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CHAPTER 8 
- --------------

Hidden Markov Models 

The hidden Markov model (HMM) is a very 
powerful statistical method of characterizing the observed data samples of a discrete-time 
series. Not only can it provide an efficient way to build parsimonious parametric models, 
but can also incorporate the dynamic programming principle in its core for a unified pattern 
segmentation and pattern classification of time-varying data sequences. The data samples in 
the time series can be discretely or continuously distributed; they can be scalars or vectors. 
The underlying assumption of the HMM is that the data samples can be well characterized 
as a parametric random process, and the parameters of the stochastic process can be esti­
mated in a precise and well-defined framework. The basic HMM theory was published in a 
series of classic papers by Baum and his colleagues [4]. The HMM has become one of the 
most powerful statistical methods for modeling speech signals. Its principles have been suc­
cessfully used in automatic speech recognition, fonnant and pitch tracking, speech en­
hancement, speech synthesis, statistical language modeling, part-of-speech tagging, spoken 
language understanding, and machine translation [3, 4, 8, l 0, 12, 18, 23, 37). 

377 
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8.1. THE MARKOV CHAIN 

A Markov chain models a class of random processes tha_t incorpo~ates a minimum amount 
of memory without being completely memoryless. In this subsection we focus 011 the dis­
crete-time Markov chain only. 

Let x ,:: x,,X~,- -.X,, be a sequence of random variables from a finite discrete alpha-
bet O = {o

1 
,o

2
, ... ,a"',,.,J. Based on the Bayes' rule, we have 

" - X )flP(X I x'-1
) P(XpX2,, .. ,X,,)-P( 1 I I (8, I) 

i=2 

where x:-1 = X,,X~····,X,_
1

• The random variables X are said to fonn a first-order Markov 
chain, provided that 

P(X;1Xt1)= P(X1IX1-1) (8.2) 

As a consequence, for the first-order Markov chain, Eq. (8.1) becomes 

" P(X"X2 , ... ,X,,) = P(X1)flP(X1 I X,_1) (8.3) 
i=2 

Equation (8.2) is also known as the Markov assumption. This assumption uses very lit­
tle memory to model dynamic data sequences: the probability of the random variable at a 
given time depends only on the value at the preceding time. The Markov chain can be used 
to model time-invariant (stationary) events if we discard the time index i, 

P(X; = slX,._1 = s') = P(sls') (8.4) 

If we associate X; to a state, the Markov chain can be represented by a finite state 
process with transition between states specified by the probability function P(sls'). Using 
this finite state representation, the Markov assumption [Eq. (8.2)] is translated to the follow­
ing: the probability that the Markov chain will be in a particular state at a given time de­
pends only on the state of the Markov chain at the previous time. 
. ~onsider a Markov chain with N distinct states labeled by { 1, .. . , N}, with the state at 

time t m the Markov chain denoted as s,; the parameters of a Markov chain can be de­
scribed as follows: 

(8.5) 

n, = P(s1 = i) 1 :s; i :s; N (8.6) 

where a!iis the tran~itio~ probability from state i to statej; and 7!; is the initial probability 
that the Mark_ov cham will start in state i. Both transition and initial probabilities are bound 
to the constramts: 
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/'I ~:aij == l; 1 ~ i ~ N 
j~l 

fl 

1:1rj == 1 
j~l 

379 

(8.7) 

The Markov chain described above is also called the observable Markov model be­
cause the output of the process is the set of states at each time instance t, where each state 
corresponds to an observable event X, . In other words, there is one-to-one correspondence 
between the observable event sequence X and the Markov chain state sequence 
S==s"s

2
, .. . sn . Consider a simple three-state Markov chain for the Dow Jones Induslrial 

average as shown in Figure 8.1 . At the end of each day, the Dow Jones Industrial average 
may correspond to one of the following states: 

state 1- up (in comparison to the index of previous day) 
state 2-down (in comparison to the index of previous day) 
state 3 - unchanged (in comparison to the index of previous day) 

0.6 0.3 

0.5 
. 1 Three states represent up, 

Figure 8.1 A Markov chain for the Dow Jones Industna average. 

down, and unchanged, respectively. 

h . may include a state-transition prob­
The parameter for this Dow Jones Markov c am 

ability matrix 

[

0.6 02 02] 
A={aii}== 05 03 02 

0.4 0.1 0.5 - . 
and an initial state probability matrix 
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(
0.5] 

1t=(nJ = 0.2 

0.3 

Suppose you would like to find out the probability for five consecutiYe u da . 
f p ~~~ the observed sequence o up-up-up-up-up corresponds to the state sequence of (1 1 1 the probability will be · ' ' • I, I), 

P(S consecutive up days)= P(I, 1, 1, 1.1) 

= n 1a, 1a11a11a11 = 0.5 x (0.6t = 0.0648 

8.2. DEFINITION OF THE HIDDEN l\1ARKOV rv[oDEL 

In the Markov chain, each state corresponds to a deterministically observable event, i.e., the 
output of such sources in any given state is not random. A narural extension to the Markov 
chain introduces a non-detenninistic process that generates output observation symbols in 
any given state. Thus, the observation is a probabilistic function of the state. This new 
model is known as a hidden Markov model, whkh can be viewed as a double-embedded 
stochastic process with an underlying stochastic process (the state sequence) not directly 
observable. This underlying process can only be probabilistically associated with another 
observable stochastic process producing the sequence of fearures we can observe. 

A hidden Markov model is basically a Markov chain where the output observation is a 
random variable X generated according to a ourput probabilistic function associated with 
each state. Figure 8.2 shows a revised hidden Markov model for the Dow Jones Industrial 
average. You see that each state now can generate all three output observations: up, down, 
and unchanged, according to its output pdf. This means that there is no longer a one-to-one 
correspondence between the observation sequence and the state sequence, so you cannot 
unanimously determine the state sequ-!nce for a given observation sequence, i.e., the sta~e 
sequence is not observable and therefore hidden. Titis is why the world hidden is plac~ tn 

front of Markov models. Although the state of an HMM is hidden, it often contains sahe~t 
information about the data we are modeling. For example, the first state in Figure 8-2 inrli· 
cates a bull market, and the second state indicates a bear market as specified by the output 
probability in each state. Formally speaking, a hidden Markov model is defined by: 

• 0 = { 0 1, 02, •.. , o M} -An output observation alphabet I The observation 
symbols correspond to the physical output of the system being modeled .. In 
the case of the Dow Jones Industrial average HMM, the output observatton 
alphabet is the collection of three categories- O = { up, down, unchanged} · 

' Although we use th d" ·th a continUol15 
df y e tscrcte output observation here. we c:m extend it to the continuous case wi 

P · ou can also use vector q · · . I habet seL uanuzauon to map a continuous vector variable into a discrete 8 P 
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• Q = { 1,2, .. . , N}-A set of states representing the state space. Here s, is de­
noted as the state at time t . In the case of the Dow Jones Industrial average 
HMM, the state may indicate a bull market, a bear market, and a stable market. 

• A = { aiJ }-A transition probability matrix, where a;i is the probability of 
taking a transition from state i to statej, i.e., 

381 

aiJ = P(s, = Jls,_1 = i) (8.8) 

• B ={b;(k)}-An output probability matrix/ where b;(k) is the probability 
of emitting symbol o 1c when state i is entered. Let X = X 1 , X 2 , •• • , X, , ... be 
the observed output of the HMM. The state sequence S = s 1 ,s2 , •• • ,s, , ... is 
not observed (hidden). and b;(k) can be rewritten as follows: 

b;(k) = P(X, = Ok Is, = i) (8.9) 

• 7t::: {fr;} -A initial state distribution where 

tr; = P(s0 = i) 1 ~ i ~ N (8.10) 

0.2 

[·'] 
0.1 

0.1 
0.6 

0.2 
0.3 

0.5 

0.5 

initial state prob. = 0.2 
0.3 

[03] 0.3 [ ~~) l output P(down) 
0.4 pdf-

P(unchanged) 
0.5 

1 d trial average The three states no 
Figure 8.2 A hidden Markov model for the Dow Jones _n _us d . F: 8 1 . . th M k v cham illustrate m igure . . 
longer have deterministic mearungs as in e ar 0 

Alth h these two fonnulations look different, the 
' The output distribution can also be transition-dependenL oug ' th the constrain! of all the transitions 

·u· -dependent one w1 
state-dependent one can be refonnulated as a 1rans1 on 
entering the same state sharing the same output distribution. 
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Since aiJ, b;(k), and ni are all probabilities, they must satisfy the following proper-
ties: 

(8. I I) 

(8.12) 

(8.13) 

(8.14) 

To sum up, a complete specification of an HMM includes two constant-size parame­
ters, N and M, representing the total number of states and the size of observation alphabets, 
observation alphabet 0, and three sets (matrices) of probability measures A, B, 1t. For con­
venience, we use the following notation 

<l> = {A, B, 1t) (8.15) 

to indicate the whole parameter set of an HMM and sometimes use the parameter set <l> to 
represent the HMM interchangeably without ambiguity. 

In the first-order hidden Markov model discussed above, there are two assumptions. 
The first is the Markov assumption for the Markov chain. 

P(s, 1sr-·) = P(s, Is,_.) (8.16) 

where s:-1 represents the state sequence si,s2, ... ,s,_
1

• The second is the output­
independence assumption: 

P(X, 1x;-1,s!)=P(X1 Is,) (8.17) 

where ~:-
1 

represents the. output sequence X 1 , X '.!, ••• , x,_
1

• The output-independence 
assumption states that the probability that a particular symbol is emitted at time t depends 

only on the s~te s, and is conditionally independent of the past observations. . 
You might argue that these assumptions limit the memory of the first-order hidden 

~arkov m~dels and may_ lead to _model deficiency. However, in practice, they make evalua: 
. on, deco_dmg, and leammg feasible and efficient without significantly affecting the model 
mg ca?ability, since those assumptions greatly reduce the number of parameters that need to 
be estimated. 
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Given the definition of HMMs above three basic proble f · . , ms o interest must be ad-
dressed before they can be applied to real-world applications. 

I The Evaluation Problem-Given a model <I> and a s f b . , equence o o serva-
tio~~ X=(X1,X2, .. ,,Xr), what is Lhe probability P(Xl<l>), i.e .. the prob­
ability that the model generates the observations? 

2. The D~coding Problem-Given _a model <I> and n sequence of observations 
X=(..-\,,X2,···,Xr>: what 1s the most likely state sequence 
S = ( s O , s 1 , s 2 , ••• , s r) m the model that produces the observations? 

3. The Learning Problem-Given a !:flOdel <I> and a set of observations, how 
can we adjust the model parameter <I> to maximize the joint probability (like­
lihood) TI P(X I <I>) ? 

X 

If we could solve the emluario11 problem, we would have a way of evaluating how 
well a given HMM matches a given observation sequence. Therefore, we could use HMM to 
do pattern recognition, since the likelihood P(Xl<I>) can be used to compute posterior prob­
ability P(<l>IX), and the HMM with highest posterior probability can be detennined as the 
desired pattern for the observation sequence. If we could solve the decoding problem, we 
could find the best matching state sequence given an observation sequence, or, in other 
words, we could uncover the hidden state sequence. As discussed in Chapters 12 and 13, 
these are the basics for the decoding in continuous speech recognition. Last but not least, if 
we could solve the learning problem, we would have the means to automatically estimate 
the model parameter <I> from an ensemble of training data. These three problems are tightly 
linked under the same probabilistic framework. The efficient implementation of these algo­
rithms shares the principle of dynamic programming that we briefly discuss next. 

8.2.1. Dynamic Programming and DTW 

The dynamic programming concept, also known as dynamic time warping (DTW) in speech 
recognition [40], has been widely used to derive the overall distortion between two speech 
templates. In these template-based systems, each speech template consists of a sequ~nce of 
speech vectors. The overall distortion measure is computed from the accumulated distance 
between two feature vectors that are aligned between two speech templates with minimal 
overall distortion. The DTW method can warp two speech templates ( x,x:2···x'") and 

(Y,Yi-.. y M) in the time dimension to alleviate nonlinear distortion as illustrated in Figure 8.3. 
This is roughly equivalent to the problem of finding the minimum distance in the trel-

. d. d( · ") be !is between these two templates. Associated with every pair (i, JJ is a 1sta~ce _1• J -
tween two speech vectors X; and y 

1
. To find the optimal path betwe~n starung point (l, _1) 

and end point (N, M) from left to right, we need to compute t~e opumal accumulated d1s­
tance D(N, M). We can enumerate all possible accumulated d1stance from ~I ,l) to (N, M) 
a d ·d · · · · s· there are M possible moves for n I ent1fy the one that has the mm1mum distance. mce . 
each step from left to right in Figure 8.3, all the possible paths from (1, l) to (N, M) will be 
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. . ming principles can drastically reduce the amount of com 
exponential Dynamic program "bl b . PU-

. · .d. th meration of sequences that cannot poss1 Y e optimal. Since th tation by av01 mg e enu . th . . e 
same optimal path after each step must ~e based on the previous step, e mm1mum distance 
D(i, J) must satisfy the following equauon: 

D(i, J) = mjn[D(i-1,k) + d(k,j)] (8.18) 

- · .. . .. 

( 0 Optimal alignment 
\ between X and Y 

~ '-. 

Figure 8.3 Direct comparison between two speech templates X= x1x2 •• .xN and Y= YiYrYu· 

Equation (8.18) indicates you only need to consider and keep only the best move for 
each pair although there are M possible moves. The recursion allows the optimal path search 
to be conducted incrementally from left to right. In essence, dynamic programming dele­
gates the solution recursively to its own sub-problem. The computation proceeds from the 
small sub-problem ( D(i-1,k)) to the larger sub-problem ( D(i,j) ). We can identify the 
optimal match y I with respect to x, and save the index in a back pointer table B(i, 1) as we 
move forward. The optimal path can be traced back after the optimal path is identified. The 
algorithm is described in Algorithm 8.1. 

The advantage of the dynamic programming lies in the fact that once a sub-proble~ is 
solved, the partial result can be stored and never needs to be recalculated. This is a very im­
portant principle that you see again and again in building practical spoken language systems. 

Speech recognition based on D1W is simple to implement and fairly effective for 
small-vocabulary speech recognition. Dynamic programming can temporally align patterns 
to account for differences in speaking rates across talkers as well as across repetitions of !he 
word by the same taJker. However, it does not have a principled way to derive an averaged 
template for each pattern from a large amount of training samples. A multiplicity of refer· 

tr . . k . . d"ffi rent utter-ence ammg to ens 1s typically required to characterize the variation among I e_ 
ances. As such, the HMM is a much better alternative for spoken language processing. 
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Definition of the Hidden Markov Model 

ALGORITHM 8.1: THE DYNAMIC PROGRAMMING ALGORITHM 

step 1: Initialization 
D(l,l)=d(l,I),B(I,l)=l,for J:::::2, ... ,Mcompute D(l,J)=oo 

Step 2: Iteration 
for i= 2, . .. ,N { 
for j = 1, ... ,M compute { 

D(i,j)= min [D(i-1,p)+d(p 1")] 
ISpSM ' 

B(i,j) = arg min [ D(i-1, p) + d(p,j)] }} 
ISpS.\I 

Step 3: Backtracking and Termination 
The optimal (minimum) distance is D(N, M) and the optimal path is (s,,s

2
, •• • ,s.v) 

where sN =Mand s, =B(i+l,s,+1), i=N-l,N-2, ... ,1 

8.2.2. How to Evaluate an HMM-The Forward Algorithm 

385 

To calculate the probability (likelihood) P(Xl<I>) of the observation sequence 
X = (X1, X2 , ••• , X T ), given the HMM <I>, the most intuitive way is to sum up the prob­
abilities of all possible state sequences: 

P(X l<I>) = LP(S l<l>)P(X IS,<I>) (8.19) 
•11 S 

In other words, to compute P(Xl<l>), we first enumerate all possible state sequences S 
of length T, that generate observation sequence X, and then sum all the probabilities. The 
probability of each path S is the product of the state sequence probability (first factor) and 

the joint output probability (the second factor) along the path. 
For one particular state sequence S=(si,s2 , ... ,s7 ), where s1 is the initial state, the 

state-sequence probability in Eq. (8.19) can be rewritten by applying Markov assumption: 

T 

P(S I <I>)= P(s, I <I>) Jl P(s1 ~1-P <I>)= n,, a•,•: .. . a,,--1•, = a, •• ,a,,•i .. . a,,--1•r (8.20) 
1=2 

w~e.re a.,.,, denotes n., for simplicity. For the same state sequ_ence S, the joint ou~ut prob­
ab1hty along the path can be rewritten by applying the output-independent assumption: 

T 

P(X IS, <I>)= P(Xt I st, <I>)= Il P(X1 ~" <I>) (8.21) 
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Substituting Eqs. (8.20) and (8.21) into (8.19), we get: 

P(X 14>) == LP(S l<l>)P(X IS,<i>) 
111 S 

= Lasos1bS1 (X, )a,.,,b,? (X2) .. . a,r-i•,b•r (X T) 
all S 

Hidden Markov-:;-­
ntodels 

(8.22) 

Equation (8.22) can be interpreted as follows. First we enumerate all possible state se­
quence with length T. For any given state sequence, we start from initial state s, with prob­
ability rr,

1 
or a~,,. w_e take a ~a~sition from s,:--1 to s, with probabili~ ~ ,,_

111 
and generate 

the observation X w1th probab1hty b, (X,) until we reach the last trans1t1on. 
f I 

However, direct evaluation of Eq. (8.22) according to the interpretation above requires 
enumeration of O(N7

) possible state sequences, which results in exponential computational 
complexity. Fortunately, a more efficient algorithm can be used to calculate Eq. (8.22). The 
trick is to store intermediate results and use them for subsequent state-sequence calculations 
to save computation. This algorithm is known as the forward algorithm. 

Based on the HMM assumptions, the calculation of P(s, ls,_i,<l>)P(X, ls,,<I>) in­
volves only s,_1 ,s,, and X,. so, it is possible to compute the likelihood with P(Xl<I>) with 
recursion on t. Let's define forward probability: 

(8.23) 

a, (i) is the probability that the HMM is in state i at time t having generated partial 
observation x; (namely X 1X 2 ... X, ). a, (i) can be calculated inductively as illustrated in 
Algorithm 8.2. This inductive procedure shown in Eq. (8.24) can be illustrated in a trellis. 
Figure 8.4 illustrates the computation of forward probabilities a via a trellis framework for 
the Dow Jones Industrial average HMM shown in Figure 8.2. Given two consecutive up 
days for the Dow Jones Industrial average, we can find the forward probability a based 00 

the model of Figure 8.2. An arrow in Figure 8.4 indicates a transition from its origin state to 
its destination state. The number inside each cell indicates the forward probability a· We 
Slart the a cells from t = 0, where the a cells contains exactly the initial probabilities. The 
other cells are computed in a time-synchronous fashion from left to right, where each cell 
for time t is completely computed before proceeding to time t+ I . When the states in the 1~1 

column have been computed, the sum of all probabilities in the final column is the probabil· 
· f · the ity O generatmg the observation sequence. For most speech problems, we need to have 
HMM end in some particular exit state (a.k.a final state, SF), and we thus have 
P(XI <i>) = CXi-(sF). 

It is easy to show that the complexity for the forward algorithm is O(N2T) ~a-~r 
than ex_ponential. This is because we can make full use of partially computed probabihtJeS 
for the improved efficiency. 

Amazon/VB Assets 
Exhibit 1012 

Page 412
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ALGORITHM 8.2: THE FORWARD ALGORITHM 

Step 1 : Initialization 
a,(i):.=1r1h1(X,) I Si SN 

Step 2: Induction 

a,())= [ia,_1 (i)a!l]bi(X,) 2 St,;, T; l 5, j 5, N 
,~1 

Step 3: Termination 
,V 

P(Xl<I>) =La rU) If it is required to end in the final state P(X I"')= ( 
, "' ar sF) 

i=I 

state I 

state 2 

state 3 

;.:, - lip 

, .. I 

{8.24) 

Figure 8.4 The forward trellis computation for the HMM of the Dow Jones r ndustrial average. 

8.2.3. How to Decode an HMM-The Viterbi Algorithm 

387 

The forward algorithm, in the previous section, computes the probability that an HMM gen­
erates an observation sequence by summing up the probabilities of all possible paths, so it 
does not provide the best path (or state sequence). In many applications, it is desirable to 
fiod such a path. As a matter of fact, finding the best path (state sequence) is the cornerstone 
for searching in continuous speech recognition. Since the state sequence is hidden (unob­
served) in the HMM framework, the most widely used criterion is to find the state sequence 
that has the highest probability of being taken while generating the observation sequence. In 
other words, we are looking for the state sequence S = (s1,s2, .. -,sr) that maximizes 
P(S,X I <l>). This problem is very similar to the optimal-path problem in dynamic pro­
gramming. As a consequence, a fonnal technique based on dynamic programming, known 
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388 Hidden Markov Models 

as Viterbi algorithm [43], can be used to find the best state sequence for an HMM 1 · n prac­
tice, the same method can be used to evaluate HMMs that offers an approximate sol . 
close to the case obtained using the forward algorithm described in Section 8.2.2. ution 

The Viterbi algorithm can be regarded as the dynamic programming algorithm ap r d 
to the HMM or as a modified forward algorithm. Instead of summing up probabilities ~r~e 
different paths coming to the same destination state, the Viterbi algorithm picks and reme ~ 
bers the best path. To define the best-path probability: m 

V,(i)=P(X;,s:-1,s, =il<I>) 

V,(i) is the probability of the most likely state sequence at time t, which has generated the 
observation x; (until time t) and ends in state i. A similar induction procedure for the 
Viterbi algorithm can be described in Algorithm 8.3. 

ALGORITHM 8.3: THE VITERBI ALGORITHM 

Step 1: Initialization 
~(i)=n,b,(X1) 

B1(i) =0 

Step 2: Induction 
V,(j) = Max[V,_, (i)av ]b1 (X,) 2 St~ T; IS JS N 

IS/SN 

B1(j)=Argmax[V,_1(i)ay] 2StST; lSJSN 
ISIS/1' 

Step 3: Termination 
The best score= Max[V,(i)] 

ISISA' 

ISISN 

Step 4: Backtracking 
s," = B,.1(s,'.,) t = T-l,T-2, ... , I 

s· =(s; ,s;, ... ,s;) is the best sequence 

(8.25) 

(8.26) 

This Viterbi algorithm can also be illustrated in a trellis framework similar to the one 
for the forward algorithm shown in Figure 8.4. Instead of summing up all the paths, ~ig~ 
8.5 illustrates the computation of V, by picking the best path in each cell. The n~rn~er mside 
each cell indicates the best score V and the best path leading to each cell is indicated ~y 

l.d 1· . ' . tation is so 1 mes while the rest of the paths are indicated by dashed line. Agam, the compu . 
d · · v·t b1 algo-one m a time-synchronous fashion from left to right. The complexity for the I er 
rithm is also O(N2 T). 
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state I 

state 2 

X 1• 11p 

t • I 
x,=up 

I= 2 

Jc:--------e 
. , .. 

,, . 
,· 

' / 

8 
/ /, ~---_-- :'. __ e 
~ 

/ 1/" ' 

8 /"-. 
y' ' }:·····-·-··-·---state 3 

389 

Figure 8.S The Viterbi trellis computation for the HMM of the Dow Jones Industrial average. 

8.2.4. How to Estimate HMM Parameters-Baum-Welch Algorithm 

It is very important to estimate the model parameters ct>= (A, B, 1t) to accurately describe 
the observation sequences. This is by far the most difficult of the three problems, because 
there is no known analytical method that maximizes the joint probability of the training data 
in a closed form. Instead, the problem can be solved by the iterative Baum-Welch algorithm, 
also known as the forward-backward algorithm. 

The HMM learning problem is a typical case of unsupervised learning discussed in 
Chapter 4, where the data is incomplete because of the hidden state sequence. The EM algo­
rithm is perfectly suitable for this problem. As a matter of fact, Baum and colleagues used 
the same principle as that of the EM algorithm. Before we describe the formal Baum-Welch 
algorithm, we first define a few useful terms. In a manner similar to the forward probability, 
we define backward probability as: 

/3,(i) = P(x,:i1s, =i,<l>) (8.27) 

~here /31 (i) is the probability of generating partial observation X1~1 ~from !+ 1 to the end) 
given that the HMM is in state i at time t, f3

1 
(i) can then be calculated mducttvely; 

Initialization: 

/3r(i) = II N l~i~N 
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Induction: 

/3,(i) =[±a!ib/X,+1 )/3,+1 (j)] t=T-1. .. 1; 1 ~ i ~ N 
/•I 

Hidden Markoy 1\ .. 
1••0deis 

(8.28) 

The relationship of adjacent a and {3 (a,_1 & a, and /3 1 & /31+1) can be best ill . 
trated as shown in Figure 8.6. a is computed recursively from left to right, and /3 rec~;. 
sively from right to left. 

t-1 

s, 
si 

sJO 
• 
• 

SN 

c:x,il) 

~JI 

t 

output =X, 

c:x,(z) /3,(1) 

t+I 

• 
• 
• 

s, 

Figure 8.6 The relationship of a,_1 and a, and /3, and /3,+i in the forward-backward algorithm. 

Next, we define r, (i,j) , which is the probability of taking the transition from state i 
to state j at time t, given the model and observation sequence, i.e., 

r,(i, j) = P(s,-1 = i,s, = j I xr ,<l>) 

- P(s, __ , = i,s! = _;,xr I <l>) 
- P(Xt I cf>) 

= a,_1 (i)a!ibi (X, )/3, (j) 
N 

I,exr(k) ... , 

(8.29) 

The equation above can be best illustrated as shown in Figure 8.7. . . . the 
We can iteratively refine the HMM parameter vector <l> = (A,B,1t) by maxurnvngde· 

1'k l'h . ~ vector 1 e 1 ood P(Xl<l>) for each iteration. We use <l> to denote the new parameter ·uun 
rived from the parameter vector <l> in the previous iteration. According to the EM aJgon 
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of Chapter 4, the maximization process is equivalent to maximizing the following Q­

function: 
• , P(X,S I <l>) • 

Q(<l>,<I>) = £..,-------logP(X,S I <t>) 
11

11 s P( X I <1>) 

where P(X,S!<l>) and log P(X.Sl<I>) can be expressed as: 

r 
P(X.Sl<l>)= fla,, ... ,,b_,,(X,) ,., 

T r 
logP(X,S l<f>) = I,loga,, ... s, + I,togb,, (X,) 

1=1 t=I 

Equation (8.30) can thus be rewritten as 

Q(<t>, <i>) == Q •. (<t>. a;)+ Qb, c <t>. f, i ) 

where 

Q (
<l> a ) = , , , P(X, s1_ 1 = i, s, = j \<I>) lo a 

.. · ' f 7 '7' P( x 1 <t>) g if 

t-2 t- 1 

output== X, 

/3,U) 

(8.30) 

(8.31) 

(8.32) 

(8.33) 

(8.34) 

(8.35) 

t+I 

F
. · · h tation of r (i 1·) which is the 
igure 8.7 lllustration of the operauons required for t. e c~mpu 

1 

' ' 

probability of taking the u-ansition from state i to state} at ume t. 

a,)i) a,)i) 
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Since we separate the Q-function into two independent terms the . . 
~ . . . . , maxm11 · 

cedure on Q(<I>, <I>) can be done by max1m1zmg the mdividual terms separ 
I 

zatio~ Pro. 
probability constraints. ate Y, subJect to 

N 

L a ii = l \;/ all i 
j=l 

\( 

1)ik) = 1 "'i/ allj 
kzl 

Moreover, all these tenns in Eqs. (8.34) and (8.35) have the following fonn: 

(8.36) 

(8.37) 

F(x) = L,Yi logx,. (8.38) 
i 

where LX; =I 
i 

By using the Lagrange multipliers, the function above can be proved to achieve 
maximum value at 

Y; 
x-=--' L,Y; 

i 

Using this formation, we obtain the model estimate as3: 

I f P(X s - i - · 1 <I>) f (. ") 
- - P(Xl<I>)ti' , ,_, - ~, -J = ~Y, z,J 
aij - I r 

--" P(X s = i I <I>) 
P(X!<I>)~ 'r-1 

T ,v 

LLY,(i,k) 
t=I k:I 

I T 

- P(X I <I>) LP(X,s, = j I <I>)o(Xl>ok) 
~(k)= ,~ T 

1 
" P(X s - · 1 <I>) P(X I <I>) ;'i' , I - J 

L LY,(i,j) 
ieX,=ot i 

1=1 i 

(8.39) 

(8.40) 

(8.41) 

By carefully examining the HMM re-estimation Eqs. (8.40) and (8.~l_), you can: 
that Eq. (8.40) is essentially the ratio between the expected number of cransmons fro; 5 

re­
i to state j and the expected number of transitions from state i. For the output proba~ ~ata 

estimation Eq. (8.41), the numerator is the expected number of times the observaaon 

• . ften fLted 
'Notice chat the initial probability fl; can be derived as a special case of the transition probabilil)'- If, is 

0 

(i.e., fl, = I for the initial state) for most speech applications. 
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Definition of the Hidden Markov Model 393 

emitted fro~ state j is the ~bservation symbol o* , and the denominator is the expected 
number of times the observation data is emitted from state j. 

According to ~e _EM_ algo~ithm, the forward-backward (Baum-Welch) algorithm 
guarantees a monotonic hkeh~ood improvement on each iteration, and eventually the likeli­
hood converges to a local maximum. The forward-backward algorithm can be described in a 
way similar to the general EM algorithm as shown in Algorithm 8.4. 

ALGORITHM 8.4: THE FORWARD-BACKWARD ALGORITHM 

Step 1: Initialization: Choose an initial estimate <I> . 
Step 2: E-step: Compute auxiliary function Q(<t>, <l>) based on <t>. 
Step 3: M-step: Compute <I> according to the re-estimation Eqs. (8.40) and (8.41) to maximize 
the auxiliary a-function. . 
Step 4: Iteration: Set <l> = <I>, repeat from step 2 until convergence. 

Although the forward-backward algorithm described above is based on one training 
observation sequence, it can be easily generalized to multiple training observation sequences 
under the independence assumption between these sequences. To train an HMM from M 
data sequences is equivalent to finding the HMM parameter vector <I> that maximizes the 
joint likelihood: 

(8.42) 

The training procedure performs the forward-backward algorithm on each independent 
observation sequence to calculate the expectations (or sometimes referred to as counts) in 
Eqs. {8.40) and (8.41). These counts in the denominator and numerator, respectively, can be 
added across M data sequences respectively. Finally, all the model parameters {probabilities) 
are normalized to make them sum up to one. This constitutes one iteration of Baum-Welch 
re-estimation; iteration continues until convergence. This procedure is practical and useful 
because it allows you to train a good HMM in a typical speech recognition scenario where a 

large amount of training data is available. 
For example, if we let y;(i,j) denote the y,(i,j} from the mil, data sequence and 

T"' denote the corresponding length, Eq. (8.40) can be extended as: 

M T" 

IIr;u,i> 
a - n,al 1=1 
lj- .If T" N 

III,r;(i,k) 
m.:.I tel .icl 

{8.43) 
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8.3. 

Hidden Ma;;:-­
"10de(s 

CONTINUOUS AND SEMICONTINUOUS HMMs 

If the observation does not come from a finite set, but from a continuous space, the d' 
. . . . . d b . 1screte 

output distribution discussed rn the previous sections nee s to e modified. The ct·rr 
. MM 1· . d'ffi I ierence 

between the discrete and the continuous H 1es m a 1 erent form of output prob b'I' 
· · f · HMM · 1· a I ny functions For speech recogmtmn, use o continuous s imp 1es that the quant' . · • 1zation 

procedure to map observation vectors from the continuous space to the discrete space ~ th 
Th h .h . . ore 

discrete HMM is no longer necessary. us, t e m erent quantization error can be el' . 1m1-
nated. 

8.3.1. Continuous Mixture Density HMMs 

In choosing continuous output probability density functions b1 (x) , the first candidate is 
multivariate Gaussian mixture density functions. This is because they can approximate any 
continuous probability density function, as discussed in Chapter 3. With M Gaussian mix­
ture density functions, we have: 

M M 

b/x) = I,cikN(x,µjk'I.ik) = I,ci1bik(x) (8.44) 
t=l k=I 

where N(x,µik'Lik)or bik(x) denotes a single Gaussian density function with mean vector 
µit and covariance matrix Lj.1: for state j, M denotes the number of mixture-components, 
and c1t is the weight for thee mixture component satisfying 

(8.45) 

To take the same divide and conquer approach as Eq. (8.33), we need to express 
b/x) with respect to each single mixture component as: 

T Af Al M T 

p(X,S I <I>)== Q a,,.,,, h,, (x,) =LI, ... I. {TI a.,,..,, b,,t, (x,, )c,,t,} 
k, =I k1 =I kr =I t=I 

(8.46) 

Equation (8.46) can be considered as the summation of densities with all the possible 
sta~e sequences S and all the possible mixture components K, defined in Qr as the r'h Car­
tesian product of Q = { 1, 2, ... , M}, as follows: 

T 

p(X,S, KI <I>)== Ila,,_,., b,,., (x,)c,k 
tat I I 

(8.47) 

Therefore, the joint probability density is 
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Continuous and Semicontinuous HMMs 395 

p(X l<l>) =II p(X,S,K l<l>) 
S Ke{}r 

(8.48) 

An auxiliary function Q(<l>,<1>) of two model points, <l>and ci>, given an observation 
X, can be written as: 

From (8.47), the following decomposition can be shown: 

logp(X,S, KI <1>) 
T T T 

= L log a,H., + 2, log b,,k, (x,) + I log c,,l, 
t=I t=I t=I 

(8.49) 

(8.50) 

Maximization of the likelihood by way of re-estimation can be accomplished on indi­
vidual parameter sets owing to the separability shown in (8.50). The separation of (8.50) is 
the key to the increased versatility of a re-estimation algorithm in accommodating mixture 
observation densities. The auxiliary function can be rewritten in a separated fonn in a simi­
lar manner as Eq. (8.33): 

• "" "" p(X S K I <I>) -·-
Q( <I>, <I>)= -f''f p(x' I <I>) logp(X,S, KI <I>) 

(8.51) 

The only difference we have is: 

T • 

Qb_.. (<I>,b1*) = 2,p(s, = j,k,;:: k IX,<t>)logb11 (x,), (8.52) 

i=I 

and 

T 

Q.,.. (<l>,c 11 ) = lip(s, = j,k, = k IX, <t>) logc11 
(8.53) 

!=I 

The optimization procedure is similar to what is discussed _in the discrete HMM; ~e 
• · · · f Q (<I> b ) with respect to b 1s only maior difference is Q (<t> b ) . Max1m1zatton o h_,. , J* I* 

~ b,, , jk 'C' h . fi . 
obtained through differentiation with respect to {1t i*, ~;.} t at satts ies. 

(8.54) 
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The solutions are: 

f p(X,s, = j,k, = k I <I>) x 7 

k , I,,,U,k)x, 
A r=I p(X I <I>) _ ,,., 
µi* = f p(X,s, = j,k, = k I <I>) - 7 

k IJ,U,k) 
r•I p(X I <l>) rel 

f p(X,s, =j,k, =kl<I>)(x _ A ) ·x _ A )' 

A kJ (X j <I>) 1 µ)! ( r µ.Jk I, _ t= I p 
1* - ± p(X,s, = j,k, =kl <I>) 

, .. , p(X I <I>) 
T 

L,,U,k)(x, -µ1k)(x, -µ14 )' 
tel =----------T 

I,s,U,k) , .. , 
where ,,(j,k) is computed as: 

N 

(X = . k = k I <I>) L a,_1 (i)ai/ci1b14 (x, )/3, (j) 
,, (j,k) = p ,S, }, I = -'-i=..c..l ___ N _____ _ 

p(X I <I>) L£lr(i) 
/=I 

Hidden Markov IIA 
"IOdels 

(8.55) 

(8.56) 

(8.57) 

In a similar manner to the discrete HMM, we can derive the reestimation equation for 
c1._ as follows: 

T 

LS,U,k) 
,.. l•I 
Cjl = T M 

(8.58) 

II,s,U,k) 
l=I k=I 

8.3.2. Semicontinuous HMMs 

T d. . h b en treated 
ra ItJ.onally, the discrete and the continuous mixture density HMMs ave e . 

1 . sumpt100S 
separate y. In fact, the gap between them can be bridged under some mmor as . 

·th h · ture density 
WI t e so-called semicontinuous or tied-mixture HMM. It assumes the IDlX d .. 
fu f · 1 In the ts nc 100s are tJ.ed together across all the models to form a set of shared kerne s. J 
crete HMM VQ . . . · t -'"eature vector , a codebook 1s typically used to map the contmuous mpu 1' k can 
to 0

•' so we can use the discrete output probability distribution b/k). The codebOO 
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be essentially regarded as one of such shared kernels. Accordingly, Eq. (8.44) can be modi­
fied as: 

,I/ .\f 

bi(x) = Lb/k)j(x I ok)-= ~)i(k)N(x,µk, Lt) 
k=I k=I 

(8.59) 

where o4 is the kth codeword, b/k) is the same output probability distribution in the dis­
crete HMM or the mixture weights for the continuous mixture density function and 
N(x,µk,L1.-) are assumed to ~e independent of the Markov model and they are shared 
across all the Markov models with a very large number of mixtures M. 

From the discrete HMM point of view, the needed VQ codebook consists of M con­
tinuous probability density functions, and each codeword has a mean vector and a covari­
ance matrix. Typical quantization produces a codeword index that has minimum distortion 
to the given continuous observation x. In the semicontinuous HMM, the quantization opera­
tion produces values of continuous probability density functions /(x I ok) for all the code­
words o4 • The structure of the semicontinuous model can be roughly the same as that of the 
discrete one. However, the output probabilities are no longer used directly as in the discrete 
HMM. In contrast, the VQ codebook density functions, N(x,µt,Lk), are combined with the 
discrete output probability as in Eq. (8.59). This is a combination of discrete model­
dependent weighting coefficients with the cominuous codebook probability density func­
tions. Such a representation can be used to re-estimate the original VQ codebook together 
with the HMM. 

The semicontinuous model also resembles the M-mixture continuous HMM with all 
the continuous output probability density functions shared among all Markov states. Com­
pared with the continuous mixture HMM, the semicontinuous HMM can maintain the mod­
eling ability of large-mixture probability density functions. In addition, the number of free 
parameters and the computational complexity can be reduced, because all the probability 
density functions are tied together, thus providing a good compromise between detailed 
acoustic modeling and trainability. 

In practice, because Mis large, Eq. (8.59) can be simplified by using the L most sig­
nificant values /(x I o4 ) for each x without affecting the performance. Experience has 
shown that values of L in the range of 1-3% of M are adequate. This can be conveniently 
obtained during the VQ operations by sorting the VQ output and keeping the L most signifi­
cant values. Let 7](x) denote the set of L VQ codewords that has the largest /(x Io*) for the 
given x. Then we have: 

bix) = L /(x I 0,1- )b/k) (8.60) 

kelj(x) 

Since the number of mixture components in 7](x) is of lower order than M, E~. (8.60) 
can significantly reduce the amount of computation. In fact, 'T](x) is the key to ~nd~e the 
gap between the continuous and discrete HMM. If 7](x) contains only the most significant 
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/(x I 0*) (i.e., only the closest codeword to x), the semicontinuous HMM degenerates to th 
discrete HMM. On the other hand, a large VQ codebook ~an be used such that each Mark e 
state could contain a number of its own codewords (a mixture of probability densit fu ov 
tions) The discrete output probability b;;(k) thus becomes the mixture weights tioy nc-

. ' . . r each 
state. This would go to the other extreme, a standard cont1_nuou~ mixture density mOdel. We 
can also define T](x) in such a way that we can have partial tymg of f (x I ok) for different 
phonetic classes. For example, we can have a phone-dependent codebook. 

When we have a tied VQ codebook, re-estimation of these mean vectors and co . 
ance matrices of different models will involve interdependencies. If any observation 

1 
v:­

matter what model it is designated for) has a large value of posterior probability r (;· k) ~t 
0 0 ~I I , l 

will have a large contribution on re-est1mat1on of parameters of codeword ot . We can com-
pute the posterior probability for each codeword from (,(J,k) as defined in Eq. (8.57). 

{,(k)=p(x, =o. IX,cl>)= lJ,(J,k) 
j 

(8.61) 

The re-estimation fonnulas for the tied mixture can be written as: 

T 

LS, (k)x, 
,. /;( µ* = -----'-r __ _ 

L,{, (k) 
(8.62) 

,,.. 

T 

LS, (k)(x1 -µ.k)(x, -µ.k)' 
~ -..:..';-'-'--------"-t - T (8.63) 

2J, (k) ,.,. 

8.4. PRACTICAL ISSUES IN USING HMl\1s 

~hile the HMM provides a solid framework for speech modeling, there are a number ~f 
issues you need to understand to make effective use of spoken language processing. In this 
section we point out some of the key issues related to practical applications. For expedience, 
we mostly use the discrete HMM as our example here. 

8.4.1. Initial Estimates 

1~ th_eory, the re-estimation algorithm of the HMM should reach a local maximum for !he 
hkehhood function. A key question is how to choose the fioht initial estimates of che HMM 
parameters so that the local maximum becomes the global i::aximum. 
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In the discrete HMM, if a probability is initialized to be zero, it will remain zero for­
ever. Thus, it is i_mportant to have a reasonable set of initial estimates. Empirical study has 
shown that, for discrete HMMs, you can use a uniform distribution as the initial estimate. It 
works reasonably well for most speech applications, though good initial estimates are al­
ways helpful to compute the output probabilities. 

If continuous mixture density HMMs are used, good initial estimates for the Gaussian 
density functions are essential. There are a number of ways to obtain such initial estimates: 

• You can use the k-means clustering procedure, as used in vector quantization 
clustering. The Markov state segmentation can be derived from the discrete 
HMM, since it is not very sensitive to the initial parameters. Based on the 
segmented data, you can use the k-means algorithm to derive needed Gaus­
sian mean and covariance parameters. The mixture coefficients can be based 
on the unifonn distribution. 

• You can estimate the semicontinuous HMM from the discrete HMM. You 
simply need to estimate an additional covariance matrix for each VQ code­
word and run an additional four or five iterations to refine the semi­
continuous HMM based on the discrete HMM, which typically requires four 
or five iterations from the uniform distribution. When the semi-continuous 
HMM is trained, you take the top M codewords, and in each Markov state use 
them as the initial Gaussian density functions for the continuous density mix­
ture model. 

• You can start training a single mixture Gaussian model. You can compute the 
parameters from previously segmented data. You can then iteratively split the 
Gaussian density function in a way similar to VQ codebook generation. You 
typically need two or three iterations to refine the continuous density after 
each splitting. 

8.4.2. Model Topology 

Speech is a time-evolving nonstationary signal. Each HMM state has the ahi~ity to capture 
some quasi-stationary segment in the non-stationary speech signal. A lef~-to-nght topology, 
as illustrated in Figure 8.8, is a natural candidate to model the speech signal. It has ~ self­
transition to each state that can be used to model contiguous speech features belonging to 
the same state. When the quasi-stationary speech segment evolves. the left-to-right transition 
enables a natural progression of such evolution. In such a topology, each state has a state­
dependent output probability distribution that can be used to interpret the observ~ble speech 
signal. This topology is, in fact, one of the most popular HMM s~ctures use~ m s~te-of­
the-art speech recognition systems. The output proba?ility distribution can be either discrete 

distributions or a mixture of continuous density functtons. 
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For the left-to-right HMM, the most important parameter in determining th 
. e topolo 

is the number of states. The choice of model topology depends on available tr . . gy 
. am1ng d 

and what the model is used for. If each HMM 1s used to represent a phone, you need ata 
at )east three to five out~ut distributi~ns. If such a mod~I !s used to represent a wor~~ ::e 
states are generally reqmred, depending on the pronunciation and duration of the w d re 
example, the word tetrahydrocannabino should have a large number of states in co or ·. For 

mpanson 
to the word a. You may use at least 24 states for the former and three states for the Ian 
you have the number of states depending on the duration of the signal, you may want t er. Jf 
15 to 25 states for each second of speech signal. One exception is that, for silence, youo use 
want to have a simpler topology. This is because silence is stationary, and one or two 

5
:ay 

will be sufficient. tes 

0 00 
all 0 22 

0 
ao1 IQ a,, 

.. v 2 

I I I I I I I I I I I I I I I I I 11 

b0 (k) bi (k) b2 (k) 

Figure 8.8 A typical hidden Markov model used to model phonemes. There are three stares 
(0-2) and each state has an associated output probability distribution. 

In practice, it is convenient to define a null transition. This is convenient if we want 10 

simply traverse the HMM without consuming any observation symbol. To incorporate_ ~e 
null arc, you need to slightly modify the basic forward-backward or Viterbi probabili~ 
equations, provided that no loops of empty transitions exist. If we denote the empty transi­
tion between state i and j as a; , they need to satisfy the following constraints: 

(8.64) 

The forward probability can be augmented as follows: 

(8.65) 
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Equation (8.6_5) appears to have a recursion, but it actually uses the value of th 
f ( ") · d d h . · e same 

time column ° a, 1 • prov, e t at I is already computed, which is easily achievable ·r 
· h · · · h i we have left-to-ng t empty transitions wit out loops of empty transitions. 

8.4.3. Training Criteria 

The argument for maximun:i likelihood estimation (MLE) is based on an assumption that the 
true distribution of speech 1s a member of the family of distributions used. This amounts to 
the assertion that the observed speech is genuinely produced by the HMM being used, and 
the only unknown ~arameters are the_ values. However, this can be challenged. Typical 
HMMs make many inaccurate assumptions about the speech production process, such as the 
output-independence assumption, the Markov assumption, and the continuous probability 
density assumption. Such inaccurate assumptions substantially weaken the rationale for 
maximum likelihood criteria. For instance, although maximum likelihood estimation is con­
sistent (convergence to the true value), it is meaningless to have such a property if the wrong 
model is used. The true parameters in such cases will be the true parameters of the wrong 
models. Therefore, an estimation criterion that can work well in spite of these inaccurate 
assumptions should offer improved recognition accuracy compared with the maximum like­
lihood criterion. These alternative criteria include the MCE and MMIE, as discussed in 
Chapter 4. Finally, if we have prior knowledge about the model distribution, we can employ 
the Bayes' method such as MAP that can effectively combine both the prior and posterior 
distributions in a consistent way, which is particularly suitable for adaptation or dealing with 
insufficient training data. 

Among all these criteria, MLE remains one of the most widely used, because of its 
simplicity and superior performance when appn;>priate assumptions are made about the sys­
tem design. MCE and MMIE work well for small- to medium-vocabulary speech recogni­
tion (2, 26, 36]. You can train a number of other iterations based on the ML estimates. 
Neither MCE nor MMIE has been found extremely effective for large-vocabulary speech 
recognition. However, it is possible to combine the MMIE or MCE model with the MLE 
model for improved performance. This is because the error patterns generated from these 
different models are not the same. We can decode the test utterance with these different 
models and vote for the most consistent results (15, 25] . We discuss MAP methods in Chap­
ter 9, since it is mostly helpful for speaker adaptive speech recognition. 

8.4.4. Deleted Interpolation 

For improved robustness, it is often necessary to combine well trained general ~odels (such 
as speaker-independent) with those that are less well trained but more det~i_led (such as 
speaker-dependent). For example, you can typically improve speech re~ogmtion accuracy 
with speaker-dependent training. Nevertheless, you may not have suffic~ent data for a par­
ticular speaker so it is desirable to use a speaker-independent model that is more_general but 
less accurate to smooth the speaker-dependent model. One effective way to achieve robust-
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ness is to interpolate both models with a technique called deleted interpolation i h' 
. . d . a] 'd . d ' n W ICh th interpolation weights are esumate usmg cross-v I at1on ata. The objective funcf . e 

maximize the probability of the model generating the held-out data. •on Is to 

Now, let ~s assu~e that we w~~ to i~te:Pol~te two sets ~f models, Pix) and p 
which can be either discrete probability d1stnbut1ons or continuous density funcr ,(x), 
fonn an interpolated model Pm(x). The interpolation procedure can be expressed•ons~ to 

as 1ol-
lows: 

Pm(x) =APA(x)+(I-A)P8 (x) (8.66) 

where the interpolation weight ). is what we need to derive from the training data. 
Consider that we want to interpolate a speaker-independent model Pix) with a 

speaker-dependent model P8 (x). If we use speaker-independent data to estimate the 
interpolation weight, we may not capture needed speaker-specific infonnation that should be 
reflected in the interpolation weights. What is worse is that the interpolation weight for the 
speaker-independent model should be equal to 1.0 if we use the same speaker-independent 
data from which the model was derived to estimate the interpolation weight. This is because 
of the MLE criterion. If we use speaker-dependent data instead, we have the weight for the 
speaker-dependent model equal 1.0 without achieving the desired smoothing effect. Thus 
the interpolation weights need to be trained using different data or deleted data with the so 
called cross-validation method. 

We can have the training data nonnally divided into M parts, and train a set of P_i1) 
and Ps(x) models using the standard EM algorithm from each combination of M-l parts, 
with the deleted part serving as the unseen data to estimate the interpolation weights ). . 
These M sets of interpolation weights are then averaged to obtain the final weights. 

ALGORITHM 8.5: DELETED INTERPOLATION PROCEDURE 

Step 1: Initialize ). with a guessed estimate. 

Step 2: Update l by the following formula: 

• l M :i, ),,p (xi) 
A,::-Ll.. A-} I 

M /21 ,., ).PA_J(x{) + (1 -;t )Ps_/x;) 
(8,67) 

where PA_/x{) and P
8
_j(x{) is Pix) and P

8
(x) estimated by the entire training corpus 

except part j, the deleted part, respectively; n j is the total number of data points in part j that 

have been aligned to estimate the model· and xj indicates the t-th data point in the }th set of 
I I 

the aligned data. 

Step 3· If th A • • • • go to • e new value 1. 1s sufficiently close to the previous value 1 , stop. Otherwise, 
Step 2. 

Amazon/VB Assets 
Exhibit 1012 

Page 428



Practical Issues in Using HMMs 
403 

In fact, the interpolation weights in Eq. (8.66) are similar to the Gaussian mixture 
weights, although P,i(x) and Pa(x) may not be Gaussian density functions. When we have 
M sets of data, we can use the same EM algorithm to estimate the interpolation weights as 
illustrated in Algorithm 8.5 . 

. The deleted interpolatio~ pr~ced~re descri?e~ above can be applied after each training 
iteration. Then, for the followmg iteration of trammg, the learned interpolation weights can 
be used as illustrated in Eq. (8.66) to compute the forward-backward paths or the Viterbi 
maximum path. We can also have more than two distributions interpolated together. Deleted 
interpolation has been widely used in both acoustic and language modeling where smooth­
ing is needed. 

8.4.5. Parameter Smoothing 

One simple reality for probabilistic modeling is that as many observations as possible are 
required to reliably estimate model parameters. However, in reality, only a finite amount of 
training data is available. If the training data are limited, this will result in some parameters 
being inadequately trained, and classification based on poorly trained models will result in 
higher recognition error rate. There are many possible solutions to address the problem of 
insufficient training data: 

• You can increase the size of the training data. There is no data like more 
data. 

• You can reduce the number of free parameters to be re-estimated. This has its 
limitations, because a number of significant parameters are always needed to 
model physical events. 

• You can interpolate one set of parameter estimates with another set of pa­
rameter estimates, for which an adequate amount of training data exists. De­
leted interpolation, discussed in Section 8.4.4, can be used effectively. I~ ~e 
discrete HMM, one simple approach is to set a floor to both the trans1t100 
probability and the output probability in order to eliminate possible zer~ _es­
timates. The same principle applies to the SCHMM as well as _the m1xmg 
coefficients of the continuous density HMM. Parameter floonng can be 
regarded as a special case of interpolation with the uniform distribution. 

• You can tie parameters together to reduce the number of free parameters. The 
SCHMM is a typical example of such parameter-tying techniques. 

For the continuous mixture HMM, you need to pay extra attention to smoothing the 
covariance matrices. There are a number of techniques you can use: 

. . · h th e that are better trained or • You can interpolate the covanance matnx wit os 
a priori via the MAP method. 
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• You can tie the Gaussian covariance matrices across different . . ~~~~ 
ponents or across different Markov states. A very general shared O _m. 
density model is discussed in [20]. auss1an 

• You can use the diagonal covariance matrices if the correlation amo 
ffi . . ak h' h . h 'f ng fea. ture coe 1c1ents 1s we , w 1c 1s t e case I you use uncorrelated ~ 

such as the MFCC. eatures 

• You can combine these methods together. 

In practice, we can reduce the speech recognition error rate by 5-20% with v . 

h. h · d d' h ·1 bl f · · anous smoot mg tee 01ques, epen mg on t e ava1 a e amount o trammg data. 

8.4.6. Probability Representations 

When we compute the forward and backward probabilities in the forward-backward algo­
rithm, they will approach zero in exponential fashion if the observation sequence length, r, 
becomes large enough. For sufficiently large T, the dynamic range of these probabilities will 
exceed the precision range of essentially any machine. Thus, in practice, it will result in un­
derflow on the computer if probabilities are represented directly. We can resolve this im­
plementation problem by scaling these probabilities with some scaling coefficient so tha1 
they remain within the dynamic range of the computer. All of these scaling coefficients can 

be removed at the end of the computation without affecting the overall precision. 
For example, let a 1 (i) be multiplied by a scaling coefficient, S1 : 

S
1 

= I/ I, a, (i) (8.68) 
f 

so that I,s,a,(i) = 1 for 15 t ~ T. f3
1 
(i) can also be multiplied by S1 for 1 :S t :ST. The 

i 

recursion involved in computing the forward and backward variables can be scaled at ea~! 
stage of time t by S,. Notice that a (i) and {3 (i) are computed recursively in expon~nll 

I I ( ') S 
fashion; therefore, at time t, the total scale factor applied to the forward variable a, 1 1 

I 

Sea/ea (I)= TIS,. (8.69) 

k=I 

and the total scale factor applied to the backward variable /3
1 
(i) is 

(8.10) 

kat 

. . . the forWard 
This 1s because the individual scaling factors are multiplied together m . scaled 

and backward recursion. Let a; (i), 13; (i), and y;(i.j) denote their correspond1"g 
variables, respectively. Note that 
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La;(i) = Scalea(T) l',ar(i) = Scalea(T)P(X J cl>) 
I i 

The scaled intermediate probability, y; (i,j). can then be written as: 

'(" ")- Scalea(t-1)a,_1 (i)a/Jb1(X,)/3,(J)Scalef1(1) 
Y, z,J - ., = Y, (i,J) 

Scalea(T) L,Ctr(i) 
ic l 

405 

(8.71) 

(8.72) 

Thus, lhe intermedi~te probabi~ities can be used in the same way as the unscaled prob­
abililies, because the scaling factor 1s cancelled out in Eq. (8.72). Therefore, re-estimation 
formulas can be kept exactly except that P(X I <I>) should be computed according to 

P(X I <I>)= I,a;(i) I Scalea(T) (8.73) 
I 

In practice, the scaling operation need nol be performed at every observation time. It 
can be used at any scaling interval for which the underflow is likely to occur. In the un­
scaled interval, Scalea can be kept as unity. 

An alternative way to avoid underflow is to use a logarithmic representation for all the 
probabilities. This not only ensures that scaling is unnecessary, as underflow cannot happen, 
but also offers the benefit that integers can be used to represent the logarithmic values, 
thereby changing floating point operations to fixed point ones, which is particularly suitable 
for Viterbi-style computation, as Eq. (8.25) requires no probability addition. 

In the forward-backward algorithm we need to have probability addition. We can keep 
a table on logb P2 - logb P1• If we represent probability P by logb P, more precision can be 
obtained by setting b closer to unity. Let us assume that we want to add P1 and P2 and that 
P1 ~ P1 . We have: 

logb(P1 + P2 ) = logb P1 + logb(l +b 10
gh P2-

108
h fl) (8.74) 

If P2 is many orders of magnitude smaller than P1• adding the two numbers will just 
result in P1• We could store all possible values of logb(l + b'.) in a table. Using logarithms 
introduces errors for addition operation. In practice, double-precision float representation 

can be used to minimize the impact of the precision problems. 

8.5. HMM LIMITATIONS 

There are a number of limitations in the conventional HMMs. For example, HMMs assume 
the duration follows an exponential distribution, the transition probability depends only on 
the origin and destination, and all observation frames are dependent only on the state that 
generated them, not on neighboring observation frames. Researchers have propo_se~ a num­
?er of techniques to address these limitations, albeit these solutions have not significantly 

improved speech recognition accuracy for practical applications. 
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8.5.1. Duration Modeling 

One major weakness of conventional HMMs is that they do not provide an adequate 
f h Th

. . b . . repre-
sentation of the temporal structure o speec . 1s 1s ecause the probability of state 
pancy decreases exponentially w!t? time as sh_o~n in E~. (8.75). The probability~~u; 
consecutive observations in state 1 1s the probab1hty of takmg the self-loop at state ; for 1 

times, which can be written as 

d;(t) = a;;(l-a;;) 

g----+:,g,_____ 
2 
(a) 

3 

.. .. --·---- ............ ··-... _ ..... -· ·---.. 
, ,;:_ J\.,r\ - -~~-, ~ . r\ ~;:...-..~. ()-+Q·,, 
t ~ ~~ ~---.--v ,., 
', .. _ .. _ -----___ ....... .... ~ _, ' , ..... ..... ----·-· --. -. . __ , .. .... .. ---.. _ ...... ---· .. 

2 
(b) 

3 

(8.75) 

Figure 8.9 A standard HMM (a) and its corresponding explicit duration HMM (b) where the 
self transitions are replaced with the explicit duration probability distribution for each state. 

An improvement to the standard HMM results from the use of HMMs with an expl!cit 
time duration distribution for each state [30, 39]. To explain the principle of time dura~on 
modeling, a conventional HMM with exponential state duration density and a time ~urauon 
HMM with specified state duration densities (which can be either a discrete distribuuon or a 
continuous density) are illustrated in Figure 8.9. In (a), the state duration probability ~as an 
exponential form as in Eq. (8.75). In (b), the self-transition probabilities are replaced w~tb an 

I. · d · · · d ratton -r exp 1c1t uration probability distribution. At time t the process enters state I tor u 
'th b b'l' · ' x re gener-wi pro a 1 1ty density d; ( T), during which the observations X,+P X,+2 .. · i+r a . e -r 

ated. It then transfers to state j with transition probability a .. only after the appropnat . 
b · h 1J ·1·iv density 

0 servahons ave occurred in state i. Thus, by setting the time duration probabi 1'' . lent 
to be the exponential density of Eq. (8.75) the time duration HMM can be made equ1va .th 
to the standard HMM. The parameters d -(-r) can be estimated from observations along wt d 
the 0ther _parameters of the HMM. For :xpedience, the duration density is usually ~nc~te 
at a maximum d f al .-n.nA with ume . ura ion v ue Td. To re-estimate the parameters of the mvun 
duration modeling the " d · . 

, 1orwar recursion must be modified as follows: 
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r 

a,())= 2, I,a,-rU}a!idJ(r)IT b1 (X,_r+i) 
r i,i"l'J 1=1 

(8.76) 

where the transition from stat~ i to_ state j depends not only upon the transition probability 
a!i but also upon all the possible _t'.me periods r that may occur in state j. Intuitively, Eq. 
(8.76) illustrates that when state J 1s reached from previous states i, the observations may 
stay in state j for a period of r with duration density d. ( -r). and each observation emits its 
own output probability. All possible durations must b/considered, which leads to summa­
tion with respect to r. The independence assumption of observations results in the n term 
of the output probabilities. Similarly, the backward recursion can be written as: 

r 

/3, (i) = I, L aijdJ('r) IJ b1 (X1+1 )/3r+r (j) (8.77) 
r j,j"l'i l=I 

The modified Baum-Welch algorithm can then be used based on Eq. (8.76) and (8.77). 
The proof of the re-estimation algorithm can be based on the modified Q-function except 
that P(X, Sl<l>) should be replaced with P(X,S, Tl<l>), which denotes the joint probability of 
observation, X, state sequence, S = { s1 ,s2 •• • ,sk ... sN,} in terms of state s1i with time dura­
tion r k, and the corresponding duration sequence, T = { r 1 , r 2 , ••• r k ••• r N, } . 

Q(<l>,<I>) = 1 
2iLP(X,S, T l<l>)logP(X,S, T l<I>) 

P(Xl<l>) T s 
(8.78) 

In a manner similar to the standard HMM, y r,r (i,J) can be defined as the transition 
probability from state i at time t to state j with time duration r in state j. r r;r (i,j} can be 
written as: 

T N 

r,,r(i,j) = a,(i)a;;d/-r)IJ hlX,+I )/3,+rU)I lar(k) (8.79) 

~, ·~ 
Similarly, the probability of being in state j at time t with duration r can be computed 

as: 

r,.r U) = I r,.r u, 1) (8.80) 

I 

· · · b d · d f Eq (8 80} the Viterbi decoding al-The re-est1matl0n algonthm can e enve rom · · , . 
· · · d J d the optimal path can be detennmed gonthm can be used for the tune duration mo e , an 

according to: 

T 

~(j) = M~x Max[V,_r(i)aiid/-r) IT b/X,-T+I )] 
I r /ml 

(8.81) 

. d t' modeling discussed here. One is There are drawbacks to the use of the time ura 10n ? D . th u· 
. f f O(D-) where 1s e me the great increase in computational complexity by a actor O • 
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duration distribution length. Another problem is the large number of additional 
D that must be estimated. One proposed remedy is to use a continuous density iar~et~rs 

· d · · b · d ( ) nction 1n stead of the discrete 1stn ut1on 1 'l' . • 

In practice, duration models offer only modest improvement for speaker-i d 
. . M 1· . h n ependent continuous speech recogmtton. any systems even e 1mmate t e transition probabT 

th b b·1·. d . N t ltycorn pletely because e output pro a I mes are so ommant. evertheless, duration inti . · 
is very effective for pruning unlikely candidates during the large-vocabulary speechonnatio~ 

. recogn1• tion decodmg process. 

8.5.2. First-Order Assumption 

As you can see from the previous section, the duration of each stationary segment captured 
by a single state is inadequately modeled. Another way to alleviate the duration problem is 
to eliminate the first-order transition assumption and to make the underlying state sequence 
a second-order Markov chain [32]. As a result, the transition probability between two states 
at time t depends on the states in which the process was at time t-1 and t-2. For a given state 
sequence S = {s1.s2 •••• sT}, the probability of the state should be computed as: 

(8.82) 

where as
1
_

211
_

1
s, = P(s,ls,_2s,_1) is the transition probability at time t, given the two-order 

state history. The re-estimation procedure can be readily extended based on Eq. (8.82). For 
example, the new forward probability can be re-defined as: 

a,(J,k)=P(X{,s,_1 =j,s, =kl.:l)e:::: I,a,_1(i,j)aijkbk(X,) (8.83) 

where aiJk = P(s1 = kls,_2 = i, s1_ 1 = j). Similarly, we can define the backward probability 
as: 

f3t(i,J)=P(X,:11s,_1 =i,s, =j,.:l)= L,aijkbk(X,+1)/3,+1(},k) (8-84) 
k 

With Eq. (8.83) and (8.84), the MLE estimates can be derived easily based on !he 
modified r,(i,j,k): 

y,(i,j,k)=P(s,_1 =i,s, =j,s,+1 =k,Xl<l>) (8.85) 

=a, (i,j)aijk bk (X,+1 )/3,+1 (j, k) I P(Xl<l>) 
. we have 10 

In practice, the second-order model is computationally very expenst_ve as fi c-order 
consider the increased state space which can often be realized with an eqmvalen~ ·~ti antlY 
h'dd M ' ffered s1gnt ic 
. 

1 en arkov model on the two-fold product state space. It has_ not O Jicauoos. 
improved accuracy to justify its increase in computational complexity for most app 
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8.5.3. Conditional Independence Assumption 

The third major weakness in HMMs is that all observation fra d d . . mes are epen ent only on the 
state that generated them, not on ne1ghbonng observation frames Th d' · 1 . . _ . . . . e con 1t10na mdepen d-
ence assumpt10n makes 1t hard to effectively handle nonstat,·on f h ary rames t at are strongly 
correlated. There are a number of ways to alleviate the condt't'ional · d d . , m epen ence assumption 
[34]. For example, we can a~sume the output probability distribution depends not only on 
the state but also on the previous frame. Thus the probability of a g,·ven t t 
be rewritten as: 

· s a e sequence can 

T 

P(XIS, ¢)=IT P(X, IX,_1,s,, <J>) (8.86) 
t== I 

As the parameter space becomes huge, we often need to quantize X1-1 into a smaller 
set of codewords so that we can keep the number of free parameters under control. Thus, Eq. 
(8.86) can be simplified as: 

T 

P(X /S,<J>) = I] P(X, / 9t(X,_1),s,,<I>) (8.87) , .. , 
where 9t( ) denotes the quantized vector that has a small codebook size, L. Although this 
can dramatically reduce the space of the free conditional output probability distributions, the 
total number of free parameters will still increase by L times. 

The re-estimation for conditional dependent HMMs can be derived with the modi­
fied Q-function, as discussed in the previous sections. In practice, it has not demonstrated 
convincing accuracy improvement for large-vocabulary speech recognition. 

8.6. HISTORICAL PERSPECTIVE AND FURTHER READING 

The Markov chain was named after Russian scientist A. Markov for his pioneering work in 
analyzing the letter sequence in the text of a literary work in 1913 [33]. In the 1960s, Baum 
and others further developed efficient methods for training the model parameters [4, 5]. 
When the observation is real valued, the use of continuous or semi•continuous HMMs can 
improve the overall performance. Baum et al. also developed the method to use continuous 
density functions that are strictly log concave [5], which was relaxed by Liporace [31] and 
expanded by Juang to include mixture density functions [27]. 

The Viterbi algorithm shares the same concept that was independently discovered by 
researchers in many separate fields [28], including Vintsyuk [42], Needleman and Wunsch 
[35], Sankoff [41], Sakoe and Chiba [40], and Wagner and Fischer [44). 

Jim Baker did his Ph.D. thesis under Raj Reddy at Carnegie Mellon using HMMs for 
speech recognition [3]. At the same time Fred Jelinek and his colleagues at IBM Research 
pioneered widespread applications [23]. Since the 1980s, partly because of the DARPA-
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funded speech projects, HMMs have become a mainstream technique for modelings 
as exemplified by advanced systems developed at BBN, Bell Labs, Carnegie M •11 iJCech, 

. . e on, IBM 
Microsoft, SRI, and others [9, 17, 29, 46]. The Ph.D. theses from Kai-Fu Lee [291 H . · 
Wuen Hon [16]. and Mei-Yuh Hwang [22] at Carnegie Mellon addressed many.' sia0-

. 1 . . . HMM ~ h . . Th IOlJ)Onam pracuca issues m usmg s ,or speec recognition. ere are also a number of 
books on the practical use of HMMs [ 18, 24, 38, 45]. gOOd 

The choice of different output probabilities depends on a number of fa::tors such 
availability of training data, the feature characteristics. the computational complexityas lhe 
the number of free parameters [191 [34]. The semi-continuous model, also known ' :d 
tied-mixture model, was independently proposed by Huang and Jack [21] and Belle~ de 
and Nahamoo [6]. Other improvements include explicit duration modeling [l, 11, 13, 14~; 
39], high--order and conditional models [7, 32, 34], which have yet to be shown effective fo' 
practical speech recognition. r 

Both Carnegie Mellon University's open speech software' and Cambridge Univer­
sity's HTK5 are a good starting point for those interested in using the existing tools for run­
ning experiments. 

HMMs have become the most prominent techniques for speech recognition today. 
Most of the state-of-the-art speech recognition systems on the market are based on HMMs 
described in this chapter. 
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---·------------~ 
CHAPTER 9 

Acoustic Modeling 

After years of research and development, ac­
curacy of automatic speech recognition remains one of the most important research chal­
lenges. A number of well-known factors detennines accuracy; those most noticeable are 
~~ations in context, in speaker, and in environment. Acoustic modeling plays a critical role 
m improving accuracy and is arguably the central part of any speech recognition system. 
fi For the given acoustic observation X = X

1
X

2 
... Xn, the goal of speech recognition is to 

md out the corresponding word sequence W = w w, ... w that has the maximum posterior 
probability P(WI X) as expressed by Eq. (9.1). 

1 
- m . 

Wa:argmaxP(WIX)=ar max P{W)P(XIW) (9.1) 
"' g... P(X) 

Since the maximization of Eq. (9.1) is carried out with the observation X fixed, the 
above maxi . . . . - . 

mizanon 1s equivalent to maximization of the followmg equauon. 

415 
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W = arg max P(W)P(X I W) 
w (9.2) 

The practical challenge is how to build accurate acoustic models, P(XI W), and Ian 
guage models, P(W), that can truly reflect the spoken language to be recognized. For 1 • 
vocabulary speech recognition, since there are a large number of words, we need 10 de arge­
~ose a word into a subword se~uence. Thus P(X I W) is ~l~sely related to phonetic m::: 
mg. P(X I W) should take mto account speaker vanat1ons, pronunciation variation 
environmental variations, and context-dependent phonetic coarticulation variations. Last, b~; 
not least, any static acoustic or language model will not meet the needs of real applications. 
So it is vital to dynamically adapt both P(W) and P(X I W) to maximize P{WI X) while 
using spoken language systems. The decoding process of finding the best word sequence w 
to match the input speech signal X in speech recognition systems is more than a simple pat­
tern recognition problem, since in continuous speech recognition you have an infinite num­
ber of word patterns to search, as discussed in detail in Chapters 12 and J 3. 

In this chapter we focus on discussing solutions that work well in practice. To high­
light solutions that are effective, we use the Whisper speech recognition system [49) devel­
oped at Microsoft Research as a concrete example to illustrate how to build a working 
system and how various techniques can help to reduce speech recognition errors.1 We hope 
that by studying what worked well in the past we can illuminate the possibilities for funher 
improvement of the state of the art. 

The hidden Markov model we discussed in Chapter 8 is the underpinning for acoustic 
phonetic modeling. It provides a powerful way to integrate segmentation, time warping, 
pattern matching, and context knowledge in a unified manner. The underlying technologies 
are undoubtedly evolving, and the research community is aggressively searching for more 
powerful solutions. Most of the techniques discussed in this chapter can be readily derived 
from the fundamentals discussed in earlier chapters. 

9.1. V ARIABil.,ITY IN THE SPEECH SIGNAL 

The research community has produced technologies that, with some constraints, can accu­
rately recognize spoken input. Admittedly, today's state-of-the-art systems still cannot 
match humans' performance. Although we can build a very accurate speech recognizer for 3 

parti~ular speaker, in a particular language and speaking style, in a particular environment. 
and lunited to a particular task, it remains a research challenge to build a recognizer tbat ~an 
:ss~ntially_ understand anyone's speech, in any language, on any topic, in any free-flowing 
ty e, and m almost any speaking environment. 

• Most of the experime tal I 60 000 word speak.et· 
independent . n . resu ts used here are based on a development test set for the , · _., rs Toe 

continuous dictati k T . . bo 300 speue · 
test set consists f 410 on laS • he trammg set consists of 35,000 unerances from a ut model is 
derived from 2 b~lli utterances from 10 speakers that were not used in the training data. The Iaoguage 

i on Words of English text corpora. 

Amazon/VB Assets 
Exhibit 1012 

Page 442



Variability in the Speech Signal 
417 

Acc~racy and robustness are the ultimate 1~e~sures for the success of speech recogni­
tion algonthms. There are m~y reasons why existing algorithms or systems did not deliver 
what people want. In the sections that follow we summarize the major factors involved. 

9,1.1. Context Variability 

Spoken language interaction between people requires knowledge of word meanings, com­
munication context, and common s_ense. ~o~ds with widely different meanings and usage 
patterns may have the same phonetic realtzat1on. Consider the challenge represented by the 
following utterance: 

Mr. }f[jgh1. should write to Ms. Wright right away about his Ford or four door 
Honda. 

For a given word with the same pronunciation, the meaning could be dramatically dif­
ferent, as indicated by Wright, write, and right. What makes it even more difficult is that 
Ford or and Four Door are not only phonetically identical, but also semantically relevant. 
The interpretation is made within a given word boundary. Even with smart linguistic and 
semantic information, it is still impossible to decipher the correct word sequence, unless the 
speaker pauses between words or uses intonation to set apart these semantically confusable 
phrases. 

In addition to the context variability at word and sentence level, you can find dramatic 
context variability at the phonetic level. As illustrated in Figure 9.1, the acoustic realization 
of phoneme /eel for word peat and wheel depends on its left and right context. The depend­
ency becomes more important in fast speech or spontaneous speech conversations, since 
many phonemes are not fully realized. 
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Tim e (se c onds) 

• (I ft) and wheel (right). The phoneme 
Figure 9.1 Waveforms and spectrograms for w_ords peal e Th" ·11 tr t s that different con-
/ ee/ is illustrated with two different left and nght contexts. 15 1 us a e 

texts may have different effects on a phone. 
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9.1.2. Style Variability 

To deal with acoustic realization variability, a number of co~straints can be imposed on the 
use of the speech recognizer. For example, we can have an isolated speech recognition sys. 

tern in which users have to pause between each word. Because the pause provides a 1 , . . . h c ear 
boundary for the word, we can easily ehm1_nate errors sue as Ford or and/our door. In ad. 
dition, isolated speech provides a ~orrect s1~en~e context to _eac~ word so that it is easier to 
model and decode the s~eech, leading to a s1~?1ficant reduction m _computational complexity 
and error rate. In practice, the word-recogmt1on error rate of an isolated speech recognizer 
can typically be reduced by more than a factor of three (from 7% to 2%) as compared with 
to a comparable continuous speech recognition system [5]. The disadvantage is that such an 
isolated speech recognizer is unnatural to most people. The throughput is also significantly 
lower than that for continuous speech. 

In continuous speech recognition, the error rate for casual, spontaneous speech, as oc­
curs in our daily conversation, is much higher than for carefully articulated read-aloud 
speech. The rate of speech also affects the word recognition rate. It is typical that the higher 
the speaking rate (words/minute), the higher the error rate. If a person whispers, or shouts, 
to reflect his or her emotional changes, the variation increases even more significantly. 

9.1.3. Speaker Variability 

Every individual speaker is different. The speech he or she produces reflects the physical 
vocal tract size, length and width of the neck, a range of physical characteristics, age, sex, 
dialect, health, education, and personal style. As such, one person's speech patterns can be 
entirely different from those of another person. Even if we exclude these interspeaker differ­
ences, the same speaker is often unable to precisely produce the same utterance. Thus, the 
shape of the vocal tract movement and rate of delivery may vary from utterance to utterance, 
even with dedicated effort to minimize the variability. 

For speaker-independent speech recognition, we typically use more than 500 spe~ers 
to build a combined model. Such an approach exhibits large performance fluctua~~os 
among new speakers because of possible mismatches in the training data between exiung 
~peakers and new ones [50]. In particular, speakers with accents have a tangible error-rate 
increase of 2 to 3 times. 

T " · W~ ~ improve the performance of a speaker-independent speech recognizer, a num 
co~Slramts can be imposed on its use. For example, we can have a user enrollment tti_a1.t 
quires the user to speak for about 30 minutes. With the speaker-dependent data and tram• .8' 
w_e may be able to capture various speaker-dependent acoustic characteristics that can sig­
nificantly improve the speech recognizer's performance. In practice, speaker-depeoctednt 
speech recognition o" 1 · . d d s1·nce deco · . uers not on y improved accuracy but also improve spee • _ 
mg can be mo ffi · · · I speaker re e tcient with an accurate acoustic and phonetic model. A typica 
dependent speech · · b more than recogmtion system can reduce the word recognition error Y 
3o% as compared with a comparable speaker-independent speech recognition system. 
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The disadvantage of speaker-dependent speech recognition is that it takes time to col­
lect speaker-dependent data. which may be impractical for some applications such as an 
automatic telephone operator. Ma~~ applications have to support walk-in speakers. so 
speaker-independent sp~ec~ r~cog~1~10~1 remains an important feature. When the amounl of 
speaker-dependent data is h~iled, 11 is important to make use of both speaker-<lependenl and 
speaker-independent' data us1~g speaker-adaptive training techniques, as discussed in Sec­
tion 9.6. Eve_n for speaker-mdep~~dent speech recognition, you can still use speaker­
adaptive trainrng based on recogmt1011 results to quickly adapt to each individual speaker 
during usage. 

9.1.4. Environment Variability 

The world we live in is full of sounds of varying loudness from different sources. When we 
interact with computers, we may have people speaking in the background. Someone may 
slam the door, or the air conditioning may start humming without notice. If speech recogni­
tion is embedded in mobile devices, such as PDAs (personal digital assistants) or cellular 
phones, the spectrum of noises varies significantly because the owner moves around. These 
external parameters, such as the characteristics of the environmental noise and the type and 
placement of the microphone, can greatly affect speech recognilion system performance. In 
addition to the background noises, we have to deal with noises made by speakers, such as lip 
smacks and noncommunication words. Noise may also be present from the input device it­
self, such as microphone and AID interference noises. 

In a similar manner to speaker-independent training, we can build a system by using a 
large amount of data collected from a number of environments: this is referred to as 
11111/tisryle training [70J. We can use adaptive techniques to normalize the mismatch across 
different environment conditions in a manner similar to speaker-adaptive training, as dis­
cussed in Chapter 10. Despite the progress being made in the field, environment variability 
remains as one of the most severe challenges facing today's state-of-the-art speech systems. 

9.2. How TO MEASURE SPEECH RECOGNITION ERRORS 

It is critical to evaluate the performance of speech recognition systems. The word recogni­
tion error rate is widely used as one of the most important measures. When you compare 
different acoustic modeling algorithms, it is important to compare their relative error reduc­
tion. Empirically, you need to have a test data set that contains more than ~00 sent~nces 
(with 6 to 10 words for each sentence) from 5 to 10 different speakers to reliably estimate 
'?e recognition error rate. Typically, you need to have more than I 0%, relative error reduc­
tion to consider adopting a new algorithm. 

h · · d t t meas As a sanity check, you may want to use a small sample from t e trammg a a O -

ure the perfonnance of the training set, which is often much better than what you ca~ get 
f:om testing new data. Training-set perfonnance is useful in the development stage to ide~: 
tify potential implementation bugs. Eventually, you need to use a development ~et that typ 
cally consists of data never used in training. Since you may tune a number of parameters 
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with your development set, it is important to evaluate performance of a test ser after 
decide the optimal parameter setting. The test set should be completely new with You 

. respect to 
both training and parameter tunmg. 

There are typically three types of word recognition errors in speech recognition: 

• Substitution: an incorrect word was substituted for the correct word 

• Deletion: a correct word was omitted in the recognized sentence 

• Insertion: an extra word was added in the recognized sentence2 

For instance, a speech recognition system may produce an incorrect result as follow 
where substitutions are bold, insertions are underlined, and deletions are denoted as *!: 
There are four errors in this example. 

Correct: Did mob mission area of the Copeland ever go to m4 in nineteen eighty one 
Recognized: Did mob mission area ** the copy land ever go to m4 in nineteen east 
one 

To detenTiine the minimum error rate, you can't simply compare two word sequences 
one by one. For example, suppose you have utterance The effect is clear recognized as E(feci 
is not clear. If you compare word to word, the error rate is 75% (The vs. Effect, effect vs. it 
is vs. !1Q1). In fact, the error rate is only 50% with one deletion ( The) and one insertion (!!Qt). 
In general, you need to align a recognized word string against the correct word string and 
compute the number of substitutions (Subs), deletions (Deis), and insertions (Ins). The Word 
Error Rate is defined as: 

Subs+ Deis+ Ins 
Word Error Rate= 100% x -----------­

No. of words in the correct sentenc 
(9.3) 

This alignment is also known as the maximum substring matching problem, which can 
be easily handled by the dynamic programming :\lgorithm discussed in Chapter 8. 

Let the correct word string be w1 w2 • • • w" , where w1 denotes the ith word in th; corre~t 
word string, and the recognized word string be w1 w2 ••• wm, where w; denotes the I wor~ m 
the recognized word string. We denote R[i,j] as the minimum error of aligning substnng 
w, w2 • .. w against substring w w ... w . The optimal alignment and the associated w?rd 

n I '- m . d tnng 
error rate R[n,m] for correct word string w,w, .. ,wn and the recogmzed wor 5. 

w, W2 .. · w., are obtained via the dynamic progra~ming algorithm illustrated in Algonlh: 
9 .1. The accumulated cost function R[i 1·] progresses from R[ 1, l] to R[n, m] correspo~ · 
· ' · ~ rmauon 
mg to the minimum distance from (l I) to (n m). We store the back pointer rn ° . 

· · ' ' the optl· 
B[i, Jl as we move along. When we reach the final grid (n, m), we back trace along as 
mal path to find out if there are substitutions, deletions, or insertions on the matched palh, 
stored in B[i, j]. 

'E . eedstobe ven for isolated spee h .. . . . . th d 1,ounda!Y n 
d . c recogn111on, you may still have the msertton error, smce e wor 

elected m most applic t' I · . . rds a ions. t 1s possible that one isolated utterance is recogruzed as two wo · 
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ALGORITHM 9.1: ALGORITHM TO MEASURE THE IAIOR r 

1 / ·t· ,. t· R[O O] o · rr, D i;;;RROR RATE 
Step : n11a,1za1on , = R[1,J]==coif(i<O) or(j<0) B[O,OJ=O 
Step 2: Iteration 
for i = l, ... , 11 { 

for J= 1, ... ,m { 

R[i-l,j] + 1 (deletion) 

R[i -1, j- l J (match) 

R[i-l,j-lJ+l (substitution) 

R[i,j] = min R[i,J-1]+ l (insertion) 

l if deletion 

2 if insertion 
B[i,j] = 3 if match } } 

4 if substitution 

Step 3: Backtracking and termination 

word error rate =100% x R(n,m) 
n 

optimal backward path= (s1, s2 , ••. ,0) 

l B[i - l,j] if-s,_1 = 1 ] 
where s1 =B[n,m], s, = B[i,j-1] ifs,_1 =2 f~r t=2, ... 

B[ i - I, j - 1] ifs,_ 1 = 3 or 4 _ 

until s, = O 

421 

For applications involved with rejection, such as word confidence measures as dis­
cussed in Section 9.7, you need to measure both false rejection rate and false acceptance 
rate. In speaker or command verification, the false acceptance of a valid user/command is 
also referred to as Type I error, as opposed to the false rejection of a valid user/command 
(Type II) [ 17]. A higher false rejection rate generally leads to a lower false acceptance rate. 
A plot of the false rejection rate versus the false acceptance rate, widely used in communica­
tion theory, is called the receiver operating characteristic (ROC) curve. 

9.3. SIGNAL PROCESSING-EXTRACTING FEATURES 

The role of a signal processing module, as illustrated in Figure 1.2, is to reduce the data rat~, 
to remove noises, and to extract salient features that are useful for subsequent acoustic 
'.11atching. Using as building blocks the topics we discussed in earlier chapters, we briefly 
illustrate here what is important in modeling speech to deal with variations we must address. 
More advanced environment normalization techniques are discussed in Chapter IO. 
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9.3.1. Signal Acquisition 

Today's computers can handle most of the necessary speech signal acquisition tasks· 
. in soft-

~a~e.' For example, m~st PC sound ~ards have d1re~t n:iemory access, and the speech can be 
d1g1t1zed to memory without burdening the CPU with input/output interrupts The op . 

· eratmg 
system can correctly handle most of the necessary AD/DA functions in real time. 

To perform speech recognition, a number of components--such as digitizing spe h 
feature extraction and transformation, acoustic matching, and language model-b:~ 
search-can be pipelined time-synchronously from left to right. Most operating systems can 
supply mechanisms for organizing pipelined programs in a multitasking environment. Buff­
ers must be appropriately allocated so that you can ensure time-synchronous processing of 
each component. Large buffers are generally required on slow machines because of potential 
delays in processing an individual component. The right buffer size can be easily determined 
by experimentally tuning the system with different machine load situations to find a balance 
between resource use and relative delay. 

For speech signal acquisition, the needed buffer typically ranges from 4 to 64 kB with 
16-kHz sampling rate and 16-bit AID precision. In practice, 16-kHz sampling rate is suffi­
cient for the speech bandwidth (8 kHz). Reduced bandwidth, such as telephone channel, 
generally increases speech recognition error rate. Table 9.1 shows some empirical relative 
word recognition error increase using a number of different sampling rates. If we take the 8-
kHz sampling as our baseline, we can reduce the word recognition error with a comparable 
recognizer by about 10% if we increase the sampling rate to 1 I kHz. If we further increase 
the sampling rate to 16 kHz, the word recognition error rate can be further reduced by an 
additional 10%. Further increasing the sampling rate to 22 kHz does not have any additional 
impact on the word recognition errors, because most of the salient speech features are within 
an 8-kHz bandwidth. 

Table 9.1 Relative error rate reduction with different sampling rates. The reduction is relative 
to that of the preceding row. 

Sampling Rate Relative Error-Rate Reduction 

8kHz Baseline 

11 kHz +10% 

16kHz +10% 

22kHz +0% 

9.3.2. End-Point Detection 

To activate h · . ·cherpush 10 
speec signal capture, you can use a number of modes including ei . 

talk or conti l 1. . acuvate or 
nuous Y 1stenmg. The push-to-talk mode uses a special push event to 
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deactivate speech capture, which is immune to the potential b k d . 
f . ac groun noise and can 

eliminate unnecessary use o processing resources to detect speecl Tl . · 1 
1 events. 11s mode some-

times also requires you to pus I and hold whilr talking You push to· ct· h' . 
. . · m !Cate speec s begm-

ning and then release to indicate the end of speech c·ipture The d" d . h . 
. . . • . 1sa vantage 1s t e necessity 

to activate the apphcatmn each time the person speaks. 
The continuously listening model listens all the time and t · 11 d . . · au omat1ca y elects 

whether there 1s a speech signal or not. It needs a so-called sperch end-pvillf d 
1 1 

. h. 
1 I . e ec 01, w 1c 1 

is typically based on. an ex_treme Y efficient two-class pattern classifier. Such a classifier is 
used to filter out ob~1ous silence, b~t the ultimate decision on the utterance boundary is left 
10 the spee_ch recognizer. In _companson to the p~sh-to-talk mode, the continuously listening 
mode requires more processmg resources, also with potential classification errors. 

The endpoint detector is oflen based on an energy threshold that is a function of time. 
The Iogruithm of t~e ene_rgy thr~shold can b~ dynamically generated based on energy pro­
files across a certam penod of time. Constraints on word duration can also be imposed to 
better classify a sequence of frames so that extremely short spikes can be eliminated. 

It is not critical for the automatic end-point detector to offer exact end-point accuracy. 
The key feature required of it is a low rejection rate (i.e., the automatic end-point detector 
should not inteIJJret speech segments as silence/noise segments). Any false rejection leads to 
an error in the speech recognizer. On the other hand, a possible false acceptance (i.e., the 
automatic end-point detector interprets noise segments as speech segments) may be rescued 
by the speech recognizer later if the recognizer has appropriate noise models, such as spe­
cific models for clicks, lip smacks, and background noise. 

Explicit end-point detectors work reasonably well with recordings exhibiting a signal­
to-noise rario of 30 dB or greater, but they fail considerably on noisier speech. As discussed, 
speech recognizers can be used to determine the end points by aligning the vocabulary 
words preceded and followed by a silence/noise model. This scheme is generally much more 
reliable than any threshold-based explicit end-point detection, because recognition can 
jointly detect both the end points and words or other explicit noise classes, but requires more 
computational resources. A compromise is to use a simple adaptive two-class (speech vs. 
silence/noise) classifier to locate speech activities (with enough buffers at both ends) and 
notify the speech recognizer for subsequent processing. For the two-class classifier, we can 
use both the Jog-energy and delta Jog-energy as the feature. Two Gaussian density functions, 
{<l>,,<1>2} =Cl>, can be used to model the background stationary noise and speech, respec­
tively. The parameters of the Gaussian density can be estimated using the labeled speech and 

noise data or estimated in an unsupervised manner. . 
When enough frames are classified as speech segments by the efficient two-c_lass _clas­

sifier, the speech recognizer is notified to start recognizing the signal. As shown 10 Figure 
9.2, we should include enough frames before the beginning frame, lb , for the speech recog­
ni~er to minimize the possible detection error. In the_ ~ame manner, when. enou~h 
noise/silence frames are detected at t we should keep providing the speech recogmzer with 

enough frames for processing befo~~ declaring that the end of the utterance has been 
reached. 
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Figure 9.2 End-point detection boundary lb and tt may need extra buffering for subsequent 
speech recognition. 

Since there are only two classes, these parameters can be dynamically adapted using 
the EM algorithm during runtime. As discussed in Chapter 4, the EM algorithm can itera­
tively estimate the Gaussian parameters without having a precise segmentation between 
speech and noise segments. This is very important, because we need to keep the parameters 
dynamic for robust end-point detection in constantly changing environments. 

To track the varying background noises, we use an exponential window to give weight 
to the most recent signal: · 

wk = exp(-ak) (9.4) 

where a is a constant that controls the adaptation rate, and k is the index of the time. In fac~ 
you could use different rates for noise and speech when you use the EM algorithm to esti­
mate the two-class Gaussian parameters. It is advantageous to use a smaller time constant 
for noise than for speech. With such a weighting window, the means of the Gaussian den­

. sity, as discussed in Chapter 4, can be rewritten as: 

(9.5) 

9.3.3. MFCC and Its Dynamic Features 

Th . . h cognition. 
e extracuon of reliable features is one of the most important issues in speec re 

4 
the 

There are a Jar be . d · Chapter • ge num r of features we can use. However, as d1scusse m 

Amazon/VB Assets 
Exhibit 1012 

Page 450



Signal Processing-Extracting Features 
425 

c11rse-of-dime11si?,iality pr~blem remi_n_ds us that the amount of training data is always lim­
ited. Therefore, mcorporallon of additional features may not lead to any measurable error 
reduction. This does no~ neces~arily mean that the additional features are poor ones, but 
rather that we may have insufficient data to reliably model those features. 

The first feature we use is the speech waveform itself. In general, time-domain fea­
tures are much less accurate than frequency-domain features such as the mel-frequency cep­
stral coefficients (MFCC) discussed in Chapter 6 [23]. This is because many features such as 
formants, useful in discriminating vowels, are better characterized in the frequency domain 
with a low-dimension feature vector. 

As discussed in Chapter 2, temporal changes in the spectra play an important role in 
human perception. One way to capture this information is to use delta coefficients that 
measure the change in coefficients over time. Temporal information is particularly comple­
mentary to HMMs, since HMMs assume each frame is independent of the past, and these 
dynamic features broaden the scope of a frame. It is also easy to incorporate new features by 
augmenting the static feature. 

When 16-kHz sampling rate is used, a typical state-of-the-art speech system can be 
build based on the following features. 

• I 3th-order MFCC ck 

• 13th-order 40-msec l st-order delta MFCC computed from ACk = ck+2 -ct_2 

• 13th-order 2nd-order delta MFCC computed from AACt =ACk+I -ACk-i 

A short-time analysis Hamming window of 25 ms is typically used to compute the 
MFCC c •. The window shift is typically 10 ms. Please note that c. [OJ is included in the 
feature vector, which has a role similar to that of the log power. The feature vector used for 
speech recognition is typically a combination of these features 

(9.6) 

The relative error reduction with a typical speech recognition system is illustrated in 
Table 9.2. As you can see from the table, the 13th-order MFCC outperforms 13th-order L~C 
cepstrum coefficients, which indicates that perceptually motivated mel-scale representauon 
indeed helps recognition. In a similar manner, perceptually based LP~ features .such as PLP 
can achieve similar improvement. The MFCC order has also been studied expenmen~lly for 
speech recognition. The higher-order MFCC does not further reduce the ~rror rate m com­
parison with the 13th-order MFCC, which indicates that the first 13 coeffi~1_ents already con­
tain most salient information needed for speech recognition. In addition to mel-scale 
representation, another perceptually motivated feature s~~h as the firs~- and se~ond-order 
delta features can significantly reduce the word recogmuon error, while the higher-order 

delta features provide no further information. 
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Feature extraction in these experiments is typically optimized together with the 1 . 
f od I. . h h . c ass1• 

fier since there are a number o m e mg assumptions, sue as t e drngonal covan·a . , 1 nee Ill 
the Gaussian density function, that are closely re ated to what features to use. It is po 'b 

. 'f d'f" h . ss, le that these relative error reductions would vary I a 1 1erent speec recognizer were used. 

Table 9.2 Relative error reduction with different features. The reduction is relative 10 that of 
the preceding row. 

Feature Set Relative Error Reduction 

13th-order LPC cepstrum coefficients Baseline 

13th-order MFCC +10% 

16th-order MFCC +O'lo 

+ I st- and 2nd-order dynamic features +20% 

+3rd-order dynamic features +0% 

9.3.4. Feature Transformation 

Before you use feature vectors such as MFCC for recognition, you can preprocess or trans­
form them into a new space that alleviates environment noise, channel distortion, and 
speaker variations. You can also transform the features that are most effective for preserving 
class separability so that you can further reduce the recognition error rate. Since we devote 
Chapter 10 completely to environment and channel normalization, we briefly discuss here 
how we can transform the feature vectors to improve class separability. 

To further reduce the dimension of the feature vector, you can use a number of dimen­
sion reduction techniques to map the feature vector into more effective representations. If 
the mapping is linear, the mapping function is well defined and you can find the coefficients 
of the linear function so as to optimize your objective functions. For example, when you 
combine the first- and second-order dynamic features with the static MFCC vector, you can 
use principal-component analysis (PCA) (also known as Karhunen-Loeve transform) [32J to 
map the combined feature vector into a smaller dimensional vector. The optimum basis vec­
t~rs of ~e _Pri~cipal-comp~nent analysis are the eigenvectors of the covariance ma~x of

3
~ 

gi_ven distnbution. In practice, you can compute the eigenvectors of the autocorrelauon m 
~nx as the basis vectors. The effectiveness of the transfonned vector, in tenns of represent· 
~ng the original feature vector, is determined by the corresponding eigenvalue of each value 
m the vector. You can discard the feature with the smallest eigenvalue, since lhe mean· 
s~uare error between the transfonned vector and the original vector is detennine_d by thr~ 
eigenvalue of each feature in the vector. In addition the transformed feature vector is unco. 
related Th· · · . ' · 'th a d1· · is _15 particularly suitable for the Gaussian probability density function Wt 
agonal covanance matrix. 

The · · HoW· . . recognition error is the best criterion for deciding what feature sets to use.. 
1 ever, it 1s hard to obta· h . . all A s1mp er 

m sue an estimate to evaluate feature sets systematic Y· 
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ach is co use within-class and between-class scatt . appro . . er matrices to fo I . . 

I Separability. which 1s also called linear Discr,·,n. A rmu ate cntena of 
c ass mant nalysis (LDA) 
We can compute the within-class scatter matrix as: transformation. 

s_.= IP(w;)E{(x-µ;)(x-µ;)1 lw;}= LP(u>;)I:; 
XE°'f XGW; (9.7) 

\yhere the sum is for all the data x within the class w Thi's · th , · is e scatter of sam I d 
thel·r respective class mean. On the other hand the between cl P es aroun ' - ass scatter matrix · h 
of the expected vectors around the mixture mean: is t e scatter 

S
8 

= L P(W; )(µ, - m0 )(µ; - m0 )' 

Jl;Efllr 

where m0 represents the expected mean vector of the mixture distribution: 

m0 = E{x} = LP(u>;)m; 
~ 

(9.8) 

(9.9) 

To formulate criteria to transform feature vector x, we need to derive the linear trans­
fonnation matrix A. One of the measures can be the trace of s:,1S

8
: 

(9.10) 

The trace is the sum of the eigenvalues of S,~1S8 and hence the sum of the variances in 
the principal directions. The number is larger when the between-class scatter is large or the 
within-class scatter is small. You can derive the transformation matrix based on the eigen­
~ectors of s:1S8 • In a manner similar to PCA, you can reduce the dimension of the original 
input feature vector by discarding the smallest eigenvalues [16, 54]. 

Researchers have used the LOA method to measure the effectiveness of several feature 
vectors for speaker nonna!ization [ 41]. Other feature processing techniques designed for 
~peaker normalization include neural-network-based speaker mapping [51 ], frequency warp­
ing for vocal tract normalization (VTN) via mel-frequency scaling [67, 100), and bilinear 
transformation [2]. 
. To reduce interspeaker variability by a speaker-specific frequency warping, you can 

simply shift the center frequencies of the mel-spaced filter bank. Let k/J,.fm,1 • k = l, ... , K, 
~enote the center frequencies in mel-scale. Then the center frequencies in hertz for a warp­
ing factor of a are computed by Eq. (9. I 1) before the cosine transfonnation of the MFCC 
feature vector. 

f!.(k4f ~,) = 700(10t,v .... ,,ms -1)/ a (9.11) 
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The warping factor is estimated fo~ ea~h speaker by_ computing t~e likelihood of the 
. . d· ta .-0 r feature sets obtained with different warping factors usmg the HMM ,.,_ trammg a 1' . . 111e 

I . rror reduction based on the feature transformation method has been limited ty . re at1ve e , p1-
cally under 10%. 

9.4. PHONETIC MODELING-SELECTING APPROPRIATE 

UNITS 

As discussed in Chapter 2, the phonetic system is related to a particular language. We focus 
our discussion on language-independent technologies but use English in our examples 10 
illustrate how we can use the language-independent technologies to model the salient pho­
netic information in the language. For general-purpose large-vocabulary speech recognition, 
it is difficult to build whole-word models because: 

• Every new task contains novel words without any available training data, 
such as proper nouns and newly invented jargons. 

• There are simply too many words, and these different words may have differ­
ent acoustic realizations, as illustrated in Chapter 2. It is unlikely that we 
have sufficient repetitions of these words to build context-dependent word 
models. 

How to select the most basic units to represent salient acoustic and phonetic infonna­
tion for the language is an important issue in designing a workable system. At a high level, 
there are a number of issues we must consider in choosing appropriate modeling units. 

• The unit should be accurate, to represent the acoustic realization that appears 
in different contexts. 

• The unit should be trainable. We should have enough data to estimate the pa­
rameters of the unit. Although words are accurate and representative, they are 
the least trainable choice in building a working system, since it is nearly im­
possible to get several hundred repetitions for all the words, unless we are us­
ing a speech recognizer that is domain specific, such as a recognizer designed 
for digits only. 

• The unit should be generalizable, so that any new word can be derived from a 
predefined unit inventory for task-independent speech recognition. If we have 
a fixed set of word models, there is no obvious way for us to derive the new 
word model. 

A · · ·on 
. pr~ctlcal challenge is how to balance these selection criteria for speech recogniu . · 

In this section we compar b f . d aknesses 1n . . . ea num er o umts and point out their strengths an we 
pract1cal apphcattons. 
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9.4.l, Comparison of Different Units 

What is a unit of hrnguage? In English, words are typically consider""d as . . 
1 

. 
· . . I . · '" a prmc,pa earner of mean mg and are seen as t 1e smallest unit that is cap·lble of· d d 

• , . ' 111 epen ent use. As the most 
natural unit of speech. "hole-word models have been widely us""d , . . . . · " ,or many speech recogm-
tion systems. A d1stmct1ve advantage of using word models is that . . . . . we can capture the pho-
netic coart1culat1on inherent w,thm these words. When the vocabul . 11 ary 1s sma , we can 
create word models that are context dependent. 

For example. if ~the vocabulary is _Eng_lish digits, we can have different word models 
for the wor~ one to rc:p~esent the word 111 different contexts. Thus each word model is de­
pendent on its left and ngh_t _context. If someone says three one two, the recognizer uses the 
word model one that ~pec1f1cally depends on the left context thre,, and right context two. 
Since the vocabulary 1s small (10), we need to have only IO* t O* I 0=1000 word models 
which is achievable when you collect enough training data. With context-dependent, or eve~ 
context-independent, word models, a wide range of phonological variations can be auto­
~atically accommo~a_ted. When these_ word m~dels are adequately trained, they usually 
yield the best recogmt1on performance m comparison to other modeling units. Therefore, for 
small vocabulary recognition, whole-word models are widely used, since they are both ac­
curate and trainable, and there is no need to be generalizable. 

While words are suitable units for small-vocabulary speech recognition, they are not a 
practical choice for large-vocabulary continuous speech recognition. First, each word has to 
be treated individually, and data cannot be shared across word models; this implies a pro­
hibitively large amount of training data and storage. Second, for some task configurations, 
the recognition vocabulary may consist of words that never appeared in the training data. As 
a result, some form of word-model composition technique is required to generate word mod­
els. Third, it is very expensive to model interword coarticulation effects or adapt a word­
based system for a new speaker, a new channel, or new context usage. 

To summarize, word models are accurate if enough data are available. Thus, they are 
trainable only for small tasks. They are typically not generalizable. 

Alternatively, there are only about 50 phones in English, and they can be sufficiently 
trained with just a few hundred sentences. Unlike word models, phonetic models provide no 
training problem. Moreover, they are also vocabulary independent by nature and can be 
trained on one task and tested on another. Thus, phones are more trainable and generaliz­
able. However, the phonetic model is inadequate because it assumes that a phoneme in any 
context is identical. Although we may try to say each word as a concatenated sequenc~ of 
independent phonemes, these phonemes are not produced independently, because_ ou~ articu­
lators cannot move instantaneously from one position to another. Thus, the realization of _a 
phoneme is strongly affected by its immediately neighboring phonemes. For exampl~, if 
context-independent phonetic models are used, the same model for r must captur~ vano~s 
events, such as flapping, unreleased stops, and realizations in It sl and It rl. T~en, if It ~I is 
the only context in which t occurs in the training, while It r/ is the only context m the testmg, 

Amazon/VB Assets 
Exhibit 1012 

Page 455



430 A~e1· •ng 

the model used is highly inappropriate. While word models are not generalizable, phonetic 
models overgeneralize and, thus, lead to less accur~te model~. 

A compromise between the word and phonetic model 1s to use larger units such 
h . h . as svl-

lnbles. These units encompass phone clusters t at contam t e most vanable contextual · 
· f th · h ef. fects. However, while. the cen_tral port1o~s o es~ umts ave no contextu~1l dependencies, 

the beginning and endmg por110ns are still susceptible to some contextual effects. There 
only about 1200 tone-dependent sy_llables i~1 Chinese and approximately 50 syllables~ 
Japanese, which makes syllable a ~uitabl~ unit for these language_s. Unfortunately, the large 
number of syllables (over 30,000) m Enghsh presents a challenge rn terms of trainability. 

9.4.2. Context Dependency 

If we make units context dependent, we can significantly improve the recognition accuracy, 
provided there are enough training data to estimate these context-dependent parameters. 
Context-dependent phonemes have been widely used for large-vocabulary speech recogni­
tion, thanks to its significantly improved accuracy and trainability. A context usually refers 
to the immediate left and/or right neighboring phones. 

A trip/zone model is a phonetic model that takes into consideration both the left and 
the right neighboring phones. If two phones have the same identity but different left or right 
contexts, they are considered different triphones. We call different realizations of a phoneme 
allophones. Triphones are an example of allophones. 

The left and right contexts used in triphones, while important, are only two of many 
important contributing factors that affect the realization of a phone. Triphone models are 
powerful because they capture the most important coarticulatory effects. They are generally 
much more consistent than context-independent phone models. However, as context­
dependent models generally have increased parameters, trainability becomes a challenging 
issue. We need to balance trainability and accuracy with a number of parameter-sharing 
techniques. 

Modeling interword context-dependent phones is complicated. For example, in lhe 
word speech, pronounced Is p iy chi, both left and right contexts for !pl and liyl are known, 
while the left context for Isl and the right context for /chi are dependent on the preceding and 
following words in actual sentences. The juncture effect on word boundaries is one of ~e 
most se~ous coarticulation phenomena in continuous speech, especially with short functJ~~ 
'"'.0rds hke ~he or a. Even with the same left and right context identities, there ~at be 51.g_ 
mficantly different realizations for a phone at different word positions (the bcgmmng: m;e 
die, or e,zd of a word). For example, the phone /ti in that rock is almost extinct, while . 
~hone It/ in the middle of theatrical sounds like /chi. This implies that different word posi· 
t1ons have a~ ~ffect on the realization of the same triphone. . a ar· 
. In addition to the context, stress also plays an important role in the realizauon of P_ 

llcular phone Str d ·ntens1ty, . · esse vowels tend to have longer duration higher pitch, and more 1 

while unstres d 1 ' 'k phoneme. 
A se vowe 8 appear to move toward a neutral central schwn-h e ·11 greement about th h . . . • b greater 1 

e P onetic 1dent1ty of a syllable has been reported to e 
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stressed syllables for both humans and automatic h 
stress is referred to as free stress because the 

1
P onedrecognizers. In English, word-level 

. · s resse syllabi . k .. 
within a word, in contrast to bound strl's~ found . 1 e can t,l e on any pos1t1on 
where the position of the stressed syllable. is fixed m,.

1
~'.

1
guages such as French and Polish, 

lish can be used as a constraint for lexical access 1"' ~- ma wo
rd

· Therefore, stress in Eng-
. n 1act stress c·m b d . 

1ure to distinguish a set of word pairs such as ,·,,, 1 ' . • e use as a umque fea-, por vs. import and . 
example, the phone set used for Whisper such as 1,,,.11 1 d 1• expmt vs. export. For • .. - axr an ahl-lix/ / I d , ·b 
stressed and unstressed vowels. One example illustratin how str . - a.~' . escn es these 
the realization of phone is demonstrated in Figure 9 l wh ess can Sl~mficantly affect 
Italian is pronounced differently in American English. d rel pho'.ie /// 

111 
word Italy v~. 

the triphone context is identical for both words. ue t e ocauon of the stress, albeit 

0 0.1 0.2 0.3 
lime (seconds) 

1000 

0 1-M ...... 

-1000 

·2000 
-3000._ __ .!ll,_ ____ ...J 

~ 3000 
>, 

g 2000 
QI 
:, 
O' 

3!_ 1000 

0 0.2 0.4 0.6 

0.2 0.4 0.6 
lime (seconds) 

~igure 9.3 The importance of stress is illustrated in Italy vs. ltalia11 for phone It/. The realiza­
t10ns are quite different, even though they share the same left and right context. 

. Sentence-level stress, on the other hand, represents the overall stress pattern of con­
tm~ous speech. While sentence-level stress does not change the meaning of any particular 
lexicon item, it usually increases the relative prominence of portions of the utterance for the 
~urpose of contrast or emphasis. Contrastive stress is nonnally used to coordinate construe­
lions such as there are import records and there are domestic ones, as well as for the pur­
P?5~ of correction, as in / said import, no/ export. Emphatic stress is commonly used to 
~1stmguish a sen~ence from its negation, e .g., / did have dinner. Sente~ce-\evel stress is very 
ard to model without incorporating high-level semantic and pragmatic knowledge. In most 

Slate-of- the-art speech recognition systems, only word-level stress is used for creating allo­
phones. 
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9.4.3. Clustered Acoustic-Phonetic Units 

Triphone modeling assumes that every triphone context is different. Actually, manv h 
. . h Th .. f . JP ones 

have similar effects on the ne1ghbonng p ones. e pos1t1on o our articulators has an . 
portant effect on how we p1:on_ounce neighboring vowe!s. For examp~e. / bi and I Pl 

1
;~ 

both labial stops and have s1m1lar effects on the following vowel, while / r/ and lwJ are 
both liquids and have similar effects on the following vowel. Contrary to what we illustrat 
in Figure 9.1, Figure 9.4 illustrates this phenomenon. It is desirable to find instances of simi~ 
tar contexts and merge them. This would lead to a much more manageable number of mod­
els that can be better trained. 

0.1 0.2 0.3 0.4 

0.1 0.2 0.3 0.4 
Ttme (secoods) 

0 

0 
0 

0.1 0.2 0.3 0.4 

0.1 0.2 0.3 0.4 
Ttme (seccnis) 

Figure 9.4 The spectrograms for the phoneme / iy/ with two different left-co11texts are illus­
trated. Note that / r/ and /w / have similar effects on / iy/. This illustrates that different left­
contexts may have similar effects on a phone. 

The trainability and accuracy balance between phonetic and word models can be ge_n-
~ . ~ er ized funher to model subphonetic events. In fact, both phonetic and subphonetic u . 

have the same benefits, as they share parameters at the unit level. This is the key benefit 1.
0 

comparison to the word units. Papers by [ 11 45 57 66 111 J provide examples of the appli­
cation of th' . ' ' ' ' . 1· we can is concept to cluster hidden Markov models. For subphonet1c mode mg, 
treat the stat · h · d H g further . e m P onetic HMMs as the basic subphonetic unit. Hwang an uan · 
generahzed clu t · 'f& t phoneuc s enng to the state-dependent output distributions across d1 ,eren d 
models [57] E h I d · calle a · ac c USler thus represents a set of similar Markov states an 15 
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senone [56]. A subword model is thus composed of a sequence of se f h 1 . . nones a ter t e c uster-
ing is finish~~- The optimal number of senones for a system is mainly determined by the 
available training corpus and can be tuned on a development set. 

Each allophone model is an HMM made of states transiti·ons a d b b·1· d' ·b . . . . . . , , n pro a 1 1ty 1stn u-
tions To improve the rehab1hty of the stal!sttcal parameters of these mod I d' .b . . . . . es, some 1stn u-
tions can be tied. For example, d1stnbut1ons for the central portion of an allophone may be 
tied_tog_ether to reflect the fact that they represent the stable (context-independent) physical 
reahzauon of the central part of the phoneme, uttered with a stationary configuration of the 
v~~I t_ract. Clustering at the granularity o_f the state rather than the entire model can keep the 
dissim1lar states of two models apart while the other corresponding states are merged thus 
leading to better parameter sharing. ' 

Figure 9.5 illustrates how state-based clustering can lead to improved representations. 
These _two HMMs co~e f~om_ the ~ame phone class with a different right context, leading to 
very different output d1stnbut10ns m the last state. As the left contexts are identical, the first 
and second output distributions are almost identical. If we measure the overall model simi­
larity based on the accumulative overall output distribution similarities of all states, these 
two models may be clustered, leading to a very inaccurate distribution for the last state. In­
stead, we cluster the first two output distributions while leaving the last one intact. 

There are two key issues in creating trainable context-dependent phonetic or subpho­

netic units: 

• We need to enable better parameter sharing and smoothing. As Figure 9.4 
illustrates, many phones have similar effects on neighboring phones. If the 
acoustic realization is indeed identical, we tie them together to improve train­

ability and efficiency. 

• Since the number of triphones in English is very large (over 100,000}, there 
are many new or unseen triphones that are in the test set but not in the train­
ing set. It is important to map these unseen triphones into appropriately 

trained triphones. 

As discussed in Chapter 4, a decision tree is a binary tree to classify target objects by 
asking binary questions in a hierarchical manner. Modeling unseen triphones is particularly 
important for vocabulary independence. since it is difficult to collect a training corpus which 
covers enough occurrences of every possible subword unit. We need to find m~dels that are 
accurate, trainable, and especially generalizable. The senonic d_ecisi?n t~e_class1fi~s Markov 
states of triphones represented in the training corpus by asking hngmsn~ ques_uons com­
posed of conjunctions, disjunctions, and/or negations of a set ~f predete~med simple cate­
gorical linguistic questions. Examples of these simple categoncal questions_ are: ls t~e left­
context phone a fricative? Is the right-context phone a front vowel? The typical quest'~n set 
used in Whisper to generate the senone tree is shown in Table 9.3. So, for _each no~e m 

th
e 

tree, we check whether its left or right phone belongs to one of the ca~eg~nes. ~s discussed 
in Chapter 4, we measure the corresponding entropy reduction or hkehhood ,~crease for 
each question and select the question that has the largest entropy decrease to spht the node. 
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