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Figure 2.20 Spectrogram: stop release burst of /pl in the word pin. 

parison, the voicing of voiced plosive consonants may not always be obvious in a spectro­
gram. 

A consonant that involves nearly complete blockage of some position in the oral cav­
ity creates a narrow stream of turbulent air. The friction of this air stream creates a non­
periodic hiss-like effect. Sounds with this property are called fricatives and include Is, v. 
There is no voicing during the production of s, while there can be voicing (in addition to the 
frication noise), during the production of z, as discussed above. /s, z/ have a common place 
of articulation, as explained below, and thus form a natural similarity class. Though contro­
versial, /hi can also be thought of as a (glottal) fricative. / s/ in word-initial position and h) in 
word-final position are exemplified in Figure 2.5. 

Some sounds are complex combinations of manners of articulation. For example. the 
affricates consist of a stop (e.g., It/), followed by a fricative (e.g., /sh/) combining to make_a 
unified sound with rapid phases of closure and continuancy (e.g., {t + sh} == ch as 10 

church). The affricates in English are the voiced/unvoiced pairs: /j/ (d + zh) and /chi (t + sh). 
The complete consonant inventory of English is shown in Table 2.9. 

Consider the set Im/, In/, Ing/ from Table 2.9. They are all voiced nasal consonants, yet 
they sound distinct to us. The difference lies in the location of the major constriction along 
~he top of ~e oral cavity (from lips to velar area) that gives each consonant its unique qual­
ity· The articulator used to touch or approximate the given location is usually some spot 
along the length of the tongue. As shown in Figure 2.21 the combination of articulator and 
place of articulation gives each consonant its characteristic sound: 
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. Table 2.9 Manner of articulation of English consonants. 

Consonant Labels Consonant Examples 

b big, able, tab 

p put, open, tap 
d dig, idea, wad 
t talk, sat 
g gut, angle, tag 
k cut, oaken, take 
V vat, over, have 
f fork, after, if 

z zap, lazy, haze 
s sit, cast, toss 

dh then, father, scythe 
th thin, nothing, truth 

zh genre, azure, beige 
sh she, cushion, wash 
jh joy, agile, edge 

ch chin, archer, march 

I lid, elbow, sail 
r red, part, far 

y yacht, onion, yard 
w with, away 

hh help, ahead, hotel 

m mat, amid, aim 
n no,end,pan 

ng sing, anger, drink 

Alveolar: 

Labiodental: t, d, n, s, Z, r, l 

I ~v,(f_ Dental: 

\._.)\ th, dh 
Labial:· 

m,p,b, w 

Voiced? 

Palatal: 
sh, zh,y 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

Velar: 
k, g, ng 

Manner 
plosive 
plosive 
plosive 
plosive 
plosive 
plosive 
fricative 
fricative 
fricative 
fricative 
fricative 
fricative 
fricative 
fricative 
affricate 
affricate 
lateral 

retroflex 
glide 
glide 

fricative 
nasal 
nasal 
nasal 

Figure 2.21 The major places of consonant articulation with respect to the human mouth. 
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• The labial consonants have their major constriction at the lips. This includes 
/pl, /bl (these two differ only by manner of articulation) and Im/ and /w/. 

• The class of dental or labio-dental consonants includes If, vi and Ith, d/z/ (the 
members of these groups differ in manner, not place). 

• Alveolar consonants bring the front part of the tongue, called the tip or the 
part behind the tip called the blade, into contact or approximation to the al­
veolar ridge, rising semi-vertically above and behind the teeth. These include 
It, d, n, s, z, r, II. The members of this set again differ in manner of articula­
tion (voicing, continuity, nasality), rather than place. 

• Palatal consonants have approximation or constriction on or near the roof of 
the mouth, called the palate. The members include /sh, zh, yl. 

• Velar consonants bring the articulator (generally the back of the tongue), up to 
the reannost top area of the oral cavity, near the velar flap. Velar consonants in 
English include lk, gl (differing by voicing) and the nasal continuant Ing/. 

With the place terminology, we can complete the descriptive inventory of English 
consonants, arranged by manner (rows), place (columns), and voiceless/voiced (pairs in 
cells) as illustrated in Table 2.10. 

Table 2.10 The consonants of English arranged by place (columns) and manner (rows). 

Labio-
Labial dental Dental Alveolar Palatal Velar Glottal 

Plosive vb td kR ? 
Nasal 1/l n nz 
Fricative fv th dh sz sh zh h 

Retroflex r 
sonorant 
Lateral I 
sonorant 
Glide w y 

2.2.1.3. Phonetic Typology 

The oral, nasal, pharyngeal, and glottal mechanisms actually make available a much wider 
range of effects than English happens to use. So, it is expected that other languages would 
utilize other vocal mechanisms, in an internally consistent but essentially arbitrary fashi~n, 
to represent their lexicons. In addition, often a vocal effect that is part of the systematic_ ltn· 
guistic phonetics of one language is present in others in a less codified, but still perceptible, 
form. For example, Japanese vowels have a charactedstic distinction of length that can be 
hard for non-natives to perceive and to use when learning the language. The words kado 
(comer) and kaado (card) are spectrally identical, differing only in that kado is much shorter 
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in all contexts. The existence of such minimally-contrasting pairs is taken as conclusive evi­
dence that length is phonemically distinctive for Japanese. As noted above, what is linguisti­
cally distinctive in any one language is generally present as a less mea11i11gful signaling 
dimension in other languages. Thus, vowel length can be manipulated in any English word 
as well, but this occurs either consciously for emphasis or humorous effect, or unconsciously 
and very predictably at clause and sentence end positions, rather than to signal lexical iden­
tity in all contexts, as in Japanese. 

Other interesting sounds that the English language makes no linguistic use of include 
the trilled r sound and the implosive. The trilled r sound is found in Spanish, distinguishing 
(for example) the words pero (but) and perro (dog). This trill could be found in times past as 
a non-lexical sound used for emphasis and interest by American circus ringmasters and other 
showpersons. 

While the world's languages have all the variety of manner of articulation exemplified 
above and a great deal more, the primary dimension lacking in English that is exploited by a 
large subset of the world's languages is pitch variation. Many of the huge language families 
of Asia and Africa are tonal, including all varieties of Chinese. A large number of other lan­
guages are not considered strictly tonal by linguistics, yet they make systematic use of pitch 
contrasts. These include Japanese and Swedish. To be considered tonal, a language should 
have lexical meaning contrasts cued by pitch, just as the lexical meaning contrast between 
pig and big is cued by a voicing distinction in English. For example, Mandarin Chinese has 
four primary tones (tones can have minor context-dependent variants just like ordinary 
phones, as well) as shown in Table 2.11. 

Table 2.11 The contrastive tones of Mandarin Chinese. 

Tone Shape Example Chinese Meaning 
1 High level ma ~~ mother 

2 High rising ma ~ numb 

3 Low rising ma Y:, horse 

4 High falling ma '"' £11 to scold 

Though English does not make systematic use of pitch in itc; inventory of word con­
trasts, nevertheless, as we always see with any possible phonetic effect, pitch is systemati­
cally varied in English to signal a speaker's emotions, intentions, and attitudes, and it has 
some linguistic function in signaling grammatical structure as well. Pitch variation in Eng­
lish will be considered in more detail in Chapter 15. 

2.2.2. The Allophone: Sound and Context 

The vowel and consonant charts provide abstract symbols for the phonemes - major sound 
distinctions. Phonemic units should be correlated with potential meaning distinctions. For 
example, the change created by holding the tongue high and front (liyl) vs. directly down 
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from the (frontal) position for /eh/, in the consonant context Im _ nl, corresponds to an im­
portant meaning distinction in the lexicon of English_: 1~1ean Im iy n~ vs. m_en I~ eh nl. This 
meaning contrast, conditioned by a pair of rather similar_ s~un~s, m an 1dent1cal context, 
justifies the inclusion of /iyl and /eh/ as logically separate d1stmct1ons. 

However, one of the fundamental, meaning-distinguishing sounds is often modified in 
some systematic way by its phonetic neighbors. The process by which neighboring sounds 
influence one another is called coarticulation. Sometimes, when the variations resulting 
from coarticulatory processes can be consciously perceived, the modified phonemes are 
called allophones. Allophonic differences are always categorical, that is, they can be under­
stood and denoted by means of a small, bounded number of symbols or diacritics on the 
basic phoneme symbols. 

As an experiment, say the word like to yourself. Feel the front of the tongue touching 
the alveolar ridge (cf. Figure 2.21) when realizing the initial phoneme Ill. This is one allo­
phone of Ill, the so-called light or clear Ill. Now say kill. In this word, most English speakers 
will no longer feel the front part of the tongue touch the alveolar ridge. Rather, the Ill is real­
ized by stiffening the broad midsection of the tongue in the rear part of the mouth while the 
continuant airstream escapes laterally. This is another allophone of Ill, conditioned by its 
sylJable-final position, called the dark /JJ. Predictable contextual effects on the realization of 
phones can be viewed as a nuisance for speech recognition, as will be discussed in Chapter 
9. On the other hand, such variation, because it is systematic, could also serve as a cue to the 
syllable, word, and prosodic structure of speech. 

Now experiment with the sound /pl by holding a piece of tissue in front of your mouth 
while saying the word pin in a normal voice. Now repeat this experiment with spin. For 
most English speakers, the word pin produces a noticeable puff of air, called aspiration. But 
the s'.1111e phone~e, Ip/, embedded in the consonant cluster lspl loses its aspiration (burst, see 
the Imes bracketing the Ip/ release in pin and spin in Figure 2.22), and because these two 
lyp~s of Ip/ are in c~mpleme~tary distribution (completely detennined by phonetic and syl­
labic context), the difference 1s considered allophonic . 

. Try to speak the word bat in a framing phrase say bat again. Now speak say bad 
again. Can you feel the length difference in the vowel lael? A vowel before a voiced conso­
~antht,_ e.g., /di, seems typically longer than the same vowel before the unvoiced counterpart, 
m 1s case /ti. 

A sound phonemicized as It/ or Id/, that is, a stop made with the front part of the 
tongue, may be reduced to a qu · k t th 
in fuller c t 

1 
Th' ic ongue tap at has a different sound than either /ti or /di 

vowel (co~: ;~s~~ion;\~~l~::~ ~ called flapping. It occurs ~he~ /ti or Id/ closes a stressed 
te~ humidity and ca Y an unSlressed vowel, as m: bztter, baner, murder, quar· 

' , n even occur across d 1 · 
you can say that again S ti. th wor s as ong as the preconditions are met, as in 

· ome mes e velar flap O t . . · · · a characteristically nasal quarty 
1 

pens oo soon (ant1c1pat1on), gIVJng 
have a more detailed discuss~ o saloml e pre-n~al vowels such as lael in ham vs. had. We 

_ion on ophones m Chapter 9. 
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Figure 2.22 Spectrogram: bursts of pin and spin. The relative duration of a p-burst in different 
phonetic contexts is shown by the differing width of the area between the vertical lines. 

2.2.3. Speech Rate and Coarticulation 

49 

In addition to allophones, there are other variations in speech for which no small set of es­
tablished categories of variation can be established. These are gradient, existing along a 
scale for each relevant dimension, with speakers scattered widely. In general, it is harder to 
become consciously aware of coarticulation effects than of allophonic alternatives. 

Individual speakers may vary their rates according to the content and setting of their 
speech, and there may be great inter-speaker differences as well. Some speakers may pause 
between every word, while others may speak hundreds of words per minute with barely a 
pause between sentences. At the faster rates, formant targets are less likely to be fully 
achieved. In addition, individual allophones may merge. 

For example [20), consider the utterance Did you hit it to Tom? The pronunciation of 
this utterance is Id ih d y uw h ih t ih t t uw t aa ml. However, a realistic, casual rendition of 
this sentence would appear as Id ih jh ax hh ih dx ih t ix t aa ml, where /ix/ is a reduced 
schwa la.xi that is short and often unvoiced, and Id.xi is a kind of shortened, indistinct stop, 
intennediate between /di and /ti. The following five phonologic rules have operated on alter­
ing the pronunciation in the example: 

• Palatalization of /di before lyl in did. you 

• Reduction of unstressed lu/ to schwa in yQu 
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• Flapping of intervocalic /ti in hil it 
• Reduction of schwa and devoicing of /u/ in ta 
• Reduction of geminate (double consonant) It/ in iLJo 

There are also coarticulatory influences in the spectral appearance of speech sounds 
which can only be understood at the level of spectral analysis. For example, in vowels, con~ 
sonant neighbors can have a big effect on formant trajectories near the boundary. Consider 
the differences in Fl and F2 in the vowel /eh/ as realized in words with different initial con. 
sonants bet, debt, and get, corresponding to the three major places of articulation (labial 
alveolar, and velar), illustrated in Figure 2.23. You can see the different relative spreads of 
Fl and F2 following the initial stop consonants. 

0.5 · 

·0.5 

0 0.2 0.4 0.6 

bet (lb eh ti) 

0.8 1 1.2 1.4 1.6 1.8 

0.8 1 1.2 1.4 1.6 1.8 
lime (seconds) 
debt (Id eh ti) get (lg eh ti) 

~igure 2.23 Spectrogram: bet, debt and . 
tive spreads of F J and FZ foll . ' . f!~' (separated by vertical lines). Note different rela-

owmg the m1t1al stop consonants in each word. 

. Now let's see different con . 
Figure 2.23, the coarticulato ;on~nts followmg the same vowel, ebb, head, and egg. In 
aniculators are still some h ry e ect is perseverance; i.e., in the early part of the vowel the 
and egg examples shown: apt· set from realization of the initial consonant. In the ebb, head, 
latter p f n igure 2.24 the co rt' J • · · the . art o the vowel th . ' a icu atory effect 1s anticipation· 1.e., m 
artic 1 · e articulators a · ' u atton. You can see the . . re movmg to prepare for the upcoming consonant 
consonant transition in each w~~~~easmg relative spread of Fl and F2 at the final vowel· 
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Figure 2.24 Spectrogram: ebb, head, and egg. Note the increasing relative spread of Fl and 
F2 al lhe final vowel-consonant transition in each word. 

2.3. SYLLABLES AND W OROS 

51 

Phonemes are small building blocks. To contribute to language meaning, they must be or­
ganized into longer cohesive spans, and the units so formed must be combined in character­
istic patterns to be meaningful, such as syllables and words in the English language. 

2.3.1. Syllables 

An intermediate unit, the syllable, is sometimes thought to interpose between the phones and 
the word level. The syllable is a slippery concept, with implications for both production and 
perception. Here we will treat it as a perceptual unit. Syllables are generally centered around 
vowels in English, giving two perceived syllables in a word like tomcat: ltOm-cAtl. To com­
pletely parse a word into syllables requires making judgments of consonant affiliation (with 
the syllable peak vowels). The question of whether such judgments should be based on ar­
ticulatory or perceptual criteria, and how they can be rigorously applied, remains unre­
solved. 
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Syllable centers can be thought of as peaks in sonority (hig_h-amplitude, periodic sec­
tions of the speech wavefonn). These sonority peaks have ~ffihated shoulders of strictly 
non-increasing sonority. A scale of sonority can be used, rankmg consonants along a contin­
uum of stops, affricates, fricatives, and approximants. So, in a word like verbal, the syllabi­
fication would be ver-bal, or verb-al, but not ve-rbal, because putting the approximant Ir/ 
before the stop /bl in the second syllable would violate the non-decreasing sonority require­
ment heading into the syllable. 

As long as the sonority conditions are met, the exact affiliation of a given consonant 
that could theoreticaUy affiliate on either side can be ambiguous, unless detennined by 
higher-order considerations of word structure, which may block affiliation. For example, in 
a word like beekeeper, an abstract boundary in the compound between the component words 
bee and keeper keeps us from accepting the syllable parse: beek-eeper, based on lexical in­
terpretation. However, the same phonetic sequence in beaker could, depending on one's 
theory of syllabicity, permit affiliation of the k: beak-er. In general, the syllable is a unit that 
has intuitive plausibility but remains difficult to pin down precisely. 

/ Syllable I 
r----,:;._~~ 

Onset [r-----R---ime-/ 

~ 
9 Nucleus 

str eh nxths 
Figure 2.25 Th di 

e wor syllable strengths (Is tr eh . 
Syllables are thought (b r . . nx 

th st) is the longest syllable of E11;lish. 
used are worth kn . Y mguist1c theorists) to h · 
sists of a vow owmg. Consider a big syllable such ave mtemaJ structure, and the terms 
positions. The e!:ak, cal_led the nucleus, surrounded a~ strengths Is tr eh nx th sf. This con­
trailing conson e~ consists of initial consonants 'f Y the other sounds in characteristic 
coda consists oanf ts the Part of the syUable that ma1tt an~, and the rime is the nucleus with 

consonants · th . ers m dete · · . consonant in a final I m e nme foJiowing th nnmmg poetic rhyme). The 
lable ~arse tree as sh~::t~r w?uld belong to an appe,:;li:ucleu_s (in some_ treatments, the Jast 
domain of coarticuJation n F1~ure 2.25. The syllable is ). Th~s can be diagrammed as a syl­
more than the sames ,dthat is, sounds within a syJJ bls~met1mes thought to be the primar}' 

oun s separ t d a e mflu · a e by a syllabi b ence one another's realizauon 
e oundary. 
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2.3.2. Words 

The concept of words seems intuitively obvious to most speakers of Indo-European lan­
guages. It can be loosely defined as a lexical item, with an agreed-upon meaning in a given 
speech community, that has the freedom of syntactic combination allowed by its type (noun, 
verb, etc.). 

In spoken language, there is a segmentation problem: words run together unless af­
fected by a disfluency (unintended speech production problem) or by the deliberate place­
ment of a pause (silence) for some structural or communicative reason. This is surprising to 
many people, because literacy has conditioned speakers/readers of Inda-European languages 
to expect a blank space between words on the printed page. But in speech, only a few true 
pauses (the aural equivalent of a blank space) may be present. So, what appears to the read­
ing eye as never give all the hear!, for love would appear to the ear, if we simply use letters 
to stand for their corresponding English speech sounds, as nevergivealltheheart forlove or, 
in phonemes, as n eh v erg ih 11 ah I dh ax h aa rt \\f ao r I ah v. The \\ symbol marks a lin­
guistically motivated pause, and the units so formed are sometimes called intonation 
phrases, as explained in Chapter 15. 

Certain facts about word structure and combinatorial possibilities are evident to most 
native speakers and have been confirmed by decades of linguistic research. Some of these 
facts describe relations among words when considered in isolation, or concern groups of 
related words that seem intuitively similar along some dimension of form or meaning -
these properties are paradigmatic. Paradigmatic properties of words include part-of-speech, 
inflectional and derivationaJ morphology, and compound structure. Other properties of 
words concern their behavior and distribution when combined for communicative purposes 
in fully functioning utterances - these properties are syntagmatic. 

2.3.2.1. Lexical Part-of-Speech 

Lexical part-of-speech (POS) is a primitive form of linguistic theory that posits a restricted 
inventory of word-type categories, which capture generalizations of word forms and distri­
butions. Assignment of a given POS specification to a word is a way of summarizing certain 
facts about its potential for syntagmatic combination. Additionally, paradigms of word for­
mation processes are often similar within POS types and subtypes as well. The word proper­
ties upon which POS category assignments are based may include affixation behavior, very 
abstract semantic typologies, distributional patterns, compounding behavior, historical de­
velopment, productivity and generalizabiJty, and others. 

A typical set of POS categories would include noun, verb, adjective, adverb, interjec­
tion, conjunction, determiner, preposition, and pronoun. Of these, we can observe that cer­
tain classes of words consist of infinitely large membership. This means new members can 
be added at any time. For example, the category of noun is constantly expanded to accom­
modate new inventions, such as Velcro or Spandex. New individuals are constantly being 
born, and their names are a type of noun called proper noun. The proliferation of words us-
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. h recent set of examples: cyberscoff/aw, cybersex 
fi ber is anot er . . 1 . d ' 

. d scriptive pre x cy . . t'vity of humans m mampu atmg wor structure 111g the e t the mfimte crea 1 . f 
d ven cyberia mustra e . f ently by analogy with, and usmg ragments of, ex. an e d f meaning requ b. . 

t express new sha es O 

1• . the neologism sheeple, a noun com mmg the fonns 0 
A other examp e is I h 1 k h isting vocabulary. n I t refer to large masses of peop e w o ac t e capacity 

and meanings of sheep and peop e 
O 

• We can create new words whenever we like, but 
ke independent acuon. . f 

or willingness to ta d. t ble paradigmatic and syntagmat1c patterns o use sum. 
they had best fall within 

th
e pre ic 1~ t· ons or there will be Ii ttle hope of their adoption by 

h existing POS genera 1za 1 , N . 
marized by t e POS ategories are listed in Table 2.12. ouns are inherently 
any other speaker. These open ~ es and things. Verbs are predicative; they indicate 
referential. They ref~r. to pedrsons, prt~ecs 

0
'f entities including participation in events. Adjec-

. b n ent1t1es an prope 1 ' 
relations etwee . d mpletely specify noun reference, while adverbs describe, 
. 1 p'cally describe an more co . 

uves ~ 1 
' 1 t I specify verbal relations. Open-class words are sometimes intensify, and more comp e e y . . 

called content words, for their referential properties. 

Table 2.12 Open POS categories. 

Ta2 Descri_J>tion Function Example 
N Noun Names entity cat 
V Verb Names event or condition forget 
Adi Adjective Descriptive yellow 
Adv Adverb Manner of action quickly 
lnterj Interjection Reaction oh! 

In contrast to the open-class categories, certain other categories of words only rarely 
and very slowly admit new members over the history of English development. These closed 
POS categories are shown in Table 2.13. The closed-category words are fairly stable over 
time. Conjunctions are used to join larger syntactically complete phrases. Detenniners help 
lo narrow noun reference possibilities. Prepositions denote common spatial and temporal 
relations of objects and actions to one another. Pronouns provide a convenient substitute for 
~oun phrases that are fully understood from context. These words denote grammatical rela­
llons of other words to one another and fundamental properties of the world and how hu­
mans uoctcrsta~d it. They can, of course, change slowly~ for example, the Middle English 
pron~un tlwe is no longer in common use. The closed-class words are sometimes called 
ftm<"trm, words. 

~~,-~ ~ 

Description -Function Examl!I~-~<..:.~~j Conjunction nc1 - Coordinates phrases and_ Determiner ·- -
Indicates definiteness l_'•t1~- -

rh~ p . . -
,J•!!L_ fl~~os111on 

Rdations of lime. space, direction fron!_-Pmnoun 
Sitnplified reference she 

Table 2.13 Closed POS categories 
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The set of POS categories can be extended indefinitely. Examples can be drawn from 
rhe Penn Treebank project (http://www.cis.upenn.edu/ldc) as shown in Table 2.14, where 
you can find the proliferation of sub-categories, such as Verb, base form and Verb, past 
tense. These categories incorporate morphological attributes of words into the POS label 
system discussed in Section 2.3.2.2. 

Table 2.14 Treebank POS categories - an expanded inventory. 

String Description Example 
cc Coordinating conjunction and 
CD Cardinal number two 
OT Determiner the 
EX Existential there there (There was an old lady) 
FW Foreign word omerta 
lN Preposition, subord. conjunction over, but 
JJ Adjective yellow 
JJR Adjective, comparative better 
JJS Adjective, superlative best 
LS List item marker 
MD Modal might 
NN Noun, singular or mass rock, water 
NNS Noun, plural rocks 
NNP Proper noun, singular Joe 
NNPS Proper noun, plural Red Guards 
PDT Predeterminer all (all the girls) 
POS Possessive ending 's 
PRP Personal pronoun I 
PRP$ Possessive pronoun mine 
RB Adverb quickly 
RBR Adverb, com_1Jarative higher (shares closed higher.) 
RBS Adverb, superlative highest (he jumped hi!fhest of all.) 
RP Particle up ( take up the cause) 
TO to to 
UH Interjection hey! 
VB Verb, base form choose 
VBD Verb, past tense chose 
VBG Verb, gerund, or _1J_resent participle choosing 
VBN Verb, past participle chosen 
VBP Verb, non-third person sing. present jump 
VBZ Verb, third person singular present jumps . 
WOT Wh-deterrniner which 
WP Wh-pronoun who 
wP$ Possessive wh'"I'ronoun whose 
WRB Wh-adverb when (Wizen he came, it was late. ) 
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f Speech or other lexical class marker 
· · a part-o -

POS tagging is the process of assigning .thms to automaticaBy tag input sentences 
to each word in a corpus. There are ma4n5y] ~~:n Markov models (see Chapter 8) (23, 29, 

R 1 b sed methods ( , 1 
into a sel of tags. u e~ a thods [6] are used for this purpose. 
46], and machine-learning me 

2.J.2.2. Morphology 

f d i e the patterns of word fonnation including 
· b t the subparts o wor S, · ·• Morphology 1s a ou . f compounds. English mainly uses prefixes and 

inflection derivation, and the formation o 
' · fi t ·on and derivational morphology· 

suffixes to express 11! ec 1
1 

d 1 · with variations in word form that reflect the contextual 
Jnjlectio11al morp/zo ogy ea 5 d" ff · · . h sentence syntax and that rarely have irecl e eel on mter-

situation of a word m p rase or , . h . fl . I 
. f d t I meaning expressed by the word. Enghs m ect1ona morphol-

pretauon of the un amen a d k. 
. 

1 
· 1 · pie and includes person and number agreement an tense mar mgs 

ogy 1s re at1ve y s1m . d f · 
I Th · t·on ,·n cats (vs cat) is an example. The plural form 1s use to re er to an m-on y. e vana 1 · . . . . 

definite number of cats greater than one, depending on a particular s1tuat1on. _But the basic 
POS category (noun) and the basic meaning (felis domesticus) are not sub~tantta11y affected. 
Words related to a common lemma via inflectional morphology are said to belong to a 
common paradigm, with a single POS category assignment. In English, common paradigm 
types include the verbal set of affixes (pieces of words): -s, -ed, -ing; the noun set: -s; and 
the adjectival -er, -est. Note that sometimes the base fonn may change spelling under affixa­
tion, complicating the job of automatic textual analysis methods. For historical reasons, cer­
tain paradigms may consist of highly idiosyncratic irregular variation as well, e.g., go, 
going, went, gone or child, children. Furthermore, some words may belong to defective 
paradigms, where only the singular (noun: equipment) or the plural (noun: scissors) is pro­
vided for. 

In deriva~ional morphology, a given root word may serve as the source for wholly new 
words, ~ften with POS changes as illustrated in Table 2.15. For example, the tenns racial 
~~ _racist, though presumably based on a single root word race, have different POS possi­
bdit,~s ~adjective vs. noun-adjective) and meanings. Derivational processes may induce pro­
~u~cia~ion change o~ stress shift (e.g., electric vs. electricity). In Enolish typical 

fi
env_ational affix_es (~ieces of words) that are highly productive include prefixes' and suf-
1xes. re-, pre- -zal -ism -ish ·ry . 

cases these ca~ be 'dd d' ' ·1
• ' -tw,z, -ness, -ment, -ious, -ify, -ize, and others. In many 

' a e successively to create a complex layered form. 

Table 2.15 Examples of stems and their related forms ac o POS 

Noun 
r ss categones. 

criticism 
Verb Adjective Adverb 
criticize -'fool critical critically 

industry, industrialization 
fool foolish foolishly 

eme_~ol., eme_loyee, employer 
industrialize industrial, industrious industriously 
employ 

.£.._enification 
certify 

employable employably 
certifiable certifiably 
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Generally, word formation operates in layers, according to a kind of word syntax: (de­
riv-prejix)* root (root)* (deriv-suffix)* (i11fl-suffix). This means that one or more roots can 
be compounded in the inner layer, with one or more optional derivational pre.fixes, followed 
by any number of optional derivational suffixes, capped off with no more than one injlec­
tional suffix. There are, of course, limits on word formation, deriving both from semantics of 
the component words and simple lack of imagination. An example of a nearly maximaJ word 
in English might be autocyberconceptualizations, meaning (perhaps!) multiple instances of 
automatically creating computer-related concepts. This word lacks only compounding to be 
truly maximal. This word has a derivational prefix auto-, two root forms compounded (cyber 
and concept, though some may prefer to analyze cyber- as a prefix), three derivational suf­
fixes (-ual, -ize, -ation), and is capped off with the plural inflectional suffix for nouns, -s. 

2.3.2.3. Word Classes 

POS classes are based on traditional grammatical and lexical analysis. With improved com­
putational resources, it has become possible to examine words in context and assign words 
to groups according to their actual behavior in real text and speech from a statistical point of 
view. These kinds of classifications can be used in language modeling experiments for 
speech recognition, text analysis for text-to-speech synthesis, and other purposes. 

One of the main advantages of word classification is its potential to derive more re­
fined classes than traditional POS, while only rarely actually crossing traditional POS group 
boundaries. Such a system may group words automatically according to the similarity of 
usage with respect to their word neighbors. Consider classes automatically found by the 
classification algorithms of Brown et al. [7]: 

{Friday Monday Thursday Wednesday Tuesday Saturday Sunday weekends} 
{ great big vast sudden mere sheer gigantic lifelong scant colossal} 
{ down backwards ashore sideways southward northward overboard aloft adrift} 
{ mother wife father son husband brother daughter sister boss uncle} 
{John George James Bob Robert Paul William Jim David Mike} 
{ feet miles pounds degrees inches barrels tons acres meters bytes} 

You can see that words are grouped together based on the semantic meaning, which is 
different from word classes created purely from syntactic point of view. Other types of clas­
sification are also possible, some of which can identify semantic relatedness across tradi­
tional POS categories. Some of the groups derived from this approach may include follows: 

{problems problem solution solve anaJyzed solved solving} 
{ write writes writing written wrote pen} 
{ question questions asking answer answers answering} 
{ published publication author publish writer titled} 
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2.4. SYNTAX AND SEMANTICS 

Syntax is the study of the patterns ~f fonnation of sentenc~s ~nd phrases from words and the 
rules for the fonnation of grammatical sentences. Semantics 1s another branch of linguisti 
dealing with the study of meaning, including the ways meaning is structured in language a: 
changes in meaning and fonn over time. 

2.4.1. Syntactic Constituents 

Constituents represent the way a sentence can be divided into its grammatical subparts as 
constrained by common grammatical patterns (which implicitly incorporate nonnative 
judgments on acceptability). Syntactic constituents at least respect, and at best explain, the 
linear order of words in utterances and text. In this discussion, we will not strictly follow 
any of the many theories of syntax but will instead bring out a few basic ideas common 10 
many approaches. We will not attempt anything like a complete presentation of the grammar 
of English but instead focus on a few simple phenomena. 

Most work in syntactic theory has adopted machinery from traditional grammatical 
work on written language. Rather than analyze toy sentences, let's consider what kinds of 
superficial syntactic patterns are lurking in a random chunk of serious English text, ex­
cerpted from David Thoreau's essay Civil Disobedience [43): 

The authority of government, even such as I am willing to submit to - for I will cheer­
fully obey those who know and can do better than I, and in many things even those who nei­
ther know nor can do so well - is still an impure one: to be strictly just, it must have the 
sanction and consent of the governed. It can have no pure right over my person and prop· 
erty but what I concede to it, The progress from an absolute to a limited monarchy, from a 
Limited monarchy to a democracy, is a progress toward a true respect for the individual. 

2.4.1.1. Phrase Schemata 

Words may be combined to form phrases that have internal structure and unity. We use gen­
eralized schemata to describe the phrase structure. The goal is to create a simple, unifonn 
template that is independent of POS category. . 

Let's first consider nouns, a fundamental category refening to persons, places, and 
things in the world. The noun and its immediate modifiers fonn a constituent called the noun 
phrase (NP). To generalize this, we consider a word of arbitrary category, say category X 
(which could be a noun Nor a verb V) . The generalized rule for a phrase XP is XP ==> 
(modifiers) X-ltead (post-modifiers), where Xis the head, since it dominates the configura­
tion and names the phrase. Elements preceding the head in its phrase are premodifiers and 
elements following the head are postmodifiers. XP, the culminating phrase node, is called a 
maximal projection of category X. We call the whole structure an x-template. Maximal pro· 
jections, XP, are the primary currency of basic syntactic processes. The post-modifiers are 
usually maximal projections (another head, with its own post-modifiers forming an XP on its 
own) and are sometimes termed complements, because they are often required by the lexical 
properties of the head for a complete meaning to be expressed (e.g., when Xis a preposition 
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or verb). Complements are typically noun phrases (NP), prepositional phrases (PP), verb 
phrases (VP), or sentence/clause (S), which make an essential contribution to the head's ref­
erence or meaning, and which the head requires for semantic completeness. Premodifiers are 
likely to be adverbs, adjectives, quantifiers, and determiners, i.e., words that help to specify 
the meaning of the head but may not be essential for completing the meaning. With minor 
variations, the XP template serves for most phrasal types, based on the POS of the head (N, 
V, ADJ, etc.). 

For NP, we thus have NP ~ (det) (modifier) head-noun (post-modifier). This rule 
describes an NP (noun phrase - left side of arrow) in tenns of its optional and required in­
ternal contents (right side of the arrow). Det is a word like the or a that helps to resolve the 
reference to a specific or an unknown instance of the noun. The modifier gives further in­
formation about the noun. The head of the phrase, and the only mandatory element, is the 
noun itself. Post-modifiers also give further information, usually in a more elaborate syntac­
tic fonn than the simpler pre-modifiers, such as a relative clause or a prepositional phrase 
(covered below). The noun phrases of the passage above can be parsed as shown in Table 
2.16. The head nouns may be personal pronouns(/, it), demonstrative and relative pronouns 
(those), coordinated nouns (sanction and consent), or common nouns (individual). The 
modifiers are mostly adjectives (impure, pure) or verbal forms functioning as adjectives 
(limited). The post-modifiers are interesting, in that, unlike the (pre-)modifiers, they are 
typically full phrases themselves, rather than isolated words. They include relative clauses 
(which are a kind of dependent sentence, e.g., {those] who know and can do better than I), 
as well as prepositional phrases (of the governed). 

Table 2.16 NPs of the sample passage. 

NP Det Mod Head Noun Post-Mod 
1 the authority of e:ovemment 
2 even such as I am willine to submit to 
3 I 
4 those who know and can do better than I 
5 many thines 
6 even those who neither know nor can do so well 
7 an imoure one 
8 it 
9 the sanction and consent of the governed 
10 no pure rii!ht over my oerson ... concede to it. 
11 the oroe:ress from an absolute to a limited monarchy 
12 an absolute [monarchv] 
13 a limited monarchy 
14 a democracy 
15 a oroeress 
16 a true respect for the individual 
17 the individual 
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Table 2.17 PPs of the sample passage. 

Head Prep Complement (Postmodifier) 

of Government 

as I am willing to submit to 

than I 

in many things 

of the governed 

over my person and property 

to it 
from an absolute [monarchy] 

to a limited monarchy 

to a democracy 
toward a true respect [for the individual] 

for the individual 

Prepositions express spatial and temporal relations, among others. These are also said 
to project according to the X-template, but usually lack a pre-modifier. Some examples from 
the sample passage are listed in Table 2.17. The complements of PP are generally NPs, 
which may be simple head nouns like government. However, other complement types, such 
as the verb phrase in after discussing it with Jo, are also possible. 

For verb phrases, the postmodifier (or complement} of a head verb would typically be 
one or more NP (noun phrase) maximal projections, which might, for example, function as a 
direct object in a VP like pet the cat. The complement may or may not be optional, depend­
ing on characteristics of the head. We can now make some language-specific generalizations 
about English. Some verbs, such as give, may take more than one kind of complement. So 
an appropriate template for a VP maximal projection in English would appear abstractly as 
VP => (modifier) verb (modifier) (Complement], Complement2 ComplementN). Comple­
ments are usually regarded as maximal projections, such as NP, ADJP, etc., and are enumer­
ated in the template above, to cover possible multi-object verbs, such as give, which take 
both direct and indirect objects. Certain types of adverbs (really, quickly, smoothly, etc.) 
could be considered fillers for the VP modifier slots (before and after the head). In the sam­
ple passage, we find the following verb phrases as shown in Table 2.18. 

VP presents some interesting issues. First, notice the multi-word verb submit to. Multi­
word verbs such as look after and put up with are common. We also observe a number of 
auxiliary elements clustering before the verb in sentences of the sample passage: am willing 
to su_bmit to, will cheerfully obey, and can do better. Rather than considering these as simple 
~od~fiers of the verbal head, they can be taken to have scope over the VP as a whole, which 
implies they are outside the VP. Since they are outside the VP we can assume them to be 
hea_ds in their own right, of phrases which require a VP as their ~omplement. These elements 
mb~

1

1~
1
Y express tense (time or duration of verbal action) and modality (likelihood or prob-

a 1 1ty of verbal act' ) I full 
· t d f . ion · n a sentence, the VP has explicit or implicit inflection (pro-
Jec e rom its verbal h d) d · d' 

. ea an m 1cates the person, number, and other context-dependent 
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features of the _verb in relation to its arguments. In English, the person (first, second, third) 
and number (singular, plura_l) at~~butes, collectively called agreement features, of subject 
and ~erb must match. For s1_mphc1ty, we will lump all these considerations together as in­
flect1onal elements, and posit yet another phrase type, the Inflectional Phrase (IP): JP => 
premodifier head VP-complement. 

Table 2.18 VPs of the sample passage. 

Pre-mod Verb Head Post-mod Complement 
submit to rthe authority of govemmentl 

cheerfully obev those who know and can do better than I 
is still an impure one 
be strictly just 
have the sanction 
have no oure right 
concede to it 
is a progress 

The premodifier slot (sometimes called the specifier position in linguistic theory) of an 
IP is often filled by the subject of the sentence (typically a noun or NP). Since the IP unites 
the subject of a sentence with a VP, IP can also be considered simply as the sentence cate­
gory, often written as S in speech grammars. 

2.4.1.2. Clauses and Sentences 

The subject of a sentence is what the sentence is mainly about. A clause is any phrase with 
both a subject and a VP (predicate in traditional grammars) that has potentially independent 
interpretation - thus, for us, a clause is an IP, a kind of sentence. A phrase is a constituent 
lacking either subject, predicate, or both. We have reviewed a number of phrase types 
above. There are also various types of clauses and sentences. 

Even though clauses are sentences from an internal point of view (having subject and 
predicate), they often function as simpler phrases or words would, e.g., as modifiers (adjec­
tive and adverbs) or nouns and noun phrases. Clauses may appear as post-modifiers for 
nouns (so-called relative clauses), basically a kind of adjective clause, sharing their subjects 
with the containing sentence. Some clauses function as NPs in their own right. One common 
clause type substitutes a wh-word like who or what for a direct object of a verb in the em­
bedded clause, to create a questioned noun phrase or indirect question: (/don't know who Jo 
saw.). In these clauses, it appears to syntacticians that the questioned object of the verb [VP 
saw who] has been extracted or moved to a new surface position (following the main clause 
verb know). This is sometimes shown in the phrase-structure diagram by co-indexing an 
empty ghost or trace constituent at the original position of the question pronoun with the 
question-NP appearing at the surface site: 

I don't know [11,.obi [,,. [ 11,.1 who} Jo saw [11,.1 _ ]}} 
[11,.,.bJ,,. Whoever wins the game}} is our hero. 

Amazon/VB Assets 
Exhibit 1012 

Page 87



62 Spoken Language Struct ure 

There are various characteristic types of sentences. Some typical types include: 

• Declarative: / gave her a book. 

• Yes-no question: Did you give her a book? 

• Wh-question: What did you give her? 

• Alternatives question: Did you give her a book, a scarf, or a knife? 

• Tag question: You gave it to her, didn't you? 

• Passive: She was given a book. 

• Cleft: It must have been a book that she got. 

• Exclamative: Hasn't this been a great birthday! 

• Imperative: Give me the book. 

2.4.1.3. Parse Tree Representations 

Sentences can be diagrammed in parse trees to indicate phrase-internal structure and linear 
precedence and immediate dominance among phrases. A typical phrase-structure tree for 
part of an embedded sentence is illustrated in Figure 2.26. 

IP(S) 

~ 
NP Inflection VP 

I 
N V NP 

Det Pre-mod N Post-Mod (PP) 

It can have no pure right over my person 

Figure 2.26 A simplified phrase-structure diagram. 
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For brevity, the same infonnation illustrated in the tree can be represented as a brack­
eted string as follows: 

[,P l.vP [,.,.It ],.)NP[, can], {,,Pfvhave / " [NP no pure right [PP over my person J,,,.JNPlvPl,P 

With such a bracketed representation, almost every type of syntactic constituent can be 
coordinated or joined with another of its type, and usually a new phrase node of the common 
type is added to subsume the constituents such as NP: We have [NP [NP tasty berries) and {N,, 
tart juices]]. !PIS: [,,,[,,, Many have come] and[,,, most have remained]), PP: We went{,,,,[,,,, 
over the river] and [pp into the trees]], and VP: We want to fv, [ vp climb the mountains] and 
[ vp sail the seas]]. 

2.4.2. Semantic Roles 

In traditional syntax, grammatical roles are used to describe the direction or control of action 
relative to the verb in a sentence. Examples include the ideas of subject, object, indirect ob­
ject, etc. Semantic roles, sometimes called case relations, seem similar but dig deeper. They 
are used to make sense of the participants in an event, and they provide a vocabulary for us 
to answer the basic question who did what to whom. As developed by [13] and others, the 
theory of semantic roles posits a limited number of universal roles. Each basic meaning of 
each verb in our mental dictionary is tagged for the obligatory and optional semantic roles 
used to convey the particular meaning. A typical inventory of case roles is given below: 

Agent 
Patient/Theme 
Instrument 
Goal 
Result 
Location 

cause or initiator of action, often intentional 
undergoer of the action 
how action is accomplished 
to whom action is directed 
result of action 
location of action 

These can be realized under various syntactic identities, and can be assigned to both 
required complement and optional adjuncts. A noun phrase in the Agentive role might be the 
surface subject of a sentence, or the object of the preposition by in a passive. For example, 
the verb put can be considered a process that has, in one of its senses, the case role specifica­
tions shown in Table 2.19. 

Table 2.19 Analysis of a sentence with put. 

Analysis Example 
Kim put the book on the table. 

Grammatical Subject (NP) Predicate (VP) Object (NP) Adverbial 
Junctions (ADVPJ 

Semantic roles ARent Instrument Theme Location 
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Now consider this passive-tense example, where the semantic roles align with differ­
ent grammatical roles shown in Table 2.20. Words that look and sound identical can ha 
different meaning or different senses as shown in Table 2.21. The sporting sense of putt 
in the sport of shot-put) illustrates the meaning/sense-dependent nature of the role pattem as 
because in this sense the Locative case is no longer obligatory, as it is in the original sen:~ 
illustrated in Table 2.19 and Table 2,20. 

Table 2.20 Analysis of passive sentence with put. 

Analysis Example 
The book was out on the table. 

Grammatical Subject (NP) Predicate (VP) Adverbial (ADVP) 
functions 
Semantic roles Af(ent Instrument Location 

Table 2.21 Analysis of a different pattern of put. 

Analysis Example 
Kim put the shot. 

Grammatical Subject (NP) Predicate (VP) Object (NP) 
/unctions 
Semantic roles ARent Instrument Theme 

The lexical meaning of a verb can be further decomposed into primitive semantic rela­
tions such as CAUSE, CHANGE, and BE. The verb open might appear as 
CAUSE(NPJ,PHYSJCAL-CHANGE(NP2,NOT-OPEN,OPEN)). This says that for an agent 
(NP I) to open a theme (NP2) is to cause the patient to change from a not-opened state to an 
opened state. Such systems can be arbitrarily detailed and exhaustive, as the application re­

quires. 

2.4.3. Lexical Semantics 

The specification of particular meaning templates for individual senses of particular words is 
called lexical semantics. When words combine, they may take on propositional meanings 
=-~sulting from the composition of their meanings in isolation. We could imagine that a 
speaker starts with a proposition in mind (logical form as will be discussed in the next sec­
tion), creating a need for particular words to express the idea (lexical semantics); the pro?°" 
sition is then linearized (syntactic form) and spoken (phonological/phonetic fonn). Lexical 
semantics is the level of meaning before words are composed into phrases and sentences, 

and it may heavily influence the possibilities for combination. 
. Words can be defined in a large number of ways including by relations to oth~~ W

0rd5
~ 

m tenns of decomposition semantic primitives, and in terms of non-linguistic cognitive c_o~ 
Structs, such as perception, action, and emotion. There are hierarchical and non-hierard11c 
relations. The main hierarchical relations would be familiar to most object-oriented p~ 
&rammers. One is is-a taxonomies (a crow is-a bird), which have transitivity of properues 
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from type to subtype (inheritance). Another is has-a relations (a car has-a windshield), 
which are of several differing qualities, including process/subprocess (teaching has-a sub­
process giving exams), and arbitrary or natural subdivisions of part-whole relations (bread 
has-a division into slices, meter has-a division into centimeters). Then there are non­
branching hierarchies (no fancy name) that essentially fom1 scales of degree, such as Jro­
::en =>cold=> lukewarm=> hot=> bu ming. Non-hierarchical relations include synonyms, 
such as big/large, and antonyms such as good/bad. 

Words seem to have natural affinities and disaffinities in the semantic relations among 
the concepts they express. Because these affinities could potentially be exploited by future 
language understanding systems, researchers have used the generalizations above in an at­
tempt to tease out a parsimonious and specific set of basic relations under which to group 
entire lexicons of words. A comprehensive listing of the families and subtypes of possible 
semantic relations has been presented in [ 1 OJ. In Table 2.22, the leftmost column shows 
names for families of proposed relations, the middle column differentiates subtypes within 
each family, and the rightmost column provides examples of word pairs that participate in 
the proposed relation. Note that case roles have been modified for inclusion as a type of se­
mantic relation within the lexicon. 

We can see from Table 2.22 that a single word could participate in multiple relations 
of different kinds. For example, knife appears in the examples for Similars: invited attribute 
(i.e., a desired and expected property) as: knife-sharp, and also under Case Relations: ac­
tion-instrument, which would label the relation of knife to the action cut in He cut the bread 
with a knife. This suggests that an entire lexicon could be viewed as a graph of semantic 
relations, with words or idioms as nodes and connecting edges between them representing 
semantic relations as listed above. There is a rich tradition of research in this vein. 

The biggest practical problem of lexical semantics is the context-dependent resolution 
of senses of words - so-called polysemy. A classic example is bank - bank of the stream as 
opposed to money in the bank. While lexicographers try to identify distinct senses when they 
write dictionary entries, it has been generally difficult to rigorously quantify exactly what 
counts as a discrete sense of a word and to disambiguate the senses in practical contexts. 
Therefore, designers of practical speech understanding systems generally avoid the problem 
by limiting the domain of discourse. For example, in a financial application, generally only 
the sense of bank as a fiduciary institution is accessible, and others are assumed not to exist. 
It is sometimes difficult to make a principled argument as to how many distinct senses a 
word has, because at some level of depth and abstraction, what might appears as separate 
senses seem to be similar or related, as face could be face of a clock or face of person. 

Senses are usually distinguished within a given part-of-speech (POS) category. Thus, 
when an occurrence of bank has been identified as a verb, the shore sense might be auto­
matically eliminated, though depending on the sophistication of the system's lexicon and 
goals, there can be sense differences for many English verbs as well. Within a POS cate­
gory, often the words that occur near a given ambiguous form in the utterance or discourse 
are clues to interpretation, where links can be established using semantic relations as de­
scribed above. Mutual information measures as discussed in Chapter 3 can sometimes pro­
vide hints. In a context of dialog where other, less ambiguous financial terms come up 
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frequently the sense of bank as fiduciary institution is more likely. Finally, whe 1 ' f h · · · l"k 1·h n a I else fails often senses can be ranked in terms o t eir a pnon 1 e I ood of occurrence. It h 
' . . · · . · h S OUld always be borne m mmd that language 1s not static, 1t can c ange form under a give 

I E r h f . n ana1y. 
sis at any time. For example, the stab e •ng 1s onn spinster, a somewhat pejorative le 
for an older, never-married female, has recently taken on a new morphologically co Inn 

· h 1· · I ffi · I d" k mp ex form, with the new sense of a h1g po 1t1~a o 1~1a, or me ia spo esperson, employed to 
provide bland disinfonnation (spin) on a given topic. 

Table 2.22 Semantic relations. 

Family Subtype Example 

Contrasts Contrary old-young 

Contradictory alive-dead 

Reverse buy-sell 

Directional front-back 

Incompatible happy-morbid 

Asymmetric contrary hot-cool 

Attribute similar rake-fork 

Similars Synonymity car-auto 

Dimensional similar smile-laugh 

Necessary attribute bachelor-unmarried 
Invited attribute knife-sharp 
Action subordinate talk-lecture 

Class Inclusion Perceptual subord. animal-horse 
Functional subord. furniture-chair 
State subord. disease-polio 
Activity subord. game-chess 
Geographic subord. country-Russia 
Place Gennany-Hamburg 

Case Relations Agent-action artist-paint 
Agent-instrument armer-tractor 
Agent-object baker-bread 
Action-recipient sit-chair 
Action-instrument cut-knife 

Pan-Whole Functional object engine-car 
Collection orest-tree 
Group choir-singer 
Ingredient table-wood 
Functional location kitchen-stove 
Organization college-admissions -

Measure mile-yard 
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2.4.4. Logical Form 

Because of all the lexical, syntactic, and semantic ambiguity in language, some of which 
requires external context for resolution, it is desirable to have a metalanouage in which to 

• 0 

concretely and succ111ctly express all linguistically possible meanings of an utterance before 
discourse and world knowledge are applied to choose the most likely interpretation. The 
favored metalanguage for this purpose is called the predicate logic, used to represent the 
logical fonn, or context-independent meaning, of an utterance. The semantic component of 
many SLU architectures builds on a substrate of two-valued, first-order, logic. To distin­
guish shades of meaning beyond truth and falsity requires more powerful formalisms for 
knowledge representation. 

In a typical first-order system, predicates correspond to events or conditions denoted 
by verbs (such as Believe or Like), stales of identity (such as being a Dog or Cat), and prop­
erties of varying degrees of permanence (Happy). In this fonn of logical notation, predicates 
have open places, filled by arguments, as in a programming language subroutine definition. 
Since individuals may have identical names, subscripting can be used to preserve unique 
reference. In the simplest systems, predication ranges over individuals rather than higher­
order entities such as properties and relations. 

Predicates with filled argument slots map onto sets of individuals (constants) in the 
universe of discourse, in particular those individuals possessing the properties, or participat­
ing in the relation, named by the predicate. One-place predicates like Soldier, Happy, or 
Sleeps range over sets of individuals from the universe of discourse. Two-place predicates, 
like transitive verbs such as loves, range over a set consisting of ordered pairs of individual 
members (constants) of the universe of discourse. For example, we can consider the universe 
of discourse to be U = {Romeo, Juliet, Paris, Rosaline, Tybalr}, people as characters in a 
play. They do things with and to one another, such as loving and killing. Then we could 
imagine the relation Loves interpreted as the set of ordered pairs: { <Romeo, Julier>, <Juliet, 
Romeo>, <Tybalt, Tybalt>, <Paris, Juliet>}, a subset of the Cartesian product of theoreti­
caJly possible love matches U x U. So, for any ordered pair x, y in U, loves(x, y) is true if 
the ordered pair <x,y> is a member of the extension of the Loves predicate as defined, e.g., 
Romeo loves Juliet, Juliet loves Romeo, etc .. Typical formal properties of relations are some­
times specially marked by grammar, such as the reflexive relation Lnves(Tyba/t, Tybalt), 
which can rendered in natural language as Tybalt loves himself. Not every possibility is pre­
sent; for instance in our example, the individual Rosaline does not happen to participate at 
all in this extensional definition of Loves over U, as her omission from the pairs list indi­
cates. Notice that the subset of Loves(x, y) of ordered pairs involving both Romeo and Juliet 
is symmetric, also marked by grammar, as in Romeo and Juliet love each other. This general 
approach extends to predicates with any arbitrary number of arguments, such as intransitive 
verbs like give. 

Just as in ordinary propositional logic, connectives such as negation, conjunction, dis­
junction, and entailment are admitted, and can be used with predicates to denote common 
natural language meanings: 
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Romeo isn't happy = -,Happy(Romeo) 
Romeo isn't happy, but Tybalt is (happy)= -,Happy(Romeo) /\ Happy(Tybalt) 

Either Romeo or Tybalt is happy= Happy(Romeo) v Happy(Tybalt) 

If Romeo is happy, Juliet is happy= Happy(Romeo) ~ Happy(Juliet) 

Formulae, such as those above, are also said to bear a binary truth value, true or fa! 
with respect to a world of individuals and relations. The determination of the truth values~~ 
compositional, in the sense that the truth value of the whole depends on the truth value of 
the parts. This is a simplistic but formally tractable view of the relation between language 

and meaning. 
Predicate logic can also be used to denote quantified noun phrases. Consider a simple 

case such as Someone killed Tybalt, predicated over our same U = {Romeo, Juliet, Paris, 
Rosaline, Tybalt J. We can now add an existential quantifier, :3, standing for there exists or 

there is at least one. This quantifier will bind a variable over individuals in U, and will at­
tach to a proposition to create a new, quantified proposition in logical form. The use of vari­
ables in propositions such as killed(x, y) creates open propositions. Binding the variables 
with a quantifier over them closes the proposition. The quantifier is prefixed to the original 
proposition: 3x Kil/ed(x, Tybalt). 

To establish a truth (semantic) value for the quantified proposition, we have to satisfy 
the disjunction of propositions in U: Killed(Romeo, Tybalt) v Killed(Juliet, Tybalt) v 

Killed(Paris, Tybalt) v Killed(Rosaline, Tybalt) v Killed(Tybalt, Tybalt). The set of all such 
bindings of the variable x is the space that detennines the truth or falsity of the proposition. 
In this case, the binding of x = Romeo is sufficient to assign a value true to the existential 
proposition. 

2.5. HISTORICAL PERSPECTIVE AND FuRTHER READING 

Motivated to improve speech quality over the telephone, AT&T Bell Labs has contributed 
many influential discoveries in speech hearing, including the critical band and articulation 
index [2, 3]. The Auditory Demonstration CD prepared by Houtsma, Rossing, and 
Wagenaars [18] has a number of very interesting examples on psychoacoustics and its ex­
planations. Speech, Language, and Communication [30] and Speech Communication - Hu­
man and Machine [32] are two good books that provide modem introductions to the 
stru~ture of spoken_ la~guage. Many speech perception experiments were conducted b~ _ex­
plonng how phonetic mformation is distributed in the time or frequency domain. In addiuon 
to the formant structures for vowels, frequency importance function [12) has been developed 
1? Study ho_w f~atures related to phonetic categories are stored at various frequencies. In the 
ttme do~ai~, it has been observed (16, 19, 42] that salient perceptual cues may not be 
evenly di~~buted over the speech segments and that certain perceptual critical points exisL 

th 
A_s mt:Imat: as speech and acoustic perception may be there are also strong evidences 

at lexical and Imguistic rn ' . 0us· . . e ects on speech perception are not always consistent with ac 
tic ones. For mstance it ha l b · d' tin· g · h" ' s ong een observed that humans exhibit difficulties in is 

u1s mg non-native phonemes. Human subjects also carry out categorical goodness 
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difference assimilation based on their mother tongue [34], and such perceptual mechanism 
~an ~1e ob:erved as early as in_ six-month-old infants l22]. On the other hand, hearing-
1mpmre? listeners are able to _elf~rtlessl,>'. overcome their acoustkal disabilities for speech 
perception [8]. Speech percepllon is not simply an auditory matler. McGurk and MacDonald 
(1976) [27, 28] dramatically demonstrated this when they created a videotape 011 which the 
auditory information (phonemes) did not match the visual speech information. The effect of 
this mismatch between the auditory signal and the visual signal was to create a third pho­
neme different from both the original auditory and visual speech signals. An example is 
dubbing the phoneme Iba/ to the visual speech movements /gal. This mismatch results in 
hearing the phoneme Ida/. Even when subjects know of the effect, they report the McGurk 
effect percept. The McGurk effect has been demonstrated for consonants. vowels, words, 
and sentences. 

The earliest scientific work on phonology and grammars goes back to Panini, a San­
skrit grammarian of the fifth century B.C. (estimated), who created a comprehensive and 
scientific theory of phonetics, phonology, and morphology, based on data from Sanskrit (the 
classical literary language of the ancient Hindus). Panini created fonnal production rules and 
definitions to describe Sanskrit grammar, including phenomena such as construction of sen­
tences, compound nouns, etc. Panini's formalisms function as ordered rules operating on 
underlying structures in a manner analogous to modem linguistic theory. Panini's phono­
logical rules are equivalent in formal power to Backus-Nauer fonn (BNF). A general intro­
duction to this pioneering scientist is Cardona [91. 

An excellent introduction to all aspects of phonetics is A Course in Phonetics [24]. A 
good treatment of the acoustic structure of English speech sounds and a through introduction 
and comparison of theories of speech perception is to be found in [33]. The basics of pho­
nology as part of linguistic theory are treated in Understanding Phonology [ 17]. An interest­
ing treatment of word structure (morphology) from a computational point of view can be 
found in Morphology and Computation [40]. A comprehensive yet readable treatment of 
English syntax and grammar can be found in English Syntax [4] and A Comprehensive 
Grammar of the English Language [36] . Syntactic theory has traditionally been the heart of 
linguistics, and has been an exciting and controversial area of research since the 1950s. Be 
aware that almost any work in this area will adopt and promote a particular viewpoint, often 
to the exclusion or minimization of others. A reasonable place to begin with syntactic theory 
is Syntax: A Minimalist Introduction [37] . An introductory textbook on syntactic and seman­
tic theory that smoothly introduces computational issues is Syntactic Theory: A Formal In­
troduction [39]. For a philosophical and entertaining overview of various aspects of 
linguistic theory, see Rhyme and Reason: An Introduction to Minimalist Syntax [44). A good 
and fairly concise treatment of basic semantics is Jmroduction to Natural Language Seman­
tics [ 11 ]. Deeper issues are covered in greater detail and at a more advanced level in The 
Handbook of Contemporary Semantic Theory [25]. The intriguing area of lexical semantics 
(theory of word meanings) is comprehensively presented in The Generative Lexicon [35]. 
Concise History of the Language Sciences [21] is a good edited book if you are interested in 

the history of linguistics. 
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CHAPTER 3 

Probability, Statistics, and Information Theory 

Randomness and uncertainty play an impor­
tant role in science and engineering. Most spoken language processing problems can be 
characterized in a probabilistic framework. Probability theory and statistics provide the 
mathematical language to describe and analyze such systems. 

The criteria and methods used to estimate the unknown probabilities and probability 
densities form the basis for estimation theory. Estimation theory is critical to parameter 
learning in pattern recognition. In this chapter, three widely used estimation methods are 
discussed. They are minimum mean squared error estimation (MMSE), maximum likelihood 
estimation (MLE), and maximum posterior probability estimation (MAP). 

Significance testing deals with the confidence of statistical inference, such as knowing 
whether the estimation of some parameter can be accepted with confidence. In pattern rec­
ognition, significance testing is important for determining whether the observed difference 
between two different classifiers is real. In our coverage of significance testing, we describe 
various methods that are used in pattern recognition, discussed in Chapter 4. 

73 
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ion Theory 

lnfonnntion theory was originally developed for efficient and reliable . 
I h . . comrnun1cati 

systems. t as evolved mto a mathematical theory concerned with the very on . . . essence of th 
commumcatrnn process. It provides a framework for the study of fundamental · e 

h ffi · f · & • issues such as t e e 1c1ency o m1ormat1on representation and the limitations in reliable tra · '. . . . . nsm1ss1on of 
mformauon over a com~umcat1on channel. Many of these problems are fundamental 
spoken language processing. 10 

3.1. PROBABILITY THEORY 

Probability theory deals with the averages of mass phenomena occurring sequentially or 
simult:meously. We often use probabilistic expressions in our day-to-day lives, such as when 
saying. It is very likely that the Dow (Dow Jones Industrial index) will hit 12,000 poims ne:cr 
mo111h, or. Tire chance of scattered showers in Seattle this weekend is high. Each of these 
expressions is based upon the concept of the probability, or the likelihood, that some spe­
cific event will occur. 

Probability can be used to represent the degree of confidence in the outcome of some 
actions (observations), which are not definite. In probability theory, the term sample space, 
S, is used to refer to the collection (set) of all possible outcomes. An event refers to a subset 
of the sample space or a collection of outcomes. The probability of event A, denoted as 
P(A), can be interpreted as the relative frequency with which event A would occur if the 
process were repeated a large number of times under similar conditions. Based on this inter· 
prclation, P(A) can be computed simply by counting the total number, N5 , of all observa­
tions and the number of observations NA whose outcome belongs to event A. That is, 

P(A) = NA _ 
Ns 

P(A) is bounded between zero and one, i.e., 

0 ~ P(A) ~ 1 for all A 

(3.1) 

(3.2) 

. ty set On the 
The lower bound of probability P(A) is zero when the event set A 1s an emp 5 
other h·md the upper bound of probability P(A) is one when the event set A happe~~ t~ be ~d 

1;. tl~ere nre n events A.,Ai,·",A,, in S such that Ai,A2,· .. ,A. are disJmnt 

' II .· g obvious 

U" A A are said to fonn a pani1ion of S. The 10 ov.ID 1\ = S, events A., 2,·",,'" , .. , 
~l)Ul\tion fonns a fundamental a"'iom for probability theory. 

" 
Pt.-\, UA: u ... A,,) = lPv\,) = 1 

(3.3) 

i-1 urriO!! 
.. • . . . ~ • · >1><1bi/irv of eYent .4. and eYent 8 occ "' 

Ht\:-c.•d on th~ dl•hmt1f1n m Eq. t3. l). the _1c>111t pn. ... 

t . d :i . "' \8) .,,,d ;••1n ~ "'·ll~ulatt'd a~. l' l\lll'UIT('ll( )' lS . ~lll'lt.'l US • , .- • ~• ' 
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Probability Theory 

P(AB) = NAB 
Ns 

3.1.1. Conditional Probability and Bayes' Rule 

75 

(3.4) 

It is useful to study the way in which the probability of an event A changes after it has been 
learned that some other event B has occurred. This new probability denoted as P(A I B) is 
called the conditional probability of event A given that event B has occurred. Since the set of 
those outcomes in B that also result in the occurrence of A is exactly the set AB as illustrated 
in Figure 3.1, it is natural to define the conditional probability as the proportion of the total 
probability P(B) that is represented by the joint probability P(AB) . This leads to the fol­
lowing definition: 

(3.5) 

s 

Figure 3.1 The intersection AB represents where the joint event A and B occurs concurrently. 

Based on the definition of conditional probabiJity, the following expressions can be 
easily derived. 

P(AB) = P(A I B)P(B) = P(B I A)P(A) (3.6) 

Equation (3.6) is the simple version of the chain rule. The chain rule, which can specify a 
joint probability in tenns of multiplication of several cascaded conditional probabilities, is 
often used to decompose a complicated joint probabilistic problem into a sequence of step­
wise conditional probabilistic problems. Equation (3.6) can be converted to such a general 
chain: 

(3.7) 

When two events, A and B, are independent of each other, in the sense that the occur­
rence or of either of them has no relation to and no influence on the occurrence of the other, 
it is obvious that the conditional probability P(B I A) equals to the unconditional probability 
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I th t the J'oint probability P(AB) is simply the product of P(A) and P(B) 
P(B). It fol ows a 
·r A nd B are independent. 1 a ' t A A • • • A form a partition of S and B is any event in S as illustrated If then evens P'"2' , • .,, . . . 

. 3 2 th nts AB A B ... A,,B form a paruuon of B. Thus, we can rewnte: in Figure . ' e eve , ' , "2 ' ' 

B = A,BuAzBU· .. uA,,B (3.8) 

Since A
1
B,AzB, .. ·,A,,B are disjoint, 

II 

P(B) = LP(Al B) (3.9) 
l•I 

Figure 3.2 The intersections of B with partition events A1,A2,···,A,,. 

Equation (3.9) is called the marginal probability of event B, where the probability of 
event B is computed from the sum of joint probabilities. 

According to the chain rule, Eq. (3.6), P(A;B);;;: P(A; )P(B I A;) , it follows that 

II 

P(B) = L,P(~)P(B I Ak) (3.10) 
l;J 

Combining Eqs. (3.5) and (3.10), we get the well-known Bayes' rule: 

P(,\ I B) = P(A;B) = P(B I A;)P(A;) 
P(B) " 

LP(B I Ak)P(Ak) 

(3.11) 

h•I 

Bayes' rule is the basis for pattern recognition that is described in Chapter 4. 
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3.1.2. Random Variables 

Elements in a sample space may be numbered and referred to by the numbers given. A vari­
able X that specifies the numerical quantity in a sample space is called a random variable. 
Therefore, a random variable X is a function that maps each possible outcome s in the sam­
ple space S onto real numbers X(s) . Since each event is a subset of the sample space, an 
event is represented as a set of {s} which satisfies {s I X(s) =x}. We use capital letters to 
denote random variables and lower-case letters to denote fixed values of the random vari­
able. Thus, the probability that X = x is denoted as: 

P(X = x) = P(s I X(s) = x) (3.12) 

A random variable X is a discrete random variable, or X has a discrete distribution, if 
X can take only a finite number n of different values x 1 ,x2,·· ·,xn, or at most, an infinite se­
quence of different values x1,x2 ,··· . If the random variable Xis a discrete random variable, 
the probability function (pf) or probability mass function (pmf) of X is defined to be the 
function p such that for any real number x, 

Px(x)=P(X=x) (3.13) 

For the cases in which there is no confusion, we drop the subscription X for Px(x) . The sum 
of probability mass over all values of the random variable is equal to unity. 

n II 

L,P(X;) = L,P(X = x;) = 1 (3.14) 
j::J j::J 

The marginal probability, chain rule and Bayes' rule can also be rewritten with respect 

to random variables: 

m m 

Px(x;) = P(X = xJ = L,P(X = X;,Y = y1.) = L,P(X = X; I Y = Yk)P(Y = Yk) 
k::J k=I 

(3.15) 

P(X1 =Xp···,Xn =xn)= 

P(X =x IX =x ··· X =x 1) ···P(X2 =x2 IX1 =x1)P(X1 =x,) 
11 11 I I• • 11-I n-

(3.16) 

P(X =x.,Y = y) P(Y = y IX =x;)P(X =x;) 
P(X = X I y = y) = I = " 

, P(Y = y) LP(Y =YI X = xk)P(X =xk) 

(3.17) 

k=I 

In a similar manner, if the random variables X and Y are statistically independent, they 

can be represented as: 

P(X:: X;,Y = yj) = P(X = x;)P(Y = y)-.:=px(x)pr(yi) 'ti all i and} (3. I 8) 
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A random variable Xis a continuous random variable, or X has a continuous distrib . 
if there exists a nonnegative function!, defined on the real line, such that for an interval A utwn, , 

P(X EA)= t fx(x)dx (3.19) 

The function fx is called the probability density function (abbreviated pdf) of x. We d 
the subscript X for fx if there is no ambiguity. As illustrated in Figure 3.3, the arear: 
shaded region is equal to the value of P(a S X $ b). 

f (x) 

a 
X 

Figure 3.3 An example of pdf. The area of the shaded region is equal to the value of 
P(aS XSb). 

Every pdf must satisfy the following two requirements: 

f (x) ~ 0 for -00 S x S oo and 

J.:.J(x)dx = 1 
(3.20) 

The marginal probability, chain rule, and Bayes' rule can also be rewritten with re­
spect to continuous random variables: 

fx(x) = J.:.fx.r<x,y)dy = J.:.fx,r<x I y)Jy(y)dy 
(3.21) 

(3.22) 

f ( I )
- fx.r(x,y) _ frix<Y I x)fx(x) 

XIY X Y - -'-'-'-;.__- - -.:....:...::~-~-----'-
fy(y) J.:.fr1x(YI x)fx(x)dx 

(3.23) 
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The distribution function or cumulative distribution function F of a discrete or con­
tinuous random variable X is a function defined for every real number x as follows: 

F(x) = P(X 5:. x) for -oo ~ x ~ oo 

For continuous random variables, it follows that: 

F(x) = J:fx(x)dx 

fx(x) = dF(x) 
di:: 

3.1.3. Mean and Variance 

(3.24) 

(3 .25) 

(3.26) 

Suppose that a discrete random variable X has a pf fix); the expectation or mean of X is de­
fined as follows: 

E(X) = L,xf(x) (3.27) 
X 

Similarly, if a continuous random variable X has a pdf .f. the expectation or mean of X 
is defined as follows: 

E(X) = J: xf(x)dx (3.28) 

In physics, the mean is regarded as the center of mass of the probability distribution. 
The expectation can also be defined for any function of the random variable X. If Xis a con­
tinuous random variable with pdf .f. then the expectation of any function g(X) can be de­
fined as follows: 

E[g(X)] = J: g(x)f(x)dx (3.29) 

The expectation of a random variable is a linear operator. That is, it satisfies both addi­
tivity and homogeneity properties: 

(3.30) 

where a1, ·· ,a,,, b are constants. 
Equation (3.30) is valid regardless of whether or not the random variables X,.···,Xn 

are independent. 
Suppose that X is a random variable with mean µ = E(X) . The variance of X denoted 

as Var(X) is defined as follows: 

Var(X) = <J
2 = E[(X-µ)2] (3.31) 
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1neot)' 

h e (J. the nonnegative square root of the variance is known as the stand d . 
w er , . f a, dev1 • 
random variable X. Therefore, the varianc: 1s also o ten denoted as a 2

• a11on of 
The variance of a distribution provides a measure of the spread or di . 

· A 11 l f th · · · spersic111 of th 
dl.stribution around its mean µ . sma va ue o e vanance md1cates that th e 

e probabT 
distribution is tightly concentrated around µ, and a large value of the varianc . 11fy 

indicates the probability distribution has a wide spread around µ . Figure 3.4 illu ~ typically 
. . ' . h h b d'f" s rates three different Gaussian distnbut1ons wit t e same mean, ut 1 1erent variances. 

0.8 · 

0.7 · 

0.6 · 

0.5 · 

0.4 

0.3 

0.2 

0.1 • 

0 
-10 -8 -6 -4 -2 0 2 

X 
4 6 

sigma =.5 
sigma= 1 
sigma=2 

8 10 

Figure 3.4 Three Gaussian distributions with same mean µ , but different variances, 0.5, 1.0, 
and 2.0, respectively. The distribution with a large value of the variance has a wide spread 
around the mean µ . 

The variance of random variable X can be computed in the following way: 

Var(X) = E(X2 )-[E(X)J2 (3.32) 

In physics, the expectation E(Xk) is called the kin moment of X for any random vari­
able X and any positive integer k. Therefore, the variance is simply the difference between 
the second moment and the square of the first moment. y 

. The variance satisfies the following additivity property, if random variables X and 
are independent: 

Var(X + Y) = Var(X) + Var(Y) (J.33} 

However, it does not satisfy the homogeneity property. Instead for constant a, 

Var(aX) = a2Var(X) (3.34) 

' We describe Ga · d" . . 
uss1an istnbut1ons in Section 3.1.7. 
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Since ~t is clear th~t Var(b) = 0 for any constant b, we have an equation similar to Eq. 
(3.30) 1f random variables X" · · ·, Xn are independent. 

(3.35) 

Conditional expectation can also be defined in a similar way. Suppose that X and y are 
discrete random variables and let f(y Ix) denote the conditional pf of Y given X = x, then 
the conditional expectation E(Y I X) is defined to be the function of X whose value 
E(Y Ix) when X = x is 

EYJx(Y IX= x) = LYfy1x(y Ix) (3.36) ,, 

For continuous random variables X and Y with frix (y Ix) as the conditional pdf. of Y 
given X = x, the conditional expectation E(Y IX) is defined to be the function of X whose 
value E(Y Ix) when X = x is 

Ey1x(Y IX= x) = J.:.Yfr1x(Y) x)dy (3.37) 

Since E(Y I X) is a function of random variable X, it itself is a random variable whose 
probability distribution can be derived from the distribution of X. It can be shown that 

(3.38) 

More generally, suppose that X and Y have a continuous joint distribution and that 
g(x,y) is any arbitrary function of X and Y. The conditional expectation E[g(X, Y) IX] is 
defined to be the function of X whose value E[g(X,Y) Ix] when X = x is 

EYJx [g(X,Y) IX= x] = J..:.g(x,y)fr1x(Y I x)dy (3.39) 

Equation (3.38) can ~lso be generalized into the following equation: 

Ex {Enx [g(X,Y) IX]}= Ex.r [g(X,Y)] (3.40) 

Finally, it is worthwhile to introduce median and mode. The median of a distribution 
of Xis defined to be a point m, such that P(X :S: m) ~ 1/2 and P(X ~ m) ~ 1/2 . Thus, the 
median m divides the total probability into two equal parts, i.e., the probability to the left of 
m and the probability to the right of m are exactly 1/2 . 

Suppose a random variable X has either a discrete distribution with pf p(x) or con­
tinuous pdf f(x) ; a point m is called the mode of the distribution if p(x) or f(x) attains 
the maximum value at the point m . A distribution can have more than one mode. 
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3.J.3.1. The Law of Large Numbers 

The concept of sample mean and sample variance is important in statistics becau 
· · 1 · S h th · se most statistical expenment~ involve samp m~. ~pp~se t at : random variables X,,·· ·,Xn fonn 

a random sample of size n from some d1stnbut1on for which the mean is µ and the v . 
, . X . anance 

is ,r . In other words, the random vanables , , · · ·, Xn are independent identically d' .
6 · d b · "d) d h h d · 2 '

st
" -uted ( often abbreviate y n an eac as mean µ an vanance (j . Now if we d 

- . . fh b . . h I enote X as the arithmetic average o t en o servations mt e samp e, then 
n 

- 1 X =-(X +· ··+X) n I n n (3.41) 

_ Xn is a random variable and is referred to as sample mean. The mean and variance of 
Xn can be easily derived based on the definition. 

- (12 
E(X,,) = µ and Var(X,,) = -

n (3.42) 

Equation (3.42) states that the mean of sample mean is equal to mean of the distribution, 
while the variance of sample mean is only I/ n times the variance of the distribution. In 
other words, the distribution of Xn will be more concentrated around the mean µ than was 
the original distribution. Thus, the sample mean is closer to µ than is the value of just a 
single observation X, from the given distribution. 

The law of large numbers is one of most important theorems in probability theory. 
Formally, it states that the sample mean Xn converges to the mean µ in probability, that is, 

!~ P(I X,, -µ I< c) = 1 for any given number c > 0 (3.43) 

The law of large numbers basical1y implies that the sample mean is an excellent estimate of 
the unknown mean of the distribution when the sample size n is large. 

3.1.4. Covariance and Correlation 

Let X and Y be random variables having a specific joint distribution, and E(X)=:x· 
E(Y) = µr , Var(X) =a~, and Var(Y) =CJ'; . The covariance of X and Y, denote as 
Cov(X, Y), is defined as follows: 

lows: 

Cov(X,Y) =E[(X-µx)(Y-J.J,y)] =Cov(Y,X) 
(3.44) 

· d fined as fol· 
In addition, the correlation coefficient of X and Y, denoted as P xr , is e 
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Cov(X,Y) 
Pxr=---­

<5 x<5r 

It can be shown that p(X,Y) should be bound within [-1 .. .1], that is, 

-1 S p ( X. Y) ~ l 

83 

(3.45) 

(3.46) 

X and Y are said ~o be positively correlated if p xr > 0 , negatively correlated if p xr < o, 
and uncorrelated 1f Pxr = 0. It can also be shown that Cov(X, Y) and p . must have the 
same sign; that is, both are positive, negative, or zero at the same time. When E(XY) = o , 
the two random variables are called orthogonal. 

There are several theorems pertaining to the basic properties of covariance and 
correlation. We list here the most important ones: 

Theorem 1 For any random variables X and Y 

Cov(X, Y) = E(XY)- E(X)E(Y) 

Theorem 2 If X and Y are independent random variables, then 

Cov(X,Y)=Pxr =0 

(3.47) 

Theorem 3 Suppose X is a random variable and Y is a linear function of X in the 
form of Y = aX + b for some constant a and b, where a¢ 0 . If a > 0, then 
p xr = l . If a < 0 , then p xr = -1 . Sometimes, p xr is referred to as the amount 

of linear dependency between random variables X and Y. 

Theorem 4 For any random variables X and Y, 

Var(X + Y) = Var(X)+Var(Y)+ 2Cov(X,Y) 

Theorem 5 If Xi,·--,X,. are random variables, then 

n n n t-1 

Var(I, X;) = I, Var(X1) + 2 I, I, Cov(X1, X 1 ) 
1=1 i=I 

3.1.5. Random Vectors and Multivariate Distributions 

(3.48) 

(3.49) 

When a random variable is a vector rather than a scalar, it is called a random vector and we 
often use boldface variable like X = (X,,. .. ,Xn) to indicate that it is a random vector. It is 
said that n random variables X

1
, ••• , Xn have a discrete joint distribution if the random vec­

tor X = (X ... X ) can have only a finite number or an infinite sequence of different 
I' , n 
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values (x
1

, .. ,xn) in Rn. The joint pf of X1,···,X,, is defined to be the functio , 
n n Jx such that for any point (x,,···,xn)E R , 

fx(Xi,"",xn) = P(X, = x,,··,X,, = x,,) (3.50) 

Similarly, it is said that n random variables X,, · · ·, X" have a continuous joint d' . 
. . . f . f d fi d R" h th 1stn· bution if there 1s a nonnegative unction e me on sue at for any subset Ac R" 

' 
P[(X ···X)eA]=J···ff(x .. ,x)dx· · ·dx I• ' 11 A X JI ' n I n (3.51) 

The joint distribution function can also be defined similarly for n random variables 
X1, • • ·, X,, as follows: 

(3.52) 

The concept of mean and variance for a random vector can be generalized into mean 
vector and covariance matrix. Supposed that X is an n-dimensional random vector with 
components Xp···,X,,, under matrix representation, we have 

X=[1:] (3.53) 

The expectation (mean) vector E(X) of random vector X is an n-dimensional vector whose 
components are the expectations of the individual components of X, that is, 

[

E(X1)] 

E(X)= : 

E(X") 

(3.54) 

The covariance matrix Cov(X) of random vector X is defined to be an nxn matrix 
such that the element in the z.u, row and/ column is Cov(X,,~.), that is, 

[

Cov(Xi,X1) ••• Cov(X11 X,,)] 
Cov(X) = : : == E[[X-E(X)][X-E(X)j1] 

Cov(Xn,X1) Cov(X,,,Xn) 

(3.55) 

It should be emphasized that then diagonal elements of the covariance matrix Cov(X) _aIC 

actually the variances of X
1

, ••• , X,, . Furthermore, since the covariance is symmetric, i.e., 
Cov(X,,X) = Cov(X ., X,), the covariance matrix Cov(X) must be a symmetric matrix. 

There is an imp~rtant theorem regarding the mean vector and covariance matrix ~or; 
linear transformation of random vector X. Suppose X is an n-dimensional vector as speci~e 
by Eq. (3.53), with mean vector E(X) and covariance matrix Cov(X). Now, assume Y 15 a 
m-dimensional random vector which is a linear transform of random vector X by the 
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relation: Y =AX+ B , where A is a m x n transfonnation matrix whose elements are con­
stants, and Bis am-dimensional constant vector. Then we have the following two equations: 

E(Y) = AE(X) + B 

Cov(Y) = ACov(X)A' 

3.1.6. Some Useful Distributions 

(3.56) 

(3.57) 

In the following two sections, we will introduce several useful distributions that are widely 
used in applications of probability and statistics, particularly in spoken language systems. 

3.1.6.1. Uniform Distributions 

The simplest distribution is uniform distribution where the pf or pdf is a constant function. 
For uniform discrete random variable X, which only takes possible values from 
{x, I I :::;; i::;; n} , the pf for Xis 

1 
P(X = x;) = - 1 s; is; n 

n 
(3.58) 

For uniform continuous random variable X, which only takes possible values in the 
real interval [ a, b], as shown in Figure 3.5, the pdf for Xis 

f (x) = -
1
- a s; x s; b 

b-a 

f(x) 

_ I_ 
b- a -----------,-------, 

a b 

Figure 3.S A unifonn distribution for pdf in Eq. (3.59). 

(3.59) 

X 
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3.1.6.2. Binomial Distributions 

The binomial distribution is used to describe binary-decision events. For example 
that a single coin toss will produce heads with probability p and produce tails with ·p:upbpbo~e 
. N ·r h . . d 1 X d o a li-lly I - p. ow, 1 we toss t e same com n times an et enote the number of he d 
served, then the random variable X has the following binomial pf: a s 0b-

P(X =x) = /(xi n,p) =(: )p' (l-py-' (3.60) 

It can be shown that the mean and variance of a binomial distribution are: 

E(X)=np 
(3.6!) 

Var(X) = np(l- p) (3.62) 

Figure 3.6 illustrates three binomial distributions with p = 0.2, 0.3, and 0.4, and n = 10. 

0 .35 

e--e::J p=0.2 
0 .30 C G-----Q p=0.3 - p=0.4 

Cl - -~ 
0.25 ... .... 

0 
0.20 .i 0 • 
0.15 . 

0 • • 0 . 10 0 
[ii 

0.05 . ,,.: •• <!) 
~ 

0 
0 1 2 3 4 5 10 

X 

Figure 3.6 Three binomial distributions with p = 0.2, 0.3, and 0.4, and n = 10. 

3.1.6.3. Geometric Distributions 

The geometric distribution is related to the binomial distribution. As in the independentc~in 
· dis toss example, heads has a probability p and tails has a probability 1- p . The geom~mc x· 

"b · · th d vanable tn ut1on 1s to model the time until tails appears. Let e ran om 
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be the time (the number of tosses) until the first tail-up is shown. The pdf of X is in the fol­
lowing fonn: 

P(X=x)=f(xlp)=px-i(l-p) x=l,2, ... and O<p<l 

The mean and variance of a geometric distribution are given by: 

1 
E(X)=­

l-p 

l 
Var(X) = 2 (1-p) 

(3.63) 

(3.64) 

(3.65) 

One example for the geometric distribution is the distribution of the state duration for 
a hidden Markov model, as described in Chapter 8. Figure 3.7 illustrates three geometric 
distributions with p = O. I, 0.4, and 0. 7. 

3.1.6.4. 

0 .9 

0 .8 

0 .7 · 

0 .6 0 

0 .5 

0 .4 

0 .3 

2 3 
X 

6 7 

G - CI p • . 1 
0-0 pa,4 

- p•.7 

8 9 

Figure 3.7 Three geometric distributions with different parameter p . 

Multinomial Distributions 

10 

Suppose that a bag contains balls of k different 1olors, where the proportion of the balls of 
color i is p, . Thus, P, > o for i = 1, ... , k and L ;- i p, = 1 . Now suppose that n balls are ran­
domly selected from the bag and there are enough balls ( > n) of each color. Let X; denote 
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the number of selected balls that are of color i. The random vector X = (X X ) . 
1 , ••• , t IS S ' 

to have a multinomial distribution with parameters n and p = (p" .. . , P1:). For a v rud 

x == (x
1
, ••• , x

1
) , the pf of X has the following form: ector 

are: 

P(X = x) = /(x I n,p) = 
0 

and x1 + .. · + X1: = n 

otherwise (3.66) 

It can be shown that the mean, variance and covariance of the multinomial distribution 

E(X,) = nP; and Var(X;) = np;(I- p;) 'Vi= l, ... ,k (3.67) 

(3.68) 

Figure 3.8 shows a multinomial distribution with n = 10, p, = 0.2, and p2 =OJ. 
Since there are only two free parameters x1 and x2 , the graph is illustrated only using lj 

. . ' 
0 .06 • • 1 • 

0.04 

0 .02 
• j . .. . 

x, 

. . "• 

0 

. . . : · 
' ' 
' ' 

. . 
t . ... 

' . . 

Figure 3.8 A multinomial distribution with n= 10, P, = 0.2 • and P2 = 0.3 . 

10 

l 
' 
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and x2 as a_xis. Multinomial distributions are typically used with the z2 test that is one of 
the most widely used goodness-of-fit hypotheses testing procedures described in Section 
3.3.3. 

3.1.6.5. Poisson Distributions 

Another popular discrete distribution is the Poisson distribution. The random variable x has 
a Poisson distribution with mean A (,'.l > 0) if the pf of X has the following form: 

f 
-.l..4.r 

P(X = x) = f(x j ,l) = _e - for x = 0,1,2, . .. 
x! 

0 otherwise 

(3 .69) 

The mean and variance of a Poisson distribution are the same and equal ). : 

E(X) = Var(X) = ,t (3.70) 

Figure 3.9 illustrates three Poisson distributions with ). = 1, 2, and 4. The Poisson dis­
tribution is typically used in queuing theory, where x is the total number of occurrences of 
some phenomenon during a fixed period of time or within a fixed region of space. Examples 
include the number of telephone calls received at a switchboard during a fixed period of 
time. In speech recognition. the Poisson distribution is used to model the duration for a pho­
neme. 

0.45 · 

2 3 

13---·EJ lanixta= 1 
G--<:> lant>da= 2 

· -- lambda== 4 

Figure 3.9 Three Poisson distributions with A= l, 2, and 4. 
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A continuous random variable X is said to have a gamma distribution with paramete 
and f3 ( a > O and f3 > 0 ) if X has a continuous pdf of the following form: rs ex 

j
. /Ja: a-I -fJ:r 
--x e 

f(x I a,/3) = . f(a) 

0 

x>O 
(3.71) 

x~O 

where 

(3.72) 

It can be shown that the function r is a factorial function when a is a positive integer. 

{
(n-1)! n=2,3, ... 

f(n)= 
1 n= 1 

The mean and variance of a gamma distribution are: 

E(X) = ; and Var(X) = ; 2 

(3.73) 

(3.74) 

Figure 3.10 illustrates three gamma distributions with f3 = 1.0 and a =2.0, 3.0, and 
4.0. There is an interesting theorem associated with gamma distributions. If the random 
variables X., ... ,x. are independent and each random variable X, has a gamma distribu· 
tion with parameters a, and /3, then the sum X, +···+X.t also has a gamma distribution 
with parameters a, + ·--+a.t and f3 . 

A special case of gamma distribution is called exponential distribution. A continuo~s 
random variable Xis said to have an exponential distribution with parameters /3 ( f3 > 0) if 
X has a continuous pdf of the following form: 

f(x \ /3) = {f3e-Px X > 0 
0 x~O 

(3.75) 

It is clear that the exponential distribution is a gamma distribution with a= I. The mean 
and variance of the exponential distribution are: 

E(X) = ~ and u (X) 1 
A YQr =-
JJ 132 

(3.76) 
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0.4 -

0.35 · 

0.3 

0.2 -

2 3 4 5 
X 

6 7 8 

alpha= 2 
alpha= 3 
alpha= 4 

9 10 

Figure 3.10 Three Gamma distributions with /3 = 1.0 and a= 2.0, 3.0, and 4.0. 

91 

Figure 3.11 shows three exponential distributions with /3 = 1.0, 0.6, and 0.3. The ex­
ponential distribution is often used in queuing theory for the distributions of the duration of 
a service or the inter-arrival time of customers. It is also used to approximate the distribution 
of the life of a mechanical component. 

2 3 5 
X 

6 7 8 

beta= 1 
beta =.6 
beta=.3 

9 10 

Figure 3.11 Three exponential distributions with /3 = 1.0, 0.6, and 0.3. 
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3.1.7. Gaussian Distributions 

Gaussian distribution is by far the most important probability distribution mainly bee 
d · bl d · d · · ause many scientists have observed that the ran om vana es stu 1e m various physical ex . 

d. 'b · th pen. ments (including speech signals), often have 1stn uuons at are approximately Gaus . 
I d. .b . sian. 

The Gaussian distribution is also referred to as norrna 1stn ut1on. A continuous rando 
variable Xis said to have a Gaussian distribution with mean µ and variance a2 

( <J > 0) ~ 
X has a continuous pdf in the following form: 

, I [ (x-µ)2] 
f(xlµ,<r)=N(µ,a2)= $a exp - 2a2 (3.77) 

It can be shown that µ and a 2 are indeed the mean and the variance for the Gaussian 
distribution. Some examples of Gaussians can be found in Figure 3.4. 

The use of Gaussian distributions is justified by the Central limit Theorem, which 
states that observable events considered to be a consequence of many unrelated causes with 
no single cause predominating over the others, tend to follow the Gaussian distriootion [6]. 

It can be shown from Eq. (3.77) that the Gaussian f(x I µ,a 2
) is symmetric with re­

spect to x = µ . Therefore, µ is both the mean and the median of the distribution. More­
over, µ is also the mode of the distribution, i.e., the pdf f(x I µ,0' 2

) attains its maximum 
at the mean point x = µ . 

Several Gaussian pdfs with the same mean µ , but different variances are illustrated in 
Figure 3.4. Readers can see that the curve has a bell shape. The Gaussian pelf with a small 
variance has a high peak and is very concentrated around the mean µ , whereas the Gaus­
sian pdf with a large variance is relatively flat and is spread out more widely over the x-axis. 

' If the random variable X is a Gaussian distribution with mean µ and variance <r, 
then any linear function of X also has a Gaussian distribution. That is, if Y = aX +b, where 
a and bare constants and a"* 0, Y has a Gaussian distribution with mean aµ +b and vari· 
ance a 2a 2

• Similarly, the sum X 1 + .. ·+Xt of random variables X., ... ,X1 , where each 
random variable X 1 has a Gaussian distribution, is also a Gaussian distribution. 

3.1.7.1. Standard Gaussian Distributions 

The Gaussian distribution with mean O and variance J, denoted as N(0,1), is called ~e 
standard Gaussian distribution or unit Gaussian distribution. Since the linear transforrna~on 
of a Gaussian distribution is still a Gaussian distribution, the behavior of a Gaussian 
diStribution can be solely described using a standard Gaussian distribution. If the rand~m 
variable Xis a Gaussian distribution with mean µ and variance a2 , that is, X..., N(Jl,a ), 
it can be shown that 

X-µ 
Z=~-N(0,1) (3.78) 

l 
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Based on Eq. (3.78), the following property can be shown: 

P(I X - µ I~ ka) = P(I Z I~ k) (3.79) 

Equation (3?9) d~m?nstrates that every Gaussian distribution contains the same total 
amount of probab1hty w1thm any fixed number of standard deviations of its mean. 

3.1.7.2. The Central Limit Theorem 

If random variables Xi, ... ,X,, are i.i.d. according to a common distribution function with 
mean µ and variance G

2
, then as the random sample size n approaches oo, the following 

random variable has a distribution converging to the standard Gaussian distribution: 

(3.80) 

where X,, is the sample mean of random variables Xp .. . , X,, as defined in Eq. (3.41 ). 
Based on Eq. (3.80), the sample mean random variable X,, can be approximated by a 

Gaussian distribution with mean µ and variance a 2 
/ n. 

The central limit theorem above is applied to i.i.d. random variables X1, • •• ,X,,. A. 
Liapounov in 1901 derived another central limit theorem for independent but not necessarily 
identically distributed random variables X., ... ,X,,. Suppose X 1, ••• ,X,, are independent 
random variables and E(I X, - µ, 13 ) < oo for 1 :s; i ~ n; the following random variable will 
converge to standard Gaussian distribution when n ~ 00 • 

(3.81) 

In other words, the sum of random variables X., ... , X,, can be approximated by a 

Gaussian distribution with mean t,µ, and variance ( t,cr,' r 
Both central limit theorems essentially state that regardless of their original individual 

distributions, the sum of many independent random variables (effects) tends to be distributed 
like a Gaussian distribution as the number of random variables (effects) becomes large. 

3.1.7.3. Multivariate Mixture Gaussian Distributions 

When X=(X,, .. . ,X,,) is an n-dimensional continuous random vector, the multivariate 

Gaussian pdf has the following form: 

/(X = x I µ,I:)= N(x;µ,l:) = ( )"~2 I 1112 
exp[-~ (x-µ)'I:-'(x-µ)] (3.82) 

2Jt l:I -
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. th -dimensional mean vector, I; is the nxn covariance matrix and I~' . 
where JI 1s en . ' -, is the 
detenninant of the covariance matnx :E . 

JI =E(x) (3.83) 

I:= E[ (x-µ)(x -µ)'] (3.84) 

More specifically, the i-/' element er; of covariance matrix :E can be specified as fol-

lows: 

(3.85) 

If Xi,· ··,Xn are independent random variables, the covariance matrix I: is reduced 
to diagonal covariance where all the off-diagonal entries are zero. The distribution can be 
regarded as n independent scalar Gaussian distributions. The joint pdf is the product of all 
the individual scalar Gaussian pdfs. Figure 3. I 2 shows a two-dimensional multivariate 
Gaussian distribution with independent random variables Xi and x2 with the same variance. 
Figure 3.13 shows another two-dimensional multivariate Gaussian distribution with inde­
pendent random variables x1 and x2 that have different variances. 
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Figure 3.12 A two-dim · al . . . . d random · bl ension multivanate Gaussian distribution with mdepen enl 
vana es Xi and Xi that have the same variance. 
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Figure 3.13 Another two-dimensional multivariate Gaussian disnibution with independent 
random variable x1 and x2 which have different variances. 

Although Gaussian distributions are unimodal.2 more complex distributions with mul­
tiple local maxima can be approximated by Gaussian mixtures: 

K 

/(x)= ~>1 N.1:(X;Jl.1:,l:,,) (3.86) 
.1:~1 

where c1 , the mixture weight associated with kth Gaussian component, is subject to the fol­
lowing constraint: 

K 

c1 ~0 and I,c.-=l 
.l:=I 

Gaussian mixtures with enough mixture components can approximate any distribution. 
Throughout this book, most continuous probability density functions are modeled with 

Gaussian mixtures. 

3.1.7.4. x2 Distributions ( 

The gamma distribution with parameters a and /3 is definea 
positive integer n, the gamma distribution for which a = n/2 a 

1 A unimodal distribution has a single maximum (bump) for the distribution. F 
mum occurs at the mean. 

l). For any given 
is called the z2 

ibution, the maxi-
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distribut~on _with n degrees of freedom. It follows from Eq. (3.71) that the pdf for the i 
distribution 1s 

I x(n/2)-le-x/2 X > 0 
/(x In)= 2n12 f(n/2) 

0 X ::; 0 
(3.87) 

z2 distributions are important in statistics because they are closely related to rand 
samples of Gaussian distribution .. They_ are wid~ly appli~d in many important problemso: 
statistical inference and hypothesis testmg. Specifically, 1f the random variables x X 
are independent and identically distributed, and if each of these variables has a ~~-~dard 
Gaussian distribution, then the sum of square X1

2 
+ ... + X; can be proved to have a X2 

distribution with n degrees of freedom. Figure 3.14 illustrates three X2 distributions with 
n=2, 3, and 4. 

0.5 

0.45 

0.4 · 

0.35 • 

0.3 · 

0.25 · 
I 

0.2 / 

0.15 ; / 

0.1 ! ;· 
I ' 

0.05 '/ . 
00!:--1~-~2---3----'-4---'5--6'----==:===========10 

X 

Figure 3.14 Three x~ distributions with n = 2, 3, and 4. 

The mean and variance for the z2 distribution are 

E(X) == n and Var(X) = 2n (3.88) 

Following th dd' · · · also 
h th 

. . . e a iuvity property of the gamma distribution the z2 distribuuon d 
as e add1t1v1ty prop rty Th . . ' . d nt an 

if x, has a 2 • • e . · ~t is, if the random variables X,, ... , X" are mdepen e 2 

distribution wf th !1s tnbution with k; degrees of freedom, the sum X, + ... + Xn has a t 
1 +···+kn degrees of freedom. 
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3.1.7.5. Log-Normal Distribution 

Let x be a Gaussian random variable with mean µ and st d d d · · 
r an ar eviatlon (j r • then 

y=ex 
(3.89) 

follows the lognormal distribution 

f(ylµ x,a,.)= ~ exp{ (ln y -µ . )2} 
ya,. 2,c 2a; (3.90) 

shown in Figure 3.15, and whose mean is given by 

µ>" = E{y} = E{ex} = f_: exp{x} ~ exp{- (x - µ~xf }dx 
2,ra,, . 2a; 

= r exp{µ,, +a_; / 2}~ exp f (x-(µx+a;>2 "ldx=exp{µ +a~/ 2} 
- 2,ca 1 2a2 f x • 

Z • X , 

(3.91) 
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Figure 3.15 Lognonnal distribution for µx = 0 and u,, = 3, l, and 0.5, according to Eq. (3.90). 

where we have rearranged the quadratic form of x and made use of the fact that the total 
probability mass of a Gaussian is 1. Similarly, the second order moment of y is given by 
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J- 1 1· (x-µ )2} E{y2} = exp{2x} £. exp ; dx 
- 2tra 2az 

X • 

= [ exp{2µ, +20";} $<1, exp{ 
(x-(µ,, +2a;f} { 

2a; dx = exp 2µ:r + 2a;} 
(3.92) 

and thus the variance of y is given by 

(3.93) 

Similarly, if xis a Gaussian random vector with mean µ1 and covariance matrix t 
then random vector y = e• is log-normal with mean and covariance matrix (8] given by ' ' 

µr [i] = exp{µJi] + I.Ji,11/ 2} 
I.

1
[i,j] = J1,.[i]µ1 [j]( exp{I.Ji,j]}-1) 

(3.94) 

using a similar derivation as in Eqs. (3.9 I) to (3.93). 

3.2. ESTIMATION THEORY 

Estimation theory and significance testing are two of the most important theories and meth­
ods of statistical inference. In this section, we describe estimation theory while significance 
testing is covered in the next section. A problem of statistical inference is one in which data 
generated in accordance with some unknown probability distribution must be analyzed, and 
some type of inference about the unknown distribution must be made. In a problem of statis­
tical inference, any characteristic of the distribution generating the experimental data, such 
as the mean µ and variance a 2 of a Gaussian distribution, is called a parameter of the dis­
tribution. The set n of au possible values of a parameter <l> or a group of parameters 
<1>1, <1>2 , ••• , <I> n is called the parameter space. In this section we focus on how to estimate the 
parameter <I> from sample data. 

Before we describe various estimation methods, we introduce the concept and nature 
of the estimation problems. Suppose that a set of random variables X = {X1,X2 , • •• ,XJ is 
iid according to a pdf p(x I <I>) where the value of the parameter <I> is unknown. Now, sup· 
pose also that the value of <I> must be estimated from the observed values in the sample. An 
estimator of the parameter <I>, based on the random variables Xi,X2 , ... ,X,,, is a~­
valued function 8(X.,X

2
, ••• ,X,,) that specifies the estimated value of <l> for each possib e 

set of values of X
1
.X

2
, ••• ,X,, . That is, if the sample values of X 1,X2 , ••• ,X,, tum out to be 

x1,x2 , ••• ,x,,, then the estimated value of <l> will be 0(x17 x2 , ... ,x,,). · . r 
We need to distinguish between estimator, estimate, and estimation. An es_umato 

8(X1,X2 , ••• ,X,,) is a function of the random variables, whose probability distri~uoon ~~ 
be derived from the joint distribution of X

17
X

2 , ••• ,Xn. On the other hand, an e5t]male ~~c 
specific value 8(x

1
,x

2
, . .. ,x,,) of the estimator that is determined by using some speci 
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sample val~es X11 X2,: •• , xn. Estimation is _usually used to indicate the process of obtaining 
such an estimator for the s~t of random vanables or an estimate for the set of specific sample 
values. If we use the notation X == {X1, X2 , ••• , Xn} to represent the vector of random vari­
ables and x ={x.,x2,· .. ,x,.} to represent the vector of sample values, an estimator can be 
denoted as 0(X) and an estimate 0(x). Sometimes we abbreviate an estimator 0(X) by 
just the symbol 0 . 

In the following four sections we describe and compare three different estimators (es­
timation methods). They are minimum mean square estimator, maximum likelihood estima­
tor, and Bayes' estimator. The first one is often used to estimate the random variable itself 
while the latter two are used to estimate the parameters of the distribution of the rando~ 
variables. 

3.2.1. Minimum/Least Mean Squared Error Estimation 

Minimum mean squared error (MMSE) estimation and least squared error (LSE) estimation 
are important methods for random variables since the goal (minimize the squared error) is an 
intuitive one. In general, two random variables X and Y are i.i.d. according to some pdf 
fr.r(x,y). Suppose that we pei:_fonn a series of experiments and observe the value of X. We 
want to find a transformation Y = g(X) such that we can predict the value of the random 
variable Y. The following quantity can measure the goodness of such a transfonnation: 

E(Y -Y)2 = E(Y - g(X))2 (3.95) 

This quantity is called mean squared error (MSE) because it is the mean of the 
squared error of the predictor g(X). The criterion of minimizing the mean squared error is 
a good one for picking the predictor g(X). Of course, we usually specify the class of func­
tion G, from which g(X) may be selected. In general, there is a parameter vector cJ> asso­
ciated with the function g(X), so the function can be expressed as g(X,<1>). The process to 
find the parameter vector i,..,,\ISE that minimi~es the mean of the squared error is called 
minimum mean squared error estimation and cJ>MMSE is called the minimum mean squared 
error estimator. That is, 

cJ>MMsE =arg!11in[ E[(Y-g(X,<1>))2 J] . (3.96) 

Sometimes, the joint distribution of random variables X and Y is not known. Instead, 
samples of (x,y) pairs may be observable. In this case, the following criterion can be used 
instead, 

n 

(J>L.SE == argmin L[Y, -g(x,, cJ>)] 
2 

ci, , .. 1 

(3.97) 

The argument of the minimization in Eq. (~.97) is called sum-of-squa,:ed~err?r (SSE) and 
the process of finding the parameter vector <I> L.SE , which satisfies the cntenon 1s called least 
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. . . m squared error estimation. LSE is a powerful mech . atwn or mmzmu . a. 
squared error eSU_m where the function g( x, cf>) describes the observation pairs (x

1

, y
1

). fn 
nism for curve fittmg, . ( ) than the number of free parameters in function g(x <b) aJ th are more pomts n · · LS ' , 
gener , ere. . d Therefore, no exact solution exists, and E fitting be. so the fitting is over-determine . 

comes necessary. . d that MMSE and LSE are actually very similar and share simi-
It should be empha_siz~ Eq (3 97) is actually n times the sample mean of the squared 

I erties The quantity m . . . . b bT f ( . 
ar prop · the law of large numbers, when the JOmt pro a 1 1ty x.r x,y) 1s unifonn 

error. Based onf 1 proaches to infinity, MMSE and LSE are equivalent. or the number o samp es ap . thr . 
For the class of functions, we consider the followmg ee cases. 

• Constant functions, i.e., 

Ge= {g(x) = c, CE R} 

• Linear functions, i.e., 

G1 ={g(x)=ax+b a,be R} 

• Other non-linear functions G,,
1 

3.2.1.1. l\1MSE/LSE for Constant Functions 

When Y = g(x) = c, Eq. (3.95) becomes 

E(Y-Y)2 =E(Y-c)2 

(3.98) 

(3.99) 

(3.100) 

To find the MMSE estimate for c, we take the derivatives of both sides in Eq. (3.IOO) 
with respect to c and equate it to 0. The MMSE estimate cMAtSE is given as 

CMMSE =E(Y) 
(3.l 01) 

and the minimum mean squared error is exactly the variance of Y, Var(Y) . 
For the LSE estimate of c, the quantity in Eq. (3.97) becomes 

,, 
min L,[Y,-c]2 , .. , (3.102) 

Similarly, the LSE estimate ci.sE can be obtained as follows: 

(3.103) 

The quantity in Eq. (3.103) is the sampJe mean. 

J 
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3.2.1.2. MMSE and LSE for Linear Functions 

When Y = g(x) = m: +b , Eq. (3.95) becomes 

e(a,b) = E(Y-Y)2 = E(Y-ax-bf 

To find the MMSE estimate of a and b, we can first set 

ae_o dae_o aa - , an db -

and solve the two linear equations. Thus, we can obtain 

cov(X, Y) <1r 
a= =p\T-

Var(X) · <1 x 

b = E(Y)- pyy <1r E(X) 
. (J' X 

101 

(3.104) 

(3.105) 

(3.106) 

(3.107) 

For LSE estimation, we assume that the sample xis ad-dimensional vector for gener­
ality. Assuming we haven sample-vectors (x1,y1)=(x!,x;, .. ,x1,Y,), i=l...n, a linear 
function can be represented as 

r 

i d ' ' 
Yi 1 Xi ... Xi Go 

Y=XA y2 = 1 x~ ··· x; la1j or . . . . . . . . . . . . . . . 
1 I d , Yn x,. . . . xn ad 

(3.108) 

The sum of squared error can then be represented as 

n 2 

e(A) = II Y - Y 112= I,(A'x; -y;} (3.109) 
jaj 

A closed-form solution of the LSE estimate of A can be obtained by taldng the gradi­

ent of e(A) ,-

n 

v'e(A)= L,2(A'x,-y;)x, =2X'(XA-Y) (3.110) 

i•i 

and equating it to zero. This yields the following equation: 

X'XA=X'Y (3.111) 

Thus the LSE estimate AL.SE will be of the following fonn: 
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