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reproduce the original signal at a different location or time. In Speech commupjgyy:

reproduced sound usually allows some acceptable level of distortion to achieve lOCam?n, the
The goal of source coding is to reduce the number of bits necessary to transmit of :: bit
subject to a distortion or fidelity criterion, or equivalently, to achieve the miﬂimumm d.a
distortion for a prescribed bit rate. Vector quantization (VQ) is one of the mog; P;’fss!ble
source-coding techniques. efficien

Quantization is the process of approximating continuous amplitude signals by g
symbols. The quantization of a single signal value or parameter is referred to a5 scalar UTLe
tization. In contrast, joint quantization of multiple signal values or parameters is refelfed ?0
as vector quantization. Conventional pattern recognition techniques have been used effec.
tively to solve the quantization or data compression problem with successful application 1o
speech coding, image coding, and speech recognition [36, 85]. In both speech Tecognition
and synthesis systems, vector quantization serves an important role in many aspects of he
systems, ranging from discrete acoustic prototypes of speech signals for the discrete HMM,
to robust signal processing and data compression.

A vector quantizer is described by a codebook, which is a set of fixed prototype vec-
fors or reproduction vectors. Each of these prototype vectors is also referred to as a code-
word. To perform the quantization process, the input vector is matched against each
codeword in the codebook using some distortion measure. The input vector is then replaced
by the index of the codeword with the smallest distortion. Therefore, a description of the
vector quantization process includes:

rate,

1. the distortion measure;
2. the generation of each codeword in the codebook.

44.1.1. Distortion Measures

Since vectors are replaced by the index of the codeword with smallest distortion, the trans-

mitted data can be recovered only by replacing the code index sequence with ﬂ?e core-

sponding codeword sequence. This inevitably causes distortion between the originel data

ind the transmitted data. How to minimize the distortion is thus the central goal of vedt¥

Quantization. This section describes a couple of the most common distortion measures- "

Assume that x={x,x,,...,x,) € R? is a d-dimensional vector whose comPO"e’:.

{x,‘ 1Sk <d} are real-valued, continuous-amplitude random variables. After vector quaﬂ':

:::lgn. the vector x is mapped (quantized) to another discrete-amplitude d-dimensional Yé¢

z=g(x) @M

ite Set

o 70t Ty i v 05

codebook, M i the s,ize c;ethzj is also a d-dxmens.io?hal vector. The St’ft‘Z ’;{rof the codebotX
is also called the & < of the cc?d.ebook, and z, is j" codeword. The size Sdebock

umber of partitions (or levels) in the codebook. To design @ ¢
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Unsupervised Estimation Methods 165

d-dimensional space of the original random vector x can be partitioned into M regions or

cells {C,.1 5" SM},.and each cell C, is associated with a codeword vector z,. VQ then
maps (quantizes) the input vector x to codeword z, if x lies in C,. That is

g(x)=z, if xe C, (4.75)

An 'exa.mple of partitioning of a two-dimensional space (d = 2) for the purpose of vec-
tor quantization is shown in Figure 4.12. The shaded region enclosed by the dashed lines is
the cell C,. Any input vector x that lies in the cell C, is quantized as z, . The shapes of the
various cells can be different. The positions of the codewords within each cell are shown by
dots in Figure 4.12. The codeword z, is also referred to as the centroid of the cell C, be-
cause it can be viewed as the central point of the cell C,.
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Figure 4.12 Partitioning of a two-dimensional space into 16 cells.

When x is quantized as z, a quantization error results. A distortion measure d(X, z) can
be defined between x and z to measure the quantization guality. Using this distortion meas-
ure, Eq. (4.75) can be reformulated as follows:

g(x) =z, if and only if i = argmin d(x,2,) (4.76)
k

The distortion measure between x and z is also known as a distance measure in the
speech context. The measure must be tractable in order to be computed and analyzed, and
also must be subjectively relevant so that differences in distortion values can be used to in-
dicate differences in original and transmitted signals. The most commonly used measure is
the Euclidean distortion measure, which assumes that the distortions contributed by quantiz-
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ing the different parameters are equal. Therefore, the distortion measure d(x
fined as follows: +2) can be g,

d
d(x,z)=(x-z) (x-z) = (1_/2
x,z)=(x—z) (x—z g‘x z,) an

The distortion defined in Eq. (4.77) is also known as sum of s
unequal weights can be introduced to weight certain contribution
than others. One choice for weights that is popular in many practi
the inverse of the covariance matrix of z.

quared error. I genera|
§ to the distortion more‘
cal applications is tg use

d(x,z)=(x-z)' L™ (x-1z) @78)
This distortion measure, known as the Mahalanobis distance, is actually the exponential
term in a Gaussian density function.

Another way to weight the contributions to the distortion measure is to use percepiu-
ally-based distortion measures. Such distortion measures take advantage of subjective judg-
ments of perceptual difference caused by two different signals. A perceptually-based
distortion measure has the property that signal changes that make the sounds being per-
ceived different should be associated with large distances. Similarly signal changes that keep
the sound perceived the same should be associated with small distances. A number of per-
ceptually based distortion measures have been used in speech coding [3, 75, 76].

4.4.1.2. The K-Means Algorithm

To design an M-level codebook, it is necessary to partition d-dimensional space i.nto.M cells
and associate a quantized vector with each cell. Based on the source-coding pnncgple, .Lhe
criterion for optimization of the vector quantizer is to minimize overall average distortion
over all M-levels of the VQ. The overall average distortion can be defined by

D=E[dx,2)]= ﬁl‘, p(xe C)E[d(x,z,)|xe C;] )

= ip(xe C',.)J'xEC d(x,z,)p(x|xe C)dx= Z‘:D,-

=1

e prior
where the integral is taken over all components of vector x; P(x.e G) de‘;l:;;?wmdegsi[y
probability of codeword z,; p(x|xe C,) denotes the mu]t?dlmensmnﬁll\J Przn alytic solui?
function of x in cell C,; and D is the average distortion m'cell C,- ofor 2 given sel 0
exists to guarantee global minimization of the average distortion measure ., eXists 2°
speech data. However, an iterative algorithm, which guarantees a local mini )
works well in practice.
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Unsupervised Estimation Methods 167

We say a quantizer is optimal if the overall average distortion is minimized over all M-
levels of the quantizer. There are two necessary conditions for optimality. The first is that
the optimal quantizer is realized by using a nearest-neighbor selection rule as specified by
Eq.(4.76). Note that the average distortion for each cell C,

E[d(x.z,){xeC)] (4.80)

can be minimized when z, is selected such that d(x,z,) is minimized for x. This means that
the quantizer must choose the codeword that results in the minimum distortion with respect
to x. The second condition for optimality is that each codeword z; is chosen to minimize the
average distortion in cell C,. Thatis, z, is the vector that minimizes

D, =p(z)E[d(x2z)|xeC)] (4.81)

Since the overall average distortion D is a linear combination of average distortions in
C,, they can be independently computed after classification of x. The vector z, is called the
centroid of the cell C; and is written

z, =cent(C,) (4.82)

The centroid for a particular region (cell) depends on the definition of the distortion
measure. In practice, given a set of training vectors {x,,1<¢<T}, a subset of K, vectors
will be located in cell C,. In this case, p(x|z,) can be assumed to be 1/K,, and p(z;) be-
comes K, /T . The average distortion D, in cell C, can then be given by

b= = 3 d(x,z,) (4.83)

xeCy

The second condition for optimality can then be rewritten as follows:

1
7, = argminD, (z,) =argmin— Zd(x,z,.) (4.84)

Z 1 x€C,

When the sum of squared error in Eq. (4.77) is used for the distortion measure, the at-
tempt to find such Z, to minimize the sum of squared error is equivalent to least squar.ed
error estimation, which was described in Chapter 3. Minimization of D, in Eq. (4.84) with
respect to z, is given by setting the derivative of D, to zero:

V.D, =V, lz,(x_z.')"(x"z/)
) lTxe(',—
TV, (x-2) (x-2) (4.85)

=4
T xC;

=-——22(X—Zi)=0
T xeC,
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By solving Eq. (4.85), we obtain the least square error estimate of centr,

L. . oid Z. g
sample mean of all the training vectors X, quantized to cell C,: %; Simply a4y,

i x€C, i (486)

If the Mahalanobis distance measure (Eq. (4.78)] is used, minimizatj ‘
(4.84) can be done similarly: on of D, in gy,

v.D =V, %2 (x~2,)'E" (x~z,)

xeC,

___1_ -1
—T,g',vz'(x—Zl)Z (x-z)) 48
=1T%§2"(x—z,)=o

and centroid Z, is obtained from

1
b= Y x 4.38)

i x€C

One can see that Z, is again the sample mean of all the training vectors x, quantized to cell
C,. Although Eq. (4.88) is obtained based on the Mahalanobis distance measure, it also
works with a large class of Euclidean-like distortion measures {61]. Since the Mahalanobis
distance measure is actually the exponential term in a Gaussian density, minimization of the
distance criterion can be easily translated into maximization of the logarithm of the Gaussian
likelihood. Therefore, similar to the relationship between least square error estimation for
the linear discrimination function and the Gaussian classifier described in Section 4.?-3-1-
the distance minimization process (least square error estimation) above is in fact a maximum
likelihood estimation.

According to these two conditions for VQ optimality, one can iteratively apply d_‘e
nearest-neighbor selection rule and Eq. (4.88) to get the new centroid Z; for each cell n
order to minimize the average distortion measure. This procedure is known as the.k-mf‘g]“
algorithm or the generalized Lloyd algorithm [29, 34, 56]. In the k-means algorithm, h:
basic idea is to partition the set of training vectors into M clusters C; (1Si<M ) in sue "
way that the two necessary conditions for optimality described above are satisfied. The
means algorithm can be described as in Algorithm 4.2.
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ALGORITHM 4.2: THE K-MEANS ALGORITHM

Step 1: Initialization: Choose some adequate method to derive initiall VQ codewords
(z, 1<i< M) inthe codebook.

Step 2: Nearest-neighbor Classification: Classify each training vector { x, } into one of the cells
C, by choosing the closest codeword z, (x e C,, i.f.6.d(x,2,) <d(x,z,) forall j=i). This
classification is also called minimum-distance classifier. ’ '

Step 3: Codebook Updating: Update the codeword of every cell by computing the centroid of
the training vectors in each cell according to Eq. (4.84) (2, = cent(C)), 1< i< M).

Step 4: Iteration: Repeat steps 2 and 3 until the ratio of the new overall distortion D at the cur-
rent iteration relative to the overall distortion at the previous iteration is above a preset thresh-
old.

In the process of minimizing the average distortion measure, the k-means procedure
actually breaks the minimization process into two steps. Assuming that the centroid z, (or
mean) for each cell C, has been found, then the minimization process is found simply by
partitioning all the training vectors into their corresponding cells according to the distortion
measure. After all of the new partitions are obtained, the minimization process involves
finding the new centroid within each cell to minimize its corresponding within-cell average
distortion D, based on Eq. (4.84). By iterating over these two steps, a new overall distortion
D smaller than that of the previous step can be obtained.

Theoretically, the k&-means algorithm can converge only to a local optimum [56]. Fur-
thermore, any such solution is, in general, not unique [33]. Initialization is often critical to
the quality of the eventual converged codebook. Global optimality may be approximated by
repeating the &-means algorithm for several sets of codebook initialization values, and then
one can choose the codebook that produces the minimum overall distortion. In the next sub-
section we will describe methods for finding a decent initial codebook.

4.4.1.3. The LBG Algorithm

Since the initial codebook is critical to the ultimate quality of the final codebook, it has been
shown that it is advantageous to design an M-vector codebook in stages. This extended 4-
means algorithm is known as the LBG algorithm proposed by Linde, Buzo, and Grgy [56].
The LBG algorithm first computes a 1-vector codebook, then uses a splitting algorithm on
the codewords to obtain the initial 2-vector codebook, and continues the splitting process
until the desired M-vector codebook is obtained. The procedure is formally implemented by

Algorithm 4.3.
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ALGORITHM 4.3: THE LBG ALGORITHM

Step 1: Initialization: Set M (number of partitions or celis) =1. Find the centroig of alf the {ry;
ing data according to Eq. (f1.84). - N ai.
Step 2: Splitting: Split M into 2M quitlon{s by sphﬂlpg_ each current codeworqg by findin %
points that are far apart in each partition using a heuristic method, and use thege two poingts X
the new centroids for the new 2 codebook. Now set M = 2M. as
Step 3: k-means Stage: Now use the k-means iterative algorithm describeg in the previ
section to reach the best set of centroids for the new codebook. 10U
Step 4: Termination: If M equals the VQ codebook size required, STOP; otherwise P10 e

2.

—_—

4.4.2, The EM Algorithm

We introduce the EM algorithm that is important to hidden Markov models and other leam-
ing techniques. It discovers model parameters by maximizing the Jog-likelihood of incom-
plete data and by iteratively maximizing the expectation of log-likelihood from complete
data. The EM algorithm is a generalization of the VQ algorithm described above.

The EM algorithm can also be viewed as a generalization of the MLE method, when
the data observed is incomplete. Without loss of generality, we use scalar random variables
here to describe the EM algorithm. Suppose we observe training data y. In order to deter-
mine the parameter vector © that maximizes P(Y =y (b) , we would need to know some
hidden data x (that is unobserved). For example, x may be a hidden number that refers to
component densities of observable data y, or x may be the underlying hidden state sequence
in hidden Markov models (as discussed in Chapter 8). Without knowing this hidden datax,
we could not easily use the maximum likelihood estimation to estimate &, which max-
mizes P(Y =y|®P). Instead, we assume a parameter vector $ and estimate the probability
that each x occurred in the generation of y. This way we can pretend that we had in fact‘qlr
served a complete data pair (x, y), with frequency proportional to the probability
P(X =x,Y =y| (I)), to compute a new @ , the maximum likelihood estimate of (D: We
can then set the parameter vector @ to be this new ® and repeat the process 10 iteratively
improve our estimate.

The issue now is whether or not the process (EM algorithm) described above cog)-
verges. Without loss of generality, we assume that both random variables X (unobservé
and Y (observed) are discrete random variables. According to Bayes’ rule,

o 3 3 48)
PX=x,Y=y|®)=P(X =x|Y = y,®)P(Y = y| D) (
y generated by p¥

d as follows:
490

Our goal is to maximize the log-likelihood of the observable, real data
rameter vector @ . Based on Eq. (4.89), the log-likelihood can be expresse

logP(Y:y!&))=logP(X=x:Y=y|‘s)—logP(X=x|Y=y,<-I_))
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Now, we take the conditional expectation of log P(Y = y|®) over X computed with pa-
rameter vector @ P

Eyllog P(Y = yla))],\'pay = Z(P(X =x|Y=y, ®)log P(Y =y|(f)))
= log P(Y = y| &) e

where we denote E,[ f Jxir=, as the expectation of function fover X computed with parame-
ter vector @ . Then using Eq. (4.90) and (4.91) , the following expression is obtained:

log P(Y = y|®) = Ey[log P(X,Y = y| )]y, - Es[log P(X | ¥ = y,

ér>)],wy=
= (0, D)~ H(D,D) 7 (4.92)

where

Q(®,B) = £,[log P(X,Y = y| )]y,

=Y (P =x|¥ = y,®)log P(X =x,¥ = y| F)) (4.93)
and
H(®,8)=Eyllog P(X|Y = y,®)],,.,
=Y (P(X =x|Y =y,®)log P(X = x| = 7,8)) @:54)
The convergence of the EM algorithm lies in the fact that if we choose ® so that
(@, @) 2 (P, D) (4.95)
then
log P(Y = y | ®) 2 log P(Y = y | D) (4.96)

since it follows from Jensen's inequality that H(®,®)< H(P,P) [21]. The function
Q((D,<3) is known as the Q-function or auxiliary function. This fact implies that we can
maximize the Q-function, which is the expectation of log-likelihood from complete data pair
(x, y), to update parameter vector from @ to @, so that the incomplete log-likelihood
L(x,®) increases monotonically. Eventually, the likelihood will converge to a local maxi-

mum if we iterate the process.
The name of the EM algorithm comes from E for expectation and M for maximization.

The implementation of the EM algorithm includes the E (expectation) step, which ca]culgtes
the auxiliary Q-function Q(®,®) and the M (maximization) step, which maximl?.es
Q(®,®) over @ to obtain ® . The general EM algorithm can be described in the following

way.
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ALGORITHM 4.4: THEEM ALGORITHM

initial estimate @ .
. 1irialization: Choose an initial estima B -
g:eg ;'. 'E'ng,?tgompute auxiliary G-unction O(®,®) (which is also the expectation of i
ep 2: E-Step:
ikeli lete data) basedon @ _ N )
gﬁ"',“gf’ &frsc;r:p%mo;:ute & = arg max (P, ) to maximize the auxiliary Q-function,

i a il convergence.
Step 4: lteration: Set @ = & , repeat from Step 2 until converg

\

The M-step of the EM algorithm is actually a maximum likelihood estimation of Y

plete data (assuming we know the unobserved data x based on observed data y anq ipiy

Db ELal ot 22 i ally used in applications where no analytic

solution exists for maximization of log-likelihood of incomplete data. Instead, the g.
function is iteratively maximized to obtain the estimation of parameter vector,

44.3. Multivariate Gaussian Mixture Density Estimation

The vector quantization process described in Section 4.4.1 partitions the data space into
separate regions based on some distance measure regardless of the probability distributions
of the original data. This process may introduce errors in partitions that could potentially
destroy the original structure of data. An alternative way for modeling a VQ codebook is to
use a family of Gaussian probability density functions, such that each cell will be repre-
sented by a (Gaussian) probability density function as shown in Figure 4.13. These probabil-
ity density functions can then overlap, rather than partition, in order to represent the entire
data space. The objective for a mixture Gaussian VQ is to maximize the likelihood of the
observed data (represented by the product of the Gaussian mixture scores) instead of mini-
mizing the overall distortion. The centroid of each cell (the mean vectors of each Gaussian
P dﬂ. obtained via such a representation may be quite different from that obtained using e
:.:radntional k-means algorithm, since the distribution properties of the data are taken into 2

ount,

) Therc_ should be an obvious analogy between the EM algorithm and the k-means alge-
rithm described in the Section 4.4.1.2. In the k-means algorithm, the class information for
:::;i’:ls:;"‘;f’kdi}m samples is hidden and unobserved, so an EM-like algorithm instead of
i lilk:ﬁgog estimate needs to be used. Therefore, instead of a single PTO?S;“‘:d
the nearest neighbgr ;stlmatlon, e k-means algorith first uses th.e OI.d COdebO'Okati(:m o
the new codebook ang i: sl sl fo.l lowed by maximum likelihood estlgl and 30
the k-means algorithmy arzrates the process until the distortion stabilizes. The steps ;

Mixty _m are actually the E and M steps in the EM algorithm respectively:
. re density estimation [41] s typi - otion. In the MiXU®
aus pical example of EM estimation.

sian densi . : . . mof
each Gaussian cQ:nt;:);t th’fobablhty density for observable data y is the weighted U
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Figure 4.13 Partitioning of a two-dimensional space with 16 Gaussian density functions.
K K
p(yl¢)=chplz(ylq)k)=2cka(Y'uInzk) (4.97)

k=1 k=I

where 0<c, <1, for ISk<K and ¥} ¢, =1.

Unlike the case of a single Gaussian estimation, we also need to estimate the mixture
weight ¢,. In order to do so, we can assume that observable data y come from one of the
component densities p,(y|®,), where X is a random variable taking value from
{1,2,...K} to indicate the Gaussian component. It is clear that x is unobserved and used to
specify the pdf component ®, . Assuming that the probability density function for complete

data (x,y) is given by the joint probability:

Py, x| ®)=P(X =x)p (y|®,)=P(X =x)N.(y]n..Z)

(4.98)

P(X =x) can be regarded as the probability of the unobserved data x used to specify the
component density p, (y|®,) from which the observed data y is drawn. If we assume the
number of components is K and @ is the vector of all probability parameters
(P(X), ®,,@,,...,®,), the probability density function of incomplete (observed) data y
can be specified as the following marginal probability:

Py @)=Y p(y,x| ®)= X, P(X =x)p(y|®,)

(4.99)
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By comparing Eq. (4.97) and (4.99), we can see that the mixture weight is representeq
probability function P(X = x) . Thatis, a5 the

¢ = P(X =k) .

According to the EM algorithm, the maximization of the logarithm of the likelihoog
function log p(y [®) can be performed by iteratively maximizing the conditiona] expecty
tion of the logarithm of Eq. (4.98), i.e., log p(y,x|®) . Suppose we have observed N i"de.
pendent samples: {y,,¥,,...,¥y} Wwith hidden unobserved data (X, the Q:
function can then be written as follows:

— A’ e N —
O(®,D)=Y 0,(@.®)=) Y P(x,|y,,®)log p(y,.x, | ®)

I=! =l x5

N’
Py, x| ®) =
= ——————log p(y,,x; | @)
§§ ply, 1) ’

By replacing items in Eq. (4.101) with Egs. (4.98) and (4.100), the following equation can
be obtained:

(.101)

oD, D)= 7,logT, + 0, (P, D,) (4.102)

k=1 k=l

where
,},’I‘ = Ce Py (yi '(Dk) (4.103)
P(y;|®) -

X Ncp(y.|(l)k) 4.104
7 = / - ktk i ( n )

' 2.: ¢ z.’ Py, | @)

ickpk()’i [®@,) (4.105)

N _ i
0,(@,®,)=Y7ilo |®,)= log p, (¥, | @)
A k :z=:' clog o (y, | P, <" p(y, |®) Y [

Now we can perform a maximum likelihood estimation on the complete data )

during the M-step. By taking the derivative with respect to each parameter and setting 1t ©0
zero, we obtain the following EM re-estimate of ¢, ,1t,,and X, :

&=Lk Jy‘ (4,109
27}:
k=1
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Y

N ey, 19y,
7y, SPelY 1Y
2y X

fi; = — =l P(y; | ®) L
v g
3y 25@& W10
il Py, |®)
i'y;; (v —mw )y, - By ) 2 VAN B, -1, )
s & - P(y,|®)
" % = (4.108)
Z‘y; chpk(y;lq)‘)
= =] P(Y. i(b)

The quantity y, defined in Eq. (4.103) can be interpreted as the posterior probability
that the observed data y, belong to Gaussian component & (N, (y|n,,Z,) ). This informa-
tion as to whether the observed data y, should belong to Gaussian component & is hidden
and can only be observed through the hidden variable x (c,). The EM algorithm described
above is used to uncover how likely the observed data y, are expected to be in each Gaus-
sian component. The re-estimation formulas are consistent with our intuition. These MLE
formulas calculate the weighted contribution of each data sample according to the mixture
posterior probability 7, .

In fact, VQ is an approximate version of EM algorithms. A traditional VQ with the
Mahalanobis distance measure is equivalent to a mixture Gaussian VQ with the following
conditions:

o =1/K (4.109)

; G
YL={;' ! (4.110)
0, otherwise

The difference between VQ and the EM algorithm is that VQ performs a hard assignment of
the data sample y, to clusters (cells) while the EM algorithm performs a soft assignment of
the data sample y, to clusters. As discussed in Chapter 8, this difference carries over to the
case of the Viterbi algorithm vs. the Baum-Welch algorithm in hidden Markov models.

4.5. CLASSIFICATION AND REGRESSION TREES

Classification and regression trees (CART) [15, 82] have been used in a variety of pattern
recognition applications. Binary decision trees, with splitting questions attached to each
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node, provide an easy representation that interprets and predicts th
The application of binary decision trees is much like playing t
where the examinee tries to deduce the chosen number by askin
comparing questions.

Consider a simple binary decision tree for height classification.
the study may consist of several measurements, including race, gende
tion, and so on. The goal of the study is to develop a classification m
one of the following five height classes: tall (T), medium-tall ),
short(s) and short (S). Figure 4.14 shows an example of such a bin
this binary decision tree, one can easily predict the height class for a
the measured data, but no height information) by traversing the binary trees, Traversing the
binary tree is done through answering a series of yes/no questions in the traversed noges
with the measured data. When the answer is no, the right branch is traversed next; otherwise
the left branch will be traversed instead. When the path ends at a leaf node, you can use irs'
attached label as the height class for the new person. If you have the average height for each
leaf node (computed by averaging the heights from those people who fall in the same Jeaf
node during training), you can actually use the average height in the leaf node to predict the

height for the new person.
Is age > 12

>
Y N =

€ structure of
he number.
g a series of

a set of dala.
8uessin

binary "UMber:

Every Person’s dapy i,
T, weight, age, occupa.
ethod to assign a Person
medium (M), medium.
ary tree structure, Wip,
Ny New person (with all

Is occupation = professional’
"basketball player?

M S

Figure d.14 A binary tree structure for height classification.
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This classification process is similar to a rule-based system where the classification is
carried out by a sequence of decision rules. The choice and order of rules applied in a rule-
based system is typically designed subjectively by hand through an introspective analysis
based on the impressions and intuitions of a limited number of data samples. CART, on the
other hand, provides an automatic and data-driven framework to construct the decisic;n proc-
ess based on objective criteria. Most statistical pattern recognition techniques are designed
for data samples having a standard structure with homogeneous variables. CART is designed
instead to handle data samples with high dimensionality, mixed data types, and nonstandard
data structure. It has the following advantages over other pattern recognition techniques:

e CART can be applied to any data structure through appropriate formulation
of the set of potential questions.

e The binary tree structure allows for compact storage, efficient classification,
and easily understood interpretation of the predictive structure of the data.

o It often provides, without additional effort, not only classification and recog-
nition, but also an estimate of the misclassification rate for each class.

e It not only handles missing data, but also is very robust to outliers and misla-
beled data samples.

To construct a CART from the training samples with their classes (let's denote the set
as $), we first need to find a set of questions regarding the measured variables; e.g., “Is age
> 127", “Is occupation = professional basketball player?”, “Is gender = male?” and so on.
Once the question set is determined, CART uses a greedy algorithm to generate the decision
trees. All training samples 3 are placed in the root of the initial tree. The best question is
then chosen from the question set to split the root into two nodes. Of course, we need a
measurement of how well each question splits the data samples to pick the best question.
The algorithm recursively splits the most promising node with the best question until the
right-sized tree is obtained. We describe next how to construct the question set, how to
measure each split, how to grow the tree, and how to choose the right-sized tree.

45.1.  Choice of Question Set

Assume that the training data has the following format:

x=(%,%5,...X,) (4.111)

where each variable x, is a discrete or continuous data type. We can construct a standard

set of questions Q as follows:
1. Each question is about the value of only a single variable. Questions of this
type are called simple or singleton questions.
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2. If x, is a discrete variable fro

: m the set
tions of the following form: {c.c..

¢k}, © includes all ques.

{Isx, e §7)

' 4.
where § is any subset of {8 e @.112)

3. If A 1S a COn[mUOUS Va.nab]e Q Inc q f
X, y llldes all ues
{stiSC.}fOI‘ cE ( °°,°°) (4

The question subset generated from discrete variables (in condition 2 above) is clear]
y

a finite set (27" —1). On the other hand, the question subset generated from conyj

variables (in condition 3 above) seems to be an infinite set based on the deﬁniﬁo: usuous
nately, since the training data samples are finite, there are only finite number of 'di:i':.u [
splits for the training data. For a continuous variable X, , the data points in § conain :t

most M distinct values w;,v,,...,,,. There are only at most M different splits generated by
the set of questions in the form:

{isx, <¢,} n=12,...M (d.114)

n

Vv, 1TV, . . ;
where ¢, = "—'2— and v, = 0. Therefore, questions related to a continuous variable also

form a finite subset. The fact that Q is a finite set allows the enumerating of all possible

questions in each node during tree growing.

The construction of a question set is similar to that of rules in a rule-based system. In-
stead of using the all-possible question set Q, some people use knowledge selectively to
pick a subset of @, which is sensitive to pattern classification. For example, the vowel sub-
set and consonant subset are a natural choice for these sensitive questions for phoneme clas-
sification. However, the beauty of CART is the ability to use all possible questiors related_ to
the measured variables, because CART has a statistical data-driven framewofk to determine
the decision process (as described in subsequent sections). Instead of setting some con-
straints on the questions (splits), most CART systems use all the possible questions for 0.

4.5.2. Splitting Criteria

A question in CART framework represents a split (partition) of data samples. ALlIlreﬂ:o [l::f
nodes (L in total) represent L disjoint subsets A, 4,,..., 4, . Now we have g enelection of
tial question set 0, the task is how to find the best question for a node split. The s e

the best question is equivalent to finding the best split for the data samples of the

the cor-
3 ¢ X - an compute
Since each node ¢ in the tree contains some training samples, we ¢ rocess for ¢

responding class probability density function P(e]f). The classification u;; goal s 1o
node can then be interpreted as a random process based on P(w|?) . Since 0
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fication, the objective of a decision tree is to reduce the uncertainty of the event being de-
cided upon, We want the leaf nodes to be as pure as possible in terms of the class distribu-
tion. Let ¥ be the random variable of classification decision for data sample X. We could
define the weighted entropy for any node ¢ as follows:

H(Y)=H,(Y)P() 4.115)
H,(Y)=-3 P |log P(e; | 1) (4.116)

where P(w, [?) is the percentage of data samples for class i in node ¢, and P(¢) is the prior
probability of visiting node ¢ (equivalent to the ratio of number of data samples in node ¢ and
the total number of training data samples). With this weighted entropy definition, the split-
ting criterion is equivalent to finding the question which gives the greatest entropy reduc-
tion, where the entropy reduction for a question g to split a node ¢ into nodes / and r can be
defined as:

AH,(9)=H,(X)~(H )+ H.(Y)=H,@)-H( |q9) (4.117)

The reduction in entropy is also the mutual information between Y and question g .
The task becomes that of evaluating the entropy reduction AH, for each potential question
(split), and picking the question with the greatest entropy reduction, that is,

g’ =argmax (Af,(¢)) (4.118)

If we define the entropy for a tree, T, as the sum of weighted entropies for all the terminal
nodes, we have:

HD= Y H(®) (4.119)

" ¢ isterminal

It can be shown that the tree-growing (splitting) process repeatedly reduces the en-
tropy of the tree. The resulting tree thus has a better classification power. For continuous
pdf, likelihood gain is often used instead, since there is no straightforward entropy meas-
urement [43]. Suppose one specific split divides the data into two groups, X, and X,,
which can then be used to train two Gaussian distributions N,(p,,Z;) and N,(p,,Z;). The
log-likelihoods for generating these two data groups are:

L (X, IN,) =logHN(xl,p,,Zl)=—(d10g27z+log|):,|+d)a/2 (4.120)
L, (X, | N,)=log [N (x;, %, %) =—(d log 27+ log|Z,|+d)b/2 (4.121)
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where d is the dimensionality of the data; and a and b are the sample counts for th
groups X, and X, respectively. Now if the data X, and X, are merged into ope groe data
modeled by one Gaussian N(u,X), according to MLE, we have up and

__a .b
ll_a+bp‘l a+bu2 4.122)
Z=—a—[7- +(py —p)(p —u)’]+—L[z + (1, =), — )

a+b- ! ' gt b= T TR, ")] (4.123)

Thus, the likelihood gain of splitting the data X into two groups X, and X, is:

AL (g) = L(X, | N)+ L,(X, | )= L,(X| N)
=(a+b)log|Z| ~alog|Z,|-blog|z, | (4.124)

For regression purposes, the most popular splitting criterion is the mean squared error
measure, which is consistent with the common least squared regression methods. For in-
stance, suppose we need to investigate the real height as a regression function of the meas-
ured variables in the height study. Instead of finding height classification, we could simply
use the average height in each node to predict the height for any data sample. Suppose Y is
the actual height for training data X, then overall regression (prediction) error for a node 1
can be defined as:

E@=Y|Y-dX)[ (4.125)
Xer
where d(X) is the regression (predictive) value of Y.
Now, instead of finding the question with greatest entropy reduction, we want to ﬁnfi
the question with largest squared error reduction. That is, we want to pick the question ¢
that maximizes:

AE(q)= E(t)—(E()+ E(r)) (4.126)

where | and r are the leaves of node ¢. We define the expected square error V(1) fora node ¢
as the overall regression error divided by the total number of data samples in the node.

V) =E| Y |Y-d(X 2\=_1_ Y —d(X) ) (4.127)
(BT | S 7 -]
Note that V(1) is actually the variance estimate of the height, if d(X) is made to be e

average height of data samples in the node. With ¥ () , we define the weighted squared €
ror V(t) for a node ¢ as follows,

V() =V 0Pty = Lﬁt);l Y—d(X) ] () (4.128)
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Finally, the splitting criterion can be rewritten as:
AV (@)= =T D)+7(r) (4.129)

Based on Egs. (4.117) and (4.129), one can see the analogy between entropy and variance in
the splitting criteria for CART. The use of entropy or variance as splitting criteria is under
the assumption of uniform misclassification costs and uniform prior distributions. When
nonuniform misclassification costs and prior distributions are used, some other splitting
might be used for splitting criteria. Noteworthy ones are Gini index of diversity and twoing
rule. Those interested in alternative splitting criteria can refer to [11, 15].

For a wide range of splitting criteria, the properties of the resulting CARTS are empiri-
cally insensitive to these choices. Instead, the criterion used to get the right-sized tree is
much more important. We discuss this issue in Section 4.5.6.

4.5.3. Growing the Tree

Given the question set Q and splitting criteria AH (q), the tree-growing algorithm starts
from the initial root-only tree. At each node of tree, the algorithm searches through the vari-
ables one by one, from x, to x, . For each variable, it uses the splitting criteria to find the
best question (split). Then it can pick the best question out of the N best single-variable
questions. The procedure can continue splitting each node until either of the following con-
ditions is met for a node:

1. No more splits are possible; that is, all the data samples in the node belong to
the same class;

2. The greatest entropy reduction of best question (split) falls below a pre-set
threshold 3, i.e.:

max AH,(g) < B (4.130)
qeQ

3. The number of data samples falling in the leaf node ¢ is below some threshold
. This is to assure that there are enough training tokens for each leaf node if
one needs to estimate some parameters associated with the node.

When a node cannot be further split, it is declared a terminal node. When all active (non-

split) nodes are terminal, the tree-growing algorithm stops.

The algorithm is greedy because the question selected for any given node is the one
that seems to be the best, without regard to subsequent splits and nodes. Thus, the algorithm
constructs a tree that is locally optimal, but not necessarily globally optimal (but hopefully
globally good enough). This tree-growing algorithm has been successfully applied in many
applications [5, 39, 60]. A dynamic programming algorithm for determining glgbal opu.mal-
ity is described in [78]; however, it is suitable only in restricted applications with relatively
few variables.
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45.4 Missing Values and Conflict Resolution

imes, the available data sample X = (X}, X,..-%4) has some value X; missing, Ty,
Somfatxmesv can be handled by the use of surrogate questions (splits), The ideq ;
{niss}f‘g-v&l,ue dffl'lsnfe a similarity measurement between any two questions (splits) 4 ang ;
intuitive. l eIf the best question of node ¢ is the question g on the variable X; » We can fing
ofa nodi:ion' G that is most similarto g ona variable other than x;. ¢ is our best surTogate
c[;:;gtlil:;. Sinfilarly, we find the second-best surrogate. que:cstic:;:, third-best‘an_d SO on, The
surrogate questions are considered as th'e ba_ckup qyestlons m. e case of mlSslmg X, valueg
in the data samples. The surrogate question s used .m dgscendmg order.to contfn‘ue tree tray.
ersing for those data samples. The sqrrogate question gives 'CART unique ability to hangle
the case of missing data. The similarity rpeasuren}ent is basically a measurement reflecting
the similarity of the class probability density fun.lcflon [15]. '

When choosing the best question for sphm.ng a node, several questions on the same
variable x; may achieve the same entropy reduction a'md generate the safne partition, As. in
rule-based problem solving systems, a conflict resol_utton procedure [99] is needed t°, decide
which question to use. For example, discrete questions g, and g, have the following for-
mat:

g : {Isxe8?% (4.131)

g, : {Isx,€8,? 4.132)

Suppose S, is a subset of S,, and one particular node contains only data samples
whose x, value contains only values in S§,, but no other. Now question ¢, or ¢, performs
the same splitting pattern and therefore achieves exactly the same amount of entropy red}JC-
tion. In this case, we call g, a sub-question of question g,, because g, is a more specific
version. )

A specificity ordering conflict resolution strategy is used to favor the discrete question
with fewer elements because it is more specific to the current node. In other words, if the
elements of a question are a subset of the elements of another question with the same én-
tropy reduction, the question with the subset of elements is preferred. Preferring more Spe-
cific questions will prevent decision trees from over-generalizing. The specificity o‘rdeﬂng
conflict resolution can be implemented easily by presorting the set of discrete quesnon_s.by
the number of elements they contain in descending order, before applying them to decision

trees. A similar specificity ordering conflict resolution can also be implemented for contint-
ous-variable questions.

4.55, Complex Questions
One problem with allowin

. . ted,
. g only simple question be over-fragmen
resulting in similar leayes y ple q s is that the data may

in different locations of the tree. For example, when the best ques:
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tion (rule) to split a node is actually a composite question of the form “Is x,€ S ?” or “Is
x,€ 8, 7", a system allowing only simple questions will generate two separatie qulestions to
split the data into three clusters rather than two as shown in Figure 4.15. Also data for which
the answer i§ yes are inevitably fragmented across two shaded nodes. This is inefficient and
ineffective since these two very similar data clusters may now both contain insufficient
training examples, which could potentially handicap future tree growing. Splitting data un-
necessarily across different nodes leads to unnecessary computation, redundant clusters,
reduced trainability, and less accurate entropy reduction.

Isx e§?

sx eS,?

Figure 4.15 An over-split tree for the question “Is x,€ S, 7 or“Is x,€ S, ?"

We deal with this problem by using a composite-question construction [38, 40]. It in-
volves conjunctive and disjunctive combinations of all questions (and their negations). A
composite question is formed by first growing a tree with simple questions only and then
clustering the leaves into two sets. Figure 4.16 shows the formation of one composite ques-
tion. After merging, the structure is still a binary question. To construct the composite ques-
tion, multiple OR operators are used to describe the composite condition leading to either
one of the final clusters, and AND operators are used to describe the relation within a par-
ticular route. Finally, a Boolean reduction algorithm is used to simplify the Boolean expres-
sion of the composite question.

To speed up the process of constructing composite questions, we constrain the number
of leaves or the depth of the binary tree through heuristics. The most frequently used heuris-
tics is the limitation of the depth when searching a composite question. Since composite
questions are essentially binary questions, we use the same greedy tree-growing algorithm to
find the best composite question for each node and keep growing the tree until the stop crite-
rion is met. The use of composite questions not only enables flexible clustering, but also
improves entropy reduction. Growing the sub-tree a little deeper before constructing the
composite question may achieve longer-range optimum, which is preferable to the local op-
timum achieved in the original greedy algorithm that used simple questions only.

The construction of composite questions can also be applied to continuous variables to
obtained complex rectangular partitions. However, some other techniques are used to obtain
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general partitions generated by hyperplanes not

: . . Y Perpendicular ¢ ;
tions typicaily have a linear combination of continuouys variables i;h;Z()fz:?‘nate Ares, Qe
nd .
{Is Y ax <c? "ing form 1)
/
(413

Figure 4.16 The formation of a composite question from simple questions.

4.5.6. The Right-Sized Tree

One of the most critical problems for CART is that the tree may be strictly tgilored to the
training data and has no generalization capability. When you split a leaf node in the tree to
get entropy reduction until each leaf node contains data from one single class, lh'at.tn?e o
Sesses a zero percent classification error on the training set. This is an over-oPUmxsuc esti-
mate of the test-set misclassification rate. Independent test sample estimation or cross-
validation is often used to prevent decision trees from over-modeling idiosyncrasies of %

training data. To get a right-sized tree, you can minimize the misclassification rate for future
Independent test datq.

Before we

; » f
st describe the solution for finding the right sized tree, let’s define 2 couple 0
u

terms. Naturally we will use the plurality rule 8(f) to choose the class fora node £
8() = argmax P ®,|1) (4134
¥
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Similar to the notation used in Bayes’ decision theory, we can define the misclassification
rate R(¢) for anode ¢ as:

R(ey=r(r)P(1) (4.135)

where r(1) = l—m?x P(o,|t) and P(#) is the frequency (pfobability) of the data falling in

node f. The overall misclassification rate for the whole tree T is defined as:

R(T)=Y R() (4.136)

el

where T represents the set of terminal nodes. If a nonuniform misclassification cost e(il j),
the cost of misclassifying class j data as class / data, is used, r(f) is redefined as:

r(t)=min ¥ c(i | HP(j|1) (4.137)
J

As we mentioned, R(T) can be made arbitrarily small (eventually reduced to zero) for
the training data if we keep growing the tree. The key now is how we choose the tree that
can minimize R"(T), which is denoted as the misclassification rate of independent test data.
Almost no tree initially grown can perform well on independent test data. In fact, using more
complicated stopping rules to limit the tree growing seldom works, and it is either stopped
too soon at some terminal nodes, or continued too far in other parts of the tree. Instead of
inventing some clever stopping criteria to stop the tree growing at the right size, we let the
tree over-grow (based on rules in Section 4.5.3). We use a pruning strategy to gradually cut
back the tree until the minimum R’(T) is achieved. In the next section we describe an algo-
rithm to prune an over-grown tree, minimum cost-complexity pruning.

4.5.6.1. Minimum Cost-Complexity Pruning

To prune a tree, we need to find a subtree (or branch) that makes the least impact in terms of
a cost measure, whether it is pruned or not. This candidate to be pruned is called the weakest
subtree. To define such a weakest subtree, we first need to define the cost measure.

DEFINITION 1: For any sub-tree 7 of T,,, (T =T, ). let |T'| denote the number of ter-
minal nodes in tree T .

DEFINITION 2: Let o >0 be a real number called the complexity parameter. The cost-
complexity measure can be defined as:

R(T)=R(TM)+a|T| (4.138)

DEFINITION 3: For each ¢, define the minimal cost-complexity subtree 7(0) < Tou that
minimizes R, (T), that is,

T(e) =argmin R, (T) (4.139)
T<Tpax
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t, =argmin n(r) (4.145)

1eT

o =n(4) (4.146)

As o increases, the node f is the first node such that R, ({t}) becomes equal to
R, (T}) . At this point, it would make sense 1o prune subtree T, (collapse T, into a single-
node subtree {#}), and ¢, is the value of @ where the pruning occurs.

Now the tree T after pruning is referred to as 7, i.e.,

L=T-T, (4.147)

We then use the same process to find the weakest subtree 7, in T, and the new pruning

point ¢, . After pruning away 7, from 7; to form the new pruned tree T,, we repeat the
same process to find the next weakest subtree and pruning point. If we continue the process,
we get a sequence of decreasing pruned trees:

T>_T; >T2 >.T2...>.{r} (4.148)
where {r} is the single-node tree containing the root of tree T with corresponding pruning
points:

O <0 <0y <Oy <o (4.149)

where ¢, =0.
With the process above, the following theorem (which is basic for the minimum cost-
complexity pruning) can be proved.

THEOREM 2 : Let T, be the original tree 7.

For k20, o, Sa<ay,, T(@)=T(x)=T, (4.150)

4.5.6.2. Independent Test Sample Estimation

The minimum cost-complexity pruning algorithm can progressively prune the over-grown
tree to form a decreasing sequence of subtrees T > 7, > T, > T,--->{r}, where T, = T(ak) ;
@, =0 and T, =T . The task now is simply to choose one'ot." d}ose subtre.es as t'he opnmal-
sized tree. Our goal is to find the optimal-sized tree that minimizes the misclassification for

Amazon/VB Assets
Exhibit 1012
Page 213



188
Pattern Recogy; fion

independent test set R'(I') . When the training set S is abundant,
an independent test set R from the training set. Usually R ig g
training set 3. We use the remaining two thirds of the training set 3 - (i) 5
train the initial tree T and apply the minimum cost-complexity pruning algori
the decreasing sequence of subtrees T > T, =T, > T, .- > {r} Next, th
through the sequence of subtrees to get corresponding estimates of test-
R'(T),R(T),R'(T,),++,R'({r}) . The optimal-sized tree I
minimum test-set misclassification measure, i.e.:

We can afforq

{0 set ag;
elected ag one e

third of the
bundant) to
thm to attaip
€ test set R s fun
. -set misclassiﬁcation
is then picked as the one with

k" = argmin R*(T}) 4.151

The independent test sample estimation approach has the drawback that it reduces the
effective training sample size. This is why it is used only when there is abundant training
data, Under most circumstances where training data is limited, cross-validation is often
used.

4.5.6.3. Cross-Validation

CART can be pruned via v-fold cross-validation. It follows the same principle of cross vali-
dation described in Section 4.2.3. First it randomly divides the training set 3 into v disjoinat
subsets 3,,3,,--+,3, , each containing roughly the same data samples. It then defines the i
training set

3=8-8, i=L2..v (4.152)

so that 3’ contains the fraction (v—1)/v of the original training set. v is usually chosen 0
be large, like 10. ) . T
In v-fold cross-validation, v auxiliary trees are grown together wqh the main tree .
grown on 3. The i* tree is grown on the i" training set §'. By applying mimmum ;omin
complexity pruning, for any given value of the cost-complexity parameter {1- we can 0 o
the corresponding minimum cost-complexity subtrees T(cr) and T'(q). 1=1,2,...,_:ri-foml
cording to Theorem 2 in Section 4.5.6.1, those minimum cost-complexity subtrees Wi
v+1 sequences of subtrees:

(4.153)
T>T,~T,>T,-->{r} and
' _ @4.154)
T s T;I - Tzl > TJ’ - {'.'} i=1,2,...,v
Amazon/VB Assets
Exhibit 1012

Page 214



Classification and Regression Trees 189

ALGORITHM 4.5: THE CART ALGORITHM

Step 1: Question Set: Create a standard set of questions Q that consists of all possible ques-
tions about the measured variables.
Step 2: Splitting Criterion: Pick a splitting criterion that can evaluate all the possible questions
in any node. Usually it is either entropy-like measurement for classification trees or mean
square errors for regression trees.
Step 3: Initialization: Create a tree with one (root) node, consisting of all training samples.
Step 4: Split Candidates: Find the best composite question for each terminal node:

a. Generate a tree with several simple-question splits as described in Section 4.5.3.

b. Cluster leaf nodes into two classes according to the same splitting criterion.

c. Based on the clustering done in (b}, construct a corresponding composite question.
Step 5: Split: Out of all the split candidates in Step 4, split the one with best criterion.
Step 6: Stop Criterion: If all the leaf nodes containing data samples from the same class or all
the potential splits generating improvement fall below a pre-set threshold 3 , go to Step 7; oth-
erwise go to Step 4.
Step 7: Use independent test sample estimate or cross-validation estimate to prune the original
tree into the optimal size.

The basic assumption of cross-validation is that the procedure is stable if v is large.
That is, T(c) should have the same classification accuracy as T"(er) . Although we cannot
directly estimate the test-set misclassification for the main tree R’(T()), we could ap-
proximate it via the test-set misclassification measure R (T"()). since each data sample in
3 occurs in one and only one test set 3,. The v-fold cross-validation estimate R" (T())
can be computed as:

R”(T(a)):lZR'(T’(a)) (4.155)

Vsl
Similar to Eq. (4.151), once R (T(x)) is computed, the optimal v-fold cross-validation
tree T, can be found through

k" =argmin R (T}) (4.156)
k .

Cross-validation is computationally expensive in comparison with independent test
sample estimation, though it makes more effective use of all training dfat_a and reveals useful
information regarding the stability of the tree structure. Since the auxiliary trees are grown
on a smaller training set (a fraction v—1/v of the original training data),ct;,hey tend to have a
higher misclassification rate. Therefore, the cross-validation estimates R™(T) tend to be an
over-estimation of the misclassification rate. The algorithm for generating a CART tree is

illustrated in Algorithm 4.5.

Amazon/VB Assets
Exhibit 1012
Page 215



190
Pattern Recognih‘on

4.6. HISTORICAL PERSPECTIVE AND FURTHER READING

Pattern recognition is a multidisciplinary field that comprises a broad bod
knowledge and techniques. Historically, there are two major approaches
tion — the statistical and the syntactical approaches. Although this chapte
statistical approach. syntactical pattern recognition techniques, which
limitations of the statisfic?l approach in handling contextual or structural information, ¢ap be
complementary to statistical approaches for spoken language processing, such as parsin
Syntactic pattern recognition is based on the analogy that complex patterns can be deco;s.l
posed recursively into simpler subpatterns. much as a sentence can be decomposed into
words and letters. Fu [24] provides an excellent book on syntactic pattern recognition,

The foundation of statistical pattern recognition is Bayesian theory, which can be
traced back to the 18" century [9, 54] and its invention by the British mathematician Thomgs
Bayes (1702-1761). Chow [20] was the first to use Bayesian decision theory for pattern rec-
ognition, Statistical pattern recognition has been used successfully in a wide range of appli-
cations, from optical/handwritten recognition [13, 96], to speech recognition (7, 86] and to
medical/machinery diagnosis [1, 27]. The books by Duda et al. [22] and Fukunaga [25] are
two classic treatments of statistical pattern recognition. Duda et al. have a second edition of
the classic pattern recognition book [23] that includes many up-to-date topics.

MLE and MAP are two most frequently used estimation methods for pattern recogni-
tion because of their simplicity and efficiency. In Chapters 8 and 9, they play an essential
role in model parameter estimation. Estimating the recognition performance and comparing
different recognition systems are important subjects in pattern recognition. The importance
of a large number of test samples was reported in [49]. McNemar’s test is dated back to the
1940s [66]. The modification of the test for continuous speech recognition systems pre-
sented in this chapter is based on an interesting paper [30] that contains a general discussion
on using hypothesis-testing methods for continuous speech recognition.

Gradient descent is fundamental for most discriminant estimation methods, including
MMIE, MCE, and neural networks. The history of gradient descent can be traced back 0
Newton’s method for root finding [72, 81]. Both the book by Duda et al. [23] and the paper
by Juang et al. (48] provide a good description of gradient descent. MMIE was first pro

posed in [16, 71] for the speech recognition problem. According to these two works, MMIE
is more robust than MLE to incorrect model assumptions. MCE was first formulated by
Juang et al. [48] and successfully applied to small-vocabulary speech recognition [47]-

The modem era of neural networks was brought to the scientific community by
McCulloch and Pitts. In the pioneering paper [64], McCulloch and Pitts laid out the ’“athe{n
matical treatment of the behavior of networks of simple neurons. The most important rest
they ‘showed is that a network would compute any computable function. John von Neum‘{":;
was influenced by this paper to use switch-delay elements derived from the McCulloch-Pi
neuron in the construction of the EDVAC (Electronic Discrete Variable Automatic Com;
puter) that was developed based on ENIAC (Electronic Numerical Integrator and CQmP“[ge
[2, 35). The ENIAC was the famous first general-purpose electronic computer built at
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Moore School of Electrical Engineering at the University of Pennsylvania from 1943 to
1946 [31]. The two-layer perceptron work [87] by Rosenblatt, was the first to provide rigor-
ous proofs abqut perceptron.cgnvergencc. A 1969 book by Minsky and Papert [68] reveals
thaf there are l'undamentfll limits to what single-layer perceptrons can compute. It was not
until the 1980§ that. the discovery of multi-layer perceptrons (with hidden layers and nonlin-
ear threshold functions) and back-propagation [88] reawakened interest in neural networks.
The two-volume PDP book (90, 911, Parallel Distributed Processing: Explorations in the
Microstructures of Cognition, edited by Rummelhart and McClelland, brought the back-
propagation learning method to the attention of the widest audience. Since then, various
applications of neural networks in diverse domains have been developed, including speech
recognition [14, 58], speech production and perception [93, 94], optical and handwriting
character recognition {55, 92], visual recognition [26], game playing [97], and natural lan-
guage processing [63]. There are several good textbooks for neural networks. In particular,
the book by Haykin [35] provides a very comprehensive coverage of all foundations of neu-
ral networks. Bishop [12] provides a thoughtful treatment of neural networks from the per-
spective of pattern recognition, Short, concise tutorial papers on neural networks can be
found in {44, 57).

Vector quantization originated from speech coding [17, 32, 45, 61]. The k-means algo-
rithm was introduced by Lloyd [59]. Over the years, there have been many variations of vQ,
including fuzzy VQ (10], learning VQ (LVQ) [51], and supervised VQ [18, 42]. The first
published investigation toward the EM-like algorithm for incomplete data learning can be
attributed to Pearson [79]. The modern EM algorithm was formalized by Dempster, Laird,
and Rubin [21]. McLachlan and Krishnan [65] provide a thorough overview and history of
the EM algorithm. The convergence of the EM algorithm is an interesting research topic and
Wau [100] has an extensive description of the rate of convergence. The EM algorithm is the
basis for all unsupervised learning that includes hidden variables. The famous HMM train-
ing algorithm, as described in Chapter 8, is based on the EM algorithm.

CART uses a very intuitive and natural principle of sequential questions and answers,

- which can be traced back to 1960s [70]. The popularity of CART is attributed to the book by
Breiman ez al. [15]. Quinlan proposed some interesting variants of CART, like ID3 [82] and
C4.5 [84]. CART has recently been one of the most popular techniques in machine learning.
Mitchell includes a good overview chapter on the latest CART techniques in his machine-
learning book [69]. In addition to the strategies of node splitting and pruning mentioned in
this chapter, [62] used a very interesting approach for splitting and pruning criteria based on
a statistical significance testing of the data’s distributions. Moreover, [28] proposed an itera-
tive expansion pruning algorithm which is believed to perform as well as cross-validation
pruning and yet is computationally cheaper [52]. CART has been successfully used in a va-
riety of spoken language applications such as letter-to-sound conversion [46, 60], allophone
model clustering [8, 38, 39], language models [5], automatic rule generation [83], duration
modeling of phonemes [74, 80}, and supervised vector quantization [67].
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CHAPTER 5

Digital Signal Processing

One of the most popular ways of characteriz-
ing speech is in terms of a signal or acoustic waveform. Shown in Figure 5.1 is a representa-
tion of the speech signal that ensures that the information content can be easily extracted by
human listeners or computers. This is why digital signal processing plays a fundamental role
for spoken language processing. We describe here the fundamentals of digital signal process-
. ing: digital signals and systems, frequency-domain transforms for both continuous and discrete

frequencies, digital filters, the relationship between analog and digital signals, filterbanks, and
stochastic processes. In this chapter we set the mathematical foundations of frequency analysis
that allow us to develop specific techniques for speech signals in Chapter 6.

The main theme of this chapter is the development of frequency-domain methods
computed through the Fourier transform. When we boost the bass knob in our amplifier we
are increasing the gain at low frequencies, and when we boost the treble knob we are in-
Creasing the gain at high frequencies. Representation of speech signals in the frequency do-
main is especially useful because the frequency structure of a phoneme is generally unique.
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Figure 5.1 Signal processing is both a representation and a transformation that allows a usefyl
information extraction from a source. The representation and transformation are based on a
model of the signal, often parametric, that is convenient for subsequent processing,

5.1. DIGITAL SIGNALS AND SYSTEMS

To process speech signals, it is convenient to represent them mathematically as functions of
a continuous variable ¢, which represents time. Let us define an analog signal x,(f) a3
function varying continuously in time. If we sample the signal x with a sampling period T
(i.e., t=nT), we can define a discrete-time signal as x{n]=x,(nT), also known asdigfml
signal.' In this book we use parentheses to describe an analog signal and brackets for digital
signals. Furthermore we can define the sampling frequency F, as F,=1/T, the irfvcrse of
the sampling period T. For example, for a sampling rate F, =8kHz, its corresponding sa-
pling period is 125 microseconds. In Section 5.5 it is shown that, under some circurflslaﬂcgsl'
the analog signal x,(f) can be recovered exactly from the digital signal 3[]- Figure -
shows an analog signal and its corresponding digital signal. In subsequent figures, for¢
venience, we will sometimes plot digital signals as continuous functions. ing he &
The term Digital Signal Processing (DSP) refers to methods for mampt(ljl?:: nrifer o
quence of numbers x[»] in a digital computer. The acronym DSP is also use % o
Digital Signal Processor, i.e., a microprocessor specialized to perform DSP operd
rswilhlm

intege

represented by integ
ae g ¢ the term dig!
necessal‘)'-

) iy . . . ] i hose values
Actually the term digital signal is defined as a discrete-time signal wby eal numbers. Sinc

a range, whereas a general discrete-time signal would be represented y reE T ween them i
is much more commonly used, we will use that term, except when the distinction
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Figure 5.2 Analog signal and its corresponding digital signal.

We start with sinusoidal signals and show they are the fundamental signals for linear
systems. We then introduce the concept of convolution and linear time-invariant systems.
Other digital signals and nonlinear systems are also introduced.

3.1.1. Sinusoidal Signals

One of the most important signals is the sine wave or sinusoid
X[n}= 4, cos(wyn +¢,) CRY

where 4, is the sinusoid’s amplitude, @, the angular frequency, and ¢, the phase. The an-
gle in the trigonometric functions is expressed in radians, so that the angular frequency @,
is related to the normalized linear frequency f; by the relation @, =2n f,, and 0< f; < l_.
This signal is periodic® with period T, =1/ f; . In Figure 5.3 we can see an example of a si-
nusoid with frequency f, =0.04, or a period of T, =25 samples. )
Sinusoids are important because speech signals can be decomposed a§ sums ‘of su}u-
soids. When we boost the bass knob in our amplifier we are increasing f.he gain fc?r smusglds
of low frequencies, and when we boost the treble knob we are increasing the gain for sinu-

soids of high frequencies.

" A signal x[n] is periodic with period M if and only if x{n]=xln+N], which requires @, =2x/N 1“;;23?: tha:
the digital signal in Eq. (5.1) is not periodic for all values of @, , even though its continuous sign, Ip:
H1t)= 4, cos(ewyt +¢,) is periodic for all values of @, (see Section 5.5).
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Figure 5.3 A digital sinusoid with a period of 25 samples.

What is the sum of two sinusoids x,[n] and x,[n] of the same frequency @, but dif-
ferent amplitudes 4; and A4, and phases ¢, and ¢, ? The answer is another sinusoid of the
same frequency but a different amplitude A and phase ¢. While this can be computed
through trigonometric identities, it is somewhat tedious and not very intuitive. For this rea-
son we introduce another representation based on complex numbers, which proves to be
very useful when we study digital filters.

A complex number x can be expressed as z = x+jy, where j =-1 , x s the real pant
and y is the imaginary part, with both x and y being real numbers. Using Euler’s relation,
given a real number §, we have

e’ =cos¢+ jsing (5.2)

so that the complex number z can also be expressed in polar form as z = Ae”, where A th|s

the amplitude and ¢ is the phase. Both representations can be seen in Flg}lrc 54, wlllcre e

real part is shown in the abscissa (x-axis) and the imaginary part in the ordinate (y-a:;S).a;t 7
Using complex numbers, the sinusoid in Eq. (5.1) can be expressed as the real p

the corresponding complex exponential

n+ 5‘3)
x,[1) = 4, cos(@yn +,) = Re {4’ *"*'} (
4

]

i . —_ i a_nd olar form
Figure 5.4 Complex number representation in Cartestan form z=x+Jy P

z=Ae" Thus x= Acos¢ and y=Asing .
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and thus the sum of two complex exponential signals equals

A/ 4 Ale/'(lq,zwm = gl (Aoeiq, + A4 )=e.i%nAei¢ = Ae!n+d) (5.9)
Taking the real part in both sides results in

Ay cos(@on+¢,) + A, cos(@yn +¢,) = Acos(wyn +¢) (5.5)
or in other words, the sum of two sinusoids of the same frequency is another sinusoid of the
same frequency.

To compute A and ¢, dividing Eq. (5.4) by &/ leads to a relationship between the
amplitude A and phase ¢ :

A,e™ + 4 = 4e” (5.6)

Equating real and imaginary parts in Eq. (5.6) and dividing them we obtain:

_ Aysing, + 4, sing, 5.7)

tan¢ =
A4, cos¢, + 4, cos,

and adding the squared of real and imaginary parts and using trigonometric identities®
A = 4+ A2 +2A4,4 cos(9, ~9,) (5.8

This complex representation of Figure 5.5 lets us analyze and visualize the amplitudes
and phases of sinusoids of the same frequency as vectors. The sum of N sinusoids of the
same frequency is another sinusoid of the same frequency that can be obtained by adding the
real and imaginary parts of all complex vectors. In Section 5.2.1 we show that the output of
a linear time-invariant system to a sinusoid is another sinusoid of the same frequency.

A

/¢, <1 |

Figure 5.5 Geometric representation of the sum of two sinusoids of the same frequency. It fol-
lows the complex number representation in Cartesian form of Figure 5.4.

*sin*¢+cos’@ =1 and cos(a—b)=cosacosb +sinasinb.
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5.1.2.

In the field of digital signal processing there are other signals that r
are shown in Table 5.1.

Table 5.! Some useful digital signals: the Kronecker delta, unit step,
exponential (a <! ) and real part of a complex exponential (r <1 ).

Other Digital Signals

he
Digital Signa] Processing

epeatedly arise and (hq

rectangular signal, rea|

Kronecker delta, 1 n=0 ﬁ
or unit impulse alt= { 0 otherwise
—0-0-0-0-10-0-0-0-0p

Unit step ] = {1 n=0 . :

it T,
Rectangular I 0sn<N h _
signal recty[n) = 0 otherwise ] T T I T 2
Real exponential x[n]=a"uln)

———p
[t »

Complex
exponential

x[n)=a"uln}=r"e’u[n)

= r"(cosnw, + j sin na, Ju[n]

Re{x{n]}
# n

If »=1 and @, # 0 we have a complex sinusoid as shown in Section 5.1.1. If @, =0
we have a real exponential signal, and if » <1 and @, # 0 we have an exponentially decay-

ing oscillatory sequence, also known as a damped sinusoid.

5.1.3.

Digital Systems

A digital system is a system that, given an input signal x[z], generates an output signal yln):

yin)=T{x{n]}

whose input/output relationship can be seen in Figure 5.6.

(59

In general, a digital system T is defined to be linear iff (if and only if)
T{a,x,[n)+a,x,[n]} = a T {x[n}+a.T {x,[n]}

for any values of q,, a, and any signals x,[n] and x,(n] .
Here, we study systems according to whether or not they are linear and/or b

Figure 5.6 Block diagram of a digital system whose input is digital signal x{n],

x[n] —»| T{}

output is digital signal y[n].

(5.10

me invariant.

—» y[n]

and whose
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5.1.3.1. Linear Time-Invariant Systems
A system is time-invariant if given Eq. (5.9), then
Yin=ny]=T{x{n—n,]} (5.11)

Linear digital systems of a special type, the so-called linear time-invariant (LTL),’ are de-
scribed by

-

yin="Y x{klhln—k}= x[n]* hin] (5.12)

k==

where * is defined as the convolution operator. It is left to the reader to show that the linear
system in Eq. (5.12) indeed satisfies Eq. (5.11).

LTI systems are completely characterized by the signal A[r], which is known as the
system’s impulse response because it is the output of the system when the input is an im-
pulse x[n]=3[n] . Most of the systems described in this book are LTI systems.

Table 5.2 Properties of the convolution operator.

Commutative x[n)* h{n] = h[n]*x[n)
Associative x[n)*(h[n)* hy[n]) = (x[n]* k [n]) * h,[1] = x[n]* h [n]* b, [n]
Distributive x[n)* (b [n]+hy[n]) = x[n)* k(1] + x{n] % hy[n]

The convolution operator is commutative, associative and distributive as shown in Ta-
ble 5.2 and Figure 5.7.

—»  N[n] > hln] > » i [n]

— +
—»  h,[n] > h[n] > > h,[n]
— A[nlh[n] — —»{ h[njth[n] (—>»

Figure 5.7 The block diagrams on the left, representing the commutative property, are equiva-
lent. The block diagrams on the right, representing the distributive property, are also equivalent.

* Actually the term linear time-invariant (LTI) systems is typically reserved for continuous or analog syslems..and
linear shift-invariant system is used for discrete-time signals, but we will use LTI for discrete-time signals too since
it is widely used in this context.
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5.1.3.2. Linear Time-Varying Systems

An interesting type of digital systems is that wh

4 ; : ose 0 is a li
input signal at different times: HIPULis 2 linear combination of g,

Mrl= 2 {klgln,n—k]
ke 5.13)

The digital system in Eq. (5.13) is linear. si i i
. ] . (5. , Since it satisfi g
Tlme-Im/:anant systems of Section 5.1.3.1 are a special cl;::eEg-f (}53};0)&51;'36 i
gln,n—-k]= h[n—k]'. Th.e systems in Eq. (5.13) are called linear lime-vq ;'n .L g
tems, because the weighting coefficients can vary with time. 8 LTV) o
A useful example of such system is the so-called amplitude modulator

ynl=xn
1= x[njcoswyn 6514

used in AM transmissions. As we show in Chapter 6, speech signals are the output of LTV
gyslelps. Since these systems are difficult to analyze, we often approximate them with Jinear
time-invariant systems.

5.1.3.3. Nonlinear Systems

Many nonlinear systems do not satisfy Eq. (5.10). Table 5.3 includes a list of typical nonlin-
ear systems used in speech processing. All these nonlinear systems are memoryless, because
the output at time n depends only on the input at time n, except for the median smoother of
order (2N + 1) whose output depends also on the previous and the following N samples.

5.2. CONTINUOUS-FREQUENCY TRANSFORMS

rm, because it uses complex
transform. In this section W&
and their propertics-

A very useful transform for LTI systems is the Fourier transfo
exponentials as its basis functions, and its generalization: the z-
cover both transforms, which are continuous functions of frequency,

5.2.1. The Fourier Transform

pulse response H[n] is when

a LTI system with im 2) and using the

It is i i what the output of ;
is instructive to see P &% in Eq. (5.1

the input is a complex exponential. Substituting x[n]=
commutative property of the convolution we obtain

yln] = 2 h[k]eiab(n—b = g/" i h[k)e'j‘“"‘ = ela\,nH(efﬂh)

k=—o0

.15

k=—co
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Table 5.3 Examples of nonlinear systems for speech processing. All of them are memoryless
except for the median smoother.

Nonlinear System Equation
Median Smoother y[n] = median{x{n— N],---,x[n],---,x[n+ N}
of order (2N+1)
Full-Wave Rectifier ¥n] =]x[n]|
Half-Wave Rectifier (r] x{n] x[n}z0
nl=

¥ 0 x[n]<0

Frequency Modulator | y[n] = Acos(w, +Awx{n])n
' A  x[n]=24
Hard-Limiter yin) =4 xn] I x["]l <A
-A x[n]<-4
' . (N-1/2)A x[n]2(N-DA

Uniform Quantizer ) (m+1/2)a mASxnl<(m+DA  0<m<N-1

(L-bit) with 2N =2* | y[n]

intervals of width A T |(~-m+1/2)A -mASxinj<—(m-DA 0<m<N-1

(-N+1/2)A n]<—(N-1)A

which is another complex exponential of the same frequency and amplitude multiplied by
the complex quantity H(e’™) given by

HE®)="3 Hnle™™ (5.16)

n==co

Since the output of a LTI system to a complex exponential is another complex exponential,
it is said that complex exponentials are eigensignals of LTI systems, with the complex quan-
tity H(e’) being their eigenvalue.

The quantity H(e’®) is defined as the discrete-time Fourier transform of hn]. It is
clear from Eq. (5.16) that H(e’*) is a periodic function of  with period 27, and there-
fore we need to keep only one period to fully describe it, typically ~7 <@ <n (Figure 5.8).

H(e’®)

on r ' T 2% o

Figure 5.8 H(e’®) is a periodic function of ®.
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H(e’®) is a complex function of & which can be expressed in te;

imaginary parts: TS of the rea] 4,

H(e™)=H, (e")+ jH (")
(5.17)
or in terms of the magnitude and phase as

H(™)= l H(e® )l o/ amH (™))
(5.18)

Thus if the input to the LTI system is a sinusoid as in Eq. (5.1), the output will be
yilr)= 4y |H (& cos (yn-+8, +arg {H (e")}) (519

according to Eq. (5.15). Therefore if |H (e’ )' >1, the LTI system will amplify that
quency, and likewise it will attenuate, or filter it, if IH (™ )‘<1. That is one reason w;e-
these systems are also called filters. The Fourier transform H(e’®) of a filter A[n] is ca]leZII
the system’s frequency response or transfer function.

The angular frequency @ is related to the normalized linear frequency f by the sim-
ple relation @ =27 f . We show in Section 5.5 that linear frequency f; and normalized fre-
quency f are related by f, = fF,, where F, is the sampling frequency.

The inverse discrete-time Fourier transform is defined as

h[n] =?;_ _f_"x H(®)e"dw (520

The Fourier transform is invertible, and Eq. (5.16) and (5.20) are transform pairs:

h{n]= 51; _,:H(e"" )" dw = '21?}[ i Hme™ " Je"""da)

S (5:21)
- 1 ex -
= Hml—( @™ ™dey ="y hmls[n—ml=Hhnl
,,ZL [m] 2 Lf ,,.;.,
since
5.22)
__l__r "™ de =5[n—m] (
21 %
A sufficient condition for the existence of the Fourier transform is
S (5.23)
> in)| <
. : e ofa filter
Although we have computed the Fourier transform of the impulse respons
hin], Eq. (5.16) and (5.20) can be applied to any signal x[n].
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5.2.2. Z-Transform

The z-transform is a generalization of the Fourier transform. The z-transform of a digital
signal A[n] is defined as

H(z)= Y, hln}z™" (5.24)
o
where z is a complex variable. Indeed, the Fourier transform of A{n] equals its z-transform
evaluated at z =e’®. While the Fourier and z-transforms are often used interchangeably, we
normally use the Fourier transform to plot the filter's frequency response, and the z-
transform to analyze more general filter characteristics, given its polynomial functional
form. We can also use the z-transform for unstable filters, which do not have Fourier trans-

forms.
Since Eq. (5.24) is an infinite sum, it is not guaranteed to exist. A sufficient condition

for convergence is:

2 |Alm)|of < (5.25)
which is true only for a region of convergence (ROC) in the complex z-plane R, <[z| <R,
as indicated in Figure 5.9.

For a signal A[n] to have a Fourier transform, its z-transform H(z) has to include the
unit circle, | z|=1, in its convergence region. Therefore, a sufficient condition for the exis-
tence of the Fourier transform is given in Eq. (5.23) by applying Eq. (5.25) to the unit circle.

An LTI system is defined to be causal if its impulse response is a causal signal, i.e.
A[n]=0 for n<0. Similarly, a LTI system is anti-causal if hA[n]=0 for n>0. While all
physical systems are causal, noncausal systems are still useful since causal systems could be

decomposed into causal and anti-causal systems.
A system is defined to be stable if for every bounded input it produces a bounded out-
put. A necessary and sufficient condition for an LTI system to be stable is

i |Aln]| < o (5.26)

n=—co

2

-

Figure 5.9 Region of convergence of the z-transform in the complex plane.
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which means, according to Eq. (5.23), that A[r] has a Fourier tra
its z-transform includes the unit circle in its region of convergence,
Just as in the case of Fourier transforms, we can use the z-
just for a filter’s impulse response.
The inverse z-transform is defined as

nsform, and therefore that

transform for any signal, oy

1
Hl =— =l
(] 2Mgﬁﬁ(z)z dz -

where the integral is performed along a closed contour that is within the region of con
gence. Eqgs. (5.24) and (5.27) plus knowledge of the region of convergence form a transf::mp
pair: i.e. one can be exactly determined if the other is known., If the integral is performeg
along the unit circle (i.., doing the substitution z=e’*) we obtain Eq. (5.20), the inverse
Fourier transform.

5.2.3. Z-Transforms of Elementary Functions

In this section we compute the z-transforms of the signals defined in Table 5.1. The =
transforms of such signals are summarized in Table 5.4. In particular we compute the z-
transforms of left-sided and right-sided complex exponentials, which are essential to com-
pute the inverse z-transform of rational polynomials. As we see in Chapter 6, speech signals
are often modeled as having z-transforms that are rational polynomials.

Table 5.4 Z-transforms of some useful signals together with their region of convergence.

Signal Z-Transform Region of Convergence
h[n)=6[n-N] H(z)=z" z#0
Wi =url=dn=NT [ 1 z#0

2 . 1— ~1
hy[n) = a"u{n] . ERH

3 -z )
hInl=—-a"u[-n-1] .t = [z|<al

b l1—az™

5.23.1. Right-Sided Complex Exponentials

A right-sided complex exponential sequence

hy[n] = a"uln]

(5.28)
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has a z-transform given by

A\
1-(az™)" _ iz_, for |aldz] (5.29)

Hy(2)= Y a"z" = lim
n=0

Yoo J-azl 1=

by using the sum of the terms of a geometric sequence and making N — oo . This region of
convergence (| al<| z|) is typical of causal signals (those that are zero for n <0).

When a z-transform is expressed as the ratio of two polynomials, the roots of the nu-
merator are called zeros, and the roots of the denominator are called poles. Zeros are the
values of z for which the z-transform equals 0, and poles are the values of z for which the z-
transform equals infinity.

H,(z) has a pole at z =a, because its value goes to infinity at z =a. According to
Eq. (5.26), h,[n] is a stable signal if and only if |a|<1, or in other words, if its pole is in-
side the unit circle. In general, a causal and stable system has all its poles inside the unit
circle. As a corollary, a system which has poles outside the unit circle is either noncausal or
unstable or both, This is a very important fact, which we exploit throughout the book.

5.2.3.2. Left-Sided Complex Exponentials

A left-sided complex exponential sequence
h,[n)=-a"u{-n-1] (5.30)

has a z-transform given by

-l o o
Hyz)==Y a"z"=-ya"z"=1-) a”z

n=—so n=l n=0 for | z '<I a | (531)
S TR

1-a'z l-a'z l-az”
This region of convergence (] z|<|a|) is typical of noncausal signgls (those that are nonzero
for n<0). Observe that H,(z) and H,(z) are functionally identical and only differ in the

region of convergence. In general, the region of convergence of a signal that is nonzero for
—~o<n<w is R <|z|<R,.

5.2.3.3. Inverse Z-Transform of Rational Functions

Integrals in the complex plane such as Eq. (5.27) are not'easy to do, bu.t fortunately thIey r;{e
not necessary for the special case of H(z) being a rational pqunorpxal tra'nsform. n this
case, partial fraction expansion can be used to decompose the signal into a linear combina-
tion of signals like A [n}, hy[n) and h,Jn] asin Table 5.4.
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For example,
24827
H(z)=——F——
2-5z7 -3z (5.32)
has as roots of its denominator z =3,—1/2. Therefore it can be decomposed ag
A B 2A+2B)+(A-6B)z"
HS(Z) = — < - = ( ) _I( — )Z
1-3z"  1+(1/2)z 2-5z7" -3z (.33)
so that A and B are the solution of the following set of linear equations:
24+2B=2
A-6B=8 (5.34)

whose solution is 4=2 and B=-1, and thus Eq. (5.33) is expressed as

N

1 b= ol
il '21\1-3;:" J—l\l+(l/2)z" J 5

However, we cannot compute the inverse z-transform unless we know the region of
convergence. If, for example, we are told that the region of convergence includes the unit
circle (necessary for the system to be stable), then the inverse transform of

H,(2)=

1 ; _ (5.36)
—3Z

must have a region of convergence of | z|<3 according to Table 5.4, and thus be a Jeft-sided
complex exponential:

hyn)=-3"u[-n—1] (537
and the transform of

1

O 2

(5.38)

- 1 h!—
must have a region of convergence of 1/2 <] z| according to Table S el Tl TeraiS
sided complex exponential:

.39
h[nl = (~1/2)"uln) i
so that
A0)
hs[n]=-2-3”u[-—n—1]—(—1/2)"u[n] ?
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While we only showed an example here, the method used generalizes to rational trans-
fer functions with more poles and zeros.

5.24. Properties of the Z- and Fourier Transforms

In this section we include a number of properties that are used throughout the book and that
can be derived from the definition of Fourier and z-transforms (see Table 5.5). Of special
interest are the convolution property and Parseval’s theorem, which are described below.

52.4.1.  The Convolution Property

The z-transform of y[n], convolution of x{n] and A[n], can be expressed as a function of
their z-transforms:

z-—n

n=—co n=—co | K=o

ORI LIEDY [ 3, k-]

/

=3 x[k]( S hin-klz = 3 x[k]( S W \ (5.41)

k=—a A=—oo ) k== n=—o

/

= ¥ x{klz H(2) = X(2)H(2)

k=—o

which is the fundamental property of LTI systems: “The z-transform of the convolution of
two signals is the product of their z-transforms.” This is also known as the convolution
property. The ROC of Y(z) is now the intersection of the ROCs of X(z) and H(z) and

cannot be empty for Y(z) to exist.
Likewise, we can obtain a similar expression for the Fourier transforms:

Y(e’) = X(e’°)H(e™®) (5:42)

A dual version of the convolution property can be proven for the product of digital
signals:

x[n]yln] < —LX (™) *Y(e™) (5.43)
2

whose transform is the continuous convolution of the transforms with a scale factor. The
convolution of functions of continuous variables is defined as

YO)=x(O)* h(t) = | x(@)h(t~7)dT (5.44)

Note how this differs from the discrete convolution of Eq. (5.12).
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5.2.4.2. Power Spectrum and Parseval’s Theorem

Let's define the autocorrelation of signal x[n] as

-

Rr= 3 Am+nlx Tl = X Al [~(n=D] =] x [n] (5.45)

m=—e le—=

where the superscript asterisk (*) means complex conjugate’ and should not be confuseq

with the convolution operator. .
Using the fundamental property of LTI systems in Eq. (5.42) and the Symmetry prop.

erties in Table 5.5, we can express its Fourier transform S, (w) as

S (@)= X(@)X* (@) =|X (@) (5.46)
which is the power spectrum. The Fourier transform of the autocorrelation is the power
spectrum:

R.[n] & S, (@) (5.47)

or alternatively

R_[n]= EIE f_" S, (@) dw (5.48)

If we set n =0 in Eq. (5.48) and use Eq. (5.45) and (5.46), we obtain

S ) = -21”-]_’;|X(a>)|2 do (549

n=—co

which is called Parseval’s theorem and says that we can compute the signal’s energy in the
time domain or in the frequency domain.

5.3.  DISCRETE-FREQUENCY TRANSFORMS

Here we describe transforms, including the DFT, DCT and FFT, that take our discrete—nrrl;
signal into a discrete frequency representation. Discrete-frequency transforms are the 12"
transform for periodic signals, though we show in Section 5.7 and Chapter 6 how ey &
also useful for aperiodic signals such as speech,

s X .
If z=x+jy=Ac”, its complex conjugate is defined as 2" = x — jy = de™.
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Table 5.5 Properties of the Fourier and z-transforms.

217

Property Signal Fourier Transform z~Transform
Lincarity @] + b ] aX () +bX () | aX,(2)+bX,(2)
] X(e) Xz
il X(e) X'(@)
x'[-n] X' () X'z
X (&™) is Hermitian
X(e)=X"(e™)
Symmetry IX (™ )I is even®
i) ool Re{X(¢*)} iseven | X(Z)=X(2)
a.rg{X (e"")} is odd’
Im{X(e’)} is odd
Even{x{n]} Re{X(e’)}
Odd{x[n]} jIm{X (™)}
Time-shifling x[n—n,] X(e/®)e X(2)z™
{ne™” X(e@)y X (e 2)
Modulation . XGim)
x[n]*h(n] X(e™)H(e™) X(2)H(z)
Convolution Xnyn) T T
2n
> —
T | Relil= 3 Amenlx (] sc@ =@ | X@XAE)
A discrete transform of a signal x{n] is another signal defined as
(5.50)

X[k]="T{x[n]}

Linear transforms are sp

linear combination of other signals:

dnl=3 X[klo,n]

k=—oo

* A function f{x) is called even if and only if f(x)=f(=%).

! A function f(x) is called odd if and only if f(x)==S(%)-

ecial transforms that decompose the input signal x{n] into a

(5.51)
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where ¢,[#] is a set of orthonormal functions

<@ ln). o [n)>=6[k-1] (552

with the inner product defined as

<g[n}o[n]>= i Dy [”h’;["] (5.53)

n=—oo

With this definition, the coefficients X[k] are the projection of x{n] onto ¢,[n]:
k H

X{k] =< x[n), @, [n] > (5.54)

as illustrated in Figure 5.10.

X\,
?

=
P Xo®,

Figure 5.10 Orthonormal expansion of a signal x[n] in a two-dimensional space.

5.3.1. The Discrete Fourier Transform (DFT)

If a x,[n] signal is periodic with period N then
xy[#]=xy[n+N] (5.55)
and the signal is uniquely represented by N consecutive samples. Unfortunately, since Eq.
(5.23) is not met, we cannot guarantee the existence of its Fourier transform. The Discrete
Fourier Transform (DFT) of a periodic signal xy[n] is defined as

N-l )
Xy[k]= Y xy[n)e 2 ¥ 0<k<N (5:56)
n=0

N-1
xy[n]= %Z X[k 0<n<N (557
k=0

which are transform pairs. Equation (5.57) is also referred as a Fourier series expaflsion. »
In Figure 5.11 we see the approximation of a periodic square signal with Pe”fﬁ_
N =100 as a sum of 19 harmonic sinusoids, i.e., we used only the first 19 X [k] coe

cients in Eq. (5.57).

Amazon/VB Assets
Exhibit 1012
Page 244



Discrete-Frequency Transforms 219

15 . ' : :
1

05} |
0

05 ' : : . :
-150 100 50 0 50 100 150

Figure 5.11 Decomposition of a periodic square signal with period 100 samples as a sum of 19
harmonic sinusoids with frequencies @, = 2mk/100.

_ l 18 - X 0 18
xN[n]=F 2 X (ke =—%+%ZXN[k]cos(2nnk/N) (5.58)

k=—18

Had we used 100 harmonic sinusoids, the periodic signal would have been reproduced
exactly. Nonetheless, retaining a smaller number of sinusoids can provide a decent approxi-
mation for a periodic signal.

5.3.2. Fourier Transforms of Periodic Signals

Using the DFT, we now discuss how to compute the Fourier transforms of a complex expo-
nential, an impulse train, and a general periodic signal, since they are signals often used in
DSP. We also present a relationship between the continuous-frequency Fourier transform
and the discrete Fourier transform.

53.2.1. The Complex Exponential

One of the simplest periodic functions is the complex exponential x{n] =¢/" Since it has
infinite energy, we cannot compute its Fourier transform in its strict sense. Since such sig-
nals are so useful, we devise an alternate formulation.

First, let us define the function

1/A 0<w<A
&, )= . (5.59)
0 otherwise
which has the following property
[ d(@)do=1 LA
for all values of A> 0.
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It is useful to define the continuous delta function &(w), also known as the p;
deita, as irac

6(w) =limd,(®)

(5.61)

which is a singular function and can be seen in Figure 5.12. The Dirac delta js 5 funct;
a continuous variable and should not be confused with the Kronecker delta, which is al?: "
tion of a discrete variable. g

Using Egs. (5.59) and (5.61) we can then see that

J'_” X(w)d(wda = lAi_rgj__X(a))dA {w)dw = X(0) 56
and similarly

j; X(0)5(@-0,)do = X (w,) (563
so that

X(0)5(w-o,) = X(w,)5(w - w,) (5.64)
because the integrals on both sides are identical.

Using Eq. (5.63), we see that the convolution of X (@) and §(w-w,) is

X(@)*8(w-0,) = [ X()d(w-0,~u)du = X(0-a,) (5.65)

For the case of a complex exponential, inserting X (@) = e’ into Eq. (5.63) results in

|~ d@-a,)e™ dw =" (5.66)
By comparing Eq. (5.66) with (5.20) we can then obtain
" & 215(w~ay,) (567)
so that the Fourier transform of a complex exponential is an impulse concentrated at ffe-
quency @,.
&) 174 | 44
—-> I
) A @
Figure 5.12 Representation of the §(®) function and its approximation dy(0)-
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5.3.2.2. The Impuise Train

Since the impulse train

pﬂﬂ=i5m—mﬂ (5.68)

k=00

is periodic with period N, it can be expanded in Fourier series according to (5.56) as

Plk]l=1 (5.69)
so that using the inverse Fourier series Eq. (5.57), p,[#] can alternatively be expressed as

LS jmin
MM—NZe (5.70)
k=0

which is an alternate expression to Eq. (5.68) as a sum of complex exponentials. Taking the

Fourier transform of Eq. (5.70) and using Eq. (5.67) we obtain

27[ N-l
Py(e®)==Y §(w-2mk/N) (5.71)
N k=0
which is another impulse train in the frequency domain (See Figure 5.13). The impulse train
in the time domain is given in terms of the Kronecker delta, and the impulse train in the fre-
quency domain is given in terms of the Dirac delta.

Ll ottt

Figure 5.13 An impulse train signal and its Fourier transform, which is also an impulse train.

5.3.2.3. General Periodic Signals

We now compute the Fourier transform of a general periodic signal using the results of Sec-
tion 5.3.2.2 and show that, in addition to being periodic, the transform is also discrete. Given
a periodic signal x,[r] with period N, we define another signal x[n]:

] = {x,,,[n] 0<n< N (5.72)
0 otherwise
so that
xy[n]= i x[n—kN]=x[n]* i 8[n—kN]=x[n]}* py[n] (5.73)
it k=—e
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which is the convolution of x{n] with an impulse train p, [n] asi

of finite length, it has a Fourier transform X(e™) .N[Uging utlh]iq-c(s'@)' =
Xy (€)= X ()P, (e}, where P, (€’"®) is the Fourier transform o
Eq. (5.71), we obtain another impulse train:

nl i
onvolution P:J[pgnl;

f pxln] as givey by

o 2T 2 -
X, )-_-7\,’5 Y X(e"*™¥)8(w~2nk/ N) 6
k=—ce 14)

Therefore the Fourier transform X, (¢’*) of a periodic si
) N gnal x,
in terms of sarpples W, =21k /N, spaced 21 /N apart, of the Fouric: t[:;]n:;:)nrrze;ngssed
x[n], one period of the signal x,[n]. The relationships between x[n], x,[n], X e(iw ) of
X, (e’) are shown in Figure 5.14, » s X(E%) and

oI Te /\(/\ /\7
o reatllltey afth dh dhc

Figure 5.14 Relationships between finite and periodic signals and their Fourier transforms. On
one hand, x{»] is a length N discrete signal whose transform X(e’*) is continuous and peri-
odic with period 27 . On the other hand, x,[#] is a periodic signal with period N whose trans-
form X, (e’®) is discrete and periodic.

5.3.3. The Fast Fourier Transform (FFT)

ch are called Fast Fourier
6) requires N* operations.
d. The FFT algorithm only
ech processing:

There is a family of fast algorithms to compute the DFT, whi
Transforms (FFT). Direct computation of the DFT from Eq. (5.5
assuming that the trigonometric functions have been pre-compute
requires on the order of Nlog, N operations, so it is widely used for spe

5.3.3.1. Radix-2 FFT

Let’s express the discrete Fourier transform of x[n]

A=l ' Nl (.79
X[kl = Zx[n]e‘jZJrnklN = Zx[n]W,&" 0<k<N
n=0 n=0
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where we have defined for convenience
Wy =e" (5.76)

Equation (5.75) requires N’ complex multiplies and adds. Now, let’s suppose N is
even, and let f[n]=x[2n] represent the even-indexed samples of x[n], and
g[n}=x[2n+1] the odd-indexed samples. We can express Eq. (5.75) as

N/2-1 N12-1
Xk)= 3 fInWe, + W5 3 glnW, = Flk}+ WEGK] (5.77)

where F[k] and G[k] are the N/2 point DFTs of f[n] and g[n], respectively. Since both
Fl[k] and G[k] are defined for 0<k<N/2, we need to also evaluate them for
N/2 <k < N, which is straightforward, since

Flk+N/2)=F[k] (5.78)

Glk + N12] = G[] (5.79)

If N/2 is also even, then both f[n] and g[n] can be decomposed into sequences of
even and odd indexed samples and therefore its DFT can be computed using the same proc-
ess. Furthermore, if N is an integer power of 2, this process can be iterated and it can be
shown that the number of multiplies and adds is N log, N, which is a significant saving
from N?. This is the decimation-in-time algorithm and can be seen in Figure 5.15. A dual
algorithm called decimation-in-frequency can be derived by decomposing the signal into its
first N/2 and its last N/2 samples.

5.3.3.2. Other FFT Algorithms

Although the radix-2 FFT is the best known algorithm, there are other variants that are faster
and are more often used in practice. Among those are the radix-4, radix-8, split-radix and

prime-factor algorithm.
The same process used in the derivation of the radix-2 decimation-in-time algorithm

applies if we decompose the sequences into four sequences: Siln]=x[4n},
filnl=x{4n+1], f[n]=x[4n+2], and f,[n]=x[4n+3]. This is the radix-4 algorithm,
which can be applied when N is a power of 4, and is generally faster than an equivalent
radix-2 algorithm.

Similarly there are radix-8 and radix- 16 algorithms for N being powers of 8 and 16 re-
spectively, which use fewer multiplies and adds. But because of possible additional control
logic, it is not obvious that they will be faster, and every algorithm needs to be optimized for
a given processor.

There are values of N, such as A =128, for which we cannot use radix-4, radix-8 nor
radix-16, so we have to use the less efficient radix-2. A combination of radix-2 and radix-4,
called split-radix [5], has been shown to have fewer multiplies than both radix-2 and radix-
4, and can be applied to N being a power of 2.
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Finally, another possible decomposition is N=p, p, ... P, with p
bers. This leads to the prime-factor algorithm [2]. While this family of
similar number of operations as the algorithms above, it offers more flexi

of N.

bEing Prime num-
lgorilhms Offers 5
bility in the choice

5.3.3.3. FFT Subroutines

Typically, FFT subroutines are computed in-place to save memory and have the form ££¢
(float *xr, float *xi, int n)where xr and xi are the real and imaginaw
parts respectively of the input sequence, before calling the subroutine, and the rea and
imaginary parts of the output transform, after returning from it. C code that implements 5
decimation-in-time radix-2 FFT of Figure 5.15 is shown in Figure 5.16.

The first part of the subroutine in Figure 5.16 is doing the so-called butterflies, which
* use the trigonometric factors, also called twiddle factors. Normally, those twiddle factors are
pre-computed and stored in a table. The second part of the subroutine deals with the fact that
the output samples are not linearly ordered (see Figure 5.15); in fact, the indexing has the
bits reversed, which is why we need to do bit reversal, also called descrambling.

x[0] ¢ S S X[0)

S T R X[1)
O\

x[4] C— s w s X(2]
AN

% ; = $ - X[3

LD
N

X[UOT\ ~ 2 x[4]
PN S Y

) - =0 X(5]
w0 3

X[3] == - N ; X[6)
W, 0 \\"} []

x(7] ¢ T W 0 X07]

N

Figure 5.15 Decimation in time radix-2 algorithm for an 8-point FFT.
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void fft2 (float *x, float *y, int n, int m)
{

int nl, n2, i, j, k, 1;

float xt, yt, c, s;

double e, a;

/* Loop through all m stages */

n2 = n;

for (k = 0; k < m; k++) {
nl = n2;
n2 =n2 / 2;

e = PI2 / nl;
for (j = 0; j < n2; j++) {
/* Compute Twiddle factors */

a=3*e;
¢ = (float) cos {(a);
s = (float) sin (a);

/* Do the butterflies */
for (i = j; 1 < n; i += nl1) {
l =i+ n2;
xt = x[i] - x[1];
x[i] = x{i] + x[1};
yt = y[i]l - y[1];
y(il = y(i] + y[1};
x[1] C * xt + s * yt;
yvi{l] C *yt - s * xt;

}

/* Bit reversal: descrambling */
j=0;
for (i = 0; L < n - 1; i++) {
if (i < 3) (
xt = x[j];
x[j) = x[i);
x[i] = xt;

xt = y[jl;
y[3i] = ylil;
yli] = xt;

}

k=nr/ 2;

while (k <= j) {
i -=k;
k /= 2;

}

Jjo+= ki

}

Figure 5.16 C source for a decimation-in-time radix-2 FFT. Before calling the subroutine, x
and y contain the real and imaginary parts of the input signal respectively. After returning from
the subroutine, x and y contain the real and imaginary parts of the Fourier transform of the in-
put signal. » is the length of the FFT and is related to mby n=2".
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To compute the inverse FFT an additional routine is not necessary;
with the subroutine above. To see that, we expand the DFT in Eq. (5.5

imaginary parts:

it can be compueq
6) into its rea] gy

X K1+ K TR = X (xalm] + [ 2 (5.80)

n=0

take complex conjugate and multiply by j to obtain

XK1+ X = X (5, ]+ g ) (5.381)

0

which has the same functional form as the expanded inverse DFT of Eq. (5.57)

N~1

xglk]+ jx, k] = %E (Xaln+ jX [n])e”*"™ (582
n=0

so that the inverse FFT can be computed by calling £ft (xi, xr, n) other than the

(1/N) factor.

Often the input signal x{n] is real, so that we know from the symmetry properties of
Table 5.5 that its Fourier transform is Hermitian. This symmetry can be used to compute the
length-N FFT more efficiently with a length (N/2) FFT. One way of doing so is to define
JfInl=x[2n] to represent the even-indexed samples of x[n], and g[n]=x[2n+1] the odd-
indexed samples. We can then define a length (N/2) complex signal A[n] as

Hn)= fln]+ jgln]=A2n]+ jx(2n+1] 5:89)
whose DFT is
H{k]= F[k]+ jG[k]= H[k]+ jH,[k] (5:84)
Since f[n] and g[n) are real, their transforms are Hermitian and thus
(5.8

H'[-k)= F'[-k]~ jG'[-k] = F[k]- jG[k]

Using Egs. (5.84) and (5.85), we can obtain F[k] and G[k] as a function of Hy[k] a1
H,[k]:

F) =1 +2H k) ( H,lk) ks H,y[—k] }r j( H,[k] = H, [—k]) (586
Gk = HUA=H'[=k] _(H,[k]+ H,[-k]\_ .( Hylk]- Hyl-k] (587
2j 2 J"’ ( 2 ]

As shown in Eq. (5.77), X[k] can be obtained as a function of F[k] and GlK]

Amazon/VB Assets
Exhibit 1012
Page 252



Discrete-Frequency Transforms 227

X[K]= F[k]+ G[kIw;;* (5.88)

so that the DFT of the real sequence x[n] is obtained through Egs. (5.83), (5.86), (5.87) and
(5.88). The computational complexity is a length (N/2) complex FFT plus N real multiplies
and 3N real adds.

5.34. Circular Convolution

The convolution of two periodic signals is not defined according to Eq. (5.12). Given two
periodic signals x,[n] and x,{#] with period N, we define their circular convolution as

Yin]=x[n]®x,[n] = 2 x[mlx,(n—m]= 2 x,[m]x,[n—m] (5.89)
m=0

m=<N>

where m =< N > in Eq. (5.89) means that the sum lasts only one period. In fact, the sum
could be over any N consecutive samples, not just the first N. Moreover, y[n] is also peri-
odic with period N. Furthermore, it is left to the reader to show that

Y[k] = X,[K]X,[£] (5.90)

i.e., the DFT of y[n] is the product of the DFTs of x,[n] and x,[n].

An important application of the above result is the computation of a regular convolu-
tion using a circular convolution. Let x,[#] and x,[n] be two signals such that x,[n]=0
outside 0<n< N,, and x,[{n]=0 outside 0<n< N,. We know that their regular convolu-
tion y(n] =x,[n]*x,[n] is zero outside 0 < N, + N, —1 . If we choose an integer N such that
N 2N, +N, -1, we can define two periodic signals X,[n] and %,[n] with period N such
that

%[1]= x[n] 0<n<N, .91)
Tl 00 NogasN
= x,[n] 0<n<N, (5.92)
. 0 N,fn<N

where x,[#n] and x,[n] have been zero padded. 1t can be shown that the circular convolution
Fln) = %[n] ® %,[n] is identical to y(n] for 0Sn <N , which means that y[n] can be ob-
tained as the inverse DFT of Y[k]=X,[k]X,[k]. This method of computing the regular
convolution of two signals is more efficient than the direct calculation when N is large.
While the crossover point will depend on the particular implementations of the FFT and
convolution, as well as the processor, in practice this has been found beneficial for
N 21024.
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535 The Discrete Cosine Transform (DCT)

Transform (DCT) is widely used for speech processing. It hag severa]

i Cosine :
The Discrete 11 C[k] of areal signal x[n] is defined by:

definitions. The DCT-

N-l

Clk]= 3. sinjcos(zk(n+1/2)/N) for 0<k <N (5.93)
n=0

with its inverse given by

x{n]= -]-b—{C[O] + 23';' Clk]cos (zk(n+1/2)/ N )} for 0<n<N (5.94)

k=1

The DCT-II can be derived from the DFT by assuming x[n] is a real periodic se-
quence with period 2N and with an even symmetry x[n]=x[2N —1-n). It is left to the
reader to show, that X[k] and C[k] are related by

X[k)=2&""Clk] for 0Sk<N (5.95)

X[2N-k]=2¢"™*C[k] for 0Sk<N (5.96)

It is left to the reader to prove Eq. (5.94) is indeed the inverse transform using Egs.
(5.57), (5.95), and (5.96). Other versions of the DCT-II have been defined that differ on the
normalization constants but are otherwise the same.

There are eight different ways to extend an N-point sequence and make it both peri-
odic and even, such that can be uniquely recovered. The DCT-II is just one of the ways, with
three others being shown in Figure 5.17.

The DCT-II is the most often used discrete cosine transform because of its energy
compaction, which results in its coefficients being more concentrated at low indices than the
DFT. This property allows us to approximate the signal with fewer coefficients [10].

O Mnatillrasllleer ® [Tteet T [ Troctlll

(c) (@)

. of
o] L L [6°
Figure 5.17 Four ways to ext

end a four-point se : jodic and have
éven symmetry. The fj : pol quence x[n] to make it both periodic
and DCT-Iv respo:ctivegl;.res i (@), (b}, (c) and (d) correspond to the DCT-1, DCT-II, DCT-II
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