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w with highest forward probability is then chosen as the reco · d 
d d HMM gmze word. When subword 

models are use . wor s can be easily constructed by concate t· . . h na mg correspondmg 
Phoneme HMMs 01 ot er types of subword HMMs according to th d d . . e proce ure escnbed in 
Chapter 9. 

12.2.4. Continuous Speech Recognition 

Search in continuous ~peech recogniti~n is rather complicated, even for a small vocabulary. 
since the search algonthm has to consider the possibility of each word starting at any arbi­
trary time frame. Some of the earliest speech recognition systems took a two-stage approach 
towards continuous speech recognition, first hypothesizing the possible word boundaries and 
then using pattern matching techniques for recognizing the segmented patterns. However, 
due to significant cross-word co-articulation, there is no reliable segmentation algorithm for 
detecting word boundaries other than doing recognition itself. 

Let's illustrate how you can extend the isolated-word search technique to continuous 
speech recognition by a simple example, as shown in Figure 12.10. This system contains 
only two words, w1 and w2• We assume the language model used here is an uniform unigram 
( P( w,) = P( W2) = 1/2 ). 

It is important to represent the language structures in the same HMM framework. In 
Figure 12.10, we add one starting state S and one collector state C. The starting state has a 
null transition to the initial state of each word HMM with corresponding language model 
probability (1/2 in this case). The final state of each word HMM has a null transition to the 
collector state. The collector state then has a null transition back to the starting state in order 
to allow recursion. Similar to the case of embedding the phoneme (subword) HMMs into the 
word HMM for isolated speech recognition, we can embed the word HMMs for w. and w2 
imo a new HMM corresponding to structure in Figure 12.10. Thus, the continuous speech 
search problem can be solved by the standard HMM formulations. 

HMM of 
w, 

HMM of 

w2 

~ 
r· · · 1 k with two words w, and 
igure 12.10 A simple example of continuous speech recognition as . h t" state 

wi· A uniform unigram language model is assumed for these words. State S is trde st~ mg 
While state C is a collector state to save fully expanded links between every wo patr. 
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The composite HM Ms shown in Figure 12. ~ 0 ~an ~e viewed as a stochastic finite state 
network with transition probabilities and output d1stnbut1ons. The search algorithm is essen­
tially producing a match between the acoustic observation X and a path~ in the stochastic 
finite state network. Unlike isolated _word recognition, continuous speech recognition needs 
to find the optimaJ word sequence W. Th: Viterbi algorithm is clearly a natural choice for 
this task since the optimal state sequence S corresponds to the optimal word sequence w. 
Figure 12.11 shows the HMM Viterbi trellis computation for the two-word continuous 
speech recognition example in Figure 12.10. There is a cell for each state in the stochastic 
finite state network and each time frame t in the trellis. Each cell c •. , in the trellis can be 
connected to a cell corresponding to time t or t+ 1 and to states in the stochastic finite state 
network that can be reached from s. To make a word transition, there is a nuH transition to 
connect the final state of each word HMM to the initial state of the next word HMM that can 
be followed. The trellis computation is done time-synchronously from left to right, i.e., each 
cell for time tis completely computed before proceeding to time t+ I . 

• • • @ 
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0 2 3 

Time 
Figure 12.11 HMM trellis for c . . 
the final state of the d HM on_tmuous speech recogrution example in Figure 12.JO. When 
from it to the initiaJ st~or f th M 15 r~ched, a null arc (indicated by a dashed line) is linked 

a e o e followmg word. 

path here means a sequence of states and transiu'o 
ns. 
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The state-space is a good indicator of search complexity. Since the HMM representation for 
each word in the lexicon is fixed, the state-space is detennined by the language models. Ac­
cording to Chapter I I, every language model (grammar) is associated with a state machine 
(automata). Such a state machine is expanded to form the state-space for the recognizer. The 
states in such a state machine are referred to as language models states. For simplicity, we 
will use the concepts of state-space and language model states interchangeably. The expan­
sion of language model states to HMM states will be done implicitly. The language model 
states for isolated word recognition are trivial. They are just the union of the HMM states of 
each word. In this section we look at the language model states for various grammars for 
continuous speech recognition. 

12.3.1. Search Space with FSM and CFG 

As described in Chapter 8, the complexity for the Viterbi algorithm is O(N2T), where N is 
the total number of states in the composite HMM and Tis the length of input observation. A 
full time-synchronous Viterbi search is quite efficient for moderate tasks (vocabulary :S 
500). We have already demonstrated in Figure 12.11 how to search for a two-word continu­
ous speech recognition task with a uniform language model. The unifonn language model, 
which allows all words in the vocabulary to follow every word with the same probability, is 
suitable for connected-digit task. In fact, most small vocabulary tasks in speech recognition 
applications usually use a finite state grammar (FSG). 

Figure 12.12 shows a simple example of an FSM. Similar to the process described in 
Sections 12.2.3 and I 2.2.4, each of the word arcs in an FSG can be expanded as a network 
of phoneme (subword) HMMs. The word HMMs are connected with null transitions with 
the grammar state. A large finite state HMM network that encodes all the legal sentences 
can be constructed based on the expansion procedure. The decoding process is achieved by 
performing a time-synchronous Viterbi search on this composite finite state HMM. 

. In practice, FSGs are sufficient for simple tasks. However, when an FSG is made to 
sa1Jsfy the constraints of sharing of different sub-grammars for compactness and support for 
dynamic modifications, the resulting non-deterministic FSG is very similar to context-free 
~rammar (CFG) in tenns of implementation. The CFG grammar consists of a set of pr~duc­
llons or rules, which expand nonterminals into a sequence of terminals and nontennmaJs. 
Nomenninals in the grammar tend to refer to high-level task-specific concepts such as dates, 
!lames, and commands. The terminals are words in the vocabulary. A grammar also has a 
non-tenni I d . na es1gnated as its start state . 

. Although efficient parsing algorithms, like chart parsing (described in ~hapter 11 ),_ are 
availabJ_e for CFG, they are not suitable for speech recognition, whic~ require_s _ left-to-ng~: 
r;ocessing. A context-free grammar can be formulated with a recursive tranSll~On n~~w;.n 

TN). RTNs are more powerful and complicated than the finite state machines escn e , 

Amazon/VB Assets 
Exhibit 1012 

Page 639



614 Basic Search Algorithms 

Chapter 11 because they allow arc labels to refer to other networks as well as words. We use 
Figure 12.13 to illustrate how to embed HMMs into a recursive transition network. 

Figure 12.13 is an RTN representation of the following CFG: 

S4 NP VP 

NP4 sam I sam davis 
VP 4 VERB tom 

VERB 4 likes I hates 

There are three types of arcs in an RTN, as shown in Figure 12.13: CAT(x), PUSH (x), 
and POP(x). The CA T(x) arc indicates that x is a terminal node (which is equivalent to a 
word arc). Therefore, all the CAT(x) arcs can be expanded by the HMM network for x. The 
word HMM can again be a composite HMM built from phoneme (or subword) HMMs. 
Similar to the finite state grammar case in Figure 12.12, each grammar state acts as a state 
with incoming and outgoing null transitions to connect word HMMs in the CFG. 

During decoding, the search pursues several paths through the CFG at the same time. 
Associated with each of the paths is a grammar state that describes completely how the path 
can be extended further. When the decoder hypothesizes the end of the current word of a 
path, it asks the CFG module to extend the path further by one word. There may be several 
alternative successor words for the given path. The decoder considers all the successor word 
possibilities. This may cause the path to be extended to generate several more paths to be 
considered, each with its own grammar state. 

/w/ 

/ah/ /silence/ 

/silence/ 
/w/ + /ah/ + It/ -------' (optional) 

i 
Seattle's j weather 

;--.-::..B....:co=stc..;;.o.c:.n'.::..s_~-1·v population ~ 
Denver's ~ latitude ~ 

Figure 12-12 An illustration of how to compile a speech recognition task with finite state 
grammar into a composite HMM. 
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S: 

PUSH(NP) PUSH(VP) n~ pop 

V ~0~ 
CAT(sam) 

CAT (davis) 

NP: 0 
CAT (Sam) 

CAT 

CAT (likes) CAT(tom) 
pop 

VP: ~ 

CAT (hates) 

Figure 12.13 A simple RTN example with three types of arcs: CAT(x), PUSH (x), POP. 

. Readers should note that the same word might be under consideration by the decoder 
in the context of different paths and grammar states at the same time. For example, there are 
t~o word arcs CAT (Sam) in Figure 12.13. Their HMM states should be considered as dis­
tinct states in the trellis because they are in completely different grammar states. Two differ­
ent Slates in the trellis also means that different paths going into these two states cannot be 
~erged. Since these two partial paths will lead to different successive paths, the search deci­
sion needs to be postponed until the end of search. Therefore, when embedding HMMs into 
word arcs in the grammar network, the HMM state will be assigned a new state identity, 
alth0ugh the HMM parameters (transition probabilities and output distributions) can still be 
shared across different grammar arcs. 

. Each path consists of a stack of production rules. Each element of the stack also con-
tains the position within the production rule of the symbol that is currently being explored. 
The search graph (trellis) started from the initial state of CFG (state S). When the path needs 
to be extended, we look at the next arc (symbol in CFG) in the production. When the search 
~nters a CAT(x) arc (terminal), the path gets extended with the terminal, an~ the HMM tre_l­
hs computation is performed on the CA T(x) arc to match the model x agamst the acoustic 
data. When the final state of the HMM for x is reached, the search moves on via the null 
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transition to the destination of the CAT(x) arc. When the search enters a PUSH(x) arc, it 
indicates a nontem1inal symbol x is encountered. In effect, the search is about to enter a sub­
network of x~ the destination of the PUSH(x) arc is stored in a last-in first-out (LIFO) stack. 
When the search reaches a POP arc that signals the end of the current network, the control 
should jump back to the calling network. In other words, the search returns to the state ex­
tracted from the top of the LIFO stack. Finally, when we reach the end of the production rule 
at the very bottom of the stack, we have reached an accepting state in which we have seen a 
complete grammatical sentence. For our decoding purpose, that is the state we want to pick 
as the best score at the end of time frame T to get the search result. 

The problem of connected word recognition by finite state or context-free grammars is 
that the number of states increases enormously when it is applied to more complex gram­
mars. Moreover it remains a challenge to generate such FSGs or CFGs from a large corpus, 
either manually or automatically. As mentioned in Chapter I 1, it is questionable whether 
FSG or CFO is adequate to describe natural languages or unconstrained spontaneous lan­
guages. Instead, n-gram language models are often used for natural languages or uncon­
strained spontaneous languages. In the next section we investigate how to integrate various 
n-grams into continuous speech recognition. 

12.3.2. Search Space with the Unigram 

The simplest n-gram is the unigram that is memory-less and depends only on the current 
word. 

II 

P(W) == IJ P(w,) (12.11) 
i•l 

Figure 12.14 shows such a unigram grammar network. The final state of each word 
HMM is connected to the collector state by a null transition, with probability 1.0. The col­
lector stale is then connected to the starting state by another null transition, with transition 
probability equal to 1.0. For word expansion, the starting state is connected to the initial 
state of each word HM:M ':)y a null transition, with transition probability equal to the corre­
sponding unigram probability. Using the collector state and starting state for word expansion 
allows efficient expansion because it first merges all the word-ending pathss (only the best 
one survives) before expansion. It can cut the total cross-word expansion from N 2 to N. 

' In graph ~earch, :t partial p:tth still under consider:ttion is :tlso referred to :ts a theory although we will use palhs 
instead of theories in lhis book. ' 
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1
)/ 

w, 

w2 

• 
• 
• 

P(WN) 
WN 

Figure 12.14 A unigram grammar network where the unigram probability is attached as the 
transition probability from starting state S to the first state of each word HMM. 

12.3.3. Search Space with Bigrams 

617 

When the bigram is used, the probability of a word depends only on the immediately preced­

ing word. Thus, the language model score is: 

n 

P(W)=P(w1 l<s>)fi P(w, I wi-1) (12.12) 

,~2 

where <s> represents the symbol of starting of a sentence. 
_Figure 12.15 shows a grammar network using a bigram language model. Because of 

~~ bigram constraint, the merge-and-expand framework for unigram search no longer ap­
p •es here. Instead, the bigram search needs to perform expand-and-merge. Thus, bigram 
e1':pansion is more expensive than unigram expansion. For a vocabulary size N, the bigram 
woul~-need N 2 word-to-word transitions in comparison to N for the unigram. -~ach wo

rd 

tran5it1on has a transition probability equal to the corresponding bigram probabihty. Fortu­
n_ately, the total number of states for bigram search is still proportional to the vocabulary 
s1zeN. 
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Figure 12.15 A bigram grammar network where the bigram probability P( wi I W;) is at­
tached as the transition probability from word W; to w1 [ 19]. 

Because the search space for bigram is kept manageable, bigram search can be imple­
mented very efficiently. Bigram search is a good compromise between efficient search and 
effective language models. Therefore, bigram search is arguably the most widely used 
search technique for unconstrained large-vocabulary continuous speech recognition. Particu­
larly for the multiple-pass search techniques described in Chapter 13, a bigram search is 
often used in the first pass search. 

12.3.3.1. Backoff Paths 

When the vocabulary size N is large, the total bigram expansion N 2 can become computa­
tionally prohibitive. As described in Chapter 11, only a limited number of bigrams are ob­
servable in any practical corpora for a large vocabulary size. Suppose the probabilities for 
unseen bigrams are obtained through Katz's backoff mechanism. That is, for unseen bigram 
P(w1 I w1), 

P(wi I w;) = a(w;)P(w1) (12.13) 

where a( w,) is the backoff weight for word w
1 

• 
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Using the backoff mechanism for unseen bigrams, the bigram expansion can be sig­
nificantly reduced [ 12]. Figure 12.16 shows the new word expansion scheme. Instead of full 
bigram expansion, only ob~~~ved bigrams are c_onnected by direct word transitions with cor­
respondent bigram probab1httes. F~r backo~~ b1grams, t~e last state of word w1 is first con­
nected to a central backoff node w11h trans1t1on probability equal to backoff weight a(w,). 
The backoff node is then connected to the beginning of each word III with transition prob­
ability equal to its corresponding uni gram probability P( w1 ). Readeri should note that there 
are now two paths from w, to w.1 for an observed bigram P( w1 I w,). One is the direct link 
representing the observable bi gram P( wj I w,), and the other is the two-link backoff path 
representing a(w,)P(w

1
). For a word pair whose bigram exists, the two-link backoff path is 

likely to be ignored since the backoff unigram probability is almost always smaller than the 
observed bigram P( wi I w;) . Suppose there are only N6 different observable bigrams, this 
scheme requires Nh + 2N instead of N 2 word transitions. Since under normal circumstance 
Nb « N 2 , this backoff scheme significantly reduces the cost of word expansion. 

backoff node 

Figure 12.16 Reducing bigram expansion in a search by using the backoff node. In_ addition to 
· · d b' th last state of word w 1s first con-nonnal b1gram expansion arcs for all observe 1grams. e , . 

nected to a central backoff node with transition probability equal to backoff weight a(w!) · 

T 
· · f h o d w with its corresponding 

he backoff node is then connected to the begmnmg o eac w r 1 

unigramprobability P(w) [12). 

12.3.4. Search Space with Trigrams 

For a trigram language model, the language model score is: 

n 

P(W) = P( w
1 
1<s> )P( w

2 
l<s>, w1) TIP( w; I W;-2, w.--1) 

i:sl 

(12.14) 
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The search space is considerably more complex, as shown in Figure 12.17. Since the egu· 
!Va. 

lence grammar class is the previous two words w, and w1 • the total number of gramm 
states is N 2

• From each of these grammar states, there is a transition to the next word {l9]_ar 
Obviously, it is very expensive to implement large-vocabulary trigram search given 

the complexity of the search space. It becomes necessary to dynamically generate the tri­
gram search graph (trellis) via a graph search algorithm. The other alternative is to perform a 
multiple-pass search strategy, in which the. first-pass sear~h uses less detailed language 
models, like bigrams, to generate an n-best hst or word lattice, and then a second-pass de­
tailed search can use trigrams on a much smaller search space. Multiple-pass search strategy 
is discussed in Chapter 13. 

P(~l._ __ w_2_~1.------1~ 

Figure 1217 A · . . . ) is at· · tngram grammar network where the tngram probab1hty P(wj I w,, wi . 
tached to transition from grammar state word w w . to the next word w . Illustrated here is a 
tw d b " 1 i o-wor voca ulary, so there are four grammar states in the trigram network [19]. 
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12.3,5. How to Handle Silences Between Words 

Jn continuous speech r~cognition. there are unavoidable pauses (silences) between words or 
sentences. The pause 1s often referred to as silence or a non speech e t · · . . . - ven m continuous 
speech recogmtion: Acoust1cally, the pause is modeled by a silence model" that models 
bac~ground acoustic ~henom~na. Th~ silence model is usually modeled with a topology 
f1ex1ble. enough to accommod,lle a wide range of lengths, since the duration of a pause is 
arbitrary. 

It can be argued that silences are actually linguistically distinguishable events, which 
contribute to prosodic and meaning representation. For example, people are likely to pause 
more often in phrasal boundaries. However, these patterns are so far not well understood for 
unconstrained natural speech (particularly for spontaneous speech). Therefore, the design of 
almost all automatic speech recognition systems today allows silences occurring just about 
anywhere between two lexical tokens or between sentences. It is relatively safe to assume 
that people pause a little bit between sentences to catch breath, so the silences between sen­
tences are assumed mandatory while silences between words are optional. In most systems, 
silence is often modeled as a special lexicon entry with special language model probability. 
This special language model probability is also referred to as silence insertion penalty that is 
set to adjust the likelihood of inserting such an optional silence between words. 

It is relatively straightforward to handle the optional silence between words. We need 
only to replace all the grammar states connecting words with a small network like the one 
shown in Figure 12.18. This arrangement is similar to that of the optional silence in training 
continuous speech, described in Chapter 9. The small network contains two parallel paths. 
One is the original null transition acting as the direct transition from one word to another, 
while the other path will need to go through a silence model with the silence insertion pen­
alty attached in the transition probability before going to the next word. 

One thing to clarify in the implementation of Figure 12.18 is that this_ silence expan­
sion needs to be done for every grammar state connecting words. In the umgram gr~mmar 
network of Figure 12.14, since there is only one collector node to con~ect wo_rds, the silence 
expansion is required only for this collector node. On the other hand, m the bigram grammthar 
network of Figure 12.15, there is a collector node for every word before expanding to e 
next word. In this case the silence expansion is required for every collector node. For a vo­
cabulary size I V I , thi~ means there are I V I numbers of silence networks in the grammar 

~ h · b·gram search we cannot merge search network. This requirement lies in the ,act t at m 1 f 
paths before expanding into the next word. Optional silence can then be regardedfas Pfi~ oh 
th · needs to be done a ter mis -
. e search effort for the previous word, so the word expansion . wo ossible ronuncia-
ing the optional silence Therefore we treat each word as having t_ _P p -1 ·n 
. · , . Th' · omt integrates s1 ence 1 

lions, one with the silence at the end and one without. ,s viewp 
the word pronunciation network like the example shown in Figure 12· 1

9· 

~o . . nee models In that case, there ure several silence 
me researchers extend the context-dependent modeling to silc · · 

models bas •d . c on surrounding conte,i:ts. 
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w; ~ 
-------->0--------> 

/sill 

w; ~ ------ > 
Figure 12.18 Incorporating optional silence (a non-speech event) in the grammar search net­
work where the grammar state connecting different words is laced by two parallel paths. One 
is the original null transition directly from one word to the other, while the other first goes 
through the silence word to accommodate the optional silence. 

For efficiency reasons, a single silence is sometimes used for large-vocabulary con­
tinuous speech recognition using higher order n-gram language model. Theoretically, this 
could be a source of pruning errors.7 However, the error could tum out to be so small as to 
be negligible because there are, in general, very few pauses between word for continuous 
speech. On the other hand, the overhead of using multiple silences should be very minimal 
because it is less likely to visit those silence models at the end of words due to pruning. 

It/ luwl 

Figure 12.19 An example of treating silence as of the pronunciation network of word TWO. 
The shaded nodes represent possible word-ending nodes: one without silence and the other one 
with silence. 

12.4. TIME-SYNCHRONOUS VITERBI BEAM SEARCH 

When ~Ms are used for acoustic models, the acoustic model score (likelihood) used in 
sear~h 15 by definition the forward probability. That is, all possible state sequences must be 
considered. Thus, 

' Speech recognition errors d b- . . rs which ·u bed . . ue to su optimal search or heuristic pruning are referred to as pnmmg erro • 
wi escnbcd In detail in Chapter 13. 
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P(X I W) = L P(X,s~ I W) 
,r/1 possible .,~ 

(12.15) 

where the summation is to be taken over all possible state sequences s with the word se­
quence W unde_r consideration. Howeve~, under the trellis framework (as in Figure 12. 11 ), 
more bookkeeping must be performed smce we cannot add scores with different word se­
quence history. Since th~ goal. of decodin~ is to uncover the best word sequence, we could 
approximate the summation with the maximum to find the best state sequence instead. The 
Bayes' decision rule, Eq. (12.5), becomes 

(12. 16) 

Equation (12.16) is often referred to as the Viterbi approximation. It can be literally 
translated 10 "the most likely word sequence is approximated by the most likely state se­
quence." Viterbi search is then sub-optimal. Although the search results by using forward 
probability and Viterbi probability could, in principle, be different, in practice this is rarely 
the case. We use this approximation for the rest of this chapter. 

The Viterbi search has already been discussed as a solution 10 one of the three funda­
mental HMM problems in Chapter 8. It can be executed very efficiently via the same trellis 
framework. To briefly reiterate, the Viterbi search is a time-synchronous search algorithm 
that completely processes time t before going on to time t+ 1. For time 1, each state is up­
dated by the best score (instead of the sum of all incoming paths) from all states in at time 
t-1. This is why it is often called time-synchronous Viterbi search. When one update occurs, 
it also records the backtracking pointer to remember the most probable incoming state. At 
the end of search, the most probable state sequence can be recovered by tracing back th~se 
backtrnck.ing pointers. The Viterbi algorithm provides an optimal solution for handhng 
nonlinear time warping between hidden Markov models and acoustic ?~servati~n, ~~rd 

boundary detection and word identification in continuous speech recognition. This unified 
Viterbi search algorithm serves as the basis for all search algorithms as described in the reSt 

of the chapter. 
It is necessary to clarify the backtracking pointer for time-synchronous Yiterbi search 

for continuous word recognition We are generally not interested in the optimal state se­
qu · · · I d sequence 
i e_nce for speech recognition.H Instead, we are only interested m the opuma wor word 

h
~d1cated by Eq. ( 12.16). Therefore we use the backtrack pointer just to rememberhthe d of 
1s1ory fo th ' be recovered at t e en 

r e current path so the optimal word sequence can h'story 
search. To be more specifi~ when we reach the final state of a word'. w~ create ad :o the 
OOde conta· · • . . d pend this history no e 

. . mmg the word identity and current time mdex an ap ode if it 
existing b k . d onto the successor n 

ac track pointer. This backtrack pointer is then passe 

------------ . ' While we . e are very useful in deriving phoneuc 
segrne . are not mterested in optimal state sequences for ASR. th Y 

Qlat10n h' h d 1 · ,g ASR systems. 
' w IC could provide important info1T11ation for eve opu 

Amazon/VB Assets 
Exhibit 1012 

Page 649



624 Basic Search Algorithms 

is the optimal path leading to the successor node for both intra-word and inter-word transi­
tion. The side benefit of keeping this backtrack pointer is that we no longer need to keep the 
entire trellis during the search. Instead, we only need space to keep two successive time 
slices (columns) in the trellis computation (the previous time slice and the current time slice) 
because all the backtracking infonnatio11 is now kept in the backtrack pointer. This simplifi­
cation is a significant benefit in the implementation of a time-synchronous Viterbi search. 

Time-synchronous Viterbi search can be considered as a breadth-first search with dy­
namic programming. Instead of performing a tree search algorithm, the dynamic program­
ming principle helps create a search graph where multiple paths leading to the same search 
state are merged by keeping the best path (with minimum cost). The Viterbi trellis is a repre­
sentation of the search graph. Therefore, all the efficient techniques for graph search algo­
rithms can be applied to time-synchronous Viterbi search. Although so far we have 
described the trellis in an explicit fashion-the whole search space needs to be explored 
before the optimal path can be found-it is not necessary to do so. When the search space 
contains an enonnous number of states, it becomes impractical to pre-compile the composite 
HMM entirely and store it in the memory. It is preferable to dynamically build and allocate 
portions of the search space sufficient to search the promising paths. By using the graph 
search algorithm described in Section 12.1.1, only part of the entire Viterbi trellis is gener­
ated explicitly. By constructing the search space dynamically, the computation cost of the 
search is proportional only to the number of active hypotheses, independent of the overall 
size of the potential search space. Therefore, dynamically generated trellises are key to heu­
ristic Viterbi search for efficient large-vocabulary continuous speech recognition, as de­
scribed in Chapter 13. 

12.4.1. The Use of Beam 

Based on Chapter 8, the search space for Viterbi search is O(NT) and the complexity is 
O(N2T), where N is the total number of HMM states and Tis the length of the utterance. 
For large-vocabulary tasks these numbers are astronomically large even with the help of 
dynamic programming. In order to avoid examining the overwhelming number of possible 
cells in the HMM trellis, a heuristic search is clearly needed. Different heuristics generate or 
explore portions of the trellis in different ways. 

A simple way to prune the search space for breadth-first search is the beam search de­
scribed in Section 12.1.3.2. Instead of retaining all candidates (cells) at every time frame, a 
threshold Tis used to keep only a subset of promising candidates. The state at time t with the 
lowest cost Dmin is first identified. Then each state at time t with cost > D - + T is dis­
carded from further consideration before moving on to the next time frame t.;t The use of 
the _bea~ alleviates the need to process all the cells. In practice, it can lead to substantial 
savings m computation with little or no loss of accuracy. . 

Al th0ugh beam search is a simple idea, the combination of time-synchronous Viterbi 
and beam search algorithms produces the most powerful search strategy for large­
vocabulary speech recognition. Comparing paths with equal length under a time-
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Time-Synchronous Viterbi Beam Search 625 

synchronous search framework ma~es beam search possible. That is, for two different word 
sequences W1 and W2 , the poste~1or probabilities P(W1 Ix~) and P(W2 Ix~) are always 
compared based on the same partial acoustic observation x~. This makes the comparison 
straightforward because the denominator P(x~) in Eq. (12.5) is the same for both terms and 
can be ignored. Since the score comparison for each time frame is fair, the only assumption 
of beam search is that an optimal path should have a good enough partial-path score for each 
time frame to survive under beam pruning. 

The time-synchronous framework is one of the aspects of Viterbi beam search that is 
critical to its success. Unlike the time-synchronous framework, time-asynchronous search 
algorithms such as stack decoding require the normalization of likelihood scores over fea­
ture streams of different time lengths. This, as we will see in Section 12.5, is the Achilles' 
heel of that approach. 

The straightforward time-synchronous Viterbi beam search is ineffective in dealing 
with the gigantic search space of high perplexity tasks. However, with a better understand­
ing of the linguistic search space and the advent of techniques for obtaining n-best lists from 
time-synchronous Viterbi search, described in Chapter 13, time-synchronous Viterbi beam 
search has turned out to be surprisingly successful in handling tasks of all sizes and all dif­
ferent types of grammars, including FSG, CFG, and n-gram [2, 14, 18, 28, 34, 38, 44]. 
Therefore, it has become the predominant search strategy for continuous speech recognition. 

12.4.2. Viterbi Beam Search 

To explain the time-synchronous Viterbi beam search in a formal way [3 I], we first define 
some quantities: 

D(t;s,; w) = total cost of the best path up to time t that ends in state s, of gram­

mar word state w. 

h(t;s,; w) = backtrack pointer for the best path up to time t that ends in state s, of 

grammar word state w. 

Readers should be aware that w in the two quantities above represents a grammar 
word state in the search space. It is different from just the word identity since lhe same wo~d 
c~uld occur in many different language model states, as in the trigram search space shown m 
Figure 12.17. 

There are two types of dynamic programming (DP} transition rules [30],_n~ely intra­
~d and inter-word transition. The intra-word transition is just like the Viterbi rule for 

Ms and can be expressed as follows: 

D(t;s,; w) = min{d(x s Is · w) + D(t-l;s,_,; w)} 
t • I 1-l • 

S,-i 

h(t;s,;w)=h(t-1 b. (t·s ·w)·w) 
, min , ,, ' 

(I 2.17) 

(12.18) 
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where d(x, .s, I s,_1; w) is the cost associated with taking the transition from state s to 

state s, while generating output observation x,, and bmin (t; s,; w) is the optimal prede~~~sor 
state of cell D(r;s,; w). To be specific, they can be expressed as follows: 

d{x,,s, ls,_1;w)=-logP(s, ls,_,;w)-logP(x, Js,;w) 

b""" (t; s,; w) = arg min {d(x, ,s, I s,_1; w) + D(t- l;s,_1; w)} ,.... 

(12.19) 

(12.20) 

The inter-word transition is basicaJly a null transition without consuming any observa­
tion. However. it needs to deal with creating a new history node for the backtrackin2 - -
pointer. Let's define F(w) as the final state of word HMM wand /( w) as the initial state of 
word HMM w. Moreover, state rt is denoted as the pseudo initial state. The inter-word tran­

sition can then be expressed as follows: 

D(r;l];w) =min{logP(wl v) +D(t;F(,");,·)} 
r 

(12.21) 

h(t;Tj, w) =(,·,,.., ,r) :: h(t ,F(v~ ); vu ) (12.22) 

where ,.!".>£ = arg~n {logP(w! v) +D(l;F(,·);\·)} and:: is a link appending operator. 
The time-synchronous Viterbi beam search algorithm assumes that all the incra-word 

transitions are e\"aluaced before inter-word null transitions take place. Toe same time index 
is used intentionally for inter-word transition since the null language model state rransition 
does not consume~ obser\"ation vector. Since lhe initial state J(....,/for word IDL\f wcould 
have a Self-transition. the cell D(r;l(w);w) might already have an active path. Therefore, 
we need to perform the follo\\ing check to ad\"ance the im-er-word transitions. 

if D(r;rr, w) < D(r;J(w); w) 
(12.23) 

D(r;J(w): w) = D(t; 1T, w) and h(t;l(w); w) = h(r; rr, w) 

The time-synchronous Viterbi beam search can be summarired as in Algorithm 12-6· 
For large-\"ocabulary s~h recognition, the experimenctl results show that only a small 
percentage of the entire search space (the beam) needs co be kepc for each time inter'"al 1 

without i~creasing error rates. Empirically, the be.am size has typically been found _t~ ~ 
be~,·ee~ ~% and 1 O'.l- of the entire search space. In Chapter 13 we d&--ribe srrategtes 0 

using different level of beams for more effectively pruning. 

1,, -~.:,. STACK DECODING (A• SR.\RCH) 

If some reliable heuristics are available to guide the decodimi:. the search can be done_ i~ a 
depth-firs f h. - - m1S1D!? . t as _ ion around the best path early on. instead of wasting effortS on unpro 10 
paths via the nme-synchronous beam search. Stack decoding rep~nts the best auempl 
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ALGORITHM 12.6: TIME-SYNCHRONOUS VITERBI BEAM SEARCH 

Step 1: Initialization: For all the grammar word states w which can start a sentence 
D(O;J(w);w) = 0 ' 

h(O;J(w); w) = null 

Step 2: Induction: For time t = I to T do 
For all active states do 
Intra-word transitions according to Eq. (12.17) and (12.18) 
D(t;s,;w) = ":!n{d(x,,s, I sH;w)+D(t-l;s,_

1
;w)} 

h(t;s,; w) = h(t-1,bmin (t;s,; w); w) 

For all active word-final states do 
Inter-word transitions according to Eq. ( 12.21 ), (12.22) and (12.23) 
D(t;71; w) = mJn{log P(w Iv)+ D(t;F(v); v)} 

h(t; 1]; w) == ( Vmin, I) :: h(t, F( Vmin ); Vmin) 

if D(t;r,; w) < D(t;J(w); w) 

D(t;J(w);w) = D(t;17; w) and h(t;I(w); w) = h(t;17; w) 

Pruning: Find the cost for the best path and decide the beam threshold 
Prune unpromising hypotheses 

Step 3: Termination: Pick the best path among all the possible final states of grammar at time 
T. Obtain the optimal word sequence according to the backtracking pointer h(t;17; w) 

use A* search instead of time-synchronous beam search for continuous speech recognition. 
Unfortunately, as we will discover in this section such a heuristic function h(•) (defined in 
~ection 12.1.3) is very difficult to attain in continuous speech recognition, so search aJgo­
nlhms based on A* search are in general less efficient than time-synchronous beam search. 

Srack decoding is a variant of the heuristic A* search based on the forward algorithm, 
~here lhe evaluation function is based on the forward probability. It is a tree search algo­
n~hm, which takes a slightly different viewpoint than the time-synchronous Viterbi search. 
Time-synchronous beam search is basically a breadth-first search, so it is crucial to control 
:: ;:mber of all ~ossible language model states as described i~ Section ~2.3. In a_ typical 

g ocabulary Viterbi search with n-gram language models, this number is determined by 
the eq · d. 

uivalent classes of language model histories. On the other hand, stack deco mg as a 
tree search algorithm treats the search as a task for finding a path in a tree whose branches 
correspaod to words in the vocabulary V non-tenninal nodes correspond to incomplete sen­
tences, and 1 · ' Th h tree has a constant bran . erminal nodes correspond to complete sentences. e searc . 

0 ill chmg factor of IVI, if we alJow every word to be followed by every word· Figure 12·2 
Ustrates s h [ J 9] uc a search tree for a vocabulary with three words · 
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628 Basic Search Algorithms 

An important advantage of stack decoding is its consistency with the forward­
backward training algorithm. Viterbi search is a graph search, and paths cannot be easily 
summed because they may have different word histories. In general, the Viterbi search finds 
the optimal state sequence instead of optimal word sequence. Therefore, Viterbi approxima­
tion is necessary to make the Viterbi search feasible, as described in Section 12.4. Stack 
decoding is a tree search, so each node has a unique history, and the forward algorithm can 
be used within word model evaluation. Moreover, all possible beginning and ending times 
(shaded areas in Figure 12.21) are considered [24J. With stack decoding, it is possible to use 
an objective function that searches for the optimal word string, rather than the optimal state 
sequence. Furthennore, it is in principle natural for stack decoding to accommodate long­
range language models if the heuristics can guide the search to avoid exploring the over­
whelmingly large unpromising grammar states. 

Figure 12.20 A stack d d · 
eco mg search tree for a vocabulary size of three [ I 9J. 
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By formul~ting st_ack decoding in. a tree search framework, the graph search algo­
rithms described 1~ Section I ~-1 can be direct!~ applied to stack decoding. Obviously, blind­
search methods, hke dep~h-firsl and breadth-first se.1rch, that do not take advantage of the 
goodness measure~nent of hO\.v close_ ~'e are getting to the goal. are usually computationally 
infeasible in practtcal speech recogn1tmn systems. A* search is clearly attractive for speech 
recognition, given the hope of a sufficient heuristic function to guide the tree search in a 
favorable direction without exploring too many unpromising branches and nodes. In contrast 
10 the Viterbi search. it is not time-synchronous and extends paths of different lengths. 

The search begins by adding all possible one-word hypotheses to the OPEN list. Then 
the best path is removed from the OPEN list, and all paths from it are extended, evaluated, 
and placed back in the OPEN list. This search continues until a complete path that is guaran­
teed to be better than all palhs in the OPEN list has been found. 

Unlike Viterbi search, where the acoustic probabilities be.ing compared are always 
based on the same partial input, it is necessary to compare the goodness of partial paths of 
different lengths to direct the A* tree search. Moreover, since stack decoding is done asyn­
chronously, we need an effective mechanism to determine when to end a phone/word 
evaluation and move on to the next phone/word. Therefore, the heart and soul of the stack 
decoding are clearly in 

I. Finding an effective and efficient heuristic function for estimating the future 
remaining input feature stream and 

2. Determining when to extend the search to the next word/phone. 

w. 

. d. Each grid poinl corresponds to a 
Figure 12.21 The forward trellis space for stack deco ing. nts the values contributing to 

. . Th I ded area represe 
trelhs cell in the forward computauon. e 5 1

~ word sequence w
1

, w
2

, w
3

, •• • [24 ]. 
the computation of the forward score for ere optimal 
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630 Basic Search Algorithms 

In the fo1lowing section we describe these two critical components. Readers will note that 
the solutions to these two issues are virtually the same-using a normalization scheme to 
compare paths of different lengths. 

12.5.1. Admissible Heuristics for Remaining Path 

The key issue in heuristic search is the selection of an evaluation function. As described in 
Section 12.1.3, the heuristic function of the path H N going through node N includes the cost 
up to the node and the estimate of the cost to the target node from node N. Suppose path H,., 
is going through node Nat time t; then the evaluation for path H N can be expressed as fol­
lows: 

f(H~) = g(H~ )+ h(H.~t) (12.24) 

where g(H~.) is the evaluation function for the partial path of H N up to time t, and 
h(H~r) is the heuristic function of the remaining path from t + l to T for path H N. The 
challenge for stack decoders is to devise an admissible function for h(•). 

According to Section 12.1.3.1, an admissible heuristic function is one that always un­
derestimates the true cost of the remaining path from t + 1 to T for path H,. . A trivially 
admissible function is the zero function. In this case, it results in a very large OPEN list. In 
addition, since the longer paths tend to have higher cost because of the gradually accumu­
lated cost, the search is likely to be conducted in a breadth-first fashion, which functions 
very much like a plain Viterbi search. The evaluation function g( •) can be obtained easily by 
using the HMM forward score as the true cost up to current time t. However, how can we 
find an admissible heuristic function h(•)? We present the basic concept here [19, 35J. 

The goal of h( •) is to find the expected cost for the remaining path. If we can obtain 
the expected cost per frame I.fl for the remaining path, the total expected cost, (T-t) *If/, is 
simply the product of I.fl and the length of the remaining path. One way to find such ex­
pected cost per frame is to gather statistics empirically from training data. 

l . After the final training iteration, perfonn Viterbi forced alignment with each 
training utterance to get an optimal time alignment for each word. 

2. Randomly select an interval to cover the number of words ranging from two 
to ten. Denote this interval as [i ... j]. 

3. Compute the average acoustic cost per frame within this selected interval ac­
cording to the following fonnula and save the value in a set A: 

• Viterbi forced alignment means that the Viterbi is perfomied on the HMM model constructed from tile known 
word transcription. The term "forced" is used because the Viterbi alignment is forced to be perfonned on 1he co~­
rect mode!. Viterbi forced alignment is a very useful tool in spoken language processing as it can provide the opti­
mal state-time alignment with the utterances. This detailed alignment can then be used for different purposes, 
including discriminant training, concatenated speech synthesis, etc. 
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_:!_1ogP(x{ I w; ... J) 
J-i 

where w, ... ; is the word string corresponding to interval [i ... j]. 

4. Repeat Steps 2 and 3 for the entire training set. 

s. Define V'niin and l/fm,: as the minimum and average value found in set A. 

631 

(12.25) 

Clearly, V'min should be a good under-estimate of the expected cost per frame for the 
future unknown path. Therefore, the heuristic function h(H.~7

) can be derived as: 

(12.26) 

Although ll'min is obtained empirically, stack decoding based on Eq. (12.26) will generally 
find the optimal solution. However, the search using l/f min usually runs very slowly, since 
Eq. (12.26) always under-estimates the true cost for any portion of speech. In practice, a 
heuristic function like I/fen,: that may over-estimate has to be used to prune more hypotheses. 
This speeds up the search at the expense of possible search errors, because l/1,,,

11 
should rep­

resent the average cost per frame for any portion of speech. 1n fact, there is an argument that 
one might be able to use a heuristic function even more than l/f avir. The argument is that 1/f avg 

is derived from the correct path (training data) and the average cost per frame for all paths 
during search should be more than 1/f because the paths undoubtedly include correct and 
, 't' ,wg 
mcorrect ones. 

12.5.2. When to Extend New Words 

Since stack decoding is executed asynchronously, it becomes necessary to detect when a 
phone/word ends, so that the search can extend to the next phone/word. If we have a coSt 

measure that indicates how well an input feature vector of any length matches the evalua~ed 
model sequence, this cost measure should drop slowly for the correct phone/word and nse 
~harply for an incorrect phone/word. In order to do so, it implies we must be able to compare 

YP01heses of different lengths. 
The first thing that comes to mind for this cost measure is simply the forwa~d co~t 

-logP(x' I , ) . . . · tic observation x b 1,s, 11>1 , which represents the hkehhood of producing acous . 1 

be
ased on word sequence wk and ending at state s . However, it is definitely not suitable 
cause it · d 1 1 Th" causes the search 

1 is eemed to be smaller for a shorter acoustic input vector. is 
o almost al . . rt" n errors Therefore, 
we ways prefer short phones/words, resulting m many mse 10 ·.b d b ve 
Th rnust derive some normalized score that satisfies the desired property descn e a 

O 
• 

enonnalized cost C(x;,s, I wt) can be represented as follows [6, 24]: 

Cr,;,,, I w;'J ~ -log[ P(x;,;: I wt)] =-log[P(x;,,, I w;') ]+1 Iogr 

Where y ( 0 . 
< r < 1 ) 1s a constant normalization factor. 

(12.27) 
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Suppose the search is now evaluating a particular word w* ; we can define Cmin (t) as 
the minimum cost for C(x; ,s, I w,') for all the states of wk , and. a= (I) as the maximum 
forward probability for P(x:,s, I wt) for all the states of w• . That is, 

c. (t}==min[ccx;,s, lwt)] 
in111 .,,eu·, 

(12.28) 

am,. (t) == 1:.1a~ [ P(x; I wt ,s,)] (12.29) 

We want Cmin (t) to be near O just as long as the phone/word we are evaluating is the correct 
one and we have not gone beyond its end. On the other hand, if the phone/~ord we are 
evaluating is the incorrect one or we have already passed its end, we want the Cmin (t) to be 
rising sharply. Similar to the procedure of finding the admissibleA heuristic function, we can 
set the normalized factor y empirically during training so that Cmin (T) == 0 when we know 
the correct word sequence W that produces acoustic observation sequence x; . Based on Eq. 
( 12.27), r should be set to: 

r = ~o:m,.x (T) (12.30) 

Figure 12.22 shows a plot of Cmin (t) as a functiOf! of time for correct match. In addi­
tion, the cost for the final state FS( wk) of word w* , C(x; ,s, = FS( wk) I wt), which is the 
score for w* -ending path, is also plotted. There should be a valley centered around O for 
C(x;,s, =FS(wk)lw~), which indicates the region of possible ending time for the correct 
phone/word. Sometimes a stretch of acoustic observations may match better than the aver­
age cost, pushing the curve below 0. Similarly, a stretch of acoustic observations may match 
worse than the average cost, pushing the curve above 0. 

There is an interesting connection between the normalized factor r and the heuristic 
estimate of the expected cost per frame, 1/f, defined in Eq. (12.25). Since the cost is simply 
the logaiithm on the inverse posterior probability, we get the following equation: 

-1 A 

1/1 = ylogP(xr I W) = -Jog[ aniax (T)117
] = -logy (12.31) 

_Equation (12.31) reveals that these two quantities are basically the same estimate. In 
fact, if we subtract the heuristic function f(H~.) defined in Eq. (12.24) by the constant 
10~(-f), we get exactly the same quantity as the one defined in Eq. (12.27). Decisions on 
which path to extend first based on the heuristic function and when to extend the search to 
the next word/phone are basically centered on comparing partial theories with different 
lengths. Therefore, the nor~alized cost C(x; ,s, I wt) can be used for both purposes. 

_ Based on the connecuon we have established, the heuristic function, f(H.~), which 
e~tm;iates ~e goodness of a path is simply replaced by the nonnalized evaluation function 
C(x, •s, I w, ) · If we plot the un-nonnalized cost C(x; ,s, I wt) for the optimal path and other 
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Figure 12.22 cmin (t) and C(x: ,s, = FS(w.) I wt) as functions of time t. The valley region 
represents possible ending times for the correct phone/word. 
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competing paths as the function time t the cost values increase as paths get longer (illus­
tr~ted in Figure 12.23) because every fr~me adds some non-negative cost to the overall cost. 
lt 15 clear that using un-normalized cost function C(x' s I wi) generally results in a breadth-fl I• I I . 
r5l search. What we want is an evaluation that decreases slightly along the optimal path, 

~d ~opefupy increases along other competing paths. Clearly, the normalized cost function 

C(x, ,s, I w, ) fulfills this role, as shown in Figure 12.24. 

optimal path 

---

F· d th mpeting paths as a 
igu~eii.23 Unnormalized cost C(x:,s, I w~) for optimal path an ° er co 

functton of time. 
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---. optimal path 

Figure 12.24 Nom1alized cost C(x;,s, I w,t) for the optimal path and other competing paths as 
a function of time. 

Equation (12.30) is a context-less estimation of the normalized factor, which is also re­
ferred to as zero-order estimate. To improve the accuracy of the estimate, you can use con­
text-dependent higher-order estimates like [24]: 

Y; =r(x;) 

Y, = Y(X;,X;- 1) 

Y1 = Y(X;,X/-P-">Xi-N+I) 

first-order estimate 

second-order estimate 

n-order estimate 

Since the nonnalized factor r is estimated from the training data that is also used to 
train the parameters of the HMMs, the normalized factor r; tends to be an overestimate. ~s 
a result, amax (t) might rise slowly for test data even when the correct phone/word model is 
evaluated. This problem is alleviated by introducing some other scaling factor 8 < 1 so chat 
amax (1) falls slowly for test data for when evaluating the correct phone/word model. The 
best solution for this problem is to use an independent data set other than the training data to 
derive the normalized factor r, . 

12.5.3. Fast Match 

E 'th ffi . . . . . d' time for a ven w1 an e 1c1ent heunstic function and mechanism to determine the en mg . · 
phone/word, stack decoding could still be too slow for large-vocabulary speech r~cognill;: 

tasks: ~s desc~bed in Section 12.5 .1, an effective underestimated heuristic funcu~~ti~~ti­
remammg portion of speech is very difficult to derive. On the other hand, a heu word 
mate for the immediate shon segment that usually corresponds to the next phone orduces 

a b " · bl · · · thatre m Y e ,easi e to attam. In this section, we describe the fast-match mechanism 
phone/word candidates for detailed match (expansion) bpath-

1 h . d th t,est su 
n async ronous stack decoding, the most expensive step is to exten e entire vo· 

Fo~ a larg~-vocabulary search, it implies the calculation of P(x:+• I w) over th~ possible 
ca ulary size I V 1- It is desirable to have a fast computation to quickly reduce e 
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words starting at a given time I to reduce the search space. This process is often referred to 
asfast match [15, 35]. In fa_ct, fast match is crucial to stack decoding, of which it becomes 
an integral part. Fast match is a method for the rapid computation of a list of candidates that 
constrain successive search phases. The expensive detailed match can then be performed 
after fast match. In this sense, fast match can be regarded as an additional pruning threshold 

10 meet before new word/phone can be started. 
Fast match, by definition, needs to use only a small amount of computation. However, 

it should also be accurate enough not to prune away any word/phone candidates that partici­
pate in the best path eventually. Fast match is, in general, characterized by the approxima­
tions that are made in the acoustic/language models in order to reduce computation. There is 
an obvious trade-off between these two objectives. Fortunately, many systems (15] have 
demonsLrated that one needs to sacrifice very little accuracy in order to speed up the 
computation considerably. 

Similar to admissibility in A. search, there is also an admissibility property in fast 
match. A fast match method is called admissible if it never prunes away the word/phone 
candidates that participate in the optimal path. In other words, a fast match is admissible if 
the recognition errors that appear in a system using the fast match followed by a detailed 
match are those that would appear if the detailed match were carried out for all 
words/phones in the vocabulary. Since fast match can be applied to either word or phone 
level, as we describe in the next section, we explain the admissibility for the case of word­
level fast match for simplicity. The same principle can be easily extended to phone-level fast 
match. 

Let Vbe the vocabulary and C(X I w) be the cost of a detailed match between input X 
and word w. Now F(X I w) is an estimator of C(X I w) that is accurate enough and fast to 
compute. A word list selected by fast match estimator can be attained by first computing 
F(XI w) for each word w of the vocabulary. Suppose wb is the word for which the fast 
match has a minimum cost value: 

wb =argmin F(X I w) (12.32) 
l1EI' 

~fter computing C(X I wb), the detailed match cost for wb, we fonn the fast match word 
hs~ A, from the word w in the vocabulary such that F( XI w) is no greater than C(X I wb) · 
In other words, 

A={we VI F(X I w) ~ C(XI w,,)} (12.33) 

Similar to the admissibility condition for A' search [3, 33], the faSl match ~stimator 
F(•) conducted in the way described above is admissible if and on_ly if F(X I w) is always 
an uocter-estimator (lower bound) of detailed match C(X l w) · That is, 

F(Xj w) s C(X I w) 'v'X, w 
(12.34) 

!e Proof is straightforward. If the word we has a l~wer detailed match cost C{X I wJ ' you 
Prove that it must be included in the fast match hst A because 
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C(X I wJ::;C(XI wb) and F(XI w.) :5: C(X I w.) => F(XI w.) s; C(XI wh) 

Therefore, based on the definition of A, we e A. 
Now the task is to find an admissible fast match estimator. Bahl et al. [6] proposed one 

fast match approximation for discrete HMMs. As we will see later, this fast match approxi­
mation is indeed equivalent to a simplification of the HMM structure. Given the HMM for 
word w and an input sequence x; of codebook symbols describing the input signal, the 
probability that the HMM w produces the VQ sequence x; is given by (according to Chap­
ter 8): 

(12.35) 

Since we often use Viterbi approximation instead of the forward probability, the equation 
above can be approximated by: 

P( xi \ w) a, ,,~:ix.., [ P. (s,, s,, ... s,) tv- (x, [ s,)] ( 12.36) 

The detailed match cost C(X I w) can now be represented as: 

C(X I w) = ,,~(",, {-log[P.(s,.s,, ... s,)U P.(x, Is,)]} (12.37) 

hi h­
Since the codebook size is finite, it is possible to compute, fo~ e~~o~l ~;t~ede~ne 

est output probability for every VQ label c among all states st m · 

m,.(c) to be the following: 

m (c) =max.P...,(c ls.1: )=maxb.1:(c) 
l4' S,tEl1' .f,tEW 

We can further define the qmu. (w) as the m~ximum state sequence with respect to T, i.e., the 

maximum probability of any complete path m HMM w. 

qmax (w) = m;ix [P",(SpS2 , .. ·Sr)] 

(12.38) 

(12.39) 

. F(A l w) as the following: 
Now let's define the fast match esumator 

F(~ I w) =-log[qm.,.(w)Il m,,,(x,)] 
1=1 

(12.40) 

(XI ) is admissible based on Eq. 
It is easy to show the fast match estimator F(X I w) ~ C w 

(12.38) to Eq. (12.40). 
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Figure 12.25 The equivalent one-state HMM con-esponding to fast match computation defined 
in Eq. (12.40) [ 15]. 
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The fast match estimator defined in Eq. ( 12.40) requires T + I additions for a vector se­
quence of length T. The operation can be viewed as equivalent to the forward computation 
with a one-state HMM of the form shown in Figure 12.25. This correspondence can be in-
1erpreted as a simplification of the original multiple-state HMM into such a one-state HMM. 
ft thus explains why fast match can be computed much faster than detailed match. Readers 
should note that this HMM is not actually a true HMM by strict definition, because the out­
put probability distribution mw ( c) and the transition probability distribution do not add up 
1oone. 

The fast match computation defined in Eq. (12.40) discards the sequence infonnation 
with the model unit since the computation is independent of the order of input vectors. 
Therefore, one needs to decide the acoustic unit for fast match. In general, the longer the 
unit, the faster the computation is. and, therefore, the smaller the under-estimated cost 
F(X I w) is. It thus becomes a trade-off between accuracy and speed. 

Now let's analyze the real speedup by using fast match to reduce the vocabulary V to 
the list A, followed by the detailed match. Let IVI and I A I be the sizes for the vocabulary V 
and the fast match short list A. Suppose I and 1d are the times required to compute one 
fast match score and one detailed match s~ore for one word, respectively. Then, the total 
time required for the fast match followed by the detailed match is t I IV I +Id _I A I, whereas 
the time required in doing the detailed match alone for the entire vocabulary is Id I V 1- The 
Speed-up ratio is then given as follows: 

l (12.41) 

(If+~) 
Id IV I 

We h maller than IVI to have a sig­
nificneed t, to be much smaller than Id and I A I _to _be muc ~atch estimator in Eq. (12.40), 

th 
am Speed-up using fast match. Using our admissible faS£. d f N2T for C(X I w) 

e time c 1 . . f F(X I w) is T mstea o ' 
Wher . omp ex1ty of the com~utauon ~r . del. Therefore, the 11 /Id saving 
· e N is the number of states m the deta.1led acouSUC mo 
IS about N" 

. I VI one needs a very accurate fast 

rn In general, in order to make I A I much smaller than ' ft n relax the constraint of 
atch · Th' ·s why we o e 

ad . ~s_t,_mator that could result in t 1 = td • is I n ractice, most real-time speech 
rec~ss'.~1hty, although it is a nice principle to adher~ t?· i:it p rinciple with the fast match. 
Fo &nuion systems don't necessarily obey the admissib Y/ [361 used several techniques 

r example, Bahl et al. [IO], Laface et al., [22] and Roe et a., 
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to construct off-line groups of acoustically similar words. ~nned with this grouping, they 

ressl·ve fast match to select only a very short hst of words, and words acousti· can use an agg . _ 
cally similar to the words in this list are added to fonn the short word ltst A_ for further de-
t 'Jed match processing. By doing so, they are able to report a very efficient fast match 31 

th d that misses the correct word only 2% of the time. When non-admissible fast match 
me o · d 
is used, one needs to minimize the additional search error mtro uced by fast match empiri-

cally. . . 
Bahl et al. [6] use. a one-state HMM as their fast match units and a tree-structure lexi-

con similar to the lexical tree structures introduced in Chapter 13 to construct the short word 
list A for next-word expansion in stack decoding. Since the fast match tree search is also 
done in an asynchronous way, the ending time of each phone is detected using normalized 
scores similar to those described in Section 12.5 .2. It is based on the same idea that this 
nonnalized score rises slowly for the correct phone, while it drops rapidly once the end of 
phone is encountered (so the model is starting to go toward the incorrect phones). During the 
asynchronous lexical tree search, the unpromising hypotheses are also pruned away by a 
pruning threshold that is constantly changing once a complete hypothesis (a leaf node) is 
obtained. On a 20,000-word dictation task, such a fast match scheme was about I 00 times 
faster than detailed match and achieved real-time perfonnance on a commercial workstation 
with only 0.34% increase in the word error rate being introduced by the fast match process. 

12.5.4. Stack Pruning 

Even with efficient heuristic functions, the mechanism to detennine the ending time for 
phone/word, and fast match, stack decoding might still be too slow for large-vocabulary 
speech recognition tasks. A beam within the stack, which saves only a small number of 
promising hypolheses in the OPEN list, is often used to reduce search effort. This stack 
pruning is very similar to beam search. A predetermined threshold e is used to eliminate 
hypotheses whose cost value is much worse than the best path so far. 

. Both fa~t match and stack pruning could introduce search errors where the eventual 
optimal path _is_ thrown away prematurely. However, the impact could be reduced to a mini­
mum by e~pmcally adjusting the thresholds in both methods. 

The •~plementation of stack decoding is, in general more complicated, particularly 
when ~ome mevitable pruning strategies are incorporated t; make the search more efficient. 
The difficulty of devis' b th · d 
f~ . . . mg O an effectively admissible heuristic function for h( •) an an 

e 1ecttve est1mat1on of 1· · · · d the 
d nonna ization factors for boundary determination has hmite 

a vantage that stack d d h . . · . 
h . . eco ers ave over Viterbi decoders. Unlike stack decoding, ome 

sync ronous V1terb1 beam s h 'th ut 
h · 1- d . . earc can use an easy comparison of same-length path wi 0 
euns 1c etermmation of w db . ·m-

ple and uni'fi d ~ or oundar1es. As described in the earlier sections, these si 
1e 1eatures of v·t b' b ·ous 

sound techniques t . 1 er 1 earn search allow researchers to incorporate van . 
Beam search . o improve the efficiency of search. Therefore time-synchronous Viterbi 

enJoys a much b d . . ' . the 
principle of stack decodin is roa ~r popu_Ianty m the speech community. However, de-
scribe in Chapter 13 kg ess_ential particularly for n-best and lattice search. As we 

' st3c decoding plays a very crucial pa1t in multiple-pass search Stfate· 
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·es for 11-best and lattice search because the early pass is able to establish a ne --' g1 . . ar-pe11ect 
estimate of the remamrng path. 

12.s.s. Multistack Search 

Even with the help of normalized factor y or heuristic function /,( •), it is still more effec­
tive to compare hypotheses of the same length than those of different lengths, because hy­
potheses with the same length are compared based on the true forward matching score. 
Inspired by the time-synchronous principle in Viterbi beam search, researchers (8, 35] pro­
pose a variant stack decoding based on multiple stacks. 

Multistack search is equivalent to a best-first search algorithm running on multiple 
stacks time-synchronously. Basically, the search maintains a separate stack for each time 
frame t, so it never needs to compare hypotheses of different lengths. The search runs time­
synchronously from left to right just like time-synchronous Viterbi search. For each time 
frame t, multistack search extracts the best path out of the t-stack, computes one-word ex­
tensions, and places all the new paths into the corresponding stacks. When the search fin­
ishes, the top path in the last stack is our optimal path. Algorithm 12.7 illustrates the 
multistack search algorithm. 

This time-synchronous multistack search is designed based on the fact that by the time 
the ,,h stack is extended, it already contains the best paths that could ever be placed into it. 
This phenomenon is virtually a variant of the dynamic programming principle introduced in 
Chapter 8. To make multistack more efficient, some heuristic pruning can be applied to re­
duce the computation. For example, when the top path of each stack is extended for one 
more word, we could only consider extensions between minimum and maximum duration. 
On the other hand, when some heuristic pruning is integrated into the multistack search, one 
might need to use a small beam in Step 2 of Algorithm 12.7 to extend more than just lhe beSt 

path to guarantee the admissibility. 

ALGORITHM 12. 7: MULTISTACK SEARCH 

Step 1: Initialization: for each word v in vocabulary V 
for t = l, 2, ... , T 

Compute C( x; I v) and insert it to t'h stack 
5tep 2: Iteration: for t = J, 2, ... , T - I 

Sort the t'h stack and pop the top path C( x; I wt) out of the stack 

for each word v in vocabulary V 
for t=t+l,1+2, ... ,T 
E TI k+l) xtend the path C(x; I wt) by word v to get C(x1 w, 

where wt·1 = w: II v and II means string concatenation 

Place C(x~ I w;+1
) in -r'" stack 

step 3: Termination: Sort the T'" stack and the top path is the optimal word sequence ---~~~~~.::.::.~~---· 
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12.6. HISTORICAL PERSPECTIVE AND FURTHER READING 

Search has been one of the most important topics in artificial intelligence since the origins of 
the field. It plays the central role in general problem solving [29] an~ computer games. [43], 
Nilsson's Principles of Artificial Intelligence [32] and Barr and Fe1genbaum's The Hand­
book of Artificial Intelligence [11] contain a comprehensive introduction to state-space 
search algorithms. A* search was first proposed by Hart et al. [ 17]. A* was thought to be 
derived from Dijkstra's algorithm [13] and Moore's algorithm [27]. A* search is similar to 
the branch-and-bound algorithm [23, 39], widely used in operations research. The proof of 
admissibility of A* search can be found in [32]. 

The application of beam search in speech recognition was first introduced by the 
HARPY system [26]. It wasn't widely popular until BBN used it for their BYBLOS system 
[37]. There are some excellent papers with detailed description of the use of time­
synchronous Viterbi beam search for continuous speech recognition [24, 31 ]. Over the years, 
many efficient implementations and improvements have been introduced for time­
synchronous Viterbi beam search, so real-time large-vocabulary continuous speech recogni­
tion can be realized on a general-purpose personal computer. 

On the other hand, stack decoding was first developed by IBM [9]. It is successfully 
used in IBM's large-vocabulary continuous speech recognition systems [3, 16]. Lacking a 
time-synchronous framework, comparing theories of different lengths and extending theo­
ries are more complex as described in this chapter. Because of the complexity of stack de­
coding, far fewer publications and systems are based on it than on Viterbi beam search [16, 
19, 20, 35]. With the introduction of multistack search [8], stack decoding in essence has 
actually come very close to time-synchronous Viterbi beam search. 

Stack decoding is typically integrated with fast match methods to improve its effi­
ciency. Fast match was first implemented for isolated word recognition to obtain a list of 
potential word candidates [5, 7]. The paper by Gopalakrishnan et al. [15] contains a compre­
?ensive ~escription of fast match techniques to reduce the word expansion for stack decod­
mg. Be_sides the fast match techniques described in this chapter, there are a number of 
alte~ativ~ approaches [5, 21, 41]. Waast's fast match [41], for example, is based on a binary 
classificati?n tree built automatically from data that comprise both phonetic transcription 
and acoust1c sequence. 
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CHAPTER 1 3 

Large-Vocabulary Search Algorithms 

0- f Chapter 1~ discussed the basic search tech-
iques. ?r speech recognition. However, the search complexity for large-vocabulary speech 

;cog_~ihon With high-order language models is still difficult to handle. In th.is chapter we 
w~s_c~ e efficient search techniques in the context of time-synchronous Viterbi beam search, 
W ic becomes the choice for most speech recognition systems because it is very efficient. 
t : u~e Microsoft Whisper as our case study to illustrate the effectiveness of various search 
ec nrqu_es. Most of the techniques discussed here can also be applied to stack decoding. 

th ~ 1th the help of beam search, it is unnecessary to explore the entire search space or 
k e e~tue trellis. Instead, only the promising search state-space needs to be explored. Please 
eep in mind the distinction between the implicit search graph specified by the grammar 

network and the explicit partial search graph that is actually constructed by the Viterbi beam 
search algorithm. 

In th' . . C I 1s chapter we first introduce the most critical search organ1zat10n ,or arge-
vocabulary speech recognition-tree lexicons. Tree lexicons significantly reduce potential 
search sp · 1 d t ace, although they introduce many practical problems. In part1cu ar, we nee 0 

645 

Amazon/VB Assets 
Exhibit 1012 

Page 671



646 
Large-Vocabulary Search Algo~~ 

bl S Such as reentrant lexical trees, factored language model probabilities sub address pro em . • · 
tree optimization, and subtree poly~orph1sm. . . . 

Various other efficient techniques also are introduced. Most of these techniques aim 
for clever pruning with the hope of sparing t~e correct paths. F~r more eff~ctive pruning, 
different layers of beams are usually use~. Wh'.le_fast match techniques ~escnbed in Chapter 

12 are typically required for stack decoding, s1m1lar concepts_ and techniques ~an be applied 
to Viterbi beam search. In practice, the look-ahead strategy 1s equally effective for Viterbi 

beam search. 
Although it is always desirable to use all the knowledge sources (KSs) in the search 

algorithm, some are difficult to integrate into the left-to-right time-synchronous search 
framework. One alternative strategy is to first produce an ordered list of sentence hypotheses 
(a.k.a. n-best list), or a lattice of word hypotheses (a.k.a. word lattice) using relatively inex­
pensive KSs. More expensive KSs can be used to rescore then-best list or the word lattice to 
obtain the refined result. Such a multipass strategy has been explored in many large­
vocabulary speech recognition systems. Various algorithms to generate sufficient 11-best lists 
or the word lattices are described in the section on multipass search strategies. 

Most of the techniques described i.n this chapter rely on nonadmissible heuristics. 
Thus, it is critical to derive a framework to evaluate different search strategies and pruning 
parameters. 

13.1. EFFICIENT MANIPULATION OF A TREE LEXICON 

The lexicon entry is the most critical component for large-vocabulary speech recognition, 
since the search space grows linearly along with increased linear vocabulary. Thus an effi­
cient framework for handling large vocabulary undoubtedly becomes the most critical issue 
for efficient search perfonnance. 

13.1.1. Lexical Tree 

~e searc~ space for n-gram discussed in Chapter 12 is organized based on a straightforward 
lmear lexicon, i.e., each word is represented as a linear sequence of phonemes, independent 
of 0ther words, For example, the phonetic similarity between the words task and tasks is not 
leveraged. In a large-vocabulary !-yst~r.1, many words may share the same beginning pho­
nehmes. A tree Slructure is a natural representation for a large-vocabulary lexicon, as manY 
P onemes can be shared 1 1- · . 1 1 e based 

. 0 e immate redundant acoustic evaluations. The lex1ca re · 
search 1s thus essential fi b ·1d· , · or ui mg a real-time large-vocabulary speech recognizer. 

I 

. The term real-time means the decod' . e the decod· 
mg process can lake I mg process lakes no longer than the duration of the speech. Sin~ . neous 

P ace as soon as th h 'd al mswntu 
responses after speake fi . h · . e speec starts, such a real-time decoder can prov, e re 

rs IIUS talking. 
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Figure 13.1 An example of a lexical tree, where each branch corresponds to a shared phoneme 
and the leaf corresponds to a word. 
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Figure 13.1 shows an example of such a lexical tree, where common beginning pho­
nemes are shared. Each leaf corresponds to a word in the vocabulary. Please note that an 
extra null arc is used to form the leaf node for each word. This null arc has the following 
two functions: 

I. When the pronunciation transcription of a word is a prefix of other ones, the 
null arc can function as one branch to end the word. 

2. When there are homophones in the lexicon, the null arcs can function as lin­
guistic branches to represent different words such as two and to. 

The advantage of using such a lexical tree representation is obvious: it can effectively 
reduce the state search space of the trellis. Ney et al. [32] reported that a lexical tree repre­
s;mation of a 12,306-word lexicon with only 43,000 phoneme arcs had a saving of a factor 
0 2·5 over the linear lexicon with 100,800 phoneme arcs. Lexical trees are also referred 1~ 

as prefo: trees, since they are efficient representations of lexicons with sharing among Iext­
ca_l entries that have a common prefix. Table 13.1 shows the distribution of phoneme arcs for 
lhrs !2.306-word lexical tree. As one can see, even in the fifth level the number of phoneme 
arcs 18 only about one-third of the total number of words in the lexicon. 

Table 13 l 0 . . . . h e arc for a 12,306-. rstnbut1on of the tree phoneme arcs and acuve tree P onem 
word lex.ic · on usmg a lexical cree representation (32]. ,_ 

Level 4 s 6 "Z.7 - 1 2 3 

,~emearcs 1511 3116 4380 4950 29.200 
28 331 -

~~cs 470 329 178 206 
I 23 233 485 
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The saving by using a le:idcal tree is substantial, because it not only results in consid­
erable memory saving for representing state-search space but also saves tr~m~ndous time by 
searching far fewer potential paths. Ney et al. [32) report tha: a tree o:ganizatio~ of_the lexi­
con reduces the total search effort by a factor of 7 over the lmear lexicon organization. This 

· is because the lion's share of hypotheses during a typical large-vocabulary search is on the 
first and second phonemes of a word. Haeh-U mbach et al. [23] report that for a 12,306-word 
dictation task, 79% and 16% of the state hypotheses are in the first and second phonemes, 
when analyzing the distribution of the state hypotheses over the state position within a word. 
Obviously, the effect is caused by the ambiguities at the word boundaries. The lexical tree 
representation reduces that effort by evaluating common phonetic prefixes only once. Table 
13.1 also shows the average number of active phoneme arcs in the layers of the lexical tree 
[32). Based on this table, you can expect that the overall search cost is far less than the size 
of the vocabulary. This is the key reason why lexical tree search is widely used for large­
vocabulary continuous speech recognition systems. 

The lexical tree search requires a sophisticated implementation because of a funda­
mental deficiency-a branch in a lexical tree represe11tation does not correspond to a single 
word with the exception of branches ending in a leaf This deficiency translates to the fact 
that a unique word identity is not determined until a leaf of the tree is reached. This means 
that any decision about the word identity needs to be delayed until the leaf node is reached, 
which results in the following complexities. 

• Unlike a linear lexicon, where the language model score can be applied when 
starting the acoustic search of a new word, the lexical tree representation has 
to delay the application of the language model probability until the leaf is 
reached. This may result in an increased search effort, because the pruning 
needs to be done on a less reliable measure, unless a factored language model 
is used, as discussed in Section 13.1.3. 

• Because of the delay of language model contribution by one word, we need to 
k~ep a separate copy of an entire lexical tree for each unique language model 
history. 

13.1.2. Multiple Copies of Pronunciation Trees 

A simp!e_ lexical_ tree is sufficient if no language model or a unigram is used. This is because 
the dec1s1on at time t d d rarn epen s on the current word only However for higher-order 11-g 
models, the lingu · f t · ' . h 
l is ic s ate cannot be determined locally. A tree copy is reqmred for ea~ 
anguage model state F b' . . d nus · or igrams, a tree copy 1s required for each predecessor war · 

may seem to be astonish· b abu-t . F mg, ecause the potential search space is increased by the voe 
ary size. ortunately ex · · are re-

qu. d b • penmental results show only a small number of tree copies 
ire , ecause effic· · 1 [32] 

report that th ient pruning can eliminate most of the unneeded ones. Ney et a · 
e search effort · b" . . ·grafll usmg tgrams is mcreased by only a factor of 2 over the uni 
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Se In general, when more detailed (better) acoustic and/or language d 
1 ca · . . mo e s are used the 

f'ect of a potenually increased search space is often compensated by , d ' 
e •' a more ,ocuse beam 
earch from the use of more accurate models. In other words although th t · h s . . . , e s auc searc 

space might increase s1gmfi~antly by usmg more accurate models, the dynamic search space 
can be under control (somet~mes even smaller), thanks to improved evaluation functions. 

To deal with tree copies [19, 23, 37}, you can create redundant subtrees. When c p' 
d d. b' o 1es 

of lexical trees are use to 1sam 1guate active linguistic contexts, many of the active state 
hypotheses correspond to the same redundant unigram state. due to the postponed applica­
tion of language models. To apply the language model sooner, and to eliminate redundant 
unigram state computations, a successor tree, I;_, can be created for each linguistic context;, 
~ encodes the nonzero ,z-grams of the linguistic context i as an isomorphic subgraph of the 
unigram tree, T0• Figure 13.2 shows the organization of such successor trees and unigram 
tree for bigram search. For each word w a successor tree, T,,. is created with the set of suc­
cessor words that have nonzero bigram probabilities. Suppose u is a successor of w; the bi­
gram probability P(u I w) is attached to the transition connecting the leaf corresponding to u 
in the successor tree T,.., with the root of the successor tree T,, . The unigram tree is a full­
size lexical tree and is shared by all words as the back-off lexical tree. Each leaf of the uni­
gram tree corresponds to one of IVI words in the vocabulary and is linked to the root of its 
bigram successor tree ( T,,) by an arc with the corresponding unigram probability P(u). The 
backoff weight, a(u), of predecessor u is attached to the arc which links the root of succes­
sortree T,, to the root of the unigram tree. 

o(u) 

unigram tree 

bigram successor 
trees 

r .. 

T,. 

. . trees for bigram search [13J. 
Figure 13.2 Successor trees and unigram 
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A careful search organization is required to avoid computational overhead and 
guarantee a linear time complexity for exploring state hypotheses. In the following sectio to 
we describe techniques to achieve efficient lexical tree recognizers. These techniques i~~ 
elude factorization of language model probabilities, tree optimization, and exploiting subtree 
dominance. 

13.1.3. Factored Language Probabilities 

As mentioned in Section J 3. J .2, search is more efficient if a detailed knowledge source can 
be applied at an early stage. The idea of factoring the language model probabilities across 
the tree is one such example [4, 19]. When more than one word shares a phoneme arc, the 
upper bound of their probability can be associated to that arc.

2 
The factorization can be ap­

plied to both the full lexical tree (unigram) and successor trees (bigram or other higher-order 
language models). 

An unfactored tree only has language model probabilities attached to the leaf nodes, 
and all the internal nodes have probability 1.0. The procedure for factoring the probabilities 
across the tree computes the maximum of each node n in the tree according to Eq. (13.1). 
The tree can then be factored according to Eq. (13.2) so when you craverse the tree you can 
multiply F

0 

(n) along the path to get the needed language probability. 

P
0 

(n) = max P(x) 
XE~hl/d(n) 

(13.l) 

F'(n)= • P"(n) 
P (parent(n)) 

(13.2) 

An illustration of the factored probabilities is shown in Table 13.2. Using this lexicon, 
we create the tree depicted in Figure 13.3(a). In this figure the unlabeled internal nodes have 
a probability of 1.0. We distribute the probabilities according to Eq. (13.1) in Figure 13.3(b), 
which is factored according to Eq. (13.2), resulting in Figure 13.3(c). 

Table 13.2 Sample probabilities P(w)and their pseudoword pronunciations [4]. 

WI Pronunciation P(w
1
) 

WO /ab cl 0.1 

w, /ab c/ 0.4 

w2 /a C z/ 0.3 

W3 Id el 0.2 

i Th h . f . . . ·11 be chosen 
c c oice O upper bound is because ll 1s an admissible estimate of the path no matter which wore! WI 

later. 
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(a) (b) 

0.4 0.4 

(c) 

Figure 13.3 (a) Un factored lexical tree; (b) distributed probabilities with computed p' (n) ; 
(c)factoredtreeF

0

(n) [4]. 

651 

Using the upper bounds in the factoring algorithm is not an approximation, since the 
correct language model probabilities are calculated by the product of values traversed along 
each path from the root to the leaves. However, you should note that the probabilities of all 
the branches of a node do not sum to one. This can solved by replacing the upper-bound 
(max) function in Eq. (13.1) with the sum. 

P
0

(n) = L P(x) (13.3) 
:«;child(11) 

To guarantee that all the branches sum to one, Eq. (13.2) should also be replaced by 

the following equation: 

p'(n) 
F' ( n) == ---=,-------L P

0

(x) 

(13.4) 

X1lrhi/d(parcnl(n)) 

A new illustration of the distribution of LM probabilities by using sum inStead of ~p­
per bound is shown in Figure 13.4. Experimental results have shown lhat lhe factonng 
method with either sum or upper bound has comparable search performance. 

J.0 
1.0 

(c) 
(a) (b) 

p· . tree the corresponding (a) un·· 
rgure 13.4 Using sum instead of upper bound wh_en factonngd P:(n) ; (c) factored tree with 

~actored lexi<;al tree; (b) distributed probabilities with compute 
ornputed F (n) [4]. 
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One interesting observation is that the language model score can be regarded as a heu­
ristic function to estimate the linguistic expectation of the current word to be searched. In a 
linear representation of the pronunciation lexicon, application of the linguistic expectation 
was straightforward, since each state is associated with a unique word. Therefore, given the 
context defined by the hypothesis under consideration, the expectation for the first phone of 
word w, is just P(w, I wt'). After the first phone, the expectation for the rest of the phones 
becomes I .0, since there is only one possible phone sequence when searching the word w . 
However, for the tree lexicon, it is necessary to compute E(p1 I Pt', w;-i), the expectati~n 
of phone p1 given the phonetic prefix p;-' and the linguistic context w:-1

• Let q,(j, w
1

) 

denote the phonetic prefix of length j for wk . Based on Eqs. (13.1) and ( 13.2), we can com­
pute the expectation as: 

£( I 1_1 w'-')- P(w~ I w:-1
) 

p J Pi ' , - P( w P I w:-') (13.5) 

where c = argmax(w, I wt' ,¢(j,wt ) = p{) and p = argmax(w* I w;-• ,q,(j-1, wk)= Pt') . Based 
k k • f on Eq. (13.5), an arbitrary n-gram model or even a stochastic context- ree grammar can be 

factored accordingly. 

13.1.3.1. Efficient Memory Organization of Factored Lexical Trees 

A major drawback to the use of successor trees is the large memory overhead required to 
store the additional information that encodes the structure of the tree and the factored lin­
guistic probabilities. For example, the 5.02 million bigrarns in the 1994 NABN (North 
American Business News) model require 18.2 million nodes. Given a compact binary tree 
representation that uses 4 bytes of memory per node, 72.8 million bytes are required to store 
the predecessor-dependent lexical trees. Furthermore, this tree representation is not as aine­
nable to data compression techniques as the linear bigrarn representation. 

The factored probability of successor trees can be encoded as efficiently as the n-grain 
model based on Algorithm 13.1, i.e., one n-gram record results in one constant-sized record. 
Step 3 is illustrated in Figure 13.5(b), where the heavy line ends at the most recently visited 
node that is not a direct ancestor. The encoding result is shown in Table 13.3. 

ALGORITHM 13.1: ENCODING THE LEXICAL SUCCESSOR TREES (LST) 

For each linguistic context: 
Step 1: Distribute the probabilities according to Eq. (13.1 ). 
Step 2: Factor the probabilities according to Eq. (13.2). 
Step 3: Perform a depth-first traversal of the LST and encode each leaf record, 

(a) the depth of the most recently visited node that is not a direct ancestor, 
(b) the probability of the direct ancestor at the depth in (a), 
(c) the word identity . ._ ___________________________ _ 
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0.4 

(a) (b) 

Figure 13.5 (a) Factored tree; (b) tree with common prefix-length annotation. 
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Clearly the new data struclure meets the requirements set forth, and, in fact, it only re­
quires additional log(n) bits per record (n is the depth of the tree). These bits encode the 
common prefix. length for each word. Naturally this requires some modification to the de­
coding procedure. In particular, the decoder must scan a portion of the n-gram successor list 
in order to detennine which tree nodes should be activated. Depending on the structure of 
the tree (which is determined by the acoustic model, the lexicon, and language model), the 
tree structure can be interpreted at runtime or cached for rapid access if memory is available. 

Table 13.3 Encoded successor lexical tree; each record corresponds to one augmented factored 
n-gram. 

w, Depth F"(w) 

w, 0 0.4 

Wo 4 0.25 

w,, 2 0.75 

w2 l 0.5 

l3,I.4. Optimization of Lexical Trees 
W · k c ed by the multiple copies 

e now investigate ways to handle the huge search networ' ,arm . tu lly 
of 1 • . • t' n of lexical trees ac a 

exi~al trees m different linguistic contexts. The factonza 10 d I the intertree 
mak~s. 11 easier to search. First, after the factorization of the language mo tte ~ched because 
lrans1tion h . h I uage model scores a 
1h s s own m Figure 13.2 no longer have t e ang M r as illustrated in 
F_ey are already applied completely before leaving the leaves. thoreo;eh;ve an associated 

•gure 13 3 d f ·ngle word pa no 
Ira . . · , many transitions toward the en o a si . - . . that there could be many 
d n~_il!on probability that is equal to 1. This observauon imphes th be merged to save 
b~~icated subtrees in the network. Those duplicated subtrees can) s;~e evaluation. Unlike 

Pru _space and computation by eliminating redundant (unnecess~ry-
1 

without introducing 
ning th' . . ming pnnc1p e, an ' is saving is based on the dynanuc program 

Y llOtential error. 
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gonthrns 

13.1.4.1. Optimization of Finite State Network 

One way to compress the lexical tree network is to use a similar algorithm for optimizin th 
number of states in a deterministic finite state automaton. The optimization algorith; _e 

f . fi . IS 
based on the indistinguishable property o states m a mite state automaton. Suppose that s 
and s

2 
are the initial states for automata r; and T2 • then s, and s2 are said to be indistin'­

guislzable if the languages accepted by automata 'Fi and T: are exactly the same. If we con­
sider our lexical tree network as a finite state automaton, the symbol emitted from the 
transition arc includes not only the phoneme identity, but also the factorized language model 
probability. 

The general set-partitioning algorithm [ 1] can be used for the reduction of finite state 
automata. The algorithm starts with an initial partition of the automaton states and iteratively 
refines the partition so that two states s1 and s2 are put in the same block B1 if and only if 
f (s1) and / (s2 ) are both in the same block Bi . For our purpose, /(s1) and f(s2 ) can be 
defined as the destination state given a phone symbol (in the factored trees, the pair <phone, 
LM-probability> can be used). Each time a block is partitioned, the smaller subblock is used 
for further partitioning. The algorithm stops when all the states that transit to some state in a 
particular block with arcs labeled with the same symbol are in the same block. When the 
algorithm halts, each block of the resulting partition is composed of indistinguishable states, 
and those states within each block can then be merged. The algorithm is guaranteed to find 
the automaton with the minimum number of states. The algorithm has a time complexity of 
O(MN log N), where M is the maximum number of branching (fan-out) factors in the lexi­
cal tree and N is the number of states in the original tree network. 

Although the above algorithm can give optimal finite state networks in terms of num­
ber of states, such an optimized network may be difficult to maintain, because the original 
lexical tree structure could be destroyed and it may be troublesome to add any new word 

into the tree network [l]. 

13.1.4.2. Subtree Isomorphism 

The finite state optimization algorithm described above does not take advantage of the tree 
t f th fi . . · · m number s ructure o e mtte state network, though it generates a network with a m1mmu_. 

of states. Since our finite state network is a network of trees, the indistinguishabihty ~rop-
rt . II h b are said to e Y is actua Y t e same as the definition of subtree isomorphism. Two su trees 1 b · J · h · · h uccessors. 1 
e rsomorp uc to eac other 1f they can be made equivalent by permuting t es ·. · 
h Id b · · d ly 1f their s ou e straightforward to prove that two states are indistinguishable, if an on 

subtrees are isomorphic. 
Th . . rphic. for 

ere are efficient algorithms [1] to detect whether two subtrees are isomo e 
all possible pairs of states u and v, if the subtrees starting at u and v, ST(u) aod ST(v)od, ares 
· h' · · t rnal n isomorp ic, v 18 merged into u and ST(v) can be eliminated. Note that only me . Igo· 
n_eed t_o be c~nsidered for subtree isomorphism check. The time complexity for th1s a 
nthm 1s O(N·) [I]. 
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13.t.4.3, Sharing Tails 
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A/. , 1,. tail in a lexical tree is defined as a subpath ending in a 1~af d . h 11111 
• f " an go111gt rou 0 hstates 

'th a unique successor. It 1s o ten referred as a singlc>-word Sllb/Jarl, It b 0 

w1 . . . b .1• . . can e proved that 
such ii linear tail has umbt pb~ol_b,l ft tty ~tta~hed to its a~cs according to Eqs. ( 13.1) and ( 13.2). 
This is because L~ pro ~ I ity _actonzat1~11 pus!ws Jonmrd the LM probability attached to 
··e last arc of the hnear tat!, leavmg arcs wuh unit probability. Since all the tails c d-
u, . d. f~ orrespon 
ing to the same word_ w m I eren~ successor trees are linked to the root of successor tree 
r,.' the subtree startmg from the fu:st state of each ~inear tail is isomorphic to the subtree 
starting from one of the states formmg the longest linear tail of w. A simple algorithm 10 
take advantage of this share-tail topology can be employed to reduce the lexical tree net­
work. 

Figure 13.6 and Figure 13.7 show a lexical tree network before and after shared-tail 
optimization. For each word, only the longest linear tail is kept. All other tails can be re­
moved by linking them to an appropriate state in the longest tail, as shown in Figure 13.7. 

Shared-tail optimization is not global optimization, because it considers only some 
special topology optimization. However, there are some advantages associated with shared­
tail optimization. First, in practice, duplicated linear tails account for most of the redundancy 
in lexical tree networks [ 12]. Moreover, shared-tail optimization has a nice property of 
maintaining the basic lexical tree structure for the optimized tree network. 

T.,={u,y} 
r, = {y, z} 
r, = {u} 

u = /ab/ 
y = /acd/ 
z=/ace/ 

Fi . ared-tail optimization [ 121- The 
gure l3.6 An example of a lexical tree network without sh ssor trees for 11, Y, and 

Va<:abu]ary includes three words u v and z. T •• T,., and T, are the succe 
t respectively [13]. ' '·' · 

;--
We~ 

urne bigram is used in the discussion of "sharing tails." 
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lexicon 
tree 

a c e 

linear 
transcriptions 
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successor 
trees 

Figure 13.7 The lexical tree network in Figure 13.6 after shared-tail optimization [12]. 

13.1.5. Exploiting Subtree Polymorphism 

The techniques of optimizing the network of successor lexical trees can only eliminate iden­
tical subtrees in the network. However, there are still many subtrees that have the same 
nodes and topology but with different language model scores attached to the arcs. Th_e 
acoustic evaluation for those subtrees is unnecessarily duplicated. In this section we exploit 
subtree dominance for additional saving. 

A subtree instance is dominated when the best outcome in that subtree is not better 
than the worst outcome in another instance of that su':Jtree. The evaluation becomes redun; 
dant for the dominated subtree instance. Subtree isomorphism and shared-tail are cas~:d 
subtree dominance, but they require prearrangement of the lexical tree network as descn 
in the previous section. . al 

If we need to implement lexical tree search dynamically, the network optimiza~o_n ~ 
gorithms are not suitable. Although subtree dominance can be computed using ~~nl!ll be 
search [35] during runtime, this requires that information regarding subtree isomorp i'5~t is 
available for all corresponding pairs of states for each successor tree T., .. Unfortonate y, 
not practical in terms of either computation or space. . xt as· . . . uc conte 

In place of computing strict subtree dominance, a polymorpluc hnguis d local 
· d · e base on s1gnment to re uce redundancy is employed by estimating subtree dommanc ssign· 

• J: • • • hi. context a 
m1onnallon and 1gnonng the subgraph isomorphism problem. Polymorp c ume the 

t · 1 k · · · h state to ass · men mvo ves eepmg a smgle copy of the lexical tree and allowing eac h · that 1! 
1. . . th' proac is . 
mgu1st1c context of the most promising history. The advantage of is ap . th tree 1s 

1 · h · · · h node in e emp oys maximum s anng of data structures and mfonnatton, so eac 
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evaluated, at most, once._ H~wever, the use of local knowledge to detennine the dominant 
context c~uld intro~uce significant errors because of ~remature pruning. Whisper [4l reports 
a 65_7o/c increase m error rate when only the dominant context is kept, based on local 

knowledge. . 
To recover the errors created by using local linguistic infonnation to estimate subtree 

dominance, you need to delay th~ decision regarding which linguistic context is most prom­
ising. This can be done _by ~e~pmg a heap of contex~ at each node in the tree. The heap 
maintains all contexts (lmgu1st1c paths) whose probabilities are within a constant threshold 
E of that of the best global path. The effect of the e -heap is that more contexts are retained 
fo~ high-probability states in the lexical tree. The pseudocode fragment in Algorithm 13.2 
[3) illustrates a transition from state sn in context c to state s,. . The terminology used in 

Algorithm 13.2 is listed as follows: 

, (-logP(sm I sn,c)) is the cost associated with applying acoustic model 
matching and language model probability of state s., transited from s. in 

context c. 
, JnHeap(sm,c) is true if context c is in the heap corresponding to state s.,. 

, Cost(s,,,,c) isthecostforcontextcinstate s,,,. 
, Statelnfo(s,,,,c) is the auxiliary state information associated with context c in 

state s •. 
• Add(s,,,,c) adds context c to the state s., heap. 

• Delete(s.,c) deleteS context c from state s., heap. 

• WorstContext(sm) retrieves the worst context from the heap of state s. · 

ALGORITHM 13.2: HANDLING MULTIPLE LINGUISTIC CONTEXTS 

IN A LEXICAL TREE 

1. d=Cost(s.,c)+(-logP(s,,. ls,,,c)) 
2. lt InHeap(sm,c) then 

If d < Cost(s,., c) then 
Cosl(s,,,,c) == d 
Statelnfo(s ,c) == Statelnfo(s,,,c) 

else if d<BestCost(sm'')+e then 
Add(s.,,c); State!nfo(s,,,,c) == Statelnfo(s,,,c) 
Cost(s.,,c) = d 
else 
W== WorstContext(s ) 
if d < Cost(s,,,, w) th;n 

Delete(s , w) 
Add(s,_,;); Stateln/o(sm,c) == Statelnfo(s.,c) 

Cost(s,..,c) d 
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. When higher-order n-gram is used for lexical tree search, the potential heap size for 
lexical tree nodes (some also refer to prefix nodes) could be unmanageable. With decent 
acoust~c models ~nd effici:nt pruning, as illustrated in Algorithm 13.2, the average heap size 
for act~ve nodes _m the lex~cal tree is actually very modest. For example, Whisper's average 
heap size for active nodes m the 20,000-word WSJ lexical tree decoder is only about 1.6 [3]. 

13.1.6. Context-Dependent Units and Inter-Word Triphones 

So far, we have implicitly assumed that context-independent models are used in the lexical 
tree search. When context-dependent phonetic or subphonetic models, as discussed in Chap­
ter 9, are used for better acoustic models, the construction and use of a lexical tree become 
more complicated. 

Since senones represent both subphonetic and context-dependent acoustic models, this 
presents additional difficulty for use in lexical trees. Let's assume that a three-state context­
dependent HMM is fonned from three senones, one for each state. Each senone is context­
dependent and can be shared by different allophones. If we use allophones as the units for 
lexical tree, the sharing may be poor and fan-out unmanageable. Fortunately, each HMM is 
uniquely identified by the sequence of senones used to form the HMM. In this way, different 
context-dependent allophones that share the same senone sequence can be treated as the 
same. This is especially important for lexical tree search, since it reduces the order of the 
fan-out in the tree. 

Interword triphones that require significant fan-ins for the first phone of a word and 
fan-outs for the last phones usually present an implementation challenge for large­
vocabulary speech recognition. A common approach is to delay full interword modeling 
until a subsequent rescoring phase.4 Given a sufficiently rich lattice or word graph, this is a 
reasonable approach, because the static state space in the successive search has been reduced 
significantly. However, as pointed out in Section 13.1.2, the size of the dynamic state space 
can remain under control when detailed models are used to allow effective pruning. In addi­
tion, a multipass search requires an augmented set of acoustic models to effectively model 
the biphone contexts used at word boundaries for the first pass. Therefore, it might be desir­
able to use genuine interword acoustic models in the single-pass search. 

Instead of expanding all the fan-ins and fan-outs for inter-word context-dependent 
phone units in the lexical tree, three metaunits are created. 

1. The first metaunit, which has a known right context corresponding to the sec­
ond phone in the word, but uses open left context for the first phone of a 
word (sometimes referred to as the word-initial unit). In this way, the fan-in 
is represented as a subgraph shared by all words with the same initial left­
context-dependent phone. 

'Multipass search strategy is described in Section 13.3.5. 
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2_ Another metaunit, which has a known left context corresponding to the sec­
ond-to-last phon~ of the word, but uses open right context for the last phone 
of a word (sometimes referred to as the word-final unit). Again, the fan-out is 
represented as a subgraph shared by all words with the same final right­
context-dependent phone. 

3. The third metaunit, which has both open left and right contexts, and is used 
for single-phone word unit. 

659 

By using these metaunits we can keep the states for the lexical trees under control, because 
the fan-in and fan-out are now represented as a single node. 

During recognition, different left or right contexts within the same metaunit are han­
dled using Algorithm 13.2, where the different acoustic contexts are treated similarly as dif­
ferent linguistic contexts. The open left-context metaunit (fan-ins) can be dealt with in a 
straightforward way using Aglorithm 13.2, because the left context is always known (the last 
phone of the previous word) when it is initiated. On the other hand, the open right-context 
metaunit (fan-out) needs to explore all possible right contexts because the next word is not 
known yet. To reduce unnecessary computation, fast match algorithms (described in Section 
13.2.3) can be used to provide both el{pected acoustic and language scores for different coo­
text-dependent units to result in early pruning of unpromising contexts. 

13.2. OTHER EFFICIENT SEARCH TECHNIQUES 

Tree structured lexicon represents an efficient framework of manipulation of search space. 
In this section we present some additional implementation techniques, which can be use~ to 
funher improve the efficiency of search algorithms. Most of these techniques can be apphe_d 
10 both Viterbi beam search and stack decoding. They are essential ingredients for a practi­
cal large-vocabulary continuous speech recognizer. 

13·2,1. Using Entire HMM as a State in Search 

The state in state-search space based on HMM-trellis computation is, by d~finition, a 
Markov state. Phonetic HMM models are the basic unit in most speech recogmzers. Ev~n 
th0ugh subphonetic HMMs like senones might be used for such a system, the search 15 

often b d ' ' ase on phonetic HMMs. Th 
" Treating the entire phonetic HMM as a state in state-search has many advantagles .. th _e 
Hrst obv· h am needs to dea w1 is 
srn 11 t0us advantage is that the number of states the searc progr th mber of 

a er N t th M d t ·n effect reduce e nu 
States .· 0 e at using the entire phonetic HM oes no 1 'thin a phonetic 
H~.n.in the search. The entire search space is unchanged. All the_ Slateks wi. the beam. if 

"lJVl are no b th II f them are either ept in lhe Ph w undled together. This means at a o d y For any given 
till}e t~neti~ ~MM is regarded as promising, or al! of them are pru;~~~: u·sed as the cost 
for th e minimum cost among all the states within the phoneuc d t rmine the promising 

e phonetic HMM. For pruning purposes, this cost is used to e e 
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degree of this phonetic HMM, i.e., the fate of all the states within t~is p~onetic HMM. Al-

th h this does not actually reduce the beam beyond nonnal prunmg, 1t has the effect of 
oug . th" 1 . 

processing fewer candidates in_ the be~m. In programming, 1s means ess checkrng and 
bookkeeping, so some computation savmgs can be expe~ted. . 

You might wonder if this organization might be meffect1ve for beam search, since it 
forces you to keep or prune aJl the states within a phonetic HMM. In theory, it is possible 
that only one or two states in the phonetic HMM need to be kept, while other states can be 
pruned due to high cost score. However, this is, in reality, very rare, since a phone is a small 
unit and all the states within a phonetic HMM should be relatively promising when the 
search is near the acoustic region corresponding to the phone. 

During the trellis computation, all the phonetic HMM states need to advance one time 
step when processing one input vector. By perfonning HMM computation for all states to­
gether, the new organization can reduce memory accesses and improve cache locality, since 
the output and transition probabilities are held in common by all states. Combining this or­
ganization strategy with lexical tree search further enhances the efficiency. In lexical tree 
search, each hypothesis in the beam is associated with a particular node in the lexical tree. 
These hypotheses are linked together in the heap structure described in Algorithm 13.2 for 
the purposes of efficient evaluation and heuristic pruning. Since the node corresponds to a 
phonetic HMM, the HMM evaluation is guaranteed to execute once for each hypothesis 
sharing this node. 

In summary, treating the entire phonetic HMM as a state in state-search space allows 
you to explore the effective data structure for better sharing and improved memory locality. 

13.2.2. Different Layers of Beams 

Because of the complexity of search, it often requires pruning of various levels of search to 
make search feasible. Most systems thus employ different pruning thresholds to control what 
states participate. The most frequently used thresholds are listed below: 

• r, controls what states (either phone states or senone states) to retain. This is 
the most fundamental beam threshold. 

• -rP controls whether the next phone is extended. Although this might not be 
necessary for both stack decoding and linear Viterbi beam search it is crucial 
for_ lexical tree search, because pruning unpromising phonetic pr~fixes in the 
lexical trees could improve search efficiency significantly. 

• -rh con~ols whether hypotheses are extended for the next word. Since the 
~r~chmg factor for word boundaries is very large, we need this threshold to 
hmit search to only the promising ones. 

• 't'~ controls where a linguistic context is created in a lexical tree search using 
higher-order language models. This is also known as e -heap in Algorithm 
13.2. 
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Pruning can introduce search errors if a state is pruned th t Id 
Th · · 1 1· a wou have been on the 

I bally best path. e pnnc1p e app 1ed here is that the more const · · . 
go . ' . . . . ramts you have available, 
ihe more aggressn ely you decide whether this path will participate in the globally best ath 

I diis case at the state level, you have the least constraints At the 1 . 
1 

P · n • · · P 1onet1c evel there are 
more and there are the most at the word level. In gent'!r-tl the nuinber f d h ' . . . . . . . . ' ' o wor ypotheses 
,ends to drop s1~mficantl~ at wmd boundanes. Different thresholds for different levels allow 
the search designer to fme-tune those thresholds for their tasks to achieve b t h 

· · · fi · . es searc perfonnance without s1gm 1cant increase 111 error rates. 

13.2.3. Fast Match 

As described in Chapter J 2, fast match is a crucial part of stack decoding, which mainly 
reduces the number of possible word expansions for each path. Similarly, fast match can be 
applied to the most expensive part-extending the phone HMM fan-outs within or between 
lexical trees. Fast match is a method for rapidly deriving a list of candidates !hat constrain 
successive search phases in which a computationally expensive detailed match is perfonned. 
In this sense, fast match can be regarded as an additional pruning threshold to meet before a 
new word/phone can be started. 

Fast match is typically characterized by the approximations that are made in the acous­
tic/language models to reduce computation. The factorization of language model scores 
among tree branches in lexical trees described in Section 13.1.3 can be viewed as fast match 
using a language model. The factorized method is also an admissible estima~e of the lan­
guage model scores for the future word. In this section we focus on acou5t1c model fast 
match. 

13,2,3.1. Look-Ahead Strategy 

F · I lied look-ahead strategy. 
_ast match, when applied in time-synchronous search, is a so ca f t deter-

sin · b . arch by a few rames o ce It as1cally searches ahead of the time-synchronous se fi d 
mi . . all the look-ahead frames are ixe ' 

ne which words or phones are likely to extend. Typic Y .th ther specialized beam 
~d the ~ast match is also done in time-synchronous fashio~ wi ano t te HMMs or con-
zor effi · . . 'fi d d Is like the one-s a 
1 . icient pruning. You can also use s1mph re mo e ' . d to simplify the level of 

dextait~i,n~ependent models [4, 32). Some systems [21, 221 h_aveftnem several frames into one. 
e s m th · · · f ormatton ro 

A . e input feature vectors by aggregaung m . kip every other frame of 
stra1ghtf; . s: stream 1s to s . 

s orward way for compressing the ,eature d hile keeping computation 
/nedech for fast match. This allows a longer-range Iook-ahea ,trweam instead of simplifying 

er contr I Th . . . h · put feature s 
the 

O • e approach of s1mphfymg t e m -1 d match 
acousf Its for detat e · · ic models can reuse the fast match resu . 1 tree search in which prun-Wh· t h in Iex1ca ' f 1 ing. isper [4] uses phoneme look-ahead fast mac "bl phone fan-outs that may O -
is appr d of poss1 e · h th lo ie based on the estimation of the score h d synchronously wit e 

w a g· t is searc e 
tven phone. A context-independent phone-ne 
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h but Offset N frames into the future. In practice, significant savings can be 
searc process . 
obtained in search efforts without increase m error rates. 

Th erfoimance of word and phoneme look-ahead clearly depends on the length of 

th I k-::ead frames. In general, the larger the look-ahead window, the longer is the com-
e oo E . . II h . d . " 

putation and the shorter the word/phone A list. mpmca. Y? t e wm ow 1s a 1ew tens of 
milliseconds for phone look-ahead and a few hundreds of m1lhseconds for word look-ahead. 

13.2.3.2. The Rich-Get-Richer Strategy 

For systems employing continuous-density HMMs, tens of mixtures of Gaussians are often 
used for the output probability distribution for each state. The computation of the mixtures is 
one of the bottlenecks when many context-dependent models are used. For example, Whis­
per uses about 120,000 Gaussians. In addition to using various beam pruning thresholds in 
the search, there could be significant savings if we have a strategy to limit the number of 
Gaussians to be computed. 

The Rich-Get-Richer (RGR) strategy enables us to focus on most promising paths and 
treat them with detailed acoustic evaluations and relaxed path-pruning thresholds. On the 
contrary, the less promising paths are extended with less expensive acoustic evaluations and 
less forgiving path-pruning thresholds. In this way, locally optimal candidates continue to 
receive the maximum attention while less optimal candidates are retained but evaluated us­
ing less precise (computationally expensive) acoustic and/or linguistic models. The RGR 
strategy gives us finer control in the creation of new paths that has potential to grow expo­
nentially. 

RGR is used to control the level of acoustic details in the search. The goal is to reduce 
the number of context-dependent senone probability (Gaussian) computations required. The 
context-dependent senones associated with a phone instance p would be evaluated according 
to the following condition: 

Min[ci(p)] • a+LookAhead[ci(p)] < threshold 

where Min [ci(p)] = m}n{cost(s) Is E ci_phone(p)} 

and LookAhead [ ci(p)] = look-ahead estimate of ci(p) 

(13.6) 

These co~ditions s~te that the context-dependent senones associated with p should be 
evaluated if there exists a states corresponding top, whose cost in linear combination with a 
look-~he_ad cost score corresponding top falls within a threshold. In the event that p does not 
fall ':"1thm the threshold, the senone scores corresponding to p are estimated using the con­
text-mdependent senones d' . e . correspon mg top. This means the context-dependent senones ar 
evaluated only tf the corr d' . rt . . espon mg context-independent senones and the look-ahead sta 
showing promise RGR strat h Id · · I . . · egy s ou save s1gn1ficant senone computation for clear Y un-
promising paths Whisper [26] ·d d . h . : reports that 80% of senone computation can be avot e 
Wit out mtroducmg sign'fi 1 icant errors for a 20,000-word WSJ dictation task. 
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13.3. N-BEST AND MULTIPASS SEARCH STRATEGIES 

Ideally a search algorithm should consider all possible hypotheses based .fi d • . on a uni 1e prob-
abilistic framework that integrates all knowledge sources (KSs).5 These KSs h . , sue as acous-
u·c models language models. and lexical pronunciation models can be 1·nce t d · . . . , gra e m an 
HMM siate search framework.. It 1s desirable lo use the most detailed models such . , as con-
text-dependent models,_ mterword context-dependent models, and high-order n-grams, in the 
search as early as possible. When the explored search space becomes unmanageable, due co 
the increasing size of vocabulary or highly sophisticated KSs. search might be infeasible to 
implement. 

As we develop more powerful techniques, the complexity of models tends to increase 
dramatically. For example, language understanding models in Chapter 17 require long­
distance relationships. In addition, many of these techniques are not operating in a left-to­
right manner. A possible alternative is to perform a multipass search and apply several KSs 
at different stages, in the proper order to constrain the search progressively. In the initial 
pass, the most discriminant and computationally affordable KSs are used to reduce the num­
ber of hypotheses. In subsequent passes, progressively reduced sets of hypotheses are exam­
ined, and more powerful and expensive KSs are then used until the optimal solution is 
found. 

The early passes of multipass search can be considered fast match that eliminat~s 
those unlikely hypotheses. Multipass search is, in general, not admissible because the opti­
mal word sequence could be wrongly pruned prematurely, due to the fact that not all_ KSs are 
used in the earlier passes. However, for complicated tasks, the benefits of computauon com­
plexity reduction usually outweigh the nonadmissibility. In practice, multipass search Slrat­
egy using progressive KSs could generate better results than a search algorithm forced to use 
less powerful models due to computation and memory constraints. 

Th · th O called 11-besl search para-e most straightforward multipass search strategy 1s e s -
d' Th · 1· t f most probable word se-igm. e idea is to use affordable KSs to first produce a is O 11 

• d .1 d 
qu · cored using more eta1 e ences in a reasonable time Then these 11 hypotheses are res . f rth 
m d 1 • . f h -best ltsl can be u er 0 es to obtain the most likely word sequence. The idea O t e 11 

1 
d lattice or 

e~cended to create a more compact hypotheses representation~na;e ~th:~:s. N-best or 
ra~h. A word lattice is a more efficient way to repi:esent altemati::c:~ition systems [20, 
att1ce search is used for many large-vocabulary continuous speech g 

30,44]. 
I . . . -best list and word lattice. Sev-
n this section we describe the representation of the 11 

• d 
er.ii algo ·th . d 1 ttice are d1scusse · n ms to generate such an n-best-hst or wor a 

--- .. ' In --------- . ro1ed network of vanous the field . . . search !hrough an m1eg 
lnowr d of an1fic1al intelligence, the process of perfonnmg 

cgcsou . 
rces 1s called constraint satisfaction. 
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13.3.1. N-best Lists and Word Lattices 

Table 13.4 shows an example n-best (] 0-best) list generated for a North American Business 
(NAB) sentence. N-best search framework is effective only for n of the order of tens or hun­
dreds. If the short n-best list that is generated by using less optimal models does not include 
the correct word sequence, the successive rescoring phases have no chance to generate the 
correct answer. Moreover, in a typical n-best list like the one shown in Table 13.4, many of 
the diff erenl word sequences are just one-word variations of each other. This is not surpris­
ing, since similar word sequences should achieve similar scores. In general, the number of 11_ 

best hypotheses might grow exponentially with the length of the utterance. Word lattices and 
word graphs are thus introduced to replace n-best list with a more compact representation of 
alternative hypotheses. 

Word lattices are composed by word hypotheses. Each word hypothesis is associated 
with a score and an explicit time interval. Figure 13.8 shows an example of a word lattice 
corresponding to the n-best list example in Table 13.4. It is clear that a word lattice is more 
efficient representation. For example, suppose the spoken utterance contains IO words and 
there are 2 different word hypotheses for each word position. The n-best list would need to 
have i 0 = J 024 different sentences to include all the possible pennutations, whereas the 
word lattice requires only 20 different word hypotheses. 

Word graphs, on the other hand, resemble finite state automata, in which arcs are la­
beled with words. Temporal constraints between words are implicitly embedded in the to­
pology. Figure 13.9 shows a word graph corresponding to then-best list example in Table 
13.4. Word graphs in general have an explicit specification of word connections that don't 
allow overlaps or gaps along the time axis. Nonetheless, word lattices and graphs are simi­
lar, and we often use these terms interchangeably.6 Since an n-best list can be treated as a 
simple word lattice, word lattices are a more general representation of alternative hypothe­
ses. N-best lists or word lattices are generally evaluated on the following two parameters: 

Table 13.4 An example I 0-best list for a North American Business sentence. 

l. I will tell you would I think in my office 

2. I will tell you what I think in my office 

3. I will tell you when I think in my office 

4. I would sell you would I think in my office 
5. I would sell you what I think in my office 
6. I would sell you when I think in my office 
7. I will tell you would I think in my office 

8. I will tell you why I think in my office 
9. I will tell you what I think on my office 

I 0. I Wilson you I think on my office 

• We will use the term word lattice in the rest of this chapter .. 
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, D£'11Sity: In the n-best case, it is measured by how many alternative word se­
quences are kept in then-best list. In the word lattice case, it is measured by 
the number of word hypotheses or word arcs per uttered word. Obviously, we 
want the density to be as small as possible for successive rescoring modules, 
provided the correct word sequence is included in the n-best list or word lat­
tice. 

, The tower bou11d word error raft•: It is the lowest word error rate for any 
word sequence in the 11-best list or the word lattice. 

will tell you what think in my office 

would sell when 

Wilson why 

would 

665 

Figure 13.8 A word lattice example. Each word has an explicit time interval associated with it. 

office ;:l'O 

I · tare 
Fi r -- . . Table i 3.4. Temporal constrain s 
. gu e l3.9 A word graph example for the 11-best hst 10 
nn r . 

P •en in the topology. 
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Rescoring with highly similar 11-best alternatives duplicates computation on co 
· f d I · 11 mmon parts. The compact representation o wor attlces a ows both data structure and com u _ 

. h . f tI . ·1 I · p ta uon s anng o 1e common parts among s1m1 ar a temative hypotheses, so it is generall 
computationally less expensive to rescore the word lattice. y 

. . Figure I 3.10 !llustrates the general n-best/lattice search framework. Those KSs pro­
viding most constraints, at a lesser cost, are used first to generate the n-best list or word lat­
tice. The n-best list or word lattice is then passed to the rescoring module, which uses the 
remaining KSs to select the optimal path. You should note that then-best and word-lattice 
generators sometimes involve several phases of search mechanisms to generate the n-best 
list or word lattice. Therefore, the whole search framework in Figure 13.10 could involve 
several (> 2) phases of search mechanism. 

Does the compact n-best or word-lattice representation impose constraints on the 
complexity of the acoustic and language models applied during successive rescoring mod­
ules? The word lattice can be expanded for higher-order language models and detailed con­
text-dependent models, like inter-word triphone models. For example, to use higher-order 
language models for word lattice entails copying each word in the appropriate context of 
preceding words (in the trigram case, the two immediately preceding words). To use inter­
word triphone models entails replacing the triphones for the beginning and ending phone of 
each word with appropriate interword triphones. The expanded lattice can then be used with 
detailed acoustic and language models. For example, Murveit et al. [30] report this can 
achieve trigram search without exploring the enonnous trigram search space. 

Soeech ... 
Input 

KS Set I 

N-Best or 
Lattice Generator 

N-Best list Results 
Rescoring 

Word Lattice 

Figure 13.10 N-best/lattice search framework. The most discriminant and inexpensive know!· 
edge sources (KSs 1) are used first to generate the n-best/lattice. The remaining knowledge 
sources (KSs 2, usually expensiYe to apply~ ::re used in the rescoring phase to pick up the op­

timal solution [40]. 

13.3.2. The Exact N-best Algorithm 

Stack decoding is the choice of generating n-best candidates because of its best-firSl princi­
ple. We can keep it generating results until it finds n complete paths; these n complete~:~ 
tences form the n-best list. However, this algorithm usually cannot general~ th~ "earch 
candidates efficiently. The efficient n-best algorithm for time-synchronous ~iterbi/ time­
was first introduced by Schwartz and Chow [39]. It is a simple extension ; aths 
synchronous Viterbi search. The fundamental idea is to maintain separate rec0rd5 or p 

Amazon/VB Assets 
Exhibit 1012 

Page 692



b t and Multipass Search Strategies 
N· ts 667 

'th distinct histories. The history is defined as the whole word sequence u t h w1 . . . P o t e current 
time I and word w. This exact ,z-best algorithm 1s also called sentence-depende11t n-best al-

on.thm When two or more paths come to the same state at the same time paths ha · h g · . . . . , vmg t e 
same history are m_erged and their probab1ht1es are summed_ together; otherwise, only then-
best paths are retained for each state. As commonly used m speech recognition, a typical 
HMM state has 2 or 3 predecessor states within the word HMM. Thus, for each time frame 
and each state, the 11-best search algorithm needs to compare and merge 2 or 3 sets of II paths 
into n new paths. At the end of the search, then paths in the final state of the trellis are sim­
ply re-ordered to obtain the 11-best word sequences. 

This straightforward n-best algorithm can be proved to be admissible7 in normal cir­
cumstances [40]. The complexity of the algorithm is proportional to O(n), where II is the 
number of paths kept at each state. This is often too slow for practical systems. 

13.3.3. Word-Dependent N-best and Word-Lattice Algorithm 

Since many of the different entries in the n-best list are just one-word variations of each 
other, as shown in Table I 3.4, one efficient algorithm can be derived from the nonnal I-best 
Viterbi algorithm to generate the n-best hypotheses. The algorithm runs just like the normal 
time-synchronous Viterbi algorithm for all within-word transitions. However for each time 
frame t, and each word-ending state, the algorithm stores all the different words that can end 
at current time t and their corresponding scores in a traceback list. At the same time, the 
score of the best hypothesis at each grammar state is passed forward, as in the normal time­
synchronous Viterbi search. This obviously requires almost no exlra computation above the 
nonnal time-synchronous Viterbi search. At the end of search, you can simply search 
through the stored traceback list to get all the permutations of word sequences with their 
corresponding scores. If you use a simple threshold, the traceback can be implemented very 
efficiently to only uncover the word sequences with accumulated cost scores below the 
threshold. This algorithm is often referred as traceback-based 11-best algorithm (29, 421 be-
cause of the use of the traceback list in the algorithm. . 

. However, there is a serious problem associated with this algorithm. It could easily 
miss some low-cost hypotheses. Figure 13.11 illustrates an example in which ~0rd w* can 
be preceded by two different words w and w. in different time frames. Assuming path w, -
"', has a lower cost than path w - w 

1
when b~th paths meet during the trellis search of w.' 

the p th J • ti fi d' the n-best word se-a Wr w. will be pruned away. During traceback or m mg d 
quenc h . d · d by the best boun ary 
be 

es, 1 ere rs only one best starting time for word w., etennme 1 w 
tw h might have a very o 

COst een,1 e best preceding word w, and it. Even though path ":1 -w. b com letely over-
I (let ~ say only marginally higher than that of w, - w. ), it could e P 
OOked, since the path has a different starting time for word w. · 

1 
• ~----- ---- • • al cores for each ,,lthoug1i . . h. tories have near idenuc s . 

Ila•· th one can show in the worst case when paths with different is d ·ss1"bility Under this worst 
"'• e sc h • ' t e absolute a m1 · 

Cisc th arc actually needs lo keep all paths (> N) in order to guaran e r th utterance since all pennu1a-
, e adrni ·b be f words ,or e • 

lions r 551 le algorithm is clearly exponential in the num r 0 
0 Words cquences for the whole sentence need lo be kepi. 
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Ph 1 ~ w ~-----------~- 2t best path 

t 
I 

1~ 
best path 

: / 

I Can only keep one 
path within a word so 

this path Is lost. 
I I 

, "' / '--, 
'--

' ' 

time ---: 

Figure 13.11 Deficiency in traceback-based n-best algorithm. The best subpath, w; - w, , will 
prune away subpath w1 - wt while searching the word w1 ; the second-best subpath cannot be 
recovered {40]. 

t 
I 

1~ 
best path 

w . __,,...,- 2nd best path with 
1 _.--- f different ending word 

I 

I Preceding word is 
different so both 
thc:>ries are kept. 

I I , ... I ' - --, 
'--

' ' ' ' '"-, 
~ 

time ---.. 

Figure 13.12 Word-dependent n-best algorithm. Both subpaths W; - W1 and W1 • w, are kept 
under the word-dependent assumption [40]. 
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The word-dependent n-best algorithm [38] can alleviate the deficiency of the t _ 
. h . h" h I race 

back-based 11-best algont m, m w 1c on ~ one staning time is kept for each word, so the 
starting time is indep~ndent of the _prec~dmg words. On the other hand, in the sentence­
dependent 11-best _algo_nthm, the starting time for a word depends on all the preceding words, 
since different h1stones are kept separately. A good compromise is the so-called word­
dependent assumption: The starting time of a word depends only on the immediate preced­
ing word. That is, given a word pair and its ending time, the boundary between these two 
words is independent of further predecessor words. 

In the word-dependent assumption, the history to be considered for a different path is 
no longer the entire word sequence; instead, it is only the immediately preceding word. This 
allows you to keep k (<< n) different records for each state and each time frame in Viterbi 
search. Differing slightly from the exact n-best algorithm, a traceback must be performed to 
find the 11-best list at the end of search. The algorithm is illustrated in Figure 13.12. A word­
dependent n-best algorithm has a time complexity proportional to k. However, it is no longer 
admissible because of the word-dependent approximation. In general, this approximation is 
quite reasonable if the preceding word is long. The loss it entails is insignificant [6]. 

13.3.3.1. One-Pass N-best and Word-Lattice Algorithm 

As presented in Section 13. l, one-pass Viterbi beam search can be implemented very effi­
ciently using a tree lexicon. Section 13. l.2 states that multiple copies of lexical trees are 
necessary for incorporating language models other than the unigram. When bigram is used 
in lexical tree search, the successor lexical tree is predecessor-dependent. This predecessor­
dependent property immediately translates into the word-dependent property: as defined in 
Section 13.3.3, because the starting time of a word clearly depends on the immediately pre­
ceding word. This means that different word-dependent partial paths are automatically saved 
under the framework of predecessor-dependent successor trees. Therefore, one:pass prede­
cessor-dependent lexical tree search can be modified slightly to output n-beSl LiSts or word 

graphs. 
Ney et al. [31] used a word graph builder with a one-pass pre_dece~sor-dependent lexi­

cal tree search. The idea is to exploit the word-dependent property mhented from the prede­
ces~o_r-dependent lexical tree search. During predecessor-dependent lexical tree search, two 
additJonal quantities are saved whenever a word ending state is processed. 

r(t;w,,wj)-Representing the optimal word boundary between word w, ao
d 

wi, given word w
1 

ending at time t. 
h(wl;r(t;w,.w.),t)=-logP(x' I w.)-Representing the cumulative cost that 
WO d 1 .- 1 

r w1 produces acoustic vector xT, xr+I' · · · x, · ---1 When hih - --------- . be ven more significant For example, 
IYhcn bi. g er order n-gram models are used the boundary dependence will ~ ords Since we generally 

&rams are sed • d d on the previous two w · ""ant a f u , the boundary for a word junciure epen s . d f higher order 11-gram 10 gen-
ast lllelhod f . · · often used mstea 0 

Crate Wold . 0 generaung word Ianices/graphs, b1gram 1s 
lattJces/graphs. 
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670 Large-Vocabulary Search Algorithms 

At the end of the utterance, the word lattice or n-best list is constructed by tracing back 
all the permutations of word pairs recorded during the search. The algorithm is summarized 
in Algorithm 13.3. 

ALGORITHM 13.3: ONE-PASS PREDECESSOR-DEPENDENT LEXICAL TREE 

SEARCH FOR N-BEST OR WORD-LA TT/CE CONSTRUCTION 

Step 1: For t = l..T , 
1-best predecessor-dependent lexical tree search; 
v'( w;, w1 ) ending at t 

record word-dependent crossing time -r( t; w,, wi) ; 

record cumulative word score h( w1 ;-r(t; w;, wj ),t); 

Step 2: Output 1-best result; 
Step 3: Construct n-best or word-lattice by tracing back the word-pair records ( -r and h ). 

13.3.4. The Forward-Backward Search Algorithm 

As described Chapter 12, the ability to predict how well the search fares in the future for the 
remaining portion of the speech helps to reduce the search effort significantly. The one-pass 
search strategy, in general, has very little chance of predicting the cost for the portion that it 
has not seen. This difficulty can be alleviated by multipass search strategies. In successive 
phases the search should be able to provide good estimates for the remaining paths, since the 
entire utterance has been examined by the earlier passes. In this section we investigate a 
special type of multi pass search strategy-forward-backward search. 

The idea is to first perform a forward search, during which partial forward scores a 
for each state can be stored. Then perform a second pass search backward-that is, the sec­
ond pass starts by taking the final frame of speech and searches its way back until it reaches 
the start of the speech. During the backward search, the partial forward scores a can be 
used as an accurate estimate of the heuristic function or the fast match score for the remain­
ing path. Even though different KSs might be used in forward and backward phases, this 
estimate is usually close to perfect, so the search effort for the backward phase can be sig­
nificantly reduced. 

The forward search must be very fast and is generally a time-synchronous Viterbi 
search. As in the multipass search strategy, simplified acoustic and language models are 
often used in forward search. For backward search, either time-synchronous search or time­
asynchronous A* search can be employed to find then-best word sequences or word lattice. 
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3 3 41 Forward-Backward Search 1 .... 

Stack decoding. as described in Chapter 12, is based on the adm' ·'bl A* 
. " d . 1ss1 e search so the first 

Complete hypothesis 1oun with a cost below that of all the hyp 11 • 1 ' . 
. . 0 1eses m t 1e stack 1s guar-

anteed to be the best word sequence. It ts stnuohtforward to extend st k d ct· 
• • i:, ac eco mg Lo pro-

duce the 11-best hypotheses by contmmng to extend the partial hypothese d' th . . . . . s accor mg to e 
Same A"' cntenon until 11 different hypotheses are found These 11 di"f"e 1 h h · ,, ren ypot eses are 
destined to be the n-best hypotheses under a proof similar to that presented in Ch I J? 

d . . . . aper -· 
Therefore, stack deco m~ 1s a_ natural choice for producing the n-best hypotheses. 

However, as descnbed Ill Chapter I 2, the difficulty of finding a good heuristic func­
tion that can accurately under-estimate the remaining path has limited the use of stack de­
coding. Fortunately, this difficulty can be alleviated by tree-trellisforword-bocJ..,vord search 
algorithms [41). First, the search perfonns a time-synchronous forward search. At each time 
frame t, it records the score of the final state of each word ending. The set of words whose 
final states are active (surviving in the beam) at time t is denoted as A,. The score of the 
final state of each word w in A, is denoted as a, ( w), which represents the sum of the cost 
of matching the utterance up to time t given the most likely word sequence ending with 
word w and the cost of the language model score for that word sequence. At the end of the 
forward search, the best cost is obtained and denoted as ar. 

After the forward pass is completed, the second search is run in reverse (backward), 
i.e., considering the last frame T as the beginning one and the first frame as the final one. 
Both the acoustic models and language models need to be reversed. The backward search is 
based on A* search. At each time frame t, the best path is removed from the stack and a list 
of possible one-word extensions for that path is generated. Suppose this best path at time tis 

ph.,,, where w
1 

is the first word of this partial path (the last expanded during backward A* 
search). The exit score of path phM. at time t, which now corresponds to the score of the 
initial state of the word HMM w

1 
, it denoted as /3, (ph,.. ) · 

Let us now assume we are concerned about the one-word extension of wo~d w, for 
path ph,.

1
• Remember that there are two fundamental issue~ f~r the i'.11plement~tion_ of~: 

search algorithm-(!) finding an effective and efficient heunsttc function for eSlimatmg 
fu . . . h b ·ng time between w. and lure remammg input feature stream and (2) findmg t e eSt crossi ' 
WJ' 

· · b th ·ssues effectively and effi-
. -.. Jhe $(ored forward score a can be used for solvmg O 1 f the best 

c1ent1y. For each time t the sum a (w.) + /3, (ph . ) represents the cost score o 
co . ' ' ' . ' ", h (w) clearly represents a very 

mplete path including word w. and partial path P 11· , • a, 1 
1
·1 the end of 

good h · . ' h t t of the utterance un 1 
th euns11c estimate of the remaining path from 1 e s ar . f ard path for the same 

e word w,, because it is indeed the best score computed 111 the dorw can be easily com-
quanr1ty M . . · • b tween W- an w · · oreover, the optimal crossing ume t e , ' 
PUied by th " . . e ,ollowmg equauon: 

t' == arg:Uin[ a, (w,.) + /3, (ph11•1
)] 

( I 3.7) 
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Finally, the new path ph', including the one-word ( w,) extension, is inserted into the stack, 
ordered by the cost score a. ( w,) + R. (ph ) . The heuristic function (forward scores a) 

I fir w, 

allows the backward A* search to concentrate search on extending only a few truly promis-
ing paths. 

As a matter of fact, if the same acoustic and language models are used in both the for­
ward and backward search, this heuristic estimate (forward scores a ) is indeed a perfect 
estimate of the best score the extended path will achieve. The first complete hypothesis 
generated by backward A* search coincides with the best one found in the time-synchronous 
forward search and is truly the best hypothesis. Subsequent complete hypotheses correspond 
sequentially to the n-best list, as they are generated in increasing order of cost. Under this 
condition, the size of the stack in the backward A* search need only be N. Since the estimate 
of future is exact, the (N + 1) •h path in the stack has no chance to become part of the 11-best 
list. Therefore, the backward search is executed very efficiently to obtain the n-best hy­
potheses without exploring many unpromising branches. Of course, tree-trellis forward­
backward search can also be used like most other multipass search strategies-inexpensive 
KSs are used in the forward search to get an estimate of a , and more expensive KSs are 
used in the backward A* search to generate the n-best list. 

The same idea of using forward score a can be applied to time-synchronous Viterbi 
search in the backward search instead of backward A* search [7, 34]. For large-vocabulary 
tasks, the backward search can run 2 to 3 orders of magnitude faster than a normal Viterbi 
beam search. To obtain the n-best list from time-synchronous forward-backward search, the 
backward search can also be implemented in a simiJar way as a time-synchronous word­
dependent n-best search. 

13.3.4.2. Word-Lattice Generation 

The forward-backward n-best search algorithm can be easily modified to generate word lat­
tices instead of n-best lists. A forward time-synchronous Viterbi search is performed first to 
compute a,(m), the score of each word m ending at time t. At the end of the search, this 
best score ar is also recorded to establish the global pruning threshold. Then, a backward 
time-synchronous Viterbi search is performed to compute {3,(m), the score of each word (J) 

beginning at time t. To decide whether to include word juncture m. -m. in the word lat­
tice/graph at time t, we can check whether the forward-backward s~ore 

1
is below a global 

pruning threshold. Specifically, supposed bigram probability P(mj I (J)1) is used, if 

(13.8) 

where 0 is the pruning threshold, we will include m, - m in the word lattice/graph at time 
t. Once word juncture m, -w1 is kept, the search continfes looking for the next word-pair, 
where the first word w, will be the second word of the next word-pair. 
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