEN list, remove 1t from the OPEN 11st and put 11 into the 

CLOSE list. 
3b. If node N is a goal node, exit successfully with the solution obtained by tracing back the 

path along the pointers from N to S. 
3c. Expand node N by applying a successor operator to generate the successor set SS{N') 

of node N. Be sure to eliminate the successors, which are ancestors of N, from SS(N). 
3d. 'v'v E SS(N) Create a pointer pointing to N and push ii into Beam-Candidate list. 

Step 4: Sort the Beam-Candidate list according to the heuristic function f(N) so that the best 
w nodes can be pushed into the the OPEN list. Prune the rest of nodes in the Beam-Candidate 
list. 
Step 5: Go to Step 2. 

12.2. SEARCH ALGORITHMS FOR SPEECH RECOGNITION 

As described in Chapter 9, the decoder is basically a search process to uncover the word 
sequence W = w, w2 ••• wm that has the maximum posterior probability P(WIX) for the given 
acoustic observation X = X1X1 ... X,,. That is, 

W ==argmaxP(WI X) =argmax P(W)P(X I W) ==argmax P(W)P(X I W) (12.5) 
• ,. P(X) ,. 

One obvious way is to search all possible word sequences and select the one with the best 
posterior probability score. · 

The unit of acoustic model P(XIW) is not necessary a word model. For large­
~o~abulary speech recognition systems, subword models, which include phonemes, demisyl· 
ab es, ~d syllables are often used. When subword models are used, the word model 

~(XIW) is ~~n obtained by concatenating the subword models according to the pronuocia· 
lion transcnpt,on of the words in a lexicon or dictionary. 

When word models are available, speech recognition becomes a search problem. The 
goal for speech re · · · th 
. cogmtton is thus to find a sequence of word models that best describes e 
mput wavefonn against th d d"'rv 
f h e wor models. As neither the number of words nor the boun "'J 

o eac word or phonem · th · · to 
d I .th h . e m e mput waveform is known appropriate search strategies 

ea wi t ese vanable-le th · ' 
When HMM ng nonstattonary patterns are extremely important. 

expanded to f ~ are used for speech recognition systems, the states in the HMM can be 
speech model;:\~h e 

st
~te-search space in the search. In this chapter, we use HMMs as 0~~ 

· oug the HMM framework is used to describe the search algorithms. a 
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techniques mentioned in this and the followino chapter can be u d fi . . . . ::- se or systems based on 
Other modeling techniques, mcludmg template matchino and neural tw k 1 " 

. . o ne or s. n 1act, many 
search techniques had been mvented before HMMs were applied to speech . -. . recognition. 
Moreover, lhe HMMs state tr.insmon network is actually general enough to represent the 
general search framework for all modeling approaches. 

12.2.1. Decoder Basics 

The lessons learned from dynamic programming or the Viterbi algorithm introduced in 
Chapter 8 tell us that the exponential blind search can be avoided if we can store some in­
tennediate optimal paths (results). Those intermediate paths are used for ocher paths without 
being recomputed each time. Moreover, the beam search described in the previous section 
shows us !.hat efficient search is possible if appropriate pruning is employed to discard 
highly unlikely paths. In fact, all the search techniques use two strategies: sharing and prun­
ing. Sharing means that intermediate results can be kept, so that they can be used by other 
paths without redundant re-computation. Pruning means that unpromising paths can be dis­
carded reliably without wasting time in exploring them further. 

Search strategies based on dynamic programming or the Viterbi algorithm with the 
help of clever pruning, have been applied successfully to a wide range of speech recognjtion 
tasks [31], ranging from small-vocabulary tasks, like digit recognition, to unconsticUnt large­
\'OCabulary (more than 60,000 words) speech recognition. All the efficient search algorithms 
we discuss in th.is chapter and the next are considered as variants of dynamic programming 
or lbe Viterbi search algorithm. 

In Section 12.l, cost (distance) is used as the measure of goodness for graph search a!­
gorithms. With Bayes' fonnulation, searching the minimum-cost path (word ~quence) is 
equivalent to finding the path with maximum probability. For the s~ke of consiSlency, we 
use the inverse of Bayes' posterior probability as our objective f~n':uo~. Furthe~ore, loga­
rithms are used on the inverse posterior probability to avoid mul~1pbcat1ons. That is, the fol­
lowing new criterion is used lO find the optimal word sequence W : 

C(W JX)=1og j I _ . l=-log(P(W)P(XlW)] 
LP(W)P(X ; W)J 

(12.6) 

W = arg min C(W l X) 
(12.7) 

,, .. 
i:; . 10 mirror the likelihood for 

Or SUnplicity, we also defme the following cost measures 
<leoustic models and language models: 

(_12.8) 
C(X · WJ=-l~[P<X ; w,] 

(12.9) 
C{Wj =-log[.P<\\')] 
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12.2.2. Combining Acoustic and Language Models 

Although Bayes' equation [Eq. (12.5)] suggests that the acoustic model probability (condi­
tional probability) and language model probability (prior probability) can be combined 
through simple multiplication, in practice some weighting is desirable. For example, when 
HMMs are used for acoustic models, the acoustic probability is usually underestimated. ow­
ing to the fallacy of the Markov and independence assumptions. Combining the language 
model probability with an underestimated acoustic model probability according to Eq. (12.5) 
would give the language model too little weight. Moreover, the two quantities have vastly 
different dynamic ranges particularly when continuous HMMs are used. One way to balance 
the two probability quantities is to add a language model weight L W to raise the language 
model probability P(W) to that power P(W)Lw [4, 25). The language model weight LW is 
typically detennined empirically to optimize the recognition performance on a development 
set Since the acoustic model probabilities are underestimated, the language model weight 
L W is typically > 1 . 

Language model probability has another function as a penalty for inserting a new word 
(or existing words). In particular, when a uniform language model (every word has an equal 
probability for any condition) is used, the language model probability here can be viewed as 
purely the penalty of inserting a new word. If this penalty is large, the decoder will prefer 
fewer longer words in general, and if this penaJty is smaJI, the decoder will prefer a greater 
number of shorter words instead. Since varying the language model weight to match the 
underestimated acoustic model probability will have some side effect of adjusting the pen­
alty of inserting a new word, we sometimes use another independent insertion penalty to 
adjust the issue of longer or short words. Thus the language model contribution becomes: 

P(W/"' IPN(W) (12.10) 

where IP is the insertion penalty (generally O <IP~ I.O) and N(W) is the number of words 
in sentence W. According to Eq. (12.10), insertion penalty is generally a constant that is 
added to the negative-logarithm domain when extending the search to another new word. In 
Chapter 9, we described how to compute errors in a speech recognition system and intro· 
duced three types of error: substitutions, deletions and insertions. Insertion penalty is so 
named because it usually affects only insertions. Similar to language mouel weight, the in­
sertion penalty is determined empirically to optimize the recognition perfonnance on a de­
velopment set. 

12.2.3. Isolated Word Recognition 

With isolated word recognition, word boundaries are known. If word HMMs are available, 
the acoustic model probability P(XIW) can be computed usino the forward algorithm intro· 
duced in Chapter 8. The search becomes a simple pattern reco;nition problem, and lhe word 
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