
_____-:
Structure

oielog

Communicative Status: records whether the utterance is - t
11

. .
• ~ 11 I m e ig1ble and

Whether it was successn1 y comp eted. It is mainly used to fl b .
h Id b ag pro lemattc

Utterances that s ou e used for data modeling only wi'th .
cautton­

Uninterpretable, Abandoned, or Self-talk. Uninterpretable is self-
explanatory. Abandoned marks utterances that were broken off with t

· · fi · . ou, cru-
cially, addmg any 1~ onnat10? to the ?ialo_g. ~e(f-talk is a note that, while an
utterance may contam useful mfonnation, 1t did not appear to be intentionall
communicated. Self-talk can be considered reliable only when the annotat;
is working from speech data.

, Information Level: a characterization of the semantic content of the utter­
ance. This is used to specify the kind of infonnation the utterance mainly
conveys. It includes Task (Doing the task), Task-management (Talking about
the task), Communication-management (Maintaining the communication),
and Other-level. Task utterances relate directly to the business of the transac­
tion and move it toward completion. Task-management utterances ask or tell
about the task, explain it perhaps, but do not materially move it forward.
Communication-management utterances are about the dialog process and ca­
pabilities. The Other level is for unclear cases.

, The Forward/Backward Looking Function: how the current utterance con­
strains the future/previous beliefs and actions of the participants and affects
the discourse. Forward Looking functions introduce new information or oth­
erwise move the dialog or task completion forward, while Backward Looking
Functions are tied to an antecedent, a prior utterance which they respond to or
complete. This distinction is the DAMSL reflection of the common observa­
tion that dialogs have a tendency to consist of Initiation/Response pairs. The
core of the system is the set of particular act types. The core For­
ward/backward Looking tags are listed in Table 17.2 and Table 17.3.

Table 17.2 Forward looking tags.

Forward Looking Tags Example

assert l always fly first class.
reassert No, as I said, I always fly first class.

action-directive Book me a flight to Chicago.
open-option There's a red-eye flight tonight . ..
info-request What time is it?, Tell me the time.
offer
~

I can meet at 3 if you're free.
commit I' II come to your party.

~conventional opening May I help you?
conventional closing Goodbye.

_explicit-perforrnative Thank you, I apologize.

~clamation Ouch! Dam!

863 1

Amazon/VB Assets
Exhibit 1012

Page 889

864 Spoken Language Understanding

Table 17.3 Backward looking tags.

Backward Looking Tags Example
(Will you come?)

accept Yes. [and/or, I'll be there at 10.J
(Will you come with your wife?)

accept-part I'll come, she may be busy.

(Will you come?)
reject

No.
(Want fries and a shake with that burger?)

reject-part
Just the hamburger and fries, please.

maybe Maybe.

signal-nonunderstanding What did you say?

acknowledgment OK.

(Can I fly nonstop from Anchorage to Kabul?)
answer

No.

Multiple tags may appear on any given utterance. In the example shown in Figure
17.3, B's utterance is coded as opening the option of buying (from B), asserting the exis­
tence of the sofas, and functioning as an offer or solicitation.

Action-directive

Open-option/ Assert/Offer

A: Let's buy the living room furniture
first.

B: OK, I have a red sofa for $150 or a
blue one for $200

Figure 17.3 A tagged dialog fragment.

The DAMSL system is actually more complex than the example demonstrated above,
since subsets of the tags are grouped into mutually exclusive options for a given general
speech function. For example, there is a general Agreement function, under which the ac­
cept, accept-part, reject, and reject-part tags are grouped as mutually exclusive options.
Above the level of those groupings, however, a single utterance can receive multiple nonex­
clusive tags. For example, as illustrated in Figure 17.4, the assistant may respond with a
countersuggestion (a kind of action-directive) that rejects part of the original command.

Action-directive

Action-directive/Reject-part(uttl)

uttl oper: Take the train to
Avon via Bath
utt2 asst: Go via Corning in­
stead.

Figure 17.4 A tagged dialog fragment, showing that utterances can be tagged with multiple
nonexclusive tags.

Amazon/VB Assets
Exhibit 1012

Page 890

Dialog structure 865

The prototypical dialog turn unit in simple applications would be the l/R . .
· · h · p· pair mfo-

uestfanswer. as in th~ mteract10n s own m !gure 17 .5 between an operator (planner) and
req ·scant regarding railroad transport schedulmg [1].
an ass~he example in Figure 17.5 illustrate~ ~ dialog for a railway-scheduling task. The
turns are numbered Tl-T4, the utterances w1thm turns are also numbered sequentially, and
the speaker identity alternates between oper: and asst:. !he tagging is incomplete, because,
for example, within the ansl sequ~nce_, each utte~ance 1s performing a function, asserting,
acknowledging, etc. The example m Figure 17 .6 1s a more completely annotated fragment,
omitting rum numbers.

info-req Tl uttl aper:

ansl T2 utt2 asst:
T3 utt3 aper:

where are the engines?
there's an engine at Avon
okay
and we need T4 utt4 asst:

utt5 asst: I mean there's another in Corning

Figure 17.5 A tagged dialog fragment in railroad transport scheduling.

info-reg/assert uttl aper: and it's gonna take us also an
hour to load boxcars right

ans/accept(utt l) utt2 asst: right
assert utt3 aper: and it's gonna take us also an

hour to load boxcars
accept(u tt l) utt4 asst: right

Figure 17.6 A tagged dialog fragment, showing backward-looking utterances.

The example in Figure 17 .6 shows backward-looking utterances, where the relevant antece­
dent in the dialog is shown (in parentheses) as part of the dialog coding.

More elaborate variants of DAMSL have been developed that extend the basic system
presented here. Consider, for example, the SWITCHBOARD Shallow-Discourse-Function
Annotation SWBD-DAMSL [27). This project used a shallow discourse tag set of 42 basic
tags (frequent composed tags from the large set of possible multitags) to tag 1155 5-minute
conversations, comprising 205,000 utterances and 1.4 million words, from the
SWITCHBOARD corpus of telephone conversations. Distributed by the Linguistic Data
Consonium

2
(28], SWITCHBOARD is a corpus of spontaneous conversations that addresses

lhe growing need for large multispeaker databases of telephone bandwidth speech. The cor­
pus contains 2430 conversations averaging 6 minutes in length-in other words, over 240
hours of recorded speech, and about 3 million words of text, spoken by over 500 speakers of
botb genders from every major dialect of American English.

More detailed tags are added to DAMSL to create SWBD-DAMSL, most of which are
e!aborations of existing DAMSL broad categories. For example, where DAMSL has the
simple category answer, SWBD-DAMSL has: yes answer, no answer, affirmative non-yes

l http://
WWw.ldc.upenn.edu

Amazon/VB Assets
Exhibit 1012

Page 891

866
Spoken Language Understanding

answer, negative non-no answers, other answers, no plus expansion, ~·es plus expansion,
statement expanding yin answer, expansions of yin an~wers, and dzsp~eferred answer.
SWBD-DAMSL is intended for the annotation and learnmg of structure m human-human
dialog. and could be considered overkill as a basis for describing or constructing grammars
for most limited-domain human-computer interactions of today. But the more sophisticated
agent-based services of the future will need to assume ever-greater linguistic sophistication

along these lines.
One fact noted by the SWBD-DAMSL researchers, which may not apply directly to

task-directed human-computer interactions but which casts interesting light on human com­
munication patterns, is that out of 1115 conversations studied, simple nonopinion statements
and brief acknowledgements together constituted 55% of the conversational material! If
statements of opinion (including simple stuff like I think it's great!), expressions of agree­
ment (That's right!), tum breakoffs and no-content utterances (So ...), and appreciative ac­
knowledgements (I can imagine.) are added to this base, 80% of the utterances are
accounted for. This relative poverty of types may bode well for future attempts to annotate
and predict utterance function automatically. The DAMSL scheme is challenging to apply
automatically, because it relies on complex linguistic and pragmatic judgments of the trained
annotators.

17.2.3. Dialog Control

The system's view of how the dialog should proceed is embodied in its management strat­
egy. Strategy is closely connected to the concept of initiative in dialog, meaning basically
who is controlling the interaction. Different dialog initiatives are defined in Section 17 .2.
Initiative can be seen as a continuum from system controlled to user controlled. As back­
ground for the dialog management discussion, some important steps along this continuum
can be identified:

• System directs-The system retains complete dialog control throughout the
interaction. The system chooses the content and sequence of all subgoals and
initiates any dialog necessary to obtain completion of information from the
user for each transaction. This style is often referred as system initiative.

• System guides-The system may initiate dialog and may maintain a gtneral
plan, but the sequence of infonnation acquisition from the user may be ficxi­
~le, and ~ystem ~ubgoals and plans may be modified in response to the user's
mput. This style 1s often referred as mixed initiative.

• System infor~- The. user directs the dialog and the system responds as help­
fully as possible, which may include presentation of relevant data not specifi­
cal~y requested by the user but which the system. believes could be helpful.
T_his style also belongs to mixed initiative, though users control most of the
dialog flows.

• System accepts-This is the typical human-computer interaction in traditional
systems (whether it is a GUI-, command-line-, or natural language-based sys-

Amazon/VB Assets
Exhibit 1012

Page 892

--- . ntic Representation
serna 867

tem). The system interprets each command without any atteinpted · C'. . m~ren~
of a deeper user plan, or recommendation of any suitable course of acf

1 · fi d · . . . ton. This sty e ts re erre as user 1mllahve.

7 3 SEMANTIC REPRESENTATION 1 ..
Most SLU systems require an internal representation of meaning that lends itself to com­
puter processing. In other words, we need a way of representing semantic entities, which are
used at every possible step. In general, an SLU system needs to deal with two types of se­
rnantic entities. The first type is physical entities, which correspond to the real-world enti­
ties. such representation is often referred as knowledge representation in the field of
artificial intelligence. The second type is functional entities, which correspond to a way of
unambiguously representing the meaning or structure of situations, events, and concepts that
can be expressed in natural language. Such representations are often similar to the logical
form introduced in Chapter 2. Processing may include operations such as determining simi­
larity or identity of events or entities, inference from a state of affairs to its logical conse­
quences, and so on. Here, we briefly review some general properties of the common
semantic representation frameworks.

17.3.1. Semantic Frames

Semantic objects are used to represent real world entities. Here, we assume that the domain
knowledge conforms to a relational or objected-oriented database, of which the schema is
clearly defined. We use the term entity to refer to a data item in the domain (a row in a data­
base table), or a function (command or query) that can be fulfilled in the domain. A column
in the database table is called an entity attribute, and each database table is given an entity
type. Through a small subset of its attributes, an entity can be realized linguistically in many
fashions. We call each of them a semantic class. For example, a person can be referred to in
terms of her full name (Angela), a pronoun anaphora (her), or her relationships to others
(Christina 's manager). In this case, one can derive three semantic classes for the entity type.

Semantic classes can be viewed as a type definition to denote the objects and describe
the relationnhat hold among them. One of the most popular representations for semantic
classes isthe semantic frame [31]-a type of representation in which a semantic class (con­
c~pt) is defined by an entity and relations represented by a number of attributes (or slots)
Wtth certain values (the attributes are filled in for each instance). Thus, frames are also
known as slot-and-filler structures.

We could, for example, define a generalized frame for the concept dog, with attributes
!hat must be filled in for each particular instance of a particular dog. A type definition for
the concept dog appears in Figure 17. 7. Many different notational systems have been used
for frames [51]. For these introductory examples, we use a simple declarative notation that
should be fairly intuitive.

Amazon/VB Assets
Exhibit 1012

Page 893

868

[DOG:) -
[SUPERTYPE]->[rnammal)
[NAME]-> ()
[BREED)-> ()
[LOC) -> ()
[Color)-> ()

Figure 17.7 A semantic frame representation for dog.

Spoken Language Understanding

When we need to describe a particular dog, say Lassie, we create an instance defini­
tion, as shown in Figure 17 .8. The knowledge base supporting a typical dialog system con­
sists of a set of type definitions, perhaps arranged in an inheritance hierarchy, and a set of
instances.

[DOG:] -

[NAME)->{Lassie)
[BREED]->(Collie)
[LOC] -> ()
[Color)-()

Figure 17.8 An instance of semantic frame dog.

Fillers in semantic frames can be attained by attachment of inheritance, procedures or
default. Attributes in frame can typically be inherited, as the Lassie instance inherits mam­
malian properties from the DOG type definition. In some cases, properties of a particular
dog may be dynamic. Sometimes attached procedures are used to fill dynamic slots. For
example, the location of a dog may be variable, and if the dog has a Global Positioning Sys­
tem (GPS) chip in its collar, the LOC property could be continually updated by reference to
the GPS calculations. Furthermore, procedures of the type when-needed or when­
filled can also be attached to slots. Finally, some default value could provide a typical
value for a slot when the information for that slot is not yet available. For example, it might
be appropr:ate to set the default color for dog frame as white when such information is not
available. For frames without a default-value slot, it is natural to define mandatory slots
(slots' values must be filled) and optional slots (slots could have null value). For the dog
frame, it is reasonable to assume the NAME slot should be mandatory while the COLOR
slot can be optional.

Often descriptions can be attached to slots to establish constraints within or between
frames. Description may have connectives, co-referential (description attached to a slot are
attached to another) and declarative conditions. For example, the return-date slot of a round­
trip itinerary frame must be no earlier than the departure-date slot, and this constraint can be
specified by descriptions in both slots. Descriptions can also be inherited and are often im­
plemented by a special procedure (different from the slot-filling procedure) attached to the
slot.

The main motivation for having multiple semantic classes for each entity type is to
better encapsulate the language, semantic, and behavior models based on the domain knowl­
edge. While the entity relationships capture the domain knowledge, the semantic class hier-

Amazon/VB Assets
Exhibit 1012

Page 894

semantic Representation
869

Chy represents bow knowledge can be expressed in the semantics of a lang d h ar Th uage an t us
can cover lingu_1st1c vanat1on: e ~oncept of semantic objects/classes is similar to that of
objects/classes tn m?dern o_b1ect-onente~ programming. The semantic classes in Dr. Who
(S9, 60] are a good 1llustrat10n of b_orrowmg some important concepts from object-oriented
programming to e_nhance the effecti:ene~s ~nd efficiency of using semantic objects/classes
to represent domain knowledge and lmgutsttc expressions. .

The semantic grammar used in the Dr. Who Project (58) contains the definitions of
semantic classes that refer to real-world or functional entities. A semantic class is defined as
a semantic _frame co?taining a _set of slot~ that need to be filled with terminal (verbatim)
words or with recursive semantic class obJects. For example, ByRel is a semantic class that
has the type PERSON. The semantic grammar specifies that it has two slots-one has to be
filled with an object of a semantic class having the type PERSON, and the other has to be
filled with an object of a semantic class having the type P _RELATION. On the other hand,
the syntax grammar for this semantic class is specified by the <cfg> tags. Within <cfg> tags,
several production rules can be specified to provide linguistic constraints (orders) of possi­
ble expressions for this semantic class. The syntactic aspect of semantic classes will be de­
scribed further in Section 17.4.1.

17.3.1.1. Type Abstraction

As described above, a physical entity is an element in the real world that an application has
to deal with and wishes to expose to the user via natural language. Since a physical entity
can be referred to in many different ways, different semantic classes may have the same
type. In Figure 17.9, a person can be referred to in terms of his name (Peter) or his relation
to another person (Peter's manager); therefore, both semantic classes ByName and ByRel
can share the same type, PERSON.

Semantic classes are designed to separate the essential attributes of a semantic object
from its physical realizations. A semantic class may refer to an entity, and the entity is called
the type of the semantic class. The attributes of a semantic class can, in turn, be semantic
classes themselves. The concept behind semantic classes is identical to the mechanism
known as type abstraction commonly employed in software engineering using a strongly
typed programming language. Semantic class can be recursive, as demonstrated in Figure
17.9; a ByRel semantic class of type PERSON contains an attribute of PERSON type. Since
the entities can be nested, i.e., a database column can in tum refer to another table, an attrib­
ute in the semantic class can also be an entity type. From an understanding point of view, a
semantic class is an abstraction of the collection of semantic objects that have the same at­
tributes and usually can be expressed, and hence be understood, in similar manners. Under
this view, a semantic object is just an instantiation.

Another argument for type abstraction is that the multitude of semantic objects is usu­
ally a result of the numerous ways and perspectives that can be used to describe a physical
entity. Quite often in an understanding system it is more important to correctly identify the
entity of interest than to capture the mechanism that describes it. For instance, one may refer
to a person by his name, job function, relations to others, or, in a multimodal environment,

Amazon/VB Assets
Exhibit 1012

Page 895

870 Spoken Language Understanding

by pointing to his photo on a display. All these references lead to semantic objects that are
apparently distinct yet should be associated with the same physical entity. Accordingly, it is
often useful to segregate the conceptual manifestation and its realizations into different lay­
ers of abstraction so that the semantic objects can be better organized and managed. Type
abstraction allows the discourse sentence interpretation module to perform robust parsing,
since sentence fragments can be parsed into its semantic class type that can be filled into
slots with the same correspondent semantic type, as discussed in Section 17.4.1.

<!-- semantic class definition for ByRel that has type PER­
SON-->
<class type="PERSON" name="ByRel">

<slot type="PERSON" name="person"/>
<slot type="P_RELATION" name="p_relation"/>
<cfg>

<prod> [person) [p_relation) </prod>
<prod> [p_relation] of [person] </prod>

</cfg>
</class>
< ! - - semantic class definition for ByName that has type PERSON too - - >
<class type="PERSON" name="ByName">

<slot type="FIRSTNAME" name="firstname"/>
<slot type="LASTNAME" name="lastname"/>
<cfg>

<prod> [firstname] [lastname] </prod>
<prod> [firstname] </prod>
<prod> (lastname] </prod>

</cfg>
</class>
< ! -- semantic class definition for FIRSTNAME and LASTNAME -->
<verbatim type="FIRSTNAME"

<cfg>

<prod> john I john' s I peter ... < /prod>
</cfg>

</verbatim>
<verbatim type="FIRSTNAME"

<cfg>

</cfg>
<prod> smith I smith's I sh / d aw ... < pro >

</verbatim>
< ! -- semantic class definition for p RELATION -->
<verbatim type="P_RELATION"

<cfg>

<prod> manager I father I mother I-· </prod>
</cfg>

</verbatim>

Figure 17.9 The semantic classes of type PERSON . 1 .
as imp emented m Dr. Who.

Amazon/VB Assets
Exhibit 1012

Page 896

--- t' ti·c Representa ion
sernnn 871

Finally, type abstraction provides a unified framework for resolvin 1 .
I · d g re at1ve expres

. s in the discourse ana ys1s mo ule. Type matching often serves to impose tr -
s1011 . • • s ong con-

1.nts between real-world entities and relative expressions. The resolut'ion f 1 . stra o re att ve
expressions 1s discussed m Section 17.5.

17.3.1.2. Property Inheritance

Introducing inhe_ritance into the sema~tic _class_ hier~rchy furth~r augments the multilayer
abstraction mentioned above. Class A is said to mhent or be· denved from class B if class A
possesses all the attributes of class B. In this case, class A is called the derived class and
class B the base class. Inheritance is a mechanism to propagate knowledge and properties
through the structural relationships of semantic classes. It is crucial for many types of intel­
ligent behavior, such as deducing presumed facts from general knowledge and assuming
default values in lieu of explicit and specific facts.

Perhaps the strongest motivation to employ inheritance is to facilitate the multilayer
abstraction mentioned above. Very often, a base class is constructed with the general proper­
ties of a type of semantic objects, and a collection of more specific classes are derived from
the base class to support the various embodiments of the underlying type of the semantic
objects. For example, a semantic class hierarchy for the reference to a person can have the
methods (e.g., by name, job function) and the media (e.g., speech, handwriting) of reference
as the first layer of derived classes. One can then cross-match the viable means (e.g., by
name via speech, by name via handwriting) and develop the second layer of derived classes
for use in the real applications.

17.3.1.3. Functionality Encapsulation

The goal of abstraction is to reduce the complexity in describing the world-in this case, the
semantic objects and their relations. One can inspect the quality of abstraction by examining
the extent to which the constructs, i.e., semantic classes, are self-contained, and how prolif­
erating they have to become in order to account for novel scenarios. Studies in data structure
and software engineering propose the notion of encapsulation, which suggest that individual
attributes have local rather than global impacts. This principle also serves as a guideline in
designing the semantic class.

Semantic class encapsulation can be elaborated in two aspects: syntactic and semantic.
The syntactic encapsulation refers to the constraint that each attribute in a semantic class can
only have relations to others from the same class. The collection for these relations is called
the semantic grammar, which specifies how a semantic object of this type can be identified.
ln Figure 17.9, the tag <CFG> specifies how the semantic class can be referred to syntacti­
cally via a context-free grammar (CFG). For the class ByRel, the specified syntax indicates
that expressions like Peter's manager and manager of Peter are legal references to semantic
c~ass ByName. The semantic encapsulation, on the other hand, dictates the actions and the
disc~urse context under which they may be taken by a semantic class. This is discussed fur­
lher m Section 17 .5.

-,

Amazon/VB Assets
Exhibit 1012

Page 897

872
Spoken Language Understanding

As described in 17.2.2, it is a nontrivial task to determine the types of speech acts. The
semantic frame is an abstraction of the speech acts, the domain knowledge, and sometimes
even the application logic. Once we have this rich semantic representation, how to parse
spoken utterances into the semantic frames becomes the critical task. Nonetheless, the com­
bination of semantic frames and the semantic parser alleviates the need for a dedicated mod­

ule for determining speech acts.
Semantic frames and associated robust parsing (described in Section 17.4.1) have been

widely used in spoken language understanding. For detailed description of semantic classes
and frames, you can refer to [58, 65].

17.3.2. Conceptual Graphs

The semantic-representation requirement has led to development of a proposal to standard­
ize the logical form that may form the basis of the internal semantics and semantic inter­
change of natural language systems, including dialog processing, information retrieval, and
machine translation. The proposal is based on conceptual graphs derived from Charles
Sanders Peirce [38) and the various types of semantic networks used in artificial intelligence
·research.

The conceptual graph (CG) proposal [53) specifies the syntax and semantics of con­
ceptual graphs as well as formats for graphical and character-based representation and ma­
chine-based exchange. In the terms of the proposed standard, a conceptual graph (CG) is an
abstract representation for logic with nodes called concepts and conceptual relations, linked
together by arcs. In the graphical representation of a CG, concepts are represented by rec­
tangles, and conceptual relations are represented by circles or ovals. The ordinary phrasing
for the association of relations (circles) to concepts (rectangles) is has a(n) for arrows point­
ing toward the circle and is a(n) for arrows pointing away.

Figure 17.11 illustrates a conceptual graph for the sentence Eric is flying to Boston by
airplane. The mnemonic meaning of the arrows is: Fly has an agent who is a person, Eric,
and a destination Boston. The proposal also specifies a linear form, as shown in Figure
17 .10. In the form, concepts are in square brackets and conceptual relations are in parenthe­
ses. The hyphen means that relations of a given concept continue on subsequent lines, as
shown in Figure 17 .11.

[Fly] -
(Agent)->[Person: Eric]
(Dest)->[City: Boston]
(Inst)->[Airplane]

~igu_re 17.10 A linear form representation of Fly has an agent who is a person, Eric, and a des­
tmauon Boston.

Amazon/VB Assets
Exhibit 1012

Page 898

Ce Interpretation
seoten

person:
Eric

Fly

Airplane

DEST City:
Boston

Figure 17.11 CG display form for Eric isjlyi11g to Boston by airplane [53].

873

Each concept has a type and a (possibly empty) referent. An empty referent means that
at least one, unspecified example of the type is assumed to exist somewhere (an ex.istential
quantifier). So, in Figure 17 .10, the type is present, but the referent is left unspecified. In an
application, the referent can be completed by referring to a train-schedule database and in­
serting a particular instance of a scheduled train departure Lime, location, and number. The
valence of a relation is the number of required concepts that it links. For example, as shown
in Figure 17 .12, the relation between would be a conceptual relation of valence 3, because
typically (something/somebody) is between one (something/somebody) and another (some­
thing/somebody), as in the familiar English idiom "somebody is between a rock and a hard
place" (meaning, to be in great difficulty). This corresponds to the linear form, as shown in

Figure 17.13.

Rock

Person BETW

Place ~
Figure 17.12 CG display form for a person is between a rock and a hard place [53].

[Person]<-(Betw) -
<-1-[Rock]
<-2-(Place]->(Attr)->[Hard]

Figure 17.13 A linear form representation of A person is between a rock and a hard place.

17.4. SENTENCE INTERPRETATION

We follow the convention of most modem SLU systems-treating semantic P_arser as a ~wo­
step pattern recognition problem (speech recognition followed by sentence mterpretation).
This convention has the advantage of modular design of SLU systems. Thus, the same SLU

Amazon/VB Assets
Exhibit 1012

Page 899

874 Spoken Language Understanding

system can be used for text input. However, a unified semantic parser_ [5?, 62] may _achieve
better accuracy, because no hard decision needs to be made before p1ckmg the optimal se-

mantic representation. . ·
The heart and soul of the sentence inte,pretation module 1s how to convert (translate)

a user's query (sentence) into the semantic representation. In other ~ords, one has to fill the
semantic slots with information derived from the content (words) m the sentence. In this
section we describe two popular approaches to accomplish this task. Although they can be
perceived as pattern matching methods, they differ in the matching mechanism.

17.4.1. Robust Parsing

Due to the nested nature of semantic classes, the semantic representation F in Eq. (17 .1) can
itself be a tree of semantic objects. A user's utterance may consist of disjoint fragments that
may make sense at the discourse level. For instance, in the context of setting up a meeting,
the utterance "Peter Duke at a quarter to two" can be parsed into two semantic objects: a
person and the meeting time. Therefore, the sentence interpretation module must deal with
sentence fragments.

The analysis of spoken language is a more challenging task than the analysis of writ­
ten text. The major issues that come to play in parsing spontaneous speech are speech dis­
fluencies, the looser notion of grammaticality that is characteristic of spoken language, and
the lack of clearly marked sentence boundaries. The contamination of the input with errors
of a speech recognizer can further exacerbate these problems. Most natural language parsing
algorithms are designed to analyze grammatical input. These algorithms are designed to
detect ungrammatical input at the earliest possible opportunity and to reject any input that is
found to be ungrammatical in even the slightest way. This property, which requires the
parser to make a complete and absolute distinction between grammatical and ungrammatical
input, makes such formal parsers fragile for spontaneous speech, where completely gram­
matical input is the exception more than the rule. This is why a robust parser is needed.

In Chapter 11, context-free grammars (CFG) can be written to analyze the structure of
entire sentences. It is natural to extend CFG as a pattern matching vehicle. For example, a
question such as "Where would you like to go?" might be used to solicit a response from a
user, who might respond, "I would like to fly to Boston." The following grammar might be
used to parse the response:

S~NPVP
NP~ N
VP~ VCluster PP

VCluster ~ would like to v
V ~ go I fly
PP ~ prep NP
N ~ Boston I I
Prep ~ to

Amazon/VB Assets
Exhibit 1012

Page 900

t nee Interpretation sen e

The resulting phrase structure, characterizing the entire sentence, would be:

875

[S [NP [NI]] (VP [VCluster would like to [V fly]] (PP
(prep to] [NP [N Boston]]]]]]

This structur~ in tum can provide the foundation for subsequent semantic analysis.
Thus, the grammar 1s adequate for the example response and can be easily extended to cover
more city names by expanding the N -) rule, i.e., by enlarging the lexicon. It has some defi­
ciencies, however. Some of the problems are purely formal or logical in nature, such as the
fact that "Boston would like to go to I" can be equally parsed. These flaws can be addressed
with fonnal fixes (e.g., a more refined category system), but, in any case, they are not cru­
cial for the practical system designer, because pathological examples are rare in real life.
The deeper problem is how to deal with legitimate, natural variations.

The user might respond with any of the following:

To Boston
I'm going to Boston .
Well, I want to start in New York and get to Boston by the
day after tomorrow.
I'm in a big hurry; I've got a meeting in Boston .
OK, um, wait a second .. OK, I think I've gotta head for Bos­
ton.

The above sentences incorporate different kinds of variation for which a sentence cov­
erage grammar typically has trouble accounting. For this reason, dialog system designers
have gravitated to the idea of robust parsing. Robust parsing is the idea of extracting all and
only the usable chunks of simple meaning from an utterance, ignoring the rest or treating it
as noise or filler. Small grammars can be written that scan a word lattice (see Chapter 13) or
a word sequence for just those particular items in which they specialize. For example, a Des­
tination grammar, not intended to span an entire utterance, can skim each of the complex
utterances above and find the Destination in each case:

Destination-) Preposition CityName
Preposition-) to I for I in
CityName -) Boston I ...

. The noise or filler elements might include nonspeech noise (cough, laugh, breath, hesi­
lation), elements of phatic communication (greetings, polite constructions), irrelevant c~m­
ments, unnecessary detail, etc. As a user becomes accustomed to the limited yet practical
domain of a system's operations, it is expected that variant phrasings would diminish, since
~hey take longer to utter and contribute very little, though disfluencies would always be an
issue.

Amazon/VB Assets
Exhibit 1012

Page 901

876
Spoken Language Understanding

Inglewood

Figure 17.14 Word graph for hypotheses [61].

The original word graph or lattice from the speech recognizer might consist of nodes,
representing points in time, and edges representing word hypotheses and acoustic scores for
a given span in the utterance. Figure 17 .14 illustrates a sample of word graph for the exam­
ple "I would like to fly to Boston" with competing hypotheses. Using the Destination gram­
mar on the word graph in Figure 17 .14 will skip the earlier parts of the possible sentence
hypotheses and identify the short fragment from node 6 to node 8 as a destination. If only
the Destination grammar were active, a new view of the word graph would result in Figure
17.15.

This example shows that potential and legitimate ambiguities can persist even with
flexible grammars of this type, but the key potential meanings have been identified. A robust
parser that is capable of handling the example needs to solve the following three problems:

• Chunking: appropriate segmentation of text into syntactically meaningful
units;

• Disambiguation: selecting the unique semantically and pragmatically correct
analysis from the potentially large number of syntactically legitimate ones re­
turned; and

• Undergeneration: dealing with cases of input outside the system's lexical or
syntactic coverage.

Grammars developed for spontaneous speech should concentrate on describing the
structure of the meaningful clauses and sentences that are embedded in the spoken utterance.
The goal of the parser is to facilitate the extraction of these meaningful clauses from the
utterance, while disregarding the surrounding disfluencies. We use the semantic grammar in
the Dr. Who SLU engine [61) to illustrate how this works.

Amazon/VB Assets
Exhibit 1012

Page 902

-- . sentence Interpretation

Destination: Austin

Figure 17.15 Word graph for hypotheses if only the Destination grammar is active (61].

877

As shown in Figure 17.9, a Dr. Who semantic class mostly contains a set of slots that
need to be filled with terminal words (verbatim) or with recursive nontenninal semantic
classes. Strictly speaking, this semantic class grammar can hardly be called a grammar,
since it is primarily used to define the conceptual relations among Dr. Who entities rather
than the language expressions that are used to refer to the entities. The syntactic expression
is specified by optional CFGs associated with each semantic class. In general, the syntactic
grammars need to deal with three kinds of variation in surface linguistic fonn:

1. Variation within a slot-When CFG is missing in the definition of semantic
classes, the grammar could allow flexible assembly of an expression. For ex­
ample, if the <cfg> tags in Figure 17.9 are omitted, any sequence that con­
tains a word of a P _RELATION typed class and a word of a PERSON typed
class can be an expression referring to a semantic object of ByRel such as
John's father, father of John, or even John loves his father. Thus, CFGs are
often specified within the semantic slot to provide linguistic constraints with­

out over-generating.

2. Variation in the order of frame presentation-Many systems [64, 66] employ
an island-driven robust parsing strategy where the slots in the semantic
frames are filled by language fragments from parsing. Parsing of the slots is
order independent. Thus utterances "Schedule a meeting with JQfm. at 3 PM"
and "Schedule a meeting at 3 PM with John" can be processed without prob­

lems.

3. Disfluencies and irrelevancies-Disfluencies and irrelevancies are unavoid­
able for spoken language input. The system has to deal with real utterance/~
such as "I'd really like to know whether a meeting by 3 PM would be at a

possible for John."

Amazon/VB Assets
Exhibit 1012

Page 903

878 Spoken Language Understanding

To cope with these requirements, the robust pa_rsing alg~rithm. [61] is ~ically imple­
mented as an extension of the bottom-up chart-parsmg algonthrn discussed m Chapter 11.
There are a number of additional requirements for robust parsing:

• The requirement that a hypothesis _and a partial parse have to cover adjacent
words in the input is relaxed here. This effectively skips the words and en­
ables the parser to omit unwanted words in input sentences.

• The combination of a hypothesis with a new partial parse taken from agenda
results in multiple new hypotheses. Those hypotheses may have different
critical position number. In other words, they are expecting different partial
parses. This effectively skips the symbols in a rule, so the parser can continue
its operation even if something expected by the grammar does not exist.

• The sequential order in which the partial parses are taken out from the agenda
is crucial here. A partial parse that has the minimum span and highest score
and that covers the word closest to the sentence start position (in that order)
has the highest priority.

In a robust parser, if there is already a parse g that has the same symbol and span as
the new parse h, we need to compare their scores so we only keep the better one. The parse
scoring can be the likelihood of the parse with respect to a heuristic CFG enhanced with a
mechanism of assigning probability for insertions and deletions. It can also be based on heu­
ristics when no training data is available. The typical heuristic values may include the num­
ber of words covered by a parse; the number of rule symbols skipped in the parse tree; the
number of nodes in the parse tree; the depth of the parse tree; and the leftmost position of
the word covered by the parse.

17.4.2. Statistical Pattern Matching

The use of CFGs to capture the semantic meaning of an utterance can be augmented with
probabilistic CFGs or the unified language model described in Chapter 11 . ln the statistical
parser, the application developers first define semantic nonterminal and preterminal nodes.
A large number of sentences are then collected and annotated with these semantic nodes.
Th..:! statistical training methods are used to build the parser to extract semantic meaning
from an utterance.

For example, a statistical parsing algorithm [15, 26] takes one step further toward
automatic discovery of complex CFG rules. Instead of relying on hand-written CFG rules, it
builds a statistical parser based on the tree-banked data where sentences are labeled with
parsing-tree structure. It identifies simple named classes like Date, Amount, Fund, or Per­
cent and only handles simple classes using the local context. Words that are not part of a
class are tagge~ a~ word, indicating that the word is passed on to the subsequent parser. The
subse~uent statistical parser takes a classed sentence. It generates the most likely semantic
parse m a bottom-up leftmost derivation order. At each step in the derivation, the parsers use

Amazon/VB Assets
Exhibit 1012

Page 904

sentence Interpretation
879

CART (see Chapter 4) to assign probabilities to primitive parser actions such as ass1gnmg a
tag to a word or dec1dmg ~~en to begm a new con_stituent. A beam search is used to find the

·e with highest probability. The two-step parsmg for the sentence "Please t ... pars ransJer 011e
/umdreddollarsjrom \'Oyage~fund tofidelityfimd" is ill~strated in Figure 17.16.

The hidden understa11dmg model (HUM) [29, 30) 1s another statistical pattern match­
• 0 techniques. Let W denote the sequence of words and S denote the meaning of the utter­
::~e. According to Bayes' rule. we have the following equation:

P(W IS)P(S)
P(S I W) = P(W) (17.2)

The task of sentence interpretation can then be translated into finding the meaning represen­

tation S , such that

S =argmax P(W I S)P(S) (17 .3)
s

P(S) is the semantic language model that specifies the prior statistical distribution of
meaning expressions. The semantic language model is based on a tree-structured meaning
representation where concepts are represented as nodes in a semantic tree with subconcepts
represented as child nodes. Figure 17 .17 illustrates such a tree-structured meaning represen­
tation for the sentence "United flight 203 from Dallas to Atlanta. " The Flight concept has
Airline, Flight_Ind, Flt_Num, Origin, and Destination subconcepts. Origin and Destination
subconcepts have terminal nodes Origin_Ind and City and Dest_Ind and City, respectively.
Each terminal node (like City) could be composed of a word or of a sequence of words.

Semantic language model P(S) is modeled as P(S; I SH, concept), where concept is
the parent concept for S1 and SH. Based on this definition, the probability
?(Destination I Origin, Flight) is bigger than ?(Origin I Destination, Flight), since users
often omit the origin for a flight in an airline reservation system.

P(W IS) is called a Lexical realization model, which is basically a word bigram
model augmented with the context of the parent concept:

(17.4)

Both the semantic language model and lexical realization model are estimated from a la­
beled corpus. Viterbi search is applied to find the best path of meaning representation S
according to Eq. (17.3).

Amazon/VB Assets
Exhibit 1012

Page 905

880
Spoken Language Understanding

s

word word amount amount fund fund word fund fund

I I I I I I I I I
please transfer one hundred voyager fund to fidelity fund

(a)

XFER
s

'-...... \ - BUY SELL

1~D-SELL I
FUND-BUY

/ "" / ""' null null d-amount null fund-sell null fund-buy

I I I
please transfer AMOUNT from FUND to FUND

(b)

Figure 17.16 An example class tree in IBM's statistical class parser. (a) The sentence is classi­
fied into semantic classes. (b) The classed sentence is parsed into the semantic tree based on
CART [15].

FLIGHT [AIRLINE[United]
FLIGHT_IND[flight)
FLIGHT_NUM(203)
ORIGIN[ORIGIN_IND[from) CITY[DALLAS))
DESTINATION[DEST_IND[to) CITY[Atlanta)]]

Figure 17.17 A tree-structured meaning representation for United flight 203 from Dallas to At­
lanta in BBN's HUM system [29].

Amazon/VB Assets
Exhibit 1012

Page 906

--- . Discourse Analysis

5 DISCOURSE ANALYSIS 11. •

881

The sentence interpretation module only attempts to interpret each sentence "th kn
d. I . . Wt out owl-

d e about the current ta og status or discourse. As we mentioned in Sect"
17 2 e g . . "bl t th . h . . . mn . ' some­

times it 1s 1mposs1 e t~'Sghe e nhg t mte~retation without discourse knowledge. For
example, in th~ sentence _ow me t e mo~mng flight" one must have the knowledge what
the morningfhg_ht refers to m order to denve the real-world entitiy, even though the sen­
tence interpretation module comprehends perfectly what morning flight means.

Discourse information formed by dialog history is necessary not only for semantic in­
ference but also for inconsistency detection. Inconsistency detection is important in a dialog
system, since the _dialog man~gement module (described in Section 17 .6) needs such infor­
mation to disambiguate the dialog flow when needed. For example, in an airline reservation
system, the returning date should not proceed the departure date, which may be conveyed in
the previous dialog turns. The discourse analysis module needs to maintain a stack of dis­
course trees so that the semantic representation remains the same whether the information is
obtained through several dialog turns or a single one.

The goal of the discourse analysis module is to collapse the discourse tree by resolv­
ing the semantic objects into the domain entities. This process is also called semantic
evaluation. When the resolution is successful, the physical semantic object is officially
bound to the domain entities. The last process is often called semantic binding. Because an
entity can be identified by partial information (e.g., last name of a person), binding is neces­
sary for the system to grasp the whole attributes of the objects the dialog is concerned with.
Semantic binding is also critical for intelligent behaviors such as setting the discourse con­
text for reference resolution. The semantic evaluation and binding are the basics for driving
the dialog flow. The communication mechanism between discourse analysis and dialog
manager is typically event driven. Events that can be passed to the dialog manager are
evaluation succeeded, evaluation failed, invalid information, and value to be determined.
The discourse analysis module often needs to tap into the knowledge base with the semantic
object attributes and entity memory for semantic evaluation. The semantic evaluation usu­
ally proceeds from the leaves up toward the root of the discourse tree. The process ends
when the root node is converted, which indicates the dialog goal has been achieved. The
functions of Discourse analysis module are the following :

• Converting the relative expressions (like tomorrow, next week, he, it, the
morning flight, etc.) in the semantic slots into real-world objects or concepts
(such as 1/5/2000, the week of 2/7/2000, John, John 's dog, etc.).

• Automatic inference-Based on dialog history, the module may decide some
missing information for certain slots. For example, an airline reservation sys­
tem could infer the destination city for the origin of the return flight even
though it is not specified.

' Inconsistency/ambiguity detection-Since the discourse analysis module can
perfonn automatic inference for some slots, it can perform consistency
checking when it is explicitly specified during the current dialog tum.

Amazon/VB Assets
Exhibit 1012

Page 907

882 Spoken Language Understanding

17.5.1. Resolution of Relative Expression

There are two types of relative expression. The first type is the reference, relating linguistic
expressions to real-world entities. This may involve disambiguation, by inference or direct
user query. When a user says, "Give me Eric's phone number," many people with first name
Eric may exist in the database. The second type of relative expression is the co-reference.
Co-reference occurs when different names or referring expressions are used to signify the
same real-world entity. For example, in the sentence "Nelson Mandela has a long history of
leadership within the African National Congress, but he is aging and nobody was surprised
yesterday when Mandela announced his successor" the terms Nelson Mandela and Mandela
refer to the same person.

In linguistics, there are three different types of co-references. The example above is an
ellipsis, where the omitted word(s) can be understood from the context. The other type is
deixis. A deixis refers to the use of a word such as that, now, tomorrow, or here, whose full
meaning depends on the extralinguistic context in which it is used. Location deictic co­
references are very common for multimodal applications where pointing devices (modali­
ties) like pens can be used to indicate the real locations. The most common type of co­
reference is anaphora, which is a special type of co-reference, where a word or phrase has
an indirect, dependent meaning, standing for another word or concept previously introduced.
The pronoun he in the sentence above is an anaphor referring to Nelson Mandela too.

Time deictic co-references like tomorrow, next week, the week of 217/ 2000, etc., are
among the easiest category for resolution (requiring only simple domain knowledge). The
resolution of other relative expressions usually requires deep natural language processing.
We focus our discussion on anaphora resolution, since it represents the most challenge one
among others and approaches of solving this problem are typical of the kind of methods
appropriate for resolving a variety of other relative expressions.

17.5.1.1. Priority Entity Memory

We introduce a simple resolution method [60] that is based on semantic class type abstrac­
tion and priority entity memory. This method is straightforward and is very powerful to han­
dle most cases even without complex natural language processing.

Whenever a conversion of a relative expression occurs, the consequent entity is added
to the entity memory. The entity memory consists of turn and discourse memories. Either
type of memory consists of a number of priority queues that are delineated by entity types.
An entity can only be remembered into the queue of compatible types (e.g., through inheri­
tance). When referred to, the memory item increases its priority in the queue. This treatment
resembles the cache language model described in Chapter 11.

The ~ memory is a cache for holding entities in each turn. There are two types of
~m ~emones. The explicit memory holds the entities that are resolved directly from seman­
tic obJects. In contrast, the implicit memory is for entities that are deduced from relative

Amazon/VB Assets
Exhibit 1012

Page 908

Discourse Analysis
883

P
ressions. In accessing the memory, the explicit turn memory takes precede t h

ex h. h . h h. . . n over t e
discourse memory, w tc m tum . as a 1gher pnonty than the implicit. At the end of the
ystem's tum, all the turn memory items are moved and sorted into the discourse mem

5
The distinctions between the three kinds of memories and the rules to operate th~mry.

h · fi are
designed as a simple mec amsm or most common but not all possible scenarios. It is worth
noting that the design has a bias toward direct and backward reference. For example, in the
expression "Forward '.his mail to John, his manager, and his assistant," the second his will
be evaluated as refemng to John, not to his manager. The implicit memory, however, pro­
vides a back-off for expressions like "Send email to John, his manager, and her assistant" in
which the pronoun her should be taken as indicating John's manager is a female and re­
solved accordingly. However, since we store only the entities and not the semantic objects
into the memory, the mechanism is not suitable for forward or pleonastic references, as in
the examples like "Since his promotion last May, John has been working very hard" or "!1
being so nice, John moved the meeting outside." Fortunately, these natural language phe­
nomena are rare in a spoken dialog environment.

It is sensible to confirm3 the resolved entities with users due to possible resolution er­
rors. In cases where many entities in the entity memory can be matched with a semantic
object, a decision of not performing any resolution and directly inquiring the user for disam­
biguation may be a better solution. In general, name references can be resolved by a se­
quence of simple rules. In the example of "Give me Eric's phone number" the SLU system
may just generate the query message "What is Eric's last name?" when many people in the
entity memory have the same name Eric.

17.5.1.2. Resolution by NLP

Extensive understanding is crucial for perfect resolution for relative expressions (in particu­
lar, anaphora). Though morphology, lexical semantics, and syntax can be helpful for disam­
biguation, ultimately it is a problem of inference using real-world knowledge and dialog
state or context. In a discourse model of focus, it is assumed that speakers usually center
their attention on a single main topic called the focus. Some utterances introduce or reintro­
duce a focus; others elaborate on it. Focus elements typically change (by being suspended,
interrupted, resumed, etc.) over the course of a dialog. Once a focus element has been intro­
duced, anaphora is usually used to represent it, making dialog more efficient.

Anaphora resolution specifies the referent of a pronoun or other anaphoric expression.
This association should be supported by inference about properties and probabilities in the
real world. Anaphora resolution can be done with a simple entity focus principle. For exam­
ple, in the very common schedule a meeting type of dialog application, an exchange such as
that shown in Figure 17.18 is centered on the initial focus element-the proposed meeting­
aod anaphora are likely to relate to that central topic, at least early on in the exchange. The

i One m· ht d Ii 1·) t use based on the confidence ag ec1de which confirmation strategies (exphctt or 1mphc1t con mna ion °
O~!he resolutions. The details of confirmation strategies are described in Section 17·6·

Amazon/VB Assets
Exhibit 1012

Page 909

884

(1)

(2)
(3)

(4)

Spoken Language Understanding

I'd like to schedule a [meeting] 1 with [Christoph]l.

[It]
1

can be anytime after 4.
Tell [him]. [he] can [grab a cab over here] k.

) j ' 1
[That]k should be only if he's running ate.

Figure 17.18 A schedule a meeting dialog example showing different anaphora usage.

subscript indicates the co-reference to the same entity. The focus is the meeting proposed in
(I). The pronoun it in (2), by the very simple mechanism discussed here, can be interpreted
as referring to the meeting. Some grammatical knowledge and the semantic class type
should help the system to resolve him in (3) as Jim rather than the meeting. In sentence (3)
the focus has shifted to the action of taking a cab, to which that refers in sentence (4). The
locative here in (3) must also be resolved to the speaker's location.

Most formal models of anaphora resolution originated from research into discourse
and human-human dialog. They tend to be overpowered, in making elaborate provision for
greater topic and reference variation than exists in typical computer speech dialog applica­
tions of the present time. On the other hand, while they can provide resolution for some
complicated situations, they tend to be underpowered, in failing to deal robustly with the
realities of imperfect speech recognition and parsing.

Some of the work on anaphora resolution in dialog relies on elaborate focus-tracking
mechanisms [47]. These tend to be somewhat circular in nature, in that anaphoric reference
resolution is required for the focus-tracking algorithms to operate, while the anaphoric reso­
lution itself relies on the currently identified focus structure of the dialog or discourse.
Rather than elaborate on these possibilities, we instead present a number of relatively
straightforward heuristics for anaphora resolution, some of which have been developed
based on textual studies, but which may be relevant to increasingly complex human­
computer dialog in the future. The discussion here is limited to the resolution of intersenten­
tial and intrasentential pronominal anaphora. Full noun-phrase anaphora, where one syn­
onymous noun phrase is co-referent with another, requires even more powerful grammatical
and semantic resources.

Syntactic conditions can be tested when a parse tree showing syntactic constituency is
available. The most obvious syntactic filter for disallowing co-reference is simple gram­
matical feature agreement. For example, the following proposed co-indexed relation is not
semantically possible in ordinary discourse, and the restriction is explicitly provided through
the lexical morphology and syntax of the language:

The [girl] 1 thought [he] 1 was frightening.

Though the theoretical details can be complex [37], the basic intuition of syntax-based
anaphoric resolution is that nonreflexive pronouns that are syntactically too close to a candi­
date co-referential NP (antecedent) are disfavored. For example, in a sentence such as:

[Bill's] 1 photo of [him] 1 is offensive.

Amazon/VB Assets
Exhibit 1012

Page 910

. Discourse Analysis
885

the coindexing of Bill with him is disallowed. By disallowed we mea th t .
1. h · ' n a your mnate

sense of proper Eng 1s grammar and interpretation will balk at the proposed rel f Th
'd ha ·s t 'd . . a ton. e

language pro:1 es a mec ru m o ovem e some proxmuty restrictions, as in the following
repaired vers10n:

[Bill's) 1 photo of [himself), is offensive.

So, when is a pronoun too close to a possible antecedent? The most important sy t _
· · h · n ac

tic concepts for dete1:11mmg anap one relations rely on structural attributes of parse trees. In
fact, treatment of this problem represents a very large and highly argumentative subfield
within theoretical ~nguisti_cs. Neverthele_ss, any treatment of anaphora resolution on purely
syntactic grounds 1s very hkely to end with a list of conditions that can mostly be subsumed
under some form of x-bar theory [25), as it is called in the theoretical linguistics.

17.5.2. Automatic Inference and Inconsistency Detection

Automatic inference can be carried out through the same framework of priority entity mem­
ory described in Section 17 .5.1. l. During semantic evaluation, a partially filled semantic
object is first compared with the entities in the memory based on the type compatibility. If a
candidate is found, the discourse analysis module then computes a goodness-of-fit score by
consulting the knowledge base and considering the position of the entity in the memory list.
The semantic object is converted immediately to the entity from the memory if the score
exceeds the threshold. In the process, all the actions implied by the entities are carried out
following the order in which the corresponding semantic objects are converted.

In general, automatic inference can be implemented as description procedures attached
to semantic slots as described in Section 17.3. l . In the example of an airline reservation sys­
tem, a procedure or rule can be attached to automatically infer the destination city for the
returning flight. The other powerful strategy for automatic inference is slot inheritance.
When changing dialog tum for different semantic objects under the same service, the system
may allow such slot inheritance to free users from repeating the same attributes. For exam­
ple, after a user asks "What is Peter Hon's office number?" he may abbreviate his next query
to "How about Derek Acero 's?" Slot inheritance will allow the second semantic object re­
garding Derek Acero to inherit the office number slot even though it is not explicitly speci­
fied.

Inconsistency checking is crucial to initiate necessary events for dialog repair. A dia­
log may be diverted away from the ideal flow for various reasons (e.g., misrecognition, out­
of-domain reference, conflicting information), many of which require domain- and applica­
tion-specific knowledge to guide the dialog back to the desired course . This process is called
dialog repair. Similar to automatic inference, inconsistency checking can be implemented as
description procedures attached to semantic slots. In addition, inconsistency checking c_an
also be triggered when semantic binding for a partially filled semantic object fails (e.g., in­

dicated by a failed database lookup). The discourse analysis module is responsible only for

Amazon/VB Assets
Exhibit 1012

Page 911

886 Spoken Language Understanding

sending the dialog repair events to the dialog ma_nager, ~nd it leaves the realization of the
repair strategy to the corresponding event handler m the dialog ~anager.

For example. consider a query: "Find me the ch~apest flight fro~, Seatt~e to Memphis

011 Sunday." The semantic binding fails becaus~ there 1s actually no flight ~va1lable on Sun­
day from Seattle to Memphis based on the fhght_ database. Thus,_ the discourse manag~r
passes such event to the dialog manager, and the dialog manager will generate an appropn­
ate message to let the users be aware of this fact.

17.6. DIALOG MANAGEMENT

For most applications, it is highly unlikely that a user can access or retrieve the desired in­
formation with just a single query. The query might be incomplete, imprecise, and some­
timed inconsistent with respect to the discourse history. Even if the query is unambiguous,
the speech recognition and sentence interpretation modules in a SLU system may make mis­
takes. Thus the SLU system needs to provide an interactive mechanism to perform clarifica­
tion, completion, confirmation, and negotiation dialogs with users. By default, the objective
of such a dialog is to help users accomplish the required tasks more efficiently. Being user­
friendly is also one of the major objectives for dialog systems as discussed in Chapter 18.
Since the goal of a SLU system is to provide a natural conversation interface for users, the
ultimate SLU system should act like a real human, yet still possessing perfect memory and
superfast computation. Based on these criteria, it is not hard to see why mix-initiative sys­
tems are preferred over system-initiative systems.

The dialog manager controls the interactive strategy and flow once the semantic mean­
ing of the query is extracted and stored in the system's representation (discourse trees). The
architecture of SLU dialog systems resembles the one used in event-driven GUI systems. In
the same way that GUI events are assigned to graphical objects, the dialog events are as­
signed to semantic objects that encapsulate the knowledge for handling events under various
discourse contexts. As mentioned in Section 17.5, the discourse tree with domain entity
binding is passed along with necessary dialog events generated from the discourse analysis
module to the dialog manager. The dialog manager acts as an intelligent domain knowledge
handler that uses the semantic meaning of the query to check against domain-specific
knowledge (including domain database and application logic) and generates the desired an­
swer for the query or produces other necessary dialog strategy.

In this sense, the dialog manager functions as a GUI application that contains an event
handler. The event handler handles dialog events passed from the discourse analysis module
and generates appropriate responses to engage users to solve the problems. In addition, the
dialog manager needs to implement the application logic to generate appropriate actions
(e.g., make real airline and hotel reservation). In this section we discuss two modeling tech­
niques for implementing application logic, and different dialog behaviors related to event
handling.

Amazon/VB Assets
Exhibit 1012

Page 912

---::::::;-------:----------------­
Dialog ,Management

887

11.6.l, Dialog Grammars

. 1 g grammars use constrained, well-understood fon11alisms such as finite 1 1
.

D10 o s a e machmes
P
ress sequencmg regulant1es m dialogs, ten11ed adjacency pairs. The rule

to ex . . 1 . bl d. 1 . s state se-
tial and h1erarch1ca constramts on accepta e 1a ogs, Just as syntactic gramm 1 quen , . . ar ru es

te constraints on grammatically acceptable stnngs. For example, an answer or a re
sta . . . +. II . . fi . quest
for clarificat10n 1s likely to 10 ow a question, Just as a mte state grammar might provide
for a noun or an adjective, but not a verb, to follow a determiner such as the. In most dialog
grammar systems, dialog-ac~ types (explain, co~1plai~, reque~t, etc. cf. Section . 17 .2.2) are
categorized ,and the categories are used as terminals m the dialog grammar. This approach
has the advantage that the formalism is simple and tractable. At every stage of processing
the system has a basis for setting expectations, which may correspond to activating state­
dependent language models, and for setting thresholds for rejection and requests for clarifi-

cation.
In its essence, the dialog grammar model is exemplified by a rigid flowchart dia-

gramming system control of the type and sequence of interaction. Figure 17 .19 shows a fi­
nite state dialog grammar for an airline reservation SLU system. In this simple example,
dialog-act categorization is omitted, and the interactions are controlled based on bare infor­
mation items. This grammar makes simple claims: the interaction is basically question­
answer; the topic queries are answered on-topic if possible, and presumably with a confir­
mation statement to catch the existence of a problem.

This system is easily programmed. The challenge lies in providing tools to application
authors to ease the tedium and minimize the errors in the construction of grammars, and to
allow for more flexibility and spontaneous deviations from the expected transitions in the
grammar. Such deviations may be important for novice users, who may more naturally tend
to give their infonnation (origin, destination, time) in one single utterance or in a different
order.

In general, the dialog grammar approach has the following potential disadvantages

• The interaction may be experienced by a user as brittle, inflexible, and unfor­
giving, since it is difficult to support mix-initiative systems.

• Dialog grammars have difficulty with nonliteral language (indirection, irony,
etc.).

• A speech act might be expressed by several utterances, complicating the
grammar.

• A single utterance might express several speech acts, complicating the
grammar.

To address these issues, more sophisticated approaches to enhance hand-built finite
Slate dialog grammars have been attempted. For example, once can add statistical knowl­
edge based on realistic data to dialog grammars. The statistical learning methods, like come
CART, n-grams, or neural networks [3] can be used to learn the association between utter­
ances and states in the training data.

Amazon/VB Assets
Exhibit 1012

Page 913

888
Spoken Language Understanding

where you want to leave from?

Stop

Figure 17.19 A finite state dialog grammar for airline reservation (after [19]).

17.6.2. Plan-Based Systems

Plan-based approaches [2, 41] seek to overcome the rigidity and shallowness of dialog
grammars and templates. They are based on the observation that humans plan their actions
to achieve various goals. Thus, plans and goals are in some degree of correspondence. A
system operating under these assumptions needs to infer goals, construct and activate plans.
A user may have a preconceived plan for achieving his/her goals or may need to rely on the
system to supplement or construct appropriate plans.

Amazon/VB Assets
Exhibit 1012

Page 914

Dialog Management
889

Plan-based syst_ems are well studied in artificial intelligence (Al) [32
thematical foundation of the plan-based approach is inference Th b h . '

65
], The

rna d f h d · · e e av1ors of the sys
and the knowle ge o t e omam are programmed as a set of 1 · 1 1 . -tem . . h h og1ca ru es and axioms

The system mteracts wit t e user to gather facts, which consequent! tr' 1 ·
h

. . . Y 1gger ru es and gen-
....,,e more facts as t e mteraction progresses. As illustrated in Eq (17 1) 1 e,.. . d · h . · · , t 1e goal of the

dl.alog manager 1s to enve t e action A based on discourse semantic s T k. h. . · 1 • · a mg t 1s view
the dialog manager 1s a natura outgrow of the semantic evaluation pro It - h ' , . . cess. 1s t e step
where the syste~ s intent 1s computed. The outcome of the dialog manager is a message (via
different rendermg) the system conveys to the user.

In essence, a p~an-based system is an embodiment of a state machine for which differ­
ent discourse semantics are regarded as states. The difference, however, is that the states for
the plan-based system are generated dynamically and not limited to a predetennined finite
set. This capability of handling an unbounded number of states is a key strength of plan­
based systems in terms of scalability.

Even a simple interaction can involve a variety of complex subgoals and pragmatic in­
ferences. A partial plan for the airline reservation example in Section 17 .6.1 is illustrated in
Figure 17 .20. One wants to know if a flight itinerary (F 12) is an available one. The relation­
ships among the goals and actions that compose a plan can be represented as a directed
graph, with goals, preconditions, actions, and effects as nodes and relationships among these
as arcs. These graphs illustrate the compositional nature of plans, which always include
nested subplans, down to an almost infinite level of detail. The appropriate level of planning
specification is thus a judgment call and must be application dependent.

The arcs are labeled with the relationship that holds between any two nodes. SUB
shows that the child arc is the begiruting of a subplan for the parent. At some point appropri­
ate to the domain of the planning application, the SUBs will be suspended and represented
as a single subsuming node. In Figure 17.20, ENABLE indicates a precondition on a goal or
action. EFFECT indicates the result of an action. ENABLE indicates an enabling relation­
ship between parent and child nodes.

Plan-based approaches incorporate a rich and deep model of rational behavior and,
thus, in theory, permit a more flexible mode of interaction than do dialog grammar ap­
proaches. However, they can be complex to construct and operate in practice, due to relia?ce
on logical and pragmatic inference, and due to the fact that no fully understood theoretical
unde_rpinning exists for their specification. The complexity of the domain of mo_deling often
requires significant efforts from human experts to author the logical rules and axioms.

In plan-based theories of agent interaction, each dialog participant needs to conStruct
and ~aintain a model of all participants' goals, commitments, and b~liefs. _Plans are,_ th~s, a
~elatively abstract notion, leading to the hope that plans could be designed m an appl'.cat1~n-
1ndependent fashion, which would pennit the development of plan libraries. Such hbr~nes
could be easily adapted to a variety of domains; just as specifi: entity models are denved
from generic classes via inheritance in object-oriented programmmg.

Amazon/VB Assets
Exhibit 1012

Page 915

890 Spoken Language Understanding

Available_Flight(F12)

Outbound_Leg(F12,L1)

Time(F12,T2)

EFFECT

Later (T2,T1)

Same_city (C1 ,C4)

Figure 17.20 A partial plan for the airline reservation example in Figure 17.19 represented as a
graph.

The following operational cycle exemplifies the plan approach, describing interaction
of two agents, X (the helpful assisting agent) and Y (the client). Interaction is stated from
X's point of view [10).

• Observe Y's act(s)

• Infer Y's plan (using X's model of Y's beliefs and goals)

• Debug Y's plan, finding obstacles to success of plan, based on X's beliefs

• Adopt the negation of the obstacles as X's goal

• Plan to achieve those goals and execute the plan

A flight itinerary that at least contains an Outbound_Leg subgoal and another possible
lnbound_Leg subgoal is a round trip. Let's assume Fl2 is a round trip itinerary. At the In­
bound_Leg node, the interesting question is how much of the underlying goal
(Time(Fl2,T2), Origin(F12,C3) and Dest(Fl2,C4)) can be inferred by the infonnation pro­
vided by the system from the dialog so far, or from other known conditions. For example,
the destination of the Inbound_Leg can be inferred from the origin in the outbound leg. The
origin city can be inferred similarly. Going one step further, you can also infer that the de-

Amazon/VB Assets
Exhibit 1012

Page 916

;;-:;M~a:n:ag~e~m:e:n~t -------------------------
891

A..t1,re time for the inbound leg must occur after the departure time of th b
p11u... 'nfi h . h E~1:r, e out ound leg (Tl < TZ). Those three I erences are s own m t ~ :1Ject arcs in Figure 17 _20_

The goal inference could be a cooperative process, with the system m k' . .
'fy d h I . a mg the mini-

mal queries needed t~ ven an c oose am~ng a ternahve hypotheses. Or, it could be based

Pure inference, with perhaps a confirmation step. Inference modeling can get on . . very com-
plicated. The technologies of mference are complex models of the beliefs, desires, and inten-
tions of agents, making use of generic logical systems, which operate over the propositions
corresponding to the nodes in a plan structure such as shown in Figure 17 .20. Both user and
system are assumed to be operating fr~~ partially ~hared _worl~ and discourse models con­
sisting of beliefs about all relevant entitles and their relat1onsh1ps. If utterances and speech
acts are not in conflict with the constraints implied by the world models, communication and
action can proceed. Otherwise, either the utterance itself must be further interpreted, sup­
plemented, or clarified, or the world models need to be changed.

The natural expression of rational behavior, communication, and cooperation is some
form of first-order logic. We define axioms and inference rules for Belief and Intention. If
the modal operator for belief is B, axioms and inference rules for an agent i with respect to
proposition schemata <I> or 'I' could be formalized in the following logical expression.

(B1(¢)" B1 (¢:::) l/1)):::) Bi(lfl)

B,(¢):::) -,B1-,¢

B1(¢):::) B1(B1(¢))

-,Bi(¢):::) B;(-,B,(¢))

--,B;(¢):::) -,B;(B,(¢))

VxB,(¢):::) B,(Vx¢)

(17.5)

These describe appropriate conditions on beliefs of rational agents, such as entailment
and consistency. Intentions, in turn, are formalized with respect to beliefs. For example, if an
agent is to form an intention to bring about a state of affairs, it is reasonable that s/he be­
lieves this state of affairs is not currently in force:

I,(¢):::) B1(-,¢) (17.6)

Other such axioms formalize related constraints on intentions, e.g., having an intention
entails a commitment to achieving any preconditions, and belief in the possibility of doing
so. Many more axioms involving all aspects of rational behavior, and formalizing, to some
extent, the Gricean Maxims can be devised. For example, a kind of conversational coopera­
tion occurs when a participant i is willing to come to believe what i believes his/her conver­
~ational partner j is attempting to communicate (at least for the limited operational domains
tn question!), unless i holds beliefs to the contrary:

B,(//B,(¢(1)))) "-,B1(-,ifJ(j)):::) B,(¢(1)) (17.7)

When beliefs and intentions are modeled in this fashion, it may be possible to directly con­
struct the core of a dialog engine based on rational principles as a theorem prover. Such a
treatment is, however, beyond the scope of this discussion.

Amazon/VB Assets
Exhibit 1012

Page 917

892 Spoken Language Understanding

A few desirable system behaviors that would naturally follow from limited infer­
ence and goal tracking can be briefly examined. U~like ~he dialog grammar a~pr?ach, a
plan-based system allows digression, since the user's mtentlon model has been butlt mto the
plan. When a system is confused about a user's input, a cooperative system could begin to
perform the critical pragmatic steps that uniquely distinguish the conversational interface. A
chain of inferring the user's goal, based on the system's axioms, dialog history, and current
knowledge, would be triggered.

It is essential for a system to track the dialog focus, or temporary centers of atten­
tion, in order to understand things that are unspoken but assumed to be salient across utter­
ances. In this case, the user's input is ambiguous-June 22 is for outbound or inbound
flight? If the dialog architecture provides a method of tracking focus, it may be simple to
resolve the legs from an earlier query.

Focus is a useful concept in dialog understanding. The basic idea is similar to the
entity memory tracking in anaphora resolution (see Section 17.5.1.1)-at any given point in
a conversational exchange, a few items are at the center of attention and are given prefer­
ence in disambiguation. Other items are in the background but may be revitalized as centers
of attention at some later point. A static area can be used to contain items that are assumed
background knowledge throughout the exchange. The main goal of conversation can initial­
ize the stack. As subgoals are elaborated, new focus sets are pushed on the stack, and when
these subgoals are exhausted, the corresponding focus object is popped from the stack and
earlier, presumably broader topics are resumed. Focus shifts that are not naturally character­
ized as refinements of a broader current topic may be modeled by initiating a new independ­
ent focus stack. Focus shifts may be cued by characteristic linguistic signals, such as cue
words and phrases (well now, ok!, by the way, wait!, hey, etc.). In many cases, focus struc­
ture tracks the recursively embedded plan structures, such as that shown in Figure 17.20.

17.6.3. Dialog Behavior

Even though the behavior of the dialog manager is highly dependent on the domain knowl­
edge and the applications, some general styles of dialog behavior are worth investigating.
The first important dialog behavior is the dialog initiative strategies. System initiative sys­
tems have the advantage of narrowing the possible inputs from users, while paying the price
for extreme inflexibility. Although user initiative strategy is often adopted for GUI-based
systems, it is seldom implemented for SLU systems, since total flexibility is translated into
high perplexity (resulting low system performance). For many applications, a flexible mixed
initiative style is preferred over a rigidly controlled one. Although it is possible to imple­
ment a mixed initiative system using either dialog grammars or plan-based approach, the
latter is more flexible because it can handling an unbounded number of states.

Most often, the response generated by the dialog manager is either a confirmation or a
negotiation. Confirmation is important due to possible SLU errors. There are two major con­
firmation strategies-explicit or implicit confirmations. An explicit confirmation is a re­
sponse solely for confirmation of what the system has heard. On the other hand, an implicit

Amazon/VB Assets
Exhibit 1012

Page 918

Dialog ,Management
893

ti...nation is a response containing new input query and embedded confirm t' . con ,... . a ion with the
that the user can catch and correct the errors 1f the embedded confirmat·io . hope . . n rs wrong
amples in Figure 17 .21 illustrate both confinnat10n strategies ·

~~ .
SLU systems usually use a confidence measure as to when to use explicit and im 1. .

. 1 · . fi . . d ~ l p !Cit
confirmation. Obv10usl~, e~p 1c1t c_on mnatton 1s use 1or ow-confidence semantic objects
while implicit confirmauon 1s for h1~h-confidence ones. . . .

A negotiation response can anse whether a semantic obJect 1s fully filled or not. In the
e of underspecification, there are some attributes of the semantic objects that cannot be

~~erred by the discourse manager. Possible actions range from simply pursuing the unfilled
:~butes in a predefined order, to gathering the entities in the knowledge base sorted by
various keys. For cases of ill specification, an entity that matches the semantic object attrib­
utes does not exist. The planner can simply report such fact, or suggest removal or replace­
ment of certain attributes, depending on how much domain knowledge is to be included in

the planning process. ·
Often in the design process, we find it desirable to segregate a dialog into several self­

contained sessions, each of which can employ specialized language, semantic, and even be­
havior models to further improve the system performance. Basically, these sessions are sub­
goals of the dialog, which usually manifest themselves as trunk nodes on the discourse tree.
We implement a tree stack in which each trunk node is treated as the root for a discourse
tree. The stack is managed in a first-in last-out fashion, as currently no digression is allowed
from one subdialog to another. So far, the no-digression rule is considered to be a reasonable
trade-off for dynamic model swapping.

Consider the example domain of travel itinerary planning [13]. At the top level is the
scenario, which is the intended output of the interaction. The scenario is the entire itinerary,
consisting of reservations for flights, hotels, rental cars, etc., all booked for the user at
workable, coordinated times and acceptable prices and quality levels. A scenario might be: a
flight out of the user's home city of Boston, from Logan airport, on April 2, at 4:00 PM on a
particular flight, connecting in Dallas-Ft. Worth to another flight to a regional airport, an
overnight hotel stay, a meeting the next day in the morning, a drive to a second local after­
noon meeting, a flight from the regional airport in the evening to LA for a late meeting, an­
other overnight stay in LA, a morning meeting at the hotel, and a return flight back to
Boston later that same morning.

I: I would like to fly to Boston.
Rl: Do you want to fly to Boston?
R2: When do you want to fly to Boston?

(explicit confirmation)
(implicit confirmation)

Figure 17.21 With the input/ would like to fly to Boston, explicit confirmation response RI
Do you want to fly to Boston? only allows the user to confirm the destination, while implicit
confirmation response R2 When do you want to fly to Boston? allows the user to provide
departure-time information and have a chance to confirm the destination as well.

Amazon/VB Assets
Exhibit 1012

Page 919

894 Spoken Language Understanding

Scenario

Goals

Subgoals

/\
1/R EJ ~

Figure 17 .22 A dialog structure hierarchy for travel.

Creating the finished itinerary for this scenario involves goals, generated by the sys­
tem or the user. Goals might include: access user travel profile, book outbound and inbound
flights, and make local arrangement (hotel reservation and car rental). Goals in turn may
subsume subgoals. Subgoals are concerned with the details of planning. These would in­
clude establishing particular desired cities and airports for the flights, price investigation,
queries about hotel location and quality, etc. The subgoals in their turn are generally realized
via speech acts forming I/R pairs. A simplified schematic of the structure of the itinerary
structure described above might appear as shown in Figure 17.22.

This structure lends itself to a variety of control mechanisms, including system-led and
mixed initiative. For example, the system may ask guiding questions such as "Where would
you like to go?" followed by "What day would you like to leave?" or the system could begin
processing from the user's point of view by accepting an utterance like J want to go from
Boston to LA, corresponding to the Dest node of a flight on the outbound flight, and re­
sponding with a query about the next needed item, e.g., What day would you like to leave?
Thls system can also accommodate a user who may wish to talk about his or her hotel reser­
vation immediately after making the outbound flight reservation, before arranging the in­
bound flight.

17.7. RESPONSE GENERATION AND RENDITION

Response generation, also known as the message generation, is the process in which the
message is physically presented to the user. This is the stage that significantly involves hu­
man-factor issues, as discussed in Chapter 18. It is more susceptible to application-specific
or user interface considerations. For example, to handle a message requesting the user to

Amazon/VB Assets
Exhibit 1012

Page 920

;;:0:ns=e~G;e:n:e~r:at~io~n~an:d~R~e:nd;i~ti~o:n ____________________ _
895

select a sizable list of alternatives, a system with a suitable vis I d' 1 . .

P
resent the whole list, while a speech-only system might requ·1reuaa isp ayl might choose to

. fi more c ever way In th'
section we mamly ocus on speech output modality and provide s h h · is
popular output mo~alitie_s. . ome t oug ts on other

A conversational mteract1ve system requires a speech-out t b'I" . pu capa I tty. The speech
output may be compnsed of system requests for clarification di·samb· t· , tgua ion or repeat of
garbled mput; confirmation, promptmg for m1ssmg mfonnation· stateme t f . . , n s o system capa-
bilities or expectations; and presentation of results. At the lowest level th· . d , 1s 1s one via a
text-to-speech engme, as discussed m Part III (Chapters 14 15 and 16) d h . . , , an s own as a
component m Figure 1.4. However, most text-to-speech engines have been designed for a
read speech style. Moreover, such systems typically perfonn only shallow syntacti·c d _

· fh.. anse
mantic analysis o t e1r m~ut texts to recover some text features that may have prosodic
correlates. Because the topic space of a task-oriented dialog system is narrower there a

d. d , re
opportunities to tune pr~so tc an ot~er at~ributes of the speech output for better quality.

There are two maJor concerns m v01ce-response rendering. First is the creation or se­
lection of t~e content to be ~poken, and second i_s the rendition of it, which may include spe­
cial prosodic markups as guidance to a ITS engme.

17.7.1. Response Content Generation

The response content can be explicitly tied to the semantic representation of the domain task
and objects. The semantic class could incorporate custom prompts for specific slots or even
for whole semantic classes. Whenever the dialog manager finds that specification for a par­
ticular slot is missing from a semantic object, it can check if it contains prompts. If prompts
are present, one could be selected at random for presentation to the user.

Response prompts can be embedded in semantic representation. Prompts are usually
provided for each slot to provide direction for users to fill the slot in the next dialog term.
For example, the semantic class ByName defined in Figure 17.9 can be enhanced with the
prompts in Figure 17.23.

Prompts could be associated with conditions. For example, in a flight information sys­
tem, a conditional prompt can be inserted into the semantic class definition to inform users
of the flight arrival time based on whether the flight has landed or not, as shown in Figure
17.24.

Other systems may include some categorization of prompts for different functions. For
example, at the task level of an airline reservation system, the categorized message list
might appear as shown in Figure 17.25. The grammar fonnat makes provision for con~en­
ient authoring of messages that can be specified and accessed by functional type at runtime.

. . . 'th
The BEMsg is a special type of message. In this particular architecture, com~umcatJon wt
the database engine (cf. the boxes application and database in Figure 17.2) is controlled by

·b · d' t a database messages that are authored in the task specification. The URL attn ute m ica es

Amazon/VB Assets
Exhibit 1012

Page 921

896 Spoken Language Understanding

<!-- semantic class definition for ByName that has type
PERSON too-->
<class type="PERSON" name="ByName">

<slot type="FIRSTNAME" name="firstname"
prompt="Please specify the last name for [firstname) />

<slot type="LASTNAME" name="lastname"
prompt="Please specify the first name for [lastname) /> />

<cfg>

</cfg>
</class>

Figure 17.23 Semantic class ByName in Figure 17.9 is enhanced with prompts specified for
the case of missing a particular slot information.

access. The </rclist> is the set of possible return codes from the back-end application
(as it attempts to perform the specified command from the message). Again, every return
condition is associated with a message by the task specification author. Those shown here
include a simple confirmation of a successful completion, as well as a warning for flight sold
out and a generic failure of transaction message.

<class type="FLIGHT" name="Flight">
<slot type="FLIGHTNO" name="flight_no">
<slot type="TIME" name="sch_time">
<slot type="TIME" name="actu_time">
<slot type="CITY" name="dep_city">
<slot type="CITY" name="arr_city">
<slot type="AIRLINE" name="airline">
<prompt condition= "$SYS_TIME > [actu_time)">

Flight [flight_no) is landed at [actu_time)
</prompt>
<prompt condition= "default">

Flight [flight_no) is scheduled to land at [sch_tirne)
</prompt>
<cfg>

</cfg>
</class>

Figure 17.24 A semantic class Flight contains a conditional prompt to inform users when
invalid [depart_time) is detected.

Amazon/VB Assets
Exhibit 1012

Page 922

----nse Generation and Rendition R,espo

<messages>

897

<msg id=" Help"> Please sp~cify the flight time, origin and destination <
<msg id="Cancel "> Canceling itinerary ... </rnsg> /msg>

<msg id="Confirrn"> Buying ticket from [origin] to [dest] on [time]? </
<ms g id=" BEMsg" ur 1 = "http://server/ ... ?op=buy&time=[time]&flight=[flight] .. ,, ;sg>

<rclist>
<re id="OK"> Complete buying </re>
<re id="S0"> The flight is sold out </re>
<re id="ERROR"> Cannot complete transaction </re>

</rclist>
</msg>

</message>

Figure 17.25 An example of categorization of prompts for an airline reservation SLU system.

Such systems can incorporate other kinds of categorization as well. For example, a
system might provide a battery of responses to a given task or subtask situation, varying
depending on a speech recognition confidence metric. Thus a set of utterances ordered by
decreasing confidence might appear as:

You want to f l y to Boston?
Did you say Boston?
Could you repeat that, please?
Please state a flight reservation.

Systems of this type are sometimes referred to as template systems for response gen­
eration. They have the advantages of direct authoring and simplicity of implementation and
may provide very high quality if the message templates of the application can be played with
matching digitized speech utterances or carrier phrases in the synthesizer.

The specificity and application-dependent qualities of template-based systems are
sometimes perceived as weaknesses that could potentially be overcome by more general,
flexible, and intelligent systems. In these systems the message generation box could sub­
sume discrete modules, as shown in Figure 17.26. The semantic representation would typi­
cally be akin to logical forms (see Chapter 2) expressed via semantic frames or conceptual
graphs. The representation would include abstract expression of content as well as speech­
~ct type and other information to guide the tactical or low-level aspects of utterance genera­
tion, such as word choice, sentence type choice, grammatical arrangement, etc.

Amazon/VB Assets
Exhibit 1012

Page 923

898

Lexicon

Spoken Language Understanding

Semantic Representation, from Dialog manager

Unerance Generation

Phonological &
Prosodic Processing

tagged text

Speech Synthesis

Message (synthetic speech)

Grammar

Phonological &
Prosodic Rules

Templates,
Units,

Rules for Speech
Synthesis

Figure 17.26 Natural language generation and rendition modules.

Natural language generation from abstract semantic input is a deep and complex field.
Let us briefly consider a slightly more abstract form of template-selection mechanism that
could gracefully either accommodate a simple set of static, authored response utterances or,
alternatively, serve as a form of semantic input to a generalized, NLP-based utterance gen­
eration module. Ir.iagine that instead of simply providing lists of prompt strings with em­
bedded slot identifiers, a system of parameterization can be used [24]. The parameters could
be at varying levels of abstraction a!'d would function as descriptors of static content when
preauthored prompts were being used, or would serve as a kind of input semantic representa­
tion when a general natural language was used. The set of parameters might include attrib­
utes of utterances such as the following:

• Utterance type: mood of the sentence, i.e., declarative, wh-question, yes/no
question, or imperative.

• Dialog or speech act: confirmation, suggestion, request, command, warning,
etc.

• Body: some characteristic lexical content for the utterance, apart from any
situation-dependent words and concepts. This could serve as a hint to a gen­
erator. In many cases this would be the main verb of a sentence and might

Amazon/VB Assets
Exhibit 1012

Page 924

Generation and Rendition Response

also include characteristic cue words, especially for functional transitions,
e.g., however, now, etc.

, Given: information that is understood from the discourse history. This is usu­
ally represented as pronouns or other anaphora in the generated utterance.

• New: anything that is in the infom1ational foreground, due to lack of prior
mention, but may not be precisely the purpose of the prompt, per se. New
material typically receives some kind of prosodic prominence in speech.

899

Examples of these parameter indices for templates from a theater ticket-reservation .
domain might appear as in Table 17.4. The basic idea of the parametric approach is that such
a level of medium abstraction allows for flexibility in the choice of deployment tactics. If a
full set of static prompts and response utterances is available for all cases, then this approach
reduces to a template system, though it does provide the potential for separation of gram­
mars and prompt files. If, however, a natural language generation component is available for
dynamic message generation, a parameter set like that above can serve as input.

Table 17 .4 Sentence generation indices for an airline reservation SLU system.

Act Type Body Given New Example

Meta [sorry) Deel no - - No, sorry.

Verify Y/N-Q Boston Boston?

Request-info WH-Q fly you thing When do you want to fly?

Request-info WH-Q want you airline Which airline would you like

tomorrow to fly tomorrow?

Stmt[sorry] Deel sold out it - Sony it is sold out.

Stmt Deel sold out USAir - Sorry, USAir is sold out.

17.7.2. Concept-to-Speech Rendition
Once the response content is generated, the SLU system needs to render it into a waveform
to play to the users. The task is naturally assigned to a text-to-speech component. However,
the response generated in the previous session is more than text message. It contains the
~nderlying semantic information, because it is usually embedded in the semantic representa­
hon as shown in Figure 17 .23 and Figure 17 .24. This is why the speech rendition is often
done through a concept-to-speech module. A concept-to-speech system can be considered as
a text-to-speech system with input text enhanced with domain knowledge tags. With these
extra tags, a concept-to-speech system should be able to generate tailored speech output to
better convey the system intention.

Chapter 15 discussed the role of prosody in human perception. When messages are
generated, it is expected that they are supplemented with hints as to their information struc­
ture. At a minimum, the message generation component can identify which parts of the ut­
terance constitute the theme, which is material understood, previously mentioned, or

Amazon/VB Assets
Exhibit 1012

Page 925

900
Spoken Language Understanding

somehow extending a longer thread of coherence in the dialog, from the rheme, which is the
unique contribution of the present utterance to the discourse [36]. If such a distinction is
marked on the generated utterances, or templates, it can be associated with characteristic
pitch contour, prosodic phrasing, and other effects (see_Ch~pter 15). .

For example, in the question-answer pair shown m Figure 17.27 (from ordmary human
conversation), the theme and rheme components are bracketed._ The theme of the answer
consists of a mention of Mary, and the act of drivirig, both earned forward from the ques­
tion. The theme consists of new information, the answer to the question, embedded in a kind
of placeholder noun phrase. Clearly, the input to the message generation component requires
some indication of which entities of the input semantic representation are linked to discourse
history.

Q: Which car did Mary drive?
A: (Mary drove) th (the RED car.) rh

Figure 17.27 A question-answer pair with theme and rheme components marked.

Prosodic rules are triggered by information structure. In general, a theme in the early
part of a statement may be realized with a rise-fall-rise pitch contour, often with turning
points in the contour aligned with lexically stressed or other salient syllables of the words in
the theme. Rheme marking by pitch contour is also essential for naturalness, and a common
rheme tune in English declaratives is a slight rise up to the final lexically stressed syllable,
followed by a fall to the bottom of the speaker's pitch range. The actual alignment of pitch
extrema will depend on the position of focus, or maximum contrast and information value,
within either the theme or the rheme.

In Figure 17.27, the word RED is in focus within the rheme. If the question had im­
plied a contrast between Mary's car and other people's cars, it would be acceptable to esta b­
lish a focus on Mary in the theme as well, marked by a pitch accent (see Chapter 15).
Sometimes the portion of either theme or rheme that is not in focus (e.g., drove or car) is
called the ground [54, 55].

The response generator could add such rheme-theme information that may be used to
trigger more specialized prosodic rules. For example, one experimental system is based on a
message generator that dynamically creates concise descriptions of individual museum ob­
jects during a tour, while attempting to maximize correlations to objects a museum visitor
has already seen (21]. During the response generation phase, simple entities and factual
statements are combined, first into a semantic graph and then into a text, in which the rhe­
torical functions of utterances and clauses, and their relations to one another, are known.
This information can be passed along to a synthesizer in the form of markup tags within the
text. A synthesizer can then select appropriately interesting pitch contours that indirectly
reflect rhetorical functions.

In a dialog system, other attributes beyond rheme-theme kinds of information struc­
ture, such as speech-act type, may have characteristic intonation patterns. This might include
a_r~gretful-sounding contour {perhaps sampled from real speaker data) applied when apolo­
gizmg (Sorry, that flight i~ sold out) or a cheerful-sounding greeting. Although the concept­
to-speech module can be implemented as just a text-to-speech system that take the advan-

Amazon/VB Assets
Exhibit 1012

Page 926

Evat11ation
901

t ge of the extra semantic knowledge to generate appropriate prosod th
a . . · -11 1 b k Y, e most natural
Peech rend1t10n 1s st1 to p ay ac a prestored waveform for the entire . . s . . message. This is

Why the concept-to-speech module usually rehes heavily on playback oftempl t &:
. . . , . a e wave1orm.

However, 1t 1s obvious that we can t record every possible message like "Flight {fl: h ,J
is schedule to land at [sch_time}" in Figure 17.24. Instead, a carrier sentence c:g ~_no _
corded and the slots can then be replaced with real information. The slot can be syn~ e_ red

. . II 1. . h es12e
with an adapted TIS, which essenha y e 1mmates t e need for a front end in the TTS sys-

tem.
One problem of this approach is that the same prosody is used for a word regardless of

where it appears, which results in lower naturalness, because prosodic context is important
for natural speech. Enhanced quality can be achieved by having different instances of those
slot words, depending their contexts. For example, we can have different one recordings
depending on whether it is the first digit on a flight number, the second, or the last. Deter­
mining the number of different contexts where a slot needs to be recorded is typically done
much like the context-dependent acoustic modeling discussed in Chapter 9. This technique
increases the naturalness, at the expense of increasing the number of necessary recordings.

17.7.3. Other Renditions
So far, we have assumed that a dialog system may be used only in a speech-only modality.
Although such systems have found many applications, multi+modal interaction may be
more compelling, as discussed in Chapter 18. In fact, voice output might not be the best in­
fonnation carrier in such an environment. For example, the latest wireless phones are
equipped with an LCD screen that allows for e-mail and Web access. If a high-resolution
screen is available, the renditions mechanism will likely be visually oriented.

When renditions become visually oriented, the message generation component needs
to be replaced by a graphic display component. Since GUI has been the dominant platform
for deploying major computer applications today, the behavior and technique of such a dis­
play component is well studied and documented [17]. The SLU system needs only to pass
the semantic representation from the dialog management module to a GUI rendering mod­
ule. Of course, the GUI rendering module should also be equipped with domain knowledge
to generate best rendering to convey the dialog message. MiPad (22] is such an example and
is discussed in Chapter 18.

17.8. EVALUATION

How do we define a quantitative measure for understanding? Evaluation of understanding
and dialog is a research topic on its own. We review a number of research techniques being
pursued.

17.8.1. Evaluation in the ATIS Task

An application used for development, testing, and demonstration of a wide variety of dialog
systems is the Air Travel Information Service (ATIS) task, sponsored by the DARPA Spo­
ken Language Systems program (20]. In this task, users ask about flight information and

Amazon/VB Assets
Exhibit 1012

Page 927

902 Spoken Language Understanding

make travel arrangements. To enable consistent evaluation of progress across systems, a
corpus of data for this task has been collected and shared among research sites.

The application database contains information about flights, fares, airlines, cities, air­
ports, and ground services, organized in a relational schema. Most user queries, though they
may require some system interaction in order to specify fully, can be answered with a single
relational query. The ATIS data collection is done using the wizard-of-oz framework.4 A
user interacts with the system as though working with a fully automated travel planner. Hid­
den human wizards were used in the data-collection process to provide efficient and correct
responses to the subjects. A typical scenario presented as a task for a subject to accomplish
by means of the automated assistant is as follows:

Plan the travel arrangements for a small family reunion:
First pick a city where the get-together will be held. From three different cities (of your

choice), find travel arrangements that are suitable for the family members who typify the econ­
omy, high class, and adventurous life styles.

After data collection, each query was classified as context dependent or context inde­
pendent. A context-dependent query relies partially on past queries for specification, such as
"ls that a non-stop flight?" Many of the system tests based on A TIS require not only accu­
racy of speech recognition (the user's spoken query), but also semantic interpretation suffi­
cient to construct an SQL query to the database and correctly complete the desired
transaction. Evaluation of A TIS was based on three benchmarks: SPREC (speech recogni­
tion performance), NL (natural language understanding for text transcription of spoken ut­
terances), and SLU (spoken language understanding). For SLU systems we are interested
only in the last two benchmarks.

With the help of constrained domain of ATIS, correct understanding can be translated
into correct database access. Since database access is usually done via SQL database query,
the evaluation of understanding can be performed in the domain of generated SQL queries.
However, it is still ambiguous when someone would like to query flights around 11 :00 a.m.
For the purpose of understanding, how wide a time frame is around considered to be?

Many examples of queries contain some ambiguities. For instance, when querying
about the flights between city X and Y, shou!d the system display only the flights from X to
Y; or flights in both directions. To alleviate the ambiguity, each release of ATIS training
corpus was accompanied by a Principles of Interpretation document that has standard defi­
nitions of the meaning of such terms like around (means within a 15-minute window) and
between (means only from).

Once the correct understanding is represented as an SQL query, ATIS can be easily
evaluated by comparing the SQL queries generated by SLU systems against the standard
labeled SQL queries. The utterances in A TIS are classified into three types:

4 The wizard-of-oz data collection framework is described in Chapter 18.

Amazon/VB Assets
Exhibit 1012

Page 928

fvatuation

• A-semantically independent of earlier utterances, so per-tum semanf .
terpretation can uniquely identify the semantic intent. ic m-

• D-semantically ~epe~de?t upon e~rlier utterances, so discourse knowledge
is required to provide full interpretation.

• x-unevaluatable, so a response such as No answer or I don't understand
you, could you repeat yourself is considered a right answer.

903

The other debatable item is whether a No answer output for type A and D utterances
should be treated equally as a false SQL query. In the original 1991 A TIS evaluation, a false
SQL query for type A and D utterances is penalized twice as heavily as a No answer output
for type A and D utterances. However, the decision was dropped for the 1993 A TIS evalua­
tion. A TIS decided not to evaluate dialog component for three reasons. First, dialog alters
users' behavior during data collection. Users' utterances are highly contingent on the per­
formance of the wizard-of-oz system, so the data collected has little use for systematic train­
ing and testing. Second, the SLU systems would likely have to be tested by real subjects.
Third, the evaluation of dialog behavior is highly subjective, since effectiveness and user
friendliness are generally vaguely defined.

17.8.2. PARADISE Framework

The evaluation of a dialog system is subjective in nature and is typically done in an end-to­
end fashion. In such a framework, objective criteria like number of dialog turns and system
throughput, and subjective measures like user satisfaction, are typically used.

One of the most sophisticated systems for evaluating dialog systems ever developed is
the PARAdigm for Dialog System Evaluation (PARADISE) [57]. The designers of this
framework took a comprehensive view of the many potential factors affecting dialog evalua­
tion, in particular the distinction between measuring success of transaction (quality) and cost
of the dialog, both in human and system terms. A decision-theoretic method, as shown in
Figure 17 .28, is used to explicitly weight these various disparate factors to achieve a unified
measure. In addition, the PARADISE metrics can derive discrete scores for subdialogs,
which is useful for diagnosis, comparison across systems, and tuning.

A simple measure for task success can be the following question: "Was all the needed
information exchanged, in the correct dii·ei:tion · (user to system, :.ystem to user) at each
step?" PARADISE provides a framework for defining, for any interaction in a limited do­
main, a simplified representation of the minimal required information and its directional ity.
In PARADISE terms, this is an attribute-value matrix (A VM) showing the names and in­
stantiations of required elements at dialog completion. This could be derived from reference
frames for each required concept in a dialog exchange, with mandatory slots marked for
legal completions. Once such reference frames or matrices are available, different dialog
s~rategies that address the same function can be compared over many instantiations (test

dialog sessions), using statistical measures that assess confusability and length.

Amazon/VB Assets
Exhibit 1012

Page 929

904 Spoken Language Understanding

Maximize User Satisfaction

Maximize Task Success Minimize Costs

Efficiency Measures

Number of Turns,
Dialog Time,

etc.

Qualitative Measures

Agent response delay,
Inappropriate utterance ratio,

Repair ratio, etc.

Figure 17.28 PARADISE's structure ofobjectives for spoken dialog performance [57].

For example, imagine an A TIS-like application that had the following information at­
tributes, with the possible values listed in Table 17.5. An utterance such as "I want to go
from Torin to Milan" communicates legal DC and AC attribute values from user to system.
This is a limited-domain system by assumption, so confusions are assumed to occur within
the possible values of the application. For example, if the system instantiates the Depart­
City (DC) slot with Trento instead of Torin after processing the given sample utterance, it is
a confusion that can be recorded in a confusability matrix over all dialog test sessions. A
subsection of such a possible confusability matrix, covering only the DC and AC attributes,
is shown in Table 17.6, which shows only confusion within an attribute type that covers a
consistent vocabulary (city names, instantiating the DC and AC attributes). In practice, how­
ever, the full matrix might show confusions across attribute types, such as morning for Mi­
lan, etc.

Given a confusability matrix M over all possible attributes in the application, we can
apply the Kappa coefficient [48] to measure the quality characterizing the task's success at
meeting the information requirements of the application:

Table 17.5 Attribute-value table [57).

Attribute Possible Values

Depart-City (DC) Milan, Rome, Torin, Trento

Arrival-City (AC) Milan, Rome, Torin, Trento

Depart-Range (DR) Morning, evening

Depart-Time (OT) 6am, 8am, 6pm, 8pm

Amazon/VB Assets
Exhibit 1012

Page 930

905

Table 17.6 Confusability matrix for city identification [57].

- Depart-City Arrival-City --~ Milan Rome Torin Trento Milan Rome Torin Trento Data -
-Milan (depart) 22 I 3

-Rome (depart) 29

Torin (depart) 4 16 4 I

Trento (depart) I I 5 11 l

Milan (arrive) 3 20

Rome (arrive) 22

Torin (arrive) 2 I I 20 5

Trento (arrive) 1 I 2 8 15

sum 30. 30 25 15 25 25 30 20

P(A)-P(E)
I(l-P(E)

(17 .8)

where P(A) is the proportion of times that the A VMs for the actual set of dialog agree with
the A VMs for the interpreted results, and P(E) is the proportion of times that A VMs for the
dialog and intewreted results are expected to agree by chance. P(E) can be estimated by
P(E) = 1,;~, (Yr) , where t; is the sum of the frequencies in column i of M and T is total
frequencies (/1 +···+/") in M. The measure of P(A) (how well or poorly the application
did in information extraction) is calculated simply by examining how much of the total
count occurs on the diagonal: P(A) = I.;~, M(i, i)/T.

In addition to task success, system performance is also a function of several cost
measures. Cost measures include efficiency measures, such as the number of dialog turns or
task completion time; as well as qualitative measures, such as style of dialog or how good
the repair mechanism is. If a set of test dialogs is available, with experimentally measured
user satisfaction (the predicted categories), the kappa measure, and quantitative measures of
cost (denoted as c,, such as counts of repetitions, repairs etc.), linear regression can be used,
over the z-score normalization of these predictor terms, to identify and weight the most im­
ponant predictors of satisfaction for a given system. Thus, the performance can be defined
as:

n

Performance =a* 2!(1()-L w; *21(c;)
i=I

Where l2l is the z-score normalization function 2l(x) = x-x.
a_,

(17.9)

Amazon/VB Assets
Exhibit 1012

Page 931

906 Spoken Language Understanding

Evaluating a dialog system involves having a group ofusers perform tasks with ideal
outcomes. Then the cost measures and task success kappa measure are estimated. These
measures are used to derive the regression weights in Eq; (17.9). Once the regression
weights are attained, one could possibly predict the user satisfaction when a subpart of the
dialog system is improved.

17.9. CASE STUDY-DR. WHO

Dr. Who is a project at Microsoft Research on its multimodal dialog system development. It
incorporates many of the dialog technologies· described in this chapter. We use Dr. Who's
SLU engine as an example to illustrate how to effectively create practical systems [22, 58-
6 I]. It follows the mathematical framework illustrated in Eq. (17.1). The system architecture
is shown in Figure 17 .29. Since it intends to serve as a general architecture for multi modal
dialog systems, it makes some simple assumptions at the architecture level. First, it replaces
the speech recognizer and sentence interpretation modules with a semantic parser for each
modality. The response rendering is merged into dialog manager with different XSL style
sheets for each media output.

Semantic
Parser

Surface
Semantics (SML)

Discourse
Analysis

Discourse
Semantics (SML)

.-----I.--~
Dialog

Manager
Response

'------....I

CFG Language
Model

Semantic Model
(SDL)

Behavior Model
(XSLT)

Figure 17.29 The Dr. Who system architecture [60).

17.9.1. Semantic Representation

Semantic representation is a critical part in Dr. Who's SLU engine design. Essentially, the
semantic objects are an abstraction of the speech acts, the domain knowledge, and the appli­
cation logic. They are designed to encapsulate the respective language models and dialog
actions that govern their creation and behaviors. The system components communicate with
one another through events surrounding the semantic objects. In this view, the dialog (in­
cluding logic inferences) is an integral part of the discourse semantic evaluation process.

1:here _are two ~es of semantic objects in Dr. Who. The first type is the functional
semantic obJect that ts used to represent linguistic expressions in the user's utterance. The

Amazon/VB Assets
Exhibit 1012

Page 932

r ~~~---------------case Study Or. Who

907

nd type is the physical semantic object that is used to
seco . . . represent real-wo Id ..
I t d to the apphcatlon domain. Both types of semantic obiect r entihes re-
a e . . . J s are represented b .
frames and specified m the semantic markup language (SML) h' h . Y se~ant1c

XML. Following the principles of the XML schema, Dr. Who defi:s1~h is han extension ~f
II d · d fi · · e sc ema of SML m

another XML ca e semantic e m1hon language (SDL). SDL is des· d
d. I fi I dd' . . . igne to support many

discourse and 1a og eatures. n a 1t1on, SDL 1s suited to represent the d . , ..
· · h h h' omam ru1owledge

Vl·a the apphcatlon sc ema, t e 1erarchy of the semantic obiects and the se t' . ti
roles. · ·

J , man 1c m erence

The format of v~rious semantic classes follows SDL representations in Dr. Who. The
tenninal and nontermmal nodes on the parse are denoted in SDL with tags <verbat · >

. 1 T 1.m
and <class>, respective y. hese tags refer to the semantic objects and have the name and
type attributes. The type attribute corresponds to the entity type the semantic object even­
tually would be converted to; it plays a key role in inheritance and polymorphism, as de­
scribed in Section 17.3.1. When a semantic object is unique in its type, SOL can
automatically assume its type as the name. In addition, SDL defines a <cfg> tag for the
language model that governs the instantiation of a semantic object ,and the language model
could be stored in another file. An <expert> tag can be defined for the system resource to
physically convert a semantic object to a domain entity. Finally, the tag <slot> in SOL
defines the descendant for a nontenninal node.

Take the semantic class for Microsoft employee directory as an example. The simple
application answers queries on an employee's data such as office location, phone number,
hiring date, etc. An item that can be asked is a semantic tenninal Directoryitern as de­
fined in Figure 17.30. To allow users to ask more than one directory item at one dialog tum,
a multiple semantic class Directoryiterns is also defined recursively, as shown in Fig­
ure 17.30.

<verbatim type="Directoryitern" ... >
<prod name="office"/>
<prod name="phone"/>
<prod name="hiring date" / >

</verbatim>
<class type="Directoryiterns" ... >

<slot type="Directoryitern"/>
<slot type="Directoryiterns"/>
<cfg ref=nDirectoryiterns . cfg"/>

</class>
· · · t yI tern and nonterminal semantic Figure 17.30 The terminal semantic class Direc or .

class defined in Dr. Who using SOL. Note that the definition o: D1.rectory I te;:] con-
tains a recursive style, which can accommodate more than one Directoryitern ·

Amazon/VB Assets
Exhibit 1012

Page 933

908 Spoken Language Understanding

The <prod> tags inside a terminal semantic object indicate that the tenninal is of an
enumeration type, and all the possible values are text normalized to the string values of the
name attribute. The main speech act, the query, is modeled by the functional semantic class
DirectoryQuery, as shown in Figure 17.31.

<class type="DirectoryQuery" ... >
<slot type=="Person" />
<slot type="Directoryitems"/>
<expert clsid=" ... " />
<cfg ref="Directory.cfg"/>

</class>
<include ref="PeopleGramrnar.sdl"/>

Figure 17.31 The main semantic class DirectoryQuery defined in Dr. Who using SDL [59].

The semantic object can be instantiated following the language model in "Direc­
tory. cfg" and, once instantiated, is handled by a system object identified by its class id
(clsid). The system object then formulates the query language that retrieves the data from the
database. It is also possible to embed the XML version of the query language (e.g., XQL)
within the <expert> tag. Semantic models can be nested and reused, as shown in the
<include> tag in the above example, where the semantic model for people is referred.

17.9.2. Semantic Parser (Sentence Interpretation)

For speech modality, Dr. Who employs a speech recognizer with unified language models
[62] that take advantage of both rule-based and data-driven approaches, as discussed in
Chapter 11. Once we have text transcription of user's utterances, a robust chart parser [61]
similar to the one described in Section 17.4. J is used for sentence interpretation.

The emphasis of sentence interpretation is to annotate the user's utterance in a mean­
ingful way to generate functional semantic entities. Essentially, the surface SML represents
a semantic parse. Thus, after a successful parse, the corresponding surface semantic objects
are instantiated based on the semantic classes whose CFG grammars are fired. While in SDL
we use static tags such as <class> and <verbatim> for the semantic classes, the in­
stances of a semantic object use the object name as the tag in SML. For example, the surface
SML for an utterance "What is the phone number for Kuansan" is shown in Figure 17 .32.

,[;irectoryQuery ... >
<PersonByName type="Person" parse="kuansan">

Kuansan
</PersonByName>
<Directoryitem type="Directoryitem" parse="phone num­

ber">
phone

</Directoryitem>
</DirectoryQuery>

Figure 17.32 The surface semantic object DirectoryQuery represented in SML after a
successful parse [59].

Amazon/VB Assets
Exhibit 1012

Page 934

~:S:tu:d:y:;D;r:..~w~h~o--------------------------
909

17,9,3, Discourse Analysis

As mentioned in Section 17.5, the goal of discourse analysis is to resolve rf; .
. su ace semantic

b,iects to discourse semantic objects. For the surface semantic obiect 1·n F' 17 3 o J • • h . . . J tgure . 2, the
discourse engme bmds the t ree semantic objects (1.e., the person, the directory ·t d h

· I d d fu · . . t em, an t e
directory query itself) to rea -wor an nchonal enhttes represented in the SML example,
as shown in Figure 17.33.

<DirectoryQuery ... >
<Person id="kuansanw" parse="kuansan">

<First>Kuansan</First>
<Last>Wang</Last>

</Person>
<Directoryitem parse="phone number " >

<phone>+l(425)703-8377</phone>
</Directoryitem>

</DirectoryQuery>

Figure 17.33 The discourse semantic objects for the surface semantic object illustrated in Fig­
ure 17.32 [59].

Note that the parse string from the user's original utterance is kept so that the render­
ing engine can choose to rephrase the response using the user's wording.

When an error occurs, the semantic engine inserts an <error> tag in the offending
semantic objects with a code indicating the error condition. For example, if the query is for a
person named Derek, the discourse SML might appear as shown in Figure 17.34.

<DirectoryQuery status= " TBD" focus="Person" ... >
<PersonByName type=" Person" parse="Derek" status="TBD" ... >

<error scode="l" count="27" / >
<Person id="derekba">

<First>Derek</First>
<Last>Baines</Last>

</Person>
<Person id="dbevan">

<First>Derek</First>
<Last>Bevan</Last>

</Person>

</PersonByName>

</DirectoryQuery>

Figure 17.34 A discourse semantic object in Dr. Who contains an <error> tag indicating
the error condition [59]. .

Amazon/VB Assets
Exhibit 1012

Page 935

910 Spoken Language Understanding

In Figure 17.34, semantic objects that cannot be converted (e.g., DirectoryQuery
and PersonByName) are flagged with a status "TBD". Discourse SML also marks the dia­
log focus, as in the DirectoryQuery, that indicates the places where the semantic
evaluation process fails to continue. These two cues assist the behavior model in deciding
the appropriate error-repair responses.

Dr. Who uses three priority types of entity memory (discourse memory, explicit, and
implicit tum memory) to resolve relative expressions. Anaphora and deixis are treated as
common semantic classes, so they can be resolved according to the algorithm described in
Section 17.5.1.1. Ellipsis is treated as an automatic inference. Unless marked as NO
INFER in the semantic class definition, every slot in a semantic class can be automatically

hlferred. The strategy to automatically resolve partially specified entities is as follows.
During the evaluation stage, a partially filled semantic object is first compared with

the entities in the three-entity memory based on the type compatibility. If a candidate is
found, the discourse analysis module then computes a goodness-of-fit score by consulting
the knowledge base and considering the position of the entity in the memory list. The se­
mantic object is converted immediately to the entity from the memory if the score exceeds
the threshold. In the process, all the actions implied by the entities are carried out following
the order in which the corresponding semantic objects are converted. For example, the sec­
ond user's query in the dialog illustrated in Figure 17.35 contains an ellipsis reference to
Directoryitem office, which can be resolved using the discourse entity memory.

U: Where is his office?
S: The office is in building 31, room 1362.
U: How about Kuansan 's?
S: The office is in building 3 /, room 1363.

Figure 17.35 A dialog example in the Dr. Who system. The second user's query contains an
ellipsis reference to Directoryitem office [59].

17.9.4. Dialog Manager

To support mixed-initiative multimodal dialogs, Dr. Who employs a plan-based approach
instead of dialog grammars. The dialog manager that handles dialog events surrounding se­
mantic objects is very similar to a GUI program that handles GUI events surrounding
graphical objects. These events can be handled synchronously or asynchronously based on
various implementation considerations. In addition, the design enables a seamlessly inte­
grated GUI and speech interface for multimodal applications to embrace the same human­
computer interaction model.

Dr. W110 SLU engine can use XSL-transformations (XSLT) [59] for specifying the
behavior of a plan-based dialog system. XSLT, a recent World Wide Web Consortium
(W3C) standard, is a specialized XML intended for describing the rules of how a structured
document in XML can be transformed into another, say in a text-to-speech markup language
for speech rendering or the hypertext markup language (HTML) for visual rendering. Its
core _construct is a collection of predicate-action pairs: each predicate specifies a textual pat­
tern m the source document, and the corresponding action will produce a text segment in the

Amazon/VB Assets
Exhibit 1012

Page 936

~-c:S::tu~d~y~D~r~.~\.\;'~h:o ________________________ _

911

utput whenever the pattern specified by the predicate is seen in the sou d
o . . rce ocument. The
output segment tsfsp

1
ec~fie

1
d throug

1
h fia programn~able, context-sensitive template. XSLT de-

fines a rich set o og1ca contro s or composing the templates The basic .
bl I

. · programming
paradigm ~ears clo~e ~e~em an_ce to a og1cal programming language, such as Proto •
which facihtates logic mfe~ence m pl~n-based_ sys~ems. As a result, XSLT possesses suJ _
cient expressive p_o~er f?r nnplemen~mg crucial dtal?g components, ranging from defining
dialog plans, reahzmg dialog strategies, and generating natural language, to manipulatin .
prosodic markup for text-to-speech synthesis and creating dynamic HTML pages for multt
modal applications.

Assuming TTS output, the planning mies that render the discourse SML of Figure
17.33 in text can be expressed in XSLT as shown in Figure 17.36.

<xsl : template match="DirectoryQuery[@not{status)]">
For <xsl:apply-templates select="Person"/>, the
<xsl:apply-templates select:::;;"Directoryltem"/>.

</xsl:ternplate>
<xsl:template rnatch="Person">

<xsl:value-of select="First"/>
<xsl:value-of select="Last"/>

</xsl:ternplate>
<xsl:template ·rnatch="Directoryltern">

<xsl:apply-templates/>
</xsl:template>
<xsl:ternplate rnatch:::;;"phone">

phone number is <xsl:value-of/>
</xsl:ternplate>

Figure 17.36 A TIS response-rendering rule for discourse SML of Figure 17 .33. This rule
generates a text message "For Kuansan Wang, the phone number is + I (425) 703-83 77'' [S9].

This rule leads to a response For Kuansan Wang, the phone number is + 1 (425) 703-
8377. Elaborated functions, such as prosodic manipulations in text to speech markup, can be
included accordingly. To change the output to Web presentation, the above XSLT style
sheet can be slightly modified for rendering in HTML as a table, as shown in Figure 17.37.

The Dr. Who SLU engine has a concept called logical container as a dialog property
to be encapsulated in a semantic class. Three types of logical containers can be accessed in
the definition of semantic classes. A semantic class is an AND type container if all its attri b­
utes must be evaluated successfully. If this requirement is not met, the evaluation of the
AND type semantic object is considered failed, which will prompt the system to post a dia­
log-repair event. An OR type container requires at least one attribute to be successfully
evaluated. Similarly, for an exclusive or (XOR) type container, one and only one attribute
must be successfully evaluated.

Amazon/VB Assets
Exhibit 1012

Page 937

912 Spoken Language Understanding

<xsl:template match="DirectoryQuery[@not(status)]">

<TABLE border="l">
<THEAD><TR>

<TH>Properties</TH>
<TH><xsl:apply-templates select="Person"/> </TH>

</TR></THEAD>
<TBODY><xsl:apply-templates select="Directoryitem"/>
</TBODY>

</TABLE>
</xsl:template>
<xsl:template match="phone">

<TR> <TD>phone</TD> <TD> <xsl:value-of /> </TD> </TR>
</xsl:template>

Figure 17.37 An HTML response-rendering rule for discourse SML of Figure 17 .33. It gener­
ates a visual table representation rather than a text message (59).

Figure 17 .38 shows a semantic class hierarchy corresponding to the partial plan shown
in Figure 17 .20. The dialog goal-to gather information for booking a flight-corresponds
to the highest-level semantic class Book Flight. Evaluating this semantic class drives the
dialog system to traverse down the semantic class structure, eventually fulfilling all the steps
necessary to achieve the dialog goal. This is achieved by recursively evaluating the attrib­
utes, instantiating semantic objects actively if necessary. The logical relation of each seman­
tic class determines the rules of instantiation and dialog repair. For instance, if the user
specifies the trip. to be one way only, the evaluation of the One Way Flag semantic class
becomes successful. As the Inbound Trip semantic class is an XOR container, the dialog
system bypasses the evaluation of the Itinerary attribute in the Inbound Trip semantic class.

Book Flight (AND)

0 h. d~ . / ·~f(XORJ
utoun ':I ~ ~

I . (AND) · One Way Flag lry\-~
Time(OR)

Place (OR)
oriRin

Place (OR)
destination

City Name Airport Name

Figur~ 17.3~ J>:- sem~ntic_ tree hierarchy corresponding to the partial plan shown in Figure
17.20 man a1rlme reservation application (58).

Amazon/VB Assets
Exhibit 1012

Page 938

·cal Perspective and Further Reading
J{istori 913

The Itinerary semantic class encapsulates the basic elements to specify a one-way trip.
Since it is desig~ated as a~ AN_D typ: c_ontainer, the dialo_g manager_ tries to acquire any

issing information by actively mstanttatmg the correspondmg semantic classes it contains.
~he active instantiation event handlers for these classes solicit infonnation from the user by
. lementing certain prompting strategy. On the other hand, the Place semantic class,
::Jch is used to denote both the origin and the destination, is implemented as an OR con­
tainer. The user may specify the location by either the city name or the airpo1t name.

17.10. HISTORICAL PERSPECTIVE AND FURTHER READING

Traditional natural language research has its roots in symbolic systems. Motivated by the
desire to-understand cognitive processes, the underlying theories tend to be from linguis­
tics and psychology. As a result, coverage of phenomena of theoretical interest (usually a
rare occurrence) has traditionally been more important than developing systems with a broad
coverage.

On the other hand. speech recognition research is driven to produce practical usable
applications. Techniques motivated by knowledge of human processes have been less im­
portant than techniques that can be used for real applications. In recent decades, interest has
grown in the use of engineering techniques in computational language processing, although
the use of linguistic knowledge and techniques in engineering has lagged somewhat. The
ATIS program sponsored by DARPA had a very significant influence upon the SLU re­
search community [34]. For the first time, the research community started seriously evaluat­
ing SLU systems on a quantitative basis, which revealed that many traditional NL
techniques designed for written language failed to deal with spoken language in practice.

For limited-domain SLU applications, vocabularies are typically about 2000 words.
CMU's Phoenix SLU system [63] set the benchmark for domain-specific spoken language
understanding in the DARPA ATIS programs. It is based on an island-driven semantic pars­
ing approach. After years of engineering, the speech understanding error rate ranges from
6% to 41%. Since conversational repairs in human-human dialog can often be in the same
range for these systems, the determining factor in these domain-specific SLU applications
may not be the error rates but instead the ability of the system to manage and recover from
errors. Many of these were described in detail in the Proceedings of rhe DARPA Spoken
l.a11guage Systems Technology Workshop published by Morgan Kaufmann from 1991 to
1995. The special issue of Speech Communication on Spoken Dialog [45] also includes sev­
eral state-of-the-art system descriptions.

Allen's Natural Language Understanding [l] is a good book on natural language un­
d~rstanding with a comprehensive coverage of syntactic processing, semantic processing,
discourse analysis, and dialog agent. Knowledge and semantic representation comprise the
most import fundamental issue for symbolic artificial intelligence. Severa] Al textbooks [33,
56, 65] contain comprehensive description of knowledge representation, The use of semantic
:rames can be traced back to case frames or structures proposed by Fillmore [I 6]. SAM [441
ts among the first systems using semantic frames and template matcher for natural language

Amazon/VB Assets
Exhibit 1012

Page 939

914 Spoken Language Understanding

processing. The description of semantic classes and frames in this book mostly follows the
systematic treatment of semantic classes in the Dr. Who system [58-60].

Speech-act (sometimes called dialog-act) theory was first proposed by Austin [4] and
further developed by Searle [42]. It is an important concept in dialog systems. You can ac­
quire more information about speech-act theory and its application to dialog systems from
[12, 40, 43]. Cohen [10] provides a good comparison of different approaches for dialog
modeling, including dialog grammar (finite state), plan-based and agent-based (dialog as
teamwork). We treat agent-based dialog modeling as an extension of plan-based dialog
modeling, as described in Section 17.6.2. Agent-based approach is a very popular frame­
work for multimodal user interface, and interested readers can refer to [l l]. Hudson and
Newell [23] incorporate probability into finite state dialog management to handle uncer­
tainty in input modalities, such as pen-based interface, gesture recognition, and speech rec­
ognition. J. Al1en's book [1] has a systematic description of plan-based dialog systems. De
Mori's Spoken Dialogs with Computers [39] is another excellent book that contains dialog
systems and related technologies.

Much of the content in this chapter follows the architecture and implementation of
semantic frame based approaches. In particular, we use plenty of descriptions and examples
of the Dr. Who SLU engine developed at Microsoft Research [22, 58-60]. The description of
plan-based systems is based on semantic frame representation and pattern matching. There is
no need for explicit dialog-act analysis and logic reasoning, since these important knowl­
edge sources are encapsulated in the semantic frames.

In addition to the semantic frame-based approach, there other approaches that rely on
formal NL parsing, logic form representation, speech acts, and logic inference [2, 41]. Mes­
sage generation for telephone application is well studied and reported in [5, 6, 49], which
provide experimental results for various prompting strategies. Most evaluation schemes for
the SLU systems focus on the end-to-end system. Human factors are important in overall
evaluation [7, 35, 52].

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

Allen, J., Natural Language Understanding, 2nd ed., 1995, Menlo Park CA, The
Benjamin/Cummings Publishing Company.
Allen, J.F., et al., "Trains as an Embodied Natural Language System," AAAI-95
Symposium on Embodied Language and Action, 1995.
Andernach, T., M. Poe!, and E. Salomons, "Finding Classes of Dialogue Utterances
with Kohonen Networks," Proc. of the NLP Workshop of the European Conf on
Machine Leaming (ECML), 1997, Prague, Czech Republic.
Austin, J.L., How to Do Things with Words, 1962, Cambridge, MA, Harvard Uni­
versity Press.

Basson, S., "Integrating Speech Recognition and Speech Synthesis in the Tele­
phone Network," Proc. of the Human Factors Society 36th Annual Meeting, 1992.
Basson, S., "Prompting The User in ASR Applications," Proc. of COSTI32 (Euro­
pean Cooperation in Science and Technology) Workshop, 1992.

Amazon/VB Assets
Exhibit 1012

Page 940

·cal Perspective and Further Reading
l:listori 915

[7]

[8]

[9]

[IO]

[I 1]

[12}

[13}

[14]

[l 5]

(16]

[I 7)

[I 8]

[l 9)

[20)

[21]

(22]

[23]

Basson, S., et al., "User Participation and Compliance in Speech Automated Tel _
communications Applications," Proc. of the Int. Conj on Spoken Language Pro:­
essing, 1996, pp. 1680-1683.
Biber, D., Variation Across Speech and Writing, 1988, Cambridge University
Press.
Clark, H.H. and S.E. Haviland, "Comprehension and the Given-New Contract" in
Discourse production and comprehension, R.O. Freedle, Editor 1977, Norwood,
NJ, Ablex Publishing Corporation, pp. 1-38.
Cohen, P., "Models of Dialogue," Proc. of the Fourth NEC Research Symposium,
1994, SIAM Press.
Cohen, P.R., "The Role of Natural Language in a Multimodal Interface," Proc. of
the ACM Symposium on User Interface Software and Technology, 1992, pp. 143-
149.
Cohen, P.R. and C.R. Perrault, "Elements of a Plan-Based Theory of Speech Acts,"
Cognitive Science, 1979, 3(3), pp. 177-212.
Constantinides, P.H., S. Tchoti, C. Rudnicky, "A Schema Based Approach to Dia­
log Control," Proc. of the Int. Conj' on Spoken Language Processing, 1998, PP·.·
409-412.
Core, M. and J. Allen, "Coding Dialogs with the DAMSL Annotation Scheme,"
Proc. AAA] Fall Symposium on Communicative Action in Humans and Machines;
1997.
Davies, K., et al., "The IBM Conversational Telephony System For Financial Ap.:
plications," EuroSpeech'99, 1999, Budapest, Hungary, pp. 275-278. .
Fillmore, C.J., "The Case for Case" in Universals in Linguistic Theory, E. Bach and
R. Hanns, eds. 1968, New York, NY, Holt, Rinehart and Winston.
Galitz, W.O., The Essential Guide to User lnte1face Design: An Introduction to
Gui Design Principles and Techniques, 1996, John Wiley & Sons.
Grosz, B., M. Pollack, and C. Sidner, eds. Discourse, in Foundations of Cognitive
Science, ed. M. Posner, 1989, MIT Press.
Heeman, P.A., et al., "Beyond Structured Dialogues: Factoring Out Grounding,"
Proc. of the Int. Conj on Spoken Language Processing; 1998, Sydney, Australia ..
Hemphill, C.T., J.J. Godfrey, and_ G.R. Doddington, "The ATIS Spoken Language
Systems Pilot Corpus," Proc. of the Speech and Natural Language Workshop, l 990
pp. 96-101.
Hitzeman, J., et al., "On the Use of Automatically Generated Discourse-Level In­
formation in a Concept-to-Speech Synthesis System," Proc. of the Int. Conj on
Spoken Language Processing, -1998, Sydney, Australia, pp. 2763-2766.
Huang, X., et al., "MIPAD: A Next Generation PDA Prototype," Int. Conj on Spo­
ken Language Processing, 2000, Beijing, China.
Hudson, S.E. and G.L. Newell; "Probabilistic State Machines: Dialog Management
for Inputs with Uncertainty," Proc. of the ACM Symposium on User Interface Soft­
ware and Technology, 1992, pp. 199-208.

Amazon/VB Assets
Exhibit 1012

Page 941

916

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[3 I]

[32]

[33]

[34]

[35]

[36]

[37]

[38]
[39]

[40]

[41]

[42]

Spoken Language Understanding

Hulstijn, J. and A.V. Hessen, "Utterance Generation for Trans. Dialogues," Int.
Conf. on Spoken Language Processing, 1998, Sydney, Australia.
Jackendoff, R.S., X' Syntax: A Study of Phrase Structure, 1977, Cambridge, MA,

MIT Press.
Jelinek, F., et al., "Decision Tree Parsing using Hidden Derivational Model," Proc.
of the ARPA Human Language Technology Workshop, 1994, pp. 272-277.
Jurafsky, D., L. Shriberg, and D. Biasca, Switchboard SWBD-DAMSL Slzallow­
Discourse-Function Annotation Coders Manual, Draft 13, 1997, http://
www.colorado.edu/linguistics/jurafsky/manual.augustl .html.
LDC, Linguistic Data Consortium, 2000, http://www.ldc.upenn.edu/ldc
/noframe.html.
Miller, S., et al., "Recent Progress in Hidden Understanding Models," Proc. of the
ARPA Spoken Language Systems Technology Workshop, 1995, Austin, Texas,
Morgan Kaufmann, Los Altos, CA, pp. 22-25.
Miller, S. and R. Bobrow, "Statistical Language Processing Using Hidden Under­
standing Models," Proc. of the Spoken Language Technology Workshop, 1994,
Plainsboro, New Jersey, Morgan Kaufmann, Los Altos, CA, pp. 48-52.
Minsky, M., "A Framework for Representing Knowledge" in The Psychology for
Computer Vision, P.H. Winston, Editor 1975, New York, NY, McGraw-Hill.
Nilsson, N.J., Principles of Artificial Intelligence, 1982, Berlin, Gennany,
Springer-Verlag.
Nilsson, NJ., Artificial Intelligence: A New Synthesis, 1998, .Academic
Press/Morgan Kaufmann.
Pallett, D.S., et al., "1994 Benchmark Tests for the ARPA Spoken Language Pro­
gram," Proc. of the 1995 ARPA Human Language Technology Workshop, 1995, pp.
5-36.
Polifroni, J., et al., "Evaluation Methodology for a Telephone-Based Conversa­
tional System," The First Int. Conj on Language Resources and Evaluation, 1998,
Granada, Spain, pp. 42-50.
Prevost, S. and M. Steedman, "Specifying Intonation from Context for Speech Syn­
thesis," Speech Communication , 1994, 15, pp. 139-153.
Reinhart, T., Anaphora and Semantic lnte,pretation, Croom Helm Linguistics Se­
ries, 1983, University of Chicago Press.
Roberts, D., The Existential Graphs of Charles S. Peirce, 1973, Mouton and Co.
Sadek, D. and R. De Mori, "Dialogue Systems" in Spoken Dialogues with Com­
puters, R. De Mori, Editor 1998, London, UK, pp. 523-561, Academic Press.
Sadek, M.D., "Dialogue Acts are Rational Plans," Proc. of the ESCA/ETRW Work­
shop on the Structure of Multimodal Dialogue, 1991, Maratea, Italy, pp. 1-29.
Sadek, M.D., et al., "Effective Human-Computer Cooperative Spoken Dialogue:
The AGS Demonstrator," Proc. of the Int. Conj on Spoken Language Processing,
1996, Philadelphia, Pennsylvania, pp. 546-549.
Searle, J.R., Speech Acts: An Essay in the Philosophy of Language, 1969, UK,
Cambridge University Press.

Amazon/VB Assets
Exhibit 1012

Page 942

~ective and Further Reading
fjistor1cal

917

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

(53]

[54]

(55]

(56]

(57]

(58]

(59]

(60]

(61]

S arle JR and D. Yanderveken, Foundations of lllocwiona,} L . e , · · · og1c 1985 c
bridge University Press. ' , -am-
Shank, R., Conceptual !,formation Processing, 1975, Notth Holland. Amsterdam
The Netherlands. . ·

Shl·rai K and S. Furui, '·Special Issue on Spoken Dialogue " Speech Co .
• • ' • 111m11111ca-

tio11, 1994, 15.
Shriberg, E.E., R. Bates. and A. Stokke, ''A Prosody-Only Decision-tree Model for
Disfluency Detection," Proc. Eurospeech, 1997, Rhodes, Greece, pp. 2383-2386_
Sidner, C., "Focusing in the Comprehensi~n of Definite Anaphora" in Computa­
tional Model of Disc01.11:w1, M. Brady, Benvtck, R., eds., 1983, Cambridge, MA, pp.
267-330, The MIT Press.
Sidney, S. and N.J. Castellan, Nonparametric Statistics for the Behavioral Sci­
ences. I 988, McGraw Hill.
Sorin, C. and R.D. Mori, "Sentence Generation" in Spoken Dialogues with Com­
puters, R.D. Mori, Editor 1998, London, UK, Academic Press, pp. 563-582.
Souvignier, B., et al., "The Thoughtful Elephant: Strategies for Spoken Dialog Sys­
tems," IEEE Trans. on Speech and Audio Processing, 2000, 8(1), pp. 51-62.
Sowa, J.F., Knowledge Representation: logical, Philosophical, and Complltational
Foundations, 1999. Brooks Cole Publishing Co.
Springer, S., S. Basson, and J. Spitz, "Identification of Principal Ergonomic Re­
quirements for Interactive Spoken Language Systems," Int. Conj on Spoken Lan­
guage Processing, 1992, pp. 1395-1398.
Standards, N.C.f.I.T., Conceptual Graph Standard Information, l 999,
http://www.bestweb.net/-sowa/cg/cgdpansw.htm.
Steedman, M., ed. Parsing Spoken language Using Combinato,y Grammars, in
Current Issues in Parsing Technology, ed. M. Tomita, I 991, Kluwer Academic
Publishers.
Steedman, M., "Information Structure and the Syntax-Phonology Interface," Lin­
guistic lnquilJ', 2000.
Tanimoto, S.L., The Elements of Art{ficial Intelligence: An Introduction Using
Lisp, 1987, Computer Science Press, Inc.
Walker, M., et al., "PARADISE: A Framework for Evaluating Spoken Dialogue
Agents.," Proc. of the 35th Annual Meeting of the Association for Computational
Linguistics (ACl-97), 1997, pp. 271-280.
Wang, K., "An Event Driven Model for Dialogue Systems," Int. Conj on Spoken
Language Processing, 1998, Sydney, Australia pp. 393-396.
Wang, K., "Implementation of Dr. Who Dialog System Using Extended Markup
Languages," Int. Conf on Spoken language Processing, 2000, Beijing, China.
Wang, K., "A Plan-Based Dialog System With Probabilistic Inferences," ICSLP,
2000, Beijing, China.

Wang, Y., "A Robust Parser For Spoken Language Understanding," Eurospeech,
1999, Budapest, Hungary, pp. 2055-2058.

Amazon/VB Assets
Exhibit 1012

Page 943

918 Spoken Language Understanding

[62] Wang, Y., M. Mahajan, and X. Huang, "A Unified Context-Free Grammar and N­
Gram Model for Spoken Language Processing," Int. Conj on Acoustics, Speech
and Signal Processing, 2000, Istanbul, Turkey, pp. 1639-1642.

[63] Ward, W., "Understanding Spontaneous Speech: The Phoenix System," Proc. Int.
Conj. on Acoustics, Speech and Signal Processing, 1991, Toronto, Canada, pp.
365-367.

[64] Ward, W. and S. Issar, "The CMU ATIS System," Proc. of the ARPA Spoken Lan­
guage Systems Technology Workshop, 1995, Austin, Texas, Morgan Kaufmann,
Palo Alto, CA.

[65] Winston, P.H., Artificial Intelligence, 3rd ed, 1992, Reading, MA, Addison­
Wesley.

[66] Young, S.R., et al., "High Level Knowledge Sources in Usable Speech Recognition
Systems," Communications of the Association for Computing Machines, 1989,
32(2), pp. I 83-194.

Amazon/VB Assets
Exhibit 1012

Page 944

CHAPTER 1 8

Applications and User Interfaces

The ultimate impact of spoken language
technologies depends on whether you can fully integrate the enabling technologies with ap­
plications so that users find it easy to communicate with computers. How to effectively inte­
grate speech into applications often depends on the nature of the user interface and
application. This is why we group user interface and application together in this chapter. In
discussing some general principles and guidelines in developing spoken language applica­
tions, we must look closely at designing the user interface.

A well-designed user interface entails carefully considering the particular user group
of the application and delivering an application that works effectively and efficiently. As a
general guideline, you need to make sure that the interface matches the way users want to
a_ccomplish a task. You also need to use the most appropriate modality at the appropriate
t~me to assist users to achieve their goals. One unique challenge in spoken language applica­
llons is that neither speech recognition nor understanding is perfect. In addition, the spoken
co~mand can be ambiguous, so the dialog strategy described in Chapter 17 is necessary to
clanfy the goal of the speaker. There are always mistakes you have to deal with. It is critical

919

Amazon/VB Assets
Exhibit 1012

Page 945

920 Applications and User Interfaces

that applications employ necessary interactive error-handling techniques to minimize the
impact of these errors. Application developers should t~erefore_ full~ understand the
strengths and weaknesses of the underlying speech technologies and identify the appropriate
place to use the spoken language technology effectively. .

This chapter mirrors Chapter 2, in the sense that you need to mcorporate all the needed
components of speech communication to make a spoken language system work well. It is
important also to have your applications developed based on some standard application pro­
gramming interfaces (API), which ensures that multiple applications work well with a wide
range of speech components provided by different speech technology providers.

18.1. APPLICATION ARCIDTECTURE

A typical spoken language application has three key components. It needs an engine that can
be either a speech recognizer or a spoken language understanding system. An application
programming interface (API) is often used to facilitate the communication between the en­
gine and application, as illustrated in Figure 18.1. Multiple applications can interact with a
shared speech engine via the speech APL The speech engine may be a CSR engine, a ITS
engine, or an SLU engine. The interface between the application and the engine can be dis­
tributed. For example, you can have a client-server model in which the engine is running
remotely on the server.

Application 1 Application 2

Speech API

Engine I Engine 2 Engine 3

Figure 18.1 In a typical spoken language application architecture, multiple applications can in­
teract with a shared speech engine via the speech APL The speech engine may be a speech
recognizer, a ITS converter, or an SLU engine.

For_ a given API, there is typically an associated toolkit that provides a good develop­
ment environment and the tools you need in order to build speech applications. You don't
need to understand_ the underlying speech technologies to fully take advantage of state-of­
the-art ~peech engmes. In~ustry-standard based applications can draw upon support from
ma~y different speech engme vendors, thus significantly minimizing the cost of your appli­
cations development. For the widely used Microsoft Windows'\ Microsoft's speech API

Amazon/VB Assets
Exhibit 1012

Page 946

fypical Applications 921

(SAP!) brings both engine and application developers together. 1 Alternative st d d ·
· L~ d JSAPI) an ar s are .1 ble such as V01ceXM an . ava1 a ,

8 2 TYPICAL APP LI CA TIO NS 1 ..
There are three broad classes of applications that require different UI design:

• Office: This includes the widely used desktop applications such as Microsoft
Windows and Office.

• Home: TV and kitchen are the centers for home applications. Since home ap­
pliances and TV don't have a keyboard or mouse, the traditional GUI
application can't be directly extended for this category.

• Mobile: Cell phone and car are the two most important mobile scenarios. Be­
cause of the physical size and the hands-busy and eyes-busy constraints, the
traditional GUI application interaction model requires significant modifica­
tion.

This section provides descriptions of typical spoken language applications in these three
broad classes. Spoken language has the potential to provide a consistent and unified interac­

. tion model across these three classes, albeit for these different application scenarios you still
need to apply different user interface design principles.

18.2.1. Computer Command and Control
One of the earliest prototypes for speech recognition is command and control, which is
mainly used to navigate through operating system interfaces and applications running under
them. For exarriple, Microsoft Agent is a set of software services that supports the presenta­
tion of software agents as interactive personalities within the Microsoft Windows or the
Internet Explorer interface. Its command-and-control speech interface is an extension and
enhancement of the existing interactive modalities of the Windows interface. It has a charac­
ter called Peedy, shown in Figure 18.2, which recognizes your speech and talks back to you
using a Microsoft SAPI compliant command-and-control speech recognizer and text-to­
speech synthesizer.

The speech recognizer used in these command-and-control systems is typically based
on a context-free grammar (CFG) decoder. Either developers or users can define these
grammars. Associated with each legal path in the grammar is a corresponding executable
event that can map a user's command into appropriate control actions the user may want.
Tbey possess a built-in vocabulary for the menus and other components. The vocabula~ ~an
also be dynamically provided by the application. Command-and-control speech recognition
~Hows the user to speak a word, phrase, or sentence from a list of phrases that the c~mputer
15 expecting to hear. The number of different commands a user might speak at any time can

I http:J/www .
1 h .m1crosoft.com/speech
1 np:J/www.voicexml.or"'

hnp:JH 1:1
Java.sun.com/products/java-media/speech/

Amazon/VB Assets
Exhibit 1012

Page 947

922
Applications and User Interfaces

be in the hundreds. Furthermore, the commands are not just limited to fixed ones but can
also contain other open fields, such as "Send mail to <Name>" or "Call <digi,ts>". With all
of the possibilities, the user is able to speak thousan~ ~f di_ffere~t comm~ds. A~ discussed
in Chapter 17, a CFG-based recognizer is often very ngtd, smce 1t may reJect the m~ut utter­
ance that contains a sentence slightly different from what the CFG defines, leadmg to an
unfriendly user experience.

How are you?

Figure 18.2 A talking character Peedy'1 as used in Microsoft Agent. Reprinted with pennission
from Microsoft Corporation.

Command-and-control recognition might be useful in some of the following situa­
tions:

• Answering questions. An application can easily be designed to accept voice
responses to message boxes and wizard screens. Most speech recognition en­
gines can easily identify Yes, No, and a few other short responses.

• Accessing large lists. In general, it's faster for a user to speak one of the
names on a list. such as "Start running calculator, " than to scroll through the
list to find it. It assumes that the user knows what is in the list. Laurila and
Haavisto [23] summarized their usability study of inexperienced users on
name dialing. Although the study is based on the telephone handset, it has a
similar implication for computer desktop applications.

• Activating macros. Speech recognition lets a user speak a more natural word
or phrase to activate a macro. For example, "Spell check the second para­
graph " is easier for most users to remember than the CTRL+F5 key combi­
nation after selecting the second paragraph. But again, the user must know
the command. This is where most simple speech applications fail. The com­
petition is not CTRL+FS itself, it is the memory of most users.

• Facilitating dialog between the user and the computer. As discussed in Chap­
ter 17, speech recognition works well in situations where the computer essen-

4 PeedyO 1993-1998 Microsoft Corporation.

Amazon/VB Assets
Exhibit 1012

Page 948

;;-:;a~l~A~p~p~li~ca~t~io:n~s--------------------------

tially asks the user: "What do you want to do?" and branches .
h l.k · d) accordmg to th reply (somew at 1 ea w1zar . For example, the user might re 1 "/ e

k fl . I Ji lt.T v k B "Aft PY, want to boo a 1g 11 rom "ew , or to . oston. er the computer anal h
. "fi b" d D "d yzes t ere-

ply 1t clan 1es any am 1guous wor s (1 you say New York?) F" 11 ' · · ma Y the
computer asks for any infom1ation that the user did not supply, such a~ "At
what day and time do you want to leave?"

• Providing hand~-fr~e computing: Speech recognition ~s an essential compo­
nent of any apphcat1on that reqmres hands-free operat10n; it also can provide
an alternative to the keyboard for users who are unable to or prefer not to use
one. Users with repetitive-stress injuries or those who cannot type may use
speech recognition as the sole means of controlling the computer. As dis­
cussed in later sections, hands-free computing is important for accessibility
and mobility.

• Humanizing the computer. Speech recognition can make the computer seem
more like a person-that is, like someone whom the user talks to and who
speaks back. This capability can make games more realistic and make educa­
tional or entertainment applications friendlier.

The specific use of command and control depends on the application. Here are some
sample ideas and their uses:

• Games and entertainment: Software games are some of the early adopters of
command-and-control speech recognition. One of the most compelling uses
of speech recognition technology is in interactive verbal exchanges and con­
versation with the computer. With games such as flight simulators, for exam­
ple, traditional computer-based characters can now evolve into characters the
user can actually talk to. While speech recognition enhances the realism and
fun in many computer games, it also provides a useful alternative to game
control. Voice commands provide new freedom for the user.

• Document editing: Command and control is useful for document editing
when you wish to keep your hands on the keyboard to type, or on the mouse
to drag and select. This is especially true when you have to do a lot of editing
that requires you to move to menus frequently. You can simultaneously speak
commands for manipulating the data that you are working on. A word proc­
essor might provide commands like "bold, italic" and "change font." A paint
package might have "select eraser" or "choose a wider brush." Of course,
there are users who won't prefer speaking a command to using keyboard
equivalents, as they have been using the latter for so long that the combina­
tions have become for them a routine part of program control. But for many
people, keyboard equivalents are a lot of hard-to-remember shortcuts. Voi~e
commands provide these users with the means to execute a command di­
rectly.

Amazon/VB Assets
Exhibit 1012

Page 949

924 Applications and User Interfaces

For most of the existing applications, before an application starts a command-and­
control recognizer, it must first give the recognizer a list of commands to listen for. The list
might include commands like "minimize window," ''make the font bold,'' "call extension
<digit> <digit> <digit>," or "send mail to <llame>." If the user speaks the command as it
is designed, he/she typically gets very good accuracy. However, if the user speaks the com­
mand differently, the system typically either does not recognize anything or erroneously
recognizes something completely different. Applications can work around this problem by:

• Making sure the command names are intuitive to users. For many operations
like minimizing a window, nine out of ten users wil1 say minimize window

without prompting.

• Showing the command on the screen. Sometimes an application displays a
list of commands on the screen. Users naturally speak the same text they see.

• Using word spotting as discussed in Chapter 9. Many speech recognizers can
be told to just listen for one keyword, like mail. This way the user can speak,
"Send mail," or "Mail a letter," and the recognizer will get it. Of course, the
user might say, "/ don't want to send any mail," and the computer will still
end up sending mail.

• Employing spoken language understanding components as discussed in
Chapter 17.

• Employing user studies to collect data on frequently spoken variations on
commands so that the coverage is enhanced.

18.2.2. Telephony Applications

Speech is the only available modality for telephony applications besides the awkward-to-use
DTMF interface. The earliest uses of speech technology in business were interactive voice
response (IVR) systems. These systems include infoline services in the ad-supported local
newspapers, offering everything from world news to school homework assignments at the
touch of a few buttons. So what's the big deal with a speech telephony application? It offers
greater breadth, ease of use, and interactivity. Navigating by voice rather than by keypad
offers more options and quicker navigation. It also works better while you're driving.

To make a successful IVR application, you need to have speech input, output, and re­
lated dialog control. People have used IVR systems over the telephone to navigate the appl i­
cation based on the menu option to provide digit strings, such as the credit card numbers, to
the application. Such system typically has a small to medium vocabulary. Today, you can
use IVR to get stock quotes, people's telephone number, and other directory-related infor­
mation. For example, you can call AT&T universal card services and the application asks
you to speak your J 6-digit card number. Most of these IVR systems use recorded messages
instead of synthetic speech because the quality of TIS is still far from humanlike. Since
speech output is a slow method to present information, it is important to be as brief as poss i­
ble. Reducing the presentation of repetitive data can shorten the speech output significantly.

Amazon/VB Assets
Exhibit 1012

Page 950

fypical Applications
925

Voice portals that let you talk your way to Web-based information from any h
. I h 1· . L. k d p one are

one class of compellmg te_ ep ony app 1catlons. m e !o specially formatted Web sites and
databases, the portals dehver what amounts to customized real-time news radio. You can

ilor voice portals much as you do Web portals like Yahoo!\ AOL\ or MSN". But surfing
~ restricted to the very limited subsets of information the portals choose to offer. These ser­
~ces typically avoid using synthesized speech. For options like news updates they rely on
ound bites recorded by announcers. There are a number of free voice portals available, in-

:luding TellMe, BeVocal, HeyAnita, Quack.com. Table 18.l illustrates some of their fea-

tures.
Table 18.1 Some free voice portal features. These portals are being developed and will roll out
more features.

Catee:orv Audioooint5 Tell Me6
Traffic Yes Yes
Weather U.S. and world cities U.S.
News Yes Yes
Financial Yes Yes
Soorts Yes Yes
Airline info No Yes
Restaurants No U.S.
Entertainment Yes Yes
Personalization Yes Yes

Digital wireless telephony applications could make full use of a client-server architec­
ture because of limited computing resources of the client. The server performs most of the
needed processing. The client can either send the speech waveform (as used in standard
telephone) or the spectral parameters such as MFCC coefficients. Using a quantized MFCC
(see Chapter 6) at 4.5 kbps, no loss of accuracy can be achieved [I 8]. The Aurora project
tries to standardize the client server communication protocol based on the quantized MFCC
coefficients 7

[6].
When people are engaged in a conversation, even if they have the graphical interface

in front of them, they seldom use the vocabulary from the interface (unless prompted by
TTS or the speaker). This has an important implication for the UI design. The use of a dis­
course segment pop cue such as "What now?" or "Do you want to check messages?" could
reorient users (especially after a subdialog) and help them figure out what to say next. Wild­
fires uses such pop cues extensively. The right feedback is essential, because speech recog­
nition is not perfect. Designers should verify only those commands that might destroy data
or trigger future events. People become frustrated very quickly if the error feedback is re-

'. http://www.myaudiopoint.com or call I -888-38-AUDIO.
, http://www.tellme.com or call 1-800-SSS-TELL.
, http://www.etsi.org/stq
http://www.witdfire.com/

Amazon/VB Assets
Exhibit 1012

Page 951

