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621, Waveform Generation from Formant Valyes

To be able to synthesize speech by rule, a simple model for the fi
pased synthesizers use the so-called formant Synthesis, which is
speech production. The model explicitly represents a number of fo
10 6). A formant resonance can be implemented (see Chapter 6)
filter

Iter is needed. Most rule-
derived from models of
rmant resonances (from 2
with a second-order IIR

1
1-2¢™ cos(2z f,)z™ + 2™ ;7 (16.1)

H(z)=

with fj=F,/F, and b, = B,/F,, where F,, B,, and F, are the formant's center frequency,
formant’s bandwidth, and sampling frequency, respectively, all in Hz. A filter with several
resonances can be constructed by cascading several such second-order sections (cascade
model) or by adding several such sections together (paralle! model). Formant synthesizers
typically use the parallel model to synthesize fricatives and stops and the cascade model for
all voiced sounds.

Unlike the cascade model, the parallel model requires gains to be specified for each
second-order section, which often are chosen proportional to the formant’s frequency and
inversely proportional to the formant’s bandwidth. The cascade model results in an ﬂ!-PO!e
filr, whereas the parallel model has zeros in addition to poles. Such a combination is
shown in Figure 16.3, where R1 through R6 are the resonances 1 to 6 and each one repre-
sents a second-order IIR filter like that in Eq. (16.1). RNP represents the nasal resonance,
ad RNZ is an FIR filter with the nasal zero. Al through AB are the gains for each ﬂﬁleri
Used for the parallel model. Switch SW controls whether the cascade model or paralle
model is ygsed, s drivi

For voiced sounds the excitation model consists of an impulse tra(njn ;(l}-nslmlfo: L‘;"“,’oll’::;
filer RGP and then a bandpass filter created by the parallel of RGZlan LPE. The excitation
scmnd? the excitation consists of white noise driving a low-pass f [;:is mixed excitation is
for voiced fricatiyes is a combination of the two sources. 193%; a:}:‘;:ed that this model could
¥5ed for all voiced sounds to add some breathiness. Klatt [ 4 been manually selected.
®Produce quite faithfully a natural recording if the parameters ha
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Figure 16.3 Block diagram of the Klatt formant synthesizer (after Allen [4]).

The parameter names and their minimum and maximum values are listed in Table
16.1, where the switch SW can be in voiced (V) or consonant (C) mode. For example, in
Figure 16.3, R2 is the resonator corresponding to the second formant, whose center fre-
quency F2 and bandwidth B2 are given in Table 16.1. In addition to the six resonances asso-
ciated to the six formants, there are other resonances: RGP, RGZ, RGS, RNP, and RNZ.
Other source models are also possible [43].
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Table 16.1 Parameter vthfes . Klatf‘s cascade/parallel formant synthesizer with the parame-
ter symbol, full name, minimum, maximum, and typical values (after Allen {4]).

| symbol | Name e e gl
‘T_-i{'__,__l- Amplitude of \-oicir‘1g (dB) _____Nﬂ% Ma;0 _'_r_yg.o__
o | AF Amplitude of frication (dB) o s
5 | AH Amplitude of aspiration (dB) 0 80 )
_'4:] AVS Amplitude of sinusoidal voicing (dB) 0 30 0

5 | FO Fundamental frequency (Hz) 0 300 0
| FI First formant frequency (Hz) 150 200 500
7 | P2 Second formant frequency (Hz) 500 | 2500 | 1500
S | F3 Third formant frequency (Hz) 1300 3500 2500
9 [ F4 Fourth formant frequency (Hz) 2500 4500 3500

10 | ENZ Nasal zero frequency (Hz) 200 700 250

11 | AN Nasal formant amplitude (Hz) 0 80 0

12 | Al First formant amplitude (Hz) 0 30 0

13 | A2 Second formant amplitude (Hz) 0 0 0

14 | A3 Third formant amplitude (Hz) 0 80 0

15 | A4 Fourth formant amplitude (Hz) 0 80 0

16 | AS Fifth formant amplitude (Hz) 0 80 0

17 | A6 Sixth formant amplitude (Hz) 0 80 g

18 | AB Bypass path amplitude (Hz) 0 80 5

19 | BI First formant bandwidth (Hz) 40 Sgg =

0| B2 Second formant bandwidth (Hz) |40 ; = =
21 | B3 Third formant bandwidth (Hz) 48 l T
(2 | SW Cascade/paraliel switch L_—o-— 400 0 |
|23 | FGP Glottal resonator 1 frequency (Hz) i 0 100
24 | BGP Glottal resonator 1 bandwidth (Hz) —-———0—"5'00"’"13'0‘0"
. | FGZ Glottal zero frequency (Hz) W—B&r 6000
.ZLiG_Z__ Glottal zero bandwidth (Hz) 00 | 500 250
27 | B4 Fourth formant bandwidth (Hz) __._-—»3566" 2900 3850
28 ) Fs Fifth formant frequency (Hz) —s0 | 700 | 200
D | 8s Fifth formant bandwidth (H2) 000 | 4999|4900
N |_F6 Sixth formant ﬁequ‘ﬁz’_(_iizl.———-———/ 200 2000 100
LT T Sith formant bandwidth (F2) 75 |~ so0 | 2%0
g\ FNp Nasal pole ﬁemﬂi.—————/i ;%g,. 100
% Eﬁ\’i____ Nasal pole bandWEdth (Hz) 50| T
B BNz Nasal zero bandwidth (H2) T 5 14[1(_)‘__70066 0000
& 18GS | Glottal resonator 2 bandwidth (72} —— 500 L2050
= NWs Number of waveform samples pere—=—""¢9 | S 4—
38 ] - /j [0
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16.2.2. Formant Generation by Rule

As described in Chapter 2, formants are one of the main features of vowels. Because of the
physical limitations of the vocal tract, formants do not change abruptly with time. Rule-
based formant synthesizers enforce this by generating continuous values for f;[#] and b,{n],
typically every 5-10 milliseconds. Continuous values can be implemented through the
above structures if a lattice filter is used, because it allows its reflection coefficients to vary
at every sample (see Chapter 6). In practice, the values can be fixed within a frame as long
as frames are smaller than 5 ms.

Rules on how to generate formant trajectories from a phonetic string are based on the
locus theory of speech production. The locus theory specifies that formant frequencies
within a phoneme tend to reach a stationary value called the rarger. Targets for formant fre-
quencies and bandwidths for a male speaker are shown in Table 16.2 (nonvocalic segments)
and Table 16.3 (vocalic segments). This target is reached if either the phoneme is suffi-
ciently long or the previous phoneme’s target is close to the current phoneme’s target. The
maximum slope at which the formants move is dominated by the speed of the articulators,
determined by physical constraints. Since each formant is primarily caused by the position
of a given articulator, formants caused by the body of the tongue do not vary as rapidly as
formants caused by the tip of the tongue or the lips. Thus, rule-based systems store targets
for each phoneme as well as maximum allowable slopes and transition times.

For example, a transition between a vowel and a sonorant can follow the rule shown in
Figure 16.4 with g, being the target of unit 1 and a, the target of unit 2. The values of T,
and T, are 40 and 80 ms, respectively, and a, =a, +0.75(a, —a,) . The time T, +T,
specifies how rapid the transition is. While linear interpolation could be used, a, and the
ratio T, /T, are sometimes used to further refine the shape of the formant transition.

P
o por———i1s 1T
) I bo- ]
1 a ] 1
: i1\
az ——y e —————— | o R R TP ———
0 1 1 1 '
1 1 ] ] H
1 1 1 1 !
= ——1 f >
I, I8 L 14

Figure 16.4 Transition between two vowels in a formant synthesizer.

Other rules can allow a discontinuity, for example, when a transition out of an un-

voiced segment takes place. To improve naturalness, all these parameters can be made de-
pendent on the immediate phonetic context.
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Table 16.2 Targets used in the Klatt synthesizer: forman frequenci .
vocalic segments of a male speaker. Note that jn addition 1o the p:]eosnaef:ebar:dwn‘j;hs for non-
set used in Chapter

2, there are several additional phonetic segments here sycly as axp, dx,
9. ™ 1 wh, that allow more control (after Allen [4]), P- dx, el, em, en, gp, hx, kp, I,

At 1B Thi T T3
axp 430 [ 1500 [ 2500 WTT;T
b 200 [900 _[2100 |65 ~ Tog—ioe—]
%0 125
ch 300 1700 12400 1200 {110 270
d 200 1400 [ 2700 | 70 i15 ngh
dh 300 | 1150|2700 | 60 95 it
dx 200 1600|2700 [ 120 [ 140 (250
el 450 [ 800 | 2850 |65 60 80
em 200 900 2100 120 60 70
en 200 1600 2700 120 70 110
7 400 1130|2100 | 225 | 120 [ 175
2 250 1600|1900 |70 145190
op 200 1950 | 2800 | 120 [ 140 | 250
h 450 | 1450 | 2450 300 {160 | 300
hx 450 1450 | 2450|200 [ 120 | 200
j 200 1700__| 2400 | 50 110 | 270
k 350 | 1600 | 1900 280 220 |20
kp 300 1950 | 2800 | 150 | 140 | 250
! 330 1050__| 2800 | 50 100|280
Ix 450 | 800 | 2850 | 65 60 80
m 480 1050 | 2100 | 40 175__| 120
n 480 | 1600 | 2050 [160 | 150 | 100
n 480 1400 | 2700 | 40 308 fgg
I3 300 | 900 | 2100 ]300 |19
99 400 1400 | 2450 | 120 [ 140 [250 |
r 330 ] 1060 | 1380 |70 égo %0
rx 460 1260 | 1560 |60 _ |60 |
sh 200 11650 2400 [ 200 [ 110 280
- 120 | 140 [250
sil 400 [ 1400 |2400 | 2 - m—toy
s 400 | 1400 | 2700 _&.E—J—m—ﬁ
h 400 | 1150 | 2700 [225 138 -5 —
19 200 1400 #J@, ;%%——W—‘ 220
! 300 1400 [ 2700 -33.’—(3%25’4
v 300 1130|2100 120 ——=—T7%p
Cwi 330 600 12100 |10 g5 50
W 285 610‘_4_2,152———%———'361 500
y 240 | 2070 [ 3020 1 2E 0250
220 140 | 22
_2h 300 | 1650 [ 2400 | Z2%—1gs i 190
2 300 1400|2700 | & ——"""
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Table 16.3 Targets used in the Klatt synthesizer: formant frequencies and bandwidths for vo-
calic segments of a male speaker. Note that in addition to the phoneme set used in Chapter 2,
there are several additional phonetic segments here such as axr, exr, ix, ixr, oxr, uxr, yu that al-

low more control (after Allen [4]).

F1 F2 F3 B1 B2 B3
aa 700 | 1220 | 2600 130 70 160
ae 620 | 1660 | 2430 70 130 300
ah 620 | 1220 | 2550 80 50 140
ao 600 990 | 2570 90 100 80
aw 640 | 1230 | 2550 80 70 110
ax 550 | 1260 | 2470 80 50 140
axr 680 | 1170 | 2380 60 60 110
ay 660 | 1200 | 2550 100 120 200
eh 530 | 1680 | 2500 60 90 200
er 470 | 1270 | 1540 100 60 110
exr 460 | 1650 | 2400 60 80 140
ey 480 | 1720 | 2520 70 100 200
ih 400 | 1800 | 2670 50 100 140
ix 420 | 1680 | 2520 50 100 140
ixr 320 | 1900 | 2900 70 80 120
iy 310 | 2200 | 2960 50 200 400
ow 540 | 1100 | 2300 80 70 70
oxr 550 820 | 2200 60 60 60
oy 550 960 | 2400 80 120 160
uh 450 | 1100 [ 2350 80 100 80
uw 350 | 1250 [ 2200 65 110 140
uxr 360 800 | 2000 60 60 80
yu 290 | 1900 | 2600 70 160 220

Klatt showed that for a given natural utterance, he could manually obtain a sequence
of formant tracks f;[#] and b,[n], such that the synthesized utterance not only had good
quality but also soundzd very similar to the original. This shows that the formant synthesizer
of Section 16.2.1 appears to be sufficient for generation. On the other hand, when the for-
mant tracks are obtained automatically through rules such as that of Figure 16.4 and Table
16.2 and Table 16.3, the output speech does not sound that natural, and the voice does not
resemble the voice of the original recording.
~ Formant synthesis is very flexible because it can generate intelligible speech with rela-
tively few parameters (about 40). The use of context-dependent rules can improve the qual-
ity of the synthesizer at the expense of a great deal of manual tuning. The symh“imd

speech is, by design, smooth, although it may not resemble any given speaker and may not
sound very natural.
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Because of their flexibility, formant Synthes
ices and effects. While not as flexible, voice effe
speech systems (sce Section 16.5.3),

1ZEs can oftey generate m

any diff
Cts can also pe produced in P lilfereiie

concatenative

1623. Data-Driven Formant Generatjop

While. in general, formant synthesis assumes the forman
parameter values generated by rules, as in Section 16.2.2, data-driven methods to generate
the formant values haw': also been_proposed [3]. An HMM Tunning in generation mode emits
three formant frequenme.s and. th.exr bandwidths every 10 ms, and these values are used in a
cascade formant synthesizer similar to that described in Section 16.2.1. Like the speech rec-
ognition counterparts, this HMM has many decision-tree context-dependent triphones and
three states per triphone. A Gaussian distribution per state is used in this work. The baseline
system uses a six-dimensional vector that includes the first three formant frequencies and
their bandwidths. Initially it is assumed that the input to the synthesizer includes, in addition
to the duration of each phoneme, the duration of each state. In this case, the maximum like-
fihood formant track is a sequence of the state means and, therefore, is discontinuous at state
boundaries.

The key to obtaining a smooth formant track is to augment the feature vector with the
comesponding delta formants and bandwidths (the difference between the feature at tixpe t
ad that feature at time ¢ — 1) to complete a twelve-dimensional vector. The maxinTum ll!ce-
livood solution now entails solving a tridiagonal set of linear equations (sec': the dlscussw.n
on statistical formant tracking in Chapter 6). The resulting formant track is smooth, :sl it
bilances formant values that are close to the state means with delta values t?ﬂ:h al't:,j onf:;
Vithin the state means. In addition, the synthesized speech resembles that of the
fezker. More details on the analysis and model training can be fo
Ing section of Chapter 6.

t model of Section 16,2, driven by

und in the formant track-

624 Articulatory Synthesis

ed to synthesize speech by rule;,;.:y
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that many degrees of
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the vocal-tract area from formant frequencies [37]. In [8] the model uses five articulatory
parameters: area of lip opening, constriction formed by the tpngue blade, openmg to the na-
sal cavities, average glottal area, and rate of active expansion or contraction of the vocal
tract volume behind a constriction. These five parameters are augmented with the first four
formant frequencies and FO.

Those area parameters can be obtained from real speech through X-rays and magnetic
resonance imaging (MRI), though positioning such sensors in the vocal tract alters the way
speech is produced (such as the sensors in the lips) and impedes completely natural sounds.
The relationship between articulatory parameters and acoustic values has typically been
done using a nonlinear mapping such as a neural network or a codebook.

While one day this may be the best way to synthesize speech, the state-of-the-art in ar-
ticulatory synthesis does not generate speech with quality comparable to that of formant or

concatenative systems.

16.3. CONCATENATIVE SPEECH SYNTHESIS

While state-of-the-art synthesis by rule is quite intelligible, it sounds unnatural, because it is
very difficult to capture all the nuances of natural speech in a small set of manually derived
rules. In concatenative synthesis, a speech segment is synthesized by simply playing back a
waveform with matching phoneme string. An utterance is synthesized by concatenating to-
gether several speech fragments. The beauty of this approach is that unlike synthesis-by-
rule, it requires neither rules nor manual tuning. Moreover, each segment is completely natu-
ral, so we should expect very natural output.

Unfortunately, this is equivalent to assembling an automobile with parts of different
colors: each part is very good yet there is a color discontinuity from part to part that makes
the whole automobile unacceptable. Speech segments are greatly affected by coarticulation
[42], so if we concatenate two speech segments that were not adjacent to each other, there
can be spectral or prosodic discontinuities. Spectral discontinuities occur when the formants
at the concatenation point do not match. Prosodic discontinuities occur when the pitch at the
co.ncatenation point does not match. A listener rates as poor any synthetic speech that con-
tains large discontinuities, even if each segment is very natural.

Thus, when designing a concatenative speech synthesis system we need to address the
following issues:

1. What type of speech segment to use? We can use diphones, syllables, pho-
nemes, words, phrases, etc.

2. How tQ design the acoustic inventory, or set of speech segments, from a set of
recoydmgs? This includes excising the speech segments from the set of re-
cor.dl'ngs as well as deciding how many are necessary. This is similar to the
training problem in speech recognition,

3. How to select‘ the best string of speech segments from a given library of seg-
ments, and given a phonetic string and its prosody? There may be several
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strings of speech segments that produce the same phonetic strin
ody. This is similar to the search problem in speech recognition g and pros-

4. How to alter the prosody of a speech segment to best
i - mat i
put prosody. This is the topic of Section 16 4. 2ch the desired out-

Generally, these concate.natl.ve systems suffer from great variability in quality: often
they can offer excellent quality in one sentence and terrible quality in the next one. If
enough good units are available, a given test utterance can sound almost as good as a.re
corded utterance. However, if several discontinuities occur, the synthesized utterance car;
have very poor quality. While synthesizing arbitrary text is still a challenge with these tech-
niques, for restrictive domains this approach can yield excellent quality. We examine all
these issues in the following sections.

We define unir as an abstract representation of a speech segment, such as its phonetic
label, whereas we use instance as a speech segment from an utterance that belongs to the
same unit. Thus, a system can keep several instances of a given unit to select among them to
better reduce the discontinuities at the boundaries. This abstract representation consists of
the unit's phonetic transcription at the minimum, in such a way that the concatenation of a
set of units matches the target phonetic string. In addition to the phonetic string, this repre-
sentation can often include prosodic information.

163.1. Choice of Unit

A number of units have been used in the field, including context-independent phonemes,
diphones, context-dependent phonemes, subphonetic units, syllables, v\./ords. and pbrasgs. A
compilation of unit types for English is shown in Table 16.4 with their coverage in Figure
16.5.

Table 16.4 Unit types in English assuming a phone se
higher quality at the expense of more storage. The num 4
lute maxirnum in theory, i.e., out of the 42 = 74,088 possi
cur in practice.

t of 42 phonemes. Longer units produce
ber of units is generally below the abso-
ble triphones, only about 30,000 oc-

Unit length Unit type !_-[#_E | Quality
Short Phoneme 42 - . Low
Diphone ~1500
Triphone | ~30K |
Demisyllable | ~2000
Syllable ~15K
Word M——
| Phrase L= ———— High
[Lorg  [semence 1= ———r—
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The issues in choosing appropriate units for synthesis are similar to those in choosing
units for speech recognition (described in Chapter 9):

e The unit should lead to low concatenation distortion. A simple way of mini-
mizing this distortion is to have fewer concatenations and thus use long units
such as words, phrases or even sentences. But since some concatenations are
unavoidable, we also want to use units that naturally lead to “small” disconti-
nuities at the concatenation points. For example, it has been observed that
spectral discontinuities at vowels are much more noticeable than at fricatives,
or that a discontinuity within a syllable is more perceptually noticeable than a
discontinuity across syllable boundaries, and similarly for within-word and
across-word discontinuities [55]. Having several instances per unit is an al-
ternative to long units that allows the choice of instances with low concatena-
tion distortion.

o The unit should lead to low prosodic distortion. While it is not crucial to have
units with the same prosody as the desired target, replacing a unit with a ris-
ing pitch with another with a falling pitch may result in an unnatural sen-
tence. Altering the pitch and/or duration of a unit is possible (see Section
16.4) at the expense of additional distortion.

o The unit should be generalizable, if unrestricted text-to-speech is required. If
we choose words or phrases as our units, we cannot synthesize arbitrary
speech from text, because it's almost guaranteed that the text will contain
words not in our inventory. As an example, the use of arbitrarily long units in
such a way that no concatenation between voiced sounds occurs by cutting at
obstruents results in low concatenation distortion but it is shown [47] that
over 180,000 such units would be needed to cover 75% of a random corpus.
The longer the speech segments are, the more of them we need to be able to
synthesize speech from arbitrary text. This generalization property is not
needed if closed-domain synthesis is desired.

e The unit should be trainable. Our training data should be sufficient to esti-
mate all our units. Since the training data is usually limited, having fewer
units leads to better trainability in general. So the use of words, phrases, or
sentences may be prohibitive other than for closed-domain synthesis. The
9ther units in Table 16.4 can be considered trainable depending on the limita-
tions on the size of our acoustic inventory.

A practical challenge is how to balance these selection criteria. In this section we
compare a number of units and point out their strengths and weaknesses.

16.3.1.1.  Context-Independent Phonemes

Thedmost straight.forwar.d unit is the phoneme. Having one instance of each phoneme, inde-
pendent of the neighboring phonetic context, is very generalizable, since it allows us to gen-
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crate every word/sentence. _Il is also very trainable ang we could h
compact. For a language with N phonemes, say v = 47 N
unit instances. The problem is that using context-indepe
discontinuities. Such a system is not intelligible.

) System that is very
for English, we would need only N
ndent phones results in many audible

163.1.2. Diphones

A type of subword unit that has been extensively used is the so-called dyad or diphone (41

A diphone s-ih includes from the middle of the s phoneme to the middle of tﬁe i; ho]:
neme, so diphones are, on the average, one phoneme long. The word hello /hh ai 1
ow/ can be mapped into the diphone sequence: /sil~-hh/, /[hh-ax/, /ax-1/

{1-ow/, /ow-sil/.If ourlanguage has N phonemes, there are potentially ¥° diphones’.
In practice, many such diphones never occur in the language, so that a smaller number is
sufficient. For example, the phonetic alphabet of Chapter 2 has 42 phonemes for English,
and only about 1300 diphones are needed. Diphone units were among the first type of unit
used in concatenative systems because they yield fairly good quality. While diphones retain
the transitional information, there can be large distortions due to the difference in spectra
between the stationary parts of two units obtained from different contexts. For example,
there is no guarantee that the spectra of /ax-1/ and /1-ow/ will match at the junction
point, since the instance /ax-1/ could have been excised from a very different right con-
text than /ow/ or the instance /1-ow/ could have been excised from a very different left

context than /ax/.

50000 - ——word

45000 -
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35000 - —a— triphones
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its displ: mber of units of different
Figure 16.5 Coverage with different number 91" units dl:f;dg; :::[gj !
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e e es and StOPS while they store

For thi i iphon .
or this reason, many practical diph petween fricativ

1o o . .
L store transitions between fricatives, OF
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longer units that have a high level of coarticulation [48]. If only one representative of a dyad
is available, there are pitch discontinuities. Prosody modification techniques, such as those
described in Section 16.4, can be applied to correct this problem. Otherwise many instances
of each diphone are needed for good prosodic coverage. Diphones are trainable. generaliz-
able and offer better quality than context-independent phones.

16.3.1.3.  Context-Dependent Phoneme

Another subword unit used in the literature [24] is the context-dependent phoneme. If the
context is limited to the immediate left and right phonemes, the unit is known as triphone.
As in speech recognition, not all ~° need to be stored, because not all combinations will
occur in practice. For English, typically there can be in excess of 25,000 triphones: 12,000
within-word triphones and another 12,000 across-word triphones. Because of the increased
number of units, more contextual variations can be accommodated this way. Drawing from
experience in speech recognition, we know that many different contexts have a similar effect
on the phoneme; thus, several triphones can be clustered together into a smaller number of
generalized triphones, typically between 500 and 3000. All the clustering procedures de-
scribed in Chapter 9 can be used here as well. In particular, decision-tree clustered phones
have been successfully used. Because a larger number of units can be used, discontinuities
can be smaller than in the case of diphones while making the best use of the available data.
In addition to only considering the immediate left and right phonetic context, we could also
add stress for the current phoneme and its left and right context, word-dependent phones
(where phones in particular words are considered distinct context-dependent phones), quin-
phones (where two immediate left and right phones are used), and different prosodic pat-
temns (pitch ranges and/or durations). As in speech recognition, clustered context-dependent
triphones are trainable and generalizable.

Traversing the tree for a given phoneme is equivalent to following the answers for the
branching nodes from root to leaves, which determines the clusters for similar context-
dependent phones. The decision trees are generated automatically from the analysis database
to obtain minimum within-unit distortion (or entropy) for each split. Therefore, one must be
able to acquire a large inventory of context-dependent phone HMMs with a decent coverage
of the contexts one wishes to model. All the context-dependent phone units can be well re-
placed by any other units within the same cluster. This method generalizes to contexts not
seen in the training data, because the decision tree uses questions involving broad phonetic
categor‘ies of neighboring contexts, yet provides detailed models for contexts that are repre-
sentgd in the database. Given the assumption that these clustering decision trees should be
consistent across different speakers, the use of ample speaker-independent databases instead
of limited speaker-dependent databases allows us to model more contexts as well as deeper
trees tf’ genera:e a high-quality TTS voice. These techniques also facilitate the creation of
acoustic 1nveqtoﬁes with a scalable number of units that trade off size with quality. Thus, we
can use questions (about the immediate left/right phonetic contexts, stress, pitch, duration,
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word, etc.) in the decision-tree clustering methods o

f Cha .
combinations to @ manageable number. PIer 4 to reduce all the possible

16.3.1.4. Subphonetic Unit

sprhonetic units, or senones, have also been used with some suc
phoneme can be divided into three states, which are determined b
ition system in forced alignment mode. These states can also be context dependent and can
also be clustered using decision trees like the context-dependent phonemes. The HMM state
has proved to be more effective than the context-dependent phone in speech recognition
also trainable and generalizable, but for synthesis it means having more concatenations and
thus possibly more discontinuities. If multiple instances per subphonetic unit are used,
higher quality can be obtained.

A half phone goes either from the middle of a phone to the boundary between phones
or from the boundary between phones to the middle of the phone. This unit offers more
flexibility than a phone and a diphone and has been shown useful in systems that use multi-
ple instances of the unit [7].

cess [13]. Typically, each
Y running a speech recog-

163.1.5. Syllable

It has been observed that discontinuities across syllables stand out more than discontinuitit?s
within syllables [55], so syllables are natural units. There are more than 1.0,000 syllables in
English, depending on the exact definition of syllable, so even a contfaxt-mdependent sylla-
ble system needs to store at least as many if one instance per syllable is needed for ﬁ.]" ge
eralizability. There will still be spectral discontinuities, though hopefu]ly not too notlcee:‘l:l:;
More than one instance per unit may be needed to accoun; for yar)fmg acousui contex
varying prosodic patterns, particularly if no waveform modification 1s to be used.

163.16. Word and Phrase

. ; i in-
The unit can be as large as a word or even 2 phrase. Whllt? using thec’ier ks):gthl;rt“itf izagi 5
{rease naturalpess significantly, generalizability and trainability are I;)\ce 'o[.e advantage of
Wit 10 have all the instances desired to synthesize an atput utte{?l [hé above units, is that
'Sing a word or longer unit over its decomposition in P honemes, a;lis possible that the pho-
e is no dependence on a phonetically transcribed dictionary. ¢ or not fluent enough, s0
eMme string associated to a word by our dictionary 1s not corrle:-se the system may have 2
4 Using a whole-word model can solve this problem. Of co ter;ces or phrases for gt
“ombination of a1 units: a set of the most frequent words, se;l full' generalizability and
Quality some percenta e' of the time, and SOME smaller units Tor
Wainabijy .
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16.3.2.  Optimal Unit String: The Decoding Process

The goal of the decoding process is to choose the optimal string of units for a given phonetic
string that best matches the desired prosody. Sometimes there is only one possible string, so
that this process is trivial, but in general there are several strings of units that result in the
same phonetic string yet some of them sound better than others. The goal is to come up with
an objective function that approximates this sound quality that allows us to select the best
string. The quality of a unit string is typically dominated by spectral and pitch discontinui-
ties at unit boundaries. Discontinuities can occur because of:

1. Differences in phonetic contexts. A speech unit was obtained from a different
phonetic context than that of the target unit.

2. Incorrect segmentation. Such segmentation errors can cause spectral discon-
tinuities even if they had the same phonetic context.

3. Acoustic variability. Units can have the same phonetic context and be prop-
erly segmented, but variability from one repetition to the next can cause small
discontinuities. A unit spoken in fast speech is generally different from an-
other in slow or normal speech. Different recording conditions (amplitude,
microphone, sound card) can also cause spectral discontinuities.

4. Different prosody. Pitch discontinuity across unit boundaries is also a cause
for degradation.

The severity of such discontinuities generally decreases as the number of units in-
creases. More importantly, the prosody of the concatenation has, in general, no resemblance
with the prosody specified by the TTS front-end unless we have several instances of each
unit, each with a different prosody, or use a prosody modification algorithm (see Section
16.4).

16.3.2.1. Objective Function

Our goal is to come up with a numeric measurement for a concatenation of speech segments
that correlates well with how well they sound. To do that we define unit cost and transition
cost between two units.

Let 6 be a speech segment with phonetic transcription p=p(6). Let
Q= {93,9'2,---,6,\,} be a concatenation of N speech segments whose combined phonetic
transcription is P ={p,, p,,-, py} . P is a string of M phonemes, and since each segment
has at least one phoneme, it holds that M > N .

For example, the phonetic strin gP="hhax!ow” corresponding to the word hello has
M = 4 phonemes and can be decomposed in N = 4 segments ©, ={6,,6,,6,,6,}, where
P(e_l)=/hh/, pB,)=/ax/, p@,)=1/1/, p®,)=/ow!, each segment being a phoneme.
Or it can be decomposed into N = 2 segments O, = {6,,0,}, where p(8,)=/hhax/,
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g)=/1 owl , so that each segment has two pho
sitions for this example (in general there are ZM_?emes: There 2
The distortion or cost function between the se e
«n be expressed as a sum of the corresponding urlgi?sgzt(sm:r?j‘f

follows:

re 8 possible s

' uch decom-
mpositions'), "
nsz)p © and the target T
Tansition costs [27, 46] as

N N
dO.7)=2,d,6;,T)+3,d©,.6,,)
(16.2)

jel j=l

.where d"(B!.,.T) is lhe. unit cost of using speech segment 9, within target T and

is the transition cost in concatenating speech segments 61 and 6 gTh o _d,LG,,G,,,)
g ). f] . e optimal s

wgment sequence of units © can be found as the one that minimizeﬂhe overarl)l cost .

O=argmind
g;mn ©,T) (16.3)

ov ; ‘ . s .
er sequences with all possible numbers of units. Transition and unit costs are described in

Sections 16.3.2.2 through 16.3.2.5.

. Le.t’.s analyze the second term in the sum of Eq.

toln[i?nsi;lon costs were .i(.ientical, the word string with

n . In practice transition costs are different and, thus,
ecessarily the best, though there is clearly a positive correlation.

it When a large number of speech segments are available, finding the segment sequence
it lowest cost is a search problem like those analyzed in Chapter 12. Often a Viterbi algo-

fithm is needed to make this efficient.

(16.2), also shown in Figure 16.6. If
fewest units would have lowest dis-
the string with fewest units is not

Transition cost

-
Selected l:l ] :l
£

units
1Unit cost

g [ 1 [

units t
i jtion costs.
Figure 16.6 T radeoff between unit and trans!
S B
oy, — . ' B s [
. sug"’“’s at one instance per unit is available. If there &r® several instances €
R éxponentially.
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The art in this procedure is in the exact definition of both transition and unit costs, for
which no standard has been defined that works bejs-t to date. _In Sections 16.3.2.2 and
16.3.2.3 we present an approach for which both transmon‘ and unit costs are empirically set
after perceptual experiments. Such a system is easy to build, and study of those costs gives
insight into the perceptual effects. . ‘

Costs obtained using a data-driven criterion are described in Sections 16.3.2.4 and
16.3.2.5. While more complicated than that of empirical costs, this method addresses the
shortcomings of the previous method. Finally, we need to estimate some weights to combine
the different costs for spectrum and prosody, which can be done empirically or by regression

[26].

16.3.2.2. Empirical Transition Cost

If spoken in succession, two speech segments have a zero transition cost. But, when they are
excised from separate utterances, their concatenation can have varying degrees of natural-
ness. The transition cost incorporates two types of continuity measures: coarticulatory and
prosodic.

An approximation to the prosodic continuity measure is to make it proportional to the
absolute difference of the FO or log FO at the boundaries, if the boundary is voiced for both
units. If we use the prosody modification techniques of Section 16.4, this cost could be set to
a small value to reflect the fact that prosody modification is not a perfect process. More so-
phisticated cost functions can be used to account for prosody mismatches [10].

Regarding the coarticulatory effect, it has been empirically observed that a concatena-
tion within a syllable is more perceptible than when the concatenation is at the syllable
boundary. Yi [55] proposed an empirical cost matrix for the concatenation of two speech
segments when that concatenation occurs within a syllable (Table 16.5) or at a syllable
boundary (Table 16.6). Phonemes are grouped by manner of articulation: vowel/semivowels,
fricatives, stops, and nasals. The rows represent the left side of the transition and the col-
umns represent the right side, and NA represents a case that does not occur. These costs re-
flect perceptual ratings by human listeners to unit concatenations between different
phonemes. Values of 10, 2000, 5000, 7500, and 10,000 were used to indicate different de-
grees of goodness from very good to very bad concatenations.

Table 16.5 Cost matrix for intrasyllable concatenations (after Yi [55]). The rows represent the

left side of the transition and the columns represent the right side, and NA represents a case
that does not occur.

vowel | semivowel nasal | obstruent | /h/
vowel 10,000 | 10,000 7500 | 10 NA
semivowel | 10,000 | 7500 7500 | 10 NA
nasal 5000 | 10 NA 10 NA
/n/ 5000 | NA NA | NA NA
obstruent 10 10 10 10,000 NA
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Table 16.6 Cost matrix for intersyllable concatenations (after Yi (55]). The rows represent the
feft side of the transition and the columns represent the right side, and NA represents a case
that does not occur.

vowel | semivowel nasal | obstruent | /h/ silence
vowel NA 7500 5000 | 10 5000 | 10
semivowel | 7500 | 7500 | 2000 | 10 10 10
nasal 2000 10 10 10 10 10
obstruent 10 10 « = L 10 5000 10 10
M/ NA NA NA NA NA NA
silence 10 10 10 10 10 10

163.2.3. Empirical Unit Cost

The unit cost is generally a combination of the coarticulation cost and the prosodic cost.
Prosodic mismatches can be made proportional to the FO difference between the candidate
unit and the target unit or set to a fixed low value if the prosody modification techniques of
Section 16.4 are used. ) )

A way of determining the cost associated with replacing a phonetic context with an-
other was proposed by Yi [55]), who empirically set cost matrices for phone classes by Ilslgn-
ing to concatenations where such contexts were replaced. These ad hoc values falso b;igg
some sense of where the coarticulation problems are. Replacing a vov\'rel or semn;ov:'e au):
another with a context that has a different place of articulation or nasalization rcsn:3 !z nl(!jl e
dible discontinuities. The rows represent the context class of the targglt pr:ger'}}able 69,
columns represent the context class of the proposed unit. Tal?lc.e 16.7, Taf e sts'f(;r ok i
Table 16.10, Table 16.11, and Table 16.12 include an emplrl.CZ,ﬂ S:;;e:to o fhe §is8 OF
malches between the targer’s context and 2 candldat? umt;esct human listeners’ percep-
vowel/semivowels, fricatives, stops, and nasals. Thes.e costs ret o es of 10, 100, 500, and
wal ratings of speech units with an incorrect phonetic Com‘;xé units. These values are cho-
1000 were used to indicate very good, good, bad. and very B ’

K ion 16322
Sen to matc ansition costs of Section
h the values for tr 55)) for left and right context replace-

Table 16.7 Unit coarticulation cost matrix (after Yi

m i 2
ents for vowels and seleOWelS—‘ MF#:’T?@ back | mone
labial | alvidenfpal _{ VeI L5507 1000 | 1000 11000 | 1O
labial 10 1000 1000_| 1000 | 000 | 1000_] 1000 | 1000
e 00 | 1000 | 10U9 |
00 | 1000 | 1000} == 1000
Wiewpal ] 1000 [10___ ':%'"1000 (000 | 1000 | 1803 :ggg 1000
velar 1000 _| 1000 650 10| 1o00_| 1000 1 1008 L e —ro
| m 1000 | 1000 -166-0*‘17065‘;0,,.—130—0—‘1—@‘ 1000 | 1000
A 1000 | 1000 7550—"%%'_,%—’—‘-”*—%90— 1000 | 1000
% 1000 [ 1000 1 oor—-jo00 | 1000 | 1000 L =S
 front 1000 | 1000 -1g00 | 1000_| 1000 L1000 Lo
| back 1000 1008/-3555' 1000 | 1000 | 1000 | 1000 ]
Done 1000 [ 100
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Table 16.8 Unit coarticulation cost matrix (after Yi [55]) for left and right context replace-
ments for fricatives.

retroflex round sonorant | other
retroflex 10 100 100 100
round 100 10 100 100
sonorant 100 100 10 100 |
other 100 100 100 10

Table 16.9 Unit coarticulation cost matrix (after Yi [55]) for left context replacements for
Stops.

front | back | retroflex round | other
front 10 10 10 10 10
back 10 10 10 10 10
retroflex 10 10 10 10 10
round 10 10 10 10 10
other 500 | 500 | 500 500 10

Table 16.10 Unit coarticulation cost matrix (after Yi [55]) for right context replacements for
stops.

front | back rerroflex | round | schwa | other
front 10 100 100 100 500 100
back 100 10 100 100 500 100
retroflex 100 100 10 100 500 100
round 100 100 100 10 500 100
schwa 500 500 500 500 10 500
other 100 100 100 100 500 10

Table 16.11 Unit coarticulation cost matrix (after Yi [55]) for left context replacements for
nasals.

obstruent sonorant
obstruent 10 1000
sonorant 1000 10
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Table 16.12 Unit coarticulation cost matrix (after Y; [55)) for right context replacements fi
cements for

nasals.
voiced nnrviiced sonorant
voiced 10 100 1000 o
unvoiced 100 10 Tl 000
sonorant 1000 1000 10 i

16.3.24. Data-Driven Transition Cost

The empirical transition costs of Section 16.3.2.2 do not necessarily mean that a spectral
discontinuity will take place, only that one is likely, and that if it occurs within a syllable it
will have a larger perceptual effect than if it occurs across syllable boundaries. While that
method can result in a good system, the cost is done independently of whether there is a true
spectral discontinuity or not. Thus, it has been also proposed to use a measurement of the
spectral discontinuity directly. This is often estimated as:

4,6,.6,) =[x,1(6,)~D~x,©O) (164

m at the last frame of 6, and the

the magnit i between the cepstru
gnitude squared of the difference ¢ Frames of speech segment 6,

first frame of @, . The quantity /(§,) denotes the number 0
and x, (k) the cepstrum of segment 6, at frame . P o —

This techniZue can effeitively measure a spectral disc,ommmty oy reglonl:l lft:rs‘t)t:?cl%
varying spectrum, but it can fail when one of the segments is a LT fore’:-ia:] pthi‘s disconti-
asharp spectral transition is expected and desired. A better way og.meazz ingan overlap re-
nuity is shown in Figure 16.7, in which we measure the cepstral _ls£?: of segment 2:
gion:* the last frame of segment 1 and the first frame before the beginning

_ ) (16.5)
4,6,8,) =|x,(1(6) - -x, (1]

sidered, a large number of cc_:pstral dlstanceis
in a slow process. To speed it up an approx

i at the boundaries are vector quan-

computed and stored

When many speech segments are con
Med to be computed, which in turn may resu
Malion can be made where all possible ceps
zed first, so that the distances between all ¢
natable,

tral vectors
debook entries can be pre

\\———‘_’_

This Means extra frames need to be stored.
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! 1 Segment 2
Segment 1 ! ; i |
E L3
v
Overlap
Region

Figure 16.7 Measurement of the spectral discontinuity in the overlap region. The dark gray
area is the speech region that precedes segment 2 and does not form part of segment 2. This

area should match the last part of the segment 1.

A spectral discontinuity across, say, fricatives is perceptually not as important as if it
happens across vowels [48]. For this reason, the cepstral distance described above does not
correlate well with perceptual distances. To solve this problem, it is possible to combine
both methods, for example by weighting the spectral/cepstral distance by different values.

Even if no spectral discontinuity is present, a phase discontinuity may take place. The
pitch periodicity may be lost at the boundary. This can be generally solved by fine adjust-
ment of the boundary using a correlation approach as described in Section 16.4. You need to
keep in mind that such methods are not perfect.

16.3.2.5. Data-Driven Unit Cost

Spectral discontinuities across concatenations are often the result of using a speech segment
with a different phonetic context than the target. One possibility is, then, to consider only
speech segments where the phonetic contexts to the left and right match exactly. For exam-
ple, if we use a phoneme as the basic speech segment, a perfect match would require on the
order of at least 25,000 different segments. In this case, the coarticulation unit cost is zero if
the target and candidate segment have the same phonetic context and infinite otherwise.
When longer segments are desired, this number explodes exponentially. The problem with
this approach is that it severely reduces the number of potential speech segments that can be
used.

Generalized triphones, as described in Section 16.3.1.3, are ased i [24]. In this ap-
proach, if the speech segments have the same generalized triphone contexts as the target
utterance, the unit cost is zero, otherwise the cost is infinite. The technique allows us to use
many more possible speech segments than the case above, yet it eliminates those speech
segments that presumably have context mismatches that in turn lead to unnatural concatena-
tions. When using a large training database, it was found that bringing the number of tri-
phones from 25,000 down to about 2000 did not adversely impact the quality, whereas some
degradation was perceived when using only 500 phoneme-length segments. Thus, this
technique allows us to reduce the size of the speech segment inventory without severely
degrading the voice quality.
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If we set the number of decision-tree clustered context-
jrge, there will be fewer. chonc_es of long speech segments th
system with 2000 generalized triphones, the phonetic context o
egment and‘the cqntext of the target phoneme may be clus
3000_generahzed-tl'1ph0ﬂe system, both contexts may not be ¢
ong segment cannot be used. This would be one example where using a larger number of
seneralized triphones hurts speech naturalnegs because the database of speech segments is
ﬁmiled. This problem could have been aymc.led if we didn’t have to match generalized
mriphones and instead allowed context substitutions, yet penalized them with a corresponding
cost. In the framework of dec.lslon-tree clustered context-dependent phonemes, this cost can
be computed as the increase in entropy when those contexts are merged, using the methods
described in Chapter 9. The larger the increase in entropy, the larger the penalty is when
doing that context subsrin‘nj.o_n b_etween the candidate segment and the target segment. This
approach gives more flexibility in the number of speech segments to be considered. In this
case, there is @ nonzero unit coarticulation cost associated with replacing one phonetic con-
text with another.

Speech segments that have low HMM probability can be discarded, as they are proba-
bly not representative enough for that unit. Moreover, we can eliminate outliers: those units
that have parameters too far away from the mean. Eliminating pitch outliers helps if prosody
modification is to be done, as modifying pitch by more than a factor of 2 typically yields a
decrease of quality, and by keeping units with average pitch, this is less likely to occur.
Eliminating duration or amplitude outliers may signal an incorrect segmentation or a bad
wanscription [13].

dependent phonemes to be
at match. For instance, in a
f the last phoneme of a long
tered together, whereas in a
lustered together, so that the

163.3.  Unit Inventory Design

The minimal procedure to obtain an acoustic inventory for a concatenative speech synl!'le-
sizer consists of simply recording a number of utterances from a single speaker and labeling
them with the corresponding text. N

Since recording is often done in several sessions, it is important to maintain the re-
cording conditions constant to avoid spectral or amplitude discontinuities caused by changes
in recording conditions. The same microphone, room, and sound card should be used
throughout al] sessions [49]. :
_ Notall donor speakers are created equal. The choice of donor speaker can have a sig-
nificant effect in voice quality (up to 0.3 MOS points on a 5-MOS scale) [7, 51, 521

We can obtain higher-quality concatenative synthesis if the: sext. read t?y (e taree
speaker i representative of the text to appear in our application. This way we will be able to
¢ longer units, and few concatenations will be needed.

_ Then the waveforms have to be segmented into phonemes, which is generally done
with as

tion, jnc

Peech recognition system operating in forced-ahgnrf\ent mode. Phonetic transcﬁl?-
luding alternate pronunciations, is generated automatically from te?u by the phone:nc
Malysis module of Chapter 14. A large part of the inventory preparation includes checking
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correspondence between the text and corresponding waveform. Possible transcription errors
may be flagged by phonemes whose durations are too far away from the mean (outliers) [13,
24].
Once we have the segmented and labeled recordings, we can use them as our inven-
tory, or create smaller inventories as subsets that trade off memory size with quality [21,
25]. A database with a large number of utterances is generally required to obtain high-
quality synthesis. It is noteworthy to analyze whether we can reduce the size of our database
while obtaining similar synthesis quality on a given set of utterances. To do this, we can
measure the cost incurred when we use a subset of the units in the database to synthesize our
training database. A greedy algorithm can be used that at each stage eliminates the speech
unit that increases the total distortion the least, repeating the approach until the desired size
is achieved. This is an iterative analysis-by-synthesis algorithm. '

The above procedure can also be used to find the set of units that have lowest cost in
synthesizing a given text. For efficiency, instead of a large training text, we could use repre-
sentative information from such text corpus, like the word trigrams with their corresponding
counts, as an approximation.

In concatenative systems, you need to store a large number of speech segments, which
could be compressed using any of the speech coding techniques described in Chapter 7.
Since many such coders encode a frame of speech based on the previous one, you need to
store this context for every segment you want to encode if you are to use such systems.

16.4. PROSODIC MODIFICATION OF SPEECH

One problem of segment concatenation is that it doesn’t generalize well to contexts not in-
cluded in the training process, partly because prosodic variability is very large. There are
techniques that allow us to modify the prosody of a unit to match the target prosody. These
prosody-modification techniques degrade the quality of the synthetic speech, though the
benefits are often greater than the distortion introduced by using them because of the added
flexibility.

The objective of prosodic modification is to change the amplitude, duration, and pitch
of a speech segment. Amplitude modification can be easily accomplished by direct multipli-
cation, but duration and pitch changes are not so straightforward.

We first present OLA and SOLA, two algorithms to change the duration of a speech
segment. Then we introduce PSOLA, a variant of the above that allows for pitch modifica-
tion as well.

164.1.  Synchronous Overlap and Add (SOLA)

Time-scale modification of speech is very useful, particularly voice compression, as it al-
lows a user to listen to a voice mail or taped lecture in a fraction of the time taken by the
original segment user to listen to information The overlap-and-add (OLA) technique [12]
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o in Figure 16.8 shgws the analysis and synthesis windows used in the time compres-
s!lo Given 2 Hanning window of length 2N and a compression factor of f, the analysis win-
snon-S e spaced fIV. Each analysis window multiplies the analysis signal, and at synthesis
dov ey are overlapped and added together. The synthesis windows are spaced N samples
uﬂ:; The use of windows such as Hanning allows perfect reconstruction when fequals 1.
ap 'In Figure 16.8, some of the signal appearance has been lost; note particularly some ir-
egular pitch periods. To _ssﬂvg this problem, the.: syn'chronous overlap-and-add (SOLA) [45)
allows for a flexible posmoqlpg of the analysis window by searching the location of the
analysis window i around NI in such a way that the overlap region had maximum correla-
jon. The SOLA algorithm produces high-quality time compression. A mathematical formu-
ation of PSOLA, an extension of both OLA and SOLA, is presented in Section 16.4.2.

While typically compression algorithms operate at a uniform rate, they have also been
used in a nonuniform rate to take into account human perception, so that rapid transitions are
compressed only slightly, steady sounds are compressed more, and pauses are compressed
the most. It’s reported in [11], that while uniform time compression can achieve a factor of
25 at most without degradation in intelligibility, nonuniform compression allows up to an

average compression factor of 4.

annlysls signal

o
o

synthesis signal
o

=]
o

pe i .l

‘
-

Figure 16,4 Overlap-and-add (OLA) method for time compression. Hanning windows of

length 20, N = 330, are used to multiply the analysis signal, and resulting windowed sxhgn;l:
¢ added, The analysis windows, spaced 2NV samples, and the analysis sngna'l x[.n] are S ;)are
o the top, The synthesis windo»\;s spaced N samples apart, and the synfhefls. sngnnl y[:what
Hown below. Time compression is uniform with a factor of 2. Pitch periodicity 1S S

lo; :
. Particularly around the fourth window.
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16.4.2.  Pitch Synchronous Overlap and Add (PSOLA)

Both OLA and SOLA do duration modification but cannot do pitch modification. On the
other hand, they operate without knowledge of the signal’s pitch. The most widely used
method to do pitch modification is called pitch synchronous overlap and add (PSOLA) [38,
39], though to do so it requires knowledge of the signal’s pitch. This process is illustrated in

Figure 16.9.
Let’s assume that our input signal x{»] is voiced, so that it can be expressed as a func-
tion of pitch cycles x,[7]

sr)= 3 xln =4[] (16.6)

=0

F
; N ;
=

yln] nln]

X [n]=w,[n)x[n]

A -

Figur'e 16.9 Mapping between five analysis epochs f,[i] and three synthesis epochs ¢[j].
Duratjon has been shortened by 40% and pitch period increased by 60%. Pitch cycle x,[;] is
.the ;_;roduct <_Jf the analysis window w,[n], in dotted line, with the analysis signal x[n],.whiCh
is aligned with analysis epochs t,[i]. In this case, synthesis pitch cycle y,[n] equals x,[n]
and also y,[n]=x,[»] and ¥2[n]=x,[n]. Pitch is constant over time in this c'ase. )
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e L[i] T the epochs of the signal. so that the difference between adj
\;}[,‘e]r—l Ef]"' [i~1] is the pitch period at time ¢,[i] in samples. The pitch cycle
i1=h 4

yersion of the i0put

acent epochs
1s a windowed

xin] = wirlrl (16.7)

hich requires the windows w.[n] to meet the following condition:
W

Sufn-1[i1=1 (16.8)

which can be accomplished with a Hanning window, or a trapezoidal window that spans two
pitch periods. . . . -

Our goal is to synthesize a signal y[n], which has the same spectral characteristics as
Aa] but with a different pitch and/or duration. To do this, we replace the analysis epoch
sequence 1,(i] with the synthesis epochs #[;], and the analysis pitch cycles x[n] with the
synthesis pitch cycles y,[n]:

Anl= Y, y,ln=t[j (16.9)
o

The synthesis epochs are computed so as to meet a specified duration and pitch con-
tour, as shown in Figure 16.9. This is equivalent to an impulse train with variable spacing
driving a time-varying filter x,[#] which is known for ¢ = [i], as shown in Figure 16.10. The
synthesis pitch cycle y,[#] is obtained via a mapping from the closest corresponding analysis
pitch cycle x[n]. In the following sections we detail how to calculate the synthesis epochs
and the synthesis pitch-cycle waveforms.

1 [ e —

Figure 16.10 PSOLA technique as an impulse train driving a time-varying filter.

The term overlap-and-add derives from the fact that we use overlapping windows that
Wwe add together. The pitch-synchronous aspect comes from the fact that the windows are
$haced a pitch period apart and are two pitch periods long. As you can see from Figure 16.9,
g‘ledlsl)r’:[lilcl)isis waveform has a larger pitch period than the analysis waveform and is shorter
For unvoiced speech, a set of epochs that are uniformly spaced works well in practice,
€ a5 the spacing is smaller than 10 ms. If the segment needs to be stretched in such a
h:.at these characteristic waveforms are repeated, an artificial periodicity would appear.
ond'this, the characteristic waveform that was to be repeated is flipped in time [38].
'S approach is remarkably simple, yet it leads to high-quality prosody modification,
3 the voiced/unvoiced decision is correct and the epoch sequence is accurate.

a5 lon
way ¢
Toay

a long
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the PSOLA approach requires keeping the waveform of
g set of epochs, or time marks. As you can see from
done, the original signal is recovered exactly.

To do prosody modification,
the speech segment and its correspondin
Eq. (16.6), if no prosody modification is

16.4.3.  Spectral Behavior of PSOLA

Let’s analyze why this simple technique works and how. To do that let’s consider the case of
a speech signal x[n] that is exactly periodic with period T, and can be created by passing an
impulse train through a filter with impulse response s[n]:

i) = i}t 3 8n=iT1= 3 sln=iT;] (16.10)

=00
If we know the impulse response s[n], then we could change the pitch by changing T,

The problem is how to estimate it from x[x]. Let's assume we want to build an estimate 5[n)
by multiplying x[n] by a window w[n]:

5[n)=w{n)x[n] (16.11)
The Fourier transform of x{»] in Eq. (16.10) is given by
To-1 To-1
X(o) = -225(60)2 o(w-kw,) = = Y S(kaz, )80 — k) (16.12)
TO k=0 To k=0

where w,=2n/T,. The Fourier transform of 5{r] can be obtained using Egs. (16.11) and
(16.12):

= To-1 _
(@) = - W@ X(0) = 3 Stk VA%

k=0 0

(16.13)

If the window w(n] is pitch synchronous, a rectangular window with length T; or a
Hanning winclow with length 27;, for example, then the above estimate is exact at the har-
monics, i.e., S(kw,) =S(.’icou). bacause the window leakage terms are zero at the harmonics.
In-between harmonics, S(w) is an interpolation using W(w), the transfer function of the
window. If we use a rectangular window, the values of S(w) in between S(kw,) and
S((k +w,) are not determined only by those two harmonics, because the leakage from the
other harmonics is not negligible. The use of a Hanning window drastically attenuates this
leak_age, so the estimate of the spectral envelope is better. This is what PSOLA is doing:
getting an estimate of the spectral envelope by using a pitch-synchronous window.

Since it is mathematically impossible to recover S(w) for a periodic signal, it is rea-
sonable to fill in the remaining values by interpolation with the main lobes of the transform
of the window. This approach works particularly well if the harmonics form a dense sam-
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f the spectral envelope, which is the case for male speakers. For female speakers

: s d far apart, the spectral i ;
¢ harmonics may be spacec part, p envelope estimated
h nics could be far different from the real envelope, by interpolat-

ling ©
where {
ing across harmo!

1644, Synthesis Epoch Calculation
In practice, we want to gener?lte a set of syr.nhesis epochs ¢ [ ] given a target pitch period
(. If the desired pitch period F,(r)=P is constant, then the synthesis epochs are given
by 1,1j1=JP - . . . , _

In general the desired pitch peltlod P.(t) is a function of time. Intuitively, we could
compute £,[j+1] in terms of the previous epoch 4[] and the pitch period at that time:

(-4 = P.OLD (16.14)

though this is an approximation, which happens to work well if P,(r) changes slowly over
time.

Now we derive an exact equation, which also can help us understand pitch-scale and
time-scale modifications of the next few sections. Epoch #[/+1] can be computed so that
the distance between adjacent epochs ¢ [j+1]—¢[j] equals the average pitch period in the
region 1,[ j]<t<1,[j+1] between them (see Figure 16.11). This can be done by the follow-
ing expression

W+ = e [P () (16.15)

(A

i +1-2[/]

1,12]-¢[1]

[0} | | () | 1[2] l:xp]

g:eg ure 16'11_The desired pitch period P.(1) is a linearly increasing function of time suc.h that

mmp'tch PeI’IOd. is doubled by the end of the segment. The four synthesis epochs £, Jj] a.:e

b apvuted to s.ansfy Eq. (16.15). In particular, ¢,[2] is computed suclh that ¢£,[2]-¢,(1] equ‘aj.s

Cates l;rage- pitch period in that region. Note that the growing spacing between epochs indi-
atpitch is growing over time.
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It is useful to consider the case of P,(¢) being linear with ¢ in that interval:

Pn=P. (1) +b(r-t01) (16.16)
so that the integral in Eq. (16.15) is given by
Ll —_1 (16.17)
j P(dt =8, P(t[i]) +b—+
) . 2
where we have defined &, as
8, =t [j+1]-1[/] (16.18)
Inserting Egs. (16.17) and (16.18) into Eq. (16.15), we obtain
-
6, =P@[+b— (16.19)
which, using Eq. (16.18), gives a solution for epoch t[j+1] as
t[j+1]-4{j1=6, AGE) (16.20)

(1-5/2)

from the previous epoch ¢ [ j], the target pitch at that epoch P.(¢,[j]), and the slope b. We
see that Eq. (16.14) is a good approximation to Eq. (16.20) if the slope b is small.
Evaluating Eq. (16.16) for #,[ j+1] results in an expression for P, (z,[j+1])

P+ =P (61 +b (e[ +1]-111]) (16.21)

Equations (16.20) and (16.21) can be used iteratively. It is important to note that Eq. (16.20)
requires b <2 in order to obtain meaningful results, which fortunately is always the case in
practice.

When synthesizing excitations for speech synthesis, it is convenient to specify the syn-
thesis pitch period F(7) as a piecewise linear function of time. In this case, Eq. (16.20) is
still valid as long as [ j+1] falls within the same linear segment. Otherwise, the integral in
Ec%. (116].17) has two components, and a second-order equation needs to be solved to obtain
1L7+1].
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1645, Pitch-Scale Modification Epoch Calculation

Sometimes, instead of generating an CPOCljl sequence given by a function P(t), we want to

ity the epoch §equenc§ of' an analy‘s1s‘ signal with epochs +,[i] by changing its pitch
while maintaining 1ts c"!uratlon mlact; This is called pirch-scale modification. To obtain the
comesponding synthesis epochs, let’s assume that the pitch period P,(r) of the analysis
waveform at time ¢ is constant and equals the difference between both epochs

P(n=4[i+1]-,[]] (16.22)

a5 seen in Figure 16.12. .
The pitch period of the synthesis waveform 7.(¢) at the same time ¢ now falls in be-

ween epochs j and j + 1
nigt<t[j+1] (16.23)

with 1,[j] being the time instant of the j epoch of the synthesis waveform. Now, let’s define
arelationship between analysis and synthesis pitch periods

P(ty=BOP(1) (16.24)

where B(f) reflects the pitch-scale modification factor, which, in general, is a function of
time. Following the derivation in Section 16.4.4, we compute the synthesis epoch ¢[j+1]
so that

. & 1 6141
LL+1-1[ ,]_m ) A IOTAQE (16.25)

which reflects the fact that the synthesis pitch period at time ¢ is the average pitch period of
the analysis waveform times the pitch-scale modification factor. Since B(f)P,(f) is piece-
wise linear, we can use the results of Section 16.4.4 to solve for t[j+1]. In general, it
needs to be solved recursively, which results in a second-order equation if B() is a constant
or a tinear function of ¢.

4 r0
L+1)—t [ -
L=t i1 ---

! ! >
Lli-11 &l tli+1] t

Figure 16.12 Pitch period of the analysis waveform as a function of time. It is a piecewise
Constant function of time,
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16.4.6. Time-Scale Modification Epoch Calculation

Time-scale modification of speech involves changing the duration of a speech segment
while maintaining its pitch intact. This can be realized by defining a mapping 7, =D(z,), a
time-warping function, between the original signal and the modified signal. It is useful to
define the duration modification rate a(¢) from which the mapping function can be derived:

D(t) = jo’a(r)dz (16.26)

Let’s now assume that the duration modification rate a(?) = is constant, so that the

mapping D(?) in Eq. (16.26) is linear. If &> 1, we are slowing down the speech, whereas if
a <1, we are speeding it up. Let’s consider time ¢ in between epochs i and i + 1 so that

t <<t [i+1]:

D(t,[0) =0 o
D(t) = D(,[:]) + (2 —1,[i]) '

So that the relationship between analysis and synthesis pitch periods is given by
E(DW)=F,() (16.28)

To solve this it is useful to define a stream of virtual time instants #,[ ] in the analysis
signal related to the synthesis time instants by

LU1=D(, ) =af,[ ] (16.29)
as shown in Figure 16.13.

Now we try to determine f,[j+1] such that t,[j+1]-¢.[/] is equal to the average
pitch period in the original time signal between t[J] and £[j+1]:

’ 1 1+
L+ -t ] ———
A=) = e | AGY (16.30)
which, using Eq. (16.29), results in
. y o s
LL+1=1,[/1= ("% b yar (1631)

L +1)=1,[j]utve
which again results in a second-order equation if P,(r) is piecewise constant or linear in ¢.
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Figure 16.13 Time-scale modification of speech. The five analysis epochs ¢,[i] are shown in
the x-axis and the four synthesis epochs ¢,[i] in the ordinate. Duration is shortened by 25%
while maintaining the same pitch period. The corresponding virtual analysis epochs L[] are
obtained through the mapping D(r), a linear transformation with & =0.75.

164.7.  Pitch-Scale Time-Scale Epoch Calculation

The case of both pitch-scale and time-scale modification results in a combination of Egs.
(16.25) and (16.31);

. - o o l,[j+l]la (1632)
LU+1-¢[/] —mh o B(DP,(1)dt

Which again results in a second-order equation if B(£)P, (1) is piecewise constant or linear in £.

1648.  Waveform Mapping

;n"" Synthesis pitch waveforms can be computed through linear interpolation. Suppose that
(s alJl< ¢, [i+1], then y,[n] is given by
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yj[n] - (1—7’,-)1,-["]4'7,-",“ [n] (16.33)
where 7, is given by
__tl1-tl] (16.34)

I i+ 1)—1,[4)

Using this interpolation for voiced sounds results in smooth speech. For unvoiced
speech, this interpolation results in a decrease of the amount of aspiration. Since smoothness
is not a problem in those cases, the interpolation formula above is not used for unvoiced
frames. A simplification of this linear interpolation consists of rounding ¥, to 0 or 1 and,
thus, selecting the closest frame.

16.4.9. Epoch Detection

In the PSOLA approach, the analysis epochs ¢,[i] were assumed known. In practice this is
not the case and we need to estimate them from the speech signal. There can be errors if the
pitch period is not correctly estimated, which results in a rough, noisy voice quality. But
estimating the epochs is not a trivial task, and this is the most sensitive part of achieving
prosody modification in PSOLA.

Most pitch trackers attempt to determine FO and not the epochs. From the ¢[i] se-
quence it is easy to determine the pitch, since P(¢)=1,[i+1]—1t[i] for ¢ [i]<t<1,[i+]].
But from the pitch P(#) the epoch placement is not uniquely determined, since the time ori-
gin is unspecified.

Common pitch tracking errors, such as pitch doubling, pitch halving, or errors in
voiced/unvoiced decisions, result in rough speech. While manual pitch marking can result in
accurate pitch marks, it is time consuming and error prone as well, so automatic methods
have received a great deal of attention.

A method that attains very high accuracy has been proposed through the use of an
electroglottograph (EGG) [32]. It consists of a pair of electrodes strapped around the neck at
both sides of the larynx that measures the impedance of the larynx. Such a device, also
called laryngograph, delivers a periodic signal when the vocal cords are vibrating and no
signal otherwise. The pitch shape of a laryngograph signal is fairly stationary, which makes
it relatively easy to determine the epochs from it (see Figure 16.14).

High-quality epoch extraction can be achieved by performing peak picking on the de-
rivative of the laryngograph signal. Often, the derivative operation is accomplished by a
first-order preemphasis filter H[z]=1-0z"', with a being close to 1 (0.95 is a good
choice).

In practice, the signal is preprocessed to filter out the low frequencies (lower than 100
Hz) and high frequencies (higher than 4 kHz). This can be done with rectangular window
filters that are quite efficient and easy to implement. There is a significant amount of energy
outside this band that does not contribute to epoch detection, yet it can complicate the proc-
ess, as can be seen in Figure 16.14, so this bandpass filtering is quite important.
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Figure 16.14 Speech signal, laryngograph signal, and its corresponding epochs.

J

The preemphasized signal exhibits peaks that are found by thresholding. The quality
of this epoch detector has been evaluated on recordings from two female and four male
speakers, and the voiced/unvoiced decision errors are lower than 1%. This is definitely ac-
ceptable for our prosody-modification algorithms. The quality of prosody modification with
the epochs computed by this method can vastly exceed the quality achieved when standard
pitch trackers (as described in Chapter 6) are used on the original speech signal [2].

164.10. Problems with PSOLA

The P§0LA approach is very effective in changing the pitch and duration of a speech seg-
ment if the epochs are determined accurately. Even assuming there are no pitch tracking
emors, there can be problems when concatenating different segments:

* Phase mismatches, Even if the pitch period is accurately estimated, mis-
matches in the positioning of the epochs in the analysis signal can cause
glitches in the output, as can be seen in Figure 16.15. The MBROLA [15]
technique, an attempt to overcome phase mismatches, uses the time-domain
PSOLA method for prosody modification, but the pitch cycles have been pre-
Processed so that they have a fixed phase. The advantage is that the spec'tral
Smoothing can be done by directly interpolating the pitch cycles in the time
domain without adding any extra complexity. Since MBROLA sets the phase
[9 a constant, the algorithm is more robust to phase errors in the epoch de‘tec-
Llo.n. Unfortunately, setting the phases constant incurs the added perceived
Noise described before.
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Figure 16.15 Phase mismatches in unit concatenation. Waveforms are identical, but windows
are not centered on the same relative positions within periods.

® Pitch mismatches. These occur even if there are no pitch or phase errors dur-

ing the analysis phase. As shown in Section 16.4.3, if two speech segments
have the same spectral envelope but different pitch, the estimated spectral en-
velopes are not the same, and, thus, a discontinuity occurs (see Figure 16.16).
In addition, pitch and timbre are not independent. Even when producing the
same sound in the same phonetic context, a vastly different pitch will likely
result in a different spectral envelope. This effect is particularly accentuated
in the case of opera singers, who move their formants around somewhat so
that the harmonics fall near the formant values and thus produce higher out-
put.

Amplitude mismatch. A mismatch in amplitude across different units can be
corrected with an appropriate amplification, but it is not straightforward to
compute such a factor. More importantly, the timbre of the sound will likely
change with different levels of loudness.

Buzzy voiced fricatives. The PSOLA approach doesn’t handle well voiced
fncauves that are stretched considerably because of added buzziness (repeat-
ing frames induces periodicity at the high frequency that wasn’t present in the

original signal) or attenuation of the aspirated component (if frames are inter-
polated).
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Figure 16.16 Pitch mismatches in unit concatenation. Two synthetic vowels were generated
with a pitch of 138 Hz (top) and 197 Hz (middle) and exactly the same transfer function. There
is no pitch tracking error, and windows are positioned coherently (no phase mismatch). The
pitch of the second wave is changed through PSOLA to match the pitch of the first wave.
There is a discontinuity in the resulting waveform and its spectrum (see Section 16.4.3), which
is an artifact of the way the PSOLA approach estimates the spectral envelope.

165. SOURCE-FILTER MODELS FOR PROSODY MODIFICATION

I:xel l;;’ﬁizt agrobl?g in concatenativef synt‘hesis occurs because of spectral discontinuities at
bt do ny e":: e.methgds described in SCC'IIOH 16.? significantly reduce this problem
il domat’e it. While PSOLA can dq hrgh-.quz_ll'ny prosody modification on speech
ot bC'usefu[etS: t address t.hese spect.ra] discontinuities occurring at unit boundaries. It
s, [ i Coll:lse up W.lth a technique .that allows us to smooth these spectral discon-
Ulowing sections l\lv,e . OL{\ introduces buzzmes's for overstretched voiced fricatives. In the
5 probe escribe a number of techniques that have been proposed to cope with
™S and that are based on source-filter models.
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The use of source-filter models allow us to modify the source and filter separately and
thus maintain more control over the resulting synthesized signal. In Section 16.5.1 we study
an extension of PSOLA that allows filter modification as well for smoothing purposes. Sec-
tion 16.5.2 describes mixed excitation models that also allow for improved voiced fricatives.
Finally, Section 16.5.3 studies a number of voice effects that can be achieved with a source-

filter model.
16.5.1. Prosody Modification of the LPC Residual

A method known as LP-PSOLA that has been proposed to allow smoothing in the spectral
domain is to do PSOLA on LPC residual. This approach, thus, implicitly uses the LPC spec-
trum as the spectral envelope instead of the spectral envelope interpolated from the harmon-
ics (see Section 16.4.3) when doing FO modification. If the LPC spectrum is a better fit to
the spectral envelope, this approach should reduce the spectral discontinuities due to differ-
ent pitch values at the unit boundaries. LP-PSOLA reduces the bandwidth widening. In prac-
tice, however, this hasn’t proven to offer a significant improvement in quality, possibly
because the spectral discontinuities due to coarticulation dominate the overall quality.

The main advantage of this approach is that it allows us to smooth the LPC parameters
around a unit boundary and thus obtain smoother speech. Since smoothing the LPC parame-
ters directly may lead to unstable frames, other equivalent representations, such as line spec-
tral frequencies, reflection coefficients, log-area ratios, or autocorrelation coefficients, are
used instead. The use of a long window for smoothing may blur sharp spectral changes that
occur in natural speech. In practice, a window of 20~50 ms centered around the boundary
has been proven useful.

While time-domain PSOLA has low computational complexity, its use in a concatena-
tive speech synthesizer generally requires a large acoustic inventory. In some applications
this is unacceptable, and it needs to be compressed using any of the coding techniques de-
scribed in Chapter 7. You need to keep in mind that to use such encoders you need to store
the coder’s memory so that the first frame of the unit can be accurately encoded. The com-
bined decompression and prosody modification is not as computationally efficient as time-
domain PSOLA alone, so that the LP-PSOLA approach may offer an effective tradeoff,
given that many speech coders encode the LPC parameters anyway.

16.5.2. Mixed Excitation Models

The block diagram of PSOLA shown in Figure 16.10 for voiced sounds also works for un-
voiced sounds by choosing arbitrary epochs. The time-varying filter of Figure 16.10 can be
kept in its time-domain form or in the frequency domain X,[k] by taking the FFT of x,[n].

It has been empirically shown that for unvoiced frames, the phase of X,[k] is unimpor-
tant as long as it is random. Thus, we can pass white noise through a filter with magnitude
r.espc?nse |X,[k] and obtain perceptually indistinguishable results. This reduced representa-
tion is shown in Figure 16.17. Moreover, it has been shown that the magnitude spectrum

Amazon/VB Assets
Exhibit 1012
Page 858



it Filter Models for Prosody Modification \
Source”

833

eed to be encoded accurately, because it doesn’t affect the .
(;;ZSOI;T; ;o;eptial problem with this model occurs when voiced frames Zﬁ: E:isc::rzcltge:l:::
sfied as U“"?‘C_ed‘ : .
Maintaining the ph.ase of X,[4] is perceptually important for voiced sounds. If it is set
00, WO audible distortions appear: the reconstructed speech exhibits a noisy quality, and
ed fricatives sound buzzy.

voi The perceiVCd noise may come from the fact that a listener who hears a formant, be-

cause of its amplitude spectrum, also expects the 180° ph'ase shift associated with a COm'plex

pole. In fact, it is not the gbsolute phz':se, but the fact. that if the formant frequency/bandwidih

changes with time, there.ns a phase difference over t.lme. If .such a phase is not present, scene

analysis done in the auditory s‘ystem'may match thl.S to noise. This. effect can be greatly at-

ienvated if the phase of the residual in L?-PSOLA is set to 0, possibly because the LPC co-
fficients carry most of the needed phase information.

The buzziness in voiced fricatives is the result of setting phase coherence not only at
jow frequencies but also at high frequencies, where the aspiration component dominates.
This is the result of treating the signal as voiced, when it has both a voiced and an unvoiced
component. In fact, most voiced sounds contain some aperiodic component, particularly at
high frequencies. The amount of aspiration present in a sound is called breathiness. Female
speech tends to be more breathy than male speech [29]. Mixed-excitation models, such as
those in Figure 16.18, are then proposed to more accurately represent speech.

Such a model is very similar to the waveform-interpolation coding approach of Chap-
ter 7, and, hence, we can leverage much of what was described there regarding the estima-
tion of x[n] and x/[n]. This approach allows us to integrate compression with prosody
modification.

The harmonic-plus-noise [50] model decomposes the speech signal s(f) as a sum of a
random component s,(f) and a harmonic component s (1)

50 =5, +5,(0)

(16.35)
where 5, (1) uses the sinusoidal model described in Chapter 7:
K
$,(0)= 3. A,()cos(kB(1) +9, (1) (16.36)
k=)

— ] s - A
Figure 16,17 §

Vary; peech synthesis model with white noise or an impulse train driving a time-
Tying filter,
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Figure 16.18 Mixed excitation model for speech synthesis.

where 4, (f) and ¢, (f) are the amplitude and phase at time ¢ of the kth harmonic, and 6(r)
is given by

0= _a,()d! (16.37)

16.5.3. Voice Effects

One advantage of using a spectral representation like those described in this section is that
several voice effects can be achieved relatively easily, such as whisper, voice conversion,
and echo/reverberation.

A whispering effect can be achieved by replacing the voiced component by random
noise. Since the power spectrum of the voiced signal is a combination of the vocal tract and
the glottal pulse, we would need to remove the spectral roll-off of the glottal pulse. This
means that the power spectrum of the noise has to be high-pass in nature. Using white noise
results in unnatural speech.

Voice conversion can be accomplished by altering the power spectrum [6, 28]. A
warping transformation of the frequency scale can be achieved by shifting the LSF or the
LPC roots, if using an LPC approach, or a warping curve if using an FFT representation.

Adding a controlled number of delayed and attenuated echoes can enhance an other-
wise dry signal. If the delay is longer, it can simulate the room acoustics of a large hall.

16.6. EVALUATION OF TTS SYSTEMS

How do we determine whether one TTS system is better than another? Being able to evalu-
ate TTS systems allows a customer to select the best system for his or her application. TTS
evaluation is also important for developers of such systems to set some numerical goals in
their design. As in any evaluation, we need to define a metric, which generally is dependent
on the particular application for which the customer wants the TTS system. Such a metric
consists of one or several variables of a system that are measured. Gibbon et al. [19] present
a good summary of techniques used in evaluation of TTS systems.
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Here we present a taxonomy of a TTS evaluation:

o Glass-box vs. black-box evaluation. There are two types of evaluation of TTS

systems according to whether we evaluate the whole system or just one of its

components: black-box and glass-box. A black-box evaluation treats the TTS

system as a black box and evaluates the system in th; context of a real-world
application. Thus, a system may dp very well on a flight reservation applica-
tion but poorly on an e-mail reading application. In a glass-box evaluation,
we attempt to obtain diagnostics by evaluating the different components that
make up a TTS system.

Laboratory vs. field. We can also conduct the study in a laboratory or in the
field. While the former is generally easier to do, the latter is generally more

accurate.

o Symbolic vs. acoustic level. In general, TTS evaluation is normally done by
analyzing the output waveform, the so-called acoustic level. Glass-box
evaluation at the symbolic level is useful for the text analysis and phonetic
module, for example.

e Human vs. automated. There are two fundamentally distinct ways of evaluat-
ing speech synthesizers, according to how a given attribute of the system is
estimated. One is to use human subjects; the other to automate the evaluation
process. Both types have some issues in common and a number of dimen-
sions of systematic variation. But the fundamental distinction is one of cost.
In system development, and particularly in research on high-quality systems,
it can be prohibitively expensive to run continuously a collection of human
assessments of every algorithmic change or idea. Though human-subject
checkpoints are needed throughout the development process, human testing is
of greatest importance for the integrated, functionally complete system in the
target field setting. At all earlier stages of development, automated testing
should be substituted for human-subject testing wherever possible. The hope
is that someday TTS research can be conducted as ASR research is today: al-
gorithms are checked for accuracy or performance improvements automati-
f:ally in the lab, while human subjects are mainly used when the final
Integrated system is deployed for field testing. This allows for rapid progress
In the basic algorithms contributing to accuracy on any given dimension.

Judgment vs. functional testing. Judgment tests are those that measure the
TTS system in the context of the application where it is used, such as what
Percentage of the time users hang up an IVR system. System A may be more
appropriate than system B for a banking application where most of the speech
consists of numerical values, and system B may be better than system A for
feading e-mail over the phone. Nonetheless, it is useful to use functional tests
that meagure task-independent variables of a TTS system, since such tests al-
low an easier comparison among different systems, albeit a nonoptimal one.
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Since a human listener is the consumer of a TTS system, tests have been de-
signed to determine the following characteristics of synthesize‘d speech: intel-
ligibility, overall quality, naturalness, suitability for a given task, and
pleasantness. In addition, testing has been used for ranking and compfiring a
number of competing speech synthesizers, and for comparing synthetic with
natural speech.

e Global vs. analytic assessment. The tests can measure such global aspects as
overall quality, naturainess, and acceptability. Analytic tests can measure the
rate, the clarity of vowels and consonants, the appropriateness of stresses and
accents, pleasantness of voice quality, and tempo. Functional tests have been
designed to test the intelligibility of individual sounds (phoneme monitoring),
of combinations of sounds (syllable monitoring), and of whole words (word
monitoring) in isolation as well as in various types of context.

It should be noted that all the above tests focus on segments, words, and sentences.
This is a historical artifact, and as the field evolves, we should see an emphasis on testing of
higher-order units. The diagnostic categories mentioned above can be used as a basis for
developing tests of systems that take other structure into account. Such systems might in-
clude document-to-speech, concept-to-speech, and simulated conversation or dialog. A good
system will reflect document and paragraph structure in the pausing and rhythm. Concept-
to-speech systems claim to bring fuller knowledge of the intended use of information to bear
in message generation and synthesis. Simulated dialog systems, or human-computer dialog
systems, have to mimic a more spontaneous style, which is a subtle quality to evaluate. The
tricky issue with higher-order units is the difficulty of simple choice or transcription-
oriented measures. To develop tests of higher-order synthesizers, the word and sentence
metrics can be applied to components and the overall system until reasonable intelligibility
can be verified. Then tests of the special issues raised by higher-order systems can be con-
ducted. Appropriate measures might be MOS overall ratings, preference between systems,
summarization/gist transcription with subjective scoring, and task-based measures such as
following directions. With task-based testing of higher-order units, both the correctness of
direction-following and the time to completion, an indirect measure of intelligibility, pleas-
antness, and fatigue, can be recorded.

Furthermore, speech perception is not simply auditory. As discussed in Chapter 2, the
McGurk effect [36] shows that perception of a speech sound is heavily influenced by visual
cues. Synthetic speech is thus perceived with higher quality when a talking head is added as
a visual cue [9, 18].

Glass-box evaluation of the text analysis and phonetic analysis modules, requiring
evaluation at the symbolic level, is done in Chapter 14, A glass-box evaluation of the pros-
ody module is presented in Chapter 15. In this section we include glass-box evaluation of
the synthesis module, as well as a black-box evaluation of the whole system.
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16.6.1. Intelligibility Tests
cal measurement of a TTS system is whether or not human listeners can understand

1 read by the system. Tests that measure this are called intelligibility tests. In this sec-

tion We describe. the Diagnostic Rhyme Tes.t, the Modified Rhyme Test, the Phonetically

Balanced word list test, the Haskins Syntactic Sentepce T.est, and the Semantically Unpre-

dictable Sentence Test. The ﬁrsF three were described in a procedure approved by the

rican National Standards Institate [5].

Among the best known and most mature of these tests is the Diagnostic Rhyme Test

(DRT) proposed by Voiers [54], which provides for diagnostic and comparative evaluation

of the intelligibility of single initial consonants. The test runs twice through the list of 96

thyming pairs shown in Table 16.13. The test consists of identification choice between two

alemative English (or target-language) words, differing by a single phonetic featre in the

initial consonant. For English the test includes contrasts among easily confusable paired

consonant sounds such as vealffeel, meat/beat, fence/pence, cheep/keep, weed/reed, and

hitfit. In the test, both veal and feel are presented with the response altematives veal and
feel. Six contrasts are represented, namely voicing, nasality, sustention, sibilation, graveness,
and compactness. Each contrast is included 32 times in the test, combined with 8 different
vowels. The percentage of right answers is used as an indicator of speech synthesizer intelli-
gibility. The tests use a minimum of five talkers and five listeners; larger subject groups
reduce the margin of error. Even for high-quality speech coders, 100% correct responses are
rarely achieved, so synthesizer results should be interpreted generously.

A crti
the tex

Amel

Table 16.13 The 192 stimulus words of the Diagnostic Rhyme Test (DRT).

Voicing Nasality Sustenation Sibilation Graveness Compactness
veal feel |meat beat |vee bee zee thee (|weed reed yield wield
bean peen |need deed [sheet  cheat cheep keep |peak teak key tea
gin__chin Imiw bt |vill  bill  [jilt gilt |bid  did hit fit
dim__tnt  |nip  dip |thick tick |sing thing |fin  thin  |gill _ dill
00 _sue  |moot boot |foo pooh ljuice goose |moon noon coop  poop
M_ news dues |shoes choose |chew coo [pool  tool you rue
W foal |moan bome |those doze |joe go  |bowl dole  |ghost boast
803t coat jnote dote  [though dough |sole thole |[fore thor show  so
mend bend fthen  den jest  guest [met net keg peg
neck deck |[fence pence [chair care ([pent tent yen wren
mad  bad (than dan jab gab |bank dank gat bat
nab  dab |shad chad [sank thank |fad thad shag  sag
moss _boss |thong tong [jaws gauze [fought thought [yawl wall
lgnaw daw  [shaw chaw |saw thaw |bong dong  |caught thought
bong —————f20m__bomb_|von bon |jor got [wad rod hop _ fop
—-Pond_[knock dock |[vox  box  |chop cop |pot tot got dot
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A variant of this is the Modified Rhyme Test (MRT) propqsed by Housg [22], which
also uses a 300-entry word list for subjective in[clligibili.ty tesm.lg._ The moq:ﬁed Rhyme
Test (shown in Table 16.14) uses 50 six-word lists of rhyming or 51m11ar-.sound'mg monosyl-
labic English words, e.g., went, sent, bent, dent, tent, rent. Each. word is _busxcally Conso-
nant-Vowel-Consonant (with a few consonant clusters), and the six wo_rds 11.1 each list differ
only in the initial or final consonant sound(s). Listeners are asked to identify which of the
words was spoken by the synthesizer (closed response), Or in some cases (o enter apy word
they thought they heard (open response). A carrier sentence, such as “Woulq you write <test
word> now,” is usually used for greater paturalness in stimulus presentation. Listener re-
sponses can be scored as the number of words heard correctly; or the frequency of confu-
sions of particular consonant sounds. This can be viewed as intelligibility of the synthesizer.

Though this is a nice isolation of one property, and as such is particularly appropriate
for diagnostic use, it is not intended to substitute for fuller evaluation under more realistic
listening conditions involving whole sentences. Segmental intelligibility is somewhat over-
estimated in these tests, because all the alternatives are real words and the subjects can ad-
just their perception to match the closest word. A typical human voice gives an MRT score
of about 99%, with that of TTS systems generally ranging from 70% to 95%.

Table 16.14 The 300 stimulus words of the Modified Rhyme Test (MRT).

went  sent bent dent tent rent same name game tame came fame
hold cold told fold sold  gold |peel reel feel eel keel heel
pat  pad pan  path pack  pass hark dark mark  bark  park lark
lane lay late lake  lace lame  |[hcave hear  heat heal heap  heath
kit bit fit hit wit sit cup cut cud cuff cuss  cud
must _ bust gust rust dust  just thaw  law raw paw jaw saw
teak team  teal teach  tear tease _ |pen hen men then den ten
din___ dill dim dig dip did puff  puck  pub pus pup pun
hed led fed red wed shed  |bean  beach beat beak  bead  beam
pin___ sin tin fin din win heat neat feat seat meat  beat
dug  dung  duck dud dub dun dip sip hip tip lip rip
sum __ sun sung  sup sub sud kill kin kit kick  king  kid
seep _seen seethe seek  seem seed |hang sang  bang rang fang  gan
not  tot got pot hot lot took cook look hook  shook book
vest  test rest best wesl  nest mass _ math  map mat man mad
pig  pill pin pip pit pick  jray raze rate rave  rake _ race
back bath bad bass bat ban save same  sale sane sake safe
way may  say pay day gay fill kill will il till bill
pig _ big dig wig rig fig sill sick sip sing sit sin
ale pace page pane  pay pave  {bale gale sale tale pale  male
cane case cape _cake came cave |wick sick kick lick pick tick
shc.)p mop cop top hop pop peace  peas peak peach peat peal
coil ol soil toil boil _ foil bun bus but bug  buck  buff
tan  tang  tap tack tam tab sag sat sass sack  sad sa
fit_fib fizz  fill fig fin fun sun bun  pun  run nuK:]
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The set of twenty phonetically balanced (PB) word lists
war 11 and has been used very widely sincp then in subjective i
16,15 we include tbe ﬁrst' four PB -wo'rd lists [20]. The words
1ew, random order each time the list is EIS.Ed’ each spoken in
pB jntelligibility test requ1r§§ more training of listeners and
fests and is particularly sensitive 10 SNR: a relatively small ch
e intelligibility score.

Tests using the Haskins Syntactic Sentences t40] go somewhat farther toward more re-
alistic and holistic stimuli. This test set consists of 100 semantically unpredictable sentences
of the form The <Adjective> <Nounl> <Verb> the <Noun2>, such as “The old farm cost
the blood,” using high-frequency words. Compared with the rhyme tests, contextual predict-
ability based on meaning is largely lacking, the longer speech streams are more realistic, and
more coarticulation is present. Intelligibility is indicated by percentage of words correct.

Another test minimizing predictability is Semantically Unpredictable Sentences [23],
with test sets for Dutch, English, French, German, Italian, and Swedish. A short template of
syntactic categories provides a frame, into which words are randomly slotted from the lexi-
con. For example, the template <Subject> <Verb> <Adverbial> might appear as “The chair
ate through the green honesty.” Fifty sentences (10 per syntactic template) are considered
adequate to test a synthesizer. Open transcription is requested, and sentences correct is used
10 score a synthesizer’s intelligibility. Other such tests exist, and some include systematic
variation of prosody on particular words or phrases as well.

The Harvard Psychoacoustic Sentences [16] is a set of 100 meaningful, syntactically
varied, phonetically balanced sentences, such as “Add salt before you fry the egg,” requiring
an open response identification, instead of a multiple-choice test.

was developed during World
.ntelligibility testing. In Tabje
in each list are presented in a
he same carrier sentence. The
talkers than other subjective
ange causes a large change in

Table 16.15 Phonetically balanced word lists.

List 1 are, bad, bar, bask, box, cane, cleanse, clove, crash, creed, death, deed, dike, dish,
end, feast, fern, folk, ford, fraud, fuss, grove, heap, hid, hive, hunt, is, mange, no,
nook, not, pan, pants, pest, pile, plush, rag, rat, ride, rise, rub, slip, smile, strife,
such, then, there, toe, use, wheat

List 2 awe, bait, bean, blush, bought, bounce, bud, charge, cloud, corpse, dab, earl, f:lse.
fate, five, frog, gill, gloss, hire, hit, hock, job, log, moose, mute, nab, need, niece,
nut, our, perk, pick, pit, quart. rap, rib. scythe, shoe, sludge, snuff, start, suck, tan,
tang, them, trash, vamp, vast, ways. Wish

List3 ache, air, bald, barb, bead, cape, cast, check, class, crave, crime, deck, dig, dill,
drop, fame, far, fig, flush, gnaw, hurl.jam,.law, leave, lush, muck, necl‘<, lr:est,_ loak,
path, please, pulse, rate, rouse, shout, sit, size, sob, sped, stag, take, thrash, toil,
trip, turf, vow, wedge, wharf, who, why

List4 bath, beast, bee, blonde, budge. bus, bush, cloak, course, coutt, dodge, dupe, earn,
eel, fin, ﬂo‘a[, ﬁ"own, hatch, heed, hiss, hot, how, kite, merge, lush, neat, new, oils,
or, peck, pert, pinch, pod, race, rack, rave, raw, rut, sage, scab, shed, shin, sketch,
- slap, sour, starve, strap, test, tick, touch
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16.6.2. Overall Quality Tests

While a TTS system has to be intelligible, this does not guarantee user acceptance, because
its quality may be far from that of a human speaker. In this section we describe the Mean
Opinion Score and the Absolute Category Ratings.

Human-subject judgment testing for TTS can adapt methods from speech-coding
evaluation (see Chapter 7). With speech coders, Mean Opinion Score (MOS) is administered
by asking 10 to 30 listeners to rate several sentences of coded speech on a scale of 1 to 5 (1
= Bad, 2 = Poor, 3 = Fair, 4 = Good, 5 = Excellent). The scores are averaged, resulting in an
overall MOS rating for the coder. This kind of methodology can be applied to speech syn-
thesizers as well. Of course, as with any human subject test, it is essential to carefully design
the listening situation and carefully select the subject population, controlling for education,
experience, physiological disorders, dialect, etc. As with any statistically interpreted test, the
standard analyses of score distributions, standard deviation, and confidence intervals must
be performed. The range of quality in coder evaluations by MOS are shown in Table 16.16.

Since we are making the analogy to coders, certain ironies can be noted. Note the low-
est-range descriptor for coder evaluation: synthetic. In using MOS for synthests testing, out-
put is being evaluated by implicit reference to real human speech, and the upper range in the
coder MOS interpretations above (3.5-4.5) is probably not applicable to the output of most
TTS systems. Even a good TTS system might fare poorly on such a coder MOS evaluation.
Therefore, the MOS interpretive scale, when applied to synthesis, cannot be absolute as the
above coding-based interpretive table would imply. Furthermore, subjects participating in
MOS-like tests of synthesizers should be made aware of the special nature of the speech
(synthetic) and adjust their expectations accordingly. Finally, no matter how carefully the
test is designed and administered, it is difficult to correlate, compare, and scale such meas-
ures. Nevertheless, MOS tests are perhaps suited to relative ranking of various synthesizers.
The 1-to-5 scale is categorical, but similar judgment tests can be run in magnitude mode,
with the strength of the quality judgment being indicated along a continuous scale, such as a
moving slider bar.

Table 16.16 Mean opinion score (MOS) ratings and typical interpretations.

MOS Scores Quality Comments

4.04.5 Toll/Network Near-transparent, “in-person” quality

e Natural, highly intelligible, adequate for telecom-
3.54.0 Communications munications, changes and degradation of quality
very noticeable

2535 Synthetic Usua]ly inlg!ligiple. can be unnatural, loss of speaker
recognizability, inadequate levels of naturalness
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Table 16.17 Listening Quality Scale,
Quality of the Speech Score
Excellent 5
Good |4
Fair 3
Poor 2
Bad !

The Intemational Telecorpmunicatior} Uniqn (ITU) has attempted to specify some
sandards for assessing syr'uheuc spc?ech, including spliced digitized words and phrases,
typically with the expectation of delivery over r.he.phone.'The Absolute Category Rating
(ACR) system recommendeq by ITU P.800 offers meructxor}s to be given to subjects for
making category judgments in MOS-style tests of the type discussed here. The first is the
Listening Quality Scale, shown in Table 16.17, and the second the Listening Effort Scale
shown in Table 16.18.

It is sometimes possible to get subjects to pay particular attention to various particular
features of the utterance, which may be called analytic as opposed to global listening. The
desired features generally have to be described somehow, and these descriptions can be a bit
vague. Thus, standard measures of reliability and validity, as well as result normalization,
must be applied. Typical descriptors for important factors in analytic listening might be:
smoothness, naturalness, pleasantness, clarity, appropriateness, etc., each tied to a particu-
lar underlying target quality identified by the system designers. For example, smoothness
might be a descriptor used when new algorithms for segment concatenation and blending are
being evaluated in a concatenative system. Naturalness might be the quality descriptor when
a formant-based system has been made more natural by incorporation of a richer glottal
source function. Some elements of the speech can be more directly identified to the subject
in familiar terms. For example, pleasantness might be a way of targeting the pitch contours
for attention, or the subject could be specifically asked to rank the pitch contours per se, in
terms of naturalness, pleasantness, etc. Appropriateness might be a way of getting at judg-
ments of accentuation: e.g., a stimulus that was accented as “... birthday PARTY” might be
Judged less appropriate, in a neutral semantic context, than one that was perceived as “...
BIRIHDAYParty." But no matter how the attributes are described, in human-subject MOS-
Sle testing there cannot be a clear and consistent separation of effects.

Table 16.18 Listening Effort Scale.

e

Effort Required to Understand the Meanings of Sentences Score
Complete relaxation possible; no effort required 4
Altention necessary; no appreciable effort required
Moderate effort required

Considerable effort required

No meaning understood with any feasible effort

— i |wihn
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16.6.3. Preference Tests

Normalized MOS scores for different TTS systems can be qbtained without any direct pref-
erence judgments. If direct comparisons are desired, especially for systems that are infor-
mally judged to be fairly close in quality, another ITU recommendatlon, the Compar_ison
Category Rating (CCR) method, may be used. In this method, listeners are prese.nted with a
pair of speech samples on each trial, The order of the system A system B samples is chosen at
random for each trial. On half of the trials, the system A sample is followed by the system B
sample. On the remaining trials, the order is reversed. Listeners use the instructions in Table
16.19 to judge the quality of the second sample relative to that of the first. Sometimes the
granularity can be reduced as much as simply “prefer A/prefer B.”

Assuming (A,B) is the reference presentation order, scores for the (B,A) presentations
may be normalized by reversing their signs (e.g., -1 in B,A order becomes 1, etc.). Subse-
quently, standard statistical summarizations may be performed, like the one described in

Chapter 3.

Table 16.19 Preference ratings between two systems. The quality of the second utterance is
compared to the quality of the first by means of 7 categories. Sometimes only better, same, or

worse are used.

3 Much Better

2 Better

1 Slightly Better
0 About the Same
-1 Slightly Worse
-2 Worse

-3 Much Worse

16.6.4. Functional Tests

Functional testing places the human subject in the position of carrying out some task related
to, or triggered by, the speech. This can simulate a full field deployment, with a usercentric
task, or can be more of a laboratory situation, with a testcentric task. In the laboratory situa-
tion, various kinds of tasks have been proposed. In analytic mode, functional testing can
enforce isolation of the features to be attended to in the structure of the test stimuli them-
selves. This can lead to a more precise form of result than the MOS judgment approach.
There have been a wide variety of proposals and experiments of this type.

One of the well-known facts in TTS evaluation is that the quality of a system is domi-
nated by the quality of its worst component. While it may be argued that it is impossible to
separate the effects of the front-end analysis and back-end synthesis, it is convenient to do
$0 to gain a better understanding of each component. An attempt to study the quality of the
spe.ech syn_th'esis module has been done via the use of natural instead of synthetic prosody.
This way, it is presumed that the prosody module is doing the best possible job, and that any
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oblem is then due to a deﬁcietnt speech synthesis.‘ The natural

(zined with 2 pitch tracker (or using a laryngograph signal), and th
piained either through fnanua] segmentation or through the use of g speech recognition
system used in.fc?rced-ahgn.ment mode. Plumpe and Meredith [44] conducted a preference
(est between original recordings anc:i waveforms created when one of the inodules of a con-
catenative TTS system u.sed synthet'lcal}y getnerated values instead of the natural values. The
results indicated th_at using synthetic pitch instead of natural pitch was the cause of largest
degradation accordmg to llstener_s, and, thus, that pitch generation was the largest bottleneck
in the system. The pitch-generation module was followed by the spectral discontinuities at
the concatenation points, with duration being the least damaging.

Some functional tests are much more creative than simple transcription, however.
They could, in theory, border on related areas, such as memory testing, involving summariz-
ing passages, Of following synthesized directions, such as a route on a map. The ultimate test
of synthesis, in conjunction with all other language interface components, is said to be the
Turing test [53]. In this amusing scenario, a human being is placed into conversation with a
computational agent, represented vocally for our purposes, perhaps over the telephone. As
Turing put it: “It is proposed that a machine may be deemed intelligent, if it can act in such a
manner that a human cannot distinguish the machine from another human merely by asking
questions via a mechanical link.” Turing predicted that in the future “an average interrogator
will not bave more than a 70 percent chance of making the right identification, human or
computer on the other end, after five minutes of questioning” in this game. A little reflection
might raise objections to this procedure as a check on speech output quality per se, since
some highly intelligent people have speech disabilities, but the basic idea should be clear,
and it remains a Holy Grail for the artificial intelligence field generally. Of course, no auto-
mated or laboratory test can substitute for a real-world trial with paying customers.

pitch contour can be ob-
e natural durations can be

16.6.5. Automated Tests

The tests described above always involved the use of human subjects and are the best tests
that can be used to evaluate a TTS system. Unfortunately, they are time consuming and ex-
pensive to conduct. This limits their application to an infrequent use, which can hardly have
any diagnostic value. Automated objective tests usually involve establishing a test corpus of
correctly tagged examples of the tested phenomena, which can be automatically checked.
This style of testing is particularly appropriate when working with isolated components of
the TTS system, for diagnosis or regression testing (glass-box testing). It is not particularly
Productive to discuss such testing in the abstract, as the test features must closely track each
System's design and implementation. Nevertheless, a few typical areas for testing can be
Moted. In general, tests are simultaneously testing the linguistic model and content as well as
¢ Software implementation of a system, so whenever a discrepancy arises, both possible
Sources of error must be considered. )
et Several automated tests for text analysis and letter-to-sm:md conversion are presented
apler 14. A number of automated tests for prosody are discussed in Chapter 15. Here
e touch on automated tests for the synthesis module.
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The ITU has created the P.861 proposal for. estimating perceptual- scores using auto-
mated signal-based measurements. The P.861 specifies a particular technique knowp as Per.
ceptual Speech Quality Measurement (PSQM)._In this method, for each analysis frame,
various quantified measures based on the time signal, the power spectrum, the Bark power
spectrum, the excitation spectrum, the compressed loudness spectrum, etc. of both the refer-
ence and the test signal can be computed. In some cases the PSQM score can be converted
to an estimated MOS score, with interpretations similar to those of Table 16.16. At present
such methods are limited primarily to analysis of telephone-quality speech (300-3400 Hz
bandwidth), to be compared with closely related referencs: utterances. This method could
perhaps be adapted to stand in for human judgments during system dfevelopment of new
versions of modules, say glottal source functions in a formant synthesizer, comparing the
resulting synthetic speech to a standard reference system’s output on a given test sample.

16.7. HISTORICAL PERSPECTIVE AND FURTHER READING’

In 1779 in St. Petersburg, Russian Professor Christian Kratzenstein explained physiological
differences between five long vowels (/a/, /e, /i/, lo/, and /u/) and made apparatus to pro-
duce them artificially. He constructed acoustic resonators similar to the human vocal tract
and activated the resonators with vibrating reeds as in music instruments. Von Kempelen
(1734-1804) proposed in 1791 in Vienna a mechanical speaking machine that could produce
not just vowels but whole words and sentences (see Figure 16.19). While working with his
speaking machine, he demonstrated a speaking chess-playing machine. Unfortunately, the
main mechanism of the machine was a concealed, legless chess-player expert. Therefore, his
real speaking machine was not taken as seriously as it should have been. In 1846, Joseph
Faber developed a synthesizer, called speech organ, that had more control of pitch to the
extent it could sing God Save the Queen in a performance in London.

The first electrical synthesis device was introduced by Stewart in 1922 [4]. The device
had a buzzer as excitation and two resonant circuits to model the acoustic resonances of the
vocal tract and was able to generate single static vowel sounds with the first two formants.
In 1932 Japanese researchers Obata and Teshima added a third formant for more intelligible
vowels.

Homer Dudley of Bell Laboratories demonstrated at the 1939 New York World’s Fair
the Voder, the first electrical speech synthesizer, which was human-controlied. The operator
worked at a keyboard, with a wrist bar to control the voicing parameter and a pedal for pitch
- control (see Figure 16.20 and Figure 16.21), and it was able to synthesize continuous
speech. The Pattern Playback is an early talking machine that was built by Franklin S. Coo-
per and his colleagues at Haskins Laboratories in the late 1940s. This device synthesized

sound by passing light through spectrograms that in turn modulated an oscillator with a
fixed FO of 120 Hz and 50 harmonics.

3 . . ]
sﬁ‘l:;::zr 6 includes a historical perspective on representation of speech signals that is intimately tied to speech
is.
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Figure 16.19 Wheatstone’s reconstruction of von Kempelen's speaking machine [14] (after
Flanagan [17]).

The first analog parallel formant synthesizer, the Parametric Artificial Talker (PAT),
was developed in 1953 by Walter Lawrence of the Signals Research and Development Es-
wblishment of the British Government. Gunnar Fant of the KTH in Sweden developed an
analog cascade formant synthesizer, the OVE 1I. Both Lawrence and Fant showed in 1962
that by manually tuning the parameters, a natural sentence could be reproduced reasonably
faithfully. Acoustic analog synthesizers were also known as terminal analogs, resonance-
synthesizers. John Holmes tuned by hand the parameters of his formant synthesizer so well
that the average listener could not tell the difference between the synthesized sentence I
enjoy the simple life” and the natural one [31].

ley of Bell Labs at the 1939 World's Fair in

Figure 16.20 The Voder developed by Homer Dud parame-

i icin
New York. The operator worked at a keyboard, with a wrist bar to control the voicing
ter and a pedal for pitch control.
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Figure 16.21 Block diagram of the Voder by Homer Dudley, 1939 (after Flanagan [17]).

The first articulatory synthesizer, the DAVO, was developed in 1958 by George Rosen
at M.LT. Cecil Coker designed rules to control a low-dimensionality articulatory model in
1968. Paul Mermelstein and James Flanagan from Bell Labs also used articulatory synthesis
in 1976. Articulatory synthesis, however, never took off, because formant synthesis was
better understood at the time.

The advent of the digital computer prompted John Kelly and Louis Gerstman to create
in 1961 the first phonemic-synthesis-by-rule program. John Holmes and his colleagues Igna-
tius Mattingly and John Shearme developed a rule program for a formant synthesizer at
JSRU in England. The first full text-to-speech system was developed by Noriko Umeda in
1968 at the Electrotechnical Laboratory of Japan. It was based on an articulatory model and
included a syntactic analysis module with sophisticated heuristics. The speech was quite
intelligible, but monotonous and far from the quality of present systems.

In 1976, Raymond Kurzweil developed a unique reading machine for the blind, a
computer-based device that read printed pages aloud. It was an 80-pound device that shot a
beam of light across each printed page, converting the reflected light into digital data thai
was transformed by a computer into synthetic speech. It made reading of all printed material
possible for blind people, whose reading has previously been limited to material translated
into Braille. The work of Dennis Klatt of MIT had a large influence in the field. In 1979
together with Jonathan Allen and Sheri Hunnicut he developed the MITalk system, Two
years later Klatt introduced his famous Klattalk system, which used a new sophisticated
voicing source.

The early 1980s marked the beginning of commercial TTS systems. The Klattalk sys-
tem was the basis of Telesensory Systems’ Prose-2000 commercial TTS system in 1982. 1t
also formed the basis for Digital Equipment Corporation's DECtalk commercial system in
1983, probably the most widely used TTS system of the twentieth century. The Infovox TTS
system, the first multilanguage formant synthesizer, was developed in Sweden by Rolf Carl-
son, Bjorn Granstrom, and Sheri Hunnicutt in 1982, and it was a descendant of Gunnar
Fant’s OYE sy§lem. The first integrated circuit for speech synthesis was probably the
Votrax chip, which consisted of cascade formant synthesizer and simple low-pass smoothing
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n 1978 Richard Gagnon .introduced an inexpensive Votrax-ba
The first work in concatenative speech synthesis was done in 19
lm::id Maxey, where diphones were parametrized with formant freq
Blﬂlen:ned. In 1977, Joe Olive.und his collc_',agliles at Bell Labs {41] concatenated linear-
ediction diphongs. In 1?82 Street Electronics introduced the Echo system, a diphone con-
cafenation synthesizer which was based on a newer version of the same chip as in the Speak-
p-Spell toy introduced by Texas Instrumer_lts in 1980.

Concatenative systems started to gain momentum in 1985 with the development of the
pSOLA prosody modification technique by France Telecom's Charpentier and Moulines.
pSOLA increased the text coverage of concatenative systems by allowing diphones io have
their prosody modified. The hybrid Harmonic/Stochastic (H/S) mode] of Abrantes [1] has
also been successfully used for prosody modification. The foundation of corpus-based con-
catenative systems was developed by a team of researchers at ATR in Japan in the early
1990s [10, 27]. The use of a large database of long units was also pioneered by researchers
at AcuVoice Inc. Other corpus-based systems have made use of HMMs to automatically
segment speech databases, as well as to serve as units in concatenative synthesis [13, 24].
Microsoft integrated a concatenative TTS [24] in Windows 2000.

For more detailed description of speech synthesis development and history see, for e x-
ample, {317 and [17] and references in these. A number of audio clips are available in Klatt
[31] showing the progress through the early years. You can hear samples at the Smith-
sonian’s Speech Synthesis History Project [35]. A Web site with comparison of recent TTS
systems can be found at [33].

sed Type-n-Talk Sys-
68 by Rex Dixon and
uencies and then con-

circuits- I
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CHAPTER 17

Spoken Language Understanding

F ormal methods for describing sentences are
discussed in Chapter 11. While the context-free grammars and n-gram models have mathe-
matically well-understood formulations and bounded processing complexity, they are only
Partial aids in interpreting semantic meaning of the sentences. Suppose a recognizer cor-
rectly transcribes a series of spoken words into the written form—the system still has no
1dea what to do, because there is often no direct mapping between a sequence of words (or
the syntactic structure of the sentence) and the functions that the system provides. The prob-
!Cm ¢an also be approached from the opposite direction, i.e., solving the recognition problem
lself may require semantic analysis, or domain and language knowledge for perplexity
Teduction,

What is meant by meaning ot understanding? We could define it operationally: under-
Standing is when a computer we interact with understands our desires and delive.rs the
800ds. Or we could define it propositionally: the computer has an accurate and unambiguous
'®Presentation of who did what to whom corresponding to a real-world situation. In practice,
the concept of understanding is situation dependent, and both conceptions above have their
Places, Meaning is often a constellation that emerges from a conversational environment.

853
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There are four main interacting areas in spoken language understanding (SLU) systems
from which meaning arises:
o Intent: goals of listener and speaker in the interaction
e Context: the pressures, opportunities, interruptions, etc. of the interaction
scene and communication media
e Content: the propositional or literal content of each utterance and the dis-
course as a whole
o Assumptions: what each participant can assume about other participants’
mental state, abilities, limitations, etc.

In this chapter we take a functional view of SLU systems, where the basic principle is
to link linguistic expressions to concrete real-world entities. Currently, only with systems
that are restricted to limited domains can understanding be attempted in practice. The do-
main restrictions allow the creation of specific, highly restricted language models and fully
interpretable semantic descriptions that enable high accuracy and usability. Such systems are
in contrast to speech recognition approaches that use large dictionaries, but make relatively
loose or probabilistic predictions of word sequences for general dictation/transcription.

The need for spoken language understanding is double-edged. We generally want
more than a string of word choices as a system’s output. Instead, we want some interpreta-
tion of the word string that helps in accomplishing complex tasks. At the same time, being
able to determine what makes sense in context, what is more or less likely as a speaker’s
input, could make a major contribution toward improving speech recognition word accuracy
and search efficiency. SLU systems that combine the semantic precision of grammars with
the probabilistic coverage of statistical language models can guide recognition and simulta-
neously control interpretation.

Figure 1.4 in Chapter 1 illustrates a basic SLU system architecture. The SLU problem
can be broadly viewed as yet another pattern recognition problem. Namely, given a speech
input X, the objective of the system is to arrive at actions A (including dialog messages and
necessary operations) so that the cost of choosing A is minimized. Assuming uniform cost,

the optimal solution, known as the maximum a posteriori (MAP) decision, can be expressed
as

A’ =argmax P(A[X,S,_,)
A

1
= argmax P(A|S,)Y P(S,|F,S, )P(F| X,S,.,) Wl
+Su F

where F denotes semantic interpretation of X and S, the discourse semantics for the n"
dialog turn.

' 'Based on the formulation in Eq. (17.1), a dialog system consists of three pattern rec-
ognition components:

o Semaqtic parser—use semantic model P(F|X,S, ) to convert X into a
f:o]lectlon of semantic objects F. This component is often further decomposed
nto speech recognition module (converting speech signal X into textual sen-
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tence W) and sentence interpretation module (parsing sentence W int
mantic objects F). Since the collection of semantic objects F is i the ]r.) ey
tic level, it is often referred to as surface semantics, Inguis-

« Discourse analysis—use discourse model P(S, |F,S,.) to derive new di
log context S, based on the per-turn semantic parse F and the previous CO?I:
text S+

o Dialog manager—iterate through the possible actions and pick the most suit-
able one. The quantitative measures governing operations for dialog manager
is called the behavior model, P(A|S,).

The pattern recognition framework can be generalized to multimodal systems as well.
For input other than speech signal, you only need to replace the input X in the semantic
parser with input from an associated modality, e.g., X could be input from keyboard typing,
mouse clicking, pen input, video, etc. As long as the new semantic parser (replacing speech
recognizer and sentence interpretation modules in Figure 1.4) can convert it into appropriate
semantic representation, the rest of the system can be identical. Similarly, for different out-
put modality, you just need to replace message generation and text-to-speech modules with
a new rendering mechanism.

In this chapter we first describe the characteristics of spoken languages in comparison
with written languages. The structure of dialog is discussed in Section 17.2. Understanding
is the most fundamental issue in the field of artificial intelligence. The kernel of understand-
ing lies on the representation of semantics (knowledge). Several state-of-the-art semantic
representation schemes are discussed in Section 17.3. Based on the architecture of SLU sys-
tems illustrated in Chapter 1 (Figure 1.4), major modules are discussed in detail, with the Dr.
Who SLU system serving as an example to illustrate important issues.

17.1. 'WRITTEN VS. SPOKEN LANGUAGES

To construct SLU systems, we need to understand the characteristics of spoken languages. It
is worth thinking about possible differences between spoken and written use of language
that could be relevant to developing spoken language systems. The following is a typical
example of two-agent, task-oriented dialog in action:

Sys: Flight reservation service, how can | help you?

User: One ticket to Honolulu, please

Sys: Anchorage to Honolulu, when would you like to leave?

User: Next Thursday

Sys: Next Tuesday, the 30th of November; and at what time? ‘

User: No, Thursday, December 2nd, late in the evening, and make it first class.

LS]ys.‘ OK, December 2nd United flight 291, first class. Will you need & car or hotel?
ser: No.
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17.1.1.  Style

In both spoken and written forms, a communicative setting is established.ﬁoth forms in-
volve participants. In the case of written language, we normally expect passivity on _the part
of the addressee(s), though with e-mail bulletin boards, Web chat rooms, and the like, this
assumption can be challenged. The communicative event emerges frf)m _personal characteris-
tics of the participants—their mood, goals, and interests. Communication depends both on
the actual world knowledge and shared knowledge of the participants and on their beliefs
about one another’s knowledge. Communication can be influenced by the setting in which it
takes place, whether in spoken or written mode. Also, different subchannels of supportive
communication, such as visual aids, gesture, etc., may be available.

A number of grammatical and stylistic attributes have been found to distinguish con-
versational from written forms. Biber’s analysis [8] distinguishes not only a dimension of
modality, but also formality; for example a panel discussion is a relatively formal, yet spo-
ken, modality. Some typical features for which distinctions can be measured include the
number of passives, the number of pronouns, the use of contractions, and the use of nomi-
nalized forms.' An example of the grammatical and stylistic difference continuum that Biber
uses is illustrated in Figure 17.1. The variation can be measured along multiple orthogonal
scales for different genres. In the SLU case, style can be orthogonal to the modality (dialog
or dictation, spoken or written). A crossover case is speech dictation used to create a written
document that may never be orally rendered again.

Fortunately, much of the disjuncture between spoken and written forms in grammati-
cal style and lexical choice can be handled by training task-specific and modality-specific
language models for the recognizer. For this, only the data need vary, not necessarily the
modeling methods. In Figure 17.1, the right-hand side is toward the spoken style, while the

Many nominalizations
and passives

e, e —

p ~ ~

7 N, o s
( SCIENTIFIC PANEL )
- TEXT DISCUSSION
4 -~ v = o
Few pronouns and Many pronouns and
contractions contracticas

~ \ /,/ .
( FICTION / k(.‘\ON\'ERSATlON )

Few nominalizations
and passives

Figure 17.1 Dimensions of written vs. spoken language variation.

Nominalization is a stylistic device whereby a main verb is converted to a noun. For example, The dean rejected

the application unexpectedly may become: The rejection of the application by the dean was unexpected.
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\Vl’i“e“ VS. spok
¢ is toward the written one. The difference in styles is best illustrated by the fact

tical n-gram trained from newspaper text exhibits a very high perplexi
ational Air Travel Information Service (ATIS) texts. perplexity when

[eﬁ-hand siq
that the statls
evaluated on convers

17.1.2. Disfluency

Ja— Fae sp(?ken lang_uage proces.sing is disfluency. Spoken dialogs show a large set
of problems such as interruptions, corrections, filled pauses, ungrammatical sentences, ellip-
ses, and unconnected phrases. These (_:hallenges are umque' to spontaneous spoken input and
represent & possible furthfer degradatlop of speech recognizer performance, as current sys-
fems often rely on acoustic models trained from read speech, and language models trained
on written fext corpora. When speech input is used as dictation for document creation, of
course, the models would presumably be most appropriate.

There are a number of types of disfluencies in human-human dialog, and, possibly to a
Jesser extent, in human-computer dialog as well. The more common types of nonlinguistic

disfluencies are listed below:

o Filled pauses: um

e Repetitions: the — the

e Repairs: on Thursday — on Friday

¢ False Starts: T like — what I always get is ...

Early work in discourse led to the determination that discourses are divided into dis-
course segments, much as sentences are divided into phrases [18]. In the experiments of
(46], CART methods (see Chapter 4) were used to predict occurrence and location of each
of the above types of disfluency. A tree was trained from labeled corpora for each type, and
the resulting system classified each interword boundary as having no disfluency or one or
more of the above types. The feature types used to derive the classification questions in-
c}uded duration of vocalic regions and pauses, fundamental frequency and its derivatives,
Slgpal-to-noise ratios, and distance of the boundary from silence pauses. The basic classifi-
Cé“lo-n task consisted in selecting each of the four disfluency types listed above (D), given
:?:elm of prosodic features (X), by computing the maximum of P(D | X) . When decision
; Were used to supplement the language-model scoring of hypothesis word strings, per-
Ommance improved,

- nge‘;“::ber of intriguing regularities were also (?bserved in this 'work. For example., it
Mot tg 3 at the. marked (less common) pronunciation of the - /c'ih iyl was often used _]l;lst
fimogt wpr‘;dUCtlon problem, e.g., a disfluent silent pause. Also, it has been noted that“; ';
W dp Wha(;rj of aﬂma.]or'phrase or clause is likely to be repeated,. as in thejlr example,

can.” Continued research on disfluencies may contribute an important secon-

mry k"‘_’“’ledge source to supplement text-based language models and read speech acoustic
odels In the fUture,

Amazon/VB Assets
Exhibit 1012
Page 883



858 Spoken Language Understanding

17.1.3. Communicative Prosody

Prosodic attributes of utterances, such as fundamental frequency and timing (cf. Chapter 15),
are crucial cues for detecting disfluency. However, prosody can be de]iberatefly me}nipulated
by speakers for deep communicative purposes as well. Thfa speaker may mtentlonally‘or
subconsciously manipulate the fundamental frequency, tlmlng, anq other aspects gf voice
quality to communicate attitude and emotion. If a conversational interface is equipped to
recognize and interpret prosodic effects, these can be taken into account for understanding,.
In addition to serving as a disfluency detector, as described above, prosodic analysis

modules could aid recognition of:

e Utterance type—declarative, yes-no questions, wh-question, etc.

e Speech act type—directive, commissive, expressive, representative, declara-
tive, etc. Different speech acts will be described in Section 17.2.2.

e Speaker’s attentional state.
o Speaker’s attitude toward his/her utterance(s).
e Speaker’s attitude to system presentations.

e Speaker’s mood or emotional state.

Consider the simple utterance OK. This may be used along a range of attitudes and
meanings, from bored contempt, to enthusiastic agreement, to questioning and uncertainty.
The interpretation will depend on both the dialog state context of expectations-to-date and
the prosody. Generally, a higher relative FO in a wider range correlates with submission,
involvement, questioning, and uncertainty, while a lower relative FO in a narrower range
correlates with dominance, detachment, assertion, and certainty. Even though acknowl-
edgement words such as yeah and ok are potentially ambiguous among: true agreement;
intention of the listener to initiate a new turn; and simple passive encouragement from lis-
tener to speaker, the system may rely on a longer duration and greater pitch excursion of a
lexical item such as yeah or ok to hypothesize genuine agreement with a speaker statement,
as opposed to mere acknowledgement.

In addition to correlating with speech acts, FO and timing can be used to demarcate ut-
terance and turn segments. For example, certain boundary pitch movements and phonemic
lengthening systematically signal termination of clauses. In general, a fall to the very bottom
of a speaker’s range, in a prepausal location, coincides with a clause or sentence boundary.
A sharp upturn preceding a significant silence gives an impression of incompletion, perhaps
signaling a yes-no question, or may signal an intention by the speaker to carry on with fur-
ther information, as in the case of list intonation.

The disfluent and prosodic characteristics of the conversational speech are in general

very distinct from those of read speech. Thus, we often refer conversational speech as spon-
taneous speech.
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The analysis o dis?ussed . Ehapeer 1L, ges ff’cused on single sentences, They are
seps 2l07E B helping to E Mg afmblguous natural language constructions
ito precise logical f orms of propositions. In reality, however, the communicative function
of language is not a simple, uncomplicated assembly of discrete logical propositions derived
from sentences ina oHE -l fashion. In discourse, each sentence or utterance conteibtes
to a larger abstract information structure that the user is attempting to construct. Sometimes
feedback is directly availabl.e to thf’ user or can be inferred. These considerations take us
heyond the process of mapping of isolated utterances into logically structured propositions
(with simple truth-values).

A set of principles, known collectively as the cooperative principle, is introduced by
Grice [9). It consists of a set of conversational maxims, the violation of which may lead to a
preakdown in communication.

’—E?ICE'S Maxims

Quantity. speaker tries to be as informative as possible, and gives only as much information as

needed

Quality. speaker tries to be truthful, and does not give information that is false or that is not
supported by evidence

Relevance: speaker tries to be relevant, and says things that are pertinent to the discussion
Manner. speaker tries to be as clear, as brief, and as orderly as possible, and avoids obscurity
and ambiguity

In general, there are five main domains of operation that must be modeled for intelli-
gent conversation systems, although all these areas are linked:

¢ Linguistic forms: all the knowledge a human-computer dialog system re-
quires to perform semantic and syntactic analysis and generation of actual ut-
terances.

* Intentional state: goals related to both the task (Show me all flights ...), and
the dialog process itself (Please repeat ...) of the users.

* Attentional state: the set of entities at any point in time that can be felici-
tously discussed and referred to, i.e., the main topic of any stage of interac-
tion,

* World knowledge: common sense knowledge and inference. Examples ir.x—
clude temporal and spatial concepts and the relation of these to linguistic
forms.

® Task knowledge: all information relevant to achieving the user’s goal in a
complete, correct, and efficient fashion.
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Human-computer dialog is multiagent communication. Each agent has t(_) form a no-
tion of the other’s beliefs, desires, and knowledge, all of which underlie their intentions,
plans, and actions. In a limited application, deep inference may not be pc?ssible, ?nd the sys-
tem may have more or less hardwired assumptions about the user, the interaction, and the
flow of action. An interaction may be controlled by the system's own rigid schedule of in-
formation acquisition. In the research community, such a dialog system—always leading the
interaction flow control and not allowing the user to digress—is called system initiative. On
the other hand, a dialog system is called user initiative if it always lets the user decide what
to do next. It is often more natural, however, to allow for mixed initiative systems, where
interaction starts with a user’s query or command and the system attempts to derive, via in-
ference or further questioning of the user, all information needed to understand and process
a complete transaction. When the user knows clearly what he wants and the system has no
trouble catching up, the user is in the driver’s seat. However, when the system detects that
the user is in a state of confusion, or when it has trouble getting user’s intention, the machine
will offer guidance or negotiate with the user to steer the dialog back on track.

Whether it is system-initiative, user-initiative, or mixed-initiative, however, the fun-
damental structure of dialog consists of initiative-response pairs as indicated in Figure 17.2.
The Initiatives (1) are often issued by users while the Responses (R) are issued by the sys-
tem. As shown in Section 17.2.2, there are many types of Initiatives and Responses and
there may also be higher-order structure subsuming a number of I/R pairs in a dialog.

Initiative
(statement or question)

Response

Figure 17.2 The fundamental structure of dialog: initiative and response.

17.2.1.  Units of Dialog

The words uttered in a dialog are the surface manifestation of a complex underlying layer of
participants’ shared interaction knowledge and desires, even when one participant is a com-
puter simulation. It is natural to assume that the sentence is a clear and simple chunking unit
for dialog, by analogy with written communication. However, since sentences are artificially
delimited in written text, researchers in dialog communication usually speak of the utterance
as the basic unit. An Initiative or Response could consist of one or more utterances. The
utterance, however, is not necessarily trivial to define.

It is tempting to posit an equivalence of the notion utterance with turn, i.e., an uninter-
rupted stream of speech from one participant in a dialog. This formulation makes it easy to
segment dialog data into utterance units—they are just each speaker’s turns. The downside
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¢ this kind of utterance .pOSSibly spans gramatical units that really do have some
orrespondence to Irfadm'onal sentences (predicate-argument structures), and to which
uch of the hard-won gains in natural language processing would apply fairly directy,
Thus, the use of turn as synonymous \_mth utterance unit ls_probably too broad, though the
qurn may be independently useful for higher-level segmentation.

Turns are building blocks for constructing a common task-oriented understanding
among participants. This process is called grounding, a set of di.scourse strategies by which
dialog actors (humans 1n most current research) attempt tc’) achieve a common understand-
ing, and come 10 feel conﬁdet_lt of the otl.ler4 participants’ understanding. In other words,
conversational partners are finding or establishing common ground.

Tums may have their own typology. For example, a speaking turn conveys new in-
formation, while a back-channel turn is limited to acknowledgement or encouragement,
such as OK, really?, etc. The turns themselves consist of linguistic substructures, such as
sentences, clauses, and phrases. If we assume that turns can be segmented, by grammatical
and/or prosodic criteria, into utterances, we can then begin to explore distinct types of utter-
ances, their properties, and their communicative functions.

Finally, dialogs are not flat streams of unrelated turns or utterances. The utterances
that make up a dialog have higher-order affiliations with one another. A discourse segment
would thus consist of groups of related utterances organized around a common dialog sub-
task, perhaps spanning turns.

is tha
rough ¢

17.2.2.  Dialog (Speech) Acts

In simpler applications, the amount and sophistication of world knowledge can be kept to a
minimum, and attentional state can be modeled simply as the complete set of task-specific
entities. A layer of structure has therefore been sought to link linguistic forms with task
knowledge or operations in a theoretically appropriate fashion, which also yields an implicit
understanding of intentional state. This is necessary because the function of utterances in
discourse cannot be predicted strictly on the basis of their surface grammatical form. The
l?)’er of structure that can abstract away from linguistic details and can map well to formula-
ton of goals is called dialog acts [42]. Dialog acts are also often referred to as speech acts
that.group infinite families of surface utterances into abstract functional classes. They are
traditionally classified into five broad categories:

* Directive: The speaker wants the listener to do something.

¢ Commissive: The speaker indicates that he or she will do something in the
future.

Expressive: The speaker expresses his or her feelings or emotional response.
* Representative: The speaker expresses his or her belief about the truth of a
Proposition.

Declarative: Speaker’s utterance causes a change in external, nonlinguistic
situation,
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Table 17.1 A simple dialog analyzed with dialog acts.

Utterance Form Function
Do you have the butter? Y/N-question REQUEST-ACT
Sure. (passes butter) statement COMMIT-TO-ACTION-ACT

While this analysis is somewhat coarse, speech act theory has influenced all current
work on human-computer dialog, except the very simplest and most rigid systems. Because
dialog functions can be realized with a bewildering variety of linguistic forms, researchers
have posited systems of functional abstractions. Speech acts are functional abstractions over
variation in utterance form and content. Declare, request, accept, contradict, withdraw, ac-
knowledge, confirm, and assert are all examples of speech acts—things we are attempting to
do with speech. An example of dialog acts and their relation to syntactic form is shown in
the two-turn dialog in Table 17.1.

The relation between speech acts and linguistic forms (utterances) is a many-to-many
mapping. That is, a single linguistic form, such as OK, could realize a large number of
speech acts, such as request for acknowledgment or confirm, etc. Likewise, a single speech
act, such as agreement, could be realized by a variety of linguistic forms, such as ok, yes,
you bet, etc. In a particular application, special task-specific speech acts may be used to sup-
plement the universal inventory.

Tagging of dialog utterance data with speech-act labels can add useful information for
training models. There are a number of ways that dialog-act analysis could be useful:

e Speech recognition: Given a history, we can predict the most likely dialog act
type for the next utterance, so that specialized language models may be ap-
plied.

® Spoken language understanding: Given a history, and a transcription/parse of
the current utterance, we can identify the user’s intentions, so that the system
can respond appropriately.

® Semantic authoring: 1t is tedious for each team designing or customizing a
new application area for SLU to have to wrack their brains for all the ways a
given generic function, such as request or confirm, might be realized linguis-
tically. Libraries of speech acis (form-to-function mappings) may reduce the
work in new-domain adaptation of systems.

An example of a practical dialog tagging system that could be the foundation of
speech-act analysis is the Dialog Act Markup in Several Layers (DAMSL) system [14],
“{hlch has bee.n gsed and adapted for a variety of projects. This is a system for annotating
dialog ?ran§cnptlons with speech-act labels and corresponding structural elements. The
structuring is based on a loose hierarchy of: discourse segment, turn, utterance, and speech
act. The tags applied to utterances fall into three basic categories:
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