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In this section we introduce the cepstrum as one homomorphic transformation [32]
that allows us to separate the source from the filter. We show that we can find a value N
such that the cepstrum of the filter A[n]=0 for n2 N, and that the cepstrum of the excita-
tion &n)=0 for n<N. With this assumption, we can approximately recover both e{n] and

h[n) from %[n] by homomorphic filtering. In Figure 6.24, we show how to recover h[n)
with a homomorphic filter:

1 |n|<N
I[n]= 0 |2 (6.102)

where D is the cepstrum operator.
The excitation signal can be similarly recovered with a homomorphic filter given by

1 lanN
I = o <N (6.103)

};[n]

sin] xin i{n - H{n)
X *l D[] ———bﬁ‘)——* D't] —»
w{n] I

Figure 6.24 Homomorphic filtering to recover the filter’s response from a periodic signal. We
have used the homomorphic filter of Eq. (6.102).

6.4.1.  The Real and Complex Cepstrum

The real cepstrum of a digital signal x[n] is defined as
dn)==[" In| X(e®)| e*"do (6.104)
2 7
and the complex cepstrum of x{n] is defined as
in]= —I—r InX(”) e"dw (6.105)
2 7"

where the complex logarithm is used:

R(e™)=InX(e®)=In| X(&?)| +/0(®) (6.106)
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and the phase 8(w) is given by

_ o
8(w) = arg[ X (") ] (6.107)

You can see from Eqs. (6.104) and (6.105) that both the real and the ¢o
strum satisfy Eq. (6.101) and thus they are homomorphic transformations.

If the signal x[n] is real, both the real cepstrum ¢[x] and the complex cepstrum in
are also real signals. Therefore the term complex cepstrum doesn’t mean that it is a ¢

mplex cep-

0
signal but rather that the complex logarithm is taken. mplex
It can easily be shown that c[n] is the even part of #[n]:
x[n]+ x[—n]
cn]= %— (6.108)

From here on, when we refer to cepstrum without qualifiers, we are referring to the
real cepstrum, since it is the most widely used in speech technology.

The cepstrum was invented by Bogert et al. [6], and its term was coined by reversing
the first syllable of the word spectrum, given that it is obtained by taking the inverse Fourier
transform of the log-spectrum. Similarly, they defined the term quefrency to represent the
independent variable n in c[r]. The quefrency has dimension of time.

6.4.2. Cepstrum of Pole-Zero Filters

A very general type of filters are those with rational transfer functions

M, M,
A [1-az)]d-u,z
H(z)= H * H( i) {6.109)

N,

[1a-82)[]0-v2)

k=l

-l
with the magnitudes of a,, b, u,, and v, all less than 1. Therefore, (1-a,2 ) ang
(1-b,z™") represent the zeros and poles inside the unit circle, whereas (1-u2) ?:w
(l._ ,Vtz) represent the zeros and poles outside the unit circle, and 2" isa shift from the U
origin. Thus, the complex logarithm is

H(z)=\n[4]+In[z"]+ iln(l—akz"

k=l (6.1 10)
iln =577+ & <
- ( -bz )+‘2‘lln(1—ukz)—k2=lln(l—vkz)
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where the term In[z"] contributes to the imaginary part of the complex cepstrum only with a
term jor. Since it just carries information about the time origin, it's typically ignored. We
use the Taylor series expansion .

— X
In(1-x) ==, — 6.111)

n=l n
in Eq. (6.110) and take inverse z-transforms to obtain
log[ 4] n=0

M, _a

: b sl
Hnj={Y -2+ n>0 (6.112)

If the filter’s impulse response doesn't have zeros or poles outside the unit circle, the
so-called minimum phase signals, then A[n] =0 for n<0. Maximum phase signals are those
with h[n]=0 for n>0. If a signal is minimum phase, its complex cepstrum can be
uniquely determined from its real cepstrum:

0 n<0
h[n)=< c[n] n=0 (6.113)
2c[n] n>0

It is easy to see from Eq. (6.112) that both the real and complex cepstrum are decaying
sequences, which is the reason why, typically, a finite number of coefficients are sufficient
to approximate it, and, therefore, people refer to the truncated cepstrum signal as a cepstrum
vector.

642.1. LPC-Cepstrum

The case when the rational transfer function in Eq. (6.109) has been obtained with an LPC
analysis is particularly interesting, since LPC analysis is such a widely used method. While
Eq. (6.112) applies here, too, it is useful to find a recursion which doesn’t require us to com-
pute the roots of the predictor polynomial. Given the LPC filter

. (6.114)
1-Y a,z*
k=l
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we take the logarithm

- - = S rk
A(z)=InG- ln(l—ia,z }‘ X hlklz (6.115)

1=l k=—e

and the derivative of both sides with respect to z

—-2 na,z™"" e .
b ==Y kh[k}z™ (6.116)

=) k=

Multiplying both sides by —z(l— a7 }, we obtain
(=

ﬁ:nanz”' . i nl;[n]z"’ —2 5; k};[k]a,z"‘" (6.117)

n=l 1=l k=—oo

which, after replacing { =n-k, and equating terms in 277, results in

-~ "—l ~
na, = nhin]- Y khkla,, 0<n<p
k=l (6.118)

n-1

0 = nh{n}~ Z khkla,, n>p

k=n-p

so that the complex cepstrum can be obtained from the LPC coefficients by the following
recursion:

0 n<0
InG n=0
y n-t “
KHej=1a,+ Z(é]h[k]a,,_k O0<n<p ©119)
k=l \" J
n=1 AW

where the value for n=0 can be obtsined from Egs. (6.115) and (611D We 227 s

}vhile' there are a finite number of LPC coefficients, the number of cepstrum coefficier’ y
uTﬁm.te. Speech recognition researchers have shown ’empirically that a finite number %s SHitE
cient: 12-20 depending on the sampling rate and whether or not frequency Warping Lids
In Chapter 8 we discuss the use of the cepstrum in speech recognition.
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This recursion should not be used in the reverse mode to compute the LPC coefficients
from any set of cepstrum coefficients, because the recursion in Eq. (6.119) assumes an all-
pole model with all poles inside the unit circle, and that might not be the case for an arbi-
trary cepstrum sequence, so that the recursion might yield a set of unstable LPC coefficients.
In some experiments it has been shown that quantized LPC-cepstrum can yield unstable
LPC coefficients over 5% of the time.

6.4.3.  Cepstrum of Periodic Signals

It is important to see what the cepstrum of periodic signals looks like. To do so, let’s con-
sider the following signal:

sn]= Y, 0, 8n—kN] (6.120)

k=0

which can be viewed as an impulse train of period N multiplied by an analysis window, so
that only M impulses remain. Its z-transform is

M-l

X(2)=Y oz (6.121)
k=0

which is a polynomial in z™" rather than z™'. Therefore, X(z) can be expressed as a prod-
uct of factors of the form (1—a,z™**) and (1-u,z™). Following the derivation in Section
6.4.2, it is clear that its complex cepstrum is nonzero only at integer multiples of N:

in)=Y B,8[n—kN] (6.122)
k=—ca
A particularly interesting case is when &, =a* with 0<a <1, so that Eq. (6.121)
can be expressed as

-N\M
X@)=l+az¥ ++(@z¥)"" = _l_;_(g‘_xz?v)‘_ (6.123)

so that taking the logarithm of Eq. (6.123) and expanding it in Taylor series using Eq.
(6.111) results in

& - » wo M " o o
@)=l X(z)= Y Zr - 3™ = D e (6124
r

r=l 1= n=l
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which lets us compute the complex cepstrum as

Xn]= Z 6[n— —-rN]- z_—a[" —~IMN] (6']25)

= T

An infinite impulse train can be obtained by making & — 1 and M — i Eq. (6125

z"’:&[n—rN]

r

in]= 6.126)

rel

We see from Eq. (6.126) that the cepstrum of an impulse train goes to 0 as n incregses
This justifies our assumption of homomorphic filtering. '

6.44.  Cepstrum of Speech Signals

We can compute the cepstrum of a speech segment by windowing the signal with a window
of length N. In practice, the cepstrum is not computed through Eq. (6.112), since root-
finding algorithms are slow and offer numerical imprecision for the large values of N used,

Instead, we can compute the cepstrum directly through its definition of Eq. (6.105), using
the DFT as follows:

N-l

X [k)= Zo x[nle ¥ . 0<k<N (6.121)
XK=l X,[k], 0<k<N (6.128)
,ln] =%Z 113 L PP (612
g:‘g;scnpt a@ means that the new complex cepstrum x,[»] is an aliased version of i1l
AR i X[n+rN] (6.130)

r==co

which can be deriv
edb s
of time angd frequency, y using the sampling theorem of Chapter 5, by reversing the concep

This aliasin
8 intro
large value for . duces errors in the estimation that can be reduced by choosifg ?
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Computakan o the complex cepstrum requires computing the complex logarithm and,
in tum, the phase. However, given the principal value of the phase 6,[k], there are infinite
possible values for O[k] : »

6[k)=86,[k]+2nn, (6.131)

From Chapter 5 we know that if x[n] is real, arg[X (e"")] is an odd function and also con-
tinuous. Thus we can do phase unwrapping by choosing n, to guarantee that 8[k] is a
smooth function, i.e., by forcing the difference between adjacent values to be small:

o1k -61k ~1]| <7 (6.132)

A linear phase term 7 as in Eq. (6.110), would contribute to the phase difference in Eq.
(6.132) with 27r/ N, which may result in errors in the phase unwrapping if 6[k] is chang-
ing sufficiently rapidly. In addition, there could be large changes in the phase difference if
X, [k] is noisy. To guarantee that we can track small phase differences, a value of N several
times larger than the window size is required: i.e., the input signal has to be zero-padded
prior to the FFT computation. Finally, the delay r in Eq. (6.109), can be obtained by forcing
the phase to be an odd function, so that:

8[N/2)=nr (6.133)

For unvoiced speech, the unwrapped phase is random, and therefore only the real cep-
stram has meaning. In practical situations, even voiced speech has some frequencies at
which noise dominates (typically very low and high frequencies), which results in phase
6[k] that changes drastically from frame to frame. Because of this, the complex cepstrum in
Eq. (6.105) is rarely used for real speech signals. Instead, the real cepstrum is used much
more often:

C.[k)=In|X,[k), O0<k<N (6.134)

1 N-l
c,[n]==Y C,[kle>™™*¥, 0<n<N (6.135)
= 2Calk]

Similarly, it can be shown that for the new real cepstrum c,[#] is an aliased version of
c[n] given by

Caln]= i c[n+rN] {6.1.36)

r=—o

which again has aliasing that can be reduced by choosing a large value for N.
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6.4.5. Source-Filter Separation via the Cepstrum

We have seen that, if the filter is a rational transfer function, and the source is impy]
train, the homomorphic filtering of Figure 6.24 can approximately separate them. Because:;
problems in estimating the phase in speech signals (see Section 6.4.4), we generally o,
pute the real cepstrum using Egs. (6.127), (6..1.34), and (6.13'5), and then compute the com.
plex cepstrum under the assumption of a minimum phase signal according to Eq, (6.113)
The result of separating source and filter using this cepstral deconvolution is shown iy Fig.
ure 6.25 for voiced speech and Figure 6.26 for unvoiced speech.

The real cepstrum of white noise x{n] with an expected magnitude specinyy
| X(e’®)|=1 is 0. If colored noise is present, the cepstrum of the observed colored nojge
${n] is identical to the cepstrum of the coloring filter A[»], except for a gain factor, The
above is correct if we take an infinite number of noise samples, but in practice, this cannqt
be done and a limited number have to be used, so that this is only an approximation, though
it is often used in speech processing algorithms.

@ 2 (®) 5

OW\ @8 o

2 S
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() 2 , d 5

OW o8 o/\/\/\/\’~
2 5 :
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05 _ - )
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time
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Figure 6.25 Separation of source and filter using homomorphic filtering for voiced speech

with the scheme of Figure 6.24 with N = 20 in the homomorphic filter of Eq. (6.102) with the

real cepstrum: (a) windowed signal, (b) log-spectrum, (c) filter’s impulse response,
smoothed log-spectrum, (e) windowed excitation signal, (f) log-spectrum of high-part of e

erum Note that the windowed excitation is not a windowed impulse train because Sl
minimum phase assumption.
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Figure 6.26 Separation of source and filter using homomorphic filtering for unvoiced speech
with the scheme of Figure 6.24 with N = 20 in the homomorphic filter of Eq. (6.102) with the
real cepstrum: (a) windowed signal, (b) log-spectrum, (c) filter’s impulse response, (d)
smoothed log-spectrum.

6.5. PERCEPTUALLY MOTIVATED REPRESENTATIONS

In this section we describe some aspects of human perception, and methods motivated by the
behavior of the human auditory system: bilinearly transformed cepstrum, Mel-Frequency
Cepstrum Coefficients (MFCC), and Perceptual Linear Prediction (PLP). These methods
have been successfully used in speech recognition.

6.5.1. The Bilinear Transform

The transformation
-1
gl (6.137)
l1-az™

for 0<a <1 belongs to the class of bilinear transforms. It is a m‘app.ing in .the complex
plane that maps the unit circle onto itself. The frequency transformation is obtained by mak-
ing the substitution z =¢’® and s =e/*:

Q = 0+ 2arotan| 25D _ (6.138)
1-acos(®)
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This transformation is very similar to the B_ark and mel scale for an appropriate cho;,
of the parameter & (see Chapter 2). Oppenheim .[31] showed ‘that the advantage of Ihiz
transformation is that it can be used to transform a time sec.luer}ce in the linear fquency int
another time sequence in the warped frequency, as shown in Figure 6.27. This bilinea “anso
form has been successfully applied to cepstral and autocorrelation coefficients. ]

c[-n] ]

R S a-ahz" |- .
1—cz™ l 1-ez™ l 1-oz™
n=0 ( n=0 ( n=0 ( n<ii (

w[0] w{/] w(2] w(3)

Figure 6.27 Implementation of the frequency-warped cepstral coefficients as a function of the
linear-frequency cepstrum coefficients. Both sets of coefficients are causal. The input is the
time-reversed cepstrum sequence, and the output can be obtained by sampling the outputs of
the filters at time n = 0. The filters used for w{m] m > 2 are the same. Note that, for a finite-
length cepstrum, an infinite-length warped cepstrum results.

For a finite number of cepstral coefficients the bilinear transform in Figure 6.27 results
in an infinite number of warped cepstral coefficients. Since truncation is usually done in
practice, the bilinear transform is equivalent to a matrix multiplication, where the matrix isa
function of the warping parameter ¢ . Shikano [43] showed these warped cepstral coeffi-
cients were beneficial for speech recognition.

6.5.2. Mel-Frequency Cepstrum

The Mel-Frequency Cepstrum Coefficients (MFCC) is a representation defined as the red
cepstrum of a windowed short-time signal derived from the FFT of that signal. The diffr
ence from the real cepstrum is that a nonlinear frequency scale is used, which approximales
the behavior of the auditory system. Davis and Mermelstein [8] showed the MFCC represét”
tation to be beneficial for speech recognition.

Given the DFT of the input signal

N-l

AR S PY PPy I

n=

;ve define a filterbank with M filters ( m = 1,2,--,M ), where filter m is triangular filter 6"
y: '
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2(k- flm-1])

k=1
H,[k] 2(fim+11-k)

7

0 k< flm-1]

(flm+ 1= fim=0)(fiml= fm-1y) "~k SOm]

(6.140)

Uim+ 0= 7im=1)(fim+1]—fpmy) 7 VISESSIn+1]
0 k> flm+1]

Such filters compute the average spectrum around each center frequency with increasing

bandwidths, and they are displayed in Figure 6.28.
Alternatively, the filters can be chosen as

" k< fim-1j
(k- fIm-11)
H'[k]—<(_fm—_f—[_m:]5 flm=11<k< f[m]
m - M f[m]<k<f[m+1]
(fTm+1]- fIm}) <k<
’ k> flm+1]

(6.141)

M
which satisfies ZH ..[k]=1. The mel-cepstrum computed with H,_[k] or H.[k] will dif-

m=}

fer by a constant vector for all inputs, so the choice becomes unimportant when used in a

speech recognition system that has been trained with the same filters.

Let’s define f, and f, to be the lowest and highest frequencies of the filterbank in
Hz, F, the sampling frequency in Hz, M the number of filters, and N the size of the FFT. The

boundary points f{m] are uniformly spaced in the mel-scale:

(N ) B(fh)—B(f,))
flm)= R]B (B(f,)+m———M+1

where the mel-scale B is given by Eq. (2.6), and B is its inverse
B™'(b) =700(exp(b/1125)—1)

We then compute the log-energy at the output of each filter as

S[m]—“-hl':ﬁ[/\’a[k]rl{m[k]}, 0<ms<M

(6.142)

(6.143)

(6.144)
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H\[k] H,[k] Hi[k] H k] Hik}  Hk]

flo] i1} A2l fi3] A4 AS1 A6 A7
Figure 6.28 Triangular filters used in the computation of the mel-cepstrum using Eq, (6.14p),

The mel-frequency cepstrum is then the discrete cosine transform of the M filter ou.
puts:

M~
c[n)= Y S[m]cos(mn(m-1/2)/M)  0<n<M (6.145)
m=0

where M varies for different implementations from 24 to 40. For speech recognition, typi-
cally only the first 13 cepstrum coefficients are used. It is important to note that the MFCC
representation is no longer a homomorphic transformation. It would be if the order of sum-
mation and logarithms in Eq. (6.144) were reversed:

S[m)= Niln(lX,[k][z Hm[k]) O<m<M (6.146)

In practice, however, the MECC representation is approximately homomorphic for fi
ters that have a smooth transfer function. The advantage of the MFCC representation using
(6.144) instead of (6.146) is that the filter energies are more robust to noise and spectzal &
timation errors. This algorithm has been used extensively as a feature vector for speech rec-
ognition systems. '

While the definition of cepstrum in Section 6.4.1 uses an inverse DFT, since S[m] s
even, a DCT-II can be used instead (see Chapter 5).

6.5.3.  Perceptual Linear Prediction (PLP)

Perceptual Linear Prediction (PLP) [16] uses the standard Durbin recursion of St
6.3.2.1.2 to compute LPC coefficients, and typically the LPC coefficients are transforr}lefi 0
LPC-cepstrum using the recursion in Section 6.4.2.1. But unlike standard linear predictioh
the autocorrelation coefficients are not computed in the time domain through Eq: (6.59)-

. : m
The autocorrelation R [n] is the inverse Fourier transform of the power fswns[:s_
0

2 g
‘X (co)| of the signal. We cannot compute the continuous-frequency Fourier trans
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ily, but we can take an FFT to compute Xik], so that the autocorrelation can be obtained as
the inverse Fourier transform of ]X [k]]'. Since the discrete Fourier transform is not per-
forming linear convolution but circular convolution, we need to make sure that the FFT size
is larger than twice the window length (see Section 5.3.4) for this to hold. This alternate way
of computing autocorrelation coefficients, entailing two FFTs and N multiplies and adds,
should yield identical results. Since normally only a small number p of autocorrelation coef-
ficients are needed, this is generally not a cost-effective way to do it, unless the first FFT has
to be computed for other reasons.

Perceptual linear prediction uses the above method, but replaces |X [k]I: by a percep-
tually motivated power spectrum. The most important aspect is the non-linear frequency
scaling, which can be achieved through a set of filterbanks similar to those described in Sec~
tion 6.5.2, so that this critical-band power spectrum can be sampled in approximately 1-Bark
intervals. Another difference is that, instead of taking the logarithm on the filterbank energy
outputs, a different non-linearity compression is used, often the cubic root. It is reported [16]
that the use of this different non-linearity is beneficial for speech recognizers in noisy condi-
tions.

6.6. FORMANT FREQUENCIES

Formant frequencies are the resonances in the vocal tract and, as we saw in Chapter 2, they
convey the differences between different sounds. Expert spectrogram readers are able to
recognize speech by looking at a spectrogram, particularly at the formants. It has been ar-
gued that they are very useful features for speech recognition, but they haven’t been widely
used because of the difficulty in estimating them.

One way of obtaining formant candidates at a frame level is to compute the roots of a
p"-order LPC polynomial [3, 26]. There are standard algorithms to compute the complex
roots of a polynomial with real coefficients [36], though convergence is not guaranteed.
Each complex root z can be represented as

z; =exp(-nbh, + j27 f) (6.147)
where f, and & are the formant frequency and bandwidth, respectively, of the i* root. Real
roots are discarded and complex roots are sorted by increasing £, discarding negative values.
The remaining pairs (f,, 4,) are the formant candidates. Traditional formant trackers discard
roots whose bandwidths are higher than a threshold [46], say 200 Hz.

Closed-phase analysis of voiced speech [5] uses only the regions for which the glottis
is closed and thus there is no excitation. When the glottis is open, there is a coupling of the
vocal tract with the lungs and the resonance bandwidths are somewhat larger. Determination
of the closed-phase regions directly from the speech signal is difficult, so often an elec-
troglottograph (EGG) signal is used [23]. EGG signals, obtained by pIacing c_alectrodes at _the
speaker’s throat, are very accurate in determining the times when the glottis is closed. Using
samples in the closed-phase covariance analysis can yield accurate results [46]. For female
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e closed-phase is short, and sometimes non-existent, so such analysis gy be 4

h, th - .
speec o for pitch tracking and are described in more detail i

challenge. EGG signals are useful als

Chapter 16. '
p Another common method consists of finding the peaks on a smoothed spectrum, sy

as that obtained through an LPC analysis [26, 40]. The a.dvamage of.this method is thy; you
can always compute the peaks and it is more compqtahona]ly efficient than extracting the
complex roots of a polynomial. On the other hand, this procedure generally doesn't estimae
the formant’s bandwidth. The first three formants are typically estimated this way for fy.
mant synthesis (see Chapter 16), since they are the ones that allow sound Classificatiop,
whereas the higher formants are more speaker dependent.

Sometimes, the signal goes through some conditioning, which includes sampling rate
conversion to remove frequencies outside the range we are interested in. For example, if we
are interested only in the first three formants, we can safely downsample the input signal to
8 kHz, since we know all three formants should be below 4 kHz. This downsampling re-
duces computation and the chances of the algorithm to find formant values outside the ex-
pected range (otherwise peaks or roots could be chosen above 4 kHz which we know do not
correspond to any of the first three formants). Pre-emphasis filtering is also often used to
whiten the signal.

Because of the thresholds imposed above, it is possible that the formants are not con-
tinuous. For example, when the vocal tract’s spectral envelope is changing rapidly, band-
widths obtained through the above methods are overestimates of the true bandwidths, and
they may exceed the threshold and thus be rejected. It is also possible for the peak-picking
algorithm to classify a harmonic as a formant during some regions where it is much stronger
than the other harmonics. Due to the thresholds used, a given frame could have no formants,
only one formant (either first, second, or third), two, three, or more. Formant alignment from
one frame to another has often been done using heuristics to prevent such discontinuities.

6.6.1. Statistical Formant Tracking

It is desirable to l?ave an approach that does not use any thresholds on formant candidates
a{Id uses a pmbnbllfsﬂc model to do the tracking instead of heuristics [1]. The formant can-
didates can be obtained from roots of the LPC polynomial, peaks in the smoothed spectrum,

or even from a dense sample of possible points. If the first n formants are desired, and ¥e
have (p/2) formant candidates, a maximum of r n-tuples are considered, where r is given by

,=(P/2J (6.148)

n

A Viterbi search (see Chupter 8) is then carried out to find the most likely path of for
n.mm_n-u.mlcs given a model with some a priori knowledge of formants. The prior distribu-
tion for formant targets is used (o determine which formant candidate to use of all possible
choices for the given phoneme (i.e., we know that FI for an AE should be around 800 Hz)-
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Formant continuity is imposed through the prior distribution of the formant slopes. This al-
gorithm produces n formants for every frame, including silence.

Since we are interested in obtaining the first three formants (n = 3) and F3 is known to
be lower than 4 kHz, it is advantageous to downsample the signal to 8 kHz in order to avoid
obtaining formant candidates above 4 kHz and to let us use a lower-order analysis which
offers fewer numerical problems when computing the roots. With p = 14, it results in a
maximum of r= 35 triplets for the case of no real roots.

Let X be a sequence of T feature vectors x, of dimension n:

X = (X)X 0o X7) (6.149)

where the prime denotes transpose.

We estimate the formants with the knowledge of what sound occurs at that particular
time, for example by using a speech recognizer that segments the waveform into different
phonemes (see Chapter 9) or states g, within a phoneme. In this case we assume that the
output distribution of each state / is modeled by one Gaussian density function with a mean
u, and covariance matrix Z,. We can define up to N states, with A being the set of all means
and covariance matrices for all:

A= (U2l By My Zy) (6.150)

Therefore, the log-likelihood for X is given by

a TM 1 ul l L Il
lnp(X]q,l):—Tln(Zn)—EZInIE,,,I—Ezl‘(x,—,uq‘)Zm(x,—uq’) (6.151)

1=l

Maximizing X in Eq. (6.151) leads to the trivial solution X =y My reelty,) s @
piecewise function whose value is that of the best n-tuple candidate. This function has dis-
continuities at state boundaries and thus is not likely to represent well the physical phenom-
ena of speech.

This problem arises because the slopes at state boundaries do not match the slopes of
natural speech. To avoid these discontinuities, we would like to match not only the target
formants at each state, but also the formant slopes at each state. To do that, we augment the
feature vector x, at frame ¢ with the delta vector x, —X, ;. Thus, we increase the parameter
space of A with the corresponding means §, and covariance matrices I, of these deita
parameters, and assume statistical independence among them. The corresponding new log-

likelihood has the form

1< 1<
Inp(X14,4)= K-> 3 In|%, -5 2 InIT, |
1=1

= (6.152)
Iy =t 1y 8, )T (x,~x,4,—F5,)
——Z—'Zﬂ:(xt _ﬂq,) Eq, (X, _‘uq')—i,g;’(Xl =X~ q,) g\t -l 9
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Maximization of Eq. (6.152) with respect to x, requires solving severa] se

. . N 7 . [S Of .
equations. If T, and %, are diagonal covariance matrices, it results in a set of lineg, equ;'t’i'ear
for each of the M dimensions ong

p=e (6.153)

where B is a tridiagonal matrix (all values are zero except for those in the main diagonal apq
its two adjacent diagonals), which leads to a very efficient solution [36]. For example, the
values of B and ¢ for T =3 are given by ?

Ll
641 7,,1 y?l
-1 RS SUE WV SPE S A (6.154
o 9% %o & Do =
b 1 1 + 1
ey 2 tTTa
X ?’;, 635 Yo )
c_(ﬁa_x_iﬂ o % % ﬁvz_ﬁi] (6.159)
=12 2 2 2 2 2 ;
641 Y?z o‘n 7‘1’ 79: G‘l‘.\ Y;ZJ

where just one dimension is represented, and the process is repeated for all dimensions with
a computational complexity of O(TM).

The maximum likelihood sequence %, is close to the targets p, while keeping the
slopes close to &, for a given state i, thus estimating a continuous function. Because of the
delta coefficients, the solution depends on all the parameters of all states and not just the
current state. This procedure can be performed for the formants as well as the bandwidths.

The parameters 4,, %,, §,, and T, can be re-estimated using the EM algorithm de-
scribed in Chapter 8. In [1] it is reported that two or three iterations are sufficient for
speaker-dependent data. .

The formant track obtained through this method can be rough, and it may be desired 10
smooth it. Smoothing without knowledge about the speech signal would result in either blur-
ring the sharp transitions that occur in natural speech, or maintaining ragged formant “_'“ks
where the underlying physical phenomena vary slowly with time. Ideally we would like 2
larger adjustment to the raw formant when the error in the estimate is large relative. to the
variance of the corresponding state within a phoneme. This can be done by modeling the
formant measurement error as a Gaussian distribution. Figure 6.29 shows an utterance ot
a male speaker with the smoothed formant tracks, and Figure 6.30 compares the raw 20
smoothed formants. When no real formant is visible from the spectrogram, the algorith®
tends to assign a large bandwidth (not shown in the figure).

Amazon/VB Assets
Exhibit 1012
Page 348



Formant Frequencies -

Frequency (Hz)
g

=

Time (seconds)

Figure 6.29 Spectrogram and three smoothed formants.
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Figure 6.30 Raw formants (ragged gray line) and smoothed formants (dashed line).
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6.7. THE ROLE OF PITCH

Pitch determination is very important for many speech processing algorithms,
native speech synthesis methods of Chapter 16 require pitch tracking on the 4
segments if prosody modification is to be done. Chinese speech Yecognition syster
pitch tracking for tone recognition, which is important in disambiguating the m}’ri:duse
homophones. Pitch is also crucial for prosodic variation in text-to-speech Systems (of
Chapter 15) and spoken language systems (see Chapter 17). While in the previous sec[i;,e,e
we have dealt with features representing the filter, pitch represents the source of the l'ﬂOdej
illustrated in Figure 6.1.

Pitch determination algorithms also use short-term analysis techniques, which means
that for every frame x, we get a score f(T|x,) thatis a function of the candidate pitch
periods T. These algorithms determine the optimal pitch by maximizing

The Concate.
esired Speech

T, =arg;nax f(Tix,) (6.156)

We describe several such functions computed through the autocorrelation method and
the normalized cross-correlation method, as well as the signal conditioning that is often per-
formed. Other approaches based on cepstrum [28] have also been used successfully. A good
summary of techniques used for pitch tracking is provided by [17, 45}.

Pitch determination using Eq. (6.156) is error prone, and a smoothing stage is often
done. This smoothing, described in Section 6.7.4, takes into consideration that the pitch does
not change quickly over time.

6.7.1. Autocorrelation Method

A commonly used method to estimate pitch is based on detecting the highest value of th'e
autocorrelation function in the region of interest. This region must exclude m =0, as that s
the absolute maximum of the autocorrelation function [37]. As discussed in Chapter 5, the
statistical autocorrelation of a sinusoidal random process

x{n] = cos(w,n+ @) R
is given by
] .158)
R(m] = E{x"[n)x[n+m]} = %cos(coom) ¢
. . d Lhe
w.hlch ha§ maxima for m =IT, , the pitch period and its harmonics, so that We caI}[ﬁc"zm
pitch period by computing the highest value of the autocorrelation. Simllarlyl’ :ion Rim)
shqwn that any WSS periodic process x{n] with period 7; also has an agtocorTe:
which exhibits its maxima at m = 1T
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In practice, we need to obtain an estimate R[m] from knowledge of only N samples. If
we use a window w{n] of length N on x[n] and assume it to be real, the empirical autocorre-
lation function is given by

N=l-{m;

Rim]= —1:—, ) wlnlx{n]w[n +|m|Ix[n + [m]] (6.159)

n=0

whose expected value can be shown to be

E {ﬁ[m]} = R[m](w{m]*w{~m)) (6.160)
where
XN =im|-1
wimlxwl-m]= Y winlw{n+{m|] 6.161)

n=0

which, for the case of a rectangular window of length ¥, is given by

_Iml|
w[m]*w[—m]:l 5 [m|<N

0 |m|2N

(6.162)

which means that R[m] is a biased estimator of R[m]. So, if we compute the peaks based on
Eq. (6.159), the estimate of the pitch will also be biased. Although the variance of the esti-
mate is difficult to compute, it is easy to see that as m approaches N, fewer and fewer sam-
ples of x[n] are involved in the calculation, and thus the variance of the estimate is expected
to increase. If we multiply Eq. (6.159) by N /(N —m), the estimate will be unbiased but the
variance will be larger.

Using the empirical autocorrelation in Eq. (6.159) for the random process in Eq.
(6.157) results in an expected value of

E{k[m]}{l—'NﬂjL"s%ﬂ, | < ¥ (6.163)

whose maximum coincides with the pitch period for m > m, . .

Since pitch periods can be as low as 40 Hz (for a very low-pitched male voice) or as
high as 600 Hz (for a very high-pitched female or child’s voice), the search_ for the maxi-
mum is conducted within a region. This FO detection algorithm is illustrated in Figure 6._31
where the lag with highest autocorrelation is plotted for every frame. In order to see pe'no-
dicity present in the autocorrelation, we need to use a window that contains at Jeast two plt.Ch
periods, which, if we want to detect a 40 Hz pitch, implies 50 ms (see Figure 6._32). Foy win-
dow lengths so long, the assumption of stationarity starts to fail, because a pitch pe'nod at
the beginning of the window can be significantly different than at the end of the window.
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Figure 6.31 Waveform and unsmoothed pitch track with the autocorrelation method. A fran
shift of 10 ms, a Hamming window of 30 ms, and a sampling rate of 8 kHz were used. Nosice
that two frames in the voiced region have an incorrect pitch. The pitch values in the unvoiced
regions are essentially random.

One possible solution to this problem is to estimate the autocorrelation function with differ-
ent window lengths for different lags m.

50 100 150 200
‘ K 2 at 89
Figwre .32 Auwcarrelation function for frame 40 in Figure 6.31. The maximum —

occurs & ¥
vaaules. A sumpling frequency of & kiz, and window shift of 10 ms are used. The 1% s

Using o wi : is usl
.Ilid?‘ viudow Jeugth of 30 ms, whereas the bottom one is using 50 mS-
yessodicity i the wutocorrelution function,
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The candidate pitch periods in Eq. (6.156) can be simply T, =m ;i.e., the pitch period
is any infeger number of samples. For low values of T, . the frequency resolution is lower
than for high values. To maintain a relatively constant frequency resolution, we do not have
to search all the pitch periods for large 7, . Alternatively, if the sampling frequency is not
high, we may need to use fractional pitch periods (often done in the speech coding aleo-
rithms of Chapter 7). g alg

Theiautaaeriéldlion finction ean b efijently computed by taking a signal, window-
ing it, and taking an FFT and then the square of the magnitude.

6.7.2. Normalized Cross-Correlation Method

A method that is free from these border problems and has been gaining in popularity is
based on the normalized cross-correlation [2]

<X,X,_; >

Jxllx.-r|

o,(T) = cos(6) = (6.164)

where x, ={x[f=N/2),x[t=N/2+1),---,x[t+ N/2-1]} is a vector of N samples centered
attlime t, and < X,,X,_, > is the inner product between the two vectors defined as

N2
<X,y > E X[a+ m)y[l +m) (6.165)

m==N12
so that, using Eq. (6.165), the normalized cross-correlation can be expressed as

A2
z xt+nlx[t+n-T]
o, ()= L e (6.166)

A2l N2
\/ Y X[t+n] Y, X[t+m+T)

1==N12 m==N/2

where we see that the numerator in Eq. (6.166) is very similar to the autocorrelation in Sec-
tion 6.7.1, but where N terms are used in the summation for all values of T.

The maximum of the normalized cross-correlation method is shown in Figure 6.3.3 (b).
Unlike the autocorrelation method, the estimate of the normalized cross-conrelaFion is not
biased by the term (1—m/N). For perfectly periodic signals, this results in identfcal values
of the normalized cross-correlation function for k7. This can result in pitch halvnqg, .where
2T can be chosen as the pitch period, which happens in Figure 6.33 (b) at the bfagmmng' of
the utterance. Using a decaying bias (1-m/M) with M > N, can be useful in reducing

pitch halving, as we see in Figure 6.33 (c).
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Figure 633 (a) Waveform and (b, ¢) unsmoothed pitch tracks with the normalized cross-
correlation method. A frame shift of 10 ms, window length of 10 ms, and sampling rate of 8
kHz were used. (b) is the standard normalized cross-correlation method, whereas (c) has a de-
caying term. If we compare it to the autocorrelation method of Figure 6.31, the middle voiced
region is correctly identified in both (b) and (c), but two frames at the beginning of (b) that
have pitch halving are eliminated with the decaying term. Again, the pitch values in the un-
voiced regions are essentially random.

Because the number of samples involved in the calculation is constant, this estimat¢ is
unbiased and has lower variance than that of the autocorrelation. Unlike the autocomelation
method, the window length could be lower than the pitch period, so that the assumption of
stationarity is more accurate and it has more time resolution. While pitch trackers based on
the normalized cross-correlation typically perform better than those based on the autocore
lation, they also require more computation, since all the autocorrelation lags can b eff
ciently computed through 2 FFTs and N mul tiplies and adds (see Section 5.3.4). .

. Let’s gain some insight about the normalized cross-correlation. If x[n] is periodic ik
period 7, then we can predict it from a vector T samples in the past as:

X, = pX, ; +e, (6.167)

petween

where p is the prediction
rty thal

the two vectors, as can b,
~l<qg,(P)<1.

gain. The normalized cross-correlation measures the angl®
¢ seen in Figure 6,34, and since it is a cosine, it has the ProPe
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-ﬁ.__*_-__.l
o7 pth
Figure 6.34 The prediction of X, with X,y results in an error e, .

If we choose the value of the prediction gain p so as to minimize the prediction error
2 2 2 2
le)" =[x | =[x.[" cos* @) =x,|" =[x, e*(7) (6.168)

and assume e, is a zero-mean Gaussian random vector with a standard deviation o %1,
then

2
Infx, | 7) = k + 20 (6.169)
20
so that the maximum likelihood estimate corresponds to finding the value T with highest
normalized cross-correlation. Using Eq. (6.166), it is possible that e« (T)< 0. In this case,
there is negative correlation between x, and Xx,_,, and it is unlikely that T is a good choice
for pitch. Thus, we need to force p > 0, so that Eq. (6.169) is converted into

2
In f(x, |T)=1<+ml-"%lm (6.170)

The normalized cross-correlation of Eq. (6.164) predicts the current frame with a
frame that occurs T samples before. Voiced speech may exhibit low correlation with a pre-
vious frame at a spectral discontinuity, such as those appearing at stops. To account for this,
an enhancement can be done to consider not only the backward normalized cross-
correlation, but also the forward normalized cross-correlation, by looking at a frame that
occurs T samples ahead of the current frame, and taking the highest of both.

(max(0,@,(T),0,(-T)))’ 6.171)
20

Inf(x,|T)=K+

6.7.3.  Signal Conditioning

Noise in the signal tends to make pitch estimation less accurate. To reduc'e this effect, s_ignal
Conditioning o pre-processing has been proposed prior to pitch estimation [44]. Typically
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this involves bandpass filtering to remove frequencies above 1 or 2 kHz, ang bl |
or so. High frequencies do not have much voicing information and have signiﬁcm[OO He
energy, whereas low frequencies can have 50/60 Hz interference from power lin Noise
linearities from some A/D subsystems that can also mislead a pitch estimation alg
In addition to the noise in the very low frequencies and aspiration at high
stationarity assumption is not as valid at high frequencies. Even a slowly chan
say, nominal 100 Hz increasing 5 Hz in 10 ms, results in a fast-changing harmg
harmonic at 3000 Hz changes 150 Hz in 10 ms. The corresponding short-time
longer shows peaks at those frequencies.
Because of this, it is advantageous to filter out such frequencies prior to the compug-
tion of the autocorrelation or normalized cross-correlation. If an FFT is used to compute the
autocorrelation, this filter is easily done by setting to 0 the undesired frequency bins,

€S or non.
Orithm,
bands, the
ging pitch
nic: the 30¢
Spectrum o

6.7.4. Pitch Tracking

Pitch tracking using the above methods typically fails in several cases:

o Sub-harmonic errors. If a signal is periodic with period T, it is also periodic
with period 27, 37, etc. Thus, we expect the scores also to be high for the
multiples of T, which can mislead the algorithm. Because the signal is never
perfectly stationary, those multiples, or sub-harmonics, tend to have slightly
lower scores than the fundamental. If the pitch is identified as 27, pitch halv-
ing is said to occur.

e Harmonic errors. If harmonic M dominates the signal’s total energy, the
score at pitch period 7/M will be large. This can happen if the harmonic falls
in a formant frequency that boosts its amplitude considerably compared to

that of the other harmonics. If the pitch is identified as 772, pitch doubling is
said to occur.

® Noisy conditions. When the SNR is low, pitch estimates are quite unreliable
for most methods.

Vocal fry. While pitch is generally continuous, for some speakers it can sud-

denly change and even halve, particularly at the end of an unstressed voiced

region..The pitch here is really not well defined and imposing smoothness
Constraints can hurt the system.

FO jumps up or down by an octave occasionally.

ll:(: ie:th}"VOiCed speech is difficult to distinguish from periodic background
e,

e Narrow-

band filtering of unvoiced excitations by certain vocal tact
configur,

ations can lead to signals that appear periodic.
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For these reasons, pitch trackers do not determine the pitch value at frame m based ex
clusively on the signal at that frame. For a frame where there are several pitch candidate;
with similar scores, the fact that pitch does not change abruptly with time is beneficial in
disambiguation, because the following frame possibly has a clearer pitch candidate, which
can help. |

To integrate the normalized cross-correlation into a probabilistic framework you can
combine tracking with the use of a priori information [10]. Let’s, define
X={Xg. X2 X M-1} as a2 sequence of input vectors for M consecutive frames centered at
equally spaced time instants, say 10 ms. Furthermore, if we assume that the x; are inde-
pendent of each other, the joint distribution takes on the form:

M=l

fXID=[]/x1T) (6.172)

i=0

where T={T,T,,...,T,,,} is the pitch track for the input. The maximum a posteriori (MAP)
estimate of the pitch track is:

Ty =max f(TIX)=m$xl%=mgx SMFXIT) 6.173)

according to Bayes’ rule, with the term f(X|T) being given by Eq. (6.172) and f(x, |T})
by Eq. (6.169), for example.

The function f(T) constitutes the a priori statistics for the pitch and can help disam-
biguate the pitch, by avoiding pitch doubling or halving given knowledge of the speaker’s
average pitch, and by avoiding rapid transitions given a model of how pitch changes over
time. One possible approximation is given by assuming that the a priori probability of the
pitch period at frame i depends only on the pitch period for the previous frame:

f(T)'—‘f(Y:,,T;,...,TM_[)=f(7:”_' ITM-Z)f(TM—Z ‘Tu-x)f(yi IYB)f(TB) (6.174)

One possible choice for f(7; |7,_,) is to decompose it into a component that depends

on 7, and another that depends on the difference (7, —T,_,). If we approximate both as

Gaussian densities, we obtain

T—,LL)2 (7;‘1,-1 B 5)2 (6.175)
1 TIT Y= K'-( : ~
n f(7, | 1) 2[32 2,},2

S0 that when Egs. (6.170) and (6.175) are combined, the log-probability of transitioning to
7, at time ¢ from pitch 7, at time ¢ — 1 is given by
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2 2 T-5)
(waxa)) _(T-n) (L-T- ) .
5(T.T)= 207 - 252 27 6.176)
so that the log-likelihood in Eq. (6.173) can be expressed as
M-l
In f(T)f(X|T) = (max(0.a,(7,)))” +max Z. S(T,.T._) 617
L3 =

which can be maximized through dynamic Erogramming. For a region where pitch is no
supposed to change, 8 =0, the term (7, =T;)" in Eq. (6.176) acts as a penalty that keeps the
pitch track from jumping around. A mixture of Gaussx.ans c:.m be us_ed instead to model dif-
ferent rates of pitch change, as in the case 2of Mandarin Chinese with four tones character-
ized by different slopes. The term (T, — )" attempts to get the pitch close to its expected
value to avoid pitch doubling or halving, with the average y being different for male and
female speakers. Pruning can be done during the search without loss of accuracy (see Chap-
ter 12).

)Pitch trackers also have to determine whether a region of speech is voiced or un-
voiced. A good approach is to build a statistical classifier with techniques described in
Chapter 8 based on energy and the normalized cross-correlation described above. Such clas-
sifiers, i.e., an HMM, penalize jumps between voiced and unvoiced frames to avoid voiced
regions having isolated unvoiced frames inside and vice versa. A threshold can be used on
the a posteriori probability to distinguish voiced from unvoiced frames.

6.8. HISTORICAL PERSPECTIVE AND FURTHER READING

In 1978, Lawrence R. Rabiner and Ronald W. Schafer [38] wrote a book summarizing the
work to date on digital processing of speech, which remains a good source for the reader
interested in further reading in the field. The book by Deller, Hansen, and Proakis [9] in-
cludes more recent work and is also an excellent reference. O’ Shaughnessy [33] also has 2
thorough description of the subject. Malvar [25] covers filterbanks and lapped transforms
extensively.

The extensive wartime interest in sound spectrography led Koenig and his colleagues
at Bell Laboratories (22] in 1946 to the invaluable development of a tool that has been used
for speech analysis since then: the spectrogram. Potter et al. [35] showed the usefulness of
the analog spectrogram in analyzing speech. The spectrogram facilitated research in the field
and led Peterson and Bamey [34] to publish in 1952 a detailed study of formant values of
different vowels. The development of computers and the FFT led Oppenheim, in 1970 30}
to develop digital spectrograms, which imitated the analog counterparts.

The MIT Acoustics Lab started work in speech in 1948 with Leo R. Berane
1954 published the seminal book Acoustics, where he studied sound propagation in twbes:

k, who it
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1950, Kenneth N. Stevens joined the lab and started work on speech perception. Gunnar
Fant visited the Iab at that time and as a result started a strong speech production.effort at
KTH in Sweden.

The 1960s marked the birth of digital speech processing. Two books, Gunnar Fant’s
Acoustical Theory of Speech Production [13) in 1960 and James Flanagan’; Speech Analy-
sis: Synthesis and Perception [14] in 1965, had a great impact and sparked interest in the
field. The advent of the digital computer prompted Kelly and Gertsman to create in 1961 the
first digital speech synthesizer [21]. Short-time Fourier analysis, cepstrum, LPC analysis
and pitch and formant tracking were the fruit of that decade. ’

Short-time frequency analysis was first proposed for analog signals by Fano [11] in
1950 and later by Schroeder and Atal [42].

The mathematical foundation behind linear predictive coding dates to the auto-
regressive models of George Udny Yule (1927) and Gilbert Walker (1931), which led to the
well-known Yule-Walker equations. These equations resulted in a Toeplitz matrix, named
after Otto Toeplitz (1881-1940) who studied it extensively. N. Levinson suggested in 1947
an efficient algorithm to invert such a matrix, which J. Durbin refined in 1960 and is now
known as the Levinson-Durbin recursion. The well-known LPC analysis consisted of the
application of the above results to speech signals, as developed by Bishnu Atal [4], J. Burg
[7], Fumitada Itakura and S. Saito [19] in 1968, and Markel [27] and John Makhoul [24] in
1973.

The cepstrum was first proposed in 1964 by Bogert, Healy, and John Tukey [6] and
further studied by Alan V. Oppenheim [29] in 1965. The popular mel-frequency cepstrum
was proposed by Davis and Mermelstein [8] in 1980, combining the advantages of cepstrum
with knowledge of the non-linear perception of frequency by the human auditory system that
had been studied by E. Zwicker [47] in 1961.

Formant tracking was first investigated by Ken Stevens and James Flanagan in the late
1950s, with the foundations for most modern techniques being developed by Schafer and
Rabiner [40], Itakura [20], and Markel [26]. Pitch tracking through digital processing was
first studied by B. Gold [15] in 1962 and then improved by A, M. Noll {28], M. Schroeder
[41], and M. Sondhi [44] in the late 1960s.
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) ]:ansmission of speech using data networks
requires the speech signal to be digitally encoded. Voice over IP has become very popular
because of the Internet, where bandwidth limitations make it necessary to compress the
SPCECh signal. Digital storage of audio signals, which can result in higher quality and smaller
Size than the analog counterpart, is commonplace in compact discs, digital video discs, and
MP3 files. Many spoken language systems also use coded speech for efficient communica-
tion. For these reasons we devote a chapter to speech and audio coding techniques.

Rather than exhaustively cover all the existing speech and audio coding algorithms,
We uncover their underlying technology and enumerate some of the most popular standards.
The coding technology discussed in this chapter has a strong link to both speech recognition
and speech synthesis. For example, the speech synthesis algorithms described in Chapter 16

Use many techniques described here.

337
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71. SPEECH CODERS ATTRIBUTES

Ctol's’
Ompy-

' t speech or audio coders? We can refer to a number of

e i, i e, quality f reconsucted seech, i obusness,
; : nel-error sensitivity, an .

tanonz;’l Co?lf)]:? ]rtlyz;lg eclgn‘ ;Zarllaandlimited to 10 kHz without significantly affecting pe
hearer’? eFi:rcept%on. The telephone network limits the bandwidth lc?f speech signals to be.
tween 300 and 3400 Hz, which gives telephone speech a lower ?ua ty. Tclephone Speech is
typically sampled at 8 kHz. The term widebam'i Speef‘h 15 used ora ba_‘ndWl_dlh (_Jf 50-7000
Hz and a sampling rate of 16 kKHz. Finzflly, audio coding is used in dealing with high-fidelity
audio signals, in which case the signal is sampled at 44.1 kHz. ‘ ' '

Reduction in bit rate is the primary purpose of speech c?dmg. '1?‘3 previous bit stream
can be compressed to a lower rate by rex:noving redundancy in the_ signal, resulting in say.
ings in storage and transmission bandwidth. If onl)" redundancy is removefl. the original
signal can be recovered exactly (lossless compression). I“_ lgssy compression, the signal
cannot be recovered exactly, though hopefully it will sound similar to the original.

Depending on system and design constraints, fixed-rate or variable-rate speech coders
can be used. Variable-rate coders are used for non-real time applications, such as voice stor-
age (silence can be coded with fewer bits than fricatives, which in turn use fewer bits than
vowels), or for packet voice transmissions, such as CDMA cellular for better channel utiliza-
tion. Transmission of coded speech through a noisy channel may require devoting more bits
to channel coding and fewer to source coding. For most real-time communication systems, a
maximum bit rate is specified.

The quality of the reconstructed speech signal is a fundamental attribute of a speech
coder. Bit rate and quality are intimately related: the lower the bit rate, the lower the quality.
While the bit rate is inherently a number, it is difficult to quantify the quality. The most
widely used measure of quality is the Mean Opinion Score (MOS) [25], which is the result
of averaging opinion scores for a set of between 20 and 60 untrained subjects. Each listener
characterizes each set of utterances with a score on a scale from 1 (unacceptable quality) t0
5 (excellent quality), as shown in Table 7.1. An MOS of 4.0 or higher defines good or toll
qualle_ where the reconstructed speech signal is generally indistinguishable from the origi-
?;ii f;%:a}l}.o ::n MOS be.twe'en 3.5and 4.0 d.eﬁnes communication quality, which 'is suff'lc_it’.:dl
e 16Pb“set;:nr1;1:lrt1‘1cat19ns. We show in Sfection 7.2..1 th‘at if efach .sample is quanuzn‘
quantized siénal) o g;]g signal has foll quahty (essentially indistinguishable from the U

. apter 16 for more details on perceptual quality measurements.
:‘;b;;'- ;;;j:::anw(;s;:] ::cl?i(::;t(,M 0S) is a numeric value computed as an average for 2 UM
- er maps to the above subjective quality.

Excellent Good

Fair Poor Bad
: 4|3 5 1
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Another measure of quality is the signal-t0-noise ratio (SNR), defined as the ratio be-
wween the signal’s energy and the noise’s energy in terms of dB:

_0. _E&n
M=ot " ey (7.1)

’_fhe MOS ratin_g _of a codec on noise-free speech is often higher than its MOS rating
for noisy spgech. This is genf.ral'ly caused by specific assumptions in the speech coder that
tend to be. violated when a significant amount of noise is present in the signal. This phe-
nomenon is more ac{centuated for l_ower-bit-rate coders that need to make more assumptions.

The computational complexity and memory requirements of a speech coder determine
the cost and power consumption of the hardware on which it is implemented. In most cases,
real-time operation is required at least for the decoder. Speech coders can be implemented in
inexpensive Digital Signal Processors (DSP) that form part of many consumer devices, such
as answering machines and DVD players, for which storage tends to be relatively more ex-
pensive than processing power. DSPs are also used in cellular phones because bit rates are
limited.

All speech coders have some delay, which, if excessive, can affect the dynamics of a
two-way communication. For instance, delays over 150 ms can be unacceptable for highly
interactive conversations. Coder delay is the sum of different types of delay. The first is the
algorithmic delay arising because speech coders usually operate on a block of samples,
called a frame, which needs to be accumulated before processing can begin. Often the
speech coder requires some additional look-ahead beyond the frame to be encoded. The
computational delay is the time that the speech coder takes to process the frame. For real-
time operation, the computational delay has to be smaller than the algorithmic delay. A
block of bits is generally assembled by the encoder prior to transmission, possibly to add
error-correction properties to the bit stream, which cause multiplexing delay. Finally, there is
the transmission delay, due to the time it takes for the frame to traverse the channel. The
decoder will incur a decoder delay to reconstruct the signal. In practice, the total delay of
many speech coders is at least three frames.

If the coded speech needs to be transmitted over a channel, we need to consider possi-
ble channel errors, and our speech decoder should be insensitive to at least some of them.
There are two types of errors: random errors and burst errors, and they (.:ould be handled
differently. One possibility to increase the robustness against such errors is to use chan'nel
coding techniques, such as those proposed in Chapter 3. Joint source aqd cha‘nnel cong
allows us to find the right combination of bits to devote to speech coc.lmg with the right
amount devoted to channel coding, adjusting this ratio adaptively depen_dxr_lg on the channel.
Since channel coding will only reduce the number of errors, and not elfmmate them, grace-
ful degradation of speech quality under channel errors is typically a desxfgn.factor for speech
coders. When the channel is the Internet, complete frames may be missing be_cause. Lr}ey
have not arrived in time. Therefore, we need techniques that degrade gracefully with missing
frames.
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Fids SCALAR WAVEFORM CODERS

In this section we describe several waveform coding techniques, such as lines, PCM

and A-law PCM, APCM, DPCM, DM, and ADPCM, that quantize each sample ug; 1 Wolay,
quantization. These techniques attempt to approximate the waveform, and, if 5 lar :8 Scalgr
bit rate is available, will get arbitrarily close to it. 8¢ enough

7.2.1. Linear Pulse Code Modulation (PCM)

Analog-to-digital converters perform both sampling and quantization simultaneously To
better understand how this process affects the signal it’s better to study them separately:wc
analyzed the effects of sampling in Chapter 5, so now we analyze the effects of quantizatiog
which encodes each sample with a fixed number of bits. With B bits, it is possible to repre:
sent 2° separate quantization levels. The output of the quantizer X[n] is given by

x[n] = Q{x[n]} 12

Linear Pulse Code Modulation (PCM) is based on the assumption that the input dis-
crete signal x[n] is bounded

%071 € X e (13)

and that we use uniform quantization with quantization step size A which is constant for all
levels x,

x—x_,=A (74)

The input/output characteristics are shown by Figure 7.1 for the case of a 3-bit uni-
form quantizer. The so-called mid-riser quantizer has the same number of positive and nega-
tive levels, whereas the mid-tread quantizer has one more negative than positive levels. The
code c[n] is expressed in two's complement representation, which for Figure 7.1 varies be-

tween —4 and +3. For the mid-riser quantizer the output X[#] can be obtained from the code
c¢[n] through

Xn}= sign(c[n])% +c[n]A a2
and for the mid-tread quantizer
3] = el o
which is often used in computer systems that use two’s complement representation. e
'Ehere are two independent parameters for a uniform quantizer: the number O
N =27, and the step size A. Assuming Eq. (7.3), we have the relationship
2X,,, =A2* o
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Figure 7.1 Three-bit uniform quantization characteristics: (a) mid-riser, (b) mid-tread.

In quantization, it is useful to express the relationship between the unquantized sample
x[n] and the quantized sample x[#) as

x[n] = x[n] +[n] (7.8)

with e[n] being the quantization noise. If we choose A and B to satisfy Eq. (7.7), then

A A
——<¢gnj<— 7.9
5 {n] > (7.9)
While there is obviously a deterministic relationship between e[n] and x[], it is con-
venient to assume a probabilistic model for the quantization noise:

1. e[n] is white: E {e[n]e[n+m]} = o25[m]

2. e[n] and x[n] are uncorrelated: E {x{nle[n+m]} =0

3. e[n] is uniformly distributed in the interval (-A/2,A/2)

These assumptions are unrealistic for some signals, except in the case of speech sig-
nals, which rapidly fluctuate between different quantization levels. The assumptions are
reasonable if the step size A is small enough, or alternatively the number of levels is large

enough (say, more than 2°).
The variance of such uniform distribution (see Chapter 3) is

2 A X (7.10)

12 3x2%
after using Eq, (7.7), The SNR is given by

Ko ] (7.11)
o

X

SNR(dB) = IOlogw( 9, ] = (20log,, 2)B+10l0g,,3 —-ZOIog,o(
[0

Which implies that each bit contributes to 6 dB of SNR, since 20log,,2=6.
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Speech samples can be approximately described as following a Laplacian distributiop
{40]
v, (7.12)

) 1 -
p(x) 5t

and the probability of x falling outside the range (H4o,,40,) .is 0.35%. Thus, using
X,.. =40, B=17bits in Eq. (7.11) results in an SNR of 35 dB, which would be acceptable
in a communications system. Unfortunately, signal energy can' vz.gry over 40 dB, due to varj.
ability from speaker to speaker as well as variability in transmlxssmn channels. Thus, in prac-
tice, it is generally accepted that 11 bits are needed to achieve an SNR of 35 dB while
keeping the clipping to a minimum.

Digital audio stored in computers (Windows WAV, Apple AIF, Sun AU, and SND
formats among others) use 16-bit linear PCM as their main format. The Compact Disc.
Digital Audio (CD-DA or simply CD) also uses 16-bit linear PCM. Invented in the late
1960s by James T. Russell, it was launched commercially in 1982 and has become one of
the most successful examples of consumer electronics technology: there were about 700
million audio CD players in 1997. A CD can store up to 74 minutes of music, so the tota|
amount of digital data that must be stored on a CD is 44,100 samples/(channel*second) * 2
bytes/sample * 2 channels * 60 seconds/minute * 74 minutes = 783,216,000 bytes. This 747
MB are stored in a disk only 12 centimeters in diameter and 1.2 mm thick. CD-ROMs can
record only 650 MB of computer data because they use the remaining bits for error correc-

tion.

722, p-law and A-law PCM

Human perception is affected by SNR, because adding noise to a signal is not as noticeable
if the signal energy is large enough. Ideally, we want SNR to be constant for all quantization
levels, which requires the step size to be proportional to the signal value. This can be done
by using a logarithmic compander'

yln) = In|x{n] (7.13)
followed by a uniform quantizer on y[n] so that

Hnl = yln]+e[n] (1.14)
and, thus,

#{n] =exp{ Vnsign{x{n]} = x{n)] exp{e[n]} (7.19)

—
—_—
" A compander is a nonlj i

mpander is a nonlinear functjon that compands one part of the x-axis
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after uSing Egs. (7.13) and (7.14). If &n] is small, then Eq. (7.15) can b
-\ e e
) 2 5{n)(1 D)) = x{n) + x{mleln] i
and, thus, the SNR = l/of is constant for all levels. This type of quantizati 7o
1zation is not practi-

cal, because an infinite number of quantization steps .
i« the so-called p-Taw [S1}: ps would be required. An approximation

log l+ym}

w=dsign{x[n]}
(7.17)

1= /"mt .
_)[ ] ax log[l +/.L]
which is approximately logarithmic for lurge values
alues o i
small values of x[11]. A related compander called A-law ifs ';E:g ::edd R

1+ log[——-—Alx[n]l]

max

)’["J = Xm:u Slgn {x
[nl} (7.18)

1+log 4

which has greater resolution than pt-law for small an

/ ; . sample values, b i

bits. In practice, they both offer similar quality. The p-law curve cal:lilerseeg: if:l;_l; alefi; ;0 .
gure /.4.

v

Figure 7.2 Nonlinearity used in the y-law compression.

& kbi: ;zzzdig‘:a]“t‘U-T recommendation G.711 standardized telephone speech coding at
Eileantn §-kH ransmission of s.peec'h through telephone networks. It uses 8 bits per
[Ha%rwi i 2552. sampling rate w1‘th either p-law or A-law. In North America and Japan,
Both iipression ;ls used, .w}‘lereas, in the ‘res‘t of the world, A-law with A = 87.56 is used.
8. Without th characteristics are very similar and result in an approximate SNR of 35

e logarithmic compressor, a uniform quantizer requires approximately 12 bits

—_—

e

“The Interpayi

tura Org;n;::;:il (I;;é’ommunicalion Union (ITU) is a part of the Uni

ton Standiards, Wigh; SCO). ITU-T is the organization within ITU res

O 100, s o AL Sy Gt (3 (LS i responsible for

“Braphique (CCI'[']l-mlcal-lon standards were set by the Comité Consu
), which was reorganized into the ITU-T that year.

ted Nations Economic, Scientific and Cul-
ponsible for setting global telecommunica-
formulating speech coding standards. Prior
ltatif Intemational Téléphonique et Té-
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per sample to achieve the same level of quality. All the speech coders for telephone Spee.
described in this chapter use G.711 as a baseline reference, whose quality is considereq mcl;l
and an MOS of about 4.3. G.711 is used by most digital central office switches, s that whe ]
you make a telephone call using your plain old telephone service (POTS), your call js e,:
coded with G.711.

7.2.3. Adaptive PCM

When quantizing speech signals we confront a dilemma. On the one hand, we want the
quantization step size to be large enough to accommodate the maximum peak-to-peak range
of the signal and avoid clipping. On the other hand, we need to make the step size smal] (g
minimize the quantization noise. One possible solution is to adapt the step size to the level

of the input signal.
The basic idea behind Adaptive PCM (APCM) is to let the step size Afn] be propor-
tional to the standard deviation of the signal o{n]:

A[n] = A,0ln] (7.19)

An equivalent method is to use a fixed quantizer but have a time-varying gain G[n,
which is inversely proportional to the signal’s standard deviation

Gln]=G, ! o[n] (7.20)

Estimation of the signal’s variance, or short-time energy, is typically done by low-pass
filtering x*[n]. With a first-order IIR filter, the variance ¢[n] is computed as

o’[n]=ao’[n-11+(1-a)x*[n-1] (7121)

with @ controlling the time constant of the filter T =~1/(F, Ina), F, the sampling rate, and
0<a <. In practice, ¢ is chosen so that the time constant ranges between 1 ms (¢ =088
at 8 kHz) and 10 ms (o = 0.987 at 8 kHz).

Alternatively, 6*[»] can be estimated from the past M samples:

1 &,
o¥[n]= EJ—MZ‘ ;-[m] (122)
In practice, it is advantageous to set limits on the range of values of Afn] and Glrl
Ao SAH]S A (7:29)
(1.24)

G SGIN1<G,,

tem. If

with the ratios A, /A, and G, /G, determining the dynamic range of the SYSOS i

max

our objective is to obtain a relatively constant SNR over a range of 40 dB, these &2
be 100.

Amazon/VB Assets
Exhibit 1012
Page 370



form Coders
Scalar Wavefo! 345

Feedforward adaptation schemes require us to transmit, in addition to the quantized
signal, either the step size Aln] or the gain G[n). Because these values evolve slowly with
time, they can be sampled and quantized at a low rate. The overall rate will be the sum of the
bit rate required to transmit the quantized signal plus the bit rate required to transmit either
the gain or the step size.

Another class of adaptive quantizers use feedback adaptation to avoid having to send
information about the step size or gain. In this case, the step size and gain are estimated from
the quantizer output, so that they can be recreated at the decoder without any extra informa-
tion. The corresponding short-time energy can then be estimated through a first-order IR
filter as in Eq. (7.21) or a rectangular window as in Eq. (7.22), but replacing x*[n] by %*[n].

Another option is to adapt the step size

Aln)= PA[n—-1] (7.25)

where P> 1 if the previous codeword corresponds to the largest positive or negative quan-
tizer level, and P <1 if the previous codeword corresponds to the smallest positive or nega-
tive quantizer level. A similar process can be done for the gain.

APCM exhibits an improvement between 4-8 dB over yi-law PCM for the same bit
rate.

7.24. Differential Quantization

Speech coding is about finding redundancy in the signal and removing it. We know that
there is considerable correlation between adjacent samples, because on the average the sig-
nal doesn’t change rapidly from sample to sample. A simple way of capturing this is to
quantize the difference d[n] between the current sample x{n] and its predicted value X[n]

d[n]= x[n] - %[n] (7.26)
with its quantized value represented as
d[n)= Q{d[n}} = d[n]+€[n] (1.27)

where e[n] is the quantization error. Then, the quantized signal is the sum of the predicted
signal ¥{n] and the quantized difference d[n)

i{n]= Z(n}+d{n] = x[n] +¢[n] (1.28)
8) tells us that the quantization error will b(? small.
] to be lower than that of x[n] for differential cod-
| Pulse Code

If the prediction is good, Eq. (7.2
Statistically, we need the variance of e[n ; ;
ing to provide any gain. Systems of this type are generically called Differentia
Modulation (DPCM) [11] and can be seen in Figure 7.3.
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Figure 7.3 Block diagram of a DPCM encoder and decoder with feedback prediction,

Delta Modulation (DM) [47] is a 1-bit DPCM, which predicts the current sample to he
the same as the past sample:

X[n]=x{n-1] (7.29)
so that we transmit whether the current sample is above or below the previous sample.

dlil= ‘A x[n]>x[n-1]
- =A x[n]<x[n-1] (7.30)

with A being the step size. If A is too small, the reconstructed signal will not increase as fast
as the original signal, a condition known as slope overload distortion. When the slope is
small, the step size A also determines the peak error; this is known as granular noise. Both
quantization errors can be seen in Figure 7.4. The choice of A that minimizes the mean
squared error will be a tradeoff between slope overload and granular noise.

Figure 7.4 An example of slope overload distortion and granular noise in a DM encoder.

If the signal is oversampled by a factor N, and the step size is reduced by the s
amount (i.e., A/N), the slope overload will be the same, but the granular noise will decreast
by a factor N. While the coder is indeed very simple, sampling rates of over 200 kbps are
needed for SNRs comparable to PCM, so DM is rarely used as a speech coder. .

_ However, delta modulation is useful in the design of analog-digital converter ":155
variant called sigma-delta modulation [44] shown in Figure 7.5. First the signal is I0%7.”
ﬁller-ed with a simple analog filter, and then it is oversampled. Whenever the predicted 5'5
nal ¥{n] is below the original signal x[n], the difference d[n] s positive. This difference
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is averaged over time with a digital integrator whose output is e[n]. If this situation persists
the accumulated error e[n] will exceed a positive value A, which causes a 1 to be encode(i
into the stream g[n]. A digital-analog converter is used in the loop which increments by one
the value of the predicted signal %[n]. The system acts in the opposite way if the predicted
signal #[n) is above the original signal x[n] for an extended period of time. Since the signal
is oversampled, it changes very slowly from one sample to the next, and this quantization
can be accurate. The advantages of this technique as an analog-digital converter are that
inexpensive analog filters can be used and only a simple 1-bit A/D is needed. The signal can
next be low-passed filtered with a more accurate digital filter and then downsampled.

X0 [ or ko] sm PG Al G L _;J_l__

Fn} | _ZoowmmmoIoTIn

*(n]
LPF M -

Figure 7.5 A sigma-delta modulator used in an oversampling analog-digital converter.

Adaptive Delta Modulation (ADM) combines ideas from adaptive quantization and
delta modulation with the so-called Continuously Variable Slope Delta Modulation
(CVSDM) [22] having a step size that increases

Aln]= oA[n-11+k if en),eln—1] and e[n —'2] have same sign 131)
aA[n-1]+k, otherwise

with 0< & <1 and 0< k, <<k, . The step size increases if the last three errors have the same

sign and decreases otherwise. it o o 13
Improved DPCM is achieved through linear prediction in which ¥[r] is a linear com-

bination of past quantized values x{7]

X[n]= ia,i[n—k] (132)

k=l

DPCM systems with fixed prediction coefficients can provide from 4 to 11 dB im-
provement over direct linear PCM, for prediction ordersup top =4, fat the expense of in-
creased computational complexity. Larger improvements can be obtained by adapting the
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prediction coefficients. The coefficients can be transmitted in a feedforward fashijon of not
transmitted if the feedback scheme is selected.

ADPCM [6] combines differential quantization with adaptive step-size quantizatioy
ITU-T Recommendation G.726 uses ADPCM at bit rates of 40, 32, 24, and 16 kbps, wity 5.
4, 3, and 2 bits per sample, respectively. It employs an adaptive feedback quantizer gpq a,;
adaptive feedback pole-zero predictor. Speech at bit rates of 40 and 32 kbps offer tg]] qual-
ity, while the other rates don’t. G.727 is called embedded ADPCM because the 2-bjt quan.
tizer is embedded into the 3-bit quantizer, which is embedded into the 4-bit quantizer, and
into the 5-bit quantizer. This makes it possible for the same codec to use a lower bit rate,
with a graceful degradation in quality, if channel capacity is temporarily limited. Earlier
standards G.721 [7, 13] (created in 1984) and G.723 have been subsumed by G.726 and
G.727. G.727 has a MOS of 4.1 for 32 kbps and is used in submarine cables. The Windows
WAV format also supports a variant of ADPCM. These standards are shown in Table 7.2,

Table 7.2 Common scalar waveform standards used.

,7 Standard Bit Rate MOS Algorithm Sampling Rate
(kbits/sec) (kHz)
Stereo CD Audio 1411 5.0 16-bit linear PCM 441
WAV, AIFF, SND | Variable - 16/8-bit linear PCM 8, 11.025, 16,
22.05,44.1, 48

G.711 64 4.3 p-law/A-law PCM 8
G.727 40, 32,24, 16 4.2 (32k) ADPCM 8
G.722 64, 56, 48 Subband ADPCM 16

Wideband speech (50-7000 Hz) increases intelligibility of fricatives and overall per-
ceived quality. In addition, it provides more subject presence and adds a feeling of transpar-
ent communication. ITU-T Recommendation G.722 encodes wideband speech with bit rates
of 48, 56, and 64 kbps. Speech is divided into two subbands with QMF filters (see Chapter
5). The upper band is encoded using a 16-kbps ADPCM similar to the G.727 standard. The
lower band is encoded using a 48-kbps ADPCM with the 4- and 5-bit quantizers embedded
in the 6-bit quantizer. The quality of this system scores almost 1 MOS higher than that of
telephone speech.

7.3.  SCALAR FREQUENCY DOMAIN CODERS

Frequency domain is advantageous because:

1. The samples of a speech signal have a great deal of correlation among them,
whereas frequency domain components are approximately uncorrelated and

Amazon/VB Assets
Exhibit 1012
Page 374



; uency Domain Coders
Scalar Freq y 349

2. The perceptugl effects of masking described in Chapter 2 can be more easil
implemented in the frequency domain. These effects are more pronounced fo):
high-bandwidth signals, so frequency-domain coding has been mostly used
for CD-quality signals and not for 8-kHz speech signals.

73.1.  Benefits of Masking

As discussed in Chapter 2, masking is a phenomenon by which human listeners cannot per-
ceive a sound if it is below a certain level. The consequence is that we don’t need to encode
such sound. We now illustrate how this masked threshold is computed for MPEG'-1 layer 1
Given an input signal s{n] quantized with b bits, we obtain the normalized signal x[n] as '

x[n]= —s[z—'z]—, (1.33)

where N = 512 is the length of the DFT. Then, using a Hanning window,
w{n]=0.5 ~0.5¢cos(27n/ N) (7.34)

we obtain the log-power spectrum as

N-l 2

Plk]= P, +10log,, zw[n]x[n]e'm"““ (1.35)

n=0

where P, is the playback SPL, which, in the absence of any volume information, is defined
as 90 dB.

Tonal components are identified in Eq. (7.35) as local maxima, which exceed
neighboring components within a certain Bark distance by at least 7 dB. Specifically, bin &
is tonal if and only if

P[k]> Pk 1] (1.36)

and

P[k]> Pk +1]+7dB (1.37)

where 1</ <A,, and A, is given by

2 2<k<63 (170Hz—5.5kHz)
A, =43 63<k<127 (5.5kHz,11kHz)
6 127<k<256 (11kHz,22KHZ)

(7.38)

 MPEG (Moving Picture Experts Group) is the nickname given 10 a family of International Standards for coding

audiovisual information.
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so that the power of that tonal masker is computed as the sum of the power in that bj ;
left and right adjacent bins: In and jig
¥ \
P, [k]=10log 10! Ftk+/1
™ 10 ZI (7.39)

The noise maskers are computed as the sum of power spectrum of the rema

quency bins k in a critical band not within a neighborhood A, of the tonal maske e

Ts:

Py, [k]1=10log, | > 104711
- ' (7.40)
where j spans a critical band.
To compute the overall masked threshold we need to sum all masking thresholds cop-

tributed by each frequency bin {, which is approximately equal to the maximum (see Chapter
2):

1] = max 7, k], max (7, [4])) (741)

In Chapter 2 we saw that whereas temporal postmasking can last from 50 to 300 ms,
temporal premasking tends to last about 5 ms. This is also important because when a fre-
quency transform is quantized, the blocking effects of transform’s coders can introduce
noise above the temporal premasking level that can be audible, since 1024 points corre-
sponds to 23 ms at a 44-kHz sampling rate. To remove this pre-echo distortion, audible in
the presence of castanets and other abrupt transient signals, subband filtering has been pro-
posed, whose time constants are well below the 5-ms premasking time constant.

32 Transform Coders

We now use the Adaptive Spectral Entropy Coding (ASPEC) of High Quality Music Signals
algorithm, which is the basis for the MPEG1 Layer 1 audio coding standard [24], to illus-
trate how transform coders work. The DFT coefficients are grouped into 128 subbands_. and
128 scalar guantizers are used to transmit all the DFT coefficients. It has been empiﬂc_a"Y
found that a difference of less than 1 dB between the original amplitude and the quax}nze
value cannot be perceived. Each subband j has a quantizer having &, levels and step size 0
T, as

k; =1+2xmd(P, /T,) (142)
the targest re2
unding forc
bband. Boh

whfare T, is the quantized JND threshold, P, is the quantized magnitude of
or imaginary component of the j* subband, and rnd( ) is the nearest integer o
tion. Entropy coding (see Chapter 3) is used to encode the coefficients of that su
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7, and P, are quantized on a dB scale using 8-bit unifor
namic range, thus with a step size of 0.66 dB. Then they are
There are two main methods of obtaining a frequency

m quantizers with a 170-dB dy-
transmitted as side information.
-domain representation:

|. Through subband filtering via a filterbank (see Chapter 5). When a filterbank
is uscd, the bandwidth of each band is chosen to increase with frequency fol-
lowing a perceplual scale, such as the Bark scale. As shown in Chapter 5
such filterbanks yield perfect reconstruction in the absence of quantization. ’

2. Through frequency-domain transforms. Instead of using a DFT, higher effi-
ciency can be obtained by the use of an MDCT (see Chapter 5).

The exact implementation of the MPEG1 Layer | standard is much more complicated
and beyond the scope of this book, though it follows the main ideas described here; the same
is true for the popular MPEG1 Layer I11, also known as MP3. Impleme ntation details can be
found in [42].

7.3.3. Consumer Audio

Dolby Digital, MPEG, DTS, and the Perceptual Audio Coder (PAC) [28] are all audio cod-
ers based on frequency-domain coding. Except for MPEG-1, which supports only stereo
signals, the rest support multichannel,

Dolby Digital is multichannel digital audio, using lossy AC-3 [54] coding technology
from original PCM with a sample rate of 48 kHz at up to 24 bits. The bit rate varies from 64
to 448 kbps, with 384 being the normal rate for 5.1 channels and 192 the normal rate for
stereo (with or without surround encoding). Most Dolby Digital decoders support up to 640
kbps. Dolby Digital is the format used for audio tracks on almost all Digital Video/Versatile
Discs (DVD). A DVD-5 with only one surround stereo audio stream (at 192 kbps) can hold
over 55 hours of audio. A DVD-18 can hold over 200 hours.

MPEG was established in 1988 as part of the joint ISO (International Standardization
Organization) / IEC (International Electrotechnical Commission) Technical Committee on
Information Technology. MPEG-1 was approved in 1992 and MPEG-2 in 1994. Layers I to
11 define several specifications that provide better quality at the expense of added complex-
ity. MPEG-1 audio is limited to 384 kbps. MPEG1 Layer Il audio [23], also known as MP3,
is very popular on the Internet, and many compact players exist. )

MPEG-2 audio, one of the audio formats used in DVD, is multichannel digital audio,
using lossy compression from 16-bit linear PCM at 48 kHz. Tests have shown that for nearly
all types of speech and music, at a data rate of 192 kbps and over, on a stereéo ch.annel,
scarcely any difference between original and coded versions was observab}e (ranking of
coded item > 4.5), with the original signal needing 1.4 Mbps on a CQ (reducuonh by a factor
of 7). One advantage of the MPEG audio technique is that future findings reg;ardmg'psycho-
acoustic effects can be incorporated later, so it can be expected that today’s quality level
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using 192 kbps will be achievable at lower data rates in the future. A variable bit rae of 3
to 912 kbps is supported for DVDs.

DTS (Digital Theater Systems) Digital Surround is another multi-channe] (5.1) digity
audio format, using lossy compression derived from 20-bit linear PCM at 48 kHz. Tpe i
pressed data rate varies from 64 to 1536 kbps, with typical rates of 768 and 1536 kbps, :

7.34. Digital Audio Broadcasting (DAB)

Digital Audio Broadcasting (DAB) is a means of providing current AM and FM listeners
with a new service that offers: sound quality comparable to that of compact discs, increaseq
service availability (especially for reception in moving vehicles), flexible coverage scenar-
ios, and high spectrum efficiency.

Different approaches have been considered for providing listeners with such a service,
Currently, the most advanced system is one commonly referred to as Eureka 147 DAB,
which has been under development in Europe under the Eureka Project EU147 since 1988,
Other approaches include various American in-band systems (IBOC, IBAC, IBRC, FMDigi.
tal, and FMeX) still in development, as well as various other systems promising satellite
delivery, such as WorldSpace and CD Radio, still in development as well. One satellite-
delivery system called MediaStar (formerly Archimedes) proposes to use the Eureka 147
DAB signal structure, such that a single receiver could access both terrestrial and satellite
broadcasts.

DAB has been under development since 1981 at the Institut fiir Rundfunktechnik
(IRT) and since 1987 as part of a European research project (Eureka 147). The Eureka 147
DAB specification was standardized by the European Telecommunications Standards Insti-
tute (ETSI) in February 1995 as document ETS 300 401, with a draft second edition issued
in June 1996. In December 1994, the International Telecommunication Union—
Radiocommunication (ITU-R) recommended that this technology, referred to as Digital Sys-
tem A, be used for implementing DAB services.

The Eureka 147 DAB signal consists of multiple carriers within a 1.536-MHz chann?l
bandwidth. Four possible modes of operation define the channel coding configuration, specl
fying the total number of carriers, the carrier spacing, and also the guard interval duration.
Each channel provides a raw data rate of 2304 kbps; after error protection, a useful data rfate
of anywhere between approximately 600 kbps up to 1800 kbps is available to the service
provider, depending on the user-specified multiplex configuration. This useful data rate can
be divided into an infinite number of possible configurations of audio and data programs-
All audio programs are individually compressed using MUSICAM (MPEG-1 Layer in. "

For each useful bit, 1 1/3 ... 4 bits are transmitted. This extensive redundancy makes '_
possible to reconstruct the transmitted bit sequence in the receiver, even if part of it 1s ea?
rupted during transmission (FEC—forward error correction). In the receiver, er'ror. conc N
mept can be carried out at the audio reproduction stage, so that residual transmission ™
which could not be corrected do not always cause disruptive noise.
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7.4. CODE EXCITED LINEAR PREDICTION (CELP)

The use of linear pred‘ictor.s removes redundancy in the signal, so that coding of the residual
signal can be done with synpler quantizers. We first introduce the LPC vocoder and then
introduce coding of the residual signal with a very popular technique called CELP.

74.1. LPC Vocoder

A typical model for speech production is shown in Figure 7.6, which has a source, or excita-
tion, driving a linear time-varying filter. For voiced speech. the excitation is an impulse train
spaced P samples apart. For unvoiced speech, the source is white random noise. The filter
h,[n] for frame m changes at regular intervals, say every 10 ms. If this filter is represented
with linear predictive coding, it is called an LPC vocoder [3].

LLL o b A
Wi

Figure 7.6 Block diagram of an LPC vocoder.

In addition to transmitting the gain and LPC coefficients, the encoder has to determine
whether the frame is voiced or unvoiced, as well as the pitch period P for voiced frames.

The LPC vocoder produces reasonable quality for unvoiced frames, but often results in
somewhat mechanical sound for voiced sounds, and a buzzy quality for voiced fricatives.
More importantly, the LPC vocoder is quite sensitive to voicing and pitch errors, so that an
accurate pitch tracker is needed for reasonable quality. The LPC vocoder also performs
poorly in the presence of background noise. Nonetheless, it can be highly intelligible. The
Federal Standard 1015 [55], proposed for secure communications, is based on a 2.4-kbps
LPC vocoder.

It's also possible to use linear predictive coding techniques together with Huffman
coding [45] to achieve lossless compression of up to 50%.

7.4.2. Analysis by Synthesis

Code Excited Linear Prediction (CELP) [5] is an umbrella term for a family of techniques
that quantize the LPC residual using VQ, thus the term code excited, using analysis by syn-
thesis. In addition CELP uses the fact that the residual of voiced speech has periodicity and
can be used to predict the residual of the current frame. In CELP coding the LPC coefﬁ-
cients are quantized and transmitted (feedforward prediction), as well as the code\.uo'rd in-
dex. The prediction using LPC coefficients is called short-term prediction. The p-redxcuon of
the residual based on pitch is called long-term prediction. To compute the _quannzed cotj,fﬁ-
cients we use an analysis-by-synthesis technique, which consists of choosing the combina-
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tion of parameters whose reconstructed signal is closest to the analysis signal, I, pract;
not all coefficients of a CELP coder are estimated in an analysis-by-synthesis Manner, ce'

We first estimate the p"-order LPC coefficients from the samples x{n] for fra
ing the autocorrelation method, for example. We th‘en quantize the LPC coeff
(a,,a,,---,a,) with the techniques described ip Section 7.4.5. The residual sigp
obtained by inverse filtering x[n] with the quantized LPC filter

me ¢ yg.
ciems to
al e[n) 5

V4
dnl=x [n] - ]zla,x[n -] (7.43)
Given the transfer function of the LPC filter
1 = -
H@ =g = =2 0
= ia,z"' s

we can obtain the first M coefficients of the impulse response h[n] of the LPC filter by driy-
ing it with an impulse as

1 n=0

h[n] =J z":a,h[n —-i] O<n<p (7.45)

i=]

iafh[n—-i] ps<n<M

. i=l

so that if we quantize a frame of M samples of the residual e = (e[0],€{1],---{M -1y to
e, =(g[0],¢[1],---e[M —1])", we can compute the reconstructed signal % [n] as

%[n)= Y hmle[n—m)+ Y mle[n—m] (146)
m=0 m=n+l

where the second term in the sum depends on the residual for previous frames, which we

already have. Let’s define signal r,[n] as the second term of Eq (7.46):

nlnl= Y, Hmleln-m] 740
m=n+1
ol : I
thuch is the output of the LPC filter when there is no excitation for frame ¢. The importa"
thing to note is that r[n] does not depend on ¢,[n].
Itis convenient to express Eqs. (7.46) and (7.47) in matrix form as

X, =He, +r, (148
where matrix H corresponds to the LPC filtering operation with its memory set 0 O
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hy 0 0
h h, 0 0
] (7.49)
hya hya 0 By 0
hy, hyoa = b I

Given the large dynamic range of the residual signal, we use gain-shape quantization
where we quantize the gain and the gain-normalized residual separately: ’

e =Ac, (7.50)

where A is the gain and ¢, is the codebook entry i. This codebook is known as the Sfixed
codebook because its vectors do not change from frame to frame. Usually the size of the
codebook is selected as 2" so that full use is made of all N bits. Codebook sizes typically
vary from 128 to 1024. Combining Eq. (7.48) with Eq. (7.50), we obtain

%, = AHc, +1, (1.51)
The error between the original signal x and the reconstructed signal %, is
g =x-X, (7.52)

The optimal gain A and codeword index i are the ones that minimize the squared error
between the original signal and the reconstructed’ signal:

EG,A) =[x~ [ =[x~AHe, - g =|x -, + A’ H He, —24c]H (x-1,)  (7.53)

where the term [x—r(,|2 does not depend on A or i and can be neglected in the minimization.
For a given ¢,, the gain A, that minimizes Eq. (7.53) is given by

_ CTHT(X—I‘O) (7.54)

! c,THTHc,.

Inserting Eq. (7.54) into (7.53) lets us compute the index j as the one that minimizes

| (g eer)
j=arg'mm _(_—c,rl-l—rl-lc;ol, (7.55)

So we first obtain the codeword index j according to Eq. (7.55) and th'en the‘gain A,
according to Eq. (7.54), which is scalarly quantized to A,. Both codeworcjl index j and A,
are transmitted. In the algorithm described here, we first chose the quantized LPC coeffi-

) A beginner's mistake is to find the codebook index that minimizes the squared error of the residual. This does not
Minimize the difference between the original signal and the reconstructed signal.
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cients (ay,a,,'+,a,) independently of the gains and codeword index, an
codeword index independently of the quantized gain ﬂ.,.. This procedure
estimation, because some parameters are obtained independently of
shown in Figure 7.7. Closed-loop estimation [49] means that all possi
quantized parameters are explored. Closed-loop is more computatio
yields lower squared error.

d_ then we chose (he
1s called open-logp
the others, This s
ble combinations of
nally expensive but

codebook

x[n]

x,{n)

E
VQ index il

Error minimization

Figure 7.7 Analysis-by-synthesis principle used in a basic CELP.

7.4.3. Pitch Prediction: Adaptive Codebook

The fact that speech is highly periodic during voiced segments can also be used to reduce
redundancy in the signal. This can be done by predicting the residual signal e[n] at the cur-
rent vector with samples from the past residual signal shifted a pitch period =

elnl=A’e[n—1]+ A/ ¢/ [n]= A’ [n]+ A/ ¢/ [n] (.56)
Using the matrix framework we described before, Eq. (7.56) can be expressed as
e, = A +A ¢/ (1.57)

where we have made use of an adaptive codebook [31], where ¢/ is the adaptive cod?bofzﬁ
entry j with corresponding gain A°, and ¢/ is the fixed or stochastic codebook entry i me-
corresponding gain A’ . The adaptive codebook entries are segments of the recently syn
sized excitation signal

¢ = (1), efl—1],---, el M —1—¢])7 (1.58)

¢ range of !

where ¢ is the delay which specifies the start of the adaptive codebook entry #. Th onds 102

is often between 20 and 147, since this can be encoded with 7 bits. This COITES
range in pitch frequency between 54 and 400 Hz for a sampling rate of 8 kHz.
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The contribution of the adaptive codebook is much larger than that of the stochastic
codebook for voiced sounds. So we generally search for the adaptive codebook first, using
Eq. (7.58) and a modified version of Egs. (7.55) and (7.54), replacing / by r. C.lose‘d-loop
search of both £ and gain here often yields a much larger error reduction.

7.4.4. Perceptual Weighting and Postfiltering

The objective of speech coding is to reduce the bit rate while maintaining a perceived Jevel
of quality; thus, minimization of the error is not necessarily the best criterion. A perceptual
weighting filter tries to shape the noise so that it gets masked by the speech signal (see
Chapter 2). This generally means that most of the quantization noise energy is located in
spectral regions where the speech signal has most of its energy. A common technique [4]
consists in approximating this perceptual weighting with a linear filter

A(z/ B)
W(z) ==L
(2) 4GIT) (7.59)
where A(z) is the predictor polynomial
4
AiZ)=1-Y az" (7.60)
i=1

Choosing ¥ and 8 so that and 0 <y < 8 <1, implies that the roots of 4(z/f) and A(z/y)
will move closer to the origin of the unit circle than the roots of A(z), thus resulting in a fre-
quency response with wider resonances. This perceptual filter therefore deemphasizes the con-
tribution of the quantization error near the formants. A common choice of parameters is
B =10 and y = 038, since it simplifies the implementation. This filter can easily be included in
the matrix H, and a CELP coder incorporating the perceptual weighting is shown in Figure 7.8.

Stochastic
codebook .
x[n
e I PSS
¢,[n] E Long term Predu:;c: : E )S_h/o\rt term Predlctor5 i{n)
—»,1]/' - - : =+ : -
ﬂ: - >j E f =
: z b A L] 3
| L2 T [ we

A . SN
VQ index r * J

| Error minimization | - &[n]

Figure 7.8 Diagram of a CELP coder. Both long-term and short-term predictors are used, to-
gether with a perceptual weighting.
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Despite the perceptual weighting filter, the reconstructed signal still containg audip
noise. This filter reduces the noise in those frequency regions that are perceptually irrej, &
without degrading the speech signal. The postfilter generally consists of a short-term Pos;j;(
ter to emphasize the formant structure and a long-term postfilter to enhance the peﬁodic;l ’
of the signal [10]. One possible implementation follows Eq. (7.59) with valueg of ﬁ=05y
and y =0.75.

7.4.5. Parameter Quantization

To achieve a low bit rate, all the coefficients need to be quantized. Because of its codin
efficiency, vector quantization is the compression technique of choice to quantize the pregi..
tor coefficients. The LPC coefficients cannot be quantized directly, because smal| errors
produced in the quantization process may result in large changes in the spectrum and pOssi-
bly unstable filters. Thus, equivalent representations that guarantee stability are used, such
as reflection coefficients, log-area ratios, and the line spectral frequencies (LSF) described
in Chapter 6. LSF are used most often, because it has been found empirically that they be-
have well when they are quantized and interpolated [2]. For 8 kHz, 10 predictor coefficients
are often used, which makes using a single codebook impractical because of the large di-
mension of the vector. Split-VQ [43] is a common choice, where the vectors are divided into
several subvectors, and each is vector quantized. Matrix quantization can also be used to
exploit the correlation of these subvectors across consecutive time frames. Transparent
quality, defined as average spectral distortion below 1 dB with no frames above 4 dB, can be
achieved with fewer than 25 bits per frame.

A frame typically contains around 20 to 30 milliseconds, which at 8 kHz represents
160-240 samples. Because of the large vector dimension, it is impractical to quantize a
whole frame with a single codebook. To reduce the dimensionality, the frame is divided into
four or more nonoverlapping sub-frames. The LSF coefficients for each subframe are lie-
arly interpolated between the two neighboring frames.

The typical range of the pitch prediction for an 8-kHz sampling rate goes from 54 0
400 Hz, from 20 to 147 samples, and from 2.5 ms to 18.375 ms, which can be encoded with
7 bits. An additional bit is often used to encode fractional delays for the lower pitch periods.
These fractional delays can be implemented through upsampling as described in Chapter 3.
The subframe gain of the adaptive codebook can be effectively encoded with 3 or 4 bits
Alternatively, the gains of all sub-frames within a frame can be encoded through VQ. result-
ing in more efficient compression.

The fixed codebook can be trained from data using the techniques described in Cha¥
ter 4. This will offer the lowest distortion for the training set but doesn’t guarantee low dxs[;
Fortion for mismatched test signals. Also, it requires additional storage, and full searc
Increases computation substantially.

Since subframes should be approximately white, the codebook can be popula
samples of a white process. A way of reducing computation is to let those noise sam
only +1, 0, or -1, because only additions are required. Codebooks of a specific tyPe: kn il

as algebraic codebooks [1], offer even more computational savings because they col

ted from
ples be
own
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qany Os. Locations for the 4 pulses per subframe under the G.729 standard are shown in
Table 7.3. N |

Full search can efficiently be done with this codebook structure. Algebraic codebooks
can provide almost as low distortion as trained codebooks can, with low computational

complexity.

Table 7.3 Algebraic codebooks for the G.729 standard. Each of the four codebooks has one
pulse in one possible location indicated by 3 bits for the first three codebooks and 4 bits for the'
last codebook. The sign is indicated by an additional bit. A total of 17 bits are needed to en-
code a 40-sample subframe.

Amplitude Positions
1 0,5, 10, 15, 20, 25, 30, 35
+1 1,6, 11, 16, 21, 26, 31, 36
*1 2,7,12,17,22,27.32,37
xl 3,8, 13,18, 23, 28, 33,38
4,9, 14,19, 24, 29, 34, 39

7.4.6. CELP Standards

There are many standards for speech coding based on CELP, offering various points in the
bit-rate/quality plane, mostly depending on when they were created and how refined the
technology was at that time.

Voice over Internet Protocol (Voice over IP) consists of transmission of voice through
data networks such as the Internet. H.323 is an umbrella standard which references many
other ITU-T recommendations. H.323 provides the system and component descriptions, call
model descriptions, and call signaling procedures. For audio coding, G.711 is mandatory,
while G.722, G.728, G.723.1, and G.729 are optional. G.728 is a low-delay CELP coder that
offers toll quality at 16 kbps [9], using a feedback 50™-order predictor, but no pitch predic-
tion. G.729 [46] offers toll quality at 8 kbps, with a delay of 10 ms. G.723.1, developed by
DSP Group, including Audiocodes Ltd., France Telecom, and the University of Sherbrooke,
has slightly lower quality at 5.3 and 6.3 kbps, but with a delay of 30 ms. These standards are

shown in Table 7.4.

Table 7.4 Several CELP standards used in the H.323 specification use
and voice streaming through the Internet.

d for teleconferencing

Standard Bit Rate MOS Algorithm H.323 Comments
(kbps)
G.728 16 4.0 No pitch prediction M____LL‘M_‘W__
G729 |8 39 | ACELP Optional |
G131 |53,63 3.9 ACELPfor 5.3k | | Optional | |
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In 1982, the Conference of European Posts and Telegraphs (CEPT) formeg , stud
group called the Groupe Spécial Mobile (GSM) to study and develop a pan-European pubﬁz
land mobile system. In 1989, GSM responsibility was transferred to the European Tele-
communication Standards Institute (ETSI), and the phase I GSM specifications were pub-
lished in 1990. Commercial service was started in mid 1991, and by 1993 there were 36
GSM networks in 22 countries, with 25 additional countries considering or having already
selected GSM. This is not only a European standard; South Africa, Australia, and mMany
Middle and Far East countries have chosen GSM. The acronym GSM now stands for
Global System for Mobile telecommunications. The GSM group studied several voice cod-
ing algorithms on the basis of subjective speech quality and complexity (which is related g
cost, processing delay, and power consumption once implemented) before arriving at the
choice of a Regular Pulse Excited-Linear Predictive Coder (RPE-LPC) with a Long Tem
Predictor loop [56). Neither the original full-rate at 13 kbps [56] nor the half-rate at 5.6
kbps [19] achieves toll quality, though the enhanced full-rate (EFR) standard based on
ACELP [26] has toll quality at the same rates.

The Telecommunication Industry Association (TIA) and the Electronic Industries Alli-
ance (EIA) are organizations accredited by the American National Standards Institute
(ANSI) to develop voluntary industry standards for a wide variety of telecommunication
products. TR-45 is the working group within TIA devoted to mobile and personal communi-
cation systems. Time Division Multiple Access (TDMA) is a digital wireless technology that
divides a narrow radio channel into framed time slots (typically 3 or 8) and allocates a slot to
each user. The TDMA Interim Standard 54, or TIA/EIA/IS54, was released in early 1991 by
both TIA and EIA. It is available in North America at both the 800-MHz and 1900-MHz
bands. 1S54 [18] at 7.95 kbps is used in North America’s TDMA (Time Division Multiple
Access) digital telephony and has quality similar to the original full-rate GSM. TDMA [5-
136 is an update released in 1994.

Table 7.5 CELP standards used in cellular telephony.

Standard Bit Rate MOS Algorithm Cellular Comments

(kbps) ]
Full-rate GSM 13 3.6 VSELP GSM

RTE-LTP R

EFR GSM 12.2 4.5 ACELP GSM
1S-641 74 4.1 ACELP PCS1900
IS-54 7.95 39 VSELP TDMA SR
15-96a max 8.5 3.9 QCELP CDMA Variable-raté

. Code Divi.sior.z Multiple Access (CDMA) is a form of spread spectrum, 2 family of
digital Commumca'tw]? techniques that have been used in military applications for m?ny
years. The core principle is the use of noiselike carrier waves, and, as the name implics

Amazon/VB Assets
Exhibit 1012
Page 386



Low-Bit Rate Speech Coders ™

bandwidths much .wider than that required for simple point-to-point communication at the
same data rate. Qnglnally .lhere were two motivations: either to resist enemy efforts to jam
the communications (anti-jam, or AJ) or to hide the fact that communication was even tak-
ing place, sometimes called low probability of intercept (LPI). The service started in 1996 in
the United States, and by the end of 1999 there were 50 million subscribers worldwide. IS-
96 QCELP [14], used in North America's CDMA, offers variable-rate coding at 8.5, 4, 2
and 0.8 kbps. The lower bit rate is transmitted when the coder detects background ,no;sej
TIA/EIA/IS-127-2 is a standard for an enhanced variable-rate codec, whereas TIA/EIA/IS-
733-1 is a standard for high-rate. Standards for CDMA, TDMA, and GSM are shown in Ta-
ble 7.5.

Third generation (3G) is the generic term used for the next generation of mobile
communications systems. 3G systems will provide enhanced services to those—such as
voice, text, and data—predominantly available today. The Universal Mobile Telecommuni-
cations System (UMTS) is a part of ITU's International Mobile Telecommunications (IMT)-
2000 vision of a global family of third-generation mobile communications systems. It has
been assigned to the frequency bands 1885-2025 and 2110-2200 MHz. The first networks
are planned to launch in Japan in 2001, with European countries following in early 2002. A
major part of 3G is General Packet Radio Service (GPRS), under which carriers charge by
the packet rather than by the minute. The speech coding standard for CDMA2000, the um-
brella name for the third-generation standard in the United States, gained approval for its
first phase in 2000. An adaptive multi-rate wideband speech codec has also been proposed
for the GSM's 3G [16], which has five modes of operation from 24 kbps down to 9.1 kbps.

While most of the work described above uses a sampling rate of 8 kHz, there has been
growing interest in using CELP techniques for high bandwidth and particularly in a scalable
way so that a basic layer contains the lower frequency and the higher layer either is a full-
band codec [33] or uses a parametric model [37].

7.5. Low-BIT RATE SPEECH CODERS

In this section we describe a number of low-bit-rate speech coding techniques including the
mixed-excitation LPC vocoder, harmonic coding, and waveform interpolation. These coding
techniques are also used extensively in speech synthesis.

Waveform-approximating coders are designed to minimize the difference !)etween the
original signal and the coded signal. Therefore, they produce a reconstructed sngn_al whc?se
SNR goes to infinity as the bit rate increases, and they also behave well when the xnput sig-
nal is noisy or music. In this category we have the scalar waveform cod_ers of Section 7.2,
the frequency-domain coders of Section 7.3, and the CELP coders _of_Se:cnon 7 4

Low-bit-rate coders, on the other hand, do not attempt to minimize th.e difference be-
tween the original signal and the quantized signal. Since thpse cpders are designed to operate
at low bit rates, their SNR does not generally approach. infinity even if a l:?rge bit ratenls
used. The objective is to compress the original signal with another one Fhat is perceptu? y
equivalent. Because of the reliance on an inaccurate model, these low-bit-rate coders often
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eters are not quantized. In this case, the distortion
izati ise. Furthermore, these coders are more sensitiye |
i uantization noise. :
can consist of more than g

ell on music.
f noise in the signal. and they do not perform as e l .
the presence O 223 e o e MOS of waveform approximating coders and low.pj.
In Figure /.

function of the bit rate. CELP uses a model of speech to obtqin as much pre.
as a'unc ¢ allows for the model not to be exact, and thus is a waveform-
diction_ = POSSlbiie' y(cl,‘ELP is a robust coder that works reasonably well when the assump-
‘{PPro;n::)zlx;r;gc]cec)ane;-p eech signal breaks either because of additive noise or because there j
fion O

usic in the background Researchers are working on the challenging problem of Creating
m ’ - E .
more scalable coders that offer best performance at all bit rates.

distort the speech signal even if the param

mpare th

rate coders

excellent
Waveform-approximrlg_gg_d_e_;_
good
U S —
Low-bit-rate coder
fair
poor

1 2 4 8 16 32 64
Bit rate (kbps)

Figure 7.9 Typical subjective performance of waveform-approximating and low-bit-rate cod-
ers as a function of the bit rate. Note that waveform-approximating coders are a better choice
for bit rates higher than about 3 kbps, whereas parametric coders are a better choice for lower
bit rates. The exact cutoff point depends on the specific algorithms compared.

7.5.1. Mixed-Excitation LPC Vocoder

The main weakness of the LPC vocoder is the binary decision between voiced and unvoiced
speech, which results in errors especially for noisy speech and voiced fricatives. By havinga
separate VO-lCil:lg decision for each of a number of frequency bands, the performance can be
enhanced significantly [38]. The new proposed U.S. Federal Standard at 2.4 kbps is a Mixed
Excitation Linear Prediction (MELP) LPC vocoder [39], which has a MOS of about 33
}‘:xsbe.xceeds the quality of the older 4800-bps Federal Standard 1016 [8] based on CELP.
+he bt rate (')f.lhc proposed standard can be reduced while maintaining the same quality by
jointly quantizing several frames together [57]. A hybrid codec that uses MELP in strongly
voiced regions and CELP in weakly voiced and unvoiced regions [53] has shown (0 yield

lower bit rates. MELP i i i .
Section 7.5.3 [50]. can also be combined with the waveform interpolation technique @
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7.5.2.  Harmonic Coding

Sinusoidal coding decomposes the speech signal [35] or the LP residual signal [48] into a
sum of sinusoids. The case where these sinusoids are harmonically related is of special in-
terest for speech synthesis (see Chapter 16), so we will concentrate on it in this section. even
though a similar treatment can be followed for the case where the sinusoids are not harmoni-
cally related. In fact, a combination of harmonically related and nonharmonically related
sinusoids can also be used [17]. We show in Section 7.5.2.2 that we don’t need to transmit
the phase of the sinusoids, only the magnitude.

As shown in Chapter 5, a periodic signal §[n] with period 7, can be expressed as a
sum of T, harmonic sinusoids

Ty-1
§[n)= Y 4 cos(nlw, +¢,) (7.61)
1=0
whose frequencies are multiples of the fundamental frequency @, =27 /T, and where 4,
and ¢, are the sinusoid amplitudes and phases, respectively. If the pitch period T, has frac-
tional samples, the sum in Eq. (7.61) includes only the integer part of 7, in the summation.
Since a real signal s{»n] will not be perfectly periodic in general, we have a modeling error

e[n] = s[n]-5[n] (7.62)

We can use short-term analysis to estimate these parameters from the input signal s{~]
at frame k, in the neighborhood of ¢ = AN, where N is the frame shift:

s;[n] = s{n}w, [n] = s{n]W[AN - n] (7.63)

if we make the assumption that the sinusoid parameters for frame k (&, 4 and ;) are

constant within the frame.
At resynthesis time, there will be discontinuities at unit boundaries, due to the block

processing, unless we specifically smooth the parameters over time. One way of doing this
is with overlap-add method between frames (k — 1) and k:

§im=wlnls,, [nl+w{n—NJ =N}, 0Sn<N (7.64)

where the window w[#n] must be such that
wln]+win-N1=1, 0<n<N

to achieve perfect reconstruction. This is the case for the common Hamming and Hanning

windows,

This harmonic model [35] is similar to the classic filterbank, though rather than the
whole spectrum we transmit only the fundamental frequency @, and the amplitudes 4, and
phases ¢, of the harmonics. This reduced representation doesn’t result in loss of quahty_for
a frame shift N that corresponds to 12 ms or less. For unvoiced speech, using a default pitch

of 100 Hz results in acceptable quality.

(7.65)
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7.5.2.1. Parameter Estimation

For simplicity in the calculations, let’s define $[»] as a sum of complex exponentialg

-1

Fn)= ;; A exp{j(nlw, +¢,)} (7.66)

and perform short-time Fourier transform with a window w({n]

n [ .
§,(@)= Y e Ww-ln,) .61
=0
where W(®) is the Fourier transform of the window function. The goal is to estimate the
sinusoid parameters as those that minimize the squared error:

E =IS(®) - S, ()] (168)

If the main lobes of the analysis window do not overlap, we can estimate the phases 4,
as

¢, =argS(lw,) (7.69)

and the amplitudes 4, as

1= ‘IE(WI_((:%Z(' (7.70)

For example, the Fourier transform of a (2N + 1) point rectangular window centered
around the origin is given by

Wiw)= sm((Z.N +Dhw/2) an
sin(w/2)
whose main lobes will not overlap in Eq. (7.67) if 27, <2N +1: i.., the window contains at
least two pitch periods. The implicit assumption in the estimates of Egs. (7.69) and (7.70)18
that there is no spectral leakage, but a rectangular window does have significant sp;cﬁ .
leakage, so a different window is often used in practice. For wirdows such as Hanmn%h :t
Hamming, which reduce the leakage significantly, it has been found CXPCFmema_H{i
these estimates are acceptable if the window contains at least two and a half pitch pelloNS)- m
Typically, the window is centered around O (nonzero in the interval ~N £ns
avoid numerical errors in estimating the phases.
Another implicit assumption in Egs. (7.69) and (7.70) is that we know
frequency @, ahead of time. Since, in practice, this is not the case, we can estif
one which minimizes Eq. (7.68). This pitch-estimation method can generate P!

the fundamentd

timate it 2 ¢
tch doubling

o ority of the sig-
or tripling when a harmonic falls within a formant that accounts for the majo
nal’s energy.
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Voiced/unvoiced decisions can be computed from the ratj
signal and that of the reconstruction error
o

> Is{nlf

n=-X\

SNR = N
3. s0] - ST a8

n==N

0 between the energy of the

where it has been empirically found that frames with SNR higher than 13 dB are generally
voiced and lower than 4 dB unvoiced. In between, the signal is considered to contain a

mixed excitation, Since speech is not perfectly stationary within the analysis frame, even
noise-free periodic signals will yield finite SNR. ,

For unvoiced speech, a good assumption is to default to a pitch of 100 Hz. The use of
fewer sinusoids leads to perceptual artifacts,

Improved quality can be achieved by using an analysis-by-synthesis framework [17
34] since the closed-loop estimation is more robust to pitch-estimation and voicing decision,

EITOrS.
75.2.2.  Phase Modeling

An impulse train e[n], a periodic excitation, can be expressed as a sum of complex exponen-
tials

o0 -1
dn}=T, Y 8[n—ny~ k)= &/ (1.73)
i=0

k=—co
which, if passed through a filter H(w) = A(w) exp ®(w), will generate

T-1
(=Y d(lw,)exp{j[(n—n,) @4l + D(lw,)]} (7.74)
=0

Comparing Eq. (7.66) with (7.74), the phases of our sinusoidal model are given by
¢, =-n,0,l+O(lw,) (7.75)
Since the sinusoidal ‘thodel'has too many parameters to lead to lf>w~rate co@ing, a
common technique is to not encode the phases. In Chapter 6 we show that if a system is con-
sidered minimum phase, the phases can be uniquely recovered from knowledge of the mag-

nitude spectrum. .
The magnitude spectrum is known at the pitch harmonics, and the remaining values

¢an be filled in by interpolation: .g., linear or cubic splines [36]. This interpolated magni-
tude spectrum can be approximated through the real cepstrum:

~ X
(@)= c, +23 ¢, cos(kw) Gl

k=1
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and the phase, assuming a minimum phase system, is given by

X
& =-2 in(k@
B =-23 sk o

The phase ¢,(r) of the first harmonic between frames (k - 1) and & can be obty;
from the instantaneous frequency w,(¢) laingg

00(1)= Ok~ DN)+ [ o0, (1)dr (178)
if we assume the frequency @,(r) in that region to vary linearly between frames (k-1) ang
k:

k k=1
_ k=, @y — W,
() =0t + 5 ! (7.79)

and insert Eq. (7.79) into (7.78), evaluating at ¢ = &V, to obtain
Oy = 0o (KN) = ¢y (k= 1)N) +(f™ + w0} )(N /2) (7.80)

the phase of the sinusoid at @, as a function of the fundamental frequencies at frames (k-
1), k and the phase at frame (k- 1):

o) = ' (lo,) +19; (781)

The phases computed by Eqs. (7.80) and (7.81) are a good approximation in practice
for perfectly voiced sounds. For unvoiced sounds, random phases are needed, or else the
reconstructed speech sounds buzzy. Voiced fricatives and many voiced sounds have an aspi-
ration component, so that a mixed excitation is needed to represent them. In these cases, the
source is split into different frequency bands and each band is classified as either voiced or
unvoiced. Sinusoids in voiced bands use the phases described above, whereas sinusoids it
unvoiced bands have random phases.

7.5.2.3. Parameter Quantization

ntize the line

To quantize the sinusoid amplitudes, we can use an LPC fitting and then quantize
fficients. To

spectral frequencies. Also we can do a cepstral fit and quantize the cepstral coe
be more effective, a mel scale should be used. . izing
While these approaches help in reducing the number of parameters and‘lﬂ qua{‘“de:
those parameters, they are not the most effective way of quantizing the sinusoid amp m,l,]ise.
A technique called Variable-Dimension Vector Quantization (VDVQ) [12] has been & nglh
to address this. Each codebook vector ¢, has a fixed dimension N determined by ﬂ;‘: Oen e
of the FFT used. The vector of sinusoid amplitudes A has a dimension / that dcpe_"tance be-
number of harmonics and thus the pitch of the current frame. To compute the f'hs ompute
tween A and c,, the codebook vectors are resampled to a size / and the distance 15 ¢

X g . ) : is often use™
between two vectors of dimension /. Euclidean distance of the log-al'l‘lplm-’des B
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is method, only the distance at the harmonics is evaluated instead of the distance at the

s in the envelope that are not actually present in the signal. Also, this technique does
naccuracies of the model used, such as the inability of linear predictive cod-

Inth

oint: .
not suffer from 1
ing t0 model nasals.

75.3.
The main idea behind waveform interpolation (WI) [29] is that the pitch pulse changes
slowly over time for voiced speech. During voiced segments, the speech signal is nearly
periodic. WI coders can operafe asilow as 24 kbps.

Starting at an arbitrary time instant, it is easy to identify a first pitch cycle x[n], a sec-
ond x[n, a third x,{»], and so on. We then express our signal x[n] as a function of these
pitch cycle waveforms x,[n]

Waveform Interpolation

FOCDYACEIN _—
where P, =t,—1,., i the pitch period at time 1, in samples, and the pitch cycle is a win-
dowed version of the input

x,[n]=w,[n)x{n] (7.83)

for example, with a rectangular window. To transmit the signal in a lossless fashion we need
to transmit all pitch waveforms x,[n].

If the signal is perfectly periodic, we need to transmit only one pitch waveform x,[x]
and the pitch period P. In practice, voiced signals are not perfectly periodic, so that we need
lo transmit more than just one pitch waveform. On the other hand, voiced speech is nearly
periodic, and consecutive pitch waveforms are very similar. Thus, we probably do not need
totransmit all, and we could send every other pitch waveform, for example.

Itis convenient to define a two-dimensional surface u{n,{] (shown in Figure 7.10) such
that the pitch waveform x,[#] can be obtained as

(7.84)

x[n)=uln,z,]

Sothat ufn,I] i defined for /=1, with the remaining points having been computed through
lf“"-fpolation. A frequency representation of the pitch cycle can also be used instead of the
time pitch cycle.

. This surface can then be sampled at regular time intervals /=sT . It has been shown
tmpirically that transmitting the pitch waveform x,[n} about 40 times per second (a 25.-ms
cerval is equivalent to T = 200 samples for an £, =8000 Hz sampling rate) is sufficient
for voiceq speech. The so-called slowly evolving W;ﬂvefO”" (SEW) @[n,i] can be generated

Y low-pags filtering u{n, )} along the /-axis:

l T . t ”m
X )= {n,sT] = 2 1[231[ T"']”['; . (7.85)
s —1¢,
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where #[x] is a low-pass filter and x,[n] is a sampled version of #[n,1).

The decoder has to reconstruct each pitch waveform x,[n] from the SE

) W x :
terpolation between adjacent pitch waveforms, and thus the name waveforn [ by iy,

1 ing ;
(WI) coding: erpolatipy
> hlt, = sT)x,[n)
i = il 3 tm =4
£, [n1=iln,t,) S, —57] (18
If the sampling period is larger than the local pitch period (7'> P,), perfect TeConstry
tion will not be possible, and there will be some error in the approximation ¢
x,[n] =X, [n]+%,[n] 1)
or alternatively in the two-dimensional representation
ulm,1]=u[n,1}+uln,l] (7.88)

where x_[n] and #[n,!] represent the rapidly evolving waveforms (REW).

Since this technique can also be applied to unvoiced speech, where the concept of
pitch waveform doesn’t make sense, the more general term characteristic waveform is used
instead. For unvoiced speech, an arbitrary period of around 100 Hz can be used.

For voiced speech, we expect the rapidly varying waveform #[n,/] in Eq. (7.88) 1o
have much less energy than the slowly evolving waveform #[n,/]. For unvoiced speech the
converse is true: #[n,/] has more energy than #[n,/]. For voiced fricatives, both components
may be comparable and thus we want to transmit both.

In Egs. (7.85) and (7.86) we need to average characteristic waveforms that have, in
general, different lengths. To handle this, all characteristic waveforms are typically norma-
ized in length prior to the averaging operation. This length normalization is done by padding
with zeros x,[n] to a certain length M, or truncating x,[] if P, > M. Another possible nor
malization is done via linear resampling. This decomposition is shown in Figure 7.10.

Another representation uses the Fourier transform of x,[#]. This case is related to the
harmonic model of Section 7.5.2. In the harmonic model, a relatively long window is_nee‘lh’fd
to average the several pitch waveforms within the window, whereas this waveform interpo-
lation method has higher time resolution. In constructing the characteristic wa\{efonns we
have implicitly used a rectangular window of length one pitch period, but other windows ca.rrll
be used, such as a Hanning window that covers two pitch periods. This frequenc)’-don[:ji;S
representation offers advantages in coding both the SEW and the REW, because pmpedone
of the human auditory system can help reduce the bit rate. This decomposition 15 often
on the LPC residual signal. rough

In particular, the REW #{n,I] has the characteristics for noise, and as such gnl){ 21gener-
description of its power spectral density is needed. At the decoder, random notse 15[&e o
ated with the transmitted power spectrum. The spectrum of #[n,/} can be vector quat
as few as eight shapes with litte or no degradation.
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Figure 7.11 Block diagram of the WI encoder.

The SEW #([n,/] is more important perceptually, and for high quality the whole shape
needs to be transmitted. Higher accuracy is desired at lower frequencies so that a perceptual
frequency scale (mel or Bark) is often used. Since the magnitude of #[n,/] is perceptually
more important than the phase, for low bit rates the phase of the SEW is not transmitted. The
magnitude spectrum can be quantized with the VDV Q described in Section 7.5.2.3.

To obtain the characteristic waveforms, the pitch needs to be computed. We can find
the pitch period such that the energy of the REW is minimized. To do this we use the ap-
proaches described in Chapter 6. Figure 7.11 shows a block diagram of the encoder and Fig-

ure 7.12 of the decoder.

Parameter estimation using an analysis-by-synthesis framework [21] can yield better
results than the open-loop estimation described above.

REW
— Random phase

| speech
SEW | Pitch pulse LPC filtering [——

1
pitch
gain
LSF
Figure 7.12 Block diagram of the WI decoder.
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7.6.  HISTORICAL PERSPECTIVE AND FURTHER READING

This Chﬂple;zi;' 03“213/ :ln i:;ioguai"" 1o speech and audio coding technologies. The reader is
erred to [27, 32, 41, Or coverage in greate .
;eiech coding can be found in [20]. y & * depth. A good source of the history of

In 1939, 'Homer Dudlt?y of AT&T Bell Labs first proposed the channel vocoder [15],
the first analysis-by-synthesis system. This vocoder analyzed slowly varying parameters for
both the excitation and the spectral envelope. Dudley thought of the advantages of band-
width compression and information encryption long before the advent of digital communica-
tions.

PCM was first conceived in 1937 by Alex Reeves at the Paris Laboratories of AT&T
and it started to be deployed in the United States Public Switched Telephone Network ir;
1962. The digital compact disc, invented in the late 1960s by James T. Russell and intro-
duced commercially in 1984, also uses PCM as coding standard. The use of U-law encoding
was proposed by Smith [51] in 1957, but it wasn’t standardized for telephone networks
(G.711) until 1972. In 1952, Schouten et al. [47] proposed delta modulation and Cutler [11]
invented differential PCM. ADPCM was developed by Barnwell [6] in 1974,

Speech coding underwent a fundamental change with the development of linear pre-
dictive coding in the early 1970s. Atal [3) proposed the LPC vocoder in 1971, and then
CELP {5] in 1984. The majority of coding standards for speech signals today use a variation
on CELP.

Sinusoidal coding [35] and waveform interpolation [29] were developed in 1986 and
1991, respectively, for low-bit-rate telephone speech. Transform coders such as MP3 [23],
MPEG 11, and Perceptual Audio Coder (PAC) [28] have been used primarily in audio coding
for high-fidelity applications.

Recently, researchers have been improving the technology for cellular communica-
tions by trading off source coding and channel coding. For poor channels more bits are allo-
cated to channel coding and fewer to source coding to reduce dropped calls. Scalable coders
that have different layers with increased level of precision, or bandwidth, are also of great
interest.
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