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From Eq. (5.95) and (5.96) we see that the DCT-II of a real sequence can be computed
with a length-2N FFT of a real and even sequence, which in turn can be computed with a
length (V/2) complex FFT and some additional computations. Other fast algorithms have
been derived to compute the DCT directly [15], using the principles described in Section
5.3.3.1. Two-dimensional transforms can also be used for image processing.

54. DIGITAL FILTERS AND WINDOWS

We describe here the fundamentals of digital filter design and study finite-impulse response
(FIR) and infinite-impulse response (1IR) filters, which are special types of linear time-
invariant digital filters. We establish the time-frequency duality and study the ideal low-pass
filter (frequency limited) and its dual window functions (time limited).

5.4.1. The Ideal Low-Pass Filter
It is useful to find an impulse response A[n] whose Fourier transform is

1 |oko, (5
0 o,dokr ’

H(e™)= {

which is the ideal low-pass filter because it lets all frequencies below @, pass through unaf-
fected and completely blocks frequencies above @, . Using the definition of Fourier trans-

form, we obtain

ol _ gmitn :
Hn]= = j W gan gy = (_____) =L (%—)sinc(?. fin) (5.98)
21 I 2 jn zn n

where we have defined the so-called sinc function as

sinc(x) = 02X (5.99)
TXx

which is a real and even function of x and is plotted in Figure 5.18. Note that the sinc func-
tion is 0 when x is a nonzero integer. .
Thus, an ideal low-pass filter is noncausal sin

finite number of nonzero coefficients.

ce it has an impulse response with an in-
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e ry 4 2 0 2 4 o

Figure 5.18 A sinc function, which is the impulse response of the ideal low-pass filter with a
scale factor.

5.4.2. Window Functions

Window functions are signals that are concentrated in time, often of limited duration. While
window functions such as triangular, Kaiser, Barlett, and prolate spheroidal occasionally
appear in digital speech processing systems, the rectangular, Hanning, and Hamming are the
most widely used. Window functions are also concentrated in low frequencies. These win-
dow functions are useful in digital filter design and all throughout Chapter 6.

54.2.1. The Rectangular Window

The rectangular window is defined as
h [n]=u[n]—u[n- N} (5.100)
and we refer to it often in this book. Its z-transform is given by

H (2)= sz (5.101)

n=0
. 5 5 -1
which results in a polynomial of order (N — 1). Multiplying both sides of Eq. (5.101) by 2

we obtain

N
z'H_(2) =Zz—n =H_(z)~1+z7 (5.102)

n=l

and therefore the sum of the terms of a geometric series can also be expressed as

H,(z)= 11— zh_I,v (5.109

-z
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Although z =1 appears to be a pole in Eq. (5.103), it actually isn’t because it is can-
celed by a zero at z=1. Since #4,[n] has finite length, Eq. (5.25) must be satisfied for
z#0, so the region of convergence is everywhere but at z =0. Moreover, all finite-length
sequences have a region of convergence that is the complete z-plane except for possibly

z=0.
The Fourier transform of the rectangular window is, using Eq. (5.103):

—jN ( o/ON "2 _ griN 2 ) e~oNn

H, (%) =— =
"( ) j - e—lw (ejw.'z _ e—/w/‘z )e-/mlz

; (5.104)
= sinwN/2 /oD _ A(w)e—jw(.\’—l)IZ
sinw/2

where A(w) is real and even. The function 4(w), plotted in Figure 5.19 in dB," is O for
@, =2xk/N with k¢{0,iN,+_2N,...}, and is the discrete-time equivalent of the sinc

function.
0
20k N J
40} '\f\ N
(dB)
60| .
|
80 E
100 . . 2 i . : ; A i
0 005 0.1 015 0.2 025 03 035 04 045 05

Normalized Frequency

Figure 5.19 Frequency response (magnitude in dB) of the rectangular window with N = 50,
which is a digital sinc function.

5.4.2.2. The Generalized Hamming Window
The generalized Hamming window is defined as

—a)— <n<N
h,,[n]:{(l o)-acos(2zn/N) 0 n< (5.105)
0 otherwise

' An energy value E is expressed in decibels (dB) as E =10log,, E . If the energy value is 2E, it is therefore 3dB
higher. Logarithmic measurements like dB are useful because they comelate well with how the human auditory

system perceives volume.

Amazon/VB Assets
Exhibit 1012
Page 257



232 Digital Signa) Pmcﬁsing

and can be expressed in terms of the rectangular window in Eq. (5.100) as

h,[n]=(1-0)h, [n]—~ah,[n]cos(2en/ N) (5.106)
whose transform is

Hy(¢) = (=0)H, ()= @/ DH (D)~ @I DH, (") (5100
after using the modulation property in Table 5.5. When & =0.5 the window is known a the
Hanning window, whereas for o =0.46 it is the Hamming window. Hanning and Hamming

windows and their magnitude frequency responses are plotted in Figure 5.20.
@ 1 () o
0.5 (dB) -50 ’
0 -100 WWWAA.
0 10 20 30 40 0 01 02 03 04 05
) 1 @ o
0 <100 ] |
0 10 20 30 40 0 01 02 03 04 05

time Normalized Frequency

Figure 5.20 (a) Hanning window and (b) the magnitude of its frequency response in dB; ()
Hamming window and (d) the magnitude of its frequency response in dB for N = 50.

The main lobe of both Hamming and Hanning is twice as wide as that of the rectangl”
lar window, but the attenuation is much greater than that of the rectangular window. The
secondary lobe of the Hanning window is 31 dB below the main lobe, whereas for the
Hamming window it is 44 dB below. On the other hand, the attenuation of the Hanmﬂ_g;‘”\‘;'
dow decays with frequency quite rapidly, which is not the case for the Hamming Wit o
whose attenuation stays approximately constant for all frequencies.

543, FIR Filters
From a

s ; : 0nSEs
A practical point of view, it is useful to consider LTI filters whose impulse ©¢P

ave a limi
a limited number of nonzero coefficients:
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|6, 0<nsM

0 otherwise

h[n] (5.108)

These types of LTI filters are called finite-impulse response (FIR) filters. The in-
put/output relationship in this case is

yn)= Z;,b,x{"-r] (5.109)

The z-transform of x{n—r] is

S xn—rlz" =3 x[n)z " = 27 X(z) (5.110)

T n=—eo

Therefore, given that the z-transform is linear, H(z) is

Y(Z) M - _ M- ¥
H(z)=X(z)=§;b,z =z [T (1-c.2™) (5.111)

re=|

M
whose region of convergence is the whole z-plane except for possibly z =0 . Since z b,l is

r=0
finite, FIR systems are always stable, which makes them very attractive. Several special
types of FIR filters will be analyzed below: linear-phase, first-order and low-pass FIR filters.

5.4.3.1. Linear-Phase FIR Filters

Linear-phase filters are important because, other than a delay, the phase of the signal is un-
changed. Only the magnitude is affected. Therefore, the temporal properties of the input
signal are preserved. In this section we show that linear-phase FIR filters can be built if the

filter exhibits symmetry.
Let's explore the particular case of A[n] real, M =2L, an even number, and

h[n]=h[M —n] (called a Type-/ filter). In this case

H(e™) = i hn)e™ ™ = h[L]e ™ + f (M[mle™™ +H[M —n]e” ™" )

n=0 n=0

= h[L}e 7™ + Lz_‘i H[n) (e + /D ) (5.112)

n=0

= [h[L] + i 2h[n+ L)cos (wn))e""‘" = A(w)e™**

where A4(w) is a real and even function of @, since the cosine is an even function, and
A(®) is a linear combination of cosines. Furthermore, we see that the Phase
arg (ej'”)}=La), which is a linear function of @, and therefore h{n] is called a linear-

Amazon/VB Assets
Exhibit 1012
Page 259



. \
Digital s
234 "eital Signal Processiny

It can be shown that if h{n]=—h[M —n], we also get a linear Phase sygter,

hase system. ' . A
ﬁut A(w) this time is a pure 1maginary and odd function (Type III filter). It js left to the

reader to show that in the case of M being odd the system is still linear phase (Types II ang
1V filters). Moreover, A[n] doesn’t have to be real and:

h[n] =1k [M ~n] , G113
is a sufficient condition for A[n] to be linear phase.
5.4.3.2. First-Order FIR Filters

A special case of FIR filters is the first-order filter:

yn)=x[n]+ex(n—1] (5.114)
for real values of @, which, unless @ =1, is not linear phase. Its z-transform is
H@)=1+az" (5.115)
It is of interest to analyze the magnitude and phase of its frequency response
|H(e’™) P 1+a(cos@~ jsinw) [ o
= (l+acosw)’ +(asinw)’ =1+a’ + 20 cos® (5.116)
o sin@
0(e’®) = —arctan| ———— 5.117
™) (1+ acos® ] ( )
It is customary to display the magnitude response in decibels (dB):
(5.118)

10log| H(e’) !=10l0g[(1+@)’ +2a cosm |

as shown in Figure 5.21 for various values of & .

10

0.‘;5 05

0 0.05 0.1 0.15 02 025 0.3 0.35 04
Nomalized Frequency

Figure 5.21 Frequency response of the first order FIR filter for various values of & -
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We see that for &t >0 we have a low-pass filter whereas for & <0 it is a high-pa
filter, also called a pre-emphasis filter, since it emphasizes the high frequencies. In 8enz S]s
filters that boost the high frequencies and attenuate the low frequencies are calléd high_ ral,
filters, and filters that emphasize the low frequencies and de-emphasize the high fre gA-pass
are called low-pass filters. The parameter & controls the slope of the curve gh Irequencies

5.4.3.3. Window Design FIR Lowpass Filters

The ideal lowpass filter lets all frequencies below @, go through and eliminates all ener
from frequencies above that range. As we described in Section 5.4.1, the ideal lowpass ﬁltge);
has an infinite impulse response, which poses difficulties for implementation in a practical
system, as it requires an infinite number of multiplies and adds.

Since we know that the sinc function decays over time, it is reasonable to assume that
a truncated sinc function that keeps a large enough number of samples N could be a good
approximation to the ideal low-pass filter. Figure 5.22 shows the magnitude of the frequency
response of such a truncated sinc function for different values of N. While the approximation
gets better for larger N, the overshoot near @, doesn’t go away and in fact stays at about 9%
of the discontinuity even for large N. This is known as the Gibbs phenomenon, since Yale
professor Josiah Gibbs first noticed it in 1899.

0.5}
ot . . ' . : : . 1
0 0.05 0.1 0.15 0.2 025 03 035 04 045 05
0 v T T T v T T ]
-50 - -
(d8) ~
.100 : L] ] ] L] ] \N\ [\ f‘\ A
0 0.05 0.1 0.15 0.2 025 03 035 04 0.45 0.5

Normalized Frequency

truncated sinc signal (N=200) for
lter, though we see that overshoots
d is in dB.

Figure 522 Magnitude frequency response of the
@, =7 /4. It is an approximation to the ideal low-pass fi
are present near the transition. The first graph is linear magnitude and the secon

we have implicitly multiplied the ideal low-
dow. In the so-called window design filter
ing the ideal sinc function by a

In computing the truncated sinc function,
pass filter, the sinc function, by a rectangular win
design method, the filter coefficients are obtained by multiply
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tapering window function, such as the Hamming window. The resulting frequency reg

is the convolution of the ideal lowpass filter function with the transform of the wip?inse

(shown in Figure 5.23), and it does not exhibit the overshoots in Figure 5.22. at the ex:e:sw
: e

of a slower transition.
5.4.3.4. Parks McClellan Algorithm

While the window design method is simple, it is hard to predict what the final response wil|
be. Other methods have been proposed whose coefficients are obtained to satisfy some con-
straints. If our constraints are a maximum ripple of &, in the passband (0<w < @ ), and a
minimum attenoation of &, in the stopband (@, < @ <), the optimal solution is ng;/en by
the Parks McClellan algorithm [14],

The transformation

X =CosSW (5.119)
maps the interval 0 <@ <7 into —1<x<1. We note that

cos(nw) =T, (cos w) (5.120)

0.5}

0 0.05 0.1 0.15 0.2 025 03 035 04 045 05

0
(dB) -s0|-
-100 ; i i : : : : S—
© 005 01 015 02 025 03 035 04 045 05
Normalized Frequency
Figure 5. ; _ ; .
sigg: :neemﬁ b:n?““l‘_‘lde frequency response of a low-pass filter obtained with the window ¢::e
second s man. . Hemming window (N = 200). The first graph is linear magnitude and
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where T,(x) is the n"-order Chebychev polynomial. The first two Chebychev polynomials
are given by T,(x) =1 and 7{(x)=x. If we add the following trigonometric identities

cos(n + 1)@ = cos nw cos @ — sin nw sin @

cos(nn—1)w = cos nw cos @+ sin nw sin @ (5.121)
and use Eqgs. (5.119) and (5.120), we obtain the following recursion formula:
T;|+|(x) = 2"\’7:1(x) . Tn-l (x) for n>1 (5.122)

Using Eq. (5.120), the magnitude response of a linear phase Type-I filter in Eq.
(5.112) can be expressed as an L"-order polynomial in cos:

L
A(w) =Y, a,(cos )" (5.123)
k=0

which, using Eq. (5.119) results in a polynomial
L
Pig) = ¥ g (5.124)
k=0

Given that a desired response is D(x) = D(cos @), we define the weighted squared er-
ror as

E(x)= E(cos @) =W (cos @)[D(cos @) — P(cos w)] =W (x)[D(x)- P(x)] (5.125)

where W(cosw) is the weighting in @. A necessary and sufficient condition for this
weighted squared error to be minimized is to have P(x) alternate between minima and
maxima. For the case of a low-pass filter,

1 cosw, <cosw<1
D(cosw) = 2 (5.126)
: ) 0 —1<cosw<cosa,

and the weight in the stopband is several times larger than in the passband.
These constraints and the response of a filter designed with such a method are shown
in Figure 5.24. We can thus obtain a similar transfer function with fewer coefficients using

this method.
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=20

(dB)
60}

-80
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0 005 01 015 02 025 03 035 04 045 05

Normalized Frequency

-100

Figure 5.24 Magnitude frequency response of a length-19 lowpass filter designed with the
Parks McClellan algorithm.

5.4.4. IIR Filters

Other useful filters are a function of past values of the input and also the output

N M
Mn)=Y ayn—kl+ 2 bxin-r] (5.127)
k=1 r=0
whose z-transform is given by
)
bz
H(z)=Y® _ = (5.128)
X(2) & -k
1-) a,z
k={

which in turn can be expressed as a function of the roots of the numerator c, (called zeros).
and denominator d, (called poles) as
M-1
4] (1 —c.z™ )
H(z)=—7*
(1-a,2™)

(5.129)

k=]

It is not obvious what the impulse response of such a system is by looking at either B3
(5.128) or Eq. (5.129). To do that, we can compute the inverse z-transform of Eg. (5-129);5
M <N inEq.(5.129), H(z) can be expanded into partial fractions (see Section 5.2.3-3)

HEz)=3 (5.130)
= l-dz”
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andif M2N

N /=N

A o
H(Z)=k2-|’1 *—+ Y Bz (5.131)

—a,z k=0

which we can now compute, since we know that the inverse z-transform of
H.(2)=4,/(1-d,z7") is

- Adun] )d, K1
hln)=4 “*F 4, (5.132)
—-Adu[-n—-1] |d,[>1
so that the convergence region includes the unit circle and therefore A,[n] is stable. There-
fore, a necessary and sufficient condition for H(z) to be stable and causal simultaneously is
that all its poles be inside the unit circle: i.e., |d, |<1 for all £, so that its impulse response is
given by

Hnl=B,+ dduln] (5.133)

k=1

which has an infinite impulse response, and hence its name.

Since IIR systems may have poles outside the unit circle, they are not guaranteed to be
stable and causal like their FIR counterparts. This makes 1IR filter design more difficult,
since only stable and causal filters can be implemented in practice. Moreover, unlike FIR
filters, IIR filters do not have linear phase. Despite these difficulties, IR filters are popular
because they are more efficient than FIR filters in realizing steeper roll-offs with fewer
coefficients. In addition, as shown in Chapter 6, they represent many physical systems.

5.44.1. First-Order IIR Filters

An important type of IIR filter is the first-order filter of the form
y[n]= Adn]+ayln-1] (5.134)

for a real. Its transfer function is given by

H(@)=— 22-' (5.135)

This system has one pole and no zeros. As we saw in our discussion of z-transforms in
Section 5.2.3, a necessary condition for this system to be both stable and causa] is that
fa<1. Since for the low-pass filter case 0 <& <1, it is convenient to define o =e™ where
b>0. In addition, the corresponding impulse response is infinite:

h[n] = Aa"u[n] (5.136)
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whose Fourier transform is

A A4

H(")= — = .
) l—ae?® 1-e? ™ (5.137)

and magnitude square is given by

Jjoy 2 IAF'
FH(e™) =1 (5.138)

—_—
+0° —-20cos@

which is shown in Figure 5.25 for ¢ > 0, which corresponds to a low-pass filter,

The bandwidth of a low-pass filter is defined as the point where its magnitude square
is half of its maximum value. Using the first-order Taylor approximation of the exponential
function, the following approximation can be used when 5 —0:

A A

H(E®) s ———==
| H(e™)] - F 5 (5.139)
If the bandwidth , is also small, we can similarly approximate
2 2 2
[ R SN D (5.140)

(1= 2 b+ jw, P (b2 +a),f)

(dB)

0 005 01 o015 02 025 03 035 04
Nommalized Frequency

Figure 5.25 Magnitude frequency response of the first-order IIR filter.
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so that for @, =b we have | H(e’) '~ 0.5| H(e’*) | . In other words, the bandwidth of this
filter equals b, for small values of b. The relative error in this approximation’ is smaller
than 2% for b<0.5, which corresponds to 0.6 <o <1. The relationship with the unnormal-
ized bandwidth B is

~2%B/F,

a=e (5.141)

For & <0 it behaves as a high-pass filter, and a similar discussion can be carried out.

5.4.4.2. Second-Order IIR Filters

An important type of IIR filters is the set of second-order filters of the form
)= Ax(n]+ayln=1]+a,y[n-2] (5.142)
whose transfer function is given by

A

1 -
l1-az"' —a,z7?

H(z)= (5.143)

This system has two poles and no zeros. A special case is when the coefficients 4,
a,, and a, are real. In this case the two poles are given by

’ 2
Z=M (5.144)

2

which for the case of a’ +4a, >0 yields two real roots, and is a degenerate case of two
first-order systems. The more interesting case is when a +4a, < 0. In this case we see that
the two roots are complex conjugates of each other, which can be expressed in their magni-
tude and phase notation as

z=¢ % (5.145)
As we mentioned before, ¢ >0 is a necessary and sufficient condition for the poles to be
inside the unit circle and thus for the system to be stable. With those values, the z-transform
is given by

H(z)= A = 4 (5.146)

(11— Y 1-e 0% ™) T 1-2¢7 cos(w,)z ™ +e 27

In Figure 5.26 we show the magnitude of its Fourier transform for a value of 0 and w,. We
see that the response is centered around @, and is more concentrated for smaller values of

? The exact value is @, = arccos[Z —cosh b] , where coshé= (eb + e"’)/ 2 is the hyperbolic cosine.
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o . This is a type of bandpass filter, since it favors frequencies in 5 band arounq
left to the reader as an exercise to show that the bandwidth® ig approximately 2%
smaller the ratio o/@,, the sharper the resonance. The filter coefficients cap be exa-

It i

as a function of the unnormalized bandwidth B and resonant frequency F and the sapms?ed
frequency F, (all expressed in Hz) as Mpling
a, =2e"%" cos(2nF / F,) Saan
a, =—"%% 56

These types of systems are also known as second-order resonators and will be of great use
for speech synthesis (Chapter 16), particularly for formant synthesis.

30 ; ; 7 g T

20|

o 0 1 ] ) 1 1 . ) ]
2 0 0.05 0.1 0.15 0.2 025 03 035 04 045 05

Normalized Frequency

Figure 5.26 Frequency response of the second-order IIR filter for center frequency of
F =0.1F, and bandwidth B=0.01F, .

5.5. DIGITAL PROCESSING OF ANALOG SIGNALS

To use digital signal processing methods, it is necessary to convert the speech §ignal 2(12'
which is analog, to a digital signal x[n], which is formed by periodically sampling the
log signal x(¢) at intervals equally spaced T seconds apart:

x[n}= x(nT) (6.149)

where T is defined as the sam
quency. In the speech a
telephone applications
plains the sampling th,

pling period, and its inverse F, =1/T as the sampllﬂézfgr
pplications considered in this book, F; can rangeé fron? 800%0;, ex-
10 44,100 Hz for high-fidelity audio applications. This S€¢ ol
eorem, which essentially says that the analog signal W

] N
The bandwidth of 2 bandpass filter is the region between half maximum magnitude squared values.
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uniquely recovered given its digital signal x{n] if the analog signal x(f) has no energy for
frequencies above the Nyquist frequency F,/2.

We not only prove the sampling theorem, but also provide great insight into the ana-
log-digital conversion, which is used in Chapter 7.

55.1.  Fourier Transform of Analog Signals

The Fourier transform of an analog signal x(t) is defined as

X(Q)= [ x(nedr (5.150)
with its inverse transform being

X0 == [ X@e™dQ (5.151)

They are transform pairs. You can prove similar relations for the Fourier transform of
analog signals as for their digital signals counterpart.

5.5.2. The Sampling Theorem

Let’s define x, (1)

x, ()= x(1)p(®) (5.152)

as a sampled version of x(¢), where

p(0)= 2 8(t-nT) (5.153)

n=—es

where 5(¢) is the Dirac delta defined in Section 5.3.2.1. Therefore, xp(t) can also be ex-

pressed as

x,0)= 3 x(©)8(t-nT) = 3 x(nT)8(t~nT)= S {nlé(t-nT) (5.154)

Pr—y oo n=—ow

after using Eq. (5.149). In other words, x, (1) can be uniquely specified given the digital

signal x{n].
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Using the modulation property of Fourier transforms of analog signals, we obtajn
1
Q)= —X(Q)* P(Q
. 1 ) (5.155)

Following a derivation similar to that in Section 5.3.2.2, one can show that the tra
form of the impulse train p(¢) is given by e

g
P@)=== 3, 8(Q-40,) (5.156)

k=~oo

where Q =27 F, and F, =1/T, so that

-
X, = D X(Q-kQ,) (5.157)

koo
From Figure 5.27 it can be seen that if
X(Q)=0 for |Q>Q,/2 (5.158)

then X(2) can be completely recovered from X ,(§2) as follows

X(Q)=Ry (DX,(Q) (5.159)

Figure 527 x(Q), X ,(Q) for the case of no aliasing and aliasing.
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where
]'T Q< /2

l 0 otherwise

Ry ()= (5.160)

is an ideal lowpass filter. We can also see that if Eq. (5.158) is not met, then aliasing will
take place and X(£2) can no longer be recovered from X ,(Q) . Since, in general, we cannot
be certain that Eq. (5.158) is true, the analog signal is low-pass filtered with an ideal filter
given by Eq. (5.160), which is called anti-aliasing filter, prior to sampling. Limiting the
bandwidth of our analog signal is the price we have to pay to be able to manipulate it digi-
tally.

The inverse Fourier transform of Eq. (5.160), computed through Eq. (5.151), is a sinc
function

)= sinoe/ 7y = S0 T) (5.161)
()= = :
T mt!T
so that using the convolution property in Eq. (5.159) we obtain
x(€) =r () *x,(£) = rp (1) i x[k]6(t—kT) = i x[klr (¢ —kT) (5.162)

k=—co k=—o0

The sampling theorem states that we can recover the continuous time signal x(¢) just
from its samples x[n] using Eqgs. (5.161) and (5.162). The angular frequency Q  =2nF, is
expressed in terms of the sampling frequency F,. T =1/F, is the sampling period, and
F, /2 the Nyquist frequency. Equation (5.162) is referred to as bandlimited interpolation
because x(t) is reconstructed by interpolating x[»]} with sinc functions that are bandlimited.

Now let’s see the relationship between X (C)) and X (&’¥), the Fourier transform of
the discrete sequence x[n]. From Eq. (5.154) we have

X,@=Y xnle ™" (5.163)

n=—co

so that the continuous transform X (€2) equals the discrete Fourier transform X' €®) at
0=QT .

5:5.3. Analog-to-Digital Conversion

The process of converting an analog signal x(¢) into a digital signal x{n] is called Analog-
to-Digital conversion, or A/D for short, and the device that does it is called an Analog-to-
Digital Converter. In Section 5.5.2 we saw that an ideal low-pass anti-aliasing filter was
required on the analog signal, which of course is not realizable in practice so that an ap-
proximation has to be used. In practice, sharp analog filters can be implemented on the same
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chip using switched capacitor filters, which have attenuations above 60 dB in the g,
so that aliasing tends not to be an important issue for speech signals. The passban
exactly flat, but this again does not have much significance for speech signals (for o
nals, such as those used in modems, this issue needs to be studied more carefully),

Although such sharp analog filters are possible, they can be expensive and difficult o
implement. One common solution involves the use of a simple analog low-pass filter with a
large attenuation at MF /2, a multiple of the required cutoff frequency. Then over.
sampling is done at the new rate MF,, followed by a sharper digital filter with a cut-off fre.
quency of F,/2 and downsampling (see Section 5.6). This is equivalent to having used a
sharp analog filter, with the advantage of a lower-cost implementation. This method also
allows variable sampling rates with minimal increase in cost and complexity. This topic is
discussed in more detail in Chapter 7 in the context of sigma-delta modulators,

In addition, the pulses in Eq. (5.59) cannot be zero length in practice, and therefore the
sampling theorem does not hold. However, current hardware allows the pulses to be small
enough that the analog signal can be approximately recovered. The signal level is then main-
tained during T seconds, while the conversion to digital is being carried out.

A real A/D converter cannot provide real numbers for x[n], but rather a set of integers
typically represented with 16 bits, which gives a range between —32,768 and 32,767. Such
conversion is achieved by comparing the analog signal to a number of different signal levels.
This means that guantization noise has been added to the digital signal. This is typically not
a big problem for speech signals if using 16 bits or more since, as is shown in Chapter 7,
other noises will mask the quantization noise anyway. Typically, quantization noise be-
comes an issue only if 12 or fewer bits are used. A more detailed study of the effects of
quantization is presented in Chapter 7.

Finally, A/D subsystems are not exactly linear, which adds another source of distor-
tion. This nonlinearity can be caused by, among things, jitter and drift in the pulses and un-
evenly spaced comparators. For popular A/D subsystems, such as sigma-delta A/D, an offset
is typically added to x[n], which in practice is not very important, because speech signals
do not contain information at f =0, and thus can be safely ignored.

Op band
d is not
ther sj 2-

5.54.  Digital-to-Analog Conversion

The process of converting the digital signal x[r] back into an analog x(¢) is called digital—
to-analog conversion, or D/A for short. The ideal band-limited interpolation reguires idcd
sinc functions as shown in Eq. (5.162), which are not realizable. To convert the digital sign?
o analog, a zero-order hold filter

ho(t)={l O<t<r (5.164)
0 otherwise

is often used, whi . ha
filter is given, by ich produces an analog signal as shown in Figure 5.28. The output of su¢
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55(0) = b () Y A8t ~nT) = " x{nlfy(t—nT) (5.165)

The Fourier transform of the zero-hold filter in Eq. (5.164) is, using Eq. (5.150),

2sin(QT/2) oo

Hy(@)=—3

(5.166)

and, since we need an ideal lowpass filter to achieve the band-limited interpolation of Eq.
(5.162), the signal x,(r) has to be filtered with a reconstruction filter with transfer function

ﬂe’“m |Q|<m/T
H, (Q)=4sin(QT/2) (5.167)
0 |Q>n/T

In practice, the phase compensation is ignored, as it amounts to a delay of 772 seconds.
Its magnitude response can be seen in Figure 5.29. In practice, such an analog filter is not
realizable and an approximation is made. Since the zero-order hold filter is already low-pass,
the reconstruction filter doesn’t need to be that sharp.

PR G

/é/—l R 4// -
-3T 2T -T 0 \ / 3T t

Figure 5.28 Output of a zero-order hold filter.

\

VAE)
\ 1
T Z
~Z =

Figure 5.29 Magnitude frequency response of the reconstruction filter used in digital-to-
analog converters after a zero-hold filter.
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In the above discussion we note that practical A/D and D/A systems intr
tions, which causes us to wonder whether it is a good idea to go through this p
manipulate digital signals. It turns out that for most speech processing algorith
in Chapter 6, the advantages of operating with digital signals outweigh the disadvantage ;
the distortions described above. Moreover, commercial A/D and D/A systems are SUChglho
the errors and distortions can be arbitrarily small. The fact that music in digital format (as iat
compact discs) has won out over analog format (cassettes) shows that this is indeeg the Casen
Nonetheless, it is important to be aware of the above limitations when designing a system, :

oduce distoy.
TOCeSS just tq
ms describeq

5.6. MULTIRATE SIGNAL PROCESSING

The term Multirate Signal Processing refers to processing of signals sampled at different
rates. A particularly important problem is that of sampling-rate conversion. It is often the
case that we have a digital signal x[n] sampled at a sampling rate F,, and we want to obtain
an equivalent signal y{n] but at a different sampling rate F, . This often occurs in A/D sys-
tems that oversample in order to use smaller quantizers, such as a dela or sigma delta-
quantizer (see Chapter 7), and a simpler analog filter, and then have to downsample the sig-
nal. Other examples include mixing signals of different sampling rates and downsampling to
reduce computation (many signal processing algorithms have a computational complexity
proportional to the sampling rate or its square).

A simple solution is to convert the digital signal x[»] into an analog signal x(¢) with
a D/A system running at F, and then convert it back to digital with an A/D system running
at F/. An interesting problem is whether this could be done in the digital domain directly,
and the techniques to do so belong to the general class of multi-rate processing.

5.6.1. Decimation

If we want to reduce the sampling rate by a factor of M, i.e., T’ =MT, we take every ¥
samples. In order to avoid aliasing, we need to lowpass filter the signal to bandlimit itto
frequencies 1/7”. This is shown in Figure 5.30, where the arrow pointing down indicates
the decimation,

il > rln] v [ yin]

Figure 5.30 Block diagram of the decimation process.

‘ Since the output is not desired at all instants n, but only every M samples, the comPut;
tation can be reduced by a factor of M over the case where lowpass filtering is done first 2"

i 5
;i.iczmanon later. To do this we express the analog signal x,(r) at the output of the lowpas
ilter as
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x()="Y, x[k]r.(t—kT) (5.168)

k=—eo

and then look at the value ¢"=nT". The decimated signal y{n] is then given by

k=—oo k=0

yn]=x(nT") = 2 x{klr (nT"=kT) = 2 x[/c]sinc[ M;’W_k ) (5.169)

which can be expressed as

=S x{kIA[Mn—k] (5.170)

ke—co

where
hln] =sinc(n/ M) (5.171)

In practice, the ideal lowpass filter A[n] is approximated by an FIR filter with a cutoff
frequency of 1/(2M).

5.6.2. Interpolation

If we want to increase the sampling rate by a factor of N, so that T'=T/N, we do not have
any aliasing and no further filtering is necessary. In fact we already know one out of every N
output samples

Y[Nn] = x{n] (5.172)
and we just need to compute the (N —1) samples in-between. Since we know that x{»] is a

bandlimited signal, we can use the sampling theorem in Eq. (5.162) to reconstruct the analog
signal as

5= x{klr(t—kT) (5173)

k=—ca

and thus the interpolated signal y[n] as

Mnl=x(nT" = z x[k]ry (nT'—kT) = k_i x[k]sinc(n_NkNJ | (5.174)

k=—oo

Now let’s define
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(o [ANE] K= Nk
xTk]= 0  otherwise (5.175)

which, inserted into Eq. (5.174), gives

snl= Y xTkJsinc((n-k)/N) (5.176)
k'=—0
This can be seen in Figure 5.31, where the block with the arrow pointing up imple-
ments Eq. (5.175).
Equation (5.174) can be expressed as

yln] = kz x{kh[n—kN] 5.177)
where we have defined

h[n]=sinc(n/N) (5.178)

Again, in practice, the ideal low-pass filter h[r] is approximated by an FIR filter with a
cutoff frequency of 1/(2N).

] — ™ NA [ il

y[n]

Figure 5.31 Block diagram of the interpolation process.

5.6.3. Resampling

To resampie the signal so that T'=TM /N , or F'=F, (N /M), we can first upsample the
signal by N and then downsample it by M. However, there is a more efficient way. Proceed-
ing similarly to decimation and interpolation, one can show the output is given by

ynl= 3 x[kh[nM ~ kN

(5.179)
koeoo
where
h[n) =sinc ’ 80
() .
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for the ideal case. In practice, h[n] is an FIR filter with a cutoff frequency of
1/(2 max(N, M)) - We can see that Eq. (5.179) is a superset of Egs. (5.170) and (5.177).

5.7. FILTERBANKS

A filterbank is a collection of filters that span the whole frequency spectrum. In this section
we describe the fundamentals of filterbanks, which are used in speech and audio coding,
echo cancellation, and other applications. We first start with a filterbank with two equal
bands, then explain multi-resolution filterbanks, and present the FFT as a filterbank. Finally
we introduce the concept of lapped transforms and wavelets.

5.7.1. Two-Band Conjugate Quadrature Filters

A two-band filterbank is shown in Figure 5.32 , where the filters f,[n] and g,[n] are low-
pass filters, and the filters f{[n] and g,[#] are high-pass filters, as shown in Figure 5.33.
Since the output of f[#] has a bandwidth half of that of x[n], we can sample it at half the
rate of x[n]. We do that by decimation (throwing out every other sample), as shown in Fig-
ure 5.32. The output of such a filter plus decimation is x,{m]. Similar results can be shown
for f,[n] and x[x].

For reconstruction, we upsample x,[m], by inserting a 0 between every sample. Then
we low-pass filter it with filter g,{n] to complete the interpolation, as we saw in Section
5.6. A similar process can be done with the high pass filters f[n] and g,{n]. Adding the
two bands produces x[n], which is identical to x[r] if the filters are ideal.

x(n) .

x,[m]

Mo w2 > A2 &
‘l X[n)

+ )+
x,[m]

42 1 s

Y

v

> £ ] w2

Analysis Synthesis

Figure 5.32 Two-band filterbank.

In practice, however, ideal filters such as those in Figure 5.33 are not achievable,_ )
we would like to know if it is possible to build a filterbank that has perfect reconstruction
with FIR filters. The answer is affirmative, and in this section we describe conjugate quadra-
ture filters, which are the basis for the solutions.
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= Gain

foln) fi(m)
&,(n) &(n)
Lowpass filter Highpass filter
0
0 n/2 Frequency T

Figure 5.33 Ideal frequency responses of analysis and synthesis filters for the two-band filter-
bank.

To investigate this, let’s analyze the cascade of a downsampler and an upsampler
(Figure 5.34). The output y[n] is a signal whose odd samples are zero and whose even sam-
ples are the same as those of the input signal x[n].

Al — v2 42 i

Figure 5.34 Cascade of a downsampler and an upsampler.

The z-transform of the output is given by

Y@= ¥ ke =2 3, snle 42 3, (1 e
A= s e (5.181)
= X(2)+X(-2)
2

Using Eq. (5.181) and the system in Figure 5.32, we can express the z-transform of the
output in Figure 5.32 as

%(5)= ( ﬂ(z)Go(z);F,(z)G &) ] X(2)
1{ F,(-2)G,(2) 2+ F(~2)G,(z) ] X'(_z) (5.182)
i ( F(2D)X(z)+ ;0 (=2)X (~z) ] G,()+ ( F(2)X(2)+ ;, (—2)X(-2) .]G, (2)
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which for perfect reconstruction requires the output to be a delayed version of the input, and
thus

Fy(2)G,(2)+ F(2)G\(2) = 2z~

F,(-2)G,(2)+ F(-2)G,(2) = 0 (5.183)

These conditions are met if we select the so-called Conjugate Quadrature Filters
(CQF) [17], which are FIR filters that specify f[n], g,[nl, and g[n] as a function of

flnl:
filn)= " f[L—1-n]
goln1= flL—1-7] (5.184)
g[n=flL-1-n]

where f,[n] is an FIR filter of even length L. The z-transforms of Eq. (5.184) are

F(2)=-z“"F(-z")
G,(z)= 2"V Fy(z™) (5.185)
G(2)= ~-Fy(-2)

so that the second equation in Eq.(5.183) is met if L is even. In order to analyze the first
equation in Eq. (5.183), let’s define P(z) as

P(z) = F(2)Fy(z™)

plnl= Y, folmlfy[m+n) (5.186)

then insert Eq. (5.185) into (5.183), use Eq. (5.186), and obtain the following condition:

P(2)+ P(-z)=2 (5.187)
Taking the inverse z-transform of Eq. (5.187) and using Eq. (5.181), we obtain
1 n=0
il (5.188)
PI=1g w=2k

so that all even samples of the autocorrelation of fy[#n] are zero, except for n . 0. Since
fo[n] is a half-band low-pass filter, pln} is also a half-band low-pass filter. The ideal half-

band filter A{r]
h[n] - sin(nn/Z) . 189)
nn
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satisfies Eq. (5.188), as does any half-band zero-phase filter (a linear phase filter with
delay). Therefore, the steps to build CQF are 1o

1. Design a (2L - 1) tap" half-band linear-phase low-pass filter pln] with any
available technique, for an even value of L. For example, one could use the
Parks McClellan algorithm, constraining the passband and stopband cutoff
frequencies so that @, =7 —, and using an error weighting that is the same
for the passband and stopband. This results in a half-band linear-phase filter
with equal ripple & in both bands. Another possibility is to multiply the idea]
half-band filter in Eq. (5.189) by a window with low-pass characteristics,

2. Add a value § to p[0] so that we can guarantee that P(e’®)>0 for all g
and thus is a legitimate power spectral density.

3. Spectrally factor P(z)= F,,(z)F;,(z") by computing its roots.
4. Compute fi[n], g,[r] and g,{n] from Eq. (5.184).

5.7.2. Multiresolution Filterbanks

While the above filterbank has equal bandwidth for both filters, it may be desirable to have
varying bandwidths, since it has been proven to work better in speech recognition systems.
In this section we show how 10 use the two-band conjugate quadrature filters described in
the previous section to design a filterbank with more than two bands. In fact, multi-
resolution analysis such as that of Figure 5.35, are possible with bands of different band-
widths (see Figure 5.36).

One interesting result is that the product of time resolution and frequency resolution is
constant (all the tiles in Figure 5.37 have the same area), since filters with smaller band-
widths do not need to be sampled as often. Instead of using Fourier basis for decomposition,
multi-resolution filterbanks allow more flexibility in the tiling of the time-frequency plane.

s L T A Pl T 4 Lﬂh':,[n]

"fl"hl f."&zl f,*El

xfn] x,in] %)

3 . i j re
Figure 5.35 Analysis part of a multi-resolution filterbank designed with conjugate quadraly
filters. Only f,[n] needs to be specified.

" i
A filter with N taps is a filter of length N,
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0 n/8 n/4 n/2 Frequency - >

Figure 5.36 Ideal frequency responses of the multi-resolution filterbank of Figure 5.35. Note
that x,[n] and x,[n] occupy 1/8 of the total bandwidth.

A A
f f

> >
t t

Figure 5.37 Two different time-frequency tilings: the non-uniform filterbank and that obtained
through a short-time Fourier transform. Notice that the area of each tile is constant.

5.7.3. The DFT as a Filterbank

It turns out that we can use the Fourier transform to construct a filterbank. To do that, we
decompose the input signal x{n] as a sum of shorr-time signals x,,[n]

x[n]= i x_[n] (5.190)

where x_[n] is obtained as

x,[n}= x{n]w,[n] (5.191)

the product of x[»] by a window function w,,[n] of length N. From Egs. (5.190) and (5.191)
we see that the window function has to satisfy

S wln=1  Vn (5.192)
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If the short-term signals x,{n] are spaced M samples apart, we define the
Wlnd()w

w,[n] as:

w, ] = w{n - M) -
where w[n] =0 for n<0 and »n >N . The windows w,[n] overlap in time while satiggy;
Eq. (5.192). Ying

Since x,[n] has N nonzero values, we can evaluate its length-N DFT a5

X, [k]= Nixm [Mm +1]e!

1=0

N-t N-) (5.194)
= 3 A Mm+1w{lle™™ = Y [ Mm+1)f,[-1]
ia0 I=

where @, =2k/N and the analysis filters f,[/] are given by

LN =w{-11e™ (5.195)

If we define X, [n] as

o0 N-l
X nl=xn* f[m =Y xn-r1f,[r]= Y dn+ 1] (5.196)
r=—oo =0
then Egs. (5.194) and (5.196) are related by
X, [k]=X,[mM] (.19

This manipulation is shown in Figure 5.38, so that the DFT output X, [k] is X,["]
decimated by M.

%, X,,[K]

xin] —» f£[n] M —

Figure 5.38 Fourier analysis used to build a linear filter.

The short-time signal x, [#] can be recovered through the inverse DFT of X,[£] &
N-1

x,[mM +1] = h{[]z X, [k]e’™! (5.198)
k=0

where h[n] has been defined as

h[n]={”” Isn<N (5199
0  otherwise

so that Eq. (5.198) is valid for all values of 1, and notjust 0</< N.
Amazon/VB Assets

Exhibit 1012
Page 282



Filterbanks —

Making the change of variables mM+/=n in Eq. (5.198) and inserting it into Eq.
(5.190) results in

x{”] = i h[”_mM]me [k]ef‘”; (n—mM)

m=—ea

Nl e (5.200)
=3, D, X,[klg[n—mM]
k=0 m=—oo
where the synthesis filters g, [#] are defined as
g [n]=h{nle™" (5.201)
Now, let’s define the upsampled version of X [k] as
5 X, [k] I=mM
X, [N=<"
1 { 0  otherwise (5.202)
which, inserted into Eq. (5.200), yields
Nt = N
A=Y, Y X, [Ngn-1= X,[n]*g[n] (5.203)
k=0 /=—eo k=0

Thus, the signal can be reconstructed. The block diagram of the analysis/resynthesis
filterbank implemented by the DFT can be seen in Figure 5.39, where x,[m]= X [k] and

#[n]=x[n].

MO AL R o LYTH o YO
> fin [ M =x,[m] Am g,[n)
\ x[n]
I[ﬂ] T .
- Julnl * M ‘>XN‘|[m] = ‘ M 8uilnl
Analysis DFT Synthesis DFT
Figure 5.39 A filterbank with N analysis and syathesis filters.
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For perfect reconstruction we need N 2 M. If w[n] is a rectangular wing
N, the frame rate has to be M = N. We can also use overlapping windows S
(50% overlap), such as Hamming or Hanning windows, and still get perfe
The use of such overlapping windows increases the data rate by a factor 0
sis filters have much less spectral leakage because of the higher atteny
ming/Hanning window outside the main lobe.

f lep
with - 2illh

Ct reconstrygy;
on,
f 2; but the aﬂﬁly-

ation of the Han,

5.74. Modulated Lapped Transforms

The filterbank of Figure 5.39 is useful because, as we see in Chapter 7, it is better tq quan-
tize the spectral coefficients than the waveform directly. If the DFT coefficients are quan-
tized, there will be some discontinuities at frame boundaries. To solve this problem we can
distribute the window w[n] between the analysis and synthesis filters so that

win}=w,[n]w,[n] (5.204)
so that the analysis filters are given by

Siln}=w,[-n]e"" (5.205)
and the synthesis filters by

g [nl=w,[nle’" (5.206)

This way, if there is a quantization error, the use of a tapering synthesis window wil
substantially decrease the border effect. A common choice is w,[n] = w,[], which for the
case of w[n] being a Hanning window divided by N, results in

1 . [(#n o
W,[n]=w[n}=—=sin -] fi < o
"3 | - or 0<n<N
so that the analysis and synthesis filters are the reversed versions of each other:
)= g, (] SOEAIN) s, 2y
Sil-n] gk["]—sz YTy [n] = b (] (
whose frequency response can be seen in Figure 5.40.
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-40 : |

\F Al
it i 4
|

0 005 01 015 02 025 03 035 04 045 05

nomalized frequency
Figure 5.40 Frequency response of the Lapped Orthogonal Transform filterbank.

The functions 4,[n] in Eq. (5.208) are sine modulated complex exponentials, which
have the property

K¥2[n) =2K" [2n] (5.209)

which is a property typical of functions called wavelets, i.e., they can be obtained from each
other by stretching by 2 and scaling them appropriately. Such wavelets can be seen in Fig-
ure 5.41.

If instead of modulating a complex exponential we use a cosine sequence, we obtain
the Modulated Lapped Transform (MLT) (7], also known as the Modified Discrete Cosine
Transform (MDCT):

0.05 |
ol
~0.05 -\ A
0 50 100
0.05 P 0.05 | AT r
] ]
-0.05 N\ -0.05 | A2

Figure 5.41 lterations of the wavelet 4" [n] for several values of k and N.
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2 1 M E
P:m=f;[2M"1‘”]=gk["]=h[n]\/-;—_cos[[k+51n+ 2+1)%

260

(5.210)
for k=0,1,--,M -1 and n=0,1,---,2M ~1. There are_M filters with 2M taps each, ang
k[n] is a symmetric window h[n] = h[2M —1~n] that satisfies

Wn)+h n+M]=1 21
where the most common choice for A[n] is
h[n]—sin-lfn+—l— X 52
LU 2 )2M (5.212)

A fast algorithm can be used to compute these filters based on the DCT, which is called the
Lapped Orthogonal Transform (LOT).

5.8. STOCHASTIC PROCESSES

While in this chapter we have been dealing with deterministic signals, we also need to deal
with noise, such as the static present in a poorly tuned AM station. To analyze noise signals
we need to introduce the concept of stochastic processes, also known as random processes.
A discrete-time stochastic process x[n], also denoted by x,, is a sequence of random vari-
ables for each time instant n. Continuous-time stochastic processes x(t), random variables
for e_ach value of ¢, will not be the focus of this book, though their treatment is similar to that
of d_lscr.ete-time processes. We use bold for random variables and regular text for determi-
nistic signals.

Here, we cover the statistics of stochastic processes, defining stationary and ergodic
processes and the output of linear systems to such processes.

Example 5.1 O
We can define a random process X[n] as
X[n] = cos[wn + (] 621

where ¢ is real rando

; i s . . . liza-
t0m of this randn, ; m variable with g uniform pdf in the interval (~m,m). Several ré2

rocess are displayed in Figure 5.42.
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Figure 5.42 Several realizations of a sinusoidal random process with a random phase.

5.8.1. Statistics of Stochastic Processes

In this section we introduce several statistics of stochastic processes such as distribution,
density function, mean and autocorrelation. We also define several types of processes de-

pending on these statistics.
For a specific n, x[n] is a random variable with distribution

F(x,n) = P{x[n] < x} (5.214)

Its first derivative with respect to x is the first-order density function, or simply the probabil-
iry density function (pdf)

_dF(xn) 5215
f(x,n) e (5.215)

The second-order distribution of the process x[#] is the joint distribution
F(x,,x,;n,n,) = P{x[n]< x,,x[m]< x,} (5.216)
of the random variables x[»,] and X[#,]. The corresponding density equals

O F(x,,%:n,1,) (5.217)

f('xhxz;nx sn‘z) = aXIaxz

A complex random process x[n] =X, [n]+ jx;[n] is specified in terms of the joint sta-

tistics of the real processes x,[#] and x,[7].
The mean ufn] of x(n}, also called first-order moment, is defined as the expected

value of the random variable x[n] for each value of 7:

wIn)= E{x{nl}= [ x(nlf (x,m)dx (5.218)
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The autocorrelation of complex random process x[r], also called second-

order momep, i,
defined as

R.[mm]=E{x(m]x[m]} = Ri.[n,m] G

which is a statistical average, unlike the autocorrelation of a deterministic signal defineg in
Eq. (5.45), which was an average over time.

Example 5.2
Let’s look at the following sinusoidal random process

x[n] =rcos[wn+¢] 5220

where r and ¢ are independent and ¢ is uniform in the interval (-7, 7). This process is
zero-mean because

i [n)=E{rcos[on +¢1} = E{r} E{cos[wn+¢]} =0 (5.221)
since r and ¢ are independent and
x 1
E {cos[mn + <p]} = J. cos[on + (p]E——d(p =0 (5222
- T
Its autocorrelation is given by
R_[n,n)=E {rz}_[:r cos[wn, + @]cos[wn, +¢] 2_1n'_d¢
(5.223)

E{r’} j: {cos[w(n, +n,) + @]+ cos[w(n, —n, )]}51; de

— N =

= EE{rz} cos[a(n, —n,)]

which only depends on the time difference n, —n, .

; . . . : isa
An important property of a stochastic process is that its autocorrelation R[m;m]

positive-definite function, i.e., for any a;,a;

; 204
Eza.-a,-Rn[n,,nj]zo (5.224)
[
which is a consequence of the identity
; 2
5.225)
o5\ Sortn] |- LS acielinaein) <
| | T4
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Similarly, the autocovariance of a complex random process is defined as

Culmym) = E{(xlm]= . 1) (xUns )~ 1 I 1) Y = R [ [ Julln ] (5.226)

@
X

The correlation coefficient of process x{»] is defined as

[ n ] Cu [nl 1, ]

r.ln,ml= 2
" \/Cu["l m1Cq[ny,n,] L)
An important property of the correlation coefficient is that it is bounded by 1:
[ralm,n] <1 (5.228)

which is the Cauchy-Schwarz inequality. To prove it, we note that for any real number a

0 Efjatalm)- )+ (0] - plm, D'}

=a*C_[n,n)+2aC_[n,n,]+C_[n,,n,]

(5.229)
Since the quadratic function in Eq. (5.229) is positive for all 4, its roots have to be com-
plex, and thus its discriminant has to be negative:

C2[n,n,)-C,[n,n])C.[n,,m,]1<0 (5.230)

from which Eq. (5.228) is derived.
The cross-correlation of two stochastic processes x[n] and y[n] is defined as

R, [m,m)= E{x{n ]y’ [n,]} = R}.[m,m] (5.231)

where we have explicitly indicated with subindices the random process. Similarly, their
cross-covariance is

Cylmun,]= R [m,m]—H[n 1u;[n,] (5:232)

Two processes X[n] and y[n] are called orthogonal iff

R [n,n,]=0 forevery n and n, (5.233)
They are called uncorrelated iff
Cyln,n1=0 forevery n, and n, (5.234)
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Independent processes. If two processes x[n] and y[n] are such that the random yag;
ables x[m,1,x[n, ], x[n, ], and vl yinal,-+yin,,] are mutually independent, they, thes;,
processes are called independent. If two processes are independent, then they are also Uneor.
related, though the converse is not generally true.

Gaussian processes. A process x[n] is called Gaussian if the random Variables

-,x[n,] are jointly Gaussian for any m and n,,n,, -, n, . If two processes ate

x[lll],x[”'_:]v" m oA
Gaussian and also uncorrelated, then they are also statistically independent.

5.8.2. Stationary Processes

Stationary processes are those whose statistical properties do not change over time. While
truly stationary processes do not exist in speech signals, they are a reasonable approximation
and have the advantage of allowing us to use the Fourier transforms defined in Section 52,
In this section we define stationarity and analyze some of its properties.

A stochastic process is called strict-sense stationary (SSS) if its statistical properties
are invariant to a shift of the origin: i.e., both processes x[r] and x[n+!] have the same
statistics for any /. Likewise, two processes x[n] and y[n] are called jointly strict-sense
stationary if their joint statistics are the same as those of x[n+/] and y[n+/] forany .

From the definition, it follows that the m"-order density of an SSS process must be

such that

f(‘xl:"'7xu,;n|>""nm)=f(x]9'"sxm;”| +1:"'vnm +l) (5235)

for any /. Thus the first-order density satisfies f(x,n)= f(x,n+[) for any /, which means
that it is independent of n:

S (¥, n)=f(x) (5.236)

or, in other words, the density function is constant with time.
Similarly, f(x,,x,;m +1,n,+1) is independent of /, which leads to the conclusion

S(xxysm,n) = fx, %, m) M=ty =1 e
or, in other words, the joint density of x[»] and x[n+mi] is not a function of », only of m,
the time difference between the two samples.

Let’s compute the first two moments of a SSS process:

E{x[n}} = jx[n] f(x{n]) = j x(x)=pu (5.238)

Elln+ml'Um) = [x{n+ mx"[n] f (xfn + mr], fn]) = R[] (5:2)

or, in 0 i : :
ther words, its mean is not a function of time and its autocorrelation depends only on’
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A stochastic process x[n] that obeys Eq. (5.238) and (5.239) is called wide-sense sta-
tionary (WSS). From this definition, a SSS process is also a WSS process but the converse
is not true in general. Gaussian processes are an important exception, and it can be proved
that a WSS Gaussian process is also SSS.

For example, the random process of Eq. (5.213) is WSS, because it has zero mean and
its autocorrelation function, as given by Eq. (5.223), is only a function of m=n,—n,. By
setting m =0 in Eq. (5.239) we see that the average power of a WSS stationary proces§

E{|x[n]’} = R(0) (5.240)

is independent of n.
The autocorrelation of a WSS process is a conjugate-symmetric function, also referred
to as a Hermitian function:

Rl—m] = E{x{n-m]x'[n]} = E{x{n]x’[n+m]} = R[] (5.241)

so that if x[n] is real, R[m] is even.
From Egs. (5.226), (5.238), and (5 .239) we can compute the autocovariance as

Clm] = R{m]~|u|* (5.242)
and its correlation coefficient as
r{m]=C[m]/ C[0] (5.243)

Two processes x[#] and y[n] are called jointly WSS if both are WSS and their cross-
correlation depends only on m=n, —n,:

R [m]=E{x[n+mly’[n]} (5.244)

C, Iml=R [m] — L1, (5.245)

5.8.2.1. Ergodic Processes

A critical problem in the theory of stochastic processes is the estimation of their various
statistics, such as the mean and autocorrelation given that often only one realization of the
random process is available. The first approximation would be to replace the expectation in
Eq. (5.218) with its ensemble average:

um =S 5 (5.246)
M i=0

where x,[n] are different samples of the random process.
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As an example, let x[n] be the frequency-modulated (FM) random Process

by a FM radio receiver: Tecejveq
x[n]=a[n]+v[n] 520
which contains some additive noise v[n]. The realization x,[n] received by Feceiver i wij pe

different from the realization x,[n] for receiver j. We know that each signal has 5 certa
level of noise, so one would hope that by averaging them, we could get the Mmean of u:n
process for a sufficiently large number of radio receivers, ®

In many cases, however, only one sample of the process is available. According to Eq
(5.246) this would mean that that the sample signal equals the mean, which does not seen;
very robust. We could also compute the signal’s time average, but this may not te]] ys much
about the random process in general. However, for a special type of random processes called
ergodic, their ensemble averages equal appropriate time averages.

A process x[n] with constant mean

E{x{nl}=p (5.248)

is called mean-ergodic if, with probability 1, the ensemble average equals the time average
when N approaches infinity:

L1_r’n_ Uy =U (5.249)

where 1, is the time average

Ni2-}
fy=— 3. x[n] (5.250)
N n=-N/2

which, combined with Eq. (5.248), indicates that u, is a random variable with mean A
Taking expectations in Eq. (5.250) and using Eq. (5.248), it is clear that

so that proving Eq. (5.249) is equivalent to proving
‘i};‘rﬁ‘ O being the variance of My . It can be shown [12] that a process x{n] is mean ergodic
PO . £ I Y77
lim — _ 5.253)
L= "g,n M;mc,,[n,m] =0 ¢
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It can also be shown [12] that a sufficient condition for a WSS process to be mean ergodic is
to satisfy

lim C[m]=0 (5.254)

m—e

which means that if the random variables x{n] and x[n+m} are uncorrelated for large m,
then process x[#] is mean ergodic. This is true for many regular processes.

A similar condition can be proven for a WSS process to be covariance ergodic. In
most cases in this book we assume ergodicity, first because of convenience for mathematical
tractability, and second because it is a good approximation to assume that samples that are
far apart are uncorrelated. Ergodicity allows us to compute means and covariances of ran-
dom processes by their time averages.

583. LTI Systems with Stochastic Inputs

If the WSS random process X[#] is the input to an LTI system with impulse response A[n],
the output

yini= 3 Hmixin—m)= 3, Hin=mxim] (5.255)

m=—co me—co

is another WSS random process. To prove this we need to show that the mean is not a func-
tion of n:

wm=Efyln}= 3 HmlE{xin-m}=p, 2 Hm) (5.256)

m=—co

The cross-correlation between input and output is given by

R, (m)= E{xin+mly*[nl} = 3. &' TE{xln+ mix+[n-1}

(5.257)
=Y WR [m+1}= Y, K [-R[m—1]= B’ [-m)* R, [m]
l=— I==o0
and the autocorrelation of the output
R, (m} = E{yin+mly*[nl} = 3, AN {xln+m—11y *[nl}
[ (5.258)
= 3 HIR, [m~{]= Hm]* R, [m] = H{m]* ' [-m]* Re ]
Iz
is only a function of m.
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5.8.4. Power Spectral Density

The Fourier transform of a WSS random process x[n] is a stochastic process in the variable
(1)}

X(w)= z xX[n)e™ " 525

nz=—oa

whose autocorrelation is given by

E{X(@+u)X (@)} E{ i X[l i x'[me’™

{=—oa m=—oo i
(5.260)

Z @ 2 E{x[m+ n)x"[m]}e ™"

no—= m=——

where we made a change of variables / =n+m and changed the order of expectation and
summation. Now, if x[n] is WSS

R, [n)= E{x{m+n)x"[m]} (5.261)

and if we set ¥ =0 in Eq. (5.260) together with Eq. (5.261), then we obtain

S.(@)=E{X@)}= X R fme (5.26)

ne=—oa

S_(w) is called the power spectral density of the WSS random process x[n], and it is the
Fourier transform of its autocorrelation function R_[»], with the inversion formula being

RIm=>- [ S (@)™ da (5269

Note that Eqs. (5.48) and (5.263) are identical, though in one case we compute the
autocorrelation of a signal as a time average, and the other is the autocorrelation of a random
process as an ensemble average. For an ergodic process both are the same.

Just as we take Fourier transforms of deterministic signals, we can
Power spectral density of a random process as long as it is wide-sense stationary, W

Wwhy these wide-sense stationary processes are so useful. "
X the random process x[n] is real then R_[n] is real and even and, using properties
5.5, §_(w) is also real and even.

Parseval’s theorem for random processes also applies here:

also compute e
hich 18

Table

E{\x[n]\2}= R[] _21; [ Sy (5.264)
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so that we can compute the signal’s energy from the area under S_(®). Let’s get a physical
interpretation of S, (@). In order to do that we can similarly derive the cross-power spec-
trum S, (@) of two WSS random processes x[#] and y[#] as the Fourier transform of their
cross-correlation:

S (@)=Y, R,[nle”™ (5.265)

n=—s

which allows us, taking Fourier transforms in Eq. (5.257), to obtain the cross-power spec-
{rum between input and output to a linear system as

S (@) =S (WH (@) (5.266)

Now, taking the Fourier transform of Eq. (5.258), the power spectrum of the output is
thus given by

5, (0) =5, (@H@) =5, (@|H@) (5.267)

Finally, suppose we filter x[#] through the ideal bandpass filter

Jrnle @o,—c<w@<m,+c

(5.268)
0 otherwise

Hy(w)= {
The energy of the output process is
2 1 ¢ 1 e
0< Efyinl = R, 0= - [/, S, (@)dw =5 o S w)de (5.269)
so that taking the limit when ¢ — 0 results in

0<lim— [ 5 (@) = S,.(@) (5.270)
=0 Qo Jay-e

which is the Wiener-Khinchin theorem and says that the power spectrum of a WSS process
x{n], real or complex, is always positive for any @ . Equation (5.269) also explams' the
name power spectral density, because S, (w) represents the density of power at any given
frequency @ .

5.8.5. Noise

A process x[n] is white noise if, and only if, its samples are uncorrelated:

5.271
C.[n,n]=Cin18[n -n] ( :
and is zero-mean g [#]=0.
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If in addition x[n] is WSS, then
= = 6
C.[n] = R [n]= qb[n] 52m)
which has a flat power spectral density
S (@)=qg forall ® 527

The thermal noise phenomenon in metallic resistors can be accurately modeleq g
white Gaussian noise. White noise doesn’t have to be Gaussian (white Poisson impulse
noise is one of many other possibilities).

Colored noise is defined as a zero-mean WSS process whose samples are correlateq
with autocorrelation R, [#]. Colored noise can be generated by passing white noise through
a filter A[n] such that S_(w) =|H (m)l’. A type of colored noise that is very frequently en.
countered in speech signals is the so-called pink noise, whose power spectral density decays
with @ . A more in-depth discussion of noise and its effect on speech signals is included jn
Chapter 10.

5.9. HISTORICAL PERSPECTIVE AND FURTHER READING

It is impossible to cover the field of Digital Signal Processing in just one chapter. The book
by Oppenheim and Schafer [10] is one of the most widely used as a comprehensive treat-
ment. For a more in-depth coverage of digital filter design, you can read the book by Parks
and Burrus [13]. A detailed study of the FFT is provided by Burrus and Parks [2]. The the-
ory of signal processing for analog signals can be found in Oppenheim and Willsky [11].
The theory of random signals can be found in Papoulis [12]. Multirate processing is well
studied in Crochiere and Rabiner [4]. Razavi [16] covers analog-digital conversion. Soft-
ware programs, such as MATLAB [1], contain a large number of packaged subroutines.
Malvar [7] has extensive coverage of filterbanks and lapped transforms. .
The field of Digital Signal Processing has a long history. The greatest advances in the
field started in the 17" century. In 1666, English mathematician and physicist Sir /saac Ney-
ton (1642-1727) invented differential and integral calculus, which was independently dis-
covered in 1675 by German mathematician Gortfried Wilhelm Leibniz (1646-1716)- They
tod: developed discrete mathematics and numerical methods to solve such equations wix
closed-form solutions were not available. In the 18" century, these techniques were further
extended. Swiss brothers Johann (1667-1748) and Jakob Bernoulli (1654-1705) '_"Ve”‘ed th:
calculus of variations and polar coordinates. French mathematician Joseph Lou!s Lag:mnﬁs
(1736-1813) developed algorithms for numerical integration and interpolation of conm:iu(:h .
functions. The famous Swiss mathematician Leonhard Euler (1707-1783) de"f’!OPew e
theory of complex numbers and number theory so useful in the DSP field, in addmm;] tic
first full analytical treatment of algebra, the theory of equations, trigonometry and an h); -
geometry. In 1748, Euler examined the motion of a vibrating string and discgvered [1782),
nusoids are eigenfunctions for linear systems. Swiss scientist Daniel Bernoulli (1700-
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son of Johann Bern_oulli, also .conj:eclured in 1753 that all physical motions of a string could
be represented by hne?r combinations of normal modes. However, both Euler and Bernoulli,
and later L?grange,.dlscarded the use of trigonometric series because it was impossible to
represent signals with corners. The 19" century brought us the theory of harmonic analysis.
One of those. who contributed most to the field of Digital Signal Processing is Jean Baptiste
Joseph Fourier (1768-1830), a French mathematician who in 1822 published The Analytical
Theory of Heat, where he derived a mathematical formulation for (he phenomenon of heat
conduction. In this treatise, he also developed the concept of Fourier series and harmonic
analysis and the Fourier transform. One of Fourier's disciples, the French mathematician
Simeon-Denis Poisson (1781-1840), studied the convergence of Fourier series tegether with
countryman Augustin Louis Cauchy (1789-1857). Nonetheless, it was German Peter
Dirichlet (1805-1859) who gave the first set of conditions sufficient to guarantee the con-
vergence of a Fourier series. French mathematician Pierre Simon Laplace (1749-1827) in-
vented the Laplace transform, a transform for continuous-time signals over the whole
complex plane. French mathematician Marc-Antoine Parseval (1755-1836) derived the
theorem that carries his name. German Leopold Kronecker (1823-1891) did work with dis-
crete delta functions. French mathematician Charles Hermite (1822-1901) discovered com-
plex conjugate matrices. American Josiah Willard Gibbs (1839-1903) studied the
phenomenon of Fourier approximations to periodic square waveforms.

Until the early 1950s, all signal processing was analog, including the long-playing
(LP) record first released in 1948. Pulse Code Modulation (PCM) had been invented by Paul
M. Rainey in 1926 and independently by Alan H. Reeves in 1937, but it wasn’t until 1948
when Oliver, Pierce, and Shannon [9] laid the groundwork for PCM (see Chapter 7 for de-
tails). Bell Labs engineers developed a PCM system in 1955, the so-called T-1 carrier sys-
tem, which was put into service in 1962 as the world’s first common-carrier digital
communications system and is still used today. The year 1948 also saw the invention of the
transistor at Bell Labs and a small prototype computer at Manchester University and marked
the birth of modern Digital Signal Processing. In 1958, Jack Kilby of Texas Instruments
invented the integrated circuit and in 1970, researchers at Lincoln Laboratories developed
the first real-time DSP computer, which performed signal processing tasks about 100 times
faster than general-purpose computers of the time. In 1978, Texas Instruments introduced
Speak & Spell™, a toy that included an integrated circuit especially designed for speech
synthesis. Inte] Corporation introduced in 1971 the 4-bit Intel 4004, the first general-purpose
microprocessor chip, and in 1972 they introduced the 8-bit 8008. In 1982 Texas Instruments
introduced the TMS32010, the first commercially viable single-chip Digital Signal Proces-
sor (DSP), a microprocessor specially designed for fast signal processing operations. At a
cost of about $100, the TMS32010 was a 16-bit fixed-point chip with a hardware multiplier
built-in that executed 5 million instructions per second (MIPS). Gordon Moore, Intel’s
founder, came up with the law that carries his name stating that computing power doubles
every 18 months, allowing ever faster processors. By the end of the 20" century, DSP chips
could perform floating-point operations at a rate over 1000MIPS and had a cost below $5, 50
that today they are found in many devices from automobiles to cellular phones.
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While hardware improvements significantly enabled the development of the fielq
digital algorithms were also needed. The 1960s saw the discovery of many of the COnc: i
described in this chapter. In 1965, James W. Cooley and John W, Tukey (3] di — g}ts
FFT, although it was later found [6] that German mathematician Car/ Friedrich Gause
(1777-1855) had already invented it over a century earlier. The FFT sped up calculationg bs
orders of magnitude. which opened up many possible algorithms for the slow computers oyf
the time. James F. Kaiser, Bernard Gold, and Charles Rader published key papers on digital
filtering. John Stockham and Howard Helms independently discovered fast convolution by
doing convolution with FFTs.

An association that has had a large impact on the development of modem Digital Sig-
nal Processing is the Institute of Electrical and Electronic Engineers (1EEE), which has over
350,000 members in 150 nations and is the world’s largest technical organization. It wag
founded in 1884 as the American Institute of Electrical Engineers (AIEE). IEEE’s other par-
ent organization, the Institute of Radio Engineers (IRE), was founded in 1912, and the two
merged in 1963. The IEEE Signal Processing Society is a society within the ITEEE devoted
to Signal Processing. Originally founded in 1948 as the Institute of Radio Engineers Profes-
sional Group on Audio, it was later renamed the 1EEE Group on Audio (1964), the IEEE
Audio and Electroacoustics group (1965), the IEEE group on Acoustics Speech and Signal
Processing (1974), the Acoustic, Speech and Signal Processing Society (1976), and finally
IEEE Signal Processing Society (1989). In 1976 the society initiated its practice of holding
an annual conference, the International Conference on Acoustic, Speech and Signal Process-
ing (ICASSP), which has been held every year since, and whose proceedings constitute an
invaluable reference. Frederik Nebeker [8] provides a history of the society’s first 50 years
rich in insights from the pioneers.
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CHAPTER 6

Speech Signal Representations

This chapter presents several representations
for speech signals useful in speech coding, synthesis, and recognition. The central theme is
the decomposition of the speech signal as a source passed through a linear time-varying fil-
ter. This filter can be derived from models of speech production based on the theory of
acoustics where the source represents the air flow at the vocal cords, and the filter represents
the resonances of the vocal tract which change over time. Such a source-filter model is illus-
trated in Figure 6.1. We describe methods to compute both the source or excitation e[n] and
the filter A[n] from the speech signal x{n].

eln] ———p| hn] — xin]

Figure 6.1 Basic source-filter model for speech signals.
To estimate the filter we present methods inspired by speech product_ion models (such
as linear predictive coding and cepstral analysis) as well as speech perception models (such

275
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as mel-frequency cepstrum). Once the filter has been estimated, the source can
by passing the speech signal through the inverse filter. Separation between sy
is one of the most difficult challenges in speech processing.

It turns out that phoneme classification (either by human or by machines) is mog
dependent on the characteristics of the filter. Traditionally, speech recognizers estimate thy
filter characteristics and ignore the source. Many speech synthesis techniques use 3 Sourc:
filter model because it allows flexibility in altering the pitch and the filter, Many speech
coders also use this model because it allows a low bit rate.

We first introduce the spectrogram as a representation of the speech signal that high-
lights several of its properties and describe the short-time Fourier analysis, which is the b
sic tool to build the spectrograms of Chapter 2. We then introduce several techniques used to
separate source and filter: LPC and cepstral analysis, perceptually motivated models, for-
mant tracking, and pitch tracking.

be Obtaineg
ICe and ﬁller

6.1. SHORT-TIME FOURIER ANALYSIS

In Chapter 2, we demonstrated how useful spectrograms are to analyze phonemes and their
transitions. A spectrogram of a time signal is a special two-dimensional representation that
displays time in its horizontal axis and frequency in its vertical axis. A gray scale is typically
used to indicate the energy at each point (1, f) with white representing low energy and black
high energy. In this section we cover short-time Fourier analysis, the basic tool with which
to compute them.

The idea behind a spectrogram, such as that in Figure 6.2, is to compute a Fourier
transform every 5 milliseconds or so, displaying the energy at each time/frequency point
Since some regions of speech signals shorter than, say, 100 milliseconds often appear to b¢
periodic, we use the techniques discussed in Chapter 5. However, the signal is no longer
periodic when longer segments are analyzed, and therefore the exact definition of Fourter
transform cannot be used. Moreover, that definition requires knowledge of the signal for
infinite time. For both reasons, a new set of techniques called short-time analysis are pre-
posed. These techniques decompose the speech signal into a series of short segments, I
ferred to as analysis frames, and analyze each one independently. "

In Figure 6.2 (a), note the assumption that the signal can be approximated as Pe}"°dIC
within X and Y is reasonable. In regions (Z, W) and (H, G), the signal is not periodic a."d
looks like random noise. The signal in (Z, W) appears to have different noisy characteristc
than those of segment (#, G). The use of an analysis frame implies that the region 1S sho{f
enough for the behavior (periodicity or noise-like appearance) of the signal to be ap?;;x_'s
mately constant. If the region where speech seems periodic is too long, the pitch per .oln
got constant and not all the periods in the region are similar. In essence, the speech regér.

as to be short enough so that the signal is stationary in that region: i.e., the signal charec

- 0 0 O i or-
1st11cs (Whether periodicity or noise-like appearance) are uniform in that region. A more f
mal definition of stationarity is given in Chapter 5.

Amazon/VB Assets
Exhibit 1012
Page 302



Short-Time Fouricer Analysis -

(a)
: .ﬁ '1.. : ’ s B ‘A(
’§3000'-9 mgn ' Rk f’;" maEntlG, |, y T
i § ol .. ook ik ol
®) £ 2000 114 s Mg pril i ’
ﬂk). d" “L""
= 100')- L] ,:i’ . '
0“. mlt i ek A : f‘ (‘
0 0.1 0.2 0.3 0.4 0.5 0.6
Time (seconds)

Figure 6.2 (a) Waveform with (b) its corresponding wideband spectrogram. Darker areas mean
higher energy for that time and frequency. Note the vertical lines spaced by pitch periods.

Similarly to the filterbanks described in Chapter 5, given a speech signal x[n], we de-
fine the short-time signal x, [#] of frame m as

x,[n] = x{n]w, (] 6.1)

the product of x[n] by a window function w, [n], which is zero everywhere except in a

small region.
While the window function can have different values for different frames m, a popular

choice is to keep it constant for all frames:
W] = wim =] ©2

where w{n]=0 for |n|>N/2 . In practice, the window length is on the order of 20 to 30
ms.

With the above framework, the short-time Fourier representation for frame m is de-
fined as

X, = 3 x e = 3 wim—nls{nle™” 63)
with all the properties of Fourier transforms studied in Chapter 5.
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In Figure 6.3 we show the short-time spectrum of voiced speech. Note that there are 3
number of peaks in the spectrum. To interpret this, assume the properties of x,[n] persist
outside the window, and that, therefore, the signal is periodic with period M in the -
sense. In this case, we know (see Chapter 5) that its spectrum is a sum of impulses

X, (e*)=2xn Z X [K18(w—2mk | M)

f—

64)

Given that the Fourier transform of w{#] is

W(e)="y winle " 6.5)
so that the transform of w{m—n] is W(e™")e”"". Therefore, using the convolution prop-
erty, the transform of x{n]w[m —n] for fixed m is the convolution in the frequency domain

Xm (elw) - Z )("l [k]”/(e-—j(w—ukll\') )e—/(m-lez IN)ym (66)

koo

which is a sum of weighted W (e’®), shifted on every harmonic, the narrow peaks seen in
Figure 6.3 (b) with a rectangular window. The short-time spectrum of a periodic signal ex-
hibits peaks (equally spaced 2m/M apart) representing the harmonics of the signal. We
estimate X, [k] from the short-time spectrum X, (e’”), and we see the importance of the
length and choice of window.

Equation (6.6) indicates that one cannot recover X, [k] by simply retrieving

X (e”), although the approximation can be reasonable if there is a small value of 1 such
that

W(e®)=0 for [w-a,|>2 (M)

which is the case outside the main lobe of the window’s frequency response.

Recall from Section 5.4.2.1 that, for a rectangular window of length N, A=2n/N.
Therefore, Eq. (6.7) is satisfied if N > M , i.e., the rectangular window contains at Jeast one
pitch period. The width of the main lobe of the window’s frequency response is inversely
proportional to the length of the window. The pitch period in Figure 6.3 is M = 71 ata sam”
pling rate of 8 kHz. A shorter window is used in Figure 6.3 (c), which results in wider analy-
sis lobes, though still visible. .

Also recall from Section 5.4.2.2 that for a Hamming window of length N, A=dn/N:
twice as wide as that of the rectangular window, which entails N > 2M. Thus, for EQ-l(§'7)
to be met, a Hamming window must contain at least two pitch periods. The lobes aré visible
‘I\‘,Ii‘%‘j‘? 6.3 (d) since N = 240, but they are not visible in Figure 6.3 (¢) since N = 120, and

In practice, one cannot know what the pitch period is ahead of time, which wa"
means you need to prepare for the lowest pitch period. A low-pitched voice with 2
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Figure 6.3 Short-time spectrum of male voiced speech (vowel /ah/ with local pitch of 110Hz):
(a) time signal, spectra obtained with (b) 30 ms rectangular window and (c) 15 ms rectangular
window, (d) 30 ms Hamming window, (¢) 15 ms Hamming window. The window lobes are
not visible in (e), since the window is shorter than 2 times the pitch period. Note the spectral
leakage present in (b).

F, =50Hz requires a rectangular window of at least 20 ms and a Hamming window of at
least 40 ms for the condition in Eq. (6.7) to be met. If speech is non-stationary within 40 ms,
taking such a long window implies obtaining an average spectrum during that segment in-
stead of several distinct spectra. For this reason, the rectangular window provides better rime
resolution than the Hamming window. Figure 6.4 shows analysis of female speech for which
shorter windows are feasible. o )
But the frequency response of the window is not completely zero outside its main
lobe, so one needs to see the effects of this incorrect assumption. From Section 5.4.2.1 no.te
that the second lobe of a rectangular window is only approximately 17 dB below the main
lobe. Therefore, for the ™ harmonic the value of X, (e’***'*) contains not X, [k], but als_o
a weighted sum of X, [/]. This phenomenon is called spectral leakage .because the ampli-
tude of one harmonic leaks over the rest and masks its value. If the signal's spectrum is
Wwhite, spectral leakage does not cause a major problem, since the effect. of the.seco’nd lobe
on a harmonic is only 101og,,(1+10™7/'°) =0.08dB. On the other hand, if the signal’s spec-
trum decays more quickly in frequency than the decay of the window, the spectral leakage

Tesults in inaccurate estimates.
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Figure 6.4 Short-time spectrum of female voiced speech (vowel /aa/ with local pitch of
200Hz): (a) time signal, spectra obtained with (b) 30 ms rectangular window and (c) 15 ms
rectangular window, (d) 30 ms Hamming window, (¢) 15 ms Hamming window. In all cases
the window lobes are visible, since the window is longer than 2 times the pitch period. Note
the spectral leakage present in (b) and (c).

From Section 5.4.2.2, observe that the second lobe of a Hamming window is approxi-
mately 43 dB, which means that the spectral leakage effect is much less pronounced. Other
windows, such as Hanning, or triangular windows, also offer less spectral leakage than the
rectangular window. This important fact is the reason why, despite their better time resolu-
tion, rectangular windows are rarely used for speech analysis. In practice, window h_%ﬂg‘hs
are on the order of 20 to 30 ms. This choice is a compromise between the stationarity as-
sumption and the frequency resolution.

In practice, the Fourier transform in Eq. (6.3) is obtained through an FFT. i
d_°“’ has length N, the FFT has to have a length greater than or equal to N. Since FFT at]ﬁ(;l
rithms often have lengths that are powers of 2 (L = 2* ), the windowed signal with Leng®/
is augmented with (L~ N) zeros either before, after, or both. This process is called zer”
padding. A larger value of L provides a finer description of the discrete Fourier mmeor']:::
but it does not increase the analysis frequency resolution: this is the sole mission of the W1
dow length N.

In Figure 6.3, observe the broad peaks, resonances or formants, which representq;:
filter characteristics. For voiced sounds there is typically more energy at loW frequen®

If the win-
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than at high frequencies, also called roll-off. It is impossible to determine exactly the filter
characteristics, because we know only samples at the harmonics, and we have no knowledge
of the values in between. In fact, the resonances are less obvious in Figure 6.4 because the
harmonics sample the spectral envelope less densely. For high-pitched female speakers and
children, it is even more difficult to locate the formant resonances from the short-time spec-

trum.
Figure 6.5 shows the short-time analysis of unvoiced speech, for which no regularity is

observed.
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Figure 6.5 Short-time spectrum of unvoiced speech: (a) time signal, (b) 30 ms rectmgqlm
window, (c) 15 ms rectangular window, (d) 30 ms Hamming window, (e) 15 ms Hamming
window.

6.1.1.  Spectrograms
Since the spectrogram displays just the energy and not the phase of the short-term Fourier
transform, we compute the energy as

log | X[k] = log (X?[k]+X?[k]) -
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with this value converted to a gray scale according to Figure 6.6, Pixels wh

not been computed are interpolated. The slope controls the contrast of

95€ Values hay,
: ) . : : the spectrogray
while the saturation points for white and black control the dynamic range. Y

Gray intensity g

black “/-
—%
/ Log-energy (dB)

""""" white

Figure 6.6 Conversion between log-energy values (in the x-axis) and gray scale (in the y-axis).
Larger log-energies correspond to a darker gray color. There is a linear region for which more
log-energy corresponds to darker gray, but there is saturation at both ends. Typically there is
40 to 60 dB between the pure white and the pure black.

There are two main types of spectrograms: narrow-band and wide-band. Wide-band
spectrograms use relatively short windows (< 10 ms) and thus have good time resolution at
the expense of lower frequency resolution, since the corresponding filters have wide band-
widths (> 200 Hz) and the harmonics cannot be seen. Note the vertical stripes in Figure 6.2,
due to the fact that some windows are centered at the high part of a pitch pulse, and others in
between have lower energy. Spectrograms can aid in determining formant frequencies and
fundamental frequency, as well as voiced and unvoiced regions.

Narrow-band spectrograms use relatively long windows (> 20 ms), which lead to fil-
ters with narrow bandwidth (< 100 Hz). On the other hand, time resolution is lower than for
wide-band spectrograms (see Figure 6.7). Note that the harmonics can be clearly seen, be-
cause some of the filters capture the energy of the signal’s harmonics, and filters in between
have little energy. :

Some implementation details also need to be taken into account. Since speech S!g‘_‘#s
are real, the Fourier transform is Hermitian, and its power spectrum is also even. Thus, 1t 1.s
only necessary to display values for 0 <k < N/2 for N even. In addition, while the tradi-
tional spectrogram uses a gray scale, a color scale can also be used, or even a 3-1? TCP’E“":
tation. In addition, to make the spectrograms easier to read, sometimes the signal is first Pf:'s
emphasized (typically with a first-order difference FIR filter) to boost the high frequenct
to counter the roll-off of natural speech. filter's

By inspecting both narrow-band and wide-band spectrograms, we can learn the ';fcull
magnitude response and whether the source is voiced or not. Nonetheless it is Very - 1zul
tﬁ Separate source and filter due to nonstationarity of the speech signal, spectral leaka_ies-

e fact that only the filter's magnitude response can be known at the signal's harmonic
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Figure 6.7 Waveform (a) with its corresponding narrowband spectrogram (b). Darker areas
mean higher energy for that time and frequency. The harmonics can be seen as horizontal lines
spaced by fundamental frequency. The corresponding wideband spectrogram can be seen in
Figure 6.2.

6.1.2. Pitch-Synchronous Analysis

In the previous discussion, we assumed that the window length is fixed, and we saw the
tradeoffs between a window that contained several pitch periods (narrow-band spectro-
grams) and a window that contained less than a pitch period (wide-band spectrograms). One
possibility is to use a rectangular window whose length is exactly one pitch period; this is
called pitch-synchronous analysis. To reduce spectral leakage a tapering window, such as
Hamming or Hanning, can be used, with the window covering exactly two pitch periods.
This latter option provides a very good compromise between time and frequency resolution.
In this representation, no stripes can be seen in either time or frequency. The difficulty in
computing pitch synchronous analysis is that, of course, we need to know the local pitch
period, which, as we see in Section 6.7, is not an easy task.

6.2. ACOUSTICAL MODEL OF SPEECH PRODUCTION

Speech is a sound wave created by vibration that is propagated in the air. Acoustic theory
analyzes the laws of physics that govern the propagation of sound in the vocal tract. Such a
theory should consider three-dimensional wave propagation, the variation of the vocal tract
shape with time, losses due to heat conduction and viscous friction at the vocal tract _walls,
softness of the tract walls, radiation of sound at the lips, nasal coupling, and excitation of
sound. While a detailed mode! that considers all of the above is not yet available, some
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models provide a good approximation in practice, as well as a good understangjp
physics involved. ® of the

6.2.1. Glottal Excitation

As discussed in Chapter 2, the vocal cords constrict the path from the lungs to the v,
tract. This is illustrated in Figure 6.8. As lung pressure is increased, air flows out ofoc,}:
lungs and through the opening between the vocal cords (glottis). At one point the vogy
cords are together, thereby blocking the airflow, which builds up pressure behind thep,
Eventually the pressure reaches a level sufficient to force the vocal cords to open and Lhusl
allow air to flow through the glottis. Then, the pressure in the glottis falls and, jf the tensiop
in the vocal cords is properly adjusted, the reduced pressure allows the cords to come to-
gether, and the cycle is repeated. This condition of sustained oscillation occurs for voiced
sounds. The closed-phase of the oscillation takes place when the glottis is closed and the
volume velocity is zero. The open-phase is characterized by a non-zero volume veloxity, in
which the lungs and the vocal tract are coupled.

N /\ /\
e —

Closed glottis Open glottis

Figure 6.8 Glottal excitation: volume velocity is zero during the closed-phase, during which
the vocal cords are closed.

Rosenberg’s glottal model {39] defines the shape of the glottal volume velocity with
the open quotient, or duty cycle, as the ratio of pulse duration to pitch period, and the speed
quotient as the ratio of the rising to falling pulse durations.

6.2.2. Lossless Tube Concatenation

A widely used model for speech production is based on the assumption that the vocé! n'ac:
e represented as a concatenation of lossless tubes, as shown in Figure 6.9- Vi consmcnt
cross-sectional areas {4,} of the tubes approximate the area function A(x) of the vocd tmm-
It a large number of tubes of short length are used, we reasonably expect the frequency ing
sponse of the concatenated tubes to be close to those of a tube with continuously V&
area function. 1
' o
- g?fmfrequencms corresponding to wavelengths that are long compared 10 tgf i;?,-of
€ vocal tract, it is reasonable to assume plane wave propagation along ¢
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the tubes. If in addition we assume that there are no losses due to viscosity or thermal con-
duction, and that the area 4 does not change over time, the sound waves in the tube satisfy
the following pair of differential equatijons:

_9p(x,1) _ p du(x,t)

ox A o
_du(x,t) _ A4 dp(x1) (6.9)
ox pc* ot

where p(x,¢) is the sound pressure in the tube at position x and time t, u(x,t) is the volume
velocity flow in the tube at position x and time ¢, p is the density of air in the tube, ¢ is the
velocity of sound, and 4 is the cross-sectional area of the tube.

Glottis Lips Glottis Lips
L, A, | 4] ala |4 |
0 i x '—41__ L g
" e
| /
+—F
l

Figure 6.9 Approximation of a tube with continuously varying area A4(x) as a concatenation of
5 lossless acoustic tubes.

Since Egs. (6.9) are linear, the pressure and volume velocity in the &* tube are related by
u, () =u(t—xlc)—u;(t+x/c)

per . _ (6.10)
D, (x,0)= A—k[u,‘ (t—x/c)+u, (t+x/c)]

where u; (t—x/c) and u; (¢~ x/c) are the traveling waves in the positive and negative di—
rections respectively and x is the distance measured from the lefi-hand end of tube K
0< x</. The reader can prove that this is indeed the solution by substituting Eq. (6.10) into
(6.9).

When there is a junction between two tubes, as in Figure 6.10, part of the wave is re-
flected at the junction, as measured by r, , the reflection coefficient

A4 (6.11)
Ak+| + AI(

Y

so that the larger the difference between the areas the more energy is reflected. The proof [9]
is beyond the scope of this book. Since 4, and 4,,, are positive, it is easy to show that #
satisfies the condition

1< <1 (642)

Amazon/VB Assets
Exhibit 1012
Page 311



\‘
. Speech Signal ReprestE
0
‘ Ahl )
e
A, ; et
U (1) il - R
—u:(.t) u(t-1)
u (1) u (1 +17)
- U (t) Ul +7)
- l - =
o J o

Figure 6.10 Junction between two lossless tubes.

A relationship between the z-transforms of the volume velocity at the glottis 4 n)
; . G
and the lips u,[n] for a concatenation of N lossless tubes can be derived [9] using a dis-
crete-time version of Eq. (6.10) and taking into account boundary conditions for every junc-
tion:

RS 11

-
k= [ThE 2

-Ni/2
ey 0.5z (141, ) [T (14 7)

V(z) (613

NT
- -0-
where 7, is the reflection coefficient at the glottis and r, =, is the reflection coefﬁci.em a
the lips. Equation (6.11) is still valid for the glottis and lips, where 4, = pc/Z; is the
equivalent area at the glottis and 4,,,, = pc/Z, the equivalent area at the lips. Z and Z

are the equivalent impedances at the glottis and lips, respectively. Such impedances relate
the volume velocity and pressure, for the lips the expression is

U,(2)=F,(2)/Z, ©1

In general, the concatenation of N lossless tubes results in an N-pole system a5 Sholwn
in Eq. (6.13). For a concatenation of N tubes, there are at most N/2 complex conjuga® podeisn;
or resonances or formants. These resonances occur when a given frequency gets tr.ap pe
the vocal tract because it is reflected back at the lips and then again back at the glottis.

Since each tube has length [ and there are N of them, the total length is L=?(t.ﬁ in
propagation delay in each tube 7 =1/c , and the sampling period is T =27, the round 1P

« fre.
a tube. We can find a relationship between the number of tubes N and the sampling
quency F =1/T:

The

5

s 2R, 615
C
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For example, for £, = 8000 kHz, ¢ = 34000 cm/s, and L = 17 cm, the average length
of a male adult vocal tract, we obtain N =8, or alternatively 4 formants. Experimentally, the
vocal tract transfer function has been observed to have approximately 1 formant per }'cilo-
hertz. Shorter vocal tract lengths (females or children) have fewer resonances per kilohertz
and vice versa.

The pressure at the lips has been found to approximate the derivative of volume veloc-
ity, particularly at low frequencies. Thus, Z,(z) can be approximated by

Z,(2)= Ry(1-27") (6.16)

which is O for low frequel}cies and reaches R, asymptotically. This dependency upon fre-
quency results in a reflection coefficient that is also a function of frequency. For low fre-
quencies, 1, =1, and no loss occurs. At higher frequencies, loss by radiation translates into
widening of formant bandwidths.

Similarly, the glottal impedance is also a function of frequency in practice. At high
frequencies, Z; is large and r; =1 so that all the energy is transmitted. For low frequen-
cies, r; <1, whose main effect is an increase of bandwidth for the lower formants.

Moreover, energy is lost as a result of vibration of the tube walls, which is more pro-
nounced at low frequencies. Energy is also lost, to a lesser extent, as a result of viscous fric-
tion between the air and the walls of the tube, particularly at frequencies above 3 kHz. The
yielding walls tend to raise the resonance frequencies while the viscous and thermal losses
tend to lower them. The net effect in the transfer function is a broadening of the resonances’
bandwidths.

Despite thermal losses, yielding walls in the vocal tract, and the fact that both r, and
¥, are functions of frequency, the all-pole model of Eq. (6.13) for V(z) has been found to be
a good approximation in practice [13]. In Figure 6.11 we show the measured area function
of a vowel and its corresponding frequency response obtained using the approximation as a
concatenation of 10 lossless tubes with a constant #,. The measured formants and corre-
sponding bandwidths match quite well with this model despite all the approximations made.
Thus, this concatenation of lossless tubes model represents reasonably well the acoustics
inside the vocal tract. Inspired by the above results, we describe in Section 6.3 “Linear Pre-
dictive Coding,” an all-pole model for speech.

In the production of the nasal consonants, the velum is lowered to trap the nasal tract
to the pharynx, whereas a complete closure is formed in the oral tract (/m/ at the lips, /n/ ju§t
back of the teeth and /ng/ just forward of the velum itself. This configuration is shown in
Figure 6.12, which shows two branches, one of them completely closed. For nasals, the ra-
diation occurs primarily at the nostrils. The set of resonances is determined by the shape and
length of the three tubes. At certain frequencies, the wave reflected in the closu.re cancels the
wave at the pharynx, preventing energy from appearing at nostrils. The result is that.ff)r na-
sal sounds, the vocal tract transfer function V(z) has anti-resonances (zeros) in addition to
resonances. It has also been observed that nasal resonances have broader bandwidths than
non-nasal voiced sounds, due to the greater viscous friction and thermal loss because of the

large surface area of the nasal cavity.
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Figure 6.11 Area function and frequency response for vowel /a/ and its approximation as a
concatenation of 10 lossless tubes. A reflection coefficient at the load of k = 0.72 (dotted line)
is displayed. For comparison, the case of k = 1.0 (solid line) is also shown.

/ Nostrils
Pharynx /

Glottis Q —_— —_— Closure

Figure 6.12 Coupling of the nasal cavity with the oral cavity.

6.23.  Source-Filter Models of Speech Production

As shown in Chapter 10, speech signals are captured by microphones that respond (0

cha{nges in air pressure. Thus, it is of interest to compute the pressure at the lips P{2):
which can be obtained as

F(2)=U (2)Z,(2) = Us(2WV (2)Z,(2) 6.17

For voiced sounds we can m

glottal pulse (see Figure 6.13). Si
system.

s the
odel ug[n] as an impulse train convolved with ggﬁ]’z
nce g[n] is of finite length, its z-transform is am &
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' | l ' —> gl > i)

Figure 6.13 Model of the glottal excitation for voiced sounds,

289

The complete model for both voiced and unvoiced sounds is shown in Figure 6.14, We
have modeled u;[n] in unvoiced sounds as random noise.

‘ A,

P G = EACY EVEVI

Figure 6.14 General discrete-time model of speech production. The excitation can be either an
impulse train with period T and amplitude 4, driving a filter G(z) or random noise with am-

plitude 4, .

We can simplify the model in Figure 6.14 by grouping G(z), V(z), and Z,(z) into H(z)
for voiced sounds, and V(z) and Z,(z) into H(z) for unvoiced sounds. The simplified model is
shown in Figure 6.15, where we make explicit the fact that the filter changes over time.

1] —e
O\—> H(z) | s
W% —e

Figure 6.15 Source-filter model for voiced and unvoiced speech.

This model is a decent approximation, but fails on voiced fricatives, since those
sounds contain both a periodic component and an aspirated component. In this case, a mixed
excitation model can be applied, using for voiced sounds a sum of both an impulse train and
colored noise (Figure 6.16).

iinni
Sarpety

Figure 6.16 A mixed excitation source-filter model of speech.

O~ H) |>» s(n)
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The model in Figure 6.15 is appealing because the source is white (has flat speg.
trum) and all the coloring is in the ﬁlter..Ot.her sgurce-ﬁlter dcc9mpositions attempt 1o
model the source as the signal at the glottis, in Wth.h the source is definitely not white
Since G(2), Z,(z) contain zeros, and V(z) can also contain zeros for nasals, H(z) is no jonoe.

onger
all-pole. However, recall in Chapter 5, we state that the z-transform of x[n] = a"u[n] is :

X(2)= Za"z"' = l——l—_l- for |a| < 'zl (618
n=0 —az

so that by inverting Eq. (6.18) we see that a zero can be expressed with infinite poles. This is

the reason why all-pole models are still reasonable approximations as long as a large enough

number of poles is used. Fant [12] showed that on the average the speech spectrum contains

one pole per kHz. Setting the number of poles p to F, +2, where F, is the sampling fre-

quency expressed in kHz, has been found to work well in practice.

6.3. LINEAR PREDICTIVE CODING

A very powerful method for speech analysis is based on linear predictive coding (LPC) {4,
7, 19, 24, 27], also known as LPC analysis or auto-regressive (AR) modeling. This method
is widely used because it is fast and simple, yet an effective way of estimating the main pa-
rameters of speech signals.

As shown in Section 6.2, an all-pole filter with a sufficient number of poles is a good
approximation for speech signals. Thus, we could model the filter H(z) in Figure 6.15 as

H(Z) - X(Z) = 1 o 1 (619)
BT $, A

k=|

Wwhere p is the order of the LPC analysis. The inverse filter A(z) is defined as

A(Z) = 1-—iakz_k (620)
k=t

Taking inverse z-transforms in Eq. (6.19) results in

x{n]= ia,x[n —k]+e[n) (621

: s . le
Linear predictive coding gets its name from the fact that it predicts the current samp

as a linear combination of its past p samples:
in)= iakx[n—k] e
k=]
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The prediction error when using this approximation is

e[n] = x[n]—x[n] = x[n]- i a,x[n—k) (6.23)

k=l

6.3.1. The Orthogonality Principle

To estimate the predictor coefficients from a set of speech samples, we use the short-term
analysis technique. Let’s define x,_[n] as a segment of speech selected in the vicinity of
sample m:

x,[n] = x[m+n] (6.24)

We define the short-term prediction error for that segment as

je

E, =Y eln=Y (x,[n)~%,[n])" = Z[xm[n]-— ﬁa,xm[n- j]] (6.25)

In the absence of knowledge about the probability distribution of g,, a reasonable es-
timation criterion is minimum mean squared error, introduced in Chapter 4. Thus, given a
signal x_[n], we estimate its corresponding LPC coefficients as those that minimize the
total prediction error E, . Taking the derivative of Eq. (6.25) with respect to g, and equat-
ing to 0, we obtain:

<e,,x, >= Y e,[nkx,[n-i]=0 1<i<p (6.26)

where we have defined e, and x!, as vectors of samples, and their inner product has to be
0. This condition, known as orthogonality principle, says that the predictor coefficients that
minimize the prediction error are such that the error must be orthogonal to the past vectors,

and is seen in Figure 6.17.
Equation (6.26) can be expressed as a set of p linear equations

Zx,,,[n—-i]xm[n]=iaj2xm[n—i]xm[n—j] i=12,...,p (6.27)

n

For convenience, we can define the correlation coefficients as

.06, 1= x,[n—ilx,[n- /] (6.28)

so that Egs. (6.27) and (6.28) can be combined to obtain the so-called Yule-Walker equations:
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$a b, i 1=0,000]  i=12,p

=1

(6.29)
Solution of the set of p linear equations results in the p LPC coefficients that mipjp:
icti ith a, satisfying Eq. (6.29), the total predict e il
the prediction error. With g, satisfying Eq. ( , al prediction error in kg, (629
takes on the following value: -
E, = Zx:,[n]—ia lzx,,,[n]xm{n— J1=0¢[0,0] —ia,«p[o, Jl (630)
n j=l n j=t
It is convenient to define a normalized prediction error u[n] with unity energy
Y uiln]=1 631)
and a gain G, such that
e,[n]=Gu,[n] (6.32)
The gain G can be computed from the short-term prediction error
E, =Y eln=G"Y un]=G (6.33)

::;g:;:sﬁﬂ The orthogonality principle. The prediction error is orthogonal to the past

6.3.2.  Solution of the LPC Equations

The solution of the Yule-Wa]

- o ) . ndard
matrix inversion package. B ker equations in Eq, (6.29) can be achieved with any 5%
solutions are possible, as de,

jent
ecause of the special form of the matrix here, some ef.ﬁde:o
We present three different als Cm-)ed below. Also, each solution offers a different msxg}t::

and the lattice method, gorithms: the covariance method, the autocorrelation mEEE™
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6.3.2.1. Covariance Method

The covariance method [4] is derived by defining directly the interval over which the sum-
mation in Eq. (6.28) takes place:

Nl
E, =Y euln] (6.34)
n=0
so that @,[i, /] in Eq. (6.28) becomes
Nel-g

¢,,,[isj]=i,xm[”—i]xm["—f]= Z x,[nlx, (n+i=j1=9,[/.i] (6.35)

n==i

and Eq. (6.29) becomes

6.1 90,0121 ¢,01,3] - ¢,[Lp]Y4q ¢.[1,0]
6u[21] 0.02.2] ¢,[23] - ¢,[2.p])a | |¢,[2,0]
¢m[371] ¢m[3’2] ¢m[3’ 3] T ¢m[3’ P] a |= ¢m[3’0] (636)

¢m[p!1] ¢m[p:2] ¢,,,[P,3] ¢m[p9p], a, ¢m[P!0]

which can be expressed as the following matrix equation
da=y (6.37)

where the matrix @ in Eq. (6.37) is symmetric and positive definite, for which efficient
methods are available, such as the Cholesky decomposition. For this method, also called the
squared root method, the matrix @ is expressed as

® = VDV’ (6.38)

where V is a lower triangular matrix (whose main diagonal elements are 1’s), and D is a
diagonal matrix. So each element of ® can be expressed as

ol j1= 2V,kde,,, 1€j<i (6.39)

kel

or altematively

J-
Vljdi =¢[i!j]_ZVikd}ij Isj<i (6.40)
k=1
and for the diagonal elements
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¢[i,i]=kz=:,deerk (6.41)

or alternatively
i=l
d,=¢li,il- Y Vid,, i22 (642)
kel
with
d, =¢[L1] (6.43)

The Cholesky decomposition starts with Eq. (6.43) then alternates between Egs, (6.40)
and (6.42). Once the matrices V and D have been determined, the LPC coefficients are
solved in a two-step process. The combination of Eqgs. (6.37) and (6.38) can be expressed as

VY=y (644)
with

Y =DV'a (6.45)
or alternatively

Va=D"'Y (6.46)

Therefore, given matrix V and Eq. (6.44), Y can be solved recursively as

i-l
YL=y,-3 VY, 2<i<p il

j=l

with the initial condition

Y, =y, (6.48)
Having determined Y, Eq. (6.46) can be solved recursively in a similar way
a=Y/d-¥V,a, 1si<p (649
J=i+l
with the initial condition
ap = Yp /dp (650)

whereTt};le index i in Eq. (6.49) proceeds backwards. np-
¢ term covariance analysis is somewhat of a misnomer, since we know from Cl#?

t : i I
er 5 that the covariance of a signal is the correlation of that signal with its mean removed:

was 5o called because the matrix in E 4 iance matnk
. . (6. of a covarianc
though this algorithm is mo q. (6.36) has the properties

re like a cross-correlation.
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6.3.2.2. Autocorrelation Method

The summation in Eq. (6.28) had no specific range. In the autocorrelation method {24, 27],
we assume that x,[#] is 0 outside the interval 0Sn< N :

x,[n]=x[m+ nlwin] (6.51)

with w{n] being a window (such as a Hamming window) which is 0 outside the interval
0 < n< N. With this assumption, the corresponding prediction error ¢,[n] is non-zero over
the interval 0 < n< N+ p, and, therefore, the total prediction error takes on the value

Nap-1
E,= i e,[n) (6.52)

n=0

With this range, Eq. (6.28) can be expressed as

N+p=l N-1=(i-j)

ol 1= Y xln—ilx,ln—j1= 3, x,[nlx,[n+i-j] (6.53)
n=0 n=0
or alternatively
0.0, /1= R, [i- jl (6.54)

with R_[k] being the autocorrelation sequence of x,[n]:

RIk=S xlnlx,[n+K] 1655

n=0
Combining Eqgs. (6.54) and (6.29), we obtain

ia,-Rm[I i-jl1=R,[] (6.56)
j=t

which corresponds to the following matrix equation

R,[0] R, 1] R(2] - RJip-1)a) (Rl
R,1  R,[0] R - Rp-20|a| |Ral2)
R[2]1 R, R[0] - R[Ip-31|a|=| R[] (6.57)
RIp-11 R,([p-21 R[p-31 = R0l A% R,[p]
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The matrix in Eq. (6.57) is symmetric :jm,d all the. elements. in it.s diagonals are ideﬂtical
Such matrices are called Toeplitz. Durbin’s recursion exPlonts this fact resulting in 3 ye,
efficient algorithm (for convenience, we ogm the subscript m of the autocorrelatiop iy
tion), whose proof is beyond the scope of this book:

1. Initialization
E° = R[0] -

2. Tteration. For i=1,---, p do the following recursion:

-l . i
K, =[R[i]—2a;"R[i "J]J/E ' (6.59)
j=1
a =k, (6.60)
a,=a;" —ka’;, 1€j<i (6.61)
E'=(1-k?)E"" (6.62)

3. Final solution:

a=a; 15j<p (669

where the coefficients £, called reflection coefficients, are bounded between ~1 and I (se¢
Section 6.3.2.1.3). In the process of computing the predictor coefficients of order p, the re-
cursion finds the solution of the predictor coefficients for all orders less than p.

Replacing R[] by the normalized autocorrelation coefficients r{;], defined as

r{j1= R{j1/ R(0] (6.64)

results if’ idem'ica] LPC coefficients, and the recursion is more robust to problems with
:‘.’“.h‘?‘et‘c precision. Likewise, the normalized prediction error at iteration i is defined by
ividing Eq. (6.30) by R[0], which, using Eq.(6.54), results in

4

poE . 6.65)
R[O] 1 ;ajr[_]] (
The normalized prediction error is, using Eqs. (6.62) and (6.65),

4

i H(l—kf) _ (6.66)
i=t
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6.3.2.3. Lattice Formulation

In this section we derive the lattice formulation (7, 19], an equivalent algorithm to the Lev-
inson Durbin recursion, which has some precision benefits. It is advantageous to define the
forward prediction error obtained at stage i of the Levinson Durbin procedure as

e.'[n] = x[n] —Zaix[n —k] (6.67)
k=1
whose z-transform is given by

E(z)=A'(2)X(2) (6.68)

with A'(z) being defined by

i
A@=1-Yaz* (6.69)
k=1
which, combined with Eq. (6.61), results in the following recursion:
A(z)=A"(@2)—kz" A" (z) (6.70)

Similarly, we can define the so-called backward prediction error as

b’[n]=x[n—i]—ia;x[n+k—i] (6.71)
k=1
whose z-transform is
B'(2)=z"4'(z")X(2) (6.72)
Now combining Eqs. (6.68), (6.70), and (6.72), we obtain
E'(z)= A" (2)X(2)—kz" A7(z)X(2)=E(2)- kz"'B(2) (6.73)
whose inverse z-transform is given by
en)=e"'[n]-kb"'[n-1] 6.74)
Also, substituting Eq. (6.70) into (6.72) and using Eq. (6.68), we obtain
Bi(z)=2"B"'(2)-kE™(2) (6.75)
whose inverse z-transform is given by
bn]=b"[n-11-ke"[n] (6.76)
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Equations (6.74) and (6.76) define the forward and backward prediction error

an i*-order predictor in terms of the corresponding forward

of an (i — 1)"-order predictor. We initialize the recursive algorithm b

order predictor is equivalent to using no predictor at all; thus
€°[n] = b°[n] = x{n]

and the final prediction error is e[n]=e’[n].

A block diagram of the lattice method is given in Figure 6.18, which rese

tice, hence its name.

While the computation of the &, coefficients can be done through the Ley
recursion of Egs. (6.59) through (6.62), it can be shown that an equivalent calc
found as a function of the forward and backward prediction errors. To do so

the sum of the forward prediction errors
N-I

E'=Y ()

n=0

Speech Signaj Repmm?
Ong

sequences
and backward Prediction emf)or

Y noting tha the gn

(617

mbles g |y,
inson Durbip

ulation can be
We minimize

(6.78)

by substituting Eq. (6.74) in (6.78), taking the derivative with respect to k,, and equating to

0:
Nl
Y e mp [n-1]
k-" = ..:l?,_l .
go (bi—l[n - 1])

Using Eqs. (6.67) and (6.71), it can be shown that

ik N=i

2 (") = X (67m-1y)’
.io[L e'[n]

_Xln]

b'[n)

—P>
&'[n)

6.79

Figure 6.18 Block diagram of the lattice filter.
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since minimization of both yields identical Yule-Walker equations. Thus Eq. (6.79) can be
alternatively expressed as

N=1
Y. &b [n—1]
kl n=0 =

ﬁ (e"' [n])2 Az‘: (b"' [n— 1])2 i IeH ”bI—I I

n=0 n=0

_<e™ b >

(6.81)

where we have defined the vectors e’ =(e"[0]---e"[N—1]) and b’ =(b'[0]'--b'[N—1]). The
inner product of two vectors x and y is defined as

N-l
<x,y>= Y x{n]yln] (6.82)

n=0

and its norm as
2 e, B
(X =<x,x>= 3 x’[n] (6.83)
n=0

Equation (6.81) has the form of a normalized cross-correlation function, and, there-
fore, the reflection coefficients are also called partial correlation coefficients (PARCOR).
As with any normalized cross-correlation function, the &, coefficients are bounded by

~1<k <1 (6.84)

This is a necessary and sufficient condition for all the roots of the polynomial A4(z) to
be inside the unit circle, therefore guaranteeing a stable filter. This condition can be checked
to avoid numerical imprecision by stopping the recursion if the condition is not met. The
inverse lattice filter can be seen in Figure 6.19, which resembles the lossless tube model.
This is why the &, are also called reflection coefficients.

Lattice filters are often used in fixed-point implementation, because lack of precision
doesn’t result in unstable filters. Any error that may take place — for example due to quanti-
zation - is generally not be sufficient to cause £, to fall outside the range in Eq. (6.84). If,
owing to round-off error, the reflection coefficient falls outside the range, the lattice filter
can be ended at the previous step.

More importantly, linearly varying coefficients can be implemented in this fashion.
While, typically, the reflection coefficients are constant during the analysis frame, we can
implement a linear interpolation of the reflection coefficients to obtain the exror signal. If the
coefficients of both frames are in the range in Eq. (6.84), the linearly interpolated reflection
coefficients also have that property, and thus the filter is stable. This is a property that the

predictor coefficients don’t have.
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&(n] ¢'[n] e'[n]

X[n]

v '[n]

b’ [n] bD[n]

Figure 6.19 Inverse lattice filter used to generate the speech signal, given its residug).

6.3.3. Spectral Analysis via LPC
Let’s now analyze the frequency-domain behavior of the LPC analysis by evaluating

G _ G
1_ iake—ja)k A(ejw)

k=1

H(E™) =

(685)

which is an all-pole or IIR filter. If we plot H(e/®), we expect to see peaks at the roots of
the denominator. Figure 6.20 shows the 14-order LPC spectrum of the vowel of Figure 6.3
(d).

100 - 3 .
90|
" 1
dB 70} v
60
S0 |
40(
0 ]
0«

0 500 1000 150020.'0_325'00306035004000
Figure 6.20 LPC s

30-ms Hal’n_[mng
is also shown.

bectrum of the /ah/ phoneme in the word lives of Figure 6.3. Used here 2 I:
window and the autocorrelation method with p = 14. The short-time spect™
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For the autocorrelation method, the squared error of Eq. (6.52) can be ex i
3 » £ d,
Eq. (6.85) and Parseval’s theorem, as . ) pressed, using

_G [ X ()P

En = e T 7 (6.86)

m

Since the integrand in Eq. (6.86) is positive, minimizing E, is equivalent to minimizing the
ratio of the energy spectrum of the speech segment | X (e’“)|* to the magnitude squared of
the frequency response of the linear system | H ). The LPC spectrum matches more
closely the peaks than the valleys (see Figure 6.20), because the regions where
| X, (e’®)| >] H(e’®)| contribute more to the error than those where | H(e™)|>| X, (¢*)].

Even nasals, which have zeros in addition to poles, can be represented with a; infinite
number of poles. In practice, if p is large enough we can approximate the signal spectrum
with arbitrarily small error. Figure 6.21 shows different fits for different values of p. The
higher p, the more details of the spectrum are preserved.

The prediction order is not known for arbitrary speech, so we need to set it to balance
spectral detail with estimation errors.

0 500 1000 1500 20(}3?50)3)(1) 3500 4000

Figure 6.21 LPC spectra of Figure 6.20 for various values of the predictor order p.

6.3.4. The Prediction Error

So far, we have concentrated on the filter component of the source-filter model. Using Eq.
(6.23), we can compute the prediction error signal, also called the excifation, or residual
signal. For unvoiced speech we expect the residual to be approximately white noise. I.n prac-
tice, this approximation is quite good, and replacement of the residual by vlvhite noise fol-
lowed by the LPC filter typically results in no audible difference. For voiced speech we
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expect the residual to approximate an impulse train. In practice, this is
the all-pole assumption is not altogether valid; thus, the residual, although it copggr. . -

is far from an impulse train. Replacing the residual by an impulse train, followadu[l,ms Spikes,
filter, results in speech that sounds somewhat robotic, partly because real speech Y the Lpe
fectly periodic (it has a random component as well), and because the 2eroes are no‘: ot per.
with the LPC filter. Residual signals computed from inverse LPC filters for Sevemmodeled
are shown in Figure 6.22. Vowels

How do we choose p? This is an important design question, Larger values of j | d

lower prediction errors (see Figure 6.23). Unvoiced speech has higher error lharl: Ve: 10
speech, because the LPC model is more accurate for voiced speech. In general, the no“;c:]d
ized error rapidly decreases, and then converges to a value of around 1214 for 8 l\Hz
speech. If we use a large value of p, we are fitting the individual harmonics; thus the LPC
filter is modeling the source, and the separation between source and filter is not going to be
so good. The more coefficients we have to estimate, the larger the variance of their estj-
mates, since the number of available samples is the same. A rule of thumb is to use com-
plex pole per kHz plus 2—4 poles to model the radiation and glottal effects.

not the Case, becy,

Signal Pradiction Error
0.4
200 §ed
ah* 0 '
-200 9
50 100 150 200 50 100 150 200
0.3
50 0.2
"es 0 0.1
-50 | 0
-100 -0.1
50 100 150 200 0.2 50 100 150 200
100 :
oh 0 0.1
-100 0
200
-300 0:1
50 100 150 200 50 100 150 200
100 0.4
‘ayt 0 0.2
-100 .
-200 0
50 100 150 200 50 100 150 200

Figure 6.22 LPC prediction error signals for several vowels.

For unvoiced speech, both the autocorrelation and the covariance mefmds pm;’:;
similar results. For voiced speech, however, the covariance method can Prov.‘dc be“erl in-
mates if the analysis window is shorter than the local pitch period and the window or;)’and
cludes samples from the closed phase (when the vocal tract is closed at the glomzllysis
speech signal is due mainly to free resonances). This is called pitch sy nchronots &
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and results in lower prediction error, because the true excitation is close to zero during the
whole analysis window. During the open phase, the trachea, the vocal folds, and the vocal
tract are acoustically coupled, and this coupling will change the free resonances. Addition-
ally, the prediction error is higher for both the autocorrelation and the covariance methods if
samples from the open phase are included in the analysis window, because the prediction
during those instants is poor.

1 T ; T : 7

" — . -~ Unvoiced Speech
ﬁ_\] L “———— Voiced Speech
c
S 06}
Q2
2 04
& 0.4} e g g — g &
BT T T T Vs o smay S
2 0.2}
m \
0 : ; ' : : 5 7 T
0 1 2 3 4 5 6 7 8 9 10
p

Figure 6.23 Variation of the normalized prediction error with the number of prediction coeffi-
cients p for the voiced segment of Figure 6.3 and the unvoiced speech of Figure 6.5. The auto-
correlation method was used with a 30 ms Hamming window, and a sampling rate of 8 kHz.

6.3.5. Equivalent Representations

There are a number of alternate useful representations of the predictor coefficients. The most
important are the line spectrum frequencies, reflection coefficients, log-area ratios, and the

roots of the predictor polynomial.

6.3.5.1.  Line Spectral Frequencies

Line Spectral Frequencies (LSF) {18] provide an equivalent representation 9f the predictor
coefficients that is very popular in speech coding. It is derived from computing the roots of
the polynomials P(z) and Q(z) defined as

P(z)= A(2)+ 2" * A(z™) SE)

0(2) = A(z)- """ A(z"") (6.88)

To gain insight on these roots, look at a second-order predictor filter with a pair of

complex roots:

A(z)=1-a,z" —a,z7 =1-2p, cos(2 /; )zt +pez” (6.5
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where 0< p, <1 and 0< f;<0.5. Inserting Eq. (6.89) into (6.87) and (6.88) results
P(z)=1-(a, + a,)z” —(a,+ a)z” + z?
o(z)=1-(q _az)z_l +(q, —az)z—z -z7 (6.90)

From Eg. (6.90) we see that z =—1 is aroot of P(z) and z =1 a root of Q(z), sibich ant
divided out and results in

P(z)=(1+z"Y1-2Bz" + z7)
0(2)=(1-z")1-2B,z" +27) (691)

where B, and 3, are given by

a+a,+1 1-ps

B = : 2~ = p, cos(27 fy)+ 2
1 o 69)

B, =20 pycosn ) - 2p°

It can be shown that |[3,]<1 and ] ,BZ|<1 for all possible values of f, and p,. With
this property, the roots of P(z) and Q(z) in Eq. (6.91) are complex and given by

Bt jJ1-B; and B, +j\1— B , respectively. Because they lie in the unit circle, they can
be uniquely represented by their angles

1-p;
2

cos(27 f,) = p, cos(2m f,) +
(693)

2

COS(27L £,) = P, cos(27 f,) - 1’2p°

where fi and f, are the line spectral frequencies of A(z). Since 2 <l
cos(2 f,) <cos(2 f,) , and thus f, > f,. It’s also the case that cos(2m f,) > cos(2 fy) and
thus f < f,. Furthermore, as p, — 1, we see from Eq. (6.93) that f, = f, and /, ').ﬁ’ '
We conclude that, given a pole at f,, the two line spectral frequencies bracket it, 18
Ji < /s < f, and that they are closer together as the poie of the second-order resonator gets
closer to the unit circle.

_ We have proven that for a second-order predictor, the roots of P(z) and 0(2) li€ ¥
unit circle, that £1 are roots, and that, once sorted, the roots of P(z) and Q(2) altemale
';l;:\;grg Wwe do not prove it here, it can be shown that these conclusions hold for m.her predic-

frequere\gé an\% therefore, the p predictor coefficients can be transformed into p line speC[ o
P o S. We also know that z=1 is always a root of Q(z), whereas z=-1 152 e
T:Vceon P and aroot of Q(z) for odd p. of
P(®) ang “éiz(‘i:)f" lt)he LSF for p>2, we replace z=cos(w) and compute me.mosmal
Y any available root finding method. A popular technique. given
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there are p roots which are real in @ and bounded between 0 and 0.5, is to bracket them by
observing changes in sign of both functions in a dense grid. To compute the predictor coef-
ficients from the LSF coefficients we can factor P(z) and Q(z) as a product of second-order
filters as in Eq. (6.91), and then A(2) =(P(z)+Q(z)) /2.

In practice, LSF are useful because of sensitivity (a quantization of one coefficient
generally results in a spectral change only around that frequency) and efficiency (LSF result
in Jow spectral distortion). This doesn’t occur with other representations. As long as the LSF
coefficients are ordered, the resulting LPC filter is stable, though the proof is beyond the
scope of this book. LSF coefficients are used extensively in Chapter 7.

6.3.5.2. Reflection Coefficients

For the autocorrelation method, the predictor coefficients may be obtained from the reflec-
tion coefficients by the following recursion:
i .
a, =k i=l--,p
:' i1 i1 ;% (6.94)
a;=a; ~ka ., 1=5j<i
where a, =a’. Similarly, the reflection coefficients may be obtained from the prediction
coefficients using a backward recursion of the form

k =a i=p,e,l
"vd'a 6.95)
- 9 taa, i (
a = —t—_—— IS <l
g 1-k? ¢

where we initialize af =a,.

Reflection coefficients are useful when implementing LPC filters whose values are in-
terpolated over time, because, unlike the predictor coefficients, they are guaranteed to be

stable at all times as long as the anchors satisfy Eq. (6.84).

63.53. Log-Area Ratios

The log-area ratio coefficients are defined as

- m(::i, } 6.96)

with the inverse being given by

p ol (6.97)
=
1+e*
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The log-area ratio coefficients are equal to the natural logarithm of the rati
eas of adjacent sections of a lossless tube equivalent of the vocal tract having ‘helo Of the 4.
fer function. Since for stable predictor filters ~1<k <1, we have from Eq Sa6me trans.
~o0 < g, < oo, For speech signals, it is not uncommon to have some reﬂec[io;].c( '?6).lhat
close to 1, and quantization of those values can cause a large change in the Predic::,e,ﬁclems
fer function. On the other hand, the log-area ratio coefficients have relatively t‘la[r | s
sensitivity (i.e., a small change in their values causes a small change in the transfe fus il
and thus are useful in coding. T Tunction)

6.3.54. Roots of the Polynomial

An alternative to the predictor coefficients results from computing the complex roots of the
predictor polynomial:

Az)=1-3 a2 =TJ(-z2") (698

k=1 k=l

These roots can be represented as

z, = RS AVIE, 699
where b, f,, and F, represent the bandwidth, center frequency, and sampling frequency,
respectively. Since a, are real, all complex roots occur in conjugate pairs so that if (,, ;)
is a root, so is (b,~f;) . The bandwidths b, are always positive, because the roots are in-
side the unit circle (jz,] <1) for a stable predictor. Real roots z, =¢™*'* can also occur.
While algorithms exist to compute the complex roots of a polynomial, in practice there ar

sometimes numerical difficulties in doing so. '
If the roots are available, it is straightforward to compute the predictor coefficients by

using Eq. (6.98). Since the roots of the predictor polynomial represent resonance frequencies
and bandwidths, they are used in the formant synthesizers of Chapter 16.

64. CEPSTRAL PROCESSING

A ; . nvolu-
A homomorphic transformation %{»]=D(x{n]) is a transformation that converts 2 €0

tion
,100)
x[) = ] # h{n] &

into a sum

o . 100)
xX[n]=é[n}+ h{n) @
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