
CHAPTER 1 

Introduction 

From human prehistory to the new media of 
the future, speech communication has been and will be the dominant mode of human social 
bonding and information exchange. The spoken word is now extended, through technologi­
cal mediation such as telephony, movies, radio, television, and the Internet. This trend re­
flects the primacy of spoken communication in human psychology. 

In addition to human-human interaction, this human preference for spoken language 
communication finds a reflection in human-machine interaction as well. Most computers 
currently utilize a graphical user interface (GUI), based on graphically represented interface 
objects and functions such as windows, icons, menus, and pointers. Most computer operat­
ing systems and applications also depend on a user's keyboard strokes and mouse clicks, 
with a display monitor for feedback. Today's computers lack the fundamental human abili­
ties to speak, listen, understand, and learn. Speech, supported by other natural modalities, 
will be one of the primary means of interfacing with computers. And, even before speech­
based interaction reaches full maturity, applications in home, mobile, and office segments 
are incorporating spoken language technology to change the way we live and work. 
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1.1. Motivations
What motivates the integration of spoken language as the primary interface modality? We 
present a number of scenarios, roughly in order of expected degree of technical challenges 
and expected time to full deployment.

1.1.1. Spoken Language Interface
There are generally two categories of users who can benefit from adoption of speech as a 
control modality in parallel with others, such as the mouse, keyboard, touch-screen, and 
joystick. For novice users, functions that are conceptually simple should be directly accessi­
ble. For example, raising the voice output volume under software control on the desktop 
speakers, a conceptually simple operation, in some GUI systems of today requires opening 
one or more windows or menus, and manipulating sliders, check-boxes, or other graphical 
elements. This requires some knowledge of the system’s interface conventions and struc­
tures. For the novice user, to be able to say raise the volume would be more direct and natu- 
raL For expert users, the GUI paradigm is sometimes perceived as an obstacle or nuisance 

s ortcuts are sought. Frequently these shortcuts allow the power user’s hands to remain 
°f m0USeuWh'lem'Xm8 content creation with system commands. For exam- 

mattina command * I? 6S'“n systera for CAD/CAM might wish to specify a text for-
element keeping P°inter device in Potion over a selected screen

and mouse clicks. Speech'^ K> acc°mphsh these functions more powerfully than keyboard
streams encoding other dynamic ^ckof^swTd111 SUpplemented by information
the semantic component of a cnmnw • and s^stem status> which can be resolved by 
interactions to proceed based on mo * ^ tl™0dal interface. We expect such multimodal 
orientation, natural and device-based gestaref In* f ^ im°delin8’ including speech, visual 
dinated with detailed system profiles of typical us exPress*on’ and these will be coor-

activity patterns.
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In some situations you must rely on speech as an input or output medium. For exam­
ple, with wearable computers. it may be impossible to incorporate a large keyboard. When 
driving, safety is compromised by any visual distraction, and hands are required for control­
ling the vehicle. The ultimate speech-only device, the telephone, is far more widespread than 
the PC. Certain manual tasks may also require full visual attention to the focus of the work. 
Finally, spoken language interfaces offer obvious benefits for individuals challenged with a 
variety of physical disabilities, such as loss of sight or limitations in physical motion and 
motor skills. Chapter 18 contains a detailed discussion on spoken language applications. 

1.1.2. Speech-to-Speech Translation 

Speech-to-speech translation has been depicted for decades in science fiction stories. Imag­
ine questioning a Chinese-speaking conversational partner by speaking English into an un­
obtrusive device, and hearing real-time replies you can understand. This scenario, like the 
spoken language interface, requires both speech recognition and speech synthesis technol­
ogy. In addition, sophisticated multilingual spoken language understanding is needed. This 
highlights the need for tightly coupled advances in speech recognition, synthesis, and under­
standing systems, a point emphasized throughout this book. 

1.1.3. Knowledge Partners 

The ability of computers to process spoken language as proficient as humans will be a land­
mark to signal the arrival of truly intelligent machines. Alan Turing [29) introduced his fa­
mous Turing test. He suggested a game, in which a computer's use of language would form 
the criterion for intelligence. If the machine could win the game, it would be judged intelli­
gent. In Turing's game, you play the role of an interrogator. By asking a series of questions 
via a teletype, you must detennine the identity of the other two panicipants: a machine and a 
person. The task of the machine is to fool you into believing it is a person by responding as a 
person to your questions. The task of the other person is to convince you the other partici­
pant is the machine. The critical issue for Turing was that using language as humans do is 
sufficient as an operational test for intelligence. 

The ultimate use of spoken language is to pass the Turing test in allowing future ex­
tremely intelligent systems to interact with human beings as knowledge partners in all as­
pects of life. This has been a staple of science fiction, but its day will come. Such systems 
require reasoning capabilities and extensive world knowledge embedded in sophisticated 
search, communication, and inference tools that are beyond the scope of this book. We ex­
pect that spoken language technologies described in this book wm form the essential ena­
bling mechanism to pass the Turing test. 
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2 SPOKEN LANGUAGE SYSTEM ARCHITECTURE 1. . 
k l e processing refers to technologies related to speech recognition, text-to-

Spo en anguag · 1 h 
h d ken language understanding. A spoken anguage system as at least one of 

speec , an spo . . h 
the following three subsystems: a speech recogmt10~ syste~ t at converts speech into 

d a text-to-speech system that conveys spoken mformat1on, and a spoken language 
wor s, . d h I · · · 
understanding system that maps words into actions an t at p ans_ system-m1tiated actions. 

There is considerable overlap in the fundamental technologies for these three subareas. 
Manually created rules have been developed for spoken language systems with limited suc­
cess. But, in recent decades, data-driven statistical approaches have achieved encouraging 
results, which are usually based on modeling the speech signal using welJ-defined statistical 
algorithms that can automatically extract knowledge from the data. The data-driven ap­
proach can be viewed fundamentally as a pattern recognition problem. In fact, speech recog­
nition, text-to-speech conversion, and spoken language understanding can all be regarded as 
panem recognition problems. The patterns are either recognized during the runtime opera­
tion of the system or identified during system construction to form the basis of runtime gen­
erative models such as prosodic templates needed for text-to-speech synthesis. While we use 
and advocate the statistical approach, we by no means exclude the knowledge engineering 
approach from consideration. If we have a good set of rules in a given problem area, there is 
no need to use the statistical approach at all. The problem is that, at time of this writing, we 
do not have enough knowledge to produce a complete set of high-quality rules. As scientific 
and theoretical generalizations are made from data collected to construct data-driven sys­
tems, better rules may be constructed. Therefore, the rule-based and statistical approaches 
are best viewed as complementary. 

1.2.1. Automatic Speech Recognition 

A source-channel mathematical model described in Chapter 3 is often used to formulate 
speech recognition problems. As illustrated in Figure J. I, the speaker's mjnd decides the 
source word sequence W that is delivered through his/her text generator. The source is 
passed through a noisy communication channel that consists of the speaker's vocal appara­
tus to produce the speech waveform and the speech signal processing component of the 
speech recognize!- Finally, the speech decoder aims to decode the acoustic signal X into a 
word sequence W wh · h · h fu . , . 1c 1s ope lly close to the original word sequence W. 

A typical practical spe h · · · th d ec recognitJon system consists of basic components shown m 
e otted box of Figure 1 2 A 1. . . 

suits th t · · PP tcations mterf ace with the decoder to get recognition re-
a may be used to ada t th · · th 

representation of kn I P O er com~onents m the system. Acoustic models mclude _e 
ability gender and d~wl edg~ about acoustics, phonetics, microphone and environment van-

• 1a ect d1fferenc tern's knowledge of h . es among speakers, etc. la.nguage models refer to a sys-
. w at constitutes a ·bl d m what sequence Th . possi e word, what words are likely to co-occur, an 

· e semantics and fu t· · h perform may also b nc ions related to an operation a user may w1s to 
e necessary for th I . 

areas, associated with k e anguage model. Many uncertainties exist in these 
spea er characte · t· · ns ics, speech style and rate, recognition of basic 
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Spoken Language System Architecture 5 

speech segments, possible words, likely words, unknown words, grammatical vanat1on, 
noise interference, nonnative accents, and confidence scoring of results. A successful speech 
recognition system must contend with all of these uncertainties. But that is only the begin­
ning. The acoustic uncertainties of the different accents and speaking styles of individual 
speakers are compounded by the lexical and grammatical complexity and variations of spo­
ken language, which are all represented in the language model. 

Text 
Generator 

Communication Channel 
•.....•.....•.......•.......................... . . . ~ --_.,;,---- ............ , 

t-----!l;_s_p_e-ec_h_..., i Signal : Speech ' 

: Generator Processing Decoder ·------ . L-----~· 
w : ..................... + ._. ·.· ·.· ·.· ·.· ._. ._. ._. ....... = .. x ........................................... _. __ 

Speech Recognizer 

Figure 1.1 A source-channel model for a speech recognition system [ 15]. 

w 

The speech signal is processed in the signal processing module that extracts salient 
feature vectors for the decoder. The decoder uses both acoustic and language models to gen­
erate the word sequence that has the maximum posterior probability for the input feature 
vectors. It can also provide infonnation needed for the adaptation component to modify ei­
ther the acoustic or language models so that improved perfonnance can be obtained. 

-- . . . . --- . - . . - - . . -- . - -- . -- . - . - . - . - - - . -- - --. . . 
' 

1, Voice Signal Processing 

> Decoder 
t""" 

"O ~ .,, 
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1 > 0 
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"O ~ 00 n Q. n "C 
0 0 0 C .,,, 
0. - .,, 

C "' 00 (") 
~ "' 0 "' - ... _ ~ .. ::, n 

Adaptation V 

' ' . - --- . - . - . . . . --- . - - -------- ------- - . --- - -- . 
Figure 1.2 Basic system architecture of a speech recognition system [ 12]. 
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~ 

TTS Engine 

~ Text Analysis . 
Document Structure Detection 

.... Text Normalization ' 
Raiv text .. 

Linguistic Analysis 
or tagged text 

l tagged text 

Phonetic Analysis . 
Grapheme-to-Phoneme Conversion 

tagged phones ~, 
Prosodic Analysis 

Pitch & Duration Attachment 

controls ~, 
Speech Synthesis 

Voice Rendering 

Figure J.3 Basic system architecture of a TIS system. 

1.2.2. Text-to-Speech Conversion 

The tenn text-to-speech, often abbreviated as TIS, is easily understood. The task of a text-!o­
speech system can be viewed as speech recognition in reverse - a process of building a machin­
ery system that can generate human-like speech from any text input to mimic human speakers. 
TIS is sometimes called speech synthesis, panicularly in the engineering community. 

The conversion of words in written form into speech is nontrivial. Even if we can store 
a huge dictionary for most common words in English; the TIS system still needs to deal 
with millions of names and acronyms. Moreover, in order to sound natural, the intonation of 
the sentences must be appropriately generated. 

The development of ITS synthesis can be traced back to the 1930s when Dudley's 
Vader, developed by Bell Laboratories, was demonstrated at the World's Fair [18]. Taking advantage of increa · · 
b smg computation power and storage technology ITS researchers have een able to generate high al' t · · . ' h 
the q 1.ty . . . -qu 1 Y commercial mult1hngual text-to-speech systems. althoug ua 1 1s infenor to human h f 

Th b . TI speec or general-purpose applications. 
e as1c S components h · F" t 

nonnalizes the text to th . are s own m igure 1.3. The text analysis componeo 
e appropnate form so that it becomes speakable. The input can be 
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Spoken Language System Architecture 7 

either raw text or tagged. These tags can be used to assist text, phonetic, and prosodic anal y­
sis. The phonetic analysis component converts the processed text into the corresponding 
phonetic sequence, which is followed by prosodic analysis to attach appropriate pitch and 
duration infonnation to the phonetic sequence. Finally, the speech synthesis component 
takes the parameters from the fully tagged phonetic sequence to generate the corresponding 
speech wavefonn. 

Various applications have different degrees of knowledge about the structure and con­
tent of the text that they wish to speak so some of the basic components shown in Figure 1.3 
can be skipped. For example, some applications may have certain broad requirements such 
as rate and pitch. These requirements can be indicated with simple command tags appropri­
ately located in the text. Many TIS systems provide a set of markups (tags). so the text pro­
ducer can better express their semantic intention. An application may know a Jot about the 
structure and content of the text to be spoken to greatly improve speech output quality. For 
engines providing such support, the text analysis phase can be skipped, in whole or in part. 
If the system developer knows the phonetic form, the phonetic analysis module can be 
skipped as well. The prosodic analysis module assigns a numeric duration to every phonetic 
symbol and calculates an appropriate pitch contour for the utterance or paragraph. In some 
cases, an application may have prosodic contours precalculated by some other process. This 
situation might arise when TIS is being used primarily for compression, or the prosody is 
transplanted from a real speaker's utterance. In these cases, the quantitative prosodic con­
trols can be treated as special tagged field and sent directly along with the phonetic stream to 
speech synthesis for voice rendition. 

1.2.3. Spoken Language Understanding 

Whether a speaker is inquiring about flights to Seattle, reserving a table at a Pittsburgh res­
taurant, dictating an article in Chinese, or making a stock trade, a spoken language under­
standing system is needed to interpret utterances in context and carry out appropriate 
actions. Lexical, syntactic, and semantic knowledge must be applied in a manner that per­
mits cooperative interaction among the various levels of acoustic, phonetic, linguistic, and 
application knowledge in minimizing uncertainty. Knowledge of the characteristic vocabu­
lary, typical syntactic patterns, and possible actions in any given application context for both 
interpretation of user utterances and planning system activity are the heart and soul of any 
spoken language understanding system. 

A schematic of a typical spoken language understanding system is shown in Figure 
1.4. Such a system typically has a speech recognizer and a speech synthesizer for basic 
speech input and output, and a sentence interpretation component to parse the speech recog­
nition results into semantic forms, which often need discourse analysis to track context and 
resolve ambiguities. The Dialog Manager is the central component that communicates with 
applications and the spoken language understanding modules such as discourse analysis, 
sentence interpretation, and response generation. 

While most components of the system may be partly or wholly generic, the dialog 
manager controls the flow of conversation tied to the action. The dialog manager is respon-
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I t·ng responses ond maintaining the system's eded for fonnu a 1 ' • • 
sible for providing statu~ ne The discourse state records the current transaction, dialog 
idea of the state of the discourse. . current objects in focus (temporary center of 

. d th current transaction. . , 
goals that motivate e . 1 . dependent references, and other status maor-. h · tory hst for reso vmg . . 
attention), the obJect 1~ . . . 1 for sentence inrerpretat1on to interpret utrer-
mation. The discourse mfomtatton is crulc1a the flow of information implied in Figure I .4. 

V . ous systems may a ter . . 
ances in context. . an 3 er ma be able to supply contextual discourse mfonnat1on or 
For example, the dialog man g y 'd the recognizer's evaluation of hypotheses at the pragmatic inferences, as feedback to gm e 
earliest level of search. 

Application !---{-Database 1 
I I Discourse Analysis Dialog Manager 

Response Generation } 

* Text-To-Speech I -~ 

Sentence Interpretation 

f 
Speech Recognizer 

7 
Access Device 

Figure 1.4 Basic system architecture of a spoken language understanding system. 

1.3. BOOK ORGANIZATION 

We attempt to present a comprehensive introduction to spoken language processing, which 
includes not only fundamentals but also a practical guide to build a working system that 
requires knowledge in speech signal processing, recognition, text-to-speech, spoken lan­
guage understanding, and application integration. Since there is considerable overlap in the 
fundamental spoken language processing technologies, we have devoted Part I to the foun­
dations needed. Pan I contains background on speech production and perception, probability 
and information theory, and pattern recognition. Parts II, III, IV, and v include chapters on 
speech processing, speech recognition, speech synthesis, and spoken language systems, re­
spectively. A reader with sufficient background can skip Part I, refening back to it later as 
needed. For example, the discussion of speech recognition in Part III relies on the pattern 
recognition algorithms presented in Part I. Algorithms that are used in several chapters 
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within Pait III are also included in Parts I and II. Since the field is still evolving, at the end 
of each chapter we provide a historical perspective and list further readings to facilitate fu­
ture research. 

1.3.1. Part I: Fundamental Theory 

Chapters 2 to 4 provide you with a basic theoretic foundation to better understand tech­
niques that are widely used in modern spoken language systems. These theories include the ~ 
essence of linguistics, phonetics, probability theory, infonnation theory, and pattern recogni­
tion. These chapters prepare you fully to understand the rest of the book. 

Chapter 2 discusses the basic structure of spoken language including speech science, 
phonetics, and linguistics. Chapter 3 covers probability theory and information theory, 
which form the foundation of modem pattern recognition. Many important algorithms and 
principles in pattern recognition and speech coding are derived based on these theories. 
Chapter 4 introduces basic pattern recognition, including decision theory, estimation theory, 
and a number of algorithms widely used in speech recognition. Pattern recognition fonns the 
core of most of the algorithms used in spoken language processing. 

1.3.2. Part II: Speech Processing 

Part II provides you with necessary speech signal processing knowledge that is critical to 
spoken language processing. Most of what discuss here is traditionally the subject of electri­
cal engineering. 

Chapters 5 and 6 focus on how to extract useful information from the speech signal. 
The basic principles of digital signal processing are reviewed and a number of useful repre­
sentations for the speech signal are discussed. Chapter 7 covers how to compress these rep­
resentations for efficient transmission and storage. 

1.3.3. Part III: Speech Recognition 

Chapters 8 to 13 provide you with an in-depth look at modem speech recognition systems. 
We highlight techniques that have been proven to work well in real systems and explain in 
detail how and why these techniques work from both theoretic and practical perspectives. 

Chapter 8 introduces hidden Markov models, the most prominent technique used in 
modern speech recognition systems. Chapters 9 and 11 deal with acoustic modeling and 
language modeling respectively. Because environment robustness is critical to the success of 
practical systems, we devote Chapter 10 to discussing how to make systems less affected by 
environment noises. Chapters 12 and 13 deal in detail with how to efficiently implement the 
decoder for speech recognition. Chapter 12 discusses a number of basic search algorithms, 
and Chapter 13 covers large vocabulary speech recognition. Throughout our discussion, 
Microsoft's Whisper speech recognizer is used as a case study to illustrate the methods in­
troduced in these chapters. 
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1.3.4. Part IV: Text-to-Speech Systems 

In Chapters 14 through 16, we discuss proven techniques in ~uilding text-to-sp_e~ch systems. 
The synthesis system consists of major components found m speech recogmtton systems, 

except that they are in the reverse order. 
Chapter 14 covers the analysis of written documents and the text needed to support 

spoken rendition, including the interpretation of audio markup commands, interpretation of 
numbers and other symbols, and conversion from orthographic to phonetic symbols. Chapter 
15 focuses on the generation of pitch and duration controls for linguistic and emotional ef­
fect. Chapter 16 discusses the implementation of the synthetic voice, and presents algo­
rithms to manipulate a limited voice data set to support a wide variety of pitch and duration 
controls required by the text analysis. We highlight the importance of trainable synthesis, 

with Microsoft's Whistler TIS system as an example. 

1.3.5. Part V: Spoken Language Systems 

As discussed in Section 1.1, spoken language applications motivate spoken language R&D. 
The central component is the spoken language understanding system. Since it is closely re­
lated to applications, we group it together with application and interface design. 

Chapter 17 covers spoken language understanding. The output of the recognizer re­
quires interpretation and action in a particular application context. This chapter details useful 
strategies for dialog management, and the coordination of all the speech and system re­
sources to accomplish a task for a user. Chapter 18 concludes the book with a discussion of 
important principles for building spoken language interfaces and applications, including 
general human interface design goals, and interaction with other modalities in specific appl i­
cation contexts. Microsoft's MiPad is used as a case study to illustrate a number of issues in 
developing spoken language and multimodal applications. 

1.4. TARGET AUDIENCES 

This book can serve a variety of audiences: 

Integration engineers: Software engineers who want to build spoken language sys­
tems, but who_do ~ot w~t to learn detailed speech technology internals, will find plentiful 
rele'~·ant ~atenal, ~ncludmg application design and software interfaces. Anyone with a pro­
fess_ional interest m aspects of speech applications, integration, and interfaces can also 
achieve enough understanding of how the core technologies work, to allow them to take full 
advantage of state-of-the-art capabiJities. 

Speech technology en01neers· E · d · . . . . ""' · ngmeers an researchers working on various subspe 

1 
d cialttes w~tbi~ the speech field will find this book a useful guide to understanding re-

p::ac:~~v~~=pte:.1; su~~ient dfepth to ~elp _them gain insight on where their own ap-
1 ' or rve:ge rom, the tr neighbors' common practice. 

Graduate students: This book can serve as a . . 
vanced undergraduate s h 1 • pnmary textbook m a graduate or ad-

peec ana ysis or language engineering course. It can serve as a sup-
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plementary textbook in some applied linguistics, digital signal processing, computer science, 
artificial intelligence, and possibly psycholinguistics course. 

Linguists: As the practice of linguistics increasingly shifts to empirical analysis of 
real-world data, students and professional practitioners alike should find a comprehensive 
introduction to the technical foundations of computer processing of spoken language help­
ful. The book can be read at different levels and through different paths, for readers with 
differing technical skills and background knowledge. 

Speech scientists: Researchers engaged in professional work on issues related to nor­
mal or pathological speech may find this complete exposition of the state-of-the-art in com­
puter modeling of generation and perception of speech interesting. 

Business planners: Increasingly, business and management functions require some 
level of insight into the vocabulary and common practices of technology development. 
While not the primary audience, managers, marketers, and others with planning responsibili­
ties and sufficient technical background will find portions of this book useful in evaluating 
competing proposals, and in making business decisions related to the speech technology 
components. 

1.5. HISTORICAL PERSPECTIVE AND FURTHER READING 

Spoken language processing is a diverse field that relies on knowledge of language at the 
levels of signal processing, acoustics, phonology, phonetics, syntax, semantics, pragmatics, 
and discourse. The foundations of spoken language processing lie in computer science, ele c­
trical engineering, linguistics, and psychology. In the 1970s an ambitious speech under­
standing project was funded by DARPA, which led to many seminal systems and 
technologies [17] . A number of human language technology projects funded by DARPA in 
the 1980s and 1990s further accelerated the progress, as evidenced by many papers pub­
lished in The Proceedings of the DARPA Speech and Natural Language/Human Language 
Workshop. The field is still rapidly progressing and there are a number of excellent review 
articles and introductory books. We provide a brief list here. More detailed references can be 
found within each chapter of this book. Gold and Morgan's Speech and Audio Signal Proc­
essing [ 10] also has a strong historical perspective on spoken language processing. 

Hyde [14) and Reddy [24) provided an excellent review of early speech recognition 
work in the 1970s. Some of the principles are still applicable to today's speech recognition 
research. Waibel and Lee assembled many seminal papers in Readings in Speech Recogni­
tion Speech Recognition [31]. There are a number of excellent books on modem speech 
recognition [l, 13, 15, 22, 23]. 

Where does the state of the art speech recognition system stand today? A number of 
different recognition tasks can be used to compare the recognition error rate of people vs. 
machines. Table 1.1 shows five typical recognition tasks with vocabularies ranging from 10 
to 5000 words speaker-independent continuous speech recognition. The Wall Street Journal 
Dictation (WSJ) Task has a 5000-word vocabulary as a continuous dictation application for 
the WSJ articles. In Table 1.1, the error rate for machines is based on state of the art speech 
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. h stems described in Chapter 9, and the error rate of humans is based on recognizers sue as sy f h · 
f b. t t ted on the similar task. We can see the error rate o umans 1s at least a range o su ~ec s es . 

· all th n machi· nes except for the sentences that are generated from a trigram 5 times sm er a 
l od l here the sentences have the perfect match between humans and machines anguage m e , w . . . , 
so humans cannot use high-level knowledge that 1s not used m machines. 

Table 1.1 Word error rate comparisons between human and machines on similar tasks. 

Tasks Vocabulary Humans Machines 
Connected di2its 10 0.009% 0.72% 

Alohabet letters 26 1% 5% 

Spontaneous teleohone speech 2000 3.8% 36.7% 

WSJ with clean soeech 5000 0.9% 4.5% 
WSJ with noisv speech (10-db SNR) 5000 1.1% 8.6% 
Clean speech based on trigram sentences 20,000 7.6% 4.4% 

We can see that humans are far more robust than machines for normal tasks. The error 
rate for machine spontaneous conversational telephone speech recognition is above 35%, 
more than a factor 10 higher than humans on the similar task. In addition, the error rate of 
humans does not increase as dramatically as machines when the environment becomes noisy 
(from quiet to 10-db SNR environments on the WSJ task). The relative error rate of humans 
increases from 0.9% to 1. 1 % (1.2 times), while the error rate of CSR systems increases from 
4.5% to 8.6% (1.9 times). One interesting experiment is that when we generated sentences 
using the WSJ trigram language model ( cf. Chapter 11 ), the difference between humans and 
machines disappears (the last row in Table I.I). In fact, the error rate of humans is even 
higher than machines. This is because both humans and machines have the same high-level 
syntactic and semantic models. The test sentences are somewhat random to humans but per­
fect to machines that used the same trigram model for decoding. This experiment indicates 
humans make more effective use of semantic and syntactic constraints for improved speech 
recognition in meaningful conversation. In addition, machines don't have attention problems 
as humans do on random sentences. 

Fant [7J gave an excellent introduction to speech production. Early reviews of text-to­
speech ~ynthesis can be ~ound in (3, 8, 9J. Sagisaka [26] and Carlson [6] provide more re­
cent reviews of progress m speech synthesis. A more detailed treatment can be found in [19, 
30]. 

Where d~~s the ~t~te of the art text to speech system stand today? Unfortunately, like 
speech ~ecogmtlon, this 1s not a solved problem either. Although machine storage capabili­
ties are_ improving, the quality remains a challenge for many researchers if we want to pass 
the Turmg test. . 

I 

Some of these experiments were conducted t M' ft . 
which is not statistically significanL Nevenhea icroso w'.th only~ small n~mber o: hu_man subjects (3-5 people), 
of humans and machines. less, tbe expenments give some mterestmg msight on the perfonnance 
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Spoken language understanding is deeply rooted in speech recognition research. There 
are a number of good books on spoken language understanding [2, 5, 16]. Manning and 
Schutze [20] focuses on statistical methods for language understanding. Like Waibel and 
Lee, Grosz et al. assembled many foundational papers in Readings in Natural La.ng11age 
Processing [ 11 ]. More recent reviews of progress in spoken language understanding can be 
found in [25, 28]. Related spoken language interface design issues can be found in [4, 21, 
27, 32]. 

In comparison to speech recognition and text to speech, spoken language understand­
ing is further away from approaching the level of humans, especially for general-purpose 
spoken language applications. 

A number of good conference proceedings and journals report the latest progress in 
the field. Major results on spoken language processing are presented at the International 
Conference on Acoustics, Speech and Signal Processing (ICASSP), International Confer­
ence on Spoken Language Processing (ICSLP), Eurospeech Conference, the DARPA Speech 
and Human Language Technology Workshops, and many workshops organized by the 
European Speech Communications Associations ( ESCA) and IEEE Signal Processing Soci­
ety. Journals include IEEE Transactions on Speech and Audio Processing, IEEE Transac­
tions on Pattern Analysis and Machine Intelligence (PAM/), Computer Speech and 
l...a.nguage, Speech Communication, and Journal of Acoustical Society of America (JASA). 
Research results can also be found at computational linguistics conferences such as the As­
sociation for Computational linguistics (ACL), International Conference on Computational 
Linguistics (COUNG), and Applied Natural Language Processing (ANLP). The journals 
Computational Linguistics and Natural l...a.nguage Engineering cover both theoretical and 
practical applications of language research. Speech Recognition Update published by TMA 
Associates is an excellent industry newsletter on spoken language applications. 
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PART I 

FUNDAMENTAL THEORY 
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CHAPTER 2 

Spoken Language Structure 

Spoken language is used to communicate in­
formation from a speaker to a listener. Speech production and perception are both important 
components of the speech chain. Speech begins with a thought and intent to communicate in 
the brain, which activates muscular movements to produce speech sounds. A listener re­
ceives it in the auditory system, processing it for conversion to neurological signals the brain 
can understand. The speaker continuously monitors and controls the vocal organs by receiv­
ing his or her own speech as feedback . 

Considering the universal components of speech communication as shown in Figure 
2.1, the fabric of spoken interaction is woven from many distinct elements. The speech pro­
duction process starts with the semantic message in a person's mind to be transmitted to the 
listener via speech. The computer counterpart to the process of message formulation is the 
application semantics that creates the concept to be expressed. After the message is created, 

19 
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20 Spoken Language Structure 

the next step is to convert the message into a sequence of words. Each word consists of a 
sequence of phonemes that corresponds to the pronunciation of the words. Each sentence 
also contains a prosodic pattern that denotes the duration of each phoneme, intonation of the 
sentence, and loudness of the sounds. Once the language system finishes the mapping, the 
talker executes a series of neuromuscular signals. The neuromuscular commands perform 
articulatory mapping to control the vocal cords, lips, jaw, tongue, and velum, thereby pro­
ducing the sound sequence as the final output. The speech understanding process works in 
reverse order. First the signal is passed to the cochlea in the inner ear, which performs fre­
quency analysis as a filter bank. A neural transduction process follows and converts the 
spectral signal into activity signals on the auditory nerve, corresponding roughly to a feature 
extraction component. Currently, it is unclear how neural activity is mapped into the lan­
guage system and how message comprehension is achieved in the brain. 

Speech Generation Speech Understanding 

Message Fonnulation .4ppllrullon .1<'m1Jntic.t, ,«.-tlon,· t........_ r--"" Message Comprehension 

Language System 

Neuromuscular Mapping 

Vocal Tract System 

SJ)tt'C/1 
·: . ge,u,ra/j()n 

Phonem~. ·wotds, prt>S<11~· 

Pl!ature extracrwn 

Articulatory parorrirrer · 

Neural Transduction 

Cochlea Motion 

_Sptech 
ana/yyis 

Figure 2.1 The underlying d 1 · 
boxes indicate the c d' e ennmants of speech generation and understanding. The gray 

orrespon mg computer syst fi em components or spoken language processing. 

Speech signals are composed of al 
crete, symbolic representation of the :n og sound patterns that serve as the basis for a dis-
The production and interpretat· f h poken language - phonemes, syllables, and words. 

f ion o t ese sounds . 0 the language spoken In th" h are governed by the syntax and semanucs 
· 1s c apter we take a b tt . . 

concepts from sound to phonetics and ' ho O om up approach to introduce the basic 
tax and semantics which f: h p nology · Syllables and words are followed by syn-
th' b ' 0 rm t e structure of s k I 

is 00k are drawn primarily from E 
1
. h po en anguage processing. The examples in 

ng is , though the I Y are re evant to other languages. 
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Sound and Human Speech Systems 21 

2.1. SOUND AND HUMAN SPEECH SYSTEMS 

In this section, we briefly review human speech production and perception systems. We 
hope spoken language research will enable us to build a computer system that is as good as 
or better than our own speech production and understanding system. 

2.1.1. Sound 

Sound is a longitudinal pressure wave formed of compressions and rarefactions of air mole­
cules, in a direction parallel to that of the application of energy. Compressions are zones 
where air molecules have been forced by the application of energy into a tighter-than-usual 
configuration. and rarefactions are zones where air molecules are less tightly packed. The 
alternating configurations of compression and rarefaction of air molecules along the path of 
an energy source are sometimes described by the graph of a sine wave as shown in Figure 
2.2. In this representation, crests of the sine curve correspond to moments of maximal com­
pression and troughs to moments of maximal rarefaction. 

Air Molecules . 

Wavelength 

Figure 2.2 Application of sound energy causes alternating compression/rarefaction of air 
molecules, described by a sine wave. There are two important parameters, amplitude and 
wavelength, to describe a sine wave. Frequency [cycles/second measured in Hertz (Hz)J is also 
used to measure of the wavefonn. 

The use of the sine graph in Figure 2.2 is only a notational convenience for charting 
local pressure variations over time, since sound does not form a transverse wave, and the air 
particles are just oscillating in place along the line of application of energy. The speed of a 
sound pressure wave in air is approximately 331.5 + 0.6T,..ml s, where Tcis the Celsius tem­
perature. 

The amount of work done to generate the energy that sets the air molecules in motion 
is reflected in the amount of displacement of the molecules from their resting position. This 
degree of displacement is measured as the amplitude of a sound as shown in Figure 2.2. Be­
cause of the wide range, it is convenient to measure sound amplitude on a logarithmic scale 
in decibels (dB). A decibel scale is a means for comparing the intensity of two sounds: 
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Spoken Language Structure 

(2.1) 

where/ and / 
0 

are the two intensity levels, with intensity being proportional to the square of 

the sound pressure P. 
Sound pressure level (SPL) is a measure of absolute sound pressure Pin dB: 

I ' 

SPL(dB) = 20 log10 l ~ J {2.2) 

where the reference O dB corresponds to the threshold of hearing, which is P0 == 0.0002µbar 
for a tone of l kHz. The speech conversation level at 3 feet is about 60 dB SPL, and a jack­
hammer's level is about 120 dB SPL. Alternatively, watts/meter~units are often used to indi­
cate intensity. We can bracket the limits of human hearing as shown in Table 2.1. On the 
low end, the human ear is quite sensitive. A typical person can detect sound waves having 
an intensity of I 0-12 W/m2 (the threshold of hearing or TOH). This intensity corresponds to a 
pressure wave affecting a given region by only one-billionth of a centimeter of molecular 
motion. On the other end, the most intense sound that can be safely detected without suffer­
ing physical damage is one trillion times more intense than the TOH. 0 dB begins with the 
TOH and advances logarithmically. The faintest audible sound is arbitrarily assigned a value 
of O dB, and the loudest sounds that the human ear can tolerate are about 120 dB. 

Table 2.1 Intensity and decibel levels of various sounds. 

Sound dB Level Times>TOH 
Threshold of hearing (TOH: 10-12w / m2

) 0 100 

Light whisoer IO 10' 
Quiet livine room 20 102 
Quiet conversation 40 104 
A veraee office 50 105 
Nonna! conversation 60 106 
Busy city street 70 107 

Acoustic irnitar - I ft. away 80 lO'l 
Heavy truck traffic 90 109 
Subway from olatform JOO !O'o 
Power tools 110 1011 
Pain threshold of ear 120 10'2 
Airoort runway 130 to'J 
Sonic boom 
Permanent damage to hearing 

140 10'4 

150 JO'S 
Jet engine, close up 
Rocket eneine 160 10'~ 

Twelve ft. from artillery cannon muzzle ( 1010 WI m2) 
180 10'8 --
220 1022 

-
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Sound and Human Speech Systems 23 

The absolute threshold of hearing is the maximum amount of energy of a pure tone 
that cannot be detected by a listener in a noise free environment. The absolute threshold of 
hearing is a function of frequency that can be approximated by 

TqCJ) = 3.64(! /1000)--0.s -6.5e--0·6<111uoo-J.3)2 + 10-3(/ / HX)Ot (dB SPL) (2.3) 

and is plotted in Figure 2.3. 

100~------.---------r---------,-~ 
oo - . • • • . • • • • • • • • I 

70 - ., • • · • - .. • • • • • • • . • • ' ' \ ............... '. ........... ·:. . . 

eot\ ....... :· . . . .. : . . _ . : : : : : : : :: : : 1··: 
60 .• ,\ . ···;············,·· . 

al 
~4500 •.• ,, •••• • •.••.•...••• : •• • ••••••••• ···r · 
Q. .. - ' ... - '. - - .......... - .... - ......... - .... - -· - .J .. .. 

oo ' • I 
30 • • • • , • ,. • • • • • • • • • • • , • • • • • • • • • • · ., • 1- •• , , . I 
20 • • • • • • ~ . • • • • · • · • • • • · • , : '--- : . . ....... . :i .. -
10 · · · · • • • • · · • · · ~- · • · · · · · • • · · • • • • • • •I • •• • 

0 • • • • • ••• : • • • • • • ~~~-~: ••• -
·10'-------'---------'---------'---' 

103 

Frequency (Hz) 

Figure 2.3 The sound pressure level (SPL) level in dB of the absolute threshold of hearing as a 
function of frequency. Sounds below this level are inaudible. Note that below 100 Hz and 
above JO kHz this level rises very rapidly. Frequency goes from 20 Hz to 20 kHz and is plotted 
in a logarithmic scale from Eq. (2.3). 

Let's compute how the pressure level varies with distance for a sound wave emitted by 
a point source located a distance r away. Assuming no energy absorption or reflection, the 
sound wave of a point source is propagated in a spherical front, such that the energy is the 
same for the sphere's surface at all radius r. Since the surface of a sphere of radius r is 
4,rr2

, the sound's energy is inversely proportional to r 2
, so that every time the distance is 

doubled, the sound pressure level decreases by 6 dB. For the point sound source, the energy 
(E) transported by a wave is proportional to the square of the amplitude (A) of the wave and 
the distance (r) between the sound source and the listener: 

(2.4) 

The typical sound intensity of a speech signal one inch away (close-talking micro­
phone) from the talker is 1 Pascal = lOµbar, which corresponds to 94 dB SPL. The typical 
sound intensity 10 inches away from a talker is 0.1 Pascal = lµbar, which corresponds to 
74 dB SPL. 
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2.1.2. Speech Production 

. b · h n speech production systems, which have influenced research on we review here astc uma 
speech coding, synthesis, and recognition. 

2.1.2.1. Articulators 

Speech is produced by air-pressure waves emanating from the mouth and ~he nostrils of a 
speaker. In most of the world's languages, the inventory of phonemes, as discussed in Sec­
tion 2.2.1, can be split into two basic classes: 

• consonants - articulated in the presence of constrictions in the throat or ob­
structions in the mouth (tongue, teeth, lips) as we speak. 

• vowels - articulated without major constrictions and obstructions. 

The sounds can be further partitioned into subgroups based on certain articulatory 
properties. These properties derive from the anatomy of a handful of important articulators 
and the places where they touch the boundaries of the human vocal tract. Additionally, a 
large number of muscles contribute to articulator positioning and motion. We restrict our­
selves to a schematic view of only the major articulators, as diagrammed in Figure 2.4. The 

Tooth-ridge (alveolar): 
back pan 
front part 

Upper Teeth 

Upper Lip 

Lower Lip 

Lower Teeth 

Vocal Cords 

Nasal Cavity 

Hard Palate 

Nasal Pa~sage 

Tongue: 
back 
middle 
front 
tip 

Figure 2 4 A sch · . . emat1c diagram of th h 
e uman speech production apparatus. 

l 
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Sound and Human Speech Systems 25 

gross components of the speech production apparatus are the lungs, trachea, larynx (organ of 
voice production), pharyngeal cavity (throat), oral and nasal cavity. The pharyngeal and oral 
cavities are typically referred to as the vocal tract, and the nasal cavity as the nasal tract. As 
illustrated in Figure 2.4, the human speech production apparatus consists of: 

• Lungs: source of air during speech. 

• Vocal cords (larynx): when the vocal folds are held close together and oscil­
late against one another during a speech sound, the sound is said to be voiced. 
When the folds are too slack or tense to vibrate periodically, the sound is said 
to be unvoiced. The place where the vocal folds come together is called the 
glottis. 

• Velum (soft palate): operates as a valve, opening to allow passage of air (and 
thus resonance) through the nasal cavity. Sounds produced with the flap open 
include m and n. 

• Hard palate: a long relatively hard surface at the roof inside the mouth, 
which, when the tongue is placed against it, enables consonant articulation. 

• Tongue: flexible articulator, shaped away from the palate for vowels, placed 
close to or on the palate or other hard surfaces for consonant articulation. 

• Teeth: another place of articulation used to brace the tongue for certain con­
sonants. 

• Lips: can be rounded or spread to affect vowel quality, and closed completely 
to stop the oral air flow in certain consonants (p, b, m). 

2.1.2.2. The Voicing Mechanism 

The most fundamental distinction between sound types in speech is the voiced/voiceless 
distinction. Voiced sounds, including vowels, have in their time and frequency structure a 
roughly regular pattern that voiceless sounds, such as consonants likes, lack. Voiced sounds 
typically have more energy as shown in Figure 2.5. We see here the waveform of the word 
sees, which consists of three phonemes: an unvoiced consonant Isl, a vowel liyl, and a 
voiced consonant lz/. 

What in the speech production mechanism creates this fundamental distinction? When 
the vocal folds vibrate during phoneme articulation, the phoneme is considered voiced; oth­
erwise it is unvoiced. Vowels are voiced throughout their duration. The distinct vowel tim­
bres are created by using the tongue and lips to shape the main oral resonance cavity in 
different ways. The vocal folds vibrate at slower or faster rates, from as low as 60 cycles per 
second (Hz) for a large man, to as high as 300 Hz or higher for a small woman or child. The 
rate of cycling (opening and closing) of the vocal folds in the larynx during phonation of 
voiced sounds is called the fundamental frequency. This is because it sets the periodic base­
line for all higher-frequency harmonics contributed by the pharyngeal and oral resonance 
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. . h f d ntal frequency also contributes more than any other single fac-
cav1t1es above. T e un ame . · · d f 11· f · ) · . f ·, h (the semi-musical nsmg an a mg o v01ce tones m speech. tor to the perception o P1 c 

s (Isl) ee (/iyl) s (lzf) 

Figure 2.5 Wavefonn of sees, showing a voiceless phoneme Isl, followed by a voiced sound, 
the vowel /iy/. The final sound, hi, is a type of voiced consonant. 

The glottal cycle is illustrated in Figure 2.6. At stage (a), the vocal folds are closed and 
the air stream from the lungs is indicated by the arrow. At some point, the air pressure on the 
underside of the barrier formed by the vocal folds increases until it overcomes the resistance 
of the vocal fold closure and the higher air pressure below blows them apart (b ). However, 
the tissues and muscles of the larynx and the vocal folds have a natural elasticity which 
tends to make them fall back into place rapidly, once air pressure is temporarily equalized 
(c). The successive airbursts resulting from this process are the source of energy for all 
voiced sounds. The time for a single open-close cycle depends on the stiffness and size of 
the vocal folds and the amount of subglottal air pressure. These factors can be controlled by 
a speaker to raise and lower the perceived frequency or pitch of a voiced sound . 

• • (a) (b) (c) 

Ftrigure
1
2·6

1
Yocal fold _cycling at the larynx. (a) Closed with sub-glottal pressure buildup; (b) 

nns-g otta pressure differential · " Id · 
sue el . . . t: . causing JO s to blow apart; (c) pressure equalization and us-

nst1c1ty orcmg temporary reclosure of vocal folds, ready to begin next cycle. 

The waveform of air pressu e · · 
Periodic fl . b' . r vanations created by this process can be described as a 

ow, m cu 1c centimeters p d (af · 
the time bracketed as one 

1 
~r seco? ter [~5]). As shown in Figure 2.7, dunng 

eye e, there is no air flow dunng the initial closed portion. Then as 
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Sound and Human Speech Systems 27 

the glottis o~ens (open phas:), t~e _volume of air flow becomes greater. After a short peak, 
the f~lds b~gm to re~u~e their ongmal position and the air flow declines until complete clo­
sure 1s attamed, begmnmg the next cycle. A common measure is the number of such cycles 
per second (Hz). or the fundamental frequency (FO). Thus the fundamental frequency for the 
wavefonn in Figure 2.7 is about 120 Hz. 

2.1.2.3. 

,;;;-
::::- 5000 e 
~ 

0 

,. Cycle ... , 
I 
I 

~ 1/1L_M 
8 16 

Time (ms) 

24 

Figure 2.7 Waveform showing air flow during laryngeal cycle. 

Spectrograms and Formants 

Since the glottal wave is periodic, consisting of fundamental frequency (FO) and a number 
of hannonics (integral multiples of FO), it can be analyzed as a sum of sine waves as dis­
cussed in Chapter 5. The resonances of the vocal tract (above the glottis) are excited by the 
glottal energy. Suppose, for simplicity, we regard the vocal tract as a straight tube of uni­
form cross-sectional area, closed at the glottal end, open at the lips. When the shape of the 
vocal tract changes, the resonances change also. Harmonics near the resonances are empha­
sized, and, in speech, the resonances of the cavities that are typical of particular articulator 
configurations (e.g., the different vowel timbres) are calledformants. The vowels in an ac­
tual speech waveform can be viewed from a number of different perspectives, emphasizing 
either a cross-sectional view of the harmonic responses at a single moment, or a longer-term 
view of the formant track evolution over time. The actual spectral analysis of a vowel at a 
single time-point, as shown in Figure 2.8, gives an idea of the uneven distribution of energy 
in resonances for the vowel /iyl in the waveform for see, which is shown in Figure 2.5. 

Another view of sees of Figure 2.5, called a spectrogram, is displayed in the lower part 
of Figure 2.9. It shows a long-term frequency analysis, comparable to a complete series of 
single time-point cross sections (such as that in Figure 2.8) ranged alongside one another in 
time and viewed from above. 
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s (lzl) 

· te phone 
Figure 2.9 The spectrogram representation of the speech wavefonn sees (approx1ma 
boundaries are indicated with heavy vertical lines). 

In the spec1rogram of Figure 2.9, the darkness or lightness of a band m ,ca the . d' tes the rel a-
tive amplitude or energy present at a given frequency. The dark horiwntal bands show ct 
fonnants, which are hannonics of the fundamental at natural resonances of the vocal tra 
cavity position for the vowel liyl in see. The mathematical methods for deriving analyses 
and representations such as those illustrated above are covered in Chapters 5 and 6. 
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2.1.3. Speech Perception 

There are two major components in the auditory perception system: the peripheral auditory 
organs (ears) and the auditory nervous system (brain). The ear processes an acoustic pres­
sure signal by first transfonning it into a mechanical vibration pattern on the basilar mem­
brane, and then representing the pattern by a series of pulses to be transmitted by the 
auditory nerve. Perceptual information is extracted at various stages of the auditory nervous 
system. In this section we focus mainly on the auditory organs. 

2.1.3.1. Physiology of the Ear 

The human ear, as shown in Figure 2.10, has three sections: the outer ear, the middle ear, 
and the inner ear. The outer ear consists of the external visible part and the external auditory 
canal that fonns a tube along which sound travels. This tube is about 2.5 cm long and is 
covered by the eardrum at the far end. · When air pressure variations reach the eardrum from 
the outside, it vibrates, and transmits the vibrations to bones adjacent to its opposite side. 
The vibration of the eardrum is at the same frequency (alternating compression and rarefac­
tion) as the incoming sound pressure wave. The middle ear is an air-filled space or cavity 
about 1.3 cm across, and about 6 cm3 volume. The air travels to the middle ear cavity along 
the tube (when opened) that connects the cavity with the nose and throat. The oval window 
shown in Figure 2.10 is a small membrane at the bony interface to the inner ear (cochlea). 
Since the cochlear walls are bony, the energy is transferred by mechanical action of the 
stapes into an impression on the membrane stretching over the oval window. 

Figure 2.10 The structure of the peripheral auditory system with the outer, middle, and inner ear. 
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The relevant structure of the inner ear for sound perception is the cochlea, which 

communicates directly with the auditory nerve, conducting a representation of sound to the 
brain. The cochlea is a spiral tube about 3.5 cm long, which coils about 2.6 times. The spiral 
is divided, primarily by the basilar membrane running lengthwise, into two fluid-filled 
chambers. The cochlea can be roughly regarded as a filter bank, whose outputs are ordered 
by location, so that a frequency-to-place transformation is accomplished. The filters closest 
to the cochlear base respond to the higher frequencies, and those closest to its apex respond 

to the lower. 

2.1.3.2. Physical vs. Perceptual Attributes 

In psychoacoustics, a basic distinction is made between the perceptual attributes of a sound 
especially a speech sound, and the measurable physical properties that characterize it. Each 
of the perceptual attributes, as listed in Table 2.2, seems to have a strong correlation with 
one main physical property, but the connection is complex, because other physical proper­

ties of the sound may affect perception in complex ways. 

Table 2.2 Relation between perceptual and physical attributes of sound. 

Physical Quantity Perceptual Quality 
Intensity Loudness 

Fundamental frequency Pitch 
Soectral shape Timbre 

Onset/offset time Timing 
Phase difference in binaural hearin£ Location 
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as an upward shift in the hearing threshold of the weaker tone by the louder tone. Pure tones, 
complex sounds, narrow and broad bands of noise all show differences in their ability to 
mask other sounds. In general, pure tones close together in frequency mask each other more 
than tones widely separated in frequency. A pure tone masks tones of higher frequency more 
effectively than tones of lower frequency. The greater the intensity of the masking tone, the 
broader the range of the frequencies it can mask [ 18, 31 ). 

Binaural listening greatly enhances our ability to sense the direction of the sound 
source. The sense of localization attention is mostly focused on side-to-side discrimination 
or lateralization. Time and intensity cues have different impacts for low frequency and high 
frequency, respectively. Low-frequency sounds are lateralized mainly on the basis of inte­
raural time difference, whereas high-frequency sounds are localized mainly on the basis of 
interaural intensity differences [5). 
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Figure 2.11 Equal-loudness curves indicate that the response of the human hearing mechanism 
is a function of frequency and loudness levels. This relationship again illustrates the difference 
between physical dimensions and psychological experience (after ISO 226). 

Finally, an interesting perceptual issue is the question of distinctive voice quality. 
Speech from different people sounds different. Partially this is due to obvious factors, such 
as differences in characteristic fundamental frequency caused by, for example, the greater 
mass and length of adult male vocal folds as opposed to female. But there are more subtle 
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t. the concept of timbre (of a sound or instrument) is de-ll In psychoacous 1cs, . . 
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2.1.3.3. Frequency Analysis 

Researchers have undertaken psychoacoustic experimental work to derive frequency scales 
that attempt to model the natural response of the human perceptual system, since the cochlea 
of the inner ear acts as a spectrum analyzer. The complex mechanism of the inner ear and 
auditory nerve implies that the perceptual attributes of sounds at different frequencies may 
not be entirely simple or linear in nature. It is well known that the western musical pitch is 
described in octaves' and semi-tones. 2 The perceived musical pitch of complex tones is basi­
cally proportional to the logarithm of frequency. For complex tones, the just noticeable dif­
ference for frequency is essentially constant on the octave/semi-tone scale. Musical pitch 
scales are used in prosodic research (on speech intonation contour generation). 

AT&T Bell Labs has contributed many influential discoveries in hearing, such as criti­
cal band and articulation index, since the turn of the 20th century [3]. Fletcher's work [14] 
pointed to the existence of critical bands in the cochlear response. Critical bands are of great 
importance in understanding many auditory phenomena such as perception of loudness, 
pitch, and timbre. The auditory system performs frequency analysis of sounds into their 
compo~ent frequencies. The cochlea acts as if it were made up of overlapping filters having 
bandwidths equal to the critical bandwidth. One class of critical band scales is called Bark 
frequen~y scale. It i~ hoped that by treating spectral energy over the Bark scale, a more natu­
ral fit with spectral information processing in the ear can be achieved. The Bark scale ranges 
from 1 _to 2~ Barks, corresponding to 24 critical bands of hearing as shown in Table 2.3. As 
shown m Figure 2.12, the perceptual resolution is finer in the lower frequencies. It should be 
notedfitbadt tbe ~~·s critical bands are continuous, and a tone of any audible frequency al­
ways m s a cnucal band centered ·t Th B f 
the r f . on 1 · e ark frequency b can be expressed in tenns 0 

mear requency (m Hz) by 

b(f) = 13arctan(0.00076J)+ 3.5 * arctan(<f /7500)2) (Bark) (2.5) 

' A tone of freq , . . 
t The uen~y J1 IS said to be an octave abov . 
quen:C arc _12 semitones in one octave so a tone e a tone with frequency h if and only if f.. = 2/i . 
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Table 2.3 The Bark frequency scale. 
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Edee (Hz) Center (Hz) 
100 50 
200 150 
300 250 
400 350 
510 450 
630 570 
770 700 
920 840 
1080 1000 
1270 1170 
1480 1370 
1720 1600 
2000 1850 
2320 2150 
2700 2500 
3150 2900 
3700 3400 
4400 4000 
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6400 5800 
7700 7000 
9500 8500 
12000 10500 
15500 13500 
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Figure 2.12 The center frequency of 24 Bark frequency filters as illustrated in Table 2.3. 
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Another such perceptually motivated scale is the mel frequency scale [41], which is 
linear below J kHz, and logarithmic above, with equal numbers of samples taken below and 
above J kHz. The mel scale is based on experiments with simple tones (sinusoids) in which 
subjects were required to divide given frequency ranges into four perceptualJy equal inter­
vals or to adjust the frequency of a stimulus tone to be half as high as that of a comparison 
tone. One mel is defined as one thousandth of the pitch of a 1 kHz tone. As with aJI such 
attempts, it is hoped that the mel scale more closely models the sensitivity of the human ear 
than a purely linear scale and provides for greater discriminatory capability between speech 
segments. Mel-scale frequency analysis has been widely used in modem speech recognition 
systems. It can be approximated by: 

B(f) = 1125 ln(l + f / 700) (2.6) 

The mel scale is plotted in Figure 2.13 together with the Bark scale and the bilinear trans­
form (see Chapter 6). 
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2.1.3.4. Masking 
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quency-masking levels have been determined empirically, with complicated models that 
take into account whether the masker is a tone or noise, the masker's level, and other con­
siderations. 

We now describe a phenomenon known as tone-masking noise. It has been determined 
empirically that noise with energy E.v (dB) at Bark frequency g masks a tone at Bark fre­
quency b if the tone's energy is below the threshold 

TT(b) = EN -6.025-0.275g+S,n(b-g) (dB SPL) (2.7) 

where the spread-of-masking function S,,, (b) is given by 

Sm(b) = 15.81 + 7.5(b+ 0.474)-17.5~1 + (b+ 0.474)2 (dB) (2.8) 

We now describe a phenomenon known as noise-masking tone. It has been determined 
empirically that a tone at Bark frequency g with energy ET (dB) masks noise at Bark fre­
quency b if the noise energy is below the threshold 

TN(b) = ET -2.025-0.l75g+Sm(b-g) (dB SPL) (2.9) 

Masking thresholds are commonly referred to in the literature as Bark scale functions 
of just noticeable distortion (JND). Equation (2.8) can be approximated by a triangular 
spreading function that has slopes of+ 25 and -10 dB per Bark, as shown in Figure 2.14. 

S,,,(b-g) ·--------------- N 25 dB I Bark : 10 dB / Bark 
I 
I 
' 
g b (Barks) 

Figure 2.14 Contribution of Bark frequency g to the masked threshold Sm(b). 

In Figure 2.15 we show both the threshold of hearing and the masked threshold of a 
tone at 1 kHz with a 69 dB SPL. The combined masked threshold is the sum of the two in 
the linear domain 

(2.10) 

which is approximately the largest of the two. 
In addition to frequency masking, there is a phenomenon called temporal masking by 

which a sound too close in time to another sound cannot be perceived. Whereas premasking 
tends to last about 5 ms, postmasking can last from 50 to 300 ms. Temporal masking level of 
a masker with a uniform level starting at Oms and lasting 200 ms is shown in Figure 2.16. 
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Figure 2.16 Temporal masking level of a masker with a uniform level starting at O ms and 
Jasring 200 ms. 

2.2. PHONETICS AND PHONOLOGY 

We now discuss basic phonetics and phonology needed for spoken language processing. 
Phonetics refers to the study of speech sounds and their production, classification, and ~­
scription. Phonology is the study of the distribution and patterning of speech sounds m 3 
language and of the tacit rules governing pronunciation. 

2.2.1. Phonemes 

Lingui
st 

Ferdinand de Saussere (1857-1913) is credited with the observation that the relation 
between a sign and the object signified by it is arbitrary. The same concept, a certain yeUoW 
a
nd 

black flying socia] insect, has the sign honeybee in English and mitsubachi in Japanese. 
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There is no particular relation between the various pronunciations and the meaning, nor do 
these pronunciations per se describe the bee's characteristics in any detail. For phonetics, 
this means that the speech sounds described in this chapter have no inherent meaning, and 
should be randomly distributed across the lexicon, except as affected by extraneous histori­
cal or etymological considerations. The sounds are just a set of arbitrary effects made avail­
able by human vocal anatomy. You might wonder about this theory when you observe, for 
example, the number of words beginning with sn that have to do with nasal functions in 
English: sneeze, snort, sniff, s11ot, snore, s11uffle, etc. But Saussere's observation is generally 
true, except for obvious onomatopoetic (sound) words like buzz. 

Like fingerprints, every speaker's vocal anatomy is unique, and this makes for unique 
vocalizations of speech sounds. Yet language communication is based on commonality of 
form at the perceptual level. To allow discussion of the commonalities, researchers have 
identified certain gross characteristics of speech sounds that are adequate for description and 
classification of words in dictionaries. They have also adopted various systems of notation 
to represent the subset of phonetic phenomena that are crucial for meaning. 

As an analogy, consider the system of computer coding of text characters. In such sys­
tems, the character is an abstraction, e.g. the Unicode character U+004 I. The identifying 
property of this character is its Unicode name LA TIN CAPITAL LETTER A. This is a genu­
ine abstraction; no particular realization is necessarily specified. As the Unicode 2.1 stan­
dard [ l] states: 

The Unicode Standard does not define glyph images. The standard defines how char­
acters are interpreted, not how glyphs are rendered. The software or hardware-rendering 
engine of a computer is responsible for the appearance of the characters 011 the screen. The 
Unicode Standard does not specify the size. shape, nor orientation of on-screen characters. 

Thus, the U+0041 character can be realized differently for different purposes, and in 
different sizes with different fonts: 

U+004I-+ A, A, A. A, A, ... 

The realizations of the character U+0041 are called glyphs, and there is no distin­
guished uniquely correct glyph for U+0041. In speech science, the term phoneme is used to 
denote any of the minimal units of speech sound in a language that can serve to distinguish 
one word from another. We conventionally use the term phone to denote a phoneme's 
acoustic realization. In the example given above, U+0041 corresponds to a phoneme and the 
various fonts correspond to the phone. For example, English phoneme It/ have two very dif­
ferent acoustic realizations in the words sat and meter. You had better treat them as two di f­
ferent phones if you want to build a spoken language system. We will use the terms phone 
or phoneme interchangeably to refer to the speaker-independent and context-independent 
units of meaningful sound contrast. Table 2.4 shows a complete list of phonemes used in 
American English. The set of phonemes will differ in realization across individual speakers. 
But phonemes will always function systematically to differentiate meaning in words, just as 
the phoneme /pl signals the word pat as opposed to the similar-sounding but distinct bat. 
The important contrast distinguishing this pair of words is !pl vs. lb/. 
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In this section we concentrate on the basic qualities that define and differentiate ab­

stract phonemes. In Section 2.2.1.3 below we consider why and how phonemes vary in their 
actual realizations by different speakers and in different contexts. 

Table 2.4 English phonemes used for typical spoken language systems. 

Phonemes Word Examples Description 
iv feel, eve, me front close unrounded 
ih fill, hit, lid front close unrounded (lax) 
ae at, carry, gas front open unrounded (tense) 
aa father, ah, car back open unrounded 
ah cut, bud, up open-mid back unrounded 
ao dog, lawn, caught open-mid back round 
ay tie, ice, bite diphthong with quality: aa + ih 
ax ago, comply central close mid (schwa) 
ey ate, day, tape front close-mid unrounded (tense) 
eh pet, berry, ten front open-mid unrounded 
er turn, fur, merer central open-mid unrounded rhoti-
ow go, own, tone back close-mid rounded 
aw foul, how, our diphthong with quality: aa + uh 
oy toy, coin, oil diphthong with quality: ao + ih 
uh book, pull, good back close-mid unrounded (lax) 
uw tool, crew, moo back close round 
b big, able, tab voiced bilabial plosive 
p put, open, tap voiceless bilabial plosive 
d dig, idea, wad voiced alveolar plosive 
t talk, sat voiceless alveolar plosive & t meter alveolar flap g gut, angle, tag voiced velar plosive k cur, ken, take voiceless velar plosive f fork, after, if voiceless labiodental fricative V var, over, have voiced labiodental fricative s sir, cast, toss voiceless alveolar fricative z zap, lazy, haze voiced alveolar fricative th thin, nothing, truth 

dh then, father, scythe 
voiceless dental fricative 

sh she, cushion, · wash 
voiced dental fricative 

zh genre, azure vo~celess postalveolar fricative 
l lid voiced postalveolar fricative 
I elbow, sail alveolar lateral approximant 
r red, part, Jar velar lateral approximant 
y yacht, yard retroflex approximant 
w with, away pal~tal sonorant glide 
hh 

help, ahead, hotel la~iovelar sonorant glide 
m 

mat, amid, aim v?ic~Iess glottal fricative 
n 

no, end, pan b1lab1al nasal 
ng sing, a11ger alveolar nasal 
ch 

~hin, archer, march velar nasal 
jh 

~~:Celess alveolar affricate: t + sh - Joy, agile, edge 
ced alveolar affricate: d + zh 
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2.2.1.1. Vowels 

The tongue shape and positioning in the oral cavity do not form a major constriction of air 
flow during vowel articulation. However, variations of tongue placemenl give each vowel its 
distinct character by changing the resonance, just as different sizes and shapes of bottles 
give rise to different acoustic effects when struck. The primary energy entering the pharyn­
geal and oral cavities in vowel production vibrates at the fundamental frequency. The major 
resonances of the oral and pharyngeal cavities for vowels are called Fl and F2 - the first and 
second fom1ants, respectively. They are detennined by tongue placement and oral tract 
shape in vowels, and they detennine the characteristic timbre or quality of Lhe vowel. 

The relationship of Fl and F2 to one another can be used to describe the English vow­
els. While the shape of the complete vocal tracL detennines the spectral outcome in a com­
plex, nonlinear fashion, generally Fl corresponds to the back or pharyngeal portion of the 
cavity, while F2 is determined more by the size and shape of the oral portion, forward of the 
major tongue extrusion. This makes intuitive sense - the cavity from the glottis to the tongue 
extrusion is longer than the forward part of the oral cavity, thus we would expect its reso­
nance to be lower. In the vowel of see, for example, the tongue extrusion is far forward in 
the mouth, creating an exceptionally long rear cavity, and correspondingly low Fl. The for­
ward part of the oral cavity, at the same time, is extremely short, contributing to higher F2. 
This accounts for the wide separation of the two lowest dark horizontal bands in Figure 2.9, 
corresponding to Fl and f/2, respectively. Rounding the lips has the effect of extending the 
front-of-tongue cavity, thus lowering F2. Typical values of Fl and F2 of American English 
vowels are listed in Table 2.5. 

Table 2.5 Phoneme labels and typical formant values for vowels of English. 

Vowel Labels Mean Fl (Hz) Mean F2 (Hz) 
iy (feel) 300 2300 
ih (fill) 360 2100 

ae(gas) 750 1750 
aa (father) 680 1100 

ah (cut) 720 1240 
ao (dog) 600 900 

ax (comply) 720 1240 
eh (pet) 570 1970 
er (turn) 580 1380 
ow (tone) 600 900 
uh ( good) 380 950 
uw (tool) 300 940 

The characteristic Fl and F2 values for vowels are sometimes called formant targets, 
which are ideal locations for perception. Sometimes, due to fast speaking or other limitations 
on performance, the speaker cannot quite attain an ideal target before the articulators begin 
shifting to targets for the following phoneme, which is phonetic context dependent. Addi­
tionally, there is a special class of vowels that combine two distinct sets of FI/F2 targets. 
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40 

· lators move the initial vowel targets glide 
. As the art1cu ' . . . 

Th are called diphthongs. . s· the articulators are working faster m production of 
ese fi uration mce 

othly to the final con ig . · t ta get values of the component values are not fully 
smo . the ideal forman r . 6 a diphthong, some~1mes f American English are listed m Table 2. . 

. d T pica! diphthongs o 
attame . y Table 2.6 The diphthongs of English. 

Diphthong Labels Compone_nts 
ay (tie) laal ~ /iy/ 
ey (ate) /eh/~ Ii?/ 
oy (coin) /aol ~ /ryl 
aw (foul) /aal ~ /uwl 

Figure 2.17 shows the first two formants for a number of typical vowels. 
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/iy/ (feel) /ih/ (fill) /ae/ (gas) /aa/ (father) /ah/ (cut) /ao/ (dog) 

Vowel Phonemes 

Figure 2.17 Fl and F2 values for articulations of some English vowels. 

The major articulator for English vowels is the middle to rear portion of the to~g~e. 
The position of the tongue's surface is manipulated by large and powerful muscles m its 
root, which move it as a whole within the mouth. The linguistically important dimensions ~f 
movement are generally the ranges [front ~ back] and [high ~ low]. You can feel th_is 
movement easily. Say mentally, or whisper, the sound liyl (as in see) and then /aal (as m 
father) . Do it repeatedly, and you will get a clear perception of the tongue movement from 
high to low. Now try liyl and then /uwl (as in blue), repeating a few times. You will get 3 

clear perception of place of articulation from front /iyl to back /uw/. Figure 2.18 shows 3 

schem_atic characterization of English vowels in terms of relative tongue positions. There ~e 
two kinds of vowels: those in which tongue height is represented as a point and those m 
which it is represented as a vector. 

Though the tongue hump is the major actor in vowel articulat1·on other articulators 
co . , d 

me mto play as well. The most important secondary vowel mechanism for English an 
many otller languages is lip rounding. Repeat the exercise above, moving from the liyl (see) 
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to the luwl (blue) position. Now rather than noticing the tongue movement, pay attention to 
your lip shape. When you say liyl, your lips will be flat, slightly open, and somewhat spread. 
As you move to luwl, they begin to round out, ending in a more puckered position. This 
lengthens the oral cavity during luwl, and affects the spectrum in other ways. 

high 

yuw e l/W .... 
. "" 
tf.w back 

I 

• ao 

• aa 

low 

Figure 2.18 Relative tongue positions of English vowels [24]. 

Though there is always some controversy, linguistic study of phonetic abstractions, 
called phonology, has largely converged on the five binary features: +/- high, +/- low, +/­
front, +/- back, and +/- round, plus the phonetically ambiguous but phonologically useful 
feature +/- tense, as adequate to uniquely characterize the major vowel distinctions of Stan­
dard English (and many other languages). Obviously, such a system is a little bit too free 
with logically contradictory specifications, such as (+high, +low], but these are excluded 
from real-world use. These features can be seen in Table 2.7. 

Table 2.7 Phonological (abstract) feature decomposition of basic English vowels. 

Vowel high low front back round tense 
iy + + + 
ih + + 
ae + + + 
aa + + 
ah + 
ao + + + + 
ax 
eh + 
ow + + + 
uh + + 
uw + + + 
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. 11 searchers to make convenient statements about . f b tr ct analysis a ows re 
This kmd o a s a . .1 1 under certain conditions. For example, one may 

f ls that behave s1m1 ar Y 
classes _o vowfe h h. h vowels to indicate the set liy, ilz, uh, uwl. 
speak simply o t e ig 

2.2.1.2. Consonants 

d ls are characterized by significant constriction or obstruc-C nants as oppose to vowe ' . d h 
. ons? ' ha 11 ea! and/or oral cavities. Some consonants are voice ; ot ers are not. 

tion m 
th

e P ry g . . that is they share 1he same configuration of aniculators, 
Many consonants occur m pairs, ' h I k O h . . 

f h · dd'tionally has voicing which the ot er ac s. ne sue pa1r 1s and one member o t e pair a I • • d' . 
· · ny that distinguishes them shows up m the non-peno 1c noise of Is, z/, and the v01cmg prope . h 

· · · l t Isl 1·n Fi·gure 2 5 as opposed to the voiced consonant end-p one, /z/. Man-the m1t1a segmen · . . . . 
· l · & rs to the aniculation mechanism of a consonant. The maJor d1stmc-ner of an1cu at1on re,e 

tions in manner of articulation are listed in Table 2.8. 

Table 2.8 Consonant manner of articulation. 

Sample Example 
Manner Phone Words Mechanism 
Plosive /pl tat, tap Closure in oral cavity 

Nasal /ml team, meet Closure of nasal cavity 
Fricative Isl sick, loss Turbulent airstream noise 
Retroflex liquid Ir/ rat, tar Vowel-like, tongue high and curled back 
Lateral liquid II/ lean, kneel Vowel-like, tongue central, side airstream 
Glide /y/,/w/ yes, well Vowel-like 

The English phones that typically have voicing without complete obstruction or nar­
rowing of the vocal tract are called semivowels and include /l, r!, the liquid group, and ly, wl, 
the glide group. Liquids, glides, and vowels are all sonorant, meaning they have continuous 
voicing. Liquids Ill and Ir/ are quite vowel-like and in fact may become syllabic or act en­
tirely as vowels in cenain positions, such as the / at the end of edible. In Ill, the airstream 
flows around the sides of the tongue, leading to the descriptive term lateral. In Ir/, the tip of 
the tongue is curled back slightly, leading to the descriptive term retroflex. Figure 2.19 
shows some semivowels. 

. Glides ly, wt are basically vowels !iy, uwl whose initial position within the syllable re­
q~ire them to be a little shorter and to lack the ability to be stressed, rendering them ju5t 
different ~nou~h from true vowels that they are classed as a special category of consonant. 
;re~vocahc glides that share the syllable-initial position with another consonant such as the 
y/ m tile ~econd syllable of computer lk uh m . p y uw . t er! or the /wl in qui;k lk w ih kl, 
are sometimes cal1ed O _ l'd Th . ' . . 
m t . n g I es. e semivowels, as a class are sometimes called approxi-an s, meaning that th t ' 
pletely conta t e ongue approaches the top of the oral cavity, but does not com-

e so as to obstruct the air flow 
Even the non-sonorant conso th . . 

tion may still maintai· . . nants at requJTe complete or close-to-complete obstruc-
n some vo1cmg befo d · · d'f 

re or unng the obstruction, until the pressure 1 -
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ferential across the glottis starts to disappear, due to the closure. Such voiced consonants 
include lb,d,g, z, zh, vi. They have a set of counterparts that differ only in their characteristic 
lack of voicing: lp,t,k, s, sh, fl. 

0.5 

0 

i 3000 -

>-
g 2000 
Cl) 
::::, 

g 1000 ... 
u. 

0.1 

0.1 

!yl /eh/ 

0.2 0.3 0.4 0.5 0.6 

0.2 0.3 0.4 0.5 0.6 
Time (seconds) 

Ill /er/ 

Figure 2.19 Spectrogram for the word yeller, showing semivowels lyl, Ill, fer/ (approximate 
phone boundaries shown with vertical lines). 

Nasal consonants lm,nl are a mixed bag: the oral cavity has significant constriction (by 
the tongue or lips), yet the voicing is continuous, like that of the sonorants, because, with the 
velar flap open, air passes freely through the nasal cavity, maintaining a pressure differential 
across the glottis. 

A consonant that involves complete blockage of the oral cavity is called an obstruent 
stop, or plosive consonant. These may be voiced throughout if the trans-glottal pressure drop 
can be maintained long enough, perhaps through expansion of the wall of the oral cavity. ln 
any case, there can be voicing for the early sections of stops. Voiced, unvoiced pairs of stops 
include: lb,pl, ld,tl, and lg,kl. In viewing the wavefonn of a stop, a period of silence corre­
sponding to the oral closure can generally be observed. When the closure is removed (by 
opening the constrictor, which may be lips or tongue), the trapped air rushes out in a more or 
less sudden manner. When the upper oral cavity is unimpeded, the closure of the vocal folds 
themselves can act as the initial blocking mechanism for a type of stop heard at the very 
beginning of vowel articulation in vowel-initial words like atrophy. This is called a glottal . 
stop. Voiceless plosive consonants in particular exhibit a characteristic aperiodic burst of 
energy at the (articulatory) point of closure as shown in Figure 2.20 just prior to Iii. By com-
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