
_____-: 
Structure 

oielog 

Communicative Status: records whether the utterance is - t 
11

. . 
• ~ 11 I m e ig1ble and 

Whether it was successn1 y comp eted. It is mainly used to fl b . 
h Id b ag pro lemattc 

Utterances that s ou e used for data modeling only wi'th . 
cautton­

Uninterpretable, Abandoned, or Self-talk. Uninterpretable is self-
explanatory. Abandoned marks utterances that were broken off with t 

· · fi · . ou, cru-
cially, addmg any 1~ onnat10? to the ?ialo_g. ~e(f-talk is a note that, while an 
utterance may contam useful mfonnation, 1t did not appear to be intentionall 
communicated. Self-talk can be considered reliable only when the annotat; 
is working from speech data. 

, Information Level: a characterization of the semantic content of the utter­
ance. This is used to specify the kind of infonnation the utterance mainly 
conveys. It includes Task (Doing the task), Task-management (Talking about 
the task), Communication-management (Maintaining the communication), 
and Other-level. Task utterances relate directly to the business of the transac­
tion and move it toward completion. Task-management utterances ask or tell 
about the task, explain it perhaps, but do not materially move it forward. 
Communication-management utterances are about the dialog process and ca­
pabilities. The Other level is for unclear cases. 

, The Forward/Backward Looking Function: how the current utterance con­
strains the future/previous beliefs and actions of the participants and affects 
the discourse. Forward Looking functions introduce new information or oth­
erwise move the dialog or task completion forward, while Backward Looking 
Functions are tied to an antecedent, a prior utterance which they respond to or 
complete. This distinction is the DAMSL reflection of the common observa­
tion that dialogs have a tendency to consist of Initiation/Response pairs. The 
core of the system is the set of particular act types. The core For­
ward/backward Looking tags are listed in Table 17.2 and Table 17.3. 

Table 17.2 Forward looking tags. 

Forward Looking Tags Example 

assert l always fly first class. 
reassert No, as I said, I always fly first class. 

action-directive Book me a flight to Chicago. 
open-option There's a red-eye flight tonight . .. 
info-request What time is it?, Tell me the time. 
offer 
~ 

I can meet at 3 if you're free. 
commit I' II come to your party. 

~conventional opening May I help you? 
conventional closing Goodbye. 

_explicit-perforrnative Thank you, I apologize. 

~clamation Ouch! Dam! 

863 1 
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Table 17.3 Backward looking tags. 

Backward Looking Tags Example 
(Will you come?) 

accept Yes. [and/or, I'll be there at 10.J 
(Will you come with your wife?) 

accept-part I'll come, she may be busy. 

(Will you come?) 
reject 

No. 
(Want fries and a shake with that burger?) 

reject-part 
Just the hamburger and fries, please. 

maybe Maybe. 

signal-nonunderstanding What did you say? 

acknowledgment OK. 

(Can I fly nonstop from Anchorage to Kabul?) 
answer 

No. 

Multiple tags may appear on any given utterance. In the example shown in Figure 
17.3, B's utterance is coded as opening the option of buying (from B), asserting the exis­
tence of the sofas, and functioning as an offer or solicitation. 

Action-directive 

Open-option/ Assert/Offer 

A: Let's buy the living room furniture 
first. 

B: OK, I have a red sofa for $150 or a 
blue one for $200 

Figure 17.3 A tagged dialog fragment. 

The DAMSL system is actually more complex than the example demonstrated above, 
since subsets of the tags are grouped into mutually exclusive options for a given general 
speech function. For example, there is a general Agreement function, under which the ac­
cept, accept-part, reject, and reject-part tags are grouped as mutually exclusive options. 
Above the level of those groupings, however, a single utterance can receive multiple nonex­
clusive tags. For example, as illustrated in Figure 17.4, the assistant may respond with a 
countersuggestion (a kind of action-directive) that rejects part of the original command. 

Action-directive 

Action-directive/Reject-part(uttl) 

uttl oper: Take the train to 
Avon via Bath 
utt2 asst: Go via Corning in­
stead. 

Figure 17.4 A tagged dialog fragment, showing that utterances can be tagged with multiple 
nonexclusive tags. 
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The prototypical dialog turn unit in simple applications would be the l/R . . 
· · h · p· pair mfo-

uestfanswer. as in th~ mteract10n s own m !gure 17 .5 between an operator (planner) and 
req ·scant regarding railroad transport schedulmg [1]. 
an ass~he example in Figure 17.5 illustrate~ ~ dialog for a railway-scheduling task. The 
turns are numbered Tl-T4, the utterances w1thm turns are also numbered sequentially, and 
the speaker identity alternates between oper: and asst:. !he tagging is incomplete, because, 
for example, within the ansl sequ~nce_, each utte~ance 1s performing a function, asserting, 
acknowledging, etc. The example m Figure 17 .6 1s a more completely annotated fragment, 
omitting rum numbers. 

info-req Tl uttl aper: 

ansl T2 utt2 asst: 
T3 utt3 aper: 

where are the engines? 
there's an engine at Avon 
okay 
and we need T4 utt4 asst: 

utt5 asst: I mean there's another in Corning 

Figure 17.5 A tagged dialog fragment in railroad transport scheduling. 

info-reg/assert uttl aper: and it's gonna take us also an 
hour to load boxcars right 

ans/accept( utt l) utt2 asst: right 
assert utt3 aper: and it's gonna take us also an 

hour to load boxcars 
accept( u tt l) utt4 asst: right 

Figure 17.6 A tagged dialog fragment, showing backward-looking utterances. 

The example in Figure 17 .6 shows backward-looking utterances, where the relevant antece­
dent in the dialog is shown (in parentheses) as part of the dialog coding. 

More elaborate variants of DAMSL have been developed that extend the basic system 
presented here. Consider, for example, the SWITCHBOARD Shallow-Discourse-Function 
Annotation SWBD-DAMSL [27). This project used a shallow discourse tag set of 42 basic 
tags (frequent composed tags from the large set of possible multitags) to tag 1155 5-minute 
conversations, comprising 205,000 utterances and 1.4 million words, from the 
SWITCHBOARD corpus of telephone conversations. Distributed by the Linguistic Data 
Consonium

2 
(28], SWITCHBOARD is a corpus of spontaneous conversations that addresses 

lhe growing need for large multispeaker databases of telephone bandwidth speech. The cor­
pus contains 2430 conversations averaging 6 minutes in length-in other words, over 240 
hours of recorded speech, and about 3 million words of text, spoken by over 500 speakers of 
botb genders from every major dialect of American English. 

More detailed tags are added to DAMSL to create SWBD-DAMSL, most of which are 
e!aborations of existing DAMSL broad categories. For example, where DAMSL has the 
simple category answer, SWBD-DAMSL has: yes answer, no answer, affirmative non-yes 

l http:// 
WWw.ldc.upenn.edu 
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answer, negative non-no answers, other answers, no plus expansion, ~·es plus expansion, 
statement expanding yin answer, expansions of yin an~wers, and dzsp~eferred answer. 
SWBD-DAMSL is intended for the annotation and learnmg of structure m human-human 
dialog. and could be considered overkill as a basis for describing or constructing grammars 
for most limited-domain human-computer interactions of today. But the more sophisticated 
agent-based services of the future will need to assume ever-greater linguistic sophistication 

along these lines. 
One fact noted by the SWBD-DAMSL researchers, which may not apply directly to 

task-directed human-computer interactions but which casts interesting light on human com­
munication patterns, is that out of 1115 conversations studied, simple nonopinion statements 
and brief acknowledgements together constituted 55% of the conversational material! If 
statements of opinion (including simple stuff like I think it's great!), expressions of agree­
ment (That's right!), tum breakoffs and no-content utterances (So ... ), and appreciative ac­
knowledgements (I can imagine.) are added to this base, 80% of the utterances are 
accounted for. This relative poverty of types may bode well for future attempts to annotate 
and predict utterance function automatically. The DAMSL scheme is challenging to apply 
automatically, because it relies on complex linguistic and pragmatic judgments of the trained 
annotators. 

17.2.3. Dialog Control 

The system's view of how the dialog should proceed is embodied in its management strat­
egy. Strategy is closely connected to the concept of initiative in dialog, meaning basically 
who is controlling the interaction. Different dialog initiatives are defined in Section 17 .2. 
Initiative can be seen as a continuum from system controlled to user controlled. As back­
ground for the dialog management discussion, some important steps along this continuum 
can be identified: 

• System directs-The system retains complete dialog control throughout the 
interaction. The system chooses the content and sequence of all subgoals and 
initiates any dialog necessary to obtain completion of information from the 
user for each transaction. This style is often referred as system initiative. 

• System guides-The system may initiate dialog and may maintain a gtneral 
plan, but the sequence of infonnation acquisition from the user may be ficxi­
~le, and ~ystem ~ubgoals and plans may be modified in response to the user's 
mput. This style 1s often referred as mixed initiative. 

• System infor~- The. user directs the dialog and the system responds as help­
fully as possible, which may include presentation of relevant data not specifi­
cal~y requested by the user but which the system. believes could be helpful. 
T_his style also belongs to mixed initiative, though users control most of the 
dialog flows. 

• System accepts-This is the typical human-computer interaction in traditional 
systems (whether it is a GUI-, command-line-, or natural language-based sys-
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tem). The system interprets each command without any atteinpted · C'. . m~ren~ 
of a deeper user plan, or recommendation of any suitable course of acf 

1 · fi d · . . . ton. This sty e ts re erre as user 1mllahve. 

7 3 SEMANTIC REPRESENTATION 1 .. 
Most SLU systems require an internal representation of meaning that lends itself to com­
puter processing. In other words, we need a way of representing semantic entities, which are 
used at every possible step. In general, an SLU system needs to deal with two types of se­
rnantic entities. The first type is physical entities, which correspond to the real-world enti­
ties. such representation is often referred as knowledge representation in the field of 
artificial intelligence. The second type is functional entities, which correspond to a way of 
unambiguously representing the meaning or structure of situations, events, and concepts that 
can be expressed in natural language. Such representations are often similar to the logical 
form introduced in Chapter 2. Processing may include operations such as determining simi­
larity or identity of events or entities, inference from a state of affairs to its logical conse­
quences, and so on. Here, we briefly review some general properties of the common 
semantic representation frameworks. 

17.3.1. Semantic Frames 

Semantic objects are used to represent real world entities. Here, we assume that the domain 
knowledge conforms to a relational or objected-oriented database, of which the schema is 
clearly defined. We use the term entity to refer to a data item in the domain (a row in a data­
base table), or a function (command or query) that can be fulfilled in the domain. A column 
in the database table is called an entity attribute, and each database table is given an entity 
type. Through a small subset of its attributes, an entity can be realized linguistically in many 
fashions. We call each of them a semantic class. For example, a person can be referred to in 
terms of her full name (Angela), a pronoun anaphora (her), or her relationships to others 
(Christina 's manager). In this case, one can derive three semantic classes for the entity type. 

Semantic classes can be viewed as a type definition to denote the objects and describe 
the relationnhat hold among them. One of the most popular representations for semantic 
classes isthe semantic frame [31]-a type of representation in which a semantic class (con­
c~pt) is defined by an entity and relations represented by a number of attributes (or slots) 
Wtth certain values (the attributes are filled in for each instance). Thus, frames are also 
known as slot-and-filler structures. 

We could, for example, define a generalized frame for the concept dog, with attributes 
!hat must be filled in for each particular instance of a particular dog. A type definition for 
the concept dog appears in Figure 17. 7. Many different notational systems have been used 
for frames [51 ]. For these introductory examples, we use a simple declarative notation that 
should be fairly intuitive. 
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[DOG:) -
[SUPERTYPE]->[rnammal) 
[NAME]-> () 
[BREED)-> () 
[LOC) -> () 
[Color)-> () 

Figure 17.7 A semantic frame representation for dog. 

Spoken Language Understanding 

When we need to describe a particular dog, say Lassie, we create an instance defini­
tion, as shown in Figure 17 .8. The knowledge base supporting a typical dialog system con­
sists of a set of type definitions, perhaps arranged in an inheritance hierarchy, and a set of 
instances. 

[DOG:] -

[NAME)->{Lassie) 
[BREED]->(Collie) 
[LOC] -> () 
[Color)-() 

Figure 17.8 An instance of semantic frame dog. 

Fillers in semantic frames can be attained by attachment of inheritance, procedures or 
default. Attributes in frame can typically be inherited, as the Lassie instance inherits mam­
malian properties from the DOG type definition. In some cases, properties of a particular 
dog may be dynamic. Sometimes attached procedures are used to fill dynamic slots. For 
example, the location of a dog may be variable, and if the dog has a Global Positioning Sys­
tem (GPS) chip in its collar, the LOC property could be continually updated by reference to 
the GPS calculations. Furthermore, procedures of the type when-needed or when­
filled can also be attached to slots. Finally, some default value could provide a typical 
value for a slot when the information for that slot is not yet available. For example, it might 
be appropr:ate to set the default color for dog frame as white when such information is not 
available. For frames without a default-value slot, it is natural to define mandatory slots 
(slots' values must be filled) and optional slots (slots could have null value). For the dog 
frame, it is reasonable to assume the NAME slot should be mandatory while the COLOR 
slot can be optional. 

Often descriptions can be attached to slots to establish constraints within or between 
frames. Description may have connectives, co-referential ( description attached to a slot are 
attached to another) and declarative conditions. For example, the return-date slot of a round­
trip itinerary frame must be no earlier than the departure-date slot, and this constraint can be 
specified by descriptions in both slots. Descriptions can also be inherited and are often im­
plemented by a special procedure (different from the slot-filling procedure) attached to the 
slot. 

The main motivation for having multiple semantic classes for each entity type is to 
better encapsulate the language, semantic, and behavior models based on the domain knowl­
edge. While the entity relationships capture the domain knowledge, the semantic class hier-
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Chy represents bow knowledge can be expressed in the semantics of a lang d h ar . . . . Th uage an t us 
can cover lingu_1st1c vanat1on: e ~oncept of semantic objects/classes is similar to that of 
objects/classes tn m?dern o_b1ect-onente~ programming. The semantic classes in Dr. Who 
(S9, 60] are a good 1llustrat10n of b_orrowmg some important concepts from object-oriented 
programming to e_nhance the effecti:ene~s ~nd efficiency of using semantic objects/classes 
to represent domain knowledge and lmgutsttc expressions. . 

The semantic grammar used in the Dr. Who Project (58) contains the definitions of 
semantic classes that refer to real-world or functional entities. A semantic class is defined as 
a semantic _frame co?taining a _set of slot~ that need to be filled with terminal (verbatim) 
words or with recursive semantic class obJects. For example, ByRel is a semantic class that 
has the type PERSON. The semantic grammar specifies that it has two slots-one has to be 
filled with an object of a semantic class having the type PERSON, and the other has to be 
filled with an object of a semantic class having the type P _RELATION. On the other hand, 
the syntax grammar for this semantic class is specified by the <cfg> tags. Within <cfg> tags, 
several production rules can be specified to provide linguistic constraints (orders) of possi­
ble expressions for this semantic class. The syntactic aspect of semantic classes will be de­
scribed further in Section 17.4.1. 

17.3.1.1. Type Abstraction 

As described above, a physical entity is an element in the real world that an application has 
to deal with and wishes to expose to the user via natural language. Since a physical entity 
can be referred to in many different ways, different semantic classes may have the same 
type. In Figure 17.9, a person can be referred to in terms of his name (Peter) or his relation 
to another person (Peter's manager); therefore, both semantic classes ByName and ByRel 
can share the same type, PERSON. 

Semantic classes are designed to separate the essential attributes of a semantic object 
from its physical realizations. A semantic class may refer to an entity, and the entity is called 
the type of the semantic class. The attributes of a semantic class can, in turn, be semantic 
classes themselves. The concept behind semantic classes is identical to the mechanism 
known as type abstraction commonly employed in software engineering using a strongly 
typed programming language. Semantic class can be recursive, as demonstrated in Figure 
17.9; a ByRel semantic class of type PERSON contains an attribute of PERSON type. Since 
the entities can be nested, i.e., a database column can in tum refer to another table, an attrib­
ute in the semantic class can also be an entity type. From an understanding point of view, a 
semantic class is an abstraction of the collection of semantic objects that have the same at­
tributes and usually can be expressed, and hence be understood, in similar manners. Under 
this view, a semantic object is just an instantiation. 

Another argument for type abstraction is that the multitude of semantic objects is usu­
ally a result of the numerous ways and perspectives that can be used to describe a physical 
entity. Quite often in an understanding system it is more important to correctly identify the 
entity of interest than to capture the mechanism that describes it. For instance, one may refer 
to a person by his name, job function, relations to others, or, in a multimodal environment, 
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by pointing to his photo on a display. All these references lead to semantic objects that are 
apparently distinct yet should be associated with the same physical entity. Accordingly, it is 
often useful to segregate the conceptual manifestation and its realizations into different lay­
ers of abstraction so that the semantic objects can be better organized and managed. Type 
abstraction allows the discourse sentence interpretation module to perform robust parsing, 
since sentence fragments can be parsed into its semantic class type that can be filled into 
slots with the same correspondent semantic type, as discussed in Section 17.4.1. 

<!-- semantic class definition for ByRel that has type PER­
SON--> 
<class type="PERSON" name="ByRel"> 

<slot type="PERSON" name="person"/> 
<slot type="P_RELATION" name="p_relation"/> 
<cfg> 

<prod> [person) [p_relation) </prod> 
<prod> [p_relation] of [person] </prod> 

</cfg> 
</class> 
< ! - - semantic class definition for ByName that has type PERSON too - - > 
<class type="PERSON" name="ByName"> 

<slot type="FIRSTNAME" name="firstname"/> 
<slot type="LASTNAME" name="lastname"/> 
<cfg> 

<prod> [firstname] [lastname] </prod> 
<prod> [firstname] </prod> 
<prod> (lastname] </prod> 

</cfg> 
</class> 
< ! -- semantic class definition for FIRSTNAME and LASTNAME --> 
<verbatim type="FIRSTNAME" 

<cfg> 

<prod> john I john' s I peter ... < /prod> 
</cfg> 

</verbatim> 
<verbatim type="FIRSTNAME" 

<cfg> 

</cfg> 
<prod> smith I smith's I sh / d aw ... < pro > 

</verbatim> 
< ! -- semantic class definition for p RELATION --> 
<verbatim type="P_RELATION" 

<cfg> 

<prod> manager I father I mother I-· </prod> 
</cfg> 

</verbatim> 

Figure 17.9 The semantic classes of type PERSON . 1 . 
as imp emented m Dr. Who. 
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Finally, type abstraction provides a unified framework for resolvin 1 . 
I · d g re at1ve expres 

. s in the discourse ana ys1s mo ule. Type matching often serves to impose tr -
s1011 . • • s ong con-

1.nts between real-world entities and relative expressions. The resolut'ion f 1 . stra . . . . o re att ve 
expressions 1s discussed m Section 17.5. 

17.3.1.2. Property Inheritance 

Introducing inhe_ritance into the sema~tic _class_ hier~rchy furth~r augments the multilayer 
abstraction mentioned above. Class A is said to mhent or be· denved from class B if class A 
possesses all the attributes of class B. In this case, class A is called the derived class and 
class B the base class. Inheritance is a mechanism to propagate knowledge and properties 
through the structural relationships of semantic classes. It is crucial for many types of intel­
ligent behavior, such as deducing presumed facts from general knowledge and assuming 
default values in lieu of explicit and specific facts. 

Perhaps the strongest motivation to employ inheritance is to facilitate the multilayer 
abstraction mentioned above. Very often, a base class is constructed with the general proper­
ties of a type of semantic objects, and a collection of more specific classes are derived from 
the base class to support the various embodiments of the underlying type of the semantic 
objects. For example, a semantic class hierarchy for the reference to a person can have the 
methods (e.g., by name, job function) and the media (e.g., speech, handwriting) of reference 
as the first layer of derived classes. One can then cross-match the viable means ( e.g., by 
name via speech, by name via handwriting) and develop the second layer of derived classes 
for use in the real applications. 

17.3.1.3. Functionality Encapsulation 

The goal of abstraction is to reduce the complexity in describing the world-in this case, the 
semantic objects and their relations. One can inspect the quality of abstraction by examining 
the extent to which the constructs, i.e., semantic classes, are self-contained, and how prolif­
erating they have to become in order to account for novel scenarios. Studies in data structure 
and software engineering propose the notion of encapsulation, which suggest that individual 
attributes have local rather than global impacts. This principle also serves as a guideline in 
designing the semantic class. 

Semantic class encapsulation can be elaborated in two aspects: syntactic and semantic. 
The syntactic encapsulation refers to the constraint that each attribute in a semantic class can 
only have relations to others from the same class. The collection for these relations is called 
the semantic grammar, which specifies how a semantic object of this type can be identified. 
ln Figure 17.9, the tag <CFG> specifies how the semantic class can be referred to syntacti­
cally via a context-free grammar (CFG). For the class ByRel, the specified syntax indicates 
that expressions like Peter's manager and manager of Peter are legal references to semantic 
c~ass ByName. The semantic encapsulation, on the other hand, dictates the actions and the 
disc~urse context under which they may be taken by a semantic class. This is discussed fur­
lher m Section 17 .5. 

-, 
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As described in 17.2.2, it is a nontrivial task to determine the types of speech acts. The 
semantic frame is an abstraction of the speech acts, the domain knowledge, and sometimes 
even the application logic. Once we have this rich semantic representation, how to parse 
spoken utterances into the semantic frames becomes the critical task. Nonetheless, the com­
bination of semantic frames and the semantic parser alleviates the need for a dedicated mod­

ule for determining speech acts. 
Semantic frames and associated robust parsing ( described in Section 17.4.1) have been 

widely used in spoken language understanding. For detailed description of semantic classes 
and frames, you can refer to [58, 65]. 

17.3.2. Conceptual Graphs 

The semantic-representation requirement has led to development of a proposal to standard­
ize the logical form that may form the basis of the internal semantics and semantic inter­
change of natural language systems, including dialog processing, information retrieval, and 
machine translation. The proposal is based on conceptual graphs derived from Charles 
Sanders Peirce [38) and the various types of semantic networks used in artificial intelligence 
·research. 

The conceptual graph (CG) proposal [53) specifies the syntax and semantics of con­
ceptual graphs as well as formats for graphical and character-based representation and ma­
chine-based exchange. In the terms of the proposed standard, a conceptual graph (CG) is an 
abstract representation for logic with nodes called concepts and conceptual relations, linked 
together by arcs. In the graphical representation of a CG, concepts are represented by rec­
tangles, and conceptual relations are represented by circles or ovals. The ordinary phrasing 
for the association of relations (circles) to concepts (rectangles) is has a(n) for arrows point­
ing toward the circle and is a(n) for arrows pointing away. 

Figure 17.11 illustrates a conceptual graph for the sentence Eric is flying to Boston by 
airplane. The mnemonic meaning of the arrows is: Fly has an agent who is a person, Eric, 
and a destination Boston. The proposal also specifies a linear form, as shown in Figure 
17 .10. In the form, concepts are in square brackets and conceptual relations are in parenthe­
ses. The hyphen means that relations of a given concept continue on subsequent lines, as 
shown in Figure 17 .11. 

[Fly] -
(Agent)->[Person: Eric] 
(Dest)->[City: Boston] 
(Inst)->[Airplane] 

~igu_re 17.10 A linear form representation of Fly has an agent who is a person, Eric, and a des­
tmauon Boston. 
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person: 
Eric 

Fly 

Airplane 

DEST City: 
Boston 

Figure 17.11 CG display form for Eric isjlyi11g to Boston by airplane [53]. 

873 

Each concept has a type and a (possibly empty) referent. An empty referent means that 
at least one, unspecified example of the type is assumed to exist somewhere (an ex.istential 
quantifier). So, in Figure 17 .10, the type is present, but the referent is left unspecified. In an 
application, the referent can be completed by referring to a train-schedule database and in­
serting a particular instance of a scheduled train departure Lime, location, and number. The 
valence of a relation is the number of required concepts that it links. For example, as shown 
in Figure 17 .12, the relation between would be a conceptual relation of valence 3, because 
typically (something/somebody) is between one (something/somebody) and another (some­
thing/somebody), as in the familiar English idiom "somebody is between a rock and a hard 
place" (meaning, to be in great difficulty). This corresponds to the linear form, as shown in 

Figure 17.13. 

Rock 

Person BETW 

Place ~ 
Figure 17.12 CG display form for a person is between a rock and a hard place [53]. 

[Person]<-(Betw) -
<-1-[Rock] 
<-2-(Place]->(Attr)->[Hard] 

Figure 17.13 A linear form representation of A person is between a rock and a hard place. 

17.4. SENTENCE INTERPRETATION 

We follow the convention of most modem SLU systems-treating semantic P_arser as a ~wo­
step pattern recognition problem (speech recognition followed by sentence mterpretation). 
This convention has the advantage of modular design of SLU systems. Thus, the same SLU 
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system can be used for text input. However, a unified semantic parser_ [5?, 62] may _achieve 
better accuracy, because no hard decision needs to be made before p1ckmg the optimal se-

mantic representation. . · 
The heart and soul of the sentence inte,pretation module 1s how to convert (translate) 

a user's query (sentence) into the semantic representation. In other ~ords, one has to fill the 
semantic slots with information derived from the content (words) m the sentence. In this 
section we describe two popular approaches to accomplish this task. Although they can be 
perceived as pattern matching methods, they differ in the matching mechanism. 

17.4.1. Robust Parsing 

Due to the nested nature of semantic classes, the semantic representation F in Eq. ( 17 .1) can 
itself be a tree of semantic objects. A user's utterance may consist of disjoint fragments that 
may make sense at the discourse level. For instance, in the context of setting up a meeting, 
the utterance "Peter Duke at a quarter to two" can be parsed into two semantic objects: a 
person and the meeting time. Therefore, the sentence interpretation module must deal with 
sentence fragments. 

The analysis of spoken language is a more challenging task than the analysis of writ­
ten text. The major issues that come to play in parsing spontaneous speech are speech dis­
fluencies, the looser notion of grammaticality that is characteristic of spoken language, and 
the lack of clearly marked sentence boundaries. The contamination of the input with errors 
of a speech recognizer can further exacerbate these problems. Most natural language parsing 
algorithms are designed to analyze grammatical input. These algorithms are designed to 
detect ungrammatical input at the earliest possible opportunity and to reject any input that is 
found to be ungrammatical in even the slightest way. This property, which requires the 
parser to make a complete and absolute distinction between grammatical and ungrammatical 
input, makes such formal parsers fragile for spontaneous speech, where completely gram­
matical input is the exception more than the rule. This is why a robust parser is needed. 

In Chapter 11, context-free grammars (CFG) can be written to analyze the structure of 
entire sentences. It is natural to extend CFG as a pattern matching vehicle. For example, a 
question such as "Where would you like to go?" might be used to solicit a response from a 
user, who might respond, "I would like to fly to Boston." The following grammar might be 
used to parse the response: 

S~NPVP 
NP~ N 
VP~ VCluster PP 

VCluster ~ would like to v 
V ~ go I fly 
PP ~ prep NP 
N ~ Boston I I 
Prep ~ to 
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The resulting phrase structure, characterizing the entire sentence, would be: 

875 

[S [NP [NI] ] (VP [VCluster would like to [V fly] ] (PP 
(prep to ] [NP [N Boston]]]]]] 

This structur~ in tum can provide the foundation for subsequent semantic analysis. 
Thus, the grammar 1s adequate for the example response and can be easily extended to cover 
more city names by expanding the N -) rule, i.e., by enlarging the lexicon. It has some defi­
ciencies, however. Some of the problems are purely formal or logical in nature, such as the 
fact that "Boston would like to go to I" can be equally parsed. These flaws can be addressed 
with fonnal fixes ( e.g., a more refined category system), but, in any case, they are not cru­
cial for the practical system designer, because pathological examples are rare in real life. 
The deeper problem is how to deal with legitimate, natural variations. 

The user might respond with any of the following: 

To Boston 
I'm going to Boston . 
Well, I want to start in New York and get to Boston by the 
day after tomorrow. 
I'm in a big hurry; I've got a meeting in Boston . 
OK, um, wait a second .. OK, I think I've gotta head for Bos­
ton. 

The above sentences incorporate different kinds of variation for which a sentence cov­
erage grammar typically has trouble accounting. For this reason, dialog system designers 
have gravitated to the idea of robust parsing. Robust parsing is the idea of extracting all and 
only the usable chunks of simple meaning from an utterance, ignoring the rest or treating it 
as noise or filler. Small grammars can be written that scan a word lattice (see Chapter 13) or 
a word sequence for just those particular items in which they specialize. For example, a Des­
tination grammar, not intended to span an entire utterance, can skim each of the complex 
utterances above and find the Destination in each case: 

Destination-) Preposition CityName 
Preposition-) to I for I in 
CityName -) Boston I ... 

. The noise or filler elements might include nonspeech noise (cough, laugh, breath, hesi­
lation), elements of phatic communication (greetings, polite constructions), irrelevant c~m­
ments, unnecessary detail, etc. As a user becomes accustomed to the limited yet practical 
domain of a system's operations, it is expected that variant phrasings would diminish, since 
~hey take longer to utter and contribute very little, though disfluencies would always be an 
issue. 
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Inglewood 

Figure 17.14 Word graph for hypotheses [61]. 

The original word graph or lattice from the speech recognizer might consist of nodes, 
representing points in time, and edges representing word hypotheses and acoustic scores for 
a given span in the utterance. Figure 17 .14 illustrates a sample of word graph for the exam­
ple "I would like to fly to Boston" with competing hypotheses. Using the Destination gram­
mar on the word graph in Figure 17 .14 will skip the earlier parts of the possible sentence 
hypotheses and identify the short fragment from node 6 to node 8 as a destination. If only 
the Destination grammar were active, a new view of the word graph would result in Figure 
17.15. 

This example shows that potential and legitimate ambiguities can persist even with 
flexible grammars of this type, but the key potential meanings have been identified. A robust 
parser that is capable of handling the example needs to solve the following three problems: 

• Chunking: appropriate segmentation of text into syntactically meaningful 
units; 

• Disambiguation: selecting the unique semantically and pragmatically correct 
analysis from the potentially large number of syntactically legitimate ones re­
turned; and 

• Undergeneration: dealing with cases of input outside the system's lexical or 
syntactic coverage. 

Grammars developed for spontaneous speech should concentrate on describing the 
structure of the meaningful clauses and sentences that are embedded in the spoken utterance. 
The goal of the parser is to facilitate the extraction of these meaningful clauses from the 
utterance, while disregarding the surrounding disfluencies. We use the semantic grammar in 
the Dr. Who SLU engine [61) to illustrate how this works. 
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Destination: Austin 

Figure 17.15 Word graph for hypotheses if only the Destination grammar is active (61]. 

877 

As shown in Figure 17.9, a Dr. Who semantic class mostly contains a set of slots that 
need to be filled with terminal words (verbatim) or with recursive nontenninal semantic 
classes. Strictly speaking, this semantic class grammar can hardly be called a grammar, 
since it is primarily used to define the conceptual relations among Dr. Who entities rather 
than the language expressions that are used to refer to the entities. The syntactic expression 
is specified by optional CFGs associated with each semantic class. In general, the syntactic 
grammars need to deal with three kinds of variation in surface linguistic fonn: 

1. Variation within a slot-When CFG is missing in the definition of semantic 
classes, the grammar could allow flexible assembly of an expression. For ex­
ample, if the <cfg> tags in Figure 17.9 are omitted, any sequence that con­
tains a word of a P _RELATION typed class and a word of a PERSON typed 
class can be an expression referring to a semantic object of ByRel such as 
John's father, father of John, or even John loves his father. Thus, CFGs are 
often specified within the semantic slot to provide linguistic constraints with­

out over-generating. 

2. Variation in the order of frame presentation-Many systems [64, 66] employ 
an island-driven robust parsing strategy where the slots in the semantic 
frames are filled by language fragments from parsing. Parsing of the slots is 
order independent. Thus utterances "Schedule a meeting with JQfm. at 3 PM" 
and "Schedule a meeting at 3 PM with John" can be processed without prob­

lems. 

3. Disfluencies and irrelevancies-Disfluencies and irrelevancies are unavoid­
able for spoken language input. The system has to deal with real utterance/~ 
such as "I'd really like to know whether a meeting by 3 PM would be at a 

possible for John." 
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To cope with these requirements, the robust pa_rsing alg~rithm. [ 61] is ~ically imple­
mented as an extension of the bottom-up chart-parsmg algonthrn discussed m Chapter 11. 
There are a number of additional requirements for robust parsing: 

• The requirement that a hypothesis _and a partial parse have to cover adjacent 
words in the input is relaxed here. This effectively skips the words and en­
ables the parser to omit unwanted words in input sentences. 

• The combination of a hypothesis with a new partial parse taken from agenda 
results in multiple new hypotheses. Those hypotheses may have different 
critical position number. In other words, they are expecting different partial 
parses. This effectively skips the symbols in a rule, so the parser can continue 
its operation even if something expected by the grammar does not exist. 

• The sequential order in which the partial parses are taken out from the agenda 
is crucial here. A partial parse that has the minimum span and highest score 
and that covers the word closest to the sentence start position (in that order) 
has the highest priority. 

In a robust parser, if there is already a parse g that has the same symbol and span as 
the new parse h, we need to compare their scores so we only keep the better one. The parse 
scoring can be the likelihood of the parse with respect to a heuristic CFG enhanced with a 
mechanism of assigning probability for insertions and deletions. It can also be based on heu­
ristics when no training data is available. The typical heuristic values may include the num­
ber of words covered by a parse; the number of rule symbols skipped in the parse tree; the 
number of nodes in the parse tree; the depth of the parse tree; and the leftmost position of 
the word covered by the parse. 

17.4.2. Statistical Pattern Matching 

The use of CFGs to capture the semantic meaning of an utterance can be augmented with 
probabilistic CFGs or the unified language model described in Chapter 11 . ln the statistical 
parser, the application developers first define semantic nonterminal and preterminal nodes. 
A large number of sentences are then collected and annotated with these semantic nodes. 
Th..:! statistical training methods are used to build the parser to extract semantic meaning 
from an utterance. 

For example, a statistical parsing algorithm [ 15, 26] takes one step further toward 
automatic discovery of complex CFG rules. Instead of relying on hand-written CFG rules, it 
builds a statistical parser based on the tree-banked data where sentences are labeled with 
parsing-tree structure. It identifies simple named classes like Date, Amount, Fund, or Per­
cent and only handles simple classes using the local context. Words that are not part of a 
class are tagge~ a~ word, indicating that the word is passed on to the subsequent parser. The 
subse~uent statistical parser takes a classed sentence. It generates the most likely semantic 
parse m a bottom-up leftmost derivation order. At each step in the derivation, the parsers use 
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CART (see Chapter 4) to assign probabilities to primitive parser actions such . . . . . . as ass1gnmg a 
tag to a word or dec1dmg ~~en to begm a new con_stituent. A beam search is used to find the 

·e with highest probability. The two-step parsmg for the sentence "Please t ... pars ransJer 011e 
/umdreddollarsjrom \'Oyage~fund tofidelityfimd" is ill~strated in Figure 17.16. 

The hidden understa11dmg model (HUM) [29, 30) 1s another statistical pattern match­
• 0 techniques. Let W denote the sequence of words and S denote the meaning of the utter­
::~e. According to Bayes' rule. we have the following equation: 

P(W IS)P(S) 
P(S I W) = P(W) (17.2) 

The task of sentence interpretation can then be translated into finding the meaning represen­

tation S , such that 

S =argmax P(W I S)P(S) (17 .3) 
s 

P(S) is the semantic language model that specifies the prior statistical distribution of 
meaning expressions. The semantic language model is based on a tree-structured meaning 
representation where concepts are represented as nodes in a semantic tree with subconcepts 
represented as child nodes. Figure 17 .17 illustrates such a tree-structured meaning represen­
tation for the sentence "United flight 203 from Dallas to Atlanta. " The Flight concept has 
Airline, Flight_Ind, Flt_Num, Origin, and Destination subconcepts. Origin and Destination 
subconcepts have terminal nodes Origin_Ind and City and Dest_Ind and City, respectively. 
Each terminal node (like City) could be composed of a word or of a sequence of words. 

Semantic language model P(S) is modeled as P(S; I SH, concept), where concept is 
the parent concept for S1 and SH. Based on this definition, the probability 
?(Destination I Origin, Flight) is bigger than ?(Origin I Destination, Flight), since users 
often omit the origin for a flight in an airline reservation system. 

P(W IS) is called a Lexical realization model, which is basically a word bigram 
model augmented with the context of the parent concept: 

(17.4) 

Both the semantic language model and lexical realization model are estimated from a la­
beled corpus. Viterbi search is applied to find the best path of meaning representation S 
according to Eq. (17.3). 
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s 

word word amount amount fund fund word fund fund 

I I I I I I I I I 
please transfer one hundred voyager fund to fidelity fund 

(a) 

XFER 
s 

'-...... \ - BUY SELL 

1~D-SELL I 
FUND-BUY 

/ "" / ""' null null d-amount null fund-sell null fund-buy 

I I I 
please transfer AMOUNT from FUND to FUND 

(b) 

Figure 17.16 An example class tree in IBM's statistical class parser. (a) The sentence is classi­
fied into semantic classes. (b) The classed sentence is parsed into the semantic tree based on 
CART [15]. 

FLIGHT [AIRLINE[United] 
FLIGHT_IND[flight) 
FLIGHT_NUM(203) 
ORIGIN[ORIGIN_IND[from) CITY[DALLAS)) 
DESTINATION[DEST_IND[to) CITY[Atlanta)]] 

Figure 17.17 A tree-structured meaning representation for United flight 203 from Dallas to At­
lanta in BBN's HUM system [29]. 

Amazon/VB Assets 
Exhibit 1012 

Page 906



--- . Discourse Analysis 

5 DISCOURSE ANALYSIS 11. • 

881 

The sentence interpretation module only attempts to interpret each sentence "th kn 
d. I . . Wt out owl-

d e about the current ta og status or discourse. As we mentioned in Sect" 
17 2 e g . . "bl t th . h . . . mn . ' some­

times it 1s 1mposs1 e t~'Sghe e nhg t mte~retation without discourse knowledge. For 
example, in th~ sentence _ow me t e mo~mng flight" one must have the knowledge what 
the morningfhg_ht refers to m order to denve the real-world entitiy, even though the sen­
tence interpretation module comprehends perfectly what morning flight means. 

Discourse information formed by dialog history is necessary not only for semantic in­
ference but also for inconsistency detection. Inconsistency detection is important in a dialog 
system, since the _dialog man~gement module ( described in Section 17 .6) needs such infor­
mation to disambiguate the dialog flow when needed. For example, in an airline reservation 
system, the returning date should not proceed the departure date, which may be conveyed in 
the previous dialog turns. The discourse analysis module needs to maintain a stack of dis­
course trees so that the semantic representation remains the same whether the information is 
obtained through several dialog turns or a single one. 

The goal of the discourse analysis module is to collapse the discourse tree by resolv­
ing the semantic objects into the domain entities. This process is also called semantic 
evaluation. When the resolution is successful, the physical semantic object is officially 
bound to the domain entities. The last process is often called semantic binding. Because an 
entity can be identified by partial information ( e.g., last name of a person), binding is neces­
sary for the system to grasp the whole attributes of the objects the dialog is concerned with. 
Semantic binding is also critical for intelligent behaviors such as setting the discourse con­
text for reference resolution. The semantic evaluation and binding are the basics for driving 
the dialog flow. The communication mechanism between discourse analysis and dialog 
manager is typically event driven. Events that can be passed to the dialog manager are 
evaluation succeeded, evaluation failed, invalid information, and value to be determined. 
The discourse analysis module often needs to tap into the knowledge base with the semantic 
object attributes and entity memory for semantic evaluation. The semantic evaluation usu­
ally proceeds from the leaves up toward the root of the discourse tree. The process ends 
when the root node is converted, which indicates the dialog goal has been achieved. The 
functions of Discourse analysis module are the following : 

• Converting the relative expressions (like tomorrow, next week, he, it, the 
morning flight, etc.) in the semantic slots into real-world objects or concepts 
(such as 1/5/2000, the week of 2/7/2000, John, John 's dog, etc.). 

• Automatic inference-Based on dialog history, the module may decide some 
missing information for certain slots. For example, an airline reservation sys­
tem could infer the destination city for the origin of the return flight even 
though it is not specified. 

' Inconsistency/ambiguity detection-Since the discourse analysis module can 
perfonn automatic inference for some slots, it can perform consistency 
checking when it is explicitly specified during the current dialog tum. 
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17.5.1. Resolution of Relative Expression 

There are two types of relative expression. The first type is the reference, relating linguistic 
expressions to real-world entities. This may involve disambiguation, by inference or direct 
user query. When a user says, "Give me Eric's phone number," many people with first name 
Eric may exist in the database. The second type of relative expression is the co-reference. 
Co-reference occurs when different names or referring expressions are used to signify the 
same real-world entity. For example, in the sentence "Nelson Mandela has a long history of 
leadership within the African National Congress, but he is aging and nobody was surprised 
yesterday when Mandela announced his successor" the terms Nelson Mandela and Mandela 
refer to the same person. 

In linguistics, there are three different types of co-references. The example above is an 
ellipsis, where the omitted word(s) can be understood from the context. The other type is 
deixis. A deixis refers to the use of a word such as that, now, tomorrow, or here, whose full 
meaning depends on the extralinguistic context in which it is used. Location deictic co­
references are very common for multimodal applications where pointing devices (modali­
ties) like pens can be used to indicate the real locations. The most common type of co­
reference is anaphora, which is a special type of co-reference, where a word or phrase has 
an indirect, dependent meaning, standing for another word or concept previously introduced. 
The pronoun he in the sentence above is an anaphor referring to Nelson Mandela too. 

Time deictic co-references like tomorrow, next week, the week of 217/ 2000, etc., are 
among the easiest category for resolution (requiring only simple domain knowledge). The 
resolution of other relative expressions usually requires deep natural language processing. 
We focus our discussion on anaphora resolution, since it represents the most challenge one 
among others and approaches of solving this problem are typical of the kind of methods 
appropriate for resolving a variety of other relative expressions. 

17.5.1.1. Priority Entity Memory 

We introduce a simple resolution method [60] that is based on semantic class type abstrac­
tion and priority entity memory. This method is straightforward and is very powerful to han­
dle most cases even without complex natural language processing. 

Whenever a conversion of a relative expression occurs, the consequent entity is added 
to the entity memory. The entity memory consists of turn and discourse memories. Either 
type of memory consists of a number of priority queues that are delineated by entity types. 
An entity can only be remembered into the queue of compatible types (e.g., through inheri­
tance). When referred to, the memory item increases its priority in the queue. This treatment 
resembles the cache language model described in Chapter 11. 

The ~ memory is a cache for holding entities in each turn. There are two types of 
~m ~emones. The explicit memory holds the entities that are resolved directly from seman­
tic obJects. In contrast, the implicit memory is for entities that are deduced from relative 
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P
ressions. In accessing the memory, the explicit turn memory takes precede t h 

ex h. h . h h. . . n over t e 
discourse memory, w tc m tum . as a 1gher pnonty than the implicit. At the end of the 
ystem's tum, all the turn memory items are moved and sorted into the discourse mem 

5 
The distinctions between the three kinds of memories and the rules to operate th~mry. 

h · fi are 
designed as a simple mec amsm or most common but not all possible scenarios. It is worth 
noting that the design has a bias toward direct and backward reference. For example, in the 
expression "Forward '.his mail to John, his manager, and his assistant," the second his will 
be evaluated as refemng to John, not to his manager. The implicit memory, however, pro­
vides a back-off for expressions like "Send email to John, his manager, and her assistant" in 
which the pronoun her should be taken as indicating John's manager is a female and re­
solved accordingly. However, since we store only the entities and not the semantic objects 
into the memory, the mechanism is not suitable for forward or pleonastic references, as in 
the examples like "Since his promotion last May, John has been working very hard" or "!1 
being so nice, John moved the meeting outside." Fortunately, these natural language phe­
nomena are rare in a spoken dialog environment. 

It is sensible to confirm3 the resolved entities with users due to possible resolution er­
rors. In cases where many entities in the entity memory can be matched with a semantic 
object, a decision of not performing any resolution and directly inquiring the user for disam­
biguation may be a better solution. In general, name references can be resolved by a se­
quence of simple rules. In the example of "Give me Eric's phone number" the SLU system 
may just generate the query message "What is Eric's last name?" when many people in the 
entity memory have the same name Eric. 

17.5.1.2. Resolution by NLP 

Extensive understanding is crucial for perfect resolution for relative expressions (in particu­
lar, anaphora). Though morphology, lexical semantics, and syntax can be helpful for disam­
biguation, ultimately it is a problem of inference using real-world knowledge and dialog 
state or context. In a discourse model of focus, it is assumed that speakers usually center 
their attention on a single main topic called the focus. Some utterances introduce or reintro­
duce a focus; others elaborate on it. Focus elements typically change (by being suspended, 
interrupted, resumed, etc.) over the course of a dialog. Once a focus element has been intro­
duced, anaphora is usually used to represent it, making dialog more efficient. 

Anaphora resolution specifies the referent of a pronoun or other anaphoric expression. 
This association should be supported by inference about properties and probabilities in the 
real world. Anaphora resolution can be done with a simple entity focus principle. For exam­
ple, in the very common schedule a meeting type of dialog application, an exchange such as 
that shown in Figure 17.18 is centered on the initial focus element-the proposed meeting­
aod anaphora are likely to relate to that central topic, at least early on in the exchange. The 

i One m· ht d . . . . . . . . Ii 1· ) t use based on the confidence ag ec1de which confirmation strategies (exphctt or 1mphc1t con mna ion ° 
O~!he resolutions. The details of confirmation strategies are described in Section 17·6· 
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( 1) 

(2) 
( 3) 

(4) 

Spoken Language Understanding 

I'd like to schedule a [meeting] 1 with [Christoph]l. 

[It] 
1 

can be anytime after 4. 
Tell [him]. [he] can [ grab a cab over here] k. 

) j ' 1 
[That]k should be only if he's running ate. 

Figure 17.18 A schedule a meeting dialog example showing different anaphora usage. 

subscript indicates the co-reference to the same entity. The focus is the meeting proposed in 
(I). The pronoun it in (2), by the very simple mechanism discussed here, can be interpreted 
as referring to the meeting. Some grammatical knowledge and the semantic class type 
should help the system to resolve him in (3) as Jim rather than the meeting. In sentence (3) 
the focus has shifted to the action of taking a cab, to which that refers in sentence (4). The 
locative here in (3) must also be resolved to the speaker's location. 

Most formal models of anaphora resolution originated from research into discourse 
and human-human dialog. They tend to be overpowered, in making elaborate provision for 
greater topic and reference variation than exists in typical computer speech dialog applica­
tions of the present time. On the other hand, while they can provide resolution for some 
complicated situations, they tend to be underpowered, in failing to deal robustly with the 
realities of imperfect speech recognition and parsing. 

Some of the work on anaphora resolution in dialog relies on elaborate focus-tracking 
mechanisms [47]. These tend to be somewhat circular in nature, in that anaphoric reference 
resolution is required for the focus-tracking algorithms to operate, while the anaphoric reso­
lution itself relies on the currently identified focus structure of the dialog or discourse. 
Rather than elaborate on these possibilities, we instead present a number of relatively 
straightforward heuristics for anaphora resolution, some of which have been developed 
based on textual studies, but which may be relevant to increasingly complex human­
computer dialog in the future. The discussion here is limited to the resolution of intersenten­
tial and intrasentential pronominal anaphora. Full noun-phrase anaphora, where one syn­
onymous noun phrase is co-referent with another, requires even more powerful grammatical 
and semantic resources. 

Syntactic conditions can be tested when a parse tree showing syntactic constituency is 
available. The most obvious syntactic filter for disallowing co-reference is simple gram­
matical feature agreement. For example, the following proposed co-indexed relation is not 
semantically possible in ordinary discourse, and the restriction is explicitly provided through 
the lexical morphology and syntax of the language: 

The [girl] 1 thought [he] 1 was frightening. 

Though the theoretical details can be complex [37], the basic intuition of syntax-based 
anaphoric resolution is that nonreflexive pronouns that are syntactically too close to a candi­
date co-referential NP (antecedent) are disfavored. For example, in a sentence such as: 

[Bill's] 1 photo of [him] 1 is offensive. 
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the coindexing of Bill with him is disallowed. By disallowed we mea th t . 
1. h · ' n a your mnate 

sense of proper Eng 1s grammar and interpretation will balk at the proposed rel f Th 
'd ha ·s t 'd . . a ton. e 

language pro:1 es a mec ru m o ovem e some proxmuty restrictions, as in the following 
repaired vers10n: 

[Bill's) 1 photo of [himself), is offensive. 

So, when is a pronoun too close to a possible antecedent? The most important sy t _ 
· · h · n ac 

tic concepts for dete1:11mmg anap one relations rely on structural attributes of parse trees. In 
fact, treatment of this problem represents a very large and highly argumentative subfield 
within theoretical ~nguisti_cs. Neverthele_ss, any treatment of anaphora resolution on purely 
syntactic grounds 1s very hkely to end with a list of conditions that can mostly be subsumed 
under some form of x-bar theory [25), as it is called in the theoretical linguistics. 

17.5.2. Automatic Inference and Inconsistency Detection 

Automatic inference can be carried out through the same framework of priority entity mem­
ory described in Section 17 .5.1. l. During semantic evaluation, a partially filled semantic 
object is first compared with the entities in the memory based on the type compatibility. If a 
candidate is found, the discourse analysis module then computes a goodness-of-fit score by 
consulting the knowledge base and considering the position of the entity in the memory list. 
The semantic object is converted immediately to the entity from the memory if the score 
exceeds the threshold. In the process, all the actions implied by the entities are carried out 
following the order in which the corresponding semantic objects are converted. 

In general, automatic inference can be implemented as description procedures attached 
to semantic slots as described in Section 17.3. l . In the example of an airline reservation sys­
tem, a procedure or rule can be attached to automatically infer the destination city for the 
returning flight. The other powerful strategy for automatic inference is slot inheritance. 
When changing dialog tum for different semantic objects under the same service, the system 
may allow such slot inheritance to free users from repeating the same attributes. For exam­
ple, after a user asks "What is Peter Hon's office number?" he may abbreviate his next query 
to "How about Derek Acero 's?" Slot inheritance will allow the second semantic object re­
garding Derek Acero to inherit the office number slot even though it is not explicitly speci­
fied. 

Inconsistency checking is crucial to initiate necessary events for dialog repair. A dia­
log may be diverted away from the ideal flow for various reasons (e.g., misrecognition, out­
of-domain reference, conflicting information), many of which require domain- and applica­
tion-specific knowledge to guide the dialog back to the desired course . This process is called 
dialog repair. Similar to automatic inference, inconsistency checking can be implemented as 
description procedures attached to semantic slots. In addition, inconsistency checking c_an 
also be triggered when semantic binding for a partially filled semantic object fails (e.g., in­

dicated by a failed database lookup). The discourse analysis module is responsible only for 
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sending the dialog repair events to the dialog ma_nager, ~nd it leaves the realization of the 
repair strategy to the corresponding event handler m the dialog ~anager. 

For example. consider a query: "Find me the ch~apest flight fro~, Seatt~e to Memphis 

011 Sunday." The semantic binding fails becaus~ there 1s actually no flight ~va1lable on Sun­
day from Seattle to Memphis based on the fhght_ database. Thus,_ the discourse manag~r 
passes such event to the dialog manager, and the dialog manager will generate an appropn­
ate message to let the users be aware of this fact. 

17.6. DIALOG MANAGEMENT 

For most applications, it is highly unlikely that a user can access or retrieve the desired in­
formation with just a single query. The query might be incomplete, imprecise, and some­
timed inconsistent with respect to the discourse history. Even if the query is unambiguous, 
the speech recognition and sentence interpretation modules in a SLU system may make mis­
takes. Thus the SLU system needs to provide an interactive mechanism to perform clarifica­
tion, completion, confirmation, and negotiation dialogs with users. By default, the objective 
of such a dialog is to help users accomplish the required tasks more efficiently. Being user­
friendly is also one of the major objectives for dialog systems as discussed in Chapter 18. 
Since the goal of a SLU system is to provide a natural conversation interface for users, the 
ultimate SLU system should act like a real human, yet still possessing perfect memory and 
superfast computation. Based on these criteria, it is not hard to see why mix-initiative sys­
tems are preferred over system-initiative systems. 

The dialog manager controls the interactive strategy and flow once the semantic mean­
ing of the query is extracted and stored in the system's representation ( discourse trees). The 
architecture of SLU dialog systems resembles the one used in event-driven GUI systems. In 
the same way that GUI events are assigned to graphical objects, the dialog events are as­
signed to semantic objects that encapsulate the knowledge for handling events under various 
discourse contexts. As mentioned in Section 17.5, the discourse tree with domain entity 
binding is passed along with necessary dialog events generated from the discourse analysis 
module to the dialog manager. The dialog manager acts as an intelligent domain knowledge 
handler that uses the semantic meaning of the query to check against domain-specific 
knowledge (including domain database and application logic) and generates the desired an­
swer for the query or produces other necessary dialog strategy. 

In this sense, the dialog manager functions as a GUI application that contains an event 
handler. The event handler handles dialog events passed from the discourse analysis module 
and generates appropriate responses to engage users to solve the problems. In addition, the 
dialog manager needs to implement the application logic to generate appropriate actions 
(e.g., make real airline and hotel reservation). In this section we discuss two modeling tech­
niques for implementing application logic, and different dialog behaviors related to event 
handling. 
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11.6.l, Dialog Grammars 

. 1 g grammars use constrained, well-understood fon11alisms such as finite 1 1 
. 

D10 o . . . . . . s a e machmes 
P
ress sequencmg regulant1es m dialogs, ten11ed adjacency pairs. The rule 

to ex . . 1 . bl d. 1 . s state se-
tial and h1erarch1ca constramts on accepta e 1a ogs, Just as syntactic gramm 1 quen , . . ar ru es 

te constraints on grammatically acceptable stnngs. For example, an answer or a re 
sta . . . +. II . . fi . quest 
for clarificat10n 1s likely to 10 ow a question, Just as a mte state grammar might provide 
for a noun or an adjective, but not a verb, to follow a determiner such as the. In most dialog 
grammar systems, dialog-ac~ types (explain, co~1plai~, reque~t, etc. cf. Section . 17 .2.2) are 
categorized ,and the categories are used as terminals m the dialog grammar. This approach 
has the advantage that the formalism is simple and tractable. At every stage of processing 
the system has a basis for setting expectations, which may correspond to activating state­
dependent language models, and for setting thresholds for rejection and requests for clarifi-

cation. 
In its essence, the dialog grammar model is exemplified by a rigid flowchart dia-

gramming system control of the type and sequence of interaction. Figure 17 .19 shows a fi­
nite state dialog grammar for an airline reservation SLU system. In this simple example, 
dialog-act categorization is omitted, and the interactions are controlled based on bare infor­
mation items. This grammar makes simple claims: the interaction is basically question­
answer; the topic queries are answered on-topic if possible, and presumably with a confir­
mation statement to catch the existence of a problem. 

This system is easily programmed. The challenge lies in providing tools to application 
authors to ease the tedium and minimize the errors in the construction of grammars, and to 
allow for more flexibility and spontaneous deviations from the expected transitions in the 
grammar. Such deviations may be important for novice users, who may more naturally tend 
to give their infonnation (origin, destination, time) in one single utterance or in a different 
order. 

In general, the dialog grammar approach has the following potential disadvantages 

• The interaction may be experienced by a user as brittle, inflexible, and unfor­
giving, since it is difficult to support mix-initiative systems. 

• Dialog grammars have difficulty with nonliteral language (indirection, irony, 
etc.). 

• A speech act might be expressed by several utterances, complicating the 
grammar. 

• A single utterance might express several speech acts, complicating the 
grammar. 

To address these issues, more sophisticated approaches to enhance hand-built finite 
Slate dialog grammars have been attempted. For example, once can add statistical knowl­
edge based on realistic data to dialog grammars. The statistical learning methods, like come 
CART, n-grams, or neural networks [3] can be used to learn the association between utter­
ances and states in the training data. 
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where you want to leave from? 

Stop 

Figure 17.19 A finite state dialog grammar for airline reservation (after [19]). 

17.6.2. Plan-Based Systems 

Plan-based approaches [2, 41] seek to overcome the rigidity and shallowness of dialog 
grammars and templates. They are based on the observation that humans plan their actions 
to achieve various goals. Thus, plans and goals are in some degree of correspondence. A 
system operating under these assumptions needs to infer goals, construct and activate plans. 
A user may have a preconceived plan for achieving his/her goals or may need to rely on the 
system to supplement or construct appropriate plans. 
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Plan-based syst_ems are well studied in artificial intelligence (Al) [32 
thematical foundation of the plan-based approach is inference Th b h . ' 

65
], The 

rna d f h d · · e e av1ors of the sys 
and the knowle ge o t e omam are programmed as a set of 1 · 1 1 . -tem . . h h og1ca ru es and axioms 

The system mteracts wit t e user to gather facts, which consequent! tr' 1 · 
h 

. . . Y 1gger ru es and gen-
....,,e more facts as t e mteraction progresses. As illustrated in Eq ( 17 1) 1 e,.. . d · h . · · , t 1e goal of the 

dl.alog manager 1s to enve t e action A based on discourse semantic s T k. h. . · 1 • · a mg t 1s view 
the dialog manager 1s a natura outgrow of the semantic evaluation pro It - h ' , . . cess. 1s t e step 
where the syste~ s intent 1s computed. The outcome of the dialog manager is a message (via 
different rendermg) the system conveys to the user. 

In essence, a p~an-based system is an embodiment of a state machine for which differ­
ent discourse semantics are regarded as states. The difference, however, is that the states for 
the plan-based system are generated dynamically and not limited to a predetennined finite 
set. This capability of handling an unbounded number of states is a key strength of plan­
based systems in terms of scalability. 

Even a simple interaction can involve a variety of complex subgoals and pragmatic in­
ferences. A partial plan for the airline reservation example in Section 17 .6.1 is illustrated in 
Figure 17 .20. One wants to know if a flight itinerary (F 12) is an available one. The relation­
ships among the goals and actions that compose a plan can be represented as a directed 
graph, with goals, preconditions, actions, and effects as nodes and relationships among these 
as arcs. These graphs illustrate the compositional nature of plans, which always include 
nested subplans, down to an almost infinite level of detail. The appropriate level of planning 
specification is thus a judgment call and must be application dependent. 

The arcs are labeled with the relationship that holds between any two nodes. SUB 
shows that the child arc is the begiruting of a subplan for the parent. At some point appropri­
ate to the domain of the planning application, the SUBs will be suspended and represented 
as a single subsuming node. In Figure 17.20, ENABLE indicates a precondition on a goal or 
action. EFFECT indicates the result of an action. ENABLE indicates an enabling relation­
ship between parent and child nodes. 

Plan-based approaches incorporate a rich and deep model of rational behavior and, 
thus, in theory, permit a more flexible mode of interaction than do dialog grammar ap­
proaches. However, they can be complex to construct and operate in practice, due to relia?ce 
on logical and pragmatic inference, and due to the fact that no fully understood theoretical 
unde_rpinning exists for their specification. The complexity of the domain of mo_deling often 
requires significant efforts from human experts to author the logical rules and axioms. 

In plan-based theories of agent interaction, each dialog participant needs to conStruct 
and ~aintain a model of all participants' goals, commitments, and b~liefs. _Plans are,_ th~s, a 
~elatively abstract notion, leading to the hope that plans could be designed m an appl'.cat1~n-
1ndependent fashion, which would pennit the development of plan libraries. Such hbr~nes 
could be easily adapted to a variety of domains; just as specifi: entity models are denved 
from generic classes via inheritance in object-oriented programmmg. 

Amazon/VB Assets 
Exhibit 1012 

Page 915



890 Spoken Language Understanding 

Available_Flight(F12) 

Outbound_Leg(F12,L1) 

Time(F12,T2) 

EFFECT 

Later (T2,T1) 

Same_city (C1 ,C4) 

Figure 17.20 A partial plan for the airline reservation example in Figure 17.19 represented as a 
graph. 

The following operational cycle exemplifies the plan approach, describing interaction 
of two agents, X (the helpful assisting agent) and Y (the client). Interaction is stated from 
X's point of view [10). 

• Observe Y's act(s) 

• Infer Y's plan (using X's model of Y's beliefs and goals) 

• Debug Y's plan, finding obstacles to success of plan, based on X's beliefs 

• Adopt the negation of the obstacles as X's goal 

• Plan to achieve those goals and execute the plan 

A flight itinerary that at least contains an Outbound_Leg subgoal and another possible 
lnbound_Leg subgoal is a round trip. Let's assume Fl2 is a round trip itinerary. At the In­
bound_Leg node, the interesting question is how much of the underlying goal 
(Time(Fl2,T2), Origin(F12,C3) and Dest(Fl2,C4)) can be inferred by the infonnation pro­
vided by the system from the dialog so far, or from other known conditions. For example, 
the destination of the Inbound_Leg can be inferred from the origin in the outbound leg. The 
origin city can be inferred similarly. Going one step further, you can also infer that the de-
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A..t1,re time for the inbound leg must occur after the departure time of th b 
p11u... 'nfi h . h E~1:r, e out ound leg (Tl < TZ). Those three I erences are s own m t ~ :1Ject arcs in Figure 17 _20_ 

The goal inference could be a cooperative process, with the system m k' . . 
'fy d h I . a mg the mini-

mal queries needed t~ ven an c oose am~ng a ternahve hypotheses. Or, it could be based 

Pure inference, with perhaps a confirmation step. Inference modeling can get on . . very com-
plicated. The technologies of mference are complex models of the beliefs, desires, and inten-
tions of agents, making use of generic logical systems, which operate over the propositions 
corresponding to the nodes in a plan structure such as shown in Figure 17 .20. Both user and 
system are assumed to be operating fr~~ partially ~hared _worl~ and discourse models con­
sisting of beliefs about all relevant entitles and their relat1onsh1ps. If utterances and speech 
acts are not in conflict with the constraints implied by the world models, communication and 
action can proceed. Otherwise, either the utterance itself must be further interpreted, sup­
plemented, or clarified, or the world models need to be changed. 

The natural expression of rational behavior, communication, and cooperation is some 
form of first-order logic. We define axioms and inference rules for Belief and Intention. If 
the modal operator for belief is B, axioms and inference rules for an agent i with respect to 
proposition schemata <I> or 'I' could be formalized in the following logical expression. 

(B1(¢)" B1 (¢:::) l/1)):::) Bi(lfl) 

B,(¢):::) -,B1-,¢ 

B1(¢):::) B1(B1(¢ )) 

-,Bi(¢):::) B;(-,B,(¢)) 

--,B;(¢):::) -,B;(B,(¢)) 

VxB,(¢):::) B,(Vx¢) 

(17.5) 

These describe appropriate conditions on beliefs of rational agents, such as entailment 
and consistency. Intentions, in turn, are formalized with respect to beliefs. For example, if an 
agent is to form an intention to bring about a state of affairs, it is reasonable that s/he be­
lieves this state of affairs is not currently in force: 

I,(¢):::) B1(-,¢) (17.6) 

Other such axioms formalize related constraints on intentions, e.g., having an intention 
entails a commitment to achieving any preconditions, and belief in the possibility of doing 
so. Many more axioms involving all aspects of rational behavior, and formalizing, to some 
extent, the Gricean Maxims can be devised. For example, a kind of conversational coopera­
tion occurs when a participant i is willing to come to believe what i believes his/her conver­
~ational partner j is attempting to communicate (at least for the limited operational domains 
tn question!), unless i holds beliefs to the contrary: 

B,(//B,(¢(1)))) "-,B1(-,ifJ(j)):::) B,(¢(1)) (17.7) 

When beliefs and intentions are modeled in this fashion, it may be possible to directly con­
struct the core of a dialog engine based on rational principles as a theorem prover. Such a 
treatment is, however, beyond the scope of this discussion. 
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A few desirable system behaviors that would naturally follow from limited infer­
ence and goal tracking can be briefly examined. U~like ~he dialog grammar a~pr?ach, a 
plan-based system allows digression, since the user's mtentlon model has been butlt mto the 
plan. When a system is confused about a user's input, a cooperative system could begin to 
perform the critical pragmatic steps that uniquely distinguish the conversational interface. A 
chain of inferring the user's goal, based on the system's axioms, dialog history, and current 
knowledge, would be triggered. 

It is essential for a system to track the dialog focus, or temporary centers of atten­
tion, in order to understand things that are unspoken but assumed to be salient across utter­
ances. In this case, the user's input is ambiguous-June 22 is for outbound or inbound 
flight? If the dialog architecture provides a method of tracking focus, it may be simple to 
resolve the legs from an earlier query. 

Focus is a useful concept in dialog understanding. The basic idea is similar to the 
entity memory tracking in anaphora resolution (see Section 17.5.1.1)-at any given point in 
a conversational exchange, a few items are at the center of attention and are given prefer­
ence in disambiguation. Other items are in the background but may be revitalized as centers 
of attention at some later point. A static area can be used to contain items that are assumed 
background knowledge throughout the exchange. The main goal of conversation can initial­
ize the stack. As subgoals are elaborated, new focus sets are pushed on the stack, and when 
these subgoals are exhausted, the corresponding focus object is popped from the stack and 
earlier, presumably broader topics are resumed. Focus shifts that are not naturally character­
ized as refinements of a broader current topic may be modeled by initiating a new independ­
ent focus stack. Focus shifts may be cued by characteristic linguistic signals, such as cue 
words and phrases (well now, ok!, by the way, wait!, hey, etc.). In many cases, focus struc­
ture tracks the recursively embedded plan structures, such as that shown in Figure 17.20. 

17.6.3. Dialog Behavior 

Even though the behavior of the dialog manager is highly dependent on the domain knowl­
edge and the applications, some general styles of dialog behavior are worth investigating. 
The first important dialog behavior is the dialog initiative strategies. System initiative sys­
tems have the advantage of narrowing the possible inputs from users, while paying the price 
for extreme inflexibility. Although user initiative strategy is often adopted for GUI-based 
systems, it is seldom implemented for SLU systems, since total flexibility is translated into 
high perplexity (resulting low system performance). For many applications, a flexible mixed 
initiative style is preferred over a rigidly controlled one. Although it is possible to imple­
ment a mixed initiative system using either dialog grammars or plan-based approach, the 
latter is more flexible because it can handling an unbounded number of states. 

Most often, the response generated by the dialog manager is either a confirmation or a 
negotiation. Confirmation is important due to possible SLU errors. There are two major con­
firmation strategies-explicit or implicit confirmations. An explicit confirmation is a re­
sponse solely for confirmation of what the system has heard. On the other hand, an implicit 
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ti...nation is a response containing new input query and embedded confirm t' . con ,... . a ion with the 
that the user can catch and correct the errors 1f the embedded confirmat·io . hope . . n rs wrong 
amples in Figure 17 .21 illustrate both confinnat10n strategies · 

~~ . 
SLU systems usually use a confidence measure as to when to use explicit and im 1. . 

. 1 · . fi . . d ~ l p !Cit 
confirmation. Obv10usl~, e~p 1c1t c_on mnatton 1s use 1or ow-confidence semantic objects 
while implicit confirmauon 1s for h1~h-confidence ones. . . . 

A negotiation response can anse whether a semantic obJect 1s fully filled or not. In the 
e of underspecification, there are some attributes of the semantic objects that cannot be 

~~erred by the discourse manager. Possible actions range from simply pursuing the unfilled 
:~butes in a predefined order, to gathering the entities in the knowledge base sorted by 
various keys. For cases of ill specification, an entity that matches the semantic object attrib­
utes does not exist. The planner can simply report such fact, or suggest removal or replace­
ment of certain attributes, depending on how much domain knowledge is to be included in 

the planning process. · 
Often in the design process, we find it desirable to segregate a dialog into several self­

contained sessions, each of which can employ specialized language, semantic, and even be­
havior models to further improve the system performance. Basically, these sessions are sub­
goals of the dialog, which usually manifest themselves as trunk nodes on the discourse tree. 
We implement a tree stack in which each trunk node is treated as the root for a discourse 
tree. The stack is managed in a first-in last-out fashion, as currently no digression is allowed 
from one subdialog to another. So far, the no-digression rule is considered to be a reasonable 
trade-off for dynamic model swapping. 

Consider the example domain of travel itinerary planning [13]. At the top level is the 
scenario, which is the intended output of the interaction. The scenario is the entire itinerary, 
consisting of reservations for flights, hotels, rental cars, etc., all booked for the user at 
workable, coordinated times and acceptable prices and quality levels. A scenario might be: a 
flight out of the user's home city of Boston, from Logan airport, on April 2, at 4:00 PM on a 
particular flight, connecting in Dallas-Ft. Worth to another flight to a regional airport, an 
overnight hotel stay, a meeting the next day in the morning, a drive to a second local after­
noon meeting, a flight from the regional airport in the evening to LA for a late meeting, an­
other overnight stay in LA, a morning meeting at the hotel, and a return flight back to 
Boston later that same morning. 

I: I would like to fly to Boston. 
Rl: Do you want to fly to Boston? 
R2: When do you want to fly to Boston? 

(explicit confirmation) 
(implicit confirmation) 

Figure 17.21 With the input/ would like to fly to Boston, explicit confirmation response RI 
Do you want to fly to Boston? only allows the user to confirm the destination, while implicit 
confirmation response R2 When do you want to fly to Boston? allows the user to provide 
departure-time information and have a chance to confirm the destination as well. 
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Scenario 

Goals 

Subgoals 

/\ 
1/R EJ ~ 

Figure 17 .22 A dialog structure hierarchy for travel. 

Creating the finished itinerary for this scenario involves goals, generated by the sys­
tem or the user. Goals might include: access user travel profile, book outbound and inbound 
flights, and make local arrangement (hotel reservation and car rental). Goals in turn may 
subsume subgoals. Subgoals are concerned with the details of planning. These would in­
clude establishing particular desired cities and airports for the flights, price investigation, 
queries about hotel location and quality, etc. The subgoals in their turn are generally realized 
via speech acts forming I/R pairs. A simplified schematic of the structure of the itinerary 
structure described above might appear as shown in Figure 17.22. 

This structure lends itself to a variety of control mechanisms, including system-led and 
mixed initiative. For example, the system may ask guiding questions such as "Where would 
you like to go?" followed by "What day would you like to leave?" or the system could begin 
processing from the user's point of view by accepting an utterance like J want to go from 
Boston to LA, corresponding to the Dest node of a flight on the outbound flight, and re­
sponding with a query about the next needed item, e.g., What day would you like to leave? 
Thls system can also accommodate a user who may wish to talk about his or her hotel reser­
vation immediately after making the outbound flight reservation, before arranging the in­
bound flight. 

17.7. RESPONSE GENERATION AND RENDITION 

Response generation, also known as the message generation, is the process in which the 
message is physically presented to the user. This is the stage that significantly involves hu­
man-factor issues, as discussed in Chapter 18. It is more susceptible to application-specific 
or user interface considerations. For example, to handle a message requesting the user to 
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select a sizable list of alternatives, a system with a suitable vis I d' 1 . . 

P
resent the whole list, while a speech-only system might requ·1reuaa isp ayl might choose to 

. fi more c ever way In th' 
section we mamly ocus on speech output modality and provide s h h · is 
popular output mo~alitie_s. . ome t oug ts on other 

A conversational mteract1ve system requires a speech-out t b'I" . pu capa I tty. The speech 
output may be compnsed of system requests for clarification di·samb· t· . . . . . . . , tgua ion or repeat of 
garbled mput; confirmation, promptmg for m1ssmg mfonnation· stateme t f . . , n s o system capa-
bilities or expectations; and presentation of results. At the lowest level th· . d . . . . , 1s 1s one via a 
text-to-speech engme, as discussed m Part III (Chapters 14 15 and 16) d h . . , , an s own as a 
component m Figure 1.4. However, most text-to-speech engines have been designed for a 
read speech style. Moreover, such systems typically perfonn only shallow syntacti·c d _ 

· fh.. anse 
mantic analysis o t e1r m~ut texts to recover some text features that may have prosodic 
correlates. Because the topic space of a task-oriented dialog system is narrower there a 

d. d , re 
opportunities to tune pr~so tc an ot~er at~ributes of the speech output for better quality. 

There are two maJor concerns m v01ce-response rendering. First is the creation or se­
lection of t~e content to be ~poken, and second i_s the rendition of it, which may include spe­
cial prosodic markups as guidance to a ITS engme. 

17.7.1. Response Content Generation 

The response content can be explicitly tied to the semantic representation of the domain task 
and objects. The semantic class could incorporate custom prompts for specific slots or even 
for whole semantic classes. Whenever the dialog manager finds that specification for a par­
ticular slot is missing from a semantic object, it can check if it contains prompts. If prompts 
are present, one could be selected at random for presentation to the user. 

Response prompts can be embedded in semantic representation. Prompts are usually 
provided for each slot to provide direction for users to fill the slot in the next dialog term. 
For example, the semantic class ByName defined in Figure 17.9 can be enhanced with the 
prompts in Figure 17.23. 

Prompts could be associated with conditions. For example, in a flight information sys­
tem, a conditional prompt can be inserted into the semantic class definition to inform users 
of the flight arrival time based on whether the flight has landed or not, as shown in Figure 
17.24. 

Other systems may include some categorization of prompts for different functions. For 
example, at the task level of an airline reservation system, the categorized message list 
might appear as shown in Figure 17.25. The grammar fonnat makes provision for con~en­
ient authoring of messages that can be specified and accessed by functional type at runtime. 

. . . 'th 
The BEMsg is a special type of message. In this particular architecture, com~umcatJon wt 
the database engine (cf. the boxes application and database in Figure 17.2) is controlled by 

·b · d' t a database messages that are authored in the task specification. The URL attn ute m ica es 
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<!-- semantic class definition for ByName that has type 
PERSON too--> 
<class type="PERSON" name="ByName"> 

<slot type="FIRSTNAME" name="firstname" 
prompt="Please specify the last name for [ firstname) /> 

<slot type="LASTNAME" name="lastname" 
prompt="Please specify the first name for [lastname) /> /> 

<cfg> 

</cfg> 
</class> 

Figure 17.23 Semantic class ByName in Figure 17.9 is enhanced with prompts specified for 
the case of missing a particular slot information. 

access. The </rclist> is the set of possible return codes from the back-end application 
(as it attempts to perform the specified command from the message). Again, every return 
condition is associated with a message by the task specification author. Those shown here 
include a simple confirmation of a successful completion, as well as a warning for flight sold 
out and a generic failure of transaction message. 

<class type="FLIGHT" name="Flight"> 
<slot type="FLIGHTNO" name="flight_no"> 
<slot type="TIME" name="sch_time"> 
<slot type="TIME" name="actu_time"> 
<slot type="CITY" name="dep_city"> 
<slot type="CITY" name="arr_city"> 
<slot type="AIRLINE" name="airline"> 
<prompt condition= "$SYS_TIME > [actu_time)"> 

Flight [ flight_no) is landed at [actu_time) 
</prompt> 
<prompt condition= "default"> 

Flight [flight_no) is scheduled to land at [sch_tirne) 
</prompt> 
<cfg> 

</cfg> 
</class> 

Figure 17.24 A semantic class Flight contains a conditional prompt to inform users when 
invalid [depart_time) is detected. 
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<msg id=" Help"> Please sp~cify the flight time, origin and destination < 
<msg id="Cancel "> Canceling itinerary ... </rnsg> /msg> 

<msg id="Confirrn"> Buying ticket from [origin] to [dest] on [time]? </ 
<ms g id=" BEMsg" ur 1 = "http://server/ ... ?op=buy&time=[time ]&flight=[flight] .. ,, ;sg> 

<rclist> 
<re id="OK"> Complete buying </re> 
<re id="S0"> The flight is sold out </re> 
<re id="ERROR"> Cannot complete transaction </re> 

</rclist> 
</msg> 

</message> 

Figure 17.25 An example of categorization of prompts for an airline reservation SLU system. 

Such systems can incorporate other kinds of categorization as well. For example, a 
system might provide a battery of responses to a given task or subtask situation, varying 
depending on a speech recognition confidence metric. Thus a set of utterances ordered by 
decreasing confidence might appear as: 

You want to f l y to Boston? 
Did you say Boston? 
Could you repeat that, please? 
Please state a flight reservation. 

Systems of this type are sometimes referred to as template systems for response gen­
eration. They have the advantages of direct authoring and simplicity of implementation and 
may provide very high quality if the message templates of the application can be played with 
matching digitized speech utterances or carrier phrases in the synthesizer. 

The specificity and application-dependent qualities of template-based systems are 
sometimes perceived as weaknesses that could potentially be overcome by more general, 
flexible, and intelligent systems. In these systems the message generation box could sub­
sume discrete modules, as shown in Figure 17.26. The semantic representation would typi­
cally be akin to logical forms (see Chapter 2) expressed via semantic frames or conceptual 
graphs. The representation would include abstract expression of content as well as speech­
~ct type and other information to guide the tactical or low-level aspects of utterance genera­
tion, such as word choice, sentence type choice, grammatical arrangement, etc. 
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Lexicon 

Spoken Language Understanding 

Semantic Representation, from Dialog manager 

Unerance Generation 

Phonological & 
Prosodic Processing 

tagged text 

Speech Synthesis 

Message (synthetic speech) 

Grammar 

Phonological & 
Prosodic Rules 

Templates, 
Units, 

Rules for Speech 
Synthesis 

Figure 17.26 Natural language generation and rendition modules. 

Natural language generation from abstract semantic input is a deep and complex field. 
Let us briefly consider a slightly more abstract form of template-selection mechanism that 
could gracefully either accommodate a simple set of static, authored response utterances or, 
alternatively, serve as a form of semantic input to a generalized, NLP-based utterance gen­
eration module. Ir.iagine that instead of simply providing lists of prompt strings with em­
bedded slot identifiers, a system of parameterization can be used [24]. The parameters could 
be at varying levels of abstraction a!'d would function as descriptors of static content when 
preauthored prompts were being used, or would serve as a kind of input semantic representa­
tion when a general natural language was used. The set of parameters might include attrib­
utes of utterances such as the following: 

• Utterance type: mood of the sentence, i.e., declarative, wh-question, yes/no 
question, or imperative. 

• Dialog or speech act: confirmation, suggestion, request, command, warning, 
etc. 

• Body: some characteristic lexical content for the utterance, apart from any 
situation-dependent words and concepts. This could serve as a hint to a gen­
erator. In many cases this would be the main verb of a sentence and might 
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also include characteristic cue words, especially for functional transitions, 
e.g., however, now, etc. 

, Given: information that is understood from the discourse history. This is usu­
ally represented as pronouns or other anaphora in the generated utterance. 

• New: anything that is in the infom1ational foreground, due to lack of prior 
mention, but may not be precisely the purpose of the prompt, per se. New 
material typically receives some kind of prosodic prominence in speech. 

899 

Examples of these parameter indices for templates from a theater ticket-reservation . 
domain might appear as in Table 17.4. The basic idea of the parametric approach is that such 
a level of medium abstraction allows for flexibility in the choice of deployment tactics. If a 
full set of static prompts and response utterances is available for all cases, then this approach 
reduces to a template system, though it does provide the potential for separation of gram­
mars and prompt files. If, however, a natural language generation component is available for 
dynamic message generation, a parameter set like that above can serve as input. 

Table 17 .4 Sentence generation indices for an airline reservation SLU system. 

Act Type Body Given New Example 

Meta [sorry) Deel no - - No, sorry. 

Verify Y/N-Q Boston Boston? 

Request-info WH-Q fly you thing When do you want to fly? 

Request-info WH-Q want you airline Which airline would you like 

tomorrow to fly tomorrow? 

Stmt[sorry] Deel sold out it - Sony it is sold out. 

Stmt Deel sold out USAir - Sorry, USAir is sold out. 

17.7.2. Concept-to-Speech Rendition 
Once the response content is generated, the SLU system needs to render it into a waveform 
to play to the users. The task is naturally assigned to a text-to-speech component. However, 
the response generated in the previous session is more than text message. It contains the 
~nderlying semantic information, because it is usually embedded in the semantic representa­
hon as shown in Figure 17 .23 and Figure 17 .24. This is why the speech rendition is often 
done through a concept-to-speech module. A concept-to-speech system can be considered as 
a text-to-speech system with input text enhanced with domain knowledge tags. With these 
extra tags, a concept-to-speech system should be able to generate tailored speech output to 
better convey the system intention. 

Chapter 15 discussed the role of prosody in human perception. When messages are 
generated, it is expected that they are supplemented with hints as to their information struc­
ture. At a minimum, the message generation component can identify which parts of the ut­
terance constitute the theme, which is material understood, previously mentioned, or 
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somehow extending a longer thread of coherence in the dialog, from the rheme, which is the 
unique contribution of the present utterance to the discourse [36]. If such a distinction is 
marked on the generated utterances, or templates, it can be associated with characteristic 
pitch contour, prosodic phrasing, and other effects (see_Ch~pter 15). . 

For example, in the question-answer pair shown m Figure 17.27 (from ordmary human 
conversation), the theme and rheme components are bracketed._ The theme of the answer 
consists of a mention of Mary, and the act of drivirig, both earned forward from the ques­
tion. The theme consists of new information, the answer to the question, embedded in a kind 
of placeholder noun phrase. Clearly, the input to the message generation component requires 
some indication of which entities of the input semantic representation are linked to discourse 
history. 

Q: Which car did Mary drive? 
A: (Mary drove) th (the RED car. ) rh 

Figure 17.27 A question-answer pair with theme and rheme components marked. 

Prosodic rules are triggered by information structure. In general, a theme in the early 
part of a statement may be realized with a rise-fall-rise pitch contour, often with turning 
points in the contour aligned with lexically stressed or other salient syllables of the words in 
the theme. Rheme marking by pitch contour is also essential for naturalness, and a common 
rheme tune in English declaratives is a slight rise up to the final lexically stressed syllable, 
followed by a fall to the bottom of the speaker's pitch range. The actual alignment of pitch 
extrema will depend on the position of focus, or maximum contrast and information value, 
within either the theme or the rheme. 

In Figure 17.27, the word RED is in focus within the rheme. If the question had im­
plied a contrast between Mary's car and other people's cars, it would be acceptable to esta b­
lish a focus on Mary in the theme as well, marked by a pitch accent (see Chapter 15). 
Sometimes the portion of either theme or rheme that is not in focus ( e.g., drove or car) is 
called the ground [54, 55]. 

The response generator could add such rheme-theme information that may be used to 
trigger more specialized prosodic rules. For example, one experimental system is based on a 
message generator that dynamically creates concise descriptions of individual museum ob­
jects during a tour, while attempting to maximize correlations to objects a museum visitor 
has already seen (21]. During the response generation phase, simple entities and factual 
statements are combined, first into a semantic graph and then into a text, in which the rhe­
torical functions of utterances and clauses, and their relations to one another, are known. 
This information can be passed along to a synthesizer in the form of markup tags within the 
text. A synthesizer can then select appropriately interesting pitch contours that indirectly 
reflect rhetorical functions. 

In a dialog system, other attributes beyond rheme-theme kinds of information struc­
ture, such as speech-act type, may have characteristic intonation patterns. This might include 
a_r~gretful-sounding contour {perhaps sampled from real speaker data) applied when apolo­
gizmg (Sorry, that flight i~ sold out) or a cheerful-sounding greeting. Although the concept­
to-speech module can be implemented as just a text-to-speech system that take the advan-
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t ge of the extra semantic knowledge to generate appropriate prosod th 
a . . · -11 1 b k Y, e most natural 
Peech rend1t10n 1s st1 to p ay ac a prestored waveform for the entire . . s . . message. This is 

Why the concept-to-speech module usually rehes heavily on playback oftempl t &: 
. . . , . a e wave1orm. 

However, 1t 1s obvious that we can t record every possible message like "Flight {fl: h ,J 
is schedule to land at [sch_time}" in Figure 17.24. Instead, a carrier sentence c:g ~_no _ 
corded and the slots can then be replaced with real information. The slot can be syn~ e_ red 

. . II 1. . h es12e 
with an adapted TIS, which essenha y e 1mmates t e need for a front end in the TTS sys-

tem. 
One problem of this approach is that the same prosody is used for a word regardless of 

where it appears, which results in lower naturalness, because prosodic context is important 
for natural speech. Enhanced quality can be achieved by having different instances of those 
slot words, depending their contexts. For example, we can have different one recordings 
depending on whether it is the first digit on a flight number, the second, or the last. Deter­
mining the number of different contexts where a slot needs to be recorded is typically done 
much like the context-dependent acoustic modeling discussed in Chapter 9. This technique 
increases the naturalness, at the expense of increasing the number of necessary recordings. 

17.7.3. Other Renditions 
So far, we have assumed that a dialog system may be used only in a speech-only modality. 
Although such systems have found many applications, multi+modal interaction may be 
more compelling, as discussed in Chapter 18. In fact, voice output might not be the best in­
fonnation carrier in such an environment. For example, the latest wireless phones are 
equipped with an LCD screen that allows for e-mail and Web access. If a high-resolution 
screen is available, the renditions mechanism will likely be visually oriented. 

When renditions become visually oriented, the message generation component needs 
to be replaced by a graphic display component. Since GUI has been the dominant platform 
for deploying major computer applications today, the behavior and technique of such a dis­
play component is well studied and documented [ 17]. The SLU system needs only to pass 
the semantic representation from the dialog management module to a GUI rendering mod­
ule. Of course, the GUI rendering module should also be equipped with domain knowledge 
to generate best rendering to convey the dialog message. MiPad (22] is such an example and 
is discussed in Chapter 18. 

17.8. EVALUATION 

How do we define a quantitative measure for understanding? Evaluation of understanding 
and dialog is a research topic on its own. We review a number of research techniques being 
pursued. 

17.8.1. Evaluation in the ATIS Task 

An application used for development, testing, and demonstration of a wide variety of dialog 
systems is the Air Travel Information Service (ATIS) task, sponsored by the DARPA Spo­
ken Language Systems program (20]. In this task, users ask about flight information and 
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make travel arrangements. To enable consistent evaluation of progress across systems, a 
corpus of data for this task has been collected and shared among research sites. 

The application database contains information about flights, fares, airlines, cities, air­
ports, and ground services, organized in a relational schema. Most user queries, though they 
may require some system interaction in order to specify fully, can be answered with a single 
relational query. The ATIS data collection is done using the wizard-of-oz framework.4 A 
user interacts with the system as though working with a fully automated travel planner. Hid­
den human wizards were used in the data-collection process to provide efficient and correct 
responses to the subjects. A typical scenario presented as a task for a subject to accomplish 
by means of the automated assistant is as follows: 

Plan the travel arrangements for a small family reunion: 
First pick a city where the get-together will be held. From three different cities (of your 

choice), find travel arrangements that are suitable for the family members who typify the econ­
omy, high class, and adventurous life styles. 

After data collection, each query was classified as context dependent or context inde­
pendent. A context-dependent query relies partially on past queries for specification, such as 
"ls that a non-stop flight?" Many of the system tests based on A TIS require not only accu­
racy of speech recognition (the user's spoken query), but also semantic interpretation suffi­
cient to construct an SQL query to the database and correctly complete the desired 
transaction. Evaluation of A TIS was based on three benchmarks: SPREC (speech recogni­
tion performance), NL (natural language understanding for text transcription of spoken ut­
terances), and SLU (spoken language understanding). For SLU systems we are interested 
only in the last two benchmarks. 

With the help of constrained domain of ATIS, correct understanding can be translated 
into correct database access. Since database access is usually done via SQL database query, 
the evaluation of understanding can be performed in the domain of generated SQL queries. 
However, it is still ambiguous when someone would like to query flights around 11 :00 a.m. 
For the purpose of understanding, how wide a time frame is around considered to be? 

Many examples of queries contain some ambiguities. For instance, when querying 
about the flights between city X and Y, shou!d the system display only the flights from X to 
Y; or flights in both directions. To alleviate the ambiguity, each release of ATIS training 
corpus was accompanied by a Principles of Interpretation document that has standard defi­
nitions of the meaning of such terms like around (means within a 15-minute window) and 
between (means only from). 

Once the correct understanding is represented as an SQL query, ATIS can be easily 
evaluated by comparing the SQL queries generated by SLU systems against the standard 
labeled SQL queries. The utterances in A TIS are classified into three types: 

4 The wizard-of-oz data collection framework is described in Chapter 18. 
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• A-semantically independent of earlier utterances, so per-tum semanf . 
terpretation can uniquely identify the semantic intent. ic m-

• D-semantically ~epe~de?t upon e~rlier utterances, so discourse knowledge 
is required to provide full interpretation. 

• x-unevaluatable, so a response such as No answer or I don't understand 
you, could you repeat yourself is considered a right answer. 

903 

The other debatable item is whether a No answer output for type A and D utterances 
should be treated equally as a false SQL query. In the original 1991 A TIS evaluation, a false 
SQL query for type A and D utterances is penalized twice as heavily as a No answer output 
for type A and D utterances. However, the decision was dropped for the 1993 A TIS evalua­
tion. A TIS decided not to evaluate dialog component for three reasons. First, dialog alters 
users' behavior during data collection. Users' utterances are highly contingent on the per­
formance of the wizard-of-oz system, so the data collected has little use for systematic train­
ing and testing. Second, the SLU systems would likely have to be tested by real subjects. 
Third, the evaluation of dialog behavior is highly subjective, since effectiveness and user 
friendliness are generally vaguely defined. 

17.8.2. PARADISE Framework 

The evaluation of a dialog system is subjective in nature and is typically done in an end-to­
end fashion. In such a framework, objective criteria like number of dialog turns and system 
throughput, and subjective measures like user satisfaction, are typically used. 

One of the most sophisticated systems for evaluating dialog systems ever developed is 
the PARAdigm for Dialog System Evaluation (PARADISE) [57]. The designers of this 
framework took a comprehensive view of the many potential factors affecting dialog evalua­
tion, in particular the distinction between measuring success of transaction (quality) and cost 
of the dialog, both in human and system terms. A decision-theoretic method, as shown in 
Figure 17 .28, is used to explicitly weight these various disparate factors to achieve a unified 
measure. In addition, the PARADISE metrics can derive discrete scores for subdialogs, 
which is useful for diagnosis, comparison across systems, and tuning. 

A simple measure for task success can be the following question: "Was all the needed 
information exchanged, in the correct dii·ei:tion · (user to system, :.ystem to user) at each 
step?" PARADISE provides a framework for defining, for any interaction in a limited do­
main, a simplified representation of the minimal required information and its directional ity. 
In PARADISE terms, this is an attribute-value matrix (A VM) showing the names and in­
stantiations of required elements at dialog completion. This could be derived from reference 
frames for each required concept in a dialog exchange, with mandatory slots marked for 
legal completions. Once such reference frames or matrices are available, different dialog 
s~rategies that address the same function can be compared over many instantiations (test 

dialog sessions), using statistical measures that assess confusability and length. 
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Maximize User Satisfaction 

Maximize Task Success Minimize Costs 

Efficiency Measures 

Number of Turns, 
Dialog Time, 

etc. 

Qualitative Measures 

Agent response delay, 
Inappropriate utterance ratio, 

Repair ratio, etc. 

Figure 17.28 PARADISE's structure ofobjectives for spoken dialog performance [57]. 

For example, imagine an A TIS-like application that had the following information at­
tributes, with the possible values listed in Table 17.5. An utterance such as "I want to go 
from Torin to Milan" communicates legal DC and AC attribute values from user to system. 
This is a limited-domain system by assumption, so confusions are assumed to occur within 
the possible values of the application. For example, if the system instantiates the Depart­
City (DC) slot with Trento instead of Torin after processing the given sample utterance, it is 
a confusion that can be recorded in a confusability matrix over all dialog test sessions. A 
subsection of such a possible confusability matrix, covering only the DC and AC attributes, 
is shown in Table 17.6, which shows only confusion within an attribute type that covers a 
consistent vocabulary (city names, instantiating the DC and AC attributes). In practice, how­
ever, the full matrix might show confusions across attribute types, such as morning for Mi­
lan, etc. 

Given a confusability matrix M over all possible attributes in the application, we can 
apply the Kappa coefficient [ 48] to measure the quality characterizing the task's success at 
meeting the information requirements of the application: 

Table 17.5 Attribute-value table [57). 

Attribute Possible Values 

Depart-City (DC) Milan, Rome, Torin, Trento 

Arrival-City (AC) Milan, Rome, Torin, Trento 

Depart-Range (DR) Morning, evening 

Depart-Time (OT) 6am, 8am, 6pm, 8pm 
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Table 17.6 Confusability matrix for city identification [57]. 

- Depart-City Arrival-City --~ Milan Rome Torin Trento Milan Rome Torin Trento Data -
-Milan (depart) 22 I 3 

-Rome (depart) 29 

Torin ( depart) 4 16 4 I 

Trento (depart) I I 5 11 l 

Milan (arrive) 3 20 

Rome (arrive) 22 

Torin (arrive) 2 I I 20 5 

Trento (arrive) 1 I 2 8 15 

sum 30. 30 25 15 25 25 30 20 

P(A)-P(E) 
I( l-P(E) 

( 17 .8) 

where P(A) is the proportion of times that the A VMs for the actual set of dialog agree with 
the A VMs for the interpreted results, and P(E) is the proportion of times that A VMs for the 
dialog and intewreted results are expected to agree by chance. P(E) can be estimated by 
P(E) = 1,;~, (Yr) , where t; is the sum of the frequencies in column i of M and T is total 
frequencies (/1 +···+/") in M. The measure of P(A) (how well or poorly the application 
did in information extraction) is calculated simply by examining how much of the total 
count occurs on the diagonal: P(A) = I.;~, M(i, i)/T. 

In addition to task success, system performance is also a function of several cost 
measures. Cost measures include efficiency measures, such as the number of dialog turns or 
task completion time; as well as qualitative measures, such as style of dialog or how good 
the repair mechanism is. If a set of test dialogs is available, with experimentally measured 
user satisfaction (the predicted categories), the kappa measure, and quantitative measures of 
cost (denoted as c,, such as counts of repetitions, repairs etc.), linear regression can be used, 
over the z-score normalization of these predictor terms, to identify and weight the most im­
ponant predictors of satisfaction for a given system. Thus, the performance can be defined 
as: 

n 

Performance =a* 2!( 1()-L w; *21( c;) 
i=I 

Where l2l is the z-score normalization function 2l(x) = x-x. 
a_, 

(17.9) 
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Evaluating a dialog system involves having a group ofusers perform tasks with ideal 
outcomes. Then the cost measures and task success kappa measure are estimated. These 
measures are used to derive the regression weights in Eq; (17.9). Once the regression 
weights are attained, one could possibly predict the user satisfaction when a subpart of the 
dialog system is improved. 

17.9. CASE STUDY-DR. WHO 

Dr. Who is a project at Microsoft Research on its multimodal dialog system development. It 
incorporates many of the dialog technologies· described in this chapter. We use Dr. Who's 
SLU engine as an example to illustrate how to effectively create practical systems [22, 58-
6 I]. It follows the mathematical framework illustrated in Eq. (17.1 ). The system architecture 
is shown in Figure 17 .29. Since it intends to serve as a general architecture for multi modal 
dialog systems, it makes some simple assumptions at the architecture level. First, it replaces 
the speech recognizer and sentence interpretation modules with a semantic parser for each 
modality. The response rendering is merged into dialog manager with different XSL style 
sheets for each media output. 

Semantic 
Parser 

Surface 
Semantics (SML) 

Discourse 
Analysis 

Discourse 
Semantics (SML) 

.-----I.--~ 
Dialog 

Manager 
Response 

'------....I 

CFG Language 
Model 

Semantic Model 
(SDL) 

Behavior Model 
(XSLT) 

Figure 17.29 The Dr. Who system architecture [60). 

17.9.1. Semantic Representation 

Semantic representation is a critical part in Dr. Who's SLU engine design. Essentially, the 
semantic objects are an abstraction of the speech acts, the domain knowledge, and the appli­
cation logic. They are designed to encapsulate the respective language models and dialog 
actions that govern their creation and behaviors. The system components communicate with 
one another through events surrounding the semantic objects. In this view, the dialog (in­
cluding logic inferences) is an integral part of the discourse semantic evaluation process. 

1:here _are two ~es of semantic objects in Dr. Who. The first type is the functional 
semantic obJect that ts used to represent linguistic expressions in the user's utterance. The 
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nd type is the physical semantic object that is used to 
seco . . . represent real-wo Id .. 
I t d to the apphcatlon domain. Both types of semantic obiect r entihes re-
a e . . . J s are represented b . 
frames and specified m the semantic markup language (SML) h' h . Y se~ant1c 

XML. Following the principles of the XML schema, Dr. Who defi:s1~h is han extension ~f 
II d · d fi · · e sc ema of SML m 

another XML ca e semantic e m1hon language (SDL). SDL is des· d 
d. I fi I dd' . . . igne to support many 

discourse and 1a og eatures. n a 1t1on, SDL 1s suited to represent the d . , .. 
· · h h h' omam ru1owledge 

Vl·a the apphcatlon sc ema, t e 1erarchy of the semantic obiects and the se t' . ti 
roles. · · 

J , man 1c m erence 

The format of v~rious semantic classes follows SDL representations in Dr. Who. The 
tenninal and nontermmal nodes on the parse are denoted in SDL with tags <verbat · > 

. 1 T 1.m 
and <class>, respective y. hese tags refer to the semantic objects and have the name and 
type attributes. The type attribute corresponds to the entity type the semantic object even­
tually would be converted to; it plays a key role in inheritance and polymorphism, as de­
scribed in Section 17.3.1. When a semantic object is unique in its type, SOL can 
automatically assume its type as the name. In addition, SDL defines a <cfg> tag for the 
language model that governs the instantiation of a semantic object ,and the language model 
could be stored in another file. An <expert> tag can be defined for the system resource to 
physically convert a semantic object to a domain entity. Finally, the tag <slot> in SOL 
defines the descendant for a nontenninal node. 

Take the semantic class for Microsoft employee directory as an example. The simple 
application answers queries on an employee's data such as office location, phone number, 
hiring date, etc. An item that can be asked is a semantic tenninal Directoryitern as de­
fined in Figure 17.30. To allow users to ask more than one directory item at one dialog tum, 
a multiple semantic class Directoryiterns is also defined recursively, as shown in Fig­
ure 17.30. 

<verbatim type="Directoryitern" ... > 
<prod name="office"/> 
<prod name="phone"/> 
<prod name="hiring date" / > 

</verbatim> 
<class type="Directoryiterns" ... > 

<slot type="Directoryitern"/> 
<slot type="Directoryiterns"/> 
<cfg ref=nDirectoryiterns . cfg"/> 

</class> 
· · · t yI tern and nonterminal semantic Figure 17.30 The terminal semantic class Direc or . 

class defined in Dr. Who using SOL. Note that the definition o: D1.rectory I te;:] con-
tains a recursive style, which can accommodate more than one Directoryitern · 
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The <prod> tags inside a terminal semantic object indicate that the tenninal is of an 
enumeration type, and all the possible values are text normalized to the string values of the 
name attribute. The main speech act, the query, is modeled by the functional semantic class 
DirectoryQuery, as shown in Figure 17.31. 

<class type="DirectoryQuery" ... > 
<slot type=="Person" /> 
<slot type="Directoryitems"/> 
<expert clsid=" ... " /> 
<cfg ref="Directory.cfg"/> 

</class> 
<include ref="PeopleGramrnar.sdl"/> 

Figure 17.31 The main semantic class DirectoryQuery defined in Dr. Who using SDL [59]. 

The semantic object can be instantiated following the language model in "Direc­
tory. cfg" and, once instantiated, is handled by a system object identified by its class id 
(clsid). The system object then formulates the query language that retrieves the data from the 
database. It is also possible to embed the XML version of the query language (e.g., XQL) 
within the <expert> tag. Semantic models can be nested and reused, as shown in the 
<include> tag in the above example, where the semantic model for people is referred. 

17.9.2. Semantic Parser (Sentence Interpretation) 

For speech modality, Dr. Who employs a speech recognizer with unified language models 
[62] that take advantage of both rule-based and data-driven approaches, as discussed in 
Chapter 11. Once we have text transcription of user's utterances, a robust chart parser [61] 
similar to the one described in Section 17.4. J is used for sentence interpretation. 

The emphasis of sentence interpretation is to annotate the user's utterance in a mean­
ingful way to generate functional semantic entities. Essentially, the surface SML represents 
a semantic parse. Thus, after a successful parse, the corresponding surface semantic objects 
are instantiated based on the semantic classes whose CFG grammars are fired. While in SDL 
we use static tags such as <class> and <verbatim> for the semantic classes, the in­
stances of a semantic object use the object name as the tag in SML. For example, the surface 
SML for an utterance "What is the phone number for Kuansan" is shown in Figure 17 .32. 

,[;irectoryQuery ... > 
<PersonByName type="Person" parse="kuansan"> 

Kuansan 
</PersonByName> 
<Directoryitem type="Directoryitem" parse="phone num­

ber"> 
phone 

</Directoryitem> 
</DirectoryQuery> 

Figure 17.32 The surface semantic object DirectoryQuery represented in SML after a 
successful parse [59]. 
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17,9,3, Discourse Analysis 

As mentioned in Section 17.5, the goal of discourse analysis is to resolve rf; . 
. . . . . su ace semantic 

b,iects to discourse semantic objects. For the surface semantic obiect 1·n F' 17 3 o J • • h . . . J tgure . 2, the 
discourse engme bmds the t ree semantic objects (1.e., the person, the directory ·t d h 

· I d d fu · . . t em, an t e 
directory query itself) to rea -wor an nchonal enhttes represented in the SML example, 
as shown in Figure 17.33. 

<DirectoryQuery ... > 
<Person id="kuansanw" parse="kuansan"> 

<First>Kuansan</First> 
<Last>Wang</Last> 

</Person> 
<Directoryitem parse="phone number " > 

<phone>+l(425)703-8377</phone> 
</Directoryitem> 

</DirectoryQuery> 

Figure 17.33 The discourse semantic objects for the surface semantic object illustrated in Fig­
ure 17.32 [59]. 

Note that the parse string from the user's original utterance is kept so that the render­
ing engine can choose to rephrase the response using the user's wording. 

When an error occurs, the semantic engine inserts an <error> tag in the offending 
semantic objects with a code indicating the error condition. For example, if the query is for a 
person named Derek, the discourse SML might appear as shown in Figure 17.34. 

<DirectoryQuery status= " TBD" focus="Person" ... > 
<PersonByName type=" Person" parse="Derek" status="TBD" ... > 

<error scode="l" count="27" / > 
<Person id="derekba"> 

<First>Derek</First> 
<Last>Baines</Last> 

</Person> 
<Person id="dbevan"> 

<First>Derek</First> 
<Last>Bevan</Last> 

</Person> 

</PersonByName> 

</DirectoryQuery> 

Figure 17.34 A discourse semantic object in Dr. Who contains an <error> tag indicating 
the error condition [59]. . 
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In Figure 17.34, semantic objects that cannot be converted (e.g., DirectoryQuery 
and PersonByName) are flagged with a status "TBD". Discourse SML also marks the dia­
log focus, as in the DirectoryQuery, that indicates the places where the semantic 
evaluation process fails to continue. These two cues assist the behavior model in deciding 
the appropriate error-repair responses. 

Dr. Who uses three priority types of entity memory (discourse memory, explicit, and 
implicit tum memory) to resolve relative expressions. Anaphora and deixis are treated as 
common semantic classes, so they can be resolved according to the algorithm described in 
Section 17.5.1.1. Ellipsis is treated as an automatic inference. Unless marked as NO 
INFER in the semantic class definition, every slot in a semantic class can be automatically 

hlferred. The strategy to automatically resolve partially specified entities is as follows. 
During the evaluation stage, a partially filled semantic object is first compared with 

the entities in the three-entity memory based on the type compatibility. If a candidate is 
found, the discourse analysis module then computes a goodness-of-fit score by consulting 
the knowledge base and considering the position of the entity in the memory list. The se­
mantic object is converted immediately to the entity from the memory if the score exceeds 
the threshold. In the process, all the actions implied by the entities are carried out following 
the order in which the corresponding semantic objects are converted. For example, the sec­
ond user's query in the dialog illustrated in Figure 17.35 contains an ellipsis reference to 
Directoryitem office, which can be resolved using the discourse entity memory. 

U: Where is his office? 
S: The office is in building 31, room 1362. 
U: How about Kuansan 's? 
S: The office is in building 3 /, room 1363. 

Figure 17.35 A dialog example in the Dr. Who system. The second user's query contains an 
ellipsis reference to Directoryitem office [59]. 

17.9.4. Dialog Manager 

To support mixed-initiative multimodal dialogs, Dr. Who employs a plan-based approach 
instead of dialog grammars. The dialog manager that handles dialog events surrounding se­
mantic objects is very similar to a GUI program that handles GUI events surrounding 
graphical objects. These events can be handled synchronously or asynchronously based on 
various implementation considerations. In addition, the design enables a seamlessly inte­
grated GUI and speech interface for multimodal applications to embrace the same human­
computer interaction model. 

Dr. W110 SLU engine can use XSL-transformations (XSLT) [59] for specifying the 
behavior of a plan-based dialog system. XSLT, a recent World Wide Web Consortium 
(W3C) standard, is a specialized XML intended for describing the rules of how a structured 
document in XML can be transformed into another, say in a text-to-speech markup language 
for speech rendering or the hypertext markup language (HTML) for visual rendering. Its 
core _construct is a collection of predicate-action pairs: each predicate specifies a textual pat­
tern m the source document, and the corresponding action will produce a text segment in the 
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utput whenever the pattern specified by the predicate is seen in the sou d 
o . . rce ocument. The 
output segment tsfsp

1 
ec~fie

1
d throug

1
h fia programn~able, context-sensitive template. XSLT de-

fines a rich set o og1ca contro s or composing the templates The basic . 
bl I 

. · programming 
paradigm ~ears clo~e ~e~em an_ce to a og1cal programming language, such as Proto • 
which facihtates logic mfe~ence m pl~n-based_ sys~ems. As a result, XSLT possesses suJ _ 
cient expressive p_o~er f?r nnplemen~mg crucial dtal?g components, ranging from defining 
dialog plans, reahzmg dialog strategies, and generating natural language, to manipulatin . 
prosodic markup for text-to-speech synthesis and creating dynamic HTML pages for multt 
modal applications. 

Assuming TTS output, the planning mies that render the discourse SML of Figure 
17.33 in text can be expressed in XSLT as shown in Figure 17.36. 

<xsl : template match="DirectoryQuery[@not{status)]"> 
For <xsl:apply-templates select="Person"/>, the 
<xsl:apply-templates select:::;;"Directoryltem"/>. 

</xsl:ternplate> 
<xsl:template rnatch="Person"> 

<xsl:value-of select="First"/> 
<xsl:value-of select="Last"/> 

</xsl:ternplate> 
<xsl:template ·rnatch="Directoryltern"> 

<xsl:apply-templates/> 
</xsl:template> 
<xsl:ternplate rnatch:::;;"phone"> 

phone number is <xsl:value-of/> 
</xsl:ternplate> 

Figure 17.36 A TIS response-rendering rule for discourse SML of Figure 17 .33. This rule 
generates a text message "For Kuansan Wang, the phone number is + I (425) 703-83 77'' [S9]. 

This rule leads to a response For Kuansan Wang, the phone number is + 1 (425) 703-
8377. Elaborated functions, such as prosodic manipulations in text to speech markup, can be 
included accordingly. To change the output to Web presentation, the above XSLT style 
sheet can be slightly modified for rendering in HTML as a table, as shown in Figure 17.37. 

The Dr. Who SLU engine has a concept called logical container as a dialog property 
to be encapsulated in a semantic class. Three types of logical containers can be accessed in 
the definition of semantic classes. A semantic class is an AND type container if all its attri b­
utes must be evaluated successfully. If this requirement is not met, the evaluation of the 
AND type semantic object is considered failed, which will prompt the system to post a dia­
log-repair event. An OR type container requires at least one attribute to be successfully 
evaluated. Similarly, for an exclusive or (XOR) type container, one and only one attribute 
must be successfully evaluated. 
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<xsl:template match="DirectoryQuery[@not(status)]"> 

<TABLE border="l"> 
<THEAD><TR> 

<TH>Properties</TH> 
<TH><xsl:apply-templates select="Person"/> </TH> 

</TR></THEAD> 
<TBODY><xsl:apply-templates select="Directoryitem"/> 
</TBODY> 

</TABLE> 
</xsl:template> 
<xsl:template match="phone"> 

<TR> <TD>phone</TD> <TD> <xsl:value-of /> </TD> </TR> 
</xsl:template> 

Figure 17.37 An HTML response-rendering rule for discourse SML of Figure 17 .33. It gener­
ates a visual table representation rather than a text message (59). 

Figure 17 .38 shows a semantic class hierarchy corresponding to the partial plan shown 
in Figure 17 .20. The dialog goal-to gather information for booking a flight-corresponds 
to the highest-level semantic class Book Flight. Evaluating this semantic class drives the 
dialog system to traverse down the semantic class structure, eventually fulfilling all the steps 
necessary to achieve the dialog goal. This is achieved by recursively evaluating the attrib­
utes, instantiating semantic objects actively if necessary. The logical relation of each seman­
tic class determines the rules of instantiation and dialog repair. For instance, if the user 
specifies the trip. to be one way only, the evaluation of the One Way Flag semantic class 
becomes successful. As the Inbound Trip semantic class is an XOR container, the dialog 
system bypasses the evaluation of the Itinerary attribute in the Inbound Trip semantic class. 

Book Flight (AND) 

0 h. d~ . / ·~f(XORJ 
utoun ':I ~ ~ 

I . (AND) · One Way Flag lry\-~ 
Time(OR) 

Place (OR) 
oriRin 

Place (OR) 
destination 

City Name Airport Name 

Figur~ 17.3~ J>:- sem~ntic_ tree hierarchy corresponding to the partial plan shown in Figure 
17.20 man a1rlme reservation application (58). 
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The Itinerary semantic class encapsulates the basic elements to specify a one-way trip. 
Since it is desig~ated as a~ AN_D typ: c_ontainer, the dialo_g manager_ tries to acquire any 

issing information by actively mstanttatmg the correspondmg semantic classes it contains. 
~he active instantiation event handlers for these classes solicit infonnation from the user by 
. lementing certain prompting strategy. On the other hand, the Place semantic class, 
::Jch is used to denote both the origin and the destination, is implemented as an OR con­
tainer. The user may specify the location by either the city name or the airpo1t name. 

17.10. HISTORICAL PERSPECTIVE AND FURTHER READING 

Traditional natural language research has its roots in symbolic systems. Motivated by the 
desire to-understand cognitive processes, the underlying theories tend to be from linguis­
tics and psychology. As a result, coverage of phenomena of theoretical interest (usually a 
rare occurrence) has traditionally been more important than developing systems with a broad 
coverage. 

On the other hand. speech recognition research is driven to produce practical usable 
applications. Techniques motivated by knowledge of human processes have been less im­
portant than techniques that can be used for real applications. In recent decades, interest has 
grown in the use of engineering techniques in computational language processing, although 
the use of linguistic knowledge and techniques in engineering has lagged somewhat. The 
ATIS program sponsored by DARPA had a very significant influence upon the SLU re­
search community [34]. For the first time, the research community started seriously evaluat­
ing SLU systems on a quantitative basis, which revealed that many traditional NL 
techniques designed for written language failed to deal with spoken language in practice. 

For limited-domain SLU applications, vocabularies are typically about 2000 words. 
CMU's Phoenix SLU system [63] set the benchmark for domain-specific spoken language 
understanding in the DARPA ATIS programs. It is based on an island-driven semantic pars­
ing approach. After years of engineering, the speech understanding error rate ranges from 
6% to 41%. Since conversational repairs in human-human dialog can often be in the same 
range for these systems, the determining factor in these domain-specific SLU applications 
may not be the error rates but instead the ability of the system to manage and recover from 
errors. Many of these were described in detail in the Proceedings of rhe DARPA Spoken 
l.a11guage Systems Technology Workshop published by Morgan Kaufmann from 1991 to 
1995. The special issue of Speech Communication on Spoken Dialog [ 45] also includes sev­
eral state-of-the-art system descriptions. 

Allen's Natural Language Understanding [l] is a good book on natural language un­
d~rstanding with a comprehensive coverage of syntactic processing, semantic processing, 
discourse analysis, and dialog agent. Knowledge and semantic representation comprise the 
most import fundamental issue for symbolic artificial intelligence. Severa] Al textbooks [33, 
56, 65] contain comprehensive description of knowledge representation, The use of semantic 
:rames can be traced back to case frames or structures proposed by Fillmore [ I 6]. SAM [ 441 
ts among the first systems using semantic frames and template matcher for natural language 
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processing. The description of semantic classes and frames in this book mostly follows the 
systematic treatment of semantic classes in the Dr. Who system [58-60]. 

Speech-act (sometimes called dialog-act) theory was first proposed by Austin [4] and 
further developed by Searle [42]. It is an important concept in dialog systems. You can ac­
quire more information about speech-act theory and its application to dialog systems from 
[12, 40, 43]. Cohen [10] provides a good comparison of different approaches for dialog 
modeling, including dialog grammar (finite state), plan-based and agent-based (dialog as 
teamwork). We treat agent-based dialog modeling as an extension of plan-based dialog 
modeling, as described in Section 17.6.2. Agent-based approach is a very popular frame­
work for multimodal user interface, and interested readers can refer to [l l]. Hudson and 
Newell [23] incorporate probability into finite state dialog management to handle uncer­
tainty in input modalities, such as pen-based interface, gesture recognition, and speech rec­
ognition. J. Al1en's book [1] has a systematic description of plan-based dialog systems. De 
Mori's Spoken Dialogs with Computers [39] is another excellent book that contains dialog 
systems and related technologies. 

Much of the content in this chapter follows the architecture and implementation of 
semantic frame based approaches. In particular, we use plenty of descriptions and examples 
of the Dr. Who SLU engine developed at Microsoft Research [22, 58-60]. The description of 
plan-based systems is based on semantic frame representation and pattern matching. There is 
no need for explicit dialog-act analysis and logic reasoning, since these important knowl­
edge sources are encapsulated in the semantic frames. 

In addition to the semantic frame-based approach, there other approaches that rely on 
formal NL parsing, logic form representation, speech acts, and logic inference [2, 41]. Mes­
sage generation for telephone application is well studied and reported in [5, 6, 49], which 
provide experimental results for various prompting strategies. Most evaluation schemes for 
the SLU systems focus on the end-to-end system. Human factors are important in overall 
evaluation [7, 35, 52]. 
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CHAPTER 1 8 

Applications and User Interfaces 

The ultimate impact of spoken language 
technologies depends on whether you can fully integrate the enabling technologies with ap­
plications so that users find it easy to communicate with computers. How to effectively inte­
grate speech into applications often depends on the nature of the user interface and 
application. This is why we group user interface and application together in this chapter. In 
discussing some general principles and guidelines in developing spoken language applica­
tions, we must look closely at designing the user interface. 

A well-designed user interface entails carefully considering the particular user group 
of the application and delivering an application that works effectively and efficiently. As a 
general guideline, you need to make sure that the interface matches the way users want to 
a_ccomplish a task. You also need to use the most appropriate modality at the appropriate 
t~me to assist users to achieve their goals. One unique challenge in spoken language applica­
llons is that neither speech recognition nor understanding is perfect. In addition, the spoken 
co~mand can be ambiguous, so the dialog strategy described in Chapter 17 is necessary to 
clanfy the goal of the speaker. There are always mistakes you have to deal with. It is critical 

919 
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that applications employ necessary interactive error-handling techniques to minimize the 
impact of these errors. Application developers should t~erefore_ full~ understand the 
strengths and weaknesses of the underlying speech technologies and identify the appropriate 
place to use the spoken language technology effectively. . 

This chapter mirrors Chapter 2, in the sense that you need to mcorporate all the needed 
components of speech communication to make a spoken language system work well. It is 
important also to have your applications developed based on some standard application pro­
gramming interfaces (API), which ensures that multiple applications work well with a wide 
range of speech components provided by different speech technology providers. 

18.1. APPLICATION ARCIDTECTURE 

A typical spoken language application has three key components. It needs an engine that can 
be either a speech recognizer or a spoken language understanding system. An application 
programming interface (API) is often used to facilitate the communication between the en­
gine and application, as illustrated in Figure 18.1. Multiple applications can interact with a 
shared speech engine via the speech APL The speech engine may be a CSR engine, a ITS 
engine, or an SLU engine. The interface between the application and the engine can be dis­
tributed. For example, you can have a client-server model in which the engine is running 
remotely on the server. 

Application 1 Application 2 

Speech API 

Engine I Engine 2 Engine 3 

Figure 18.1 In a typical spoken language application architecture, multiple applications can in­
teract with a shared speech engine via the speech APL The speech engine may be a speech 
recognizer, a ITS converter, or an SLU engine. 

For_ a given API, there is typically an associated toolkit that provides a good develop­
ment environment and the tools you need in order to build speech applications. You don't 
need to understand_ the underlying speech technologies to fully take advantage of state-of­
the-art ~peech engmes. In~ustry-standard based applications can draw upon support from 
ma~y different speech engme vendors, thus significantly minimizing the cost of your appli­
cations development. For the widely used Microsoft Windows'\ Microsoft's speech API 
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(SAP!) brings both engine and application developers together. 1 Alternative st d d · 
· L~ d JSAPI) an ar s are .1 ble such as V01ceXM an . ava1 a , 

8 2 TYPICAL APP LI CA TIO NS 1 .. 
There are three broad classes of applications that require different UI design: 

• Office: This includes the widely used desktop applications such as Microsoft 
Windows and Office. 

• Home: TV and kitchen are the centers for home applications. Since home ap­
pliances and TV don't have a keyboard or mouse, the traditional GUI 
application can't be directly extended for this category. 

• Mobile: Cell phone and car are the two most important mobile scenarios. Be­
cause of the physical size and the hands-busy and eyes-busy constraints, the 
traditional GUI application interaction model requires significant modifica­
tion. 

This section provides descriptions of typical spoken language applications in these three 
broad classes. Spoken language has the potential to provide a consistent and unified interac­

. tion model across these three classes, albeit for these different application scenarios you still 
need to apply different user interface design principles. 

18.2.1. Computer Command and Control 
One of the earliest prototypes for speech recognition is command and control, which is 
mainly used to navigate through operating system interfaces and applications running under 
them. For exarriple, Microsoft Agent is a set of software services that supports the presenta­
tion of software agents as interactive personalities within the Microsoft Windows or the 
Internet Explorer interface. Its command-and-control speech interface is an extension and 
enhancement of the existing interactive modalities of the Windows interface. It has a charac­
ter called Peedy, shown in Figure 18.2, which recognizes your speech and talks back to you 
using a Microsoft SAPI compliant command-and-control speech recognizer and text-to­
speech synthesizer. 

The speech recognizer used in these command-and-control systems is typically based 
on a context-free grammar (CFG) decoder. Either developers or users can define these 
grammars. Associated with each legal path in the grammar is a corresponding executable 
event that can map a user's command into appropriate control actions the user may want. 
Tbey possess a built-in vocabulary for the menus and other components. The vocabula~ ~an 
also be dynamically provided by the application. Command-and-control speech recognition 
~Hows the user to speak a word, phrase, or sentence from a list of phrases that the c~mputer 
15 expecting to hear. The number of different commands a user might speak at any time can 

I http:J/www . 
1 h .m1crosoft.com/speech 
1 np:J/www.voicexml.or"' 

hnp:JH 1:1 
Java.sun.com/products/java-media/speech/ 
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be in the hundreds. Furthermore, the commands are not just limited to fixed ones but can 
also contain other open fields, such as "Send mail to <Name>" or "Call <digi,ts>". With all 
of the possibilities, the user is able to speak thousan~ ~f di_ffere~t comm~ds. A~ discussed 
in Chapter 17, a CFG-based recognizer is often very ngtd, smce 1t may reJect the m~ut utter­
ance that contains a sentence slightly different from what the CFG defines, leadmg to an 
unfriendly user experience. 

How are you? 

Figure 18.2 A talking character Peedy'1 as used in Microsoft Agent. Reprinted with pennission 
from Microsoft Corporation. 

Command-and-control recognition might be useful in some of the following situa­
tions: 

• Answering questions. An application can easily be designed to accept voice 
responses to message boxes and wizard screens. Most speech recognition en­
gines can easily identify Yes, No, and a few other short responses. 

• Accessing large lists. In general, it's faster for a user to speak one of the 
names on a list. such as "Start running calculator, " than to scroll through the 
list to find it. It assumes that the user knows what is in the list. Laurila and 
Haavisto [23] summarized their usability study of inexperienced users on 
name dialing. Although the study is based on the telephone handset, it has a 
similar implication for computer desktop applications. 

• Activating macros. Speech recognition lets a user speak a more natural word 
or phrase to activate a macro. For example, "Spell check the second para­
graph " is easier for most users to remember than the CTRL+F5 key combi­
nation after selecting the second paragraph. But again, the user must know 
the command. This is where most simple speech applications fail. The com­
petition is not CTRL+FS itself, it is the memory of most users. 

• Facilitating dialog between the user and the computer. As discussed in Chap­
ter 17, speech recognition works well in situations where the computer essen-

4 PeedyO 1993-1998 Microsoft Corporation. 
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;;-:;a~l~A~p~p~li~ca~t~io:n~s--------------------------

tially asks the user: "What do you want to do?" and branches . 
h l.k · d) accordmg to th reply (somew at 1 ea w1zar . For example, the user might re 1 "/ e 

k fl . I Ji lt.T v k B "Aft PY, want to boo a 1g 11 rom "ew , or to . oston. er the computer anal h 
. "fi b" d D "d yzes t ere-

ply 1t clan 1es any am 1guous wor s ( 1 you say New York?) F" 11 ' · · ma Y the 
computer asks for any infom1ation that the user did not supply, such a~ "At 
what day and time do you want to leave?" 

• Providing hand~-fr~e computing: Speech recognition ~s an essential compo­
nent of any apphcat1on that reqmres hands-free operat10n; it also can provide 
an alternative to the keyboard for users who are unable to or prefer not to use 
one. Users with repetitive-stress injuries or those who cannot type may use 
speech recognition as the sole means of controlling the computer. As dis­
cussed in later sections, hands-free computing is important for accessibility 
and mobility. 

• Humanizing the computer. Speech recognition can make the computer seem 
more like a person-that is, like someone whom the user talks to and who 
speaks back. This capability can make games more realistic and make educa­
tional or entertainment applications friendlier. 

The specific use of command and control depends on the application. Here are some 
sample ideas and their uses: 

• Games and entertainment: Software games are some of the early adopters of 
command-and-control speech recognition. One of the most compelling uses 
of speech recognition technology is in interactive verbal exchanges and con­
versation with the computer. With games such as flight simulators, for exam­
ple, traditional computer-based characters can now evolve into characters the 
user can actually talk to. While speech recognition enhances the realism and 
fun in many computer games, it also provides a useful alternative to game 
control. Voice commands provide new freedom for the user. 

• Document editing: Command and control is useful for document editing 
when you wish to keep your hands on the keyboard to type, or on the mouse 
to drag and select. This is especially true when you have to do a lot of editing 
that requires you to move to menus frequently. You can simultaneously speak 
commands for manipulating the data that you are working on. A word proc­
essor might provide commands like "bold, italic" and "change font." A paint 
package might have "select eraser" or "choose a wider brush." Of course, 
there are users who won't prefer speaking a command to using keyboard 
equivalents, as they have been using the latter for so long that the combina­
tions have become for them a routine part of program control. But for many 
people, keyboard equivalents are a lot of hard-to-remember shortcuts. Voi~e 
commands provide these users with the means to execute a command di­
rectly. 
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For most of the existing applications, before an application starts a command-and­
control recognizer, it must first give the recognizer a list of commands to listen for. The list 
might include commands like "minimize window," ''make the font bold,'' "call extension 
<digit> <digit> <digit>," or "send mail to <llame>." If the user speaks the command as it 
is designed, he/she typically gets very good accuracy. However, if the user speaks the com­
mand differently, the system typically either does not recognize anything or erroneously 
recognizes something completely different. Applications can work around this problem by: 

• Making sure the command names are intuitive to users. For many operations 
like minimizing a window, nine out of ten users wil1 say minimize window 

without prompting. 

• Showing the command on the screen. Sometimes an application displays a 
list of commands on the screen. Users naturally speak the same text they see. 

• Using word spotting as discussed in Chapter 9. Many speech recognizers can 
be told to just listen for one keyword, like mail. This way the user can speak, 
"Send mail," or "Mail a letter," and the recognizer will get it. Of course, the 
user might say, "/ don't want to send any mail," and the computer will still 
end up sending mail. 

• Employing spoken language understanding components as discussed in 
Chapter 17. 

• Employing user studies to collect data on frequently spoken variations on 
commands so that the coverage is enhanced. 

18.2.2. Telephony Applications 

Speech is the only available modality for telephony applications besides the awkward-to-use 
DTMF interface. The earliest uses of speech technology in business were interactive voice 
response (IVR) systems. These systems include infoline services in the ad-supported local 
newspapers, offering everything from world news to school homework assignments at the 
touch of a few buttons. So what's the big deal with a speech telephony application? It offers 
greater breadth, ease of use, and interactivity. Navigating by voice rather than by keypad 
offers more options and quicker navigation. It also works better while you're driving. 

To make a successful IVR application, you need to have speech input, output, and re­
lated dialog control. People have used IVR systems over the telephone to navigate the appl i­
cation based on the menu option to provide digit strings, such as the credit card numbers, to 
the application. Such system typically has a small to medium vocabulary. Today, you can 
use IVR to get stock quotes, people's telephone number, and other directory-related infor­
mation. For example, you can call AT&T universal card services and the application asks 
you to speak your J 6-digit card number. Most of these IVR systems use recorded messages 
instead of synthetic speech because the quality of TIS is still far from humanlike. Since 
speech output is a slow method to present information, it is important to be as brief as poss i­
ble. Reducing the presentation of repetitive data can shorten the speech output significantly. 
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Voice portals that let you talk your way to Web-based information from any h 
. I h 1· . L. k d p one are 

one class of compellmg te_ ep ony app 1catlons. m e !o specially formatted Web sites and 
databases, the portals dehver what amounts to customized real-time news radio. You can 

ilor voice portals much as you do Web portals like Yahoo!\ AOL\ or MSN". But surfing 
~ restricted to the very limited subsets of information the portals choose to offer. These ser­
~ces typically avoid using synthesized speech. For options like news updates they rely on 
ound bites recorded by announcers. There are a number of free voice portals available, in-

:luding TellMe, BeVocal, HeyAnita, Quack.com. Table 18.l illustrates some of their fea-

tures. 
Table 18.1 Some free voice portal features. These portals are being developed and will roll out 
more features. 

Catee:orv Audioooint5 Tell Me6 
Traffic Yes Yes 
Weather U.S. and world cities U.S. 
News Yes Yes 
Financial Yes Yes 
Soorts Yes Yes 
Airline info No Yes 
Restaurants No U.S. 
Entertainment Yes Yes 
Personalization Yes Yes 

Digital wireless telephony applications could make full use of a client-server architec­
ture because of limited computing resources of the client. The server performs most of the 
needed processing. The client can either send the speech waveform (as used in standard 
telephone) or the spectral parameters such as MFCC coefficients. Using a quantized MFCC 
(see Chapter 6) at 4.5 kbps, no loss of accuracy can be achieved [I 8]. The Aurora project 
tries to standardize the client server communication protocol based on the quantized MFCC 
coefficients 7 

[ 6]. 
When people are engaged in a conversation, even if they have the graphical interface 

in front of them, they seldom use the vocabulary from the interface (unless prompted by 
TTS or the speaker). This has an important implication for the UI design. The use of a dis­
course segment pop cue such as "What now?" or "Do you want to check messages?" could 
reorient users (especially after a subdialog) and help them figure out what to say next. Wild­
fires uses such pop cues extensively. The right feedback is essential, because speech recog­
nition is not perfect. Designers should verify only those commands that might destroy data 
or trigger future events. People become frustrated very quickly if the error feedback is re-

'. http://www.myaudiopoint.com or call I -888-38-AUDIO. 
, http://www.tellme.com or call 1-800-SSS-TELL. 
, http://www.etsi.org/stq 
http://www.witdfire.com/ 
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