Search Algorithms for Speech Recognition
611

W with highest forward probability is then chosen as the recognized word When subword
models are used. word HMMs can be easily constructed by concatenating correspond(i);

phoneme HMMs or other types of subword HMMs according to the procedure described iﬁ
Chapter 9.

122.4. Continuous Speech Recognition

Search in continuous §peech recognitiqn is rather complicated, even for a small vocabulary.
since the search algorithm has to consider the possibility of each word starting at any arbi-
trary time frame. Some of the earliest speech recognition systems took a two-stage approach
towards continuous speech recognition, first hypothesizing the possible word boundaries and
then using pattern matching techniques for recognizing the segmented patterns. However.
due to significant cross-word co-articulation, there is no reliable segmentation algorithm for
detecting word boundaries other than doing recognition itself.

Let’s illustrate how you can extend the isolated-word search technique to continuous
speech recognition by a simple example, as shown in Figure 12.10. This system contains
only two words, w, and w,. We assume the language model used here is an uniform unigram
(P(w)=P(w,)=1/2).

It is important to represent the language structures in the same HMM framework. In
Figure 12.10, we add one starting state S and one collector state C. The starting state has a
null transition to the initial state of each word HMM with corresponding language model
probability (1/2 in this case). The final state of each word HMM has a null transition to the
collector state. The collector state then has a null transition back to the starting state in order
to allow recursion. Similar to the case of embedding the phoneme (subword) HMMs into the
word HMM for isolated speech recognition, we can embed the word HMMs for w, and w,
into a new HMM corresponding to structure in Figure 12.10. Thus, the continuous speech
search problem can be solved by the standard HMM formulations.

HMM of

. - : s w, and
Figure 12,10 A simple example of continuous speech recognition task with r’“;:: :ﬁfmg i
"> A uniform unigram language model is assumed for these words. State S ‘I: otrd .

While state C js o collector state to save fully expanded links between every p

Amazon/VB Assets
Exhibit 1012
Page 637

- Basic Search Algorithms

The composite HMMs shown in Figure 12.!0 can l?e viewed as a stochastic finjte state
network with transition probabilities and output dnstnbuu.ons. The search allgon'thm is essen-
tially producing a match between the acoustc opf)ervauon‘x and a path” in the stochastic
finite state network. Unlike isolated _word recognition, continuous speech recognition needs
to find the optimal word sequence W. Thg Viterbi algorithm is clearly a natural choice for
this task since the optimal state sequence S corresponds to the optimal word sequence W.
Figure 12.11 shows the HMM Viterbi trellis computation for the two-word continuous
speech recognition example in Figure 12.10. There is a cell for each state in the stochastic
finite state network and each time frame ¢ in the trellis. Each cell C,, in the trellis can be
connected to a cell corresponding to time ¢ or r+1 and to states in the stochastic finite state
network that can be reached from s. To make a word transition, there is a null transition to
connect the final state of each word HMM to the initial state of the next word HMM that can
be followed. The trellis computation is done time-synchronously from left to right, i.e., each
cell for time ¢ is completely computed before proceeding to time r+1.

Time

Figure 12.11 HMM trey .
the final sta trellis for continuous speech recognition example in Figure 12.10. When

state of the word HMM js reach i .y i linked
: i ed, a null e) is linke
from it to the initjal State of the following word EF s vy § b lam)

4
A
Path here means a Sequence of states and transitions

Amazon/VB Assets
Exhibit 1012
Page 638

Language Model States 613

123. LANGUAGE MODEL STATES

The state-space is a good indicator of search complexity. Since the HMM representation for
each word in the lexicon is fixed, the state-space is determined by the language models. Ac-
cording to Chapter 11, every language model (grammar) is associated with a state machine
(automata). Such a state machine is expanded to form the state-space for the recognizer. The
states in such a state machine are referred to as language models states. For simplicity, we
will use the concepts of state-space and language model states interchangeably. The expan-
sion of language model states to HMM states will be done implicitly. The language model
states for isolated word recognition are trivial. They are just the union of the HMM states of
each word. In this section we look at the language model states for various grammars for

continuous speech recognition.

123.1. Search Space with FSM and CFG

As described in Chapter 8, the complexity for the Viterbi algorithm is O(NT), where N is
the total number of states in the composite HMM and T is the length of input observation. A
full time-synchronous Viterbi search is quite efficient for moderate tasks (vocabulary <
300). We have already demonstrated in Figure 12.11 how to search for a two-word continu-
ous speech recognition task with a uniform language model. The uniform language model,
which allows all words in the vocabulary to follow every word with the same probability, is
suitable for connected-digit task. In fact, most small vocabulary tasks in speech recognition
3pplications usually use a finite state grammar (FSG).

Figure 12.12 shows a simple example of an FSM. Similar to the process described in
Sections 12.2.3 and 12.2.4, each of the word arcs in an FSG can be expanded as a network
of phoneme (subword) HMMs. The word HMMs are connected with null transitions with
the grammar state, A large finite state HMM network that encodes all the legal sentences
¢an be constructed based on the expansion procedure. The decoding process is achieved by
performing 4 time-synchronous Viterbi search on this composite finite state HMM.

_In practice, FSGs are sufficient for simple tasks. However, when an FSG is made to
sty the constraints of sharing of different sub-grammars for compactness and support for
dynamic modifications, the resulting non-deterministic FSG is very similar to context-free
Brammar (CFG) in terms of implementation. The CFG grammar consists of a set of produc-
tlons or ryles, which expand nonterminals into a sequence of terminals and nonterminals.

Onterminals in the grammar tend to refer to high-level task-specific concepts such as dates,
r[:zm . and commands. The terminals are words in the vocabulary. A grammar also has a

M-eminal designated as its start state. .

_ Although efficient parsing algorithms, like chart parsing (described in Qhapter 11),. a;le
2Vailable, for CFG, they are not suitable for speech recognition, which requires left-to-rig kt
Processing, A context-free grammar can be formulated with a recursive transition nf:;“s)irn

). RTNs are more powerful and complicated than the finite state machines describe

Amazon/VB Assets
Exhibit 1012
Page 639

614 Basic Search Algorithms

Chapter 11 because they allow arc labels to refer to other networks as well as words. We use
Figure 12.13 to illustrate how to embed HMMs into a recursive transition network.
Figure 12.13 is an RTN representation of the following CFG:

S— NP VP

NP— sam | sam davis
VP — VERB tom

VERB — likes | hates

There are three types of arcs in an RTN, as shown in Figure 12.13: CAT(x), PUSH (x),
and POP(x). The CAT(x) arc indicates that x is a terminal node (which is equivalent to a
word arc). Therefore, all the CAT(x) arcs can be expanded by the HMM network for x. The
word HMM can again be a composite HMM built from phoneme (or subword) HMMs.
Similar to the finite state grammar case in Figure 12.12, each grammar state acts as a state
with incoming and outgoing null transitions to connect word HMMs in the CFG.

During decoding, the search pursues several paths through the CFG at the same time.
Associated with each of the paths is a grammar state that describes completely how the path
can be extended further. When the decoder hypothesizes the end of the current word of a
path, it asks the CFG module to extend the path further by one word. There may be several
alternative successor words for the given path. The decoder considers all the successor word
possibilities. This may cause the path to be extended to generate several more paths to be
considered, each with its own grammar state.

Iw/ t/
/ah/ /silence/
/silence/
fwl + fahl + fif ———————— (optional)
What is Seattle's weather
Boston's populatnon
Show Denver's latitude

Figure 12.12 An illustration of how to compile a speech recognition task with finite state
grammar into a composite HMM.

Amazon/VB Assets
Exhibit 1012
Page 640

Language Model States
615

m PUSH(vP) pop
N @ @/\ /\

CAT (S.lm) CAT (dﬂVlS) pop
B /_\A

CAT (Sam) CAT

CAT (likes) CAT (tom) pop

- ° @ @ N
CAT (hates)

Figure 12.13 A simple RTN example with three types of arcs: CAT(x), PUSH (x), POP.

) Readers should note that the same word might be under consideration by the decoder
In the context of different paths and grammar states at the same time. For example, there are
two word arcs CAT (Sam) in Figure 12.13. Their HMM states should be considered as dis-
tinct states in the trellis because they are in completely different grammar states. Two differ-
ent states in the trellis also means that different paths going into these two states cannot be
Merged. Since these two partial paths will lead to different successive paths, the search deci-
Sion needs to be postponed until the end of search. Therefore, when embedding HMMs into
word arcs in the grammar network, the HMM state will be assigned a new state identity,
although the HMM parameters (transition probabilities and output distributions) can still be
shared across different grammar arcs.

. Each path consists of a stack of production rules. Each element of the stack aiso con-
@ins the position within the production rule of the symbot that is currently being explored.

€ search graph (trellis) started from the initial state of CFG (state S). When the path needs
0 be extended, we look at the next arc (symbol in CFG) in the production. When the search
enters a CAT(x) arc (terminal), the path gets extended with the terminal, and the HMM tre'l-
lis Computation jg performed on the CAT(x) arc to match the model x against the acoustic
data, When the final state of the HMM for x is reached, the search moves on via the null

Amazon/VB Assets
Exhibit 1012
Page 641

616 Basic Search Algorithms

transition to the destination of the CAT(x) arc. When the search enters a PUSH(x) are, it
indicates a nonterminal symbol x is encountered. In effect, the search is about to enter a sub-
network of x; the destination of the PUSH(x) arc is stored in a last-in first-out (LIFO) stack.
When the search reaches a POP arc that signals the end of the current network, the control
should jump back to the calling network. In other words, the search returns to the state ex-
tracted from the top of the LIFO stack. Finally, when we reach the end of the production rule
at the very bottom of the stack, we have reached an accepting state in which we have seen a
complete grammatical sentence. For our decoding purpose, that is the state we want to pick
as the best score at the end of time frame 7 to get the search result.

The problem of connected word recognition by finite state or context-free graminars is
that the number of states increases enormously when it is applied to more complex gram-
mars. Moreover it remains a challenge to generate such FSGs or CFGs from a large corpus,
either manually or automatically. As mentioned in Chapter 11, it is questionable whether
FSG or CFG is adequate to describe natural languages or unconstrained spontaneous lan-
guages. Instead, n-gram language models are often used for natural languages or uncon-
strained spontaneous languages. In the next section we investigate how to integrate various
n-grams into continuous speech recognition.

12.3.2. Search Space with the Unigram

The simplest n-gram is the unigram that is memory-less and depends only on the current
word.

POW) =] P(w) az.1
i=]

Figure 12.14 shows such a unigram grammar network. The final state of each word
HMM is connected to the collector state by a null transition, with probability 1.0. The col-
lector state is then connected to the starting state by another null transition, with transition
probability equal to 1.0. For word expansion, the starting state is connected to the initial
state of each word HMM by 2 null transition, with transition probability equal to the corre-
sponding unigram probability. Using the collector state and starting state for word expansion
allows efficient expansion because it first merges all the word-ending paths’ (only the best
one survives) before expansion. It can cut the total cross-word expansion from N 2 to N.

T In graph search, a partial path still under consideration is also referred to as a theory, although we will use paths
instead of theories in this book.

Amazon/VB Assets
Exhibit 1012
Page 642

/
Language Maodel States —

— w_l
P(W,),
—> W, —

&

P(W,) g

@

P(Wy) %

N | Ee———

Figure 12.14 A unigram grammar network where the unigram probability is attached as the
transition probability from starting state S to the first state of each word HMM.

1233. Search Space with Bigrams

When the bigram is used, the probability of a word depends only on the immediately preced-
ing word. Thus, the language model score is:

P(W) = P(w, | <s>)f[P(w, | w,) (12.12)

=2

where <g> represents the symbol of starting of a sentence.

Figure 12.15 shows a grammar network using a bigram language model. Because of
the bigram constraint, the merge-and-expand framework for unigram search no longer ap-
plies here. Instead, the bigram search needs to perform expand-and-merge. Thus, bigram
&Xpansion is more expensive than unigram expansion. For vocabulary size N, the bigram
Would need N word-to-word transitions in comparison to N for the unigram..l?ach word
ansition has a transition probability equal to the corresponding bigram probability. Fortu-

Nately, the total number of states for bigram search is still proportional to the vocabulary
Size N,

Amazon/VB Assets
Exhibit 1012
Page 643

p” Basic Search Algorithmg

P(W, | W,)

P(W, | W) \

P(W, | Wy)

P(Wy W)

Figure 12.15 A bigram grammar network where the bigram probability P(w, |w,) is at-
tached as the transition probability from word w, to w, [19].

Because the search space for bigram is kept manageable, bigram search can be imple-
mented very efficiently. Bigram search is a good compromise between efficient search and
effective language models. Therefore, bigram search is arguably the most widely used
search technique for unconstrained large-vocabulary continuous speech recognition. Particu-
larly for the multiple-pass search techniques described in Chapter 13, a bigram search is
often used in the first pass search.

12.3.3.1. Backoff Paths

When the vocabulary size N is large, the total bigram expansion N’ can become computa-
tionally prohibitive. As described in Chapter 11, only a limited number of bigrams are ob-
servable in any practical corpora for a large vocabulary size. Suppose the probabilities for
unseen bigrams are obtained through Katz’s backoff mechanism. That is, for unseen bigram

P(w,; |w,),
P(w; 1w,) = o(w,)P(w,) (12.13)

where a/(w,) is the backoff weight for word w, .

Amazon/VB Assets
Exhibit 1012
Page 644

| anpuage Model States
Langu 619

Using the backoff mechanism for unseen bigra i i i
nificantly reduced [12]. Figure 12.16 shows the ne\gv wncl)sr,cit::p:;gsriirr‘: sec’;[:rl;l]esﬁn iandbe P
bigram expansion, only observed bigrams are connected by direct word trans.'t'nS o e
respondent bigram probabilities. For backoff bigrams, the last state of word w is -y
pected to @ central backoff node with transition probability equal to backciff - .lShﬁl'St iy
The backoff noc_ie is then connected to the beginning of each word w, with tr;elg' ‘[iy
ability equal to 1S corresponding unigram probability P(w,). Readers/ should ngls:zzn plrlOb-
are now two paths from w, to w, for an observed bigraij(w | w,). One is the di ot l'ere
representing the observable bigram P(w, {w,), and the other {s thle .two-link bacl!:efcft .
representing a(w,)P(w;). Fora word pair whose bigram exists, the two-link backof? f:"h
likely to be ignored since the backoff unigram probability is almost always smaller th!;;a thls
observed bigram P(w; | w;). Suppose there are only N, different observable bi ramsnth'e
scheme requires N, +2N instead of N*® word transitions. Since under normal cirgcums;am:s
N, < N?, this backoff scheme significantly reduces the cost of word expansion.)

backoff node

search by using the backoff node. In addition to
bigrams, the last state of word w is first con-
bability equal to backoff weight a(w,) .
f each word w, with its corresponding

Figure 12.16 Reducing bigram expansion in a
normal bigram expansion arcs for all observed
nected to a central backoff node with transition pro
Thg backoff node is then connected to the beginning o
unigram probability P(w,) [12].

1234. Search Space with Trigrams

F 5
Oratrigram language model, the language model score is:

P(W) = P(w, | <s>)P(w, | <s>,w,)ﬁ P(w, | WigsWiat) (12.149)

i=3

Amazon/VB Assets
Exhibit 1012
Page 645

- \‘
620 Basic Search Algorithimg

The search space is considerably more complex, as shown in Figure 12.17. Since the equivg
lence grammar class is the previous two words w, andw,, the total number of gramma;
states is N*. From each of these grammar states, there is a transition to the next word [19)

Obviously, it is very expensive to implement large-vocabulary trigram search giv.en
the complexity of the search space. It becomes necessary to dynamically generate the trj-
gram search graph (trellis) via a graph search algorithm. The other alternative is (o perform a
multiple-pass search strategy, in which the first-pass search uses less detailed language
models, like bigrams, to generate an n-best list or word lattice, and then a second-pass de-
tailed search can use trigrams on a much smaller search space. Multiple-pass search Strategy
is discussed in Chapter 13.

P(W, [W,, W)

W S—

P(W, | W,, W) P(W, | W,, W)

P(W,|W,, W)

P(W, | W,, W,)

P(W,|W, , W
(W, W,, W,) P(W, [W,, W,)

Y W

(W, | W,, W)

f:gk:n: 12.17 A trigram grammar network where the trigram probability P(w, [#,%;) i a:
; ched to transition from grammar state word W,,w, to the next word w; . Ilustrated here 13
Wo-word vocabulary, so there are four grammar states in the trigram network [19]-

Amazon/VB Assets
Exhibit 1012
Page 646

| age Model States
Languag -

12.3.5. How to Handle Silences Between Words

T continuous speech TF?Og"il'iOH- there are unavoidable pauses (silences) between words or
sentences. The. pause is of.t.en referred to as .snence Or a non-speech event in continuous
speech recognition. Acoustically, the pause 1s modeled by a silence model® that models
baclfground acoustic phenomena. Thg silence model is usually modeled with a topology
flexible enough to accommodate a wide range of lengths, since the duration of a pause is
arbitrary.

[t can be argut?d that silences are actually linguistically distinguishable events, which
contribute to prosodic and meaning representation. For example, people are likely to pause
more often in phrasal boundaries. However, these patterns are so far not well understood for
unconstrained natural speech (particularly for spontaneous speech). Therefore, the design of
almost all automatic speech recognition systems today allows silences occurring just about
anywhere between two lexical tokens or between sentences. It is relatively safe to assume
that people pause a little bit between sentences to catch breath, so the silences between sen-
tences are assumed mandatory while silences between words are optional. In most systems,
silence is often modeled as a special lexicon entry with special language mode! probability.
This special language model probability is also referred to as silence insertion penalty that is
set to adjust the likelihood of inserting such an optional silence between words.

It is relatively straightforward to handle the optional silence between words. We need
only to replace all the grammar states connecting words with a2 small network like the one
shown in Figure 12.18. This arrangement is similar to that of the optional silence in training
continuous speech, described in Chapter 9. The small network contains two parallel paths.
One is the original null transition acting as the direct transition from one word to another,
while the other path will need to go through a silence model with the silence insertion pen-
alty attached in the transition probability before going to the next word. o

One thing to clarify in the implementation of Figure 12.18 is that this silence expan-
sion needs to be done for every grammar state connecting words. In the unigram grammar
network of Figure 12.14, since there is only one collector node to con.nect wqrds, the silence
expansion is required only for this collector node. On the other hand, in the bigram gmmmmm
network of Figure 12.15, there is a collector node for every word before expanding to the
next word. In this case, the silence expansion is required for every colleetor Od;) Fo; :“;Z;
cabulary size ||, this means there are |V | numbers of SI'IEnce networks in the g: gy
search network. This requirement lies in the fact that in bigram search we Zar;n:‘)s artif
Paths before expanding into the next word. Optional silence can e bi,reggneeafter%nish-
the search effort for the previous word, so the word expansion rieeds to'te ssible pronuncia-
ing the optional silence. Therefore, we (reat each word as having To FUR 7 Fo T
tions, one with the silence at the end and one without. This viewpoint infcg

the word pronunciation network like the example shown in Figure 12.19.

—

. i at case, there are several silence
Some tesearchers extend the context-dependent modeling to silence models. In that ¢

Modejg
els based on surrounding contexts.

Amazon/VB Assets
Exhibit 1012
Page 647

— Basic Search Algorithmg

Isill

Figure 12.18 Incorporating optional silence (a non-speech event) in the grammar search net-
work where the grammar state connecting different words is laced by two parallel paths. One
is the original null transition directly from one word to the other, while the other first goes
through the silence word to accommodate the optional silence.

For efficiency reasons, a single silence is sometimes used for large-vocabulary con-
tinuous speech recognition using higher order n-gram language model. Theoretically, this
could be a source of pruning errors.” However, the error could turn out to be so small as to
be negligible because there are, in general, very few pauses between word for continuous
speech. On the other hand, the overhead of using multiple silences should be very minimal
because it is less likely to visit those silence models at the end of words due to pruning.

1/ fuw/

O———0

Figure 12.19 An example of treating silence as of the pronunciation network of word TWO.

The shaded nodes represent possible word-ending nodes: one without silence and the other one
with silence.

124. TIME-SYNCHRONOUS VITERBI BEAM SEARCH

When HMMs are used for acoustic models, the acoustic model score (likelihood) used in

searc.h is by definition the forward probability. That is, all possible state sequences must be
considered. Thus,

7
Speech recognition errors due t i i hich
- 0 0 sub-optimal search isti i ning errors, W
Will be described in detal i Chapce, 13‘P or heuristic pruning are referred to as pruning

Amazon/VB Assets
Exhibit 1012
Page 648

Time-Synchronous Viterbi Beam Search a3

PXIW)= D, P(Xss|W) (12,15

«ll possible _‘_“r

where the summation is to be taken over all possible state sequences S with the word se-

uence W under consideration. However, under the trellis framework (as in Figure 12.11),
more bookkeeping must be performed since we cannot add scores with different word se-
quence history. Since ther goal'of decoding is to uncover the best word sequence, we could
approximate the summation with the maximum to find the best state sequence instead. The
Bayes’ decision rule, Eq. (12.5), becomes

W argmax P(W)P(X| W) = arg max {P(W)11;3x P(X,sT| w)} (12.16)

Equation (12.16) is often referred to as the Viterbi approximation. It can be literally
wranslated to “the most likely word sequence is approximated by the most likely state se-
quence.” Viterbi search is then sub-optimal. Although the search results by using forward
probability and Viterbi probability could, in principle, be different, in practice this is rarely
the case. We use this approximation for the rest of this chapter.

The Viterbi search has already been discussed as a solution to one of the three funda-
mental HMM problems in Chapter 8. It can be executed very efficiently via the same trellis
framework. To briefly reiterate, the Viterbi search is a time-synchronous search algorithm
that completely processes time ¢ before going on to time ¢+1. For time ¢, each state is up-
dated by the best score (instead of the sum of all incoming paths) from all states in at time
~1. This is why it is often called time-synchronous Viterbi search. When one update occurs,
italso records the backtracking pointer to remember the most probable incoming state. At
the end of search, the most probable state sequence can be recovered by tracing back these
backtracking pointers. The Viterbi algorithm provides an optimal solution for. handling
nonfinear time warping between hidden Markov models and acoustic observation, word
b?""dary detection and word identification in continuous speech recognitiogl. Th'ls unified
Viterbi search algorithm serves as the basis for all search algorithms as described in the rest
of the chapter, L
; It fs Necessary to clarify the backtracking pointer for time—synf:hronous Yltelrbl steat;lj
q‘l’]‘e:::tfmuous word recognition. We are generally not intere‘sted in the olpvt;;ﬂrz szt;ui:nce
; Or speech recognition.” Instead, we are only interested in the opuma

::?dicated by Eq. (12.16). Therefore, we use the backtrack pointer just to rememberhﬂlz:éogz
Slory for the current path, so the optimal word sequence can be recovered at the €
Search, path, P a word, we create a history

To be more i final state of
specific, when we reach the fina » WE i e
e €ontaining the word identity and current time index and append this history no

it : -essor node if it
'Sting backtrack pointer. This backtrack pointer is then passed onto the suce

I . e -
" e in optiml s ul in deriving phonetl
Sezr:.zi:u“,'e are not interested in optimal state sequences for ASR., they are \::gs usefi

"o whichcould provide important information for developing ASR systems.

Amazon/VB Assets
Exhibit 1012
Page 649

o Basic Search Algorithmg

is the optimal path leading to the successor node for both intra-word and inter-word transj.
tion. The side benefit of keeping this backtrack pointer is that we no longer need to keep the
entire trellis during the search. Instead, we only need space to keep two successive time
slices (columns) in the trellis computation (the previous time slice and the current time slice)
because all the backtracking information is now kept in the backtrack pointer. This simplifi-
cation is a significant benefit in the implementation of a time-synchronous Viterbi search.

Time-synchronous Viterbi search can be considered as a breadth-first search with dy-
namic programming. Instead of performing a tree search algorithm, the dynamic program-
ming principle helps create a search graph where multiple paths leading to the same search
state are merged by keeping the best path (with minimum cost). The Viterbi trellis is a repre-
sentation of the search graph. Therefore, all the efficient techniques for graph search algo-
rithms can be applied to time-synchronous Viterbi search. Although so far we have
described the trellis in an explicit fashion—the whole search space needs to be explored
before the optimal path can be found—it is not necessary to do so. When the search space
contains an enormous number of states, it becomes impractical to pre-compile the composite
HMM entirely and store it in the memory. It is preferable to dynamically build and allocate
portions of the search space sufficient to search the promising paths. By using the graph
search algorithm described in Section 12.1.1, only part of the entire Viterbi trellis is gener-
ated explicitly. By constructing the search space dynamically, the computation cost of the
search is proportional only to the number of active hypotheses, independent of the overall
size of the potential search space. Therefore, dynamically generated trellises are key to heu-
ristic Viterbi search for efficient large-vocabulary continuous speech recognition, as de-
scribed in Chapter 13.

12.4.1. The Use of Beam

Based on Chapter 8, the search space for Viterbi search is O(NT) and the complexity is
O(N°’T), where N is the total number of HMM states and T is the length of the utterance.
For large-vocabulary tasks these numbers are astronomically large even with the help of
dynamic programming. In order to avoid examining the overwhelming number of possible
cells in the HMM trellis, a heuristic search is clearly needed. Different heuristics generate or
explore portions of the trellis in different ways.

A simple way to prune the search space for breadth-first search is the beam search de-
scribed in Section 12.1.3.2. Instead of retaining all candidates (cells) at every time frame, a
threshold T is used to keep only a subset of promising candidates. The state at time ¢ with the
lowest cost D, is first identified. Then each state at time ¢ with cost > D, +7 is dis-
carded from further consideration before moving on to the next time frame f+1. The us¢ of
the beam alleviates the need to process all the cells. In practice, it can lead to substantial
savings in computation with little or no loss of accuracy. :

Although beam search is a simple idea, the combination of time-synchronous Viterbi
and beam search algorithins produces the most powerful search strategy for large”
vocabulary speech recognition. Comparing paths with equal length under a time-

Amazon/VB Assets
Exhibit 1012
Page 650

Time-Synchronous Viterbi Beam Search 625

synchronous search framework mall<es beam search possible. That is, for two different word
sequences W, and W, the posterior probabilities P(W, |x;) and P(W, |x;) are always
compared based on the same partial acoustic observation x;. This makes the comparison
straightforward because the denominator P(x;) in Eq. (12.5) is the same for both terms and
can be ignored. Since the score comparison for each time frame is fair, the only assumption
of beam search is that an optimal path should have a good enough partial-path score for each
time frame to survive under beam pruning.

The time-synchronous framework is one of the aspects of Viterbi beam search that is
critical to its success. Unlike the time-synchronous framework, time-asynchronous search
algorithms such as stack decoding require the normalization of likelihood scores over fea-
wre streams of different time lengths. This, as we will see in Section 12.5, is the Achilles’
heel of that approach.

The straightforward time-synchronous Viterbi beam search is ineffective in dealing
with the gigantic search space of high perplexity tasks. However, with a better understand-
ing of the linguistic search space and the advent of techniques for obtaining n-best lists from
time-synchronous Viterbi search, described in Chapter 13, time-synchronous Viterbi beam
search has turned out to be surprisingly successful in handling tasks of all sizes and all dif-
ferent types of grammars, including FSG, CFG, and n-gram [2, 14, 18, 28, 34, 38, 44].
Therefore, it has become the predominant search strategy for continuous speech recognition.

124.2. Viterbi Beam Search

To explain the time-synchronous Viterbi beam search in a formal way [31], we first define
some quantities:

D(t;5,;w) = total cost of the best path up to time ¢ that ends in state s, of gram-
mar word state w.

h(t;s,;;w) = backtrack pointer for the best path up to time ¢ that ends in state s, of
grammar word state w.

Readers should be aware that w in the two quantities above represents a grammar
%ord state in the search space. It is different from just the word identity since the same word
<ould oceur in many different language model states, as in the trigram search space shown in
Figure 12,17,

. There are two types of dynamic programming (DP) transi
od and inter-word transition. The intra-word transition is jus

Sand can be expressed as follows:

transition rules [301, namely intra-
t like the Viterbi rule for

12.17)
D(t;5,3w) = min{d(x,,s, | s,.;;w) + DU ~135,.5W)} {
, (12.18)
h(t,s,;w) =h(t~1, b, (£;5,; W) W)
Amazon/VB Assets
Exhibit 1012

Page 651

_—
626 Basic Search Algorithmg

where d(x,.s, |s,;w) is the cost associated with taking the transition from state s, 1
state s, while generating output observation x,, and b, (;5,;w) is the optimal predecessor
state of cell D(r;s,;w) . To be specific, they can be expressed as follows:

d(x"s‘ l s‘_l;w) =- log P(sl ! s,_l;w)—- log P(X, I S,_ZW) (1219)
by, (1:5,:%) = argmin {d(x,, 5, | 5,.;;w) + D=L 5,45 w)} (12.20)
L

The inter-word transition is basically a null transition without consuming any observa-
tion. However. it needs to deal with creating a new history node for the backtracking
pointer. Let’s define F(w) as the final state of word HMM wand / (w) as the initial state of
word HMM w. Moreover, state 1 is denoted as the pseudo initial state. The inter-word tran-
sition can then be expressed as follows:

Ds;n;w) = min{log Piw| v) + D(5; F(3);%)} (12.21)

(W) = (Voo 1) 3 AU F (Ve Vi) (1222)

where v, =argmin {log P(w!v)+ D(t; F(+);V)} and :: is a link appending operator.

The time-synchronous Viterbi beam search algorithm assumes that all the intra-word
transitions are evaluated before inter-word null transitions take place. The same time index
is used intendonally for inter-word transition since the null language model staie transition
does not consume an observation vector. Since the initial state () for word HMM w could
have a self-transition. the cell D(r;/(w);w) might already have an active path. Therefore.
we need to perform the following check to advance the inter-word transitons.

D w) < DI (w): w)

(12.23)
D(;1(w):w) = D(r: 1. w) and A(2;1(w): w) = A(r; 1, w)
The time-synchronous Viterbi beam search can be summarized as in Algorithm 126.
For large-vocabulary speech recognition, the experimental results show that only 3 small
percentage of the entire search space (the beam) neads to be kept for each ome interval 7
without increasing error rates. Empirically, the beam size has tvpically been found 1© be
berween 5% and 10% of the entire search space. In Chapter 13 we describe strategies 0!
using different level of beams for more effectvely pruning.

12.5. STACK DECODING (A’ SEARCH)

If some reliable heuristics are availab]
depth-first fashion around the best
paths v

-
e 1o guide the decoding. the search can be do‘:i;ing
. ‘ path early on. instead of wasting efforts on unpro™ -
ia the time-synchronous beam search. Stack decoding represents the best atiempt

Amazon/VB Assets
Exhibit 1012
Page 652

i * Search
stack Decoding (A* Search) S

——\
ALGORITHM 12.6: TIME-SYNCHRONOUS VITERBI BEAN SEARCH

Step 1: Initialization: For all the grammar word states wwhich can start 3 sentence
D(0;I(w);w)=0 ;
h(0; 1(w); w) = naull

Step 2: Induction: Fortimes =1 to T do

For all active states do
Intra-word transitions according to Eq. (12.17) and (12.18)

D(t;s,;w) = Tin {d(X,.S, [S3w)+D(t—1;s,_; w)}

h(t;s,;w) = h(t=1,b,..(t;5, w); w)

For all active word-final states do
Inter-word transitions according to Eq. (12.21), (12.22) and (12.23)
D(t;1;w) = min {log P(w | v)+ D(t; F(v); v}

W15 w) = (v,)i h(t,F(v,,) Voin)
D51, w) < D(1;1(w); w)
D(t; 1(w); w) = D(t;1; w) and A(t; 1(w); w) = h(t;n; w)
Pruning: Find the cost for the best path and decide the beam threshold
Prune unpromising hypotheses
Step 3: Termination: Pick the best path among all the possible final states of grammar at time
T Obtain the optimal word sequence according to the backtracking painter A(r;n; w)

use A* search instead of time-synchronous beam search for continuous speech recognition.
Unfortunately, as we will discover in this section, such a heuristic function h(s) (defined in
Secxion 12.1.3) is very difficult to attain in continuous speech recognition, so search algo-
rithms based on A * search are in general less efficient than time-synchronous beam sear‘ch.
Stack decoding is a variant of the heuristic A* search based on the forward algorithm,
Where the evaluation function is based on the forward probability. It is a tree search algo-
nfhm' which takes 3 slightly different viewpoint than the time-synchronous V?terbl search.
T”"1€-Synchronous beam search is basically a breadth-first search, so it is crucial to con_trol
e number of all possible language model states as described in Section 1'2.3. In a.typlcal
[Be-vocabulary Viterbi search with n-gram language models, this number is determined by
¥ © €Quivalent classes of language model histories. On the other hand, stack decoctl)mg a:ei
€€ Search algorithm treats the search as a task for finding a path in a tree yvhosc ranc
:’rrespond t0 words in the vocabulary V, non-terminal nodes correspond to ncop S[::t
r';ces.'and 'erminal nodes correspond to complete sentences. The search trf-:t:j h;si 2:] ::';52 i
i“u"‘?hmg factor of 1V, if we allow every word to be followed by every word. Fig
States such search tree for a vocabulary with three words [19].

Amazon/VB Assets
Exhibit 1012
Page 653

o Basic Search Algorithmg

An important advantage of stack decoding is its consistency with the forward-
backward training algorithm. Viterbi search is a graph search, and paths cannot be easily
summed because they may have different word histories. In general, the Viterbi search finds
the optimal state sequence instead of optimal word sequence. Therefore, Viterbi approxima-
tion is necessary to make the Viterbi search feasible, as described in Section 12.4. Stack
decoding is a tree search, so each node has a unique history, and the forward algorithm can
be used within word model evaluation. Moreover, all possible beginning and ending times
(shaded areas in Figure 12.21) are considered [24]. With stack decoding, it is possible to use
an objective function that searches for the optimal word string, rather than the optimal state
sequence. Furthermore, it is in principle natural for stack decoding to accommodate long-
range language models if the heuristics can guide the search to avoid exploring the over-
whelmingly large unpromising grammar states.

Figure 12.20 A stack decoding search tree for a vocabulary size of three [19].

Amazon/VB Assets
Exhibit 1012
Page 654

-oding (A* Search)
Stack Decoding -

By formulating stack decoding in a tree search framework, the graph search algo
rithms described in Section 12.1 can be directly applied to stack decodingt Obvious| bliﬁd:
search methods, like depth-first and breadth-first search, that do not take udvamag)é’ of the
goodness measurement of how close we are getling to the goal. are usually computationally
infeasible in practical speech recognition systems. A* search is clearly attractive for speech
recognition, given the hope of a sufficient heuristic function to guide the tree search in a
favorable direction without exploring too many unpromising branches and nodes. In contrast
10 the Viterbi search. it is not time-synchronous and extends paths of different lengths.

The search begins by adding all possible one-word hypotheses to the OPEN list. Then
the best path is removed from the OPEN list, and all paths from it are extended, evaluated,
and placed back in the OPEN list. This search continues until a complete path that is guaran-
teed to be better than all paths in the OPEN list has been found.

Unlike Viterbi search, where the acoustic probabilities being compared are always
based on the same partial input, it is necessary to compare the goodness of partial paths of
different Jengths to direct the A* tree search. Moreover, since stack decoding is done asyn-
chronously, we need an effective mechanism to determine when to end a phone/word
evaluation and move on to the next phone/word. Therefore, the heart and soul of the stack

decoding are clearly in
1. Finding an effective and efficient heuristic function for estimating the future
remaining input feature stream and
2. Determining when to extend the search to the next word/phone.

i id poi ds to a
" i decoding. Each grid point correspond
iy ol 1 the s comapanaon. T sm‘:ked area ripresems the values contributing to

trellis cell in the forward computation. The shad 2
the computation of the forward score for the optimal word sequence Wy Wy Vg B4

Amazon/VB Assets
Exhibit 1012
Page 655

—_—
- Basic Search Algorithmg

In the following section we describe these two critical components. Readers will note that
the solutions to these two issues are virtually the same—using a normalization scheme to
compare paths of different lengths.

12.5.1. Admissible Heuristics for Remaining Path

The key issue in heuristic search is the selection of an evaluation function. As described in
Section 12.1.3, the heuristic function of the path H, going through node N includes the cost
up to the node and the estimate of the cost to the target node from node N. Suppose path H "
is going through node N at time #; then the evaluation for path H, can be expressed as fol-
lows:

S(HY)=gH) +hH) (12.24)

where g(H,) is the evaluation function for the partial path of A, up to time f, and
h(HET) is the heuristic function of the remaining path from f+1 to T for path H, . The
challenge for stack decoders is to devise an admissible function for h(e).

According to Section 12.1,3.1, an admissible heuristic function is one that always un-
derestimates the true cost of the remaining path from ¢+1 to T for path H,. A trivially
admissible function is the zero function. In this case, it results in a very large OPEN list. In
addition, since the longer paths tend to have higher cost because of the gradually accumu-
lated cost, the search is likely to be conducted in a breadth-first fashion, which functions
very much like a plain Viterbi search. The evaluation function g(e) can be obtained easily by
using the HMM forward score as the true cost up to current time 1. However, how can we
find an admissible heuristic function A(e) ? We present the basic concept here [19, 35].

The goal of h(e)is to find the expected cost for the remaining path. If we can obtain
the expected cost per frame for the remaining path, the total expected cost, (T —=1)*V , is
simply the product of ¥ and the length of the remaining path. One way to find such ex-
pected cost per frame is to gather statistics empirically from training data.

1. After the final training iteration, perform Viterbi forced alignment’ with each
training utterance to get an optimal time alignment for each word.

2. Randomly select an interval to cover the number of words ranging from two
to ten. Denote this interval as [i... ;).

3. Compute the average acoustic cost per frame within this selected interval ac-
cording to the following formula and save the value in a set A:

* Viterbi forced alignment means that the Viterbi is performed on the HMM model constructed from the knowtl
word transcription, The term “forced” is used because the Viterbi alignment is forced to be performed on the co{:
rect model. Viterbi forced alignment is a very useful tool in spoken language processing as it can provide the opt!
mal state-time alignment with the utterances. This detailed alignment can then be used for different purposes:
including discriminant training, concatenated speech synthesis, etc.

Amazon/VB Assets
Exhibit 1012
Page 656

— 5 * Search
stack Decoding (A* Search) 631

L iog P! I W,..,) (12.25)
j-i

where W, is the word string corresponding to interval [;... jl.

4, Repeat Steps 2 and 3 for the entire training set,

5, Define Wi and ¥, as the minimum and average value found in set A,

Clearly, Vi should be a good under-estimate of the expected cost per frame for the
future unknown path. Therefore, the heuristic function /(H;") can be derived as:

HHEY = (T =W i (12.26)

Although ¥, is obtained empirically, stack decoding based on Eq. (12.26) will generally
find the optimal solution. However, the search using . usually runs very slowly, since
Eq. (12.26) always under-estimates the true cost for any portion of speech. In practice, a
heuristic function like ., that may over-estimate has to be used to prune more hypotheses.
This speeds up the search at the expense of possible search errors, because .. should rep-
resent the average cost per frame for any portion of speech. In fact, there is an argument that
one might be able to use a heuristic function even more than ,,, . The argument is that ¥,
is derived from the correct path (training data) and the average cost per frame for all paths
during search should be more than ,,, because the paths undoubtedly include correct and
incorrect ones.

1252, When to Extend New Words

Since stack decoding is executed asynchronously, it becomes necessary to detect when a
phonefworg ends, so that the search can extend to the next phone/word. If we have a cost
Measure that indicates how well an input feature vector of any length matches the evaluat.ed
el Stquence, this cost measure should drop slowly for the correct phone/word and rise
Shanply for an incorrect phone/word. In order to do so, it implies we must be able to compare
hypotheses of ifferent lengths.

| The first thing that comes to mind for this cost measure is simply the forward cost
—asoeip(x:’s‘), which represents the likelihood of producing .acousnc_ observtaultl)irtla ;&1,6

Ca -On- word sequence w! and ending at state s,. However, 1t 1§ def_]mtely nczh Ssearch
to allrl:s t1s deemed to be smaller for a shorter acoustic input vector. This caui:s Thi ey
Wwe " al\-vays prefer short phones/words, resulting in many insertion erro ..b e

1St derive some normalized score that satisfies the desired property descrioe

e : g
Nommalizeq ¢ogt C(x},s, |w) can be represented as follows [6, 24]:
- , - - _27
C(XI’S: |W|k)=‘log Mj = —log[P(x{,S, | w)]+tlog‘}’ (1227
S

Ere

T0<y<1)isa constant normalization factor.

Amazon/VB Assets

Exhibit 1012
Page 657

p_- Basic Search Algorithmg

Suppose the search is now evaluating 2 particular word w, ; we can define C,, (1) as
the minimum cost for C(X},s5, Iw,‘) for all the states of w, , and ¢, (¢} as the maximum

forward probability for P(x,s,|w;) forall the states of w, . That s,

fjmi"(() =min [é(x: W5, | w,")] (12.28)
e (1) = max | PO W]5,)] (12.29)

We want C,,, () to be near 0 just as long as the phone/word we are evaluating is the correct
one and we have not gone beyond its end. On the other hand, if the phone/word we are
evaluating is the incorrect one or we have already passed its end, we want the C; (¢) to be
rising sharply. Similar to the procedure of finding the admissible heuristic function, we can
set the normalized factor ¥ empirically during training so that C_; (T) =0 when we know
the correct word sequence W that produces acoustic observation sequence x; . Based on Eq.
(12.27), y should be set to:

y=To_ (T) (12.30)

Figure 12.22 shows a plot of C_, (f) as a function of time for correct match. In addi-
tion, the cost for the final state FS(w,) of word w,, C(x,,s, = FS(w,)|w'), which is the
score for w, -ending path, is also plotted. There should be a valley centered around O for
C(x!},s, = FS(w,)]w!), which indicates the region of possible ending time for the correct
phone/word. Sometimes a stretch of acoustic observations may match better than the aver-
age cost, pushing the curve below 0. Similarly, a stretch of acoustic observations may match
worse than the average cost, pushing the curve above 0. :

There is an interesting connection between the normalized factor y and the heuristic
estimate of the expected cost per frame, ¥ , defined in Eq. (12.25). Since the cost is simply
the logarithm on the inverse posterior probability, we get the following equation:

-1 N
v =-log Px | W) = —log[am(r)'/’] =-logy (12.31)

_Equation (12.31) reveals that these two quantities are basically the same estimate. In
fact, if we subtract the heuristic function S(H}) defined in Eq. (12.24) by the constant
log (y’) we get exactly the same quantity as the one defined in Eq. (12.27). Decisions on
which path to extend first based on the heuristic function and when to extend the search to

the next word/phone are basically centered on comparing partial theories with different

lengths. Therefore, the normalized cost C(xi,s, |wf) can be used for both purposes.

Based on the connection we have established, the heuristic function, f(H}), which

estimates the goodness of a path is simply replaced by the normalized evaluation function

! *
C(x;.s,1w;) . If we plot the un-normalized cost C(x;,s, |w}) for the optimal path and other

Amazon/VB Assets
Exhibit 1012
Page 658

i R
Stack Decoding (A* Search) _

Most likely
word-ending |

/ :
N\

Cmin (t)

Significant
""""" }|\ threshold

..... >
¢

é(X:,S’ = FS(W‘) l u;lk)

1
1
1
]
¥
1
'

N
et

e —————

-k
N

N

Significant range
of ending time

Figure 12,22 ém;n(l‘) and C(x!,s, = FS(w,)|w}) as functions of time 1. The valley region
represents possible ending times for the correct phone/word.

competing paths as the function time ¢, the cost values increase as paths get longer (illus-
trated in Figure 12.23) because every frame adds some non-negative cost to the _overall c(;);t.
Itis clear that using un-normalized cost function C(x;,s, jwt) generally results in a brea Lh-
first search, What we want is an evaluation that decreases slightly along.the optimal path,
and hopefully increases along other competing paths. Clearly, the normalized cost function
Clxl,s, |wf) fulfills this role, as shown in Figure 12.24.

optimal path

-
-

o)
e =

t

ptimal path and other competing paths as a

Figure 12.23 Unnormalized cost C(x|,s | wl*) for o
nction of time,

Amazon/VB Assets
Exhibit 1012
Page 659

_ Basic Search Algorilhms

~
-~

optimal path

Figure 12.24 Normalized cost C(x!,s, | wt) for the optimal path and other competing paths as
a function of time.

Equation (12.30) is a context-less estimation of the normalized factor, which is also re-
ferred to as zero-order estimate. To improve the accuracy of the estimate, you can use coo-
text-dependent higher-order estimates like [24]:

7, =¥(x;) first-order estimate
Y, =Y(X;,X,) second-order estimate
Yy = VX5 Xigonoes Xiprar) n-order estimate

Since the normalized factor ¥ is estimated from the training data that is also used to
train the parameters of the HMMs, the normalized factor ¥, tends to be an overestimate. ﬁtS
aresult, @, (f) might rise slowly for test data even when the correct phone/word model is
evaluated. This problem is alleviated by introducing some other scaling factor & <1 50 that
Oy, (1) falls slowly for test data for when evaluating the correct phone/word model. Th
best solution for this problem is to use an independent data set other than the training data to
derive the normalized factor ¥, .

12.5.3. Fast Match

Even with an efficient heuristic function and mechanism to determine the ending time foL:
phone/word, stack decoding could still be too slow for large-vocabulary speech I cogr™t 3
taskS-_ As described in Section 12.5.1, an effective underestimated heuristic functio” ~f0resti-
Temaining portion of speech is very difficult to derive. On the other hand, heunsﬂcwo
mate for the immediate short segment that usually corresponds to the next pho™ Ofduces
may be feasible to attain. In this section, we describe the fast-match mechanism i
phone/word candidates for detailed match (expansion).
N Iln asynchronous stack decoding, the most expensive step is to extend Lheme entire ¥
r & farge-vocabulary search, it implies the calculation of P(x;™ [w) OVéf ossil
cabulary size | ¥ |. It is desirable to have a fast computation to quickly redoce (17

best s\lea(:'

Amazon/VB Assets
Exhibit 1012
Page 660

————————

st,ack Decoding (A* Search) —

words starting at a given time ¢ to reduce the search space. This process is often referred to
as fast match (15, 35]. In falct, fast match is crucial to stack decoding, of which it becomes
an integral part. Fast match is a method for the rapid computation of a list of candidates that
constrain successive search phases. The expensive detailed match can then be performed
after fast match. In this sense, fast match can be regarded as an additional pruning threshold
10 meet before new word/phone can be started.

Fast match, by definition, needs to use only a small amount of computation. However,
it should also be accurate enough not to prune away any word/phone candidates that partici-
pate in the best path eventually. Fast match is, in general, characterized by the approxima-
tions that are made in the acoustic/language models in order to reduce computation. There is
an obvious trade-off between these two objectives. Fortunately, many systems [15] have
demonstrated that one needs to sacrifice very little accuracy in order to speed up the
computation considerably.

Similar to admissibility in A’ search, there is also an admissibility property in fast
match. A fast match method is called admissible if it never prunes away the word/phone
candidates that participate in the optimal path. In other words, a fast match is admissible if
the recognition errors that appear in a system using the fast match followed by a detailed
match are those that would appear if the detailed match were carried out for all
words/phones in the vocabulary. Since fast match can be applied to either word or phone
level, as we describe in the next section, we explain the admissibility for the case of word-
level fast match for simplicity. The same principle can be easily extended to phone-level fast
match,
Let V be the vocabulary and C(X|w) be the cost of a detailed match between input X
and word w. Now F (X|w) is an estimator of C(X|w) that is accurate enough and fast to
compute. A word list selected by fast match estimator can be attained by first computing
F(X|w) for each word w of the vocabulary. Suppose w, is the word for which the fast
maich has a minimum cost value:

w, =argmin F(X | w) (12.32)

wel
After computing C(X|w,), the detailed match cost for w,, we form the fast match word
list, A, from the word w in the vocabulary such that F(X[w) is no greater than C(X|w,)-

1 other words,
(12.33)

A={wer|F(X|w)<C(X|w,)}
Similar to the admissibility condition for A’ search [3, 33], the'fast match .esti;nz;to;'
(%) conducteq in the way described above is admissible if and only if F(X[w) is alway

1 tnder-cstimator (lower bound) of detailed match C(X|w). That is,
(12.34)

FXiwyzexiw) vxw
e pro straightforward, If the word w, has a lower detailed match cost C(X|w,),you
0 Prove that i must be included in the fast match list A because

Amazon/VB Assets
Exhibit 1012
Page 661

636
Basic Search Algorithms

COX) S C(X | w,) and F(X| w,) SC(X[w,) = F(X|w)<C(X|w,)

Therefore, based on the definition of A, w, € A.
Now the task is to find an admissiblecfast m i
s ¢ : 3 atch estimator. Bahl et al
fast_mat.ch‘ approx1mz§tlon for discrete HMMs. As we will see later, this fz;s[[6[]n§:0ﬁ>osed s
mau(;m is mdeedlequwalent to a simplification of the HMM struct,ure. Given th::: H?\?l[l)vrIO: i
;/rc())rb a t;;z“a:;c:h?:t;]np:;]\Kl?uence dx,T of codebook symbols describing the input signal [l?;
e W pro . T is gi i ,
e produces the VQ sequence x, is given by (according to Chap-

P(x,T|w)= 2 [P“.(S‘,Sz,...sr)ﬁpw(x,Isl)} (12.35)

SpeSav-- Sy i=1

Since we often use Viterbi approximation instead of the forward probability, the equation
above can be approximated by:

T
P.(5,,85-- 5[[P (i |s,.)} (12.36)

i=l

P(xT |w)= max
51453 e 57

The detailed match cost C(X |w) can now be represented as:

i T
P(5),825-- 5[[B |s,.)]} (12.37)

i=1

C(X|w)= min {—log

compute, for each model w, the high-

Since the codebook size is finite, it is possible to
| states s, in HMM w. Let’s define

est output probability for every VQ label ¢ among al
m,(c) to be the following:

m,(c) =ma)_£Pw(c | s,)=max b.(c) (12.38)
We can further define the G, (w) as the maximum state sequence with respect t0 T, ie., the
maximum probability of any complete path in HMM w.

qmax (W) = m?x [Pw(sl’sl""sT)] (1239)
Now let’s define the fast match estimator F(A | w) as the following:

- ’ 40
F(X]|w)= —log[qm.x(W)]—[mw(x,)] (1240)
i=]

It is easy to show the fast match estimator F(X|w)SC (X|w) isadmissible based on Ed

(12.38) to Eq. (12:40).

Amazon/VB Assets
Exhibit 1012
Page 662

i *®
stack Decoding (A* Search) —

My (xi) / 9 max (W)

Figure 12.25 The equivalent one-state HMM corresponding to fast match computation defined
in Eg. (12.40) [15].

The fast match estimator defined in Eq. (12.40) requires 7+1 additions for a vector se-
quence of length T. The operation can be viewed as equivalent to the forward computation
with a one-state HMM of the form shown in Figure 12.25. This correspondence can be in-
rerpreted as a simplification of the original multiple-state HMM into such a one-state HMM.
It thus explains why fast match can be computed much faster than detailed match. Readers
should note that this HMM is not actually a true HMM by strict definition, because the out-
put probability distribution m,(c) and the transition probability distribution do not add up
1o one.

The fast match computation defined in Eq. (12.40) discards the sequence information
with the model unit since the computation is independent of the order of input vectors.
Therefore, one needs to decide the acoustic unit for fast match. In general, the longer the
unit, the faster the computation is. and, therefore, the smaller the under-estimated cost
F(X]w) is. It thus becomes a trade-off between accuracy and speed.

Now let’s analyze the real speedup by using fast match to reduce the vocabulary V'to
thelist A, followed by the detailed match. Let IVl and | A1 be the sizes for the vocabulary V
and the fast maich short list A. Suppose ¢, and #, are the times required to compute one

f.ast match score and one detailed match score for one word, re.spectively. Then, the total
ime required for the fast match followed by the detailed match is t, |V]|+, |A |,| ;,Tel:;ha:

(e fme required in doing the detailed match alone for the entire vocabulary is ¢,

$peed-up ratio is then given as follows:
1 (12.41)

(A0
ALY
v V|
We need t be much sm
. s to be much smaller than ¢, and | Al tobem : ; 2.40),
mﬁc?m Speed-up using fast match. Usir;ig our admissible fast Fnatch eslflm]sg(;f l?ofqé‘g([w)),
© tme complexity of the computation for F(X|w) is 7 instead cforc, the ¢ Jt, saving
}Vhere N'is the number of states in the detailed acoustic model. Theretore, /e
18 abmn N2 .
In general, in ord ller th
) er to make | A | much smaller
:::tc.h Estimator that could result in ¢ r=la- This is why we 0?.22
: Missibility, although it is a nice principle to adherf: tf)..I‘n prac lci ,]
£Cognition systems don’t necessarily obey the admissibility prin p

s
" oample, Bah| et al. {10], Laface et al., [22] and Roe et al., [36] u

aller than 1Vl to have 2 sig-

an |V, one needs a very accurat.e fast
relax the constraint of

most real-time speech

ed several techniques

Amazon/VB Assets
Exhibit 1012
Page 663

_ Basic Search Algorithig

to construct off-line groups of acoustically similar words. fAnned with this grouping, they
can use an aggressive fast match to select only a very short list of words., and words acoustj-
cally similar to the words in this list are added to form the short word list A. for further de.
tailed match processing. By doing so, they are able'to report a very eftjxcnent fast match
method that misses the correct word only 2% of the time. When non-admissible fast match
is used, one needs to minimize the additional search error introduced by fast match empiri-
cally. . .
Bahl et al. [6] use a one-state HMM as their fast match units and a tree-structure Jexj.
con similar to the lexical tree structures introduced in Chapter 13 to construct the short word
list A for next-word expansion in stack decoding. Since the fast match tree search is also
done in an asynchronous way, the ending time of each phone is detected using normalized
scores similar to those described in Section 12.5.2. It is based on the same idea that this
normalized score rises slowly for the correct phone, while it drops rapidly once the end of
phone is encountered (so the model is starting to go toward the incorrect phones). During the
asynchronous lexical tree search, the unpromising hypotheses are also pruned away by a
pruning threshold that is constantly changing once a complete hypothesis (a leaf node) is
obtained. On a 20,000-word dictation task, such a fast match scheme was about 100 times
faster than detailed match and achieved real-time performance on a commercial workstation
with only 0.34% increase in the word error rate being introduced by the fast match process.

12.54. Stack Pruning

Even with efficient heuristic functions, the mechanism to determine the ending time for
phone/word, and fast match, stack decoding might still be too slow for large-vocabulary
speech recognition tasks. A beam within the stack, which saves only a small number of
promising hypotheses in the OPEN list, is often used to reduce search effort. This stack
pruning is very similar to beam search. A predetermined threshold ¢ is used to eliminate
hypotheses whose cost value is much worse than the best path so far.

. Both fast match and stack pruning could introduce search errors where the eventual
optimal path is thrown away prematurely. However, the impact could be reduced to a mini-
mum by erppirica]ly adjusting the thresholds in both methods.

The implementation of stack decoding is, in general, more complicated, particularly
’\I"Vhen Some mev"abk.: pruning strategies are incorporated to make the search more efficient
efl;:cctiil‘il’fgc:slttiymoft .devmng both an f.:ffectively admissible heuristic function for h(‘)_ i
e thata 1on of normalization factors for boundary determination has limlteq the
synchroious Vi(setft(:'kbdemders have over Viterbi decoders. Unlike stack decoding, .ume;
heuristic determi ! beam search can use an easy comparison of same-length path w'm.o v

ination of word boundaries. As described in the earlier sections, these SiM°

le and uni o :
P unified features of Viterbi beam search allow researchers to incorporate Various

sound techniques to im i .
prove the efficiency of se ime- FOTHANS e
Beam search enjoys a much broa - T B, spmech v

inci der popularity i itv. However, 1€

rincipl S ’ y in the speech community.
?cribepi : gi;;zi(1d:;acodmg 'S essential particularly for n-best and lattice search. AS We &
» Stack decoding Plays a very crucial part in multiple-pass search StRtE”

Amazon/VB Assets
Exhibit 1012
Page 664

Stack Decoding (A¥ Search) —

giesfae I and lattice search because the early pass is able to establish a near-perfect
estimate of the remaining path.

125.5. Multistack Search

Even with the help of normalized factor 7 or heuristic function hi(e), it is still more effec-
tive to compare hypotheses of the same length than those of different lengths, because hy-
potheses with the same length are compared based on the true forward matching score.
Inspired by the time-synchronous principle in Viterbi beam search, researchers (8, 35} pro-
pose a variant stack decoding based on multiple stacks.

Multistack search is equivalent to a best-first search algorithm running on multiple
stacks time-synchronously. Basically, the search maintains a separate stack for each time
frame ¢, so it never needs to compare hypotheses of different lengths. The search runs time-
synchronously from left to right just like time-synchronous Viterbi search. For each time
frame £, multistack search extracts the best path out of the r-stack, computes one-word ex-
tensions, and places all the new paths into the corresponding stacks. When the search fin-
ishes, the top path in the last stack is our optimal path. Algorithm 12.7 illustrates the
multistack search algorithm.

This time-synchronous multistack search is designed based on the fact that by the time
the * stack is extended, it already contains the best paths that could ever be placed into it.
This phenomenon is virtually a variant of the dynamic programming principle introduced in
Chapter 8. To make multistack more efficient, some heuristic pruning can be applied to re-
duce the computation. For example, when the top path of each stack is extended for one
more word, we could only consider extensions between minimum and maximum duration.
On the other hand, when some heuristic pruning is integrated into the multistack search, one
might need to use a small beam in Step 2 of Algorithm 12.7 to extend more than just the best
path to guarantee the admissibility.

——
ALGORITHM 12.7: MULTISTACK SEARCH

Step 1: Initialization: for each word v in vocabulary ¥
for ¢ =12,...,T
Compute C(x! |v) andinsertitto " stack
Step 2: Iteration: for r=1,2,...,7 -1
Sortthe " stack and pop the top path C(x| | w}) out of the stack
for each word v in vocabulary ¥
fort=r+1r42,...,T
Extend the path C(x! |w#) by word v to get C(x{ [™)
Wwhere w* = w# || v and Il means string concatenation
Place C(x? [w}*' in 7% stack
i ﬂep 3: Termination: Sort the 7" stack and the top path is the optimal word

sequence

Amazon/VB Assets
Exhibit 1012
Page 665

640 Basic Search Algorithms

12.6. HISTORICAL PERSPECTIVE AND FURTHER READING

Search has been one of the most important topics in artificial intelligence since the origins of
the field. It plays the central role in general problem solving [29] and computer games. [43],
Nilsson’s Principles of Artificial Intelligence [32] and Barr and. Feigenbaum’s The Hand-
book of Artificial Intelligence [11] contain a comprehensive introduction to state-space
search algorithms. A* search was first proposed by Hart et al. [17]. A* was thought to be
derived from Dijkstra’s algorithm [13] and Moore’s algorithm [27]. A* search is similar to
the branch-and-bound algorithm [23, 39], widely used in operations research. The proof of
admissibility of A* search can be found in [32].

The application of beam search in speech recognition was first introduced by the
HARPY system [26]. It wasn't widcly popular until BBN used it for their BYBLOS system
[37]. There are some excellent papers with detailed description of the use of time-
synchronous Viterbi beam search for continuous speech recognition [24, 31]. Over the years,
many efficient implementations and improvements have been introduced for time-
synchronous Viterbi beam search, so real-time large-vocabulary continuous speech recogni-
tion can be realized on a general-purpose personal computer.

On the other hand, stack decoding was first developed by IBM [9]. It is successfully
used in IBM’s large-vocabulary continuous speech recognition systems [3, 16]. Lacking a
time-synchronous framework, comparing theories of different lengths and extending theo-
ries are more complex as described in this chapter. Because of the complexity of stack de-
coding, far fewer publications and systems are based on it than on Viterbi beam search [16,
19, 20, 35]. With the introduction of multistack search [8], stack decoding in essence has
actually come very close to time-synchronous Viterbi beam search.

Stack decoding is typically integrated with fast match methods to improve its effi-
ciency. Fast match was first impiemented for isolated word recognition to obtain a list of
potential word candidates [, 7). The paper by Gopalakrishnan et al. [15] contains a compre-
pensive c.iescription of fast match techniques to reduce the word expansion for stack decod-
ing. Be§1dcs the fast match techniques described in this chapter, there are a number of
alternative approaches [5, 21, 41]. Waast’s fast match [41], for example, is based on a binary

classiﬁcatif)n tree built automatically from data that comprise both phonetic transcription
and acoustic sequence.

REFERENCES

(1 Aho, A, 1J. Hoperoft, and J. Ullman, The Design and Analysis of Computer Algo-
o rithms, 1974, Addlson-Wesley Publishing Company.
] gllcva, F., X. Huang, and M. Hwang, “An Improved Search Algorithm for Con-
.nuous Spee.:ch Recognition,” Inr. Conf. on Acoustics, Speech and Signal Process:
- glg, 1993, Minneapolis, MN, pp. 307-310.
R:hl, LR a}}d et. al,, “Large Vocabulary Natural Language Continuous Speech
cognition,” Proc. of the IEEE Int. Conf. on Acoustics, Speech and Signal Fac
essing, 1989, Glasgow, Scotland, pp. 465-467.

Amazon/VB Assets
Exhibit 1012
Page 666

—————

e .
His(oﬂ'“' perspective and Further Reading "

Bahl, LR., et al., “Language-Model/Acoustic Channel Balance Mechanism,” /BM

H Technical Disclosure Bulletin, 1980, 23(7B), pp. 3464-3465, '

ol Bahl, L.R., et a!.j “Obtaining” Candidate Words by Polling in a Large Vocabulary
Speech Recognition System,” Proc. of the IEEE Int. Conf. on Acoustics, Speech

and Signal Processing, 1988, pp. 489-492.

Bahl, L.R., et al, “A Fast Approximate Acoustic Match for Large Vocabulary

Speech Recognition,” IEEE Trans. on Speech and Audio Processing, 1993(1), pp.

59-67.

Bahl, LR., et al., “Matrix Fast Match: a Fast Method for Identifying a Short List of

Candidate Words for Decoding,” Proc. of the IEEE Int. Conf. on Acoustics, Speech

and Signal Processing, 1989, Glasgow, Scotland, pp. 345-347.

(81 Bahl, LR., P.S. Gopalakrishnan, and R.L. Mercer, “Search Issues in Large Vo-
cabulary Speech Recognition,” Proc. of the 1993 IEEE Workshop on Automatic
Speech Recognition, 1993, Snowbird, UT.

9] Bahl, L.R., F. Jelinek, and R. Mercer, “A Maximum Likelihood Approach to Con-
tinuous Speech Recognition,” IEEE Trans. on Pattern Analysis and Machine Intel-
ligence, 1983(2), pp. 179-190.

(10] Bahl, L.R., ef al., “Constructing Candidate Word Lists Using Acoustically Similar
Word Groups,” IEEE Trans. on Signal Processing, 1992(1), pp. 2814-2816.

(1] Bam, A. and E. Feigenbaum, The Handbook of Artificial Intelligence: Volume I,
1981, Addison-Wesley.

(12] Cettolo, M., R. Gretter, and R.D. Mori, “Knowledge Integration” in Spoken Dia-
logues with Computers, R.D. Mori, Editor 1998, Lendon, Academic Press, pp. 231-
256.

(3] Dijkstra, EW., “A Note on Two Problems in Connection with Graphs,” Nu-

g men’sc.he Mathematik, 1959, 1, pp. 269-271.

Gauvain, J.L., et al, “The LIMSI Speech Dictation System: Evalua X
ARPA Wall Street Journal Corpus,” Proc. of the IEEE Int. Conf. on Acoustics,

Speech and Signal Processing, 1994, Adelaide, Australia, pp. 129-132
g , Adelaide, » pp- | ot .
I Gopalakrishnan, P.S. 2and L.R. Bahl, “Fast Match Techniques,” I _A"’I"”;Z'Zc
Speech and Speaker Recognition, C.H. Lee, FX. Soong, and K.K. Paliwal, €CS.

1996, N : - _413-428
orwell, MA, Kluwer Academic Publishers, pp Search Swategy for

(6l

Ul

tion on the

l + “

(16] Gopalakrishnan, P.S., LR. Bahl, and R.L. Mercer, “A Tree E it o
Lalr8<=.-Vocabula.ry Continuous Speech Recognition,” Frog: N(IIJIC the ey 575"

1] on Acoustics, Speech and Signal Processing, 1995, alﬁ;rac;lits, for’ gg Heorisic Deter-

Har[PE N.J Ni @

4, P.E., N.J. Nilsson, and B. Raphael, “A Form ; bernet-

fﬂmation of Minimum Cost Paths,” IEEE Trans. on Systems Science and Cybe
ics, 1968, 4(2) P

] > » pp. 100-107. . nizer:

. Hua.ng_ X, et fz[;., “Microsoft Windows Highly [ntel-llgem Sp::;};,,; e;:;gi pp-
93 9Sperv" IEEE Int. Conf. on Acoustics, Speech and 5 ignal Pro ’

g 6 " bridge, MA,

] Jelinek, F., Staristical Methods for Speech Recognitiom, 1998, Cam

MIT preg

Amazon/VB Assets
Exhibit 1012
Page 667

642

(20]

[21]

(22]

(23]
(24]

[25]

(26]
(27]

(28]

(29]

(30]

(31]
[32]
[33]

(34]

(35]

—

Basic Search Algorithms

Kenny, P., et al., “A*—Admissible Heuristics for Rapid Lexical Access,” JEEE
Trans. on Speech and Audio Processing, 1993, 1, pp. 49-58.

Kenny, P., et al, “A New Fast Match for Very Large Vocabulary Continuous
Speech Recognition,” JEEE Int. Conf. on Acoustics, Speech and Signal Processing,
1993, Minneapolis, MN, pp. 656-659.

Laface, P., L. Fissore, and F. Ravera, “Automatic Generation of Words toward
Flexible Vocabulary Isolated Word Recognition,” Proc. of the Int. Conf. on Spoken
Language Processing, 1994, Yokohama, Japan, pp. 2215-2218.

Lawler, E.W. and D.E. Wood, “Branch-and-Bound Methods: A Survey,” Opera-
tions Research, 1966(14), pp. 699-719.

Lee, K.F. and F.A. Alleva, “Continuous Speech Recognition” in Recent Progress in
Speech Signal Processing, S. Furui and M. Sondhi, eds., 1990, Marcel Dekker, Inc.
Lee, K.F., HW. Hon, and R. Reddy, “An Overview of the SPHINX Speech Rec-
ognition System,” IEEE Trans. on Acoustics, Speech and Signal Processing, 1990,
38(1), pp. 35-45.

Lowerre, B.T., The HARPY Speech Recognition System, PhD Thesis in Computer
Science Department, 1976, Carnegie Mellon University.

Moore, E.F., “The Shortest Path Through a Maze,” Int. Symp. on the Theory of
Switching, 1959, Cambridge, MA, Harvard University Press, pp. 285-292.
Murveit, H., et al., “Large Vocabulary Dictation Using SRI's DECIPHER Speech
Recognition System: Progressive Search Techniques,” Proc. of the IEEE Int. Conf.
on Acoustics, Speech and Signal Processing, 1993, Minneapolis, MN, pp. 319-322.
Newell, A. and H.A. Simon, Human Problem Solving, 1972, Englewood Cliffs, NJ,
Prentice Hall.

Ney, H. and X. Aubert, “Dynamic Programming Search: From Digit Strings to
Large Vocabulary Word Graphs,” in Automatic Speech and Speaker Recognition,
C.H. Lee, F. Soong and K.K. Paliwal, eds., 1996, Boston, Kluwer Academic Pub-
lishers, pp. 385-412.

Ney, H. and S. Ortmanns, Dynamic Programming Search for Continuous Speech
Recognition, in IEEE Signal Processing Magazine, 1999, pp. 64-83.

Nilsson, N.I., Principles of Artificial Intelligence, 1982, Berlin, Germany, Springer
Verlag.

Nilsson, N.J., Artificial Intelligence: A New Synthesis, 1998, Academic
Press/Morgan Kaufmann,

Normandin, Y., R. Cardin, and R.D. Mori, “High-Performance Connected Digit
Recognition Using Maximum Mutual Information Estimation,” [EEE Trans. o%
Speech and Audio Processing, 1994, 2(2), pp. 299-311.

Paul, D.B., “An Efficient A* Stack Decoder Algorithm for Continuous Speech
Recognition with a Stochastic Language Model,” Proc. of the IEEE Int. Conf. on

ggoustics, Speech and Signal Processing, 1992, San Francisco, California, pp- 25-

Amazon/VB Assets
Exhibit 1012
Page 668

ve and Further Reading

yistorical Perspecti "

Roe, D.B. and M.D. Riley, “Prediction of Word Confusabilities for Speech Recog-

36) nition,” Proc. of the Int. Conf. on Spoken Language Processing, 1994, Yokohama
Japan, pp- 227-230.)

[37] Schwartz, R., ef ”1 “Context-Dependent Modeling for Acoustic-Phonetic Recogni-
ion of Speech Signals,” Proc. of the IEEE Int. Conf. on Acoustics, Speech and Sig-
nal Processing, 1985, Tampa. FLA, pp. 1205-1208.

(38] Steinbiss, V., e al., *“The Philips Research System for Large-Vocabulary Continu-

ous-Speech Recognition,” Proc. of the European Conf. on Speech Communication

and Technology, 1993, Berlin, Germany. pp. 2125-2128.

[39] Taha, H.A., Operations Research: An Introduction, 6th ed, 1996, Prentice Hall.

{40) Tanimoto, S.L., The Elements of Arificial Intelligence : An Introduction Using
Lisp, 1987. Computer Science Press, Inc.

41} Waast, C. and L.R. Bahl, “Fast Match Based on Decision Tree,” Proc. of the Euro-
pean Conf. on Speech Communication and Technology, 1995, Madrid, Spain, pp.
909-912.

[42] Winston, P.H., Artificial Inzelligence, 1984, Reading, MA, Addison-Wesley.

{431 Winston, P.H., Ariificial Intelligence, 3rd ed, 1992, Reading, MA, Addison-
Wesley.

4] Woodland, P.C,, er al, “Large Vocabulary Continuous Speech Recognition Using

HTK.” Proc. of the IEEE Int. Conf. on Acoustics, Speech and Signal Processing,

1994, Adelaide, Australia, pp. 125-128.

Amazon/VB Assets
Exhibit 1012
Page 669

Amazon/VB Assets
Exhibit 1012
Page 670

_

\\\

Large-Vocabulary Search Algorithms

niques for L. Chapter 12 discussed the basic search tech-
Scogie sPe'eCh recognition. However, the searclr_l complexity for Iarge-voca!)ulmy speech
s e;lr“{lth high-order language models is still difficult to handle. In this chapter we
which b 16ient search techniques in the context of time-synchronous Viterbi beam sez%rch,
ec?mes the choice for most speech recognition systems because it is very efficient.
tec;u_se Microsoft Whisper as our case study to illustrate the effectiveness of varioqs search
M1ques. Most of the techniques discussed here can also be applied to stack decoding.
o en?mh th‘f help of beam search, it is unnecessary to explore the entire search space or
gy i:’e trellis. Ins-tead, only the promising search state-space needs to be explored. Please
Hetvrk mind the distinction between the implicit search graph specified by th.e grammar
se and. the explicit partial search graph that is actually constructed by the Viterbi beam
arch algorithm,
Yocabuy thi chapter we first introduce the most criti.cal search organization for larg_;
Search Y speech recognition—tree lexicons. Tree lexicons s1gmﬁcantl.y reduce potenti
*pace, although they introduce many practical problems. In particular. we need to

645

Amazon/VB Assets
Exhibit 1012
Page 671

Large-Vocabul ithims
) g ary Search Algorithmg

address problems such as reentrant lexica.l trees, factored language model probabilities, gyp.
tree optimization, and subtree polymorphism. '

Various other efficient techniques also are introduced. Most of these techniques aip
for clever pruning with the hope of sparing tpe correct paths. F(?r more efffective pruning,
different layers of beams are usually useq. Wh.lle'fast match techniques fiescnbed in Chaper
12 are typically required for stack decoding, similar concepts'and techniques can be applied
to Viterbi beam search. In practice, the look-ahead strategy is equally effective for Viterh
beam search.

Although it is always desirable to use all the knowledge sources (KSs) in the search
algorithm, some are difficult to integrate into the left-to-right time-synchronous search
framework. One alternative strategy is to first produce an ordered list of sentence hypotheses
(a.k.a. n-best list), or a lattice of word hypotheses (a.k.a. word lattice) using relatively inex-
pensive KSs. More expensive KSs can be used to rescore the n-best list or the word lattice to
obtain the refined result. Such a multipass strategy has been explored in many large-
vocabulary speech recognition systems. Various algorithms to generate sufficient n-best lists
or the word lattices are described in the section on multipass search strategies.

Most of the techniques described in this chapter rely on nonadmissible heuristics.
Thus, it is critical to derive a framework to evaluate different search strategies and pruning
parameters.

13.1. EFFICIENT MANIPULATION OF A TREE LEXICON

The lexicon entry is the most critical component for large-vocabulary speech recognition,
since the search space grows linearly along with increased linear vocabulary. Thus an effi-
cient framework for handling large vocabulary undoubtedly becomes the most critical issue
for efficient search performance.

13.1.1. Lexical Tree

T"he searc.h space for n-gram discussed in Chapter 12 is organized based on a str. aightforvard
linear lexicon, i.e., each word is represented as a linear sequence of phonemes, indepepde"[
;::fv:[rl;:; :;ivolr:]isz.l I]?:rr example, the phonetic similarity between the words task and'ms_ks a :ot
5 ge-vocabulary systers, many words may share the same beginning P 0
gﬁr:::r.n,; léze Ztructure is a n-atl'lral representation for a large-vocabulary lexicon, as maﬂg
sy n be shgred to e].ll'ﬂ.ll'lale redundant acoustic evaluations. The lexic.al i
18 thus essential for building a real-time' large-vocabulary speech recognizer:

ince the decod-

]
The term reql. lime
b ~lime means the d i .
ing process ca ecoding process takes no longer than the duration of the speech. Sl inswmﬂ"eous

n take plac i
Tesponses after speakers ﬁ:ﬁ:lsl :;;?n: the speech starts, such a real-time decoder can provide rea
Amazon/VB Assets
Exhibit 1012
Page 672

ent Manipulation of a Tree Lexicon

Effici 647

- W, =/abl _- W, =label

r'e & ’ yd [’
-, P
. -
w TS0
~N
N
S W , = labc!
la/ .
i le/
\———— ——————— W, = Jacst
/=/ #
/dr
i TR W, = /del

le/

Figure 13.1 An example of a lexical tree, where each branch corresponds to a shared phoneme
and the leaf corresponds to a word.

Figure 13.1 shows an example of such a lexical tree, where common beginning pho-
nemes are shared. Each leaf corresponds to a word in the vocabulary. Please note that an
extra null arc is used to form the leaf node for each word. This null arc has the following
two functions:

1. When the pronunciation transcription of a word is a prefix of other ones, the
null arc can function as one branch to end the word.

2. When there are homophones in the lexicon, the null arcs can function as lin-
guistic branches to represent different words such as fwo and ro.

The advantage of using such a lexical tree representation is obvious: it can effectively
educe the state search space of the trellis. Ney et al. [32] reported that a lexical tree repre-
Sentation of a 12,306-word lexicon with only 43,000 phoneme arcs had 2 saving of a factor
oF 25 over the linear lexicon with 100,800 phoneme arcs. Lexical trees are also referred to
% prefix trees, since they are efficient representations of lexicons with sharing among lexi-
Gl entries that have a common prefix. Table 13.1 shows the distribution of phoneme arcs for
i !2'306-W0rd lexical tree. As one can see, even in the fifth level the number of phoneme
“esisonly about one-third of the total number of words in the lexicon.

Table 13.1 Distribution of the tree phoneme arcs and active tree phoneme arc for a 12306

W H . ; .
lexicon using a lexical tree representation (32}.
[——

Level i 5 3 4 5 6 217
9.200
| Phoneme arcs 28 331 | 1511 | 3116 | 4380 | 4950 206 0
) 2
Averageacivearcs | 23 | 233 | 485 | 470 |32 | 178

Amazon/VB Assets
Exhibit 1012
Page 673

Large-Vocabulary Search i
648 tH Y Algorithmg

The saving by using a lexical tree is substantial, because it not only resuits in congig-
erable memory saving for representing state-search space but also saves tr'emgndous time by
searching far fewer potential paths. Ney et al. [32] report lha't a tree organization of the lexi-
con reduces the total search effort by a factor of 7 over the linear lexicon organization. This

is because the lion’s share of hypotheses during a typical large-vocabulary search is on the
first and second phonemes of a word. Haeb-Umbach et al. [23] report that for a 12,306-word
dictation task, 79% and 16% of the state hypotheses are in the first and second phonemes,
when analyzing the distribution of the state hypotheses over the state position within a word.
Obviously, the effect is caused by the ambiguities at the word boundaries. The lexical tree
representation reduces that effort by evaluating common phonetic prefixes only once. Table
13.1 also shows the average number of active phoneme arcs in the layers of the lexical tree
[32]. Based on this table, you can expect that the overall search cost is far less than the size
of the vocabulary. This is the key reason why lexical tree search is widely used for large-
vocabulary continuous speech recognition systems.

The lexical tree search requires a sophisticated implementation because of a funda-
mental deficiency—a branch in a lexical tree representation does not correspond to a single
word with the exception of branches ending in a leaf. This deficiency translates to the fact
that a unique word identity is not determined until a leaf of the tree is reached. This means
that any decision about the word identity needs to be delayed until the leaf node is reached,
which results in the following complexities.

o Unlike a linear lexicon, where the language model score can be applied when
starting the acoustic search of a new word, the lexical tree representation has
to delay the application of the language model probability until the leaf is
reached. This may result in an increased search effort, because the pruning
needs to be done on a less reliable measure, unless a factored language model
is used, as discussed in Section 13.1.3.

o Because of the delay of language model contribution by one word, we need to

ll:_eep a separate copy of an entire lexical tree for each unique language model
istory.

13.1.2. Multiple Copies of Pronunciation Trees

g:l(f;;g:;:;xza:. tree is sufficient if no language model or a unigram is used. This is becausé
Frodels, the I ‘;‘_1"'_’ depends on the current word only. However, for higher-order n-gl‘Z“L1
languaée mode;gs;:?c ;tate cannot be determined locally. A tree copy is required for eTahcis
may seem to be astoex;i ;’_r bigrams, a tree copy is required for each predecessor Word: =
lary size. Fortunato] shing, because the potential search space is increased by the vo¢2 .
quired, becauge efﬁg" expt:nmema] resu.lts show only a small number of tree COpIes arezfz
report that the se hlem pruning can eliminate most of the unneeded ones. Ney €t al.

arch effort using bigrams is increased by only a factor of 2 over the unigr™

Amazon/VB Assets
Exhibit 1012
Page 674

gificient Manipulation of a Tree Lexicon o

case. In general, when_ more detailed (better) acoustic and/or language models
effect of a potentially increased search space is often compensated by a morebf;t;z us;cti). the
search from the use qf n}ore accurate _models. In other words, although the sta;: se;::
space might increase S‘g“'ﬁ_ca“”y by using more accurate models, the dynamic search space
can be under control (sometimes even smaller), thanks to improved evaluation functionsp

To deal with tree copies [19, 23, 37}, you can create redundant subtrees. When co. ies
of lexical trees are used to disambiguate active linguistic contexts, many of t}.m active srl)ate
hypotheses correspond to the same redundant unigram state, due to the postponed applica-
tion of language models. To apply the language model sooner, and to eliminate redundant
unigram state computations, a successor tree, T;, can be created for each linguistic context /.
T encodes the nonzero n-grams of the linguistic context i as an isomorphic subgraph of the
unigram tree, 7, Figure 13.2 shows the organization of such successor trees and unigram
wree for bigram search. For each word w a successor tree, T, is created with the set of suc-
cessor words that have nonzero bigram probabilities. Suppose u is a successor of w; the bi-
gram probability P(u | w) is attached to the transition connecting the leaf corresponding to u
in the successor tree T,,, with the root of the successor tree 7. The unigram tree is a full-
size lexical tree and is shared by all words as the back-off lexical tree. Each leaf of the uni-
gram tree corresponds to one of IVl words in the vocabulary and is linked to the root of its
bigram successor tree (7,) by an arc with the corresponding unigram probability P(u). The
backoff weight, o(u), of predecessor u is attached to the arc which links the root of succes-
sortree T, to the root of the unigram tree.

bigram successor
trees

unigram tree

. i search [13].
Figure 13.2 Successor trees and unigram trees for bigram

Amazon/VB Assets
Exhibit 1012
Page 675

650 Large-Vocabulary Search Algorithmg

A careful search organization is required to avoid computational overhead and to
guarantee a linear time complexity for exploring state hypotheses. In the following sections
we describe techniques to achieve efficient lexical tree recognizers. These techniques ip-
clude factorization of language model probabilities, tree optimization, and exploiting subtree
dominance.

13.1.3. Factored Language Probabilities

As mentioned in Section 13.1.2, search is more efficient if a detailed knowledge source can
be applied at an early stage. The idea of factoring the language model probabilities across
the tree is one such example [4, 19]. When more than one word shares a phoneme arc, the
upper bound of their probability can be associated to that arc.” The factorization can be ap-
plied to both the full lexical tree (unigram) and successor trees (bigram or other higher-order
language models).

An unfactored tree only has language model probabilities attached to the leaf nodes,
and all the internal nodes have probability 1.0. The procedure for factoring the probabilities
across the tree computes the maximum of each node n in the tree according to Eq. (13.1).
The tree can then be factored according to Eq. (13.2) so when you traverse the tree you can
multiply F"(n) along the path to get the needed language probability.

P(n)= max P(x) 3.1
d = ___El’)— 3.2
= S rendny 032

An illustration of the factored probabilities is shown in Table 13.2. Using this lexicon,
we create the tree depicted in Figure 13.3(a). In this figure the unlabeled internal nodes have
a probability of 1.0. We distribute the probabilities according to Eq. (13.1) in Figure 13.3()
which is factored according to Eq. (13.2), resulting in Figure 13.3(c).

Table 13.2 Sample probabilities P(w)and their pseudoword pronunciations [4].

w, Pronunciation P(w)
w, |/abc/ 0.1
w, |/abc/ 0.4
w, |lacz/ 0.3
w, | /de/ 0.2

2 x . . oseh
: T:‘ choice of upper bound is because it is an admissible estimate of the path no matter which word will e ¢t
ater.

Amazon/VB Assets
Exhibit 1012
Page 676

gfficient Manipulation of a Tree Lexicon
651

04 0.1 0.3
(@ (b) ©

Figure 13.3 (a) l{nfactored lexical tree; (b) distributed probabilities with computed P'(n);
(c) factored tree F~ (1) [4]. :

Using the upper bounds in the factoring algorithm is not an approximation, since the
correct language model probabilities are calculated by the product of values traversed along
gach path from the root to the leaves. However, you should note that the probabilities of all
the branches of a node do not sum to one. This can solved by replacing the upper-bound
(max) function in Eq. (13.1) with the sum.

Pm= Y Pk (13.3)

x€child(n)

To guarantee that all the branches sum to one, Eq. (13.2) should also be replaced by
the following equation:

Fy=— M (13.4)
P (x)

x€ child(parent(n))

A new illustration of the distribution of LM probabilities by using sum instead of up-
per bound is shown in Figure 13.4. Experimental results have shown that the factoring
method with either sum or upper bound has comparable search performance.

(b)

Fl
8Ure 13.4 Using sum instead of upper bound when

tree, the corresponding (a) un-

factoring) factored tree with

. ! i (c
factoreq Jexica] tree; (b) distributed probabilities with computed P (7)€

meued F'(n) 4,

Amazon/VB Assets
Exhibit 1012
Page 677

—

- Large-Vocabulary Search Algorithmg

One interesting observation is that the language model score can be regarded as a hey-
ristic function to estimate the linguistic expectation of the current word to be searched. In 3
linear representation of the pronunciation lexicon, application of the linguistic expectation
was straightforward, since each state is associated with a unique word. Therefore, given the
context defined by the hypothesis under consideration, the expectation for the first phone of
word w, is just P(w,|w]™). After the first phone, the expectation for the rest of the phones
becomes 1.0, since there is only one possible phone sequence whep searching the word w,,
However, for the tree lexicon, it is necessary to compute E(p, | p/™,w/™), the expectation
of phone p; given the phonetic prefix p/™ and the linguistic context w{™. Let ¢(j,w,)
denote the phonetic prefix of length j for w, . Based on Egs. (13.1) and (13.2), we can com-
pute the expectation as:

o e Pow W™
E(p, 1 p7 W) == 135

(Pj | p; \ P(wp | w|_|) ()
where ¢ =argmax(w, |w",0(j,w,) = p{) and p =argmax(w, 1w (i ~1,w,) = p/™). Based
on Eq. (13.5), an arbitrary n-gram model or even a stochastic context-free grammar can be
factored accordingly.

13.1.3.1. Efficient Memory Organization of Factored Lexical Trees

A major drawback to the use of successor trees is the large memory overhead required to
store the additional information that encodes the structure of the tree and the factored lin-
guistic probabilities. For example, the 5.02 million bigrams in the 1994 NABN (North
American Business News) model require 18.2 million nodes. Given a compact binary tree
representation that uses 4 bytes of memory per node, 72.8 million bytes are required to store
the predecessor-dependent lexical trees. Furthermore, this tree representation is not as ame-
nable to data compression techniques as the linear bigram representation.

The factored probability of successor trees can be encoded as efficiently as the n-gram
model based on Algorithm 13.1, i.e., one n-gram record results in one constant-sized record.
Step 3 is illustrated in Figure 13.5(b), where the heavy line ends at the most recently visited
node that is not a direct ancestor. The encoding result is shown in Table 13.3.

ALGORITHM 13.1: ENCODING THE LEXICAL SUCCESSOR TREES (LST)

For each linguistic context:

Step 1: Distribute the probabilities according to Eq. (13.1).

Step 2: Factor the probabilities according to Eq. (13.2).

Step 3: Perform a depth-first traversal of the LST and encode each leaf record,
(a) the depth of the most recently visited node that is not a direct ancestor,
(b) the probability of the direct ancestor at the depthin (a),
(c) the word identity.

Amazon/VB Assets
Exhibit 1012
Page 678

; i ion of a Tree Lexic
picient Manipulation o xicon =

(@) (b)
Figure 13.5 (a) Factored tree; (b) tree with common prefix-length annotation.

Clearly the new data structure meets the requirements set forth, and, in fact, it only re-
quires additional log(#) bits per record (12 is the depth of the tree). These bits encode the
commen prefix length for each word. Naturally this requires some modification to the de-
coding procedure. In particular, the decoder must scan a portion of the n-gram successor list
in order to determine which tree nodes should be activated. Depending on the structure of
the tree (which is determined by the acoustic model, the lexicon, and language model), the
iree structure can be interpreted at runtime or cached for rapid access if memory is available.

Table 13.3 Encoded successor lexical tree; each record corresponds to one augmented factored
n-gram.

w, Depth F'(w)
, |0 0.4
w, |4 0.25
w, |2 0.75

w, 1 0.5

.14, Optimization of Lexical Trees

We now investigate ways to handle the huge search network formed by Lt}e multiple c::px;s

OF lexical trees ip different linguistic contexts. The factorization of lexical tre:s .ﬂcle r?r e)é

mRke:s. it easier to search. First, after the factorization of the language T Leedlgecause
stions shown in Figure 13.2 no longer have the language model scores atta'?nusrmated in

ey are already applied completely before leaving the leaves. Moreover, as i il

lgtu.e. 133, many transitions toward the end of a single-word p et oW A1 a:‘]ld be many
"Sition probability that is equal to 1. This observation implies that there €0

duplic : . can then be merged to save
\ s::: subtrees in the network. Those duplicated subtrees o evaluation. Unlike

an . 3 o i ¥ unneCCSSﬂl'y) S . . .
ting, d computation by eliminating redundant (e, without introducing

Is saving is based on the dynamic programming princip :
¥ Potenia error.

Amazon/VB Assets
Exhibit 1012
Page 679

p——
T
654 Large-Vocabulary Search Algorihn

13.1.4.1. Optimization of Finite State Network

One way to compress the lexical tree network is to use a similar algorithm for Optimizing he
number of states in a deterministic finite state automaton. The optimization algorihy i
based on the indistinguishable property of states in a finite state automaton. Suppose that s
and s, are the initial states for automata T, and 7. then s, and s, are said to be indistinl-
guishable if the languages accepted by automata T; and T, are exactly the same. If we cop.
sider our lexical tree network as a finite state automaton, the symbol emitted from the
transition arc includes not only the phoneme identity, but also the factorized language mode}
probability.

The general set-partitioning algorithm [1] can be used for the reduction of finite state
automata. The algorithm starts with an initial partition of the automaton states and iteratively
refines the partition so that two states s, and s, are put in the same block B, if and only if
f(s,) and f(s,) are both in the same block B, . For our purpose, f(s;) and f(s,) can be
defined as the destination state given a phone symbol (in the factored trees, the pair <phone,
LM-probability> can be used). Each time a block is partitioned, the smaller subblock is used
for further partitioning. The algorithm stops when all the states that transit to some state ina
particular block with arcs labeled with the same symbol are in the same block. When the
algorithm halts, each block of the resulting partition is composed of indistinguishable states,
and those states within each block can then be merged. The algorithm is guaranteed to find
the automaton with the minimum number of states. The algorithm has a time complexity of
O(MN log N), where M is the maximum number of branching (fan-out) factors in the lexi-
cal tree and N is the number of states in the original tree network.

Although the above algorithm can give optimal finite state networks in terms of num-
ber of states, such an optimized network may be difficult to maintain, because the original
lexical tree structure could be destroyed and it may be troublesome to add any new word
into the tree network [1].

13.1.4.2. Subtree Isomorphism

the tre¢

The finite state optimization algorithm described above does not take advantage of -
um

structure of the finite state network, though it generates a network with a minimum' n
of states. Since our finite state network is a network of trees, the indisting“iShabillty Qrop'
erty is actually the same as the definition of subtree isomorphism. Two subtrees are sal t<:
be isomorphic to each other if they can be made equivalent by permuting the succes§0$-f:ir
should be straightforward to prove that two states are indistinguishable, if and only if
subtrees are isomorphic. ic. For
There are efficient algorithms [1] to detect whether two subtrees are isomorphic are
fill possible pairs of states u and v, if the subtrees starting at u and v, ST(%) and ST(V);)deS
1somorphic, v is merged into u and ST(v) can be eliminated. Note that only intenal P

‘ i .] 0-
n_eed to be ccinmdered for subtree isomorphism check. The time complexity for this .
rithm is O(N®) [1].

Amazon/VB Assets
Exhibit 1012
Page 680

pifcient Manipulation of a Tree Lexicon

)
n
wn

(3143 Sharing Tails

A linear tail in 2 lexical tree is defined as a subpath ending in a leaf and going throuch

with a unique successox‘.. It is of’ t_e.n referred as a single-word subpath. It cang be rob' Zmrl]es
such a linear 1ail has unit probability attached to its arcg according to Egs. (13 1)2 nd\e| ;:t
This is because LM probability factorization pushes forvard the Lm Prot;ab{lil g (h-d-~).
ihe last arc of the linear tail, leaving arcs with unit probability. Since al the tailsycorrecs i)néo
ing to the same word w in different successor trees are linked 1o the root of successoz tree:
T, O the subtree starting from the first state of each linear tail is isomorphic to the subtree
starting from one of the states forming the longest linear tail of w. A simple algorithm to
ke advantage of this share-tail topology can be employed to reduce the lexical tree net-
work.

Figure 13.6 and Figure 13.7 show a lexical tree network before and after shared-tail
oplimization. For each word, only the longest linear tail is kept. All other tails can be re-
moved by linking them to an appropriate state in the longest tail, as shown in Figure 13.7.

Shared-tail optimization is not global optimization, because it considers only some
special topology optimization. However, there are some advantages associated with shared-
tail optimization. First, in practice, duplicated linear tails account for most of the redundancy
in lexical tree networks [12]. Moreover, shared-tail optimization has a nice property of
miintaining the basic lexical tree structure for the optimized tree network.

imization {1 2]. The

B - il opt
Bure 13.6 Ap example of a lexical tree network without shared p e for o and

i i successo
zocab”lafy includes three words, u, , and z. T,, T, and T, are the succes
fespecuvely [13). -

P2
Weu —————

¢ 2S\uma by
m 3 . . - »
bigram is used in the discussion of “‘sharing tails.

Amazon/VB Assets
Exhibit 1012
Page 681

-
656 Large-Vocabulary Search Algorith

lexicon linear successor
tree transcriptions trees

Figure 13.7 The lexical tree network in Figure 13.6 after shared-tail optimization [12].
13.1.5. Exploiting Subtree Polymorphism

The techniques of optimizing the network of successor lexical trees can only eliminaie iden-
tical subtrees in the network. However, there are still many subtrees that have the same
nodes and topology but with different language model scores attached to the arcs. Th'e
acoustic evaluation for those subtrees is unnecessarily duplicated. In this section we exploit
subtree dominance for additional saving.

A subtree instance is dominated when the best outcome in that subtree is not berer
than the worst outcome in another instance of that subtree. The evaluation becomes mdun;
dant for the dominated subtree instance. Subtree isomorphism and shared-tail are case.sb:d
subtree dominance, but they require prearrangement of the lexical tree network as descri
in the previous section. s earion ol

If we need to implement lexical tree search dynamically, the network op':lmlzat.] max
gorithms are not suitable. Although subtree dominance can be comP‘""d.usm g n:‘slm
search [35] during runtime, this requires that information regarding subtree isomoP ll itis
available for all corresponding pairs of states for each successor tree T, Unfortunatety
not practical in terms of either computation or space. -

In place of computing strict subtree dominance, a polymorphic linguistt
signment to reduce redundancy is employed by estimating subtree dominaqce baszx ¢ assigh
information and ignoring the subgraph isomorphism problem. Polymorphic contassume
ment involves keeping a single copy of the lexical tree and allowing each staté toch is that it
linguistic context of the most promising history. The advantage of this aprofi the €€ is
employs maximum sharing of data structures and information, sO each node 11

¢ context &
d on loc

Amazon/VB Assets
Exhibit 1012
Page 682

o cient Manipulation of a Tree Lexicon -

pvaluated, at most, once. However, the use of local knowledge to determine the domi
context could introc}uce significant errors because of premature pruning. Whisper [4] o
2 65.1% increase in error rate when only the dominant context is kept blzjlsed oxrle{):cr:\si
knowledge- ,

To recover the errors created by using local linguistic information to estimate subtre
dominance, you need to delay the decision regarding which linguistic context is most prome:
ising. This can be done by keeping a heap of contexts at each node in the tree. The hea
qmaintains all contexts (linguistic paths) whose probabilities are within a constant threshols
¢, of that of the best global path. The effect of the € -heap is that more contexts are retained
for high-probability states in the lexical tree. The pseudocode fragment in Algorithm 13.2
3] illustrates a transition from state s, in context c to state s,. The terminology used in
Algorithm 13.2 is listed as follows:

o (-logP(s,|s,,c)) is the cost associated with applying acoustic model
matching and language model probability of state s, transited from s, in
context c.

o InHeap(s,,c) is true if context ¢ is in the heap corresponding to state s,,.

o Cost(s,,c) is the cost for context ¢ in state s,,.

o Statelnfo(s,,c) is the auxiliary state information associated with context ¢ in
state §,, .

o Add(s,,c) adds context c to the siate s, heap.

o Delete(s,,c) deletes context ¢ from state s, heap.

o WorstContext(s,,) retrieves the worst context from the heap of state s,,.

T
ALGORITHM 13.2: HANDLING MULTIPLE LINGUISTIC CONTEXTS
INA LEXICAL TREE

1. d = Cost(s,,c)+ (~log P(s,, | 5,,€))
21 InHeap(s,,,c) then
It d <Cost(s,,,c) then
Cost(s,,c)=d
) Statelnfo(s, ,c) = Statelnfo(s,€)
ese if 4 < BestCost (s,)+ then
Add(s,,c); Statelnfo(s,,,¢) = StateInfo(s,¢)
Cost(s_,c)=d
else
w=WorstContext(s,,)
it d < Cosi(s,,, w) then
Delele(sm w)
Add(s,,,c); Statelnfo(s,,¢) = Statelnfo(s,>¢)
Cost(s,,c)=d

Amazon/VB Assets
Exhibit 1012
Page 683

658

.

Large-Vocabulary Search Algorithms

. When higher-order n-gram is used for lexical tree search, the potential heap size for
lexical tree nodes (some also refer to prefix nodes) could be unmanageable. With decent
acoustic models and efficient pruning, as illustrated in Algorithm 13.2, the average heap size
for active nodes in the lexical tree is actually very modest. For example, Whisper’s average
heap size for active nodes in the 20,000-word WSJ lexical tree decoder is only about 1.6 [31.

13.1.6. Context-Dependent Units and Inter-Word Triphones

So far, we have implicitly assumed that context-independent models are used in the lexical
tree search. When context-dependent phonetic or subphonetic models, as discussed in Chap-
ter 9, are used for better acoustic models, the construction and use of a lexical tree become
more complicated.

Since senones represent both subphonetic and context-dependent acoustic models, this
presents additional difficulty for use in lexical trees. Let's assume that a three-state context-
dependent HMM is formed from three senones, one for each state. Each senone is context-
dependent and can be shared by different allophones. If we use allophones as the units for
lexical tree, the sharing may be poor and fan-out unmanageable. Fortunately, each HMM is
uniquely identified by the sequence of senones used to form the HMM. In this way, different
context-dependent allophones that share the same senone sequence can be treated as the
same. This is especially important for lexical tree search, since it reduces the order of the
fan-out in the tree.

Interword triphones that require significant fan-ins for the first phone of a word and
fan-outs for the last phones usually present an implementation challenge for large-
vocabulary speech recognition. A common approach is to delay full interword modeling
until a subsequent rescoring phase.* Given a sufficiently rich lattice or word graph, this is a
reasonable approach, because the static state space in the successive search has been reduced
significantly. However, as pointed out in Section 13.1.2, the size of the dynamic state space
can remain under control when detailed models are used to allow effective pruning. In addi-
tion, a multipass search requires an augmented set of acoustic models to effectively model
the biphone contexts used at word boundaries for the first pass. Therefore, it might be desir-
able to use genuine interword acoustic models in the single-pass search.

Instead of expanding all the fan-ins and fan-outs for inter-word context-dependent
phone units in the lexical tree, three metaunits are created.

1. The first metaunit, which has a known right context corresponding to the sec-
ond phone in the word, but uses open left context for the first phone of 2
word (sometimes referred to as the word-initial uniz). In this way, the fan-in
is represented as a subgraph shared by all words with the same initial left-
context-dependent phone.

* Multipass search strategy is described in Section 13.3.5.

Amazon/VB Assets
Exhibit 1012
Page 684

—— "
Other Efficient Search Techniques -

9. Another metaunit, which has a known left context corresponding to the sec-
ond-to-last phone of the word, but uses open right context for the last phone
of a word (sometimes referred to as the word-final unir). Again, the fan-out is
represented as a subgraph shared by all words with the same final right-
context-dependent phone.

3. The third metaunit, which has both open left and right contexts, and is used
for single-phone word unit.

By using these metaunits we can keep the states for the lexical trees under control, because
the fan-in and fan-out are now represented as a single node.

During recognition, different left or right contexts within the same metaunit are han-
dled using Algorithm 13.2, where the different acoustic contexts are treated similarly as dif-
ferent linguistic contexts. The open left-context metaunit (fan-ins) can be dealt with in a
straightforward way using Aglorithm 13.2, because the left context is always known (the last
phone of the previous word) when it is initiated. On the other hand, the open right-context
metaunit (fan-out) needs to explore all possible right contexts because the next word is not
known yet. To reduce unnecessary computation, fast match algorithms (described in Section
13.2.3) can be used to provide both expected acoustic and language scores for different con-
texi-dependent units to result in early pruning of unpromising contexts.

132. OTHER EFFICIENT SEARCH TECHNIQUES

Tree structured lexicon represents an efficient framework of manipulation of search space.
In this section we present some additional implementation techniques, which can be used to
further improve the efficiency of search algorithms. Most of these techniques can be applied
10 both Viterbi beam search and stack decoding. They are essential ingredients for a practi-
@llarge-vocabulary continuous speech recognizer.

1321, Using Entire HMM as a State in Search

The state in state-search space based on HMM-trellis computation is, by
lh:lr; kzv state. Phonetic HMM models are the basic unit in most speech reco
oft 81 subphonetic HMMs, like senones, might be used for such a system,
en based op phonetic HMMs,
trst 0;‘:§ating the entire phonetic HMM as a state in state-
. N v e s o VM docs 011
) at using the entire phonetic & :
he search, Thgﬁ entire searI::h space is unchanged. All the siates wn_hmmae %:Zﬁt;?
€ ph now bundled together. This means that all of them are exthder ke:t l;or ot
timep t‘l’]netl? HMM is regarded as promising, or all of them are _1::run]¢\e/I N‘;W;/s {Jlsed o i
o &le € Minimum cogt among all the states within the phonenc I-(Ii Y it e *romising
Phoneric HMM. For pruning purposes, this cost 1S used to de

definition, a
gnizers. Even
the search is

search has many advantages. Th.e
h program needs to deal with is
ffect reduce the number of

Amazon/VB Assets
Exhibit 1012
Page 685

- Large-Vocabulary Search Algorithms

e of this phonetic HMM, i.e., the fate of all the states within this phonetic HMM. Al.
h this does not actually reduce the beam beyond normal pruning, it has the effect of
he beam. In programming, this means less checking and

degre
thoug
processing fewer candidates int :
bookkeeping, so some computation savings can pe expegted. .

You might wonder if this organization might be ineffective for beam search, since it

forces you to keep or prune all the states within a phonetic HMM. In. theory, it is possible
that only one or two states in the phonetic HMM need to be kept, wtnle other states can be
pruned due to high cost score. However, this is, in reality, very rare, since a phone is a small
unit and all the states within a phonetic HMM should be relatively promising when the
search is near the acoustic region corresponding to the phone.

During the trellis computation, all the phonetic HMM states need to advance one time
step when processing one input vector. By performing HMM computation for all states to-
gether, the new organization can reduce memory accesses and improve cache locality, since
the output and transition probabilities are held in common by all states. Combining this or-
ganization strategy with lexical tree search further enhances the efficiency. In lexical tree
search, each hypothesis in the beam is associated with a particular node in the lexical tree.
These hypotheses are linked together in the heap structure described in Algorithm 13.2 for
the purposes of efficient evaluation and heuristic pruning. Since the node corresponds to a
phonetic HMM, the HMM evaluation is guaranteed to execute once for each hypothesis
sharing this node.

In summary, treating the entire phonetic HMM as a state in state-search space allows
you to explore the effective data structure for better sharing and improved memory locality.

13.2.2. Different Layers of Beams

Because of the complexity of search, it often requires pruning of various levels of search to
make sear.c}f feasible. Most systems thus employ different pruning thresholds to control what
states participate. The most frequently used thresholds are listed below:

* 7, controls what states (either phone states or senone states) to retain. This is
the most fundamental beam threshold.

® 17, controls whether the next phone is extended. Although this might not be
necessary for both stack decoding and linear Viterbi beam search, it is crucial
for'lexwal tree sea-rch, because pruning unpromising phonetic prefixes in the
lexical trees could improve search efficiency significantly.

. ;,, cont'rols Wwhether hypotheses are extended for the next word. Since the
.rapchmg factor for word boundaries is very large, we need this threshold to
limit search to only the promising ones,

e T C . P . . : 1
. controls where a linguistic context is created in a lexical tree search using

llu3gl21er-order language models. This is also known as ¢ -heap in Algorithm

Amazon/VB Assets
Exhibit 1012
Page 686

ther Efficient Search Techniques
| 661

Pruning can introdu.ce .search errors if a state is pruned that would have b

globﬂ"Y besk pa”.]' The pnnc1p_le applied here is that the more constraints you huv: zs;')ln t::]e
the mote aggressively you decide whether this path will participate in the globally b [I a' 4
i dis case, at the state level, you have the least constraints. At the phonetic lele [;i: .
more, and there are the most at the word level. In general, the number of word h otrl:3 -
iends to drop significantly at word boundaries. Different thresholds for different le\ilé)ls a](ize\:
e search designer to fine-tune those thresholds for their rasks to achieve best search
performance without significant increase in error rates.

132.3. Fast Match

As described in Chapter 12, fast match is a crucial part of stack decoding, which mainly
reduces the number of possible word expansions for each path. Similarly, fast match can be
applied to the most expensive part—extending the phone HMM fan-outs within or between
lexical trees. Fast match is a method for rapidly deriving a list of candidates that constrain
successive search phases in which a computationally expensive detailed match is performed.
In this sense, fast match can be regarded as an additional pruning threshold to meet before a
new word/phone can be started.

Fast match is typically characterized by the approximations that are made in the acous-
ticlanguage models to reduce computation. The factorization of language model scores
among tree branches in lexical trees described in Section 13.1.3 can be viewed as fast match
using a language model. The factorized method is also an admissible estimate of the lan-
guage model scores for the future word. In this section we focus on acoustic model fast
match,

13231 Look-Ahead Strategy

Fast match, when applied in time-synchronous search, is also called look-ahead ftrz:]t:tir_.
See it basically searches ahead of the time-synchronous search by a fewfframessarc; -
Mine which words or phones are likely to extend. Typically the .Iook-ahead ram-elize(j bean-;
d the fast match, is also done in time-synchronous fashion with another Sp:{cl\l:Ms iy
forefficient Pruning, You can also use simplified models, like the one-state

texti tried to simp
Xt.md_epe“deﬂt madels [32]; Seme SR 21, 22 hzg/: from several frames into one.

Ae s in the input feature vectors by aggregating informatio ey other frame of
Straightforwarg way for compressing the feature stream is to SK P e g computation
eech for fagt match. This allows a longer-range look-ahead, while ete;;d if g
N0er contro] The api)roach of simplifying the input feature streamhms e
eac()uS[lic Models can reuse the fast match results for Qetallgdar}lflrl:e s carch. in which prun-
. Sper [4] uses phoneme look-ahead fast match in lf‘,XlC e v outs thal may fol-
08 * #plied based on the estimation of the score of possible P (c)l o ronously with the
" @ given phone. A context-independent phone-net is searched sy

Amazon/VB Assets
Exhibit 1012
Page 687

662 Large-Vocabulary Search Algorithms

search process but offset N frames into the future. In practice, significant savings can be
obtained in search efforts without increase in error rates.

The performance of word and phoneme look-ahead clegrly depends on the length of
the look-ahead frames. In general, the larger the look-ahead window, the longer is the com-
word/phone A list. Empirically, the window is a few tens of

putation and the shorter the ly,
ahead and a few hundreds of milliseconds for word look-ahead.

milliseconds for phone look-
13.2.32. The Rich-Get-Richer Strategy

For systems employing continuous-density HMMs, tens of mixtures of Gaussians are often
used for the output probability distribution for each state. The computation of the mixtures is
one of the bottlenecks when many context-dependent models are used. For example, Whis-
per uses about 120,000 Gaussians. In addition to using various beam pruning thresholds in
the search, there could be significant savings if we have a strategy to limit the number of
Gaussians to be computed.

The Rich-Get-Richer (RGR) strategy enables us to focus on most promising paths and
treat them with detailed acoustic evaluations and relaxed path-pruning thresholds. On the
contrary, the less promising paths are extended with less expensive acoustic evaluations and
less forgiving path-pruning thresholds. In this way, locally optimal candidates continue to
receive the maximum attention while less optimal candidates are retained but evaluated us-
ing less precise (computationally expensive) acoustic and/or linguistic models. The RGR
strategy gives us finer control in the creation of new paths that has potential to grow expo-
nentially.

RGR is used to control the level of acoustic details in the search. The goal is to reduce
the number of context-dependent senone probability (Gaussian) computations required. The
context-dependent senones associated with a phone instance p would be evaluated according
to the following condition:

Min{ci(p)] * a+LookAhead [ci(p)] < threshold
where Min[ci(p)]= min {cost(s) | se ci_ phone(n} (13.6)
and Lookdhead [ci(p)]=look-ahead estimate of ci(D)

These conditions state that the context-dependent senones associated with p should be
evaluated if there exists a state s corresponding to p, whose cost in linear combination with 3
ioﬁk-a'he.a d cost score corresponding to p falls within a threshold. In the event that p does not
la t\iw(tjhm the threshold, the senone scores corresponding to p are estimated using the con-
ei’;l:z[e‘:jpzfﬁenitfstel?ones correspgnding to p. This means the context-dependent senones 21¢
showing promyise Réﬁonespondmg co"tCX['i{’dePendent senones and the look-ahead start
DECHSgtng, paihs .Whi Strategy should save significant senone computation for clearly.un(;
WITHOUt Intlsds usper [26] reports that 80% of senone computation can be avoide
oducing significant errors for a 20,000-word WSJ di ctation task.

Amazon/VB Assets
Exhibit 1012
Page 688

i <
and Multipass Search Strategies
N-best |

(33. N-BEST AND MULTIPASS SEARCH STRATEGIES

Ideally. a search algorithm should consider all possible hypotheses based on a unified prob-
abilistic framework that integrates all knowledge sources (KSs).* These KSs, such as a([:)ous-
ic models. language models, and lexical pronunciation models, can be i,megrated in an
HMM state search framework. It is desirable to use the most detailed models, such as con-
text-dependent models, interword context-dependent models, and high-order n-grams, in the
search as early as possible. When the 'explored search space becomes unmanageable, due to
e increasing size of vocabulary or highly sophisticated KSs, search might be infeasible to
implement.

As we develop more powerful (echniques, the complexity of models tends to increase
dramatically. For example, language understanding models in Chapter 17 require long-
distance relationships. In addition, many of these techniques are not operating in a left-to-
right manner. A possible alternative is to perform a multipass search and apply several KSs
at different stages, in the proper order to constrain the search progressively. In the initial
pass, the most discriminant and computationally affordable KSs are used to reduce the num-
ber of hypotheses. In subsequent passes, progressively reduced sets of hypotheses are exam-
ined, and more powerful and expensive KSs are then used until the optimal solution is
found.

The early passes of multipass search can be considered fast match that eliminatgs
those unlikely hypotheses. Multipass search is, in general, not admissible because the opti-
mal word sequence could be wrongly pruned prematurely, due to the fact that not all. KSs are
used in the earlier passes. However, for complicated tasks, the benefits of computation com-
Plexily reduction usually outweigh the nonadmissibility. In practice, multfpass search strat-
gy using progressive KSs could generate better results than a search algorithm forced to use
less powerful models due to computation and memory constraints. _—

_ The most straightforward multipass search sirategy is the so-called n-best bslearc z -
digm. The idea is to use affordable KSs to first produce a list of n most Probn e wziort -
duences in a reasonable time. Then these n hypotheses are rescored using mor:, ;:{h -
models to obtajn the most likely word sequence. The idea of‘the n-bestlhstw c(:)e:_r(l1 I;nil::e o
Z:;er;]ded 2 Sreale §, miore: ceimpact hypoticses represen;lzt:::;‘:lea;?;p)émeses. N-best or
lall:)ce' sA word lattice is a more efficient way {0 represent ech recognition systems (20,

earch is used for many large-vocabulary continuous spe

of the n-best list and word lattice. Sev-
. i i iscussed.
Tithms to generate such an n-best-list or word lattice are d

In this section we describe the representation
eml a]go

‘ w\———; thi integrated network of various
";edﬁeld S ificial intelligence, the process of perfonning search through an (neg
e _ g
8¢ sources js called constraint satisfuction.
/ Hllazon/VB Assets

Exhibit 1012
Page 689

664
Large-Vocabulary Search Algorithmg

13.3.1. N-best Lists and Word Lattices

Table 13.4 shows an example n-best (10-best) list generated for a North American Business
(NAB) sentence. N-best search framework is effective only for n of the order of tens or hup-
dreds. If the short n-best list that is generated by using less optimal models does not include
the correct word sequence, the successive rescoring phases have no chance to generate the
correct answer. Moreover, in a typical n-best list like the one shown in Table 13.4, many of
the different word sequences are just one-word variations of each other. This is not surpris-
ing, since similar word sequences should achieve similar scores. In general, the number of 1-
best hypotheses might grow exponentially with the length of the utterance. Word lattices and
word graphs are thus introduced to replace n-best list with a more compact representation of
alternative hypotheses.

Word lattices are composed by word hypotheses. Each word hypothesis is associated
with a score and an explicit time interval. Figure 13.8 shows an example of a word latiice
corresponding to the n-best list example in Table 13.4. It is clear that a word lattice is more
efficient representation. For example, suppose the spoken utterance contains 10 words and
there are 2 different word hypotheses for each word position. The n-best list would need to
have 2'° =1024 different sentences to include all the possible permutations, whereas the
word lattice requires only 20 different word hypotheses.

Word graphs, on the other hand, resemble finite state automata, in which arcs are la-
beled with words. Temporal constraints between words are implicitly embedded in the to-
pology. Figure 13.9 shows a word graph corresponding to the n-best list example in Table
13.4. Word graphs in general have an explicit specification of word connections that don't
allow overlaps or gaps along the time axis. Nonetheless, word lattices and graphs are simi-
lar, and we often use these terms interchangeably.® Since an n-best list can be treated as a
simple word lattice, word lattices are a more general representation of alternative hypothe-
ses. N-best lists or word lattices are generally evaluated on the following two parameters:

Table 13.4 An example 10-best list for a North American Business sentence.

I will tell you would I think in my office

I will tell you what I think in my office

I will tell you when I think in my office

I would sell you would I think in my office
1 would sell you what I think in my office
1 would sell you when I think in my office
I will tell you would I think in my office

I will tell you why I think in my office

I will tell you what I think on my office

I Wilson you I think on my office

SPwENAG A WN -

—

“ We will use the term word latrice in the rest of this chapter..

Amazon/VB Assets
Exhibit 1012
Page 690

N/lyesT:“d Multipass Search Strategies

665
o Density: In the n-best case, it is measured by how many alternative word se-
quences are kept in the n-best list. In the word lattice case, it is measured by
the number of word hypotheses or word arcs per utlered word. Obviously, we
want the density to be as small as possible for successive rescoring modules,
pmvided the correct word sequence is included in the n-best list or word lat-
tice.
o The lower bound word error rate: It is the lowest word error rate for any
word sequence in the n-best list or the word lattice.

I will tell you what | think in my office
would sell when
Wilson why
would

Figure 13.8 A word lattice example. Each word has an explicit time interval associated with it.

think | 4} in my >O

1 onstraints are
Figure 13.9 4 yorg graph example for the n-best list in Table 13.4. Temporal ¢

mplicit in the lopology.

Amazon/VB Assets
Exhibit 1012
Page 691

666 Large-Vocabulary Search Algorithmg

Rescoring with highly similar n-best alternatives duplicates computation on common
parts. The compact representation of word lattices allows both data structure and computa-
tion sharing of the common parts among similar alternative hypotheses, so it is generally
computationally less expensive to rescore the word lattice.

Figure 13.10 illustrates the general n-best/lattice search framework. Those KSs pro-
viding most constraints, at a lesser cost, are used first to generate the n-best list or word lat.
tice. The n-best list or word lattice is then passed to the rescoring module, which uses the
remaining KSs to select the optimal path. You should note that the n-best and word-lattice
generators sometimes involve several phases of search mechanisms to generate the n-best
list or word lattice. Therefore, the whole search framework in Figure 13.10 could involve
several (> 2) phases of search mechanism.

Does the compact n-best or word-lattice representation impose constraints on the
complexity of the acoustic and language models applied during successive rescoring mod-
ules? The word lattice can be expanded for higher-order language models and detailed con-
text-dependent models, like inter-word triphone models. For example, to use higher-order
language models for word lattice entails copying each word in the appropriate context of
preceding words (in the trigram case, the two immediately preceding words). To use inter-
word triphone models entails replacing the triphones for the beginning and ending phone of
each word with appropriate interword triphones. The expanded lattice can then be used with
detailed acoustic and language models. For example, Murveit et al. [30] report this can
achieve trigram search without exploring the enormous trigram search space.

Speech . N-Best list Results
—> N e > Rescoring —p
Input Lattice Generator | yord Lattice

Figure 13.10 N-best/lattice search framework. The most discriminant and inex;?ensive knowl-
edge sources (KSs 1) are used first to generate the n-best/lattice. The remaining knowledge
sources (KSs 2, usually expensive to apply! =r= used in the rescoring phase o0 pick up the 0p-

timal solution [40].

13.3.2. The Exact N-best Algorithm

Stack decoding is the choice of generating n-best candidates because of its best-first P“‘::_
ple. We can keep it generating results until it finds n complete paths; these 7 complete Z i
tences form the n-best list. However, this algorithm usually cannot generate th B arch
candidates efficiently. The efficient n-best algorithm for time-synchronous YllCl’bl Se'me—
was first introduced by Schwartz and Chow [39]. It is a simple extension of © e
synchronous Viterbi search. The fundamental idea is to maintain separate records for P

Amazon/VB Assets
Exhibit 1012
Page 692

/‘——’—
Multipass Search Strategies
N-best and P s

with distinct histories. .The history is defined as the whole word sequence up to the current
ime 1 and word . This exact n-best algorithm is also called sentence-dependent n-best al-
gorithm. When two or more path.s come to the same state at the same time, paths having the
came history are merged and their probabilities are summed together; otherwise, only the -
hest paths are retained for each state. As commonly used in speech recognition, a typical
HMM state has 2 or 3 predecessor states within the word HMM. Thus, for each time frame
and each state, the n-best search algorithm needs to compare and merge 2 or 3 sets of n paths
into n new paths. At the end of the search, the n paths in the final state of the trellis are sim-
ply re-ordered to obtain the n-best word sequences.

This straightforward n-best algorithm can be proved to be admissible’ in normal cir-
cumslances [40]. The complexity of the algorithm is proportional to O(nt), where n is the
number of paths kept at each state. This is often too slow for practical systems.

133.3. Word-Dependent N-best and Word-Lattice Algorithm

Since many of the different entries in the n-best list are just one-word variations of each
other, as shown in Table 13.4, one efficient algorithm can be derived from the normal 1-best
Viterbi algorithm to generate the n-best hypotheses. The algorithm runs just like the normal
time-synchronous Viterbi algorithm for all within-word transitions. However for each time
frame 1, and each word-ending state, the algorithm stores all the different words that can end
at current time ¢ and their corresponding scores in a fraceback list. At the same time, the
score of the best hypothesis at each grammar state is passed forward, as in the normal time-
synchronous Viterbi search. This obviously requires almost no extra computation above the
tormal time-synchronous Viterbi search. At the end of search, you can simply searc.h
theough the stored traceback list to get all the permutations of word sequences with their
conesponding scores. If you use a simple threshold, the traceback can be implemented very
efficiently to only uncover the word sequences with accumulated cost scores below the
threshold, This algorithm is often referred as fraceback-based n-best algorithm [29, 42] be-
@ause of the use of the traceback list in the algorithm.) .
_ However, there is a serious problem associated with this algorithm. It could easily
s some low-cost hypotheses. Figure 13.11 illustrates an example in which word w, can
Preceded by two different words w; and w; in different time frames. Ass.ummg patlf1 W, -
l‘;:; has a lower cost than path w, - w, when both paths meet during the trellis searc\l:/:r 4 “;’é ’
queep aih W-w, will be pruned away. During traceback for ﬁn_dmgbﬂ“:h 'e"g::: boundary
ces, there is only one best starting time for word w, , determined by very low
tW%n‘the best preceding word w, and it. Even though path w, - ¥, might h:i;elyr};ve,.
0;;@(;&5-8 s2y only marginally higher than that of w;-W,), it could be comp
+SInce the path has a different starting time for word ;-
——
sI\llh::ugh one can show, in the worst case, when paths with different histories have near i

\ issi
e Search actally needs to keep all paths (> N) in order to guarantee nbs? lu:;:durﬂ:e;ncc. s
nissiple algorithm is clearly exponential in the number of words for

lion;
of w
ord sequences for the whole sentence need to be kept.

Co

dentical scores for each
bility. Under this worst
ince all permula-

Amazon/VB Assets
Exhibit 1012
Page 693

668 Large-Vocabulary Search Algorithmsr

Ph, w,
‘,—/J—"’ 2nd best path
[
. / -I
Ph Can only keep one
2 W, : whi
h i : path within a8 word so
: this path Is lost,
| : Frj 7
~
/ e /
/ B
N -
ol
Ph3 best path w,

time

Figure 13.11 Deficiency in traceback-based n-best algorithm. The best subpath, w;-w, , will

prune away subpath w,-w, while searching the word w, ; the second-best subpath cannot be
recovered [40].

Ph :
1 w 2nd best path with
I/ [different ending word
I
th Preceding word is
r Wi different so both
] : : ' theories are kept.
. i
/ e 3
Ph} best path

time S

Figure 13.12 Word-dependent n-best algorithm. Both subpaths w;-w, and w;-w, ¢ kept
under the word-dependent assumption [40].

Amazon/VB Assets
Exhibit 1012
Page 694

Nobest and Multipass Search Strategies 65

The word-dependent n-best algorithm [38] can alleviate the deficiency of the trace-
back-based n-best algorithm, in which onl){ one starting time is kept for each word, so the
starting time is indepe.ndent of the .prec.edmg words. On the other hand, in the sentence-
dependent n-best algo.mhm, the starting time for a word depends on all the preceding words,
since different histories are kept separately. A good compromise is the so-called word-
dependent assumption: The star ting. time of a word depends only on the immediate preced-
ing word. That is, given a word pair and its ending time, the boundary between these two
words is independent of further predecessor words.

In the word-dependent assumption, the history to be considered for a different path is
no longer the entire word sequence; instead, it is only the immediately preceding word. This
allows you to keep k (<< n) different records for each state and each time frame in Viterbi
search. Differing slightly from the exact n-best algorithm, a traceback must be performed to
find the n-best list at the end of search. The algorithm is illustrated in Figure 13.12. A word-
dependent n-best algorithm has a time complexity proportional to k. However, it is no longer
admissible because of the word-dependent approximation. In general, this approximation is
quite reasonable if the preceding word is long. The loss it entails is insignificant [6).

133.31. One-Pass N-best and Word-Lattice Algorithm

As presented in Section 13.1, one-pass Viterbi beam search can be implemented very effi-
cienly using a tree Jexicon. Section 13.1.2 states that multiple copies of lexical trees are
necessary for incorporating language models other than the unigram. When bigram is used
in lexical tree search, the successor lexical tree is predecessor-dependent. This predecessor-
dependent property immediately translates into the word-dependent property,” as defined in
Section 13.3.3, because the starting time of a word clearly depends on the immediately pre-
ceding word. This means that different word-dependent partial paths are automatically saved
under the framework of predecessor-dependent successor trees. Therefore, one-pass prede-
Cess‘l"r‘dependent lexical tree search can be modified slightly to output n-best lists o word
Braphs,

Ney etal. [31] used a word graph builder with a one-pass pred
¢l tree search. The idea is to exploit the word-dependent property in
cess.o_r-dependent lexical tree search. During predecessor—dependent lexical tree
lditonal quantities are saved whenever a word ending state is processed.

ecessor-dependent lexi-

herited from the prede-
search, two

*(;w,,w,) —Representing the optimal word boundary between word w, and

¥j» 8iven word w, ending at time £.

. . i st that
h(w/’T(’;WnWj),t)=—IogP(x',IW,-)—RePresemlng the cumulative €O

W :

ord W, produces acoustic vector X, ,X.» "X,

|\ 1
—_—) "

. + . For example,
w\;’then .hlghcr order n-gram models are used, the boundary dependence will be t.=ven more S|rgdr;1ﬁsci:ncle I‘;c ersenlly
want 5 fif?ms are used, the boundary for a word juncture depends on the P,.evlou; L“flcl)'ni::er order n-gram 0 gen*

v . F ea

Ehale yq mMethod of generating word lattices/graphs, bigram is often vsed ins

d Iillices[graphs.

Amazon/VB Assets
Exhibit 1012
Page 695

670 Large-Vocabulary Search Algorithms

At the end of the utterance, the word lattice or n-best list is constructed by tracing back
all the permutations of word pairs recorded during the search. The algorithm is summarized
in Algorithm 13.3,

ALGORITHM 13.3: ONE-PASS PREDECESSOR-DEPENDENT LEXICAL TREE
SEARCH FOR N-BEST OR WORD-LATTICE CONSTRUCTION

Step1:For t1=1.T,
1-best predecessor-dependent lexical tree search;
V(w;,w,) ending at 7
record word-dependent crossing time z(£;w,,w,);
record cumulative word score h(w;T(£;w,,w,).1);

Step 2: Output 1-best result;
Step 3: Construct n-best or word-lattice by tracing back the word-pair records (7 and 4).

13.3.4. The Forward-Backward Search Algorithm

As described Chapter 12, the ability to predict how well the search fares in the future for the
remaining portion of the speech helps to reduce the search effort significantly. The one-pass
search strategy, in general, has very little chance of predicting the cost for the portion that it
has not seen. This difficulty can be alleviated by multipass search strategies. In successive
phases the search should be able to provide good estimates for the remaining paths, since the
entire utterance has been examined by the earlier passes. In this section we investigate a
special type of multipass search strategy—forward-backward search.

The idea is to first perform a forward search, during which partial forward scores
for each state can be stored. Then perform a second pass search backward—that is, the sec-
ond pass starts by taking the final frame of speech and searches its way back until it reaches
the start of the speech. During the backward search, the partial forward scores & can be
used as an accurate estimate of the heuristic function or the fast match score for the remain-
ing path. Even though different KSs might be used in forward and backward phases, this
estimate is usually close to perfect, so the search effort for the backward phase can be sig-
nificantly reduced.

The forward search must be very fast and is generally a time-synchronous Viterbi
search. As in the multipass search strategy, simplified acoustic and language models are
often used in forward search. For backward search, either time-synchronous search or time-
asynchronous A* search can be employed to find the n-best word sequences or word lattice.

Amazon/VB Assets
Exhibit 1012
Page 696

N-best and Multipass Search Strategies
671

13.34.1 Forward-Backward Search

stack decoding, as described in Chapter 12, is based on the admissible A*
complete hypothesis found with a cost below that of ail the hypotheses in
anteed to be the best word sequence. It is straightforward to extend stack
duce the f-best hypotheses by conlinuing to extend the partial hypotheses according to the
same A¥ criterion until » different hypotheses are found. These different hypotheses are
destined to be the n-best hypotheses under a proof similar to that presented in Chapter 12
Therefore, stack decodin'g is a natural choice for producing the n-best hypotheses. -

However, as described in C.hapter 12, the difficulty of finding a good heuristic func-
tion that can accurately under-estimate the remaining path has limited the use of stack de-
coding. Fortunately, this difficulty can be alleviated by tree-trellis Sforward-backward search
algorithms [41]. First, the search performs a time-synchronous forward search. At each time
frame 1, it records the score of the final state of each word ending. The set of words whose
final states are active (surviving in the beam) at time ¢ is denoted as A,. The score of the
final state of each word w in A, is denoted as ¢, (w) , which represents the sum of the cost
of matching the utterance up to time ¢ given the most likely word sequence ending with
word w and the cost of the language mode! score for that word sequence. At the end of the
forward search, the best cost is obtained and denoted as & .

After the forward pass is completed, the second search is run in reverse (backward),
ie., considering the last frame T as the beginning one and the first frame as the final one.
Both the acoustic models and language models need to be reversed. The backward search is
based on A* search. At each time frame ¢, the best path is removed from the stack and a list
of possible one-word extensions for that path is generated. Suppose this best path at time ¢ is
ph,, where w, is the first word of this partial path (the last expanded during backward A*
search). The exit score of path ph, at time ¢, which now corresponds to the score of the
initial state of the word HMM w;, is denoted as J3,(ph.). _

Let us now assume we are concemed about the one-word extension of word w, f":
path ph, . Remember that there are two fundamental issues for the i{nplementgnon' of g
Search algorithm—(1) finding an effective and efficient heuristic function for estimating the

fature remaining input feature stream and (2) finding the best crossing time between w; and
w
I -
. : effi-
-..The stored forward score & can be used for solving both 1ssues effectively and

ciently. For each time 1, the sum @, (w,)+ B (ph,) represents the cost score o:: tSth::, ‘t,)::;
omplete path including word 1w, and partial path ph,, . @, (w,) clearly represe

il the end of
800d heuristic estimate of the remaining path from the start of the utteragceal:]:l;(l)r il
i %ord w,, because it js indeed the best score computed in the fgrwarcai be easily com-
qllanmy_ Moreover, the optimal crossing time t' between w; an wj

Pited by the following equation:

search, so the first
the stack is guar-
decoding to pro-

_ (13.7)
f =argmin[a,(w,.)+ﬂ, (ph,,):|

Amazon/VB Assets
Exhibit 1012
Page 697

672 Large-Vocabulary Search Algorithms

Finally, the new path p#, including the one-word (w,) extension, is inserted into the stack,
ordered by the cost score o, (w)+ B.(ph,). The heuristic function (forward scores o)
allows the backward A* search to concentrate search on extending only a few truly promis-
ing paths.

As a matter of fact, if the same acoustic and language models are used in both the for-
ward and backward search, this heuristic estimate (forward scores) is indeed a perfect
estimate of the best score the extended path will achieve. The first complete hypothesis
generated by backward A* search coincides with the best one found in the time-synchronous
forward search and is truly the best hypothesis. Subsequent complete hypotheses correspond
sequentially to the n-best list, as they are generated in increasing order of cost. Under this
condition, the size of the stack in the backward A* search need only be N. Since the estimate
of future is exact, the (N +1)" path in the stack has no chance to become part of the n-best
list. Therefore, the backward search is executed very efficiently to obtain the n-best hy-
potheses without exploring many unpromising branches. Of course, tree-trellis forward-
backward search can also be used like most other multipass search strategies—inexpensive
KSs are used in the forward search to get an estimate of &, and more expensive KSs are
used in the backward A* search to generate the n-best list.

The same idea of using forward score & can be applied to time-synchronous Viterbi
search in the backward search instead of backward A* search (7, 34]. For large-vocabulary
tasks, the backward search can run 2 to 3 orders of magnitude faster than a normal Viterbi
beam search. To obtain the n-best list from time-synchronous forward-backward search, the
backward search can also be implemented in a similar way as a time-synchronous word-
dependent n-best search.

13.3.4.2. 'Word-Lattice Generation

The forward-backward n-best search algorithm can be easily modified to generate word lat-
tices instead of n-best lists. A forward time-synchronous Viterbi search is performed first to
compute a,(w), the score of each word @ ending at time . At the end of the search, this
best score & is also recorded to establish the global pruning threshold. Then, a backward
time-synchronous Viterbi search is performed to compute f3,(®), the score of each word @
beginning at time ¢. To decide whether to include word juncture @, ~®; in the word lat-
tice/graph at time 1, we can check whether the forward-backward score is below a global
pruning threshold. Specifically, supposed bigram probability P(w; | @,) is used, if

0,(@)+B @)+ ~log P, | 0)] <” +6 (13.8)

where 6 is the pruning threshold, we will include @, ~@ ; in the word lattice/graph at time
t. Once word juncture @, —@, is kept, the search continues looking for the next word-pair,
where the first word @, will be the second word of the next word-pair.

Amazon/VB Assets
Exhibit 1012
Page 698

	Part 009
	Blank Page

