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From Eq. (5.95) and (5.96) we see that the OCT-II of a real sequence can be computed 
with a length-2N FFT of a real and even sequence, which in tum can be computed with a 
length (N/2) complex FFT and some additional computations. Other fast algorithms have 
been derived to compute the OCT directly [ 15], using the principles described in Section 
5.3.3.l. Two-dimensional transforms can also be used for image processing. 

5.4. DIGITAL FILTERS AND WINDOWS 

We describe here the fundamentals of digital filter design and study fillite-impu/se response 
(FIR) and infinite-impulse response (IIR) filters, which are special types of linear time­
invariant digital filters. We establish the time-frequency duality and study the ideal low-pass 
filter (frequency limited) and its dual window functions (time limited). 

5.4.1. The Ideal Low-Pass Filter 

It is useful to find an impulse response h[n] whose Fourier transform is 

(5.97) 

which is the ideal Low-pass filter because it lets all frequencies below w0 pass through unaf­
fected and completely blocks frequencies above co0 • Using the definition of Fourier trans-

fonn, we obtain 

( /OJr,rr -iCIJo") . ( ) e -e smco n w 
h[n]=-l-J% eiwndco= . = o = _o sinc(2fon) 

2n -% 2n;n nn n 

where we have defined the so-called sine function as 

. sinnx 
smc(x)=-­

nx 

(5.98) 

(5.99) 

which is a real and even function of x and is plotted in Figure 5.18. Note that the sine func-

tion is O when xis a nonzero integer. . . 
Thus, an ideal low-pass filter is noncausal since it has an impulse response with an m-

finite number of nonzero coefficients. 
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Figure 5.18 A sine function, which is the impulse response of the ideal low-pass filter with a 
scale factor. 

5.4.2. Window Functions 

Window functions are signals that are concentrated in time, often of limited duration. While 
window functions such as triangular, Kaiser, Barlett, and prolate spheroidal occasionally 
appear in digital speech processing systems, the rectangular, Hanning, and Hamming are the 
most widely used. Window functions are also concentrated in low frequencies. These win­
dow functions are useful in digital filter design and all throughout Chapter 6. 

5.4.2.1. The Rectangular Window 

The rectangular window is defined as 

h,r[n] = u[n]-u[n-N] (5.100) 

and we refer to it often in this book. Its z-transfonn is given by 

(5.101) 
ncO 

.J 
which results in a polynomial of order (N - 1). Multiplying both sides of Eq. (5.101) by z ' 
we obtain 

N 

z-
1
H,r(z)= ~:Z-" =H,r(z)-I+z-N 

n=l 

and therefore the sum of the terms of a geometric series can also be expressed as 

1-z-N 
H11 (z)=--

1-z-1 

(5.102) 

(5.103) 
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Although z =1 appears to be a pole in Eq. (5.103), it actually isn't because it is can­
celed by a zero at z = l. Since hir [n] has finite length, Eq. (5.25) must be satisfied for 
z "I' O , so the region of convergence is everywhere but at z = 0 . Moreover, all finite-length 
sequences have a region of convergence that is the complete z-plane except for possibly 
z=O. 

The Fourier transform of the rectangular window is, using Eq. (5.103J: 

-
(
CjW\"~ --e-j(l),\' !2 )e-jOJ.\" / 2 

H (ei"') = 1-e-;w.,· 
,r 1-e-/QI - (ejW!2_e-Jwi2 )e-jw/2 

- sin roN 12 -Jw(N-1)/2 - A( ) -jW(N-1)/2 - ----e - (J) e 
sinro/2 

(5.104) 

where A(ro) is real and even. The function A(ro), plotted in Figure 5.19 in dB/ is O for 
rok = 21rk IN with k ;t {O,±N,±2N, .. . } , and is the discrete-time equivalent of the sine 
function. 

-40. 
(dB) 

-60. 

-80 

-100 
0 0.15 0.2 0.25 0.3 0.05 0.1 0.35 0.4 0.45 0.5 

Nonnalized Frequency 

Figure 5.19 Frequency response (magnitude in dB) of the rectangular window with N = 50, 
which is a digital sine function. 

5.4.2.2. The Generalized Hamming Window 

The generalized Hamming window is defined as 

{
(1-a)-acos(2nn!N) 05:n<N 

hh[n] = o otherwise 
(5.105) 

' An energy value E is expressed in decibels (dB) as £=IO log,o E . If the energy value is 2£, it is therefore 3dB 
higher. Log:irithmic measurements like dB are useful because they correlate well with how the human :iuditory 

system perceives volume. 
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and can be expressed in terms of the rectangular window in Eq. (5.100) as 

hh[n] = (1-a)h,r[n]-ah.ir[n]cos(2trn IN) (5.106) 

whose transform is 

(5.107) 

after using ~he modulation property in Ta?l~ 5.5. When ~ = 0:5 the window is known as the 
Hanning window, whereas for a= 0.46 1t 1s the Hammmg wmdow. Hanning and Hammin 
windows and their magnitude frequency responses are plotted in Figure 5.20. g 

(a) (b) 0 

0.5 (dB) -50 · 

-100 
10 20 30 40 0 0.1 0.2 0.3 0.4 0.5 

(c) 

(.:: -~ \mrmnnmnr1TI 0.5 

-100 
10 20 30 40 0 0. 1 0.2 0.3 0.4 0.5 

time Normalized Frequency 

Figure 5.20 (a) Hanning window and (b) the magnitude of its frequency response in dB; (c) 

Hamming window and (d) the magnitude of its frequency response in dB for N = 50. 

The main lobe of both Hamming and Hanning is twice as wide as that of the rectangu· 
lar window, but the attenuation is much greater than that of the rectangular window. Toe 
secondary lobe of the Hanning window is 31 dB below the main lobe, whereas for ~e 
Hamming window it is 44 dB below. On the other hand, the attenuation of the Hanning win· 
dow decays with frequency quite rapidly, which is not the case for the Hamming wind0"'' 
whose attenuation stays approximately constant for all frequencies. 

5.4.3. FIR Filters 
From a pr ti 1 . . . 1 responses 
h ac ca pomt of view it is useful to consider LTI filters whose 1mpu se 

ave a limited b ' num er of nonzero coefficients: 
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i
bn 0:E;n:E;M 

h[n]= 
. 0 otherwise 

233 

(5.l08) 

These types of L TI filters are called finite-impulse response (FIR) filters. The · _ 
put/output relationship in this case is m 

.\f 

y[n] = I,b,x[n-r] 
rcO 

(5.109) 

The z-transform of x[ n - r] is 

- -L, x[n-r]z-" = L, x[n]z-<n+r) = z-' X(z) (5.110) 
n::::-

Therefore, given that the z-transfonn is linear, H(z) is 

Y(z) u .11-L 
H(z) = - = I,b,z-' = Az-L IT (l-c,z-1

) 

X(z) r=O ral 
(5.111) 

M 

whose region of convergence is the whole z-plane except for possibly z = O. Since llb,j is 
r=O 

finite, FIR systems are always stable, which makes them very attractive. Several special 
types of FIR filters will be analyzed below: linear-phase, first-order and low-pass FIR filters. 

5.4.3.1. Linear-Phase FIR Filters 

Linear-phase filters are important because, other than a delay, the phase of the signal is un­
changed. Only the magnitude is affected. Therefore, the temporal properties of the input 
signal are preserved. In this section we show that linear-phase FIR filters can be built if the 
filter exhibits symmetry. 

Let's explore the particular case of h[n] real, M = 2L, an even number, and 
h[n] = h[M -n] (called a Type-I filter). In this case 

M l-1 
H(ei°') = L,h[n]e-jrm = h[L]e-i°'L + L(h[n]e-;- +h[M-n]e-io,(2L-n>) 

n=O n~o 
l-1 

= h[L]e-Jo,l + L,h[n](e-jo,(n-l) +e"Ql(n-L) )e-Jo,l (5.112) 
n=O 

= ( h[LJ+ t2h[n + L]cos( am) ),-1
"' = A(ID'je-1"' 

where A(w) is a real and even function of w, since the cosine is an even function, and 
A(a>) is a linear combination of cosines. Furthennore, we see that the phase 
arg l H (e1w)} = Lm , which is a linear function of w , and therefore h[ n] is called a linear-
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phase system. It can be shown_ that_ if h[n] ~ -:~~ -n!.' we(Talso giet a linear phase system 
but A(w) this time is a pure 1magmary an o unc 100 ype II filter). It is left t 
reader to show that in the case of M being odd the system is still Jinear phase (Types ; !he 
IV filters). Moreover, h[n] doesn't have to be real and: and 

h[n]=±h.[M-n] (5.113) 

is a sufficient condition for h[n] to be linear phase. 

5.4.3.2. First-Order FIR Filters 

A special case of FIR filters is the first-order tilter: 

y[n] = x[n] +ax[n-l] 

for real values of a , which, unless a = l , is not linear phase. Its z-transform is 

H(z)= 1+az· ' 

It is of interest to analyze the magnitude and phase of its frequency response 

I H(e10)) 12 =/ I +a(cosro- jsinw) 12 

=(1+acosw)2 +(asinw)2 = l+a2 +2acosw 

8(e10))=-arctan( asina> J 
l+acosa> 

It is customary to display the magnitude response in decibels (dB): 

lOlog I H(e10)) j2 = lOlog[(l +a)2 + 2acosm] 

as shown in Figure 5.21 for various values of a . 

1o r----:----.------.---....------·---,.--------,,--, 

5 r:::=------
(<13) 

(5.114) 

(5. l15) 

(5,116) 

(5.117) 

(5.118) 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Normalized Frequency 

Figure S,21 Frequency response of the first order FIR filter for various values of a · 
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We see that for a > 0 we have a low-pass filter whereas for a< O it is a high-pass 
filter, also called a pre-emphasis filter, since it emphasizes the high frequencies. In general, 
filters that boost the high frequencies and attenuate the low frequencies are called high-pass 
filters, and filters that emphasize the low frequencies and de-emphasize the high frequencies 
are called low-pass filters. The parameter a controls the slope of the curve. 

5.4.3.3. Window Design FIR Lowpass Filters 

The ideal lowpass filter lets all frequencies below ro0 go through and eliminates all energy 
from frequencies above that range. As we described in Section 5.4.1, the ideal lowpass filter 
has an infinite impulse response, which poses difficulties for implementation in a practical 
system, as it requires an infinite number of multiplies and adds. 

Since we know that the sine function decays over time, it is reasonable to assume that 
a truncated sine function that keeps a large enough number of samples N could be a good 
approximation to the ideal low-pass filter. Figure 5.22 shows the magnitude of the frequency 
response of such a truncated sine function for different values of N. While the approximation 
gets better for larger N, the overshoot near ro0 doesn't go away and in fact stays at about 9% 
of the discontinuity even for large N. This is known as the Gibbs phenomenon, since Yale 
professor Josiah Gibbs first noticed it in 1899. 

0.5 

0 [__......L. _ __;!.___......L. __ !...-_....!.-~~-=..l--.=....t..--.!,..._-....J 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

(dB) 

Nonnalized Frequency 

Figure 5.22 Magnitude frequency response of the truncated sine signal (N=200) for 
Wa = ,r / 4 . It is an approximation to the ideal low-pass filt_er, though we see lh_at. overshoots 
are present near the transition. The first graph is linear magmtude and the second 15 m dB. 

In computing the truncated sine function, we have implicitly rnultip_lied the id_eal low­
pass filter, the sine function, by a rectangular window. In. the _so-call~d wm~ow desi?n filter 
design method, the filter coefficients are obtained by muluplymg the ideal smc function by a 
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tapering window function, such as the Hamming window. The resulting frequency res 
is the convolution of the ideal lowpass filter function with the transfonn of the wt~nse 
(shown in Figur~ ~.23), and it does not exhibit the overshoots in Figure 5.22, at the ex:e:; 
of a slower transition. 

5.4.3.4. Parks McClellan Algorithm 

While the window design method is simple, it is hard to predict what the final response will 
be. Other methods have been proposed whose coefficients are obtained to satisfy some con­
straints. If our constraints are a maximum ripple of o P in the passband ( 0 ~co< m ), and a 
minimum attenuation of 8, in the stopband ( m, :5 m < n ), the optimal solution is ~iven by 
the Parks McClellan algorithm [14]. 

The transfonnation 

X = COS(J) 

maps the interval OS m S ,r into -1 S x :SI. We note that 

cos(nm) = T,,(cosm) 

(5.119) 

(5.120) 

1 r===============::::::====::::::=----:,---.----,~-.----,---, 

\ .~ 0.5 · 

0 L- _ __:L..__-!,.__._!. __ .!..-_....!... _ _...,: __ ..:..... ______ ~:::-----:" 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

0 ;:========::::====::::====:::====----.---.---:-----r--:-""] 
(dB) -50 -

Normalized Frequency 

Figure 5.23 M · d . d "th th window de· . agrutu e frequency response of a low-pass filter obtame WI e th 
sign m~th~d and a Hamming window (N = 200). The first graph is linear magnitude and e 
second 1s m dB. 
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wher~ T,,(x) is the n'h-order Chebychev polynomial. The first two Chebychev polynomials 
are given by 1"o (x) = I and 7; (x) = x. If we add the following trigonometric identities 

cos(n+ !)co= cosnrocos<o-sin nwsinro 

cos(n -1 )ro = cos nro cos w + sin n<o sin w 

and use Eqs. (5.119) and (5.120), we obtain the following recursion formula: 

T,,+1 {x) = 2xT,, (x) -T,,_1 (x) for n > 1 

(5.121) 

(5.122) 

Using Eq. (5.120), the magnitude response of a linear phase Type-I filter in Eq. 
(5.112) can be expressed as an L'h-order polynomial in cosro: 

l 

A(co) = ~>t(cosw)* (5.123) 
kaO 

which, using Eq. (5.119) results in a polynomial 

L 

P(x) = I,akx* (5.124) 
k=O 

Given that a desired response is D(x) = D(cosw), we define the weighted squared er-
ror as 

E(x) = E(cosco) = W(cosco)[D(cosco)-P(cosw)] = W(x)[D(x)-P(x)] (5.125) 

where W(cosco) is the weighting in w. A necessary and sufficient condition for this 
weighted squared error to be minimized is to have P(x) alternate between minima and 
maxima. For the case of a low-pass filter, 

~

. I cos co P S cos w S 1 
D(cosw) = .o -1 S cosw S cosw, 

and the weight in the stopband is several times larger than in the passband. 

(5.126) 

These constraints and the response of a filter designed with such a method are shown 
in Figure 5.24. We can thus obtain a similar transfer function with fewer coefficients using 
this method. 
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0 

-20 · 

40 . 
{dB) 
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-100 
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Nonnalized Frequency 

Figure 5.24 Magnitude frequency response of a length-19 lowpass filter designed with the 
Parks McClellan algorithm. 

5.4.4. IIR Filters 

Other useful filters are a function of past values of the input and also the output 

N .'-I 

y[n] = ~:,aty[n-k]+ ~),x[n-r] (5.127) 
k:el r=O 

whose z-transfonn is given by 

M Lb -, 
H(z) = Y(z) = , .. o ,z 

X(z) l "t' -• - .L.Ja;_Z 

(5.128) 

k=I 

which in tum can be expressed as a function of the roots of the numerator c, (called zeros), 
and denominator d" (called poles) as 

(5.129) 

It is not obvious what the impulse response of such a system is by looking at eilher Eq. 
<5-128) 0_r Eq. (5.129). To do that, we can compute the inverse z-transfonn of Eq. (5.129)- If 
M < N m Eq. (5.129), H(z) can be expanded into partial fractions (see Section 5.2.3.3) as 

(5.130) 
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and if M~N 

(5.131) 

which we can now compute, since we know that the inverse .;;-transform of 
Hk (z) = Ak l(l-dkz-1

) is 

hk [n] = { Akd;'u[n] I dk I< I 
-A*d;'u[-n-1] Id* l>l (5.132) 

so that the convergence region includes the unit circle and therefore hk[nJ is stable. There­
fore, a necessary and sufficient condition for H(z) lo be stable and causal simultaneously is 
that all its poles be inside the unit circle: i.e., I dk I< 1 for all k, so that its impulse response is 
given by 

,\' 

h[n] = B., + IA1d;u[n] (5.133) 
k=I 

which has an infinite impulse response, and hence its name. 
Since UR systems may have poles outside the unit circle, they are not guaranteed to be 

stable and causal like their FIR counterparts. This makes IIR filter design more difficult, 
since only stable and causal filters can be implemented in practice. Moreover, unlike FIR 
filters, IlR filters do not have linear phase. Despite these difficulties, UR filters are popular 
because they are more efficient than FIR filters in realizing steeper roll-offs with fewer 
coefficients. In addition, as shown in Chapter 6, they represent many physical systems. 

5.4.4.1. First-Order IIR Filters 

An important type of IIR filter is the first-order filter of the form 

y[n] = Ax[n]+ay[n-1] 

for a real. Its transfer function is given by 

A 
H(z) =- _

1 1-az 

(5. I 34) 

(5.135) 

This system has one pole and no zeros. As we saw in our discussion of z-transfonns in 
Section 5.2.3, a necessary condition for this system to be both stable and causal is that 
I a I< 1. Since for the )ow-pass filter case O < a < 1 , it is convenient to define a= e-h where 
b > 0. In addition, the corresponding impulse response is infinite: 

(5.136) 
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whose Fourier transform is 

(5.137) 

and magnitude square is given by 

(5. 138) 

which is shown in Figure 5.25 for a > 0 , which corresponds to a low-pass filter. 

The bandwidth of a low-pass filter is defined as the point where its magnitude square 
is half of its maximum value. Using the first-order Taylor approximation of the exponential 
function, the following approximation can be used when b ~ 0 : 

(5.139) 

If the bandwidth rob is also small, we can similarly approximate 

(5.140) 

20 I 
15 

10 

(dB) 5 -

0 -

-5 

a.= 0.3 
,, /_ a.= 0-6 a== 0.9 ------------- !:- t:::_ ~:.,.::.: ... :.:..f ---------. ------------- ---------=:::::::::::·.::: .. , ----...... _ .. ,.,.,,__ ___ _ 

-10 
0 0.05 0.15 0.2 0.25 0.3 0.1 0.35 0.4 0.45 0.5 

Normalized Frequency 

Figure 5.25 Magnitude frequency response of the first-order IIR filter. 
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so that for (J)b = b we have I H(e1
b) f:::::: 0.51 H(e10) 1

2
• In other words, the bandwidth of this 

filter equals b, for sma~I values of b. The relative error in this approximation9 is smaller 
than 2% fo~ b < 0:5, which corresponds to 0.6 <a< l. The relationship with the unnormal­
ized bandwidth B 1s 

(5.141) 

For a< 0 it behaves as a high-pass filter, and a similar discussion can be carried out. 

5.4.4.2. Second-Order IIR Filters 

An important type of IlR filters is the set of second-order filters of the fonn 

y[n]= Ax[n]+a1y(n-1]+a2y[n-2] 

whose transfer function is given by 

(5.142) 

(5.143) 

This system has two poles and no zeros. A special case is when the coefficients A, 
a1, and a2 are real. In this case the two poles are given by 

(5.144) 

which for the case of a: + 4a2 > 0 yields two real roots, and is a degenerate case of two 
first-order systems. The more interesting case is when a: + 4a2 < 0 . In this case we see that 
the two roots are complex conjugates of each other, which can be expressed in their magni­
tude and phase notation as 

(5.145) 

As we mentioned before, a > O is a necessary and sufficient condition for the poles to be 
inside the unit circle and thus for the system to be stable. With those values, the z-transforrn 
is given by 

(5.146) 

In Figure 5.26 we show the magnitude of its Fourier transform for a value of a and (J)o . We 
see that the response is centered around a>

0 
and is more concentrated for smaller values of 

'The exact value is wb = arccos[2-coshb J , where coshb = ( eb +e-6 )12 is the hyperbolic cosine. 
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(J • This is a type of bandpass filter, since it favors frequencies in a band 
left to the reader as an exercise to show that the bandwidth '0 is approxim::i~d to· It is 
smaller the ratio a I ro0 , the sharper the resonance. The filter coefficients c b a · lne 

· d b d "d h B an e expres as a function of the unnormahze an wt t and resonant frequency F and the sa ~ 
frequency F. (aJI expressed in Hz) as mphng 

a
1 

=2e-1rsi F, cos(2nFIF.) 

-2,rBIF, 
a2 =--e 

(5.147) 

(5.148} 

These types of systems are also known as second-order resonators and will be of great 
for speech synthesis (Chapter 16), particularly for formant synthesis. use 

30r----.--~-.---.---.--~--.--.--~-. 

10 
(dB) 

-10 

-20 L,__ _ _!_ _ ____,:_ __ ..:.,..__.....:... __ .,___.....,_ _ ____. _______ ---:---:--

O 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Normalized Frequency 

Figure 5.26 Frequency response of the second-order IIR filter for center frequency of 

F = O.IF, and bandwidth B = 0.01.F,. 

S.S. DIGITAL PROCESSING OF ANALOG SIGNALS 

To use digital signal processing methods, it is necessary to convert the speech signal .x(t}' 
whic? is analog, t~ a digital signal x[n], which is formed by periodically sampling tbe ana­
log signal x(t) at intervals equally spaced T seconds apart: 

x[n] = x(nT) (5.149) 

where T is defined as the sampling period, and its inverse F. = I IT as the sampu%:; 
quency · In the speech applications considered in this book F can range from 8000. x· 
tel~phone applications to 44,100 Hz for high-fidelity audio ~pplications. This secoon ebe 
plams the sampling theorem, which essentially says that the analog signal x(t) can 

10 

The bandwidth of a bandpass filte · th . ared al es 
r 15 e region between half maximum magnitude squ " u · 
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uniquely recovered given its digital signal x(n] if the analog signal x(t) has no energy for 
frequencies above the Nyquist frequency Fs 12 . 

We not only prove the sampling theorem, but also provide great insight into the ana­
log-digital conversion, which is used in Chapter 7. 

5.5.1. Fourier Transform of Analog Signals 

The Fourier transform of an analog signal x(t) is defined as 

X(Q) = J: x(J)e-1°' dt (5.150) 

with its inverse transform being 

I f- ·n, x(t)=- X(.Q)e1 df>. 
2n -

(5.151) 

They are transform pairs. You can prove similar relations for the Fourier transform of 
analog signals as for their digital signals counterpart. 

5.5.2. The Sampling Theorem 

Let's define xP(t) 

xp(t) = x(t)p(t) 

as a sampled version of x(t) , where 

-
p(t) = 2, 8(1-nT) 

(5.152) 

(5.153) 

where 8(t) is the Dirac delta defined in Section 5.3.2.1. Therefore, xp(t) can also be ex­

pressed as 

x/t) = :t x(t)o(t-nT) = I, x(nT)o(t-nT) = I, x[n]o(t-nT) 
n•-

(5.154) 

n•-

after using Eq. (5.149). In other words, xP(t) can be uniquely specified given the digital 

signal x[ n] . 
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Using the modulation property of Fourier transfonns of analog signals, we obtain 

X (.Q) = -
1 

X(Q) * P(.Q) 
P 2n (5.155) 

Following a derivation similar to that in Section 5.3.2.2, one can show that the tr 
fonn of the impulse train p(t) is given by ans-

2n • 
P(.Q)=-I <5(.Q-k.Q,) 

T t .. -

where n, = 2-,r F, and F, = 1 / T , so that 

From Figure 5.27 it can be seen that if 

X(Q) = o for In!> n. I 2 

then X(.Q) can be completely recovered from X P (Q) as follows 

X(Q) =~. (.Q)Xp(.Q) 

-0, -Q/2 np n, 
Figure 5.27 X(O), XP(Q) for the case ofno aliasing and aliasing. 

(5.156) 

(5.157) 

(5.158) 

(5.159) 
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where 

Rn, (Q) = .1

1
·r
0 

In I< n. 12 
otherwise 

245 

(5. I 60) 

is an ideal lowpass filter. We can also see that if Eq. (5.158) is not met, then aliasing will 
take place and X(Q) can no longer be recovered from XP(Q) . Since, in general, we cannot 
be certain that Eq. (5.158) is true, the analog signal is low-pass filtered with an ideal filter 
given by Eq. (5.160), which is called anti-aliasing filter, prior to sampling. Limiting the 
bandwidth of our analog signal is the price we have to pay to be able to manipulate it digi­
tally. 

The inverse Fourier transform of Eq. (5.160), computed through Eq. (5.151), is a sine 
function 

sin(irtlT) 
r. (t) = sinc(t IT)=----
r rct/T 

so that using the convolution property in Eq. (5.159) we obtain 

- -
x(t)=r7 (t)*x/t)=r7 (t)* 2, x[k]8(t-kT)= L x[k]r7 (t-kT) 

~~- k~-

(5.161) 

(5.162) 

The sampling theorem states that we can recover the continuous time signal x(t) just 
from its samples x[n] using Eqs. (5.161) and (5.162). The angular frequency n, = 2n:F, is 
expressed in terms of the sampling frequency Fs . T = l IF, is the sampJing period, and 
F, /2 the Nyquist frequency. Equation (5.162) is referred to as band/imited interpolation 
because x(t) is reconstructed by interpolating x[n] with sine functions that are bandlimited. 

Now let's see the relationship between Xr(.Q) and X(ei"'), the Fourier transform of 
the discrete sequence x[n]. From Eq. (5.154) we have 

-XP(Q) = L x[n]e-inr,r (5.163) 

so that the continuous transform X/.Q) equals the discrete Fourier transform X(ei(i)) at 
w =QT. 

5.5.3. Analog-to-Digital Conversion 

The process of converting an analog signal x(t) into a digital signal x[n] is called Analog­
to-Digital conversion, or AID for short, and the device that does it is called an Analog-to­
Digital Converter. In Section 5.5.2 we saw that an ideal low-pass anti-aliasing filter was 
required on the analog signal, which of course is not realizable in practice so that an ap­
proximation has to be used. In practice, sharp analog filters can be implemented on the same 

Amazon/VB Assets 
Exhibit 1012 

Page 271



246 Digital Signal Proco~;­-,mg 

chip using switched capacitor filters, which have attenuations above 60 dB in the sto b 
so that aliasing tends not to be an important issue for speech signals. The passbanl and 

. h . . f' f 1s not exactly flat, but this agam does not have muc s1gm 1cance or speech signals (for oth . 

. . . d b . er sig-
nals, such as those used m modems, this issue nee s to e studied more carefully). 

Although such sharp analog filters are possible, they can be expensive and difficult 
implement. One common solution involves the use of a simple analog low-pass filter witht~ 
large attenuation at MF, I 2, a multiple of the required cutoff frequency. Then over­
sampling is done at the new rate MF_., followed by a sharper digital filter with a cut-off fre­
quency of F, /2 and downsampling (see Section 5.6). This is equivalent to having used a 
sharp analog filter, with the advantage of a lower-cost implementation. This method also 
allows variable sampling rates with minimal increase in cost and complexity. This topic is 
discussed in more detail in Chapter 7 in the context of sigma-delta modulators. 

In addition, the pulses in Eq. (5.59) cannot be zero length in practice, and therefore the 
sampling theorem does not hold. However, current hardware allows the pulses to be small 
enough that the analog signal can be approximately recovered. The signal level is then main­
tained during T seconds, while the conversion to digital is being carried out. 

A real AID converter cannot provide real numbers for x[n], but rather a set of integers 
typically represented with 16 bits, which gives a range between -32,768 and 32,767. Such 
conversion is achieved by comparing the analog signal to a number of different signal levels. 
This means that quantization noise has been added to the digital signal. This is typically not 
a big problem for speech signals if using 16 bits or more since, as is shown in Chapter 7, 
other noises will mask the quantization noise anyway. Typically, quantization noise be­
comes an issue only if 12 or fewer bits are used. A more detailed study of the effects of 
quantization is presented in Chapter 7. 

Finally, AID subsystems are not exactly linear, which adds another source of distor­
tion. This nonlinearity can be caused by, among things, jitter and drift in the pulses and un­
evenly spaced comparators. For popular AID subsystems, such as sigma-delta AID, an offset 
is typically added to x[ n] , which in practice is not very important, because speech signals 
do not contain information at f = 0, and thus can be safely ignored. 

5.5.4. Digital-to-Analog Conversion 

The process of converting the digital signal x[n] back into an analog x(t) is called digital­
to-analog conversion, or DIA for short. The ideal band-limited interpolation requires ideal 
sine functions as shown in Eq. (5.162), which are not realizable. To convert the digital signal 
to analog, a zero-order hold filter 

ho(t)== J l O<t<T (5.164) 
l O otherwise 

is often used which f ch a 
filter is give~ by produces an analog signal as shown in Figure 5.28. The output O su 
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.. .. 
x0 (t) = h0 (t)* L x[n]8(t-nT) = L x[n]ho(t-nT) 

n=-oo 11-::-00 

(5.165) 

The Fourier transform of the zero-hold filter in Eq. (5.164) is, using Eq. (5.150), 

(n 2sin(.QT /2) -jQT.'2 
H0 ) = .Q e (5.166) 

and, since we need an ideal lowpass filter to achieve the band-limited interpolation of Eq. 
(5.162), the signal x0 (t) has to be filtered with a reconstruction filter with transfer function 

. 1· QT /2 einr,2 I.QI< Jr IT 
H, (.Q) = sin(QT / 2) 

o jnj >n!T 
(5.167) 

In practice, the phase compensation is ignored, as it amounts to a delay of T/2 seconds. 
Its magnitude response can be seen in Figure 5.29. In practice, such an analog filter is not 
realizable and an approximation is made. Since the zero-order hold filter is already low-pass, 
the reconstruction filter doesn't need to be that sharp. 

-3T 

---

-2T -T 
0 \J~~~ 3T 

~ ~IL__. 
Figure 5.28 Output of a zero-order hold filter. 

,r 

T 

,r 

T 

Figure 5.29 Magnitude frequency response of the reconstruction filter used in digital-to­

analog converters after a zero-hold filter. 
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Jn the above discussion we note that practical ND and DIA systems introd . 
h h · · d ·ct uce d1stor tions which causes us to wonder w et er 1t 1s a goo 1 ea to go through this pro . -

.' . . , . cess Just to 
manipulate d1g1tal signals. It turns out that for most speech processmg algorithms d . 

f . . h d. . I . escnbed 
in Chapter 6 the advantages o operating wit 1g1ta signals outweigh the disadva ta 

. ' . . n ge of 
the distortions descnbed above. Moreover, commercial ND and DIA systems are su h th 
the errors and distortions can be arbitrarily small. The fact that music in digital fonna~ (as ;t 
compact discs) has won out over analog fonnat (cassettes) shows that this is indeed the n 

b f h b l
. . . case, 

Nonetheless, it is important to e aware o t e a ove 1m1tat1ons when designing a system. 

5.6. MULTIRATE SIGNAL PROCESSING 

The tenn Multirate Signal Processing refers to processing of signals sampled at different 
rates. A particularly important problem is that of sampling-rate conversion. It is often the 
case that we have a digital signal x[ n] sampled at a sampling rate F,, and we want to obtain 
an equivalent signal y[n] but at a different sampling rate F.'. This often occurs in AID sys­
tems that oversample in order to use smaller quantizers, such as a delta or sigma delta­
quantizer (see Chapter 7), and a simpler analog filter, and then have to downsample the sig­
nal. Other examples include mixing signals of different sampling rates and downsampling to 
reduce computation (many signal processing algorithms have a computational complexity 
proportional to the sampling rate or its square). 

A simple solution is to convert the digital signal x[n] into an analog signal x(t) with 
a DIA system running at F, and then convert it back to digital with an AID system running 
at F;. An interesting problem is whether this could be done in the digital domain directly, 
and the techniques to do so belong to the general class of multi-rate processing. 

5.6.1. Decimation 

If we want to reduce the sampling rate by a factor of M, i.e., T' =MI, we take every M 
samples. In order to avoid aliasing, we need to lowpass filter the signal to bandlimit it to 
frequencies 1/ T' . This is shown in Figure 5.30, where the arrow pointing down indicates 
the decimation. 

x[n] 

Figure 5.30 Block diagram of the decimation process. 

Since the output is not desired at all instants n but only every M samples, the cOJnpud· 
· b ' first an tation can e reduced by a factor of Mover the case where lowpass filtering is done 1 

decimation later. To do this we express the analog signal x,(t) at the output of the lowpass 
filter as 
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.. 
x1(t) = L x[k]r7 ,(t -kT) 

j:;::-
(5.168) 

and then look at the value t' = nT' . The decimated signal y[n] is then given by 

(5.169) 

which can be expressed as 

.. 
y[ n] = L x[ k ]h [ Mn - k] 

.t5-
(5.170) 

where 

h[n] = sinc(n IM) (5.171) 

In practice, the ideal lowpass filter h[n] is approximated by an FIR filter with a cutoff 
frequency of l/(2M). 

5.6.2. Interpolation 

If we want to increase the sampling rate by a factor of N, so that T' =TIN, we do not have 
any aliasing and no further filtering is necessary. In fact we already know one out of every N 
output samples 

y[Nn] = x[n] (5.172) 

and we just need to compute the (N -l) samples in-between. Since we know that x[n] is a 
bandlimited signal, we can use the sampling theorem in Eq. (5.162) to reconstruct the analog 
signal as 

.. 
x1(t) = L x(k]r7 (t-kT) (5.173) 

k-

and thus the interpolated signal y[n] as 

- .. (n-kN) y[n]=x(nT')= k~ x[k]r7 (nT'-kT)= J;_ x[k]sinc ~ (5.174) 

Now let's define 
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{ 
Nk] k'=Nk 

x'[k'J = .x[o otherwise 

which, inserted into Eq. (5.174), gives 

y[n] = f x'[k)inc((n-k')/ N) 
k'-=-'"""'110 

Digital Signal Processing 

(5.175) 

(5.176) 

This can be seen in Figure 5.31, where the block with the arrow pointing up imple­
ments Eq. (5.175). 

Equation (5.174) can be expressed as 

y[n] = L x[k]h[n-kN] 
.1: .. -

where we have defined 

h[n]=sinc(nl N) 

(5. I 77) 

(5. 178) 

Again, in practice, the ideal low-pass filter h[n] is approximated by an FIR filter with a 
cutoff frequency of 1/(2N). 

x[n] --"I N + rl r,ln] ~ y[n] 

Figure 5.31 Block diagram of the interpolation process. 

5.6.3. Resampling 

~o resample the signal so that T' = TM IN, or P:' = F: (NIM), we can first upsample the 
signal by N and then downsample it by M. However, there is a more efficient way. Proceed­
ing similarly to decimation and interpolation, one can show the output is given by 

-
y[n] = L, x[k]h[nM -kN] 

k=-

(5.179) 

where 

h[n] = sincl' n J 
max(N,M) 

(5.180) 
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for the ideal case. In practice, h[n] is an FIR filter with a cutoff frequency of 
1/ (2 max(N, M)). We can see that Eq. (5.179) is a superset of Eqs. (5.170) and (5.177). 

5.7. FILTERBANKS 

A filterbank is a collection of filters that span the whole frequency spectrum. In this section 
we describe the fundamentals of filterbanks, which are used in speech and audio coding, 
echo cancellation, and other applications. We first start with a filterbank with two equal 
bands, then explain multi-resolution filterbanks, and present the FFf as a filterbank. Finally 
we introduce the concept of lapped transforms and wavelets. 

5.7.1. Two.Band Conjugate Quadrature Filters 

A two-band filterbank is shown in Figure 5.32, where the filters fo[n] and g
0
[n] are low­

pass filters, and the filters J;[n] and g 1[n] are high-pass filters, as shown in Figure 5.33. 
Since the output of fo[n] has a bandwidth half of that of x[n], we can sample it at half the 
rate of x[n]. We do that by decimation (throwing out every other sample), as shown in Fig­
ure 5.32. The output of such a filter plus decimation is x0 [m]. Similar results can be shown 
for _t;[n] and x1[n]. 

For reconstruction, we upsample x0 [m], by inserting a O between every sample. Then 
we low-pass filter it with filter g 0 [n] to complete the interpolation, as we saw in Section 
5.6. A similar process can be done with the high pass filters J;[n] and g1[n]. Adding the 
two bands produces x[n], which is identical to x[n] if the filters are ideal. 

-··-· .. -····-.. ·-------·--·, 
' I I I 
j j x0[m] 

x(n)__._ ........ ~ L2 i-;....--
fo(n) T 

fi(n) 81(n) 

I 
I 

Analysis I :..- -----------' 
Synthesis 

Figure 5.32 Two-band filterbank. 

In practice, however, ideal filters such as those in Figure 5.33 are not achievable,_ so 
we would like to know if it is possible to build a filterbank that has ~erfect ~econstruct1on 
with FIR filters. The answer is affirmative, and in this section we descnbe conJugate quadra-

ture filters, which are the basis for the solutions. 
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I 1-----------,-----------, 

0 

0 

fo(n) 
go(n) 

Lowpass filter 

TC I 2 

J;(n) 
g 1(n) 

Highpass filter 

Frequency 
.. 

7t 

Figure 5.33 Ideal frequency responses of analysis and synthesis filters for the two-band filter­
bank. 

To investigate this, Jet's analyze the cascade of a downsampler and an upsampler 
(Figure 5.34). The output y[n] is a signal whose odd samples are zero and whose even sam­
ples are the same as those of the input signal x[n]. 

x[nJ 2 y[nJ 

Figure 5.34 Cascade of a downsampler and an upsampler. 

The z-transform of the output is given by 

..... 
X(z)+X(- z) 

2 

(5.181) 

Using Eq. (5. 181) and the system in Figure 5.32, we can express the z-transform of the 
output in Figure 5.32 as 

X(z) = ( F0 (z)G0 (z); F;(z)G, (z) /X(z) 

' ; +( Fo(-z)G0(z);f;(-z)G1(z) /X(-z) (5.182) 

; 

=( Fo(z)X(z)+:0 (-z)X(-z) jGo(z)+( f;(z)X(z)+ ;;(-z)X(-z) ·1G, (z) 

; ' ; 
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which for perfect reconstruction requires the output to be a delayed version of the input, and 

thus 

F
0
(z)G

0
(z)+ F;(z)G1 (z) = 2z-<L-rJ 

F0 (-z)G0 (z) + F; (-z)G, (z) = 0 
(5.183) 

These conditions are met if we select the so-called Conjugate Quadrature Filters 
(CQF) [17], which are FIR filters that specify J.[n], g0 [n], and g1[n] as a function of 

fo[n] : 

J.[n]=(-lY fo[L-l-n] 

Ko[n] = fo[L-1-n] 

g1[n]=J.[L-l-n] 

where fo[n] is an FIR filter of even length L. The z-transforms of Eq. (5.184) are 

F;(z) = -z-<L-l) F
0
(-z-1) 

G
0
(z) = z-<L-1) F

0
(z-1

) 

G1(z) =-F.i(-z) 

(5.184) 

(5.185) 

so that the second equation in Eq.(5.183) is met if Lis even. In order to analyze the first 

equation in Eq. (5.183), let's define P(z) as 

P(z) = F.i(z)Fa(z-1
) 

p[n] = Lfo[mlfo[m +n] 
(5 .186) 

"' 
then insert Eq. (5.185) into (5.183), use Eq. (5.186), and obtain the following condition: 

P(z)+P(-z)=2 (5.187) 

Taking the inverse z-transfonn of Eq. (5.187) and using Eq. (5.181), we obtain 

J1 n=O 
p[n]=lo n=2k 

(5.188) 

so that all even samples of the autocorrelation of fo[n] are zero, except for n = 0. Since 
fo[n] is a half-band low-pass filter, p[n] is also a half-band low-pass filter. The ideal half-

band filter h[n] 

h[n]= sin(nn/2) 
,rn 

(5.189) 
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satisfies Eq. (5.188), as does any half-band zero-phase filter (a linear phase filter With 
delay). Therefore, the steps to build CQF are no 

I. Design a (2L - 1) tap
11 

half-band linear-phase low-pass filter p[n] with any 
available technique, for an even value of L. For example, one could use th 
Parks McClellan algorithm, constraining the passband and stopband cuto; 
frequencies so that w,, = n - {J)s and using an error weighting that is the same 
for the passband and stopband. This results in a half-band linear-phase filter 
with equal ripple 8 in both bands. Another possibility is to multiply the ideal 
half-band filter in Eq. (5.189) by a window with low-pass characteristics. 

2. Add a value 8 to p[O] so that we can guarantee that P(e1(JJ) ~ O for all a, 
and thus is a legitimate power spectral density. 

3. Spectrally factor P(z) = F0 (z)F0 (z-1
) by computing its roots. 

4. Compute _t;[n], g0 [n] and g,[n] from Eq. (5.184). 

5.7.2. Multiresolution Filterbanks 

While the above filterbank has equal bandwidth for both filters, it may be desirable to have 
varying bandwidths, since it has been proven to work better in speech recognition systems. 
In this section we show how to use the two-band conjugate quadrature filters described in 
the previous section to design a filterbank with more than two bands. In fact, multi­
resolution analysis such as that of Figure 5.35, are possible with bands of different band­
widths (see Figure 5.36). 

One interesting result is that the product of time resolution and frequency resolution is 
constant (all the tiles in Figure 5.37 have the same area), since filters with smaller band­
widths do not need to be sampled as often. Instead of using Fourier basis for decomposition, 
multi-resolution filterbanks allow more flexibility in the tiling of the time-frequency plane. 

xn 
lo lo fo 

f. 

xjn] 

F• 5 35 A I · · · · 'th · gate quadrature igure · na ys1s part of a mult1-resolut1on filterbank designed w1 conJU 
filters. Only f 0[n] needs to be specified. 

11 

A filter with N taps is a filter of length N. 
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0 l 2 3 
0 . .... 0 1t I 8 1t 14 rr./2 Frequency 

1t 

Figure 5.36 fdeal frequency responses of the multi-resolution filterbank of Figure 5.35. Note 
th:it x0 [n] and x1[n] occupy 1/8 of the total bandwidth . 

.0. A 
f f 

... ... .... ... 
t t 

Figure 5.37 Two different time-frequency tilings: the non-uniform filterbank and that obtained 
through :i short-time Fourier transform. Notice that the area of each tile is constant. 

5.7.3. The DFT as a Filterbank 

255 

It turns out that we can use the Fourier transform to construct a filterbank. To do that, we 
decompose the input signal x[n] as a sum of shon-time signals x,Jn] 

(5.190) 

m=-

where xm[nJ is obtained as 

(5,191) 

the product of x[n] by a window function wm[n) of length N. From Eqs. (5.190) and (5.191) 

we see that the window function has to satisfy 

Vn (5.192) 
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If the short-tenn signals xm[n] are spaced M samples apan we d fi 
' e me thew· Jndow 

(5.193) 
where w[n] = 0 for n < 0 and n > N. The windows w,,,[n] overlap in time Whil . . 
Eq. (S.I n). e sausfymg 

Since x'"[ n] has N nonzero values, we can evaluate its length-N DFT as 

N-1 

X'"[k] = ~:X'"[Mm+l]e-Ja,., 
/•O 

N-1 N-1 

= L x[ Mm+ /]w[/]e-1°'•' = L x[ Mm+ l]f. [-/] 
/•O 1=0 

where (J)* = 2nk IN and the analysis filters .f. [/] are given by 

If we define X 1 [ n] as 

oo N-1 

1\[n]=x[n]* f.[n]= L x[n-r]f.[r]= I,x[n+l]J.[-/] 
r=- /=O 

then Eqs. (5.194) and (5.196) are related by 

X'"[k] =Xt[mM] 

(5.194) 

(5.195) 

(5.196) 

(5.197) 

This manipulation is shown in Figure 5.38, so that the OFT output X.,[k] is i\[n] 
decimated by M. 

x[n] --, f,[n] I .i,[n] .. , tM I Xm[k]., 

Figure 5.38 Fourier analysis used to build a linear filter. 

The short-time signal x"'[n] can be recovered through the inverse DFf of X.,[k] as 

N-1 

xm[mM +/] = h[/]LXm[k]efcutl (5.198) 
k=O 

where h[n] has been defined as 

h[n]={l/N 0$n<N 
0 otherwise 

(S.199) 

so that Eq. (5.198) is valid for all values of/, and not just O ~ / < N. 
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Making the change of variables mM +I= n in Eq. (5.198) and inserting it into Eq. 
(5.190) results in 

oo N-1 

x[n] = L h[n-mM]LXm[k]e1"'i(n-m!,I) 
m=- k~o 

N-1 -=LL Xm[k]gk[n-mM] 
(5.200) 

k"Om=--

where the synthesis filters g*[n] are defined as 

(5.201) 

Now, let's define the upsampled version of X"'[k] as 

(5.202) 

which, inserted into Eq. (5.200), yields 

N-1 - N-1 

x[n] =LL Xk[/]gk[n-1] = I,xk[n]* g4[n] (5.203) 

Thus, the signal can be reconstructed. The block diagram of the analysis/resynthesis 
filterbank implemented by the OFT can be seen in Figure 5.39, where xk[m] = Xm[k] and 
x{n] = x[n]. 

x[n] ' 

fo[n] tM 

_t;[n] tM 
x 1[m] 

..---. , . 

JN..[n] t M l xN_,[m] 
I 

Analysis DFf .......... 1 
Synthesis DFf 

i 
I 
I 
i 
I 
I ___ _____ ________ J 

Figure 5.39 A filterbank with N analysis and synthesis filters. 
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For petfect reconstruction we need N ~ M. If w[n] is a rectangular . d 
N W I win ow of I N, the frame rate has to be M = . e can a so use overlapping windows .th ength 

H . H . . d WI N - 2M (50% overlap), such as ammmg or annmg wm ows, and still get perfect r - . 
· · d · h d econstructto The use of such overlappmg wm ows mcreases t e ata rate by a factor of 2 b h n. 

I I k be f ' ut t e anal sis filters have much less spectra ea age cause o the higher attenuation f th Y· 
ming/Hanning window outside the main lobe. 

0 
e Ham. 

5.7.4. Modulated Lapped Transforms 

The filterbank of Figu_r~ 5.39 is useful because, as_ we see in Chapter 7, it is better 10 quan­
tize the spectral coefficients than the waveform duectly. If the DFf coefficients are quan­
tized, there will be some discontinuities at frame boundaries. To solve this problem we can 
distribute the window w[n] between the analysis and synthesis filters so that 

(5.204) 

so that the analysis filters are given by 

(5.205) 

and the synthesis filters by 

(5.206) 

This way, if there is a quantization error, the use of a tapering synthesis wi.ndow will 
substantially decrease the border effect. A common choice is wJn] = w,[n], which for [he 
case of w[n] being a Hanning window divided by N, results in 

} . / 1l'n l 
w0 [n] = w,[n] = r.; sml - I 

'\JN \ N I 
for O 5:. n < N 

t5.L07) 

so that the analysis and synthesis filters are the reversed versions of each other: 

(5.208) 

whose frequency response can be seen in Figure 5.40. 
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dB 

-40 

.50 L-.-.....:_-1 ___ E_._.:,_ ...... __:____:u....l--SL--..Ui.__.:.....IL.....J 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
normalized frequency 

Figure 5.40 Frequency response of the Lapped Orthogonal Transform filterbank. 

The functions h;'[n] in Eq. (5.208) are sine modulated complex exponentials, which 
have the property 

h;''2 [n] = .fi.h:' [2n] (5.209) 

which is a property typical of functions called wavelets, i.e., they can be obtained from each 
other by stretching by 2 and scaling them appropriately. Such wavelets can be seen in Fig­
ure 5.41. 

If instead of modulating a complex exponential we use a cosine sequence, we obtain 
the Modulated Lapped Transform (MLT) [7], also known as the Modified Discrete Cosine 
Transform (MDCT): 

k=3 k= 10 

~:~ !<ii lli ~:;§lill/\NJ]M 
0 50 100 0 50 100 

o.o~ 1· fi~____.., o.o~ l. ,4JITT~~'--~fil - ~ ~fil r m~~ L-.... ___ _,__ _______ ....... 

0 50 100 0 50 100 

Figure 5.41 Iterations of the wavelet hJ" [ n] for several values of k and N. 
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r k = 0 1 ... M -1 and n = 0, 1, · ·, 2M -1. There are M filters with 2M taps each 
10r , , , ] h . fi , and 
h[n] is a symmetric window h[n] = h[2M -1-n t at sat1s es 

h2 
[ n] + h2 [n + M] = 1 (5.211) 

where the most common choice for h[n] is 

h[n]=sin[(n+.!_ l 1'] 
\ 2 Jui_ (5.212) 

A fast algorithm can be used to compute these filters based on the DCT, which is called the 
Lapped Orthogonal Transform (LOT). 

5.8. STOCHASTIC PROCESSES 

While in this chapter we have been dealing with deterministic signals, we also need to deal 
with noise, such as the static present in a poorly tuned AM station. To analyze noise signals 
we need to introduce the concept of stochastic processes, also known as random processes. 
A discrete-time stochastic process x[n], also denoted by xn, is a sequence of random vari­
ables for each time instant n. Continuous-time stochastic processes x(t), random variables 
for e_ach value oft, will not be the focus of this book, though their treatment is similar to th~t 
0 ~ ~isc:ete-time processes. We use bold for random variables and regular text for detenru· 
mshc signals. 

Here, we cover the statistics of stochastic processes, defining stationary and ergodic 
processes and the output of linear systems to such processes. 

Example 5.1 

We can define a random process x[ n] as 

x[n] = cos[ron +<p] (5.213) 

where cp is real rand · . Jiza· 
tions of this rand om vanable with a unifonn pdf in the interval (-tr' TC) . Several rea 

om process are displayed in Figure 5.42. 
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Figure 5.42 Several realizations of a sinusoidal random process with a random phase. 

5.8.1. Statistics of Stochastic Processes 

In this section we introduce several statistics of stochastic processes such as distribution, 
density function, mean and autocorrelation. We also define several types of processes de­
pending on these statistics. 

For a specific n, x[n] is a random variable with distribution 

F(x,n) = P{x[n] ~ x} (5.214) 

Its first derivative with respect to xis the first-order density function, or simply the probabil­

ity density function (pdf) 

f(x,n) = dF~,n) 

The second-order distribution of the process x[ n] is the joint distribution 

F(x"x2 ;n"n2 ) = P{x[n1] $: x1, x[n2 ] $: x2 } 

of the random variables x[ n
1
] and x[ n2 ] • The corresponding density equals 

(5.215) 

(5.216) 

(5.217) 

A complex random process x[ n] = x, [ n] + jx;( n] is specified in tenns of the joint sta­

tistics of the real processes x [n] and x;[n]. 
The mean µ[n] of x[~], also called first-order moment, is defined as the expected 

value of the random variable x[n] for each value of n: 

µ..[n] = E { x[n]} = J.:. x[n]/(x,n)dx 
(5.218) 
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The autocorrelation of complex random process x[ n] , also called second-order 
momen~ · 

defined as 1s 

(5.219) 

which is a statistical average, unlike the autocorre]ation of a deterministic signal defi d . . ~m 
Eq. (5.45), which was an average over time. 

Example 5.2 

Let's look at the following sinusoidal random process 

x[n] = r cos[ron+<p] (5.220) 

where rand <p are independent and <p is uniform in the interval (-1t,1r). This process is 
zero-mean because 

µ_.[n] = E{rcos[eon +q,]} = E {r} E {cos[COn+<p]} =O 

since r and <p are independent and 

f
lt I 

E{cos[ron+<p]} = cos[wn +<p]-d<p = 0 
-,r 21C 

Its autocorrelation is given by 

R .... [n1, n2 ] = E{r2}J1r cos[ron1 + q> ]cos[a>n2 + <p ]-
1
-dq, 

-,r 21C 

=.!_E{r2 }Jir {cos[m(n1 +n2 )+q,]+cos[ro(n2 -n,)]}-1 
dq, 

2 ~ ~ 

1 
=-E{r2 }cos[co(n2 -n1)] 2 

(5.221) 

(5.222) 

(5.223) 

which only depends on the time difference n2 n1 • -

An important property of a stochastic process is that its autocorrelation R,..[ n, ,n2l is a 

positive-definite function, i.e., for any a"ai 

(5.224) 

which is a consequence of the identity 

(5.225) 
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Similarly, the autocovariance of a complex random process is defined as 

The correlation coefficient of process x[n] is defined as 

(5.227) 

An important property of the correlation coefficient is that it is bounded by 1: 

(5.228) 

which is the Cauchy-Schwarz inequality. To prove it, we note that for any real number a 

0 ~ E{fa(x[n, ]-µ[n,])+ (x[n2 ]-µ[n2 ])l2
} 

= a2C..,.[n1 ,n1 ]+ 2aC..,.[n1 ,n2 ] + C..,.[n2 ,n2 ] 

(5.229) 

Since the quadratic function in Eq. (5.229) is positive for all a, its roots have to be com­
plex, and thus its discriminant has to be negative: 

(5.230) 

from which Eq. (5.228) is derived. 
The cross-correlation of two stochastic processes x[n] and y[nJ is defined as 

(5.231) 

where we have explicitly indicated with subindices the random process. Similarly, their 
cross-covariance is 

(5.232) 

Two processes x[n] and y[n] are called orthogonal iff 

(5.233) 

They are called uncorrelated iff 

(5.234) 
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Independent processes. If two processes x[n] and y[n] are such that the random . 
ables xfn1J,x[112],···,X[n,,,], and y[11;],y[n;J,--·,y[n:nJ _are mutually independent, then~: 

Processes are called independent. If two processes are independent, then they are also u ncor­
related, though the converse is not generally true. 

Gaussian processes. A process x[n] is called Gaussian if the random variabl 
x[n,],x[n2J,---,x[11,,,] are jointly Gaussian for any m and n"n2 ,--·,nm. If two processes a;: 

Gaussian and also uncorrelated, then they are also statistically independent. 

5.8.2. Stationary Processes 

Stationary processes are those whose statistical properties do not change over time. While 
truly stationary processes do not exist in speech signals, they are a reasonable approximation 
and have the advantage of allowing us to use the Fourier transforms defined in Section 5.2.l. 
In this section we define stationarity and analyze some of its properties. 

A stochastic process is called strict-sense stationary (SSS) if its statistical propenies 
are invariant to a shift of the origin: i.e., both processes x[n] and x[n+/] have the same 
statistics for any /. Likewise, two processes x[n] and y[n] are called jointly strict-sense 
stationary if their joint statistics are the same as those of x[n + l] and y[ n + I] for any /. 

From the definition, it follows that the mth-order density of an SSS process must be 
such that 

(5,235) 

for any /. Thus the first-order density satisfies f(x,n) = f(x,n+l) for any /, which means 
that it is independent of n: 

f(x,n) = f(x) (5.236) 

or, in other words, the density function is constant with time. 
Similarly, f(x"x2 ;n1 +l,n2 +I) is independent of/, which leads to the conclusion 

(5.237) 

or, in other words, the joint density of x[n] and x[n+m] is not a function of n, only of m, 
the time difference between the two samples. 

Let's compute the first two moments of a SSS process: 

E{x[nl} = J x[n]f(x{n]) = f xf(x) = µ (5.238) 

E{x[n + m]x"[n]} == J x[n + m]x"[n]f(x[n + m],x[n]) = R.a[m] (5.239) 

or, in other words its mean · . . . . 1 on m. 
' 18 not a function of time and its autocorrelation depends on Y 
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A stochastic process x[n] that obeys Eq. (5.238) and (5.239) is called wide-sense sta­
tionary (WSS). From this definition, a SSS process is also a WSS process but the converse 
is not true in general. Gaussian processes are an important exception, and it can be proved 
that a WSS Gaussian process is also SSS. 

For example, the random process of Eq. (5.213) is WSS, because it has zero mean and 
its autocorrelation function. as given by Eq. (5.223), is only a function of m = n, -n~. By 
setting m = 0 in Eq. (5.239) we see that the average power of a WSS stationary process 

E{jx[nt} = R[O] (5.240) 

is independent of n. 
The autocorrelation of a WSS process is a conjugate-symmetric function, also referred 

to as a Hermitian function: 

R[-m] = E{x[n- m]x' [n]} = E{x[n]x'[n+ m]} = R·[m] 

so that if x[n] is real, R[m] is even. 
From Eqs. (5.226), (5.238), and (5.239) we can compute the autocovariance as 

C[m] = R[m]-jµj2 

and its correlation coefficient as 

r[m] = C[m]/ C[O] 

(5.241) 

(5.242) 

(5.243) 

Two processes x[n] and y[n] are called jointly WSS if both are WSS and their cross­

correlation depends only on m = n1 - t½_ : 

Riy[m] =E{x[n +m]y"[n]} 

C.,.[m] =R."'[m]-µ.rµ; 

5.8.2.1. Ergodic Processes 

(5.244) 

(5.245) 

A critical problem in the theory of stochastic processes is the estimation of _the~r various 
statistics such as the mean and autocorrelation given that often only one reahzat1on of the 
random ~rocess is available. The first approximation would be to replace the expectation in 

Eq. (5.218) with its ensemble average: 

1 M-1 

µ[n] =-I,x;[n] 
M i=O 

where x,[n] are different samples of the random process. 

(5.246) 
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As an example, let x[n] be the frequency-modulated (FM) random proce . 
ss received 

by a FM radio receiver: 

x[ n] = a[ n] + v[ n] 
(5.247) 

which contains some additive noise v[n]. The realization x,[n] received by receiver i .
11 .. []' . 'Wk h W1be different from the realization x1 n 1or receiver J. e now t at each signal has a c . 

• . ertain 
level of nmse, so one would hope that by averaging them, we could get the mean of th 
process for a sufficiently large number of radio receivers. e 

In ~any cases, however, only one sample_ of the process is available: According 10 Eq. 
(5.246) this would mean that that the sample signal equals the mean, which does not seem 
very robust. We could also compute the signal's time average, but this may not tell us much 
about the random process in general. However, for a special type of random processes called 
ergodic, their ensemble averages equal appropriate time averages. 

A process x[n] with constant mean 

E{x[n]}=µ (5.248) 

is called mean-ergodic if, with probability 1, the ensemble average equals the time average 
when N approaches infinity: 

)imµN =µ 
N--+-

where µN is the time average 

} N/2-1 

µN =- L x[n] 
N n=-N/2 

(5.249) 

(5.250) 

which, combined with Eq. (5.248), indicates that µN is a random variable with mean µ. 
Taking expectations in Eq. (5.250) and using Eq. (5.248), it is clear that 

so that proving Eq. (5.249) is equivalent to proving 

li 2 
maN =0 

N....., 

(5,251) 

(5,252) 

with cr2 b · · ergodic iJf N eing the variance of µN. It can be shown [12] that a process x[n] 1s mean 

r } N/2-1 NIH 

N~ }ii L L C""[n,m] = 0 
n..,_Nt,,.,.._N/2 

(5.253) 
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It can also be shown [12] that a sufficient condition for a WSS process to be mean ergodic is 

to satisfy 

Iim c_,JmJ= O (5.254) 
m--too 

which means that if the random variables x[nJ and x[n+m] are uncorrelated for large m, 
then process x[n] is mean ergodic. This is true for many regular processes. 

A similar condition can be proven for a WSS process to be covariance ergodic. In 
most cases in this book we assume ergodicity, first because of convenience for mathematical 
tractability, and second because it is a good approximation to assume that samples that are 
far apart are uncorrelated. Ergodicity allows us to compute means and covariances of ran-

dom processes by their time averages. 

5.8.3. L Tl Systems with Stochastic Inputs 

If the WSS random process x[n] is the input to an LTI system with impulse response h[n], 

the output 

- -
y[n] = L h[m]x[n-m] = L h[n-m]x[m] (5.255) 

m==--

is another WSS random process. To prove this we need to show that the mean is not a func­

tion of n: 

µY[n]=E{y[n]}= f h[mJE{x[n-m]}=µ:r f h[m] 
m=- m=-

(5.256) 

The cross-correlation between input and output is given by 

RA)l[m] = E{x[n+ m]y *[n)} = f h*[l]E{ x[n+m]x *[n-l]} 
, .. - (5.257) 

= fh*[/]R.a[m+l]= I,h·[-IJR.a[m-l]=h'[-m]*R:a[m] 
I-=- 1~-

and the autocorrelation of the output 

R»'[m] = E {y[n +m]y *[n]} = I, h[l]E{x[n+m-l]y *[n]} , .. - (5,258) 

= I, h[l]RA)l[m-1] = h[m]* R..,,[m] = h[m]* h'[-m]* R.,Jm] , .. _ 
is only a function of m. 
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5.8.4. Power Spectral Density 

Digital Signal p;::­_.,,ng 

The Fourier transfonn of a WSS random process x[ n] is a stochastic process in the Variable <u 

X(m) = L x[n]e-111)" 

(5.259) 

whose autocorrelation is given by 

.. .. (5.260) 
= L, e-f(Ottu)n L, E{x[m+n]x"[m]}e-1""' 

na -oo m=-oo 

where we made a change of variables / = n + m and changed the order of expectation and 
summation. Now, if x[n] is WSS 

R_.Jn] = E{x[m+n]x"[m]} (5.261) 

and if we set u = 0 in Eq. (5.260) together with Eq. (5.261), then we obtain 

S.a(w) = E{jX(ro)l2
} = i R_.An]e-ftllll (5.262) 

n.:::-

S.a(m) is called the power spectral density of the WSS random process x[n], and it is the 
Fourier transform of its autocorrelation function R.a[n], with the inversion formula being 

Rxx[n] =-
1 J- Sxx(m)eilllndm 

2tr --
(5.263) 

Note that Eqs. (5.48) and (5.263) are identical, though in one case we compute lhe 
autocorrelation of a signal as a time average, and the other is the autocorrelation of a rand0m 
process as an ensemble average. For an ergodic process both are the same. th 

Just as we take Fourier transforms of deterministic signals, we can also compu~e .: 
power spectral density of a random process as long as it is wide-sense stationary, which 

1 

why these wide-sense stationary processes are so useful. . ·n 
If the random process x[ n] is real then R [ n] is real and even and, using propernes 

1 

Table 5.5, Sn:(CiJ) is also real and even. ... 
Parse val' s theorem for random processes also applies here: 

E {\x[n)\2} = Ru[O] = - 1 J"' S (w)dm 
2,r -,r :a 

(5.264) 
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so that we can compute the signal' s energy from the area under S..,,(<0). Let's get a physical 
interpretation of Sa(w). In order to do that we can similarly derive the cross-power spec­
trUm SJ},(w) of two WSS random processes x[n] and y[n] as the Fourier transform of their 
cross-correlation: 

.. 
s.lJ'(w) = I R_T}_[n]e- ;er,n (5.265) 

n=-

which allows us, taking Fourier transforms in Eq. (5 .257), to obtain the cross-power spec­
trUm between input and output to a linear system as 

(5.266) 

Now, taking the Fourier transform of Eq. (5.258), the power spectrum of the output is 

thus given by 

Finally, suppose we filter x[n] through the ideal bandpass filter 

Hb(w)=f,hr!c w0 -c<w~w0 +c 
[ 0 otherwise 

The energy of the output process is 

{ } 
1 J,r l ICl.\)+C 

O~E ly[n]j2 =R ,[0]=- S .(w)dw=- S:a(w)dw 
" 2n -,r ·"' 2c %-c 

so that taking the limit when c """7 0 results in 

1 JCl.\)+c 0 ~ Jim- Sa(w)dw = Sxx(Wo) 
r-+0 2C Cl-l)-C . 

(5.267) 

(5.268) 

(5.269) 

(5.270) 

which is the Wiener-Khinchin theorem and says that the power spectrum of a WSS process 
x[n], real or complex, is always positive for any w. Equation (5.269) also explains_ the 
name power spectral density, because Sxx(w) represents the density of power at any given 

frequency co . 

5.8.5. Noise 

A process x[n] is white noise if, and only if, its samples are uncorrelated: 
(5.271) 

and is zero-mean µJn] = 0 . 
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If in addition x[n] is WSS, then 

C_,.,.[n] = R.,.,[n] == q8[11] 

which has a Oat power spectral density 

S_,,.(w) = q for nil w 

D 
.. :-:----_ 
1g1tal Signal Pr . ocessmg 

(5.272) 

(5.273) 

. The th~nnal _noise pl_1enom_enon in ~etallic resistors ca~ be accurately modeled as 
white Gaussian noise. White noise doesn t have to be Gaussrnn (white Poisson i 

1 noise is one of many other possibilities). mpu se 

Colored n~ise is defined as a zer~-mean WSS process whose samples are correlated 
with autocorrelation R_,..[n]. Colored n?1se can be generated by passing white noise through 
a filter h[,~] such tha~ S_,..,(~)=jH((o)j . A t~pe of_colored noise that is very frequentlyen­
c~untered m spee~h signals !s the _so-called_pmk n~1se, "'.'hose power spectral density decays 
with <tJ • A more m-depth d1scuss1on of noise and Its effect on speech signals is included in 
Chapter IO. 

5.9. HISTORICAL PERSPECTIVE AND FURTHER READING 

It is impossible to cover the field of Digital Signal Processing in just one chapter. The book 
by Oppenheim and Schafer [ l O] is one of the most widely used as a comprehensive treat­
ment. For a more in-depth coverage of digital filter design, you can read the book by Parks 
and Burrus [ 13]. A detailed study of the FFf is provided by Burrus and Parks [2]. The the­
ory of signal processing for analog signals can be found in Oppenheim and Willsky [l I). 
The theory of random signals can be found in Papoulis [ 12]. Multirate processing is well 
studied in Crochiere and Rabiner [4]. Razavi [ 16] covers analog-digital conversion. Soft­
ware programs, such as MATLAB [1], contain a large number of packaged subroutines. 
Malvar [7J has extensive coverage of filterbanks and lapped transforms. 

The field of Digital Signal Processing has a long history. The greatest advances in the 
field started in the I 7'h century. In 1666, English mathematician and physicist Sir Isaac Ne~­
ton (1642-1727) invented differential and integral calculus, which was independently dis­
covered in 1675 by German mathematician Gottfried Wilhelm Leibniz (1646-1716). They 
l::-:ii:ii developed discrete mathematics and numerical methods to solve such equations when 
closed-form solutions were not available. In the I8'h century, these techniques were furth;r 
extended. Swiss brothers Johann (1667-1748) and Jakob Bernoulli (1654-1705) invenied e 
calculus of variations and polar coordinates. French mathematician Joseph Louis La~range 

. 1 . f continuous 
(1736-1813) developed algorithms for numerical integration and mterpo ation ° d the 
functions. The famous Swiss mathematician Leonhard Euler (1707-1783) dev~!ope the 
theory of complex numbers and number theory so useful in the DSP field, in additio~t~ical 
first full analytical treatment of algebra, the theory of equations, trigonome~ and an tit si­
geo~etry. In _1748, Euler examined the motion of a vibrating string and disc~v~;~.]?82), 
nusoids are eigenfunctions for linear systems. Swiss scientist Daniel Bemoulh ( 
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son of Johann Ber~oulli, also ~on~ectured in 1753 that all physical motions of a string could 
be represented by lme?r combrnat1ons of normal modes. However, both Euler and Bernoulli, 
and later Lagrange, discarded the use of trigonometric series because it was impossible to 
represent signals with c_omers. The 19'h cenLury brought us the theory of harmonic analysis. 
One of those_ who contnbuted most to the field of Digital Signal Processing is Jean Baptiste 
Joseph Fo11rrer ( 1768-1830), a French mathematician who in 1822 published The Analytical 
Them)' <?f Heat, where he derived a mathematical formulation for lhe phenomenon of heat 
conduction. In this treatise, he also developed the concept of Fourier series and harmonic 
analysis and the Fourier transform. One of Fourier"s disciples, the French mathematician 
Simeon-Denis Poisson ( 1781-1840), studied the convergence of Fourier series together with 
countryman Augustin Louis Cauchy ( 1789-1857). Nonetheless, it was German Peter 
Dirichlet ( 1805-1859) who gave the first set of conditions sufficient to guarantee the con­
vergence of a Fourier series. French mathematician Pierre Simon Laplace (1749-1827) in­
vented the Laplace transfonn, a transfom1 for continuous-time signals over the whole 
complex plane. French mathematician Marc-Antoine Parsernl ( 1755-1836) derived the 
theorem that carries his name. German Leopold Kronecker (1823-189 I) did work with dis­
crete delta functions. French mathematician Charles Hermite () 822-1901) discovered com­
plex conjugate matrices. American Josiah Willard Gibbs ( 1839-1903) studied the 
phenomenon of Fourier approximations to periodic square waveforms. 

Until the early 1950s, all signal processing was analog, including the lo11g-playing 
(LP) record first released in 1948. Pulse Code Modulation (PCM) had been invented by Paul 
M. Rainey in 1926 and independently by Alan H. Ree11es in 1937, but it wasn't until 1948 
when Oliver, Pierce, and Shannon [9] laid the groundwork for PCM (see Chapter 7 for de­
tails). Bell Labs engineers developed a PCM system in 1955, the so-called T-1 carrier sys­
tem, which was put into service in J 962 as the world's first common-carrier digital 
communications system and is still used today. The year 1948 also saw the invention of the 
transistor at Bell Labs and a small prototype computer at Manchester University and marked 
the birth of modern Digital Signal Processing. In 1958, Jack Kilby of Texas Instruments 
invented the integrated circuit and in 1970, researchers at Lincoln Laboratories developed 
the first real-time DSP computer, which performed signal processing tasks about I 00 times 
faster than general-purpose computers of the time. In 1978, Texas Instruments introduced 
Speak & Spel[™, a toy that included an integrated circuit especially designed for speech 
synthesis. Intel Corporation introduced in 1971 the 4-bit Intel 4004, the first general-purpose 
microprocessor chip, and in 1972 they introduced the 8-bit 8008. In 1982 Texas Instruments 
introduced the TMS32010, the first commercially viable single-chip Digital Signal Proces­
sor (DSP), a microprocessor specially designed for fast signal processing operations. At a 
cost of about $100, the TMS320IO was a 16-bit fixed-point chip with a hardware multiplier 
built-in that executed 5 million instructions per second (MIPS). Gordon Moore, Intel's 
founder, came up with the law that carries his name stating that computing power doubles 
every 18 months, allowing ever faster processors. By the end of the 20

th 
century, DSP chips 

could perform floating-point operations at a rate over I 00OMIPS and had a cost below $5, so 
that today they are found in many devices from automobiles to cellular phones. 

Amazon/VB Assets 
Exhibit 1012 

Page 297



272 Digital Signal Process· 
ing 

While hardware improvements significantly enabled the development of th fi 
. e 1eld 

dioital algorithms were also needed. The 1960s saw the discovery of many of the c ' 
e . . . . oncepts 

described m th1~ chapter. In 1965, James W. Cooley and John ~ - Tukey [3] discovered the 
FFf, although 1t was later found [6] that German mathematician Carl Friedrich G 

d · d · 1· Th F auss ( 1777-1855) had alrea y mvente 1t over a century ear 1er. e FT sped up calculations b 
orders of magnitude. which opened up many possible algorithms for the slow computers; 
the ti~e. James F. Kaiser, Bernard Gold, and ~lzarles Rader p~blished key papers on digital 
filtenng. John Stockham and Howard Helms mdependenlly discovered fast convolution b 
doing convolution with FFfs. y 

An a~soc!ation that_ has had a lar~e impact on the _devel~pment of modem Digital Sig­
nal Processing 1s the Institute of Electncal and Electronic Engineers (IEEE), which has over 
350,000 members in 150 nations and is the world's largest technical organization. It was 
founded in 1884 as the American Institute of Electrical Engineers (AlEE). IEEE's other par­
ent organization, the Institute of Radio Engineers (IRE), was founded in I 9 J 2, and the two 
merged in 1963. The IEEE Signal Processing Society is a society within the IEEE devoted 
to Signal Processing. Origina1ly founded in 1948 as the Institute of Radio Engineers Profes­
sional Group on Audio, it was later renamed the IEEE Group on Audio (1964), the IEEE 
Audio and Electroacoustics group (l 965), the IEEE group on Acoustics Speech and Signal 
Processing (197 4 ), the Acoustic, Speech and Signal Processing Society (1976), and finaUy 
IEEE Signal Processing Society ( 1989). In 1976 the society initiated its practice of holding 
an annual conference, the International Conference on Acoustic, Speech and Signal Process­
ing (ICASSP), which has been held every year since, and whose proceedings constitute an 
invaluable reference. Frederik Nebeker [8] provides a history of the society's first 50 years 
rich in insights from the pioneers. 

'REFERENCES 

[1] Burrus, C.S., et al., Computer-Based Exercises for Signal Processing Using Mat­
lab, 1994, Upper Saddle River, NJ, Prentice Hall. 

[2] Burrus, C.S. and T.W. Parks, DFTIFFT and Convolution Algorithms: Theory aud 

Implementation, 1985, New York, John Wiley. 
[3] Cooley, J.W. and J.W. Tukey, "An Algorithm for the Machine Calculation of 

Complex Fourier Series," Mathematics of Computation, l 965, 19(Apr.), PP· 297· 
301. 

[4] Crochiere, RE. and L.R. Rabiner, Multirate Digital Signal Processing, 1983, Up­
per Saddle River, NJ, Prentice-Hall. 

[S] Duhamel, P. and H. Hollman, "Split Radix FFT Algorithm," ElectrolliC Let1ers, 
1984, 20(January), pp. 14-16. 

[
6
] Heideman, M.T., D.H. Johnson, and C.S. Burrus, "Gauss and the History of tbe 

FMast Fourier Transform," IEEE ASSP Magazine 1984 l(Oct) pp. 14-21. 
[7] alvar H s· ' ' ' 
[8] ' ·• zgnal Processing with Lapped TransForms 199'> Artech House. 

Nebek F F" 'J' ' -, · ty 
er, ·, ifty Years of Signal Processing: The IEEE Signal Processing Socze 

and Its Techllo/ogies, 1998, IEEE. 

Amazon/VB Assets 
Exhibit 1012 

Page 298



Historical Perspective and Further Reading 273 

[9] 

[l O] 

[ 1 1] 

[12] 

[13] 

[14] 

[ 15] 

(16] 
(17] 

Oliver, B.M., J.R. Pierce, and C. Shannon, "The Philosophy of PCM," Proc. Insti­
tute of Radio Engineers, 1948, 36, pp. 1324-133 l . 
Oppenheim, A.V., R.W. Schafer, and J.R. Buck, Discrete-Time Signal Processing, 
2nd ed., 1999, Prentice-Hall, Upper Saddle River, NJ. 
Oppenheim, A.V. and A.S. Willsky, Signals and Systems, 1997, Upper Saddle 
River, NJ, Prentice-Hall. 
Papoulis, A., Probability, Random Variables, and Stochastic Processes, 3rd ed., 
1991, New York, McGraw-Hill. 
Parks, T.W. and C.S. Burrus, Digital Filter Design, 1987, New York, NY, John 
Wiley. 
Parks, T.W. and J.H. McClellan, "A Program for the Design of Linear Phase Finite 
Impulse Response Filters," IEEE Trans. on Audio Electroacoustics, 1972, AU-
20(Aug), pp. 195-199. 
Rao, K.R. and P. Yip, Discrete Cosine Transform: Algorithms, Advantages and 
Applications, 1990, San Diego, CA, Academic Press. 
Razavi, B., Principles of Data Conversion System Design, 1995, IEEE Press. 
Smith, M.J.T. and T.P. Barnwell, "A Procedure for Designing Exact Reconstruc­
tion Filter Banks for Tree Structured Subband Coders," Int. Conf on Acoustics, 
Speech and Signal Processing, 1984, San Diego, CA, pp. 27.1.1-27 .1.4. 

Amazon/VB Assets 
Exhibit 1012 

Page 299



Amazon/VB Assets 
Exhibit 1012 

Page 300



CHAPTER 6 

Speech Signal Representations 

This chapter presents several representations 
for speech signals useful in speech coding, synthesis, and recognition. The central theme is 
the decomposition of the speech signal as a source passed through a linear time-varying fil­
ter. This filter can be derived from models of speech production based on the theory of 
acoustics where the source represents the air flow at the vocal cords, and the filter represents 
the resonances of the vocal tract which change over time. Such a source-filter model is illus­
trated in Figure 6.1. We describe methods to compute both the source or excitation e[n] and 
the filter h[n] from the speech signal x[n]. 

e[n] ---..~ h[n] ...._____. •• x[ n] 

Figure 6.1 Basic source-filter model for speech signals. 

To estimate the filter we present methods inspired by speech production models (such 
as linear predictive coding and cepstral analysis) as well as speech perception models (such 

275 
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n tions 

as mel-frequency cepstrum). Once the filter has been estimated, the source can be b . 
by passing the speech signal through the inverse filter. Separation between sourc 

O 
latned 

. . . e and filte 
is one of the most difficult challenges m speech processmg. r 

It turns out that phoneme classification (either by human or by machines) is 
dependent on the characteristics of the filter. Traditionally, speech recognizers esti' moSUy 

. . . . mate the 
filter charactensucs and ignore the source. Many speech synthesis techniques use a s 
filter model because it allows flexibility in altering the pitch and the filter. Many turce~ 
coders also use this model because it al lows a low bit rate. peec 

We first in~roduce th~ spectrogra":1 as a represe~tation of_ the speech signal that high­
lights several of 1ts propert.Ies and descnbe the short-time Founer analysis, which is the ba­
sic tool to build the spectrograms of Chapter 2. We then introduce several techniques used to 

separate source and filter: LPC and cepstral analysis, perceptually motivated models, for­
mant tracking, and pitch tracking. 

6.1. SHORT-TIME FOURIER ANALYSIS 

In Chapter 2, we demonstrated how useful spectrograms are to analyze phonemes and their 
transitions. A spectrogram of a time signal is a special two-dimensional representation that 
displays time in its horizontal axis and frequency in its vertical axis. A gray scale is typically 
used to indicate the energy at each point (t, J) with white representing low energy and black 
high energy. In this section we cover short-time Fourier analysis, the basic tool with which 
to compute them. 

The idea behind a spectrogram, such as that in Figure 6.2, is to compute a Fourier 
transform every 5 milliseconds or so, displaying the energy at each time/frequency point. 
Since some regions of speech signals shorter than, say, 100 milliseconds often appear to be 
periodic, we use the techniques discussed in Chapter 5. However, the signal is no lon~er 
periodic when longer segments are analyzed, and therefore the exact definition of Founer 
transform cannot be used. Moreover, that definition requires knowledge of the signal for 
infinite time. For both reasons, a new set of techniques called short-time analysis are pro­
posed. These techniques decompose the speech signal into a series of short segments, re-
ferred to as analysis frames, and analyze each one independently. . . 

In Figure 6.2 (a), note the assumption that the signal can be approximated as p~nodtc 
within X and Y is reasonable. In regions (Z, W) and (H, G), the signal is not periodt~ a_nd 
looks like random noise. The signal in (Z, W) appears to have different noisy charactenSUCS 
tban those of segment (H, G). The use of an analysis frame implies that the region is sho~ 
enough for the behavior (periodicity or noise-like appearance) of the signal to be ap~rox~­
mately constant. If the region where speech seems periodic is too long, the pitch pen~ 

18 

not conSlant and not all the periods in the region are similar. In essence, the speech regio;. 
~a~ to be short enough so that the signal is stationary in that region: i.e., the signal characte 
1stics (whether · a· · . . . · A more for-. . peno 1c1ty or no1se-hke appearance) are uniform m that region. 
mal defimtion of stationarity is given in Chapter 5. 

1 
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Figure 6.2 (a) Waveform with (b) its corresponding wideband spectrogram. Darker areas mean 
higher energy for that time and frequency. Note the vertical lines spaced by pitch periods. 

Similarly to the filterbanks described in Chapter 5, given a speech signal x[nJ, we de­
fine the short-time signal xm [ n] of frame m as 

x,,,[n] = x[nJwm[n] (6.1) 

the product of x[n] by a window function w"'[n], which is zero everywhere except in a 
small region. 

While the window function can have different values for different frames m, a popular 
choice is to keep it constant for all frames: 

(6.2) 

where w[n] = O for In I> N /2. In practice, the window length is on the order of 20 to 30 
ms. 

With the above framework, the short-time Fourier representation for frame m is de-
fined as 

.. = 
Xm(e1°') = L xm[n]e-Jwn = L k{m-n]x[n]e-Jllll• (6.3) 

with all the properties of Fourier transforms studied in Chapter 5. 
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278 Speech Signal Representa~ 

In Figure 6.3 we show the short-time spectrum of voiced speech. Note that there 
. h. h . are a 

number of peaks in the spectrum. To interpret t 1s, assume t e properties of x [n] pe . 
'" h . I . . ct· . m rs1st 

outside the window, and that, thereaore, t e s1gna 1s peno 1c with period M in the t 
5) h 

. . rue 
sense. In this case, we know (see Chapter t at its spectrum 1s a sum of impulses 

... 
Xm(e1"') = 2n L X,,,[k]o(w-2nk IM) 

kc-
(6.4) 

Given that the Fourier transfonn of ll{n] is 

.. 
W(efw) = L w[n]e-Jwn (6.5) 

so that the transform of w[m-n] is W(e-iw)e-Jr.,,,,. Therefore, using the convolution prop­
erty, the transfonn of x[n]w[m-n] for fixed mis the convolution in the frequency domain 

-Xm(ef(I)) = L Xm[k JW(e-J(w-Zxk!N) )e-j((l)-2Jd IN)m (6.6) 

""--
which is a sum of weighted W(e11lJ), shifted on every harmonic, the narrow peaks seen in 
Figure 6.3 (b) with a rectangular window. The short-time spectrum of a periodic signal ex­
hibits peaks (equally spaced 2n- / M apart) representing the harmonics of the signal. We 
estimate X m [ k] from the short-time spectrum X m ( e11lJ), and we see the importance of the 
length and choice of window. 

Equation (6.6) indicates that one cannot recover Xm[k] by simply retrieving 
Xm(e1"'), although the approximation can be reasonable if there is a small value of A such 
that 

(6.7) 

which is the case outside the main lobe of the window's frequency response. 
Recall from Section 5.4.2.1 that, for a rectangular window of length N, A.== 2tr IN· 

Therefore, Eq. (6.7) is satisfied if N ~ M , i.e., the rectangular window contains at least one 
pitch period. The width of the main Jobe of the window's frequency response is inversely 
proportional to the length of the window. The pitch period in Figure 6.3 is M = 11 at a sam­
pling rate of 8 kHz. A shorter window is used in Figure 6.3 (c), which results in wider analy­
sis lobes, though still visible. 

Also recall from Section 5.4.2.2 that for a Hamming window of length N, A.== 41r IN: 
twice as wide as that of the rectangular window, which entails N ~ 2M. Thus, for Eq._(~.7) 
to be met, a Hamming window must contain at least two pitch periods. The lobes are visible 
in Figure 6.3 (d) since N = 240, but they are not visible in Figure 6.3 (e) since N = JZO, and 
N<2M. 

In practice, one cannot know what the pitch period is ahead of time, which ~fte: 
means you need to prepare for the lowest pitch period. A low-pitched voice wilh 
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Figure 6.3 Short-time spectrum of male voiced speech (vowel /ah/ with local pitch of l lOHz): 
(a) time signal, spectra obtained with (b) 30 ms rectangular window and (c) 15 ms rectangular 
window, (d) 30 ms Hamming window, (e) 15 ms Hamming window. The window lobes are 
not visible in (e), since the window is shorter than 2 times the pitch period. Note the spectral 
leakage present in (b). 

279 

F0 = 50 Hz requires a rectangular window of at least 20 ms and a Hamming window of at 
least 40 ms for the condition in Eq. (6.7) to be met. If speech is non-stationary within 40 ms, 
taking such a long window implies obtaining an average spectrum during that segment in­
stead of several distinct spectra. For this reason, the rectangular window provides better time 
resolution than the Hamming window. Figure 6.4 shows analysis of female speech for which 
shorter windows are feasible. 

But the frequency response of the window is not completely zero outside its main 
lobe, so one needs to see the effects of this incorrect assumption. From Section 5.4.2. l note 
that the second lobe of a rectangular window is only approximately 17 dB below the main 
lobe. Therefore, for the k'h harmonic the value of Xm(e121<w,,) contains not X.,[kJ, but also 
a weighted sum of X.,[l] . This phenomenon is called spectral leakage because the ampli­
tude of one harmonic leaks over the rest and masks its value. If the signal's spectrum is 
white, spectral leakage does not cause a major problem, since the effect of the second lobe 
on a harmonic is only IOlogro(l + 10-11110

) = 0.08dB. On the other hand, if the signal's spec­
trum decays more quickly in frequency than the decay of the window, the spectral leakage 
results in inaccurate estimates. 
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Figure 6.4 Short-time spectrum of female voiced speech (vowel /aa/ with local pitch of 
200Hz): (a) time signal, spectra obtained with (b) 30 ms rectangular window and (c} 15 ms 
rectangular window, (d) 30 ms Hamming window, (e) 15 ms Hamming window. In all cases 
the window lobes are visible, since the window is longer than 2 times the pitch period. Note 
the spectral leakage present in (b) and (c). 

From Section 5.4.2.2, observe that the second lobe of a Hamming window is approxi· 
mately 43 dB, which means that the spectral leakage effect is much Jess pronounced. Other 
windows, such as Hanning, or triangular windows, also offer less spectral leakage than lhe 
rectangular window. This important fact is the reason why, despite their better time resolu­
tion, rectangular windows are rarely used for speech analysis. In practice, window l~nglhs 
are on the order of 20 to 30 ms. This choice is a compromise between the stationanty as-
sumption and the frequency resolution. -

In practice, the Fourier transfonn in Eq. (6.3) is obtained through an FFf. If lhe win· 
dow has length N, the FFr has to have a length greater than or equal to N. Since FFf a]go· 
rithms often have lengths that are powers of 2 ( L = 2R ) the windowed signal with lengtb N 
· - ' · all d zero· is augmented with (L-N) zeros either before, after, or both. This process 15 c e ~ cur 
padding· A larger value of L provides a finer description of the discrete Fourier trans 

O 
• ' 

but 't d · · · f the win-
1 oes not increase the analysis frequency resolution: this is the sole mission° 

dow length N. 
In Figure 6 3 b h. h represent the 

· • 0 serve the broad peaks resonances or formants, w tc ·es 
filter characteristics. For voiced sounds ther; is typically more energy at low frequenci 
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than at high frequencies, also called roll-off It is impossible to determine exactly the filter 
characteristics, because we know only samples at the harmonics, and we have no knowledge 
of the values in between. In fact, the resonances are less obvious in Figure 6.4 because the 
harmonics sample the spectral envelope less densely. For high-pitched female speakers and 
children, it is even more difficult to locate the formant resonances from the short-time spec­

trom. 
Figure 6.5 shows the short-time analysis of unvoiced speech, for which no regularity is 

observed. 

(a) 
500 . . . 1~1~,~~,.,~lY 0 '1 . ,r ~1rr 

-500 
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 

(b) 120 
100 

( ) 120 
C 100 

80 ao 
dB dB 

60 60 
40 40 

20 20 
0 1000 2000 3000 4000 0 1000 2000 3000 4000 

(d) 120 120 
(e) 100 100 

dB dB 

40 

1000 2000 3000 4000 1000 2000 3000 4000 

Figure 6.5 Short-time spectrum of unvoiced speech: (a) time signal, (b) 30 ms rectang~lar 
window, (c) 15 ms rectangular window, (d) 30 ms Hamming window, (e) 15 ms Hamming 
window. 

6.1.1. Spectrograms 

Since the spectrogram displays just the energy and not the phase of the short-term Fourier 
transfonn, we compute the energy as 

log I X[k] 12= log(X;[k]+ X,2 [kJ) 
(6.8) 
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with this value converted to a gray scale according to Figure 6.6. Pixels wh 
. ose values h 

not been computed are mterpolated. The slope controls the contrast of the ave 
while the saturation points for white and black control the dynamic range. spectrogram, 

Gray intensity 

black 

_______ /... __ white 
Log-energy (dB) 

Figure 6.6 Conversion between log-energy values (in the x-axis) and gray scale (in the y-axis). 
Larger log-energies correspond to a darker gray color. There is a linear region for which more 
log-energy corresponds to darker gray. but there is saturation at both ends. Typically there is 
40 to 60 dB between the pure white and the pure black. 

There are two main types of spectrograms: narrow-band and wide-band. Wide-band 
spectrograms use relatively short windows ( < 10 ms) and thus have good time resolution at 
the expense of lower frequency resolution, since the corresponding filters have wide band­
widths (> 200 Hz) and the harmonics cannot be seen. Note the vertical stripes in Figure 6.2, 
due to the fact that some windows are centered at the high part of a pitch pulse, and others in 
between have lower energy. Spectrograms can aid in determining formant frequencies and 
fundamental frequency, as well as voiced and unvoiced regions. 

Narrow-band spectrograms use relatively long windows (> 20 ms), which lead to fil­
ters with narrow bandwidth ( < 100 Hz). On the other hand, time resolution is lower than for 
wide-band spectrograms (see Figure 6.7). Note that the harmonics can be clearly seen, be­
cause some of the filters capture the energy of the signal's harmonics, and filters in between 
have little energy. . 

Some implementation details also need to be taken into account. Since speech sig~~s 
are real, the Fourier transform is Hermitian, and its power spectrum is_ ~lso eve~. Thus~~:~ 
only necessary to display values for O ~ k ~ N / 2 for N even. In add1t1on, while the 
· 3 D represen-ttonal spectrogram uses a gray scale, a color scale can also be used, or even a - . _ 
tation. In addition, to make the spectrograms easier to read, sometimes the signal is fir5t P~ 

h . . th h. h frequencies ernp asIZed (typically with a first-order difference FIR filter) to boost e ig 
to counter the roll-off of natural speech. ' 

B . . I arn the filter s 
Y mspectmg both narrow-band and wide-band spectrograms, we can e ·ffi ult 

. d · . ry di JC magmtu e response and whether the source is voiced or not. Nonetheless 11 is ve d 
to separate source and filter due to nonstationarity of the speech signal, spectral leaka~e, an 
the fact that o J th fil , . · al' harmonics. n Y e 1 ter s magnitude response can be known at the sign s 
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Figure 6.7 Waveform (a) with its corresponding narrowband spectrogram (b). Darker areas 
mean higher energy for that time and frequency. The harmonics can be seen as horizontal tines 
spaced by fundamental frequency. The corresponding wideband spectrogram can be seen in 
Figure 6.2. 

6.1.2. Pitch-Synchronous Analysis 

283 

In the previous discussion, we assumed that the window length is fixed, and we saw the 
tradeoffs between a window that contained several pitch periods (narrow-band spectro­
grams) and a window that contained less than a pitch period (wide-band spectrograms). One 
possibility is to use a rectangular window whose length is exactly one pitch period; this is 
caUed pitch-synchronous analysis. To reduce spectral leakage a tapering window, such as 
Hamming or Hanning, can be used, with the window covering exactly two pitch periods. 
This latter option provides a very good compromise between time and frequency resolution. 
In this representation, no stripes can be seen in either time or frequency. The difficulty in 
computing pitch synchronous analysis is that, of course, we need to know the local pitch 
period, which, as we see in Section 6. 7, is not an easy task. 

6.2. ACOUSTICAL MODEL OF SPEECH PRODUCTION 

Speech is a sound wave created by vibration that is propagated in the air. Acoustic theory 
analyzes the laws of physics that govern the propagation of sound in the vocal tract. Such a 
theory should consider three-dimensional wave propagation, the variation of the vocal tract 
shape with time, losses due to heat conduction and viscous friction at the vocal tract walls, 
softness of the tract walls, radiation of sound at the lips, nasal coupling, and excitation of 
sound. While a detailed model that considers all of the above is not yet available, some 
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models provide a good approximation in practice, as well as a good understand' 
mg of th physics involved. e 

6.2.1. Glottal Excitation 

As discussed in Chapter 2, the vocal cords constrict the path from the lungs to th 
· p· 6 8 A I · · e VocaJ tract. This is illustrated m 1gure . . s ung pressure 1s increased, air flows out of the 

lungs and through the opening between the vocal cords (glottis). At one point th 
ki th "rfl h. h b ·1 e vocaJ cords are together, thereby bloc ng e ru ow, w 1c Ul ds up pressure behind th 

Eventually the pressure reaches a level sufficient to force the vocal cords to open and ;m, 
allow air to flow through the glottis. Then, the pressure in the glottis falls and, if the tensi~~ 
in the vocal cords is properly adjusted, the reduced pressure allows the cords to come to­
gether, and the cycle is repeated. This condition of sustained oscilJation occurs for voiced 
sounds. The closed-phase of the oscillation takes place when the glottis is closed and the 
volume velocity is zero. The open-phase is characterized by a non-zero volume velocity, in 
which the lungs and the vocal tract are coupled. 

n n 
I,. .,I 

Closed glottis 
I,. .,I 

Open glottis 

Figure 6.8 Glottal excitation: volume velocity is zero during the closed-phase, during which 
the vocal cords are closed. 

Rosenberg's glottal model [39] defines the shape of the glottal volume velocity wilh 
the open quotient, or duty cycle, as the ratio of pulse duration to pitch period, and the speed 
quotient as the ratio of the rising to falling pulse durations. 

6.2.2. Lossless Tube Concatenation 

A "d l . th vocal [111CI wi e Y used model for speech production is based on the assumption that e 1 can be d . . 6 9 The constan represente as a concatenation of lossless tubes, as shown m Figure · · t 
cross-sectional areas {A*} of the tubes approximate the area function A(x) of the vocal tra~­

lf a large number of tubes of short length are used we reasonably expect the frequency ing 
sponse of lhe concatenated tubes to be close to th~se of a tube with continuously varf 
area function. 

d·men· For fr · d to the 1 
. equenc1es corresponding to wavelengths that are long compare ·s of 

s1ons of the vocal tr . . . along the aXJ act, it is reasonable to assume plane wave propagation 
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Acoustical Model of Speech Production 285 

the ~bes. If in addition we assume that there are no losses due to viscosity or thermal con­
duction, and that the area A does not change over time, the sound waves in the tube t· fy 

· · f d·f~ · Sa IS the following patr o 1 terent1al equations: 

ap(x,I) = p au(x,t) 

ax A a, 
au(x,t) A ap(x,t) (6.9) 

ax = pc2 a, 
where p(x,t) is the sound pressure in the tube at position x and time t, u(x,t) is the volume 
velocity flow in the tube at position x and time t, p is the density of air in the tube c is the 
velocity of sound, and A is the cross-sectional area of the tube. ' 

Glottis I 
: I 
i 

A, I A, Al I A, 
X i i I l 

i 

• I . 

Figure 6.9 Approximation of a tube with continuously varying area A(x) as a concatenation of 
5 lossless acoustic tubes. 

Since Eqs. (6.9) are linear, the pressure and volume velocity in the k,,, tube are related by 

uk(x,t) = u;(t-xl c)-u;(t + xi c) 

A(x,t)= pc[u;(t-xlc)+u;(t+x/c)] 
A.t 

(6.10) 

where u;(t-xlc) and u;(t-x/c) are the traveling waves in the positive and negative di­
rections respectively and x is the distance measured from the left-hand end of tube !l: 
0 ~ x ~I . The reader can prove that this is indeed the solution by substituting Eq. ( 6.10) into 
(6.9). 

When there is a junction between two tubes, as in Figure 6.10, part of the wave is re­
flected at the junction, as measured by rk , the reflection coefficient 

- Ak+I -Ak r,1,---'----"--
A.1-+1 +A,1, 

(6.11) 

so that the larger the difference between the areas the more energy is reflected. The proof [9] 
is beyond the scope of this book. Since A* and A1+1 are positive, it is easy to show that r1 

satisfies the condition 

(6.12) 
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! 

u; __ ,(t+r) j .. 
l 4 +- I .. 

l 
.. 

Figure 6.10 Junction between two lossless tubes. 

A relationship between the z-transforms of the volume velocity at the glottis u-[n] 
and the lips uL[n] for a concatenation of N lossless tubes can be derived [9] using /dis­
crete-time version of Eq. (6. 10) and taking into account boundary conditions for every junc­
tion: 

(6.13) 

where r0 is the reflection coefficient at the glottis and rN = rL is the reflection coefficient at 
the lips. Equation (6.11) is still valid for the glottis and lips, where Ao= pc! Z(j is the 
equivalent area at the glottis and AN+i = pc I z L the equivalent area at the lips. Zo and ZL 

are the equivalent impedances at the glottis and lips, respectively. Such impedances relate 
the volume velocity and pressure, for the lips the expression is 

(6.14) 

In general, the concatenation of N lossless tubes results in an N-pole system as shown 
in Eq. (6.13). For a concatenation of N tubes there are at most N/2 complex conjugate pod!~, 

' e ID 
or resonances or formants. These resonances occur when a given frequency gets t~app 
the vocal tract because it is reflected back at the lips and then again back at the glottis. ,l"I, 

S. th . L - IN 11,e 
mce each tube has length l and there are N of them, the total Ieng 15 - • . ·n 
t. d I · · · · r 2 the round tnP 1 

propaga 100 e ay m each tube T =/I c , and the samplmg penod 1s = f, . fre· 
a tube. We can find a relationship between the number of tubes N and the samphng 
quency F. = 1/T: 

(6.15) 
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For example, for F, = 8000 ~Hz, c = 34000 cm/s, and L = 17 cm, the average length 
of a male adult vocal trac~, we obtain N = 8, or alternatively 4 formants. Experimentally, the 
vocal tract transfer function has been observed to have approximately I fonnant per kilo­
hertz. Shorter vocal tract lengths (females or children) have fewer resonances per kilohertz 
and vice versa. 

The pressure at the lips has been found to approximate the derivative of volume veloc­
ity, particularly at low frequencies. Thus, ZL (z) can be approximated by 

z,. (z)"' Ro (l- z·') (6.16) 

which is 0 for low frequencies and reaches Ro asymptotically. This dependency upon fre­
quency results in a reflection coefficient that is also a function of frequency. For low fre­
quencies, Ii. = I , and no loss occurs. At higher frequencies, loss by radiation translates into 
widening of formant bandwidths. 

Similarly, the glottal impedance is also a function of frequency in practice. At high 
frequencies, 2 0 is large and rG = 1 so that all the energy is transmitted. For low frequen­
cies, rG < l , whose main effect is an increase of bandwidth for the lower fonnants. 

Moreover, energy is lost as a result of vibration of the tube walls, which is more pro­
nounced at low frequencies. Energy is also lost, to a lesser extent, as a result of viscous fric­
tion between the air and the walls of the tube, particularly at frequencies above 3 kHz. The 
yielding walls tend to raise the resonance frequencies while the viscous and thennal losses 
tend to lower them. The net effect in the transfer function is a broadening of the resonances' 
bandwidths. 

Despite thermal losses, yielding walls in the vocal tract, and the fact that both rL and 
'a are functions of frequency, the all-pole model of Eq. (6.13) for V(z) has been found to be 
a good approximation in practice [ 13 ]. In Figure 6.11 we show the measured area function 
of a vowel and its corresponding frequency response obtained using the approximation as a 
concatenation of IO lossless tubes with a constant rL . The measured fonnants and corre­
sponding bandwidths match quite well with this model despite all the approximations made. 
Thus, this concatenation of lossless tubes model represents reasonably well the acoustics 
inside the vocal tract. Inspired by the above results, we describe in Section 6.3 "Linear Pre­
dictive Coding," an all-pole model for speech. 

In the production of the nasal consonants, the velum is lowered to trap the nasal tract 
to the pharynx, whereas a complete closure is formed in the oral tract (Im/ at the lips, In/ just 
back of the teeth and /ng/ just forward of the velum itself. This configuration is shown in 
Figure 6.12, which shows two branches, one of them completely closed. For nasals, the ra­
diation occurs primarily at the nostrils. The set of resonances is determined by the shape and 
length of the three tubes. At certain frequencies, the wave reflected in the closure cancels the 
wave at the pharynx, preventing energy from appearing at nostrils. The result ~s that _f?r na­
sal sounds the vocal tract transfer function V(z) has anti-resonances (zeros) rn addition to 
resonance;. It has also been observed that nasal resonances have broader bandwidths than 
non-nasal voiced sounds, due to the greater viscous friction and thennal loss because of the 

large surface area of the nasal cavity. 
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Figure 6.11 Area function and frequency response for vowel /al and its approximation as a 
concatenation of 10 lossless tubes. A reflection coefficient at the load of k = 0.72 (dotted line) 
is displayed. For comparison, the case of k = 1.0 (solid line) is also shown. 

/ Nostrils 

Pharynx / /2 -----
Glottis .. .. Closure 

Figure 6.12 Coupling of the nasal cavity with the oral cavity. 

6.2.3. Source-Filter Models of Speech Production 

As shown in Chapter IO, speech signals are captured by microphones that respood 10 

changes in air pressure. Thus, it is of interest to compute the pressure at the lips Pr (z)' 
which can be obtained as 

(6.17) 

For voiced so~nds we can model uo[n] as an impulse train convolved wilh g[n], lhe 
glottal pulse (see Figure 6.13). Since g[n) is of finite length its z-transform is an all-zero 
system. ' 
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I I I I 
Figure 6.13 Model of the glottal excitation for voiced sounds. 

The complete ~odel fo~ both voiced and unvoiced sounds is shown in Figure 6.14. We 
have modeled ua[n] m unv01ced sounds as random noise. 

T 

• 
G(z) 

V(z) 

A,. 

Figure 6.14 General discrete-time model of speech production. The excitation can be either an 
impulse train with period T and amplitude A. driving a filter G(z) or random noise with am­
plitude A,, . 

We can simplify the model in Figure 6.14 by grouping G(z), V(z), and Zi{z) into H(z) 
for voiced sounds, and V(z) and ZL(z) into H(z) for unvoiced sounds. The simplified model is 
shown in Figure 6. 15, where we make explicit the fact that the filter changes over time. 

1111 --

a-__.~_. s[n] 
/1 . ., ... i.tvl', ~· --­,. '7[ V v --., 
Figure 6.15 Source-filter model for voiced and unvoiced speech. 

This model is a decent approximation, but fails on voiced fricatives, since those 
sounds contain both a periodic component and an aspirated component. In this case, a mixed 
excitation model can be applied, using for voiced sounds a sum of both an impulse train and 
colored noise (Figure 6.16). 

!Ill~ 
~-+ s[n] 

Llv'ufuA ~· ~,· Vv' 

Figure 6.16 A mixed excitation source-filter model of speech. 
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The model in Figure 6.15 is appealing because the source is white (has a flat 
trum) and all the coloring is in the filter. Other source-filter decompositions att spec. 

th I . . h' h th . empt to 
model the source as the signal at e g ott1s, m w 1~ e source 1s definitely not White 
Since G(z), Z1.(z) contain zeros, and V(z) can also contam zeros for nasals, H(z) is no longe~ 
all-pole. However, recall in Chapter 5, we state that the z-transfonn of x[n] = a"u[n] is 

,{, n -n } 
X(z) = .£.-a z = _1 

naO }-az 
for lal <lzl (6.18) 

so that by inverting Eq. (6.18) we see that a zero can be expressed with infinite poles. This is 
the reason why all-pole models are still reasonable approximations as long as a large enough 
number of poles is used. Fant [12] showed that on the average the speech spectrum contains 
one pole per kHz. Setting the number of poles p to F, + 2, where F, is the sampling fre­
quency expressed in kHz, has been found to work well in practice. 

6.3. LINEAR PREDICTIVE CODING 

A very powerful method for speech analysis is based on linear predictive coding (LPC) (4, 
7, 19, 24, 27], also known as LPC analysis or auto-regressive (AR) modeling. This method 
is widely used because it is fast and simple, yet an effective way of estimating the main pa­
rameters of speech signals. 

As shown in Section 6.2, an all-pole filter with a sufficient number of poles is a good 
approximation for speech signals. Thus, we could model the filter H(z) in Figure 6.15 as 

H(z)= X(z) = I = -
E(z) 1 ~ -l A(z) 

- L,,akz 
k=I 

where pis the order of the LPC analysis. The inverse filter A(z) is defined as 

p 

A(z) = 1-~>*z-* 
l=I 

'faking inverse z-transforms in Eq. (6.19) results in 
p 

x[n]= I,a.x[n-k]+e[n] 
*"' 

(6.19) 

(6.20) 

(6.21) 

_Linear predictive coding gets its name from the fact that it predicts the current sample 
as a hnear combi .: f . na ... on ° its past p samples: 

i[n]= 'f,a.x[n-k] (6.22) 
t-1 
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Linear Predictive Coding 

The prediction error when using this approximation is 

e[n] = x[n]-x[n] = x[n]- i:,a.x[n-k] 
k:,I 

6.3.1. The Orthogonality Principle 

291 

(6.23) 

To estimate the predictor coefficients from a set of speech samples, we use the short-term 
analysis technique. Let's define x,,,[n] as a segment of speech selected in the vicinity of 
sample m: 

xm[n] = x[m + n] (6.24) 

We define the short-term prediction error for that segment as 

E. = ~e.![n] = ~(x.[11]-X.[nl)' = ~(x.[n]-t•1x.[n- j] J (6.25) 

In the absence of knowledge about the probability distribution of a,, a reasonable es­
timation criterion is minimum mean squared error, introduced in Chapter 4. Thus, given a 
signal x,,,[n], we estimate its corresponding LPC coefficients as those that minimize the 
total prediction error E,,, . Taking the derivative of Eq. (6.25) with respect to a, and equat­
ing to 0, we obtain: 

< em,x~ >= Lem[n]x,Jn-i] = 0 1$.iS.p (6.26) 
n 

where we have defined em and x~ as vectors of samples, and their inner product has to be 
0. This condition, known as orthogonality principle, says that the predictor coefficients that 
minimize the prediction error are such that the error must be orthogonal to the past vectors, 

and is seen in Figure 6.17. 
Equation (6.26) can be expressed as a set of p linear equations 

p 

L,Xm[n-i]xm[n] = Lai LXm[n-i]x.,[n- j] i = 1,2, ... ,p (6.27) 

II j=I II 

For convenience, we can define the correlation coefficients as 

¢,,,[i,J]= ~>·m[n-i]x,,,[n-j] (6.28) 

II 

so that Eqs. (6.27) and (6.28) can be combined to obtain the so-called Yule-Walker equations: 
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f aj4'm[i,jJ = 'Pm[i,O] 
/=I 

i = 1,2, . .. ,p 
(6.29) 

Solution of the set of p linear equations results in the p LPC coefficients that .. . 
· · f · E (6 29) h I minimize the prediction error. With a; sat1s ymg q. . , t e tota prediction error in Eq. (6 25 

talces on the following value: · l 

Em= Ix;[n]-ia1 Lxm[n]xm[n- j] = ¢[0, O]-f a1q>[O,j] 
n j=I n j=I 

It is convenient to define a nonnalized prediction error u[n] with unity energy 

Iu![n] = I 
" 

and a gain G, such that 

em[n] = Gum[n] 

The gain G can be computed from the short-tenn prediction error 

E,,, = Ie;[n] = G2~:U![n] = G2 

n n 

(6.30) 

(6.31) 

(6.32) 

(6.33) 

Figure 6·17 The orthogonality principle. The prediction error is orthogonal to the past 
samples. 

6.3.2. Solution of the LPC Equations 

The solution of the Yule-W lk . . . dard 
matrix inversion k a er equations m Eq. (6.29) can be achieved with any 5t3n . 

1 
solutions are pos!~~ age. Because of the special form of the matrix here, some e~cien 
we present three d.;· as described below. Also, each solution offers a different in5ightodso 

hlerent algorithms· th . 1 · meth , 
and the lattice method. · e covanance method, the autocorre auon 

r 

I 
\ 
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6.3.2.1. Covariance Method 

The covariance method [4] is derived by defining directly the interval over which the sum­
mation in Eq. (6.28) takes place: 

.\'-I 

E'" = Le,![n] 
11=0 

so that 1,1).,[i,j] in Eq. (6.28) becomes 

.,._, .\'-1-J 

tp111 [i,j] = LXm[n-i]x.,[n-j] = L xm[n]xm[n+i- j] = q,
111

[},i] 
n=O ,tc -/ 

and Eq. (6.29) becomes 

1,1>,,, [I, 1] 'Pm(}, 2] 'Pm[I,3] 'Pm[l,p] a, 

'Pm (2, I] 'Pm[2,2] 'Pm[2,3] 1/>.,[2,p] a2 

!/>m[3,1] 'Pm[3,2] !/>., [3, 3] ,Pm[3, p] al 

q,.,[p, l] 1,1>,,,[p,2] 1,1),,,[p,3] <P,,,[P,PL aP 

which can be expressed as the following matrix equation 

ct>a = If/ 

1/>m [l, O] 

'Pm [2, O] 

= <P,,,[3, O] 

'Pm[p,O] 

(6.34) 

(6.35) 

(6.36) 

(6.37) 

where the matrix <I> in Eq. (6.37) is symmetric and positive definite, for which efficient 
methods are available, such as the Cholesky decomposition. For this method, also called the 
squared root method, the matrix <I> is expressed as 

ct> =VDV' (6.38) 

where V is a lower triangular matrix (whose main diagonal elements are J's), and D is a 
diagonal matrix. So each element of <I> can be expressed as 

<P[i,j] = I.VitdtVJt 1~j<i (6.39) 
k•I 

or alternatively 

f-1 

~di =l,l>[i,j]-L,V;td1 Vi* l~j<i (6.40) 

k=I 

and for the diagonal elements 
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I 

<P[i,iJ= Iv,kdkv,k 
k=l 

(6.4 I) 

or alternatively 

i-1 

d, = <PU, tJ- Iv,; d. . 
k~I 

i?. 2 (6.42) 

with 

(6.43) 

The Cholesky decomposition starts with Eq. (6.43) then alternates between Eqs. (6.40) 
and (6.42). Once the matrices V and D have been detennined, the LPC coefficients are 
solved in a two-step process. The combination of Eqs. (6.37) and (6.38) can be expressed as 

VY =1/f 

with 

Y=DV'a 

or alternatively 

V'a=D-1Y 

Therefore, given matrix V and Eq. (6.44), Y can be solved recursively as 

H 

1; = IJf; - I v,1½ , 
/=I 

with the initial condition 

r. = 1/'1 

Having determined Y, Eq. (6.46) can be solved recursively in a similar way 

p 

a,=¥; Id, - L VJ/al, 
J=f+I 

with the initial condition 

aP=YP!dP 

1 ~ i<p 

(6.44) 

(6.45) 

(6.46) 

(6.47) 

(6.48) 

(6.49) 

(6.50) 

where the · d · · Eq m ex l m · (6.49) proceeds backwards. 
The tenn co~ariance analysis is somewhat of a misnomer, since we know front Cha~; 

ter 5 tbat the covanance of a signal is the correlation of that signal with its mean removed._ 
was so c~lled b~caus~ the matrix in Eq. (6.36) has the properties of a covariance matr1i, 

though this algonthm is more like a cross-correlation. 
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6.3.2.2. Autocorrelation Method 

The summation in Eq. (6.28) had no specific range. In the autocorrelation method (24, 27], 
we assume that xm[n] is O outside the interval O :c:;; n < N: 

x,,,[n] = x[m + n]»{n] (6.51) 

with »{n] being a window (such as a Hamming window) which is O outside the interval 
o s n < N. With this assumption, the corresponding prediction error em[n] is non-zero over 
the interval O s n < N + p, and, therefore, the total prediction error takes on the value 

N~-1 

E., = L e~[n] (6.52) 
nsO 

With this range, Eq. (6.28) can be expressed as 

N+p-1 N-1-(i-j) 

<f>~[i,j] = L xm[n-i]xm[n- j] = L x.,[n]x,,,[n+i- j] (6.53) 

n=O 

or alternatively 

(6.54) 

with Rm[k] being the autocorrelation sequence of x.,[n] : 

N-1-k 

R.,[k]= L xm[n]x.,[n+k] 
(6.55) 

n=O 

Combining Eqs. (6.54) and (6.29), we obtain 

p 

lajRm[I i- JI]= R.,[i] 
(6.56) 

j=I 

which corresponds to the following matrix equation 

R.,[p-1] 
~ ' R.,[l] 

R.,[O] R.,[1] R.,(2] a, 

R.,[l] R,,,[O] R.,[l] R.,[p-2] a2 R.,[2] 

R,,J2] R.,[l] Rm[O] R.,[p-3] G3 = R.,[3] (6.57) 

R.,[p-1] R.,[p-2] R.,[p-3] R.,[O] aP R.,[p] 
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Th tn·x in Eq. (6.57) is symmetric and all the elements in its diagonals are id . 
e ma . b' , . 1 . h' f ent1ca] 

S h trices are called Toeplm,. Dur m s recursion exp 01ts t 1s act resulting in · 
uc ma . . h b . f a very 

efficient algorithm (for convenience, we o~ut t e su scnpt m o the autocorrelation func-
tion}, whose proof is beyond the scope of this book: 

I. Initialization 

£ 0 = R[O] 

2. Iteration. For i = 1, · · ·, p do the following recursion: 

k, =(R[i]- iatR[i- j]]I E'-' 
J'"' 

'-k a, - I 

E' =(1-k/)E1-1 

3. Final solution: 

a . =aP 
J J 

15.j5.p 

15.j<i 

(6.58) 

(6.59) 

(6.60) 

(6.61) 

(6.62) 

(6.63) 

where the coefficients k;, called reflection coefficients, are bounded between -1 and I (see 
Section 6.3.2.1.3). In the process of computing the predictor coefficients of order p, the re­
cursion finds the solution of the predictor coefficients for all orders less than p. 

Replacing R[j] by the normalized autocorrelation coefficients r[j], defined as 

r[j] = R[j]/ R[O] (6.64) 

results in identical LPC coefficients and the recursion is more robust to problems witb 
aritllmetic precision. Likewise the n~rmalized prediction error at iteration i is defined by 
dividing Eq. (6.30) by R[O], which, using Eq.(6.54), results in 

I E' I 
V - 1 ~ [ (6.65) - R[O] = - L..air j] 

J=I 

The nonnalized prediction error is, using Eqs. (6.62) and (6.65), 

(6.66) 
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6.3.2.3. Lattice Formulation 

In this section we derive the lattice formulation [7, 19], an equivalent algorithm to the Lev­
inson Durbin recursion, which has some precision benefits. It is advantageous to define the 
forward prediction error obtained at stage i of the Levinson Durbin procedure as 

i 

i[n] == x[n]-1>~x[n-k] 
k=I 

whose z-transform is given by 

E1(z) = A'(z)X(z) 

with A' (z) being defined by 

I 

A1 (z) = 1- I,a~z-k 
kttl 

which, combined with Eq. (6.61 ), results in the following recursion: 

A1 (z) = A'-' (z)-k,z-1 A1
-

1 (z-1
) 

Similarly, we can define the so-called backward prediction error as 

I 

b1[n] = x[n-i]- I, a~x[n + k-i] 
k•I 

whose z-transform is 

B1 (z) = z-1 A1 (z-1)X(z) 

Now combining Eqs. (6.68), (6.70), and (6.72), we obtain 

E' (z) = A1- 1(z)X(z)-k
1
z-1 AH (z-')X(z) = EH (z)-k1z-'B'-

1
(z) 

whose inverse ,-transform is given by 

e'[n] = e1
-

1[n]-k,b1
-

1[n-l] 

Also, substituting Eq. (6.70) into (6.72) and using Eq. (6.68), we obtain 

B1(z) = z-1s1-
1(z)-k1Ei-l (z) 

whose inverse z-transform is given by 

b'[n] = b1
-

1{n-l]-ki€'-1[n] 

(6.67) 

(6.68) 

(6.69) 

(6.70) 

(6.71) 

(6.72) 

(6.73) 

(6.74) 

(6.75) 

(6.76) 
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Equations (6.74) and (6.76) define the forward and backward prediction erro 
d. ~ r sequence r an i"'-order predictor in tenns of the correspon mg 1orward and backward prect· . s •or 

W . . . 1 · th . I iction err of an (i _ 1)"'-order predictor. e m1t1a 1ze e recursive a gorithm by noting th ors 
· · · d. II· h at the rt order predictor 1s equivalent to usmg no pre 1ctor at a , t us . 

e0 [n] = b0 [n] = x[n] 
(6.77) 

and the final prediction error is e[ n] = eP [ n J . 
A block diagram of the lattice method is given in Figure 6.18, which resemble 

1 s a at­tice, hence its name. 
While the computation of the k, coefficients can be done through the Levinson Durn· 

recursion of Eqs. (6.59) through (6.62), it can be shown that an equivalent calculation can~ 
found as a function of the forward and backward prediction errors. To do so we minimi7.c 
the sum of the forward prediction errors 

,.,_, 2 

E1 = I,( i[n]) 
naO (6.78) 

by substituting Eq. (6.74) in (6.78), taking the derivative with respect to k, , and equating to 
0: 

Using Eqs. (6.67) and (6.71), it can be shown that 

e
0
[n] e'[n] 

e"'[n] 

x[n] 

z' 

Figure 6•18 Block diagram of the lattice filter. 

.. 
z 

(6.79) 

(6.80) 
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since m_inimization of both yields identical Yule-Walker equations. Thus Eq. (6.79) can be 
altemat1vely expressed as 

(6.81) 

where we have defined the vectors e' = ( e' [O] .. ·i[N -1]) and b' = ( b1[Q] .. ·b' [N -1]). The 
inner product of two vectors x and y is defined as 

N -1 

< x,y >= _Lx[n]y[n] 
n=O 

(6.82) 

and its norm as 

N-1 

jxj2 =< x,x >= _Lx2[n] (6.83) 

""° 
Equation (6.81) has the form of a normalized cross-correlation function, and, there­

fore, the reflection coefficients are also called partial correlation coefficie11ts (PARCOR). 
As with any normalized cross-correlation function, the k, coefficients are bounded by 

-Js;k,s;t (6.84) 

This is a necessary and sufficient condition for all the roots of the polynomial A(z) to 
be inside the unit circle, therefore guaranteeing a stable filter. This condition can be checked 
to avoid numerical imprecision by stopping the recursion if the condition is not met. The 
inverse lattice filter can be seen in Figure 6.19, which resembles the lossless tube model. 
This is why the k1 are also called reflection coefficients. 

Lattice filters are often used in fixed-point implementation, because lack of precision 
doesn' t result in unstable filters. Any error that may take place - for example due to quanti­
zation - is generally not be sufficient to cause k, to fall outside the range in Eq. (6.84). If, 
owing to round-off error, the reflection coefficient falls outside the range, the lattice filter 
can be ended at the previous step. 

More importantly, linearly varying coefficients can be implemented in this fashion. 
While, typically, the reflection coefficients are constant during the analysis frame, we can 
implement a linear interpolation of the reflection coefficients to obtain the error signal. If the 
coefficients of both frames are in the range in Eq. (6.84), the linearly interpolated reflection 
coefficients also have that property, and thus the filter is stable. This is a propeny that the 

predictor coefficients don't have. 
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Figure 6.19 Inverse lattice filter used to generate the speech signal, given its residual. 

6.3.3. Spectral Analysis via LPC 

Let's now analyze the frequency-domain behavior of the LPC analysis by evaluating 

(6.85) 

which is an all-pole or IlR filter. If we plot H(ei"'), we expect to see peaks at the roots of 
the denominator. Figure 6.20 shows the 14-order LPC spectrum of the vowel of Figure 6.3 
(d). 

100.---.----------------.---.....---, 

dB 

20 o;;---;;::---=.~-..,__ _ __,_ __ ,.___....:,_ _ __., _ _1 
500 1000 1500 2000 2500 3000 3500 4000 

Hz 
Figure 6.20 LPC spectrum f th I d h are a 
30 H · . 0 e ah/ phoneme in the word lives of Figure 6.3. Use ere 

-ms amm.mg window and th . pectrt1m 
is also shown. e autocorrelation method with p = 14. The short-nme s 
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For the autocorrelation method, the squared error of Eq. (6.52) can be expressed, using 
Eq. (6.85) and Parseval ' s theorem, as 

G2 x I xn, (e10)) ]2 
E = -f - , dm (6 86) 

m 21f -tr I H(e'(J)) 1- . 

Since the integrand in Eq. (6.86) is positive, minimizing E,. is equivalent to minimizing the 
ratio of the energy spectrum of the speech segment I Xm(ei"') IJ to the magnitude squared of 
the frequency response of the linear system I H(eJw) 12. The LPC spectrum matches more 
closely the peaks than the valleys (see Figure 6.20), because the regions where 
I x .,(e1w) I> l H(e1Q)) I contribute more to the error than those where I H(eiw) I> l Xm(eiro) I-

Even nasals, which have zeros in addition to poles, can be represented with an infinite 
number of poles. In practice, if p is large enough we can approximate the signal spectrum 
with arbitrarily small error. Figure 6.21 shows different fits for different values of p. The 
higher p, the more details of the spectrum are preserved. 

The prediction order is not known for arbitrary speech, so we need to set it to balance 
spectral detail with estimation errors. 

6.3.4. 

100-------------....,.....---------, 

: LI· 
cB 70 

40 

30 

200L---.!....--'-----.!....---''-:----:2500=::-----:'YVV\=~-:3500::-;::.-~400) 
500 1000 1500 ~ .,.,._,.., 

Figure 6.21 LPC spectra of Figure 6.20 for various values of the predictor order p. 

The Prediction Error 

So far we have concentrated on the filter component of the source-filter model. Using Eq. 
(6.23): we can compute the prediction error signal, also calle~ the excit~tio,i, _or residual 
signal. For unvoiced speech we expect the residual to be approx1m~tely white n?ise. 1~ prac­
tice, this approximation is quite good, and replacement of the residual by ~bite nmse fol­
lowed by the LPC filter typically results in no audible difference. For voiced speech we 
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expect the residual to approximate an impulse train. In practice, this is not th 
the all-pole assumption is not altogether valid; thus, the residual, although it e cas~, because 

· R l · th 'd I b · contains spik is far from an. impulse tram. ep acmg e res1 ua . y an impulse train, followed by the es, 
filter, results m speech that sounds somewhat robotic, partly because real speech . LPC 
fectly periodic (it has a random componenl as well), and because the zeroes are 15 not per. 
with the LPC filter. Residual signals computed from inverse LPC filters for sevnot 

1
modeled 

era vowel are shown in Figure 6.22. s 
How do we choose p? This is an important design quesLion. Larger values of 

1 · · F' 6 23) U · d h · P ead to lower pred1ct1on errors (see 1gure . . nvo1ce speec has higher error than . 
. . ~~ 

speech, because the LPC model 1s more accurate for v01ced speech. In general, the nonna]. 
ized error rapidly decreases, and then converges to a value of around 12-14 for 8 kH 
speech. If we use a large value of p, we are fitting the individual harmonics; thus the L~ 
filter is modeling the source, and the separation between source and filter is not going to be 
so good. The more coefficients we have to estimate, the larger the variance of their esti­
mates, since the number of available samples is the same. A rule of thumb is to use J com­
plex pole per kHz plus 2-4 poles to model the radiation and glottal effects. 
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Figure 6.22 LPC prediction error signals for several vowels. 
. ethods provide 

For unvoiced speech, both the autocorrelation and the covanance m. b tter esti-
. mil d provide e s1 ar results. For voiced speech, however, the covariance metho can . ly in· 

'f th · · . · d d the wmdow on mates 1 e analysis wmdow is shorter than the local pitch peno an 
I 

ttis and 
eludes samples from the closed phase (when the vocal tract is closed at lhe g O a]ysis 

h · 1 · d · · h nchronous an speec s1gna 1s ue mamly to free resonances). This is called pitc sy 
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and results in lo~er predicti~n error, because the true excitation is close to zero during the 
whole analysis wmdow. Durmg the open phase, the trachea, the vocal folds, and the vocal 
tract are acoustically coupled, and this coupling will change the free resonances. Addition­
ally, the prediction error is higher for both the autocorrelation and the covariance methods if 
samples fro~ the op~n phase are included in the analysis window, because the prediction 
during those mstants 1s poor. 

1 

... 
0 0.8 t: 
UJ 
C: 
0 0.6 
'fl 
'5 
!!! 0.4 
a. 
(/) 

::E 0.2 a: 

0 
0 1 2 3 

- -­ · - . 

Unvoiced Speech 
- -- Voiced Speech 

- . - -- ·-

4 5 
p 

6 7 8 9 10 

Figure 6.23 Variation of the nonnalized prediction error with the number of prediction coeffi­
cients p for the voiced segment of Figure 6.3 and the unvoiced speech of Figure 6.5. The auto­
correlation method was used with a 30 ms Hamming window, and a sampling rate of 8 kHz. 

6.3.5. Equivalent Representations 

There are a number of alternate useful representations of the predictor coefficients. The most 
important are the line spectrum frequencies, reflection coefficients, log-area ratios, and the 
roots of the predictor polynomial. 

6.3.5.1. Line Spectral Frequencies 

Line Spectral Frequencies (LSF) (18] provide an equivalent representation of the predictor 
coefficients that is very popular in speech coding. It is derived from computing the roots of 
the polynomials P(z) and Q(z) defined as 

P(z) = A(z) + z-<,,+iJ A(z-1
) 

(6.87) 

Q(z) = A(z)- z-c,,+ii A(z-1
) 

(6.88) 

To gain insight on these roots, look at a second-order predictor filter with a pair of 

complex roots: 
(6.89) 
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where O < Po < 1 and o < lo < 0.5 . Inserting Eq. (6.89) into (6.87) and (6.88) results in 

P(z) = 1-(a, +a2)z-1 -(a, +a:Jz-~ +z-3 

Q(z) = l-(a1 -a2)z-1 +(a, -a2)z-2 -z-3 (6.90) 

From Eq. (6.90) we see that z =-1 is a root of P(z) and z = I a root of Q(z), which can be 
divided out and results in 

P(z) = (1 + z-1 )(1- 2,B1z-1 + z-~) 

Q(z) = (l-z-1)(1-2,B2z-1 + z-
2

) 

where /31 and /32 are given by 

a +a +1 1-p; 
n1 = 1 2 = Po cos(2nlo)+--
~ · 2 2 

a -a -l 1- p; 
/32 = i 22 = Po cos(2nfo)--2-

(6.91) 

(6.92) 

It can be shown that l/3, I< I and IJJ2 I< I for all possible values of fo and Po . With 

this property, the roots of P(z) and Q(z) in Eq. (6.91) are complex and given by 

/31 ±j~J-/31
2 and /32 ±j~l-/3; , respectively. Because they lie in the unit circle, they can 

be uniquely represented by their angles 

1 2 
cos(2n J;) = p0 cos(2n-fo) + - Po 

2 
1 2 

cos(2n J;) = p
0 

cos(2n fo )- - Po 
2 

(6.93) 

where J; and /2 are the line spectral frequencies of A(z). Since !Pol <I, 
cos{2tr /2) < cos(2n fo) , and thus J; > fo . It's also the case that cos(2n J;) > cos(2n' fo) and 
thus J; < / 0 • Furthermore, as p0 ~ I, we see from Eq. ( 6. 93) that J; ~ lo and fz .~_lo· 
We conclude that, given a pole at fo , the two line spectral frequencies bracket it, i.e., 

J; < lo < J; , and that they are closer together as the poie of the second-order resonator gets 
closer to the unit circle. 

· · the We have proven that for a second-order predictor, the roots of P(z) and Q(z) lie l.l1 

unit circle, that ±1 are roots, and that, once sorted, the roots of P(z) and Q(z) alternate. ~­
though we do not prove it here, it can be shown that these conclusions hold for other pred; 
:r 0rders, and, therefore, the p predictor coefficients can be transformed into P line spec f 
p~1u;ncies. We also know that z = 1 is always a root of Q(z), whereas z ==-1 is a root 0 

i. ~ even P and a root of Q(z) for odd p. f 
0 compute the LSF ~ 2 · the roots 0 

P(co) and Q(co b 0_r P > , we replace z = cos(w) and compute . that 
) Y any available root finding method. A popular technique, given 

Amazon/VB Assets 
Exhibit 1012 

Page 330



Linear Predictive Coding 305 

there are p roots which are real in ro and bounded between O and 0 .5, is to bracket them by 
observing changes in sign of both functions in a dense grid. To compute the predictor coef­
ficients from the LSF coefficients we can factor P(z) and Q(z) as a product of second-order 
filters as in Eq. (6.91), and then A(z) = ( P(z)+Q(z) )/ 2. 

In practice, LSF are useful because of sensitivity (a quantization of one coefficient 
generally results in a spectral change only around that frequency) and efficiency (LSF result 
in )ow spectral distortion). This doesn't occur with other representations. As long as the LSF 
coefficients are ordered, the resulting LPC tilter is stable, though the proof is beyond the 
scope of this book. LSF coefficients are used extensively in Chapter 7. 

6.3.5.2. Reflection Coefficients 

For the autocorrelation method, the predictor coefficients may be obtained from the reflec­

tion coefficients by the following recursion: 

i = 1,· .. ,p 

l-5.j<i 
(6.94) 

where a, = af'. Similarly, the reflection coefficients may be obtained from the prediction 

coefficients using a backward recursion of the form 

k I 
I =01 i = p,·· ·, 1 

15.j<i 
(6.95) 

where we initialize af = a,. . 
Reflection coefficients are useful when implementing LPC filters whose values are in-

terpolated over time, because, unlike the predictor coefficients, they are guaranteed to be 

stable at all times as long as the anchors satisfy Eq. (6.84). 

6.3.5.3. Log-Area Ratios 

The log-area ratio coefficients are defined as 

=ln(~J g, l+k. 
I 

with the inverse being given by 

1-eg' 
k,=--

l+e'' 

(6.96) 

(6.97) 
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The log-area ratio coefficients are equal to the natural logarithm f th . 
eas of adjacent sections of a lossless tube equivalent of the vocal tract hao . e ratio of the ar. 

. . . vmg the sam 
fer functton . Smee for stable predictor filters -1 < k, <I, we have from Eq e trans. 
-oo < g, < 00 • For speech signals, it is not uncommon to have some refl t' · (6·96} that . . ec ton coeffi . 
close to 1, and quant1zat1on of those values can cause a large change in the ct· icients 

f . . pre 1ctor' s tran 
fer unction. On the other hand, the log-area ratio coefficients have relati I fl s-

. · · (' II h · th · ve Y at spectral sens1ttv1ty 1.e., a sma c ange m eir values causes a small change in the tr fi . 
and thus are useful in coding. ans er function) 

6.3.5.4. Roots of the Polynomial 

An alternative to the predictor coefficients results from computing the complex roots f th 
d. 1 ·al o e pre 1ctor po ynom1 : 

(6.98) 

These roots can be represented as 

Z1: = e(-,rb,+J2,rJ. >' F, (6.99} 

where b1: , f. , and F. represent the bandwidth, center frequency, and sampling frequency, 
respectively. Since ak are real, all complex roots occur in conjugate pairs so that if (b1,J;,) 
is a root, so is (bk, - f.) . The bandwidths bk are always positive, because the roots are in­
side the unit circle ( jzt I < 1 ) for a stable predictor. Real roots zk = e-"

6
' 
1 
F, can also occur. 

While algorithms exist to compute the complex roots of a polynomial, in practice there are 
sometimes numerical difficulties in doing so. 

If the roots are available, it is straightforward to compute the predictor coefficients _by 
using Eq. (6.98). Since the roots of the predictor polynomial represent resonance frequencies 
and bandwidths, they are used in the formant synthesizers of Chapter 16. 

6.4. CEPSTRAL PROCESSING 

~ . rts a convolu-
A homomorphic transformation x[n] =D(x[nl) is a transfonnat1on that conve 
tion 

x[n]=e[n}*h[n] 
(6.100) 

into a sum 

x{n] = e[n] + h[n] 
(6JOI) 
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