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reproduce the original signal at a different location or time. In speech c . 
ommun1car 

reproduced sound usually allows some acceptable level of distortion to ach· ton, the 
h b 1eve low b't 

The goal of source coding is to reduce t e num er of bits necessary to trans . 1 rate. 
fi I. · · · I mn or stored subiect to a distortion or 1de 1ty cntenon, or eqmva ently, to achieve the mi· . ata, 

J • • . • ntmurn po , 
distortion for a prescnbed bit rate. Vector quantization (VQ) is one of the ss~ble 

. . most efficient 
source-codmg techmques. 

Quantization is the process of approximating continuous amplitude signals b d' 
· · f · l · I I · Y tscrete symbols. The quanuzauon o a smg e s1gna va ue or parameter 1s referred to as seal 

· · · · f l · l · I l ar quan-tization. In contrast, Jomt quanttzauon o mu Up e s1gna va ues or parameters is referred 
as vector quantization. Conventional pattern recognition techniques have been used effi 

1
~ 

tively to solve the quantization or data compression problem with successful applicatiot 
speech coding, image coding, and speech recognition [36, 85]. In both speech recogniti= 
and synthesis systems, vector quantization serves an important role in many aspects of the 
systems, ranging from discrete acoustic prototypes of speech signals for the discrete HMM 
to robust signal processing and data compression. ' 

A vector quantizer is described by a codebook, which is a set of fixed prototype vec­
tors or reproduction vectors. Each of these prototype vectors is also referred to as a code­
word. To perform the quantization process, the input vector is matched against each 
codeword in the codebook using some distortion measure. The input vector is then replaced 
by the index of the codeword with the smallest distortion. Therefore, a description of the 
vector quantization process includes: 

1. the distortion measure; 

2. the generation of each codeword in the codebook. 

4.4.1.1. Distortion Measures 

Since vectors are replaced by the index of the codeword with smallest distortion, the trans· 
mitted data can be recovered only by replacing the code index sequence with lhe cone­
spooding codeword sequence. This inevitably causes distortion between the original data 
and the transmitted data. How to minimize the distortion is thus the central goal of vector 
quantization. This section describes a couple of the most common distortion measures. 

Assume t.i:.t x =- ( x1, x
2 , ••• , xd )' e Rd is a d-dimensional vector whose componen~ 

{x,_ •1 :5 k :5 d} are real-valued, continuous-amplitude random variables. After vect~r quanll: 
zat1on the t · . d d. s1onal vec 
tor z. 

' vec or x is mapped (quantized) to another discrete-amplitude - imen 

z = q(x) (4.74) 

In Eq (4 74) () · . f a finite set z = {z 1 <- . 'S M}q is the quantization operator. Typically, z is a vector rom d to as the 
codeb~k -Ai. '. where z 1 is also a d-dimensional vector. The set Z is referre codet,ook 
is also called ~ the size of the codebook, and z J is/' codeword. The size M of the t,ook the 

e number of panitions (or levels) in the codebook. To design a code ' 
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Unsupervised Estimation Methods 165 

d-dimensiona! space of the original random vector x can be partitioned into M regions or 
cells {C;,1 ~, ~M}, and each cell C, is associated with a codeword vector z;. VQ then 
maps (quantizes) the input vector x to codeword z; if x lies in C; . That is, 

q(x)=z; ifxe C, (4.75) 

An _ex~mpl_e of parti~ioni_ng of a two-dimensional space (d = 2) for the purpose of vec­
tor quant1zat1on 1~ shown m Figure 4.12. The shaded region enclosed by the dashed lines is 
the _cell C,. Any mpu~ vector x that lies in the cell C, is quamized as z, . The shapes of the 
vano~s c~lls can be different. The positions of the codewords within each cell are shown by 
dots 1~ Figure 4._ 12. The codeword z; is also referred to as the centroid of the cell C, be­
cause 1t can be viewed as the central point of the cell C,. 
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Figure 4.12 Partitioning of a two-dimensional space inm 16 cells. 

When x is quantized as z, a quantization error results. A distortion measure d(x, z) can 
be defined between x and z to measure the quantization quality. Using this distortion meas­

ure, Eq. (4.75) can be reformulated as follows: 

q(x) = z, if and only if i = argmin d(x, zk) (4.76) 

• 
The distortion measure between x and z is also known as a distance measure in the 

speech context. The measure must be tractable in order to be computed and analyzed, and 
also must be subjectively relevant so that differences in distortion values can be used to in­
dicate differences in original and transmitted signals. The most commonly used measure is 
the Euclidean distortion measure, which assumes that the distortions contributed by quantiz-
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ing the different parameters are equal. Therefore, the distortion measure d(x 
fined as follows: ' z) can be de. 

d 

d(x,z) = (x-z)' (x-z) = ~)x, -zi)2 

1=1 (4.17) 

The distortion defined in Eq. (4.77) is also known as sum of squared 
al · h b · d · error. In general unequ we1g ts can e mtro uced to weight certain contributions to th d. . · . . . e tstonion mo 

than others. One choice for weights that 1s popular in many practical appl· t· . re 1ca ions 1s to 
the inverse of the covariance matrix of z. use 

d(x,z) = (x-z)' r-1(x-z) 
( 4.78) 

This distortion measure, known as the Mahalanobis distance, is actually the exponential 
tenn in a Gaussian density function. 

Another way to weight the contributions to the distortion measure is to use perceptu­
ally-based distortion measures. Such distortion measures take advantage of subjective judg­
ments of perceptual difference caused by two different signals. A perceptually-based 
distortion measure has the property that signal changes that make the sounds being per­
ceived different should be associated with large distances. Similarly signal changes that keep 
the sound perceived the same should be associated with small distances. A number of per­
ceptually based distortion measures have been used in speech coding [3, 75, 76). 

4.4.1.2. The K-Means Algorithm 

To design an M-level codebook, it is necessary to partition d-dimensional s?ace i~to_ M cells 
and associate a quantized vector with each ce11. Based on the source-codmg pnnc~ple, ~e 
criterion for optimization of the vector quantizer is to minimize overall average dt5iortion 
over all M-levels of the VQ. The overall average distortion can be defined by 

(4.79) 

. (x E C ) denotes the prior 
where the integral is taken over all components of vector x, P . 1 b b·t·rv density 

1 ·ct· onal pro a 1 " 1 

probability of codeword z; ; p(xl x E C;) denotes. the ~u t'. imensi No analytic solution 
function of x in cell C - and D is the average d1stort1on m cell C, · , given set of 

. , ' , d" . measure ior a d 
exists to guarantee global minimization of the average 1storuon . . m e,cists an 

· a local mmimu ' speech data. However, an iterative algorithm, which guarantees 
works well in practice. 
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Unsupervised Estimation Methods 167 

We say a quantizer is optimal if the overall average distortion is minimized over all M­
levels of the quantizer. There are two necessary conditions for optimality. The first is that 
the optimal quantizer is realized by using a nearest-neighbor selection rule as specified by 
Eq .. ( 4.76). Note that the average distortion for each cell C 

I 

(4.80) 

can be minimized when z, is selected such that d(x,z,) is minimized for x. This means that 
the quantizer must choose the codeword that results in the minimum distortion with respect 
to x. The second condition for optimality is that each codeword z; is chosen to minimize the 
average distortion in cell C, . That is, z, is the vector that minimizes 

D, =p(zi)E[d(x,z)jxEC;] (4.81) 

Since the overall average distortion D is a linear combination of average distortions in 
C,, they can be independently computed after classification of x. The vector z, is called the 
centroid of the cell C; and is written 

z, = cent( C;) (4.82) 

The centroid for a particular region (cell) depends on the definition of the distortion 
measure. In practice, given a set of training vectors { x,, 1 ~ t ~ T}, a subset of K, vectors 
will be located in cell C,. In this case, p(x I z,) can be assumed to be l / K,, and p(z1) be­
comes K; IT. The average distortion D1 in cell C, can then be given by 

(4.83) 

The second condition for optimality can then be rewritten as follows: 

(4.84) 

When the sum of squared error in Eq. (4.77) is used for the distortion measure, the at­
tempt to find such i; to minimize the sum of squared error is equivalent to least squar~d 
error estimation, which was described in Chapter 3. Minimization of D, in Eq. (4.84) with 

respect to z, is given by setting the derivative of D,. to zero: 

(4.85) 
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By solving Eq. (4.85), we obtain the least square error estimate of centr ·d • . 
sample mean of all the training vectors x, quantized to cell c.: 01 

,z; 
s1rnp1y as the 

I 

• I "'"' Z, =-,,t_ X 
· K, sec, (4.86) 

If the Mahalanobis distance measure [Eq. (4.78)1 is used, minimization of . 
(4.84) can be done similarly: D! m F.q. 

=~I, vz,(x-z,)
1r 1(x-z,) 

IEC'; 
(4.87) 

= -
2 Lt i-1(x-z,.) = 0 

T u:C, 

and centroid i, is obtained from 

• 1 "'"' Z1 =-,,t_ X 
K; ,ec, 

(4.88) 

One can see that i, is again the sample mean of all the training vectors x, quantized to cell 
C, . Although Eq. (4.88) is obtained based on the Mahalanobis distance measure, it also 
works with a large class of Euclidean-like distortion measures (61]. Since the Mahalanobis 
distance measure is actually the exponential term in a Gaussian density, minimization of the 
distance criterion can be easily translated into maximization of the logarithm of th!! Gaussian 
likelihood. Therefore, similar to the relationship between least square error estimation for 
the linear discrimination function and the Gaussian classifier described in Section 4.3.3.l, 
the distance minimization process ()east square error estimation) above is in fact a maximum 
likelihood estimation. 

According to these two conditions for VQ optimality, one can iteratively apply ~e 
nearest-neighbor selection rule and Eq. (4.88) to get the new centroid Z; for each cell m 
order to minimize the average distortion measure. This procedure is known as the k-means . ·uun the 
algonthm or the generalized Lloyd algorithm (29, 34, 56]. In the k-means algon ' 
basic idea is to partition the set of training vectors into M clusters C,. (1 ~ i::; M) in such:. 
way that the two necessary conditions for optimality described above are satisfied. The 
means algorithm can be described as in Algorithm 4.2. 
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Unsupervised Estimation Methods l69 

ALGORITHM 4.2: THE K-MEANS ALGORITHM 

Step 1: Initialization: Choose some adequate method to derive initial VQ codewords 
( z,. 1 $ i $ M) in the codebook. 
Step 2: Nea~est-neighbor Classification: Classify each training vector { xt } into one of the cells 
C, by choosing the closest codeword z, ( x e c,, i.f.f.d(x,z,) ~ d(x,z ) for all i :;t: i). This 
classification is also called minimum-distance classifier. 

1 
· 

Step 3: Codebook Updating: Update the codeword of every cell by computing the centroid of 
the training vectors in each cell according to Eq. (4.84) ( i, = cent(C, ), 1 ~; $ M ). 
Step 4: Iteration: Repeat steps 2 and 3 until the ratio of the new overall distortion D at the cur­
rent iteration relative to the overall distortion at the previous iteration is above a preset thresh­
old. 

In the process of minimizing the average distortion measure, the k-means procedure 
actually breaks the minimization process into two steps. Assuming that the centroid z, (or 
mean) for each cell C, has been found, then the minimization process is found simply by 
partitioning all the training vectors into their corresponding cells according to the distortion 
measure. After all of the new partitions are obtained, the minimization process involves 
finding the new centroid within each cell to minimize its corresponding within-cell average 
distortion D, based on Eq. (4.84). By iterating over these two steps, a new overall distortion 
D smaller than that of the previous step can be obtained. 

Theoretically, the k-means algorithm can converge only to a local optimum [56]. Fur­
thermore, any such solution is, in general, not unique [33]. Initialization is often critical to 
the quality of the eventual converged codebook. Global optimality may be approximated by 
repeating the k-means algorithm for several sets of codebook initialization values, and then 
one can choose the codebook that produces the minimum overall distortion. In the next sub­
section we will describe methods for finding a decent initial codebook. 

4.4.1.3. The LBG Algorithm 

Since the initial codebook is critical to the ultimate quality of the final codebook, it has been 
shown that it is advantageous to design an M-vector codebook in stages. This extended k­
means algorithm is known as the LBG algorithm proposed by Linde, Bu_z~, and Gr~y [56]. 
The LBG algorithm first computes a I-vector codebook, then us~s a sphttmg _al_gonthm on 
the codewords to obtain the initial 2-vector codebook, and contmues the sphttmg process 
until the desired M-vector codebook is obtained. The procedure is formally implemented by 

Algorithm 4.3. 
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ALGORITHM 4.3: THE LBG ALGORITHM 
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Step 1. Initialization: Set M (number of partitions or cells) =1. Find the centroid of 
11 

h . 
· . a t e train. 

ing data according to Eq. (4.84). . . . . 
Step 2: Splitting: Split M into 2M part1t1ons by splitting each current codeword by fi d' 

. . . h . t' h d IO Ing two 
points that are tar apart in each part1dt1onb uskmgN a eutnMs 1c met o , and use these two points as 
the new centroids for the new 2M co e oo . ow se = 2M. 
Step 3· K-means Stage: Now use the k-means iterative algorithm described in the . 
section°to reach the best set of centroids for the new codebook. previous 
Step 4: Termination: If M equals the VQ codebook size required, STOP; otherwise go to Step 
2. 

4.4.2. The EM Algorithm 

We introduce the EM algorithm that is important to hidden Markov models and other learn. 
ing techniques. It discovers model parameters by maximizing the log-likelihood of incom­
plete data and by iteratively maximizing the expectation of log-likelihood from complete 
data. The EM algorithm is a generalization of the VQ algorithm described above. 

The EM algorithm can also be viewed as a generalization of the MLE method, when 
the data observed is incomplete. Without loss of generality, we use scalar random variables 
here to describe the EM algorithm. Suppose we observe training data y. In order to deter­
mine the parameter vector <I> that maximizes P ( Y = y I <I>) , we would need to know some 
hidden data x (that is unobserved). For example, x may be a hidden number that refers to 
component densities of observable data y, or x may be the underlying hidden state sequence 
in hidden Markov models (as discussed in Chapter 8). Without knowing this hidden data.x, 
we could not easily use the maximum likelihood estimation to estimate <I> , which maxi­
mizes P ( Y = y I <I>) . Instead, we assume a parameter vector <I> and estimate the probability 
that each x occurred in the generation of y. This way we can pretend that we had in fact ob­
served a complete data pair (x, y), with frequency proportional to the probability 
P ( X = x, Y = y I <I>), to compute a new <I> , the maximum likelihood estimate of <I>: We 
can then set the parameter vector <I> to be this new <I> and repeat the process to iteratJvely 
improve our estimate. 

The issue now is whether or not the process (EM algorithm) described above ':j 
verges. Without loss of generality, we assume that both random variables X (unobserv 
and f (observed) are discrete random variables. According to Bayes' rule, 

P(X =x,Y = YI <I>)= P(X =xi Y = y,<l>)P(Y = y I <I>) 
(4.89) 

0 al . . . 1 d ta y generated by pa-ur go 1s to max1m1ze the log-likelihood of the observable, rea a . 
rarneter vector <I> . Based on Eq. (4.89), the Jog-likelihood can be expressed as follows. 

(4.90) 
logP(Y = y I <I>)= logP(X = x,Y = y I <l>)-logP(X = x I Y = y,4>) 
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Now, we take the conditional expectation of IogP(Y = y I <J>) over x computed with pa­
rameter vector <f>: 

E<l>[logP(Y = y I <1>)1,rw=y = I,(P(X = x Ir= y,<I>)logP(Y = y I <I>)) 
.f 

= log P(Y = y I <ii) 
(4.91) 

where we denote E<1>(!lx1rm,. as the expectation of function/ over X computed with parame­
ter vector <f>. Then usmg Eq. (4.90) and (4.91), the following expression is obtained: 

logP(Y _:=YI <ii)= ~<1>[logP(X, Y = y I <l>)Jx1r .. y -E<l>[logP(X I Y = y,<l>)lr,r..y 
= Q(<l>,<l>)-H(<l>,<I>) (4.92) 

where 

Q(<I>, 4>) = E<l>[log P(X, Y = y I il>)Jxir=y 

= I(P(X = x I Y = y,<l>)logP(X =x, Y = y 14>)) 
z 

and 

H(<I>,if>) = E,i,[logP(X Ir= y,<1>)].\',r-y 

= L(P(X = x I Y = y,4>)logP(X =xi Y = y,<l>)) 
z 

The convergence of the EM algorithm lies in the fact that if we choose cf> so that 

Q(<I>, if>) :2'. Q(<I>, <I>) 

then 

logP(Y = y 14>) ~ logP(Y = y I <I>) 

(4.93) 

(4.94) 

(4.95) 

(4.96) 

since it follows from Jensen's inequality that H(<l>,¢J) $; H(<l>,<I>) [2f]. The function 
Q(<I>, <ii) is known as the Q-function or auxiliary function. This fact implies that we can 
maximize the Q-function, which is the expectation of log-likelihood from complete data pair 
(x, y), to update parameter vector from <f> to <I> , so that the incomplete log-likelihood 
L(x, <I>) increases monotonically. Eventually, the likelihood will converge to a local maxi­
mum if we iterate the process. 

The name of the EM algorithm comes from E for expectation and M for maximization. 
The implementation of the EM algorithm includes the E (expectation) step, which calculates 
the auxiliary Q-function Q(<l>,4>) and the M (maximization) step, which maximizes 
Q(<I>, <l>) over if, to obtain ci> . The general EM algorithm can be described in the following 
way. 
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4 4. THE EM ALGORITHM 
ALGORITHM • • 

. . . . tion: Choose an initial estimate <I> · _ . . 
Step 1. lmt1ahza C ute auxiliary Q-function Q{<l>, <l>) (which is also the expectation of I 
step 2· E·Step: omp <I> og. 

. · mplete data) based on · 
likellho~d ~rom ~~ornpute 4> = arg max Q( <I>, ii>) to ~aximize the auxiliary 0-function. 
Step 3· M Sl~P· Set cl> _ <I> repeat from Step 2 until convergence. 
Step 4: Iteration: - ' 

M f the EM algorithm is actually a maximum likelihood estimation of c The -step o orn. 
d ( ing we know the unobserved data x based on observed data y and initial 

plete ata assum . ll d . 1· . 
tor <I>) The EM algorithm 1s usua y use m app 1cat1ons where no analyti parameter vec · . . f . c 

solution exists for maximization of l~g-hkehh?od _o incomplete data. Instead, the Q-
function is iteratively maximized to obtam the est1mat1on of parameter vector. 

4.4.3. Multivariate Gaussian Mixture Density Estimation 

The vector quantization process described in Section 4.4.1 partitions the data space into 
separate regions based on some distance measure regardless of the probability distributions 
of the original data. This process may introduce errors in partitions that could potentially 
destroy the original structure of data. An alternative way for modeling a VQ codebook is to 

use a family of Gaussian probability density functions, such that each cell will be repre­
sented by a (Gaussian) probability density function as shown in Figure 4.13. These probabil­
ity density functions can then overlap, rather than partition, in order to represent the entire 
data space. The objective for a mixture Gaussian VQ is to maximize the likelihood of the 
observed data (represented by the product of the Gaussian mixture scores) instead of mini· 
mizing the overall distortion. The centroid of each cell (the mean vectors of each Gaussian 
pdf)_ ~btained via such a representation may be quite different from that obtained using the 
traditional k-means algorithm, since the distribution properties of the data are taken into ac­
count. 

. There_ shou_ld be an obvious analogy between the EM algorithm and the k-means algo-
nthm descnbed m the Section 4.4.1.2. In the k-means algorithm, the class infonnation for 
lhe ~bserved data samples is hidden and unobserved so an EM-like algorithm instead of 
maximum J'k Jih · ' f . 1 e ood eS(Iffiate needs to be used Therefore instead of a single process 0 

:axunum likelihood estimation, the k-means al~orithm fus't uses the old codebook to find 

the nearest neighbor for each data sample followed by maximum likelihood estimation ~f 
e new codebook a d ·t 2 d 3111 

the k n 1 erates the process until the distortion stabilizes The steps an 
-means algorith · · I 
M. . m are actually the E and M steps in the EM algorithm respecave Y· 

ixture denstty esti ti [ . th ixtures 
of Gaussian d . ma on 41 l 1s a typical example of EM estimation. In e m of 

ensity, the prob b'l' d · · hted sum each Gau · a 1 Ity ens1ty for observable data y is the weig ss1an component: 
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Figure 4.13 Partitioning of a two-dimensional space with 16 Gaussian density functions. 

K K 

p(y I <I>)= L,C.tP« (y I <l>k) = ~:C.N, (y I µ.t ,L.1,) (4.97) 
k=I k=I 

K 
where O ~ c* :S; 1, for 1 S k $'.; K and L •=• c* = 1 . 

Unlike the case of a single Gaussian estimation, we also need to estimate the mixture 
weight ck. In order to do so, we can assume that observable data y come from one of the 
component densities p x (y I <I> x ) , where X is a random variable taJcing value from 
{1, 2, ... K} to indicate the Gaussian component. It is clear that x is unobserved and used to 
specify the pdf component <l>x. Assuming that the probability density function for complete 
data (x,y) is given by the joint probability: 

p(y,x I <I>)= P(X = x)px(Y I <I>,)= P(X = x)Nx(Y I µ_. ,L.,) (4.98) 

P(X = x) can be regarded as the probability of the unobserved data x used to specify the 
component density p, (y I <I>.,) from which the observed data y is drawn. If we assume the 
number of components is K and <I> is the vector of all probability parameters 
( P(X), <1>

1
, «I>

2
, • •• , <I>,.), the probability density function of incomplete (observed) data y 

can be specified as the following marginal probability: 

p(y I <I>)= LP(Y,X I <I>)= L,P(X = x)px(Y I Cl>..) (4.99) 
.r .r 
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By comparing Eq. (4.97) and (4.99), we can see that the mixture weight is represented 
probability function P(X = x) . That is, as the 

ck =P(X =k) (4.100) 

According to the EM algorithm, the maximization of the logarithm of the likel"h 
function log p(y I <I>) can be performed by iteratively maximizing the conditional ex 

I 
ood 

tion of the logarithm of Eq. (4.98), i.e., logp(y,x I <I>). Suppose we have observed /ecdta-
{ } 

. . { tne. 
pendent samples: Yi,Y2 , • •• ,y_,. with hidden unobserved data x"x2, • •• ,x.v}; the Q-
function can then be written as follows : 

N N 

Q(<I>,~)= LQ,(<I>.~)= LL P(x, ly"<l>)logp(y;,x, l(J>) 
, ~1 / =iJ .,, 

= ir p(y,,x, I <I>) logp(y,,X; I «J>) 
1=1 ... p(y, I <I>) 

(4.10)) 

By replacing items in Eq. (4.101) with Eqs. (4.98) and (4.100), the following equation can 
be obtained: 

K ,; 

Q(<I>, 4>) = I, rk log ck + LQ.i (<I>, c'i>k) (4.I02) 
k=l k=I 

where 

(4.103) 

(4.104) 

- -t- I - f Ck A (y i I <J) k) ( I <I> ) 
Q,1.{<l>,<I>*)= ""'y*logp*(y, lcJ>*)= ~ P( l<I>) logA Y, t 

1=e1 ,.1 Y, 
(4.105) 

Now we can perform a maximum likelihood estimation on the complete da~ (~, y) 

during the M-step. By taking the derivative with respect to each parameter and serung 
1110 

zero, we obtain the following EM re-estimate of ct,µ.*, and Lk : 

(4.106) 
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(4.107) 

(4.108) 

The quantity r! defined in Eq. (4. l 03) can be interpreted as the posterior probability 
that the observed data y I belong to Gaussian component k ( N* (y Iµ* ,r.t) ). This informa­
tion as to whether the observed data y, should belong lo Gaussian component k is hidden 
and can only be observed through the hidden variable x (ck). The EM algorithm described 
above is used to uncover how likely the observed data Y; are expected to be in each Gaus­
sian component. The re-estimation formulas are consistent with our intuition. These MLE 
fonnulas calculate the weighted contribution of each data sample according to the mixture 

posterior probability r~ . 
In fact, VQ is an approximate version of EM algorithms. A traditional VQ with the 

Mahalanobis distance measure is equivalent to a mixlUre Gaussian VQ with the following 

conditions: 

; {l, Y1EC1; 
Yt = 

_0, otherwise 

(4.109} 

(4.110) 

The difference between VQ and the EM algorithm is that VQ performs a hard assignment of 
the data sample y 

I 
to clusters (cells) while the EM algorithm perfonns a soft assignment of 

the data sample y; to clusters. As discussed in Chapter 8, this difference carries over to the 
case of the Viterbi algorithm vs. the Baum-Welch algorithm in hidden Markov models. 

4.5. CLASSIFICATION AND REGRESSION TREES 

Classification and regression trees (CART) [ I 5, 82] have been used in a variety of pattern 
recognition applications. Binary decision trees, with splitting questions attached to each 
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node, provide an easy representation that interprets and predicts the struct 
. b. d . . . h . ure of a set of d The application of mary ec1S1on trees 1s muc hke playing the numb . ata. 

. . h h er-guessing where the exammee tnes to deduce t e c osen number by asking a series of b' &arne, 
. . mary numbe companng questions. r-

Consider a simple binary decision tree for height classification Every P , 
. . . · erson s data , the study may consist of several measurements, mcludmg race, gender, weight, a e in 

tion, and so on. The goal of the study is to develop a classification method to assig ~ occupa­
one of the following five height classes: tall (T), medium-tall (t), medium (Mg) a ped~son 

· 14 h l ' me mm. slzort(s) and sh_o:t (S). Figure 4. s_ ows a~ examp ~ of such a binary tree structure. With 
this binary dec1S1on tree, one can easily predict the height class for any new person (with 

11 the measured data, but no height in~ormation_) by traversing the ?inary trees. Traversing :e 
binary tree is done through answenng a senes of yes/no questions in the traversed nod 
with the measured data. When the answer is no, the right branch is traversed next; otherwi: 
the left branch will be traversed instead. When the path ends at a leaf node, you can use its 
attached label as the height class for the new person. If you have the average height for each 
leaf node (computed by averaging the heights from those people who fall in the same leaf 
node during training), you can actually use the average height in the leaf node to predict the 
height for the new person. 

Figure 4.14 A binary tree structure for height classification. 
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This classification process is similar to a rule-based system where the classification is 
carried out by a sequence of decision rules. The choice and order of rules applied in a rule­
based system is typically designed subjectively by hand through an introspective analysis 
based on the impressions and intuitions of a limited number of data samples. CART, on the 
other hand, provides an automatic and data-driven framework to construct the decision proc­
ess based on objective criteria. Most statistical pattern recognition techniques are designed 
for data samples having a standard structure with homogeneous variables. CART is designed 
instead to handle data samples with high dimensionality, mixed data types, and nonstandard 
data structure. It has the following advantages over other pattern recognition techniques: 

• CART can be applied to any data structure through appropriate formulation 
of the set of potential questions. 

• The binary tree structure allows for compact storage, efficient classification, 
and easily understood interpretation of the predictive structure of the data. 

• It often provides, without additional effort, not only classification and recog­
nition, but also an estimate of the misclassification rate for each class. 

• It not only handles missing data, but also is very robust to outliers and misla­
beled data samples. 

To construct a CART from the training samples with their classes (let's denote the set 
as g ), we first need to find a set of questions regarding the measured variables; e.g., "ls age 
> J 2?", "ls occupation = professional basketball player?", "ls gender = male?" and so on. 
Once the question set is determined, CART uses a greedy algorithm to generate the decision 
trees. All training samples g are placed in the root of the initial tree. The best question is 
then chosen from the question set to split the root into two nodes. Of course, we need a 
measurement of how weJI each question splits the data samples to pick the best question. 
The algorithm recursively splits the most promising node with the best qu_estion until the 
right-sized tree is obtained. We describe next how to construct the question set, how to 
measure each split, how to grow the tree, and how to choose the right-sized tree. 

4.5.1. Choice of Question Set 

Assume that the training data has the following format: 

(4.111) 

where each variable x, is a discrete or continuous data type. We can construct a standard 

set of questions Q as follows: 

1. Each question is about the value of onl~ a single variable. Questions of this 

type are called simple or singleton questions. 
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2. I~ X; is a discrete variable from the set {c . 
trons of the following form: 1 

• c2 • • • ·, c,J, Q includes au ques-

{Is X; ES?} 

where Sis any subset of {c,,c2, ... ,cK} (4.112) 

3. ~f x, is a continuous variable, Q includes all questions of th ~ II . 
,orm: e ,o owing 

{Isx, $c?} force (-00,00) 
. (4. 113) 

The ques~1on subset generated from discrete variables (in condition 2 bo . 
a ~nite se~ ( 21:-1 -:-! ). On the other hand, the question subset generated ~o;e~~s ~learly 
vanables (m cond1t1on 3 above) seems to be an infinite set based on th d fi . . ntmuous 
at I · th · · d e e m1tton Fonu n e Y, smce e trammg ata samples are finite, there are only finite b f · . . · 
1. " h . . num er o distinct 

sp its ,or t e trammg data. For a continuous variable x the data po'nts · a . 
. • , , 1 m ..., con1a1n at 

most M d1slmc~ vaJ~es v., v2 , ••• , vM. There are only at most M different splits generated b 
the set of questions m the fonn: Y 

{Isx; ::;en} n =l,2, ... ,M {4,114) 

h vn-1 + vn • 
w ere c" = 

2 
and v0 = 0 . Therefore, questions related to a continuous variable also 

form a finite subset. The fact that Q is a finite set allows the enumerating of all possible 

questions in each node during tree growing. 
The construction of a question set is similar to that of rules in a rule-based system. In­

stead of using the all-possible question set Q, some people use knowledge selectively to 
pick a subset of Q , which is sensitive to pattern classification. For example, the vowel sub­
set and consonant subset are a naturaJ choice for these sensitive questions for phoneme clas­
sification. However, the beauty of CART is the ability to use all possible questions related to 
the measured variables, because CART has a statisticaJ data-driven framework to detennine 
the decision process (as described in subsequent sections). Instead of setting some con· 
straints on the questions (splits), most CART systems use aJI the possible questions for Q · 

4.5.2. Splitting Criteria 

A question in CART framework represents a split (partition) of data samples. A~I !he 
1
~ 

d L · N h e the enure pote ~o es ( m total) represent L disjoint subsets A1, A2, • • • , AL · ow we a~ e selection of 
llal question set Q , the task is how to find the best question for a node split. Th e 
the best question is equivalent to finding the best split for the data samples of the nod the cor· 

Since each node t in the tree contains some training samples, we can compute ~or [he 
d. .fi ti process 1' 

respon mg class probability density function P(m It) . The clas51 ica on 1 • c1assi· 
n d ) s· e our goa is 0 e can then be interpreted as a random process based on P(W It · me 
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fi_cation, the objective of a decision tree is to reduce the uncertainty of the event being de­
cided upon. We want the leaf nodes to be as pure as possible in terms of the class distribu­
tion. Let Y be the random variable of classification decision for data sample X. We could 
define the weighted entropy for any node t as follows: 

(4.115) 

H, (Y) = - L P(w, j t) log P(W; It) (4,116) 
I 

where P(w, It) is the percentage of data samples for class i in node t; and P(t) is the prior 
probability of visiting node t ( equivalent to the ratio of number of data samples in node t and 
the total number of training data samples). With this weighted entropy definition, the split­
ting criterion is equivalent to finding the question which gives the greatest entropy reduc­
tion, where the entropy reduction for a question q to split a node t into nodes I and r can be 
defined as: 

Mi,(q) = H,(Y)-(H,(Y)+Hr(Y))= H,(Y)-H,(Y I q) (4.117) 

The reduction in entropy is also the mutual information between Y and question q . 
The task becomes that of evaluating the entropy reduction 6fiq for each potential question 
(split), and picking the question with the greatest entropy reduction, that is, 

q' = argmax(Aff,(q)) (4.118) 
q 

If we define the entropy for a tree, T , as the sum of weighted entropies for all the terminal 

nodes, we have: 

ll(T) = L H, (Y) ( 4.119) 
• I is terminal 

It can be shown that the tree-growing (splitting) process repeatedly reduces the en­
tropy of the tree. The resulting tree thus has a better classification power. For continuous 
pdf, likelihood gain is often used instead, since there is no straightforward entropy meas­
urement [43]. Suppose one specific split divides the data into two groups, X1 and X2 , 

which can then be used to train two Gaussian distributions N, (µ1, :E1) and N 2 (J12, L2) · The 
log-likelihoods for generating these two data groups are: 

(4.120) 

(4.121) 
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where d is the dimensionality of the data; and a and b are the sample counts t 
groups X1 and X2 respectively. Now if the data X, and X2 are merged into ont r~~ data 
modeled by one Gaussian N(µ,:E), according to MLE, we have g P and 

a b 
µ=--µ, +--µ, 

a+b a+b -

:E=~b [1:, +(µ, -µ)(µ, -µ)']+~b[:E, +(µ, -µ)(µ, -µ)'] 
a+ a+ - · • 

Thus, the likelihood gain of splitting the data X into two groups X, and X
2 

is: 

M,(q) = 1.i(X1 IN)+ L~(X~ I N)-Ls (XI N) 

=(a +b)logl:El-a logl:E, l-b logl:E2l 

(4.122) 

(4.123) 

(4.124) 

For regression purposes, the most popular splitting criterion is the mean squared error 
measure, which is consistent with the common least squared regression methods. For in­
stance, suppose we need to investigate the real height as a regression function of the meas­
ured variables in the height study. Instead of finding height classification, we could simply 
use the average height in each node to predict the height for any data sample. Suppose Y is 
the actual height for training data X, then overall regression (prediction) error for a node , 

can be defined as: 

E(t) = 2) Y -d(X) 12 (4.125) 
Xet 

where d(X) is the regression (predictive) value of Y. 
Now, instead of finding the question with greatest entropy reduction, we want to fin~ 

the question with largest squared error reduction. That is, we want to pick the question q 
that maximizes: 

Af:1 (q) = E(t)-(E(l)+ E(r)) (4.126) 

where l and rare the leaves of node t. We define the expected square error V(t) for a node 1 

as the overall regression error divided by the total number of data samples in the node. 

, ' 
V(t) = El2) Y-d(X) 12 J=-1-Li Y-d(X)j

2 

Xe, N(t) Xe, 

(4.127) 

Note that V(t) is actually the variance estimate of the height, if d(X) is made to be tbe 
aver~ge height of data samples in the node. With V(t), we define the weighted squared er­
ror V (t) for a node I as follows. 

V(t) = V(t)P(t) = l' __!_ L,i y -d(X) 12 'JP(t) 
N(t) Xet . 

(4.128) 
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Finally, the splitting criterion can be rewritten as: 
ti.ii; (q) = V(t)-(V(l) + V(r)) (4.129) 

Based on Eqs. (4. I 17) and (4.129). one can see the analogy between entropy and variance in 
the splitting criteria for CART. The use of entropy or variance as splitting criteria is under 
the assumption of uniform misclassification costs and uniform prior distributions. When 
nonuniform misclassification costs and prior distributions are used, some other splitting 
might be used for splitting criteria. Noteworthy ones are Gini index of diversity and twoing 
rule. Those interested in alternative splitting criteria can refer to (II, 15). 

For a wide range of splitting criteria, the properties of the resulting CARTs are empiri­
cally insensitive to these choices. Instead, the criterion used to get the right-sized tree is 
much more important. We discuss this issue in Section 4.5.6. 

4.5.3. Growing the Tree 

Given the question set Q and splitting criteria W, (q), the tree-growing algorithm starts 
from the initial root-only tree. At each node of tree, the algorithm searches through the vari­
ables one by one, from x1 to x.v . For each variable, it uses the splitting criteria to find the 
best question (split). Then it can pick the best question out of the N best single-variable 
questions. The procedure can continue splitting each node until either of the following con­
ditions is met for a node: 

I. No more splits are possible; that is, all the data samples in the node belong to 
the same class; 

2. The greatest entropy reduction of best question (split) falls below a pre-set 
threshold f3 , i.e.: 

maxMf,(q) < f3 
qeQ 

(4.130) 

3. The number of data samples falling in the leaf node t is below some threshold 
a . This is to assure that there are enough training tokens for each leaf node if 
one needs to estimate some parameters associated with the node. 

When a node cannot be further split, it is declared a terminal node. When all active (non­
split) nodes are terminal, the tree-growing algorithm stops. 

The algorithm is greedy because the question selected for any given node is the_ one 
that seems to be the best, without regard to subsequent splits and nodes. Thus, the algorithm 
constructs a tree that is locally optimal, but not necessarily globally optimal (but hopefully 
globally good enough). This tree-growing algorithm has been success~ l~y applied in i:nany 
applications (5, 39, 60). A dynamic programming algorith~ for detei:mn_mg gl~bal opt1_mal­
ity is described in [78]; however, it is suitable only in restncted apphcattons with relatively 

few variables. 
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4.5.4. Missing Values and Conflict Resolution 

. the available data sample x = (x1 'XJ ' .. . xd) has some value x. missing Th' 
Sometimes, f . 1 · 1s 

. . 1 case can be handled by the use o surrogate questions (splits). The 'd . 
missmg-va ue . . . . 1 ea 1s 
. . . We define a similanty measurement between any two questions (sphts) q a d _ 
mtu1tive. . h · h . n q 
of a node 1 . If the best question of node t is t e ~uest1on q on t e va!1~ble x;, we can find 
the question q that is most similar to q on a variable other t~an X; •. q is our best surrogate 

t·on Similarly we find the second-best surrogate question, third-best and so on Th ques 1 . , . . . . . . e 
surrogate questions are considered as th~ b~ckup q~esttons m. the case of 1mss1ng x, values 
in the data samples. The surrogate question 1s used m descendmg order to continue tree trav­
ersing for those data samples. The surrogate question gives CART unique ability to handle 
the case of missing data. The similarity measurement is basically a measurement reflecting 
the similarity of the class probability density function [15]. 

When choosing the best question for splitting a node, several questions on the same 
variable X; may achieve the same entropy reduction and generate the same partition. As in 
rule-based problem solving systems, a conflict resolution procedure [99] is needed to decide 
which question to use. For example, discrete questions q, and q2 have the following for-
mat 

(4.131) 

(4.132) 

Suppose S, is a subset of S2 , and one particular node contains only data samples 
whose x, value contains only values in S1, but no other. Now question q1 or q2 perfonns 
the same splitting pattern and therefore achieves exactly the same amount of entropy reduc­
tion. In this case, we call q1 a sub-question of question q2 , because q1 is a more specific 
version. 

A specificity ordering conflict resolution strategy is used to favor the discrete question 
with fewer elements because it is more specific to the current node. In other words, if the 
elements of _a question are a subset of the elements of another question with the same en­
t~opy redu~tion, ~e question with the subset of elements is preferred. Preferring more s~· 
ctfic ~uestions _will prevent decision trees from over-generalizing. The specificity ordenng 
conflict resolution can be implemented easily by presorting the set of discrete questions by 
the numb~r ?f elem~nts_ they contain in descending order, before applying them to deci~ion 
trees. A_ s•rnilar specificity ordering conflict resolution can also be implemented for conanu­
ous-vanable questions. 

4.5.5. Complex Questions 

One problem with allowi I · d 
resulting in 

8
· -

1 1 
~g 0 ~ Y simple questions is that the data may be over-fragmente ' 

imi ar eaves m different locations of the tree. For example, when the be5t ques-
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tion (rule) to split a node is actually a composite question of the form "Is es ?" "/. 
S ?" II . . x, , . or s 

x, ~ 2 • , a ~ystem a owmg only simple questions will generate two separate questions to 
spht the dat~ mto thre~ cl~sters rather than two as shown in Figure 4.15. Also data for which 
~he ans~er 1~ yes are mev1tably fragmented across two shaded nodes. This is inefficient and 
m~~ect1ve smce thes~ two very similar data clusters may now both contain insufficient 
trammg ~xamples, w_h1ch could potentially handicap future tree growing. Splitting data un­
necessarily across different nodes leads to unnecessary computation redundant clusters 
reduced trainabil ity, and less accurate entropy reduction. ' ' 

Figure 4.15 An over-split tree for the question "ls x, e S1 ?" or "ls x, e S
2 

?" 

We deal with this problem by using a composite-question construction (38, 40]. It in­
volves conjunctive and disjunctive combinations of all questions (and their negations). A 
composite question is formed by first growing a tree with simple questions only and then 
clustering the leaves into two sets. Figure 4.16 shows the fonnation of one composite ques­
tion. After merging, the structure is still a binary question. To construct the composite ques­
tion, multiple OR operators are used to describe the composite condition leading to either 
one of the final clusters, and AND operators are used to describe the relation within a par­
ticular route. Finally, a Boolean reduction algorithm is used to simplify the Boolean expres­
sion of the composite question. 

To speed up the process of constructing composite questions, we constrain the number 
of leaves or the depth of the binary tree through heuristics. The most frequently used heuris­
tics is the limitation of the depth when searching a composite question. Since composite 
questions are essentially binary questions, we use the same greedy tree-growing algorithm to 
find the best composite question for each node and keep growing the tree until the stop crite­
rion is met. The use of composite questions not only enables flexible clustering, but also 
improves entropy reduction. Growing the sub-tree a little deeper before constructing the 
composite question may achieve longer-range optimum, which is preferable to the local op­
timum achieved in the original greedy algorithm that used simple questions only. 

The construction of composite questions can also be applied to continuous variables to 
obtained complex rectangular partitions. However, some other techniques are used to obtain 
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.. ~ 
general part1t1ons generated by hyperplan OQ 
· . es not perpend· 1 tIOns typically have a linear combination of r ic~ ar to the coordinat 

~ con muous variables in the t 11 . e axes. Ques. 
{Is "'7' a,x, ~ c ?} 0 owing form [lSJ: 

(4.133) 

y N y 

----;Z ~, ----------
( __ ~ ~ ~--) 

----- -------------------------------- N 
-----·-7·-·-·-·-·----~ __ ..... / , ............ (.- D o· ...... ,) 

' · . , . ., 

-·-·-~-----~---·-----·-----------·' 
Figure 4.16 The formation of a composite question from simple questions. 

4.5.6. The Right-Sized Tree 

One of the most critical problems for CART is that the tree may be strictly tailored to the 
training data and has no generalization capability. When you split a leaf node in the tree to 
get entropy reduction until each leaf node contains data from one single class, that tree pos­
sesses a zero percent classification error on the training set. This is an over-optimistic esti· 
ma~e of the test-set misclassification rate. Independent test sample estimation or cross­
val_id_ation is often used to prevent decision trees from over-modeling idiosyncrasies of tbe 
~auung data. To get a right-sized tree, you can minimize the misclassification rate for future 
independent test data. 

Before we describe the solution for finding the right sized tree, let's define a couple of 
useful term N od t: s. aturally we will use the plurality rule o(t) to choose the class for an e · 

o(t) = argmax P(co. It) (4.134) 
I l 
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Similar to the notation used in Bayes' decision theory we can define the · I ·r. t' 
R( ) 

~ d , misc ass1 1ca ion 
rate t ior a no e t as: 

R(t) = r(t)P(t) (4,135) 

where r(t) = 1-m?x P(w, It) and P(t) is the frequency (probability) of the data falling in 

node t. The overall misclassification rate for the whole tree Tis defined as: 

R(T) = IR(t) 
,et 

(4.136) 

where t represents the set of tenninal nodes. If a nonunifonn misclassification cost c(i I j), 
the cost of misclassifying class} data as class i data, is used, r(t) is redefined as: 

r(t) = min Ic(i I j)P(j It) 
I . 

I 

(4,137) 

As we mentioned, R(T) can be made arbitrarily small (eventually reduced to zero) for 
the training data if we keep growing the tree. The key now is how we choose the tree that 
can minimize R

0 

(T) , which is denoted as the misclassification rate of independent test data. 
Almost no tree initially grown can perform well on independent test data. In fact, using more 
complicated stopping rules to limit the tree growing seldom works, and it is either stopped 
too soon at some tenninal nodes, or continued too far in other parts of the tree. Instead of 
inventing some clever stopping criteria to stop the tree growing at the right size, we let the 
tree over-grow (based on rules in Section 4.5.3). We use a pruning strategy to gradually cut 
back the tree until the minimum R

0 

(T) is achieved. In the next section we describe an algo­
rithm to prune an over-grown tree, minimum cost-complexity pruning. 

4.5.6.1. Minimum Cost-Complexity Pruning 

To prune a tree, we need to find a subtree ( or branch) that makes the least impact in tenns of 
a cost measure, whether it is pruned or not. This candidate to be pruned is called the weakest 
subtree. To define such a weakest subtree, we first need to define the cost measure. 

DEFINITION 1: For any sub-tree T of Tmax ( T-< Tmru ), let If I denote the number ofter­

minal nodes in tree T . 

DEFINITION 2: Let a ~ O be a real number called the complexity parameter. The cost­

complexity measure can be defined as: 

Ra(T) = R(T)+a If I (4.138) 

DEFINITION 3: For each a, define the minimal cost-complexity subtree T(a)-< TITW( that 

minimizes Ra (T), that is, 

T(a) == arg min Ra(T) 
(4.139) 

T-<T_, 
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Based on Definitions 2 and 3, if a is small, the penalty for having a large tree is Srna„ 
and T(a) will be large. In fact, 7(0) = Tmm because TmM has a zero misclassification rate 
so it will minimize R0(T). On the other hand, when a increases, T(a) becomes small* 
and smaller For a sufficient large a, T(a) may collapse into a tree with only the root. The 
increase of a produces a sequence of pruned trees and it is the basis of the pruning process 
The pruning algorithm rests on two theorems. The first is given as follows.
THEOREM 1. For every value of a, there exists a unique minimal 
tree T(a) as defined in Definition 3.

Tn nroeressively prune the tree, we need to find the weakest subtree (node). The idea

1“.' « inMeThe'subL combining only the nod. <. and T, denote the botch «*. 

node t. Then we have

cost-complexity sub-

(4.140)Ra(Tl) = R(Tl)+a\T,\

(4.141)

When a is small, T, has a smaller cost-complexity than the single-node tree {(}. 
However, when a increases to a point where the cost-complexity measures for T, and {(} 
are the same, it makes sense to collapse T, into a single terminal node {/}. Therefore, we 
decide the critical value for a by solving the following inequality:

Ra{{t)) = R(f)+a

(4.142)
Ra{T,)<RaU‘})

We obtain:
(4.143)R(t)-R(T,)

a <
I?; i-i

a measurement rj(i) for each node r in tree T:Based on Eq. (4.143), we define

R(t)-R(T,) (4.144), teT 

tef
T as the tree bran

Based on measurement rj(t) , we then define the weakest su '« 
ing at the node /, such that

it; i-i
i+”> ch stah"

You can find the proof to this in [15].
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/ 1 = arg min TJ(t) 
teT 

(4.145) 

(4.146) 

As a i~crea~es, _the node t1 is the first node such that Ra( {t}) becomes equal to 
Ra(T,). At this pomt, 1t would make sense to prune subtree T (collapse T into a single-

'• 11 
node subtree {11 } ), and a 1 is the value of a where the pruning occurs. 

Now the tree T after pruning is referred to as i; , i.e., 

T; = T-T,, (4,147) 

We then use the same process to find the weakest subtree T, in r; and the new pruning 
point a 2 • After pruning away T,, from r; to form the new pruned tree T2 , we repeat the 
same process to find the next weakest subtree and pruning point. If we continue the process, 
we get a sequence of decreasing pruned trees: 

T >- T. >- T. >- T. ··· >- {r} I 2 2 (4.148) 

where {r} is the single-node tree containing the root of tree T with corresponding pruning 
points: 

(4.149) 

where a0 =0. 
With the process above, the following theorem (which is basic for the minimum cost-

complexity pruning) can be proved. 

THEOREM 2: Let To be the original tree T. 

(4.150) 

4.5.6.2. Independent Test Sample Estimation 

The minimum cost-complexity pruning algorithm can progressively prune the over-grown 
tree to fonn a decreasing sequence of subtrees T >- I; >-I;>- T; · ·· >- {r}, where ~ = T~ak), 
a = O and T, = T . Toe task now is simply to choose one of those subtrees as the opllmal­
si;ed tree. Ou~ goal is to find the optimal-sized tree that minimizes the misclassification for 
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independent test set R• (T) . When the training set ~ is abundant 
. , we can aff o d 

an mdependent test set ~ from the training set. Usually ~ is sele t d r to_ set aside 
. . n W h . . . c e as one third f trammg set ..., . e use t e remammg two thirds of the training set S-~ ( . 0 the 

train the initial tree T and apply the minimum cost-complexity prun,· 
1
Sllll. abundant) to 

. ng a gonthm t . 
the decreasing sequence of subtrees T >- T., >- T.2 >- T. ... >- {r} Next th te O attain 

2 • , e st set ~ · 
through the sequence of subtrees to get corresponding estimates of test-set . 

1 
. 15 run 

• ) • • • . . misc ass1ficat' 
R (T ,R (J;),R (J;),··,R ({r}). The opt1mal-s1zed tree T. is then picked as th •~n 

· · · J ·fi · · t e one With mm1mum test-set misc ass1 1cauon measure, 1.e.: 

k" = argrninR
0

(¾) 
; {4.151) 

The independent test sample estimation approach has the drawback that it reduces the 
effective training sample size. This is why it is used only when there is abundant training 
data. Under most circumstances where training data is limited, cross-validation is often 
used. 

4.5.6.3. Cross-Validation 

CART can be pruned via v-fold cross-validation. It follows the same principle of cross vali­
dation described in Section 4.2.3. First it randomly divides the training set _g into v disjoint 
subsets .S,,.S2 , .. ,.S~, each containing roughly the same data samples. It then defines thel 
training set 

.S'=.S-3, i=l, 2, ... ,v (4.152) 

so that S' contains the fraction (v-1)/v of the original tr~ining set. v is usually chosen to 

be large, like 10. . . T 
In v-fold cross-validation, v auxiliary trees are grown together with the mam tree 

grown on g. The t tree is grown on the t training set g;. By applying minimum cos.t­
complexity pruning, for any given value of the cost-complexity parameter a, we can obta1D 

the corresponding minimum cost-complexity subtrees T(a) and T;(a). i = l,2, ... ,.v. Ac­
cording to Theorem 2 in Section 4.5.6.1, those minimum cost-complexity subtrees will form 
v + I sequences of subtrees: 

(4.153) 

(4.154) 

... 
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ALGORITHM 4.5: THE CART ALGORITHM 

Step 1: Question Set: Create a standard set of questions Q that consists of all possible ques­
tions about the measured variables. 
Step 2: Splitting Criterion: Pick a splitting criterion that can evaluate all the possible questions 
in any node. Usually it is either entropy-like measurement for classification trees or mean 
square errors for regression trees. 
Step 3: Initialization: Create a tree with one (root) node, consisting of all training samples. 
Step 4: Split Candidates: Find the best composite question for each terminal node: 

a. Generate a tree with several simple-question splits as described in Section 4.5.3. 
b. Cluster leaf nodes into two classes according to the same splitting criterion. 
c. Based on the clustering done in (b), construct a corresponding composite question. 

Step 5: Split: Out of all the split candidates in Step 4, split the one with best criterion. 
Step 6: Stop Criterion: If all the leaf nodes containing data samples from the same class or all 
the potential splits generating improvement fall below a pre-set threshold f3 , go to Step 7; oth­
erwise go to Step 4. 
Step 7: Use independent test sample estimate or cross-validation estimate to prune the original 
tree into the optimal size. 

The basic assumption of cross-validation is that the procedure is stable if v is large. 
That is, T(a) should have the same classification accuracy as T' (a). Although we cannot 
directly estimate the test-set misclassification for the main tree R" (T(a)), we could ap­
proximate it via the test-set misclassification measure R. (T' (a)), since each data sample in 
~ occurs in one and only one test set ~,. The v-fold cross-validation estimate Rev (T(a)) 
can be computed as: 

Re" (T(a)) = .!. f R" (T' (a)) (4. 155) 
V ;.,, 

Similar to Eq. (4.151), once Rev (T(a)) is computed, the optimal v-fold cross-validation 
tree T

1
rr can be found through 

kc" = arg min Rev (T,.) ( 4.156) 
k 

Cross-validation is computationally expensive in comparison with independent test 
sample estimation, though it makes more effective use of all training data and reveals useful 
information regarding the stability of the tree structure. Since the auxiliary trees are grown 
on a smaller training set (a fraction v-1/v of the original training data), they tend to have a 
higher misclassification rate. Therefore, the cross-validation estimates Re" (T) tend to be an 
over-estimation of the misclassification rate. The algorithm for generating a CART tree is 

illustrated in Algorithm 4 .5. 
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4.6. 

---­Pattern Recognition 

HISTORICAL PERSPECTIVE AND FURTHER READING 

Pattern recognition is a multidisciplinary field that comprises a broad body of I . 
1 I • H. . . oose y related 

knowledge and tee mtques. 1stoncally, there are two maJor approaches to patte . 
tion - the statistical and the syntactical approaches. Although this chapter is foc:e~ecogm. 
statistical approach. syntactical pattern recognition techniques, which aim to add on the 
1. · · f h · · I h · h di' ress the 1m1tat1ons o t e stat1st1ca approac m an mg contextual or structural infonnatio 

. . n, can be 
complementruy to stattst1cal approaches for spoken language processing, such as . 
S · · · · b d h I parsing yntacttc pattern recogmt1on 1s ase on t e ana ogy that complex: patterns can be d · 

d · 1 · · 1 b ecom­pose recursive y mto s1mp er su patterns. much as a sentence can be decomposed into 
words and letters. Fu {241 provides an excellent book on syntactic pattern recognition. 

The foundation of statistical pattern recognition is Bayesian theory, which can be 
traced back to the 18'~ century [9, 54] and its invention by the British mathematician Thomas 
Bayes (1702-1761 ). Chow [20] was the first to use Bayesian decision theory for pattern rec­
ognition. Statistical pattern recognition has been used successfully in a wide range of appli­
cations, from optical/handwritten recognition [ I 3, 96], to speech recognition (7, 86] and to 
medical/machinery diagnosis [1, 27]. The books by Duda et al. [22] and Fukunaga [25] are 
two classic treatments of statistical pattern recognition. Duda et al. have a second edition of 
the classic pattern recognition book [23] that includes many up-to-date topics. 

MLE and MAP are two most frequently used estimation methods for pattern recogni­
tion because of their simplicity and efficiency. In Chapters 8 and 9, they play an essential 
role in model parameter estimation. Estimating the recognition performance and comparing 
different recognition systems are important subjects in pattern recognition. The importance 
of a large number of test samples was reported in [49]. McNemar's test is dated back to the 
1940s (66]. The modification of the test for continuous speech recognition systems pre­
sented in this chapter is based on an interesting paper [30] that contains a general discussion 
on using hypothesis-testing methods for continuous speech recognition. 

Gradient descent is fundamental for most discriminant estimation methods, including 
MMIE, MCE, and neural networks. The history of gradient descent can be traced back to 
Newton' s method for root finding [72, 81]. Both the book by Duda et al. [23] and the paper 
by Juang et al. [481 provide a good description of gradient descent. MMIE was first pro­
posed in [16, 71] for the speech recognition problem. According to these two works, MMIE 
is more robust than MLE to incorrect model assumptions. MCE was first fonnulated by 
Juang et al. [48] and successfully applied to small-vocabulary speech recognition [471·. 

The modern era of neural networks was brought to the scientific conunumty by 
McCulloch and Pitts. In the pioneering paper [64], McCulloch and Pitts laid out the malhe-

. I · ortant result matica treatment of the behavior of networks of simple neurons. The most imp 
they showed is that a network would compute any computable function. John van Neum~n 
was influenced by this paper to use switch-delay elements derived from the McCulloch-PJtts 

. · com· neuron m the construction of the EDVAC (Electronic Discrete Variable Automatic ) 
puter) that was developed based on ENIAC (Electronic Numerical Integrator and C~mput:e 
[2, 35l The ENIAC was the famous first general-purpose electronic computer built at 
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Moore School of Electrical Engineering at the University of Pennsylvania from 1943 to 
1946 [31 ]. The two-layer perceptron work (87] by Rosenblatt, was the first to provide rigor­
ous proofs about perceptron convergence. A I 969 book by Minsky and Papert [68] reveals 
that there are fundamental limits to what single-layer perceptrons can compute. It was not 
until the 1980s that the discovery of multi-layer perceptrons (with hidden layers and nonlin­
ear threshold functions) and back-propagation [88] reawakened interest in neural networks. 
The two-volume PDP book l90, 91 ]. Parallel Distribllfed Processing: Explorations in the 
Microstructures of Cognition. edited by Rummelhart and McClelland, brought the back­
propagation learning method to the attention of Lhe widest audience. Since then, various 
applications of neural networks in diverse domains have been developed, including speech 
recognition (14, 58], speech production and perception (93, 94). optical and handwriting 
character recognition (55, 92], visual recognition [26]. game playing [97], and natural lan­
guage processing [63] . There are several good textbooks for neural networks. In particular, 
the book by Haykin (35] provides a very comprehensive coverage of all foundations of neu­
ral networks. Bishop [ 12] provides a thoughtful treatment of neural networks from the per­
spective of pattern recognition. Short, concise tutorial papers on neural networks can be 
found in (44, 57]. 

Vector quantization originated from speech coding [ 17, 32, 45, 61]. The k-means algo­
rithm was introduced by Lloyd [59]. Over the years, there have been many variations of VQ, 
including fuzzy VQ (10], learning VQ (LVQ) [51), and supervised VQ [18, 42]. The first 
published investigation toward the EM-like algorithm for incomplete data learning can be 
attributed to Pearson (79]. The modem EM algorithm was formalized by Dempster, Laird, 
and Rubin (21]. Mclachlan and Krishnan [65] provide a thorough overview and history of 
the EM algorithm. The convergence of the EM algorithm is an interesting research topic and 
Wu (100] has an extensive description of the rate of convergence. The EM algorithm is the 
basis for all unsupervised learning that includes hidden variables. The famous HMM train­
ing algorithm, as described in Chapter 8, is based on the EM algorithm. 

CART uses a very intuitive and natural principle of sequential questions and answers, 
. which can be traced back to 1960s [70]. The popularity of CART is attributed to the book by 
Breiman et al. [ 15). Quinlan proposed some interesting variants of CART, like ID3 [82] and 
C4.5 (84). CART has recently been one of the most popular techniques in machine learning. 
Mitchell includes a good overview chapter on the latest CART techniques in his machine­
learning book (69). In addition to the strategies of node splitting and pruning mentioned in 
this chapter, [62] used a very interesting approach for splitting and pruning criteria based on 
a statistical significance testing of the data's distributions. Moreover, [28) proposed an itera­
tive expansion pruning algorithm which is believed to perform as well as cross-validation 
pruning and yet is computationally cheaper [52]. CART has been successfully used in a va­
riety of spoken language applications such as letter-to-sound conversion [46, 60), allophone 
model clustering (8, 38, 39]. language models (5), automatic rule generation [83], duration 
modeling of phonemes (74, 80] , and supervised vector quantization [67]. 
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CHAPTER 5 

Digital Signal Processing 

0 ne of the most popular ways of characteriz­
ing speech is in tenns of a signal or acoustic wavefonn. Shown in Figure 5.1 is a representa­
tion of the speech signal that ensures that the information content can be easily extracted by 
human listeners or computers. This is why digital signal processing plays a fundamental role 
for spoken language processing. We describe here the fundamentals of digital signal process­
ing: digital signals and systems, frequency-domain transforms for both continuous and discrete 
frequencies, digital filters, the relationship between analog and digital signals, filterbanks, and 
stochastic processes. In this chapter we set the mathematical foundations of frequency analysis 
that allow us to develop specific techniques for speech signals in Chapter 6. 

The main theme of this chapter is the development of frequency-domain methods 
computed through the Fourier transfonn. When we boost the bass knob in our amplifier we 
are increasing the gain at low frequencies, and when we boost the treble knob we are in­
creasing the gain at high frequencies. Representation of speech signals in the frequency do­
main is especially useful because the frequency structure of a phoneme is generally unique. 

201 
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Figure 5.1 Signal processing is both a representation and a transformation that all f · ti · · ows a use ul 
m onnauon e~tractton from a source. The representation and transformation are based 00 a 
model of the signal, often parametric, that is convenient for subsequent processing. 

5.1. DIGITAL SIGNALS AND SYSTEMS 

To process speech signals, it is convenient to represent them mathematically as functions of 
a continuous variable t, which represents time. Let us define an analog signal x0 (t) as a 
function varying continuously in time. If we sample the signal x with a sampling period T 
(i.e., t::: nT ), we can define a discrete-time signal as x[n] = x

0
(nT), also known as digital 

signal. 1 In this book we use parentheses to describe an analog signal and brackets for digiial 
signals. Furthermore we can define the sampling frequency F, as F, = II T, the inverse of 
the sampling period T. For example, for a sampling rate F, = 8 kHz, its corresponding saro· 
piing period is 125 microseconds. In Section 5.5 it is shown that, under some circum5

ian~ 

the analog signal x (t) can be recovered exactly from the digital signal xfn] · Figure 
5 

shows an analog siinal and its corresponding digital signal. In subsequent figures, for con· 
venience, we will sometimes plot digital signals as continuous functions. . . these-

The term Digital Signal Processing (DSP) refers to methods for mampulaungfertoa 
quence of numbers x[n] in a digital computer. The acronym DSP is also used to_re

5 
Digital Signal Processor, i.e., a microprocessor specialized to perform DSP operauon · 

--------------· d by integers wilhin 
1 Actually the term digital signal is defined as a discrete-time signal whose values are rep~sen; term digital si~ 
a range, whereas a general discrete-time signal would be represented by real numbers. Sinthce ~s necessarY· 

d. · ti between em 1 

is much more commonly used, we will use that tenn, except when the 1stmc on 
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Figure 5.2 Analog signal and its corresponding digital signal. 

We start wi~ sinusoidal signals and show they are the fundamental signals for linear 
systems_. ':'e ~en mtroduce ~he concept of convolution and linear time-invariant systems. 
Other d1g1tal signals and nonlinear systems are also introduced. 

5.1.1. Sinusoidal Signals 

One of the most important signals is the sine wave or sinusoid 

(5.1) 

where Ao is the sinusoid's amplitude, mo the angular frequency, and ¢0 the phase. The an­
gle in the trigonometric functions is expressed in radians, so that the angular frequency mo 
is related to the normalized linear frequency fo by the relation m0 = 2,r fo, and O ~ fo :S I . 
This signal is periodic2 with period To= 1/ fo. In Figure 5.3 we can see an example of a si­
nusoid with frequency fo = 0.04 , or a period of To = 25 samples. 

Sinusoids are important because speech signals can be decomposed as sums of sinu­
soids. When we boost the bass knob in our amplifier we are increasing the gain for sinusoids 
of low frequencies, and when we boost the treble knob we are increasing the gain for sinu­
soids of high frequencies. 

i A signal x[n] is periodic with period N if and only if x[nJ=:x[n+N], which requires a>o = 2K / N. This means that 
the digital signal in Eq. (5.1) is not periodic for all values of ro

0 
, even though its continuous signal countcrpan 

x(t)== Ao cos(a,o' +q,0) is periodic for all values of a,
0 

(see Section 5.5). 
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Figure 5.3 A digital sinusoid with a period of 25 samples. 

What _is the sum of two sinusoids x0[n] and x1[n] of the same frequency w
0 

but dif­
ferent amphtudes Ao and A1 , and phases 'Po and tp1 ? The answer is another sinusoid of the 
same frequency but a different amplitude A and phase ¢,. While this can be computed 
through trigonometric identities, it is somewhat tedious and not very intuitive. For this rea­
son we introduce another representation based on complex numbers, which proves to be 
very useful when we study digital filters. 

A complex number x can be expressed as z = x+jy, where j =J::i, xis the real part 
and y is the imaginary part, with both x and y being real numbers. Using Euler's relation, 
given a real number</), we have 

e1~ = cosq, + jsin q, (5.2) 

so that the complex number z can also be expressed in polar form as z = Ae1•, where A is 
the amplitude and tp is the phase. Both representations can be seen in Fig~re 5.4, w?ere the 
real part is shown in the abscissa (x-axis) and the imaginary part in the ordmate (y-axis). 

Using complex numbers, the sinusoid in Eq. (5.1) can be expressed as the real part of 

the corresponding complex exponential 

(5.3) 

X 

z = x + JY and polar fonn 
Figure 5.4 Complex number representation in Cartesian form 
z = Ae1

• . Thus x = A cos(/> and y = Asinq>. 

---
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and thus the sum of two complex exponential signals equals 

(5.4) 

Taking the real part in both sides results in 

(5.5) 

or in other words, the sum of two sinusoids of the same frequency is another sinusoid of the 
same frequency. 

To compute A and 1/J, dividing Eq. (5.4) by ei<J\n leads to a relationship between the 
amplitude A and phase 1/J : 

(5.6) 

Equating real and imaginary parts in Eq. (5.6) and dividing them we obtain: 

"' Ao sinq,0 + A1 sinq,1 tan~=~----------
Ao cos I/Jo + Ai cos ¢1 

(5.7) 

and adding the squared of real and imaginary parts and using trigonometric identities3 

(5.8) 

This complex representation of Figure 5.5 lets us analyze and visualize the amplitudes 
and phases of sinusoids of the same frequency as vectors. The sum of N sinusoids of the 
same frequency is another sinusoid of the same frequency that can be obtained by adding the 
real and imaginary parts of all complex vectors. In Section 5.2.1 we show that the output of ·1 
a linear time-invariant system to a sinusoid is another sinusoid of the same frequency. 1 

Figure 5.5 Geometric representation of the sum of two sinusoids of the same frequency. It fol­
lows the complex number representation in Cartesian form of Figure 5.4. 

' sin2 q) + cos2 q) = I and cos(a-b) = cosacosb +sinasinb. 
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S.1.2. Other Digital Signals 

In the fie!~ of digital signal processing there are other signals that re atedl · 
are shown m Table 5.1. pe Y anse and that 

Table 5.1 Some useful digital signals: the Kronecker delta unit step t 1 . . , , rec angu ar signal al 
exponential (a< I ) and real part of a complex exponential ( r < I ). ' re 

Kronecker delta, 
8[n] = g 11- 0 .... t ....... or unit impulse othern•ise 

Unit step 
u[n]= g n:2::0 

= - : .lIIIIIII··· .. n 
n<O 

Rectangular 
rectN[n] = {~ 

OS,n<N 

JI III signal otherwise .. - . . . ; .. n 

Real exponential x[n] = a"u[n] 

~illllinnnmrunrn. 
Complex x[n] = anu[n] = r"ei"°lo u[n] 

Re{x(n]) I Irr exponential t11II11 l!U = r"(cosnw0 + jsinnm0 )u[n] "Il[IlP' •m11i n 

If r =1 and m
0 

-:I: 0 we have a complex sinusoid as shown in Section 5.1.1. If li>o =0 
we have a real exponential signal, and if r < 1 and m0 -:;: 0 we have an exponentially decay­
ing oscillatory sequence, also known as a damped sinusoid. 

5.1.3. Digital Systems 

A digital system is a system that, given an input signal x(n], generates an output signal y[n]: 

y[n] = T{x[n]} (5.9) 

whose input/output relationship can be seen in Figure 5.6. 
In general, a digital system Tis defined to be linear iff (if and only iO 

T{a1x1[n] + a
2
x

2
[n)} = a1T{x1[n]} + a2T{x2 [n]} 

(5.10) 

for any values of a
1

, a
2 

and any signals x1[n] and xAn]. . 
Here, we study systems according to whether or not they are linear and/or time invananL 

x[n] ~~y[n] 

Figure 5.6 Block diagram of a digital system whose input is digital signal x[n], and whose 

output is digital signal y[11). 
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5.1.3.1. Linear Time-Invariant Systems 

A system is time-im•ariant if given Eq. (5.9), then 

y[11-110 ] = T{x[n-n0 ]} (5.11) 

Linear digital systems of a special type, the so-called linear time-invariallt (LTI)/ are de­
scribed by 

.. 
y[n]= L x[k]h[n-k]=x[n]*h[n] (5.12) 

kc-

where * is defined as the co11volution operator. It is left to the reader to show that the linear 
system in Eq. (5.12) indeed satisfies Eq. (5.11). 

LTI systems are completely characterized by the signal h[n], which is known as the 
system's impulse response because it is the output of the system when the input is an im­
pulse x[ n] = o[ n] . Most of the systems described in this book are L TI systems. 

Table 5.2 Properties of the convolution operator. 

Commutative x[n] * h[n] = h[n] * x[n] 

Associative x[n]*( h1 [n]*h2 [nJ) = (x[n]*h1 [nJ) *"2[n] = x[n]* h, [n]*hi[n] 

Distributive x[n] *( h1 [n]+hi[n]) = x[n] *h1 [11] + x[n] * h2 [n] 

The convolution operator is commutative, associative and distributive as shown in Ta­
ble 5.2 and Figure 5.7. 

Figure 5.7 The block diagrams on the left, representing the commutative property, are equiva­
lent The block diagrams on the right, representing the distributive property, are also equivalent. 

' Actually 1he term linear lime-invariant (L Tl) systems is typically reserved for con1inuous or analog systems, and 
linear shift-invariant system is used for discrete-lime signals, but we will use L Tl for discre1c-timc signals too since 
il is widely used in this context 
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5.1.3.2. Linear Time-Varying Systems 

An interesting type of digital systems is that h . . . w ose output is r 
mput signal at different times: a tnear combination of the 

-
.J{n] = L,. x[k]g[n,n-k] 

k=-«> (S. I 3) 

The digital system in Eq. (5.13) is linear 5· · · . . , mce It satisfies Eq (S 10 T1me-Invanant systems of Section 5 I 3 1 are . 1 · · ). The Linear 
· · · a spec1a case of E ( 

g[n,n-k] = h[n-k]. The systems in Eq. (5.13) are called 1. . . q._ S.13) when 
t b th . . -mear time-varymg (LTV) 
ems, ecause e we1ghtmg coefficients can vary with t" sys-1me. 

A useful example of such system is the so-called amplitude modulator 

y[ n] = x[ n] cos ro0n 
(5.14} 

used in A~ transmissions. As we show in Chapter 6, speech signals are the output of LTV 
systems. Smee these systems are difficult to analyze, we often approximate them ·th 1-. . . w1 mear 
t1me-mvanant systems. 

5.1.3.3. Nonlinear Systems 

Many nonlinear systems do not satisfy Eq. (5.10). Table 5.3 incJudes a list of typical nonlin­
ear systems used in speech processing. All these nonlinear systems are memoryless, because 
the output at time n depends only on the input at time n, except for the median smoother of 
order (2N + 1) whose output depends also on the previous and the following N samples. 

5.2. CONTINUOUS-FREQUENCY TRANSFORMS 

A very useful transform for L TI systems is the Fourier transfonn, because it uses c~mplex 
. . . d . 1· t· . th trans"orm In this secnon we exponentials as its basis functions, an Its genera 1za ton. e z- 1

' • . 

cover both transforms, which are continuous functions of frequency, and their properties. 

5.2.1. The Fourier Transform 
' th impulse response h[n] is when 

It is instructive to see what the output of a LTI sy5tem Wt . ,, . E (5 12) and using the 
b · · [n] - e'IJl.i m q · the input is a complex exponential. Su st1tutm~ x - · 

commutative property of the convolution we obtam 

y[n] = :f h[k]ei%<"-t> =ei%" _f h[k]e-jQ.\)k =elll.\J"H(IQ.\)) 
Jc. ;;:- k=--

(5.15) 

Amazon/VB Assets 
Exhibit 1012 

Page 234



Continuous-Frequency Transforms 209 

Table S.3 Examples of nonlinear systems for speech processing. All of them are memoryless 
except for the median smoother. 

Nonlinear System Eouation 
Median Smoother y[n] = median{x{n-N],··,x[n],···,x[n+ N]} 
of order (2N+ 1) 
Full-Wave Rectifier y[nJ =lx[nJI 

Half-Wave Rectifier 
y[n] = {x~] 

x[n] ~ 0 

x[n] < 0 

Frequency Modulator y[ n] = A cos ( at + ~cox[ n]) n 

y[n)={x(~) 
x[n] ~ A 

Hard-Limiter lx(n]I < A 
-A x[n] S-A 

(N-1/2).1. x[n] ~ (N -1).1. 
Uniform Quantizer (m+l/2).1. m.1. ~ x[n] < (m + 1).1. 0~m<N-1 
(L-bit) with 2N = 2L y[n] = (-m + 1/2 ).1. -m.1. ~ x[ n] < -(m-1).1. 0<m<N-1 
intervals of width ~ 

(-N+l/2).1. x[n]<-(N-1).1. 

which is another complex exponential of the same frequency and amplitude multiplied by 
the complex quantity H(ei%) given by 

.. 
H(ei°') = I, h[n]e-iOln (5.16) 

n=-

Since the output of a L TI system to a complex exponential is another complex exponential, 
it is said that complex exponentials are eigensignals of L TI systems, with the complex quan­
tity H(eil4i) being their eigenvalue. 

The quantity H(ei°') is defined as the discrete-time Fourier transfonn of h[n]. It is 
clear from Eq. (5.16) that H(e1°') is a periodic function of (J) with period 2,r, and there­
fore we need to keep only one period to fully ooscribe it, typically -n < m < ir (Figure 5.8). 

Figure S.8 H(e1.0J) is a periodic function of w . 
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H(e1°') is a complex function of co which can be expressed in te 
imaginary parts: nns of the real and 

(5.17) 

or in terms of the magnitude and phase as 

(5.18) 

Thus if the input to the L TI system is a sinusoid as in Eq. (5.1 ), the output will be 

y 0 [n] = /4, IH(ejOJo )I cos ( C00n + </)0 + arg {H(e10Jo)}) (5.l9) 

according to Eq. (5.15). Therefore if IH(e1
oio )I> 1, the LTI system will amplify that fre. 

quency, and likewise it will attenuate, or filter it, if IH ( e1oio )I< 1 . That is one reason why 
these systems are also called filters. The Fourier transform H(e1"') of a filter h[n] is called 
the system's frequency response or transfer junction. 

The angular frequency co is related to the normalized linear frequency f by the sim­
ple relation co= 21r f . We show in Section 5.5 that linear frequency f, and nonnalized fre­
quency / are related by I, = fFs, where ~ is the sampling frequency. 

since 

The inverse discrete-time Fourier transform is defined as 

h[n] =-
1-J,r H(e1°')e1°"'d(J) 

21r -,r (5.20) 

The Fourier transform is invertible, and Eq. (5.16) and (5.20) are transfonn pairs: 

h[n] = _I J,r H(e1°')e10Jlld(J) =-
1 fir( i h[m]e-jrom 'Je1""'dro 

21! -IC 21! m=---

= I, h[mJ-1 r ~o,(r,-m)d{J)= i: h{m]8[n-m]=h[n] 
m=-- 21r -,r m=-

_l_J,r ejo,/.n-m)d{J) ==8[n-m] 
2,r -,r 

A sufficient condition for the existence of the Fourier transform is 

.. 
I, jh[nll < 00 

(5.21) 

(5.22) 

(5.23) 

n=-- f filter 
. f: of the impulse response o a 

Although we have computed the Founer tr~s orm 
h[n], Eq. (5 .16) and (5.20) can be applied to any signal x{n]. 
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5.2.2. Z-Transform 

The z-transfom1 is a generalization of the Fourier transform. The z-transfonn of a digital 
signal h[n] is defined as 

-
H(z) = L h[n]z-n (5.24) 

n=--

where z is a complex variable. Indeed, the Fourier transfonn of h[n] equals its z-transform 
evaluated at z = ei°'. While the Fourier and z-transforms are often used interchangeably, we 
normally use the Fourier transfonn to plot the filter's frequency response, and the z­
transform to analyze more general filter characteristics, given its polynomial functional 
form. We can also use the z-transform for unstable filters, which do not have Fourier trans­
forms. 

Since Eq. (5.24) is an infinite sum, it is not guaranteed to exist. A sufficient condition 
for convergence is: 

(5.25) 

which is true only for a region of convergence (ROC) in the complex z-plane R1 < jzj < R,, 
as indicated in Figure 5.9. 

For a signal h[n] to have a Fourier transform, its z-transform H(z) has to include the 
unit circle, I z I= 1 , in its convergence region. Therefore, a sufficient condition for the exis­
tence of the Fourier transform is given in Eq . (5.23) by applying Eq. (5.25) to the unit circle. 

An LTI system is defined to be causal if its impulse response is a causal signal, i.e. 
h[n] = 0 for n < 0 . Similarly, a LTI system is anti-causal if h[n] = 0 for n > 0. While all 
physical systems are causal, noncausal systems are still useful since causal systems could be 
decomposed into causal and anti-causal systems. 

A system is defined to be stable if for every bounded input it produces a bounded out­
put. A necessary and sufficient condition for an L TI system to be stable is 

-L lh[n]I <oo (5.26) 
n=-

Figure 5.9 Region of convergence of the z-transform in the complex plane. 
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which means, according to Eq. (5.23), that h[n] has a Fourier transfonn and th 
its z-transform includes the unit circle in its region of convergence. ' erefore that 

Just as in the case of Fourier transforms, we can use the z-transfonn for a . 
just for a filter's impulse response. ny signal, not 

The inverse z-transform is defined as 

h[n] =-
1
- . g>H(z)zn-,dz 

2'/C J (5.27) 

where the integral is performed along a closed contour that is within the region of conver­
gence. Eqs. (5.24) and (5.27) plus knowledge of the region of convergence fonn a transfo 
pair: i.e. one can be exactly determined if the other is known. If the integral is perform: 
along the unit circle (i.e., doing the substitution z = e1/J)) we obtain Eq. (5.20), the inverse 
Fourier transform. 

5.2.3. Z-Transforms of Elementary Functions 

In this section we compute the z-transforms of the signals defined in Table 5.1 . The z­
transforms of such signals are summarized in Table 5.4. In particular we compute the z­
transforms of left-sided and right-sided complex exponentials, which are essential to com­
pute the inverse z-transform of rational polynomials. As we see in Chapter 6, speech signals 
are often modeled as having z-transforms that are rational polynomials. 

Table S.4 Z-transforms of some useful signals together with their region of convergence. 

Si2nal Z-Transform Region of Convergence 
!ii[n]=o[n-N] H,(z) = z-N z~O 

!iz[n] = u[n]-u[n-N] } - N z~O -z 
H2(z) = I z-' 

li;i[n] = a"u[n] 1 lal<lzl 
H 3 (z) = l az-• 

h4 [n] = -a"u[-n-1] 1 lzl<lal 
H4(z) = 1 -1 -az -

5.2.3.1. Right-Sided Complex Exponentials 

A right-sided complex exponential sequence 
(5.28) 
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has a z-transform given by 

H( )-~,, -n-r l-(az-
1
)'" l 

3 z - £.a z - 1m 1 = 
1 

_
1 

n=O .\'-.- J-az- -az 
for I a 1<1 z I (5.29) 

by using the sum of the terms of a geometric sequence and making N -? oo • This region of 
convergence (Ia I</ z I ) is typical of causal signals (those that are zero for n < O ). 

When a z-transform is expressed as the ratio of two polynomials, the roots of the nu­
merator are called zeros, and the roots of the denominator are called poles. Zeros are the 
values of z for which the z-transform equals 0, and poles are the values of z for which the z­
transform equals infinity. 

H3 (z) has a pole at z =a, because its value goes to infinity at z =a. According to 
Eq. (5.26), h3[n] is a stable signal if and only if I a I< l, or in other words, if its pole is in­
side the unit circle. In general, a causal and stable system has all its poles inside the unit 
circle. As a corollary, a system which has poles outside the unit circle is either noncausal or 
unstable or both. This is a very important fact, which we exploit throughout the book. 

5.2.3.2. Left-Sided Complex Exponentials 

A left-sided complex exponential sequence 

h4 [n] == -a"u[-n-1] 

has a z-transfonn given by 

-I .. .. 

H4(Z) =- I a"z-" =-ra-"zn = 1- Ia-"zn 
n=-- n=I n=O 

1 -a-1z =1----= =---1-a-1z 1-a-1z l-az-1 

1 

(5.30) 

for I z 1<1 a I (5.31) 

This region of convergence (I z /<I a I) is typical of noncausal sign~ls (those that ~e no~zero 
for n < O ). Observe that Hiz) and H

4 
(z) are functionally identical and only differ m the 

region of convergence. In general, the region of convergence of a signal that is nonzero for 

-oo < n < oo is R1 <I z I< R2 • 

5.2.3.3. Inverse Z-Transform of Rational Functions 

Integrals in the complex plane such as Eq. (5.27) are not easy to do, bu~ fortunately they ai:e 
not necessary for the special case of H(z ) being a rational p~lynoi:ual tra~sform. In ~JS 

case. partial fraction expansion can be used to decompose the signal mto a lmear combma­

tion of signals like hi[n], hin] and h4 [n] as in Table 5.4. 

Amazon/VB Assets 
Exhibit 1012 

Page 239



214 
Digital Sign~ 

OCfSsfng 

For example, 

H 2+8z-1 

5 ( z) = 2 5 -1 3 -2 - z - z 

has as roots of its denominator z = 3, -1 I 2. Therefore it can be decomposed as 

H(z)= A + B =(2A+2B)+(A-6B)z-1 

5 1-3z-1 l+(l/2)z-l 2-sz-1 -3z-2 

so that A and B are the solution of the following set of linear equations: 

2A+2B =2 

A-6B=8 

whose solution is A= 2 and B = -1 , and thus Eq. (5.33) is expressed as 

(5.32) 

(5.33) 

(5.34) 

(5.35) 

However, we cannot compute the inverse z-transfonn unless we know the region of 
convergence. If, for example, we are told that the region of convergence includes the unit 
circle (necessary for the system to be stable), then the inverse transform of 

H (z)-
1 

4 -1-3z-1 
(5.36) 

must have a region of convergence of I z I< 3 according to Table 5.4, and thus be a left-sided 
complex exponential: 

(5.37) 

and the transform of 

H (z)=--
1
-~ 3 l+(l/2)z-1 

(5.38) 

4 d th s be a right· 
must have a region of convergence of 1 / 2 <I z I according to Table 5. , an u 
sided complex exponential: 

12:i[n] = (-l/2Yu[n] 

so that 

hs[n] =-2·3"u[-n-l]-(-l/2tu[n] 

(5.39) 

(5.40) 
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While we only showed an example here, the method used generalizes to rational trans­
fer functions with more poles and zeros. 

5.2.4. Properties of the Z- and Fourier Transforms 

In this section we include a number of properties that are used throughout the book and that 
can be derived from the definition of Fourier and z-transforms (see Table 5.5). Of special 
interest are the convolution property and Parseval's theorem, which are described below. 

5.2.4.1. The Convolution Property 

The z-transform of y[n], convolution of x[n] and h[n], can be expressed as a function of 
their z-transforms: 

Y(z)= 1 y(n)z-• = J;.(.t x(k]h[n-k] }-• 

= J xe{t h[n-w· )= J xe{t h[nJz~··» J (5.41) 

.. 
= L x[k]z-k H(z) = X(z)H(z) 

k=--oe 

which is the fundamental property of L TI systems: "The z-transform of the convolution of 
two signals is the product of their z-transforms." This is also known as the convolution 
property. The ROC of Y(z) is now the intersection of the ROCs of X(z) and H(z) and 
cannot be empty for Y(z) to exist. 

Likewise, we can obtain a similar expression for the Fourier transforms: 

(5.42) 

A dual version of the convolution property can be proven for the product of digital 
signals: 

1 . . 
x[n]y[n] H -X(e'Q)) * Y(e'"') 

21t' 
(5.43) 

whose transform is the continuous convolution of the transforms with a scale factor. The 
convolution of functions of continuous variables is defined as 

y(t) = x(t) * h(t) = J..:. x(-r)h(t--r)d-r (5 .44) 

Note how this differs from the discrete convolution of Eq. (5.12). 
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5.2.4.2. Power Spectrum and Parseval's Theorem 

Let's define the autocorrelation of signal x[n] as 

Ro:[n] = i x[m+ n]x*[m] = f x[/]x· [-(n-/)] = x[n]* x
0

[-n] 
m=- Ir::-

(5.45) 

where the superscript asterisk (*) means complex conjugate
5 

and should not be confused 
with the convolution operator. 

Using the fundamental property of LTI systems in Eq. (5.42) and the symmet 
. . , S() ryprop-

erties in Table 5.5, we can express its Founer trans,orm :u co as 

S (m) = X(w)X'(w) =IX(co)l
1 

:o: (5.46) 

which is the power spectrum. The Fourier transform of the autocorrelation is the power 

spectrum: 

Ru[n] H S.a(co) (5.47) 

or alternatively 

(5.48) 

If we set n = 0 in Eq. (5.48) and use Eq. (5.45) and (5.46), we obtain 

(5.49) 

which is called Parseval's theorem and says that we can compute the signal's energy in the 
time domain or in the frequency domain. 

5.3. DISCRETE-FREQUENCY TRANSFORMS 

Here we describe transforms, including the DFf, DCT and FFf, that talce our discrete-tiJDC 
• J • • th natural signa mto a discrete frequency representation. Discrete-frequency transforms are e 

transfonn for periodic signals, though we show in Section 5.7 and Chapter 6 how tbey are 
also useful for aperiodic signals such as speech. 

s If z = x + Jy = Arif , its complex conjugate is defined as z • = x - jy = Ae-11• 
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Table 5.5 Properties of the Fourier and z-transforms. 

Propertv Sienal Fourier Transform z-Transform 
Linearity ax, [ n] + bx~ [ n] aX1 (e1c~) + bX2(e1"') aX,(z)+bX,(z) 

x[ n] X(e-ia>) X(z-1
) 

x·[n] x·(e-1"') x ·(z·) 

x·[-n] X ' (e1"') x·o1 z·) 

X(e1"') is Hermitian 

X(e-1"') = x·(e1a,) 

Symmetry IX(e1"')1 is even
6 

x[n] real Re{X(e1"')} is even X(z")=X·(z) 

arg { X(e1a,)} is odd7 

Irn{X(eia>)} is odd 

Even{x[n]} Re{X(e1ru)} 

Odd{x[n]} j lm{X(e1w)} 

Time-shifting x[n-n0 ] X ( e1(JJ )e-101"" X(z)z-no 

x[n]ejc,i.,n X(ei1w~>) X(e-1~z) 

Modulation 
x[n]z~ X(z/ z0 ) 

x[n]*h[n] X(e1a,)H(eiOJ) X(z)H(z) 

Convolution x[n]y[n] - 1-X(e1a,)* Y(e1c.i) 
2tr 

Parseval' s .. S.a(ro) = IX(ro)l2 
X(z)X.(11 z") 

Theorem 
R_.Jn] = 2i x[m +n]x"[m] 

m~--o 

A discrete transfonn of a signal x[ n] is another signal defined as 

X[k] = T{x[n]} 
(5.50) 

Linear transforms are special transforms that decompose the input signal x( n] into a 

linear combination of other signals: 

-
x[n] = L X[k]q,k[n] 

k• -

'A function.l{x) is called even if and only if /(x) = /(-x) · 
1 A functionflx) is called odd if and only if f(x) =-f(-x) · 

(5.51) 
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where q,k[n] is a set of orthonormal functions 

with the inner product defined as 
(5.52) 

-
< 'Pt[n],<p,[n] >= L <pk[n]<P;[n] 

n=- (5.53) 

With this definition, the coefficients X[k] are the proiection of x[n] t 
J on o <p4[n]: 

X[k] =< x[n],<pk[n] > 

as illustrated in Figure 5.10. 

X,<p, 

q,, 

X 

Figure 5.10 Orthononnal expansion of a signal x[n] in a two-dimensional space. 

S.3.1. The Discrete Fourier Transform (DFT) 

If a xN[n] signal is periodic with period Nthen 

(5.54) 

(5.55) 

and the signal is uniquely represented by N consecutive samples. Unfortunately, since Eq. 
(5.23) is not met, we cannot guarantee the existence of its Fourier transform. The Discrete 
Fourier Transform (DFf) of a periodic signal xN[n] is defined as 

N-1 

XN[k]= LXN[n]e-i21rnklN 
na:O 

XN[n] = _!_ I'.x N[k ]ef2,rnk/N 

N kcO 

OS.k<N (5.56) 

OS.n<N (5.57) 

which are transform pairs. Equation (5.57) is also referred as a Fourier series expansion .. 
In Figure 5.11 we see the approximation of a periodic square signal with penod 

N = 100 as a sum of 19 harmonic sinusoids, i.e., we used only the first 19 XN[k] coeffi-
cients in Eq. (5.57). · 
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1.5,----.-----.-----.-----:----.,..---~ 

1 -

0.5 -

-0.5=-----:-:::------=-----.!.._------L----...L.---_J 
-150 -100 -50 0 50 100 150 

Figure 5.11 Decomposition of a periodic square signal with period l 00 samples as a sum of 19 
hannonic sinusoids with frequencies ru1 = 2trk /100. 

(5.58) 

Had we used 100 harmonic sinusoids, the periodic signal would have been reproduced 
exactly. Nonetheless, retaining a smaller number of sinusoids can provide a decent approxi­
mation for a periodic signal. 

5.3.2. Fourier Transforms of Periodic Signals 

Using the DFf, we now discuss how to compute the Fourier transforms of a complex expo­
nential, an impulse train, and a general periodic signal, since they are signals often used in 
DSP. We also present a relationship between the continuous-frequency Fourier transform 

and the discrete Fourier transform. 

5.3.2.1. The Complex Exponential 

One of the simplest periodic functions is the complex exponential x[n] =e10\J" . Since it has 
infinite energy, we cannot compute its Fourier transform in its strict sense. Since such sig­
nals are so useful, we devise an alternate formulation. 

First, let us define the function 

d ( 
-{I/~ 0 ~ ro < ~ 

A ro)-
0 otherwise 

which has the following property 

J:d6 (ro)dro=l 

for all values of ~ > 0 . 

(5.59) 

(5.60) 
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ll ls useful to define the continuous delta function o(oJ), also known as th D· 
delta. as e trac 

o((J)) = Jim d0 (OJ) 
/l-,(/ (5.61) 

which is a singular function and can be seen in Figure 5.12. The Dirac delta is a fu . 
a continuous variable and should not be confused with the Kronecker delta, which i:ct,: of 
tion of a discrete variable. a nc-

Using Eqs. (5.59) and (5.61) we can then see that 

r: X(OJ)O((J))d(J) = ii,Tof X(w)dt>(OJ)dOJ = X(O) 

and similarly 

[. X(OJ)O(OJ-li>0 )dro = X((J)0 ) 

so that 

because the integrals on both sides are identical. 
Using Eq. (5.63), we see that the convolution of X(ro) and 8(ro-ro0 ) is 

X(a>) *o(ro-OJo) = J.: X(u)o(OJ-C.00 -u)du = X(a>-ro0 ) 

(5.62) 

(5.63) 

(5.64) 

(5.65) 

For the case of a complex exponential, inserting X(c.o) = e1""' into Eq. (5.63) results in 

J.: o(a>-a>o)ej(J)ndc.o =fr(4,n 

By comparing Eq. (5.66) with (5.20) we can then obtain 

ei%n H27ro(CO-lq,) 

(5.66) 

(5.67) 

so that the Fourier transfonn of a complex exponential is an impulse concentrated at fre· 
quency ro0 • 

(JJ 

Figure 5.12 Representation of the o(w) function and its approximation dt,(CJ) · 
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5.3.2.2. The Impulse Train 

Since the impulse train 

.. 
P.~.[n] = L 8[n-kN] 

k=-

is periodic with period N, it can be expanded in Fourier series according to (5.56) as 

f\.[k] = 1 

221 

(5.68) 

(5.69) 

so that using the inverse Fourier series Eq. (5.57), PN[n] can alternatively be expressed as 

p..,,[n] = ..!_ f ei2irkn1N 
N k=O 

(5.70) 

which is an alternate expression to Eq. (5.68) as a sum of complex exponentials. Taking the 
Fourier transform of Eq. (5.70) and using Eq. (5.67) we obtain 

2 N-1 

PN(e1°') =__!!_ I.o(w-2nkl N) 
N k=O 

(5.71) 

which is another impulse train in the frequency domain (See Figure 5.13). The impulse train 
in the time domain is given in terms of the Kronecker delta, and the impulse train in the fre­
quency domain is given in terms of the Dirac delta . 

.. r .... I .... I ... t t t 
Figure 5.13 An impulse train signal and its Fourier transform, which is also an impulse train. 

5.3.2.3. General Periodic Signals 

We now compute the Fourier transform of a general periodic signal using the results of Sec­
lion 5.3.2.2 and show that. in addition to being periodic, the transform is also discrete. Given 
a periodic signal xN[n] with period N, we define another signal x[n]: 

x[n] = {xN
0
[n] 0 5. n < N 

otherwise 

so that 

xN[nJ= f x[n-kN]=x[n]* f 8[n-kN]=x[n]*PN[n] 
k=-- k=--

(5.72) 

(5.73) 
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which is the convolution of x[n] with an impulse train p [ ] · E . 
of finite length, it has a Fourier transform X(ef(J)) Nun. as mh q. (S,68). Since x[n] i 

Jw .(J) . . smg t e conv l . s 
XN(e ) = X(e' )PN(e'w), where PN(eJ(J)) is the Fourier transfo f o ut1on property 
Eq. (5.71), we obtain another impulse train: rm 

O 
PN[n] as given by 

(5.74) 

Therefore the Fourier transform X ~ ( e1(J)) of a periodic si 1 
in terms of samples mk = 21rk / N, spaced 21t' / N apart of the Fgna _xdn] can be expressed 

. . , ouner transfonn X(e1°') 
x[n], one penod of the signal x.v[n]. The relationships between x[n] x [ ] -111 of 
XN(e101 ) are shown in Figure 5.14. ' N n • X(e') and 

x[n] 

?rrIIr? /\· 
xN[n] 

?r IIIr??r IIIh~ 
Figure 5.14 Relationships between finite and periodic signals and their Fourier transforms. On 
one hand, x[n] is a length N discrete signal whose transform X(e1(J)) is continuous and peri­
odic with period 21r . On the other hand, X;v [ n] is a periodic signal with period N whose trans­
form X N ( e101) is discrete and periodic. 

5.3.3. The Fast Fourier Transform (FFT) 

There is a family of fast algorithms to compute the DFf, which are called ;ast fo~rier 
Transforms (FFf). Direct computation of the DFf from Eq. (5.56) requires N· operanons, 
assuming that the trigonometric functions have been pre-computed. The FFf algori~m only 
requires on the order of N log

2 
N operations, so it is widely used for speech proces5mg. 

5.3.3.1. Radix-2FFT 

Let's express the discrete Fourier transform of x[n] 

N-1 N-1 

X[k] = L,X[n]e-j21fnWJ = I,x[n]w;• O~k< N 
(5.15) 

n=O n=O 

--
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where we have defined for convenience 

(5.76) 

Equation (5.75) requires N 2 complex multiplies and adds. Now, let's suppose N is 
even, and let /[n] = x[2n] represent the even-indexed samples of x[n], and 
g[n] = x[211 + lj the odd-indexed samples. We can express Eq. (5.75) as 

S / 2-1 N/2-1 

X[k] = I .f[n]W/\ + W} I g[nJW:;.~2 = F[kj+ w,~G[kj (5.77) 
11::10 11=0 

where F[k] and G[k] are the N/2 point DFfs of f[n] and g[n], respectively. Since both 
F[k] and G[k] are defined for 0:Sk<N/2, we need to also evaluate them for 
N 12 :S k < N , which is straightforward, since 

F[k+ N /2] = F[kj 

G[k + N 12] = G[k] 

(5.78) 

(5.79) 

If N/2 is also even, then both /[n] and g[n] can be decomposed into sequences of 
even and odd indexed samples and therefore its OFT can be computed using the same proc­
ess. Furthermore, if N is an integer power of 2, this process can be iterated and it can be 
shown that the number of multiplies and adds is N log2 N, which is a significant saving 
from N 2

• This is the decimation-in-time algorithm and can be seen in Figure 5.15. A dual 
algorithm called decimation-in-frequency can be derived by decomposing the signal into its 
first N/2 and its last N/2 samples. 

5.3.3.2. Other FFT Algorithms 

Although the radix-2 FFf is the best known algorithm, there are other variants that are faster 
and are more often used in practice. Among those are the radix-4, radix-8, split-radix and 
prime-factor algorithm. 

The same process used in the derivation of the radix-2 decimation-in-time algorithm 
applies if we decompose the sequences into four sequences: J;[n]=x[4n]. 
J;[n] = x[4n+ I], J;[n] = x[4n+2], and f 4 [n] = x[4n+3]. This is the radix-4 algorithm, 
which can be applied when N is a power of 4, and is generally faster than an equivalent 
radix-2 algorithm. 

Similarly there are radix-8 and radix-16 algorithms for Nbeing powers of 8 and 16 re­
spectively, which use fewer multiplies and adds. But because of possible additional control 
logic, it is not obvious that they will be faster, and every algorithm needs to be optimized for 
a given processor. 

There are values of N, such as N = 128, for which we cannot use radix-4, radix-8 nor 
radix-16, so we have to use the less efficient radix-2. A combination of radix-2 and radix-4, 
called split-radix [5], has been shown to have fewer multiplies than both radix-2 and radix-
4, and can be applied to N being a power of 2. 
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Finally, another possible decomposition is N = p,p2 ···A with p bein . 
· fi l · h [2) Wh'I th. 1 g pnme num bers. This leads to the prime- actor a gorll m . 1 e 1s family of algorith · 

similar number of operations as the algorithms above, it offers more flexibility 1- msh offe~ a 
n t e choice 

of N. 

5.3.3.3. FFT Subroutines 

Typically, FFT subroutines are computed in-place to save memory and have the form ff 
. . ) h d . t ( float *xr, float *xi, int n w ere xr an xi are the real and imagin 

parts respectively of the input sequence, before calling the subroutine, and the real : 
imaginary parts of the output transfonn, after returning from it. C code that implements 
decimation-in-time radix-2 FFT of Figure 5.15 is shown in Figure 5.16. a 

The first part of the subroutine in Figure 5.16 is doing the so-called butterflies, which 
use the trigonometric factors, also called twiddle factors. Normally, those twiddle factors are 
pre-computed and stored in a table. The second part of the subroutine deals with the fact that 
the output samples are not linearly ordered (see Figure 5.15); in fact, the indexing has the 
bits reversed, which is why we need to do bit reversal, also called descrambling. 

x(O] o : ~-~ X[O] 

[210><::: "'A t;··X[I] 

X w.- X>f\\/ I~ .. 
x(4]c~/~W}/'I 
x[6] c, ~.. w:• xx1:J:•X[J] 

::: --=- - --·- • ?/XX! :::: 
x(3Jc~X'X/ /\! X{6] 

wo - /~ w/ / Y!:i 
x[7] C W o N ~----~ X[7] 

N WN W N 

Figure 5.15 Decimation in time radix-2 algorithm for an 8-point FFf. 
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void fft2 (float *x, float *y, int n, int m) 
{ 

int nl, n2, i, j, k, l; 
float xt, yt, c, s; 
double e, a; 

/* Loop through all m stages*/ 
n2 = n; 
for (k ~ O; k < m; k++) { 

nl = n2; 
n2 = n2 / 2; 
e = PI2 / nl; 
for ( j = 0; j < n2; j ++) { 

/* Compute Twiddle factors*/ 
a= j * e; 
c = (float) cos (a); 
s = (float) sin (a); 

/* Do the butterflies*/ 
for (i = j; i < n; i += nl) 

l = i + n2; 
xt = x{i] - x[l]; 
x{i] = x[il + x[l]; 
yt = y{i] - y[l]; 
y[i) = y(i] + y[l); 
x[l) = c * xt + s • yt; 
y[l) = C * yt - S * Xt; 

/* Bit reversal: descrambling*/ 
j = 0; 
for (i = O; i < n - 1; i++) { 

if (i < j) { 

} 

xt = x(j I; 
x(j] = xUJ; 
x[i] = xt; 
xt = y[j I; 
y[j] = y{i); 
y[iJ = xt; 

k = n / 2; 
while (k <= j) { 

j -=- k; 
k /= 2; 

j += k; 

Figure 5.16 C source for a decimation-in-time radix-2 FFf. Before calling the subroutine, x 
and y contain the real and imaginary parts of the input signal respectively. After returning from 
the subroutine, x and y contain the real and imaginary parts of the Fourier transfonn of the in­
put signal. n is the length of the FFT and is related to m by n = 2"' . 

225 
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To compute the inverse FFT an additional routine is not necessary· 
1
·t b 

' can ecom with the subroutine above. To see that, we expand the DFT in Eq. (S 56) . . PUted 
. . . into Its real and 
1magmary parts: 

N-1 

XR[k]+ jX,[k] = ,I(xin]+ Jx,[n])e-f2irnk!N 
n=O 

take complex conjugate and multiply by j to obtain 

N-1 

X,[k]+ JXR[k] = ,I(x,[n]+ jxa[n])e12irnk!N 
n=O 

which has the same functional form as the expanded inverse DFT of Eq. (5.57) 

xR[k]+ jx1[k] =_!__ I(XR[n]+ JX,[n])e12
irn.tlN 

N n .. o 

(5.80) 

(5.81) 

(5.82) 

so that the inverse FFf can be computed by calling f ft (xi, xr, n) other than the 
(1/N) factor. 

Often the input signal x[n] is real, so that we know from the symmetry properties of 
Table 5.5 that its Fourier transform is Hermitian. This symmetry can be used to compute the 
length-N FFf more efficiently with a length (N/2) FFT. One way of doing so is to define 
J[n] = x[2n] to represent the even-indexed samples of x[n], and g[n] = x[2n+ I] the odd­
indexed samples. We can then define a length (N/2) complex signal h[n] as 

h[n] = J[n]+ jg[n] = x[2n]+ jx[2n + I] 

whose DFT is 

H[k] = F[k]+ jG[k] = HR[k]+ jH,[k] 

Since J[n] and g[n] are real, their transforms are Hermitian and thus 

H"[-k] = F"[-k]- jG"[-k] = F[k]- jG[k] 

(5.83) 

(5.84) 

(5.85) 

Using Eqs. (5.84) and (5.85), we can obtain F[k] and G[k] as a function of HR[k] and 
H 1[k]: 

F[k]= H[k]+2H
0

[-k] =( HR[k]~HR[-k]I+ 1( HAk]-2H,[-k]I 

' / \, ., 

(5.86) 

(5.87) 

As shown in Eq. (5.77), X[k] can be obtained as a function of F[k] and G[k] 
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Discrete-Frequency Transforms 227 

X[k] = F[k]+ G[k]W;k (5.88) 

so that the DFT of the real sequence x[n] is obtained through Eqs. (5.83), (5.86), (5.87) and 
(5.88). The computational complexity is a length (N/2) complex FFT plus N real multiplies 
and 3N real adds. 

5.3.4. Circular Convolution 

The convolution of two periodic signals is not defined according to Eq. (5.12). Given two 
periodic signals x1 [ n] and x2 [n] with period N. we define their circular convolution as 

N-1 

y[ n] = x1 [ n] ® x2 [ n] = L, x1 [ m ]x2 [ n - m] = L x. [ m ]x2 [ n - m] (5.89) 
m=O m=<N> 

where m =< N > in Eq. (5.89) means that the sum lasts only one period. In fact, the sum 
could be over any N consecutive samples, not just the first N. Moreover, y{n] is also peri­
odic with period N. Furthermore, it is left to the reader to show that 

(5.90) 

i.e., the DFf of y[n] is the product of the DFTs of x1(n] and x2 [n]. 
An important application of the above result is the computation of a regular convolu­

tion using a circular convolution. Let x1[n] and x2 [n] be two signals such that x1[n] = 0 
outside Os; n < N,, and x2(n] = 0 outside Os; n < N2 • We know that their regular convolu­
tion y[ n] = x1 [ n] * x2 [ n] is zero outside O s; N, + N2 - I . If we choose an integer N such that 
N ~ N1 +N2 -1, we can define two periodic signals .x1[n] and x2 [n] with period N such 
that 

(5.91) 

_ [ ] -{X2[n] x, n -
- 0 

(5.92) 

where x
1
[n] and x

2
[n] have been zero padded. It can be shown that the circular convolution 

ji[n]=.x1[n](:i?>.x
2
[n] is identical~o y[nl for 9sn<N, which means that y[n] can be ob­

tained as the inverse DFr of Y[k]=X1[k]X2 [k]. This method of computing the regular 
convolution of two signals is more efficient than the direct calculation when N is large. 
While the crossover point will depend on the particular implementations of the FFT and 
convolution, as well as the processor, in practice this has been found beneficial for 
N ~ 1024. 
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5.3.5. 
The Discrete Cosine Transform (DCT) 

. C . Transfonn (OCT) is widely used for speech processing. It has se The Discrete osme . veral 
. . Th OCT-II C[k] of a real signal x[n] 1s defined by: 

defimaons. e 

C[k]= fx[n]cos(,rk(n+l/2)/N) for OSk<N 
ni::aO 

with its inverse given by 

x[n]=J..{C[0]+2LC[k]cos(nk(n+l/2)!N)'} for OSn<N 
N k~I 

(5.93) 

(5.94) 

The DCT-11 can be derived from the OFT by assuming x[n] is a real periodic se­
quence with period 2N and with an even symmetry x[n]=x[2N-l-n]. It is left to the 
reader to show, that X[k] and C[k] are related by 

X[k]=2e1Kl 12NC[k] for OSk<N 

X[2N-k]=2e-JdliNC[k] for OSk<N 

(5.95) 

(5.96) 

It is left to the reader to prove Eq. (5.94) is indeed the inverse transform using Eqs. 
(5.57), (5.95), and (5.96). Other versions of the OCT-II have been defined that differ on the 
normalization constants but are otherwise the same. 

There are eight different ways to extend an N-point sequence and make it both peri­
odic and even, such that can be uniquely recovered. The DCT-II is just one of the ways, with 
three others being shown in Figure 5. J 7. 

The DCT-Il is the most often used discrete cosine transform because of its energy 
compaction, which results in its coefficients being more concentrated at low indices than the 
DFT. This property allows us to approximate the signal with fewer coefficients [10]. 

(c) 
(d) 

Figure 5.17 Four ways to ext . 
even symmetry Th fi end a four-pomt sequence x[n] to make it both periodic and have 
and DCT-IV re;pec:v•g

1
ures in (a), (b), (c) and (d) correspond to the OCT-I, OCT-II, OCT-Ill 

e y. 
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