
Cepstral Processing 307 

In this section we introduce the cepstrum as one homomorphic transformation [32] 
that allows us to separate the sourc~ from the filter. We show that we can find a value N 
such that the cepstrum of the filter h[n]"' 0 for n ~ N, and that the cepstrum of the excita­
tion e[n] z O for n < N. With this assumption, we can approximately recover both e[n] and 
h[n] from x[n] by homomorphic filtering. In Figure 6.24, we show how to recover h[n] 
with a homomorphic filter: 

Jt lnl < N 
l[n] = l_o lnl ~ N 

(6.102) 

where D is the cepstrum operator. 
The excitation signal can be similarly recovered with a homomorphic filter given by 

l[n] = {ol lnl ~ N !nl<N 

s[n] --Q x[n] ~~-D_l 1__, 

T w[n] 

.i[n) ..Q h[n) .. , D'/1 

T1[n] 

(6.103) 

h[n] ... 

Figure 6.24 Homomorphic filtering to recover the filter's response from a periodic signal. We 

have used the homomorphic filter of Eq. (6.102). 

6.4.1. The Real and Complex Cepstrum 

The real cepstrum of a digital signal x[ n] is defined as 

(6.104) 

and the complex cepstrum of x[ n] is defined as 

(6.105) 

where the complex logarithm is used: 

X(e1"') = lnX(e1Q)) = In I X(e1Q)) I+ J0(m) 
(6.106) 
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and the phase O(w) is given by 

8(m) = arg[ X(e1ru)] 

Speech Signal R,;;--:-­
ntalions 

(6.107) 

You can see from Eqs. (6.104) and (6.105) that both the real and the com 1 
strum satisfy Eq. (6.101) and thus they are homomorphic transformations. p ex cep.. 

If the si~nal x[n] is real, both the real cepstrum c[n] and the complex cepstrum - n 
are also real signals. Therefore the tenn complex cepstrum doesn't mean that it is a co i[l ] 
· th I I ·th · k mpex signal but rather that e comp ex ogan m 1s ta en. 

It can easily be shown that c[n] is the even part of x[n]: 

c[n] = x[n]+ x[-n] 
2 

(6.108) 

From here on, when we refer to cepstrum without qualifiers, we are referring to the 
real cepstrum, since it is the most widely used in speech technology. 

The cepstrum was invented by Bogert et al. [6], and its term was coined by reversing 
the first syllable of the word spectrum, given that it is obtained by taking the inverse Fourier 
transform of the log-spectrum. Similarly, they defined the tenn quefrency to represent the 
independent variable n in c[n]. The quefrency has dimension of time. 

6.4.2. Cepstrum of Pole-Zero Filters 

A very general type of filters are those with rational transfer functions 

(6.109) 

. ~) ~d 
with the magnitudes of a*, bk, u.t, and v.t all less than I. Therefore, (1-a1z d 
(1-b*z-•) represent the zeros and poles inside the unit circle, whereas (l-utz) ~ 
(1-vtz) represent the zeros and poles outside the unit circle, and z' is a shift from lhe ume 
origin. Thus, the complex logarithm is 

(6.1 JO) 
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where the term ln[z'] contributes to the imaginary part of the compl~x ce tru 1 - h 
· $" · · · · , . ps nl On y Wit a 

term ;(J)r. mce 1t JUSt cames m1onnat10n about the time origin 1·t·s t · 11 · d w . . , yp1ca y ignore . e 
use the Taylor senes expansion 

- xn 
ln(l-x) =-I.-

11=1 n (6. l 11) 

in Eq. (6.110) and take inverse z-transfonns to obtain 

log[A] n=O 
-", b" ·", a" 

h[n] = I.-k - I,-k n>O 
k=I n t=I n (6.112) 

M. u" ·"· v" I.-k -I,-k n<O 
k=I n 1-1 n 

If the filter's impulse response do_esn't have zeros or poles outside the unit circle, the 
so-call~d minimum phase signals, then h[n] = 0 for n < 0 . Maximum phase signals are those 
with h[n] = 0 for n > 0. If a signal is minimum phase, its complex cepstrum can be 
uniquely detennined from its real cepstrum: 

h[n]={ c~] 
2c(n] 

n<O 
n=O 
n>O 

(6.113) 

It is easy to see from Eq. (6.112) that both the real and complex cepstrum are decaying 
sequences, which is the reason why, typically, a finite number of coefficients are sufficient 
to approximate it, and, therefore, people refer to the truncated cepstrum signal as a cepstrum 
vector. 

6.4.2.1. LPC-Cepstrum 

The case when the rational transfer function in Eq. (6.109) has been obtained with an LPC 
analysis is particularly interesting, since LPC analysis is such a widely used method. While 
Eq. (6.112) applies here, too, it is useful to find a recursion which doesn't require us to com­
pute the roots of the predictor polynomial. Given the LPC filter 

(6.114) 
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we take the logarithm 

H(z) = ln G-ln(l-t a,z-' \= I, h[k]z-
1 

l•I ) k=-

(6.115) 

and the derivative of both sides with respect to z 

f -n-1 
-· na z 

,,.,1 n = - :!, kh[k]z-k-l 
~ -I 1=-

1- i.a,z 

(6.116) 

, .. 1 

Multiplying both sides by -z(l-f a,z-
1 I, we obtain 

1=-1 ) 

(6.117) 

which, after replacing / = n -k , and equating tenns in z-" , results in 

n-1 

nan= nh[n]-1kh[k]an-l O < n $ P (6.118) 

11-\ 

O = nh[n]- 2' kh[k]a,,_1 n > p 
l.=n-p 

so that the complex. cepstrum can be obtained from the LPC coefficients by the following 

recursion: 

0 

lnG 

n<O 

n=O 

O<n~p 

n> p 

(6.119) 

) w note that. 
where the value for n = 0 can be obtained from Eqs. (6.115) and (6.111 · e . is 

hil th fi 
. oeffic1ents 

w e ere are a mite number of LPC coefficients the number of cepstrom c . ff'· 
. ti . s h . . ' . mber IS SU I 
m imte. peec recogmt1on researchers have shown empirically that a fintte nu . . . . is done. 
cient: 12-20 depending on the sampling rate and whether or not frequency warping 
In Chapter 8 we discuss the use of the cepstrum in speech recognition. 
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Cepstral Processing 311 

This recursion should not be used in the reverse mode to compute the LPC coefficients 
from any set of cepstrum coefficients, because the recursion in Eq. (6.119) assumes an all­
pole model with all poles inside the unit circle, and that might not be the case for an arbi­
trary cepstrum sequence, so that the recursion might yield a set of unstable LPC coefficients. 
In some experiments it has been shown that quantized LPC-cepstrum can yield unstable 
LPC coefficients over 5% of the time. 

6.4.3. Cepstrum of Periodic Signals 

It is important to see what the cepstrum of periodic signals looks like. To do so, let's con­
sider the following signal: 

.If-I 

x[n] = L/Xk8[n-kN] (6.120) 
kcO 

which can be viewed as an impulse train of period N multiplied by an analysis window, so 
that only M impulses remain. Its z-transform is 

.1(-1 

X(z) = L atz-kN (6.121) 
k=O 

which is a polynomial in z-N rather than z-1
• Therefore, X(z) can be expressed as a prod­

uct of factors of the form (1-a*z--"k) and (1-ukzNk ). Following the derivation in Section 
6.4.2, it is clear that its complex cepstrum is nonzero only at integer multiples of N: 

.. 
x[nJ= I. t3*8[n-kN] (6.122) 

k=-

A particularly interesting case is when at =a* with O<a<l , so that Eq. (6.121) 
can be expressed as 

I ( -.V).'tl 
-N -.v w-I - az X(z)=l+az +···+(az )· = -.v 

l-az 
(6.123) 

so that taking the logarithm of Eq. (6.123) and expanding it in Taylor series using Eq. 

(6.111) results in 

_ r - IM .. 
" a "'"' a -l~fN "'"' "[ ] -n X(z) = In X(z) = I-z-rN - £..-z · = £-x n z 

, ,., r l=I I n=I 

(6.124) 
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which lets us compute the complex cepstrum as 

- a'11 
.i(n]= ~ ~8[n-rN]- I,-8[n-//l,fN] f:t r /cl / 

Speech SignaJ Re ...._____,pr...,~ 
""""'ntatio~ 

(6.125) 

An infinite impulse train can be obtained by making a """ 1 and M , oo in Eq. (6.125). 

A ~ 8[11-rN] 
x[n]= £.J 

r•I f 

(6.126) 

We see from Eq. (6. 126) that the cepstrum of an impulse train goes to Oas n increases 
This justifies our assumption of homomorphic filtering. · 

6.4.4. Cepstrum of Speech Signals 

We can compute the cepstrum of a speech segment by windowing the signal with a window 
of length N. In practice, the cepstrum is not computed through Eq. (6.112), since root­
finding algorithms are slow and off er numerical imprecision for the large values of N used. 
Instead, we can compute the cepstrum directly through its definition of Eq. (6.105), using 
the OFT as follows: 

N-1 

XJk] = I,x[n]e-jiirnktN , 0 '5, k < N (6.127) 
n•O 

(6.128) 

(6.129) 

1?1e subscript a means that the new complex cepstrum x [n] is an aliased version of xfn] 
~~~ a 

-
xa[n] = L x[n + rN] (6.130) 

which can be derived b · epts 
of time a~d frequency. Y usmg the sampling theorem of Chapter 5, by reversing the c~c 

This aliasing introduc . jog a 
large value for N. es errors m the estimation that can be reduced by chOOS 

• 
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Computation of the com~lex cepstrum requires computing the complex logarithm and, 
in tum, the phase. However, given the principal value of the phase 0P[k], there are infinite 
possible values for 0[ k] : 

(6.131) 

From Chapter 5 we know that if x[n] is real, arg[ X(e1{/))] is an odd function and also con­
tinuous. Thus we can do phase unwrapping by choosing nt to guarantee that 0[k] is a 
smooth function, i.e., by forcing the difference between adjacent values to be small: 

10rkJ-O[k-1JI <n (6.132) 

A linear phase term r as in Eq. (6.110), would contribute to the phase difference in Eq. 
(6.132) with 21rr IN, which may result in errors in the phase unwrapping if 0[k] is chang­
ing sufficiently rapidly. In addition, there could be large changes in the phase difference if 
XJk] is noisy. To guarantee that we can track small phase differences, a value of N several 
times larger than the window size is required: i.e., the input signal has to be zero-padded 
prior to the FFf computation. Finally, the delay r in Eq. (6.109), can be obtained by forcing 
the phase to be an odd function, so that: 

0[N/2]=1rr (6.133) 

For unvoiced speech, the unwrapped phase is random, and therefore only the real cep­
strum has meaning. In practical situations, even voiced speech has some frequencies at 
which noise dominates (typically very low and high frequencies), which results in phase 
0[k] that changes drastically from frame to frame. Because of this, the complex cepstrum in 
Eq. (6.105) is rarely used for real speech signals. Instead, the real cepstrum is used much 
more often: 

Cafk]=lnlXafk]I, O5.k<N (6.134) 

cJn] = ~ ~Cafk]e-121rnkt.'I, 0 $ n < N 
N n•O 

(6.135) 

Similarly, it can be shown that for the new real cepstrum cafn] is an aliased version of 
c[n] given by 

-
ca[n] = L, c[n + rN] (6.136) 

which again has aliasing that can be reduced by choosing a large value for N. 
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6.4.5. Source-Filter Separation via the Cepstrum 

We have seen that, if the filter is a rational transfer function, and the source is an . 
f F. 6 24 · 1 impulse train the homomorphic filtering o 1gure . can approximate y separate them Bee , . . . · ause of 

Problems in estimating the phase m speech signals (see Section 6.4.4) we general) ' Y com. 
pute the real cepstrum using Eqs .. (6.127), (~.1_34), and (6.13_5), and then compute the com. 
plex cepstrum under the assumpuon of a ~m1m~m phase signal accor~ing to Eq. (6_113)_ 
The result of separating source and filter usmg this cepstral deconvolution is shown ·m Fi . . It 
ure 6.25 for voiced speech and Figure 6.26 for unvoiced speech. 

The real cepstrum of white noise .x(n) with an expected magnitude spectrum 
I X(ei"') I= I is O. If colored noise is present, the cepst~m of the observed colored noise 
j,[n] is identical to the cepstrum of the coloring filter h[n], except for a gain factor. The 
above is correct if we take an infinite number of noise samples, but in practice, this cannot 
be done and a limited number have to be used, so that this is only an approximation, though 
it is often used in speech processing algorithms. 

(a) :H?E : .:~ 
(cl .:E 100 1ro ~ I : :~ 

0 50 100 150 200 O 1000 2000 3000 4000 (e)O:CTJ7 : :~ 
-0.5~ S'-~--'---- ~--

O 50 100 150 200 - o 1000 2000 3000 4000 
time Frequency (Hz) 

Figure 6.25 Separatio f . . · ed l'\H'£b . n ° source and filter using homomorphic filtenng for vmc Sy--

wuh the scheme of Figure 6.24 with N = 20 in the homomorphic fitter of Eq. (6.102) wilh the 
real cepStrum: (a) windowed signal, (b) log-spectrum (c) filter' s impulse response, (d) 
smoothed log-spectrum ( ) · d . . ' . f cep--

• e wm owed exc1tat1on signal (f) log-spectrum of high-part 0 

strum. Note that the windowed · · . ' . of the . . excitation 1s not a windowed impulse tram because 
nummum phase assumption. 

• 
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(a) 2 (b) 5 

0 dB 0 

-1 

·2 ·5 0 50 100 150 200 0 1000 2000 3000 4000 

(c) 2 (d) 5 

0 ••• dB 

·1 

·2 -5 
0 50 100 150 200 0 1000 2000 3000 4000 

time Frequency (Hz) 

Figure 6.26 Separation of source and filter using homomorphic filtering for unvoiced speech 
with the scheme of Figure 6.24 with N = 20 in the homomorphic filter of Eq. (6.102) with the 
real cepstrum: (a) windowed signal, (b) log-spectrum, (c) filler's impulse response, (d) 
smoothed log-spectrum. 

6.5. PERCEPTUALLY MOTIVATED REPRESENTATIONS 

315 

In this section we describe some aspects of human perception, and methods motivated by the 
behavior of the human auditory system: bilinearly transformed cepstrum, Mel-Frequency 
Cepstrum Coefficients (MFCC), and Perceptual Linear Prediction (PLP). These methods 
have been successfully used in speech recognition. 

6.5.1. The Bilinear Transform 

The transfonnation 

z-1-a s=--­
l-az-1 

(6.137) 

for O < a < I belongs to the class of bilinear transforms. It is a mapping in the complex 
plane that maps the unit circle onto itself. The frequency transformation is obtained by mak­

ing the substitution z = e1w and s = e1° : 

I asin(a>) ] Q = co+ 2 arctan 
_ I-a cos(m) _ 

(6.138) 
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This transfonnation is very similar to the ~ark and mel scale for an appropriate choice 
of the parameter a (see Chapter 2). Oppenheim _[31] showed ~at th~ advantage of this 

transformation is that it can be used to transfonn a time sequence m the lmear frequency. 
. h . F. 6 . . into another time sequence m the warped frequency, as s own m 1gure .27. This btlinear tr 

fonn has been successfully applied to cepstral and autocorrelation coefficients. ans. 

c[-n] 
l ~ (l-a2)z-1 

~ .. 1 -1 
.. 

1 -1 -az -az 

w[O] w[l] w[2] w[3] 

Figure 6.27 Implementation of the frequency-warped cepstral coefficients as a function of the 
linear-frequency cepstrum coefficients. Both sets of coefficients are causal. The input is the 
time-reversed cepstrum sequence, and the output can be obtained by sampling the outputs of 
the filters at time n = 0. The filters used for w[mJ m > 2 are the same. Note that, for a finite­
length cepstrum, an infinite-length warped cepstrum results. 

For a finite number of cepstral coefficients the bilinear transform in Figure 6.27 results 
in an infinite number of warped cepstral coefficients. Since truncation is usually done in 
practice, the bilinear transform is equivalent to a matrix multiplication, where the matrix is a 
function of the warping parameter a . Shikano [43] showed these warped cepstral coeffi­
cients were beneficial for speech recognition. 

6.5.2. Mel-Frequency Cepstrum 

The Mel-Frequency Cepstrum Coefficients (MFCC) js a representation defined as the real 
cepstrum of a windowed short-time signal derived from the FFf of that signal. The differ· 
ence from the real cepstrum is that a nonlinear frequency scale is used, which approximates 
th~ behavior of the auditory system. Davis and Mermelstein [8] showed the MFCC represen· 
tation to be beneficial for speech recognition. 

Given the OFT of the input signal 

/V- 1 

XafkJ = LX[n]e-}2n-nk/N ' O~k<N (6.139) 
n"'O 

we define a filterbank with M filters ( m = 1 2 . . . M ) where filter m is triangular tilter given 
by: ' , ' ' 
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0 

2(k-f[m-I]) 

(f[m+I]- f[m-l])(J[m]- f[m-1]) 

2(/[m+ l]-k) 

(f[m+l]-f[m-1])(/[m+l]-f[m]) 

0 

k < f[m-I] 

.f[m-1] S k S .f[m] 

f[m] S k S f[m+ l] 

k > f[m+l] 

317 

(6.140) 

Such filters compute the average spectrum around each center frequency with increasing 
bandwidths, and they are displayed in Figure 6.28. 

Alternatively, the filters can be chosen as 

0 k<f[m-1] 

(k- f[m-1]) 
/[m-1] S k ~ f[m] 

(f[m]- f[m-IJ) 
H~[k] = 

(f[m+ 1]-k) 
(6.141) 

(f[m+l]- f[mJ) 
f[m] ~ k ~ f[m + 1] 

0 k>f[m+I] 

M 

which satisfies I,HJk] = 1. The mel-cepstrum computed with Hm[k] or H~[k] will dif-
m"'1 

fer by a constant vector for all inputs, so the choice becomes unimportant when used in a 
speech recognition system that has been trained with the same filters. 

Let's define J; and f,, to be the lowest and highest frequencies of the filterbank in 
Hz, F, the sampling frequency in Hz, M the number of filters , and N the size of the FFf. The 
boundary points.f[m) are uniformly spaced in the mel-scale: 

f[m] = [' !!...)s-1 (B(J;)+m B(f,,)-B(J;) 1 
F I M+I I 

' s , / 

(6.142) 

where the mel-scale B is given by Eq. (2.6), and s·' is its inverse 

s·1(b) = 700( exp(b/1125)-1) (6.143) 

We then compute the log-energy at the output of each filter as 

0<mSM (6.144) 
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f{O] /tl] 1[2] 1[3] 1[4] 1[5] /[6] 

Speech Signal;:----­
Ptesentat· ions 

1[7] 

Figure 6.28 Triangular filters used in the computation of the mel-cepstrum using P.q. (6.140). 

The mel-frequency cepstrum is then the discrete cosine transform of the M filter out­
puts: 

,\/-1 

c[n] = I.,S[m] cos(irn(m-1/2)/ M) 0$n<M (6.145) 
,,,~o 

where M varies for different implementations from 24 to 40. For speech recognition, typi­
cally only the first 13 cepstrum coefficients are used. It is important to note that the MFCC 
representation is no longer a homomorphic transformation. It would be if the order of sum­
mation and logarithms in Eq. (6.144) were reversed: 

S[m]= I'.1n(IX0 [kf H,,,[k]) 
tao 

0<m5:.M (6.146) 

In practice, however, the MFCC representation is approximately homomorph!c for ~l­
ters that have a smooth transfer function. The advantage of the MFCC representauon using 
(6.144) instead of (6.146) is that the filter eneroies are more robust to noise and spectral es-

• • 0 hrec 
timahon errors. This algorithm has been used extensively as a feature vector for speec -
ognition systems. 

While the definition of cepstrum in Section 6.4.1 uses an inverse DFf, since S[m] is 
even, a DCT-II can be used instead (see Chapter 5). 

6.5.3. Perceptual Linear Prediction (PLP) 

Perceptual Linear Prediction (PLP) (16] uses the standard Durbin recursion of Section 
6·3·2· 1 ·2 to compute LPC coefficients, and typically the LPC coefficients are transfo~e~ to 
LPC-cepstrum using the recursion in Section 6.4.2.1. But unlike standard linear pred1ct1on, 
the autocorrelation coefficients are not computed in the time domain through Eq. (6.55). 

Tpe autocorrelation Rx[n] is the inverse Fourier transform of the power spectl1l~ 
IX(ro)I of the signal. We cannot compute the continuous-frequency Fourier transform eas 

I 
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ily, but we can take an FFT to compute X[k], so that the autocorrelation can be obtained as 
the i~ver~e Fourier tra~sform o'. jX[ k Jj

2 
• Since the discrete Fourier transform is not per­

fonmng lmear convolution but circular convolution, we need to make sure that the FFf size 
is larger th~n twice the wi~dow lengt~ (see Section 5.3.4) for this to hold. This alternate way 
of comp~1tm~ aut?correlat1011 ~oeffic1ents, entailing two FFTs and N multiplies and adds, 
should yield tdenttcal results. Smee normally only a small number p of autocorrelation coef­
ficients are needed, this is generally not a cost-effective way to do it, unless the first FFT has 
to be computed for other reasons. 

Perc:ptual linear prediction uses the abo_ve method. but replaces IX[ k f by a percep­
tually motivated power spectrum. The most important aspect is the non-linear frequency 
scaling, which can be achieved through a set of filterbanks similar to those described in Sec­
tion 6.5.2, so that this critical-band power spectrum can be sampled in approximately I-Bark 
intervals. Another difference is that, instead of taking the logarithm on the filterbank energy 
outputs, a different non-linearity compression is used, often the cubic root. It is reported [ J 6) 
that the use of this different non-linearity is beneficial for speech recognizers in noisy condi­
tions. 

6.6. FORMANT FREQUENCIES 

Formant frequencies are the resonances in the vocal tract and, as we saw in Chapter 2, they 
convey the differences between different sounds. Expert spectrogram readers are able to 
recognize speech by looking at a spectrogram, particularly at the fonnants. It has been ar­
gued that they are very useful features for speech recognition, but they haven't been widely 
used because of the difficulty in estimating them. 

One way of obtaining formant candidates at a frame level is to compute the roots of a 
p"'-order LPC polynomial [3, 26]. There are standard algorithms to compute the complex 
roots of a polynomial with real coefficients [36], though convergence is not guaranteed. 
Each complex root z1 can be represented as 

Z; = exp(-1t'b; + j2n/;) (6.147) 

where f, and b, are the formant frequency and bandwidth, respectively, of the t root. Real 
roots are discarded and complex roots are sorted by increasing/, discarding negative values. 
The remaining pairs (f,, b,) are the formant candidates. Traditional fonnant trackers discard 
roots whose bandwidths are higher than a threshold [46], say 200 Hz. 

Closed-phase analysis of voiced speech [5] uses only the regions for which ~e glottis 
is closed and thus there is no excitation. When the glottis is open, there is a couphng of the 
vocal tract with the lungs and the resonance bandwidths are somewhat larger. Determination 
of the closed-phase regions directly from the speech signal is difficult, so often an elec­
troglottograph (EGG) signal is used [23]. EGG signals, obtained by placin_g ~lectrodes at ~he 
speaker's throat, are very accurate in determining the times when the glottis ts closed. Usmg 
samples in the closed-phase covariance analysis can yield accurate results (46]. For female 
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h th I sed-phase is short, and sometimes non-existent, so such analysis can be 
speec , e c o ki d d . a 
challenge. EGG signals are useful also for pitch trac ng an are escnbed in more detail in 

Chapter 16. . 
Another common method consists of finding the peaks on a smo~thed spectrum, such 

as that obtained through an LPC analysis [26, 40]. The ~dvantage of_th1s method is that you 
can always compute the peaks and it is more comp~tauonally efficient than extracting the 
complex roots of a polynomial. On the other hand, this pr~dure g~nerally d~sn't estimate 
the fonnant's bandwidth. The first three formants are typically estimated lh1s way for for­
mant synthesis (see Chapter 16), since they are the ones that allow sound classification, 
whereas the higher fonnants are more speaker dependent. 

Sometimes, the signal goes through some conditioning, which includes sampling rate 
conversion to remove frequencies outside the range we are interested in. For example, if we 
are interested only in the first three fonnants, we can safely downsample the input signal to 
8 kHz, since we know all three fonnants should be below 4 kHz. This downsampling re­
duces computation and the chances of the algorithm to find formant values outside the ex­
pected range ( otherwise peaks or roots could be chosen above 4 kHz which we know do not 
correspond to any of the first three formants). Pre-emphasis filtering is also often used to 

whiten the signal. 
Because of the thresholds imposed above, it is possible that the formants are not con­

tinuous. For example, when the vocal tract's spectral envelope is changing rapidly, band­
widths obtained through the above methods are overestimates of the true bandwidths, and 
they may exceed the threshold and thus be rejected. It is also possible for the peak-picking 
algorithm to classify a harmonic as a fonnant during some regions where it is much stronger 
than the other harmonics. Due to the thresholds used, a given frame could have no formants, 
only one fonnant (either first, second, or third), two, three, or more. Fonnant alignment from 
one frame to another has often been done using heuristics to prevent such discontinuities. 

6.6.1. Statistical Formant Tracking 

It is desirable to have an approach that does not use any thresholds on fonnant candidates 
~d uses a probabil_istic model to do the tracking instead of heuristics [l]. The fonnant can­
d1da1es can he ohlamed from roots of the LPC polynomial. peaks in the smoothed spectrom, 
or even from a dense sample of possible points. If the first n formants are desired, and we 
have (p/2 J formant candidates, a maximum of r 11-tuples are considered, where r is given by 

r = (p,/12) (6.148) 

A Viterbi _search (see Chup1er 8) is then carried out to find the most likely path of !or· 
1~1:1111_11-l~ples given I\ model with some n priori knowledge of formants. The prior distnbU· 
11011_ lor ~ormo111 tnrgets is used lo determine which fonnant candidate to use of ail possible 
choices tor !he given phoneme (i.e., we know thnt Fl for an AE should be around 800 Hz). 

1 
I 
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Fonnant continuity is imposed through the prior distribution of the formant slopes. This al­
gorithm produces n fonnants for every frame, including silence. 

Since we are interested in obtaining the first three formants (n = 3) and F3 is known to 
be lower than 4 kHz, it is advantageous to downsample the signal to 8 kHz in order to avoid 
obtaining formant c_andidates above 4 kHz and to let us use a lower-order analysis which 
offers fewer numencal problems when computing the roots. With p = 14, it results in a 
maximum of r = 35 triplets for the case of no real roots. 

Let X be a sequence of T feature vectors x, of dimension 11: 

(6.149) 

where the prime denotes transpose. 
We estimate the formants with the knowledge of what sound occurs at that particular 

time, for example by using a speech recognizer that segments the waveform into different 
phonemes (see Chapter 9) or states q, within a phoneme. In this case we assume that the 
output distribution of each state i is modeled by one Gaussian density function with a mean 
µ

1 
and covariance matrix :E,. We can define up to N states, with A being the set of all means 

and covariance matrices for all: 

(6.150) 

Therefore, the log-likelihood for X is given by 

(6.151) 

Maximizing X in Eq. (6.151) leads to the trivial solution X.=(µ41 ,µ4, , ... ,µ41 )', a 
piecewise function whose value is that of the best n-tuple candidate. This function has dis­
continuities at state boundaries and thus is not likely to represent well the physical phenom­

ena of speech. 
This problem arises because the slopes at state boundaries do not match the slopes of 

natural speech. To avoid these discontinuities, we would like to match not only the target 
formants at each state, but also the formant slopes at each state. To do that, we augment the 
feature vector x at frame t with the delta vector x, - x,_1• Thus, we increase the parameter 
space of A with the corresponding means 01 and covariance matrices r, o~ these delta 
parameters, and assume statistical independence among them. The correspondmg new log­

likelihood has the form 

l T } T 
In p(X I q,A) = K --1)n 1 :Eq, 1--lln I r 9, I 

2 i = l 2 1= 2 (6.152) 

_ _!_ f(x -µ )':r.-•cx -µ )-..!.. f (x -x,_. -oq )'r;1(x, -x,_, -oq,) 
2 

"-,/ I q1 q, / q, 2 "-,/ I I I 

t • I t ,i::2 
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Maximization of Eq. (6. 152) with respect to x, requires solving several set f . 
. al . . . . s O h11ear 

equations. If r, and r, are diagon covanance matnces, tt results ma set of linear equat· 
d

. . ions 
for each of the M 1mens10ns 

BX=c (6.153) 

where B is a tridiagonal matrix (all values are zero except for those in the main diagon 1 
its two adjacent diagonals), which leads to a very efficient solution [36]. For examp~ anthd 

3 . b ' e values of B and c for T = are given y 
, ' 

1 1 
0 -? +-2- - r~ a;. rq2 

I I 1 l 
B= -7 -2 +-2- +-2- - r! 

'12 (Jqz r,n r 'IJ 
(6.154) 

1 1 I 
0 --2 -2 +-2 

' 
rq) al/'J rq) 

, 

(µ" D., µ'12 0'12 oq) µ., D., J 
c = a;. - r;1 -+---

(J~ + r:3 a2 r2 r2 
'll '12 'IJ 

(6.155) 

where just one dimension is represented, and the process is repeated for all dimensions with 
a computational complexity of O(TM). 

The maximum likelihood sequence i, is cJose to the targets µ , while keeping the 
slopes close to o, for a given state i, thus estimating a continuous function. Because of the 
delta coefficients, the solution depends on all the parameters of all states and not just the 
current state. This procedure can be performed for the fonnants as well as the bandwidths. 

The parameters µ1 , :E,, o,, and r, can be re-estimated using the EM algorithm de­
scribed in Chapter 8. In [ l) it is reported that two or three iterations are sufficient for 
speaker-dependent data. 

The formant track obtained through this method can be rough, and it may be desired to 
smooth it. Smoothing without knowledge about the speech signal would result in either blur­
ring the sharp transitions that occur in natural speech, or maintaining ragged fonnant 1:3clcs 
where the underlying physical phenomena vary slowly with time. Ideally we would like a 
larger adjustment to the raw formant when the error in the estimate is large relative to lhe 
variance of the corresponding state within a phoneme. This can be done by modeling !he 
formant measurement error as a Gaussian distribution. Figure 6.29 shows an utterance fro~ 
a male speaker with the smoothed formant tracks, and Figure 6.30 compares the raw_ an 
smoothed formants. When no real fonnant is visible from the spectrogram, the aigortthIII 
tends to assign a large bandwidth (not shown in the figure). 
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Figure 6.29 Spectrogram and three smoothed fonnants. 
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Figure 6.30 Raw formants (ragged gray line) and smoothed formants (dashed line). 
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6.7. THE ROLE OF PITCH 

Speech Signal Re --------p 
resentalions 

Pitch determination is very important for many speech processing algorithms Th 
· h d f Ch 16 · · h · e concate native speech synthesis met o s o apter require p1tc tracking on the des· d · 

'fi · · b d Ch' ue speech segments if prosody modi 1cat1on 1s to e one. mese speech recognition s t 
· · h · h · · · · ys ems use pitch tracking for tone recogmt1on, w 1c 1s important m disambiguating the . 

. . I . I " d' . . . mynad of 
homophones. Pitch 1s a so cruc1a 1or proso 1c vanat1on m text-to-speech systems (see 

Chapter 15) and spoken language systems (see Chapter 17). While in the previous s . . . . ect1ons 
we have d~alt _with features representmg the filter, pitch represents the source of the model 
illustrated m Figure 6.1. 

Pitch determination algorithms also use short-term analysis techniques, which means 
that for every frame xm we get a score f (T I xm) that is a function of the candidate pitch 
periods T. These algorithms determine the optimal pitch by maximizing 

Tm =argmaxf(Tlx,,,) 
T 

(6.156) 

We describe several such functions computed through the autocorrelation method and 
the normalized cross-correlation method, as well as the signal conditioning that is often per­
formed. Other approaches based on cepstrum [28] have also been used successfully. A good 
summary of techniques used for pitch tracking is provided by (17, 45]. 

Pitch determination using Eq. (6.156) is error prone, and a smoothing stage is often 
done. This smoothing, described in Section 6. 7 .4, takes into consideration that the pitch does 
not change quickly over time. 

6.7.1. Autocorrelation Method 

A commonly used method to estimate pitch is based on detecting the highest value of ~e 
autocorrelation function in the region of interest. This region must exclude m = 0, as tbat 15 

the absolute maximum of the autocorrelation function (37]. As discussed in Chapter 5, lhe 
statistical autocorrelation of a sinusoidal random process 

x[n] = cos(ro0n + <p) 

is given by 

R[m] = E{x"[n]x[n+m]} == ~ cos(w
0
m) 

(6.157) 

(6.158) 

h. h h · . th e can find tbe w tc as maxima for m == /T, , the pitch period and its harmonics, so at w . be 
· h . . 0 • • -1 ly 11 can 

pitc penod by computmg the highest value of the autocorrelation. Simi ar ' . R[rn] 
sho_wn lha~ ~Y. WSS periodic process x[n] with period 'fa also has an autocoJTelation 
which exh1b1ts its maxima at m = /T

0 
• 

.. 
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In pr~ctice, we need to obtain an estimate R[m] from knowledge of only N samples. If 
we use a window w[nJ of length Non x[nJ and assume it to be real thee · · I . . . , mpmca autocorre-
lation function 1s given by 

l . ..-+,,,,; 
R[m] = - L w[n]x[n]w[n+lmlJx[n+jmlJ 

N n=O 

whose expected value can be shown to be 

E{ R[m]} = R[m]( 11{m] * w[-m]) 

where 

.\'-jmf-1 

w[m]*w[-m]= L w[n]w[n+lml] 
11~0 

which, for the case of a rectangular window of length N, is given by 

{
·I-~ jmj<N 

li{m] * w[-m] = N 
0 jmj~N 

(6.159) 

(6.160) 

(6.161) 

(6.162) 

which means that R[m] is a biased estimator of R[m). So, if we compute the peaks based on 
Eq. (6.159), the estimate of the pitch will also be biased. Although the variance of the esti­
mate is difficult to compute, it is easy to see that as m approaches N, fewer and fewer sam­
ples of x[n) are involved in the calculation, and thus the variance of the estimate is expected 
to increase. If we multiply Eq. (6.159) by N l(N - m) , the estimate will be unbiased but the 
variance will be larger. 

Using the empirical autocorrelation in Eq. (6.159) for the random process in Eq. 
(6.157) results in an expected value of 

(6.163) 

whose maximum coincides with the pitch period for m > m0 • 

Since pitch periods can be as low as 40 Hz (for a very low-pitched male voice) or as 
high as 600 Hz (for a very high-pitched female or child's voice), the search for the maxi­
mum is conducted within a region. This F0 detection algorithm is illustrated in Figure 6.31 
where the lag with highest autocorrelation is plotted for every frame. In order to see perio­
dicity present in the autocorrelation, we need to use a window that contains at least two pitch 
periods, which, if we want to detect a 40 Hz pitch, implies 50 ms (see Figure 6.32). For win­
dow lengths so long, the assumption of stationarity starts to fail, because a pitch pe~od at 
the beginning of the window can be significantly different than at the end of the wmdow. 
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Figure 6.31 Wavefonn and unsmoothed pitch track with the autocorrelation method. A frame 
shift of IO ms, a Hamming window of 30 ms, and a sampling rate of 8 kHz were used. Notice 
that two frames in the voiced region have an incorrect pitch. The pitch values in the unvoiced 
regions are essentially random. 

One possible solution to this problem is to estimate the autocorrelation function with diffo. 
ent window lengths for different lags m. 

1,---.:::::::--:------,-------:-------r-------;--­- - --- --- --
-1 L-...-__ __,:_ ___ .,:._ __ ____: ___ ~---..!---:; 
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- - -- -----
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. . urs at 89 
l'iK"n· '·32 Aut1Jconduli l)11 func1ion for fmme 40 in figure 6.31. The maximum ace fi~is 
bl.liuvk:,. ~ 1>wu1ilin~ frt 1111cn~:y of 8 kHz nnd window shift of 10 ms are used. The toplh~"quasi· 
u~u,v. il w111d• •w l I t· I . . 50 s Nonce 

. · . . . " r 111!.1 1 " • l) ms. whc-r~ns tht~ bottom one 1s using m · 
&,,l:JJ1J1fo:1ty .lll th,· u1Jh11·11nd111io11 funl' li,,n. 
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The candidate pitch periods in Eq. (6.156) can be simply r - . · th · ,1 · d - f ., -111 • 1.e., e p1tc 1 per10 
is any integer number o samples. For low values of r the i;:;reque 1 · · 1 • ~ • • • ,,, , 11 ncy reso ut1on 1s ower 
than for high values. To mamtam a relat1vely constant frequenC}' i·e ·o] t· d h . . . s u ion, we o not ave 
to search all the pitch periods 1~r large_ T,,, . Alternatively, if the sampling frequency is not 
high. we may need to use fractional pitch periods (often done in the speech codino 3100_ 

rithmsofChapter7). ,.. 0 

. The aut?colTelation function can be efficiently computed by taking a signal , window­
ing 1t, and taking an FFT and then the square of the magnitude. 

6.7.2. Normalized Cross-Correlation Method 

A method that is free from these border problems and has been gaining in popularity is 
based on the normalized cross-correlation [2) 

0) 
< x1 ,x1_., > 

a,(T)=cos( = I II I x, x,_., (6.164) 

where x, = {x[t-N I 2],x[t-N 12+ l],···,x[t + N /2- I]} is a vector of N samples centered 
at time t, and < x,, x,-T > is the inner product between the two vectors defined as 

N!2-I 

<xn,Yt > L x[11+m]y[l+m] (6.165) 
m=-N /2 

so that, using Eq. (6.165), the normalized cross-correlation can be expressed as 

A'.':!-r 

L x[t+n]x[t+n-T] 
a (T) = 11=-.v:2 

, f'f1 x2[t+n] 'fl x1[t+m+T] 
V n•-.V / 2 m=-N / 2 

(6.166) 

where we see that the numerator in Eq. (6.166) is very similar to the autocorrelation in Sec­
tion 6.7. I, but where N terms are used in the summation for all values of T. 

The maximum of the norma.Iized cross-correlation method is shown in Figure 6.33 (b). 
Unlike the autocorrelation method, the estimate of the normalized cross-c01Telation is not 
biased by the term (1-m; N). For perfectly periodic signals, this re~ult~ in ident!cal values 
of the notmalized cross-con-elation function for kT. This can result m pitch halvmg, where 
2T can be chosen as the pitch period, which happens in Figure 6.33 (b) at the b~ginning_ of 
the utterance. Using a decaying bias (1 - m IM) with M » N , can be useful m reducing 
pitch halving, as we see in Figure 6.33 (c). 
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Speech Signal Represe ~ 
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Figure 6.33 (a) Wavefonn and (b, c) unsmoothed pitch tracks with the nonnalized cross­
correlation method. A frame shift of IO ms, window length of IO ms, and sampling rate of 8 
kHz were used. (b) is the standard nonnalized cross-correlation method, whereas (c) has a de­
caying tenn. If we compare it to the autocorrelation method of Figure 6.31, the middle voiced 
region is correctly identified in both (b) and (c), but two frames at the beginning of (b) that 
have pitch halving are eliminated with the decaying tenn. Again, the pitch values in the un­
voiced regions are essentially random. 

Because the number of samples involved in the calculation is constant, this estimate is 
unbiased and has lower variance than that of the autocorrelation. Unlike the autocorrelation 
method, the window length could be lower than the pitch period, so that the assumption of 
stationarity is more accurate and it has more time resolution. While pitch trackers based 00 

the normalized cross-correlation typically perform better than those based on the autocorre· 
l~tion, they also require more computation, since all the autocorrelation lags can be effi· 
ciently computed through 2 FFrs and N multiplies and adds (see Section 5.3.4). . 

Let's gain some insight about the nonnalized cross-correlation. If .x[n) is periodic wttb 
period T, then we can predict it from a vector T samples in the past as: 

x, == px,-r + e, (6.167) 

where p is the predict" · Th . . th anole between ion gam. e normalized cross-correlation measures e O that 
tbe two vectors, as can be seen in Figure 6.34 and since it is a cosine it has the propertY 
-1 $an(P)$l. ' ' 
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Figure 6.34 The prediction of x, with x,_7 results in an error e, . 

If we choose the value of the prediction gain p so as to minimize the prediction error 

(6.168) 

and assume e, is a zero-mean Gaussian random vector with a standard deviat1' on ,T I I 
V X1 1 

then 

a 2(T) 
ln/(x, IT)=: K +-' -2-2a (6.169) 

so that the maximum likelihood estimate corresponds to finding the value T with highest 
nonnalized cross-correlation. Using Eq. (6.166). it is possible that a, (T) < O. In this case, 
there is negative correlation between x, and x,_7 • and it is unlikely that Tis a good choice 
for pitch. Thus, we need to force p > 0, so that Eq. (6.169) is converted into 

ln /(x, IT)=: K + ( max(~:; (T)) )2 (6.170) 

The normalized cross-correlation of Eq. (6.164) predicts the current frame with a 
frame that occurs T samples before. Voiced speech may exhibit low correlation with a pre­
vious frame at a spectral discontinuity, such as those appearing at stops. To account for this, 
an enhancement can be done to consider not only the backward normalized cross­
correlation, but also the forward normalized cross-correlation, by looking at a frame that 
occurs T samples ahead of the current frame, and taking the highest of both. 

ln/(x, IT)=: K + (max(O,a,(T),a,(-T)))2 
2a2 

6,7.3. Signal Conditioning 

(6.171) 

Nois~ _in ~e signal tends to make pitch estimation less accura~e. To r~duc~ this effect, s!gnal 
cond1ttonmg or pre-processing has been proposed prior to pitch estimation [441-Typically 
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this involves bandpass filtering to remove frequencies above 1 or 2 kHz, and b 1 . h . . . c . e ow 100 H 
Or so High frequencies do not have muc vOJcmg m1ormat1on and have si·g ·r. z 

· . ni 1can1 n · 
energy whereas low frequencies can have 50/60 Hz interference from power 1. 

01se , . . mes or no 
linearities from some AID sub~ystems that can also m1sl~ad a pitch estimation algorilh n-

In addition to the noise 111 the very low frequencies and aspiration at high ba dm. 
· · l 'd h. h f · E n s the stationarity assumption 1s not as va I at 1g requenc1es. ven a slowly changi '. 

· · · 5 H · 10 l · c h · ng Pilch say, nommal 100 Hz mcreasmg z m ms, resu ts ma iast-c angmg harmonic: th ~ 

harmonic at 3000 Hz changes 150 Hz in 10 ms. The con-esponding short-time spect e 
30 

. rumoo 
longer shows peaks at those frequencies. 

Because of this, it is advantageous to filter out such frequencies prior to the com uta­
tion of the autocorrelation or normalized cross-correlation. If an FFT is used to compu! the 
autocorrelation, this filter is easily done by setting to O the undesired frequency bins. 

6.7.4. Pitch Tracking 

Pitch tracking using the above methods typically fails in several cases: 

• Sub-hamzonic errors. If a signal is periodic with period T, it is also periodic 
with period 2T, 3T, etc. Thus, we expect the scores also to be high for the 
multiples of T, which can mislead the algorithm. Because the signal is never 
perfectly stationary, those multiples, or sub-harmonics, tend to have slightly 
lower scores than the fundamental. If the pitch is identified as 2T, pitch halv­
ing is said to occur. 

• Harmonic errors. If harmonic M dominates the signal's total energy, the 
score at pitch period TIM will be large. This can happen if the harmonic falls 
in a formant frequency that boosts its amplitude considerably compared to 
that of the other harmonics. If the pitch is identified as T/2., pitch doubling is 
said to occur. 

• Noisy conditions. When the SNR is low, pitch estimates are quite unreliable 
for most methods. 

• Vocal fry. While pitch is generally continuous, for some speakers it can sud­
den_ly change and even halve, particularly at the end of an unstressed voiced 
region .. The pitch here is really not well defined and imposing smoothness 
constraints can hurt the system. . 

• FO · Jumps up or down by an octave occasionally. 

• Br~athY-VOiced speech is difficult to distinguish from periodic background 
noise. 

• Narrow-band flit · f . . al tract . ermg o unvoiced excitations by certain voe 
configurations can lead to signals that appear periodic. 

JI 
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For these reasons, pitch trackers do not determine the pitch value at f b d . rame m ase ex-
clusively on the signal at that fra~e. For a frame where there are several pitch candidates 
with similar scores, the fact that pt~ch does not change abruptly with time is beneficial in 
disambiguation, because the following frame possibly has a clearer pitch candidate, which 
can help. 

To integrate the nonnalized cross-correlation into a probabilistic framework yo 
· · h h , u can 

combine tracking wit t e use of a priori information [JO]. Let's define 
X={x0,x1, ... ,xM_i} as a sequence of input vectors for M consecutive frames centered at 
equally spaced time instants, say IO ms. Furthermore, if we assume that the X; are inde­
pendent of each other, the joint distribution takes on the form: 

M-1 

/(XI T) = Ilf(x; IT,) 
i=O 

(6.172) 

where T = {Ta, 7; , ... ,T,11-1} is the pitch track for the input. The maximum a posteriori (MAP) 
estimate of the pitch track is: 

T = max /(TI X) = max f (T)f (XI T) = max f(T)f(X IT) 
MAP T T /(X) T 

(6.173) 

according to Bayes' rule, with the term f(X IT) being given by Eq. (6.172) and f (x, IT,) 
by Eq. (6.169), for example. 

The function /(T) constitutes the a priori statistics for the pitch and can help disam­
biguate the pitch, by avoiding pitch doubling or halving given knowledge of the speaker's 
average pitch, and by avoiding rapid transitions given a model of how pitch changes over 
time. One possible approximation is given by assuming that the a priori probability of the 
pitch period at frame i depends only on the pitch period for the previous frame: 

/(T) = /(7;;,7;, ... , ½1-1) = /(T.u-i I T,.,_2 )f(TM-2 I Tu_3)· .. J(T; I T,,)f(T,,) (6.174) 

One possible choice for J(T, I r,_
1

) is to decompose it into a componen~ that depends 
on T, and another that depends on the difference (T, - T,_1) • If we approximate both as 
Gaussian densities, we obtain 

lnf(T. IT. ) =K' (r,-µ)2 
I H 2132 

(6.175) 

so that when Eqs. (6_170) and (6.1 75) are combined, the Jog-probability of transitioning to 

7; at time t from pitch ½ at time t - 1 is given by 
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(max(O,a,(7;)))1 _ (T;-µ)1 
S,(T,,T)= 2<1~ 2/3~ 

(T-T -0)2 

,I J 

(6.176) 

so that the log-likelihood in Eq. (6.173) can be expressed as 

M-1 

Jn /(T)f(X IT)= (max(O.a0 (J;,)) t + m;ax L S,(T,, ,7;,...) 
I /:::rl 

(6.177) 

which can be maximize.d through dynamic programming. For a region where pitch is not 
supposed to change, 5 = 0, the term (T, -½ )2 in Eq. ~6.176) acts as a ~enalty that keeps the 
pitch track from jumping around. A mixture of Gauss1_ans c~n be u~ed mstead to model dif­
ferent rates of pitch change, as in the case of Mandann Chinese with four tones character­
ized by different slopes. The term (7; - µ )

2 
attempts to get the pitch close Lo its expected 

value to avoid pitch doubling or halving, with the average µ being different for male and 
female speakers. Pruning can be done during the search without loss of accuracy (see Chap­

ter 12). 
Pitch trackers also have to determine whether a region of speech is voiced or un­

voiced. A good approach is to build a statistical classifier with techniques described in 
Chapter 8 based on energy and the normalized cross-correlation described above. Such clas­
sifiers, i.e., an HMM, penalize jumps between voiced and unvoiced frames to avoid voiced 
regions having isolated unvoiced frames inside and vice versa. A threshold can be used on 
the a posteriori probability to distinguish voiced from unvoiced frames. 

6.8. HISTORICAL PERSPECTIVE AND FuRTHER READING 

In 1978, Lawrence R. Rabiner and Ronald W. Schafer [38) wrote a book summarizing the 
work to date on digital processing of speech, which remains a good source for the reader 
interested in further reading in the field. The book by Deller, Hansen, and Proakis [9] in­
cludes more recent work and is also an excellent reference. O' Shaughnessy [33] also has a 
thorough description of the subject. Malvar [25] covers filterbanks and lapped transforms 
extensively. 

The extensive wartime interest in sound spectrography Jed Koenig and his colleagues 
at Bell Laboratories (22) in 1946 to the invaluable development of a tool that has been used 
for speech analysis since then: the spectrogram. Potter et al. (35] showed the usefulness of 
the analog spectrogram in analyzing speech. The spectrogram facilitated research in the field 
~d led Peterson and Barney (34] to publish in I 952 a detailed study of fonnant values of 
different vo~~ls. The development of computers and the FFf led Oppenheim, in 1970 [30J, 
to develop d1g1tal spect_rograrns, which imitated the analog counterparts. ·n 

The _MIT AcouShcs Lab started work in speech in 1948 with Leo R. Beranek, who 1 

1954 published the seminal book Acoustics, where he studied sound propagation in tubeS- In 
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I 950, Kenneth N. Stevens j_oined the lab and started work on speech perception. Gunnar 
Fant visited the lab at that time and as a result started a strong speech production effort at 
KTH in Sweden. 

The 1960s marked the birth of digital speech processing. Two books, Gunnar Fant's 
Acoustical T_lzeory of Spee~lz Prod11~tio11 [13] in 1960 and James Flanagan's Speech Analy­
sis: Synthesis and Perceptwn [ 14] m 1965, had a great impact and sparked interest in the 
field. The advent of the digital computer prompted Kelly and Gertsman to create in 1961 the 
first digital speech synthes!zer [21]. Short~time Fourier analysis, cepstrum, LPC analysis, 
and pitch and formant tracking were the fruit of that decade. 

Short-time frequency analysis was first proposed for analog signals by Fano [11] in 
I 950 and later by Schroeder and Atal [42). 

The mathematical foundation behind linear predictive coding dates to the auto­
regressive models of George Udny Yule (1927) and Gilbert Walker (193 I), which led to the 
well-known Yule-Walker equations. These equations resulted in a Toeplitz matrix, named 
after Otto Toeplitz (1881-1940) who studied it extensively. N. Levinson suggested in 1947 
an efficient algorithm to invert such a matrix, which J. Durbin refined in 1960 and is now 
known as the Levinson-Durbin recursion. The well-known LPC analysis consisted of the 
application of the above results to speech signals, as developed by Bishnu Aral [4], J. Burg 
[7], Fumitada ltakura and S. Saito [ l 9) in 1968, and Markel [27) and John Makhoul [24) in 
1973. 

The cepstrum was first proposed in 1964 by Bogert, Healy, and John Tukey [6] and 
further studied by Alan V. Oppenheim (29) in 1965. The popular mel-frequency cepstrum 
was proposed by Davis and Mermelstein (8) in 1980, combining the advantages of cepstrum 
with knowledge of the non-linear perception of frequency by the human auditory system that 
had been studied by E. Zwicker [47] in 1961. 

Fonnant tracking was first investigated by Ken Stevens and James Flanagan in the late 
1950s, with the foundations for most modem techniques being developed by Schafer and 
Rabiner [40), Itakura [20), and Markel [26] . Pitch tracking through digital processing was 
first studied by B. Gold (15) in 1962 and then improved by A. M. Noll [28], M. Schroeder 
[41), and M. Sondhi [44] in the late 1960s. 
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CHAPTER 7 

Speech Coding 

Transmission of speech using data networks 
requires the speech signal to be digitally encoded. Voice over IP has become very popular 
because of the Internet, where bandwidth limitations make it necessary to compress the 
s~ech signal. Digital storage of audio signals, which can result in higher quality and smaller 
size than the analog counterpart, is commonplace in compact discs, digital video discs, and 
~P3 files. Many spoken language systems also use coded speech for efficient communica­
tton. For these reasons we devote a chapter to speech and audio coding techniques. 

Rather than exhaustively cover all the existing speech and audio coding algorithms, 
we uncover their underlying technology and enumerate some of the most popular standards. 
The coding technology discussed in this chapter has a strong link to both speech recognition 
and speech synthesis. For example, the speech synthesis algorithms described in Chapter 16 
use many techniques described here. 

337 
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7.1. SPEECH CODERS ATTRIBUTES 

d·u nt speech or audio coders? We can refer to a number of facto 
How do we compare iuere d h . rs, 

. d 'dth b't rate quality of reconstructe speec , noise robustness comp 
such as signal ban w1 , 1 ' . . . d t d d ' ll-

. I I 'ty delay channel-error sens1t1v1ty, an s an ar s. 
tationa comp e~1 '1 , b bandlimited to 10 kHz without significantly affecting th 

Speech s1gna s can e b d 'd h f e 
. Th telephone network limits the an w1 t o speech signals to be 

hearer's perception. e 1 1· T · 
300 d 3400 Hz which gives telephone speech a ower qua 1ly. elephone speech is· 

tween an • / · d f b d · 
typically sampled at 8 kHz. The tenn wideban~ spede~ i I~ used _orda ,~n w1~th ~f 50-700() 
Hz and a sampling rate of 16 kHz. Finally, audw co mg is use m ea mg with high-fidelity 
audio signals, in which case the sig~al is sampled at 44. I kHz. . . . 

Reduction in bit rate is the pnmary purpose of speech c~dmg. 1:'he previous bit stream 
can be compressed to a lower rate by re~oving redundancy m the_ signal, resulting in sav. 
· gs in storage and transmission bandwidth. If only redundancy 1s removed, the original 
~~gnal can be recovered exactly (lossless compression). In lossy compression, the signal 
cannot be recovered exactly, though hopefully it will sound similar to the original. 

Depending on system and design constraints, fixed-rate or variable-rate speech coders 
can be used. Variable-rate coders are used for non-real time applications, such as voice stor­
age (silence can be coded with fewer bits than fricatives, which in tum use fewer bits than 
vowels), or for packet voice transmissions, such as CDMA cellular for better channel utiliza­
tion. Transmission of coded speech through a noisy channel may require devoting more bits 
to channel coding and fewer to source coding. For most real-time communication systems, a 
maximum bit rate is specified. 

The quality of the reconstructed speech signal is a fundamental attribute of a speech 
coder. Bit rate and quality are intimately related: the lower the bit rate, the lower the quality. 
While the bit rate is inherently a number, it is difficult to quantify the quality. The most 
widely used measure of quality is the Mean Opinion Score (MOS) [25], which is the result 
of averaging opinion scores for a set of between 20 and 60 untrained subjects. Each listener 
characterizes each set of utterances with a score on a scale from I (unacceptable quality) to 
5 (e~cellent quality), as shown in Table 7 .1. An MOS of 4.0 or higher defines good or toll 
quah_ty, where the reconstructed speech signal is generally indistinguishable from the origi· 
naJ signal. An MOS between 3.5 and 4.0 defines communication quality, which is sufficient 
fo: teleph~ne communications. We show in Section 7 .2.1 that if each sample is quantized 
with ~6 bi~, the resulting signal has toll quality (essentially indistinguishable from the un· 
quanttzed signal). See Chapter I 6 for more details on perceptual quality measurements. 

Table 7.1 Mean Opinion s (MOS) · m 
b f b

. core 1s a numeric value computed as an average for a nu · 
er o su ~ects, where each n b um er maps to the above subjective quality. 

Excellent Good Fair Poor Bad 
5 4 3 2 I -
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Anot~er ~easure of quality is _th~ signal-to-noise ratio (SNR), defined as the ratio be­
tween the signal s energy and the noise s energy in terms of dB: 

(7.1) 

!he MOS ratin_g ?f a codec on noise-free sp~ech is often higher than its MOS rating 
for noisy sp~ech. This 1s gen~ral_ly caused by specific assumptions in the speech coder that 
tend to be violated when a s1gmficant amount of noise is present in the signal. This phe­
nomenon is more ac_centuated for l_ower-bit-rate coders that need to make more assumptions. 

The computational complexity and memory requirements of a speech coder determine 
the cost and power consumption of the hardware on which it is implemented. In most cases, 
real-time operation is required at least for the decoder. Speech coders can be implemented in 
inexpensive Digital Signal Processors (DSP) that fonn part of many consumer devices, such 
as answering machines and DVD players, for which storage tends to be relatively more ex­
pensive than processing power. DSPs are also used in cellular phones because bit rates are 
limited. 

All speech coders have some delay, which, if excessive, can affect the dynamics of a 
two-way communication. For instance, delays over 150 ms can be unacceptable for highly 
interactive conversations. Coder delay is the sum of different types of delay. The first is the 
algorithmic delay arising because speech coders usuaJly operate on a block of samples, 
called a frame, which needs to be accumulated before processing can begin. Often the 
speech coder requires some additional look-ahead beyond the frame to be encoded. The 
computational delay is the time that the speech coder takes to process the frame. For real­
time operation, the computational delay has to be smaller than the algorithmic delay. A 
block of bits is generally assembled by the encoder prior to transmission, possibly to add 
error-correction properties to the bit stream, which cause multiplexing delay. Finally, there is 
the transmission delay, due to the time it takes for the frame to traverse the channel. The 
decoder will incur a decoder delay to reconstruct the signal. In practice, the total delay of 
many speech coders is at least three frames. 

If the coded speech needs to be transmitted over a channel, we need to consider possi­
ble channel errors, and our speech decoder should be insensitive to at least some of them. 
There are two types of errors: random errors and burst errors, and they could be handled 
differently. One possibility to increase the robustness against such errors is to use chan~el 
coding techniques, such as those proposed in Chapter 3. Joint source ~d cha_nnel co~mg 
allows us to find the ricrht combination of bits to devote to speech coding with the nght 
amount devoted to chan;el coding, adjusting this ratio adaptively depen_di~g on the channel. 
Since channel coding will only reduce the number of errors, and not el~mmate them, grace­
ful degradation of speech quality under channel errors is typically a desi~n _factor for speech 
coders. When the channel is the Internet, complete frames may be mtSSmg be~aus~ ~ey 
have not arrived in time. Therefore, we need techniques that degrade gracefully with missing 
frames. 
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7.2. SCALAR WAVEFORM CODERS 

In this section we describe several wavefonn coding techniques, such as linear PC 
and A-law PCM, APCM, DPCM, DM, and ADPCM, that quantize each sample ~. µ-law, 

. using sea] 
quantization. These techniques attempt to approximate the waveform, and, if a Jar ar 
bit rate is available, will get arbitrarily close to it. ge enough 

7.2.1. Linear Pulse Code Modulation (PCM) 

Analog-to-digital converters perform both sa~plin~ ,and quantization simultaneously. To 
better understand how this process affects the signal Jt s better to study them separately. W 
analyzed the effects of sampling in Chapter 5, so now we analyze the effects of quantizatio e 
which encodes each sample with a fixed number of bits. With B bits, it is possible to rep: 
sent 28 separate quantization levels. The output of the quantizer x[n] is given by 

x[n] = Q{x[n]} (7.2) 

Linear Pulse Code Modulation (PCM) is based on the assumption that the input dis­
crete signal x[ n] is bounded 

(7.3) 

and that we use uniform quantization with quantization step size ..1. which is constant for all 
levels x, 

(7.4) 

The input/output characteristics are shown by Figure 7 .1 for the case of a 3-bit uni­
form quantizer. The so-called mid-riser quantizer has the same number of positive and nega­
tive levels, whereas the mid-tread quantizer has one more negative than positive levels. Toe 
code c[n] is expressed in two's complement representation, which for Figure 7.1 varies be· 
tween -4 and +3. For the mid-riser quantizer the output x[n] can be obtained from the code 
c[11) through 

.i(n] = sign(c[n]) fl +c[n]..1. 
2 

and for the mid-tread quantizer 

x[n] = c[n]..1. 

(7.5) 

(7.6) 

which is often used in computer systems that use two's complement representation. I 
Th · b r of Jeve s ere are two independent parameters for a uniform quantizer: the num e 

N = 2 
8

, and the step size ..1.. Assuming Eq. (7 .3), we have the relationship 
2X =..1.2a (1.1) 

ma>< 
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(a) 3.5.L\ 

-3.L\ 

3.L\ 
-1.511 

-2.5.L\ 
-3.5.L\ 

X 

(b) 

-3.5.L\ -I.SL\ 
I I 

· ~ 
-....il..i.l~IF 

I • 

1.5<'.l 2.5.L\ 

-2.L\ 

-3.1 

-4.1 

Figure 7.1 Tiuee-bit uniform quantization characteristics: (a) mid-riser, (b) mid-tread. 

341 

X 

In quantization, it is useful to express the relationship between the unquantized sample 
x[n] and the quantized sample x[n] as 

x[n] = x[n] +e[n] (7.8) 

with e[n] being the quantization noise. If we choose .L\ and B to satisfy Eq. (7.7), then 

L\ L\ 
- -~e[n]~-

2 2 
(7.9) 

While there is obviously a detenninistic relationship between e[n] and x[n]. it is con-
venient to assume a probabilistic model for the quantization noise: 

1. e[n] is white: £ {e[n]e[n+m]} = a;8[m] 

2. e[n] andx[n] are uncorrelated: E{x[n]e[n+m]} =0 

3. e[n] is uniformly distributed in the interval (-6./2,/i/2) 

These assumptions are unrealistic for some signals, except in the case of speech sig­
nals, which rapidly fluctuate between different quantization levels. The assumptions are 
reasonable if the step size .1 is small enough, or alternatively the number of levels is large 
enough (say, more than 2 6

). 

The variance of such uniform distribution (see Chapter 3) is 

(]2 = .1
2 

= x;ax (7.10) 
• 12 3x228 

after using Eq. (7.7). The SNR is given by 

SNR(dB) = 10 log,. ( :1 ) = ( 20 log,. 2 )B + 10 log,, 3-20 log,.( : '7' ) (7. II) 

which implies that each bit contributes to 6 dB of SNR, since 20Iog,o 2 = 6 · 

Amazon/VB Assets 
Exhibit 1012 

Page 367



342 Speech Coding 

Speech samples can be approximately described as following a Laplac:imz distribution 

[40] 

.ro1,-1 I _.:xi 

p(x)=--e 0
• 

ff.a., 
(7.12) 

and the probability of x falling outside t~e range (-4a_,.,4a.) _is 0.35'J ... Thus, using 
xin•• = 4a_,., B = 7 bits in Eq. (7.11) results m_ an SNR of 35 dB, which would be acceptable 
in a communications system. Unfortunately, signal energy can vary over 40 dB, due to Vari­
ability from speaker to speaker as well as variability in transm!ssion channels. Thus, in prac­
tice, it is generally accepted that 11 bits are needed to achieve an SNR of 35 dB while 
keeping the clipping to a minimum. 

Digital audio stored in computers (Windows WAY, Apple AIF, Sun AU, and SND 
fom,ats among others) use 16-bit linear PCM as their main forn1at. The Compact Disc­
Digital Audio (CD-DA or simply CD) also uses 16-bit linear PCM. Invented in the late 
1960s by James T. Russell, it was launched commercially in 1982 and has become one of 
the most successful examples of consumer electronics technology: there were about 700 
million audio CD players in 1997. A CD can store up to 74 minutes of music, so the total 
amount of digital data that must be stored on a CD is 44,100 samples/(channel*second) * 2 
bytes/sample * 2 channels * 60 seconds/minute * 74 minutes = 783,216,000 bytes. This 747 
MB are stored in a disk only 12 centimeters in diameter and I .2 mm thick. CD-ROMs can 
record only 650 MB of computer data because they use the remaining bits for error correc­
tion. 

7.2.2. µ-law and A-law PCM 

Human perception is affected by SNR. because adding noise to a signal is not as noticeable 
if the signal energy is large enough. Ideally, we want SNR to be constant for all quantization 
level~, which re~uires the step size to be proportional to the signal value. This can be done 
by usmg a loganthmic compander1 

y[n] = ln[x[n]I 

followed by a uniform quantizer on y[n] so that 

j,[n] = y[n]+e[n] 

and, thus, 

i[n] = exp{y[n]}sign{x[n]} = x[n]exp{t:[11]} 

' A compander is a no · , 
nlmear function that compands one part of the x-axis. 

(7.13) 

(7. I 4) 

(7.l 5) 
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. fter using Eqs. (7 .13) and (7 .14 ). If f[n] is small, then Eq (7 15) b 
:1 • • can e expressed as 

343 

.t[ 11] :': x[ 11 ]( 1 + f[ n]) = x[ n] + x[ n ]E[ n] 
, . (7 .16) 

. nd thus the SNR == I I a; 1s constant for all levels This type f . . a • ' . . b . . · 0 quant1zat1on is not p · 
al t,ecause an mfimle num er of quunt1zat1on steps would b . racti-

~s the so-called µ-law (51 ]: . e required. An approximation 

log .I+µ~] . 
y[11] = x,n:1., - --s1gn{x[n]} 

log[l+µ] (7.17) 

which is approximately logarithmic for large values of t[n) and . . · · approximately Imear for 
small values of x[nJ. A related compander called A-law is also used 

1 + log[ Alx[n]I] 
y[n]=Xmox • X"'._' sign{x[n}} 

I+ log A (7 .18) 

which has greater resolution than µ-law for small sample values, but a range equivalent to 12 
bits. In practice, they both offer similar quality. The µ-law curve can be seen in Figure 7.2. 

y 
~ --

Figure 7.2 Nonlinearity used in the µ-law compression. 

X 

In 1972 the ITU-T1 recommendation G.711 standardized telephone speech coding at 
64 kbps for digital transmission of speech through telephone networks. It uses 8 bits per 
sample and an 8-kHz sampling rate with either µ-law or A-law. In North America and Japan, 
µ-law withµ= 255 is used, whereas, in the rest of the world, A-law with A== 87.56 is used. 
80th c_ompression characteristics are very similar and result in an approximate SNR of 35 
dB. Wtthout the logarithmic compressor, a unifonn quantizer requires approximately 12 bits 

' The ln1e · - · · s · ' fi d C I-ma11onal Tel~communication Union (ITU) is a part of the Umted Nauons Econom1c, c1enu ic an u 
luraJ Org · · · I · f amzauon (UNESCO). ITU-Tis the organization within TI1J responsible for settmg global te ecommumca-
=~~;lldards. Wi1hin ITU-T, Study Group J 5 (SG I 5) is responsible for formulating spe~ch cod~n~ sllln~ards. Prio_r 
ligraph.' telecommunication standard!\ were set by the Comite Cnnsultarif /ntemat101U1l Telepho111que er Te-

tqu<· (CCJIT), which was reorganized into the ITU-T that year. 
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per sample to achieve the same level of quality. All the speech coders for telephone 
described in this chapter use G.711 as a baseline reference, whose quality is consider!eech 
and an MOS of about 4.3. G.711 is used by most digital central office switches, so that w:ll, 
you make a telephone calJ using your plain old telephone service (POTS), your call is e:~ 
coded with G.711. 

7.2.3. Adaptive PCM 

When quantizing speech signals we confront a dilemma. On the one hand, we want the 
quantization step size to be large enough to accommodate the maximum peak-to-peak ran e 
of the signal and avoid clipping. On the other hand, we need to make the step size small~ 
minimize the quantization noise. One possible solution is to adapt the step size to the level 
of the input signal. 

The basic idea behind Adaptive PCM (APCM) is to let the step size A[n] be propor­
tional to the standard deviation of the signal a{ n]: 

A[n] = A0U[n] (7.19) 

An equivalent method is to use a fixed quantizer but have a time-varying gain G[n], 
which is inversely proportional to the signal's standard deviation 

(7.20) 

Estimation of the signal 's variance, or short-time energy, is typically done by low-pass 
filtering x 2[n]. With a first-order IlR filter, the variance u 2[n] is computed as 

(7.21) 

with a controlling the time constant of the filter T = -1 / (F, ln a), F, the sampling rate, and 
0 < a < 1. In practice, a is chosen so that the time constant ranges between 1 ms ( a = 0.88 
at 8 kHz) and 10 ms (a= 0.987 at 8 kHz). 

Alternatively, u 2[n] can be estimated from the past M samples: 

(7.22) 

In practice, it is advantageous to set limits on the range of values of A[n] and G[n]: 

Amin s; A[n] s; Amax (7.23) 

Gmin s; G[n] 5 Gmax 
(7.24) 

. . f th systelll-If 
with the ratios A ___ / A . and G I G . determining the dynainic range O e . an 

.. _ m,n m:i.~ mm aUOS C 
our objective is to obtain a relatively constant SNR over a range of 40 dB, these r 
be 100. 
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Feedforward ada~tation schemes r~quire us to transmit, in addition to the quantized 
signal, either the step size ~[n] or t~e gain G[n]. Because these values evolve slowly with 
time, they can be sampled and quantized at a low rate. The overall rate will be the sum of the 
bit rate required to transmit the quantized signal plus the bit rate required to transmit either 
the gain or the step size. 

Another class of adaptive quantizers use feedback adaptation to avoid having to send 
information about the step size or gain. In this case, the step size and gain are estimated from 
the quantizer output, so that they can be recreated at the decoder without any extra infonna­
tion. The corresponding short-time energy can then be estimated through a first-order IIR 
filter as in Eq. (7.21) or a rectangular window as in Eq. (7.22), but replacing x 2[n] by ,i 2[n]. 

Another option is to adapt the step size 

,1[n]=P6(n-l] (7.25) 

where P > 1 if the previous codeword corresponds to the largest positive or negative quan­
tizer level, and P < I if the previous codeword corresponds to the smallest positive or nega­
tive quantizer level. A similar process can be done for the gain. 

APCM exhibits an improvement between 4-8 dB over µ-law PCM for the same bit 
rate. 

7.2.4. Differential Quantization 

Speech coding is about finding redundancy in the signal and removing it. We know ~at 
there is considerable correlation between adjacent samples, because on the average the sig­
nal doesn't change rapidly from sample to sample. A simple way of capturing this is to 
quantize the difference d[n] between the current sample x[n] and its predicted value x[n] 

d(n] = x[n]-x[n] (7.26) 

with its quantized value represented as 

d[n] = Q{d[n]} = d[n]+ e{n] (7.27) 

· d · al is the sum of the predicted where e[nJ is the quantization error. The~, the quantize sign 
signal x[nJ and the quantized difference d[n] 

.i[n] = x[n]+ d[n] = x[n] +e[n] (7.28) 

11 th t the quantization error will be small. 
If the prediction is good, Eq. (7.28) te s us a th th t f [n] for differential cod-

Statistically we need the variance of e(n] to be lower an a O x . C d 
. ' . · lly called Differential Pulse o e mg to provide any gain. Systems of this type are genenca 
Modulation (DPCM) [11] and can be seen in Figure 7.3. 
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... 

Quantizer 
d[n] x[n] 

x[n] 
Predictor Predictor 

Figure 7.3 Block diagram of a DPCM encoder and decoder with feedback prediction. 

Delta Modulation (DM) [47] is a I-bit DPCM, which predicts the current sample to be 
the same as the past sample: 

x[n] = x[n - l] (7.29) 

so that we transmit whether the current sample is above or below the previous sample. 

d[n] = 1
. A x[ n] > x[ n -1] 

.-A x[n] ~ x[n-l] 
(7.30) 

with A being the step size. If A is too small, the reconstructed signal will not increase as fast 
as the original signal, a condition known as slope overload distortion. When the slope is 
small, the step size A also determines the peak error; this is known as granular noise. Both 
quantization errors can be seen in Figure 7.4. The choice of A that minimizes the mean 
squared error will be a tradeoff between slope overload and granular noise. 

Figure 7.4 An exampl~ of slope overload distortion and granular noise in a OM encoder. 

If the signal is oversampled by a factor N, and the step size is reduced by the same 
amount (i.e., MN), the slope overload will be the same, but the granular noise will decrease 
by a factor N. While the coder is indeed very simple, sampling rates of over 200 kbps are 
needed for SNRs comparable to PCM, so DM is rarely used as a speech coder. . a 

However, delta modulation is useful in the design of analog-digital converters, 10 

· I · · I ·s Jowpass van ant ca led sigma-delta modulation [ 44] shown in Figure 7 .5. First the s1gna 1 -
fi It d · th · th dieted s,g-1 er_e w_1 a simple analog filter, and then it is oversampled. Whenever e ~re d{ll] 
nal x[n] is below the original signal x[n], the difference d[n] is positive. This difference 
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is averaged over time with a digital integrator whose output is e[n]. If this situation persists, 
the accumulated error e[n] will exceed a positive value A, which causes a 1 to be encoded 
into the stream q[n]. A digital-analog converter is used in the loop which increments by one 
the value of the predicted signal i[n]. The system acts in the opposite way if the predicted 
signal .x[n) is above the original signal x[n] for an extended period of time. Since the signal 
is oversampled, it changes very slowly from one sample to the next, and this quantization 
can be accurate. The advantages of this technique as an analog-digitaJ converter are that 
inexpensive analog filters can be used and only a simple 1-bit ND is needed. The signal can 
next be )ow-passed filtered with a more accurate digital filter and then downsampled. 

x(t) LPF S/H 

x[n] 

,-------------., 

I 
I 
I 
I 
I 
I 

integrator 

I _______ _ _. __ _ 

e[n] 

LPF 

Figure 7.5 A sigma-delta modulator used in an oversampling analog-digital convener. 

Adaptive Delta Modulation (ADM) combines ideas from adaptive quantization and 
delta modulation with the so-called Continuously Variable Slope Delta Modulation 

(CVSDM) [22] having a step size that increases 

-{roi[n -1] + k, if e[ n],e[n-1] and e[n-2] have same sign 

~[n] - roi[n-1]+ k
2 

otherwise 
(7.31) 

with o < a < 1 and o < k
2 

<< k,. The step size increases if the last three errors have the same 

sign and decreases otherwise. . . _ . . 
Improved DPCM is achieved through linear prediction m which x[n] is a lmear com-

bination of past quantized values .i[ n] 

(7.32) 

A=I 

. . ffi · ts can provide from 4 to 11 dB im-
DPCM systems with fixed pred1ct1on coe 1cien f . . . d to - 4 at the expense o m-

provement over direct linear PCM, for prediction or ers up P - ' . d . th . t can be obtamed by a aptmg e 
creased computational complexity. Larger ,mprovemen s 
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prediction coefficients. The coefficients can be transmitted in a feedforward fashion or not 
transmitted if the feedback scheme is selected. 

ADPCM [6] combines differential quantization with adaptive step-size quantizatio 
ITU-T Recommendation G.726 uses ADPCM at bit rates of 40, 32, 24, and 16 kbps, with~-
4, 3, and 2 bits per sample, respectively. It employs an adaptive feedback quantizer and a~ 
adaptive feedback pole-zero predictor. Speech at bit rates of 40 and 32 kbps offer toll qua). 
ity, while the other rates don't. G.727 is called embedded ADPCM because the 2-bit quan­
tizer is embedded into the 3-bit quantizer, which is embedded into the 4-bit quantizer, and 
into the 5-bit quantizer. This makes it possible for the same codec to use a lower bit rate 
with a graceful degradation in quality, if channel capacity is temporarily limited. Earlie; 
standards G.721 [7, 13) (created in 1984) and G.723 have been subsumed by G.726 and 
G.727. G.727 has a MOS of 4. I for 32 kbps and is used in submarine cables. The Windows 
WA V format also supports a variant of ADPCM. These standards are shown in Table 7.2. 

Table 7.2 Common scalar waveform standards used. 

Standard Bit Rate MOS Algorithm Sampling Rate 
(kbiWsec) (kHz) 

Stereo CD Audio 141 l 5.0 16-bit linear PCM 44.1 

WAV,AIFF, SND Variable - 16/8-bit linear PCM 8, 11.025, 16, 

22.05, 44.1, 48 

G.711 64 4.3 µ-law/A-law PCM 8 

G.727 40,32,24, 16 4.2 (32k) ADPCM 8 

G.722 64,56,48 Subband ADPCM 16 

Wideband speech (50-7000 Hz) increases intelligibility of fricatives and overall per­
ceived quality. In addition, it provides more subject presence and adds a feeling of transpar­
ent communication. ITU-T Recommendation G.722 encodes wideband speech with bit rates 
of 48, 56, and 64 kbps. Speech is divided into two subbands with QMF filters (see Chapter 
5). The upper band is encoded using a 16-kbps ADPCM similar to the G.727 standard. The 
lower band is encoded using a 48-kbps ADPCM with the 4- and 5-bit quantizers embedded 
in the 6-bit quantizer. The quality of this system scores almost 1 MOS higher than that of 
telephone speech. 

7 .3. SCALAR FREQUENCY DOMAIN CODERS 

Frequency domain is advantageous because: 

1. The samples of a speech signal have a great deal of correlation among them, 
whereas frequency domain components are approximately uncorrelated and 
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2. The perceptu~l effects of masking described in Chapter 2 can be more easily 
implemente~ m th_e frequency domain. These effects are more pronounced for 
high-bandw1_dth _signals, so frequency-domain coding has been mostly used 
for CO-quahty signals and not for 8-kHz speech signals. 

7.3.1, Benefits of Masking 

349 

As discussed in Chapter 2, masking is a phenomenon by which human listeners cannot per­
ceive a sound if it is below a certain level. The consequence is that we don't need to encode 
such sound. We now illustrate how this masked threshold is computed for MPEG)-1 layer 1. 
Given an input signal s[n] quantized with b bits, we obtain the normalized signal x[n] as 

s[n] 
x[n] = N2b-1 

where N = 512 is the length of the OFT. Then, using a Hanning window, 

"1:n] =0.5-0.5cos(2trn/ N) 

we obtain the log-power spectrum as 

I
N-1 ll 

P[k] =Pa+ 10 log10 ~ l~n]x[n]e-12xnklN 

(7.33) 

(7.34) 

(7.35) 

where Po is the playback SPL, which, in the absence of any volume information, is defined 

as90 dB. 
Tonal components are identified in Eq. (7.35) as local maxima, ~hich exc~ed 

neighboring components within a certain Bark distance by at least 7 dB. Specifically, bm k 

is tonal if and only if 

P[k] > P[k± l] 

and 

P[k] > P[k ±/]+ 7dB 

where 1 </~Ilk, and Ilk is given by 

\

2 2<k <63 

Ilk= 3 63~k<127 

6 127 ~ k ~ 256 

(t 70Hz-5.5kHz) 

(5 .SkHz, l lkHz) 

(11 kHz, 22 kHz) 

(7.36) 

(7 .37) 

(7.38) 

l • - · • a family of International Standards for coding 
MPEG (Movmg Picture Experts Group) 1s the nickname given to 

audiovisual infonnation. 
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so that the power of that tonal masker is computed as the sum of the power in th t b" . 
left and right adjacent bins: a m and its 

, J ' 

PT.\l[k] = ]Olog,o l~, lOo.1P(k+JI l 
. , 

(7.39) 

The no~e maskers are computed as the sum of power spectrum of the rem · · 
b. k . . . I b d . I . . am1ng fre-

quency ms m a cnt1ca an not wit 1m a neighborhood .1k of the tonal maskers: 

PN,,[k] = IO log,, ( ~ !0'·"111
] (7.40) 

where j spans a critical band. 
To compute the overall masked threshold we need to sum all masking thresholds con­

tributed by each frequency bin i, which is approximately equal to the maximum (see Chapter 
2): 

T[k] = max (T,,[k ], m~x (T;[k])) (7.41) 

In Chapter 2 we saw that whereas temporal postmask.ing can last from 50 to 300 ms, 
temporal premasking tends to last about 5 ms. This is also important because when a fre­
quency transform is quantized, the blocking effects of transfonn's coders can introduce 
noise above the temporal premasking level that can be audible, since 1024 points corre­
sponds to 23 ms at a 44-kHz sampling rate. To remove this pre-echo distortion, audible in 
the presence of castanets and other abrupt transient signals, subband filtering has been pro­
posed, whose time constants are well below the 5-ms premasking time constant. 

7.3.2. Transform Coders 

We now use the Adaptive Spectral Emropy Coding (ASPEC) of High Quality Music Signals 
algorithm, which is the basis for the MPEG l Layer I audio coding standard [24), to j]lus­
trate how transform coders work. The DFf coefficients are grouped into 128 subbands, and 
128 scalar GUanti.::.ers are used to transmit all the DFf coefficients. It has been empirically 
found that a difference of less than 1 dB between the original amplitude and the qu~tize~ 
value cannot be perceived. Each subbandj has a quantizer having k1 levels and step size 0 

Tj as 

kj = I +2xmd(P1 IT;) 
(7.42) 

wh~re ~1 is the quantized JND threshold, ~ is the quantized magni~ude of the l~ges~;~ 
~r 1magmary component of the/ subband, and md( ) is the nearest integer rounding Bolh 
lion. Entropy coding (see Chapter 3) is used to encode the coefficients of that subband-
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Ti and P1 are qua~tized on ~ dB scale using 8-bit uniform quantizers with a 170-dB dy-
namic range, thus with a step size of 0.66 dB. Then they are transmi'tted as s'd . , . 

· h . . · 1 e rn1ormat1on. 
There are two mam met ods of obtammg a frequency do · . - mam representation: 

1. Through subband filtering via a filterbank (see Chaple ~) Wh fil b . . . r -1 • en a I ter ank 
1s u~cd, the bandwidth of each band 1s chosen to increase with frequency fol-
lowing a perceptual scale, such as the Bark scale As shown · Cl 

5 . . . rn rnpter , 
such filterbanks yield perfect reconstruction in the absence of · · . quant1zat1on. 

2. ~hrough frequenc~-domain transfonns. Instead of using a OFT, higher effi­
ciency can be obtained by the use of an MDCT (see Chapter 5). 

The exact implemen~ation of the MP_EG I Layer I standard is much more complicated 
and beyond the scope of this book, though 1t follows the main ideas described here; the same 
is true for the popular MPEG l Layer Ill, also known as MP3. Implementation details can be 
found in [42]. 

7.3.3. Consumer Audio 

Dolby Digital, MPEG, DTS, and the Perceptual Audio Coder (PAC) [28] are all audio cod­
ers based on frequency-domain coding. Except for MPEG-1, which supports only stereo 
signals, the rest support multichannel. 

Dolby Digital is multichannel digital audio, using lossy AC-3 [54] coding technology 
from original PCM with a sample rate of 48 kHz at up to 24 bits. The bit rate varies from 64 
to 448 kbps, with 384 being the normal rate for 5. l channels and 192 the normal rate for 
stereo (with or without surround encoding). Most Dolby Digital decoders support up to 640 
kbps. Dolby Digital is the format used for audio tracks on almost all Digital VideoNersatile 
Discs (DVD). A DVD-5 with only one surround stereo audio stream (at 192 kbps) can hold 
over 55 hours of audio. A DVD-18 can hold over 200 hours. 

MPEG was established in 1988 as part of the joint ISO (International Standardization 
Organization) / IEC (International Electrotechnical Commission) Technical Committee on 
Information Technology. MPEG-1 was approved in 1992 and MPEG-2 in 1994. Layers I to 
III define several specifications that provide better quality at the expense of added complex­
ity. MPEG-1 audio is limited Lo 384 kbps. MPEGl Layer III audio [23), also known as MP3, 
is very popular on the Internet, and many compact players exist. 

MPEG-2 audio, one of the audio formats used in DVD, is multichannel digital audio, 
using lossy compression from I 6-bit linear PCM at 48 kHz. Tests have shown that for nearly 
all types of speech and music, at a data rate of 192 kbps and over, on a stereo ch~nnel, 
scarcely any difference between original and coded versions was observab_le (rankmg of 
coded item> 4.5), with the original signal needing 1.4 Mbps on a C~ (reducuon_ by a factor 
0f7). One advantage of the MPEG audio technique is that future findings re~ardmg _psycho­
acoustic effects can be incorporated later, so it can be expected that today s quality level 
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using 192 kbps will be achievable at lower data rates in the future. A variable bit rate of 
32 

to 912 kbps is supported for DVDs. 
DTS (Digital Theater Systems) Digital Surround is another multi-channel (5.J) di . 

audio format, using lossy compression derived from 20-bit linear PCM at 48 kHz. The ~Ital 
pressed data rate varies from 64 to 1536 kbps, with typical rates of 768 and 1536 kbps. com. 

7.3.4. Digital Audio Broadcasting (DAB) 

Digital Audio Broadcasting (DAB) is a means of providing current AM and FM listene 
with a new service that offers: sound quality comparable to that of compact discs, increase~ 
service availability (especially for reception in moving vehicles), flexible coverage scenar­
ios, and high spectrum efficiency. 

Different approaches have been considered for providing listeners with such a service. 
Currently, the most advanced system is one commonly referred to as Eureka 147 DAB 
which has been under development in Europe under the Eureka Project EU147 since 1988: 
Other approaches include various American in-band systems (IBOC, IBAC, IBRC, FMDigi­
tal, and FMeX) still in development, as well as various other systems promising satellite 
delivery, such as WorldSpace and CD Radio, still in development as well. One satellite­
delivery system called MediaStar (formerly Archimedes) proposes to use the Eureka 147 
DAB signal structure, such that a single receiver could access both terrestrial and satellite 
broadcasts. 

DAB has been under development since 1981 at the lnstilut fiir Rundfunkiechnik 
(IRT) and since 1987 as part of a European research project (Eureka 147). The Eureka 147 
DAB specification was standardized by the European Telecommunications Standards Insti­
tute (ETSI) in February 1995 as document ETS 300 401, with a draft second edition issued 
in June 1996. In December 1994, the International Telecommunication Union­
Radiocommunication (ITU-R) recommended that this technology, referred to as Digital Sys­
tem A, be used for implementing DAB services. 

The Eureka 147 DAB signal consists of multiple carriers within a 1.536-MHz chann~l 
bandwidth. Four possible modes of operation define the channel coding configuration, spec•· 
fying the total number of carriers, the carrier spacing, and also the guard interval duration. 
Each channel provides a raw data rate of 2304 kbps; after error protection, a useful data ~te 
of anywhere between approximately 600 kbps up to 1800 kbps is available to the service 
provider, depending on the user-specified multiplex configuration. This useful data rate can 
be divided into an infinite number of possible configurations of audio and data prograJ11S. 
All audio programs are individually compressed using MUSICAM (MPEG-1 Layer II). . 

For each useful bit, 1 1/3 ... 4 bits are transmitted. This extensive redundancy ?1~~;~ 
possible to reconstruct the transmitted bit sequence in the receiver, even if part of it 15 

ea] 
rupted during transmission (FEC-forward error correction). In the receiver, erro~ cone · 

t b · . . · iss1on errors me? can e earned out at the audio reproduction stage, so that residual transm 
which could not be corrected do not always cause disruptive noise. 
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7.4. CODE EXCITED LINEAR PREDICTION (CELP) 

The use of linear pred~ctor~ removes redundancy in the signal, so that coding of the residual 
signal can be done with snnpler quantizers. We first introduce the LPC vocode d th 

d. f h ·d r an en 
introduce co mg o t e rest ual signal with a very popular technique called CELP. 

7.4.1. LPC Vocoder 

A typical model for speech production is shown in Figure 7.6, which has a source or excita­
tion, driving a linear time-varying filter. For voiced speech. the excitation is an in;pulse train 
spaced P samples apart. For unvoiced speech, the source is white random noise. The filter 
h,.[n] for frame m changes at regular intervals, say every 10 ms. If this filter is represented 
with linear predictive coding, it is called an LPC vocoder [3]. 

Figure 7.6 Block diagram of an LPC vocoder. 

In addition to transmitting the gain and LPC coefficients, the encoder has to determine 
whether the frame is voiced or unvoiced, as well as the pitch period P for voiced frames. 

The LPC vocoder produces reasonable quality for unvoiced frames, but often results in 
somewhat mechanical sound for voiced sounds, and a buzzy quality for voiced fricatives. 
More importantly, the LPC vocoder is quite sensitive to voicing and pitch errors, so that an 
accurate pitch tracker is needed for reasonable quality. The LPC vocoder also performs 
poorly in the presence of background noise. Nonetheless, it can be highly intelligible. The 
Federal Standard 1015 [55], proposed for secure communications, is based on a 2.4-kbps 
LPC vocoder. 

It's also possible to use linear predictive coding techniques together with Huffman 
coding [ 45] to achieve lossless compression of up to 50%. 

7.4.2. Analysis by Synthesis 

Code Excited Linear Prediction (CELP) [5] is an umbrella term for a family of techniques 
that quantize the LPC residual using VQ, thus the term code excited, using analysis by syn­
thesis. In addition CELP uses the fact that the residual of voiced speech has periodicity and 
can be used to predict the residual of the current frame. In CELP coding the LPC coef'.fl­
cients are quantized and transmitted (feedforward prediction), as well as the code~o:d m­
dex. The prediction using LPC coefficients is called short-term prediction. The P:ed1ctton of 
the residual based on pitch is called long-term prediction. To compute the ~uant1zed co~ffi­
cients we use an analysis-by-synthesis technique, which consists of choosing the combma-
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tion of parameters whose reconstructed signal is closest to the analysis signal In . 
. d . al . b · practice 

not all coefficients of a CELP coder are estimate m an an ys1s- y-synthesis manner ' 
We first estimate the p'h-order LPC coefficients from the samples x[n] for fra~ 

l W th . h e1u8• 
ing the autocorr~lation meth~d, for ex~p e.. e _en quantize t e ~PC coefficients 

10 
(a a ... a ) with the techniques descnbed m Section 7 .4.5. The residual signal [ ] . I , 2 , , p • • e fl IS 
obtained by inverse filtering x[n] with the quantized LPC filter 

p 

e[n]=x[n]- Ia,x[n-i] 
, .. 1 

Given the transfer function of the LPC filter 

} 1 ~h -I 
H(z)=- =---= LJ ,z 

A(z) 
1 

.f. _, , .. o - La,z 
jaJ 

(7.43) 

(7.44) 

we can obtain the first M coefficients of the impulse response h[n] of the LPC filter by driv­
ing it with an impulse as 

1 n=O 
n 

h[n] = Ia1h[n-i] O<n<p (7.45) 
i=I 

fa,h[n-i] p~n<M 
~ j;:i) 

so that if we quantize a frame of M samples of the residual e = (e[O],e[l], ··e[M-lt to 
e, = (e,[O],e1[l], · · ·e1[M -I]f, we can compute the reconstructed signal xi[n] as 

n ~ 

i,[n] = Lh[m]eJn-m]+ L h[m]e[n-m] (7.46) 
m=O m=n+l 

where the second term in the sum depends on the residual for previous frames, which we 
already have. Let's define signal r0 [ n] as the second term of Eq {7 .46): 

-
r0 [n] = L h[m]e[n-m] (7.47) 

which is the output of the LPC filter when there is no excitation for frame t. The important 
thing to note is that r0 [n] does not depend on e,[n]. 

It is convenient to express Eqs. (7 .46) and (7 .47) in matrix form as 

i, = He, +r0 

(7.48) 

where matrix H corresponds to the LPC filtering operation with its memory set to O: 
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ho 0 0 0 

h, ho 0 0 

H=-= (7.49) 

h.11-1 ,,.,,-2 ho 0 

'11, h.11-1 h, ho 

Given the_ large dy~amic range ~f the residual signal, we use gain-shape quantization, 
where we quantize the ga111 and the gam-no1malized residual separately: 

(7.50) 

where A is the gain and c, is the codebook entry i. This codebook is known as the fixed 
codebook because its vectors do not change from frame to frame. Usually the size of the 
codebook is selected as 2·'· so that full use is made of all N bits. Codebook sizes typically 
vary from 128 to 1024. Combining Eq. (7.48) with Eq. (7.50). we obtain 

(7 .51) 

The error between the original signal x and the reconstructed signal i, is 

(7.52) 

The optimal gain A.. and codeword index i are the ones that minimize the squared error 
between the original signal and the reconstructed' signal: 

E(i,A) = lx-iJ = Ix-A.He, -rol2 = jx-rol2 +A 2c;H7 Hc, -2,lc;H7 (x - r0 ) (7.53) 

where the tenn Ix- rol2 does not depend on A or i and can be neglected in the minimization. 
For a given c,, the gain A; that minimizes Eq. (7.53) is given by 

Inserting Eq. (7.54) into (7.53) lets us compute the indexj as the one that minimizes 

. . { (c;H7 (x-ro)r ·1 (7.55) 
J =argmm 7 7 

1

. 
, c;H He, 

. . 

So we first obtain the codeword index j according}o Eq. (7.55) and then the gain ¾ 1 

according to Eq. (7.54), which is scalarly quantized to A..1 . Both codewor~ index j and A-1 

are transmitted. In the algorithm described here, we first chose the quantized LPC coeffi-

'A beginner' s mistake is to find the codebook index that minimizes the squared error of the residual. This does not 

minimize the difference between the original signal and the reconstructed signal. 
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cients (ai,a2,· ·,aP) independently of the gains and c9deword index and th 
codeword index independently of the quantized gain A, .. This procedure is enllwe chose the 

. . b J ca ed open I 
esttmat~on, . ecause some parameter~ ar~ obtained independently of the others. ·.00? 
shown m Figure 7.7. Closed-loop esllmallon [49] means that all possible co b' '!111s is 

· d m inatJons of quantize parameters are explored. Closed-loop is more computationally e . 
. xpens1ve but 

yields lower squared error. 

codebook 
x[nJ 

----------------~ 
c;[n] 

Short-tenn predictor: 
: x;[n] 
I 

A(z) 

VQ index 
Error minimization 

Figure 7.7 Analysis-by-synthesis principle used in a basic CELP. 

7.4.3. Pitch Prediction: Adaptive Codebook 

The fact that speech is highly periodic during voiced segments can also be used to reduce 
redundancy in the signal. This can be done by predicting the residual signal e[n] at the cur­
rent vector with samples from the past residual signal shifted a pitch period t: 

e[n] = 11.te[n-t] +11.( c{[n] = A,0 c;[n]+ A( c{[n] (7.56) 

Using the matrix framework we described before, Eq. (7 .56) can be expressed as 

_ ~a a 'l/ / e,; - ,, c, + 1, c, (7.57) 

where we have made use of an adaptive codebook [31], where c~ is the adaptive cod~bo~; 
entry j with corresponding gain A..", and c{ is the fixed or stochastic codebook encry 1

; _ 

corresponding gain )! . The adaptive codebook entries are segments of the recently syn e 
sized excitation signal 

c~ =(e[-t],e[l-t],···,e[M-1-t]/ 
(7.58) 

where t is the delay which specifies the start of the adaptive codebook en~ t. The rant t~f; 
is often between 20 and 147, since this can be encoded with 7 bits. This correspon s 
range in pitch frequency between 54 and 400 Hz for a sampling rate of 8 kHz. 
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The contribution of the adaptive codebook is much larger than that of the stochastic 
codebook for voiced ~ounds. S~ we generally search for the adaptive codebook first, using 
Eq. (7.58) and a mod1:1ed version o~ Eqs. (7.55) and (7.54), replacing i by t. Closed-loop 
search of both t and gam here often yields a much larger error reduction. 

7.4.4. Perceptual Weighting and Postfiltering 

The objective of speech coding is to reduce the bit rate while maintaining a perceived level 
of quality; thus, minimization of the error is not necessarily the best criterion. A perceptual 
weighting filter tries to shape the noise so that it gets masked by the speech signal (see 
Chapter 2). This generally means that most of the quantization noise energy is located in 
spectral regions where the speech signal has most of its energy. A common technique [4] 
consists in approximating this perceptual weighting with a linear filter 

W(z) = A(z I /3) 
A(zly) 

where A(z) is the predictor polynomial 

i=I 

(7.59) 

(7.60) 

Choosing r and f3 so that and 0 < y < f3 $I, implies that the roots of A(z I /3) and A(z Ir) 
will move closer to the origin of the unit circle than the roots of A(z), thus resulting in a fre­
quency response with wider resonances. This perceptual filter therefore deemphasizes the con­
tribution of the quantization error near the fonnants. A common choice of parameters is 
fJ = 1.0 and r = 0.8, since it simplifies the implementation. This filter can easily be included in 
the matrix H, and a CELP coder incorporating the perceptual weighting is shown in Figure 7 .8. 

Stochastic 
codebook 

VQ index 
Error minimization 

x[n] 

-----------------' 
Short term Predictor : .i[n] 

~9~ I 

~ -
------------------

Figure 7.8 Diagram of a CELP coder. Both long-tenn and short-tenn predictors are used, to­

gether with a perceptual weighting. 
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Despite the perceptual weighting filter, the reconstructed signal still contains . 
. . f . h audible 

noise. This filter reduces the n~1se m those requency regions t at _are perceptually irrelevant 
without degrading the speech signal. The postfilter generally consists of a shon-term 

. posffi~ 
ter to emphasize the formant structure and a long-term postfiller to enhance the period· . 
of the signal [10]. One possible implementation follows Eq. (7.59) with values of /3 ~c~1 

and r = 0.75. 

7.4.5. Parameter Quantization 

To achieve a low bit rate, all the coefficients need to be quantized. Because of its codin 
efficiency, vector quantization is the compression technique of choice to quantize the predic~ 
tor coefficients. The LPC coefficients cannot be quantized directly, because small errors 
produced in the quantization process may result in large changes in the spectrum and possi­
bly unstable filters. Thus, equivalent representations that guarantee stability are used, such 
as reflection coefficients, log-area ratios, and the line spectral frequencies (LSF) described 
in Chapter 6. LSF are used most often, because it has been found empirically that they be­
have well when they are quantized and interpolated [2]. For 8 kHz, IO predictor coefficients 
are often used, which makes using a single codebook impractical because of the large di­
mension of the vector. Split-VQ [ 43] is a common choice, where the vectors are divided into 
several subvectors, and each is vector quantized. Matrix quantization can also be used to 
exploit the correlation of these subvectors across consecutive time frames. Transparent 
quality, defined as average spectral distortion below I dB with no frames above 4 dB, can be 
achieved with fewer than 25 bits per frame. 

A frame typically contains around 20 to 30 milliseconds, which at 8 kHz represents 
160-240 samples. Because of the large vector dimension, it is impractical to quantize a 
whole frame with a single codebook. To reduce the dimensionality, the frame is divided into 
four or more nonoverlapping sub-frames. The LSF coefficients for· each subframe are line­
arly interpolated between the two neighboring frames. 

The typical range of the pitch prediction for an 8-kHz sampling rate goes from 54 to 
400 Hz, from 20 to 147 samples, and from 2.5 ms to 18.375 ms, which can be encoded with 
7 bits. An additional bit is often used to encode fractional delays for the lower pitch periods. 
These fractional delays can be implemented through upsampling as described in Chaple~ 5· 
The subframe gain of the adaptive codebook can be effectively encoded with 3 or 4 bits. 
Alternatively, the gains of all sub-frames within a frame can be encoded through VQ, resull· 
ing in more efficient compression. 

The fixed codebook can be trained from data using the techniques described in Ch~P­
ter 4. This will offer the lowest distortion for the training set but doesn't guarantee low dis· 
~ortion for mismatched test signals. Also, it requires additional storage, and full search 
mcreases computation substantially. 

S. 1 t d from mce subframes should be approximately white, the codebook can be popu a e b 
samples of a white process. A way of reducing computation is to let those noise samples e 

l 1 Q . kf10WR on Y + , , or -1, because only additions are required. Codebooks of a specific type, · 
a [ b · h y concain s age raic codebooks [1]. offer even more computational savings because 1 e 
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...,,,ny Os. Locations for the 4 pulses per subframe under the G 729 t d ·d . ..... . s an a, are shown m 
Table 7.3. 

Full search can efficiently be done with this codebook structure Al b · d b . , . 
1 

..1 • • • • • • ge ra1c co e ooks 
c·m provide almost as ow u1sto1 tlon as tramed codebooks can w·ich 1 • , . , ow computat1onal 
complexity. 

Table 7.3 Algebraic codebooks for the G. 729 standard. Each of the fou od b k h· 'bl I · · d' r c c oo s as one 
pulse in one poss, e ocation m 1cated by 3 bits for the first three codebook . d 4 b' c 

Th 
· · · d. s an its 1or the 

last codebook. e sign 1s m 1cated by an additional bit A total of 17 b'it d d · s are nee e to en .. 
code a 40-sample subframe. 

Am1,litude Positions 
--

±l 0, 5, I 0, 15, 20. 25, JO, 35 

±I I, 6. 11. 16, 21, 26, 31, 36 

±I 2, 7, 12. 17, 22, 27. 32, 37 
-

±l 3, 8, 13, 18, 23, 28, 33, 38 

4, 9, 14, 19, 24, 29, 34, 39 

7.4.6. CELP Standards 

There are many standards for speech coding based on CELP, offering various points in the 
bit-rate/quality plane, mostly depending on when they were created and how refined the 
technology was at that time. 

Voice over Internet Protocol (Voice over IP) consists of transmission of voice through 
data networks such as the Internet. H.323 is an umbrella standard which references many 
other ITU-T recommendations. H.323 provides the system and component descriptions, call 
model descriptions, and call signaling procedures. For audio coding, G.711 is mandatory, 
while G.722, G.728, G.723.1, and G.729 are optional. G.728 is a low-delay CELP coder that 
offers toll quality at 16 kbps [9], using a feedback 50'h-order predictor, but no pitch predic­
tion. G.729 [46] offers toll quality at 8 kbps, with a delay of 10 ms. G.723.l, developed by 
DSP Group, including Audiocodes Ltd., France Telecom, and the University of Sherbrooke, 
has slightly lower quality at 5.3 and 6.3 kbps, but with a delay of 30 ms. These standards are 

shown in Table 7.4. 

Table 7.4 Several CELP standards used in the H.323 specification used for teleconferencing 
and voice streaming through the Internet. 

Standard Bit Rate MOS Algorithm H.323 Comments 

(kbps) 

G.728 16 4.0 No pitch prediction Optional Low-delay 

~G.729 8 3.9 ACELP Optional 

G.723.1 5.3,6.3 3.9 ACELP for 5.3k Optional 
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In 1982, the Conference of European Posts and Telegraphs (CEPT) formed a study 
group called the Groupe Special Mobile (GS~)_t? study and develop a pan-European public 
land mobile system. In 1989, GSM respons1b1hty was transferred to the European Tele­
communication Standards Institute (ETSI}, and t~e ph~se 1 GSM specifications were pub­
lished in 1990. Commercial service was started m mid 1991, and by I 993 there were 36 
GSM networks in 22 countries, with 25 additional countries considering or having alread 
selected GSM. This is not only a European standard; South Africa, Australia, and man~ 
Middle and Far East countries have chosen GSM. The acronym GSM now stands for 
Global System for Mobile telecommunications. The GSM group studied several voice cod­
ing algorithms on the basis of subjective speech quality and complexity (which is related to 
cost, processing delay, and power consumption once implemented) before arriving at !he 
choice of a Regular Pulse Excited-Linear Predictive Coder (RPE-LPC) with a Long Term 
Predictor loop [56]. Neither the original full-rate at 13 kbps [56] nor the half-rate at 5.6 
kbps [ 19] achieves toll quaJity, though the enhanced full-rate (EFR) standard based on 
ACELP [26] has toll quality at the same rates. 

The Telecommunicatio11 /11dustry Association (TIA) and the Electronic Industries Alli­
ance (EIA) are organizations accredited by the American National Sta11dards Institute 
(ANSI) to develop voluntary industry standards for a wide variety of telecommunication 
products. TR-45 is the working group within TIA devoted to mobile and personal communi­
cation systems. Time Division Multiple Access (TDMA) is a digital wireless technology that 
divides a narrow radio channel into framed time slots (typically 3 or 8) and aJlocates a slot to 
each user. The TDMA Interim Standard 54, or TIA/EIA/1S54, was released in early 1991 by 
both TIA and EIA. It is available in North America at both the 800-MHz and 1900-MHz 
bands. 1S54 [18] at 7.95 kbps is used in North America's TDMA (Time Division Multiple 
Access) digital telephony and has quality similar to the original full-rate GSM. TOMA IS-
136 is an update released in 1994. 

Table 7.5 CELP standards used in cellular telephony. 

Standard Bit Rate MOS Algorithm Cellular Comments 
(kbps) 

Full-rate GSM 13 3.6 VSELP GSM 
RTE-LTP 

EFRGSM 12.2 4.5 ACELP GSM 
IS-641 7.4 4.1 ACELP PCSl900 
IS-54 7.95 3.9 VSELP TOMA -

IS-96a max 8.5 3.9 QCELP CDMA Variable-rate 

. . Code Divi~io,~ Multiple Access (CDMA) is a form of spread spectrum, a family of 
digital commumca~io~ techniques that have been used in military applications for m~Y 
years. The core pnnc,ple is the use of noiselike carrier waves, and, as the name implies, 
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bandwidths much ~!der than that required for simple point-to-point communication at the 
same data ru_te. ?ngmall~ _there were two motivations: either to resist enemy efforts to jam 
the commumcauons (anti-Jam, or AJ) or to hide the fact that communication was even tak­
ing place, sometimes called low probability of intercept (LPI). The service started in · 1996 in 
the United States, and by the end of 1999 there were 50 million subscribers worldwide. IS-
96 QCELP (14], used in N~rth A?1erica's CDMA, offers variable-rate coding at 8.5, 4, 2, 
and 0.8 kbps. The _lower bit rate 1s transmitted when the coder detects background noise. 
TIA/EIAIIS-127-2 1s a standard for an enhanced variable-rate codec, whereas TIA/EIA/IS-
733-1 is a standard for high-rate. Standards for CDMA, TDMA, and GSM are shown in Ta­
ble 7.5. 

Third generation (30) is the generic term used for the next generation of mobile 
communications systems. 3G systems will provide enhanced services to those-such as 
voice, text, and data-predominantly available today. The Universal Mobile Telecommuni­
cations System (UMTS) is a part of ITU's International Mobile Telecommunications (IMT)-
2000 vision of a global family of third-generation mobile communications systems. It has 
been assigned to the frequency bands 1885-2025 and 2110-2200 MHz. The first networks 
are planned to launch in Japan in 2001, with European countries following in early 2002. A 
major part of 3G is General Packet Radio Service (GPRS), under which carriers charge by 
the packet rather than by the minute. The speech coding standard for CDMA2000, the um­
brella name for the third-generation standard in the United States, gained approval for its 
first phase in 2000. An adaptive multi-rate wideband speech codec has also been proposed 
for the GSM's 3G [I 6], which has five modes of operation from 24 kbps down to 9.1 kbps. 

While most of the work described above uses a sampling rate of 8 kHz, there has been 
growing interest in using CELP techniques for high bandwidth and particularly in a scalable 
way so that a basic layer contains the lower frequency and the higher layer either is a full­
band codec [33] or uses a parametric model (37]. 

7.5. Low-BIT RATE SPEECH CODERS 

In this section we describe a number of low-bit-rate speech coding techniques including the 
mixed-excitation LPC vocoder, harmonic coding, and waveform interpolation. These coding 

techniques are also used extensively in speech synthesis. 
Wavefonn-approximating coders are designed to minimize the difference ?etween the 

original signal and the coded signal. Therefore, they produce a reconstructed sig~al wh~se 
SNR goes to infinity as the bit rate increases, and they also behave well when the m~ut ; 1

;· 

nal is noisy or music. In this category we have the scalar wavefonn co~ers of Section · • 
the frequency-domain coders of Section 7 .3, and the CELP coders ?f. S~ctiothn 7d·~~ b 

d d t tt mpt to mm1m1ze e 111erence e-Low-bit-rate coders on the other ban , o no a e . 
tween the original signal ~nd the quantized signal. Since these coders are designed ~~ opera~e 
at low bit rates, their SNR does not generally approach_ infinity even iftha tl~ge c1etprtauteall1ys 

. . al · al with another one a 1s per 
use~. The objective is to com~ress the on~m sign de! these low-bit-rate coders often 
equivalent. Because of the rehance on an maccurate mo ' 
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ters are not quantized. In this case, the distonion 
I if the parame 

d. 1 rt the speech signa even . . . e Furthermore, these coders are more sensitive to 
is o h uant1zauon n01s . II . 

can consist of more l an q _ d h y do not perform as we on music. 
· · the signal an t e · · d 

the presence of noise m • MOS of waveform approx11nat111g co ers and low-bit-
In Figure 7.9 we compare. 

th
~ CELP uses a model of speech to obtain as much pre-

f - of the bit r.11e. d h · 
rate coders as a uncuon , . th model not to be exact, an t us 1s a wavefonn-

"bl et allows io1 e II 
diction as poss1 e, Y . b t coder that works reasonably we when the assump-

. . der CELP is a ro us . . . b 
approx1maong co · . 1 b ks either because of additive noise or ecause there is I n speech s1gna rea . 
tion of only a c ea h rs are working on the challenging problem of creating . . th background. Researc e . 
music m e f' best perfomiance at all bit rates. 
more scalable coders that o ier 

excellent 
---------7 

good 

Low-bit-rate coder 
fair 

poor 
2 4 8 16 32 64 

Bit rate (kbps) 

Figure 7.9 Typical subjective perfonnance of wavefonn-approximating and low-bit-rate c~­
ers as a function of the bit rate. Note that wavefonn-approximating coders are a better choice 
for bit rates higher than about 3 kbps, whereas parametric coders are a better choice for lower 
bit rates. The exact cutoff point depends on the specific algorithms compared. 

7.5.1. Mixed-Excitation LPC Vocoder 

The main weakness of the LPC vocoder is the binary decision between voiced and unvoiced 
speech, which results in errors especially for noisy speech and voiced fricatives. By having a 
separate voicing decision for each of a number of frequency bands, the performance c~ be 
enhanced significantly [38]. The new proposed U.S. Federal Standard at 2.4 kbps is a Mixed 
Ex~itation Linear Prediction (MELP) LPC vocoder [39), which has a MOS of about 3.3. 
This exceeds the quality of the older 4800-bps Federal Standard 1016 [8] based on CELP. 
!~e bit rate ~f. the proposed standard can be reduced while maintaining the same quality by 
Joi~tly qua~tizmg several frames together [57]. A hybrid codec that uses MELP in 5u-o~gly 
vmced ~egmns and CELP in weakly voiced and unvoiced regions [53) has shown t~ yield 
low~r bit rates. MELP can also be combined with the waveform interpolation technique of 
Secuon 7.5.3 [50). 
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7.5.2. Harmonic Coding 

Sinusoidal co~ing decomposes the speech signal [35] or the LP residual signal [48J into a 
sum of sinusoids. The c?se where these sinusoids are harmonically related is of special in­
terest for speech synthesis (see Chapter 16), so we will concentrate on it in this section. even 
though a similar Lreatment can be followed for the case where the sinusoids are not hannoni­
cally related. In fact, a combination of harmonically related and nonharmonically related 
sinusoids can also be used [17]. We show in Section 7.5.2.2 that we don' t need to transmit 
the phase of the sinusoids, only the magnitude. 

As shown in Chapter 5, a periodic signal s[n] with period Ta can be expressed as a 
sum of 7;, harmonic sinusoids 

r0 -1 

s[n]= °LA,cos(n/ro0 +4>,) (7.61) 
/aO 

whose frequencies are multiples of the fundamental frequency ro0 ;;;;; 2n / fu, and where A, 
and 4>, are the sinusoid amplitudes and phases, respectively. If the pitch period Ta has frac­
tional samples, the sum in Eq. (7.61) includes only the integer part of To in the summation. 
Since a real signal s[n] will not be perfectly periodic in general, we have a modeling error 

e[n];;;;; s[n]- s[n] (7.62) 

We can use short-term analysis to estimate these parameters from the input signal s[n] 
at frame k, in the neighborhood of t ;;;;; kN, where N is the frame shift: 

s.[n];;;;; s[n]w.[n] = s[n]w[kN -n] (7.63) 

if we make the assumption that the sinusoid parameters for frame k (co~. A,1 and 4>:) are 

constant within the frame. 
At resynthesis time, there will be discontinuities at unit boundaries, due to the block 

processing, unless we specifically smooth the parameters over time. One way of doing this 
is with overlap-add method between frames (k - I) and k: 

s[n] = l-l{n]s._
1 

[n]+l-l{n - N]s.[n-NJ, 0 -5,; n < N (7.64) 

where the window w[n] must be such that 

l-l{n]+ l-l{n-N] = 1, 0 Sn< N (7.65) 

to achieve perfect reconstruction. This is the case for the common Hamming and Hanning 

windows. 
This harmonic model [35] is similar to the classic filterbank, though rather than the 

whole spectrum we transmit only the fundamental frequency ro0 and th~ amplitudes 11 and 
phases 4> 

1 
of the harmonics. This reduced representation doesn ' t result m _loss of quahty. for 

a frame shift N that corresponds to 12 ms or less. For unvoiced speech, using a default pitch 

of l 00 Hz results in acceptable quality. 
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7.5.2.1. Parameter Estimation 

Speech Cod' tng 

For simplicity in the calculations, let's define s[n] as a sum of complex exponentials 

To-I 

s[n] =LA, exp{j(n/0,0 + cp,)} 
l=O 

and perfonn short-time Fourier transform with a window w[nJ 

r0 -1 

Srv(w) = L A,e;~'W(w-lw0 ) 

l=O 

(7.66) 

(7.67) 

where W(co) is the Fourier transfonn of the window function. The goal is to estimate th 
sinusoid parameters as those that minimize the squared error: e 

as 

(7.68) 

If the main lobes of the analysis window do not overlap, we can estimate the phases 9, 

cf, 1 = argS(/w0 ) (7.69) 

and the amplitudes A1 as 

A _ 1suwo)I 
I - W(O) 

(7.70) 

For example, the Fourier transform of a (2N + 1) point rectangular window centered 
around the origin is given by · 

sin((2N + l)w /2) 
W(w)=--'------

sin(w/2) 
(7.71) 

whose main lobes will not overlap in Eq. (7 .67) if 21'o < 2N + 1: i.e., the window contains ~r 
least two pitch periods. The implicit assumption in the estimates of Eqs. ('..6~) and (7.7o~ 
that there is no spectral leakage, but a rectangular window does have s1gmficant s~ec 
leakage, so a different window is often used in practice. Fo: wir.co·.vs such as Hanrung or 
Hamming, which reduce the leakage significantly, it has been found experimen~ly [hat 
these estimates are acceptable if the window contains at least two and a half pitch penot\ ro 

Typically, the window is centered around O (nonzero in the interval -N ~ n ~ 
avoid numerical errors in estimating the phases. raJ 

Another implicit assumption in Eqs. (7.69) and (7.70) is that we know th~ fund~:nthe 
frequen~y w0_ ~he~d of time. Since, in practice, this is not the case, we can e5u?1ate;~ubJing 
one which m1mm1zes Eq. (7 .68). This pitch-estimation method can generate pitch th sig· 
or tripling when a hannonic falls within a formant that accounts for the majority of e 
nal' s energy. · 
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Voiced/unvoiced decisions can be computed from the ratio b t h 
. al and that of the reconstruction error e ween t e energy of the 

sign 
V 

I 1srn1f 
,,:r.- ,\ ' 

SNR=-,.~-'----
Lls[11]-s[n]/2 (7.72) 

n:.-N 

where it has been empirically foun~ that frames with SNR_ higher than 13 dB are generally 
voiced and lower than 4 dB unvoiced. In between, the signal is considered to t . 

S · h · ~ con am a 
mixed excitation. mce speec 1s not per,ectly stationary within the analysis frame 

· · I ·11 · Id f' · S ' even noise-free periodic s1gna s w1 y1e mite NR. 
For unvoiced speech, a good assumption is to default to a pitch of too Hz. The use of 

fewer sinusoids leads to perceptual artifacts. 
Improved quality can ~e a~hie:ed by using an analysis-by-synthesis framework (17, 

34] since the closed-loop est1mat1on 1s more robust to pitch-estimation and voicing decision 
errors. 

7.5.2.2. Phase Modeling 

An impulse train e[n], a periodic excitation, can be expressed as a sum of complex exponen­
tials 

_ r
0

- 1 

e[n]= To l8fn-no -kfo] = I,ej(n-no)O>ol (7.73) 
k=- l=O 

which, if passed through a filter H(w) = A(w)exp<l>(w), will generate 

r.-, 
s[n] = L A(/w0 )expU[(n-n0 )wof + <l>(/w0 )]} (7.74) 

l =O 

Comparing Eq. (7.66) with (7.74), the phases of our sinusoidal model are given by 

~,=-now of+ <l>(lwo) (7.75) 

Since the sinusoidal · mode1 · has too many parameters to lead to l~w-rare co~ing, a 
common technique is to not encode the phases. In Chapter 6 we show that if a system is con­
si_dered minimum phase, the phases can be uniquely recovered from knowledge of the mag-
nitude spectrum. . . 

Th · · · h h ics and the remammg values e magmtude spectrum 1s known at the pttc armon_ , . . . 
can be filled in by interpolation: e.g., linear or cubic splines [36J. This mterpolared magm-
rude spectrum can be approximated through the real cepstrum: 

- K 
IA(w)I= c0 + 2 ~:Ck cos(kw) 

(7.76) 

k=I 
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and the phase, assuming a minimum phase system, is given by 
K 

<J>(ro)=-·21',c* sin(k(u) 
k=I 

Speech Co<1· Ing 

(7,77) 

The phase ¢0 (t) of the first harmonic between frames (k - I) and k can be . 
from the instantaneous frequency cv

0
(t) obtained 

</J0 (t) = </)o((k- l)N) + [H>N <00 (t)dt 
(7.78) 

if we assume the frequency <00 (/) in that region to vary linearly between frames (k- l 
k: )~d 

w* -w•-1 

Wo(t) = w~-1 + o o t 
N 

and insert Eq. (7.79) into (7.78), evaluating at t = kN, to obtain 

¢~ = </J 0 (kN) = </>0 ((k - l)N) + (w~-i + w~ )(N / 2) 

(7.79) 

(7.80) 

the phase of the sinusoid at ro 0 as a function of the fundamental frequencies at frames (k­
l), k and the phase at frame (k - 1 ): 

<1>: = <1>* (/m0 ) + /¢~ (7.81) 

The phases computed by Eqs. (7.80) and (7.81) are a good approximation in practice 
for perfectly voiced sounds. For unvoiced sounds, random phases are needed, or else I.he 
reconstructed speech sounds buzzy. Voiced fricatives and many voiced sounds have an !b-pi­
ration component, so that a mixed excitation is needed to represent them. In these cases, I.he 
source is split into different frequency bands and each band is classified as either voiced or 

. unvoiced. Sinusoids in voiced bands use the phases described above, whereas sinusoids in 
unvoiced bands have random phases. 

7.5.2.3. Parameter Quantization 

To quantize the sinusoid amplitudes, we can use an LPC fitting and then quantize the line 
spectral frequencies. Also we can do a cepstral fit and quantize the cepstral coefficients. To 
be more effective, a mel scale should be used. . . 

While these approaches help in reducing the number of parameters and in gua~UZJdng 
. · d amphlU es. those parameters, they are not the most effective way of quantizing the smusoi . d 

A technique called Variable-Dimension Vector Quantization (VDVQ) [12] has been dtselh 
to address this. Each codebook vector c, has a fixed dimension N determined by ~e en~e 
of the FFT used. The vector of sinusoid amplitudes A has a dimension / that deJX:n son be· 

the distance number of hannonics and thus the pitch of the current frame. To compute . puied 
tween A and c,, the codebook vectors are resampled to a size J and the diSranc: is fcom used. 

1. des is o ten between two vectors of dimension l. Euclidean distance of the log-amp itu 
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In this meihod, only the distance at the harmonics is evaluated instead of the distance at the 
. ·n the envelope that are not actually present in the signal Also this techn,·q d 

01nts 1 • . . . : , ue oes 
~ot suffer from rnaccuracres of the model used, such as the mabihty of linear predictive cod-
. 10 model nasals. 1ng 

7.5.3, Waveform Interpolation 

The main idea behind ~aveform interpo_lation .<WI) (29] is that the pitch pulse changes 
slowly over time for voiced speech. Durmg voiced segments. the speech signal is nearly 
eriodic. WI coders can operate as low as 2.4 kbps. 

p Starting at an arbitrary time instant, it is easy to identify a first pitch cycle x,[n], a sec­
ond x.[n], a third x1[11], and so on. We then express our signal x[n] as a function of these 
pitch ~ycle waveforms x.,[nJ 

.. 
x[11] ::a ~:X.,[11 -t,J (7.82) -=~ 

where P., = r., - t.,_, is the pitch period at time t,,, in samples, and the pitch cycle is a win­
dowed version of the input 

x,.[n] = w,.[n]x[n] (7.83) 

for example, with a rectangular window. To transmit the signal in a lossless fashion we need 
10 transmit all pitch waveforms x,Jn]. 

If the signal is perfectly periodic, we need to transmit only one pitch waveform x,Jn] 
and the pitch period P. In practice, voiced signals are not perfectly periodic, so that we need 
10 transmit more than just one pitch waveform. On the other hand, voiced speech is nearly 
periodic, and consecutive pitch waveforms are very similar. Thus, we probably do not need 
to transmit all, and we could send every other pitch waveform, for example. 

It is convenient to define a two-dimensional surface u[n,/] (shown in Figure 7.10) such 
!hat the pitch waveform x,,,[n] can be obtained as 

x.[n] = u[n,t,,.] (7.84) 

~o that u[n,/J fs defined for / = t,,,, with the remaining points having been computed through 
1~terpolation. A frequency representation of the pitch cycle can also be used instead of the 
lime pitch cycle . 

. !his surf ace can then be sampled at regular time intervals / = sT. It has been shown 
~mpmca!ly that transmitting the pitch waveform x,[n] about 40 times per seco~d (a 25~ms 
nterva1 ts equivalent to T = 200 samples for an F = 8000 Hz sampling rate) IS sufficient 

for v · ·' - b t d b oiced speech. The so-called slowly evolving waveform (SEW) u[n,I] can e genera e 
y low-pass filtering u[n,/] along the /-~xis: 

_L/1[sT-tnr]u[n,t,,,] 
x,[n] = u[n,sT] == ., (7 .85) 

L/i[sT- tm] .. 
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where h[n] is a low-pass filter and x,[n] is a sampled version of u[n,l]. 

The decoder has to reconstruct each pitch waveform x,,,[11] from the SEW 
terpolation between adjacent pitch waveforms, and thus the name ivave.'fiomz . x,[n] by in. 

mterpa/ur 
(WI) coding: ron 

L,h[t,., -sT]x.,. [n] 

xn,[11]= 1,[n,t,,,] =-·' =----­
L,h[tm -sT] (7.86) 

If the sampling period is larger than the local pitch period ( T> P,.), perfect reconstruc 
tion will not be possible, and there will be some error in the approximation · 

or alternatively in the two-dimensional representation 

u[n,l] = u[n,I] + u[n,I] 

where x.,[n] and u[n,I] represent the rapidly evolving wavefonns (REW). 

(7.87) 

(7.88) 

Since this technique can also be applied to unvoiced speech, where the concept of 
pitch waveform doesn't make sense, the more general term characteristic waveform is used 
instead. For unvoiced speech, an arbitrary period of around J 00 Hz can be used. 

For voiced speech, we expect the rapidly varying waveform u[n,/] in Eq. (7.88) to 

have much Jess energy than the slowly evolving waveform u[n,l] . For unvoiced speech the 
converse is true: u[n,/] has more energy than u[n,I] . For voiced fricatives, both components 
may be comparable and thus we want to transmit both. 

In Eqs. (7 .85) and (7 .86) we need to average characteristic waveforms that have, in 
general, different lengths. To handle this, all characteristic waveforms are typically normal­
ized in length prior to the averaging operation. This length normalization is done by padding 
with zeros x.,[n] to a certain length M, or truncating x.,[n] if P,. > M . Another possible nor­
malization is done via linear resampling. This decomposition is shown in Figure 7.10. 

Another representation uses the Fourier transform of x.,[ n] . This case is related to !he 
hannonic model of Section 7 .5.2. In the harmonic model, a relatively long window is needed 
to average the several pitch waveforms within the window, whereas this wavefonn interpo­
lation method has higher time resolution. In constructing the characteristic waveforms we 
have implicitly used a rectangular window of length one pitch period, but other wiod0ws c~ 

. . fr cy-<loroa1n 
be used, such as a Hanning window that covers two pitch penods. Th.is equen ·es 
representation offers advantages in coding both the SEW and the REW, becau_se propedrune 

· · soften ° of the human auditory system can help reduce the bit rate. This decompos1t:1on 1 

on the LPC residua] signal. ugh 
In particular, the REW u[n,l] has the characteristics for noise, and as such ~nl~ al!~ner· 

d · · · d m noise 1s escnpnon of 1ts power spectral density is needed. At the decoder, ran ° --ed to 
ated with the transmitted power spectrum. The spectrum of u[n,l] can be vectorquanuz 
as few as eight shapes with little or no degradation. 
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Figure 7 .10 LP residual signal and its associated characteristic waveform (CW) u(t .~) . In the 
~ axis we have a normalized pitch pulse at every given time t. Decomposition of the surface 
into a slowly evolving wavefonn (SEW) and a rapidly evolving wavefonn (REW). (After 

Kleijn and Haagen [30), reprinted by pennission of IEEE). 
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Characteristic 
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extraction 

residual 

Pitch 
tracking 

LPC filtering 

LSF quantization 

Quantization 

Lowpass Quantization 

Highpass Quantization 

Quantization 

t------------------. 
LSF 

Figure 7.11 Block diagram of the WI encoder. 

The SEW u[n,IJ is more important perceptually, and for high quality the whole shape 
needs to be transmitted. Higher accuracy is desired at lower frequencies so that a perceptual 
frequency scale (mel or Bark) is often used. Since the magnitude of u[n,/] is perceptually 
more important than the phase, for low bit rates the phase of the SEW is not transmitted. The 
magnitude spectrum can be quantized with the VDVQ described in Section 7.5.2.3. 

To obtain the characteristic wavefonns, the pitch needs to be computed. We can find 
the pitch period such that the energy of the REW is minimized. To do this we use the ap­
proaches described in Chapter 6. Figure 7 .11 shows a block diagram of the encoder and Fig­
ure 7.12 of the decoder. 

Parameter estimation using an analysis-by-synthesis framework [21] can yield better 
results than the open-loop estimation described above. 

REW 
Random phase 

SEW Pitch pulse LPC filtering 

pitch 

gain 

LSF 

Figure 7.12 Block diagram of the WI decoder. 
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7.6. HISTORICAL PERSPECTIVE AND FURTHER READING 

This chapter is only an introduction to speech and audio coding technologies. The reader is 
referred to [27 • 32, 41 , 521 for coverage in greater depth. A good source of the history of 
speech coding can be found in [20]. 

In 1939, _Homer Dudl~y of AT&T ~ell Labs first proposed the channel vocoder [ 15]. 
the first analys1s-by-synthes1s system. This vocoder analyzed slowly varying parameters for 
both the excita~ion and. the spe~tral envel~pe. Dudley thought of the advantages of band­
width compression and mformauon encryption long before the advent of digital communica­
tions. 

PCM was first conceived in 1937 by Alex Reeves at the Paris Laboratories of AT&T 
and it started to be deployed in the United States Public Switched Telephone Network i~ 
1962. The digital compact disc, invented in the late 1960s by James T. Russell and intro­
duced commercially in 1984, also uses PCM as coding standard. The use of µ-law encoding 
was proposed by Smith [51 J in 1957, but it wasn't standardized for telephone networks 
(G.711) until 1972. In 1952, Schouten et al. [47) proposed delta modulation and Cutler [I I) 
invented differential PCM. ADPCM was developed by Barnwell [6] in 1974. 

Speech coding underwent a fundamental change with the development of linear pre­
dictive coding in the early 1970s. Atal [3) proposed the LPC vocoder in 1971, and then 
CELP [5] in 1984. The majority of coding standards for speech signals today use a variation 
on CELP. 

Sinusoidal coding [35] and waveform interpolation [29] were developed in 1986 and 
1991, respectively, for low-bit-rate telephone speech. Transform coders such as MP3 [23], 
MPEG II, and Perceptual Audio Coder (PAC) [28] have been used primarily in audio coding 
for high-fidelity applications. 

Recently, researchers have been improving the technology for cellular communica­
tions by trading off source coding and channel coding. For poor channels more bits are allo­
cated to channel coding and fewer to source coding to reduce dropped calls. Scalable coders 
that have different layers with increased level of precision, or bandwidth, are also of great 
interest. 
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