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16.2.l. Waveform Generation from Formant Values 

To be able to synthesize speech by rule, a simple model for the fi . 
based synthesizers use the so-called formant synthes. h" h . ilter '.s needed. Most rule-

. Th I . ,s, w ic is denved from m d I f speech production. e mode explicitly represents a number of formant o e s o 
io 6). A formant resonance can be implemented (see Chapt 

6
) . h resonances (from 2 

er Wit a second-order UR filter 

(16. l) 

with I,= F, IF, and b, = B, IF,, where F;, B,, and F, are the formant's center frequency, 
fonnant's bandwidth, and sampling frequency, respectively, all in Hz. A filter with several 
resonances can be constructed by cascading several such second-order sections (cascade 
model) or by adding several such sections together (parallel model). Formant synthesizers 
typically use the parallel model to synthesize fricatives and stops and the cascade model for 
all voiced sounds. 

Unlike the cascade model, the parallel model requires gains to be specified for each 
second-order section, which often are chosen proportional to the formant's frequency and 
inversely proportional to the fonnant' s bandwidth. The cascade model results in an all-pole 
filter, whereas the parallel model has zeros in addition to poles. Such a combination is 
shown in Figure 16.3, where Rl through R6 are the resonances I to 6 and each one repre­
sents a second-order IIR filter like that in Eq. (16.l). RNP represents the nasal resonance, 
and RNZ is an FIR filter with the nasal zero. Al through AB are the gains for each filter, 
used for the parallel model. Switch SW controls whether the cascade model or parallel 
model is used. 

F . . f · lse train driving a low-pass or voiced sounds the excitation model consists o an unpu . d 
fil I f RGZ d RGS For unvo1ce 1 ter RGP and then a bandpass filter created by the paralle O an · . . 

. . . s filter LPF. The exc1tat1on 
sounds the excitation consists of white noise dnvmg a low-pas. th" · d excitation is 
for v ·ced · In pracuce 1s mixe 01 fncatives is a combination of the two sources. ' d th I this model could 
used ~ II . h. Klatt [30] showe a or a voiced sounds to add some breat mess. ally selected. 
repr d . . . th eters had been manu 0 uce quite faithfully a natural recording if e param 
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Figure 16.3 Block diagram of the Klatt fonnant synthesizer (after Allen [4]). 

The parameter names and their minimum and maximum values are listed in Table 
16.1, where the switch SW can be in voiced (V) or consonant (C) mode. For example, in 
Figure 16.3, R2 is the resonator corresponding to the second formant, whose center fre­
quency F2 and bandwidth B2 are given in Table 16.1. In addition to the six resonances asso­
ciated to the six formants, there are other resonances: RGP, RGZ, RGS, RNP, and RNZ. 
Other source models are also possible [43] . 
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T ble 16.l Parameter values for Klatt' s cascade/parallel formant . 1 . . 
e . . , . . syn11es12cr w11h the parame-

ter symbol , full name, m1n1mum, max11num, and typical values (after Allen [41). 

N- s~1-1,_N_1u_n __ c ______ _______ - · -,-;;M::1:-.n-,--M-a-x---.-T- y~ -
,- AV Amplitude of,oicing (dB) o 80 ·o-'zAf- - Amplitude of frication (dB) o -i----

80
-'---

0
::...-

J AH Amplitude of aspiration (dB) o 80 ·-0 L.;
4
'.-l_:A.:.:V~S--1-A-:-m .... p-;:-I it:-u-;d-e -o-;:-f s--:i~nu_s_o._i-d;-a:-1 '--vo--:i-'-;ci:--ng-:-( d·--=B_)_ ---- --O;:---t----=8:.:0--1f--__:

0
:'._( 

5 F0 Fundamental frequency ( Hz) o 500 0 
6 Fl First fomrnnt frequency (Hz) 150 900 500 
7 F2 Second formant frequency (Hz) 500 2500 1500 
s F3 Third fomrnnt frequency (Hz) 1300 3500 2500 
9 F4 Fourth formant frequency (Hz) 2500 4500 3500 
10 FNZ Nasal zero frequency (Hz) 200 700 250 
11 AN Nasal formant amplitude (Hz) 0 80 0 
12 Al First formant amplitude (Hz) 0 80 0 
13 A2 Second formant amplitude (Hz) 0 0 0 
14 A3 Third formant amplitude (Hz) 0 80 0 
15 A4 Fourth formant amplitude (Hz) 0 80 0 
16 AS Fifth formant amplitude (Hz) 0 80 O 
17 A6 Sixth formant amplitude (Hz) 0 80 O 

18 AB Bypass path amplitude (Hz) O 80 
5
~ 

19 Bl First formant bandwidth (Hz) 4o 500 
70 

20 82 Second formant bandwidth (Hz) 4o 5oo 
40 500 l 10 

21 B3 Third formant bandwidth (Hz) o I 0 
22 S~Wll__j_fC~as~c~ad~e~/p~ar~a~l~le:!_I !sw~itc~h!.---::-::-:-----+-io--f- 6160oco1llOLJ 
23 FGP Glottal resonator l frequency (Hz) 

100 
2000 100 

~ BGP Glottal resonator l bandwidth (Hz) 0 ~ 1500 
~ FGZ Glottal zero frequency (Hz) 100 9000 6000 
26 BGZ Glottal zero bandwidth (Hz) 100 ~ 250 
.E_ B4 Fourth formant bandwidth (Hz) 3500 4900 3850 
28 F5 Fifth formant frequency (Hz) 150 700 200 
~ BS Fifth fonnant bandwidth (Hz) -4000 4999 49oo 
~~- F~6t==tistix~th~fo~rm~an~tJfr~e~q~u~en~c~yJ(~H~z)~===--t ~12~o~ojj2~oo~o~r-~l~OOR 

rl!_ 86 Sixth formant bandwidth (Hz) 200 500 250 

ll FN 00 100 - P Nasal pole frequency (Hz) 50 - ~ 
~--~ Nasal pole bandwidth (Hz) so _ J..QQ__ , ___ ,o_o_, 
~ - .J3NZ - Nasal zero bandwidth (Hz) - J OO I OiQ.._ 

200 
-

35 BGS d 'dth (Hz) _ :~ zoooo 10000 
-- Glottal resonator 2 ban wi - - 500 _ --- 5o -~ SR - I ?00 ,ll--·Nws Sampling rate (Hz) er chunk-~ - - 80- 48 

, ~ - -- Number of waveform samples P _:.--
1

~ --~:::.

6
---1---;5- 1 

----- GO Overall gain control (dB) ---~ --~--'----· 
-~ NFc ti ants ~ ---=:..:::..-...1..~N~u~m~b::!er~o::!f~c~a~sc~a~de~d~o'.!.:rm~:.:..-- -

I 
\ 
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16.2.2. Formant Generation by Rule 

As described in Chapter 2, formants are one of the main features of vowels. Because of the 
physical limitations of the vocal tract, formants do not change abruptly with time. Rule­
based formant synthesizers enforce this by generating continuous values for J;(n] and b,[n], 
typically every 5-10 milliseconds. Continuous values can be implemented through the 
above structures if a lattice filter is used, because it allows its reflection coefficients to vary 
at every sample (see Chapter 6). In practice, the values can be fixed within a frame as long 
as frames are smaller than 5 ms. 

Rules on how to generate formant trajectories from a phonetic string are based on the 
locus theory of speech production. The locus theory specifies that formant frequencies 
within a phoneme tend to reach a stationary value called the target. Targets for formant fre­
quencies and bandwidths for a male speaker are shown in Table 16.2 (nonvocalic segments) 
and Table J 6.3 (vocalic segments). This target is reached if either the phoneme is suffi­
ciently long or the previous phoneme's target is close to the current phoneme's target. The 
maximum slope at which the formants move is dominated by the speed of the articulators, 
determined by physical constraints. Since each formant is primarily caused by the position 
of a given articulator, formants caused by the body of the tongue do not vary as rapidly as 
formants caused by the tip of the tongue or the lips. Thus, rule-based systems store targets 
for each phoneme as well as maximum allowable slopes and transition times. 

For example, a transition between a vowel and a sonorant can follow the rule shown in 
Figure 16.4 with a, being the target of unit 1 and a1 the target of unit 2. The values of T,h 
and Tif are 40 and 80 ms, respectively, and ab=a2 +0.75(a1 -a2 ). The time '(b+Tef 
specifies how rapid the transition is. While linear interpolation could be used, ab and the 
ratio 1',6 I T.1 are sometimes used to further refine the shape of the formant transition. 

I I I a I r 1 
'Tb r r,, I 

a, .... i---..... ,~ : 
I Q b I 1"1 
I I I I 
I I I I 

a 2 --1-------·i---t---~,---
1 I I I 
I I I I . ' 

t' I 

Figure 16.4 Transition between two vowels in a formant synthesizer. 

. Other rules can allow a discontinuity, for example, when a transition out of an un-
v01ced segment takes place To · 1 d . . · improve natura ness, all these parameters can be made e-
pendent on the immediate phonetic context. 
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Table 16,2 Targets used in the Klatt synthesizer· fo fi . rmant requenc· db . 
vocalic segments of a male speaker. Note that in add. . ies an andw1dths for non-. . 1t1on to the pho 
2, there are several add1t1onal phonetic segments here such as ax neme set used in Chapter 
qq. rx, tq, wit, that allow more control (after Allen [ 4]). P, dx, el, em, en, gp, In, kp, /x, 

Fl F2 F3 Bl B2 B3 
-

axn 430 1500 2500 120 60 120 
-

b 200 900 2100 65 90 
ch 300 1700 2400 

125 
200 110 270 

d 200 1400 2700 70 115 180 
dh 300 1150 2700 60 95 185 
dx 200 1600 2700 120 140 250 
el 450 800 2850 65 60 80 
em 200 900 2100 120 60 70 
en 200 1600 2700 120 70 110 
ff 400 1130 2100 225 120 175 
R 250 1600 1900 70 145 190 
.ev 200 1950 2800 120 140 250 
h 450 1450 2450 300 160 300 
hx 450 1450 2450 200 120 200 
i 200 1700 2400 50 110 270 
k 350 1600 1900 280 220 250 
ko 300 1950 2800 150 140 250 
l 330 1050 2800 50 100 280 
lx 450 800 2850 65 60 80 

m 480 1050 2100 40 175 120 

II.II 480 1600 2050 160 150 100 

II 480 1400 2700 40 300 260 

D 300 900 2100 300 190 185 

nn 400 1400 2450 120 140 250 

330 1060 1380 70 100 120 
r 

460 1260 1560 60 60 70 
rx 110 280 
sh 400 1650 2400 200 

sit 400 1400 2400 120 140 250 

1400 2700 200 95 220 
s 400 

2700 225 95 200 
lh 400 1150 250 
IQ 200 1400 2700 _ 120 140 -22Q__ - 300 180 

1400 2700 t 300 125 
300 l 130 2100 55 95 

V 
2100 150 60 

60 

- wh 330 600 -~ 80 60 
w 285 610 2150 50 soo° 
V 240 2070 3020 40 250 - Tso 

2400 220 140 . --
zh 300 1650 - --=-- 85 190 - 2700 1o __ ~~ 
z 300 1400 -----

801 
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d · the Klatt synthesizer· formant frequencies and bandwidths for vo-Table 16.3 Targets use m · . 
. f 1 eaker Note that in addition to the phoneme set used m Chapter 2, cahc segments o a ma e sp · . . 

1 dd·t·onal phonetic segments here such as axr, exr, tx, txr, oxr, uxr, _vu that aJ­there are severa a 1 1 

low more control (after Allen (41). 

Fl F2 F3 Bl B2 B3 

aa 700 1220 2600 130 70 160 

ae 620 1660 2430 70 130 300 

ah 620 1220 2550 80 50 140 

ao 600 990 2570 90 100 80 

aw 640 1230 2550 80 70 110 

ax 550 1260 2470 80 50 140 

axr 680 1170 2380 60 60 I JO 

ay 660 1200 2550 100 120 200 
eh 530 1680 2500 60 90 200 
er 470 1270 1540 100 60 I 10 
exr 460 1650 2400 60 80 140 
ey 480 1720 2520 70 100 200 
ih 400 1800 2670 50 100 140 
ix 420 1680 2520 50 100 140 
ixr 320 1900 2900 70 80 120 
iy 310 2200 2960 50 200 400 

0\\1 540 1100 2300 80 70 70 
oxr 550 820 2200 60 60 60 
oy 550 960 2400 80 120 160 
uh 450 1100 2350 80 100 80 
uw 350 1250 2200 65 110 140 
uxr 360 800 2000 60 60 80 
yu 290 1900 2600 70 160 220 

Klatt showed that for a given natural utterance, he could manually obtain a sequence 
of fonnant tracks J;[n] and b,[n], such that the synthesized utterance not only had good 
quality but also sounct~~ "!':~:/ s:milar to the original. This shows that the fonnant synthesizer 
of Section 16.2.I appears to be sufficient for generation. On the other hand, when the for­
mant tracks are obtained automatically through rules such as that of Figure 16.4 and Table 
16.2 and Table 16.3, the output speech does not sound that natural, and the voice does not 
resemble the voice of the original recording. 

Formant synthesis is very flexible because it can generate intelligible speech with rela­
~vely few parameters (about 40). The use of context-dependent rules can improve the q_ual­
ity of the synthesizer at the expense of a great deal of manual tuning. The synthesized 

h · b d · ot speec is, Y es1gn, smooth, although it may not resemble any given speaker and may n 
sound very natural. 
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Because of their flexibility, formant synth . 
. . es1zers can oft 

·ccs and effects. While not as flexible voice ef'ect en generate many different vo1 ' . • 1' s can also b . 
speech systems (see Section 16.5.3). e produced m concatenative 

l6,2.3. Data-Driven Formant Generation 

While. in general, formant synthesis assumes the formant mod I f S . . 
d b . e o ect,on 16.2.1 dnven by 

Parameter values generate Y rules, as m Section 16 2 2 data driv h 
h I h · · • - en met ods to generate the fonnant values ave a so een proposed [3]. An HMM runn,·ng ·1n g . . 

. . enerat1on mode emits 
three fomtant frequencies and their bandwidths every IO ms and these vatu d . . . . , es are use m a 
cascade fonnant synthes1~er surnlar to that described in Section 16.2.1. Like the speech rec-
ognition counterparts, this HMM has many decision-tree context-dependent triphones and 
three states per triphone. A Gaussian distribution per state is used in this work. The baseline 
system uses a six-dimensional vector that includes the first three fonnant frequencies and 
their bandwidths. Initially it is assumed that the input to the synthesizer includes, in addition 
to !he duration of each phoneme, the duration of each state. In this case, the maximum like­
lihood fonnant track is a sequence of the state means and, therefore, is discontinuous at state 
boundaries. 

The key to obtaining a smooth formant track is to augment the feature vector with the 
corresponding delta formants and bandwidths (the difference between the feature at time t \ 
and that feature at time t - I) to complete a twelve-dimensional vector. The maxi~um li~e-
lihood solution now entails solving a tridiagonal set of linear equations (se~ the d1scussio~ 
on statistical formant tracking in Chapter 6). The resulting fonnant track is smoolh, as it 
balances fonnant values that are close to the state means with delta values !hat are also 
· h. · h sembles that of the donor IYtt m the state means. In addition, the synthesized speec re . k 

ak . . be found in the formant trac -:Ile er. More details on the analysis and model tra1mng can 
ing section of Chapter 6. 

16,2,4. Articulatory Synthesis 
Artie used to synthesize speech by rule,_ by 
. ulatory synthesis is another model that has been . ulators and the resultmg 

u~ing parameters that model the mechanical motions of the artlic ynx and vocal and nasal 
distnb ti · the lungs, ar ' f 

u ons of volume velocity and sound pressure 10 t have that many degrees 0 

llacf ls. Because the human speech production articulators do n~ to drive a formant synthe-
reedom . 15 paramete 
· ' articulatory models often use as few as 

sizer. [I?] For example, 
. m"ny-to-one · Th sties 1s " · · s than those 

ave . e relationship between articulators and acoud." rent articulator pos1~onth sump-
nlritoq · "th very 1ue B ustng e as 

Of no uist can produce speech sounds wt . h ref ore ill posed. Y r to estimate 
tion rrnh al speech. The speech inversion problem ,s t _e it is possible, howeve ' 

t at the · "di over ume, art1culators do not change rap• Y 
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the vocal-tract area from fonnant frequencies [37] . In [8] the model uses five articulatory 
parameters: area of lip opening, constriction form~d by the t~ngue blade, o~ening to the na­
sal cavities, average glottal area, and rate of active expansion or contraction of the vocal 
tract volume behind a constriction. These five parameters are augmented with the first four 

fonnant frequencies and FO. 
Those area parameters can be obtained from real speech through X-rays and magnetic 

resonance imaging (MRI), though positioning such sensors in the vocal tract alters the way 
speech is produced (such as the sensors in the lips) and impedes completely natural sounds. 
The relationship between articulatory parameters and acoustic values has typically been 
done using a nonlinear mapping such as a neural network or a codebook. 

While one day this may be the best way to synthesize speech, the state-of-the-an in ar­
ticulatory synthesis does not generate speech with quality comparable to that of formant or 
concatenative systems. 

16.3. CONCATENATIVE SPEECH SYNTHESIS 

While state-of-the-art synthesis by rule is quite intelligible, it sounds unnatural, because it is 
very difficult to capture all the nuances of natural speech in a small set of manually derived 
rules. In concatenative synthesis, a speech segment is synthesized by simply playing back a 
wavefonn with matching phoneme string. An utterance is synthesized by concatenating to­
gether several speech fragments. The beauty of this approach is that unlike synthesis-by­
rule, it requires neither rules nor manual tuning. Moreover, each segment is completely natu­
ral, so we should expect very natural output. 

Unfortunately, this is equivalent to assembling an automobile with parts of different 
colors: each pan is very good yet there is a color discontinuity from part to part that makes 
the whole automobile unacceptable. Speech segments are greatly affected by coarticulation 
[42], so if we concatenate two speech segments that· were not adjacent to each other, there 
can be spectral or prosodic discontinuities. Spectral discontinuities occur when the fonnants 
at the concatenation point do not match. Prosodic discontinuities occur when the pitch at the 
c~ncatenation point does not match. A listener rates as poor any synthetic speech that con­
tams large discontinuities, even if each segment is very natural. 

Thus, when designing a concatenative speech synthesis system we need to address the 
following issues: 

1. What type of speech segment to use? We can use diphones, syllables, pho­
nemes, words, phrases, etc. 

2· How to design the acoustic inventory, or set of speech segments, from a set of 
reco~dings? This includes excising the speech segments from the set of re­
co~d~ngs as well as deciding how many are necessary. This is similar to the 
trammg problem in speech recognition. 

3· How to selec: the best string of speech segments from a given library of seg­
ments, and given a phonetic string and its prosody? There may be several 
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strings of speech segments that produce the same pho t' . 
. . . ·1 h ne ic stnng and pros-

ody. This 1s s1m1 ar to t e search problem in speech recognition. 

4. How to alter the prosody of a speech segment to best mat h th d . 
d Th. · h · c e es1red out-put proso y. 1s 1st e topic of Section 16.4. 

Generally, these concatenative systems suffer from great variability in 
1
- . f 

11 I. . qua Hy. o ten 
!hey can offer exce ent qua Ily m one sentence and terrible quality in the t If -1 . nex one. 
enough good units are ava1 able, a given test utterance can sound almost as good as a re-
corded utterance. However, if several discontinuities occur, the synthesized utterance can 
have very poor quality. While synthesizing arbitrary text is still a challenge with these tech­
niques, for restrictive domains this approach can yield excellent quality. We examine all 
these issues in the following sections. 

We define unit as an abstract representation of a speech segment, such as its phonetic 
label, whereas we use instance as a speech segment from an utterance that belongs to the 
same unit. Thus, a system can keep several instances of a given unit to select among them to 
better reduce the discontinuities at the boundaries. This abstract representation consists of 
the unit's phonetic transcription at the minimum, in such a way that the concatenation of a 
set of units matches the target phonetic string. In addition to the phonetic string, this repre­
sentation can often include prosodic information. 

16.3.1. Choice of Unit 

A number of units have been used in the field, including context-independent phonemes, 
diphones, context-dependent phonemes, subphonetic units, syllables, words, and p~ras~s. A 

. . . . . T bl 16 4 with their coverage m Figure comp1lation of unit types for English 1s shown m a e · 
16.5. 

f 42 h nemes Longer units produce 
Table 16.4 Unit types in English assuming a phone set O P .0 

• • lly below the abso-
higher quality at the expense of more storage. The number of units 15 general bout 30 000 oc-
1 . . , 74 088 ss'ble triphones, on y a • ute maximum m theory, i.e., out of the 42 = , po 1 

cur in practice 
-

Unit type #Units Quality 
Unit length 

42 Low 
Short Phoneme 

Diphone -1500 

Triphone -30K 

Demisyllable -2000 

Syllable -I5K 

Word tOOK-J.5M ,, ~, 
Phrase 00 

High 
Long Sentence 00 --
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The issues in choosing appropriate units for synthesis are similar to those in choosing 

units for speech recognition (described in Chapter 9): 

• The unit should lead to low concatenation distortion. A simple way of mini­
mizing this distortion is to have fewer concatenations and thus use long units 
such as words, phrases or even sentences. But since some concatenations are 
unavoidable, we also want to use units that naturally lead to "small" disconti­
nuities at the concatenation points. For example, it has been observed that 
spectral discontinuities at vowels are much more noticeable than at fricatives, 
or that a discontinuity within a syllable is more perceptually noticeable than a 
discontinuity across syllable boundaries, and similarly for within-word and 
across-word discontinuities [55]. Having several instances per unit is an al­
ternative to long units that allows the choice of instances with low concatena­
tion distortion. 

• The unit should lead to low prosodic distortion. While it is not crucial to have 
units with the same prosody as the desired target, replacing a unit with a ris­
ing pitch with another with a falling pitch may result in an unnatural sen­
tence. Altering the pitch and/or duration of a unit is possible (see Section 
16.4) at the expense of additional distortion. 

• The unit should be generalizable, if unrestricted text-to-speech is required. If 
we choose words or phrases as our units, we cannot synthesize arbitrary 
speech from text, because it's almost guaranteed that the text will contain 
words not in our inventory. As an example, the use of arbitrarily long units in 
such a way that no concatenation between voiced sounds occurs by cutting at 
obstruents results in low concatenation distortion but it is shown [47] that 
over l 80,000 such units would be needed to cover 75% of a random corpus. 
The longer the speech segments are, the more of them we need to be able to 
synthesize speech from arbitrary text. This generalization property is not 
needed if closed-domain synthesis is desired. 

• The unit should be trainable. Our training data should be sufficient to esti­
mate all our units. Since the training data is usually limited, having fewer 
units leads to better trainability in general. So the use of words, phrases, or 
sentences may be prohibitive other than for closed-doruai~ ~ynci1esis. The 
other units in Table 16.4 can be considered trainable depending on the limita­
tions on the size of our acoustic inventory. 

A practical challenge is how to balance these selection criteria. In this section we 
compare a number of units and point out their strengths and weaknesses. 

16.3.1.1. Context-Independent Phonemes 

The most straight_forw31:d unit is the phoneme. Having one instance of each phoneme, inde­
pendent of the neighboring phonetic context, is very generalizable, since it allows us to gen-
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erate every word/sentence. It is also very trainable and 
. we could have a sy 1 h . compact. For a language with N phonemes, say N = 42 ~ E . s em t at 1s very 

Th bl · h . or nghsh, we would d I N 
unit instances. e pro em ts t at usmg co11text-i11dependem h . nee on ~ 
discontinuities. Such a system is not intelligible. P ones results 111 many audible 

16.3.1.2, Diphones 

A type of subword unit that has been extensively used is the so-called d d d. 1 [ . . . ya or ,p 1011e 41). 
A diphone s-ih includes from the middle of the s phoneme to the middle of the ih pho-
neme, so diphones are, on the average, one phoneme long. The word hello I hh ax 1 
owl can be mapped into the diphone sequence: /sil-hh!, /hh-ax/, /ax-1/, 
/ 1-ow/, / ow-si 1 I. ~four language has N phonemes, there are potentially N1 diphones. 
In practice, many such d1phones never occur in the language, so that a smaller number is 
sufficient. For example, the phonetic alphabet of Chapter 2 has 42 phonemes for English, 
and only about 1300 diphones are needed. Diphone units were among the first type of unit 
used in concatenative systems because they yield fairly good quality. While diphones retain 
the transitional information, there can be large distortions due to the difference in spectra 
between the stationary parts of two units obtained from different contexts. For example, 
there is no guarantee that the spectra of / ax- 1/ and / 1-ow/ will match at the junction 
point, since the instance / ax-1 / could have been excised from a very different right con­
text than / ow/ or the instance / 1-ow/ could have been excised from a very different left 
context than /ax/ . 

50000 · 

45000 

~ 40000 
·2 35000 = 30000 
~ 25000 

1l 20000 
§ 15000 

Z 10000 

--word 

-e- syllables 

-.-triphones 

~diphones 

50~00 i- '........::'.·~:....... .. ~~~ ~~;~::t:=:::::;::::::::::±::::::::::;::~~~ 
32000 soooo 

0 8000 

Top N surnames In English 

16000 

mber of units of different 
r· f units displays the nu 
igure 16.S Coverage with different number O U ·ted Scates [34]. 

ty . es in the 01 
pes required 10 generate the top N sumam h d 

1 diphOne based: t ey 0 

F . stems are not pure y while they store 
or this reason many practical d1phone sy f ·catives and srops, 

not st . . ' . . between n ore trans111ons between fncattves, or 

I 

\ 
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longer units that have a high level of coarticulation [48]. I~ onl~ one repr~sentative of a dyad 
is available, there are pitch discontinuities. Prosody mod1ficatton techniques, such as those 
described in Section 16.4, can be applied to con-ect this problem. Otherwise many instances 
of each diphone are needed for good prosodic coverage. Diphones are trainable. generaliz­
able and offer better quality than context-independent phones. 

16.3.1.3. Context-Dependent Phoneme 

Another subword unit used in the literature (24} is the context-dependent phoneme. If the 
context is limited to the immediate left and right phonemes, the unit is known as triphone. 
As in speech recognition, not all N; need to be stored, because not all combinations will 
occur in practice. For English, typically there can be in excess of 25,000 triphones: 12,000 
within-word triphones and another I 2,000 across-word triphones. Because of the increased 
number of units, more contextual variations can be accommodated this way. Drawing from 
experience in speech recognition, we know that many different contexts have a similar effect 
on the phoneme; thus, several triphones can be clustered together into a smaller number of 
ge11eraliz.ed triphones, typically between 500 and 3000. All the clustering procedures de­
scribed in Chapter 9 can be used here as well. In particular, decision-tree clustered phones 
have been successfully used. Because a larger number of units can be used, discontinuities 
can be smaller than in the case of diphones while making the best use of the available data. 
In addition to only considering the immediate left and right phonetic context, we could also 
add stress for the current phoneme and its left and right context, word-dependent phones 
(where phones in particular words are considered distinct context-dependent phones), quin­
phones (where two immediate left and right phones are used), and different prosodic pat­
terns (pitch ranges and/or durations). As in speech recognition, clustered context-dependent 
triphones are trainable and generalizable. 

Traversing the tree for a given phoneme is equivalent to following the answers for the 
branching nodes from root to leaves, which determines the clusters for similar context­
dependent phones. The decision trees are generated automatically from the analysis database 
to obtain minimum within-unit distortion (or entropy) for each split. Therefore, one must be 
able to acquire a large inventory of context-dependent phone HMMs with a decent coverage 
of the contexts one wishes to model. All the context-dependent phone units can be well re­
placed by any other units within the same cluster. This method generalizes to contexts not 
seen in the training data, because the decision tree uses questions involving broad phonetic 
categories of neighboring contexts, yet provides detailed models for contexts that are repre­
sented in the database. Given the assumption that these clustering decision trees should be 
consistent across different speakers, the use of ample speaker-independent databases instead 
of limited speaker-dependent databases allows us to model more contexts as well as deeper 
trees to generate a high-quality ITS voice. These techniques also facilitate the creation of 
acoustic inve~tories with a scalable number of units that trade off size with quality. Thus, we 
can use questions (about the immediate left/right phonetic contexts, stress, pitch, duration, 
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ord etc ) in the decision-tree clustering methods of Ch 
:ombinations to a manageable number. apter 4 to reduce all the possible 

t6.3.l.4, Subphonetic Unit 

Subphonetic units, or senones, have also been used with some success [I 3] T . 11 
b d. 'd d · h · yp1ca y each 

Phoneme can e 1v1 e mto t ree states, which are detennined by - h ' . . running a speec recog-
nition system m forced alignment mode. These states can also be context depe d t d 

d · d · · 1- n en an can 
also be clustere usmg ec1s10_n trees 1ke the context-dependent phonemes. The HMM state 
has proved to be more effective than the context-dependent phone in speech recog -1· 

I
. m 10n, 

also trainable and genera 1zable, but for synthesis it means having more concatenations and 
thus possibly more discontinuities. If multiple instances per subphonetic unit are used 
higher quality can be obtained. ' 

A half phone goes either from the middle of a phone to the boundary between phones 
or from the boundary between phones to the middle of the phone. This unit offers more 
flexibility than a phone and a diphone and has been shown useful in systems that use multi­
ple instances of the unit [7]. 

16.3.1.5. Syllable 

lt has been observed that discontinuities across syllables stand out more than discontinuities 
within syllables [55], so syllables are natural units. There are more than ~0,000 syllables in 
English, depending on the exact definition of syllable, so even a cont~xt-mdependent sylla­
ble system needs to store at least as many if one instance per syllable 1s needed for ~II gen­
eralizability. There will still be spectral discontinuities, though hopefully not t~o noticeable. 
M . . d t t-:or varying acoustic contexts or ore than one mstance per umt may be neede to accoun 1

' _ • 

varying prosodic patterns, particularly if no waveform modification is to be used. 

16,3.l.6. Word and Phrase 

Th Wh'\ using these long units can in-
e unit can be as large as a word or even a phrase. . 1 ~ . so that it is diffi-

crease naturalness sionificantly, generalizability and tramabihty are poeor.One advantage of 
cult o th . n output utteranc . 

. to have all the instances desired to syn esize a - the above units, is that 
using ·f n in phonemes, as m a word or longer unit over its decomposi 10 . . It is possible that the pho-
there · . cribed d1ct1onary. h 15 no dependence on a phonetically trans . t, or not fluent enoug , so 
nerne tri. d. · ary 1s not correc h s ng associated to a word by our 1cuon the system may ave a 
that u · th' oblem Of course, , b t smg a whole-word model can solve is pr · tences or phrases ior es 
comb· · f ent words, sen ' b"l" and ination of all units· a set of the most requ . ' full generaliza I ity 
quality · mailer units 10r 

. some percentage of the time, and some s 
tramabi Ii ty. 

\ 
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16.3.2. Optimal Unit String: The Decoding Process 

The goal of the decoding process is to choose the optimal string of units for a given phonetic 
string that best matches the desired prosody. Sometimes there is only one possible string, so 
that this process is trivial, but in general there are several strings of units that result in the 
same phonetic string yet some of them sound better than others. The goal is to come up with 
an objective function that approximates this sound quality that allows us to select the best 
string. The quality of a unit string is typically dominated by spectral and pitch discontinui­
ties at unit boundaries. Discontinuities can occur because of: 

l. Differences in phonetic contexts. A speech unit was obtained from a different 
phonetic context than that of the target unit. 

2. Incorrect segmentation. Such segmentation errors can cause spectral discon­
tinuities even if they had the same phonetic context. 

3. Acoustic variability. Units can have the same phonetic context and be prop­
erly segmented, but variability from one repetition to the next can cause small 
discontinuities. A unit spoken in fast speech is generally different from an­
other in slow or nonnal speech. Different recording conditions (amplitude, 
microphone, sound card) can also cause spectral discontinuities. 

4. Different prosody. Pitch discontinuity across unit boundaries is also a cause 
for degradation. 

The severity of such discontinuities generally decreases as the number of units in­
creases. More importantly, the prosody of the concatenation has, in general, no resemblance 
with the prosody specified by the ITS front-end unless we have several instances of each 
unit, each with a different prosody, or use a prosody modification algorithm (see Section 
16.4). 

16.3.2.1. Objective Function 

Our goal is to come up with a numeric measurement for a concatenation of speech segments 
that correlates well with how well they sound. To do that we define unit cost and transition 
cost between two units. 

Let 0 be a speech segment with phonetic transcription p = p(0). Let 
0={01>82,···,0N} be a concatenation of N speech segments whose combined phonetic 
transcription is P = {Pi, Pi,···, PN} . P is a string of M phonemes, and since each segment 
has at least one phoneme, it holds that M ~ N . 

For example, the phonetic string P = "hh ax low" corresponding to the word hello has 
M = 4 phonemes and can be decomposed in N = 4 segments e, = {0,,0

2
,0,,0

4
}, where 

p( 0!) = I hh I , p( 02) = I ax I , p( 03 ) = fl I , p( 0 
4

) = / ow I , each segment being a phoneme. 
Or 1t can be decomposed into N = 2 segments 0 2 = {0

5
,0

6
}, where p(0

5
) == I hh a.xi, 
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P(9 ) :: / / ow I , so that each segment has two ph , . I . onemes. There a 8 . 

Po
sitions for this examp e (m general there are 2M-1 'bl re possible such decom-

. · f . poss1 e decompo · . 1 
Toe d1stort1on or cost unction between the se s1t10ns ). gment concatenat' 0 

can be expressed as a sum of the corresponding unit 
1?? and the target r 

follows: costs and transition costs [27, 46] as 

,,· .\'-I 

d(0,T)= Ldi8j,T)+ Ld,(0j,0j+i> 
J~I j=I 

(16.2) 

~here d. (0! '. T) is th~ unit cost of ~sing speech segment 81 within target rand d, (8 ,8 + ) 

1s !he trans1t1on cost m concatenating speech segments 0 and 0 The O t' al 
1 1 1 

h • " J 1+1 • p 1m speec 
segment sequence of umts 0 can be found as the one that minimizes the overall cost 

0 = arg min d(0, T) 
8 

(16.3) 

over sequences with all possible numbers of units. Transition and unit costs are described in 
Sections 16.3.2.2 through 16.3.2.5. 

Let's analyze the second term in the sum of Eq. ( I 6.2), also shown in Figure 16.6. If 
all lransition costs were identical, the word string with fewest units would have lo':es_t dis- \~ 
tonion. In practice transition costs are different and, thus, the string with feweSt units is not 
necessarily the best, though there is clearly a positive correlation. 

When a large number of speech segments are available, finding the segme~t se~u;nce 
~ilh lowest cost is a search problem like those analyzed in Chapter I 2. Often a Viterbi go-

nlhm is needed to make this efficient. 

Selected 
units 

Transition cost 

D Gf-l!J D 
tunit cost 

GJ D D Target D 
units . d transition costs. 

b en umt an 
Figure 16.6 Tradeoff etwe 

..__ . me number of decom-

' -0-S ------- - veral instances per unu, 
assume th . . . . bl If there are se 

Politi s at one instance per umt JS avails e. 
Orls""" 

c,•uWS CXponentiaJly. 
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The art in this procedure is in the exact definition of both transition and unit costs, for 

h. h no standard has been defined that works best to date. In Sections 16.3.2.2 and 
W IC · · d · 
16.3.2.3 we present an approach for which b?th trans1t1on_ an umt costs ~re empirically set 
after perceptual experiments. Such a system 1s easy to build, and study of those costs gives 

insight into the perceptual effects. . . . . . . 
Costs obtained using a data-dnven cntenon are descnbed m Sections 16.3.2.4 and 

I 6.3.2.5. While more complicated than that of empirical costs, this method addresses the 
shortcomings of the previous method. Finally, we need to estimate some weights to combine 
the different costs for spectrum and prosody, which can be done empirically or by regression 

[26]. 

16.3.2.2. Empirical Transition Cost 

If spoken in succession, two speech segments have a zero transition cost. But, when they are 
excised from separate utterances, their concatenation can have varying degrees of natural­
ness. The transition cost incorporates two types of continuity measures: coarticulatory and 
prosodic. 

An approximation to the prosodic continuity measure is to make it proportional to the 
absolute difference of the FO or log FO at the boundaries, if the boundary is voiced for both 
units. If we use the prosody modification techniques of Section 16.4, this cost could be set to 
a small value to reflect the fact that prosody modification is not a perfect process. More so­
phisticated cost functions can be used to account for prosody mismatches [IO]. 

Regarding the coarticulatory effect, it has been empirically observed that a concatena­
tion within a syllable is more perceptible than when the concatenation is at the syllable 
boundary. Yi [55) proposed an empirical cost matrix for the concatenation of two speech 
segments when that concatenation occurs within a syllable (Table 16.5) or at a syllable 
boundary (Table 16.6). Phonemes are grouped by manner of articulation: vowel/semivowels, 
fricatives, stops, and nasals. The rows represent the left side of the transition and the col­
umns represent the right side, and NA represents a case that does not occur. These costs re­
flect perceptual ratings by human listeners to unit concatenations between different 
phonemes. Values of 10, 2000, 5000, 7500, and 10,000 were used to indicate different de­
grees of goodness from very good to very bad concatenations. 

Tabl~ 16.5 Cost matrix for intrasyllable concatenations (after Yi (55]). The rows represent the 
left side of the transition and the columns represent the right side, and NA represents a case 
that does not occur. 

vowel semivowel nasal obstruent /hi 
vowel 10,000 10,000 7500 10 NA 
semivowel 10,000 7500 7500 IO NA 
nasal 5000 10 NA 10 NA 
/hi 5000 NA NA NA NA 
obstruent 10 lO 10 10,000 NA 
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Table 16.6 Cost ma1rix for intersyllable concatenations (aft y· [551 
f 

· · er 1 ) The rows rep th 
left side o the trans1t1on and the columns represent the right side a~d resent e 
that does not occur. ' NA represents a case 

-
vowel semivowel nasal obstruent /hi silence 

vowel NA 7500 5000 10 5000 IO 
semivowel 7500 7500 2000 10 10 ·- --- -- ·- -· 10 
nasal 2000 10 10 10 IO IO 
obslruent 10 10 10 5000 10 10 - --4·~--
/hi NA NA NA NA NA NA 
silence 10 10 10 JO 10 IO 

16.3.2.3. Empirical Unit Cost 

The unit cost is generally a combination of the coarticulation cost and the prosodic cost. 
Prosodic mismatches can be made proportional to the FO difference between the candidate 
unit and the target unit or set to a fixed low value if the prosody modification techniques of 

Section 16.4 are used. 
A way of determining the cost associated with replacing a phonetic context with an­

~ther was proposed by Yi (55], who empirically set cost matrices for phone classes by listen­
mg to concatenations where such contexts were replaced. These ad hoc values also bring 
some sense of where the coarticulation problems are. Replacing a vowel or semivowel by 
~other with a context that has a different place of articulation or nasalization results in au­
dible discontinuities. The rows represent the context class of the target phoneme a

nd th
e 

columns represent the context class of the proposed unit. Table 16.7, Table 16.S, Table 
16

:
9

• 
Table 16.10, Table 16.11 and Table 16.12 include an empirical set of coSlS for such mis­
matches between the ta;get's context and a candidate unit's context ~or the . case of 
vowel/semivowels fricatives stops and nasals. These costs reflect human hsteners percep­
tual · ' ' ' · t t Values of 10 100, 500, and 

ratings of speech units with an incorrect phonetic con ex · ' h l000 d bad units These values are c o-
were used to indicate very good, good, bad. an very · 

sen to match the values for transition costs of Section 16·
3

·
2

·
2

· 

Table 16.7 Unit coarticulation cost matrix (after Yi [55]) for left and right context replace-

ments for I d I vowe s an sem1vowe s. -
- front back none 

velar m n ng 

- labial alv/den/pal - 1000 1000 1000 1000 

~bial 1000 )000 )000 
10 1000 - -- 1000 1000 l000 1000 1000 l000 

- alv/den/pal )000 
l000 10 -- 1000 1000 1000 1000 

~lar )0 1000 1000 
1000 1000 1000 1000 1000 

~ 
1000 10 1000 1000 

1000 1000 -- - 1000 10 1000 1000 1000 1000 

n ~ -- 1000 1000 -- _!.22£_ IO 1000 1000 1000 - 1000_ 
.3 1000 1000 

1000 __ - 1000 1000 i--- 1000 1000 JO 
. .!!ont 1000 1000 

1000 1000 -----~- - 1000 1000 10 1000 

.. l>ack 1000 1000 1000 
1000 1000_ -- 1000 1000 1000 1000 1000 10 

-~~ne 1000 1000 
)000 

I 
\ 
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Table 16.8 Unit coarticulation cost matrix (after Yi [55]) for left and right context replace­

ments for fricatives. 

retroflex round sonorant other 

retroflex 10 JOO - 100 100 

round 100 JO JOO 100 
-· 

sonorant JOO JOO JO 100 -
other 100 100 JOO 10 ___ ..___ 

Table 16.9 Unit coarticulation cost matrix (after Yi [55]) for left context replacements for 
stops. 

front back retroflex round other 

front IO 10 10 JO 10 

back IO IO 10 10 10 

retroflex IO 10 IO 10 10 

round IO 10 10 10 10 

other 500 500 500 500 IO 

Table 16.10 Unit coarticulation cost matrix (after Yi (55)) for right context replacements for 
stops. 

front back retroflex round schwa other 

front IO 100 l00 100 500 100 

back 100 IO l00 100 500 100 

retroflex. 100 100 10 100 500 100 

round 100 100 100 10 500 100 

schwa 500 500 500 500 10 500 

other 100 100 l00 
I 

100 500 10 

Table 16.11 Unit coarticulation cost matrix (after Yi [55)) for left context replacements for 
na~als. 

obstruent sonorant 

obstruent 10 1000 

sonorant 1000 10 
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Table 16.12 Unit coaniculation cost matrix (after Yi [55]) ~ . 
nas:1ls. or nght context replac~ments for 

·- ----- -,----. 
voiced unvoi 

'--
ced sonorant --

voiced 10 IOO ._.. .. l000 

unvoiced IOO 10 1000 ·-
sonorant IOOO IOOO 10 

·-

16.3.2.4. Data-Driven Transition Cost 

The empirical transition costs of Section 16.3.2.2 do not necessarily mean that a spectral 
discontinuity will take place, only that one is likely, and that if it occurs within a syllable it 
will have a larger perceptual effect than if it occurs across syllable boundaries. While that 
method can result in a good system, the cost is done independently of whether there is a true 
spectral discontinuity or not. Thus, it has been also proposed to use a measurement of the 
spectral discontinuity directly. This is often estimated as: 

(16.4) 

the magnitude squared of the difference between the cepstrum at the last frame of 8; 3nd the 
first frame of 0j . The quantity /(0,) denotes the number of frames of speech segment 0;, 

and x,(k) the cepstrum of segment 0; at frame k. . . ·ch I ly 
. 1 d" tinuity m a rea1on wt s ow 

Tots technique can effectively measure a spectra iscon ° ~ h" h . · asal fore xample, 1or w 1c 
varying spectrum, but it can fail when one of the segments is an f' . thr's d1'sconti-

h . d A better way o measunng as arp spectral transition is expected and desire · . . I p re-. . th epstral distance m an over a 
n~1ty, 1s shown in Figure 16.7, in which we measure e c be inning of segment 2: 
gion:· the last frame of segment I and the first frame before !he g 

(16.5) 

I number of cepstral distances 
W -~a~ . 

hen many speech segments are con5r. siow rocess. To speed it up an approxi-
neect to be computed which in tum may result m a pt the boundaries are vector quan­
mat· ' . stral vectors a d IOn can be made where all possible cep . can be precomputed and store 
ti d I d book entries . ze first, so that the distances between al co e 
1n a table. 

-------------' ~ s me d ans extra frames need to be store · 
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Segment I 

I 

: Segment 2 

[ j_.__· __ ____, 
I i 
I I 

l I 
I 
I 

Overlap 
Region 

Speech Synthesis 

Figure 16.7 Measurement of the spectral discontinuity in the overlap region. The dark gray 
area is the speech region that precedes segment 2 and does not form part of segment 2. This 
area should match the last part of the segment 1. 

A spectral discontinuity across, say, fricatives is perceptually not as important as if it 
happens across vowels [48]. For this reason, the cepstral distance described above does not 
correlate well with perceptual distances. To solve this problem, it is possible to combine 
both methods, for example by weighting the spectral/cepstral distance by different values. 

Even if no spectral discontinuity is present, a phase discontinuity may take place. The 
pitch periodicity may be lost at the boundary. This can be generally solved by fine adjust­
ment of the boundary using a correlation approach as described in Section 16.4. You need to 
keep in mind that such methods are not perfect. 

16.3.2.5. Data-Driven Unit Cost 

Spectral discontinuities across concatenations are often the result of using a speech segment 
with a different phonetic context than the target. One possibility is, then, to consider only 
speech segments where the phonetic contexts to the left and right match exactly. For exam­
ple, if we use a phoneme as the basic speech segment, a perfect match would require on the 
order of at least 25,000 different segments. In this case, the coarticulation unit cost is zero if 
the target and candidate segment have the same phonetic context and infinite otherwise. 
When longer segments are desired, this number explodes exponentially. The problem with 
this approach is that it severely reduces the number of potential speech segment~ that can be 
used. 

Generalized triphones, as described in Section I 6.3.1.3, are used in i24]. In this ap­
proach, if the speech segments have the same generalized triphone contexts as the target 
utterance, the unit cost is zero, otherwise the cost is infinite. The technique allows us to use 
many more possible speech segments than the case above, yet it eliminates those speech 
segments that presumably have context mismatches that in turn lead to unnatural concatena­
tions. When using a large training database, it was found that bringing the number of tri­
phones from 25,000 down to about 2000 did not adversely impact the quality, whereas some 
degradation was perceived when using only 500 phoneme-length segments. Thus, this 
technique allows us to reduce the size of the speech segment inventory without severely 
degrading the voice quality. 
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If we set the number of decision-tree clustered context-d d 
i." h . f epen ent phonemes to be 

there will be iewer c 01ces o long speech segments that h F . 
1arge, 1· d . h mate . or instance in 

m with 2000 genera 1ze tnp ones, the phonetic context of th 1 ' a 
5yste e ast phoneme of a Ion 

ent and the context of the target phoneme may be clustered t h . g segm . oget er, whereas m a 

3
nM.aeneralized-tnphone system, both contexts may not be clustered to th 
\J\N " d Th" ge er, so that the 

I 
a segment cannot be use . 1s would be one example where usi·ng 1 ono . a arger number of 

ne-tized tnphones hurts speech naturalness because the database of sp h . ge 10.J • • • eec segments 1s 
l·mi·ied This problem could have been av01ded 1f we didn't have to match 1. d 
1 • • • • genera 1ze 

Ol
·phones and instead allowed context substitutions, yet penalized them with a corre d. 

k f d 
. . spon mg 

cost. In the framew~r o e~1s1on-tree clustered context-dependent phonemes, this cost can 
be computed as the increase m entropy when those contexts are merged, using the methods 
described in Chapter 9. The larger the increase in entropy, the larger the penalty is when 
doing that context substi~~~n b~tween the candidate segment and the target segment. This 
approach gives more flex1b1hty m the number of speech segments to be considered. In this 
case, there is a nonzero unit coarticulation cost associated with replacing one phonetic con­

text with another. 
Speech segments that have low HMM probability can be discarded, as they are proba­

bly not representative enough for that unit. Moreover, we can eliminate outliers: those units 
that have parameters too far away from the mean. Eliminating pitch outliers helps if prosody 
modification is to be done, as modifying pitch by more than a factor of 2 typically yields a 
decrease of quality, and by keeping units with average pitch, this is less likely to occur. 
Eliminating duration or amplitude outliers may signal an incorrect segmentation or a bad 

transcription [ I 3]. 

16.3.3. Unit Inventory Design 

The minimal procedure to obtain an acoustic inventory for a concatenative speech synthe­
sizer consists of simply recording a number of utterances from a single speaker and labeling 

them with the corresponding text. 
Since recording is often done in several sessions, it is important to maintain the re­

~ording conditions constant to avoid spectral or amplitude discontinuities caused by changes 
in recording conditions. The same microphone, room, and sound card should be used 

throughout all sessions [49]. . 
. Not all donor speakers are created equal. The choice of donor speaker can have a sig­

nificant effect in voice quality (up to 0.3 MOS points on a 5-MOS scale) [7, 51, 52]. 
We can obtain higher-quality concatenative synthesis if the text read ~y the target 

speaker is representative of the text to appear in our application. This way we w1U be able to 

use longer units, and few concatenations will be needed. 
. Then the waveforms have to be segmented into phonemes, which is ge~erally do_ne 

~Ith a speech recognition system operating in forced-alignment mode. Phonetic transcnp-
llon · · · b h h · an • 1~cludmg alternate pronunciations, is generated automat1cally fro1:1 te~t y t e p on~uc 

alysis module of Chapter 14. A large part of the inventory preparation mcludes checkmg 
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correspondence between the text and corresponding waveform. Possible transcription errors 
may be flagged by phonemes whose durations are too far away from the mean (outliers) [13, 
24]. 

Once we have the segmented and labeled recordings, we can use them as our inven­
tory, or create smaJler inventories as subsets that trade off memory size with quaJity [21, 
25]. A database with a large number of utterances is generally required to obtain high­
quality synthesis. It is noteworthy to analyze whether we can reduce the size of our database 
while obtaining similar synthesis quality on a given set of utterances. To do this, we can 
measure the cost incurred when we use a subset of the uriits in the database to synthesize our 
training database. A greedy algorithm can be used that at each stage eliminates the speech 
unit that increases the total distortion the least, repeating the approach until the desired size 
is achieved. This is an iterative analysis-by-synthesis algorithm. · 

The above procedure can also be used to find the set of units that have lowest cost in 
synthesizing a given text. For efficiency, instead of a large training text, we could use repre­
sentative information from such text corpus, like the word trigrams with their corresponding 
counts, as an approximation. 

In concatenative systems, you need to store a large number of speech segments, which 
could be compressed using any of the speech coding techniques described in Chapter 7. 
Since many such coders encode a frame of speech based on the previous one, you need to 
store this context for every segment you want to encode if you are to use such systems. 

16.4. PROSODIC MODIFICATION OF SPEECH 

One problem of segment concatenation is that it doesn't generalize well to contexts not in­
cluded in the training process, partly because prosodic variability is very large. There are 
techniques that allow us to modify the prosody of a unit to match the target prosody. These 
prosody-modification techniques degrade the quality of the synthetic speech, though the 
b;!nefits are often greater than the distortion introduced by using them because of the added 
flexibility. 

The objective of prosodic modification is to change the amplitude, duration, and pitch 
of a speech segment. Amplitude modification can be easily accomplished by direct multipli­
cation, but duration and pitch changes are not so straightforward. 

We first present OLA and SOLA, two algorithms to change the duration of a speech 
segment. Then we introduce PSOLA, a variant of the above that allows for pitch modifica­
tion as well. 

16.4.1. Synchronous Overlap and Add (SOLA) 

Time-scale modification of speech is very useful, particularly voice compression, as it al­
lows a user to listen to a voice mail or taped lecture in a fraction of the time taken by the 
original segment user to listen to information The overlap-and-add (OLA) technique [12) 
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. p·,gure 16.8 shows the analysis and synthesis windows used in the ti'me co h wn 1n . . . mpres­
s_ 0 

0. n a Hann mg wmdow of length 2N and a compression factor off, the analysis · _ on ,ve I . . d I . . win 
si · spaced JN. Each ana ys1s wm ow mu t1phes the analysis signal, and at synthes·s 
~~ I 
. h are overlapped and added together. The synthesis windows are spaced N samples 
ume I ey h H · 11 ~ Toe use of windows sue as annmg a ows peuect reconstruction whenfequals 1. 
apart- In Figure J 6.8, some of the. signal appearance has been lost; note particularly some ir-

l pitch periods. To solve this problem, the synchronous overlap-and-add (SOLA) [45) 
regu ar · · · f th l · · d b allows for a flexible pos1t10~1~g o e ana ys1s wm ow y se~rching the location of the 
analysis window i aro~nd jNt m such _a way ~at t.he overlap re?1on had maximum correla­
. Toe SOLA algonthm produces high-quality time compression. A mathematical fonnu­aon. 

lation of PSOLA, an extension ~f both O_LA and SOLA, is pr~sented in Section 16.4.2. 
While typically compression algonthms operate at a umfonn rate, they have also been 

used in a nonunifonn rate to take into account human perception, so that rapid transitions are 
compressed only slightly, steady sounds are compressed more, and pauses are compressed 
the most. It's reported in (11 ], that while uniform time compression can achieve a factor of 
2.5 at most without degradation in intelligibility, nonuniform compression allows up to an 
average compression factor of 4. 

F' · H nning windows of 
igure 16.8 Overlap-and-add (OLA) method for time compression . . a . d d signals 

length 2N · · I and resulting wm owe 
, N = 330, are used to multiply the analysis signa • · . . al [ J e shown 

are add d T d th analysis sign x II ar e · he analysis windows, spaced 2N samples, an e h ·s s·ignnl y[n] are 
on the I T art and the syn1 es1 
sh op. he synthesis windows, spaced N samples ap • . h . dicity is somewhat 

I 
own below. Time compression is unifonn with a factor of 2· Pitc peno 

OS(, · ' 
Particularly around the fourth window. 
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16.4.2. Pitch Synchronous Overlap and Add (PSOLA) 

Both OLA and SOLA do duration modification but cannot do pitch modification. On the 
other hand, they operate without knowledge of the signal's pitch. The most widely used 
method to do pitch modification is called pitch synchronous overlap and add (PSOLA) [38, 
39), though to do so it requires knowledge of the signal's pitch. This process is illustrated in 
Figure 16.9. 

Let's assume that our input signal x[n] is voiced, so that it can be expressed as a func­
tion of pitch cycles xi[n] 

x[n] = .i:X,[n-tJi]] (16.6) 
1=-

L.., .. -1-·\ _ _I ,ar;1 
W2[n] + x2[n]=w,[n]x[n] 

~fi~ x[n] 
Figur_e 16.9 Mapping between five analysis epochs t.[i] and three synthesis epochs t [j] . 
Duration has been shorte~ed ~Y 40% and pi_tch period increased by 60%. Pitch cycle x

2
[~] is 

~he ~roduct ~f the an~ysis wmdow w2[n], m dotted line, with the analysis signal x[11] which 
is ahgned with_ analysis epochs t0 [i]. In ~s c_ase, synthesis pitch cycle y

1
[n] equal; x

2
[n] 

and also Yo[n]- Xo[n] and yi[n] = x5[n]. Pitch 1s constant over time in this case. 
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[.1 are the epochs of the signal. so that the difference between ad' 
here '· , . . d . . . Jacent epochs 

w (']·· t [i -1] is the pitch per10 at time t.,[r] m samples. The pitch cycle is a · d d p[i]::::I., 1 ,, wm owe 
v;rsion of the input 

li(n]= w,[n]x[n] (16.7) 

. h quires the windows w,[11] to meet the following condition: 
whic re 

f 1r;[n --t.[il] = I (16.8) 

which can be accomplished with a Hanning window, or a trapezoidal window that spans two 

pitch periods. . . . 
Our goal is to synthesize a signal y[n], which has the same spectral characteristics as 

x[n] but with a different pitch and/or duration. To do this, we replace the analysis epoch 
sequence r.[i] with the synthesis epochs t,[j], and the analysis pitch cycles xi[n] with the 
synthesis pitch cycles yJn]: 

M 

y[n]= L Yin-t..[J]] (16.9) 
j=-

The synthesis epochs are computed so as to meet a specified duration and pitch con­
tour, as shown in Figure 16.9. This is equivalent to an impulse train with variable spacing 
driving a time-varying filter x,[n] which is known for t = t,, [i], as shown in Figure 16. l 0. The 
synthesis pitch cycle yi[n] is obtained via a mapping from the closest corresponding analysis 
pitch cycle x;[n]. In the following sections we detail how to calculate the synthesis epochs 
and the synthesis pitch-cycle waveforms. 

I I ~ - 1,____x,[n]____.I- tv01/' 
Figure 16.10 PSOLA technique as an impulse train driving a time-varying filter. 

The tenn overlap-and-add derives from the fact that we use overlapping windows that 
we add together. The pitch-synchronous aspect comes from the fact that the windows are 
spaced a pitch period apart and are two pitch periods long. As you can see from Figure 1 6.9, 
~e synthesis waveform has a larger pitch period than the analysis waveform and is shorter 
mduration. 

For unvoiced speech, a set of epochs that are uniformly spaced works well in practice, 
: long as the spacing is smaller than 10 ms. If the segment needs to be stretched in such a 
Tay th~t these characteristic waveforms are repeated, an artificial periodicity would appear. 

0 
avoid_ this, the characteristic wavefonn that was to be repeated is flipped in time [38]. 

as l This approach is remarkably simple, yet it leads to high-quality prosody modification, 
~u~. di . . voice unvoiced decision is correct and the epoch sequence 1s accurate. 
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To do prosody modification, the PSOLA approach re~uires keeping the waveform of 
the speech segment and its corresponding set of epo~h~, or t_1me n:iarks. As you can see from 
Eq. (16.6), if no prosody modification is done, the ongmal signal 1s recovered exactly. 

16.4.3. Spectral Behavior of PSOLA 

Let's analyze why this simple technique works and how. To do that let's consider the c_ase of 
a speech signal x[n] that is exactly periodic with period I;, and can be created by passmg an 

impulse train through a filter with impulse response s[n): 

x[n] = s[n]* f,o[n-i1;,] = ts[n-ifo] (16.10) 
,=...., /:-oo 

If we know the impulse response s[n], then we could change the pitch by changing r;,. 
The problem is how to estimate it from x[n]. Let's assume we want to build an estimate s[n] 

by multiplying .x[n] by a window w[n]: 

s[n] = w[n]x[n] (16.11) 

The Fourier transform of xf n] in Eq. (16.10) is given by 

27r To-I 27r To-I 

X(ro) =-S(ro) L o(ro-kaJo) =-IS(kaJo)S(m-kaJo) 
To k=O To t=o 

(16.12) 

where m0 = 2ir I I;, . The Fourier transform of s[ n) can be obtained using Eqs. (16.11) and 
(16. 12): 

- I Tu-I W(m-km ) 
S(m) ==-W(m)*X(m) = LS(kaJo) 0 

2n · t=o T0 

(16.13) 

If the window w[n] is pitch synchronous, a rectangular window with length 7;, or a 
Hanning window with length 27;,, for example, then the above estimate is exact at the har­
monics, i.e., S(km0 ) = S(kr»0 ). t-~:::mse the window leakage terms are zero at the harmonics. 
In-between harmonics, S(w) is an interpolation using W(m), the transfer function of the 
window. If we use a rectangular window, the values of S(ro) in between S(kro0 ) and 
S((k + l)m0 ) are not determined only by those two harmonics, because the leakage from the 
other harmonics is not negligible. The use of a Hanning window drastically attenuates this 
leakage, so the estimate of the spectral envelope is better. This is what PSOLA is doing: 
getting an estimate of the spectral envelope by using a pitch-synchronous window. 

Since it is mathematically impossible to recover S(m) for a periodic signal, it is rea­
sonable to fill in the remaining values by interpolation with the main lobes of the transform 
of the window. This approach works particularly well if the harmonics form a dense sam-
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f the spectral envelope, which is the case for male speakers Fo f 1 Jin" o . . r ema e speakers 
P D he harmonics may be spaced far apart, the spectral envelope estimated b . ' 
·here' f d"f' f Y mterpolat-

i\ hannonics could be ar I lerent rom the real envelope. 
ing across 

4 4 Synthesis Epoch Calculation 
16. · • 

In practice, we ~ant t~ gene~te a set ~ sy~thesis epochs t,.fj] given a target pitch period 
P,(t). If the desired pitch penod P, (I) - P 1s constant, then the synthesis epochs are given 

by t,Ul === jP. . d . h . d P ( ) . f . . 
In general the desire pltc peno , t is a unction of time. Intuitively, we could 

compute t,[j + l] in terms of the previous epoch ts[JJ and the pitch period at that time: 

t,[j+l]-t,[J] = P,(t,[J]) (16.14) 

!hough this is an approximation, which happens to work well if ~(t) changes slowly over 
time. 

Now we derive an exact equation, which also can help us understand pitch-scale and 
time-scale modifications of the next few sections. Epoch t,[J + l] can be computed so that 
!he distance between adjacent epochs t, [J + l]-t,[)J equals the average pitch period in the 
region t,[j] ~ t < t,[J + I] between them (see Figure 16.11). This can be done by the follow­
ing expression 

1 / [ ·+11 
I [ . 1] [ ·1 ---J.' 1 

P ( )d ' J + - t, J = [ . I] [ ·1 [ ·1 ., I I t, J + -t, J ,, J 
(16.15) 

~(t) 

t,[21-t.[ll 

t_,[O] I I t, [I] I tJ21 I ,,[3] 

Figu~e 16.ll The desired pitch period p (t) is a linearly increasing function of time such that 
!he Pilch period is doubled by the end ~f the segment. The four synthesis epochs t,[J] are 
~;ernputed to ~atisfy Eq. (16.15). In particular, t,[21 is computed such that t,[2]-t,[I] e~ua~s 

average pitch period in that region. Note that the growing spacing between epochs indi­
cates that . h . pitc 1s growing over time. 
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It is useful to consider the case of P,(t) being linear with tin that interval: 

P, (t) =P. (t,[Jl)+b(t-ts£j1) 

so that the integral in Eq. (16.15) is given by 

r•,u+ii P (t)dr = o. [P(t,UD + h 
0

2
1

] 
J,,[/] • J • • 

where we have defined o 1 as 

Inserting Eqs. (16.17) and (16.18) into Eq. (16.15), we obtain 

0 o. =P(t,[i])+b__f_ 
' 2 

which, using Eq. (16.18), gives a solution for epoch t,[j + 1] as 

t [ '+1)-/ [ ·1=0 . = P,(t,[j]) 
,] ,] I (l-b/2) 

(16.16) 

(16.) 7) 

(16.18) 

(16.19) 

(16.20) 

from the previous epoch t,[J], the target pitch at that epoch P,(t,[J]), and the slope b. We 
see that Eq. (16.14) is a good approximation to Eq. (16.20) if the slope bis small. 

Evaluating Eq. (16.16) for t,[j+l] results in an expression for .P,(t,[j+l]) 

P,(t,[j + l]) = .P, (t,[j])+b(t. [j + 1]-t,[j]) (16.21) 

Equations (16.20) and (16.21) can be used iteratively. It is important to note that Eq. (16.20) 
requires b < 2 in order to obtain meaningful results, which fortunately is always the case in 
practice. 

When synthesizing excitations for speech synthesis, it is convenient to specify the syn­
thesis pitch period P,(t) as a piecewise linear function of time. In this case, Eq. (16.20) is 
still valid as long as t,[J + 1] falls within the same linear segment. Otherwise, the integral in 
Eq. (16.17) has two components, and a second-order equation needs to be solved to obtain 
t,[j+l]. 
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.4.S. Pitch-Scale Modification Epoch Calculation 

82S 

etimes, instead of generating an epoch sequence given by a function p (t) we want to 
som h of a al · · 1 ·• ' modify che e_p~c _sequenc~ . n an y_s1~ s1gna wi:11 epochs ta[il by changing its pitch 

1.·i maintammg 1ts duration intact. This 1s called pitch-scale modification. To obtain the 
Wul e . h l , 

rresponding synthesis epoc s, et s assume that the pitch period p (t) of the analysis 
::veform at time t is constant and equals the difference between both e;ochs 

P,,(t)==tafi+l]-t.,[i] (16.22) 

as seen in Figure l 6_-12. · . 
The pitch penod of the synthesis wavefonn P,(t) at the same time t now falls in be-

tween epochs j and j + l 

t,[J] ~ t < t,[J + l] (16.23) 

wilh 1,[j] being the time instant of the j epoch of the synthesis waveform. Now, let's define 

3 relationship between analysis and synthesis pitch periods 

P,(t) == /3(t)P,,(t) (16.24) 

where P(t) reflects the pitch-scale modification factor, which, in general, is a function of 
time. Following the derivation in Section 16.4.4, we compute the synthesis epoch t,[j + 1] 
so that 

1 J',[}+I] 
I ·+t -t . ==----- IP t dt ,[; l .(;] 1,[J+t]-1,[j] ,,in /3() aO (16.25) 

which reflects the fact that the synthesis pitch period at time t is the average pitch period of 
the analysis waveform times the pitch-scale modification factor. Since /3(t)P,,(t) is piece­
wise linear, we can use the results of Section 16.4.4 to solve for t,[J + 1]. In general, it 
needs to be solved recursively, which results in a second-order equation if /J(t) is a constant 
or a linear function oft. 

Figure 16.12 Pitch period of the analysis waveform as a function of time. It is a piecewise 
con51ant function of time. 
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16.4.6. Time-Scale Modification Epoch Calculation 

Time-scale modification of speech involves changing the duration of a speech segment 
while maintaining its pitch intact. This can be realized by defining a mapping t., = D(tn), a 
time-warping function, between the original signal and the modified signal. It is useful to 
define the duration modification rate a(t) from which the mapping function can be derived: 

D(t) = J: a(r)dr (16.26) 

Let's now assume that the duration modification rate a(t) = a is constant, so that the 
mapping D(t) in Eq. (16.26) is linear. If a> 1, we are slowing down the speech, whereas if 
a< 1 , we are speeding it up. Let's consider time t in between epochs i and i + 1 so that 
ln[i] ~I< l0 [i + l]: 

D(t
0
[0]) = 0 

D(t) = D(tali])+a(t-tJi]) 
(16.27) 

So that the relationship between analysis and synthesis pitch periods is given by 

P, (D(t)) = P,, (I) (16.28) 

To solve this it is useful to define a stream of virtual time instants tJJ] in the analysis 
signal related to the synthesis time instants by 

t,[j] = D(([J]) =atJJ] (16.29) 

as shown in Figure 16.13. 

Now we try to determine t,[J + I] such that ts[)+ 1]-t.[j] is equal to the average 
pitch period in the original time signal between t;[J] and t;,[.i +I]: 

t [ . + I] - I [ ·1 - I J'~£/+IJ 
• 1 ., J - '[. I] '[ ] P,,(t)dt (16.30) 

la j + -la j t~IJI 

which, using Eq. (J 6.29), results in 

t["+J]-t["]- a J.',[/+IJ/a 
$ J s J - . p (t)dt 

tsfJ+l]-1,[}] 1,[J] l a a 
(16.31) 

which again results in a second-order equation if p (I) 1·s pi·ece · 1· · 
a wise constant or mear m t. 
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t.[3] 

t,[2] 

t,[1] 

t,[O] 

D(t) 
------- ---------------

I 

---t"----L....-!-----L---+--1.....---1..:1 /a[iJ 
I 
I 

t;(O] tJI] 

P,, (t) : .J 
t ,[2 ]- t, [I] t::-.:-:.--:.;-:.:-~!b::.:---.r.-:-:-:-:-:::--~4-----::

1

1 

• ~ I 
• • l I 

I I 
l I 

t 

Figure 16.13 Time-scale modification of speech. The five analysis epochs tofi] are shown in 
the x-axis and the four synthesis epochs t,[i] in the ordinate. Duration is shortened by 25% 
while maintaining the same pitch period. The corresponding virtual analysis epochs t;[i] are 
obtained through the mapping D(t), a linear transfonnation with a= 0.75. 

16.4.7. Pitch-Scale Time-Scale Epoch Calculation 

827 

The case of both pitch-scale and time-scale modification results in a combination of Eqs. 
(16.25) and (16.31 ): 

ls[j+l]-1 [j] = a rr,(/+IJ/o {3(/)P,,(t)dt 
' t_,[j + l]-t,[j] Jr,(/]lo 

(16.32) 

Which again results in a second-order equation if f3 (t)P,, (t) is piecewise constant or linear in t. 

16.4.8, Waveform Mapping 

Th~ synthesis pitch waveforms can be computed through linear interpolation. Suppose that 

'.[z]:s;i~[J]<ta[i+I], then y
1
[n] is given by 
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where r1 is given by 

,;[j]-tJi] 
Y; = t

0
[i+I]-t.,[i] 

Speech Synthesis 

(16.33) 

(16.34) 

Using this interpolation for voiced sounds results in smooth speech. For unvoiced 
speech, this interpolation results in a decrease of the amount of aspiration. Since smoothness 
is not a problem in those cases, the interpolation fonnula above is not used for unvoiced 
frames. A simplification of this linear interpolation consists of rounding r1 to 0 or 1 and, 
thus, selecting the closest frame. 

16.4.9. Epoch Detection 

In the PSOLA approach, the analysis epochs t
0
[i] were assumed known. In practice this is 

not the case and we need to estimate them from the speech signal. There can be errors if the 
pitch period is not correctly estimated, which results in a rough, noisy voice quality. But 
estimating the epochs is not a trivial task, and this is the most sensitive part of achieving 
prosody modification in PSOLA. 

Most pitch trackers attempt to detennine F0 and not the epochs. From the tJi] se­
quence it is easy to detennine the pitch, since P(t)=tu[i+l]-t0 [i] for tJi]<t<t0 [i+l]. 
But from the pitch P(t) the epoch placement is not uniquely detennined, since the time ori­
gin is unspecified. 

Common pitch tracking errors, such as pitch doubling, pitch halving, or errors in 
voiced/unvoiced decisions, result in rough speech. While manual pitch marking can result in 
accurate pitch marks, it is time consuming and error prone as well, so automatic methods 
have received a great deal of attention. 

A method that attains very high accuracy has been proposed through the use of an 
electroglottograph (EGG) [32]. It consists of a pair of electrodes strapped around the neck at 
both sides of the larynx that measures the impedance of the larynx. Such a device, also 
called laryngograph, delivers a periodic signal when the vocal cords are vibrating and no 
signal otherwise. The pitch shape of a laryngograph signal is fairly stationary, which makes 
it relatively easy to determine the epochs from it (see Figure 16.14). 

High-quality epoch extraction can be achieved by performing peak picking on the de­
rivative of the laryngograph signal. Often, the derivative operation is accomplished by a 
first-order preemphasis filter H[z]=I-az-1

, with a being close to 1 (0.95 is a good 
choice). 

In practice, the signal is preprocessed to filter out the low frequencies (lower than 100 
Hz) and high frequencies (higher than 4 kHz). This can be done with rectangular window 
filters that are quite efficient and easy to implement. There is a significant amount of energy 
outside this band that does not contribute to epoch detection, yet it can complicate the proc­
ess, as can be seen in Figure 16.14, so this bandpass filtering is quite important. 
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Figure 16.14 Speech signal, laryngograph signal, and its corresponding epochs. 

829 

The preemphasized signal exhibits peaks that are found by thresholding. The quality 
of this epoch detector has been evaluated on recordings from two female and four male 
speakers, and the voiced/unvoiced decision errors are lower than 1 %. This is definitely ac­
ceptable for our prosody-modification algorithms. The quality of prosody modification with 
the epochs computed by this method can vastly exceed the quality achieved when standard 
pitch trackers (as described in Chapter 6) are used on the original speech signal [2}. 

16.4.10. Problems with PSOLA 

The PSOLA approach is very effective in changing the pitch and duration of a speech seg­
ment if the epochs are detennined accurately. Even assuming there are no pitch tracking 
errors, there can be problems when concatenating different segments: 

• Phase mismatches. Even if the pitch period is accurately estimated, mis­
matches in the positioning of the epochs in the analysis signal can cause 
glitches in the output, as can be seen in Figure I 6.15. The MB ROLA [ 15] 
technique, an attempt to overcome phase mismatches, uses the time-domain 
PSOLA method for prosody modification, but the pitch cycles have been pre­
processed so that they have a fixed phase. The advantage is that the spectral 
smoothing can be done by directly interpolating the pitch cycles in the time 
domain without adding any extra complexity. Since MBROLA sets the phase 
1? a constant, the algorithm is more robust to phase errors in the epoch d~tec­
tio~. Unfortunately, setting the phases constant incurs the added perceived 
noise described before. 
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Figure 16.15 Phase mismatches in unit concatenation. Wavefonns are identical, but windows 
are not centered on the same relative positions within periods. 

• Pitch mismatches. These occur even if there are no pitch or phase errors dur­
ing the analysis phase. As shown in Section I 6.4.3, if two speech segments 
have the same spectral envelope but different pitch, the estimated spectral en­
velopes are not the same, and, thus, a discontinuity occurs (see Figure I 6. J 6). 
In addition, pitch and timbre are not independent. Even when producing the 
same sound in the same phonetic context, a vastly different pitch will likely 
result in a different spectral envelope. This effect is particularly accentuated 
in the case of opera singers, who move their formants around somewhat so 
that the harmonics fall near the fonnant values and thus produce higher out­
put. 

• Amplitude mismatch. A mismatch in amplitude across different units can be 
corrected with an appropriate amplification, but it is not straightforward to 
compute such a factor. More importantly, the timbre of the sound will likely 
change with different levels of loudness. 

• Buzzy voiced fricatives. The PSOLA approach doesn' t handle well voiced 
fricatives that are stretched considerably because of added buzziness (repeat­
ing frames induces periodicity at the high frequency that wasn't present in the 
original signal) or attenuation of the aspirated component (if frames are inter­
polated). 
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Figure 16.16 Pitch mismatches in unit concatenation. Two synthetic vowels were _generated 
with a pi1ch of 138 Hz (top} and 197 Hz (middle} and exactly the same transfer function. There 
is no pitch tracking error, and windows are positioned coherently (no phase mismatch). The 
pitch of the second wave is changed through PSOLA to match the pitch of the first wave. 
There is a discontinuity in the resulting waveform and its spectrum (see Section 16.4.3), which 
is an anifact of the way the PSOLA approach estimates the spectral envelope. 

831 

16.5. SOURCE-FILTER MODELS FOR PROSODY MODIFICATION 

Th_e largest problem in concatenative synthesis occurs because of spectral discontinuities at 
unu boundaries. The methods described in Section 16.3 significantly reduce this problem 
but do not eliminate it. While PSOLA can do high-quality prosody modification on speech 
segments, it doesn't address these spectral discontinuities occurring at unit boundaries. It 

t~ou_l~ be useful to come up with a technique that allows us to smooth these spectral discon-
inun1es In dd. . PS . 
foll . · a ihon, OLA introduces buzziness for overstretched voiced fricatives. In the 

owing secti d ·b . . 
th ons we escn e a number of techniques that have been proposed to cope with 

ese problems and that are based on source-filter models. 
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The use of source-filter models allow us to modify the source and filter separately and 
thus maintain more control over the resulting synthesized signal. In Section 16.5.1 we study 
an extension of PSOLA that allows filter modification as well for smoothing purposes. Sec­
tion 16.5.2 describes mixed excitation models that also allow for improved voiced fricatives. 
Finally, Section 16.5.3 studies a number of voice effects that can be achieved with a source-

filter model. 

16.5.1. · Prosody Modification of the LPC Residual 

A method known as LP-PSOLA that has been proposed to allow smoothing in the spectral 
domain is to do PSOLA on LPC residual. This approach, thus, implicitly uses the LPC spec­
trum as the spectral envelope instead of the spectral envelope interpolated from the harmon­
ics (see Section 16.4.3) when doing F0 modification. If the LPC spectrum is a better fit to 
the spectral envelope, this approach should reduce the spectral discontinuities due to differ­
ent pitch values at the unit boundaries. LP-PSOLA reduces the bandwidth widening. In prac­
tice, however, this hasn't proven to offer a significant improvement in quality, possibly 
because the spectral discontinuities due to coarticulation dominate the overaJI quality. 

The main advantage of this approach is that it allows us to smooth the LPC parameters 
around a unit boundary and thus obtain smoother speech. Since smoothing the LPC parame­
ters directly may lead to unstable frames, other equivalent representations, such as line spec­
tral frequencies, reflection coefficients, log-area ratios, or autocorrelation coefficients, are 
used instead. The use of a long window for smoothing may blur sharp spectral changes that 
occur in natural speech. In practice, a window of 2~50 ms centered around the boundary 
has been proven useful. 

While time-domain PSOLA has low computational complexity, its use in a concatena­
tive speech synthesizer generally requires a large acoustic inventory. In some applications 
this is unacceptable, and it needs to be compressed using any of the coding techniques de­
scribed in Chapter 7. You need to keep in mind that to use such encoders you need to store 
the coder's memory so that the first frame of the unit can be accurately encoded. The com­
bined decompression and prosody modification is not as computationally efficient as time­
domain PSOLA alone, so that the LP-PSOLA approach may offer an effective tradeoff, 
given that many speech coders encode the LPC parameters anyway. 

16.5.2. Mixed Excitation Models 

The block diagram of PSOLA shown in Figure 16.10 for voiced sounds also works for un­
voic~d ~ou~ds by ch~osing arbitrary epochs. The time-varying filter of Figure I 6.10 can be 
kept m its t1me-doma1_n_fonn or in the frequency domain X,[k] by taking the FFT of x,[n]. 

It has bee? ~mpmcally shown that for unvoiced frames, the phase of X,[k] is unimpor­
tant as long as 1t 1s rando?"1. Thus, we can pass white noise through a filter with magnitude 
r~sp~nse IX,[k~I an_d obtam perceptually indistinguishable results. This reduced representa­
tion is shown m Figure 16.17. Moreover, it has been shown that the magnitude spectrum 
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eed to be encoded accurately, because it doesn't affect th h . 
does not n . . e sym es1zed s h 

I P
otential problem with this model occurs when voiced frames . peec . 

'fhe on Y . are incorrectly clas-
·fied as unvoiced. . . 

si •Aaintaining the phase of X,[k] is perceptually important for voiced sounds If .. 
IVl . . h . lt IS set 

audible d1stort10ns appear: t e reconstructed speech exhibits a noisy 1. 10 o, 1wo qua 1ty, and 
. d fricatives sound buzzy. 

voice The perceived noise may come from the fact that a listener who hears a fonnant, be-

f I.ts amplitude spectrum, also expects the 180° phase shift associated with a com 1 cause o . p ex 
1 In fact, it is not the absolute phase, but the fact that 1f the fonnant frequency/bandwidth 

Poh e. es with time, there is a phase difference over time. If such a phase is not present, scene 
C ang d' h h' . Th' " alysis done in the au 1tocy system may mate t ts to noise. 1s euect can be greatly at-
an uated if the phase of the residual in LP-PSOLA is set to 0, possibly because the LPC co-
ten d d h · fi · fficients carry most of the nee e p ase m onnatton. 
e The buzziness in voiced fricatives is the result of setting phase coherence not only at 
low frequencies but also at high frequencies, where the aspiration component dominates. 
This is the result of treating the signal as voiced, when it has both a voiced and an unvoiced 
component. In fact, most voiced sounds contain some aperiodic component, particularly at 
high frequencies. The amount of aspiration present in a sound is called breathiness. Female 
speech tends to be more breathy than male speech [29]. Mixed-excitation models, such as 
those in Figure 16. I 8, are then proposed to more accurately represent speech. 

Such a model is very similar to the waveform-interpolation coding approach of Chap­
ter 7, and, hence, we can leverage much of what was described there regarding the estima­
tion of :c,' [n] and x;[n]. This approach allows us to integrate compression with prosody 
modification. 

The harmonic-plus-noise [50] model decomposes the speech signal s(t) as a sum of a 
random component s, (t) and a harmonic component s P (t) 

s(t) = s, (I)+ s p(t) (16.35) 

where sp(t) uses the sinusoidal model described in Chapter 7: 

K(1) 

sp(I) = L Ak(l)cos(k8(t)+¢*(t)) ( 16.36) 
hi 

I I I --i_x,[_n] _r- ~t' 
Figure 16 17 s . . · · · va . · peech synthesis model with white noise or an impulse tram dnvmg a time-

rying filter. 
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I I x;[n] 

~ ~L--x;[_n]~ • 
Figure 16.18 Mixed excitation model for speech synthesis. 

where A* (t) and ,pt (f) are the amplitude and phase at time t of the kth harmonic, and 0(t) 

is given by 

(16.37) 

16.5.3. Voice Effects 

One advantage of using a spectral representation like those described in this section is that 
several voice effects can be achieved relatively easily, such as whisper, voice conversion, 
and echo/reverberation. 

A whispering effect can be achieved by replacing the voiced component by random 
noise. Since the power spectrum of the voiced signal is a combination of the vocal tract and 
the glottal pulse, we would need to remove the spectral roll-off of the glottal pulse. This 
means that the power spectrum of the noise has to be high-pass in nature. Using white noise 
results in unnatural speech. 

Voice conversion can be accomplished by altering the power spectrum [6, 28]. A 
warping transformation of the frequency scale can be achieved by shifting the LSF or the 
LPC roots, if using an LPC approach, or a warping curve if using an FFT representation. 

Adding a controlled number of delayed and attenuated echoes can enhance an other­
wise dry signal. If the delay is longer, it can simulate the room acoustics of a large hall. 

16.6. Ev ALUATION OF TTS SYSTEMS 

How do we determine whether one TIS system is better than another? Being able to evalu­
ate TIS systems allows a customer to select the best system for his or her application. TIS 
evaluation is also important for developers of such systems to set some numerical goals in 
their design. As in any evaluation, we need to define a metric, which generally is dependent 
on the particular application for which the customer wants the TIS system. Such a metric 
consists of one or several variables of a system that are measured. Gibbon et al. (I 9] present 
a good summary of techniques used in evaluation of TIS systems. 
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Here we present a taxonomy of a ITS evaluation: 

• Glass-box 1·s. btack-box evaluation. There are two types of evaluation of ns 
systems accordmg to whether we evaluate the whole system or just one of its 
components: black-box and glass-box. A black-box evaluation treats the ns 
system as a black box and evaluates the system in th~ context of a real-world 
application. Thus, a system _may d? very "':ell ?n a flight reservation applica­
tion but poorly on an e-mail readmg apphcat1on. In a glass-box evaluation, 
we attempt to obtain diagnostics by evaluating the different components that 
make up a TTS system. 

• Laboratory vs. field. We can also conduct the study in a laboratory or in the 
field. While the fonner is generally easier to do, the latter is generally more 
accurate. 

• Symbolic vs. acoustic level. In general, ITS evaluation is nonnally done by 
analyzing the output waveform, the so-called acoustic level. Glass-box 
evaluation at the symbolic level is useful for the text analysis and phonetic 
module, for example. 

• Human vs. automated. There are two fundamentally distinct ways of evaluat­
ing speech synthesizers, according to how a given attribute of the system is 
estimated. One is to use human subjects; the other to automate the evaluation 
process. Bolh types have some issues in common and a number of dimen­
sions of systematic variation. But the fundamental distinction is one of cost. 
In system development, and particularly in research on high-quality systems, 
it can be prohibitively expensive to run continuously a collection of human 
assessments of every algorithmic change or idea. Though human-subject 
checkpoints are needed throughout the development process, human testing is 
of greatest importance for the integrated. functionally complete system in the 
target field setting. At all earlier stages of development, automated testing 
should be substituted for human-subject testing wherever possible. The hope 
is that someday TIS research can be conducted as ASR research is today: al­
gorithms are checked for accuracy or performance improvements automati­
cally in the lab, while human subjects are mainly used when the final 
integrated system is deployed for field testing. This allows for rapid progress 
in the basic algorithms contributing to accuracy on any given dimension. 

• Judgment vs. functional testing. Judgment tests are those that measure Lhe 
TIS system in the context of the application where it is used, such as what 
percentage of the time users hang up an IVR system. System A may be more 
appropriate than system B for a banking application where most of the speech 
C . 
ons_ists of numerical values, and system B may be better Lhan system A for 

reading e-mail over the phone. Nonetheless, it is useful to use functional tests 
that measure task-independent variables of a TTS system, since such tests al­
low an easier comparison among different systems, albei_t a nonoptimal one. 
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Since a human listener is the consumer of a TIS system, tests have been de­
signed to detennine the following characteristics of synthesized speech: intel­
ligibility, overall quality, naturalness, suitability for a given task, and 
pleasantness. In addition, testing has been used for rankin~ and comp~in~ a 
number of competing speech synthesizers, and for companng synthellc with 
natural speech. 

• Global vs. analytic assessment. The tests can measure such global aspects as 
overall quality, naturalness, and acceptability. Analytic tests can measure the 
rate, the clarity of vowels and consonants, the appropriateness of stresses and 
accents, pleasantness of voice quality, and tempo. Functional tests have been 
designed to test the intel1igibility of individual sounds (phoneme monitoring), 
of combinations of sounds (syllable monitoring), and of whole words (word 
monitoring) in isolation as well as in various types of context. 

It should be noted that all the above tests focus on segments, words, and sentences. 
This is a historical artifact, and as the field evolves, we should see an emphasis on testing of 
higher-order units. The diagnostic categories mentioned above can be used as a basis for 
developing tests of systems that take other structure into account. Such systems might in­
clude document-to-speech, concept-to-speech, and simulated conversation or dialog. A good 
system will reflect document and paragraph structure in the pausing and rhythm. Concept­
to-speech systems claim to bring fuller knowledge of the intended use of information to bear 
in message generation and synthesis. Simulated dialog systems, or human-computer dialog 
systems, have to mimic a more spontaneous style, which is a subtle quality to evaluate. The 
tricky issue with higher-order units is the difficulty of simple choice or transcription­
oriented measures. To develop tests of higher-order synthesizers, the word and sentence 
metrics can be applied to components and the overall system until reasonable intelligibility 
can be verified. Then tests of the special issues raised by higher-order systems can be con­
ducted. Appropriate measures might be MOS overall ratings, preference between systems, 
summarization/gist transcription with subjective scoring, and task-based measures such as 
following directions. With task-based testing of higher-order units, both the correctness of 
direction-following and the time to completion, an indirect measure of intelligibility, pleas­
antness, and fatigue, can be recorded. 

Furthermore, speech perception is not simply auditory. As discussed in Chapter 2, the 
McGurk effect [36] shows that perception of a speech sound is heavily influenced by visual 
cues. Synthetic speech is thus perceived with higher quality when a talking head is added as 
a visual cue [9, 18). 

~lass-box evaluation of the text analysis and phonetic analysis modules, requiring 
evaluauon at the symbolic level, is done in Chapter 14. A glass-box evaluation of the pros­
ody modul~ is presented in Chapter 15. In this section we include glass-box evaluation of 
the synthesis module, as well as a black-box evaluation of the whole system. 
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A critical measurement of a TIS system is whet~er or not human listeners can understand 

tread by the system. Tests that measure this are called imelligibility tests In th' the tex . . . · . 1s sec-
tion we describe the D1agn0Hsttck~ysme Tes_t, Sthe Modified Rhyme Test, the Phonetically 
Balanced word list test, the as ms yntacllc entence Test, and the Semantically Unpre­
dictable Sentence Test. The firs~ three were described in a procedure approved by the 
Arnerican National Standards Institute [5]. 

Among the best known and most mature of these tests is the Diagnostic Rhyme Test 
(DRn proposed by Voi~rs [5~],_ -:Vhich provides for diagnostic an~ comparative evaluation 
of the intelligibility of smgle m1t1al consonants. The test runs twice through the list of 96 
rhyming pairs shown in Table I 6. 13. The test co~sis~ of identi_fication choice between two 
alternative English (or target-language) words, d1ffenng by a smgle phonetic feature in the 
initial consonant. For English the test includes contrasts among easily confusable paired 
consonant sounds such as veal/feel, meat/beat, fence/pence, cheep/keep, weed/reed, and 

hit/fit. In the test, both veal and feel are presented with the response alternatives veal and 
feel. Six contrasts are represented, namely voicing, nasality, sustention, sibilation, graveness, 
and compactness. Each contrast is included 32 times in the test, combined with 8 different 
vowels. The percentage of right answers is used as an indicator of speech synthesizer intell i­
gibility. The tests use a minimum of five talkers and five listeners; larger subject groups 
reduce the margin of error. Even for high-quality speech coders, 100% correct responses are 
rarely achieved, so synthesizer results should be interpreted generously. 

Table 16.13 The 192 stimulus words of the Diagnostic Rhyme Test (DRn. 

Voicing Nasality Sustenation Sibilation Graveness Compactness 

veal feel meat beat vee bee zee thee weed reed yield wield 
bean peen need deed sheet cheat cheep keep peak teak key tea 
gin chin mitt bit vill bill jilt gilt bid did hit fit 
dint tint nip dip thick tick sing thing fin thin gill dill 
zoo sue moot boot foo pooh juice goose moon noon coop poop 
dune tune news dues shoes choose chew coo pool tool you rue 
~ole foal moan bone those doze joe go bowl dole ghost boast 
~t coat note dote though dough sole thole fore thor show so 
~ said mend bend then den jest guest met net keg peg 
~nse tense neck deck fence pence chair care pent tent yen wren 
Vast fast mad bad than dan jab gab bank dank gat bat -~ calf nab dab shad chad sank thank fad thad shag sag 
~fault moss boss thong tong jaws gauze fought thought yawl wall 
~unt taunt gnaw daw shaw chaw saw thaw bong dong caught thought . -;---.....;.:.: 
l~k chock mom bomb von boo jot got wad rod hop fop 
~~pond knock dock vox box chop cop pot tot got dot 
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A variant of this is the Modified Rhyme Test (MRT) proposed by House [22), which 
aJso uses a 300-ent.ry word list for subjective intelligibility testing. The modified Rhyme 
Test (shown in Table 16.14) uses 50 six-word lists of rhyming or similar-sounding monosyl­
labic English words, e.g., went, sent, bent, dellt, tent, rent. Each word is basically Conso­
nant-Vowel-Consonant (with a few consonant clusters), and the six words in each list differ 
only in the initial or final consonant sound(s). Listeners are asked to identify which of the 
words was spoken by the synthesizer (closed response), or in some cases to enter any word 
they thought they heard (open response). A carrier sentence, such as "Would you write <test 
word> now," is usually used for greater naturalness in stimulus presentation. Listener re­
sponses can be scored as the number of words heard correctly; or the frequency of confu­
sions of particular consonant sounds. This can be viewed as intelligibility of the synthesizer. 

Though this is a nice isolation of one property, and as such is particularly appropriate 
for diagnostic use, it is not intended to substitute for fuller evaluation under more realistic 
listening conditions involving whole sentences. Segmental intelligibility is somewhat over­
estimated in these tests, because all the alternatives are real words and the subjects can ad­
just their perception to match the closest word. A typical human voice gives an MRT score 
of about 99%, with that of TIS systems generally ranging from 70% to 95%. 

Table 16.14 The 300 stimulus words of the Modified Rhyme Test (MRT). 

went sent bent dent tent rent same name game tame came fame 
hold cold told fold sold _gold lpeel reel feel eel keel heel 

!oat pad can oath oack pass hark dark mark bark oark lark 
lane !av late lake lace Jame heave hear heat heal heap heath 
kit bit fit hit wit sit CUD cut cud cuff cuss cud 
must bust gust rust dust just thaw law raw paw iaw saw 
teak team teal teach tear tease loen hen men then den ten 
din dill dim dig dio did louff puck oub PUS DUO oun 
bed led fed red wed shed bean beach beat beak bead beam 
pin sin tin fin din win heat neat feat seat meat beal 
dug dung duck dud dub dun dio sip hip tip lip rio 
sum sun sung SUD sub sud kill kin kit kick kin!!. kid 
seep seen seethe seek seem seed hang sang bang rang fang eang 
not tot got oot hot lot took cook look hook shook book 
vest test rest best west nest mass math mao mat man mad 

(pig oill pin pip oit oick ray raze rate rave rake race 
back bath bad bass bat ban save same sale sane sake safe 
way maY say oav dav gay fill kill will hill till bill 
pig big dig wig rig fig sill sick sin sing sit sin 
loale oace page pane oav pave bale gale sale tale oale male 
cane case cape cake came cave wick sick kick lick oick tick 
shoo moo cop too hoo POP loeace oeak 
coil oil soil toil 

peas peach peat oeal 
boil foil bun bus but bug buck buff 

tan tang tap tack tam tab Sal! sat sass sack sad sap 
fit fib fizz fill fig fin fun sun bun gun run nun 
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The set of twenty phonetically balanced (PB) word lists wa d 
1 

. 
. . s eve oped dunng w Id 

II and has been used very widely since then in subjective inteti·,o·b·!· . or war , P . . . e-1 1 1ty testing. In Table 
6 15 we include tbe first 1our B wo1d hsts [20]. The words in each 1- t . . 
I . h · ·h 1. . ts are p1esented ma 

, random order eac tune l e 1st 1s used, each spoken in the same ca . 
ne\1, . . . . . . . mer sentence. The 
PB ·ntellioibihty test requires more traming of hsteners and talkers tha 1 ti l. . 1 _::> • • • • • • 1 o 1er su 1Ject1ve 

IS and 15 particularly sens1t1ve to SNR. a relat,vely small change causes al 1 
. tes . . . ' arge c 1ange m 

the intellig1b1hty score. . . 
Tests usin~ the_ Ha~kms _Syntacllc Se11t~nces [40] go somewhat farther toward more re­

alistic and holistic stun ult. This test set consists of l 00 semantically unpredictable sentences 
of the fonn The <Adjectfre> <Noun}> <Verb> the <Nowz2>, such as "Tlze old Jami cost 
the blood," using hig~-fre_quency words_- Compared with the rhyme tests, contex.tual predict­
ability based on meaning 1s largely lackmg. the longer speech streams are more realistic, and 
more coarticulation is present. Intelligibility is indicated by percentage of words correct. 

Another test minimizing predictability is Sema111ical/y Unpredictable Sentences [23), 
wilh test sets for Dutch, English, French, Gennan, Italian, and Swedish. A short template of 
syntactic categories provides a frame, into which words are randomly slotted from the Jex.i­
con. For ex.ample, the template <Subject> <Verb> <Adverbial> might appear as "The chair 
ate through the green honesty." Fifty sentences (10 per syntactic template) are considered 
adequate to test a synthesizer. Open transcription is requested, and sentences correct is used 
to score a synthesizer's intelligibility. Other such tests exist, and some include systematic 
variation of prosody on particular words or phrases as well. 

The Harvard Psychoacoustic Sentences [ 16] is a set of l 00 meaningful, syntactically 
varied, phonetically balanced sentences, such as "Add salt before you fry the egg," requiring 
an open response idemiftcatio11, instead of a multiple-choice test. 

Table 16.15 Phonetically balanced word lists. 

List I are, bad, bar, bask, box, cane. cleanse, clove. crash, creed, death, deed, dike. dish, 
end, feast, fem, folk, ford, fraud, fuss, grove, heap, hid, hive, hu_nt, is, _mang~, no, 
nook, not, pan. pants, pest, pile, plush, rag, rat, ride, rise, rub, shp, smile, stnfe, 
such, then, there, toe, use. wheat 

List 2 awe, bait, bean, blush, bought, bounce, bud, charge, cloud. corpse, dab, earl, ~lse, 
fate, five, frog, gill. gloss. hire, hit, hock, job, log, moose, mute, nab, need, niece, 
nut, our, perk, pick, pit. quart. rap. rib. scythe, shoe, sludge, snuff, start, suck, tan, 

' tang. them, trash. vamp. vast, ways. wish 

List 3 ache, air, bald, barb, bead, cape, cast, check, class, crave, crime, deck, dig. dill,. 
drop fame far fig flush gnaw, hurl.jam, Jaw, leave. lush, muck, neck, nest,_oak, 

• ' • • ' · · sob sped stag rnke thrash, tml, path, please, pulse, rate, rouse, shout, sit, size, · • , • • 
trip, turf, vow, wedge. wharf, who, why 

List 4 bath beast bee blonde budge. bus, bush, cloak, course, court, dodge, dupe, e~1, 
I fi tl · f • 1 ~ h heed hiss hot how, kite, merge, lush. neat, new, mis, 

ee , rn. oat, rown, 1a c , • • ' h d ·h · k I 
k · h d ce rack rave raw rut, sage, scab, s e , s m, s etc 1, or, pee , pert, pmc • po , ra , , • • 

-- slap, sour, starve, strap, rest, tick, touch 
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16.6.2. Overall Quality Tests 

While a ITS system has to be intelligible, this does not guarantee user acceptance, because 
its quality may be far from that of a human speaker. In this section we describe the Mean 
Opinion Score and the Absolute Category Ratings. 

Human-subject judgment testing for ITS can adapt methods from speech-coding 
evaluation (see Chapter 7). With speech coders, Mean Opinion Score (MOS) is administered 
by asking IO to 30 listeners to rate several sentences of coded speech on a scale of l to 5 (1 
= Bad, 2 = Poor, 3 = Fair, 4 = Good, 5 = Excellent). The scores are averaged, resulting in an 
overall MOS rating for the coder. This kind of methodology can be applied to speech syn­
thesizers as well. Of course, as with any human subject test, it is essential to carefully design 
the listening situation and carefully select the subject population, controlling for education, 
experience, physiological disorders, dialect, etc. As with any statistically interpreted test, the 
standard analyses of score distributions, standard deviation, and confidence intervals must 
be performed. The range of quality in coder evaluations by MOS are shown in Table 16.16. 

Since we are making the analogy to coders, certain ironies can be noted. Note the low­
est-range descriptor for coder evaluation: synthetic. In using MOS for synthesis testing, out­
put is being evaluated by implicit reference to real human speech, and the upper range in the 
coder MOS interpretations above (3.5-4.5) is probably not applicable to the output of most 
TIS systems. Even a good ITS system might fare poorly on such a coder MOS evaluation. 
Therefore, the MOS interpretive scale, when applied to synthesis, cannot be absolute as the 
above coding-based interpretive table would imply. Furthermore, subjects participating in 
MOS-like tests of synthesizers should be made aware of the special nature of the speech 
(synthetic) and adjust their expectations accordingly. Finally, no matter how carefully the 
test is designed and administered, it is difficult to correlate, compare, and scale such meas­
ures. Nevertheless, MOS tests are perhaps suited to relative ranking of various synthesizers. 
The 1-to-5 scale is categorical, but similar judgment tests can be run in magnitude mode, 
with the strength of the quality judgment being indicated along a continuous scale, such as a 
moving slider bar. 

Table 16.16 Mean opinion score (MOS) ratings and typical interpretations. 

MOS Scores Quality Comments 

4.0-4.5 Toll/Network Near-transparent, "in-person" quality 

3.5-4.0 Communications 
Natural, highly intelligible, adequate for telecom-
munications, changes and degradation of quality 
very noticeable 

2.5-3.5 Synthetic Usually intelligible, can be unnatural, loss of speaker 
recognizability, inadequate levels of naturalness 
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Table 16.17 Listening Quality Scale. 

Quality or the Speech Score 
Excellent 5 
Good 4 
Fair 3 
Poor 2 
Bad 1 

The International Teleco~municatio~ Uni~n (ITl!) has attempted to specify some 
dards for assessing synthetic speech, mcludmg sphced digitized words and phrase 

Stan . f d 1· S, ically with the expectation o e 1very over the phone. The Absolute Category Rating 
:CR) system recommended by ITU P.800 offers instructions to be given to subjects for 
making category judgments in MOS-style tests of the type discussed here. The first is the 
listening Quality Scale, shown in Table 16.17, and the second the Listening Effort Scale 
shown in Table 16.18. 

It is sometimes possible to get subjects to pay particular attention to various panicular 
features of the utterance, which may be called analytic as opposed to global listening. The 
desired features generally have to be described somehow, and these descriptions can be a bit 
vague. Thus, standard measures of reliability and validity, as well as result nonnalization, 
must be applied. Typical descriptors for important factors in analytic listening might be: 
smoothness, naturalness, pleasantness, clarity, appropriateness, etc., each tied to a particu­
lar underlying target quality identified by the system designers. For example, smoothness 
might be a descriptor used when new algorithms for segment concatenation and blending are 
being evaluated in a concatenative system. Naturalness might be the quality descriptor when 
a fonnant-based system has been made more natural by incorporation of a richer glottal 
source function. Some elements of the speech can be more directly identified to the subject 
io familiar tenns. For example, pleasantness might be a way of targeting the pitch contours 
for attention, or the subject could be specifically asked to rank the pitch contours per se, in 
tenns of naturalness. pleasantness, etc. Appropriateness might be a way of getting at judg­
~ents of accentuation: e.g., a stimulus that was accented as" ... birthday PARTY" might be 
Judged less appropriate, in a neutral semantic context, than one that was perceived as " .. . 
BIRTHDAY party." But no matter how the attributes are described, in human-subject MOS­
style testing there cannot be a clear and consistent separation of effects. 

Table 16.18 Listening Effort Scale. 

Effort Required to Understand the Meanings of Sentences Score 

Complete relaxation possible; no effort required 5 

Auemion necessary; no appreciable effort required 4 

Moderate effort required 3 

Considerable effort required 2 

No meaning understood with any feasible effort 1 
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16.6.3. Preference Tests 

Normalized MOS scores for different TIS systems can be obtained without any direct pref­
erence judgments. If direct comparisons are desired, especially for sy~tems that are infor­
mally judged to be fairly close in quality, another ITU recommendation, the Comparison 
Category Rating (CCR) method, may be used. In this method, listeners are pres~nted with a 
pair of speech samples on each trial. The order of the system A sy~tem B samples IS chosen at 
random for each trial. On half of the trials, the system A sample IS followed by the system B 
sample. On the remaining trials, the order is reversed. Listeners use the instructions in Table 
16.19 to judge the quality of the second sample relative to that of the first. Sometimes the 
granularity can be reduced as much as simply "prefer A/prefer B." 

Assuming (A,B) is the reference presentation order, scores for the (B,A) presentations 
may be nonnalized by reversing their signs (e.g., -1 in B,A order becomes 1, etc.). Subse- . 
quently, standard statistical summarizations may be performed, like the one described in 
Chapter 3. 

Table 16.19 Preference ratings between two systems. The quality of the second utterance is 
compared to the quality of the first by means of 7 categories. Sometimes only better, same, or 
worse are used. 

3 Much Better 

2 Better 

I Slightly Better 

0 About the Same 

-1 Slightly Worse 

-2 Worse 

-3 Much Worse 

16.6.4. Functional Tests 

Functional testing places the human subject in the position of carrying out some task related 
to, or triggered by, the speech. This can simulate a full field deployment, with a usercentric 
task, or can be more of a labor:11ory ~it•Jation, with a testcentric task. In the laboratory situa­
tion, various kinds of tasks have been proposed. In analytic mode, functional testing can 
enforce isolation of the features to be attended to in the structure of the test stimuli them­
selves. This can lead to a more precise form of result than the MOS judgment approach. 
There have been a wide variety of proposals and experiments of this type. 

One of the well-known facts in TIS evaluation is that the quality of a system is domi­
nated by the quality of its worst component. While it may be argued that it is impossible to 
separate_ the effects of the front-end analysis and back-end synthesis, it is convenient to do 
so to gam a be~er understanding of each component. An attempt to study the quality of the 
sp~ech sy~t~es1s module has been done via the use of natural instead of synthetic prosody. 
This way, 1t 1s presumed that the prosody module is doing the best possible job, and that any 
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bl ..., is then due to a deficient speech synthesis. The natural p·t h pro e,.. . 1 c contour can be ob 
. d with a pitch tracker (or usmg a laryngograph signal) and the natural d . -!lllne . ' urat1ons can be 

. ed either through manual segmentatton or through the use of a s h .. obtain . peec recognition 
!e..., used in forced-alignment mode. Plumpe and Meredith [44] conducted & sys ... . . . a pre,erence 
between ongmal recordmgs and waveforms created when one of the tnod I f test . u es o a con-

tenative TTS system used synthetically generated values instead of the natural valu Th ca . h . . h . es. e 
Suits indicated that using synt euc pile mstead of natural pitch was the cause of 1 re . 1. d h . argest 

degradation accordm~ to istener~, an , t us, that pttch generation was the largest bottleneck 
in the system. The p_1tch-g~neratton_ mod~le was followed by the spectral discontinuities at 
the concatenation points, with duration bemg the least damaging. 

Some functional tests are much more creative than simple transcription, however. 
They could, in theory, border on related areas, such as memory testing, involving summariz­
ing passages, or following synthesized directions, such as a route on a map. The ultimate test 
of synthesis, in conjunction with all other language interface components, is said to be the 
Turing test [53]. In this amusing scenario, a human being is placed into conversation with a 
computational agent. represented vocally for our purposes, perhaps over the telephone. As 
Turing put it: "It is proposed that a machine may be deemed intelligent, if it can act in such a 
manner that a human cannot distinguish the machine from another human merely by asking 
questions via a mechanical link." Turing predicted that in the future "an average interrogator 
will not bave more than a 70 percent chance of making the right identification, human or 
computer on the other end, after five minutes of questioning" in this game. A little reflection 
might raise objections to this procedure as a check on speech output quality per se, since 
some highly intelligent people have speech disabilities, but the basic idea should be clear, 
and it remains a Holy Grail for the artificial intelligence field generally. Of course, no auto­
mated or laboratory test can substitute for a real-world trial with paying customers. 

16.6.5. Automated Tests 

The tests described above always involved the use of human subjects and are the best tests 
that can be used to evaluate a ITS system. Unfortunately, they are time consuming and ex­
pensive to conduct. This limits their application to an infrequent use, which can hardly have 
any diagnostic value. Automated objective tests usually involve establishing a test corpus of 
correctly tagged examples of the tested phenomena, which can be automatically checked. 
This style of testing is particularly appropriate when working with isolated components of 
the ITS system, for diagnosis or regression testing (glass-box testing). It is not particularly 
productive to discuss such testing in the abstract, as the test features must closely track each 
system's design and implementation. Nevertheless, a few typical areas for testing can be 
noted. In general, tests are simultaneously testing the linguistic model and content as well as 
the ~ · · · b h 'bl 501tware implementation of a system, so whenever a discrepancy anses, ot poss1 e 
sources of . error must be considered. 
. Several automated tests for text analysis and letter-to-sound conversion are presented 
in Chapter 14. A number of automated tests for prosody are discussed in Chapter 15. Here 
We touch . on automated tests for the synthesis module. 
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The ITU has created the P.861 proposal for estimatin~ perceptual_ scores using auto­
mated signal-based measurements. The P.861 specifies a particular technique known as Per­
ceptual Speech Quality Measurement (PSQM). In this method, for each analysis frame, 
various quantified measures based on the time signal, the power spectrum, the Bark power 
spectrum, the excitation spectrum, the compressed loudness spectrum, etc. of both the refer­
ence and the test signal can be computed. In some cases the PSQM score can be converted 
to an estimated MOS score, with interpretations similar to those of Table 16.16. At present 
such methods are limited primarily to analysis of telephone-quality speech (300-3400 Hz 
bandwidth), to be compared with closely related reference utterances. This method could 
perhaps be adapted to stand in for human judgments during system development of new 
versions of modules, say glottal source functions in a formant synthesizer, comparing the 
resulting synthetic speech to a standard reference system's output on a given test sample. 

16.7. HISTORICAL PERSPECTIVE AND FURTHER READING
3 

In 1779 in St Petersburg, Russian Professor Christian Kratzenstein explained physiological 
differences between five long vowels (/al, le/, Iii, lo/, and lul) and made apparatus to pro­
duce them artificially. He constructed acoustic resonators similar to the human vocal tract 
and activated the resonators with vibrating reeds as in music instruments. Von Kempelen 
(1734-1804) proposed in 1791 in Vienna a mechanical speaking machine that could produce 
not just vowels but whole words and sentences (see Figure I 6.19). While working with his 
speaking machine, he demonstrated a speaking chess-playing machine. Unfortunately, the 
main mechanism of the machine was a concealed, legless chess-player expert. Therefore, his 
real speaking machine was not taken as seriously as it should have been. In 1846, Joseph 
Faber developed a synthesizer, called speech organ, that had more control of pitch to the 
extent it could sing God Save the Queen in a perfonnance in London. 

The first electrical synthesis device was introduced by Stewart in 1922 [ 4]. The device 
had a buzzer as excitation and two resonant circuits to model the acoustic resonances of the 
vocal tract and was able to generate single static vowel sounds with the first two formants. 
In 1932 Japanese researchers Obata and Teshima added a third fonnant for more intelligible 
vowels. 

Homer Dudley of Bell Laboratories demonstrated at the 1939 New York World's Fair 
the Voder, the first electrical speech synthesizer, which was human-controlled. The operator 
worked at a keyboard, with a wrist bar to control the voicing parameter and a pedal for pitch 
control (see Figure 16.20 and Figure 16.21 ), and it was able to synthesize continuous 
speech. ~e Pattern Playback is an early talking machine that was built by Franklin S. Coo­
per and his co!leag~es at Haskins Laboratories in the late l 940s. This device synthesized 
sound by passmg hght through spectrograms that in tum modulated an oscillator with a 
fixed F0 of 120 Hz and 50 harmonics. 

J Chapter 6 includes a historical persp ti · 
th 

. ec ve on representation of speech signals that is intimately tied to speech 
syn es1s. 
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Figure 16.19 Wheatstone's reconstruction of von Kempelen·s speaking machine (14] (after 
Flanagan [ 17)). 

The first analog parallel fo1mant synthesizer, the Parametric Artificial Talker (PAT), 
was developed in 1953 by Walter Lawrence of the Signals Research and Development Es­
tablishment of the British Government. Gunnar Fant of the KTH in Sweden developed an 
analog cascade fonnant synthesizer, the OVE II. Both Lawrence and Fant showed in 1962 
that by manually tuning the parameters, a natural sentence could be reproduced reasonably 
faithfully. Acoustic analog synthesizers were also known as tenninal analogs, resonance­
synthesizers. John Holmes tuned by hand the parameters of his fonnant synthesizer so well 
that lhe average listener could not tell the difference between the synlhesized sentence "I 
enjoy the simple life" and the natural one [31] . 

. .. 

. .. ' 
~; ' ' 

~ ---~--L 
, ~·· ... ~~~ . . 

. ll Labs at the 1939 World"s Fair in 
Figure 16.20 The Yoder developed by Homer Dudley of Be I the voicing parame-
New York. The operator worked at a keyboard, with a wri5t bar 10 conrro 

ter and a pedal for pitch control. 
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Figure 16.21 Block diagram of the Yoder by Homer Dudley, 1939 (after Flanagan [17)). 

The first articulatory synthesizer, the DA VO, was developed in 1958 by George Rosen 
at M.I.T. Cecil Coker designed rules to control a low-dimensionality articulatory model in 
1968. Paul Mermelstein and James Flanagan from Bell Labs also used articulatory synthesis 
in I 976. Articulatory synthesis, however, never took off, because formant synthesis was 
better understood at the time. 

The advent of the digital computer prompted John Kelly and Louis Gerstman to create 
in 1961 the first phonemic-synthesis-by-rule program. John Holmes and his colleagues Igna­
tius Mattingly and John Sheanne developed a rule program for a formant synthesizer at 
JSRU in England. The first full text-to-speech system was developed by Noriko Umeda in 
I 968 at the Electrotechnical Laboratory of Japan. It was based on an articulatory model and 
included a syntactic analysis module with sophisticated heuristics. The speech was quite 
intelligible, but monotonous and far from the quality of present systems. 

In 1976. Raymond Kurzweil developed a unique reading machine for the blind, a 
computer-based device that read printed pages aloud. It was an 80-pound device that shot a 
beam of light across each printed page, converting the reflected light into digital data thai 
was transformed by a computer into synthetic speech. It made reading of all printed material 
possible for blind people, whose reading has previously been limited to material translated 
into Braille. The work of Dennis Klatt of MIT had a large influence in the field. In 1979 
together with Jonathan Allen and Sheri Hunnicut he developed the MIT:i!lc system. Two 
years later Klatt introduced his famous Klattalk system, which used a new sophisticated 
voicing source. 

The early 1980s marked the beginning of commercial ITS systems. The Klattalk sys­
tem was the basis of Telesensory Systems' Prose-2000 commercial ITS system in I 982. It 
also formed the basis for Digital Equipment Corporation's DECtalk commercial system in 
1983, probably the most widely used ITS system of the twentieth century. The Infovox TIS 
system, the first multi language formant synthesizer, was developed in Sweden by Rolf Carl­
son, Bjorn Granstrom, and Sheri Hunnicutt in 1982, and it was a descendant of Gunnar 
Fant's O~E sy~tem. Tl:e first integrated circuit for speech synthesis was probably the 
Votrax chip, which consisted of cascade formant synthesizer and simple low-pass smoothing 
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. . In 1978 Richard Gagnon introduced an inexpensive Votrax-b d T 
c1rcu1ts. . . · . . ase ype-n-Talk sys-

The first work m concatenat1 ve speech synthesis was done in 1968 b R . 
tem. d. h . . . . Y ex Dixon and 

'd Maxev where 1p ones we1e pmametnzed with formant freque · d 1 oa1·1 J' • . nc1es an t 1en con-
[enated. In I 977, Joe Oltve and hts colleagues at B~II Labs l4 I] concate,i·ited 1. ca · · I 198'> S El · · · ' · mear-_ . .i;rtion d1phones. n - treet ectromcs mt1oduced the Echo S)'!>tem ad. h P~"" . . . . b . . . , tp one ron-

catenauon synthes1ze1 which was ase<l on a _newer \-e1s1on of tl1e same chip as in the Speak-
-S II toy introduced by Texas Instruments m 1980. 

npe · td · · Concatenat1ve systems stare to gam momentum 111 1985 with the development f ti 
.fi . h . t o ie 

PSOLA prosody modi 1cat1on tee mque ))' France Telecom's Charpentier and Moulines. 
PSOLA increased the text coverage of concatenative systems by allowing diphones ;0 have 
their prosody modified. The hybrid Harmonic/Stochustic (HIS) model of Abrantes [I] has 
also been successfully used for prosody modification. The foundation of corpus-based con­
catena1ive systems was developed by a team of researchers at A TR in Japan in the early 
1990s [IO, 27]. The use of a large database of long units was also pioneered by researchers 
at AcuVoice Inc. Other corpus-based systems have made use of HMMs to automatically 
segment speech databases, as well as to serve as units in concatenative synthesis (13, 24]. 
Microsoft integrated a concatenative ITS [24] in Windows 2000. 

For more detailed description of speech synthesis development and history see, for ex­
ample, [31] and [ 17] and references in these. A number or audio clips are available in Klatt 
[31) showing the progress through the early years. You can hear samples at the Smith­
sonian's Speech Synthesis History Project [35]. A Web site with comparison of recent TIS 
systems can be found at f33]. 
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CHAPTER 1 7 

Spoken Language Understanding 

Formal methods for describing sentences are 
discussed in Chapter 11. While the context-free grammars and n-gram models have mathe­
matically well-understood formulations and bounded processing complexity, they are only 
partial aids in interpreting semantic meaning of the sentences. Suppose a recognizer cor­
~ectly transcribes a series of spoken words into the written form-the system still has no 
idea what to do, because there is often no direct mapping between a sequence of words (or 
the syntactic structure of the sentence) and the functions that the system provides. The prob­
!em can also be approached from the opposite direction, i.e., solving the recognition problem 
itself may require semantic analysis, or domain and language knowledge for perplexity 
reduction. 

What is meant by meaning or understanding? We could define it operationally: under­
S!anding is when a computer we interact with understands our desires and deliv~rs the 
goods. Or we could define it propositionally: the computer has an accurate and unambigu_ous 
representation of who did what to whom corresponding to a real-world situation. In practtc~, 
the concept of understanding is situation dependent, and both conceptions above ~ave their 
places. Meaning is often a constellation that emerges from a conversational environment. 

853 
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854 Spoken Language Understanding 

There are four main interacting areas in spoken language understanding (SLU) systems 

from which meaning arises: 

• Intent: goals oflistener and speaker in the interaction 

• Context: the pressures, opportunities, interruptions, etc. of the interaction 
scene and communication media 

• Content: the propositional or literal content of each utterance and the dis­
course as a whole 

• Assumptions: what each participant can assume about other participants' 
mental state, abilities, limitations, etc. 

In this chapter we take a functional view of SLU systems, where the basic principle is 
to link linguistic expressions to concrete real-world entities. Currently, only with systems 
that are restricted to limited domains can understanding be attempted in practice. The do­
main restrictions allow the creation of specific, highly restricted language models and fully 
interpretable semantic descriptions that enable high accuracy and usability. Such systems are 
in contrast to speech recognition approaches that use large dictionaries, but make relatively 
loose or probabilistic predictions of word sequences for general dictation/transcription. 

The need for spoken language understanding is double-edged. We generally want 
more than a string of word choices as a system's output. Instead, we want some interpreta­
tion of the word string that helps in accomplishing complex tasks. At the same time, being 
able to detennine what makes sense in context, what is more or less likely as a speaker's 
input, could make a major contribution toward improving speech recognition word accuracy 
and search efficiency. SLU systems that combine the semantic precision of grammars with 
the probabilistic coverage of statistical language models can guide recognition and simulta­
neously control interpretation. 

Figure 1.4 in Chapter 1 illustrates a basic SLU system architecture. The SLU problem 
can be broadly viewed as yet another pattern recognition problem. Namely, given a speech 
input X, the objective of the system is to arrive at actions A (including dialog messages and 
necessary operations) so that the cost of choosing A is minimized. Assuming uniform cost, 
the optimal solution, known as the maximum a posteriori (MAP) decision, can be expressed 
as 

A•= argmax P(A I X,S
11

_
1

) 
A 

(17.1) 

where F denotes semantic interpretation of X and S,,, the discourse semantics for the ntto 
dialog tum . 

. _Based on the formulation in Eq. (17.1), a dialog system consists of three pattern rec­
ogmtion components: 

• Sema~tic parser-~se ~emantic model P(F I X, S,,_
1

) to convert X into a 
~ollect1on of semantic obJects F. This component is often further decomposed 
mto speech recognition module (converting speech signal X into textual sen-
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tence W) and sentence interpretation module (parsing s t . 
· · F s· h · . en ence W tnto se-mantic obJects ). mce t e collection of semantic objects F · . h . 

tic level, it is often refeITed to as surface semantics. 
15 10 t e hnguis-

• Discourse analysis-use discourse model P(S IF s ) to der· . 
" • n-1 1ve new d1a-

loo context S,, based on the per-turn semantic parse F and the pre··· 
e- •IOUS con-

text s,,_,. 
• Dialog manager-iterate through the possible actions and pick the most · _ 

. • SUit 
able one. The qua~t1tat1ve measures governing operations for dialog manager 
is called the behavior model, P(A I Sn). 

The pattern recognition ~ramework can be generalized to multimodal systems as well. 
For input other than speech signal, you only need to replace the input X in the semantic 
parser with input from an associated modality, e.g., X could be input from keyboard typing, 
mouse clicking, pen input, video, etc. As long as the new semantic parser (replacing speech 
recognizer and sentence interpretation modules in Figure 1.4) can convert it into appropriate 
semantic representation, the rest of the system can be identical. Similarly, for different out­
put modality, you just need to replace message generation and text-to-speech modules with 
a new rendering mechanism. 

In this chapter we first describe the characteristics of spoken languages in comparison 
with written languages. The structure of dialog is discussed in Section 17.2. Understanding 
is the most fundamental issue in the field of artificial intelligence. The kernel of understand­
ing lies on the representation of semantics (knowledge). Several state-of-the-art semantic 
representation schemes are discussed in Section 17 .3. Based on the architecture of SLU sys­
tems illustrated in Chapter I (Figure 1.4), major modules are discussed in detail, with the Dr. 
Who SLU system serving as an example to illustrate important issues. 

17.1. WRITTEN VS. SPOKEN LANGUAGES 

To construct SLU systems, we need to understand the characteristics of spoken languages. It 
is worth thinking about possible differences between spoken and written use of language 
that could be relevant to developing spoken language systems. The following is a typical 
example of two-agent, task-oriented dialog in action: 

Sys: Flight reservation service, how can I help you? 
User: One ticket to Honolulu, please 
Sys: Anchorage to Honolulu, when would you like to leave? 
User: Next Thursday 
Sys: Next Tuesday, the 30th of November; and at what time? 
User: No, Thursday, December 2nd, late in the evening, and make it first class. 
Sys: OK, December 2nd United flight 291, first class. Will you need a car or hotel? 
User: No. 
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17.1.1. Style 

In both spoken and written fonns, a communicative setting is established. Both forms in­
volve participants. In the case of written language, we normally expect passivity on the part 
of the addressee(s), though with e-mail bulletin boards, Web chat rooms, and the like, this 
assumption can be challenged. The communicative event emerges from personal characteris­
tics of the participants-their mood, goals, and interests. Communication depends both on 
the actual world knowledge and shared knowledge of the participants and on their beliefs 
about one another's knowledge. Communication can be influenced by the setting in which it 
takes place, whether in spoken or written mode. Also, different subchannels of supportive 
communication, such as visual aids, gesture, etc., may be available. 

A number of grammatical and stylistic attributes have been found to distinguish con­
versational from written forms. Biber's analysis [8] distinguishes not only a dimension of 
modality, but also formality; for example a panel discussion is a relatively formal, yet spo­
ken, modality. Some typical features for which distinctions can be measured include the 
number of passives, the number of pronouns, the use of contractions, and the use of nomi­
nalized forms. 1 An example of the grammatical and stylistic difference continuum that Biber 
uses is illustrated in Figure 17 .1. The variation can be measured along multiple orthogonal 
scales for different genres. In the SLU case, style can be orthogonal to the modality (dialog 
or dictation, spoken or written). A crossover case is speech dictation used to create a written 
document that may never be orally rendered again. 

Fortunately, much of the disjuncture between spoken and written forms in grammati­
cal style and lexical choice can be handled by training task-specific and modality-specific 
language models for the recognizer. For this, only the data need vary, not necessarily the 
modeling methods. In Figure 17 .1, the right-hand side is toward the spoken style, while the 

F ew proooun~ nod 
contuct io ns 

Many nominali zotions 
and pu1ivc1 

. ..../ ---.. ---~'\.... 
( SCIENTIFIC ) 

. , HXT / •. •' ,_ ...... ___ 
-/,,. .. - -,,--- ..... "\_ 

C PANEL \ 
DISCU S SION ) 

' ----~--_./ 

,..../- · ------""--... 
( FICTION ) 

-, // ... ___ ......._ __ 
/---------·"\.... 
~ONVERSATION _) 

------~ .r 

Few nom inalizotions 
and passives 

Many pronoua1 and 
conl"'actic,u 

Figure 17.1 Dimensions of written vs. spoken language variation. 

1 Nominalization is a stylistic device whereb · b · 
II I

. . Y a mam ver 1s converted to a noun. For example The dean rejected 
1e app 1cat1011 unexpectedly may become· .,..'h · • · ' · '' e re1ectron of the application by the dean was unexpected. 
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·d ·de is toward the written one. The difference in styles is best illustrated b h f; 
I ft-han st . . . Y t e act 
e ·t tistical n-gram tramed from newspaper text exh1b1ts a very high perpl 'ty h 

that the s a . ·r I I ti . S . ex1 w en 
d on conversational Air rave n ormat1on erv1ce (A TIS) texts. 

evaluate 

17,1.2. Disfluency 

Another issue for sp~ken lan~age proces_sing is disfluency. Spoken dial?gs show a large set 
of problems such as mterruptlons, corrections, filled p~uses, ungrammatical sentences, ellip-

d unconnected phrases. These challenges are umque to spontaneous spoken input and 
ses, an d . f h . 
represent a possible furth~r degra at10~ o speec recogmzer performance, as current sys-
tems often rely on acoustic models tra1~ed fr~m read spe_ech,_ and language models trained 
on written text corpora. When speech mput 1s used as dictation for document creation, of 
course, the models would presumably be most appropriate. 

There are a number of types of disfluencies in human-human dialog, and, possibly to a 
lesser extent, in human-computer dialog as well. The more common types of nonlinguistic 
disfluencies are listed below: 

, Filled pauses: um 

• Repetitions: the - the 

• Repairs: on Thursday - on Friday 

• False Starts: I like - what I always get is ... 

Early work in discourse led to the determination that discourses are divided into dis­
course segments, much as sentences are divided into phrases [18]. In the experiments of 
(46], CART methods (see Chapter 4) were used to predict occurrence and location of each 
of the above types of disfluency. A tree was trained from labeled corpora for each type, and 
the resulting system classified each interword boundary as having no disfluency or one or 
more of the above types. The feature types used to derive the classification questions in­
c!uded duration of vocalic regions and pauses, fundamental frequency and its derivatives, 
si~al-to-noise ratios, and distance of the boundary from silence pauses. The basic classifi­
catio? task consisted in selecting each of the four disfluency types listed above (D), given 
tbe hst of prosodic features (X), by computing the maximum of P(D IX). When decision 
trees were used to supplement the language-model scoring of hypothesis word strings, per­
fonnance improved. 

A number of intriguing regularities were also observed in this work. For example, it 
w~s noted that the marked (less common) pronunciation of the - /dh iyl was often used just 
pl nor to a production problem, e.g. a disfluent silent pause. Also, it has been noted that the 
eftmost d f ' · · J "I'll I'll wor o a major phrase or clause is likely to be repeated, as m thetr examp e, 

daryd~ what 1 can." Continued research on dis fluencies may contribute an important seco~­
m d ~wledge source to supplement text-based language models and read speech acouSUc 

o els in the future. 

Amazon/VB Assets 
Exhibit 1012 

Page 883



858 
Spoken Language Understanding 

17.1.3. Communicative Prosody 

Prosodic attributes of utterances, such as fundamental frequency and timing (cf. Chapter 15), 
are crucial cues for detecting disfluency. However, prosody can be deliberately manipulated 
by speakers for deep communicative purposes as well. !h~ speaker may intentionally. or 
subconsciously manipulate the fundamental frequency, t1mm~, an~ other as~ects ?f voice 
quality to communicate attitude and emotion. If a conver~at1onal mterface 1s eqmp~ed to 
recognize and interpret prosodic effects, these can be taken mt~ account for under~tandmg . . 

In addition to serving as a disfluency detector, as descnbed above, prosodic analysis 

modules could aid recognition of: 

• Utterance type--declarative, yes-no questions, wh-question, etc. 

• Speech act type-directive, commissive, expressive, representative, declara-
tive, etc. Different speech acts will be described in Section 17.2.2. 

• Speaker's attentional state. 

• Speaker's attitude toward his/her utterance(s). 

• Speaker's attitude to system presentations. 

• Speaker's mood or emotional state. 

Consider the simple utterance OK. This may be used along a range of attitudes and 
meanings, from bored contempt, to enthusiastic agreement, to questioning and uncertainty. 
The interpretation will depend on both the dialog state context of expectations-to-date and 
the prosody. Generally, a higher relative FO in a wider range correlates with submission, 
involvement, questioning, and uncertainty, while a lower relative FO in a narrower range 
correlates with dominance, detachment, assertion, and certainty. Even though acknowl­
edgement words such as yeah and ok are potentially ambiguous among: true agreement; 
intention of the listener to initiate a new turn; and simple passive encouragement from lis­
tener to speaker, the system may rely on a longer duration and greater pitch excursion of a 
lexical item such as yeah or ok to hypothesize genuine agreement with a speaker statement, 
as opposed to mere acknowledgement. 

In addition to correlating with speech acts, FO and timing can be used to demarcate ut­
terance and turn segments. For example, certain boundary pitch movements and phonemic 
lengthening systematically signal termination of clauses. In general, a fall to the very bottom 
of a speaker's range, in a prepausal location, coincides with a clause or sentence boundary. 
A sharp upturn preceding a significant silence gives an impression of incompletion, perhaps 
signaling a yes-no question, or may signal an intention by the speaker to carry on with fur­
ther information, as in the case of list intonation. 

The disfluent and prosodic characteristics of the conversational speech are in general 
very distinct from those of read speech. Thus, we often refer conversational speech as spon­
taneous speech. 
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2 DIALOG STRUCTURE 17, · 
The analysis methods dis~ussed in Chapter 11 are f?cused on single sentences. They are 

I PS 
along the way, helpmg to map vague and ambiguous natural language const 

1
. 

s e . fi f . . . rue 10ns 
into precise /og1cal ~rms o propos1_ttons. In reahty, however, the communicative function 
oflaoguage is not a simple, uncomp_hcated assembly of discrete logical propositions derived 
from sentences in a one-to-~ne fashion. In discourse, each sentence or utterance contributes 

10 a larger abstract infonnat1on structure that the user is attempting to construct. Sometimes 
feedback is directly available to the user or can be inferred. These considerations take us 
beyond the process of mapping of isolated utterances into logically structured propositions 

(with simple trut~-v~lues). . . . . 
A set of prmc1ples, known collectively as the cooperative pnnc1ple, is introduced by 

Grice [9]. It consists of a set of conversational maxims, the violation of which may lead to a 
breakdown in communication. 

GRICE'$ MAXIMS 

Quantity. speaker tries to be as informative as possible, and gives only as much information as 
needed 
Quality. speaker tries to be truthful, and does not give information that is false or that is not 
supported by evidence 
Relevance: speaker tries to be relevant, and says things that are pertinent to the discussion 
Manner. speaker tries to be as clear, as brief, and as orderly as possible, and avoids obscurity 
and ambiguity 

In general, there are five main domains of operation that must be modeled for intelli­
gent conversation systems, although all these areas are linked: 

• Linguistic forms: all the knowledge a human-computer dialog system re­
quires to perform semantic and syntactic analysis and generation of actual ut­
terances. 

• Intentional state: goals related to both the task (Show me all flights .. . ), and 
the dialog process itself (Please repeat ... ) of the users. 

• Attentional state: the set of entities at any point in 'time that can be felici­
tously discussed and referred to, i.e., the main topic of any stage of interac­
tion. 

• World knowledge: common sense knowledge and inference. Exa~ple~ i~­
clude temporal and spatial concepts and the relation of these to hngu1st1c 
forms. 

• Task knowledge: all information relevant to achieving the user's goal in a 
complete, correct, and efficient fashion. 
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Human-computer dialog is multiagent communication. Each agent has to form a no­
tion of the other's beliefs, desires, and knowledge, all of which underlie their intentions, 
plans, and actions. In a limited application, deep inference may not be possible, and the sys­
tem may have more or Jess hardwired assumptions about the user, the interaction, and the 
flow of action. An interaction may be controlled by the system's own rigid schedule of in­
formation acquisition. In the research community, such a dialog system-always leading the 
interaction flow control and not allowing the user to digress-is called system initiative. On 
the other hand, a dialog system is called user initiative if it always lets the user decide what 
to do next. It is often more natural, however, to allow for mixed initiative systems, where 
interaction starts with a user's query or command and the system attempts to derive, via in­
ference or further questioning of the user, all information needed to understand and process 
a complete transaction. When the user knows clearly what he wants and the system has no 
trouble catching up, the user is in the driver's seat. However, when the system detects that 
the user is in a state of confusion, or when it has trouble getting user's intention, the machine 
will offer guidance or negotiate with the user to steer the dialog back on track. 

Whether it is system-initiative, user-initiative, or mixed-initiative, however, the fun­
damental structure of dialog consists of initiative-response pairs as indicated in Figure 17.2. 
The Initiatives (I) are often issued by users while the Responses (R) are issued by the sys­
tem. As shown in Section 17.2.2, there are many types of Initiatives and Responses and 
there may also be higher-order structure subsuming a number of I/R pairs in a dialog. 

Figure 17.2 The fundamental structure of dialog: initiative and response. 

17.2.1. Units of Dialog 

The_v:ords ~ttered i~ a dialo_g are the surface manifestation of a complex ~nderlying layer of 
part1c1~ants ~hared_mteract1on knowledge and desires, even when one participant is a com­
pute~ s1mulat1on. It 1s natural to assume that the sentence is a clear and simple chunking unit 
for_d1~log,_ by 8?alogy with written communication. However, since sentences are artificially 
dehm1ted ~n ~tten text,_r~s:archers in dialog communication usually speak of the utterance 
as the basic umt. An Imtiauve or Response could consist of one or more utterances. The 
utterance, however, is not necessarily trivial to define. 

It is tempting to posit an equivalence of the notion utterance with tum, i.e., an uninter­
rupted str~am of spe:ch from one participant in a dialog. This formulation makes it easy to 
segment dialog data mto utterance units-they are just each speaker's turns. The downside 
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. th t this kind of utterance possibly spans grammatical units that really d h 
1s a d. · 1 ( d. 0 ave some 

h Orrespondence to tra 1tJ.ona sentences pre 1cate-argument structures) a d t h. roug c . . . • n o w 1ch 
h Of the hard-won gams m natural language processing would apply fairly d" 1 muc . . . irect y. 

the use of turn as synonymous with utterance umt 1s probably too broad, though th 
Thus, ay be independently useful for higher-level segmentation. e 
tumm ·1d· bl k fi · k rums are bu1 1~g oc s . or constructmg_ a common ~as -oriented understanding 

ng participants. This process 1s called groundmg, a set of discourse strategies by which 
- . h) hi d" Jog actors (humans m most current researc attempt to ac eve a common understand-
. 

13 
and come to feel confident of the other participants' understanding. In other words 

lllg, fi d" bl" h" d ' onversational partners are m mg or esta 1s mg common groun . 
c Tums may have their own typology. For example, a speaking turn conveys new in­
formation, while a back-channel turn is limited to acknowledgement or encouragement, 
such as OK, really?, etc. The turns themselves consist of linguistic substructures, such as 
sentences, clauses, and phrases. If we assume that turns can be segmented, by grammatical 
and/or prosodic criteria, into utterances, we can then begin to explore distinct types of utter­
ances, their properties, and their communicative functions. 

finally, dialogs are not flat streams of unrelated turns or utterances. The utterances 
that make up a dialog have higher-order affiliations with one another. A discourse segment 
would thus consist of groups of related utterances organized around a common dialog sub­
task, perhaps spanning turns. 

17.2.2. Dialog (Speech) Acts 

In simpler applications, the amount and sophistication of world knowledge can be kept to a 
minimum, and attentional state can be modeled simply as the complete set of task-specific 
entities. A layer of structure has therefore been sought to link linguistic forms with task 
knowledge or operations in a theoretically appropriate fashion, which also yields an implicit 
understanding of intentional state. This is necessary because the function of utterances in 
discourse cannot be predicted strictly on the basis of their surface grammatical form. The 
layer of structure that can abstract away from linguistic details and can map well to formula­
tion of goals is called dialog acts [ 42]. Dialog acts are also often referred to as speech acts 
that group infinite families of surface utterances into abstract functional classes. They are 
traditionally classified into five broad categories: 

• Directive: The speaker wants the listener to do something. 

• Commissive: The speaker indicates that he or she will do something in the 
future. 

• Expressive: The speaker expresses his or her feelings or emotional response. 

• Representative: The speaker expresses his or her belief about the truth of a 
proposition. 

• Declarative: Speaker's utterance causes a change in external, nonlinguistic 
situation. 
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Table 17.1 A simple dialog analyzed with dialog acts. 

Utterance Form Function 

Do you have the butter? YIN-question REQUEST-ACT 

Sure. (passes butter) statement COMMIT-TO-ACTION-ACT 

While this analysis is somewhat coarse, speech act theory has influenced all current 
work on human-computer dialog, except the very simplest and most rigid systems. Because 
dialog functions can be realized with a bewildering variety of linguistic forms, researchers 
have posited systems of functional abstractions. Speech acts are functional abstractions over 
variation in utterance form and content. Declare, request, accept, contradict, withdraw, ac­
knowledge, confirm, and assert are all examples of speech acts-things we are attempting to 
do with speech. An example of dialog acts and their relation to syntactic form is shown in 
the two-tum dialog in Table 17. I. 

The relation between speech acts and linguistic forms (utterances) is a many-to-many 
mapping. That is, a single linguistic form, such as OK, could realize a large number of 
speech acts, such as request.for acknowledgment or confirm, etc. Likewise, a single speech 
act, such as agreement, could be realized by a variety of linguistic forms, such as ok. yes, 
you bet, etc. In a particular application, special task-specific speech acts may be used to sup­
plement the universal inventory. 

Tagging of dialog utterance data with speech-act labels can add useful information for 
training models. There are a number of ways that dialog-act analysis could be useful: 

• Speech recognition: Given a history, we can predict the most likely dialog act 
type for the next utterance, so that specialized language models may be ap­
plied. 

• Spoken language understanding: Given a history, and a transcription/parse of 
the current utterance, we can identify the user's intentions, so that the system 
can respond appropriately. 

• Semantic authoring: It is tedious for each team designing or customizing a 
new application area for SLU to have to wrack their brains for all the ways a 
given generic function, such as request or confirm, might be realized linguis­
tically. Libraries of speecn acts (form-to-function mappings) may reduce the 
work in new-domain adaptation of systems. 

An example of a practical dialog tagging system that could be the foundation of 
spe~ch-act analysis is the Dialog Act Markup in Several Layers (DAMSL) system [14], 
~hich has bee_n ~sed an_d adapted for a variety of projects. This is a system for annotating 
dialog ~ran~cnptions with speech-act labels and corresponding structural elements. The 
structunng is bas~d on a loose hierarchy of: discourse segment, tum, utterance, and speech 
act. The tags applied to utterances fall into three basic categories: 
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