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CHAPTER 8§

Hidden Markov Models

T he hidden Markov model (HMM) is a very
powerful statistical method of characterizing the observed data samples of a discrete-time
series. Not only can it provide an efficient way to build parsimonious parametric models,
but can also incorporate the dynamic programming principle in its core for a unified pattern
segmentation and pattern classification of time-varying data sequences. The data samples in
the time series can be discretely or continuously distributed; they can be scalars or vectors.
The underlying assumption of the HMM is that the data samples can be well characterized
as a parametric random process, and the parameters of the stochastic process can be esti-
mated in a precise and well-defined framework. The basic HMM theory was published in a
series of classic papers by Baum and his colleagues [4]. The HMM has become one of the
most powerful statistical methods for modeling speech signals. Its principles have been suc-
cessfully used in automatic speech recognition, formant and pitch tracking, speech en-
hancement, speech synthesis, statistical language modeling, part-of-speech tagging, spoken
language understanding, and machine translation [3, 4, 8, 10, 12, 18, 23, 37].
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8.1. THE MARKOV CHAIN

A Markov chain models a class of random processes tha.l incorpor_atcs a minimum amoun
of memory without being completely memoryless. In this subsection we focus on the di-

crete-time Markov chain only. ) o
Let X=X, X,,... X, be a sequence of random variables from a finite discrete alpha-

bet 0 ={0,,0,,...,0, }. Based on the Bayes’ rule, we have
P(X,, Xy, X,) = PO TP 1XT) 31
i=2

where X|™' = X,, X,.....X ., . The random variables X are said to form a first-order Markoy
chain, provided that

PG| XY= POXGIX ) 82)

As a consequence, for the first-order Markov chain, Eq. (8.1) becomes

P(X, Xy X,) = PO TP 1 X, 83)

i=2

Equation (8.2) is also known as the Markov assumption. This assumption uses very lit-
tle memory to mode! dynamic data sequences: the probability of the random variable at a
given time depends only on the value at the preceding time. The Markov chain can be used
to mode! time-invariant (stationary) events if we discard the time index i,

P(X; =X, =)= Ps|s") 84)

If we associate X, to a state, the Markov chain can be represented by a finite state
process with transition between states specified by the probability function P(s|s'). Using
this finite state representation, the Markov assumption [Eq. (8.2)] is translated to the follow-
ing: the probability that the Markov chain will be in a particular state at a given time de-
pends only on the state of the Markov chain at the previous time.

Consider a Markov chain with N distinct states labeled by {l,...,N} , with the state at

time ¢ in the Markov chain denoted as s, ; the parameters of a Markov chain can be dé-
scribed as follows:

a;=P(s, = jls =i) 1<ij<N @5

m=P(s,=i) 1<i<N (8.9)

where ay is the transition
that the Markov chain wil
to the constraints:

probability from state i to state j: and x; is the initial probabilitz
I'start in state i. Both transition and initial probabilities aré boun
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N
Y=t 1Si<N

j=1
JN 8.7

=l

The Markov chain described above is also called the observable Markov model be-
cause the output of the process is the set of states at each time instance ¢, where each state
corresponds to an observable event X, . In other words, there is one-to-one correspondence
petween the observable event sequence X and the Markov chain state sequence
§=8,,8y5nr Consider a simple three-state Markov chain for the Dow Jones Industrial
average as shown in Figure 8.1. At the end of each day, the Dow Jones Industrial average
may correspond to one of the following states:

state 1 — up (in comparison o the index of previous day)
state 2 — down (in comparison to the index of previous day)
state 3 — unchanged (in comparison to the index of previous day)

0.6 0.3

0.5
Dow Jones Industrial average. Three states repr

Figure 8.1 A Markov chain for the esent up,

down, and unchanged, respectively.

The parameter for this Dow Jones Markov chain may include a state-transition prob-

ability matrix
06 02 02
4={a;}=|05 03 02
04 01 05

and an initial state probability matrix
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0.5
n=(n) =|02
0.3
Suppose you would like to find out the probability for five consecutive up days, §;
the observed sequence of up-up-up-up-up corresponds to the state sequence of (] lY l. ]mce
the probability will be S b LLD,

P(5 consecutive up days) = P(1,1,1,1,1)
=m,a,,a,a,a,, =0.5%(0.6)" = 0.0648

8.2. DEFINITION OF THE HIDDEN MARKOV MODEL

In the Markov chain, each state corresponds to a deterministically observable event, ie., the
output of such sources in any given state is not random. A natral extension to the Markoy
chain introduces a non-deterministic process that generates output observation symbols in
any given state, Thus, the observation is a probabilistic function of the state. This new
model is known as a hidden Markov model, which can be viewed as a double-embedded
stochastic process with an underlying stochastic process (the state sequence) not directly
observable. This underlying process can only be probabilistically associated with another
observable stochastic process producing the sequence of features we can observe.
A hidden Markov model is basically a Markov chain where the output observationisa
random variable X generated according to a output probabilistic function associated with
each state. Figure 8.2 shows a revised hidden Markov model for the Dow Jones Industrial
average. You see that each state now can generate all three output observations: up, down,
and unchanged, according to its output pdf. This means that there is no longer a one-to-one
correspondence between the observation sequence and the state sequence, so you cannol
unanimously determine the state sequance for a given observation sequence, i.c. the state
sequence is not observable and therefore hidden. This is why the world hidden is Ph“:""_1 1
front of Markov models. Although the state of an HMM is hidden, it often contains salient
information about the data we are modeling. For example, the first state in Figure 8.2 indi-
cates a bull market, and the second state indicates a bear market as specified by the Ul
probability in each state. Formally speaking, a hidden Markov model is defined by:

* O0={0,,0,,....0 »}—An output observation alphabet’ The observaton
symbols correspond to the physical output of the system being modeled;m
the case of the Dow Jones Industrial average HMM, the output observation
alphabet is the collection of three categories— O ={up, down, unchanged}-

; Although we use the discre -

. . jth a ¢
pdf. Y te output observation here, we can extend it to the continuous casé ith

ou ¢ e s 5 L
2n also use vector quantization to map a continuous vector variable into a discrete aiphabet 56
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o Q={12,...,N}—A set of states representing the state space. Here s, is de-
noted as the state at time 7. In the case of the Dow Jones Industrial average
HMM, the state may indicate a bull market, a bear market, and a stable marke%

. A={ai;}“‘A transition probability matri i
: | X, where q; is th ili
taking a transition from state i to state j, i.e. ’ ® puoatilly ot

ay = Pls, = Jls =1) (®8)
. B,—:{[;.(k)}——An output probability matrix,” where b,(k) is the probability
of emitting symbol o, when state i is entered. Let X = X, X; X be
. OO ¢

the observed ogtput of the HMM. The state sequence S =s5,55,..-,5 .
not observed (hidden). and b,(k) can be rewritten as follows: e

b(k)=P(X, =0, |5, =1) 8.9
o m={r}—A initial state distribution where

7T;=P(So=i) 1€i<N (8.10)

0.6 03

0.1]
0.6
.0.3.

07
0l
02,

05
initial state prob. = [ 02
.0-3‘

0.1

P(up)
P(down)
P(unchanged)

output

pdf=

0.5

the Dow Jones Industrial average. The three states no

Figure 8.2 A hidden Markov model for
the Markov chain illustrated in Figure 8.1.

longer have deterministic meanings as in

se two formulations look different, the

&
The output distribution can also be transition-dependent. Although the
straint of all the transitions

s'atc'.dependcm one can be reformulated as a transition-dependent one with the con
entering the same state sharing the same output distribution.
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Since a;;, b(k), and 7, are all probabilities, they must satisfy the following proper.

if»
ties:

a; 20, b(k)20, =20 Vallij.k (8.1

o, =1 (8.12)

=

ib:(k) =1 (8.13)
k=t
N
Zﬂi = 1 (814)

i=l

To sum up, a complete specification of an HMM includes two constant-size parame-
ters, N and M, representing the total number of states and the size of observation alphabets,
observation alphabet O, and three sets (matrices) of probability measures A, B, = . For con-
venience, we use the following notation

®=(A,B,xn) (8.15)

to indicate the whole parameter set of an HMM and sometimes use the parameter set @ to
represent the HMM interchangeably without ambiguity.

In the first-order hidden Markov model discussed above, there are two assumptions.
The first is the Markov assumption for the Markov chain.

P(s,si™) = P(s,15,)) (8.16)

where s/~ represents the state sequence s,,s,,...,S

.S,_,. The second is the oulput-
independence assumption:

P(X, | X\",s)=P(X,|s,) .17

where X! represents the output sequence X, X.,..., X ;. The output-independence
assumption states that the probability that a particula_r symbol is emitted at time ¢ depends
only on the state s, and is conditionally independent of the past observations. )
You might argue that these assumptions limit the memory of the first-order hidden
Markov models and may lead to model deficiency. However, in practice, they make evalud-
tion, decoding, and learning feasible and efficient without significantly affecting the model-

ing capability, since those assumptions greatly reduce the number of parameters that need to
be estimated.
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Given the definition of HMMS above, three basic problems of interest must be ad-
dressed before they can be applied to real-world applications.

1. The Evaluation Problem—Given a model & and 2 sequence of observa-
tions X=(X, Xa,..., X)), what is the probability P(X|®d), i.e.. the prob-
ability that the model generates the observations?

2. The Decoding Problem—Given a model & and a sequence of observations
X=(X), X355 X7), what s the most likely state sequence
S ={(5¢.51,52,....57) in the model that produces the observations?

3. The Learning Problem—Given a model ® and a set of observations, how

can we adjust the model parameter @ to maximize the joint probability (like-
lihood) [ [ P(X|®) ?
X

If we could solve the evaluation problem, we would have a way of evaluating how
well a given HMM matches a given observation sequence. Therefore, we could use HMM to
do pattern recognition, since the likelihood P(X|®) can be used to compute posterior prob-
ability P(®|X), and the HMM with highest posterior probability can be determined as the
desired pattern for the observation sequence. If we could solve the decoding problem, we
could find the best matching state sequence given an observation sequence, or, in other
words, we could uncover the hidden state sequence. As discussed in Chapters 12 and 13,
these are the basics for the decoding in continuous speech recognition. Last but not least, if
we could solve the learning problem, we would have the means to automatically estimate
the model parameter @ from an ensemble of training data. These three problems are tightly
linked under the same probabilistic framework. The efficient implementation of these algo-
rithms shares the principle of dynamic programming that we briefly discuss next.

8.2.1. Dynamic Programming and DTW

The dynamic programming concept, also known as dynamic time warping (DTW) in speech
recognition [40], has been widely used to derive the overall distortion between two speech
templates. In these template-based systems, each speech template consists of a sequence of
speech vectors. The overall distortion measure is computed from the accumulated dl.Sl.i‘ll‘lCe
between two feature vectors that are aligned between two speech templates with minimal
overall distortion. The DTW method can warp two speech templates (xl.xz....x\.) and
(¥1¥,--.y,, ) in the time dimension to alleviate nonlinear distortion as illustra-xtcd in l'.‘lgure 8.3.

This is roughly equivalent to the problem of finding the minir.num qlstance in .thfa trel-
lis between these two templates. Associated with every pair (i, j) is 2 distance d(/, j) be-
tween two speech vectors x; andy,. To find the optimal path betwe?n starting point (1, '1)
and end point (N, M) from left to right, we need to compute the optimal accumulated dis-
tance D(N, MY). We can enumerate all possible accumulated distance from (1L1) to (N, M)
and identify the one that has the minimum distance. Since there are M possible moves for
each step from left to right in Figure 8.3, all the possible paths from (1, 1) to (&, M) will be
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principles can drastically reduce the amount of compu.
f sequences that cannot possibly be optimal. Sipce e
t be based on the previous step, the minimum distance

exponential. Dynamic programn.ling
tation by avoiding the enumeration 0
same optimal path after each step must b
D(i, j) must satisfy the following equation:

DG, j) = min[DG~1k) +d(k, )] (8.18)

/ Optimal alignment

4 between X and Y
T \
Ym \
Sa
d(2,2)
Y2
Yi[—
XX AN

Figure 8.3 Direct comparison between two speech templates X= xx,..x,, and Y=y,y,..y, .

Equation (8.18) indicates you only need to consider and keep only the best move for
each pair although there are M possible moves. The recursion allows the optimal path search
to be conducted incrementally from left to right. In essence, dynamic programming dele-
gates the solution recursively to its own sub-problem. The computation proceeds from the
small sub-problem (D(i—1,k)) to the larger sub-problem (D(i, j)). We can identify the
optimal match y, with respect to x, and save the index in a back pointer table B(, j) as we
move forward. The optimal path can be traced back after the optimal path is identified. The
algorithm is described in Algorithm 8.1. .

The advantage of the dynamic programming lies in the fact that once a sub-problem 1§
solved, the partial result can be stored and never needs to be recalculated. This is a very Im-
portant principle that you see again and again in building practical spoken language systems

Speech recognition based on DTW is simple to implement and fairly effectve for
small-vocabulary speech recognition. Dynamic programming can temporally align patterns
to account for differences in speaking rates across talkers as well as across repetitions 0 c
word by the same talker. However, it does not have a principled way to derive an averag®
template for each patter from a large amount of training samples. A multiplicity of refer
ence training tokens is typically required to characterize the variation among different et
ances. As such, the HMM is a much better alternative for spoken language pr ocessing:
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ALGORITHM 8.1 THE DYNAMIC PROGRAMMING ALGORITHM
Step 1: Initialization
D, =d(1), BLD)=1,for j=2, .. M compute D(L, j)=wo

Step 2: lteration
for i=2,...,N {
for j=1,...,M compute {

DG, j)y = min [D(i=1, p)+d(p, j)]
B(, )y =argmin[D(i-1, p) +d(p. /)] )

Step 3: Backtracking and Termination
The optimal (minimum) distance is D(A, M) and the optimal path is (s,,s,....,5,)
where sy, =M and 5, =B(i+1,s,,,), i=N-LN=-2,...,1

8.2.2.  How to Evaluate an HMM—The Forward Algorithm

To calculate the probability (likelihood) P(X|®) of the observation sequence
X=(X;,X3,...,X7), given the HMM @, the most intuitive way is to sum up the prob-
abilities of all possible state sequences:

P(X|<D)=ZP(S|<D)P(XIS,<I)) (8.19)
alls

In other words, to compute P(X|®), we first enumerate all possible state sequences S
of length 7, that generate observation sequence X, and then sum all the probabilities. The
probability of each path S is the product of the state sequence probability (first factor) and
the joint output probability (the second factor) along the path.

For one particular state sequence S =(S,5,,-.-,57) » Where s, is the initial state, the
state-sequence probability in Eq. (8.19) can be rewritten by applying Markov assumption:

;
P(S|®) = P(s; | @) T P(S, 15,1 D) =, Buy -+ Gorir = B By = v (8.20)

=2

uence S, the joint output prob-

where a. . denotes &, for simplicity. For the same state seq ;
: independent assumption:

ability along the path can be rewritten by applying the output-

P(X|S,0)=P(XT | ST, ®) =IT'[P(X, Is,» @) (8.21)

1=l

= b, (X,)b,, (X,)...b, (X;)
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Substituting Eqgs. (8.20) and (8.21) into (8.19), we get:

P(X|®)=Y P(S|®)P(X|S,®)

all S

s Zalasl bS| (X| )a.ﬁ.\‘: bs: (XZ ) o a.vr_{.rr bsr (XT )

all S

82)

Equation (8.22) can be interpreted as follows. First we enumerate all possible state se.
quence with length T. For any given state sequence, we stz.u't from initial state s, with prob-
ability 7, or a,,. We take a transition from s,_, to s, with probability a, , and generate
the observation X, with probability b,, (X,) until we reach the last transition,

However, direct evaluation of Eq. (8.22) according to the interpretation above requires
enumeration of O(NT) possible state sequences, which results in exponential computational
complexity. Fortunately, a more efficient algorithm can be used to calculate Eq, (8.22), The
trick is to store intermediate results and use them for subsequent state-sequence calculations
to save computation. This algorithm is known as the forward algorithm.

Based on the HMM assumptions, the calculation of P(s, |5, ®)P(X,[s,,P) in-
volves only s, ,,s,, and X, so, it is possible to compute the likelihood with P(X|®) with
recursion on t. Let's define forward probability:

a,(i)= P(X!,s, =1|®) (8.23)

@, (i) is the probability that the HMM is in state i at time ¢ having generated partial
observation X|(namely X, JX,..X,). &, (i) can be calculated inductively as illustrated in
Algorithm 8.2. This inductive procedure shown in Eq. (8.24) can be illustrated in a trellis.
Figure 8.4 illustrates the computation of forward probabilities ¢ via a trellis framework for
the Dow Jones Industrial average HMM shown in Figure 8.2. Given two consecutive up
days for the Dow Jones Industrial average, we can find the forward probability & based on
the model of Figure 8.2. An arrow in Figure 8.4 indicates a transition from its origin state 10
its destination state. The number inside each cell indicates the forward probability a. We
start the o cells from = 0, where the ¢ cells contains exactly the initial probabilities. The
othef cells are computed in a time-synchronous fashion from left to right, where each cell
for time 7 is completely computed before proceeding to time ¢+1. When the states in the 1ast
column have been computed, the sum of all probabilities in the final column is the probabil
ity of generating the observation sequence. For most speech problems, we need to have the
HMM end in some particular exit state (aka final state, S.), and we thus have
P(X| D)= (s;).

It is easy to show that the complexity for the forward algorithm is O(N 2

than exponential. This is because we can make full use of partially computed pro
for the improved efficiency.

T) rather
babilities
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ALGORITHM 8.2: THE FORWARD ALGORITH
Step 1: Initialization

o () =mb,(X,) ISisN
Step 2: Induction
N
)= a_ (i b(X < . ;
al)) [; :-I(’)ay:, (X)) 22T, IS j<N (8.24)
Step 3: Termination

N
P(X|®) = Z (i) Ifitis required to end in the final state, P(X | &) = o, (s,)

i=]

X,=up X,=up

=1 1=2

0.35

state |

state 2

state 3

Figure 8.4 The forward trellis computation for the HMM of the Dow Jones Industrial average.

823.  How to Decode an HMM—The Viterbi Algorithm

The forward algorithm, in the previous section, computes the probability that an HMM gen-
erates an observation sequence by summing up the probabilities of all possible paths, so it
does not provide the best path (or state sequence). In many applications, it is desirable to
find such a path. As a matter of fact, finding the best path (state sequence) is the cornerstone
for searching in continuous speech recognition. Since the state sequence is hidden (unob-
Served) in the HMM framework, the most widely used criterion is to find the state sequence
that has the highest probability of being taken while generating the observation sequence. In
other words, we are looking for the state sequence S=(s;,5,,...,5;) that maximizes
P(8,X|®). This problem is very similar to the optimal-path problem in dy'namic pro-
gramming. As a consequence, a formal technique based on dynamic programming, known
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as Viterbi algorithm [43], can be used to find the best state sequence for an HMM. 1
tice, the same method can be used to evaluate HMMs that offers an approximate S
close to the case obtained using the forward algorithm described in Section 8.2.2.

The Viterbi algorithm can be regarded as the dynamic programming algorithm applied
to the HMM or as a modified forward algorithm. Instead of summing up probabilitjes from
different paths coming to the same destination state, the Viterbi algorithm picks and remem-
bers the best path. To define the best-path probability:

V() =P(X,8,s,=1|®)

N prac.
Olution

V(i) is the probability of the most likely state sequence at time £, which has generated (he
observation X (until time ¢) and ends in state i. A similar induction procedure for the
Viterbi algorithm can be described in Algorithm 8.3.

ALGORITHM 8.3: THE VITERBI ALGORITHM

Step 1: Initialization

V.(i)=nb(X,) 1Si<N

B()=0

Step 2: Induction

V,(j)=Max[V,,()a, |b,(X,) 2StST; 1<j<N (8.25)
1SISN

B(j)=Argmax[V,_ ()a,] 2<tST; 1SjSN (8.26)

1SISN
Step 3: Termination
The best score = AMax[¥,(7)]

1SiSN

sy = Arg max [, ()]
ISiSN

Step 4: Backtracking
5, =B,(s,) t=T-1T-2,.,1
§" =(s;,5;,...,5;) is the best sequence

E—

This Viterbi algorithm can also be illustrated in a trellis framework similar t© lh? o
for the forward algorithm shown in Figure 8.4. Instead of summing up all the paths, F 'gl.l;c
8.5 illustrates the computation of ¥, by picking the best path in each cell. The numt?er ‘“S'be
each cell indicates the best score V, and the best path leading to each cell is indlcat‘_?d )s,
solid lines while the rest of the paths are indicated by dashed line. Again, the computation!

d.one i.“ a time-synchronous fashion from left to right. The complexity for the Viterbi algo-
rithm is also O(N2T)
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state |
slate 2

state 3

Figure 8.5 The Viterbi trellis computation for the HMM of the Dow Jones Industrial average.

8.2.4. How to Estimate HMM Parameters—Baum-Welch Algorithm

It is very important to estimate the model parameters ® =(A,B,®) to accurately describe
the observation sequences. This is by far the most difficult of the three problems, because
there is no known analytical method that maximizes the joint probability of the training data
in a closed form. Instead, the problem can be solved by the iterative Baum-Welch algorithm,
also known as the forward-backward algorithm.

The HMM learning problem is a typical case of unsupervised learning discussed in
Chapter 4, where the data is incomplete because of the hidden state sequence. The EM algo-
rithm is perfectly suitable for this problem. As a matter of fact, Baum and colleagues used
the same principle as that of the EM algorithm. Before we describe the formal Baum-Welch
algorithm, we first define a few useful terms. In a manner similar to the forward probability,
we define backward probability as:

B.)=P(X |5, =i,®) (8.27)
: T
where B, (i) is the probability of generating partial observation Xy (from £+1 to the end)
given that the HMM is in state i at time ¢, 8, (/) can then be calculated inductively;

Initialization;

B:()=1/N 1<i<N
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Induction:
- .
ﬁl(l) =[Zaﬁb/(xl+l )ﬂu-l (j)} ,=T -1"'1; l S i S N (8 28
= =

The relationship of adjacent & and f (@,_y & @, and B, & f,.,) can be beg ity
trated as shown in Figure 8.6. & is computed recursively from left to right, and B recui.
sively from right to left. .

t-1 t t+1
output = X,

() a@  B® [0

Figure 8.6 The relationship of ¢,_, and ¢, and B, and B,,, in the forward-backward algorithm.

Next, we define ¥, (i, j) , which is the probability of taking the transition from state i
to state j at time ¢, given the model and observation sequence, i.e.,

YI(i’j)=P(Sl-I =i,S, =-,|X'T’¢)

- P(sq =18, = .f’XIT |P) (8:29)
P(X] | ®)
- al-l (l)aybj (Xl )ﬁl (j)
N
2.0 (k)
k=l

The equation above can be best illustrated as shown in Figure 8.7. o the
. Wecan iteratively refine the HMM parameter vector ® = (A,B,7) by maxim Jol de
likelihood P(X|®) for each iteration. We use @ to denote the new parameter Vet
rived from the parameter vector @ in the previous iteration. According to the EM algon
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Deﬁnition of the
of Chapter 4, the maximization process is equivalent to maximizing the following Q-
function:
5 P(X,S|®) R
=¥ -~ =—log P(X,S
0@.9) =2 5wy 8PS (8.30)

all §

where P(X,SI®) and log P(X.S]| ®) can be expressed as:

T
px.819)=]Ta, .0, (X) (831)
1=l
T 1
log PX.S1®) = Y loga, , + 3 logb, (X)) (8.32)
=l =1
Equation (8.30) can thus be rewritten as
0(@,8)=0, (.4)+0, (P, b)) (8.33)
where
. P(X,5,.,=0,5,=Jj|1®), -
(D.4)= = L logé, (8.34
0.@4)=Y 225X ) ’ )
« P(X,s,=j|1®), i
0, (®,b)= A5 =7 " logb, (k) (8.35)
b (®0) 2224. P(X|®) :
-2 1-1 ! 1+1

output = X,
g

a,. > L .
: a; /(Xm)\\a.:v

o, 1) B0)

@)

Figure 8.7 lliustration of the operations required for the computation of ¥,(/»/) which is the
te i to state j at time £.

probability of taking the transition from st
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Since we separate the O-function into two independent terms the
cedure on (P, P) can be done by maximizing the individual terms se
probability constraints.

maximization Pro.

parately, subject 1,

N

Y a;=1 Valli

j=1 (8.36)

)4
b(k)=1 Vallj
gl‘ A = (837)

Moreover, all these terms in Eqs. (8.34) and (8.35) have the following form:

F(x)= Z}',v log x; 838)

where in =1

¢
By using the Lagrange multipliers, the function above can be proved 1o achieve
maximum value at

" (8.39)
2 Vi
i

Using this formation, we obtain the model estimate as’:

P(X,5, = @ ]
“U_ P(xlq))z (X,s, = jl ) 27(’ )] 640
P(x|¢)2 X510 =119) ZZ%(lk)

P(X ®)5(X,,0, YAUN))
l;j(k) P(X]d’)z X5, =Jj|P)6(X,,0,) Eéo%lz @41

PX] @)ZP(X s, =Jj|®) PR AH)

=] =l i

By carefully examining the HMM re-estimation Egs. (8.40) and (8.41), yo! can ::
that Eq. (8.40) is essentially the ratio between the expected number of transitions s from $ "
i to state j and the expected number of transitions from state i. For the output pl‘Obab t{hm
estimation Eq. (8.41), the numerator is the expected number of times the observation

S e . X ; - bility: #,isofen ™
Notice that the initial probability 5, can be derived as a special case of the transition probability- %
(i.e., 7, =1 for the initial state) for most speech applications.
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emitted from state j is the observation symbol o, , and the denominator is the expected
pumber of times the observation data is emitted from state J. pecte

According to the EM algorithm, the forward-backward (Baum-Welch) algorithm
guarantees a monotonic likelihood improvement on each iteration, and eventually thi likeli-
hood converges to a local maximum. The forward-backward algorithm can be described in a
way similar to the general EM algorithm as shown in Algorithm 8.4.

[

ALGORITHM 8.4: THE FORWARD-BACKWARD ALGORITHM
Step 1: Initialization: Choose an initial estimate & .
Step 2: E-step: Compute auxiliary function Q((D,(i)) basedon @ .

Step 3: M-step: Compute & according to the re-estimation Eqs. (8.40) and (8.41) to maximize
the auxiliary Q-function. :
Step 4: iteration: Set @ = @, repeat from step 2 until convergence.

Although the forward-backward algorithm described above is based on one training
observation sequence, it can be easily generalized to multiple training observation sequences
under the independence assumption between these sequences. To train an HMM from M
data sequences is equivalent to finding the HMM parameter vector @ that maximizes the

joint likelihood:
M
[[Px,19) (8.42)
i=l

The training procedure performs the forward-backward algorithm on each independent
observation sequence to calculate the expectations (or sometimes referred to as counts) in
Eqs. (8.40) and (8.41). These counts in the denominator and numerator, respectively, can be
added across M data sequences respectively. Finally, all the model parameters (probabilities)
are normalized to make them sum up to one. This constitutes one iteration of Baum-Welch
re-estimation; iteration continues until convergence. This procedure is practical and useful
because it allows you to train a good HMM in a typical speech recognition scenario where a
large amount of training data is available.

For example, if we let ¥"(i, ) denote the ¥,(i,j) from the m" data sequence and
T" denote the corresponding length, Eq. (8.40) can be extended as:

M T

PN .

A = m=l =l
a,= —~
M T® N

PDWR AR

m=1 =]l k=]
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8.3. CONTINUOUS AND SEMICONTINUOUS HMMs

If the observation does not come from a finite set: but from a continuous Space, the digere
output distribution discussed in the previous sections negds to be modified. The differenc:
between the discrete and the continuous HMM lies in a different form of output probabij

functions. For speech recognition, use of continuo'us HMM:s implies that the quantizatioti
procedure to map observation vectors from the continuous space to the discrete Space for (he
discrete HMM is no longer necessary. Thus, the inherent quantization error can pe elimi.

nated.

8.3.1. Continuous Mixture Density HMMs

In choosing continuous output probability density functions bj (x) , the first candidate s
multivariate Gaussian mixture density functions. This is because they can approximate any
continuous probability density function, as discussed in Chapter 3. With M Gaussian mix-
ture density functions, we have:

M M
b (0= Y cuN (K T) = Dby (X) (8.44)
k=1

k=1

where N(x, L jk,Z #)OF bj,‘ (x) denotes a single Gaussian density function with mean vector
i, and covariance matrix X ; for state j, M denotes the number of mixture-components,
and ¢, is the weight for the " mixture component satisfying

Af
Ye, =1 (845)
k=t

To take the same divide and conquer approach as Eq. (8.33), we need to express
b,(x) with respect to each single mixture component as:

M M M T

T
PXS|D)=[]a, b x)=Y Y. ¥ []a,.bs(x ), (8.46)
r=1

h=lk=l k=t =l

Equation (8.46) can be considered as the summation of densities with all the pOfSible
sta.te sequences S and all the possible mixture components K, defined in Q7 asthe T Car-
tesian product of Q={1, 2, ..., M}, as follows:

T
p(x’ S, K | ‘D) = H a-‘l-l‘: bJ,k. (xl )C.rk (847)
1=t &

Therefore, the joint probability density is
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pX|®)=3 3 p(X.S,K|®) (8.48)

S KeQ'

An auxiliary function Q(®,®) of two model points, Dund b, given an observation
X, can be written as:

v v PXS,K|D) ~
@,b) = Pleen 25
[ C XD ;KZD (X [®) log p(X,S,K | d) (8.49)

From (8.47), the following decomposition can be shown:
log p(X,S,K | ®)

T T - T
= z loga, , + Z logb, (x,)+ Z logé,, (8.50)
1=l =l

1=l

Maximization of the likelihood by way of re-estimation can be accomplished on indi-
vidual parameter sets owing Lo the separability shown in (8.50). The separation of (8.50) is
the key to the increased versatility of a re-estimation algorithm in accommodating mixture
observation densities. The auxiliary function can be rewritten in a separated form in a simi-
lar manner as Eq. (8.33):

0(@,8)= 3§ LESKIR) 00 x5,k )

x pPX|P)
N N M 5 N M (851)
= ZQ-, (®,a,)+ ZZQI:I‘ (q)sbjk )+ ZZQc,, (q)’éjk)
i=l J=1 k=l =1 k=1
The only difference we have is:
-~ T ~
Q,,(®,b,)=2 p(s, = j.k, =k|X,®)loghy(x.), (8.52)
=l
and
T
Qc;& (q)’éil):zp(st =j’kl =k|x’®)logéi‘ G

=l

o what is discussed jn the discrete HMM; The

The optimization procedure is similar t !
pectto b, is

only major difference is Qh(CD,f)j,‘). Maximization of O, (®,b,) with res
obtained through differentiation with respect to {1, 2, } that satisfies:

Vi, O, (@,5,)=0 (8.54)
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L p(X,s, = j,k, = k| D) L,
i =,§ PX|®P) "’_2;‘10, X,
e iP(st,=j,k,=k|q>)
i=l pX|®)

(8.55)

pHACR))
1=1

ip(X,s, =ik =k|D)
3 = pX| D)
! iP(X,S,=j,k,=k|‘D)
P PX|P)

D LUK, =), ~fi,)
PN

=l

(xl —ﬁ'jll )(x, —Iljk)'

(8.56)

where {,(j, k) is computed as:

(X5, = j,k =k|®) 04, (2,¢,b (3,8, (J)

= 8.57
2(X| D) (857

5,Gik) =2 h
2o ()

In a similar manner to the discrete HMM, we can derive the reestimation equation for
¢, as follows:

T
$.(.k)
&y = —z'———— (8.58)

M

.
YLk

r=1 k=1

83.2. Semicontinuous HMMs

Traditionally, the discrete and the continuous mixture density HMMs have beet Ue?;:l‘sl
Separately. In fact, the gap between them can be bridged under some minor assumpti iy
with the so-called semicontinuous or tied-mixture HMM. It assumes the mixture den;is-
functions are tied together across all the models to form a set of shared kernels. 2 the st
crete HMM, a VQ codebook is typically used to map the continuous input feature "e‘;: i
to 0, , so we can use the discrete output probability distribution &;(k) - The codebo0
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be essentially regarded as one of such shared kemels, Accordingly, Eq. (8.44) can be modi-
fied as:

M M
b= 2b,()f(xV0,) = 3 b, (kIN(x ;. Z,) (8.59)
k=] z

k=1

where o, is the kth codeword, &,(k) is the same output probability distribution in the dis-
crete HMM or the mixture weights for the continuous mixture density function, and
N(x.)L,,%,) are assumed to be independent of the Markov model and they are shared
across all the Markov models with a very large number of mixtures M.

From the discrete HMM point of view, the needed VQ codebook consists of M con-
tinuous probability density functions, and each codeword has a mean vector and a covari-
ance matrix. Typical quantization produces a codeword index that has minimum distortion
to the given continuous observation x. In the semicontinuous HMM, the quantization opera-
tion produces values of continuous probability density functions f(x|o,) for all the code-
words o, . The structure of the semicontinuous model can be roughly the same as that of the
discrete one. However, the output probabilities are no longer used directly as in the discrete
HMM. In contrast, the VQ codebook density functions, N(x,1;,2%,) , are combined with the
discrete output probability as in Eq. (8.59). This is a combination of discrete model-
dependent weighting coefficients with the continuous codebook probability density func-
tions. Such a representation can be used to re-estimate the original VQ codebook together
with the HMM.

The semicontinuous model also resembles the M-mixture continuous HMM with all
the continuous output probability density functions shared among all Markov states. Com-
pared with the continuous mixture HMM, the semicontinuous HMM can maintain the mod-
eling ability of large-mixture probability density functions. In addition, the number of free
parameters and the computational complexity can be reduced, because all the probability
density functions are tied together, thus providing a good compromise between detailed
acoustic modeling and trainability.

In practice, because M is large, Eq. (8.59) can be simplified by using the L most sig-
nificant values f(x|o,) for each x without affecting the performance. Experience has
shown that values of L in the range of 1-3% of M are adequate. This can be conveniently
obtained during the VQ operations by sorting the VQ output and keeping the L most signifi-
cant values. Let 7(x) denote the set of L VQ codewords that has the largest f(x|o,) for the
given x. Then we have:

b(x)= Y f(x]o,)b;(k) (8.60)

ken(x)

Since the number of mixture components in 7)(x) is of lower order than M, Eq. (8.60)
can significantly reduce the amount of computation. In fact, 7)(x) is the key to bridge the
gap between the continuous and discrete HMM. If 7(x) contains only the most significant
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f(x]0,) (ie., only the closest codeword to x), the semicontinuous HMM degenerates 1, th
discrete HMM. On the other hand, a large VQ codebook can be used such that eqch, Mark :
state could contain a number of its own codewords (a mixture of probability density funov
tions). The discrete output probability b, (k) thus becomes the mixture weights fo ea:,;
state. This would go to the other extreme, a standard continuous mixture density mode]. we
can also define 7)(x) in such a way that we can have partial tying of f(x lo,) for differen;
phonetic classes. For example, we can have a phone-dependent codebook.

When we have a tied VQ codebook, re-estimation of these mean vectors and covarj.
ance matrices of different models will involve interdependencies. If any observation X, (no
matter what model it is designated for) has a large value of posterior probability C.(b), it
will have a large contribution on re-estimation of parameters of codeword o, . We can com-
pute the posterior probability for each codeword from &,(j,k) as defined in Eq. (8.57).

L (k)= p(x, =0, 1X,®) = X {,(jik) (8.61)
i
The re-estimation formulas for the tied mixture can be written as:
T
2L, kx,
gy = (8.62)
2.6 (k)
t=]
T ~ ~
L 28 G0 — R0, — )
5, =Ll (8.63)

T
pRAC))

84.  PrAcCTICAL ISSUES IN USING HMMS

While the HMM provides a solid framework for speech modeling, there are a number (?f
issues you need to understand to make effective use of spoken language processing. ln -
section we point out some of the key issues related to practical applications. For expedience:
we mostly use the discrete HMM as our example here.

8.4.1. Initial Estimates

- . H e
1.“ theary, the re-estimation algorithm of the HMM should reach a local maximum for i
likelihood function. A key question is how to choose the right initial estimates of the
parameters so that the local maximum becomes the global maximum.
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In the discrete HMM, if a probability is initialized to be zero, it will remain zero for-
ever. Thus, it is important to have a reasonable set of initial estimates, Empirical study has
shown that, for discrete HMMs, you can use a uniform distribution as the initial estimate, It
works reasonably well for most speech applications, though good initial estimates are ;.ll—
ways helpful to compute the output probabilities.

If continuous mixture density HMM:s are used, good initial estimates for the Gaussian
density functions are essential. There are a number of ways to obtain such initial estimates:

e You can use the k-means clustering procedure, as used in vector quantization
clustering. The Markov state segmentation can be derived from the discrete
HMM, since it is not very sensitive to the initjal parameters. Based on the
segmented data, you can use the k-means algorithm to derive needed Gaus-
sian mean and covariance parameters. The mixture coefficients can be based
on the uniform distribution.

e You can estimate the semicontinuous HMM from the discrete HMM. You
simply need to estimate an additional covariance matrix for each VQ code-
word and run an additional four or five iterations to refine the semi-
continuous HMM based on the discrete HMM, which typically requires four
or five iterations from the uniform distribution. When the semi-continuous
HMM is trained, you take the top M codewords, and in each Markov state use
them as the initial Gaussian density functions for the continuous density mix-
ture model.

e You can start training a single mixture Gaussian model. You can compute the
parameters from previously segmented data. You can then iteratively split the
Gaussian density function in a way similar to VQ codebook generation. You
typically need two or three iterations to refine the continuous density after

each splitting.

8.4.2. Model Topology

Speech is a time-evolving nonstationary signal. Each HMM state has the ability to capture
some quasi-stationary segment in the non-stationary speech signal. A left-to-right topology,
as illustrated in Figure 8.8, is a natural candidate to model the speech signal. It has a self-
transition to each state that can be used to model contiguous speech features belongiqg to
the same state. When the quasi-stationary speech segment evolves, the left-to-right transition
enables a natural progression of such evolution. In such a topology, each state has a state-
dependent output probability distribution that can be used to interpret the obscrvapla speech
signal. This topology is, in fact, one of the most popular HMM sn:uctures usec_j in stz.ite—of-
the-art speech recognition systems. The output probability distribution can be either discrete
distributions or a mixture of continuous density functions.
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For the left-to-right HMM, the most important parameter in determining the
is the number of states. The choice of model topology depends on available traininp olo
and what the model is used for. If each HMM is used to represent a phone, YOU need | 0ghdala
at least three to five output distributions. If such a model is used to represent 5 Word ave
states are generally required, depending on the pronunciation and duration of the wOrvdm}(:re
example, the word tetrahydrocannabino should have a large number of states ip compaﬁsor
to the word a. You may use at least 24 states for the former and three states for the lame,olnf
you have the number of states depending on the duration of the signal, you may wan tm;s
15 to 25 states for each second of speech signal. One exception is that, for silence, you mae
want to have a simpler topology. This is because silence is stationary, and one or twg Slatez
will be sufficient.

a
agy 22

ap

0

a
ay |
2
N
Aol ]

by (k) b, (k) b, (k)

Figure 8.8 A typical hidden Markov model used to model phonemes. There are three states
(0-2) and each state has an associated output probability distribution.

In practice, it is convenient to define a null transition. This is convenient if we want (0
simply traverse the HMM without consuming any observation symbol. To incorporate I.he
null arc, you need to slightly modify the basic forward-backward or Viterbi Pf"b*‘b'l",y
equations, provided that no loops of empty transitions exist. If we denote the empty transi
tion between state i and j as a,.f: , they need to satisfy the following constraints:

Za,j +ag =1,Yi (864
J

The forward probability can be augmented as follows:

, X . N ’ (869
10 =[Za.-. (Dab(x)+ Y 0, ()af | 1<t<T; 1€j<N
i=1

i=l
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Equation (8'6.5.) appears to have a recursion, but it actually uses the value of the same
time column of @, (i), provnd.e.d that i is already computed, which is easily achievable if we
have left-to-right empty transitions without loops of empty transitions.

8.4.3. Training Criteria

The argument for maximum likelihood estimation (MLE) is based on an assumption that the
true disuipution of speech is a member’ of the ‘family of distributions used. This amounts to
the assertion that the observed speech is genuinely produced by the HMM being used, and
the only unknown parameters are the. values. However, this can be challenged. Typical
HMMs make many inaccurate assumptions about the speech production process, such as the
output-independencc assumption, the Markov assumption, and the continuous probability
density assumption. Such inaccurate assumptions substantially weaken the rationale for
maximum likelihood criteria. For instance, although maximum likelihood estimation is con-
sistent (convergence to the true value), it is meaningless to have such a property if the wrong
model is used. The true parameters in such cases will be the true parameters of the wrong
models. Therefore, an estimation criterion that can work well in spite of these inaccurate
assumptions should offer improved recognition accuracy compared with the maximum like-
lihood criterion. These alternative criteria include the MCE and MMIE, as discussed in
Chapter 4. Finally, if we have prior knowledge about the model distribution, we can employ
the Bayes' method such as MAP that can effectively combine both the prior and posterior
distributions in a consistent way, which is particularly suitable for adaptation or dealing with
insufficient training data.

Among all these criteria, MLE remains one of the most widely used, because of its
simplicity and superior performance when appropriate assumptions are made about the sys-
tem design. MCE and MMIE work well for small- to medium-vocabulary speech recogni-
tion [2, 26, 36]. You can train a number of other iterations based on the ML estimates.
Neither MCE nor MMIE has been found extremely effective for large-vocabulary speech
recognition. However, it is possible to combine the MMIE or MCE model with the MLE
model for improved performance. This is because the error patterns generated from these
different models are not the same. We can decode the test utterance with these different
models and vote for the most consistent results [15, 25]. We discuss MAP methods in Chap-
ter 9, since it is mostly helpful for speaker adaptive speech recognition.

8.4.4. Deleted Interpolation

For improved robustness, it is often necessary to combine well trained general 'models (such
as speaker-independent) with those that are less well trained but more det?u_led (such as
speaker-dependent). For example, you can typically improve speech ref:ogmuon accuracy
With speaker-dependent training. Nevertheless, you may not have sufﬁcllent data for a par-
ticular speaker so it is desirable to use a speaker-independent moc!el that is more.general but
less accurate to smooth the speaker-dependent model. One effective way to achieve robust-
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ness is to interpolate both models with a technique called deleted interpolation
interpolation weights are estimated using cross-validation data. The objective
maximize the probability of the model generating the held-out data.

Now, let us assume that we want to interpolate two sets of models, P(x)and p
which can be either discrete probability distributions or continuous density functio;:sx).
form an interpolated model P,,(x). The interpolation procedure can be expressed g f ollo
lows: -

» I whigh the
function jg

Poy(x) = AP,(0) +(1=A) By (%) (856)

where the interpolation weight A is what we need to derive from the training data.

Consider that we want to interpolate a speaker-independent model P(X) with 3 .
speaker-dependent model Fy(x). If we use speaker-independent data to estimate the
interpolation weight, we may not capture needed speaker-specific information that should e
reflected in the interpolation weights. What is worse is that the interpolation weight for the
speaker-independent model should be equal to 1.0 if we use the same speaker-independent
data from which the model was derived to estimate the interpolation weight. This is because
of the MLE criterion. If we use speaker-dependent data instead, we have the weight for the
speaker-dependent model equal 1.0 without achieving the desired smoothing effect. Thus
the interpolation weights need to be trained using different data or deleted data with the so
called cross-validation method.

We can have the training data normally divided into M parts, and train a set of P,(x)
and P;(x) models using the standard EM algorithm from each combination of M- parts,
with the deleted part serving as the unseen data to estimate the interpolation weights 4.
These M sets of interpolation weights are then averaged to obtain the final weights.

ALGORITHM 8.5: DELETED INTERPOLATION PROCEDURE

Step 1: Initialize A with a guessed estimate.

Step 2: Update A by the following formula:

R =_]— A B APA_j(x{) (867)
M jAs AP, ]y + (1= ) By (x])

where P,_,(x/) and P,_(x/) is P,(x)and P,(x) estimated by the entire training corpus

except part , the deleted part, respectively; 1, is the total number of data points in part/ thal

have been aligned to estimate the model; and x/ indicates the #th data point in the /1 s¢ of
the aligned data.

Step 3: If the new value 1 is sufficiently close to the previous value 4., stop. Otherwisé, 9° ©

Step 2.
/
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In fact, the interpolation weights in Eq. (8.66) are similar to the Gaussian mixture

weights,faiithOUgh P(x) aﬂ::] Py(x) IE:/)I' not be Gaussian density functions. When we have
sets of data, we can use the same algorithm i i i i

%ustm[ed ot A, 8 to estimate the interpolation weights as

The deleted interpolation procedure described above can be applied after each trainin
iteration. Then, for the following iteration of training, the learned interpolation weights caﬁ
be used as illustrated in Eq. (8.66) to compute the forward-backward paths or lhegViterbi
maximum path. We can also have more than two distributions interpolated together. Deleted
interpolation has been widely used in both acoustic and language modeling where smooth-
ing is needed.

8.4.5. Parameter Smoothing

One simple reality for probabilistic modeling is that as many observations as possible are
required to reliably estimate model parameters. However, in reality, only a finite amount of
training data is available. If the training data are limited, this will result in some parameters
being inadequately trained, and classification based on poorly trained models will result in
higher recognition error rate. There are many possible solutions to address the problem of
insufficient training data:

e You can increase the size of the training data. There is no data like more
data.

o You can reduce the number of free parameters to be re-estimated. This has its
limitations, because a number of significant parameters are always needed to
mode! physical events.

* You can interpolate one set of parameter estimates with another set of pa-
rameter estimates, for which an adequate amount of training data exists. De-
leted interpolation, discussed in Section 8.4.4, can be used effectively. In the
discrete HMM, one simple approach is to set a floor to both the transition
probability and the output probability in order to eliminate possible zero es-
timates. The same principle applies to the SCHMM as well as the mixing
coefficients of the continuous density HMM. Parameter ﬂooring can be
regarded as a special case of interpolation with the uniform distribution.

* You can tie parameters together to reduce the number of free: parameters. The
SCHMM is a typical example of such parameter-tying techniques.

For the continuous mixture HMM, you need to pay extra attention to smoothing the
covariance matrices. There are a number of techniques you can use:
* You can interpolate the covariance matrix with those that are better trained or
a priori via the MAP method.
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e You can tie the Gaussian covariance matrices across different
ponents or across different Markov states. A very general sh
density model is discussed in [20].

ared Gauggiyy

* You can use the diagonal covariance matrices if the correlation among f;
ture coefficients is weak, which is the case if you use uncorrelateq feilu:a.
such as the MFCC. “

e You can combine these methods together.

In practice, we can reduce the speech recognition error rate by 5-20% wit, Varioy
smoothing techniques, depending on the available amount of training data, :

8.4.6. Probability Representations

When we compute the forward and backward probabilities in the forward-backward ago-
rithm, they will approach zero in exponential fashion if the observation sequence length, T,
becomes large enough. For sufficiently large T, the dynamic range of these probabilities will
exceed the precision range of essentially any machine. Thus, in practice, it will result in un-
derflow on the computer if probabilities are represented directly. We can resolve this in-
plementation problem by scaling these probabilities with some scaling coefficient so that
they remain within the dynamic range of the computer. All of these scaling coefficients can
be removed at the end of the computation without affecting the overall precision.
For example, let e, (i) be multiplied by a scaling coefficient, S,:

S, =1/ a, @) (8.69)

so that 2S,a,(i)=1 for 1< ¢ <T. B,(i) can also be multiplied by S, for 1< ¢ <7.The

recursion involved in computing the forward and backward variables can be scaled at ﬁt'].c:j
stage of time ¢ by S,. Notice that &, (i) and B, (i) are computed recursively in exponer
fashion; therefore, at time ¢, the total scale factor applied to the forward variable &, (@) s

Scale,(n) =] s, e
k=1
and the total scale factor applied to the backward variable 8, (i) is
r 0
Seale,(n =] [, &
ket
in the forve™

This is because the individual scaling factors are multiplied together ding scal
and backward recursion. Let « (i), 7(#), and ¥/(i, j) denote their correspondiné
variables, respectively. Note that
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o7 (1) = Seale(T) 3,0, (i) = Seale, (T)P(X | ®) 8.71)
The scaled intermediate probability, 71 (4, /), can then be written as:
P S(.'(llea (f - ])at—l (l-)(l’.jb/ (XI)BI (j)SCalC (’)
‘y'(lrj)"' 2 =7/1 (l!j) (872)

Scale, (T)iar )

i=l

Thus, the intermediate probabilities can be used in the same way as the unscaled prob-
abilities, because the scaling factor is cancelled out in Eq. (8.72). Therefore, re-estimation
formulas can be kept exactly except that P(X |®) should be computed according to

P(X|®) =Y 07 (i)/ Scale,(T) (8.73)
i

In practice, the scaling operation need not be performed at every observation time. It
can be used at any scaling interval for which the underflow is likely to occur. In the un-
scaled interval, Scale,, can be kept as unity.

An alternative way to avoid underflow is to use a logarithmic representation for all the
probabilities. This not only ensures that scaling is unnecessary, as underflow cannot happen,
but also offers the benefit that integers can be used to represent the logarithmic values,
thereby changing floating point operations to fixed point ones, which is particularly suitable
for Viterbi-style computation, as Eq. (8.25) requires no probability addition.

In the forward-backward algorithm we need to have probability addition. We can keep
atable on log, P, —log, P,.If we represent probability P by log, P, more precision can be
obtained by setting b closer to unity. Let us assume that we want to add P, and P, and that
P 2 P,. We have:

logy (P, + Py) = log, Py +log, (1+5' 278 A1y (8.74)

If P, is many orders of magnitude smaller than P,, adding the two numbers will just
result in P,. We could store all possible values of log,(1+5") in a table. Using logarithms
introduces errors for addition operation. In practice, double-precision float representation
can be used to minimize the impact of the precision problems.

8.5. HMM LIMITATIONS

There are a number of limitations in the conventional HMMs. For example, HMMs assume
the duration follows an exponential distribution, the transition probability depends only on
the origin and destination, and all observation frames are dependent only on the state that
generated them, not on neighboring observation frames. Researchers have proposed a num-
l_Jer of techniques to address these limitations, albeit these so
improved speech recognition accuracy for practical applications.

lutions have not significantly
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8.5.1. Duration Modeling

One major weakness of conventional HMMs is that they do not provide an adequate Tepre.
sentation of the temporal structure of speech. This is b.ecause the probability of staie ]
pancy decreases exponentially with time as shown in Eq. (8.75). The probability of
consecutive observations in state i is the probability of taking the self-loop at state { oy
times, which can be written as

Figure 8.9 A standard HMM (a) and its corresponding explicit duration HMM (b) where the
self transitions are replaced with the explicit duration probability distribution for each state.

An improvement to the standard HMM results from the use of HMMs wit.h an e"p]fm
time duration distribution for each state [30, 39]. To explain the principle of time duration
modeling, a conventional HMM with exponential state duration density and a time das
HMM with specified state duration densities (which can be either a discrete dierl_b}lllon ord
continuous density) are illustrated in Figure 8.9. In (a), the state duration probability h‘a‘;:‘r‘l
exponential form as in Eq. (8.75). In (b), the self-transition probabilities are rel?laced wi i
explicit duration probability distribution. At time 1, the process enters state i for duration :
with probability density d,(t), during which the observations X,y Xp2-+Xuse are genef
ated. It then transfers to state j with transition probability a;, only after the appr Opnamny
observations have occurred in state i. Thus, by setting the tinjle duration P\'Obab’my (?enls ot
to be the exponential density of Eq. (8.75) the time duration HMM can be made cqmvaei
to the standard HMM. The parameters d;(7) can be estimated from observations along wte
the other parameters of the HMM. For expedience, the duration density is usually u?mcé!

. i time
:t a r'nammum_duratlon value 7. To re-estimate the parameters of the HMM with
uration modeling, the forward recursion must be modified as follows:
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a’(j) =z Za"f([)aﬁd/ (T)Hbj(Xl—rH) (8.76)
I=1

T L%}

where the transition from state / to state j depends not only upon the transition probability
a; but also upon all the possible.ti.me periods T that may occur in state J. Intuitively, Eq.
(8.76) illustrates that when state j is reached from previous states i, the observations may
stay in state j for a period of T with duration density d (%), and each observation emits its
own output probability. All possible durations must be considered, which leads to summa-
tion with respect to T. The independence assumption of observations results in the IT term
of the output probabilities. Similarly, the backward recursion can be written as:

T

.Bl(i)z 2 za'jdj(r)nbj(’\lwl)ﬁnr ) 8.77)
T fog =1

The modified Baum-Welch algorithm can then be used based on Eq. (8.76) and (8.77).

The proof of the re-estimation algorithm can be based on the modified Q-function except

that P(X,S|®) should be replaced with P(X, S, T|®), which denotes the joint probability of

observation, X, state sequence, S = {5;,85...,5; SN, } in terms of state s, with time dura-
tion T, and the corresponding duration sequence, T ={7,7,,...T;...Ty ].

I > Y P(X,S,T|®)logP(X,S,T|d) (8.78)

¢y =t
SR AT

In a manner similar to the standard HMM, ¥, . (i, j) can be defined as the transition
probability from state Z at time ¢ to state j with time duration 7 in state j. ¥, . (i, j) can be
written as:

Voo ) =0,y d, O] 6, X, Bre D3 07 () (8.79)
=l k=l

Similarly, the probability of being in state ; at time ¢ with duration 7 can be computed

Ve (D= zy,_, G ) (8.80)

The re-estimation algorithm can be derived from Eq. (8.80), the Viterbi decoding al-
gorithm can be used for the time duration model, and the optimal path can be determined
according to:

(8.81)

J

V,(j) = Max Max(V,_.(i)a;d, (D] [ ;(Xi-ear)]
i T =1

There are drawbacks to the use of the time duration modeling discussed here. One is

; ; 2 i time
the great increase in computational complexity by a factor of O(D?), where D is the tim
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duration distribution length. Another problem is the large number of additig,
D that must be estimated. One proposed remedy is to use a continuous dens
stead of the discrete distribution d j (7).

In practice, duration models offer only modest improvement for speaker-inde
continuous speech recognition. Many systems even eliminate the transition Probabilipendenl
pletely because the output probabilities are so dominant. Nevertheless, duration infogncqm'
is very effective for pruning unlikely candidates during the large-vocabulary speech recauo‘n
tion decoding process. ogni-

.na] Paramete
1ty function i,

8.5.2. First-Order Assumption

As you can see from the previous section, the duration of each stationary segment captured
by a single state is inadequately modeled. Another way to alleviate the duration problem s
to eliminate the first-order transition assumption and to make the underlying state sequence
a second-order Markov chain [32]. As a result, the transition probability between two states
at time  depends on the states in which the process was at time ¢-1 and ¢-2. For a given state
sequence 8 = {s; 5, ...s7}, the probability of the state should be computed as:

PS)= [ s )

where a; . . =P(s;|s,_55,,) is the transition probability at time #, given the two-order
state history. The re-estimation procedure can be readily extended based on Eq. (8.82). For
example, the new forward probability can be re-defined as:

a,(j,k):P(X{,s,_l =55 =k|'1)=Zat-l(ivj)a,jkbk(Xt) 883

where ay; = P(s, = k|s,_, =i,5,_; = j). Similarly, we can define the backward probability

as:

B, )= P(X[ s,y =5, = juA) = D @by (Xp)Bra oK) (28
k

With Eq. (8.83) and (8.84), the MLE estimates can be derived easily based on the
modified ¥, (i, j, k):
Vil ) k)= P(s,_y =i,5, = J, 5,0 =k, X|P) (8389)
=a, (i>j)aijkbk (XH-I )ﬁl+l (17 k) / P(X]q))
. ; ve 10
In practice, the second-order model is computationally very expensive 8 “;.e Tordef
consider the increased state space, which can often be realized with an equivalent s

. ;gnificanty
b'dde“ Markov model on the two-fold product state space. It has not offered Slggﬁgons.
tmproved accuracy to justify its increase in computational complexity for most app
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$.5.3. Conditional Independence Assumption

The third major weakness in HMMs is that all observation frames are dependent only on the
state that generated them, not on neighboring observation frames. The conditional inze end-
ence assumption makes it hard to effectively handle nonstationary frames that are strgn |
correlated. There are a number of ways to alleviate the conditional independence assumpt?oz
[34). For example, we can assume the output probability distribution depends not only on
the state but also on the previous frame. Thus, the probability of a given state sequence can
be rewritten as: :

.
pexis, @) =[] Pax oy s, 0) (8.86)

t=]

As the parameter space becomes huge, we often need to quantize X,_, into a smaller
set of codewords so that we can keep the number of free parameters under control. Thus, Eq.
(8.86) can be simplified as:

T
P(X1S,®) =[] P(X, | RR(X,.,),s,, @) (8.87)

1=l

where () denotes the quantized vector that has a small codebook size, L. Although this
can dramatically reduce the space of the free conditional output probability distributions, the
total number of free parameters will still increase by L times.

The re-estimation for conditional dependent HMMs can be derived with the modi-
fied Q-function, as discussed in the previous sections. In practice, it has not demonstrated
convincing accuracy improvement for large-vocabulary speech recognition.

8.6. HISTORICAL PERSPECTIVE AND FURTHER READING

The Markov chain was named after Russian scientist A. Markov for his pioneering work in
analyzing the letter sequence in the text of a literary work in 1913 [33]. In the 1960s, Baum
and others further developed efficient methods for training the model parameters [4, 5].
When the observation is real valued, the use of continuous or semi-continuous HMMSs can
improve the overall performance. Baum et al. also developed the method to use continuous
density functions that are strictly log concave [5], which was relaxed by Liporace [31] and
expanded by Juang to include mixture density functions [27]. '

The Viterbi algorithm shares the same concept that was independently discovered by
researchers in many separate fields [28], including Vintsyuk [42], Needleman and Wunsch
[35], Sankoff [41], Sakoe and Chiba [40], and Wagner and Fischer [44]. '

Jim Baker did his Ph.D. thesis under Raj Reddy at Carnegie Mellon using HMMs for
speech recognition [3]. At the same time Fred Jelinek and his colleagues at IBM Research
Pioncered widespread applications [23]. Since the 1980s, partly because of the DARPA-
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funded speech projects, HMMs have become a mainstream technique for modeling s
as exemplified by advanced systems developed at BBN, Bell Labs, Camnegie Mellonpfech,
Microsoft, SRI, and others [9, 17, 29, 46]. The Ph.D. theses from Kaij-Fu Lee [29) HBM
Wuen Hon [16], and Mei-Yuh Hwang (22] at Carnegie Mellon addressed Many in,1 Siao.
practical issues in using HMMs for speech recognition. There are also a number 0¥°nam
books on the practical use of HMMs [18, 24, 38, 45]. good

The choice of different output probabilities depends on a number of factors such as ih
availability of training data, the feature characteristics, the computational complexity anz
the number of free parameters [19] [34]. The semi-continuous model, also knowp ns the
tied-mixture model, was independently proposed by Huang and Jack [21] and Bellegards
and Nahamoo [6]. Other improvements include explicit duration modeling [1, 1, 13,14,%
39], high-order and conditional models [7, 32, 34], which have yet to be shown effectivé fo;
practical speech recognition.

Both Carnegie Mellon University's open speech software’ and Cambridge Univer-
sity’s HTK’ are a good starting point for those interested in using the existing tools for rup-
ning experiments.

HMMs have become the most prominent techniques for speech recognition today.
Most of the state-of-the-art speech recognition systems on the market are based on HMMs

described in this chapter.
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Acoustic Modeling

After years of research and development, ac-
curacy of automatic speech recognition remains one of the most important research chal-
l°“$e§- A mumber of well-known factors determines accuracy; those most noticeable are
vanations in context, in speaker, and in environment. Acoustic modeling plays a critical role
1 mproving accuracy and is arguably the central part of any speech recognition system.
find For the given acoustic observation X = X, X;...X,, , the goal of speech recognition is to

1C out the corresponding word sequence W =w,w,...w, that has the maximum posterior
Probability P(Wy | X) as expressed by Eq. (9.1).

P(W)P(X|W) ol
P(X)

Since the maximization of Eq. (9.1) is carried out with the observation X fixed, the
Maximization is equivalent to maximization of the following equation:

W =argmax P(W | X) = arg max

ﬂbove

415
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W = argmax P(W)P(X | W) 92)

The practical challenge is how to build accurate acoustic models, P(Xl W) and |

’ an_
guage models, P(W), that can truly reflect the spoken language to be recognized. For Jy; .
vocabulary speech recognition, since there are a large number of words, we need 1o deco%n-
pose a word into a subword sequence. Thus P(X|W) is closely related to phonetic model.
ing. P(XIW) should take into account speaker variations, pronunciation variations
environmental variations, and context-dependent phonetic coarticulation variations, Last, bu;
not least, any static acoustic or language model will not meet the needs of real applications,
So it is vital to dynamically adapt both P(W) and P(X|W) to maximize P(WIX) while
using spoken language systems. The decoding process of finding the best word sequence W
to match the input speech signal X in speech recognition systems is more than a simple pat-
tern recognition problem, since in continuous speech recognition you have an infinite num-
ber of word pattemns to search, as discussed in detail in Chapters 12 and 13.

In this chapter we focus on discussing solutions that work well in practice. To high-
light solutions that are effective, we use the Whisper speech recognition system [49] devel-
oped at Microsoft Research as a concrete example to illustrate how to build a working
system and how various techniques can help to reduce speech recognition errors." We hope
that by studying what worked well in the past we can illuminate the possibilities for further
improvement of the state of the art.

The hidden Markov model we discussed in Chapter 8 is the underpinning for acoustic
phonetic modeling. It provides a powerful way to integrate segmentation, time warping,
pattern matching, and context knowledge in a unified manner. The underlying technologies
are undoubtedly evolving, and the research community is aggressively searching for more
powerful solutions. Most of the techniques discussed in this chapter can be readily derived
from the fundamentals discussed in earlier chapters.

9.1. VARIABILITY IN THE SPEECH SIGNAL

The research community has produced technologies that, with some constraints, can accu-
rately recognize spoken input. Admittedly, today’s state-of-the-art systems Stil_l ot
match humans’ performance. Although we can build a very accurate speech recognizer o
particular speaker, in a particular language and speaking style, in a particular environmer®
and lupi(ed 10 a particular task, it remains a research challenge to build a recognizer that c'an
essentially understand anyone’s speech, in any language, on any topic, in any free-flowing

style, and in almost any speaking environment.

1

) Most of the experimental results used

Independent continuous dictation task,

:lesl. Set consists of 410 utterances fro
enved from 2 billigp words of Englj

er-
here are based on a development test set for the 60,000-\#0!'2k w,:ak'me
The training set consists of 35,000 utterances from about 300 sp coc'iel is
m 10 speakers that were not used in the training data. The language "
sh text corpora.
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Variability in the Speech Signal 7

Accuracy and robustness are the ultimate measures for the success of speech recogni-
tion algorithms. There are many reasons why existing algorithms or systems did not deliver
what people want. In the sections that follow we summarize the major factors involved

9.1.1. Context Variability

Spoken language interaction between people requires knowledge of word meanings, com-
munication context, and common sense. Words with widely different meanings and usage
patterns may have the same phonetic realization. Consider the challenge represented by the
following utterance:

Mr. Wright should write to Ms. Wright right away about his Ford or four door
Honda.

For a given word with the same pronunciation, the meaning could be dramatically dif-
ferent, as indicated by Wright, write, and right. What makes it even more difficult is that
Ford or and Four Door are not only phonetically identical, but also semantically relevant.
The interpretation is made within a given word boundary. Even with smart linguistic and
semantic information, it is still impossible to decipher the correct word sequence, unless the
speaker pauses between words or uses intonation to set apart these semantically confusable
phrases.

In addition to the context variability at word and sentence level, you can find dramatic
context variability at the phonetic level. As illustrated in Figure 9.1, the acoustic realization
of phoneme /ee/ for word peat and wheel depends on its left and right context. The depend-
ency becomes more important in fast speech or spontaneous speech conversations, since
many phonemes are not fully realized.

1000
0 el ey
-1000 mﬂ’
-2000
0 0.1 0.2 0.3
3 4000 Wtﬁ'w ; T
st N 4" ] b
'Z; 3000 m i‘"j }" (Z
3 2000, " 3
g Xt gt e g
w 1000 Mot-cam. i, 11 w
0 9 " WL by 0 0.3
0 0.1 0.2 .
0 0.1 0.2 0.3 Time (seconds)

Time (seconds)

Figure 9, or words peat (left) and wheel (right). The phoneme
y 1 Wil(EG0g dnd Spectrograms f g This illustrates that different con-

/ee/ is illustrated with two different left and right contexts.
texts may have ditferent effects on a phone.
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9.1.2.  Style Variability

To deal with acoustic realization variability, a number of co'nstraints can be impogeq on the
use of the speech recognizer. For example, we can have an isolated speech recognition sys.
tem, in which users have to pause between each word. Because the pause provideg a clegr
boundary for the word, we can easily eliminate errors such as Ford or and four door. 1n a4.
dition, isolated speech provides a correct silence context to each word so that it ig easier tg
model and decode the speech, leading to a significant reduction in computational complexity
and error rate. In practice, the word-recognition error rate of an isolated speech recogrizer
can typically be reduced by more than a factor of three (from 7% to 2%) as compared it
to a comparable continuous speech recognition system [5]. The disadvantage is that sych an
isolated speech recognizer is unnatural to most people. The throughput is also significantly
lower than that for continuous speech.

In continuous speech recognition, the error rate for casual, spontaneous speech, as oc-
curs in our daily conversation, is much higher than for carefully articulated read-aloud
speech. The rate of speech also affects the word recognition rate. It is typical that the higher
the speaking rate (words/minute), the higher the error rate. If a person whispers, or shouts,
to reflect his or her emotional changes, the variation increases even more significantly.

9.1.3.  Speaker Variability

Every individual speaker is different. The speech he or she produces reflects the physical
vocal tract size, length and width of the neck, a range of physical characteristics, age, sex,
dialect, health, education, and personal style. As such, one person’s speech patterns can b
entirely different from those of another person. Even if we exclude these interspeaker differ-
ences, the same speaker is often unable to precisely produce the same utterance. Thus, the
shape of the vocal tract movement and rate of delivery may vary from utterance to utterance,
even with dedicated effort to minimize the variability.

For speaker-independent speech recognition, we typically use more than 500 spea!«:rs
to build a combined model. Such an approach exhibits large performance ﬂuctuat.ltlms
among new speakers because of possible mismatches in the training data between exitins
speakers and new ones [50]. In particular, speakers with accents have a tangible emor- B
Increase of 2 to 3 times.

To improve the performance of a speaker-independent speech recognizer, 2 number of
constraints can be imposed on its use. For example, we can have a user enroliment that re-
quires the user to speak for about 30 minutes. With the speaker-dependent data and traint™®
vy be_ able to capture various speaker-dependent acoustic characteristics that can 5‘3;
nificantly improve the speech recognizer’s performance. In practice, SPeaker'dependeg_
speech recognition offers not only improved accuracy but also improved speed, since deco

; - . . er-
Ing can be more efficient with an accurate acoustic and phonetic model. A typical speak

.. an
dependent speech recognition system can reduce the word recognition error by more &

30% as compared with a comparable speaker-independent speech recognition system-
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How to Measure Speech Recognition Errors 419

The disadvantage of speaker-dependent speech recognition is that it takes time to col-
lect speaker-dependent data, which may be impractical for some applications such as an
qutomatic telephone operator. Mapy applications have to support walk-in speakers, so
speuker-independent spe'ecl_1 I'.CCOgl.'Ilt'lorl remains an important feature. When the amount of
speaker—dependent data is lmylcd, 1L1s important to make use of both speaker-dependent and
Speaker-independenl‘ da_m using speaker-adaptive training techniques, as discussed in Sec-
tion 9.6. Even for speaker-independent speech recognition, you can still use speaker-
adaptive training based on recognition results to quickly adapt to each individual speaker
during usage.

9.14. Environment Variability

The world we live in is full of sounds of varying loudness from different sources. When we
interact with computers, we may have people speaking in the background. Someone may
slam the door, or the air conditioning may start humming without notice. If speech recogni-
tion is embedded in mobile devices, such as PDAs (personal digital assistants) or cellular
phones, the spectrum of noises varies significantly because the owner moves around. These
external parameters, such as the characteristics of the environmental noise and the type and
placement of the microphone, can greatly affect speech recognition system performance. In
addition to the background noises, we have to deal with noises made by speakers, such as lip
smacks and noncommunication words. Noise may also be present from the input device it-
self, such as microphone and A/D interference noises.

In a similar manner to speaker-independent training, we can build a system by using a
large amount of data collected from a number of environments: this is referred to as
nultistyle training [70]. We can use adaptive techniques to normalize the mismatch across
different environment conditions in a manner similar to speaker-adaptive training, as dis-
cussed in Chapter 10. Despite the progress being made in the field, environment variability
remains as one of the most severe challenges facing today’s state-of-the-art speech systems.

9.2. How TO MEASURE SPEECH RECOGNITION ERRORS

Itis critical to evaluate the performance of speech recognition systems. The word recogni-
tion error rate is widely used as one of the most important measures. When you compare
different acoustic modeling algorithms, it is important to compare their relative error reduc-
tion. Empirically, you need to have a test data set that contains more than 500 sentences
(with 6 to 10 words for each sentence) from 5 to 10 different speakers to reliably estimate
lhe recognition error rate. Typically, you need to have more than 10% relative error reduc-
tion to consider adopting a new algorithm. . .

As a sanity check, you may want to use a small sample from the training data to meas-
ure the performance of the fraining set, which is often much better than what you can get
f.r0m testing new data. Training-set performance is useful in the development stage to 1der?-
tify potential implementation bugs. Eventually, you need to use a development set that typi-
cally consists of data never used in training. Since you may tune a number of parameters
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with your development set, it is important to evaluate performance of g fe5 set afte
decide the optimal parameter setting. The test set should be completely new with re r
both training and parameter tuning. pect to

There are typically three types of word recognition errors in speech recognition:

e Substitution: an incorrect word was substituted for the correct word

e Deletion: a correct word was omitted in the recognized sentence

o Jnsertion: an extra word was added in the recognized sentence®

For instance, a speech recognition system may produce an incorrect result g follows

where substitutions are bold, insertions are underlined, and deletions are denoted a5
There are four errors in this example. g

Correct: Did mob mission area of the Copeland ever go to m4 in nineteen eighty one
Recognized: Did mob mission area ** the copy land ever go to m4 in nineteen egsy
one

To determine the minimum error rate, you can’t simply compare two word sequences
one by one. For example, suppose you have utterance The effect is clear recognized as Effect
is not clear. If you compare word to word, the error rate is 75% (The vs. Effect, effect vs. js,
is vs. pot). In fact, the error rate is only 50% with one deletion ( The) and one insertion (nof).
In general, you need to align a recognized word string against the correct word string and
compute the number of substitutions (Subs), deletions (Dels), and insertions (Ins). The Word
Error Rate is defined as:

Subs+ Dels + Ins

Word Error Rate = 100% X 9.3)
No. of words in the correct sentenc

This alignment is also known as the maximum substring matching problem, which can
be easily handled by the dynamic programming algorithm discussed in Chapter 8.

Let the correct word string be w,w,---w, , where w, denotes the ith word in the correct

word string, and the recognized word string be W, ---W,,, where W, denotes the i* word. in
the recognized word string. We denote R[:, j] as the minimum error of aligning substring
ww,--w,_ against substring W,---w,. The optimal alignment and the associated Wf)fd
error rate R[n,m] for correct word string w,w,---w, and the recognized word sting
Wy, -+, are obtained via the dynamic programming algorithm illustrated in AlgO"m;“
9.1. The accumulated cost function R[i, j] progresses from R[1, 1] to R[n,m] correspon®
Ing to the minimum distance from (1, 1) to (n, m). We store the back pointer infom]am::
Bli, j] as we move along. When we reach the final grid (n, m), we back trace along the op

. . th,
mal pth to find out if there are substitutions, deletions, or insertions on the matched pa
stored in B[}, ;).

\—_
“ Evel i . ceds 10D
de[ec?egoi:‘ls‘)hmd Sp'cec.h recognition, you may still have the insertion error, since the word boundary f

most applications. It is possible that one isolated utterance is recognized as two words.
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ALGORITHM 9.1: ALGORITHM TO MEASURE THE
Step 1: Initialization R[0,0]1=0 R[i, j]=eo if (i < 0) or (
Step 2: lteration '
for i=1,....,n {

for j= 1,...,”7 {

WORD ERROR RATE
J<0) B[0,0]=0

R[i -1, /141 (deletion)
R[i-1, j—1) (match)
R[i-1, j—=1]+1 (substitution)
R[i, j]= min R[i, j~1]1+1 (insertion)
1 if deletion
2 if insertion
Blij1=1,
4 if substitution

Step 3: Backtrackihg and termination
R(n,m)

if match

word error rate =100% x
n
optimal backward path = (s, 5, ,...,0)
" Bli-1,j]ifs,_ =1
where s, = B{n,m], s, = Bli,j-1]ifs,_, =2 for 1=2,... until 5, =0
| Bli-1,j~1)ifs,_; =3 or4]

For applications involved with rejection, such as word confidence measures as dis-
cussed in Section 9.7, you need to measure both false rejection rate and false acceptance
rate. In speaker or command verification, the false acceptance of a valid user/command is
also referred to as Type I error, as opposed to the false rejection of a valid user/command
(Type II) [17]. A higher false rejection rate generally leads to a lower false acceptance rate.
A plot of the false rejection rate versus the false acceptance rate, widely used in communica-
tion theory, is called the receiver operating characteristic (ROC) curve.

93.  SIGNAL PROCESSING—EXTRACTING FEATURES

The role of a signal processing module, as illustrated in Figure 1.2, is to reduce the data rate,
1o remove noises, and to extract salient features that are useful for subsequent acoustic
matching. Using as building blocks the topics we discussed in earlie‘r chapters, we briefly
illustrate here what is important in modeling speech to deal with variations we must address.
More advanced environment normalization techniques are discussed in Chapter 10.
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9.3.1. Signal Acquisition

Today’s computers can handle most of the necessary speech signal acquisition task
ware. For example, most PC sound cards have direct memory access, and the spee
digitized to memory without burdening the CPU with input/output interrupts. The
system can correctly handle most of the necessary AD/DA functions in real time,

To perform speech recognition, a number of components--such as digitizing speech
feature extraction and transformation, acoustic matching, and language model-baseci
search—can be pipelined time-synchronously from left to right. Most operating systems cay
supply mechanisms for organizing pipelined programs in a multitasking environment, Buff-
ers must be appropriately allocated so that you can ensure time-synchronous processing of
each component. Large buffers are generally required on slow machines because of potential
delays in processing an individual component. The right buffer size can be easily determineq
by experimentally tuning the system with different machine load situations to find a balance
between resource use and relative delay.

For speech signal acquisition, the needed buffer typically ranges from 4 to 64 kB with
16-kHz sampling rate and 16-bit A/D precision. In practice, 16-kHz sampling rate is suffi-
cient for the speech bandwidth (8 kHz). Reduced bandwidth, such as telephone channel,
generally increases speech recognition error rate. Table 9.1 shows some empirical relative
word recognition error increase using a number of different sampling rates. If we take the 8-
kHz sampling as our baseline, we can reduce the word recognition error with a comparable
recognizer by about 10% if we increase the sampling rate to 11 kHz. If we further increase
the sampling rate to 16 kHz, the word recognition error rate can be further reduced by an
additional 10%. Further increasing the sampling rate to 22 kHz does not have any additional
impact on the word recognition errors, because most of the salient speech features are within
an 8-kHz bandwidth.

Table 9.1 Relative error rate reduction with different sampling rates. The reduction is relative
to that of the preceding row.

8 in sofy.
ch can be
Operating

Sampling Rate Relative Error-Rate Reduction
8 kHz Baseline
11 kHz +10%
16 kHz +10%
22 kHz +H0%

9.3.2. End-Point Detection

r push 0

To acti . i . .
ctivate speech signal capture, you can use a number of modes including eithe o
tiv

talk i <
atk or continuously listening, The push-to-talk mode uses a special push event t0 &
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deactivate speech capture, which is immune to the potential back
eliminate unnecessary use of processing resources to detect speech ev
times also requires you t_° pfmh and hold while talking. You push to i
ning and then rejease to indicate the end of speech capture. The disad
{0 activate the application each time the person speaks.

The con'tinuously |i_Sletling model listens all the time and automatically detects
wheth'el‘ there is a speech signal or not. IF needs a so-called speech end-point detector, which
is typically based on an ex_tremely efficient two-class pattern classifier. Such a classifier is
used to filter out ObV.IOUS silence, bl_n the ultimate decision on the utterance boundary is left
to the spee.ch recognizer. In.companson to the push-to-talk mode, the continuously listening
mode requires more processing resources, also with potential classification errors,

The endpoint detector is often based on an energy threshoid that is a function of time.
The logarithm of the energy threshold can be dynamically generated based on energy pro-
files across a certain period of time. Constraints on word duration can also be imposed to
better classify a sequence of frames so that extremely short spikes can be eliminated.

It is not critical for the automatic end-point detector to offer exact end-point accuracy.
The key feature required of it is a low rejection rate (i.e., the automatic end-point detector
should not interpret speech segments as silence/noise segments). Any false rejection leads to
an ervor in the speech recognizer. On the other hand, a possible false acceptance (i.e., the
automatic end-point detector interprets noise segments as speech segments) may be rescued
by the speech recognizer later if the recognizer has appropriate noise models, such as spe-
cific models for clicks, lip smacks, and background noise.

Explicit end-point detectors work reasonably well with recordings exhibiting a signal-
to-noise ratio of 30 dB or greater, but they fail considerably on noisier speech. As discussed,
speech recognizers can be used to determine the end points by aligning the vocabulary
words preceded and followed by a silence/noise model. This scheme is generally much more
reliable than any threshold-based explicit end-point detection, because recognition can
jointly detect both the end points and words or other explicit noise classes, but requires more
computational resources. A compromise is to use a simple adaptive two-class (speech vs.
silence/noise) classifier to locate speech activities (with enough buffers at both ends) and
notify the speech recognizer for subsequent processing. For the two-class classifier, we can
use both the log-energy and delta log-energy as the feature. Two Gaussian density functions,
{0,,0,} =, can be used to model the background stationary noise and speech, respec-
tively. The parameters of the Gaussian density can be estimated using the labeled speech and
noise data or estimated in an unsupervised manner. )

When enough frames are classified as speech segments by the efficient two-class clas-
sifier, the speech recognizer is notified to start recognizing the signal. As shown in Figure
9.2, we should include enough frames before the beginning frame, £, , for the speech recog-
Nizer to minimize the possible detection error. In the same manner, when enoug:
noise/silence frames are detected at ,, we should keep providing the speech rCCOg";lZC";V“
en0lll1gh frames for processing before declaring that the end of the utterance has been
T€ached,

ground noise and can
ents. This mode some-
ndicate speech’s begin-
vantage is the necessity
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Figure 9.2 End-point detection boundary #, and ¢, may need extra buffering for subsequent
speech recognition.

Since there are only two classes, these parameters can be dynamically adapted using
the EM algorithm during runtime. As discussed in Chapter 4, the EM algorithm can jters.
tively estimate the Gaussian parameters without having a precise segmentation betweey
speech and noise segments. This is very important, because we need to keep the parameters
dynamic for robust end-point detection in constantly changing environments.

To track the varying background noises, we use an exponential window to give weight
to the most recent signal: '

wy = exp(—0ok) 94)

where « is a constant that controls the adaptation rate, and £ is the index of the time. In fact,
you could use different rates for noise and speech when you use the EM algorithm to est-
mate the two-class Gaussian parameters. It is advantageous to use a smaller time constant
for noise than for speech, With such a weighting window, the means of the Gaussian deo-
sity, as discussed in Chapter 4, can be rewritten as:

Z ", . P(x; 19,)x,

I 1 4

=~ 3 Px,19,)

i, = = ,ke{0,1
. iwi cP(x 1®,) .1

=~ Y P(x, 1®,)
k=1

9.33. MFCC and Its Dynamic Features

4 y ition-
%:e Extraction of reliable features is one of the most important issues in speech reco%“‘ the
ere are a large number of features we can use. However, as discussed in Chaptér™
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curse-of-dimensionality problem reminds us that the amount of training data is always lim-
ited. Therefore, incorporation of additional features may not lead to any measurable error
reduction. This does not necessarily mean that the additional features are poor ones, but
rather that we may have insufficient data to reliably model those features. ’

The first feature we use is the speech waveform itself. In general, time-domain fea-
tures are much less accurate than frequency-domain features such as the mel-frequency cep-
stral coefficients (MFCC) discussed in Chapter 6 [23]. This is because many features such as
formants, useful in discriminating vowels, are better characterized in the frequency domain
with a low-dimension feature vector.

As discussed in Chapter 2, temporal changes in the spectra play an important role in
human perception. One way to capture this information is to use della coefficients that
measure the change in coefficients over time. Temporal information is particularly comple-
mentary to HMMs, since HMMs assume each frame is independent of the past, and these
dynamic features broaden the scope of a frame. It is also easy to incorporate new features by
augmenting the static feature.

When 16-kHz sampling rate is used, a typical state-of-the-art speech system can be
build based on the following features.

e 13th-order MFCC ¢,
e |3th-order 40-msec 1st-order delta MFCC computed from ac, =¢,,, —¢,_,
e 13th-order 2nd-order delta MFCC computed from aac, =ac,,, —ac,_,

A short-time analysis Hamming window of 25 ms is typically used to compute the
MFCC c¢, . The window shift is typically 10 ms. Please note that ¢,[0] is included in the
feature vector, which has a role similar to that of the log power. The feature vector used for
speech recognition is typically a combination of these features

(9.6)

aac,

The relative error reduction with a typical speech recognition system is illustrated in
Table 9.2. As you can see from the table, the 13th-order MFCC outperforms 13th-order LPC
cepstrum coefficients, which indicates that perceptually motivated mel-scale representation
indeed helps recognition. In a similar manner, perceptually based LPC features such as PLP
can achieve similar improvement. The MFCC order has also been studied experimenfally for
speech recognition. The higher-order MFCC does not further reduce the error rate in com-
parison with the 13th-order MECC, which indicates that the first 13 coefficients already con-
tain most salient information needed for speech recognition. In addition to mel-scale
representation, another perceptually motivated feature such as the ﬁrsl_:- and sef:ond—order
delta features can significantly reduce the word recognition error, while the higher-order
delta features provide no further information.
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Feature extraction in these experiments is typically optimized together with th
fier, since there are a number of modeling assumptions, such as the diagonal cova
the Gaussian density function, that are closely related to what features to use, It is
that these relative error reductions would vary if a different speech recognizer were

e Classi.
riance jp
POssible
useq,
Table 9.2 Relative error reduction with different features. The reduction is refative o that of
the preceding row.

Feature Set Relative Error Reduction
13th-order LPC cepstrum coefficients Baseline o
13th-order MFCC +10%
16th-order MFCC +0%
+1st- and 2nd-order dynamic features +20%
+3rd-order dynamic features +0%

9.3.4. Feature Transformation

Before you use feature vectors such as MFCC for recognition, you can preprocess or trans-
form them into a new space that alleviates environment noise, channel distortion, and
speaker variations. You can also transform the features that are most effective for preserving
class separability so that you can further reduce the recognition error rate. Since we devote
Chapter 10 completely to environment and channel normalization, we briefly discuss here
how we can transform the feature vectors to improve class separability.

To further reduce the dimension of the feature vector, you can use a number of dimen-
sion reduction techniques to map the feature vector into more effective representations. If
the mapping is linear, the mapping function is well defined and you can find the coefficients
of the linear function so as to optimize your objective functions. For example, when you
combine the first- and second-order dynamic features with the static MFCC vector, you ¢an
use principal-component analysis (PCA) (also known as Karhunen-Loeve transform) [32] 10
map the combined feature vector into a smaller dimensional vector. The optimum basis vec-
tors of the principal-component analysis are the eigenvectors of the covariance matrix of 2
given distribution. In practice, you can compute the eigenvectors of the autocorrelation ma-
trix as the basis vectors. The effectiveness of the transformed vector, in terms of represen®
Ing the original feature vector, is determined by the corresponding eigenvalue of each value
in the vector. You can discard the feature with the smallest eigenvalue, since the mean-
Square error between the transformed vector and the original vector is determined by e
elgenvalue.Of,caCh feature in the vector. In addition, the transformed feature vector is uncor-
;elated. This Is particularly suitable for the Gaussian probability density function with 2 di-

gonal covariance matrix.

The recognition error is the best crite

. . se. How-
e rion for deciding what feature sets (0 U
eéver, 1t is hard to obtain such an estimate t -

; impler
o evaluate feature sets systematically. A simp
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coach is to use within-class and between-class scatte
g s . i : "
s separability. which is also called Linear Discrimip,
:Ne can compute the within-class scatter matrix as:

T matrices to formulate criteria of
ant Analysis (LDA) transformation.

5,= 2 P@Ex-p)x-w) 1o} =Y pa)s,
= & o, ©.7)

where the sum is for all the data x within the class @;. This
their respective class mean. On the other hand, the between
of the expected vectors around the mixture mean:

is the scatter of samples around
-class scatter matrix is the scatter

Sy = 2, P(@)(1; —mo)(R; —m,) (9.8)

e

where m, represents the expected mean vector of the mixture distribution:

m, = E{x} = Y P(®,)m, ©9.9)
ay

To formulate criteria to transform feature vector x, we need to derive the linear trans-
formation matrix A. One of the measures can be the trace of S_'S, :

J=I(S7'S,) (9.10)

The trace is the sum of the eigenvalues of S;'S, and hence the sum of the variances in
the principal directions. The number is larger when the between-class scatter is large or the
within-class scatter is small. You can derive the transformation matrix based on the eigen-
vectors of S;'SE . In a manner similar to PCA, you can reduce the dimension of the original
input feature vector by discarding the smallest eigenvalues [16, 54].

Researchers have used the LDA method to measure the effectiveness of sever'al feature
vectors for speaker normalization [41]. Other feature processing techniques designed for
Speaker normalization include neural-network-based speaker mapping [51], frequency warp-
ing for vocal tract normalization (VTN) via mel-frequency scaling {67, 100], and bilinear
ansformation [2]. ]
~ To reduce interspeaker variability by a speaker-specific frequency warping, you c:{n
Smply shift the center frequencies of the mel-spaced filter bank. Let k&fpy k = 1, .. &5
denote the cener frequencies in mel-scale. Then the center frequencies in hertz for a waé-:pC
"8 factor of ¢ are computed by Eq. (9.11) before the cosine transformation of the MF
€ature vector,

@ 9.11)
fﬂ:(kéf,,,,) =700(10k4r_,,/zs9s -/ (

Amazon/VB Assets
Exhibit 1012
Page 453



Acousti i
428 — MOdeljng

The warping factor is estimated for each speaker by. computing the likelihood o th
a for feature sets obtained with different warping factors using the HMM_ Thz

training dat .
g feature transformation method has beep limiteq typi

relative error reduction based on the
cally under 10%.

9.4, PHONETIC MODELING—SELECTING APPROPRIATE
UNITS

As discussed in Chapter 2, the phonetic system is related to a particular language, We focus
our discussion on language-independent technologies but use English in our examples 1o
illustrate how we can use the language-independent technologies to model the salient pho-
netic information in the language. For general-purpose large-vocabulary speech recognition,
it is difficult to build whole-word models because:

e Every new task contains novel words without any available training data,
such as proper nouns and newly invented jargons.

o There are simply too many words, and these different words may have differ-
ent acoustic realizations, as illustrated in Chapter 2. It is unlikely that we
have sufficient repetitions of these words to build context-dependent word
models.

How to select the most basic units to represent salient acoustic and phonetic informea-
tion for the language is an important issue in designing a workable system. At a high level,
there are a number of issues we must consider in choosing appropriate modeling units.

¢ The unit should be accurate, to represent the acoustic realization that appears
in different contexts.

¢ The unit should be trainable. We should have enough data to estimate the pa-
rameters of the unit. Although words are accurate and representative, they are
the least trainable choice in building a working system, since it is nearly im-
Possible to get several hundred repetitions for all the words, unless we are us-
1ng a speech recognizer that is domain specific, such as a recognizer designed
for digits only.

® The unit should be generalizable, so that any new word can be derived from
predefined unit inventory for task-independent speech recognition. If we have

a fixed set of word models, there is no obvious way for us to derive the new
word model,

ftion.

A practical challenge is how to balance these selection criteria for speech recogh s in
3

In this section we
. compare a number of units and poi i strengths and weakness
practical applications, point out their streng
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9.4.1.  Comparison of Different Units

What is a unit of lunguag‘ej? In [T:"ghSh' words are typically considered as a principal carrier
of meaning and are seen as the smallest unit that is capable of independent use. As ti

natural unit of speech. whole-word models have been widely used for many s t;ecls1 r)e‘ mo?‘
tion systems. A distinctive advantage of using word models is that we can c; ture [;':08;111-
netic coarticulation inherent within these words. When the vocabulary is spmall wep -0-
create word models that are context dependent. » We can

For example, if the vocabulary is _English digits, we can have different word models
for the word one 1o represent the word in different contexts. Thus each word model is de-
pendent on its left and right context. If someone says three one two, the recognizer uses the
word model one that specifically depends on the left context three and right context two.
Since the vc?cabulaly is small (10), we need to have only 10*10*[0=1000 word models,
which is achievable when you collect enough training data. With context-dependent, or even
context-independent, word models, a wide range of phonological variations can be auto-
matically accommodated. When these word models are adequately trained, they usually
yield the best recognition performance in comparison to other modeling units. Therefore, for
small vocabulary recognition, whole-word models are widely used, since they are both ac-
curate and trainable, and there is no need to be generalizable.

While words are suitable units for small-vocabulary speech recognition, they are not a
practical choice for large-vocabulary continuous speech recognition. First, each word has to
be treated individually, and data cannot be shared across word models; this implies a pro-
hibitively large amount of training data and storage. Second, for some task configurations,
the recognition vocabulary may consist of words that never appeared in the training data. As
a result, some form of word-model composition technique is required to generate word mod-
els. Third, it is very expensive to model interword coarticulation effects or adapt a word-
based system for a new speaker, a new channel, or new context usage.

To summarize, word models are accurate if enough data are available. Thus, they are
trainable only for small tasks. They are typically not generalizable.

Alternatively, there are only about 50 phones in English, and they can be sufficiently
trained with just a few hundred sentences. Unlike word models, phonetic models provide no
training problem. Moreover, they are also vocabulary independent by nature and can be
trained on one task and tested on another. Thus, phones are more trainable and generaliz-
able. However, the phonetic model is inadequate because it assumes that a phoneme in any
context is identical. Although we may try to say each word as a concatenated sequence of
independent phonemes, these phonemes are not produced independently, becausc. our articu-
lators cannot move instantaneously from one position to another. Thus, the realization of 'a
phoneme is strongly affected by its immediately neighboring phonemes. For example, if
context-independent phonetic models are used, the same model for ¢ must capture various
events, such as flapping, unreleased stops, and realizations in /t s/ and /t 1/, Tl_wn, if /¢ ‘f/ is
the only context in which r occurs in the training, while /z r/ is the only context in the testing,

Amazon/VB Assets
Exhibit 1012
Page 455



—
430 Acoustic MOdeling

the model used is highly inappropriate. While word models are not generalizable,
models overgeneralize and, thus, lead to less accura_lte model.s.

A compromise between the word and phonetic model is to use larger units guc
lables. These units encompass phone clusters that contain the most variable contextug] ¢f,
fects. However, while the central portions of these units have no contextual depe“dencies.
the beginning and ending portions are still susceptible to some contextual effects, There are
only about 1200 tone-dependent syllables in Chinese and approximately 50 syllables i
Japanese, which makes syllable a suitable unit for these languages. Unfortunately, the large
number of syllables (over 30,000) in English presents a challenge in terms of trainability,

phOneﬁc

has 5y,

9.4.2. Context Dependency

If we make units context dependent, we can significantly improve the recognition accuracy,
provided there are enough training data to estimate these context-dependent parameters,
Context-dependent phonemes have been widely used for large-vocabulary speech recogni-
tion, thanks to its significantly improved accuracy and trainability. A context usually refers
to the immediate left and/or right neighboring phones.

A triphone model is a phonetic model that takes into consideration both the left and
the right neighboring phones. If two phones have the same identity but different left or right
contexts, they are considered different triphones. We call different realizations of a phoneme
allophones. Triphones are an example of allophones.

The left and right contexts used in triphones, while important, are only two of many
important contributing factors that affect the realization of a phone. Triphone models are
powerful because they capture the most important coarticulatory effects. They are generally
much more consistent than context-independent phone models. However, as context
dependent models generally have increased parameters, trainability becomes a challenging
issue. We need to balance trainability and accuracy with a number of parameter-sharing
techniques.

Modeling interword context-dependent phones is complicated. For example, in the
word speech, pronounced /s p iy chi, both left and right contexts for /p/ and /iy/ are knowt:
while the left context for /s/ and the right context for /ch/ are dependent on the preceding 2nd
following words in actual sentences. The juncture effect on word boundaries is one of }he
most se?‘ious coarticulation phenoniena in continuous speech, especially with short functl_Orl
wtords like t_he or a. Even with the same left and right context identities, there may be s:gj
Ete'lczl;tly ;hf?erent realizations for a phone at different word positions (the b-aginnmhgi,l ;m i
ph(;ne /f/nin(zh: r:'?ird?- FfO" example, the phone /¢/ in that rock is almost extmc:t;v\';rd el
oy Have ar eit (:t i e u(: theqtrz(.:al sounds like /cl_z/. This implies that differen

It r?e Cz rteallzanon of the same triphone. _ lization of 392"
ticular phone. Stressed v . ele, i SO A A lmp(‘)rtant.role m.the readl ; ore intensit):
while Unstressed owels tend to have longer duration, higher pitch, an m honerme:

ssed vowels appear to move toward a neutral, central schwa-like P

in
Agreement about the phonetic identity of a syllable has been reported 0 be greaterl
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stressed syllables for both humans and automatic phone recognizers. In English, word-level
stress is referred to as free stress, because the stressed syllable can t ’
within a word, in contrast to bound stress found in languages such as French and Polish
where the position of the stressed syllable is fixed within a word. Therefore, stress in Eng:
{ish can be used as a constraint for lexical access. In fact, stress can be used as a unique fea-
wre to distinguish a set of word pairs, such as import vs. import, and export vs. export. For
example, the phone set used for Whisper, such as /er/-/axi7 and /ah/-fix/-lax/, describes these
stressed and unstressed vowels. One example illustrating how stress can significantly affect
the realization of phone is demonstrated in Figure 9.3, where phone /t/ in word Italy vs.

ltalian is pronounced differently in American English due the location of the stress, albeit
the triphone context is identical for both words.

ake on any position

o w‘m "
-4 4 ‘ ‘! L ’”
-
-3000
0 0.2 0.4 0.6

Frequency (Hz)
- 88§ 8

0 0.1 0.2 0.3 0 0.2 0.4 0.6
Time (seconds) Time (seconds)

Figure 9.3 The importance of stress is illustrated in ltaly vs. lralian for phone /t/. The realiza-
tions are quite different, even though they share the same left and right context.
Sentence-level stress, on the other hand, represents the overall stress pattern of con-
tinuous speech. While sentence-level stress does not change the meaning of any particular
lexicon item, it usually increases the relative prominence of portions of the ut.terance for the
Purpose of contrast or emphasis. Contrastive stress is nommll.y used to coordinate construc-
tions such as there are import records and there are domestic ones, as well as for the pur-

Pose of correction, as in [ said import, not export. Emphatic stress is commonly u_sed to
distinguish a sentence from its negation, e.g., / did have dinner. Senter-lce-level stresslls very[
hard to model without incorporating high-level semantic and pragmatic knowledgc£i n r;?s_
S[:te-Of- the-art speech recognition systems, only word-level stress is used for creating
Phones,
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9.4.3. Clustered Acoustic-Phonetic Units

Triphone modeling assumes that every triphone context i‘s.different. Actually, Many phopes
have similar effects on the neighboring phones. The position of our articulators hag an im.
portant effect on how we pronounce neighboring vowels. For example, /b/ and /p, are
both labial stops and have similar effects on the following vowel, while /1/ and v/ are
both liquids and have similar effects on the following vowel. Contrary to what we illustrate
in Figure 9.1, Figure 9.4 illustrates this phenomenon. It is desirable to find instances of simj-
lar contexts and merge them. This would lead to a much more manageable number of myq.
els that can be better trained.

888,88

4000
’§3000
Ezooo
&« 1000
0 '- b 7 — o e » 0
0 01 02 03 04 0 01 02 03 04
Time (seconds) Time (seconds)

Figure 9.4 The spectrograms for the phoneme /iy/ with two different left-contexts are illus-
trated. Note that /x/ and /w/ have similar effects on /iy/. This illustrates that different left-
contexts may have similar effects on a phone.

The trainability and accuracy balance between phonetic and word models can be 8%
eralized further to model subphonetic events. In fact, both phonetic and subphonetic units
have the same benefits, as they share parameters at the unit level. This is the key beneﬁtll-?
companison to the word units. Papers by [11, 45, 57, 66, 111] provide examples of the ﬂPP'n
cation of this concept to cluster hidden Markov models. For subphonetic modeling, W¢ car
reat the state in phonetic HMMs as the basic subphonetic unit. Hwang and Huang fu gc
generalized clustering to the state-dependent output distributions across different phone
models [57). Each cluster thus represents a set of similar Markov states and is ¢3¢
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senone [56]. A subword.model is thus composed of a sequence of senones after the cluster-
ing is finished. The optimal number of senones for a system is mainly determined by th
available training corpus and can be tuned on a development set. v e

Each allophone model is an HMM made of states, transitions, and probability distribu-
tions. To improve the reliability of the statistical parameters of these models, some distribu-
tions can be tied. For example, distributions for the central portion of an all;)phone may be
tied together to reflect the fact that they represent the stable (context-independent) phys?,ical
realization of the central part of the phoneme, uttered with a stationary configuration of the
vocal tract. Clustering at the granularity of the state rather than the entire model can keep the
dissimilar states of two models apart while the other corresponding states are merged, thus
leading to better parameter sharing. ’

Figure 9.5 illustrates how state-based clustering can lead to improved representations.
These two HMMs come from the same phone class with a different right context, leading to
very different output distributions in the last state. As the left contexts are identical, the first
and second output distributions are almost identical. If we measure the overall model simi-
larity based on the accumulative overall output distribution similarities of all states, these
two models may be clustered, leading to a very inaccurate distribution for the last state. In-
stead, we cluster the first two output distributions while leaving the last one intact.

There are two key issues in creating trainable context-dependent phonetic or subpho-
netic units:

e We need to enable better parameter sharing and smoothing. As Figure 9.4
illustrates, many phones have similar effects on neighboring phones. If the
acoustic realization is indeed identical, we tie them together to improve train-
ability and efficiency.

e Since the number of triphones in English is very large (over 100,000), there
are many new or unseen triphones that are in the test set but not in the train-
ing set. It is important to map these unseen triphones into appropriately
trained triphones.

As discussed in Chapter 4, a decision tree is a binary tree to classify target objects by
asking binary questions in a hierarchical manner. Modeling unseen triphones is panicula.rly
important for vocabulary independence, since it is difficult to collect a training corpus which
covers enough occurrences of every possible subword unit. We need to find quels that are
accurate, trainable, and especially generalizable. The senonic decision tr_ee.classnﬁt?s Markov
states of triphones represented in the training corpus by asking lingu:sm:, questions com-
posed of conjunctions, disjunctions, and/or negations of a set of predele-rrnmed simple cate-
gorical linguistic questions. Examples of these simple categorical questions are: Is rife left-
context phone a fricative? Is the right-context phone a front vowel ? The typical question set
used in Whisper to generate the senone tree is shown in Table 9.3. So, for_each noc?e in the
tree, we check whether its left or right phone belongs to oné Qf the ca.tegc.mes. As discussed
in Chapter 4, we measure the corresponding entropy reduction or likelihood increase for
each question and select the question that has the largest entropy decrease to split the node.
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