550 Language Maqein,

A parsing algorithm must systematically explore every possible state that re
the intermediate node in the parsing tree. If a mistake occurs early on in choosing
that rewrites S, the intermediate parser results can be quite wasteful if the number
becomes large.

The main difference between top-down and bottom-up parsers is the way the grammar
rules are used. For example, consider the rule NP—ADJ NPI. In a top-down approach, the
rule is used to identify an NP by looking for the sequence ADJ NPI. Top-down parsing cap
be very predictive. A phrase or a word may be ambiguous in isolation. The top-down ap-
proach may prevent some ungrammatical combinations from consideration. It never Wwastes
time exploring trees that cannot result in an S. On the other hand, it may predict many dif-
ferent constituents that do not have a match to the input sentence and rebuild large constig.
ents again and again. For example, when the grammar is lefi-recursive (i.e., it contains 2
non-terminal category that has a derivation that includes itself anywhere along its lefimost
branch), the top-down approach can lead a top-down, depth-first left-to-right parser to recur-
sively expand the same non-terminal over again in exactly the same way. This causes an
infinite expansion of trees. In contrast, a bottom-up parser takes a sequence ADJ NP] and
identifies it as an NP according to the rule. The basic operation in bottom-up parsing is to
take a sequence of symbols and match it to the right-hand side of the rules. It checks the
input only once, and only builds each constituent exactly once. However, it may build up
trees that have no hope of leading to S since it never suggests trees that are not at least lo-
cally grounded in the actual input. Since bottom-up parsing is similar to top-down parsing in
terms of overall performance and is particularly suitable for robust spoken language process-
ing as described in Chapter 17, we use the bottom-up method as our example to understand
the key concept in the next section.

Presents
the ryle
of rules

11.1.2.2. Bottom-Up Chart Parsing

As a standard search procedure, the state of the search consists of a symbol list, starting with
the words in the sentence. Successor states can be generated by exploring all possible ways
to replace a sequence of symbols that matches the right-hand side of a grammar rule with ils
left-hand side symbol. A simple-minded solution enumerates all the possible matches, lead-
ing to prohibitively expensive computational complexity. To avoid this problem, it is neces-
sary to store partially parsed results of the matching, thereh; eliminating duplicate work.
This is the same technique that has been widely used in dynamic programming, as descri}?ed
in Chapter 8. Since chart parsing does not need to be from left to right, it is more efficient
than the graph search algorithm discussed in Chapter 12, which can be used to parse the
input sentence from left to right.

A data structure, called a chary, is used to allow the parser to store the partial res
the matching. The chart data structure maintains not only the records of all the constituents
derived from the sentence so far in the parse tree, but also the records of rules that have
matched partially but are still incomplete. These are called active ares. Here, matches 2%
always considered from the point of view of some active constituents, which represent the

results of

Amazon/VB Assets
Exhibit 1012
Page 576

. Theory
Formﬂl Language Y -

subparts that the input sentence can be divided into according to the rewrite rules. Active
awiinerl Store'd e dat-a Stmcmfe called an agenda. To find gramimar rules that
match a siring involving the active constituent, we need to identify rules that start with the
active constituent or ml?'s that have already been started b)’ earlier active constituents and
require the current constituent to co11191c?te the rule or to extend the rule. The basic operation
offcheri-based pacees involves Gombining these partially matched records (active arcs) with
a completed consHRert 1o fon.n either a new completed constituent or a new partially
matched (but incomplete) constituent that is an extension of the original partially matched
constituent. Just like the graph search algorithm, we can use either a depth-first or breadth-
first search strategy, depending on how the agenda is implemented. If we use probabilities or
other heuristics, we take the best-first strategy discussed in Chapter 12 1o select constituents
from the agenda. The chart-parser process is defined more precisely in Algorithm 11.1. It is
possible to combine both top-down and bottom-up. The major difference is how the con-
stituents are used.

ALGORITHM 11.1: A BOTTOM-UP CHART PARSER

Step1: Initialization: Define a list called chart to store active arcs, and a list called an agenda

1o store active constituents until they are added to the chart.

Step 2: Repeat: Repeat Step 2 to 7 until there is no input left.

Step 3: Push and pop the agenda: If ithe agenda is empty, look up the interpretations of the

next word in the input and push them to the agenda. Pop a constituent C from the agenda. If C

corresponds to position from 1w, to w, of the input sentence, we denote it Cfi,j].

Step 4: Add Cto the chart: Insert Cij] into the chart.

Step 5: Add key-marked active arcs to the chart: For each rule in the grammar of the form

X=C Y, add to the chart an active arc (partially matched constituent) of the form X[ijj—>°CY,

where ° denotes the critical position called the key that indicates that everything before © has

been seen, but things after ° are yet to be matched (incomplete constituent).

Step 6: Move ° forward: For any active arc of the form X[1,j—Y...°C...Z (everything before

w;)in the chart, add a new active arc of the form X[1,;] — Y...C°...Zto the chart.

Step 7: Add new constituents to the agenda: For any active arc of the form X[1,1]-Y...°C,

add a new constituent of type X[1,j/to the agenda.)

Step 8: Exit: If §[1,n] is in the chart, where n is the length of the input sentence, we can exit

Successfully unless we want to find all possible interpretations of the sentence. The chart may

contain many S structures covering the entire set of positions.

——
Let us look at an example to see how the chart parser parses the sentence Mary loves

that person using the grammar specified in Figure 11.1. We first create the chart and agenda

data structure as illustrated in Figure 11.2 (a), in which the leaves of the tree-like chart data

Structure corresponds to the position of each input word. The parent of each b!o.ck in the

Chart covers from the position of the left child’s corresponding starting word position (o the

right child’s corresponding ending word position. Thus, the root block in the chart covers

the whole sentence from the first word Mary to the last word person. The chart parser scans

Amazon/VB Assets
Exhibit 1012
Page 577

—
552 Language Modeling

through the input words to match against possible rewrite rules in the grammar. For the first
word, the rule Name—Mary can be matched, so it is added to the agenda according to Step 3
in Algorithm 11.1. In Step 4, Name—Mary is added to the chart from the agenda, After fhe
word Mary is processed, we have Name—Mary, NP—Name, and S—SNP°VP in the chart, ag
illustrated in Figure 11.2 (b). NP°VP in the chart indicates that ° has reached the poini at
which everything before ° has been matched (in this case Mary matched NP) but everything
after ° is yet to be parsed. The completed parsed chart is illustrated in Figure 11.2 (c).

A parser may assign one or more parsed structures to the sentence in the language it
defines. If any sentence is assigned more than one such structure, the grammar is said to be
ambiguous. Spoken language is, of course, ambiguous by nature.’ For example, we can have
a sentence like Mary sold the student bags. It is unclear whether student should be the mogi.
fier for bags or whether it means that Mary sold the bags to the student.

Chart parsers can be fairly efficient simply because the same constituent is never con-
structed more than once. In the worst case, the chart parser builds every possible constituent
between every possible pair of positions, leading to the worst-case computational complex-
ity of O(ns), where n is the length of the input sentence. This is still far more efficient than a
straightforward brute-force search.

In many practical tasks, we need only a partial parse or shallow parse of the input sen-
tence. You can use cascades of finite-state automata instead of CFGs. Relying on simple
finite-state automata rather than full parsing makes such systems more efficient, although
finite-state systems cannot model certain kinds of recursive rules, so that efficiency is traded
for a certain lack of coverage.

Name[1,1] > Mary
SIS

Mary loves that person

(a) T.he. chart is illustrated on the left, and the agenda is on the right. The agenda now has o
rule in it according to Step 3, since the agenda is empty.

; " “) 1OV hat
The sime parse tree can also mean multiple things, so a parse tree itself does not define meaning. Mary loves ™0
Pperson” could be sarcastic and mean something different.
Amazon/VB Assets
Exhibit 1012

Page 578

553

Formnl Language Theory

Name—> Mary
NP-» Name
$- NP VE/

V[2,2]— loves

that person

Mary loves
(b) After Mary, the chart now has rules Narne—Mary, NP—Name, and S—NP°VP.

NP -ADIJNPI

AD)P> that

7 -
Name -~ Mary' V-> loves
NP5 Name Vb vomp XNE2ADI° NPT

person

Mary loves that

(¢) The chart after the whole sentence is parsed. S— NP VP covers the whole sentence, indicating that

the sentence i parsed successfully by the grammar.

Figure 11.2 An example of a chart parser with the grammar illustrated in Figure 11.1. Parts (a)
and (b) show the initial chart and agenda to parse the first word; part (c) shows the chart after

the sentence i completely parsed.

Amazon/VB Assets
Exhibit 1012
Page 579

\\
554 Langusge Moggg

11.2. STOCHASTIC LANGUAGE MODELS

Stochastic language models (SLM) take a probabilistic viewpoint of language modeling, e
need to accurately estimate the probability P(W) for a given word sequence W = W, .1
In the formal language theory discussed in Section 11.1, (W) can be regarded as | ér Ullf
the word sequence is accepted or rejected, respectively, by the grammar. This may be inap-
propriate for spoken language systems, since the grammar itseif is unlikely to have a com-
plete coverage, not to mention that spoken language is often ungrammatica) ip rea]
conversational applications.

The key goal of SLM is to provide adequate probabilistic information so that likely
word sequences should have a higher probability. This not only makes speech recognition
more accurate but also helps to dramatically constrain the search space for speech recogni-
tion (see Chapters 12 and 13). Notice that SLM can have a wide coverage on all the possible
word sequences, since probabilities are used to differentiate different word sequences. The
most widely used SLM is the so call n-gram model discussed in this chapter. In fact, the
CFG can be augmented as the bridge between the n-gram and the formal grammar if we can
incorporate probabilities into the production rules, as discussed in the next section.

11.2.1. Probabilistic Context-Free Grammars

The CFG can be augmented with probability for each production rule. The advantages of
probabilistic CFGs (PCFGs) lie in their ability to more accurately capture the embedded
usage structure of spoken language to minimize syntactic ambiguity. The use of probability
becomes increasingly important to discriminate many competing choices when the number
of rules is large.

In the PCFG, we have to address the parallel problems we discussed for HMMs in
Chapter 8. The recognition problem is concerned with the computation of the probability of
the start symbol S generating the word sequence W = w, w, ... wr, given the grammar G:

P(S = W|G) (1L.1)

where = denotes a derivation sequence consisting of one or more steps. This is equivalent
to the chart parser augmented with probabilities, as discussed in Section 11.1.2.2.

The training problem is concerned with determining a set of rules G based on the
training corpus and estimating the probability of each rule. If the set of rules is fixed, ([%e
simplest approach to deriving these probabilities is to count the number of times each rule1s
used in a corpus containing parsed sentences. We denote the probability of a rule A a by
P(A— a|G). For instance, if there are m rules for lefi-hand side non-terminal BO0¢
A:d—a),d> @, ...A— a,,, we can estimate the probability of these rules as follows:

P(A——)a]|G)=C(A_.>aj)/iC(A_)al) (112)

i=|

where C(,) denotes the number of times each rule is used.

Amazon/VB Assets
Exhibit 1012
Page 580

gtochastic Language Models 555

When you have hand-annotated corpora, you can use the maximum likelihood estima-
tion as illustrated by Eq. (11.2) to derive the probabilities. When you don’t have hand-
annotated corpora, you can extend the EM algorithm (see Chapter 4) to derive these prob-
abilities. The algorithm is also knqwn as the inside-outside algorithm. As we discussed in
Chapter 8, you can develop algorithms similar to the Viterbi algorithm to find the most
likely parse tree that could have generated the sequence of words P(W) after these probabili-
ties are estimated.

We can make certain independence assumptions about rule usage. Namely, we assume
that the probability of a constituent being derived by a rule is independent of how the con-
stituent is used as a subconstituent. For instance, we assume that the probabilities of NP
rules are the same no matter whether the NP is used for the subject or the object of a verb,
although the assumptions are not valid in many cases. More specifically, let the word se-
quence W=1w, w, ...wr be generated by a PCFG G, with rules in Chomsky normal form as
discussed in Section 11.1.1:

A, > 4,4, and 4 > w, (11.3)

where 4, and A4, are two possible non-terminals that expand 4, at different locations. The
probability for these rules must satisfy the following constraint:

S P4 — 4,4,1G)+ > P(4, - w, |G)=1, foralli (11.4)
man 1

Equation (11.4) simply means that all non-terminals can generate either pairs of non-
terminal symbols or a single terminal symbol, and all these production rules should satisfy
the probability constraint. Analogous to the HMM forward and backward probabilities dis-
cussed in Chapter 8, we can define the inside and outside probabilities to facilitate the esti-
mation of these probabilities from the training data.

A non-terminal symbol 4; can generate a sequence of words w;w ;... w;; we define
the probability of Inside(j, 4, k) = P(4, = w,w,,,..w, | G) as the inside constituent prob-
ability, since it assigns a probability to the word sequence inside the constituent. The inside
probability can be computed recursively. When only one word is emitted, the transition rule
of the form 4; > w, applies. When there is more than one word, rules of the form
4 - 4,4, must apply. The inside probability of inside(j, 4;,k) can be expressed recur-

m*n

sively as follows:

inside(f, A k)= P(4; = ijj+,...wk)

k=1
= ZZP(A,- = Ay Ay)P(Ay = W W) P(Ay = Wigyo W) (11.5)
nm I=j
k-1
= Z Z P(A4; > A, A,)inside(j, 4,,,Dinside(! +1, 4, k)
nm |=j

Amazon/VB Assets
Exhibit 1012
Page 581

—_—
556 Language Modeljng

The inside probability is the sum of the probabilities of all derivations for the sect;
over the span of j to k. One possible derivation of the form can be drawn as 5 g tan
shown in Figure 11.3. e

Another useful probability is the outside probability for a non-terminal node 4. cover.
ing w, to w,, in which they can be derived from the start symbol S, as illustrated in Figure
11.4, together with the rest of the words in the sentence:

outside(s, A;,1) = P(S = wy...w,_| A; Wi4q...W7T) (11.6)

After the inside probabilities are computed bottom-up, we can compute the outside
probabilities top-down. For each non-terminal symbol 4,, there are one of two possible ¢op-
figurations A4, — 4, 4; or A, — A4; A4, as illustrated in Figure 11.5. Thus, we need to con-

n<a

sider all the possible derivations of these two forms as follows:

-

outside(s, A,t) = P(S = w.w,_, 4, w,,,..w;)

s=! N
(z P4, = 4,4)P(4, = w.w,)P(S = w.w, 4, W)+
=

(11.7)

=Z(
m.n

T
+2 P(4, = AA4)P(4, = w,,.W)P(S = .., 4, wy,y.w,)
L =i+l

-l

> P(4, — 4 4)inside(l, 4,,s - Noutside(l, A, 1) +

= Z‘ 1=l
- T
"+ Y P(4, — A A,)inside(t +1,A,,l)outside(s, 4,.])

U f=rt]

The inside and outside probabilities are used to compute the sentence probability as
follows:

P(S = w...wyp) = Zinside(s, A;, Noutside(s, A; ,t) forany s <t (11.8)
i
4;
A, Ay
Wj e W W[*I obs Wk.--

Figure 11.3 Inside probability is computed recursively as sum of all the derivations.

Amazon/VB Assets
Exhibit 1012
Page 582

//-———
stochastic Language Models 557

w ses W, WIH - WT

Wy e Wi s

Figure 11.4 Definition of the outside probability.

Since outside(1, 4;,T) is equal to 1 for the starting symbol only, the probability for the
whole sentence can be conveniently computed using the inside probability alone as

P(S = W|G) =inside(1,S,T) (11.9)

We are interested in the probability that a particular rule, 4, — A4, 4, is used to cover
aspan w,...w,, given the sentence and the grammar:

E@mn,s,)=P(4,=>w,.w, A4 >4 4 |5S=>W,G)

1 = - i .
—méP(A, - 4,4, |Glinside(s, A, ,k)inside(k +1, 4,, Houtside(s, 4,,1)
(11.10)

These conditional probabilities form the basis of the inside-outside algorithm, which is simi-
lar to the forward-backward algorithm discussed in Chapter 8. We can start with some initial
probability estimates. For each sentence of training data, we determine the inside and out-
side probabilities in order to compute, for each production rule, how likely it is that the pro-
duction rule is used as part of the derivation of that sentence. This gives us the number of
counts for each production rule in each sentence. Summing these counts across sentences
gives us an estimate of the total number of times each production rule is used to produce the

S

Figure 11.5 Two possible configurations for a non-terminal node 4.

Amazon/VB Assets
Exhibit 1012
Page 583

558 Language MOdeling

sentences in the training corpus. Dividing by the total counts of productions used for each
non-terminal gives us a new estimate of the probability of the production in the MLE
framework. For example, we have:

-1 T
Z Eé(i,m,n,s,f)

P(4; = Ay 4,|G)=—EH= (L)

Z E i E@i, m,n,s,1)

i §=1 1=5+1

In a similar manner, we can estimate P(4, — w, |G) . It is also possible to let the ip-
side-outside algorithm formulate all the possible grammar production rules so that we can
select rules with sufficient probability values. If there is no constraint, we may have too
many greedy symbols that serve as possible non-terminals. In addition, the algorithm is
guaranteed only to find a local maximum. It is often necessary to use prior knowledge about
the task and the grammar to impose strong constraints to avoid these two problems. The
chart parser discussed in Section 11.1.2 can be modified to accommodate PCFGs [29, 45].

One problem with the PCFG is that it assumes that the expansion of any one non-
terminal is independent of the expansion of other non-terminals. Thus each PCFG rule prob-
ability is multiplied together without considering the location of the node in the parse tree.
This is against our intuition since there is a sirong tendency toward the context-dependent
expansion. Another problem is its lack of sensitivity to words, although lexical information
plays an important role in selecting the correct parsing of an ambiguous prepositional phrase
attachment. In the PCFG, lexical information can only be represented via the probability of
pre-terminal nodes, such as verb or noun, to be expanded lexically. You can add lexical de-
pendencies to PCFGs and make PCFG probabilities more sensitive to surrounding syntactic
structure [6, 11, 19, 31, 45].

11.2.2. N-gram Language Models

As covered earlier, a language model can be formulated as a probability distribution P(W)
over word strings W that reflects how frequently a string W occurs as a sentence. For x-
ample, for a language mode! describing spoken language, we might have P(hi) = 0.01, since
perhaps one out of every hundred sentences a person speaks is 4. On the other hand, we
would have P(lid gallops Changsha pop) = 0, since it is extremely unlikely anyone would
utter such a strange string.

P(W) can be decomposed as

P(W) = P(w;,w,,...,w,)
= POR PO 19 POV, 9, 3 v POW, [, W W) o
=HP(W,-'W[,WQ_;---!WI'—I)

Amazon/VB Assets
Exhibit 1012
Page 584

s (ochastic Language Models

8 559

ahiere p(w’.|w‘,wz,...,w,_,) is the probability that w, will follow, given that the word
quence Wy 1¥2 e Wiy was presented previously. In Eq. (1 1.12), the choice of 1 tl?r je-
ends on the entire past history of the input. For a vocabulary of size v th s s 1
different histories and so, to specify POwi[wy,wa s ow,)) completely, 1 elre are v
nave to be estimated. In reality, the probabilities P(w,|w,,w,,...,w,)y ’are Ll L
estimate for even moderate values of i, since most histories i u:, - w ;mpOSSllble o
have occurred only a few times. A practical solution to the abové’pr(—)l‘)ll.e-r;s ii—sl tol:s:lr: quft:hOr
P(w;| W12 W2 ,.--»W;_y) depends only on some equivalence classes. The equivalencTel -
can be simply based on the several previous words w,_y.,,w,_y.s,....w,_,. This lea; a:s
an n-gram language model. If the word depends on the brevious t+v;o »;/,oré;l'we have astri(-)
gram: P(Wi'wi—.'!’wi—l)‘ Similarly, we can have unigram: P(w;), or bigra;n: PQw;\w._,)
language models. The trigram is particularly powerful, as most words have a strong d'epé;ld-
ence on the previous two words, and it can be estimated reasonably well with an attainable
COrpus.

In bigram models, we make the approximation that the probability of a word depends
only on the identity of the immediately preceding word. To make P(w;|w;_) meaningful
for i = 1, we pad the beginning of the sentence with a distinguished token <s>; that is, we
pretend wy = <s>. In addition, to make the sum of the probabilities of all strings equal 1, it is
necessary to place a distinguished token </s> at the end of the sentence. For example, to
calculate P(Mary loves that person) we would take

P(Mary loves that person) =
P(Mary|<s>)P(loves|Mary)P(that|loves)P(personithat)P(</s>|person)

To estimate P(w,|w,_,), the frequency with which the word w; occurs given that the
last word is w;_,, we simply count how often the sequence (w,_,,w,) occurs in some text
and normalize the count by the number of times w,_, occurs.

In general, for a trigram model, the probability of a word depends on the two preced-
ing words. The trigram can be estimated by observing the frequencies or couats of the word
pair C(w,_,,w,_,) and triplet C(w,_,w,_,w;) as follows:

Clw;_a, Wi, Wi) (11.13)

POwilwig, Wiy) = C(wi_a i)

i-2,Wi-l
a training corpus. For n-gram models,
llions of words. The estimate of Eq
because this assignment of probabili-
bability to the training data of all

The text available for building a model is called
the amount of training data used is typically many mi
(1.13) is based on the maximum likelihood principle,
ties)’ti’elds the trigram model that assigns the highest pro
Possible trigram models. . _

We Simetimes refer to the value n of an n-gram medel as its order.. This termmol'ogy
comes from the area of Markov models, of which #-gram models are an instance. In particu-
lar,an n-gram model can be interpreted as a Markov model of order A-1.

Amazon/VB Assets
Exhibit 1012
Page 585

: Language Modeling

Consider a small example. Let our training data S be comprised of the three Sentenceg
John read her book. I read a different book. John read a book by Mulan. and let us calculate
P(John read a book) for the maximum likelihood bigram model. We have

C(<s>,John) 2
P(John|<s>)=_(_s___—=_

C(<s>) 3
C(John,read) 2
hny=— =2
P(read | John) ClJohn) >
_C(read,a) 2
Palread) == cad) 3
C(a,book) 1
book |a)=——2—-==
P(book | a) @) 7
_ C(book,< /s>) _ Z
P(< /s >|book) = Clbook) 3
These trigram probabilities help us estimate the probability for the sentence as:
P(John read a book)
= P(John |< s >)P(read | John)P(a | read)P(book | a)P(< / s >| book) (11.14)

=0.148

If these three sentences are all the data we have available to use in training our lan-
guage model, the model is unlikely to generalize well to new sentences. For example, the
sentence “Mulan read her book” should have a reasonable probability, but the trigram will
give it a zero probability simply because we do not have a reliable estimate for
P(readMulan).

Unlike linguistics, grammaticality is not a strong constraint in the n-gram language
model. Even though the string is ungrammatical, we may still assign it a high probability if
is small. :

11.3. COMPLEXITY MEASURE OF LANGUAGE MODELS

Language can be thought of as an information source whose outputs are words w; belonging
to the vocabulary of the language. The most common metric for evaluating a language
model is the word recognition error rate, which requires the participation of a speech recog-
nition system. Alternatively, we can measure the probability that the language model assigns
to test word strings without involving speech recognition systems. This is the derivative
measure of cross-entropy known as test-set perplexity.

_ The measure of cross-entropy is discussed in Chapter 3. Given a language model.that
assigns probability P(W) to a word sequence W, we can derive a compression algorith”
that encodes the text W using ~log, P(W) bits. The cross-entropy H(W) of a model

Amazon/VB Assets
Exhibit 1012
Page 586

plexity Measure of Language Models

Com) 561

P(W,-I“’i—n+l"'wi-l) on data W, with a sufficiently long word sequence, can be simol
approximated as ’ ply

1
=———log, P(W
H(W) N g (W) (Lis)

where Ny, is the length of the text W measured in words,
The perplexity PP(W) of a language model P(W) is defined as the reciprocal of the

(geometric) average probability assigned by the model to each word in the test set W. This
is a measure, related to cross-entropy, known as test-set perplexity:

_ nH(W)
PP(W)=2 (11.16)

The perplexity can be roughly interpreted as the geometric mean of the branching fac-
tor of the text when presented to the language model. The perplexity defined in Eq. (11.16)
has two key paramett'ars:_a language model and a word sequence. The test-set’ perplexity
evaluates the generalization capability of the language model. The training-set perplexity
measures how the language model fits the training data, like the likelihood. It is generally
true that lower perplexity correlates with better recognition performance. This is because the
perplexity is essentially a statistically weighted word branching measure on the test set. The
higher the perplexity, the more branches the speech recognizer needs to consider statisti-
cally.

While the perplexity [Egs. (11.16) and (11.15)] is easy to calculate for the n-gram [Eq.
(11.12)], it is slightty more complicated to compute for a probabilistic CFG. We can first
parse the word sequence and use Eq. (11.9) to compute P(W) for the test-set perplexity.
The perplexity can also be applied to nonstochastic models such as CFGs. We can assume
they have a uniform distribution in computing P(W).

A language with higher perplexity means that the number of words branching from a
previous word is larger on average. In this sense, perplexity is an indication of the comple.x-
ity of the language if we have an accurate estimate of P(W). For a given language, the dif-
ference between the perplexity of a language model and the true perplexity of the language
is an indication of the quality of the model. The perplexity of a particular language model
can change dramatically in terms of the vocabulary size, the number _of states of grammar
rules, and the estimated probabilities. A language model with perplexity X has m“ghl}’ the
same difficulty as another language model in which every word can be followed by X differ-
ent words with equal probabilities. Therefore, in the task of continuous dlg.lt r(?cogmtlor.l,.the
perplexity is 10. Clearly, lower perplexity will generally have less confusion in recogmm;rlx.
Typical perplexities yielded by n-gram models on English text range from about 5((1). to al-
most 1000 (corresponding to cross-entropies from about 6to 10 bllts'/word), depending on
the type of text. In the task of 5,000-word continuous speech recogm.tlon for the Wall Street
Journal, the test-set perplexities of the trigram grammar and the bigram grammar are re-

a ini to de-
We often distinguish between the word sequence from the unseen test data and that from the training data to de

rive the language model.

Amazon/VB Assets
Exhibit 1012
Page 587

L g
562 anguage M()de]mg

76 respectively.’ In the tasks of 2000-word conversational Ajy

bout 128 and 1 .
ported to be a set perplexity of the word trigram mode] is typi-

Travel Information System (ATIS), the test-

cally less than 20.

Since perplexity does not take into account acoustic confusability, we eventually have

to measure speech recognition accuracy. For example, if the vocabulary of a speech recog-
nizer contains the E-set of English alphabet: B, C D, E,_ G, P,and T, we can define a CFG
that has a low perplexity value of 7. Such a low gerplexny d9es not guarantee we will have
good recognition performance, because of the intrinsic acoustic confusability of the E-set,

11.4. N-GRAM SMOOTHING

One of the key problems in n-gram modeling is the inherent data sparseness of real training
data. If the training corpus is not large enough, many actually possible word successions
may not be well observed, leading to many extremely small probabilities. For example, with
several-million-word collections of English text, more than 50% of trigrams occur only
once, and more than 80% of trigrams occur less than five times. Smoothing is critical to
make estimated probabilities robust for unseen data. If we consider the sentence Mulan read
a book in the example we discussed in Section 11.2.2, we have:

C(Mulan,read) _ 0

P(read| Mulan) =
Z C(Mulan,w) 1

giving us P(Mulan read a book) = 0.

Obviously, this is an underestimate for the probability of “Mulan read a book” since
there is some probability that the sentence occurs in some test set. To show why it is impor-
tant to give this probability a nonzero value, we turn to the primary application for language
models, speech recognition. In speech recognition, if P(W) is zero, the string W will never
pe considered as a possible transcription, regardless of how unambiguous the acoustic signal
is. Thus, w'henever a string W such that P(W) = 0 occurs during a speech recognition task,
an error will t?e made. Assigning all strings a nonzero probability helps prevent errors in
speef:h recqgmtion. This is the core issue of smoothing. Smoothing techniques adjust the
maximum likelihood estimate of probabilities to produce more robust probabilities for vn-
seen data, although the likelihood for the training data may be hurt slightly.

. f'][;fetrla:;ne s(:jrpoo.thmg comes fr<_)r_n' the fact that these techniques tend to make distribu-
abilities d » by adjusting low probabilities such as zero probabilities upward, and high}’_’f’b'
iies downward. Not only do smoothing methods generally prevent zero probabilities,

Fionn;;'e;:;{;sr?‘er;:::i;is:h: sGh::w that the tcst:scl perplexities for different languages are comparable. For example,

pora. alian has a much“hi he:mm ‘;av.e a bigram test-set perplexity in the range of 95 to 133 for newspapet CP:

number of function words, 'Ii Py rec!ucmm (a factor of 2) from bigram to trigram because of the hig
» the trigram perplexity of Italian is among the lowest in these languages [34]

Amazon/VB Assets
Exhibit 1012
Page 588

s, ot o

egram Smoothing 563
|so attempt to improve the accuracy of the model
put they alS ; : €l as a whole. Whe
obability is estimated frorp few counts, smoothing has the potential o signiﬁCaﬂ:ve}' a
the estimation sO that it has better generalization Capability. ks
: le, one simple smoothing technique i
To give an example, Al & technique is to pretend each b
nce more than it actually does, yielding ch bigram occurs

rove

0!
14+ C(w;_(, w;) - 1+C(w,-_,,wl.)
D U+COv) V+ Y Conyowy) (11.17)

P(w;|Wim1) =

where V is the size of the vocabulary. In practice, vocabularies are typically fixed to be tens
of thousands of words or less. All words not in the vocabulary are mmapped to a single word
usually called the unknown word. Let us reconsider the previous example using this new‘
distribution, and let us take our vocabulary ¥ to be the set of all words occurring in the train-
ing data S, so that we have V =11 (with both <s> and </s>),

For the sentence John read a book, we now have

P(John read a book)
= P(John|< | s >)P(read | John) P(a | read)P(book | a)P(< / s 5| book) (11.18)
=0.00035

In other words, we estimate that the sentence John read a book occurs about once
every three thousand sentences. This is more reasonable than the maximum likelihood esti-
mate of 0.148 of Eq. (11.14). For the sentence Mulan read a book, we have

P(Mulan read a book)
= P(Mulan|< | s >)P(read | Mulan)P(a | read)P(book | a)P(< /s >| book) (11.19)
=0.000084

: _Again. this is more reasonable than the zero probability assigned by t}‘1e max'jmum
likelihood model, [general, most existing smoothing algorithms can be described with the
following equation:

Rmoolh (W'- | wl-n+l o 'wi—l)
= {a(w‘ [Wy Wiy) i C(icp - -

Y(wl-nﬂ Wi)])Imwlh (H’, | Winez Wiy) if C(wl—nH 'M")=0

(11.20)

That is, if an n-gram has a nonzero count we use the distribution Q(W;[Wi_ns e Wict)-

therw ol ; Wisl)s
Whhervvnse, We backoff to the lower-order n-gram distribution P,,,,L_,o.:h(wf“f}"’fgz i n'SLl,m
Cre the scaling factor Y(W;_ysy-.. W,y) is chosen to make the conditional distributio
e Wi

t
e We refer 1o algorithms that fall directly in this framework as backoff models.

Amazon/VB Assets
Exhibit 1012
Page 589

564 Language Modeling

Several other smoothing algorithms are expressed as the linear interpolation of higher.

and lower-order n-gram models as:

P.\moolh(wl I wi-n+| "'wi-l) (1 121)
= APy (W, | Wiy Wiat)+({1- A’)Rvmoolh(wl | wi—n+2---w;-|)

where A is the interpolation weight that depends on w,_,, ... W, .We refer to models of thig

form as interpolated models. . '
The key difference between backoff and interpolated models is that for the probability

of n-grams with nonzero counts, interpolated models use info@ation from lower-order dis-
tributions while backoff models do not. In both backoff and interpolated models, lower-
order distributions are used in determining the probability of n-grams with zero counts,
Now, we discuss several backoff and interpolated smoothing methods. Performance com-
parison of these techniques in real speech recognition applications is discussed in Section

11.4.4.

11.4.1. Deleted Interpolation Smoothing

Consider the case of constructing a bigram model on training data where we have that
C(enliven you) = 0 and C(enliven thou) = 0. Then, according to both additive smoothing of
Eq. (11.17), we have P(you|enliven) = P(thou|enliven). However, intuitively we should have
P(youlenliven) > P(thou|enliven), because the word you is much more common than the
word thou in modem English. To capture this behavior, we can interpolate the bigram model
with a unigram model. A unigram model conditions the probability of a word on no other
words, and just reflects the frequency of that word in text. We can linearly interpolate a bi-
gram model and a unigram model as follows:

Pr(wilwi)= AP (w;lw,_)+ (1= A)P (w;) (11.22)

where 0 <A <1. Because P(you|enliven) = P(thou|enliven)=0 while presumably P(you) >
P(thou), we will have that P,(you | enliven) > P, (thou|enliven) as desired.

In general, it is useful to interpolate higher-order n-gram models with lower-order n-
gram models, because when there is insufficient data to estimate a probability in the higher-
order model, the lower-order model can often provide useful information. An elegant way of
performing this interpolation is given as follows

B (WilWi - Wiy (11.23)

=A \
L/ P (W| Iw,_"” e Wiy) + (1 -A Wimat Winy)'Pl (W’- I Wins2--Wiel)

i That is, the nth-order.smoothed model is defined recursively as a linear interpolation
Tetween the nth-c?rder maximum likelihood model and the (n-1)th-order smoothed mode'l.
o end the recursion, we can take the smoothed first-order model to be the maximum likeli-

Amazon/VB Assets
Exhibit 1012
Page 590

e _oram Smoothing
e 565

hood distribution (unigram), or we can take the smoothed zeroth-order model to be the unj
form distribution. Given a ﬁxefi P Wi wi ey wiy), it is possible to search efﬁc? ; U? -
the interpolation parameters using the deleted interpolation method discussed in C} o
Notice that the optimal l,,._m_““lq is different for different histories w 13!?“3"3:-
example, for a context we have seen thousands of times, g high A will be suill;b]::..:i;l, tl:)r
higher-order distril?u'tloxl Is very reliable; tor a history that has occurred only once ‘a lo::er {
is appropriate. Training each parameter AWM‘__“,'_I independently can be harmful; \;/e need a
enormous amount of data to tr.ain s0 many independent parameters accurately. 6ne possibilr-1
ity is to divide the A, ..., into a moderate number of partitions or buckets, constrainin
all A, ., in the same bucket to have the same value, thereby reducing the number o%“
independent parameters to be estimated. Ideally, we should tie together those A, that
we have a prior reason to believe should have similar values. s

Wit

11.4.2. Backoff Smoothing

Backoff smoothing is attractive because it is easy to implement for practical speech recogni-
tion systems. The Katz backoff model is the canonical example we discuss in this section. It
is based on the Good-Turing smoothing principle.

114.2.1. Good-Turing Estimates and Katz Smoothing

The Good-Turing estimate is a smoothing technique to deal with infrequent n-grams. It is
not used by itself for n-gram smoothing, because it does not include the combination of
higher-order models with lower-order models necessary for good performance. However, it
is used as a tool in several smoothing techniques. The basic idea is to partition n-grams into
groups depending on their frequency (i.e. how many time the n-grams appear in the training
data) such that the parameter can be smoothed based on n-gram frequency.

The Good-Turing estimate states that for any n-gram that occurs » times, we should
pretend that it occurs »~ times as follows:

P (et (11.24)
r

where #, is the number of n-grams that occur exactly 7 times in the training data. To convert

this count to a probability, we just normalize: for an n-grama with r counts, we take

YR o (11.25)
(a) r

3 S % =S nr. e, Nis equal to the
where N=Zn,r'. Notice that N = 37,7 =Z('+l)"'*' _g‘n,; ,i.e., Nis equal to

r=0 r=0 =

original number of counts in the distribution [28].

Amazon/VB Assets
Exhibit 1012
Page 591

566 Language Modeling

e intuitions of the Good-Turing estimate by adding the
Is with lower-order models [38]. Take the bigram as oyr
d using the Good-Turing estimate for nonzero counts as

Katz smoothing extends th
combination of higher-order mode
example, Katz smoothing suggeste
follows:

. [dr if >0
o (HI,—IW,) = Il‘a(w,_l)P(Wi) if =0 (] 1-26)
ual to #/r. That is, all bigrams with a nonzero count r are
which implies that the counts subtracted from
the nonzero counts are distributed among the zero-count bigrams according to the next
lower-order distribution, €.g., the unigram model. The value a(w,_;) is chosen to equalize

the total number of counts in the distribution, i.e., Zw C'(w_w,)= zw C (w,,w,). The
omputed so that the smoothed bigram satisfies the prob-

where d, is approximately eq
discounted according to a discount ratio d,,

appropriate value for a(w;_;) is ¢
ability constraint:

- P (w;lw; 1—2 " (w.
Z“WC(“'--W:PO (wywi-1) o W,-:C(wi-|w,-)>0P (wilw,y)

g) = . (11.27)
P(w; = :
z wy:Cwy_w;)=0 0v;) L 2‘lw,:C(w,-sw,)>0 Piwi)
To calculate P’ (w;|w,_,) from the corrected count, we just normalize:
. C'(w_w
P01, =) (11.28)

Zu', C‘ (M}i—lwk)

. In Katz implcmenta.tion, the d, are calculated as follows: large counts are taken to be
rehabl_e, so they are not discounted. In particular, Katz takes d, = 1 for all r > k for some &,
s}e:y k in the r@ge of 5 to 8. The discount ratios for the lower counts » < k are derived from
Zl ; gggctll;TLtmtnlg estn::ate a;pplicd to the global bigram distribution; that is, n, in Eq. (11.24)

e total number of bigrams that occur exactly r times i ini
i g actly r times in the training data. These d,

e the resulti'n.q dis‘counts are proportional to the discounts predicted by the
Good-Turing estimate, and

o t .)
e};i;;) ttal tgumber of counts discounted in the global bigram distribution is
N o the total r.mmber of counts that should be assigned to bigrams with

T0 counts according to the Good-Turing estimate.

T .
he first constraint corresponds to the following equation:

el (11.29)

Amazon/VB Assets
Exhibit 1012
Page 592

N-gram Smoothing
567

for r€{l,...k} with some constant u . The Good-Turin
mass assigned to bigrams with zero counts is , 2. i
sponds to the equation Py

g estimate predicts that the total
and the second constraint corre-

k

2;1,.(1—0',-)":"1

~ (11.30)
Based on Eq. (11.30), the unique solution is given by:
i] (k+ Dy
P "y
re [Dy (11.31)

ny

Katz smoothing for higher-order n-gram models is defined analogously. The Katz n-
gram backoff model is defined in terms of the Katz (n-1)-gram model. To end the recursion,
the Katz unigram model is taken to be the maximum likelihood unigram model. It is usually
necessary to smooth »n, when using the Good-Turing estimate, e.g., for those n, that are
very low. However, in Katz smoothing this is not essential because the Good-Turing esti-
mate is used only for small counts r<=£k, and #, is generally fairly high for these values of ~.
The procedure of Katz smoothing can be summarized as in Algorithm 11.2.

In fact, the Katz backoff model can be expressed in terms of the interpolated model
defined in Eq. (11.23), in which the interpolation weight is obtained via Eq. (11.26) and
(11.27).

ALGORITHM 11.2: KATZ SMOOTHING

Clw,_w)/C(w,_) ifr>k
Peo:(w; | w,_)=4d C(w,_,w,)/ C(w,,) ifk2r>0

i

o(w,_) P(w,) ifr=0

(kD

1—2. Pm::(wilwi-l)
Where g = ™M ;Y et
T G+, and a(we) =S Pw)
m

Amazon/VB Assets
Exhibit 1012
Page 593

568 Language Modelin;

11.4.2.2. Alternative Backoff Models

In a similar manner to the Katz backoff model, there are other ways to discount
ity mass. For instance, absolute discounting involves subtracting a fixed disc
from each nonzero count. If we express the absolute discounting in term o
models, we have the following:

the probabj|.
ount D <= |

f interpolateq

Pabs (W,« Iwi—n+l Wi)

max {C(w;_,..1..-w;)— D,0}
= +(1-4 w P Aw, R 11.32
Zw, CWi_pyp-ow;) (Winel. :-|) abs (W; (Wi -1 i-1) ()

To make this distribution sum to 1, we normalize it to determine Avw_ . . Absolute
discounting is explai_ned with the Good-Turing estimate. Empirically tlll-éﬂanvé-rlage Good-
Turing discount r —r associated with n-grams of larger counts (r over 3) is largely constant
over r.

Consider building a bigram model on data where there exists a word that is very com-
mon, say Francisco, that occurs only after a single word, say San. Since C(Francisco) is
high, the unigram probability P(Francisco) will be high, and an algorithm such as absolute
discounting or Katz smoothing assigns a relatively high probability to occurrence of the
word Francisco after novel bigram histories. However, intuitively this probability should not
be high, since in the training data the word Francisco follows only a single history. That is,
perhaps Francisco should receive a low unigram probability, because the only time the word
occurs is when the last word is San, in which case the bigram probability models its prob-
ability well.

Extending this line of reasoning, perhaps the unigram probability used should not be
proportional to the number of occurrences of a word, but instead to the number of different
words that it follows. To give an intuitive argument, imagine traversing the training data
sequentially and building a bigram model on the preceding data to predict the current word.
Then, whenever the current bigram does not occur in the preceding data, the unigram prob-
ability becomes a large factor in the current bigram probability. If we assign a count (o the
corresponding unigram whenever such an event occurs, then the number of counts assigned
to each unigram is simply the number of different words that it follows. In Kneser-Ney
smoothing [40], the lower-order n-gram is not proportional to the number of occurrences of
a word, but instead to the number of different words that it follows. We summarize the Kne-
ser-Ney backoff model in Algorithm 11.3. .

Kneser-Ney smoothing is an extension of other backoff models. Most of the previous
models used the lower-order n-grams trained with ML estimation. Kneser-Ney smoothing
instead considers a lower-order distribution as a significant factor in the combined model
such that they are optimized together with other parameters. To derive the formula, more
generally, we express it in terms of the interpolated model specified in Eq. (11.23) as:

Amazon/VB Assets
Exhibit 1012
Page 594

/__ "
Ngram Smoothing 569

P (W, | Wicst o+ Wi)

max {C(W,_. .w,)—D,0}
ST COm) : 1 - L 4 i l I '33
) zu., C(W iy --) (A“/-v-««-m Yoeu (w; | Wi_peaeeW,) ()

To make this distribution sum to 1, we have:

= _—_D (C(
D WU Rt (11.34)

where C(W,_,--W,.,®) is the number of unique words that follow the history
Wiops1enWiz1- THIS equation enables us to interpolate the lower-order distribution with all
words, not just with words that have zero counts in the higher-order distribution.

ALGORITHM 11.3: KNESER-NEY BIGRAM SMOOTHING

‘max{C(w,_w,)— D,0}
P (W, | w/-l) = Clw.,)
l_a(W,) (w;) otherwise

if C(w,_,w,) > 0

where Py, (w,)=C(ow;)/ Y, C(w,), C(ew,) is the number of unique words preceding w, .

a(w,,) is chosen to make the distribution sum to 1 so that we have:
1___2 max {C(w,,,w,) - D,0}
w,iC(wywy >0 C(W‘-_l)

b Z w,C(wyw,)>0 PKN (w’)

o(w,)=

Now, take the bigram case as an example. We need to find a unigram distribution
Pey(w;) such that the marginal of the bigram smoothed distributions should match the
marginal of the training data:

Clw;
m = Zw,_. Py (Wi w;) =zw,_. Pyy (wilwi_y) P(wiy) (11.35)

For p (w;_;), we simply take the distribution found in the training data

Plw,_)= W) (11.36)
i-1)
> L Covi)

Wi,

Amazon/VB Assets
Exhibit 1012
Page 595

570 Language Mogelj ng

We substitute Eq. (11.33) in Eq. (11.35). For the bigram case, we have:
Cw,)

N max{C(w,_,w,)-D,0} D r
. Z..-H C(W,_l)[2 C(IW._I W,) + Zw C(W,_, W,) C(Wl-l)Px_w (WI)]

=C(w,)—C(ow,_,)D+ DPyy (W) + DPK,,,(W,)WZ C(w,_;*)

Solving the equation, we get

Pm(w,)=—zcé;(—% (11.38)
which can be generalized to higher-order models:

Py (W | Wipg e Wi)) = M (11.39)

ZC(" mns2e W)

where C(ew,_,,,...w;) is the number of different words that precede w,_,,,...w;.

In practice, instead of using a single discount D for all nonzero counts as in Kneser-
Ney smoothing, we can have a number of different parameters (D;) that depend on the range
of counts:

PKN(WI l wi—u+l"‘w,-_|)
C(W,_ W)= D(C(w,_,,,.-. W)
T v 1.40
E W, C(wl—n+! 2 ..W,.) * (1)

FY (Wi Wim) P (W, | WionszeWiey)

This modification is motivated by evidence that the ideal average discount for #-grams
with one or two counts is substantially different from the ideal average discount for n-grarms
with higher counts.

11.4.3. Class N-grams

As discu_ssed in Chapter 2, we can define classes for words that exhibit similar semantic of
grammatical behavior. This is another effective way to handle the data sparsity problem-

Amazon/VB Assets
Exhibit 1012
Page 596

othing
e 571

_—
Ngram S

45s-based language models have been shown to be effectiv.
Y small data sc_ts, and r.educed memory requirements for real-time speech applications

For any given assignment of a word w; to class c;, there may be many-to-many m

pings, €8 a word w; may belopg t(') more than one class, and a class ¢; may contaiz m?r)c;
than one word. For the sake of simplicity, assume that a word w; can be uniquely mapped to
anly one class c;. The n-gram model can be computed based op the previous a-1 clagses:

e for rapid adaptation, training

P(W,-ch-u+l-"ci-l) = Plw;| C,-)P(C,-]C,-_,,H...C,»_l) (11.41)

where P(w;|c;) denotes the probability of word w; given class ¢; in the current position
and P(c;|Ci-ns1-+-Ci-1) denotes the pr.obability of class ¢; given the class history. With sucl;
2 model, we can learn the class mapping w—c from either a training text or task knowledge
we have about the application. In general, we can express the class trigram as:

P(W)= Z HP(WI ,ci)P(CI ’ci—l.ci-l) (11.42)

If the classes are nonoverlapping, i.e. a word may belong to only one class, then Eq.
(11.42) can be simplified as:

PW) =[] Pw: |c)P(c, | c.000) (11.43)

If we have the mapping function defined, we can easily compute the class n-gram. We
can estimate the empirical frequency of each word C(w;), and of each class C(c;). We can
also compute the empirical frequency that a word from one class will be followed immedi-
ately by a word from another C(c,_,c;). As a typical example, the bigram probability of a
word given the prior word (class) can be estimated as

C(w,) C(c,._lc,.)
C(Ci) C(cl-l) i

P(Wl|w1-1)=P(WiIci-|)=P(W1|Cl)P(CiIc-‘—l):

For general-purpose large vocabulary dictation applications, class-based #-grams have
ot significantly improved recognition accuracy. They are mainly used as a backoff model
‘0 complement the lower-order n-grams for better smoothing. Nevertheless, for limited do-
Main speech recognition, the class-based n-gram is very helpful as the class can efficiently

“ode semantic information for improved key word spotting and speech understanding
accuracy,

43, Rule-Based Classes

yntactic-semantic in-

“lere ar h
€a number W W ogether baSCd on the s
of ays to cluster ords t g speechica ke gen-

f «
Orimation that exists for the language and the task. For example, part-of-

Amazon/VB Assets
Exhibit 1012
Page 597

\
572 Language Modelin,
erally used to produce a small number of classes although this may lead to si
creased perplexity. Alternatively, if we have domain knowledge, it is often 5
cluster together words that have a similar semantic functional role. For example, if we

to build a conversational system for air travel information systems, we can group the nr;em
of different airlines such as United Airlines, KLM, and Air China, into a broad airline dame
We can do the same thing for the names of different airports such as JFk, Naritg a;sd
Heathrow, the names of different cities like Beijing, Pittsburgh, and Moscow, and s;) on
Such an approach is particularly powerful, since the amount of training data is always lim-.
ited. With generalized broad classes of semantically interpretable meaning, it is easy to add
a new airline such as Redmond Air into the classes if there is indeed a start-up airline namegd
Redmond Air that the system has to incorporate. The system is now able to assign a reaso-
able probability to a sentence like “Show me all flights of Redmond Air from Seattle to Bys.
ton” in a similar manner as “Show me all flights of United Airlines from Seattle to Boston"
We only need to estimate the probability of Redmond Air, given the airline class c,. We can
use the existing class n-gram model that contains the broad structure of the air trave} infor-
mation system as it is.

Without such a broad interpretable class, it would be extremely difficult to deal with
new names the system needs to handle, although these new names can always be mapped to
the special class of the unknown word or proper noun classes. For these new words, we can
alternatively map them into a word that has a similar syntactic and semantic role. Thus, the
new word inherits all the possible word trigram relationships that may be very similar to
those of the existing word observed with the training data.

gnificandy i,
dvantageoys

11.4.3.2. Data-driven Classes

For a general-purpose dictation application, it is impractical to derive functional classes in
the same manner as a domain-specific conversational system that focuses on a narrow task.
Instead, data-driven clustering algorithms have been used to generalize the concept of word
similarities, which is in fact a search procedure to find a class label for each word with a pre-
defined objective function. The set of words with the same class label is called a cluster. We
can use the maximum likelihood criterion as the objective function for a given Lra_inirlg cor-
pus and a given number of classes, which is equivalent to minimizing the perplexity _f"f 'the
training corpus. Once again, the EM algorithm can be used here. Each word can be initial-
ized to a random cluster (class label). At each iteration, every word is moved to the class that
produces the model with minimum perplexity [9, 48]. The perplexity modifications can be
calculated independently, so that each word is evaluated as if all other word classes Were
held fixed. The algorithm converges when no single word can be moved to another class 12
way that reduces the perplexity of the clustered n-gram model.
One special kind of class n-gram models is based on the decision tree as
Chapter 4. We can use it to create equivalent classes for words in the history, S0 that ¢

discussed i
an we

Amazon/VB Assets
Exhibit 1012
Page 598

/ .
N-gram Smoothing 573

have compact long-distance n-gram language model [2]. The sequential decomposition, as
expressed in Eq. (11.12), is approximated as:

P(W)= H P(w;|E(wy,W,,..., wi_)= H P(w;| ECh)) (11.45)

i=l i=1

where £(h) denotes a many-to-one mapping function that groups word histories h into some
equivalence classes. It is important to have a scheme that can provide adequate information
about the history so it can serve as a basis for prediction. In addition, it must yield a set of
classes that can be reliably estimated. The decision tree method uses entropy as a criterion in
developing the equivalence classes that can effectively incorporate long-distance informa-
tion. By asking a number of questions associated with each node, the decision tree can clas-
sify the history into a small number of equivalence classes. Each leaf of the tree, thus, has
the probability P(w;| E(w,...w;_;)) that is derived according to the number of times the
word w; is found in the leaf. The selection of questions in building the tree can be infinite.
We can consider not only the syntactic structure, but also semantic meaning to derive per-
missible questions from which the entropy criterion would choose. A full-fledged question
set that is based on detailed analysis of the history is beyond the limit of our current comput-
ing resources. As such, we often use the membership question to check each word in the
history.

1144. Performance of N-gram Smoothing

The performance of various smoothing algorithms depends on factors such as the training-
set sizes. There is a strong correlation between the test-set perplexity and word error rate.
Smoothing algorithms leading to lower perplexity generally result in a lower word error rate.
Among all the methods discussed here, the Kneser-Ney method slightly outperforms other
algorithms over a wide range of training-set sizes and corpora, and for both bigram and tri-
gram models. Albeit the difference is not large, the good performance of the Kneser-Ney
smoothing is due to the modified backoff distributions. The Katz algorithms and deleted
interpolation smoothing generally yield the next best performance. All these three smooth-
ing algorithms perform significantly better than the n-gram model without any smoothing.
The deleted interpolation algorithm performs slightly better than the Katz method in sparse
data situations, and the reverse is true when data are plentiful. Katz’s algorithm is particu-
larly good at smoothing larger counts; these counts are more prevalent in larger data sets.

Class n-grams offer different kind of smoothing. While clustered n-gram models oﬁe_n
offer no significant test-set perplexity reduction in comparison to the word #-gram model, it
1s beneficial to smooth the word n-gram model via either backoff or interpolation methods.

Amazon/VB Assets
Exhibit 1012
Page 599

574 Language Moueli}g

For example, the decision-tree based long-distance class language model doe
fer significantly improved speech recognition accuracy until it is interpolated with
trigram. They are effective as a domain-specific language model if the class cap 5
date domain-specific information.

Smoothing is a fundamental technique for statistical modeling, important not only for
language modeling but for many other applications as well. Whenever data sparsity is ap
issue, smoothing can help performance, and data sparsity is almost always an issue in Statis-
tical modeling. In the extreme case, where there is so much training data that al| parameters
can be accurately trained without smoothing, you ¢an almost always expand the model, such
as by moving to a higher-order n-gram model, to achieve improved performance. With more
parameters, data sparsity becomes an issue again, but a proper smoothing model is usually
more accurate than the original model. Thus, no matter how much data you have, smoothing
can almost always help performance, and for a relatively small effort.

S nol of.
the worg
CCOmmo_

11.5. ADAPTIVE LANGUAGE MODELS

Dynamic adjustment of the language model parameter, such as n-gram probabilities, vo-
cabulary size, and the choice of words in the vocabulary, is important, since the topic of
conversation is highly nonstationary [4, 33, 37, 41, 46]. For example, in a typical dictation
application, a particular set of words in the vocabulary may suddenly burst forth and then
become dormant later, based on the current conversation. Because the topic of the conversa-
tion may change from time to time, the language model should be dramatically different
based on the topic of the conversation. We discuss several adaptive techniques that can im-
prove the quality of the language model based on the real usage of the application.

11.5.1. Cache Language Models

To adjust word frequencies observed in the current conversation, we can use a dynamic
cache language model [41]. The basic idea is to accumulate word n-grams dictated so far in
the current document and use these to create a local dynamic n-gram model such as bigram
Peache (W;w;_,). Because of limited data and nonstationary nature, we should use a lower-
order language model that is no higher than a trigram model P,;,, (w;|W;_aW-1) which czn
bfa interpolated with the dynamic bigram and unigram. Empirically, we need to no@?”y
give a high weight to the unigram cache model, because it is better trained with the limited
data in the cache.

With the cache trigram, we interpolate it with the static n-gram model
Ps(Wil¥; s~ ;). The interpolation weight can be made to vary with the size of the

cache.
P (w;] Wil W,)

= AP0, | Wy) 4+ (1= AP (W, | W)

¢

(11.46)

Amazon/VB Assets
Exhibit 1012
Page 600

Adaptive Language Models o

The cache model is desirable in practice because of its impressive empirical perform-
ance improvement. In a dictation application, we often encounter new words that are not in
the static vocabulary. The same words also tend 10 be repeated in the same article. The cache
model can address this problem effectively by adjusting the parameters continually as rec-
ognition and correction proceed for incrementally improved perforimance. A noticeable
penefit is that we can better predict words belonging to fixed phrases such as Windows NT

and Bill Gates.

11.5.2. Topic-Adaptive Models

The topic can change over time. Such topic or stylc information plays a critical role in im-
proving the quality of the static language model. For example, the prediction of whether the
word following the phrase the operating is system or table can be improved substantially by
knowing whether the topic of discussion is related to computing or medicine.

Domain or topic-clustered language models split the language model training data ac-
cording to topic. The training data may be divided using the known category information or
using automatic clustering. In addition, a given segment of the data may be assigned to mul-
tiple topics. A topic-dependent language model is then built from each cluster of the training
data. Topic language models are combined using linear interpolation or other methods such
as maximum entropy techniques discussed in Section 11.5.3.

We can avoid any pre-defined clustering or segmentation of the training data. The rea-
son is that the best clustering may become apparent only when the current topic of discus-
sion is revealed. For example, when the topic is hand-injury to baseball player, the pre-
segmented clusters of topic baseball & hand-injuries may have to be combined. This leads
to a union of the two clusters, whereas the ideal dataset is obtained by the intersection of
these clusters. In general, various combinations of topics lead to a combinatorial explosion
in the number of compound topics, and it appears to be a difficult task to anticipate all the
needed combinations beforehand.

We base our determination of the most suitable language model data to build a model
upon the particular history of a given document. For example, we can use it as a query
against the entire training database of documents using information retrieval techniques
[57]. The documents in the database can be ranked by relevance to the query. The most rele-
vant documents are then selected as the adaptation set for the topic-dependent langnage
model. The process can be repeated as the document is updated. _

There are two major steps we need to consider here. The first involves using the avail-
able document history to retrieve similar documents from the database. The second con51§ts
Qf using the similar document set retrieved in the first step to adapt the general or topic-
independent fanguage model. Available document history depends upon the design and the
fequirements of the recognition system. If the recognition system is designed for live-mode
application, where the recognition results must be presented to the user with a small delay,
the available document history will be the history of the document user created so far..On
the other hand, in a recognition system designed for batch operation, the amount of time

Amazon/VB Assets
Exhibit 1012
Page 601

576 Language Modeling

taken by the system to recognize speech is of little consequence to the user. In the bateh
mode, therefore, a multi-pass recognition system can be used, and the document history wj]
be the recognizer transcript produced in the current pass.

The well-known information retrieval measure called TFIDF can be used to locate
similar documents in the training database [57]. The term frequency (TF) &} is defined ag
the frequency of the jth term in the document D;, the unigram count of the term j in the
document D,. The inverse document frequency (IDF) idf; is defined as the frequency of the
jth term over the entire database of documents, which can be computed as:

Total number of documents

idf ; = — ; 114
&4 Number of documents containing term j (1147)
The combined TF-IDF measure is defined as:

TFIDF; = ff; log(idf;) (11.48)

The combination of TF and IDF can help to retrieve similar documents. It highlights
words of particular interest to the query (via TF), while de-emphasizing common words that
appear across different documents (via IDF). Each document including the query itself, can
be represented by the TFIDF vector. Each element of the vector is the TFIDF value that cor-
responds to a word (or a term) in the vocabulary. Similarity between the two documents is
then defined to be the cosine of the angle between the corresponding vectors. Therefore, we
have:

3 idf, o,

Similarit(D D) =
imilarity(D, J) \/zk(mcy;k)z*zk(mdﬂk)z

(11.49)

All the documents in the training database are ranked by the decreasing similarity be-
tween the document and the history of the current document dictated so far, or by a topic of
particular interest to the user., The most similar documents are selected as the adaptation set
for the topic-adaptive language model [46].

11.5.3. Maximum Entropy Models

The language model we have discussed so far combines different n-gram models via linear
interpolation. A different way to combine sources is the maximum entropy approach. It cot-
structs a single model that attempts to capture all the information provided by the various
knowledge sources. Each such knowledge source is reformulated as a set of constraints ﬁfa'
th-e de.:sired distribution should satisfy. These constraints can be, for example, marginal dis”
tributions of the combined model. Their intersection, if not empty, should contain 3 set 0

Amazon/VB Assets
Exhibit 1012
Page 602

tive Language Models
Adapfi g —

probability functions that are consistent with these separate knowledge sources. Once th

desired knowledge sources have been incorporated, we make no other assum, ‘tion ab i
other constraints, which leads to choosing the flattest of the remaining possibilit‘i)es the ::e
with the highest entropy. The maximum entropy principle can be stated as follows: ‘

o Reformulate different information sources as constraints to be satisfied by the
target estimate.

» Among all probability distributions that satisfy these constraints, choose the
one that has the highest entropy.

Given a general event space {X}, let P(X) denote the combined probability function.

Each constraint is associated with a characteristic function of a subset of the sample space,
f+(X). The constraint can be written as:

ZP(X)f.-(X) =E (11.50)
X

where E; is the corresponding desired expectation for f;(X), typically representing the re-
quired marginal probability of P(X). For example, to derive a word trigram model, we can
reformulate Eq. (11.50) so that constraints are introduced for unigram, bigram, and trigram
probabilities. These constraints are usually set only where marginal probabilities can be es-
timated from a corpus. For example, the unigram constraint can be expressed as

1 if w=w, (11.51)
0 otherwise

f.,(W)={

The desired value Ew| can be the empirical expectation in the training

data, 2 f,,(w)/ N, and the associated constraint is

Wetrnining data

;P(h)ZP(wlh)fwl (w)=E, (11.52)

where h is the word history preceding word w. .
We can choose P(X) to diverge minimally from some other known probability func-

tion O(X), that is, to minimize the divergence function:

P(X) (11.53)
P(X) log)
>x: 0

" When O(X) is chosen as the uniform distribu
V¢ of entropy with a constant. Thus minimizing th

tion, the divergence is equal to the Dega-
e divergence function leads to maximiz-

Amazon/VB Assets
Exhibit 1012
Page 603

- Language Modeling

ing the entropy. Under 2 minor consistent assumption, a unique solution is guaranteed to

exist in the form [20]:
P(X) e H#.-f"(X) (11.54)

is an unknown constant to be found. To search the exponential family defined by
Eq. (11.54) for the y; that make P(X) satisfy all the constraints, an iterative algon’thm called
generalized iterative scaling exists [20]. It guarantees to converge to t.he splutlon with some
arbitrary initial g;. Each iteration creates a new estimate P(X), which is improved in the
sense that it matches the constraints better than its previous iteration [20]. One of the most
effective applications of the maximum entropy model is to integrate the cache constraint into
the language model directly, instead of interpolating the cache n-gram with the static n-
gram. The new constraint is that the marginal distribution of the adapted model is the same
as the lower-order n-gram in the cache [56]. In practice, the maximum entropy method has

not offered any significant improvement in comparison to the linear interpolation.

where U,

11.6. PRACTICAL ISSUES

In a speech recognition system, every string of words W = w,w,...w, taken from the pre-
scribed vocabulary can be assigned a probability, which is interpreted as the a priori prob-
ability to guide the recognition process and is a contributing factor in the determination of
the final transcription from a set of partial hypothesis. Without language modeling, the entire
vocabulary must be considered at every decision point. It is impossible to eliminate many
candidates from consideration, or alternatively to assign higher probabilities to some candi-
dates than others to considerably reduce recognition costs and errors.

11.6.1. Vocabulary Selection

For most speech recognition systems, an inflected form is considered as a different word.
This is because these inflected forms typically have different pronunciations, syntactic roles,
and usage patterns. So the words work, works, worked, and working are counted as four dif-
ferent words in the vocabulary. ,
candi(:Nat: sp;zf:r :chLave a sn}a.ller voca_bulary .size, since this eliminates potential confusable
il vocabu];; 'recfogmtlon, leading to improved recognition accuracy. However, e
flexible. In prac;{ Slzti‘mposes a severe constraint on the users and makes the system Lo
fane- perceivez, e].percentage of the Out-Of-Vocabulary (OOV) word rate direct
OOV rate and the qu;a ity of.tl_le system. Thus, we need to balance two kinds of errors, t-he
e Td recognition error rate. We can have a larger vocabulary to minimize
€ system resources permit. We can minimize the expected OOV raté afthe

Amazon/VB Assets
Exhibit 1012
Page 604

Practical Issues ’ =

test data with a given vocabulary size. A corpus of text is used in conjunction with dictionar-
ies to determine appropriate vocabularies.

The avallnblllfy of various types and amounts of training data, from various time peri-
ods, affects the quality of the derived vocabulary. Given a collection of training data, we can
create an ordered word list with the lowest possible OOV curve, such that, for any’ desired
vocabulary size V, a minimum-OOV-rate vocabulary can be derived by taking the most fre-
quent V words in that list. Viewed this way, the problem becomes one of estimating unigram
probabilities of the test distribution, and then ordering the words by these estimates.

As illustrated in Figure 11.6, the perplexity generally increases with the vocabulary
size, albeit it really does not make much sense to compare the perplexity of different vo-
cabulary sizes. There are generally more competing words for a given context when the vo-
cabulary size becomes big, which leads to increased recognition error rate. In practice, this is
offset by the OOV rate, which decreases with the vocabulary size as illustrated in Figure
11.7. If we keep the vocabulary size fixed, we need more than 200,000 words in the vocabu-
lary to have 99.5% English words coverage. For more inflectional languages such as Ger-
man, larger vocabulary sizes are required to achieve coverage similar to that of English.*

In practice, it is far more important to use data from a specific topic or domain, if we
know in what domain the speech recognizer is used. In general, it is also important to con-
sider coverage of a specific time period. We should use training data from that period, or as
close to it as possible. For example, if we know we will talk only about air travel, we benefit
from using the air-travel related vocabulary and language model. This point is well illus-
trated by the fact that the perplexity of the domain-dependent bigram can be reduced by
more than a factor of five over the general-purpose English trigram.

500
400 Tt
§ 300 ,_——-——'/
I G
100
0 v g v d
40k 60Kk

10k 30k ‘
Vocabulary Size

vocabulary sizes. The training set consists
including newspapers and email. The te'st
clopedia that has a wide coverage of dif-

Figure 11.6 The perplexity of bigram with different
of 500 million words derived from various sources,
set comes from the whole Microsoft Encarta, an ency’
ferent topics.

. i i - 34].
The OOV rate of German is about twice as high as that of English with a 20k-word vocabulary [34]

Amazon/VB Assets
Exhibit 1012
Page 605

580 Language Modeling

N
(4]
|

/
4
|

10 e
5 ——
0 . T Y
10k 30k 40k 60k

Vocabulary Size

Figure 11.7 The OOV rate with different vocabulary size. The training set consists of 500 mil-
lion words derived from varjous sources including newspaper and email. The test set came
from the whole Microsoft Encarta encyclopedia.

For a user of a speech recognition system, a more personalized vocabulary can be
much more effective than a general fixed vocabulary. The coverage can be dramatically im-
proved as customized new words are added to a starting static vocabulary of 20,000. Typi-
cally, the coverage of such a system can be improved from 93% to more than 98% after
1000-4000 customized words are added to the vocabulary [18].

In North American general business English, the least frequent words among the most
frequent 60,000 have a frequency of about 1:7,000,000. In optimizing a 60,000-word vo-
cabulary we need to distinguish words with frequency of 1:7,000,000 from those that are
. slightly less frequent. To differentiate somewhat reliably between a 1:7,000,000 word and,
say, a 1:8,000,000 word, we need to observe them enough times for the difference in their
counts to be statistically reliable. For constructing a decent vocabulary, it is important that
most such words are ranked correctly. We may need 100,000,000 words to estimate these
parameters. This agrees with the empirical results, in which as more training data is used,

the OOV curve improves rapidly up to 50,000,000 words and then more slowly beyond that
point.

11.6.2. N-gram Pruning

Wher} :]igh 01.'der‘ n-gram models are used, the model sizes typically become too large for
féf‘i?c applications. It is necessary to prune parameters from n-gram models such that the
gm::eszmmpty between the original and the pruned model is minimized. You can choosen-
as to maximize perfo i inimi i ile minimizing the

model size [39, 59, 64], performance (i.e., minimize perplexity) while minimizing
Llneor;i}(:enfmenon 10 prune n-grams can be based on some well-understood information-
641 e :asure of language' model quality. For example, the pruning method by Stol‘cke
S Some n-gram estimates while minimizing the performance loss. After pruning:

Amazon/VB Assets
Exhibit 1012
Page 606

practical Issues
581

the retained explicit n-gram probabilities are un
recomputed. Stolcke pruning uses the criterion that ﬁ?rﬁ%r?idz’esb:‘;e Z?Ckoff weights are
distribution embodied by the original model] and that of the pruned lSta(;]ce between the
Kidlback-Leibler distance defined in Eq. (3.181). Since it is infeasible or el based on the
possible subsets Qf n-grams, Stolcke prunning assumes that the n-grams ['n;fmmlze over .all
entropy roughly independently, and compute the distance due to iaclﬁ dd.ec.:t the relative
The n-grams are thus ranked by their effect on the model entropy, and ;E ividual n-gram.
relative entropy the least are pruned accordingly. The main appmx{‘mlio f’sehthat increase
considerdpossible interactions between selected n-grams, and prune b‘asec;1 slzl;l;‘()\:;ergot‘_‘m
ropy due to removi i - - : . ative
::::miibsets.o noving a single n-gram. This avoids searching the exponential space of -
To compu'te the re}ative entropy, KL(p || p"), between the original and pruned
models p and P there is no need to sum over the vocabulary. By pluggin iﬁ her n-gram
the backoff estimates, the sum can be factored as shown in Eq. (11.55) forg a mo:e eeIfo?:igﬁ:

computation.

KL(p|| p')=—P(h){P(w| h)[log P(w| k") +loga’(h)—log P(w |)]

Hloger(h)-loga(M)(1= 3 P(w,|h)} (11.55)
w,€—Backoff (w,h)
where the Sugs 1 Z P(w, | h) is over all non-backoff estimates. To compute the

w,e—Backoff (w,h)
revised bacFoff weights ¢’(h), you can simply drop the term for the pruned n-gram from
the su;nmanor} (backot.’f weight computation is illustrated in Algorithm 11.1).
comprélss;:-:c;lcil pruning is llighl).' effective. St-olcke repo.rt-ed that the trigram model can be
] n)l,modre than 25% without 'degradmg recognition performance. Comparing the
pee odel to the unpr.uned trigram model, it is better to use pruned 4-grams than
much larger number of trigrams.

1163. CFG vs. N-gram Models

CFGs remain one of the most
-gram models are surprisingly
alisms can be unified for

Thi .
Im;f,fii‘:‘g hasl.d'““ssefi two major language models. While
powerful forn;a 1SS for interpreting natural language, word n
both Speechr omain-independent applications. These two forma n
domain-ing recognition and spoken language understanding. To 1mprove portabxht}l of the
domain.; dependem n-gram, it is possible to incorporate domain-specific CFGs Into the
the »- Ndependent n-gram that can improve generalizability of the CFG and specificity of
gram,
Euage:rgstcll: Gis DO_t only powerful enough to describe most of thef structure in spoken lan-
Pending also restrictive enough to have efficient parsers. P(W) is regarded as 1 or O de-
Upon whether the word sequence is accepted or rejected by the grammar. The

Amazon/VB Assets
Exhibit 1012
Page 607

Amazon/VB Assets
Exhibit 1012
Page 608

actical Issues
) 583

PG, |1,). the likelihood of generating a word seqy 7=
pon-terminal 7, can be inherited from the donmindn(;lcpeel:f:e:t" w<£lrl<'1‘1l"n "r.a'f;] Vﬁ\;om v
tially use the CFG constraint to condition the domain-independent trigram’int: cag iy
specific trigram. Such 2 unified language model can dramatically improve cro{;s—;cilrl ain
performance using domain-sp_eciﬁc CFGs [66]. e,

In summary, the C}FG is widel.y.used to specify the permissible word sequences in
natural language processing when training corpora are unavailable. It is suitable for dealing
with stll'uctured command and control applications in which the vocabulary is small and the
semanflcs of t‘he task is well defined. The QFG either accepts the input sentence or rejects it.
There is a serious coverage pl:oblem associated with CFGs. In other words, the accuracy for
the CFG can be extrerpely high when the test data are covered by the grammar. Unfortu-
nately, unless the task is narrow and well-defined, most users speak sentences that may not
be accepted by the CFG, leading to word recognition errors.

Statistical language models such as trigrams assign an estimated probability to any
word that can follow a given word history without parsing the structure of the history. Such
an approach contains some limited syntactic and semantic information, but these probabili-
ties are typically trained from a large corpus. Speech recognition errors are much more
likely to occur within trigrams and (especially) bigrams that have not been observed in the
training data. In these cases, the language model typically relies on lower-order statistics.
Thus, increased n-gram coverage translates directly into improved recognition accuracy, but
usually at the cost of increased memory requirements.

It is interesting to compute the true entropy of the language so that we understand
what a solid lower bound is for the language model. For English, Shannon [60] used human
subjects to guess letters by looking at how many guesses it takes people to derive the correct
one based on the history. We can thus estimate the probability of the letters and hence the
entropy of the sequence. Shannon computed the per-letter entropy of Englishl \yith an en-
tropy of 1.3 bits for 26 letters plus space. This may be an underestimate, since it is b'ased on
a single text. Since the average length of English written words (including space) is abgut
5.5 letters, the Shannon estimate of 1.3 bits per letter corresponds to a per-word perplexity
of 142 for general English.

Table 11.2 summarizes the performance of several different n-gram models on a
60,000-word continuous speech dictation application. The experiments used about 260 mil-
lion words from a newspaper such as the Wall Street Journal. The speech recognizer ’i
based on Whisper described in Chapter 9. As you can see from_the table, when tttl:i am::n_
O_f_trai“i“g data is sufficient, both Katz and Kneser-Ney smoothing offcr compari ehzen tl%e
nition performance, although Kneser-Ney smoothing offers 2 modest improvement W
amount of training data is limited.

i In comparison to Shannon’s estixpate of general
moi;age f?r the P{’all Street Journal is lower (91.4 vsi
ampley .l;usmess onent.ed with a fairly homogeneous sty we
in fom; IT'we use the trigram language for data fron} a new
ation management, the test-set word perplexity can in

English word perplexity, the trigral.n
142). This is because the text 1s
and word usage pattern. For ex-
domain that is related to personal
crease to 378 [66].

Amazon/VB Assets
Exhibit 1012
Page 609

Language Modeling

584
Table 11.2 N-gram perplexity and its corresponding speaker-independent speech recognition
word error rate.
[‘Models Perplexity Word Error Rate |
Unigram Katz 1196.45 14.85%
Unigram Kneser-Ney 1199.59 14.86%
Bigram Katz 176.31 11.38% |
Bigram Kneser-Ney 176.11 11.34%
Trigram Katz 95.19 9.69%
Trigram Kneser-Ney 91.47 9.60%

11.7. HISTORICAL PERSPECTIVE AND FURTHER READING

There is a large and active area of research in both speech and linguistics. These two distinc-
tive communities worked on the problem with very different paths, leading to the stochastic
language models and the formal Janguage theory. The linguistics community has developed
tools for tasks like parsing sentences, assigning semantic relations to the parts of a sentence,
and so on. Most of these parser algorithms have the same characteristics, that is, they tabu-
late each sub-derivation and reuse it in building any derivation that shares that sub-
derivation with appropriate grammars [22, 65, 67). They have polynomial complexity with
respect to sentence length because of dynamic programming principles to search for optimal
derivations with respect to appropriate evaluation functions on derivations. There are three
well-known dynamic programming parsers with a worst-case behavior of O(n*), where n is
the number of words in the sentence: the Cocke-Younger-Kasami (CYK) algorithm (a bot-
tom-up parser, proposed by J. Cocke, D. Younger, and T. Kasami) {32, 67, the Graham-
Harrison-Ruzzo algorithm (bottom-up) [30], and the Earley algorithm (top-down) [21].

On the other hand, the speech community has developed tools to predict the next word
;n 'the basis of what has been said, in order to improve speech recognition accuracy [35)
in‘;"S‘;‘:}Z_l:g:g:‘;‘;ehfsobgef:t;:oxpPletely successful. The formal grammar and the related pars-

T : .

one domain to another. ”[l‘heelac::ll'cc:f{zt;?':c:?r: I:qdmée 2o :1) ! hum: » re}t,OOhtx;}g(et:: i;:;) Togoon;
statistical technology’s ability to choose the ri h?w ejptun C_;Staﬂ m%h o nition

In addition to those discussed in thi R i Sp-eec o hn'. ues are
available. Augmented context-free 18 Chapler, manyaltemative forma . - apture
gramme_m'cal natural languages such agsrfzril::nsca:e l:isedbfor nan_:ral_]anguait: lt:S icnglude
generalized phrase structure grammars and h e [26, 53}
You can further generalize the augmented e el phrass wpohits BEE t 11;6 re-
quirement of context free becomesgunf;n e s e e et t]I:B nifica-
tion grammar, can be specified as a te ct;ssary. T-he GRS et kit 221] Most
of these grammars have ol Bt dse Of constraints between feature structures [.ns »
fact, no practical domain-inde eng success when applied to spoken language SYSt™> o
spoken language systems panf bem parser of unrestricted text has been develope -
tailed semantic informatit;n Anil ecause disambiguation requires the specification © ol

. ysis of the Susanne Corpus with a crude parser sugg

Amazon/VB Assets
Exhibit 1012
Page 610

i ther Readi
Historical perspective and Further Reading =

(rat Over 80% of se.ntencles are structur'c-ﬂlly ambiguous. More recently, large treebanks of
arsed texts have given lmpetlfs to statistical approaches to parsing. Probabilities can be
estimated from treebanks or Plam text {6, 8, 24, 61] to efficiently rank analyses produced by
modified chart parsing algorithms. These systems have yielded resuits of around 75% accu-
racy in assigning analyses to (unseen) test sentences from the same source as the unambigu-
ous training material. Attempts have also been made to use statistical induction o learn the
correct grammar for a given corpus of data (7, 43, 51, 58]. Nevertheless, these techniques
are limited to simple grammars with category sets of a dozen or so non-terminals, or to train-
ing on manually parsed data. Furthermore, even when parameters of the grammar and con-
yrol mechanism can be leamed automatically from training corpora, the required corpora do
not exist or are too small for proper training. In practice, we can devise grammars that spec-
ify directly how relationships relevant to the task may be expressed. For instance, one may
use a phrase-structure grammar in which nonterminals stand for task concepts and relation-
ships and rules specify possible expressions of those concepts and relationships. Such se-
mantic grammars have been widely used for spoken language applications as discussed in
Chapter 17.

It is worthwhile to point out that many natural language parsing algorithms are NP-
complete, a term for a class of problems that are suspected to be particularly difficult to
process. For example, maintaining lexical and agreement features over a potentially infinite-
length sentence causes the unification-based formalisms to be NP-complete [3].

Since the predictive power of a general-purpose grammar is insufficient for reasonable
performance, n-gram language models continue to be widely used. A complete proof of
Good-Turing smoothing was presented by Church er al. [17). Chen and Goodman [13] pro-
vide 2 detailed study on different n-gram smoothing algorithms. Jelinek’s Eurospeech tuto-
fial paper [35) provides an interesting historical perspective on the community’s efforts to
mprove trigrams. Mosia and Giachin’s paper [48] has detailed experimental results on
tlass-based language models. Class-based model may be based on parts of speech or mor-
Phology [10, 16, 23, 47, 63]. More detailed discussion of the maximum entropy language
Model can be found in (5, 36, 42, 44, 52, 55, 56].)

_Onc interesting research area is to combine both n-grams and the structure that is pre-
%ntin language. A concerted research effort to explore structure-based language model may
:’:tetgzkey for significant progress to occur in language modeling. This 'Candble do:z isrirg:;
o ata becomes available. Nasr et al. [50] have consnde.red‘a new unifie at(ljgl % -

Posed of several local models and a general model linking the local models o8 e
fm:nl?;al Model used in their system is based on the stochastic _F?A. ngcl;hai ;Z[sl:-iabed
in[12 ;5“;"““8 corpora. Other efforts to incorporate structured informatt

143,27, 49, 66].

Site’ a::us };’;m find tools to build n-gram language 8models at the

s and dogy. language modeling toolkit Web site.” Both contain
Cumentation,

N

hepy
' h(mJIWw.SPWCh.Cs.cmu.edu/S phinx/

w .
WW.speech.sn.com/pmjem/sﬁlwd ownload.heml

CMU open source Web
language modeling tool-

Amazon/VB Assets
Exhibit 1012
Page 611

586

Language Modeling

REFERENCES

(1]
(2)

3]
(4]
(5]
[6]

(7]

(8]

%]
(10]

[11]
(12]

[13]
(14]

[15]
[16]

(17]

Aho, A.V. and J.D. Ullman, The Theory of Parsing, Translation and Compiling,
1972, Englewood Cliffs, NJ, Prentice-Hall.

Bahl, L.R., et al., “A Tree-Based Statistical Language Model for Naturaj Language
Speech Recognition,” /EEE Trans. on Acoustics, Speech, and Signal Processing,
1989, 37(7), pp. 1001-1008.

Barton, G., R. Berwick, and E. Ristad, Computational Complexity and Natural
Language, 1987, Cambridge, MA, MIT Press.

Bellegarda, J., “A Latent Semantic Analysis Framework for Large-Span Language
Modeling,” Eurospeech, 1997, Rhodes, Greece, pp. 1451-1454.

Berger, A., S. DellaPietra, and V. DellaPietra, “A Maximum Entropy Approach to
Natural Language Processing,” Computational Linguistics, 1996, 22(1), pp. 39-71.
Black, E., et al., “Towards History-based Grammars: Using Richer Models for
Probabilistic Parsing,” Proc. of the Annual Meeting of the Association for Compu-
tational Linguistics, 1993, Columbus, Ohio, USA, pp. 31-37.

Briscoe, E.J., ed. Prospects for Practical Parsing: Robust Statistical Techniques, in
Corpus-based Research into Language: A Feschrift for Jan Aarts, ed. P.d. Haan and
N. Oostdijk, 1994, Amsterdam. 67-95, Rodopi.

Briscoe, E.J. and J. Carroll, “Generalized Probabilistic LR Parsing of Natural Lan-
guage (Corpora) with Unification-based Grammars,” Computational Linguistics,
1993, 19, pp. 25-59.

Brown, P.F., et al., “Class-Based N-gram Models of Natural Language,” Computa-
tional Linguistics, 1992(4), pp. 467-479.

Cerf-Danon, H. and M. El-Béze, “Three Different Probabilistic Language Models:
Comparison and Combination,” Proc. of the IEEE Int. Conf. on Acoustics, Speech
and Signal Processing, 1991, Toronto, Canada, pp. 297-300.

Charniak, E., “Statistical Parsing with a Context-Free Grammar and Word Statis-
tics,” AAAI-97, 1997, Menlo Park, pp. 598-603.

Chelba, C., A. Corazza, and F. Jelinek, “A Context Free Headword Language
Model” in Proc. of IEEE Automatic Speech Recognition Workshop" 1995, Snow-
bird, Utah, pp. 89-90.

Chen, S. and J. Goodman, “An Empirical Study of Smoothing Techniques for Lan-
guage Modeling,” Proc. of Annual Meeting of the ACL, 1996, Santa Cruz, CA.
Chomsky, N., Syntactic Structures, 1957, The Hague: Mouton.

Chomsky, N., Aspects of the Theory of Syntax, 1965, Cambridge, MIT Press.
Church, K., “A Stochastic Parts Program and Noun Phrase Parser for Um'esmct.ed
Text,” Proc. of 2nd Conf. on Applied Natural Language Processing, 1988, Austin,
Texas, pp. 136-143,

g}::ti}g Iés\t?v and W.A. Gale, “A Comparison of the Enhanced Gogd-TU_ri"g;:ﬂ
ComputerSlmatlon Methods for Estimating Probabilities of English Bigram®

peech and Language, 1991, pp. 19-54.

Amazon/VB Assets
Exhibit 1012
Page 612

HTloriCﬂ' perspective and Further Reading
I 587

Cole, R., et al., Survey of the State of the Art in Human Langua
j : ge Technology, eds,
ll;t:g:/csm.cse.ogl.edeLTsurvey/ HLTsurvey.html, 1996, Cambridge Unfgiersifs)’
(19 Collins, M., “A New Statistical Parser Based on Bj
ACL-96, 1996, pp. 184-191.

9 Darroch, J.N. and D. Ratcliff, “Generalized Iterativ i :

& els,” The Annals of Mathematical Statistics, 1972, 4;(55;a;1>l;:gl Z(;r()Ll(:‘rgS-(? P
Earley, J., An Efficient Context-Free Parsing Algori Y

il gie M);llon University, Pittsburgh. B gariiiun, FHE Dhedss, 1568, Catoé-

9] Earley, J., “An Efficient Context-Free Parsing Algorithm,” icati

[22] 4O, 1970, 6(8), pp. 451455, g Alg \" Communications of the

[3] El-Béze, M. and A.-M. Derouault, “A Morphological Model for Large Vocabulary
Speech Recognition,” Proc. of the IEEE Int. Conf. on Acoustics, Speech and Signal
Processing, 1990, Albuquerque, NM, pp. 577-580.

[24] Fujisaki, T., et al., “A probabilistic parsing method for sentence disambiguation,”
Proc. of the Int. Workshop on Parsing Technologies, 1989, Pittsburgh.

[25] Galescu, L., E.K. Ringger, and A.F. Allen, “Rapid Language Model Development
for New Task Domains,” Proc. of the ELRA First Int. Conf. on Language Re-
sources and Evaluation (LREC), 1998, Granada, Spain.

[26] Gazdar, G., et al., Generalized Phrase Structure Grammars, 1985, Cambridge,
MA, Harvard University Press.

[Gillett, J. and W. Ward, “A Language Model Combining Trigrams and Stochastic
Context-Free Grammars,” Int. Conf. on Spoken Language Processing, 1998, Syd-
ney, Australia.

[8] Good, LI, “The Population Frequencies of Species and the Estimation of Popula-
tion Parameters,” Biometrika, 1953, pp. 237-264.

¥ Goodman, J., Parsing Inside-Out, PhD Thesis in Computer Science,
University, Cambridge.

B9 Graham, S.L.., M.A. Harrison, and W. L.Ruzzo,
ognizer,” ACM Trans. on Programming Languages and Systems,
415462.

Bl Hindle, D. and M. Rooth, “Structural Ambig

Speech and Natural Language Workshop,

(18]

gram Lexical Dependencies,”

1998, Harvard

“An Improved Context-Free Rec-
1980, 2(3), pp-

uity and Lexical Relations,” DARPA
1990, Hidden Valley, PA, Morgan

(3 Siinanm, ves, and
2 Hopcroft, J.E. and J.D. Ullman, Introduction to Automata Theory, Languages,

G 7 ; isi ley.
B3] omputation, 1979, Reading, MA, Addision Wesley odeling with Sentence-

lyer, R, M. Ostendorf, and J.R. Rohlicek, “Language M ks
Level Mixtures,” Procj of the ARPA Human Language Technology Workshop,

by %% Plainsboro, NJ, pp. 82-86. ¢ Models," Proc. of

Yardino, M., “Multili | Stochastic N-gram Class Languag
the IEEE [, C:njlf lzfujcou;cics, Speech and Signal Processing, 1190 AR
GA. pp. 161-163.
Amazon/VB Assets
Exhibit 1012

Page 613

http://cslu.cse.ogi.edu/HLTsurvey/HLTsurvey.html
http://cslu.cse.ogi.edu/HLTsurvey/HLTsurvey.html

588

(35]

[36]
(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Language Modeling

Jelinek, F., “Up From Trigrams! The Struggle for Improved Language Models” in
Proc. of the European Conf. on Speech Communication and Technology, 199,
Genoa, Italy, pp. 1037-1040. ’
Jelinek, F., Statistical Methods for Speech Recognition, 1998, Cambridge, MA
MIT Press.)
Jelinek, F., et al., “A dynamic language model for speech recognition” in Proc. of
the DARPA Speech and Natural Language Workshop, 1991, Asilomar, CA.
Katz, S.M., “Estimation of Probabilities from Sparse Data for the Language Moge|
Component of a Speech Recognizer,” IEEE Trans. Acoustics, Speech and Signal
Processing, 1987(3), pp. 400-401.
Kneser, R., “Statistical Language Modeling using a Variable Context” in Proc. of
the Int. Conf. on Spoken Language Processing, 1996, Philadelphia, PA, p. 494,
Kneser, R. and H. Ney, “Improved Backing-off for N-gram Language Modeling” in
Proc. of the IEEE Int. Conf. on Acoustics, Speech and Signal Processing 1995, De-
troit, MI, pp. 181-184.
Kuhn, R. and R.D. Mori, “A Cache-Based Natural Language Model for Speech
Recognition,” IEEE Trans. on Pattern Analysis and Machine Intelligence, 1990(6),
pp. 570-582.
Lafferty, J.D. and B. Suhm, “Cluster Expansions and Iterative Scaling for Maxi-
mum Entropy Language Models” in Maximum Entropy and Bayesian Methods, K.
Hanson and R. Silver, eds., 1995, Kluwer Academic Publishers.
Lari, K. and S.J. Young, “Applications of Stochastic Context-free Grammars Using
the Inside-Outside Algorithm,” Computer Speech and Language, 1991, 5(3), pp.
237-257.
Lay, R, R. Rosenfeld, and S. Roukos, “Trigger-Based Language Models: A Maxi-
mum Entropy Approach,” Int. Conf. on Acoustics, Speech and Signal Processing,
1993, Minneapolis, MN, pp. 108-113.
Magerman, D.M. and M.P. Marcus, “Pearl: A Probabilistic Chart Parser,” Proc. of
the Fourth DARPA Speech and Natural Language Workshop, 1991, Pacific Grove,
California.
Mahajan, M., D. Beeferman, and X.D. Huang, “Improved Topic-Dependent Lan-
guage Modeling Using Information Retrieval Techniques,” IEEE Int. Conf. o
Acoustics, Speech and Signal Processing, 1999, Phoenix, AZ, pp- 541-544.
Maltese, G. and F. Mancini, “An Automatic Technique to Include Grammatical and
Morphological Information in a Trigram-based Statistical Language Model,” £roc:
of the IEEE Int. Conf. on Acoustics, Speech and Signal Processing, 1992, Sa0
Francisco, CA, pp. 157-160.
Moisa, L. and E. Giachin, “Automatic Clustering of Words for Probabilist_ic Lan-
guage Models” in Proc. of the European Conf. on Speech Communicaliof o
Technology 1995, Madrid, Spain, pp. 1249-1252. in
x:t:’;; E" et al., “Combining Linguistic and Statistical Knowledge 50“'2"35_
-Language Processing for ATIS,” Proc. of the ARPA Spoken Langu?é

Amazon/VB Assets
Exhibit 1012
Page 614

Histerical perspective and Further Reading

(50

f51]

(52}

(53]
[54]

(3]

(6]

(571

(58]

(59
(60]

61]

[62)

[63)

[64]

[65)

589

tems Technology Workshop,
CA.]

Nasr, A., el a ",‘“A Language Model Combining N-grams and Stochastic Finitie
§tla7t§ Automata,” Proc. of the Eurospeech, 1999, Budapest, Hungary, pp. 217s-
Pereira, F.C.N. an’c’i Y. Schabes, “Inside-Outside Reestimation from Partially
Bracketed Cl..u'po.ra,- Proc. of the 30th Annual Meeting of the Association for Com-
putational Linguistics, 1992, pp. 128-135,

Pi.etr.a, S.A.D.. e.’t al.., “/idaptive Language Model Estimation using Minimum Dis-
crimination Esflmatlon, Proc. of f/"' IEEE Im. Conf. on Acoustics. Speech and
Signal Processing, 1992, San Francisco, CA, pp. 633-636.

Pollard. C. and L. A. Sag, Head-Driven Phrase Structure Grammar, 1994, Chicago,
University of Chicago Press. :

Pullum, G. and G. Gazdar, “Natural Languages and Context-Free Languages,” Lin-
guistics and Philosophy, 1982, 4, pp. 471-504.

Ratnaparkhi, A., S. Roukos, and R.T. Ward, “A Maximum Entropy Model for Pars-
ing,” Proc. of the Int. Conf. on Spoken Language Processing, 1994, Yokohama, Ja-
pan, pp. 803-806.

Rosenteld, R., Adaptive Statistical Language Modeling: A Maximum Entropy Ap-
proach, Ph.D. Thesis in School of Computer Science, 1994, Camegie Mellon Uni-
versity, Pittsburgh, PA.

Salton, G. and M.J. McGill, Introduction to Modern Information Retrieval, 1983,
New York, McGraw-Hill.

Schabes, Y., M. Roth, and R. Osborne, “Parsing the Wall Street Journal with the
Inside-Outside Algorithm,” Proc. of the Sixth Conf. of the European Chapter of the
Association for Computational Linguistics, 1993, pp. 341-347.

Seymore, K. and R. Rosenfeld, “Scalable Backoff Language Models,” Proc. of the
int. Conf. on Spoken Language Processing, 1996, Philadelphia, PA, pp. 232. .
Shannon, C.E., “Prediction and Entropy of Printed English,” Bell System Technical
Journal, 1951, pp. 50-62. o
Sharman, R., F. Jelinek, and R.L. Mercer, “Generating 2 Grammar for Statistical
Training,” Proc. of the Third DARPA Speech und Natural Language Workshop.
1990, Hidden Valley, Pennsylvania, pp. 267-274.
Shieber, S.M., An Introduction to Unification-Base : . ;
1986, Cambridge, UK, CSLI Publication, Leland Stanford Junior Universi
Steinbiss, V., er al, “A 10,000-word Continuous Speech Recognition
Proc. of the IEEE Int. C onf. on Acoustics, Speech and Signal Processing,
buquerque, NM, pp. 57-60.

Stolcke, A., “Entropy-based Pruning of Bac
‘B;':tldcast News Transcription and Understanding W orkshop,
Tomita, M., “An Efficient Augmented-Context-Free Parsing Algorithm,
tional Linguistics, 1987, 13(1-2), pp. 31-46.

1995, Austin, Texas, Morgan Kaufmann, Log Altos,

d Approaches to Grammars,
ty.

System,”
1990, Al-

koff Language Models,” DARPA
1998, Lansdowne,

* Computa-

Amazon/VB Assets
Exhibit 1012
Page 615

529 Language Modeling

[66] Wang, Y., M. Mahajan, and X. Huang, “A Unified Context-Free Grammar and N-
Gram Model for Spoken Language Processing,” Int. Conf. on Acoustics, Speech
and Signal Processing, 2000, Istanbul, Turkey, pp. 1639-1642.

[67] Younger, D.H., “Recognition and Parsing of Context-Free Languages in Time n’)”
Information and Control, 1967, 10, pp. 189-208.

Amazon/VB Assets
Exhibit 1012
Page 616

CHAPTER 12

Basic Search Algorithms

Continuous speech recognition (CSR) is both
a pattern recognition and search problem. As described in previous chapters, the acoustic
and language models are built upon a statistical pattern recognition framework. In speech
Tecognition, making a search decision is also referred to as decoding. In fact, decoding got
Us name from information theory (see Chapter 3) where the idea is to decode a signal that
has presumably been encoded by the source process and has been transmitted through the
Communication channel, as depicted in Chapter 1, Figure 1.1. In this chapter, we first review
the genera) decoder architecture that is based on such a source-channel model.

The decoding process of a speech recognizer is to find a sequence of words whose cor-
Tesponding acoustic and lan guage models best match the input signal. Therefore, the process
f)f such a decoding process with trained acoustic and language models is often referred to as
Just a search process. Graph search algorithms have been explored extensively in the fields
of artificia] intelligence, operation research, and game theory. In this chapter first we present
Several basic search algorithms, which serve as the basic foundation for CSR.

591

Amazon/VB Assets
Exhibit 1012
Page 617

Basic Search Algorit
592 gorithmg

The complexity of a search algorithm is highly correlated with the .search space, which
etermined by the constraints imposed by the language models. We discuss the impact of

< d '
- cluding finite-state grammars, context-free grammars, and »-

different language models, in

rams.) o }
’ Speech recognition search is usually done with the Viterbi or A* stack decoders. The

reasons for choosing the Viterbi decoder involve a‘rguments that point to speech as a left-to-
right process and to the efficiencies afforded by a tlme-syl'nchronous process. 'Th? reasons for
choosing a stack decoder involve its ability to more effectively exploit th.e. A¥ criteria, which
holds out the hope of performing an optimal search as well as the ability to handle huge
search spaces. Both algorithms have been successfully applied 'to various spe‘ecl.l recognition
systems. The relative merits of both search algorithms were quite controversial in the 1980s.
Lately, with the help of efficient pruning techniques. Viterbi beam search has been the pre-
ferred method for almost all speech recognition tasks. Stack decoding, on the other hand,
remains an important strategy to uncover the n-best and lattice structures.

12.1. BASIC SEARCH ALGORITHMS

Search is a subject of interest in artificial intelligence and has been well studied for expert
systems, game playing, and information retrieval. We discuss several general graph search
methods that are fundamental to spoken language systems. Although the basic concept of
graph search algorithms is independent of any specific task, the efficiency often depends on
how we exploit domain-specific knowledge.

The idea of search implies moving around, examining things, and making decisions
about whether the sought object has yet been found. In general, search problems can be rep-
resented using the state-space search paradigm. It is defined by a triplet (S, O, G), where §
is a set of initial states, O a set of operators (or rules) applied on a state to generate a transi-
tion with its corresponding cost to another state, and G a set of goal states. A solution in the
state-space search paradigm consists in finding a path from an initial state to a goal state.
The state-space representation is commonly identified with a directed graph in which each
node.corresponds to a state and each arc to an application of an operator (or a rule), which
transitions from one state to another, Thus, the state-space search is equivalent to searching
through the graph with some objective function.

) Before we present any graph search algorithms, we need to remind the readers of the
Importance of the dynamic programming algorithm described in Chapter 8. Dynamic pro-
gramming should be applied whenever possible and as early as possible because (1) unlike

any heuristics, it will not sacrifice optimali ; ; h into
e optimality; (2) it can transform an exponential search I
a polynomial search. ¥ () Storm an £xp

Amazon/VB Assets
Exhibit 1012
Page 618

/—_—P'
Basic Search Algorithms |
593

21.1. General Graph Searching Procedures

Although dynamic programming is a powerful pol i : ;
ing problems cannot be handled by it. A classic[;l g::nr:;f; lsse i:;zh[:alg;r.lthm,lmany l:merCSt-
fem1. We need to find a shortest-distance tour, starting at one of man mg-[-s g prob-
city exactly once, and returning to the starting city. This is one of the nzlo;t[;CS‘ b i
in the NP-hard class [1, 32]. Another classical example is the N-queens agllms Prol?lems
8-queens), where the goal is to place N queens on an NxN chessboard ?r:o etxun i
no queen can cap-ture any other queen, i.e., there is no more than one ue:uc' p Way_that
row, column, or diagonal. Many of these puzzles have the same characler?stic: :: e f o
the best algorithms currently known for solving the NP-hard problem are ex ;>neS :f'ellfnou»:'.
problem size. Most graph search algorithms try to solve those problems usig hn islies 5
avoid or moderate such a combinatorial explosion. B Rslicatrete

:‘;ﬁl:alll A highway distar'lce map for cities S, A, B, C, D, E, F, and G. The salesman needs
path to travel from city S to city G [42].

with a simple city-traveling prob-
all the cities. A salesman named
G. One obvious way to find a
all possible paths. Figure 12.2

e [:‘;; ;stan our discussion of graph search procedure
John nee'd Slgure 12.1 shows a highway distance map for
path s to dto. travel from the starting city S to the end city
shows the erive a graph that allows orderly exploration of gure
12.1. Almgraph that F"aCCS out all possible paths in the city-distance map shown in Figure
graph in m‘.’“gh the city-city connection is bi-directional, we should note that the search
in this sc IS Case must not contain cyclic paths, because they would not lead to any progress
€nario.
searchh;,::,,z ?jeﬁne the search space as the potential number of nodes (S : the
Tithm (ges edure, the search space for finding the optimal state sequence In the Viterbi algo-
is the Jeq f}?bed in Chapter 8) is N xT , where N is the number of states for the HMM and T
be 27, gth of the observation. Similary, the search space for John's traveling problem will

des (states) in the graph

g factor, defined as the

is the branchin
odes of a search graph

An ;
other important measure for a search graph
he number of 0

aVemge
n .
umber of successors for each node. Since t

Amazon/VB Assets
Exhibit 1012
Page 619

— Basic Search Algorithn;

(or tree) grows exponentially with base equal to this branching factor, we certainly peeg to
watch out for search graphs (or trees) with a large branching factor. Sometimes they can be
too big to handle (even infinite, as in game playing). We often trade the optimal solution for
improved performance and feasibility. That is, the goal for such search problems js 1o find
one satisfactory solution instead of the optimal one. In fact, most Al (artifical intelligence)
search problems belong to this category.

The search tree in Figure 12.2 may be implemented either explicitly or implicitly. In
an explicit implementation, the nodes and arcs with their corresponding distances (or costs)
are explicitly specified by a table. However, an explicit implementation is clearly impracti-
cal for large search graphs and impossible for those with infinite nodes. In practice, most
parts of the graph may never be explored before a solution is found. Therefore, a sensible
strategy is to dynamically generate the search graph. The part that becomes explicit is often
referred to as an active search space. Throughout the discussion here, it is important to keep
in mind this distinction between the implicit search graph that is specified by the start node
S and the explicit partial search graphs that are actually constructed by the search algo-
rithm.

To expand the tree, the term successor operator (or move generator, as it is often
called in game search) is defined as an operator that is applied to a node to generate all of
the successors of that node and to compute the distance associated with each arc. The suc-
cessor operator obviously depends on the topology (or rules) of the problem space. Expand-
ing the starting node S, and successors of S, ad infinitum, gradually makes the implicitly

Figul:e 12.2 The search tree (graph) for the salesman problem illustrated in Figure 12.1. The
number next to each node is the accumulated distance from start city to end city [42].

Amazon/VB Assets
Exhibit 1012
Page 620

Basic Search Algorithms _

gefined graph explicit. Thi§ recursive procedure is straightforward, and the search graph
(tree) can be constructed without the extra boqkkeeplng. However, this process would only
generate 3 search tree where the same node might be generated as a part of several possible

ths.
F For example, node E is being generated in four different paths. If we are interested in
finding an optimal path to travel from S to G, it is more efficient to merge those different
paths that Jead to the same node E. We can pick the shortest path up to C, since everything
following E is the same for the rest of the paths. This is consistent with the dynamic pro-
gramming principle—when looking for the best path from S to G, all partial paths from S to
any node E, other than the best path from S to E, should be discarded. The dynamic pro-
gramming merge also eliminates cyclic paths implicitly, since a cyclic path cannot be the
shortest path. Performing this extra bookkeeping (merging different paths leading into the
same node) generates a search graph rather than a search tree.

Although a graph search has the potential advantage over a tree search of being more
efficient, it does require extra bookkeeping. Whether this effort is justified depends on the
individual problem one has to address.

Most search strategies search in a forward direction, i.e., build the search graph (or
tree) by starting with the initial configuration (the starting state S) from the root. In the gen-
eral Al literature, this is referred to as forward reasoning [43], because it performs rule-base
reasoning by matching the left side of rules first. However, for some specific problem do-
mains, it might be more efficient to use backward reasoning [43], where the search graph is
built from the bottom up (the goal state G). Possible scenarios include:

® There are more initial states than goal states. Obviously it is easy to start
with a small set of states and search for paths leading to one of the bigger sets
of states. For example, suppose the initial state § is the hometown for Johp_m
the city-traveling problem in Figure 12.1 and the goal state G is an unfamiliar
city for him. In the absence of a map, there are certailnly more locat'lons
(neighboring cities) that John can identify as being close to h,’s home city §
than those he can identify as being close to an unfamiliar location. Ir} a sense,
all of those locations being identified as close to John’s home city § are
equivalent to the initial state S. This means John might want to consider rea-
soning backward from the unfamiliar goal city G for the trip planning.
® The branching factor for backward reasoning is smaller i .thal‘ft:‘fvj;(i’;
ward reasoning. In this case it makes sense to search in the directio
lower branching factor. ' al
Wis in principle possible to search from both ends simultanem.xsly, until ZW& ?l’?’]m!;?_
Pfllhs meet somewhere in the middle. This strategy is called bi-directional sea;c A -OWS
directiong) search seems particularly appealing if the number of nodes at each step &

S
o e e o e member the best path 10

|
Bein .) ‘ .
i i ities, he can eastly ¢
'S¢ means that, once John reaches one of those nelghbor'“glzyer reaches a particular board configuration,

Tetum Al
he cap r°:nc. Itis similar to the killer book for chess play. Om.:c the p
Ollow the Killer book for moves that can guarantee a victory-

Amazon/VB Assets
Exhibit 1012
Page 621

.
— Basic Search Algorithmg

exponentially with the depth that needs to be explored. However, sometimes bi-directiona]
search can be devastating. The two searches may cross each other, as illustrated in Figure
2.3.
1 The process of explicitly generating part of an implicitly defined graph forms the es-
sence of our general graph search procedure. The procedure is summarized in Algorithm
12.1. It maintains two lists: OPEN, which stores the nodes waiting for expansion, ang
CLOSE, which stores the already expanded nodes. Steps 62 and 6b are basically the book-
keeping process to merge different paths going into the same node by picking the one that
has the minimum distance. Step 6a handles the case where v is in the OPEN list and thus js
not expanded. The merging process is straightforward, with a single comparison and change
of traceback pointer if necessary. However, when v is in the CLOSE list and thus is already
expanded in Step 6b, the merging requires additional forward propagation of the new score
if the current path is found to be better than the best subpath already in the CLOSE list. This
forward propagation could be very expensive. Fortunately, most of the search strategy can
avoid such a procedure if we know that the already expanded node must belong in the best
path leading to it. We discuss this in Section 12.5.

As described earlier, it may not be worthwhile to perform bookkeeping for a graph
search, so Steps 6a and 6b are optional. If both steps are omitted, the graph search algorithm
described above becomes a tree search algoritbhm. To illustrate different search strategies,
tree search is used as the basic graph search algorithm in the sections that follows. However,
you should note that all the search methods described here could be easily e xtended to graph
search with the extra bookkeeping (merging) process as illustrated in Steps 6a and 6b of
Algorithm 12.1.

Forward search exp[bredarea‘

s Backward search explored area

Figure 12.3 A bad case for bi-directional search, where the forward search and the backward
search crossed each other [42].

Amazon/VB Assets
Exhibit 1012
Page 622

pasic Search Algorithms
597

m1 2.1: THE GRAPH-SEARCH ALGORITHM

tep 1: Initialization: Put S in the OPEN list and create an initi ;
gteg 2: I the OPEN list is gmpty, exit and declare failure. missyremely CLasB
tep 3: Pop up the first node & in the OPEN list, remove i i it
;e ;} e t, it from the OPEN list and put it into
gtep 4: If node N is a goal node, exit successfully with the soluti i i
r :along e panters from N0 5, y ution obtained by tracing back the
Step 5: Expand node N by applying the successor operator to generate the successor set
$S(N) of node N. Be sure to eliminate the ancestors of N from SS(N).
Step 6: Vv e SS(N) do
ga. (optional) If ve OPEN and the accumulated distance of the new path is smaller than
that for the one in the OPEN list, do
(i) change the traceback (parent) pointer of v to N and adjust the accumulated
distance for v .
(ii) go to Step 7.
6b. {optional) If v e CLOSE and the accumulated distance of the new path is smaller
than the partial path ending at v in the CLOSE list, do
(i) change the traceback (parent) pointer of v to N and adjust the accumulated
distance for all paths that containv .
(i) go to Step 7.
. Create a pointer pointing to N and push it into the OPEN list.
Step 7: Reorder the OPEN list according to search strategy or some heuristic measurement.
Lgep 8: Go to Step 2.

121.2. Blind Graph Search Algorithms

Ifthe aim of the search problem is to find an acceptable path instead of the best p E:h‘;‘pli;d
search s often used. Blind search treats every node in the OPEN list the same and biindly

i - - . h
Gides the order to be expanded without using any domain knowledge. Smc.e bhnadr :/?a{; i
"als every node equally, it is often referred to as uniform search or exhaustive search, b
; are typically not interested in

Case it exhaustively tri i ths. In Al people -
. y tries out all possible paths. » Ped e

blind search. However, it does pxx)*ovidc a lot of insight into many soph:jstlcatle]got:;x;sllx

arch algorithms. You should note that blind search does not expamrflr nf:) CZ rﬁlar typels -

slgad. 1t follows some systematic way to explore the search graph. Two pop

lind search are depth-first search and breadth-first search.

Amazon/VB Assets

Exhibit 1012
Page 623

\
— Basic Search Algorithmg

12.1.2.1. Depth-First Search

When we are in a maze, the most natural way to find a way out is to mark the branch we
take whenever we reach a branching point. The marks allow us to go back to a choice point
with an unexplored alternative, withdraw the most recently made choice and undo all conse.
quences of the withdrawn choice whenever a dead-end is reached. Once the alternative
choice is selected and marked, we go forward based on the same procedure. This intuitive
search strategy is called backtracking. The famous N-queens puzzle [32] can be handily
solved by the backtracking strategy.

Depth-first search picks an arbitrary altemative at every node visited. The search
sticks with this partial path and works forward from the partial path. Other alternatives at the
same level are ignored completely (for the time being) in the hope of finding a solution
based on the current choice. This strategy is equivalent to ordering the nodes in the OPEN
list by their depth in the search graph (tree). The deepest nodes are expanded first and nodes
of equal depth are ordered arbitrarily.

Although depth-first search hopes the current choice leads to a solution, sometimes the
current choice could lead to a dead-end (a node which is neither a goal node nor can be ex-
panded further). In fact, it is desirable to have many short dead-ends. Otherwise, the algo-
rithm may search for a very long time before it reaches a dead-end, or it might not ever
reach a solution if the search space is infinite. When the search reaches a dead-end, it goes
back to the last decision point and proceeds with another alternative.

Figure 12.4 shows all the nodes being expanded under the depth-first search algorithm
for the city-traveling problem illustrated in Figure 12.1. The only differences between the
graph search and the depth-first search algorithms are:

1. The graph search algorithm generates all successors at a time (although all

except one are ignored first), while depth-first search generates only one suc-
cessor at a time.

2. The graph search, when successfully finding a path, saves only one path from

the starting node to the goal node, while depth-first search in general saves
the entire record of the search graph,

_ Depth-first search could be dangerous because it might search an impossible patl £
is actually an infinite dead-end. To prevent exploring of paths that are too long, 2 dept?
bound can be placed to constrain the nodes to be expanded, and any node reaching (%
depth limit is treated as a terminal node (as if it had no successor).

_ The general graph search algorithm can be modified into a depth-first search algorit?
as illustrated in Algorithm 12.2.

Amazon/VB Assets
Exhibit 1012
Page 624

Basic Search Algorithms .

Figure 12.4 The node-expanding procedure of the depth-first search for the path search prob-
lem in Figure 12.1. When it fails to find the goal city in node C, it backiracks to the parent and
continues the search until it finds the goal city. The gray nodes are those that are explored. The
dotted nodes are not visited during the search [42].

ALGORITHM 12.2: THE DEPTH-FIRST SEARCH ALGORITHM

Step 1: Initialization: Put S in the OPEN list and create an initially empty the CLOSE list.
Step 2: If the OPEN list is empty, exit and declare failure.
Step 3: Pop up the first node N in the OPEN list, remove it from the OPEN fist and put it into the
CLOSE list.
Step 4: It node N is a goal node, exit successfully with the solution obtained by tracing back the
path along the pointers from N to S.
4a. If the depth of node N is equal to the depth bound, go to Step 2.
Step 5: Expand node N by applying the successor operator to generate the successor set

SS(N) of node N. Be sure to eliminate the ancestors of N from SS(N).
Step 6: Vv e SS(V) do
Bc. Create a pointer pointing to N and push it into the OPEN list
Step 7: Reorder the the OPEN list in descending order of the depth of the nodes.
Step 8: Go to Step 2.
‘\

Amazon/VB Assets
Exhibit 1012
Page 625

- Basic Search Algorithm

12.1.2.2. Breadth-First Search

One natural alternative to the depth-first search strategy'is b.readth-ﬁrst search. Breadth-firg
search examines all the nodes on one level before considering any of_the nodes on the nex(
Jevel (depth). As shown in Figure 12.5, node B would be examined just after node A. The
search moves on level-by-level, finally discovering G on the fourth level,

Breadth-first search is guaranteed to find a solution if one exists, assuming that a finite
number of successors (branches) always follow any node. The proof is straightforward. If
there is a solution, its path length must be finite. Let’s assume the length of the solution is
M. Breadth-first search explores all paths of the same length increasingly. Since the number
of paths of fixed length N is always finite, it eventually explores all paths of length M. By

that time it should find the solution.

It is also easy to show that a breadth-first search can work on a search tree (graph)
with infinite depth on which an unconstrained depth-first search will fail. Although a
breadth-first might not find a shortest-distance path for the city-travel problem, it is guaran-
teed to find the one with fewest cities visited (minimum-length path). In some cases, it is a
very desirable solution. On the other hand, a breadth-first search may be highly inefficient
when all solutions leading to the goal node are at approximately the same depth. The
breadth-first search algorithm is summarized in Algorithm 12.3.

Fi) . ‘

lelriuil;,e;iz.sr'n;; node-expanding procedure of a breadth-first search for the path search P“’bS

are those tg:afar -1. It searches through each level until the goal is identified. The gray node!
¢ explored. The dotted nodes are not visited during the search [42]-

Amazon/VB Assets
Exhibit 1012
Page 626

Basic Search Algorithms | o

ALGORITHM 12.3: THE BREADTH-FIRST SEARCH ALGORITHM

step 1: Initialization: Put Sin the OPEN list and create an initially empty the CLOSE list.
Step 2: If the OPEN list is empty, exit and declare failure.
Step 3: Pop up the first node N'in the OPEN list, remove it from the OPEN list and put itinto the
CLOSE list.
Step 4: If node N is a goal node, exit successfully with the solution obtained by tracing back the
path along the pointers from Nto S.
Step 5: Expand node N by applying the successor operator to generate the successor set
SS(N) of node N. Be sure to eliminate the ancestors of N, from SS(N).
Step6: Vv e SS(N) do
6¢. Create a pointer pointing to N and push it into the OPEN list.
Step 7: Reorder the OPEN list in increasing order of the depth of the nodes.
Step 8. Go to Step 2.

12.1.3. Heuristic Graph Search

Blind search methods, like depth-first search and breadth-first search, have no sense (or
guidance) of where the goal node lies ahead. Consequently, they often spend a lot of time
searching in hopeless directions. If there is guidance, the search can move in the direction
that is more likely to lead to the goal. For example, you may want to find a driving route to
the World Trade Center in New York. Without a map at hand, you can still use a straight-
line distance estimated by eye as a hint to see if you are closer to the goal (World Trade
Center). This hill-climbing style of guidance can help you to find the destination much’ more
efficiently.

Blind search finds only one arbitrary solution instead of the optimal solution. To ﬁnd
the optimal solution with depth-first or breadth-first search, you must not stop searching
when the first solution is discovered. Instead, the search needs to continue until it rcache.s all
the solutions, so you can compare them to pick the best. This strategy for finding the optlf’nal
solution is called British Museum search or brute-force search. Obviously, it is unfeasible
When the search space is large. Again, to conduct selective search and yet still be able to find
the optimal solution, some guidance on the search graph is necessary. .

The guidance obviously comes from domain-specific knowledge. Such knowled_ge is
Usually referred to as heuristic information, and search methods taking advantage of it are
Called heuristic search methods. There is usually a wide variety of different IicurisEes 'for
the problem domain. Some heuristics can reduce search effort without sacrificing optimality,
while other can greatly reduce search effort but provide only sub-optimal solutions. In most
Practica problems, the choice of different heuristics is usually a tradeoff between the quality

Ofthe solution and the cost of finding the solution.

Amazon/VB Assets
Exhibit 1012
Page 627

Basic Search Algori
602 gorithms

rmation works like an evaluation function #(N) that maps each node §
serves to indicate the relative goodness (or cost) of continuing
e. Since in our city-travel problem. straight-line distance is 3
oodness of a path. we can use the heuristic function A(N) for

Heuristic info
t0 a real number, and which
the search path from that nod
natural way of measuring the g
the distance evaluation as:

h(N)=Heuristic estimate of the remaining distance from node N to goal G (12.1)

Since g(N), the distance of the partial path to the current node N, is generally known, we

have:)
g(N)=The distance of the partial path already traveled fromroot Stonode N (12.2)

We can define a new heuristic function, f(#), which estimates the total distance for the
path (not yet finished) going through node N.

J(N)=g(N)+h(N) (12.3)

A heuristic search method basically uses the heuristic function f(N) to re-order the
OPEN list in the Step 7 of Algorithm 12.1. The node with the best heuristic value is ex-
plored first (expanded first). Some heuristic search strategies also prune some unpromising
partial paths forever to save search space. This is why heuristic search is often referred to as
heuristic pruning.

The choice of the heuristic function is critical to the search results. If we use one that
overestimates the distance of some nodes, the search results may be suboptimal. Therefore,
heuristic functions that do not overestimate the distance are often used in search methods
aiming to find the optimal solution.

To close 'this section, we describe two of the most popular heuristic search methods:
best-first (or A" Search) [32, 43] and beam search [43]. They are widely used in many com-
ponents of spoken language systems.

12.1.3.1. Best-First (A" Search)

Once we have a reasonable heuristic function to evaluate the goodness of each node in the
OPEN list, we can explore the best node (the node with smallest f(N) value) first, since it
offers the best hf)pe of leading to the best path. This natural search strategy is called best-
f\::;usiarCh'; © Implement best-first search based on the Algorithm 12.1, we need t first
We alasg njeréd t)o for cach successor before putting the successors in the OPEN list in SteP 6{-
n0de 18 in e e elements in the OPEN list based on f(N) in Step 7, so tht the b
For petiomming b :St-r;_lost posmop v.vaiting to be expanded in Step 3. The modified Pmced:r:
in the OPEN by~ rst search is illustrated in Algorithm 12.4. To avoid duplicating 1%

15t, we include Steps 6a and 6b to take advantage of the dynamic programmmg

principle. They perf : .
into the same :oge. orm the needed bookkeeping process to merge different paths a6

Amazon/VB Assets
Exhibit 1012
Page 628

ic Search Algorithms
Basic Se P

m 12.4: THE BEST-FIRST SEARCH ALGORITHM

step 1: Initialization: Put Sin the OPEN list and create an initiall ;
steg 2: If the OPEN list is empty, exit and declare failure. sy he CLOSEIs,
Step 3. Pop up the first node Nin the OPEN list, remove it from the OPEN list and put it into the
CLOSE list.
Step 4: If node Nis a goal node, exit successfully with the solution obtained by tracing back the
path along the pointers from N'to S.
Step 5: Expand node N by applying the successor operator to generate the successor set
SS(N) of node N. Be sure to eliminate the ancestors of N, from SS(N).
Step 6: Vv e SS(N) do
6a. (optional) If ve OPEN and the accumulated distance of the new path is smaller than
that for the one in the the OPEN list, do
(i) Change the traceback (parent) pointer of v to N and adjust the accumulated
distance for v .
(ii) Evaluate heuristic function f(v) for v and go to Step 7.
6b. (optional) If v e CLOSE and the accumulated distance of the new path is small than
the partial path ending atv in the the CLOSE list,
(i) Change the traceback (parent) pointer of v to N and adjust the accumulated
distance and heuristic function £ for all the paths containing v .
(i) go to Step 7.
Bc. Create a pointer pointing to N and push it into the OPEN list.
Step 7: Reorder the the OPEN list in the increasing order of the heuristic function f(N).
Step 8: Go to Step 2.

e

A search algorithm is said to be admissible if it can guarantee to find an optimal solu-

tion, if one exists. Now we show that if the heuristic function (V) of estimating the re-
Mmaining distance from N to goal node G is an underestimate” of the .lrue d|§@ce fron} N
10 goal node G, the best-first search illustrated in Algorithm 124 is adr{nsmblc. In fact,
When h(N) satisfies the above criterion, the best-first algorithm is called A (pronounced as
lehl-star) Search.

The proof can be carried out informally as fo DS
OPEN list is the goal node G in Step 4, it immediately implies that

llows. When the frontmost node in the

12.4)
YWeOPEN f(v)2 f(G)=g(G)+h(G)=8(0) y

—
1 " . m N1 G.
: . i restimate the distance fro!

.For fdfmsihilily' we actually require only that the heuristic function not oV"lh?: :llm ter without loss of general-
illnce ILiS very rare to have an exact estimate, we use underestimate throughout f the u'l:e value.

. Somet: 8 S .

Y- Sometimes we refer to an underestimate function as Jower-bound estimat

Amazon/VB Assets
Exhibit 1012
Page 629

—\
— Basic Search Algorithmg

Equation (12.4) says that the dl.stance esl'imate of any incomplete path is no shorter
than the first found complete path. Since the distance estimate for any incomplete path is
underestimated, the first found complete path in Step 4 must be the optimal path. A similar
argUfngnt can glso be usqd to prove that the Step 6b is actually not necessary for admissible
heur.xsnc functions; that is, there cannot be another path with a shorter distance from the
star'tmg. node to a node that ha§ been e)'tpandefi. This is a very important feature since Step
6b is, in general, very expensive and it requires significant updates of many already ex-
panded paths.

The A’search methoc.l is actuall.y a family of search algorithms. When h(N)=0 forall
N, the _sea.rch degenerates into an uninformed search’ [40]. In fact, this type of uninformed
Sfearch is the famous branch-and-bound search algorithm that is often used in many opera-
fzons research problems. Branch-and-bound search always expands the shortest path leading
into an open node until there is a path reaching the goal that is of a length no longer than all
incomplete paths terminating at open nodes. When g(N) is defined as the depth of the node
N, the use of heuristic function f(N) makes the search method identical to breadth-first
search. In Section 12.1.2.2, we mention that breadth-first search is guaranteed to find a
minimum length path. This can certainly be derived from the admissibility of the A’ search
method.

When the heuristic function is close to the true remaining distance, the search can usu-
ally find the optimal solution without too much effort. In fact, when the true remaining dis-
tances for all nodes are known, the search can be done in a totally greedy fashion without
any search at all, i.e., the only path explored is the solution. Any non-zero heuristic function
is then called an informed heuristic function, and the search using such a function is called
informed search. A heuristic function 4 is said to be more informed than a heuristic func-
tion A, if the estimate % is everywhere larger than 4, and yet still admissible (underesti-
mate). Finding an informed admissible heuristic function (guaranteed to underestimate for
all nodes) is, in general, a difficult task. The heuristic often requires extensive analysis of the
domain-specific knowledge and knowledge representation.

Let’s look at a simple example—the 8-puzzle problem. The 8-puzzle consists of eight
numbered, movable tiles setin a 3x3 frame. One cell of this frame is always empty, so it is
possible to move an adjacent numbered tile into the empty cell. A solution for the 8-puzzle
is to find a sequence of moves to change the initial configuration into a given goal configu-
ration as shown in Figure 12.6. One choice for an informed admissible heuristic function _hu
is the number of misplaced tiles associated with the current configuration. Since eacl{ mis-
placed tile needs to move at least once to be in the right position, this heuristic function 15
clearly a lower bound of the true movements remaining. Based on this heuristic function, the
value for the initial configuration will be 7 in Figure 12.7. If we examine this problem fur-
ther, a more informed heuristic function 4, can be defined as the sum of all row and column
distances of all misplaced tiles and their goal positions. For example, the row and column

. X - Vi p e s =3
distance between the tile 8 in the initial configuration and the goal position 1S 2+1
* In some literature an uninformed search is referred to as uniform-cost search.
Amazon/VB Assets
Exhibit 1012

Page 630

Basic Search Algorithms .

—-6' 4 E& 4 5 6

317 7] 8

Figure 12.6 Initial and goal configurations for the 8-puzzle problem.

which indicates that one must move tile 8 at least 3 times in order for it to be in the right
position. Based on the heuristic function /,, the value for the initial configuration will be 16
in Figure 12.6. h, is again admissible.

In our city-travel problem, one natural choice for the underestimating heuristic func-
tion of the remaining distance between node N and goal G is the straight-line distance since
the true distance must be no shorter than the straight-line distance.

Figure 12.7 shows an augmented city-distance map with straight-line distance to goal
node attached to each node. Accordingly, the heuristic search tree can be easily constructed
for improved efficiency. Figure 12.8 shows the search progress of applying the A’search
algorithm for the city-traveling problem by using the straight-line distance heuristic function
10 estimate the remaining distances.

w
N
N
(-]

8.5

Ejigure 12.7 The city-travel problem augmented with heuristic info;mation. The numbers be-
$ide each node indicate he straight-line distance to the goal node G [421.

Amazon/VB Assets
Exhibit 1012
Page 631

.
Basic Search Algorithig

606

Figure 12.8 The search progress of applying A search for the city-travel problem. The search
determines that path S-A-C-E-G is the optimal one. The number beside the node is f values on

which the sorting of the OPEN list is based [42].

12.1.3.2. Beam Search

Sometimes, it is impossible to find any effective heuristic estimate, as required in A* search,
particularly when there is very little (or no) information about the remaining paths. For ex-
ample, in real-time speech recognition, there is little information about what the speaker will
_Jtter for the remaining speech. Therefore, an efficient uninformed search strategy is very
important to tackle this type of problem.

Breadth-first style search is an important strategy for heuristic search. A breadth-first
searc'h virwally explores all the paths with the same depth before exploring deeper paths. In
practice, paths of the same depth are often easier to compare. It requires fewer heuristics t0
rank the goodness of each path. Even with uninformed heuristic function (#(N)=0), the
direct comparison of g (distance so far) of the paths with the same length should be a €&
sonable choice.

- IB'eam search is a widely used search technique for speech recognition systems [25; 31,
brgz;d:}:-sﬁis?r:::r?h—ﬁ;it ‘:tyle search and progresses along with the depth. Unlike tradit::lﬂ:{
» however, beam search only expands nodes that are likely to succe

each level. Only these nodes are kept : -
ept ned) for i
proved efficiency. pt in the beam, and the rest are ignored (pru)

Vel)v and [he

h. The nu*
ce is

I
rest oflzhien::ﬁl’ a beam search only keeps up to w best paths at each stage (I
borf noder; . 8]are discarded. The number w is often referred to as beam widt
xplored remains manageable in beam search even if the whole search sP

iganti e
gigantic. If a beam width w is used in a beam search with an average branching fa% &

only wx :
Y Wxb nodes need to be explored at any depth, instead of the exponential numbet

Amazon/VB Assets
Exhibit 1012
Page 632

Basic Search Algorithms _

needed for breadth-ﬁr_st search. Suppose that a beam width of 2 is used for the city-travel
roblem. Figure 12.9 illustrates how beam search progresses to find the path. We can also
see that the beam search saved a large number of unneeded nodes, as shown by the dotted
es.

e The beam search algorithm can be easily modified from the breadth-first search algo-
rithm and is illustrated in Algorithm 12.5. For simplicity, we do not include the merging step
here. In Algorithm 12.5, Step 4 obviously requires sorting, which is time-consuming if the
number wxb is huge. In practice, the beam is usually implemented as a flexible list where
nodes are expanded if their heuristic functions f(N) are within some threshold (ak.a., beam
threshold) of the best node (the smallest value) at the same level. Thus, we only need to
identify the best node and then prune away nodes that are outside of the threshold. Although
this makes the beam size change dynamically, it significantly reduces the effort for sorting
of the Beam-Candidate list. In fact, by adjusting the beam threshold, the beam size can be
controlled indirectly and yet kept manageable.

Unlike A’ search, beam search is an approximate heuristic search method that is not
admissible. However, it has a number of unique merits. Because of its simplicity in both its
search strategy and its requirement of domain-specific heuristic information, it has become
one of the most popular methods for complicated speech recognition problems. It is particu-
lally attractive when integration of different knowledge sources is required in a time-
synchronous fashion. It has the advantages of providing a consistent way of exploring nodes
level by level and of offering minimally needed communication between different paths. It
isalso very suitable for parallel implementation because of its breadth-first search nature.

s with gray color are the ones

Figure 12 -
g i e aphoe e d because of higher cost. The

kept i
olt,tte;n the be_am. The transparent nodes were explored but prune
nodes indicate alj the savings because of pruning [42]-

Amazon/VB Assets
Exhibit 1012
Page 633

Basic Search Algori
608 gorithmg

ALGORITHM 12.5: THE BEAM SEARCH ALGORITHM
Step 1: Initialization: Put Sin the OPEN list and create an initially empty CLOSE list,

Step 2: If the OPEN list is empty, exit and declare failure.
3: YN e OPEN do . .
Step3a. Pop up node N in the OPEN list, remove it from the OPEN list and put it into the

CLOSE list. . . . '
3b. If node Nis a goal node, exit successfully with the solution obtained by tracing back the

path along the pointers from N'to S.

3c. Expand node N by applying a successor operator to generate the successor set SS(N)
of node N. Be sure to eliminate the successors, which are ancestors of N, from SS(N).

3d. Vv e SS(N) Create a pointer pointing to N and push it into Beam-Candidate list.
Step 4: Sort the Beamn-Candidate list according to the heuristic function f'(N) so that the best
w nodes can be pushed into the the OPEN list. Prune the rest of nodes in the Beam-Candidate

list.
Step 5: Go to Step 2.

12.2. SEARCH ALGORITHMS FOR SPEECH RECOGNITION

As described in Chapter 9, the decoder is basically a search process to uncover the word
sequence W=ww,..w, that has the maximum posterior probability P(WIX) for the given
acoustic observation X = X\ X,...X, . That is,

POW)P(X| W)

W =argmax P(W|X) = arg max
* » P(X)

=argmax P(W)P(X|W) (12.5)

One opvious way is to search all possible word sequences and select the one with the best
posterior probability score.

The unit of acoustic model P(XIW) is not necessary a word model. For large-
vocabulary speech recognition systems, subword models, which include phonemes, demisyl-
lables, ’”_‘d syliables are often used. When subword models are used, the word model
P(XIW) is then obtained by concatenating the subword models according to the pronuncia-
tion transcription of the words in a lexicon or dictionary.

When word mod-e!s are available, speech recognition becomes a search problem. Tie
goal for speech recognition is thus to find a sequence of word models that best describes the
;P:;c\;a‘;:zm ag;mst the. word models. As neither the number of words nor the bour_ldﬂf)’
deal with thes: l;:ﬁogfme in the input waveform is known, appropriate search strategies to

g HMMsaare-length fionstationary patterns are extremely important. be
SHpADEE 15 oo Seta“lsed for speech recognition systems, the states in the HMM Canour
el e-search space in the search. In this chapter, we use HMMs as i

- Although the HMM framework is used to describe the search algorithms: 2

Amazon/VB Assets
Exhibit 1012
Page 634

rch Algorithms for Speech Recognition

N 609

techniques mentioned in this and the following chapter can be used for systems based

olher modéling technifies, steluding templae matching and neural networks. In fact “r:naon
search techniques had been invented before HMMs were applied to speec'h reco, ,nitiorzmy
Moreover, the HMMS state transition network is actually general enough to represgem the.
general search framework for all modeling approaches. °

12.2.1. Decoder Basics

The lessons leamed from dynamic programming or the Viterbi algorithm introduced in
Chapter 8 tell us that the exponential blind search can be avoided if we can store some in-
termediate optimal paths (results). Those intermediate paths are used for other paths without
being recomputed each time. Moreover, the beam search described in the previous section
shows us that efficient search is possible if appropriate pruning is employed to discard
highly unlikely paths. In fact, all the search techniques use two strategies: sharing and prun-
ing. Sharing means that intermediate results can be kept, so that they can be used by other
paths without redundant re-computation. Pruning means that unpromising paths can be dis-
carded reliably without wasting time in exploring them further.

Search strategies based on dynamic programming or the Viterbi algorithm with the
help of clever pruning, have been applied successfully to a wide range of speech recognition
tasks [31], ranging from small-vocabulary tasks, like digit recognition, to unconstraint large-
vocabulary (more than 60,000 words) speech recognition. All the efficient search algorith.ms
we discuss in this chapter and the next are considered as variants of dynamic programming
or the Viterbi search algorithm.

In Section 12.1, cost (distance) is used as the measure of goodness for graph search a!-
gorithms. With Bayes’ formulation, searching the minimum-cost path (word s;quence) is
equivalent to finding the path with maximum probability. For the s'ake of consistency, we
use the inverse of Bayes® posterior probability as our objective funcuon. Furthermore. loggei-
fithms are used on the inverse posterior probability to avoid multiplications. That is, the fol-
lowing new criterion is used to find the optimal word sequence w:

(12.6)

COW1X) = og] —L_—|=—1og [P(W)P(XI W]
{ P(W)P(X W)

: (12.7)
W=arpmin C(WX)
o
i he likeli for
ki simplicity, we also define the following cost medsures to mirror the likelihood
15uc models and lznguage models:

(12.8)
CX Wy=—log[P(X " W)]
(12.9)
C‘“') = .._log [P(“r)]
Amazon/VB Assets
Exhibit 1012

Page 635

p” Basic Search Algorithmg

12.2.2. Combining Acoustic and Language Models

Although Bayes’ equation [Eq. (12.5)] suggests that the acoustic mode] probability (cong;.
tional probability) and language model probability (prior probability) can be combipeg
through simple multiplication, in practice some weighting is desirable. For example, when
HMMs are used for acoustic models, the acoustic probability is usually underestimated, ow-.
ing to the fallacy of the Markov and independence assumptions. Combining the language
mode] probability with an underestimated acoustic model probability according to Eq. 12.5)
would give the language model too little weight. Moreover, the two quantities have vastly
different dynamic ranges particularly when continuous HMMs are used. One way to balance
the two probability quantities is to add a language model weight LW to raise the language
model probability P(W) to that power P(W)™" [4, 25]. The language model weight LW is
typically determined empirically to optimize the recognition performance on a development
set. Since the acoustic model probabilities are underestimated, the language model weight
LW is typically >1.

Language model probability has another function as a penalty for inserting a new word
(or existing words). In particular, when a uniform language model (every word has an equal
probability for any condition) is used, the language model probability here can be viewed as
purely the penalty of inserting a new word. If this penalty is large, the decoder will prefer
fewer longer words in general, and if this penalty is small, the decoder will prefer a greater
number of shorter words instead. Since varying the language model weight to match the
underestimated acoustic model probability will have some side effect of adjusting the pen-
alty of inserting a new word, we sometimes use another independent insertion penalty to
adjust the issue of longer or short words. Thus the language model contribution becomes:

P(W)H¥ [p¥OW) (12.10)

where P is the insertion penalty (generally 0 < /P <1.0) and N(W) is the number of words
in sentence W. According to Eq. (12.10), insertion penalty is generally a constant that is
added to the negative-logarithm domain when extending the search to another new word. In
Chapter 9, we described how to compute errors in a speech recognition system and intro-
duced three types of error: substitutions, deletions and insertions. Insertion penalty is S0
named because it usually affects only insertions. Similar to language model weight, the 17-

sertion penalty is determined empirically to optimize the recognition performance on 2 de-
velopment set.

12.2.3. Isolated Word Recognition

With isola‘ted word recognition, word boundaries are known. If word HMMs are avai!able-
the acgusuc model probability P(XIW) can be computed using the forward algorithm intr0-
duced in Chapter 8. The search becomes a simple pattern recognition problem, and the WOr

Amazon/VB Assets
Exhibit 1012
Page 636

	Part 008

