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00 
with the dominant tenn being the noise v[n]. The choice of N for a 1 . , . ow-vana 

estimate depends on the filter length M and the noise level present in the room. nee 
The filter h[n] could also be estimated by playing sine waves of different fr . 

or a chirp1 [52]. Since playing a white noise signal or sine waves may not be p e~uenc1es . . . ractJcal an 
other method is based on collecting stereo recordmgs with a close-talking micro h ' · 
far field microphone. The filter h[n] of length M is estimated so that when apppl;nde and a 

· · [····th d "hth etothe close-talking signal x n] 1t mm1mizes e square error wit e far field signal y( ] . 
. . f M 1 · . • n , which 

results in the following set o mear equations. 

M-1 

}: h[m]Rn[m-n] = Riy[n] 
m• O 

which is a generalization of Eq. (10.11) when x[nJ is not a white noise signal. 
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(10.14) 

Figure IO.I Typical impul estimated b dri . ~e response of an average office. Sampling rate was 16 kHz. It was 
Eq. (IO ll)Y Th vfimlg a 4-mm~te segment of white noise through an artificial mouth and using 

. . e i ter length is about 125 ms. 

It is not uncommon t h . . . rooms In F' 0 ave reverberation times of over 100 milliseconds tn office 
· igure 10.1 we show th t · al . e yp1c impulse response of an average office. 

10.1.3. A Model of the Environment 

A widely used model of the d . 
rupted by both addit' . egradatton encountered by the speech signal when it gets cor-

ive noise and h 1 . d rive c anne distortion is shown in Figure l 0.2. We can e 

'~A~c:h=irp~fu: n--:-r ---.------
time: sin( c ion continuously varies its fr . with 

n(<ag +<0in)). equency. For ex.ample, a linear chirp varies ics frequency 1tnearlY 
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the relationships between the clean signal and the corrupted 5· I b th · . 1gna o m power-spectrum 
and cepstrum domains bused on such a model [2). 

.xfm.l ~ /1[m] l ~r ... y[m] 

11[111] 

Figure 10.2 A model of lhe environment 

In the time domain, additive noise and linear filtering results in 

yfmJ = x[m] * h[m]+ n[m] (10.15) 

It is convenient to express this in the frequency domain using the short-time analysis 
methods of Chapter 6. To do that, we window the signal, take a 2K-point DFf in Eq. (10. l 5) 
and then the magnitude squared: 

/Y(/2 )12 
= 1xu~ )/2 IH(,/2 )j2 +IN(/2 >1

2 
+ 2Re{X(/2 )H(/2)N°(ft )} 

= IX(J; )12 
IH(J; )12 

+IN<J. )12 + 2IX(/4 )IIH(J; >IIN(J; )/cos(01 ) 

(10.16) 

where k = 0, 1, · · • ,K , we have used upper case for frequency domain linear spectra, and 0* 
is the angle between the filtered signal and the noise for bin k. 

The expected value of the cross-term in Eq. (10. 16) is zero, since x[m] and n[m] are 
statistically independent. In practice, this term is not zero for a given frame, though it is 
small if we average over a range of frequencies, as we often do when computing the popular 
mel-cepstrum (see Chapter 6). When using a filterbank, we can obtain a relationship for the 
energies at each of the M filters: 

(10.17) 

where it has been shown experimentally that this assumption works well in practice. 
Equation (10.17) is also implicitly assuming that the length of h[n), the filter's impulse 

response, is much shorter than the window length 2N. That means that for filters with long 
reverberation times, Eq. ( 10.17) is inaccurate. For example, for jN(f)j2 = 0, a wind~w shift 
of T. and a filter's impulse response h[n] = 8[n-T], we have Y,[Jm] = X,_,[.(,.], 1-~·· _the 
output spectrum at frame t does not depend on the input spectrum at that fra~e. This 1s a 
more serious assumption, which is why speech recognition systems Lend to fat! under long 
reverberation times. 
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By taking logarithms in Eq. (10.17), and after some algebraic manipulation, we obtain 

tn1Y(/,)j
2 

""lnjX(J;)l
2 

+Jn!H(J,)1
2 

+ In (1 + exp(tnjN(.f,)j2 -In jX(fi >I~ -In jH(J,)12)) (I0.18J 

Since most speech recognition syst~rns ~se c~pstrum features, it is useful to see the ef. 
feet of the additive noise and channel d1stf>rt1on directly on the cepstrum. To do that. let"s 
define the following length-(M + I) cepstrum vectors: 

x == c(tnlX(J;,)j
2 

lnlX(/il ln !X(/1,)1") 

h = c(tn lll<f())r In Ill ( J; f ln ill(f\{ l ) 
n = c(lnjN(.J;,)I~ lrilN(J; )11 ln (N f / 1, )!' ) 

(10.19, 

y == C ( In I Y(./41 >1
2 lnfY<J;l In \Y( /1, J[2) 

where C is the DCT matrix and we have u:..ed lower-case bold tf.l represent cepstrurn vectoo. 
Comhining Hqs. ( I 0. I 8) arid ( 10.19J resultt, in 

(1010) 

where thr. 11onlincnr function g(z) is given by 

J,C(Z) = Cln (1 +e': 'z) (10.21) 

Equutlons ( 10.20) and ( I0.2)) say that we can compute the cepstrum of the corrupted 
speech If we know the ccpstrum of the clean speech, the cepstrum of the noise, and the cep-
11lrnm of the filler. Jn practice, the DCT matrix C is not square, so that the dimension of the 
ccpstrnrn vector is much smaller than the number of filters. This means that we are losing 
rcsol11tio11 when going back Lo the frequency domain, and thus Eqs. (10.20) and (10.21) rep­
rci;ent cmly nn approximation, though it has been shown to work reasonably well. 

As di.~cu$scd in Chapter 9, the distribution of the cepstrum of x can be modeled as_ a 
mixture of 0Hussi,m densities. Even if we assume that x follows a Gaussian disaibution, j' ;:i 
nq. ( 10.20) i11 no lunger Gaussian because of the nonlinearity in Eq. (I 0.21). 

H is dlfficull lo visualize the effect on the distribution, given the nonlinearity involved. 
To provide ~omc insighl, let's consider the frequency-domain version of Eq. (IO.IS) when 
no fi11crl11(1. 1s done, i.e., H(/) =I: 

)' ml x+ln(l+exp(n-x)) (10.22) 

wt r I . · and noisy 1 re. .t, ' 1• IIIH Y represent the log-spectral energies of the clean signal, nmse, 
i;i~11111 , rr-!.pt~ctively, for a given frequency. Using simulated data, not real speech, we can 

Amazon/VB Assets 
Exhibit 1012 

Page 510



The Acoustical Environment 
485 

analyze the effect of this transfom1ation. Let's assume that both . d G . 
~ an n are ausstan ran-

dom variables. We can use Monte Carlo simulation to draw a large number of . f 
· d' ·b · d . pomts rom 

those two Gaussian tSLn uttons an obtam the corresponding noisy values v using Eq 

(10.22). Figure 10.3 shows the resulting distribution for several values of CJ · w fi . d. 
· · · I I · 1 , . e 1xe 

µ. = o dB, smce 1t ts on y a re att~e ev_el, _and set a,, = 2 dB, a typical value. We also set 
µ = 25dB and see that the resultmg dtstnbution can be bimodal when CJ · , 1 , " 1s , ery arge. 
Fortunately, for modern speech rec~gnit!on. sys~ems that have many Gaussian components, 
a, is never that large and the resultmg d1stnbut10n is unimodal. 

0.00 0.04 0.00 

0.03 0.00 
O.CY2 

0.02 0.04 

O.o1 
0.01 0.02 

0 0 0 
0 50 100 0 20 40 60 0 20 40 60 

Figure 10.3 Distributions of the corrupted log-spectra y of Eq. ( l0.22) using simulated data. 
The distribution of the noise log-spectrum n is Gaussian with mean O dB and standard devia­
tion of 2 dB. The distribution of the clean log-spectrum x is Gaussian with mean 25 dB and 
standard deviations of 25, I 0, and 5 dB, respectively (the x-axis is expressed in dB). The first 

distribution is bimodal, whereas the other two are approximately Gaussian. Curves are plotted 

using Monte Carlo simulation. 

Figure 10.4 shows the distribution of y for two values of µ,, given the same values for 
the noise distribution, µn = 0 dB and CJ,, = 2 dB , and a more realistic value for e1., = S dB . 
We see that the distribution is always unimodal, though not necessarily symmetric, particu­
larly for low SNR ( µx - µn ). 

0.08 0.1 

0.06 

.. - 0.04 0.05 

0.02 

0 0 
0 10 20 30 0 10 20 30 

Figure 10.4 Distributions of the corrupted log-spectra}' of Eq. (10.22) using simulated da~a. 

Th d. · · · · G · ' th mean O dB and standard dev1a-e 1stnbuuon of the nmse log-spectrum n 1s auss1an w1 _ _ . . 
lion of 2 dB. The distribution of the clean log-spectrum is Gaussian with stan~ard devianon_ of 
5 dB and means of 10 and 5 dB, respectively. The first distribution is app~xim~tely Gaus5ian 
while !he second is nonsymmetric. Curves arc plotted using Monte Carlo simulanon. 
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_ . . d ·n an HMM are mixtures of Gaussians so that, even if e h 
The distnbuuons use 1 • • 'b . . ac 

. fonned into a non-Gaussian d1stn uuon, the composite distr'b 
G .· 11 component 1s trans . . . 1 u-

aussia 
I 

d d ately by another mixture of Gaussians. In fact, 1f you retrain th 
t' can be mode e a equ d e 
rnn . h t dard Gaussian assumption on corrupte speech, you can get good re­

model using t e s an 
suits, so this approximation is not bad. 

l0.2. ACOUSTICAL TRANSDUCERS 

Acoustical transducers are devices that convert the acoustic energy of ~ound into electrical 
energy (microphones) and vice versa (loudspeakers). In the case o: a microphone this trans­
duction is generally realized with a diaphragm, whose movem~nt m re~ponse to sound pres­
sure varies the parameters of an electrical system (a vanable-res1stance conductor, a 
condenser, etc.), producing a variable voltage that constitutes the microphone output. We 
focus on microphones because they play an important role in designing speech recognition 

systems. 
There are near field or close-talking microphones, and far field microphones. Close-

talking microphones, either head-mounted or telephone handsets, pick up much less back­
ground noise, though they are more sensitive to throat clearing, lip smacks, and breath noise. 
Placement of such a microphone is often very critical, since, if it is right in front of the 
mouth, it can produce pops in the signal with plosives such as Ip/. Far field microphones can 
be lapel mounted or desktop mounted and pick up more background noise than near field 
microphones. Having a small but variable distance to the microphone could be worse than a 
larger but more consistent distance, because the corresponding HMM may have lower vari­
ability. 

When used in speech recognition systems, the most important measurement is the sig­
nal-to-noise ratio (SNR), since the lower the SNR the higher the error rate. In addition, dif­
ferent microphon;!s have different transfer functions, and even the same microphone offers 
different transfer functions depending on the distance between mouth and microphone. 
Varying noise and channel conditions are a challenge that speech recognition systems have 
to address, and in this chapter we present some techniques to combat them . 

. !he ?1°5~ pop~lar type of microphone is the condenser microphone. We shall study in 
detail its direct10nal!ty patterns, frequency response, and electrical characteristics. 

10.2.1. The Condenser Microphone 

A condenser microphone ha - . . d by an . 1 . . s a capacitor cons1stmg of a pair of metal plates separate 
msu atmg matenal called d' 1 . . 

a ie ectnc (see Figure 10.5). Its capacitance C is given by 

( I 0.23) 
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where e0 is a constant, b is the width of the plate and h is the separ t' b h . . . . , a 10n etween t e plates. 
If we poJanze the capacitor with a voltage V:,,., 1t acquires a charge Q given by 

Q=CV:" (10.24) 

One of the plates is free to m~ve in response to changes in sound pressure, which re­
sults in a change m the plate separation l:!Jz, thereby changing the capacitance and producin 
a change in voltage ,~.V = ~h~,- I h. Th_us, the sensitivity' of the microphone depends on th! 
polarizing voltage V.,,,, which 1s why this vollage can often be 100 v or more. 

/ 

Figure 10.S A diagram of a condenser microphone. 

Electret microphones are a type of condenser microphones that do not require a spe­
cial polarizing voltage V...,, because a charge is impressed on either the diaphragm or the 
back plate during manufacturing and it remains for the life of the microphone. Electret mi­
crophones are light and, because of their small size, they offer good responses at high 
frequencies. 

From the electrical point of view, a microphone is equivalent to a voltage source v(t) 
with an impedance z,.,, as shown in Figure I 0.6. The microphone is connected to a preamp! i­
fier which has an equivalent impedance RL. 

Microphone 

Z.11 

v(r) 9 ==:J----" 
Preamplifier 

RL 

Figure 10.6 Electrical equivalent of a microphone. 

- -----------
• Th .. - . · I f th electric signal the microphone delivers 

e sens1llv11y of a microphone measure~ the op1•11-circu,t vo /age O e . h' h - -..i 
fo ft 94 dB SPL when there is no load or a 1g 1ml""'ance. 

r a sound wave for a given sound pressure level, o en ' 
This voltage is measured in dBY, where the 0-dB reference is 1 Y rms. 
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From Figure 10.6 we can see that the voltage on RL is 

Environme:;;;----­
obustness 

00.2S) 

Maximization of vR(t) in Eq .. (10.25) re~~l~s in R~ = oo' or in practice RL >> R 
which is called bridging. Thus, for highest senstt1v1ty the impedance of the amplifi h .1t , 

f . h If h . er as to 
be at least Io times higher than that o the m1crop one. t e microphone is connect d . . e loan 
amplifier with lower impedance, there 1s a load loss of signal level. Most low-impedance 
microphones are labeled as 150 ohms, though the actual values may vary between 100 
300. Medium impedance is ~00 ohms _and high impedanc: is 600-1 O,O?O ohms. In pract:c:~ 
the microphone impedance 1s a function of frequency. Signal power 1s measured in dB 
where the 0-dB reference corresponds to I mW dissipated in a 600-ohm resistor. Thus,ri 
dBm is equivalent to 0.775 V. 

Since the output impedance of a condenser microphone is very high (- 1 Mohm), a 
JFET transistor must be coupled to lower the equivalent impedance. Such a transistor needs 
to be powered with DC voltage through a different wire, as in Figure 10.7. A standard sound 
card has a jack with the audio on the tip, ground on the sleeve, DC bias V00 on the ring, and 
a medium impedance. When using phantom power, the Vee bias is provided directly in the 
audio signal, which must be balanced to ground. 

Microphone Preamplifier 
,.. 

Figure l0.7 Equivalent circuit for a condenser microphone with DC bias on a separate wire. 

. It _is i~portant to understand how noise affects the signal of a microphone. If lheJ1llal 
n01se anses m the resistor RL, it will have a power 

PN =4kTB (10.26) 

where k = 1.38 x 10"23 J/K. · h , . oK dB is 
th b d . . IS t e Bolzmann s constant T is the temperature m ' an d 

e an Width m Hz Th th . . • 297°K) an 
for a bandwidth of 4 kHe . erma! noise m Eq. (10.26) at room temperature(~= . "fi antlY 
higherthan th. b z IS equivalent to -132 dBm. In practice, the noise 1s sign, ic t1'c 

1s ecause of pre I "fi . . . d I crornagne interference (p . amp 1 1er noise, radio-frequency n01se an e ec th be· 
tween the microooprhgorounddmg connections). It is, thus, important to keep the signal ~adesir· 

ne an the prea h . . · e It 1s mp as s ort as possible to avoid extra nois · 
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able to have a microphone with low impedance to decrease the effect of noise due to radio­
frequency interference, and to decrease the signal loss if long cables are used. Most micro­
phones specify their SNR and _range where they are linear (dynamic range). For condenser 
microphones, a power supply 1s necessary (DC bias required). Microphones with balanced 
output (the signal appears across two inner wires not connected to ground, with the shield of 
the cable connected to ground) are more resistant to radio frequency interference. 

10.2.2. Directionality Patterns 

A microphone's directionality pattern measures its sensitivity to a particular direction. Mi­
crophones may also be classified by lheir directional properties as omnidirectio11al (or non­
directiona/) and directional, lhe latter subdivided into bidirectional and unidirectional, based 
upon their response characteristics. 

10.2.2.1. Omnidirectional Microphones 

By definition, the response of an omnidirectional microphone is independent of the direction 
from which the encroaching sound wave is coming. Figure l 0.8 shows the polar response of 
an omnidirectional mike. A microphone's polar response, or pickup pattern, graphs its out­
put voltage for an input sound source with constant level at various angles around the mic. 
Typically, a polar response assumes a preferred direction, called the major axis or front of 
the microphone, which corresponds to the direction at which the microphone is most sensi­
tive. The front of the mike is labeled as zero degrees on the polar plot. but since an omnidi­
rectional mic has no particular direction at which it is the most sensitive, the omnidirectional 
mike has no true front and hence the zero-degree axis is arbitrary. Sounds coming from any 
direction around the microphone are picked up equally. Omnidirectional microphones pro­
vide no noise cancellation. 

(a) (b) 

. ·ct· . al ·crophone and (b) its cross Figure 10.8 (a) Polar response of an ideal omm irecuon mi 
section. 

• s ·d· · l condenser microphone. Figure 10.8 shows the mechanics of the ideal omm irectiona th . 
A sound wave creates a pressure all around the microphone. The pressure e~terhs e opemng 

. I . ·t converts the d1ap ragm move­
of the mike and the diaphragm moves. An electnca circui 

'ideal omnidirectional microphones do not exist. 
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ment into an electrical voltage, or respon_se. ~ound wave~ impinging on t~e mike create a 
pressure at the opening regardless o~ the dtre~tton from which they are co?1mg; therefore we 

h nondirectional, or omnidirect1onal, microphone. As we have s~en m Chapter 2, if th 
ave a . . . b (A 1 ) J()JI • e 

source signal is Beiox, the signal at a distance r 1s given Y r e independently of the 

~~~ . . 
This is the most inexpensive of th? condenser_ microphones, and_ It has the advantage 

of a flat frequency response that doesn t change with the angle or distance to the micro­
phone. On the other hand, because of its ~nif~rm polar pattern, it ~icks u~ not only the de­
sired signal but also noise from any direction. For example, 1f a pair of speakers is 
monitoring the microphone output, the sound from the speakers can reenter the microphone 
and create an undesirable sound called feedback. 

10.2.2.2. Bidirectional Microphones 

The bidirectional microphone is a noise-canceling microphone; it responds less to sounds 
incident from the sides. The bidirectional mike utilizes the properties of a gradient micro­
phone to achieve its noise-canceling polar response. You can see how this is accomplished 
by looking at the diagram of a simplified gradient bidirectional condenser microphone, as 
shown in Figure 10.9. A sound impinging upon the front of the microphone creates a pres­
sure at the front opening. A short time later, this same sound pressure enters the back of the 
microphone. The sound pressure never arrives at the front and back at the same time. This 
creates a displacement of the diaphragm and, just as with the omnidirectional mike, a corre­
sponding electrical signal. For sounds impinging from the side, however, the pressure from 
an incident sound wave at the front opening is identical to the pressure at the back. Since 
both openings lead to one side of the diaphragm, there is no displacement of the diaphragm, 
and the sound is not reproduced. 

,---~ ... ---' (:' '. ' , ~ l ~1 \ 
I ,~,!,:: ij I 

: f; r: l! : 
I ~- . ·•• . .l,. _ ~, I 
: ~'.~,t-_,_; ~_,:~ : 
t I 
I I 

I 

Noise sound wave 
from the side 

Speech sound wave 
from the front 

Figure 10,9 Cross sectio f ·d · . . . n o an I ea] b1d1recuonal microphone. 
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To compute the polar response of this gradient microphone let's k th · . . . . ma e e approxima-
tion of Figure IO. IO, w~ere the microphone signal 1s the difference between the signal at the 
front and rear of the diaphragm, the separation between plates is 2d, and r is the distance 
between the source and the center of the microphone. 

source 

(-d, 0) (d, 0) 

Figure IO.IO Approximation to the noise-canceling microphone of Figure J0.9. 

You can see that 'i, the distance between the source and the front of the diaphragm, is 
the nonn of the vector specifying the source location minus the vector specifying the loca­
tion of the front of the diaphragm 

(10.27) 

Similarly, you obtain the distance between the source and the rear of the diaphragm 

(10.28) 

The source arrives at the front of the diaphragm with a delay 81 = r, I c , where c is the 
speed of sound in air. Similarly, the delay to the rear of the diaphragm is 82 = r2 I c. If the 
source is a complex exponential e1

(J)/ , the difference signal between the front and rear is 
given by 

x(t) = A eJ21r/(1-6,> -~e121r/(1-o,> = A ei2tr/lG(J,8) (10.29) 
'i r2 r 

where A is a constant and, using Eqs. (10.27), (10.28) and (10.29), the gain G(/,0) is given 
by 

-j2,rf,6_~r/ 
e 

G(/,0)= I . I 
e'9 

-}.. 

(10.30) 

where we have defined ).. = d Ir and -r = r I c . 
The magnitude of Eq. (10.30) is used to plot the polar respo?s_e of_Figure _JO.I I. As 

~an be seen by the plot, the pattern resembles a figure eight. -i:i,e b1d_irect1onal m1~e h~s an 
interchangeable front and back, since the response has a maximum m two opposite dtrec­
tions. In practice, this bidirectional microphone is an ideal case, and the polar response has 

lo be measured empirically. 
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180 

E . --­D VJ r on mental RobUstness 

o I 

Figure 10.11 Polar response of a bidirectional microphone obtained through Eq. (10.30) wilh 
d = 1 cm, r = 50 cm, c = 33,000 emfs, and f = I 000 Hz. 

According to the idealized model, the frequency response of omnidirectional micro­
phones is constant with frequency, and this approximately holds in practice for real omnidi­
rectional microphones. On the other hand, the polar pattern of directional microphones is not 
constant with frequency. Clearly it is a function of frequency, as can be seen in Eq. (10.30). 
In fact, the frequency response of a bidirectional microphone at 0° is shown in Figure 10.12 
for both near field and far field conditions. 

Or----------.-------=-.......,,,------,:-c---, 

~I \ 
I 

~·- - - - - - - ~ 

1 ·10. 

·,ii -15 
.5 

~<r7'"'------..1..:-------...:......__.l _ _j_j 
10' 10~ 

N'8CµlrCy (Hz) 

~gure lO.ll Frequency response of a bidirection:ll microphone \\ilh d = I cm at 0" obtained 
1 

~~gh Eq. O?.JO). The larger the distanre ~tween plates. the lower the frequency of the 
~nxnu~. Th~ h'.ghes1 values are obtained for $250 Hz :illd 2-t?SO Hz and~ null for 16..500 

fi 
2

1
·dTltv s~~td lml." com'spond:; to for field conditions l ,l = o 0-:> ) and the dooed line co near 

1e l'Ondt11on:; ( A. = 05 ). · -
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zero, 

It can be shown, after taking the derivative of G(/,0) in Eq. (10.30) and equating to 
that the maxima are given by 

C 
(. =-(211-l) 

• II 4d (10.31) 

with n=l.2,-··. We can observe from Eq. (10.31) that the larger the width of the dia-
hragm, lhe tower the first maximum. 

p The increase in frequency response, or sensitivity, in the near field, compared to the 
far field, is a measure of noise cancellation. Consequently the microphone is said to be noise 
canceling. The microphone is also referred to as a differential or gradient microphone, since 
it measures the gradient (difference) in sound pressure between two points in space. The 
boost in low-frequency response in the near field is also referred to as the proximity effect, 
often used by singers to boost their bass levels by getting the microphone closer to their 
mouths. 

By evaluating Eq. (10.30) it can be seen that low-frequency sounds in a bidirectional 
microphone are not reproduced as well as higher frequencies, leading to a thin sounding 
mike. 

Let's interpret Figure 10.12. The net sound pressure between these two points, sepa­
rated by a distance D = 2d, is influenced by two factors: phase shift and inverse square law. 

The influence of the sound-wave phase shift is less at low frequencies than at high, 
because the distance D between the front and rear port entries becomes a small fraction of 
the low-frequency wavelength. Therefore, there is little phase shift between the ports at low 
frequencies, as the opposite sides of the diaphragm receive nearly equal amplitude and 
phase. The result is slight diaphragm motion and a weak microphone output signal. At 
higher frequencies, the distance D between sound ports becomes a larger fraction of I.he 
wavelength. Therefore, more phase shift exists across the diaphragm. This causes a higher 
microphone output. 

The pressure difference c~used by phase shift rises with frequency at a rate of 20 dB 
per decade. As the frequency rises to where the microphone port spacing D equals half _a 
wavelength, the net pressure is at its maximum. In this situation, the diaphragm movement is 
also at its maximum, since the front and rear see equal amplitude but in opposite polarities 
~f the wave front. This results in a peak in the microphone frequency response, as illus~ced 
m Figure 10.12. As the frequency continues to rise to where the microphone port s?acmg D 
equals one complete wavelength, the net pressure is at its minimum. Here, the diaphra~m 
does not move at all, since the front and rear sides see equal amplitude at the same polan~· 
of the wave front. This results in a dip in the microphone frequency response, as shown 10 

Figure 10.12. 
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A second factor creating a net pressure diff ~rence across the diaphragm is the impact 
of the inverse square law. If the sound-pressure difference between the front and rear pons 
of a noise-canceling microphone were measured near the sound source and again further 
from the source, the near field measurement would be greater than the far field. In other 

d the microphone's net pressure difference and, therefore, output signal, is greater -1 wor s. . n 
the near sound field than in the far field. The mverse-square-law effect is independent of 
frequency. The net pressure that causes the diaphragm to move ~s a combination of both the 
phase shift and inverse-square-law effect. Th_ese two fac~ors mtluence the frequency re­
sponse of the microphone differently, dependm~ on the distance ~o the sound source. For 
distant sound, the influence of the net pressure difference from the mverse-square-law effect 
is weaker than the phase-shift effect; thus, the rising 20-dB-per-decade frequency response 
dominates the total frequency response. As the microphone is moved closer to the sound 
source, the influence of the net pressure difference from the inverse square law is greater 
than that of the phase shift; thus the total microphone frequency response is largely flat. 

The difference in near field to far field frequency response is a characteristic of all 
noise-canceling microphones and applies equally to both acoustic and electronic types. 

10.2.2.3. Unidirectional Microphones 

Unidirectional microphones are designed to pick-up the speaker's voice by directing the 
audio reception toward the speaker, focusing on the desired input and rejecting sounds ema­
nating from other directions that can negatively impact clear communications, such as com­
puter noise from fans or other sounds. 

( rn~~:~) Speech sound wave 
. f --~ I<· 
:. ~ )I . ~ from the front .:lJ~j ..,._· ____ _ 

_..,\-J ..,. __ _ 
/ : .. '\ -~ Iii" ', 
I ;. . I -· I \ 

I y. ... '.~ 111.,• I 
I . ,, ... t : 1 
t t . ~e; ti,~ I ! L_-, . _;.~::.-~: ! 
I I 
I I 

Noise sound wave 
from the side 

I 

Figure 10·13 Cross section of a unidirectional microphone. 
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f. i·gure Io. I 3 shows the cross-section of a unidirectional microphone h" h 1 . . . . , w 1c a so rehes 
the principles of a gradient microphone. Nouce that the unidirectional in ·c I k . . upon . . . . 1 oo s s1m1-

lar to the bidirectional, exce?t that there ts a res1st1ve material (often cloth or foam) between 
the diaphragm and the opening of one e~d. The material's resistive properties slow down the 
pressure on its path from the back o~enmg to t~e diaphragm. [f the additional delay through 
the back plate is given by t 0 , the gam can be given by 

(10.32) 

which was obtained by modifying Eq. (10.30). Unidirectional microphones have the greatest 
response to sound waves impinging from one direction, typically referred to as the front, or 
major axis of the microphone. One typical response of a unidirectional microphone is the 
cardioid pattern shown in the polar plot of Figure I 0.14, plotted from Eq. ( I 0.32). The fre­
quency response at 0° is similar to that of Figure I 0.12. Because the cardioid pattern of polar 
response is so popular among them, unidirectional mikes are often referred to as cardioid 

mikes. 

Z70 

F. . h The polar response was obtained 
1gure 10.14 Polar response of a unidirectional microp one. _ 0 06 5 

through Eq. (I0.32) with d a:: I cm, r a:: 50 cm, ca:: 33,000 cmls,f = 1 kHz, and ro - · m · 

. . fi d h ma tic based on Figure l 0.10, 
. Equation (10.32) was derived under a simph ie sc e f al microphone has 

which is an idealized model so that, in practice, the polar respo~se 
O 

t:e~ of a commercial 
10. be measured empirically. The frequency response and po ar pa 
microphone are shown in Figure 10. 15. 
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IOOOHz 

llO' , .,. 
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.,. 

O" 

- { 2000Ha: 

} 
- 4000Ha: 

---• """"'"' 8000H~ 
---- 180001u 

C 1000S 
cardioid 

Figure IO.IS Characteristics of an AKG ClOOOS cardioid microphone: (top) frequency re­
sponse for near and far field conditions (note the proximity effect) and (bottom) polar pattern 
for different frequencies. 

Although this noise cancellation decreases the overall response to sound pressure (sen­
sitivity) of the microphone, the directional and frequency-response improvements far out­
weigh the lessened sensitivity. It is particularly we)] suited for use as a desktop mic or as 
Part of an embedded microphone in a laptop or desktop computer. Unidirectional micro­
phones achieve superior noise-rejection performance over omnidirectionals. Such perform­
ance is necessary for clean audio input and for audio signal processing algorithms such as 
acoustic echo cancellation, which form the core of speakerphone applications. 

10.2.3. Other Transduction Categories 

In~ pas~ive microphone, sound energy is directly converted to electrical energy, whereas an 
1Jctz~e microphone requires an external energy source that is modulated by the sound wave. 
Active transducers thus r~quire phantom power, but can have higher sensitivity. . 

We can also classify microphones according to the physical property to which the 
sound wave ~esponds. A pressure microphone has an electrical response that corresponds to 
the pressure m a sound w h'l se corre-d' ave, w I ea pressure gradient microphone has a respon 
sp_on mg to ~e difference in pressure across some distance in a sound wave. A pressure 
microphone 1s a fine d · all has a re-. repro ucer of sound but a gradient microphone typic Y k 
sponse greatest m th d' · ' · d bac • 

d . _e ITection of a desired signal or talker and rejects unde5ire . 
groun sounds. This 1s part' 1 1 . . oducao11 
of only a d . d . icu ar Y beneficial m applications that rely upon the repr 

I 
de· 

esrre signal wh . · vere Y 
grades p ..& ' ere any undesired signal entering the reproducuon se 

euorrnance. Such is th · . 1· tions. e case m voice recognition or speakerphone app ica 
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In tenns of the mechanism by which they create an el tn' 1 . . ec ca signal correspo d' t 
'he 

sound wave they detect, microphones are classified as ele 1 . n mg 0 
· · · c romagne11c electrost 1· d 

P
iezoelectric. Dy11am1c microphones are the most popular type f 1 ' · . a zc: an 

· h h O e ectromagnet1c micro 
P
hone and condenser m1crop ones t e most popular type of ele t . . -. . . c rostat1c microphone 

Electromagnet1c microphones induce voltage based on a v - . · 
f I . . arymg magnetic field. Rib-

bon microphones are a type o e ectromagnet1c microphones that e I h' . 
h I f mp oy a t m metal nbbon 

suspended between t e po es o a magnet. Dynamic microphones are I t . . 
I 

. . e ec romagnet1c mi-
crophones that emp oy a movmg coil suspended by a light diaphra ( F' . . gm see 1gure 10 16) 
acting like a speaker but m reverse. The diaphragm moves with cha . · ' . . . . nges m sound pressure, 
which in turns moves the coll, which causes current to flow as lines of fl f h . . ux rom t e magnet 
are cut. Dynamic microphones n~ed no batteries or power supply, but they deliver low si _ 
nal levels that need to be preamphfied. g 

Output 
voltage 
Magnet 

Coil 

Diaphragm 

Figure 10.16 Dynamic microphone schematics. 

Piezoresistive and piezoelectric microphones are based on the variation of electric re­
sistance of their sensor induced by changes in sound pressure. Carbon button microphones 
consist of a small cylinder packed with tiny granules of carbon that, when compacted by 
sound pressure, reduce the electric resistance. Such microphones, often used in telephone 
handsets, offer a worse frequency response than condenser microphones, and lower dynamic 
range. 

10.3. ADAPTIVE ECHO CANCELLATION (AEC) 

If a spoken language system allows the user to talk while speech is being output through the 
loudspeakers, the microphone picks up not only the user's voice, but also the speech ~rom 
the loudspeaker. This problem may be avoided with a half-duplex system that does not hsten 
when a signal is being played through the loudspeaker, though such systems 0 ff_er an unnatu­
ral user experience. On the other hand, a full-duplex system that allows barge-m by the.user 
to interrupt the system offers a better user experience. For barge-in to_ work, the signal 
~layed through the loudspeaker needs to be canceled. This is achieved with echo cancella-

llon (see Figure 10.17), as discussed in this section. ak 
In hands-free conferencing the local user's voice is output by the rem~te loudspe er, 

whose signal is captured by the remote microphone and after some delay is output by the 
local I d 'f ·th they are greatly attenuated or ou speaker. People are tolerant to these echoes I ei er 
lhe delay is short. Perceptual studies have shown that the longer the delay, the greater 

th
e 

atten · Ualton needed for user acceptance. 
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E . ---nvironmental R b o Ustness 

Loudspeaker [ ] xn 
Acoustic 

e[n] 
Microphone 

Adaptive 
filter 

d[n] signal 
+~-- + 

path H [ s[11] Speech 

'4--.....:..ir.;.;11""-___ __, v[n] Local 
noise 

Figure 10.17 Block diagram of an echo-canceling application. x[n] represents the signal from 
the loudspeaker, s[11] the speech signal, v[n] the local background noise, and e[11] the signal 
that goes to the microphone. 

The use of echo cancellation is mandatory in telephone communications and hands­
free conferencing when it is desired to have full-duplex voice communication. This is par­
ticularly imponant when the call is routed through a satellite that can have delays larger than 
200 ms. A block diagram is shown in Figure 10.18. 

In Figure 10.17, the return signal r[n], assuming no local noise, is the sum 

r[n] = d[n]+s[n] (10.33) 

where s[11] is the speech signal and d[n] is the attenuated and possibly distoned version of 
the loudspeaker's signal x[n]. The purpose of the echo canceler is to remove the echo din) 
from the return signal r[n], which is done by means of an adaptive FIR filter whose coeffi­
cients are computed to minimize the energy of the canceled signal e[n]. The filter coeffi­
cients are reestimated adaptively to track slowly changing line conditions. 

This problem is essentially that of adaptive filtering only when s[n] = 0, or in other 
words when the user is silent. For this reason, you have to implement a double-talk detection 
module that detects when the speaker is silent. This is typically feasible because the ec~o 
d[n] is usually small, and if the return signal r[n] has high energy it means that the user 15 

x1n1 
Speaker A 

e[n] 

Adaptive 
filter 

Hybrid -1----~Speaker B 
circuit H 

d[n] d[n~f~ s[nJ 
...... t------o~--.:...Jr[L:.:114] ___ _Jy· '(_ v[n] 

Noise 

Figure 10.18 Block diagram of h . resents 
the remote call signal [ ) ,,_ ec O cancehng for a telephone communication . .r[n) rep 

, s " u1e local outgoin . al Th . . . d ?-4 wire con· 
version and is nonide I b . g sign . e hybnd c1rcu1t H oes a -

a ecause of impedance mismatches. 

"' 
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not silent. Errors in doubl~-tal~ detectio~ ~esult in divergence of the filter, 50 it is generally 
referable to be conservative m the dec1s1on and when in doubt not adapt the filter coeffi­

~ients. lnitializatio_n c~uld be done by sending a known signal with white spectrum. The 
quality of the filtering 1s measured by the so-called echo-return loss enhancement (ERLE): 

E{d1 [n]} 
ERLE(dB) = lOlog10 • 

E{(d[n]-d[n])1
} 

(10.34) 

The filter coefficients are chosen to maximize the ERLE. Since the telephone-line 
characieristics, or the acoustic path (due to speaker movement), can change over time, the 
filter is often adaptive. Another reason for adaptive filters is that reliable ERLE maximiza­
tion requires a large number of samples, and such a delay is not tolerable. 

In the following sections, we describe the fundamentals of adaptive filtering. While 
there are some nonlinear adaptive filters, the vast majority are linear FIR filters, with the 
LMS algorithm being the most important. We introduce the LMS algorithm, study its con­
vergence properties, and present two extensions: the normalized LMS algorithm and trans­
form-domain LMS algorithms. 

10.3.1. The LMS Algorithm 

Let's assume that a desired signal d[11] is generated from an input signal .x[n] as follows 

l - 1 

d[n] = Lgkx[n-k]+ u[n] = G7 X[n]+u[n] (10.35) 

k=O 

with G = {g0,g.,···gL_1}, the input signal vector X[n]= {x[n],x[n-1],-··xln-L+l]}, and 

u[n] being noise that is independent of x[n]. d th 
We want to estimate d[nl in terms of the sum of previous samples of x(n]. To O at 

we define the estimate signal y[n] as 

L-1 
J1n] = I, w.[n]x[n-k] = W 7 [n]X[n] 

(10.36) 

•~o 

where W[n] = {H>o[n], w,[n], ·· · wL-1[n]} is th~ time-d~pend~nt ~oef~cient vector. The instan­
taneous error between the desired and the esumated signal ts given Y 

e[n] = d[n]-W7 [n]X[n] 
(10.37) 

. he value of the coefficient vector in 
The least mean square (LMS) algonthm updates t 

the steepest descent direction 
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W[n +I]== W[n] +Ee[n]X[n] 

E . ----­nv1ronmental Robustness 

00.38) 

where E is the step size. This algorithm is very popular because of its simplicity and 
effectiveness [58). 

10.3.2. Convergence Properties of the LMS Algorithm 

The choice of E is important: if it is too small, the adaptation rate will be slow and it might 
not even track the nonstationary trends of x[n], whereas if E is too large, the error might 
actually increase. We analyze the conditions under which the LMS algorithm converges. 

Let's define the error in the coefficient vector V[n] as 

V[n] = G -W[n] 

and combine Eqs. ( 10.35), ( I 0.37), ( I 0.38), and ( I 0.39) to obtain 

V[n + 1] = V[n]-EX[n]Xr[n]V[n]-Eu[n]X[n] 

Taking expectations in Eq. (10.40) results in 

E{V[n+ I]}= E{V[n]}-EE{X[n]Xr[n]V[n]} 

(10.39) 

(10.40) 

(10.41) 

where we have assumed that u[n] and x[n] are independent and that either is a zero-mean 
process. Finally, we express the autocorrelation of X[n] as 

(10.42) 

where Q is a matrix of its eigenvectors and A is a diagonal matrix of its eigenvalues 
{,\,A,,···, AL-i} , which are all real valued because of the symmetry of R .a . 

. . Although we know that X[n] and V[n) are not statistically independent, we assume 
1~ this section that they are, so that we can cbuiin sume insight on the convergence proper­
Ues. With this assumption, Eq. (10.41) can be expressed as 

E{V[n+ I)}= E{V[n]}(l-ER.,,,) (10.44) 

which, applied recursively, leads to 

E{V[n+l]} = E{V[O]}(l-eR
0

)" 
(10.45) 
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Using Eqs. (10.39) and (10.42) in (10.45), we can express the (i + l)th element of E{W[n]} as 

L-1 

E{w;[n]} = K; + 2,%(1-e.\)"E{ii;[O]} 
j=O < 10.46) 

where qi/ is the (i + 1, j + 1 )th element of the eigenvector matrix Q, and v [n] is the rotated 
coefficient error vector defined as ' 

(10.47) 

From Eq. (10.46) we see that the mean value of the LMS filler coefficients converges 
exponentially to the true value if 

(10.48) 

so that the adaptation constant E must be detennined from the largest eigenvalue of X[n] 
for the mean LMS algorithm to converge. 

10.3.3. Normalized LMS Algorithm 

In practice, mean convergence doesn't tell us the nature of the fluctuations that the coeffi­
cients experience. Analysis of the variance of V[n] together with some more approxima­
tions result in mean-squared convergence if 

K 
0<E<--, 

L<1; 
(10.49) 

with a-;= E{x2(n]} being the input signal power and Ka constant that depends weakly on 
the nature of the input signal statistics but not on its power. 

Because of the inaccuracies of the independence assumptions above, a rule of thumb 
used in practice to detennine the adaptation constant E is 

0 0.1 
<E<-­

L<Y2 
:r 

(10.50) 

Th . . (IO 49) akes the LMS algorithm track non-
e choice of largest value for E m Eq. · rn d th 

Slationary variations in x fastest, and achieve faster convergence. On the 0ther han ' . e 
misadjustment of the filter coefficients increases as both the filter length L and ada~rallonf 

d · rant can be made a funcuon o 
constant E increase. For this reason, often the a aptation cons 

Amazon/VB Assets 
Exhibit 1012 

Page 527



------------------------:E=n~~ 
- q-

. 1 values at first and smaller values once convergence has b 
n ( E[ n] ), wJth arger een deter-

mined. 1. d LMS algorithm (NLMS) uses the result of Eq. (10.49) and th 
The 11om1a 1ze , erefore 

defines a nonnalized step size ' 

E 

e[n]= o +L6;[n] 00.51) 

h the constant O avoids a division by O and d;[n] is an estimate of the input signal were . 1 ' d 
power, which is typically done with an exponentia wm ow 

a;[n] = (I-/3)6;[n-1]+ /3x
2
[n] (10.52) 

or a sliding rectangular window 

I N-1 1 ( 2 2 ) 
a;[n]= N~x2[n-i]=6";[n-1]+ N x [nJ-x [n-N] (10.53) 

where both /J and N control the effective memory of the estimators in Eqs. (10.52) and 
(10.53), respectively. FinaUy, we need to pick e so that O < e < 2 to assure convergence. 
Choice of the NLMS algorithm simplifies the selection of e , and the NLMS often con­
verges faster than the LMS algorithm in practical situations. 

10.3.4. Transform-Domain LMS Algorithm 

As discussed in Section I 0.3.2, convergence of the LMS algorithm is determined by the 
largest eigenvalue of the input. Since complex exponentials are approximate eigenvect~rs 
for LTI systems, the LMS algorithm's convergence is dominated by the frequency band~~ 
largest_ energy, and convergence in other frequency bands is generally much slower. ~ 1515 

the ~tionale for the subba11d IMS algorithm, which perfonns independent LMS algonthms 
for different frequency bands, as proposed by Bon [ 14]. 

The block LMS (BLMS) algorithm keeps the coefficients unchanged for a block k of L 
samples 

l-1 

W[k+l]= W[k]+E I,e[kL+m]X[kL+m] (10.54) 

"'~o 

which is repres t d b . d efficien~Y . en e Y a hnear convolution and therefore can be implemente ·1t1· 
usmg length-2N FFT . N tice (hat 1 

I . s accordmg to overlap-save method of Figure 10. 19. 0 .-,er re· 
p ementmg a linear con I . . . . h as the rr, . vo utton with a c1rcular convolution operator sue 
quires the use of the dashed b ox. 
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[Old x I New x] 

FFf 

Conjugate 

Generate Length 2N 
Data vector 

Update weight 
vector W 

FFT 

,----------- ---------. 
I ,--L- I 
I I 
1 FFT 

Force last N 
elements to 0 

Input 
x[11) 

FFT 

Save last 
Nsamples 

Outpuly[11) 

Figure 10.19 Block diagram of the constrained frequency-domain block LMS algorithm. The 
unconsLra.ined version of this algorithm eliminates the computation inside the dashed box. 

503 

An unconstrained frequency-domain LMS algorithm can be implemented by removing 
the constraint in Figure 10.19, therefore implementing a circular instead of a linear convolu­
tion. While this is not exact, the algorithm requires only three FFrs instead of five. In some 
practical applications, there is no difference in convergence between the constrained and 
unconstrained cases. 

10.3.S. The RLS Algorithm 

The search for the optimum filter can be accelerated when the gradient vector is properly 
~eviated toward the minimum. This approach uses the Newton-Raphson method ~o i~erJ­
l!vely compute the root of ./(x) (see Figure l 0.20) so that the value at iteration i + 1 15 given 
by 

X;+i = x, - f,(x,) 
I (x,) 

(10.55) 
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fix) 

Figure 10.20 Newton-Raphson method to compute the roots of a function. 

To minimize function fix) we thus compute the roots off (x) through the above 
method: 

J'(x,) 
X1+1 = X; - J'(x,) 

In the case of a vector, Eq. (10.56) is transfonned into 

(10.56) 

(10.57) 

where we add a step size e(n], and where V 2e(wi) is the Hessian of the least-squares func­
tion which, for Eq. (10.37), equals the autocorrelation of x: 

V2e(w,) = R[n] = E{x[n]xr[n]} (10.58) 

The recursive least squares (RLS) algorithm specifies a method of estimating Eq. 
(10.58) using an exponential window: 

R[n] = lR[n-l]+x[n]xr[n] (10.59) 

While the RLS algorithm converges faster than the LMS algorithm, it also is more 
computationally expensive, as it requires a matrix inversion for every sample. Several algo­
rithms have been derived to speed it up [54]. 

10.4. MULT™ICROPHONE SPEECH ENHANCEMENT 

The use of more than one microphone is motivated by the human auditory system, in which 
the use of both ears has been shown to enhance detection of the direction of arrival, as well 

. uses to as mcrease SNR when one ear is covered. The methods the human auditory system . . 
acc~mplish this task are still not completely known, and the techniques described 10 this 
section do not mimic that behavior. 

M' h · hone Joca· icrop one arrays use multiple microphones and knowledge of the microp . d 
f t di d · f the desire tons O pre ct elays and thus create a beam that focuses on the direction ° 
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speaker and rejects signals coming from other angles. Reverberation, as discussed in Section 
10. l.2, can be com?a~ed with l?ese techniques. Blind source separation techniques are an­
other family of stat1st1cal techniques that typically do not use spatial constraints, but rather 
statistical independence between different sources. 

While in this ~ection we d_escribe onl~ linear processing, i.e., the output speech is a 
linearly filtered version of the microphone signals, we could also combine these techniques 
with the nonlinear methods of Section I 0.5. 

10.4.1. Microphone Arrays 

The goals of microphone arrays are twofold: finding the position of a sound source in a 
room, and improving the SNR of the received signal. Steering is helpful in videoconferenc­
ing, where a camera has to follow the current speaker. Since the speaker is typically far 
away from the microphone, the received signal likely contains a fair amount of additive 
noise. Microphone arrays can also be used to increase the SNR. 

Letx[n] be the signal at the source S. Microphone i picks up a signal 

Y;[n] = x[n] * g;[n] + vi[n] (10.60) 

that is a filtered version of the source plus additive noise vi[n]. If we have N such micro­
phones, we can attempt to recover s[n] because all the signals y,[n] should be correlated. 

A typical assumption made is that all the filters g;[n] are delayed versions of the same 
filter g[n] 

g;[n]=g[n-D;] (10.61) 

with the delay D
1 
= d, / c , d

1 
being the distance between the source S and microphone i, and 

c the speed of sound in air. We cannot recover signal x[n] without knowledge of g[n] or the 

signal itself, so the goal is to obtain the filtered signal y[ n] 

y[n] = x[n]* g[n] 

so that, combining Eqs. (10.60), (10.61), and (10.62), 

y,[n] = y[n-D,]+vJn] 

(10.62) 

(10.63) 

Assuming v,[n] are independent and Gaussianly distributed, the optimal estimate of 

x[ n] is given by 

} N - 1 

ji[ n] = - Ly;[ n + D;] == y[ n] + v[ n] 
N i•O 

(10.64) 

which is the so-called delay-and-sum beamformer [24, 29], where the residual noise v(n] 
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1 .V-1 

v[n]=-I,vJn+D;] 
N i=O 

Environmental R. b---
0 ustn~ 

00.65) 

has a variance that decreases as the number of microphones N increases, since th . e noises 
v;[n + D,] are uncorrelated. 

Equation (10.64) requires estimation of the delays D;. To attenuate the additive noise 
v[n] it is not necessary to identify the absolute delays, but rather the delays relative t , . o one 
reference microphone (for example, the center microphone). It can be shown that them . 
mum likelihood solution consists in maximizing the energy of ji[n] in Eq. (10.64). whic~x:; 
the sum of cross-correlations: 

O~i< N ( 10.66) 

This approach assumes that we know nothing about the geometry of the microphone 
placement. In fact, given a point source and assuming no reflections, we can compute !he 
delay based on the distance between the source and the microphone. The use of geometry 
allows us to reduce the number of parameters to estimate from (N - 1) to a maximum of 3, in 
case we desire to estimate the exact location. This location is often described in spherical 
coordinates ( <p, 0. p) with <p being the direction of arrival, 0 the elevation angle, and p 
the distance to the reference microphone, as shown in Figure 10.21. 

Figure 10.21 Spherical coordinates (cp,0,p) with <p being the direction of arrival, fJ the 
~!e·,t~i,m angle, and p the distance to the reference microphone. 

While 2-D and 3-D microphone configurations can be used, which would allow us to 
~etermi~e not just the steering angle <p , but also distance to the origin p and azimuth . 8' 
hnear microphone arrays are the most widely used configurations because they are the si~­
pleSL In a linear array all the microphones are placed on a line (see Figure 10.22). 1n !his 
case, we ca~not determine the elevation angle 8 . To determine both <p and P we need at 
least two microphones in the array. 

If the microphon~s are relatively close to each other compared to the dis~nce to th~ 
s_ource, the angle of amval (f) is approximately the same for all signals. With this assui11P 
t1on, the normalized de! D- · h . · · by ay ; wit respect to the reference microphone 1s given 

Amazon/VB Assets 
Exhibit 1012 

Page 532



~phone Speech Enhancement 
Mv1t111,.cro . 507 

D- - -a-sin(<p)I c 
,- I (10.67) 

Figure 10.22 Linear microphone array (five microphones). The source signal arrives t h 
microphone with a different delay, which allows us to find the correct angle of arrival. a eac 

With approximation, we define D;((f)), the relative delay of the signal at microphone; 
10 the reference microphone, as a function of the direction of arrival angle cp and independ­
ent of p. The optimal direction of anival rp is then that which maximizes the energy of the 
estimated signal x[n] over a set of samples 

( )

2 
} N-1 

q.,=argmax I - I,y;[n+ B,(q,)] 
'P n N ;,.o 

( 
~ 

} N-1 a -
=argmax I - I,y;[n-....1.sin(<p)]) 

,, " N i=O C 

(10.68) 

The term beam/arming entails that this array favors a specific direction of arrival <P 

~d that sources arriving from other directions are not in phase and therefore are _attenuated. 
Smee the source can move over time, maximization of Eq. ( 10.68) can be done m an adap­
tive fashion. 

As the beam is steered away from the broadside, the system exhibits a r~duction . in 
spatial discrimination because the beam pattern broadens. Furthermore, beamwidlh vanes 
witb frequency, so an array has an approximate bandwidth given by the upper /. and lower 
Ii frequencies 

f. = C 

d ~.r Jcos <p - cos q,'J (10.69) 

I, - f,, ,--
N 
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with d being the sensor spacing, q/ the steering angle measured with respect to the ax· 
the array and rn the direction of the source. For a desired range of ±30° and five s is of 

' ..,, . . . ensors 
spaced 5 cm apart, the range 1s approx~mately ~80 to 44~_Hz. _We see_ m Figure 10.23 that 
at very low frequencies the response 1s essentially ommdirect1onal, smce the micro h 
spacing is small compared to the large wavelength. At high frequencies more lobe~ one 
appearing, and the array steer~ toward no_t only the preferre~ direction but others as :: 
For speech signals, the upshot 1s that we either need a lot of microphones to provide a direc­
tional polar pattern at low frequencies, or we need them to be spread far enough apart, or 

both. 

Figure 10.23 Polar pattern of a microphone array with steering angle of <p' = 0 • five micro­
phones spaced 5 cm apart for 400, 880, 4400, and 8000 Hz from left to right, respectively, for 
a source located at 5 m. 

The polar pattern in Figure 10.23 was computed as follows: 

N -J21r.r[ a, sinq,'+1,.,,.-Ja,l]tc 

P(f,r,<p) =Le I e1' . I 
i•I r - }Q; 

(10.70) 

though the sensors could be spaced nonunifonnly, as in Figure 10.24, allowing for better 
behavior across the frequency spectrum. 

• 
,Mid-fregu¥nc~ ma~ 

I I I 
• • • • • • • 

I I I I I 
High-frequency array 

Low-frequency array 

Fi_gure l0.24 Nonunifonn linear microphone array containing three subarrays for the high, 
rrud, and low frequencies. 

• 
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Once a microphone array has been steered towars a direction m' ·t tt . . . .,- , 1 a enuates noise 
rce coming from other directions. The beamwidth depends not only th f sou . . . on e requency of 

'h
e signal but also on the steenng duectton. If the beam is steered toward d" . , ' . ~ . a 1Tect1on <p 

then the direction of the source 1or which the beam response fall to half its power has bee~ 
found empirically to be 

_1 J '+ K }' 
<fJJdB(f) = cos tosq, - Ndf (10.71) 

with K being a constant. Equ~tion. (] 0. 7 _l) shows that the smaller the array, the wider the 
beam, and that lower frequencies yield wider beams also. Figure l0.25 shows that the band­
width of the array when steering toward a 30° direction is lower than when steering at oo. 

Figure 10.25 Polar pattern of a microphone array with steering angle of q/ = 30' , five micro­
phones spaced 5 cm apart for 400, 880, 3000, and 4400 Hz from left to right, respectively, for 
a source located at 5 m. 

Microphone arrays have been shown to improve recognition accuracy when the mi­
crophones and the speaker are far apart [5 I]. Several companies are commercializing micro­
phone arrays for teleconferencing or speech recognition applications. 

Only in anechoic chambers does the assumption in Eq. (10.61) hold, since in practice 
many reflections talce place, which are also different for different microphones. In addition, 
the assumption of a common direction of arrival for all microphones may not hold either. 
For this case of reverberant environments, single beamformers typically fail. While comput­
ing the direction of anival is much more difficult in this case, the SNR can still be improved. 

Let's define the desired signal d[n] as that obtained in the reference microphone. We 
can estimate the vector H[ n] = { h11 , •.. , hlL, Ii,_"···, hzL, · · ·, hcN-ni, · ·, hcN-r>L} for the (N- IJ L­
tap filters that minimizes the error array [25] 

e[n] = d[n]-H[nJY[n] (10.72) 

Where the (N - l) microphone signals are represented in the vector 

Y[n] = {1i[n], .. ,y, [n- L-1],y
2
[n], · · ,y2 [n-L-l],- · ·,YN-1 [n],· ·,YN-,[n-L- I]} 

Th~ filter coefficients G[ n] can be estimated through the adaptive filtering techniques de­

scnbed in Section 10.3. The clean signal is then estimated as 
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array. 

x[n] = .!_(d[n]+ H[n]Y[n]) 
2 

Environmen;;-----b 
0 Ustness 

00.73) 

This last method does not assume anything about the geometry of the mic h rop one 

10.4.2. Blind Source Separation 

The problem of separating the desired speech from interfering sources, the cocktail , 
·1 . . I . Bl' Part) effect [15], has been one of the holy gra1 s m s1gna _processmg. md source separation 

(BSS) is a set of techniques that assume no information about the mixing process or the 
sources, apart from their mutual statistical independence, hence is termed blind. Independent 
component analysis (ICA), developed in the last few years [ 19, 38], is a set of techniques 10 
solve the BSS problem that estimate a set of linear filters to separate the mixed signals under 
the assumption that the original sources are statistically independent. 

Let's first consider instantaneous mixing. Let's assume that R microphone signals 
y,[n], denoted by y[n] = (y1[n],y2[n],- ··,yR[n]), are obtained by a linear combination of R 
unobserved source signals x; [n], denoted by x[n] = ( x1 [n],x2[n], · · ·,xR[n]): 

y[n] = Gx[n] (10.74) 

for all n, with G being the R x R mixing matrix. This mixing is termed instantaneous, since 
the sensor signals at time n depend on the sources at the same, but no earlier, time point 
Had the mixing matrix been given, its inverse could have been applied to the sensor signals 
to recover the sources by x[n] == G-1y[n]. In the absence of any information about the mix­
ing, the blind separation problem consists of estimating a separating matrix H = G-1 from 
the observed microphone signals alone. The source signals can then be recovered by 

x[n] == Hy[n] (I 0.75) 

We'll use here the probabilistic formulation of ICA, though alternate frameworks for 
ICA have been derived also [18]. Let Px(x[n]) be the probability density function (pdf) of 
the source signals, so that the pdf of microphone signals y[n] is given by 

A,(y[n]) =IHI Ps(Hy[n]) (I 0.76) 

and if we furthermore assume the sources x[n] are independent from themselves in tirne, 
x[ n + i] i ::/:. 0, then the joint probability is given by 

N~ N~ 

py(y[0J,y[1],··,y[N -1]) = flpy(y[n]) =j H j"' I1p
1 
(Hy[n]) 

n~ n~ 

(J0.77) 

whose normalized log-likelihood is given by 
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I I N-1 
\JI= N In p,(y[O],y[IJ, ... ,y[N- l]J = In IHI+-L In Px(Hy[n]) 

It can be shown that 

iHn IHI= (Hr r' 
c)H 

N 11=0 

so that that the gradient of 'I' [38] in Eq. ( I 0. 78) is given by 

a'¥ r - I l .,._, r 
- = (H ) +-L,¢(Hy[n])(y[n]) aH N n=O 

where 1/>(x) is expressed as 

( ) 
olnp,(x) 

</>X =--'--"-­OX 

511 

( I 0.78) 

( I 0.79) 

( I 0.80) 

(10.81) 

If we further assume the distribution is a zero mean Gaussian distribution with stan­
dard deviation a, then Eq. (10.81) results in 

X 
</>(X)=--

0'2 

which inserted into Eq. (10.80) yields 

a\lJ ,. \"I ) T r _, ff 1 ' - T -1 ff 
-
0 

=(H) - 2 1-L,Y[n](y[nJ) =(Hr) - 2 R 
ff O' N u=O O' 

\. 

with R being the matrix of cross-correlations, i.e., 

I .\"-I 

Rif = N ~y;[n}yj[n] 

(10.82) 

(10.83) 

(10.84) 

Setting Eq. ( 10.83) to O results in maximization of Eq. (10.78) under the Gaussian as­
sumption: 

(10.85) 

which can be solved using the Cholesky decomposition described in Chapter 6. 
Since a is generally not known, it can be shown from Eq. (I 0.85) that the sources can 

be recovered only to within a scaling factor [17]. Scaling is in general not a big problem, 
since speech recognition systems perform automatic gain control (AGC). Moreover, the 
sources can be recovered to within a permutation. To see this, let's define a two-dimensional 
matrix A 
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' o 1 l 
A =r 1 0 

(10.86) 

' / 

which is orthogonal: 

A1 A=l (10.87) 

If H is a solution of Eq. (10.85), then AH is also a solution. Thus, a permutation of the 
sources yields the same correlation matrix in Eq. (10.84). Although we have shown it only 
under the Gaussian assumption, separation up to a scaling factor and source pennutation is a 
general result in blind source separation [I 7]. 

Unfortunately, the Gaussian assumption does not guarantee separation. To see this, we 
can define a two-dimensional rotation matrix A 

A= 1'·cos0 -sin0 l 
sin0 cos8 ) 

' / 

(10.88) 

which is also orthogonal, so that if His a solution of Eq. (10.85), then AH is also a solution. 
The Gaussian assumption entails considering only second-order statistics, and to en­

sure separation we could consider higher-order statistics. Since speech signals do not follow 
a Gaussian distribution, we could use a Laplacian distribution, as we saw in Chapter 7: 

(10.89) 

which, using Eq. (10.81), results in 

(10.90) 

and thus a nonlinear function of H for Eq. (10.80). Since a closed-form solution is not possi­
ble, a common solution in this case is gradient descent, where the gradient is given by 

aq, ( )-' au = H~ +¢(H"y[n])(y[n])7 

n 

(I0.91) 

and the update formula by 

(10.92) 

which is the so-called infomax rule [10]. 
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Often the nonlinearity in Eq. (10.90) is replaced by a sigmoid6 function: 

¢(x) = -/3 tanh(/Jx) 

which implies a density function 

/3 
Px(x) = 21t cosh(/3x) 

513 

(10.93) 

(10.94) 

The sigmoid converges to the Laplacian as /3 ~ 00 • Nonlinear functions in Eqs. 
(10.90) and (10.93) can be expanded in Taylor series so that all the moments of the observed 
signals are used and not just the second order, as in the case of the Gaussian assumption. 
These nonlinearities have been shown to be more effective in separating the sources. Toe 
use of more accurate density functions for P. ( x) , such as a mixture of Gaussians [9], also 
results in nonlinear ¢,(x) functions that have shown better separation. 

A problem of Eq. (10.92) is that it requires a matrix inversion at every iteration. The 
so-called natural gradient [7] was suggested to avoid this, also providing faster conver­
gence. To do this we can multiply the gradient of Eq. (10.91) by a positive definite matrix, 
the inverse of the Fisher's infonnation matrix H~Hn , for example, to whiten the signal: 

(10.95) 

which, combined with Eq. (10.91), results in 

(10.96) 

where the estimated sources are given by 

i[n] = Hny[n] (10.97) 

Notice the similarity of this approach to the RLS algorithm of Section 10.3.5. Similarly to 
most Newton-Raphson methods, the convergence of this approach is quadratic instead of 

linear as long as we are close enough to the maximum. 
Another way of overcoming the lack of separation under the independent Gaussian as­

sumption is to make use of temporal infonnation, which we know is important for speech 
signals. If the model of Eq. (10.74) is extended to contain additive noise 

Y[n]=Gx[n]+v[n] 
(10.98) 

'The · · 1- t tanh(x) - sinh(x)/ cosh(x), where 
. sigmoid function can be expressed in terms of the hyperbo 1c tangen -

Slnh(;c):;(e' -e-')/2 and cosh(.r)= (e' +e-x)/2, 
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we can compute the autocorrelation of y[n] as 

00.99) 

or, after some manipulation, 

(I 0.100) 

which we know must be diagonal because the sources x are independent, and thus H can be 
estimated to minimize the squared error of the off-diagonal terms of R,[n] for several val­
ues of n [11 ]. Equation (1 O. 100) is a generalization of Eq. (10.85) when considering tempo­

ral correlation and additive noise. 

y,[n] 
g,,[n] 

+ .....,.. ___ 
h,,[n] 

g,2[n] h,1[n] 

g2,[n] h21 [n] 

gii[n] h.dn] 

Figure 10.26 Convolutional model for the case of two microphones. 

The case of instantaneous mixing is not realistic, as we need to consider the transfer 
functions between the sources and the microphones created by the room acoustics. It can be 
shown that the reconstruction filters h;;[n] in Figure 10.26 will completely recover the 
original signals xi[n] if and only if their z-transforms are the inverse of the z-transforms of 
the mixing filters gq[n]: 

l; H11 (z) H12 (z)J=(G11 (z) G1i(z)]-t 
H21 (z) H22 (z) G2,(z) G22 (z) (10.101) 

_ 1 (G11 (z) G12 (z) I 
G11 (z)G2i(z)-G12(z)G21 (z) G21 (z) G22 (z)) 

If the matrix in Eq. (10.101) is not invertible, separability is impossible. This can ha~­
pen if both microphones pick up the same signal, which could happen if either the two mi-
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I Ones are too close to each other or the two sources are too close to each other It's =a crop 1 • . . . _ • '" •· 
. . ble to assume the mixing filters g;i[n] to be FIR filters. whose length will generally 
sona . . h' h. 
depend 011 the reverberation tune, w 1c 111 tun~ depends on the room size, microphone posi-
. n wall absorbance, and so on. In general tlus means that the reconstruction filters h.[n] 

l!O • . I 1 dd" . 1 . I/ have an infinite 11npu se response. n a_ 1t1011. t 1e filters g;;[n] may have zeroes outside the 
it circle, so that perfect reconstruction filters would need to have poles outside the unit 

;:cle. For this reason it is not possible, in general, to recover the original signals exactly. 
In practice, it's convenient to assume such filters to be FIR of length q. which means 

that che original si~nals x,[n] and x:[n] '. will not be recovered exactly. Thus the problem 
consists in estimating the reconstruction filters hin] directly from the microphone signals 
y.[n] and y 2[n], so that !h~ est~mated sign~ls i;_[n] are as close as possible to the original 
signals. Often we are satished if the resulting signals are separated, even if they contain 
some amount of reverberation. 

An approach commonly used to combat this problem consists of taking a filterbank 
and assuming instantaneous mixing within each filter {38). This approach can separate real 
sources much more effectively, but it suffers from the problem of pennutations, which in 
this case is more severe because frequencies from different sources can be mixed together. 
To avoid this, we may need a probabilistic model of the sources that takes into account cor­
relations across frequencies [3]. Another problem occurs when the number of sources is lar­
ger than the number of microphones. 

10.5. ENVIRONMENT COMPENSATION PREPROCESSING 

The goal of this section is to present a number of techniques used to clean up the signal of 
additive noise and/or channel distortions prior to the speech recognition system. Although 
the techniques presented here are developed for the case of one microphone, they can be 
generalized to the case where several microphones are available using the approaches de­
scribed in Section I 0.4. These techniques can also be used to enhance the signal captured 
with a speakerphone or a desktop microphone in teleconferencing applications. 

Since the use of human auditory system is so robust to changes in acoustical environ­
ment, many researchers have attempted to develop signal processing schemes that mimic the 
functional organization of the peripheral auditory system (27, 49). The PLP cepstrum de­
scribed in Chapter 6 has also been shown to be very effective in combating noise and chan­
nel distortions [60). 

Another alternative is to consider the feature vector as an integral part of the recog­
nizer, and thus researchers have investigated its design so as to maximize recognition accu­
racy, as discussed in Chapter 9. Such approaches include LOA [34] and neural networks 
[45]. These discriminatively trained features can also be optimized to operate better under 
~oisy conditions, thus possibly beating the standard mel-cepstrum, especially when several 
independent features are combined [50]. The mel-cepstrum is the most popular feature vec­
tor for speech recognition. In this context we present a number of techniques that have _been 
~roposed over the years to compensate for the effects of additive noise and channel d1st0r­
llons on the cepstrum. 
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10.5.1. Spectral Subtraction 

Environ~b -0 ustn~ 

The basic assumption in this section is that the desired clean signal x[m] has been c 
b dd

. . . orrupted 
y a 1t1ve noise n[m): 

y[m] = x[m]+n[m] (I0.!02) 

and that both x[m] and n[m] are statistically independent, so that the power spectrum of th 
output y[m] can be approximated as the sum of the power spectra: e 

jY(J)j2 ""jX(/)12 + jN(/)j2 (10.103) 

with equality if we talce expected values, as the expected value of the cross term vanishes 
(see Section l 0.1.3). 

Although we don't know jN(/)12, we can obtain an estimate using the average peri0-
dogram over M frames that are known to be just noise (i.e., when no signal is present) as 
long as the noise is stationary 

(10.104) 

Spectral subtraction supplies an intuitive estimate for IX(/)I using Eqs. (10.103) and 
(10.104) as 

where we have defined the frequency-dependent signal-to-noise ratio SNR(f) as 

SNR(f) = IY(/)12 
jN<f)l2 

(10.105) 

(10.106) 

Equation (10.105) describes the magnitude of the Fourier transform but not the pb~­
This is raol a problem if we are interested in computing the mel-cepstrum as discuss~ 10 

Chapter 6. We can just modify the magnitude and keep the original phase of Y(/) usmg a 
filter Hu(/) : 

X(f) = Y(f)H,/f) (l0.107) 

where, according to Eq. (10.105), Hss(f) is given by 

(I0.108) 
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Since jiU)j
2 

is a power spectral density, it has to be positive, and therefore 

SNR(f) ~ l 

517 

(l0. l09) 

but we ~a~e no guarantee that. SNR(f), as computed by Eq. (1 O. I 06), satisfies Eq. ( 10_ 109). 
In fact, 1t 1s easy to see that noise frames do not comply. To enforce this constraint Boll [ 131 
suggested modifying Eq. (I 0.108) as follows: ' 

(IO.I IO) 

with a~ 0, so that the quantity within the square root is always positive, and where t,, (x) is 
given by 

It is useful to express SNR(f) in dB so that 

x = l0log10 SNR 

and the gain of the filter in Eq. ( l 0.1 1 1) also in dB: 

g.., (x) = 20 log10 f.u (x) 

Using Eqs. (10.111) and (10.112), we can express Eq. (10.113) by 

g.,(x) = max (10 log,o (1-10-1110 ),-A) 

after expressing the attenuation a in dB: 

0 = 10-A/IO 

Equation ( l0.114) is plotted in Figure 10.27 for A = IO dB. 

(IO.Ill) 

(10.112) 

(10.113) 

(IO.I 14) 

(10.115) 

The spectral subtraction rule in Eq. (l 0 .111) is quite intuitive. To implement it we can 
do a short-time analysis, as shown in Chapter 6, by using overlapping windowed segments, 
zero-padding, computing the FFf, modifying the magnitude spectrum, taking the inverse 
FFT, and adding the resulting windows. 

This implementation results in output speech that has significantly less noise, though it 
exhibits what is called musical noise [12]. This is caused by frequency bands f for w~ich 
lruf "'IN<f)r. As shown in Figure 10.27, a frequency lo for which IY2(/o)I: < l~Uo>I" is 
attenuated by A dB, whereas a neighboring frequency J;, where Jru; >I > IN<.t; >I • ha~ a 
much smaller attenuation. These rapid changes with frequency introduce tones at varymg 
frequencies that appear and disappear rapidly. 
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Figure 10.27 Magnitude of the spectral subtraction filter gain as a function of the input 
instantaneous SNR for A= 10 dB, for the spectral subtraction of Eq. (10.114), magnitude 
subtraction of Eq. (10.118), and oversubtraction of Eq. ( 10. 1 l 9) with /3 = 2 dB. 

The main reason for the presence of musical noise is that the estimates of SN R(f) 
through Eqs. (10.104) and (10.106) are poor. This is partly because SNR(f) is computed inde­
pendently for each frequency, whereas we know that SNR(fo) and SNR(J;) are correlated if 
/

0 
and J; are close to each other. Thus, one possibility is to smooth the filter in Eq. (10.114) 

over frequency. This approach suppresses a smaller amount of noise, but it does not distort the 
signal as much, and thus may be preferred by listeners. Similarly, smoothing over time 

SNR(f,t) == ySNR(f,t-1)+(1-y) IY(/)I: 
IN(f)I 

(10.116) 

can also be done to reduce the distortion, at the expense of a smaller noise attenuation. 
Smoothing over both time and frequency can be done to obtain more accurate SNR meas­
urements and thus less distortion. As shown in Figure 10.28, use of spectral subtraction can 
reduce the error rate. 

Additionally, the attenuation A can be made a function of frequency. This is useful 
when we want to suppress more noise at one frequency than another, which is a tradeoff 
between noise reduction and nonlinear distortion of speech. · 

Other enhancements to the basic algorithm have been proposed to reduce the musical 
noise. Sometimes Eq. (10.111) is generalized to 

(JO.I 17) 
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Figure 10.28 Word error rate as a function of SNR (dB) using Whisper on the Wall Street 
Joumal 5000-word dictation task. White noise was added at different SNRs. The solid line 
represents the baseline syslem trained with clean speech, the liae with squares the use of spec­
tral subtraction with the previous clean HMMs. They are compared to a system trained on the 
same speech with the same SNR as the speech tested on. 

519 

where a= 2 corresponds to the power spectral subtraction rule in Eq. (] 0.111 ), and a= 1 
corresponds to the magnitude subtraction rule (plotted in Figure 10.27 for A= 10 dB): 

g.Jx) = max{20 log10 (1-10-:.,s ),-A) (10.118) 

Another variation, called over~ubtraction, consists of multiplying the estimate of the 
noise power spectral density jN(.f}i" in Eq. (10.104) by a constant I 0P110

, where f3 > O, 
which causes the power spectral subtraction rule in Eq. (10.114) to be transformed to an­
other function 

g,., (x) = max (IO log10 ( 1-1 o-<x-P>110 
), -A) (10.119) 

This causes jY(ff < INUl to occur more often than jY(f)j2 
> IN<J)l1 

for frames for which 
IY<nl2 

"' IN<f)l2 
, and thus reduces the musical noise. 

10.5.2. Frequency-Domain MMSE from Stereo Data 

You have seen that several possible functions, such as Eqs. (10.114), (10.118), or (10.119), 
can be used to attenuate the noise and it is not clear that any one of them is better than the 
others, since each has been obtain~d through different assumptions. This opens the possibil­
i~y of estimating the curve g(x) using a different criterion, and, thus, different approxima­

ltons than those used in Section 10.5.1. 
One interesting possibility occurs when we have pairs of stereo uttera~ces that_ ~ave 

been recorded simultaneously in noise-free conditions in one channel and nmsy con<l1t1ons 
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in the other channel. In this case, we can estimate f(x) using a minimum mean squ 
criterion (Porter and Boll [47), Ephraim and Malah [23)), so that ared 

j(x) = ar~
1
i_::in{ rt ( X,(fi)- J(SNR(t;) )Y,(fi) )'} (10.120) 

or g(x) as 

g(x) = ar~,i_::in {% t (10 log" IX,(fi)I' - g ( SNR(fi) )-IO log" IY,(fi)I' )'} (I0.i2I) 

which can be solved by discretizing f(x) and g(x) into several bins and summing over all M 
frequencies and N frames. This approach results in a curve that is smoother and thus offers 
less musical noise and lower distortion. Stereo utterances of noise-free and noisy speech are 
needed to estimate f(x) and g(x) through Eqs. ( 10.120) and ( 10.121) for any given acoustical 
environment and can be collected with two microphones, or the noisy speech can be ob­
tained by adding to the clean speech artificial noise from the testing environment. 

Another generalization of this approach is to use a different function fl.x) or g(x) for 
every frequency [2] as shown in Figure 10.29. This also allows for a lower squared error at 
the expense of having to store more data tables. In the experiments of Figure 10.29, we note 
that more subtraction is needed at lower frequencies than at higher frequencies in this case. 

If such stereo data is available to estimate these curves, it makes the enhanced speech 
sound better [23] than does spectral subtraction. When used in speech recognition systems, it 
also leads to higher accuracies [2]. 

10.5.3. Wiener Filtering 

Let's reformulate Eq. (10.102) from the statistical point of view. The process y[n] is the 
sum of random process x[n] and the additive noise v[n] process: 

y[n] = x[n]+ v[n] (10.122) 

We wish to find a linear estimate i[n] in tem1s of ~he process y[n]: 

.. 
i[ n] = L h[ m ]y[ n - m] (10.123) 

~hich is the result of a linear time-invariant filtering operation. The MMSE estimate of h[n] 
m Eq. (10.123) minimizes the squared error 

E{[x[nJ-_t h[m]y[n-m]J} (I0.124) 
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Figure 10.29 Empirical curves for input-to-output instantaneous SNR. Eight different curves 
for 0, 1, 2, 3, 4, 5, 6, 7 and 8 kHz are obtained following Eq. (10.121) [2] using speech re­
corded simultaneously from a close-talking microphone and a desktop microphone. 

which results in the famous Wiener-Hopf equation 

521 

.. 
R..,.[I] = L h[m]R>,,[l-m] 

(10.125) 
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so that, taking Fourier transforms, the resulting filter can be expressed in the frequency do­

main as 

H (f) ::.: s.,:,· (/) 
s.,1.U) 

(10.126) 

If the signal x[n] and the noise v[n] are orthogonal, which is often the case, then 

S_,)_(f) =Su(/) and S,,.(/) = S_,._, (/) + S.,. (/) 

so that Eq. ( I 0. I 26) is given by 

H ( f) = S_u(f) 
. S;c.,.(/) +S",(/) 

(10.127) 

(10,128) 

Equation ( I 0.128) is called the noncausal Wiener filter. This can be realized only if 
we know the power spectra of both the noise and the signal. Of course, if Su:(/) and 
S,'V(/) do not overlap, then H(/) = 1 in the band of the signal and H(f) = 0 in the band 
of the noise. 

In practice, S:r.,.(f) is unknown. If it were known, we could compute its mel-cepstrum, 
which would coincide exactly with the mel-cepstrum before noise addition. To solve this 
chicken-and-egg problem, we need some kind of model. Ephraim [22] proposed the use of 
an HMM where, if we know what state the current frame falls under, we can use its mean 
spectrum as Su(/) . In practice we do not know what state each frame falls into either, so 
he proposed to weigh the filters for each state by the a posterior probability that the frame 
falls into each state. This algorithm, when used in speech enhancement, results in gains of7 
dB or more. 

A causal version of the Wiener filter can also be derived. A dynamical state model al­
gorithm called the Kalman filter (see [42] for details) is also an extension of the Wiener fil­
ter. 

10.5.4. Cepstral Mean Normalization (CMN) 

Different microphones have different transfer functions, and even the same microphone has 
a varying transfer function depending on the distance to the microphone and the room 
acoustics. In this section we describe a powerful and simple technique that is designed to 
handle convolutional distortions and, thus, increases the robustness of speech recognition 
systems to unknown linear filtering operations. 

Given a signal x[n], we compute its cepstrum through short-time analysis, resulting in 
a set of T cepstral vectors X = { x0 , x1 , ... , Xr _,} . Its sample mean x is given by 

_ I r-1 
x=-Ix 

T ,=0 , 
(10. 129) 
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Cepstral mean normali~ation (CMN) (Atal [8]) consists of subtracting x from each vector 
x, to obtain the nonnahzed cepstrum vector i, : 

i, =x,-i (10.130) 

Let's now consider a signal y[11J, which is the output of passing x(n] through a filter 
h[n]. We can compute another sequence of cepstrum vectors y = {y y ... } N 

fi h 
O • I , , y T I , OW 

Jet's further de ne a vector as -

where C is the DCT matrix. We can see that 

y, = x, +h 

and thus the sample mean y, equals 

1 T-1 } T-1 

y=-LY,=- 2,(x, +h)=i+h 
T ,=0 T ,~o 

and its normalized cepstrum is given by 

Y, =y, -y, =x, 

(10.131) 

(10.132) 

(10.133) 

(10.134) 

which indicates that cepstral mean normalization is immune to linear filtering operations. 
This procedure is performed on every utterance for both training and testing. Intuitively, the 
mean vector i conveys the spectral characteristics of the current microphone and room 
acoustics. In the limit, when T-) oo for each utterance, we should expect means from utter­
ances from the same recording environment to be the same. Use of CMN to the cepstrum 
vectors does not modify the delta or delta-delta cepstrum. 

Let's analyze the effect of CMN on a short utterance. Assume that our utterance con­
tains a single phoneme, say Isl. The mean i will be very similar to the frames in this pho­
neme, since Isl is quite stationary. Thus, after normalization, i, ""0 . A similar result will 
happen for other fricatives, which means that it would be impossible to distinguish these 
ultrashort utterances, and the error rate will be very high. If the utterance contains more than 
one phoneme but is still short, this problem is not insurmountable, but the confusion among 
phonemes is still higher than if no CMN had been applied. Empirically, it has been found 
that this procedure does not degrade the recognition rate on utterances from the same acous­
tical environment, as long as they are longer than 2-4 seconds. Yet the method provides 
significant robustness against linear filtering operations. In fact, for telephone recordings, 
where each call has a different frequency response, the use of CMN has been shown to pro­
vide as much as 30% relative decrease in error rate. When a system is trained on one micro­
phone and tested on another, CMN can provide significant robustness. 

Interestingly enough, it has been found in practice that the error rat~. for u~erances 
within the same environment is actually somewhat lower, too. This is surpnsmg, given lhat 
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there is no mismatch in channel conditions. One explanation is that, ev~n for the same mi­
crophone and room acoustics. the distance ~tween the mouth an~ the microphone varies for 
different speakers, which causes slightly different transfer functions, as we studied in Sec. 
tion I 0.2. In addition, the cepstral mean characterizes not only the channel transfer function 
but also the average frequency response of different speakers. By removing the long-tern: 
speaker average, CMN can act as sort of speaker nonnalization. 

One drawback of CMN is it does not discriminate silence and voice in computing the 
utterance mean. An extension to CMN consists in computing different means for noise and 
speech [5]: 

hu·0 = -1-.I x, - m. 
N, ,eq, 

(10.135) 

i.e., the difference between the average vector for speech frames in the utterance and the 
average vector m, for speech frames in the training data, and similarly for the noise frames 
ma . Speech/noise discrimination could be done by classifying frames into speech frames 
and noise frames, computing the average cepstra for each, and subtracting them from the 
average in the training data. This procedure works well as long as the speech/noise classifi­
cation is accurate. It's best done by the recognizer, since other speech detection algorithms 
can fail in high background noise (see Section 10.6.2). To avoid errors in transitions be­
tween speech and noise, delta and delta-delta can be computed prior to this speech/noise 
mean nonnalization so that they are unaffected. As shown in Figure 10.30, this algorithm 
has been shown to improve robustness not only to varying channels but also to noise. 

16 

14 --~ 12 0 --0 ... 
10 (II 

a: 

--NoCMN 

---cMN-2 

.. 8 0 .. .. 
w 6 
'ti .. 

4 0 
~ 

2 

0 

10 15 20 30 

SNR (dB) 

Fig~re l~.30 Word error rate as a function of SNR (dB) for both no CMN and CMN-2 [SJ. 
White noise was ad_ded at different SNRs and the system was trained with speech with th.e 
same SNR. The Whisper system is used on the 5000-word Wall Street Joumal task using a bi­
gram language model. 
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10.5.5. Real-Time Cepstral Normalization 

CMN requires the complete utterance to compute the cepstral mean; thus, it cannot be used 
in a real-time system, and an approximation needs to be used. In this section we discuss a 
modified version of CMN that can address this problem, as well as a set of techniques called 
RASTA that attempt to do the same thing. 

We can interpret CMN as the operation of subtracting a low-pass filter d[n], where all 
the T coefficients are identical and equal I/ T, which is a high-pass filter with a cutoff fre­
quency ror that is arbitrarily close to 0. This interpretation indicates that we can implement 
other types of high-pass filters. One that has been found to work well in practice is the ex­
ponential filter. so the cepstral mean x, is a function of time 

x, =ax, +(I-a)x,_1 (10.136) 

where a is chosen so that the filter has a time constant7 of at least 5 seconds of speech. 
Other types of filters have been proposed in the literature. In fact, a popular approach 

consists of an UR bandpass filter with the transfer function: 

(10.137) 

which is used in the so-called relative spectral processing or RASTA [32]. As in CMN, the 
high-pass portion of the filter is expected to alleviate the effect of convolutional noise intro­
duced in the channel. The low-pass filtering helps to smooth some of the fast frame-to-frame 
spectral changes present. Empirically, it has been shown that the RAST A filter behaves 
similarly to the real-time implementation of CMN, albeit with a slightly higher error rate. 
Both the RASTA filter and real-time implementations of CMN require the filter to be prop­
erly initialized. Otherwise, the first utterance may use an incorrect cepstral mean. The origi­
nal derivation of RASTA includes a few stages prior to the bandpass filter, and this filter is 
perfonned on the spectral energies, not the cepstrum. 

10.S.6. The Use of Gaussian Mixture Models 

Algorithms such as spectral subtraction of Section 10.5. l or the frequency-domain MMSE 
of Section 10.5.2 implicitly assume that different frequencies are uncorrelated from each 
other. Because of that, the spectrum of the enhanced signal may exhibit abrupt changes 
across frequency and not look like spectra of real speech signals. Using the model of the 

'Th · · h If For an exponen-. e lime constant t of a low-pass filter is defined as the value for which the output 15 cut m a · 
tial filter of parameter a and sampling rate F,, a= In 2/(TF,) · 
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. ment of Section IO I 3 we can express the clean-speech cepstral vector x as f environ · · • a unc-
tion of the observed noisy cepstral vector y as 

CI (1 
c-' (a-y)) x=y-b- n -e 00.138) 

where the noise cepstral vector n is a random vector. The MMSE estimate of x is given by 

XMMSE = E{x I y} = y-b-CE{In(l-ec-'<n-rl )1 y} (10.139} 

where the expectation uses the distribution of n. Solution to Eq. ( I 0. J 39) results in a nonlin­
ear function which can be leamed, for example, with a neural network [53]. 

A popular model to attack this problem consists in modeling the probability distribu­
tion of the noisy speech y as a mixture of K Gaussians: 

K-1 K-1 

p(y) = L,P(Y I k)P[k] = L,N(y,µk ,Ik)P[k] (10,140) 
k=O k=O 

where P[k] is the prior probability of each Gaussian component k. If x and y are jointly 
Gaussian within class k, then p(x I y,k) is also Gaussian [42] with mean: 

(10.141) 

so that the joint distribution of x and y is given by 

K-1 K-1 

p(x,y) = L,P(X,y i k)P[k] = L,.P(X I y,k)p(y I k)P[k] 
k=O k=O 

K-1 
(10.142) 

= L,N(x,Cky+rk,r,1)N(y,µk,I,)P[k] 
k=O 

where rk is called the correction vector, Ck is the rotation matrix, and the matrix f, tells 
us how uncertain we are about the compensation. 

~ maximum likelihood estimate of x maximizes the joint probability in Eq. (10.1 42)­
Assummg the Gaussians do not overlap very much (as in the FCDCN algorithm [2]): 

(10. 143) 
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whose solution is 

(10. 144) 

where 

k =argmaxN(y,µ*,l:t)P(k] 
k 

(I 0.145) 

It is often more robust to compute the MMSE estimate of x (as in the CDCN (2) and 
RATZ [43) algorithms): 

K-1 K-1 

i .11•15,: = E{x I y} = L, p(k I y)E{x I y,k} = L,P(k I y)(C1 y + r*) 
k=O k=O 

()0.146) 

as a weighted sum for all mixture components, where the posterior probability p(k I y) is 
given by 

p(k I y) = ,.!i(y I k)P[k] 

LP(Y lk)P[k] 
l:O 

(10.147) 

where the rotation matrix C* in Eq. (10.144) can be replaced by I with a modest degrada­
tion in performance in return for faster computation [2 I]. 

A number of different algorithms [2, 43) have been proposed that vary in how the pa­
rameters µk, tt, r*, and rt are estimated. If stereo recordings are available from both the 
clean signal and the noisy signal, then we can estimate µ* , t, by fitting a mixture Gaussian 
model to y as described in Chapter 3. Then C1 , r1 and rt can be estimated directly by 
linear regression of x and y. The FCDCN algorithm [2, 6] is a variant of this approach when 
it is assumed that tk = cr2I, r k = y2I, and C* =I, so that µt and r* . are estimated 
through a VQ procedure and r

1 
is the average difference (y - x) for vectors y that belong to 

mixture component k. An enhancement is to use the instantaneous SNR of a frame, defined 
as the difference between the log-energy of that frame and the average log-energy of the 
background noise. It is advantageous to use different correction vectors for different instan­
taneous SNR levels. The log-energy can be replaced by the zeroth-order cepstral coefficient 
with little change in recognition accuracy. 
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Often, stereo recordings are not available and we nee? other means of estimating pa­
rameters µk, :Et, rk, and rk. CDCN [6] is ?ne such algonth~ that has _a mo?el of the en­
vironment as described in Section I 0.1.3, which defines a nonlinear relat10nsh1p between x 
y and the environmental parameters n and h for the_ noise _and channel. This method als~ 
uses an MMSE approach where the correction vector 1s a weighted average of the correction 
vectors for all classes. An extension of CDCN using a vector Taylor series approximation 
[44) for that nonlinear function has been shown to offer_ improved results. Other methods 
that do not require stereo recordings or a model of the environment are presented in [43). 

10.6. ENVIRONMENTAL MODEL ADAPTATION 

We describe a number of techniques that achieve compensation by adapting the HMM to the 
noisy conditions. The most straightforward method is to retrain the whole HMM with the 
speech from the new acoustical environment. Another option is to apply standard adaptive 
techniques discussed in Chapter 9 to the case of environment adaptation. We consider a 
model of the environment that allows constrained adaptation methods for more efficient 
adaptation in comparison to the general techniques. 

10.6.1. Retraining on Corrupted Speech 

If there is a mismatch between acoustical environments, it is sensible to retrain the HMM. 
This is done in practice for telephone speech where only telephone speech, and no clean 
high-bandwidth speech, is used in the training phase. 

Unfortunately, training a large-vocabulary speech recognizer requires a very large 
amount of data, which is often not available for a specific noisy condition. For example, it is 
difficult to collect a large amount of training data in a car driving at 50 mph, whereas it is 
much easier to record it at idle speed. Having a small amount of matched-conditions training 
data could be worse than a large amount of mismatched-conditions training data. Often we 
want to adapt our model given a relatively small sample of speech from the new acoustical 
environment. 

One option is to take a noise waveform from the new environment. add it to all the ut­
terances in our database, and retrain the system. If the noise characteristics are known ahead 
of time, this method allows us to adapt the model to the new environment with a relatively 
s~all amount of data from the new environment, yet use a large amount of training data. 
Figure 10.31 shows the benefit of this approach over a system trained on dean speech for 
the case of additive white noise .. If the target acoustical environment also has a differe~t 
channel, we can also filter all the utterances in the training data prior to retraining. This 
melhod allows us to adapt the model to the new environment with a relatively small amount 
of data from the new environment. 

If the n?ise sampl~ !s available offline, this simple technique can provide good results 
at no cost dunng recogmtion. Otherwise the noise addition and model retraining would need 
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Figure 10.31 Word error rate_ as a func~ion of the testing data SNR (dB) for Whisper trnined 
on clean data an~ a sys~em tramed on _noisy data at the same SNR as the testing set as in Figure 
!0.30. White noise at different SNRs 1s added. 

529 

10 occur at runtime. This is feasible for speaker-dependent small-vocabulary systems where 
the training data can be kept in memory and where the retraining time can be small, but it is 
generally not feasible for large-vocabulary speaker-independent systems because of memory 
and computational limitations. 

One possibility is to create a number of artificial acoustical environments by corrupt­
ing our clean database with noise samples of varying levels and types, as well as varying 
channels. Then all those waveforms from multiple acoustical environments can be used in 
training. This is called multistyle training [39], since our training data comes from different 
conditions. Because of the diversity of the training data, the resulting recognizer is more 
robust to varying noise conditions. In Figure 10.32 we see that, though generally the error­
rate curve is above the matched-condition curve, particularly for clean speech, multistyle 
training does not require knowledge of the specific noise level and thus is a viable alterna­
tive lo the theoretical lower bound of matched conditions. 

i 
30 

-- 25 - Matched Noise 
G) ... 

20 I'll 
- Multistyle a: ... 15 e ... 10 w 

"D 
5 ... 

0 
31: 0 

5 10 15 20 25 

SNR (dB) 

Figu~e I0.32 Word error rates of multistyle training compared to matche~-n~ise training as a 
func!lon of the SNR in dB for additive white noise. Whisper is trained as m Figure 10·30: The 
~rror rate of multistyle training is between 12% (for low SNR) and 25% (for high S~) hi~her 
tn relative tenns than that of matched-condition training. Nonetheless, multistyle trammg oes 
better than a system trained on clean data for all conditions other than clean speech. 
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10.6.2. Model Adaptation 

E . --­D VJ r on men ta I Robustness 

We can also use the standard adaptation meth~ds used for speaker adapta~ion, such as MAP 
or MLLR described in Chapter 9. Since MAP ts an unstructured method, 1t can offer re 1 . . . 'f" SU ts 
similar to those of matched conditions, but tt reqmres a sigm icant amount of adaptaf 

'th b . ton 
data MLLR can achieve reasonable performance wi a out a minute of speech for m· · . tnor 
mismatches [ 41 ]. For severe mismatches, MLLR also r~qmres a lar~e number of transfonna-
tions, which, in tum, require a larger amount of adaptation data as discussed in Chapter 9_ 

Let's analyze the case of a single MLLR transfonn, where the affine transformation. . I f IS 
simply a bias. In this case the MLLR transfonn consists on y o a vector h that, as in the 
case of CMN described in Section J 0.5.4, can be estimated from a single utterance. Instead 
of estimating h as the average cepstral mean, this method estimates h as the maximum 
likelihood estimate, given a set of sample vectors X = {xo,Xi, ·· ·,X7_,} and an HMM model 
'A, [48], and it is a version of the EM algorithm where all the vector means are tied together 
(see Algorithm 10.2). This procedure for estimating the cepstral bias has a very slight reduc­
tion in error rates over CMN, although the improvement is larger for short utterances [48). 

ALGORITHM 10.2: MLE SIGNAL BIAS REMOVAL 

Step 1: Initialize h<0> = O at iteration J = o 
Step 2: Obtain model }/1> by updating the means from mt to mt+ bu>, for all Gaussians k. 
Step 3: Run recognition with model 1 u, on the current utterance and determine a state seg­
mentation 0[t] for each frame t. 
Step 4: Estimate b<1+1> as the vector that maximizes the likelihood, which, using covariance 
matrices t k , is given by: 

h (;.O) = (~I:~,, r ~ :i:;,',, ( x, - m~,,) ( 10.148) 

Step 5: If converged, stop; otherwise, increment j and go to Step 2. In practice two iterations 
are often sufficient. 

If both additive noise and linear filtering are applied, the cepstrum for the noise and 
that for most speech frames are affected differently. The speech/noise mean nonnalization 
[5] algorithm can_be extended similarly, as shown in Aigorithm 10.3. The idea is to estimate 
a vector n and b , such that all the Gaussians associated to the noise model are shifted by 
ii , and all remaining Gaussians are shifted by ii . 

We can make Eq. (10.150) more efficient by tying all the covariance matrices. This 
transforms Eq. (10.150) into 

b(/+I) _ 1 ~ 
- - L-Jx, -ms 

N, ,e 9, (I0.149) 
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i.e., the difference between the average vector for s eech f . 
average vector ms for speech frames in the trainin % ra':'e~ 10 the utteran~e and the 
m . This is essentially the same equation as in th g ata, ~

nd 
~imilarly for the noise frames 

1io~ described in Section 10.5.4. The difference 
1
.se tshpetech-nmse cepStral mean normaliza-

a t e speech/no·s d' · · · · 
done by the recognizer instead of by a separate class'fi Th' 

1 
_e ,scnmmatwn 1s 

high-background-noise conditions where traditional s
1 

ier. h/ 
1
~ method_ is more accurate in 

. . peec noise classifiers can ra·1 A 
compromise, a codebook with considerably fewer Gaus · h . 

1 
· s a 

to estimate n and ii. s1ans t an a recognizer can be used 

ALGORITHM 10.3: SPEECH/NOISE MEAN NORMALIZATION 

Step 1: Initialize h<01 = 0 , o<0
l = 0 at iteration i = o 

Step 2: Obtain mo~el A <il ~y updating the means of speech Gaussians from 
mt+ hu>, and of noise Gauss1ans from m to m + 8 <n mt to 

I I • 

Step 3_: Run recognition with model A l/l on the current utterance and determine a state 5 • 

mentat1on 8[1] for each frame t. eg 
Step 4· Estimate hu+i> and u+i> a th h · · . . n s e vectors t at max1m1ze the likelihood for speech 
frames ( t e q, ) and noise frames ( t e q n ), respectively: 

hli•O = (,~l:~,,r .?z?~,1 { x, - m.,,) 

, ,-, 
(j+I) _ -I -l 

n -l,~ I:s11J / r~ I:s[rl ( x, - ms,,1) 

(10.150) 

Step 5: If converged, stop; otherwise, increment j and go to Step 2. 

10.6.3. Parallel Model Combination 

By using the clean-speech models and a noise model, we can approximate the distributions 
obtained by training a HMM with corrupted speech. The memory requirements for the algo­
rithm are then significantly reduced, as the training data is not needed online. Parallel model 
combination (PMC) is a method to obtain the distribution of noisy speech given the distribu­
tion of clean speech and noise as mixture of Gaussians. As discussed in Section 10.1.3, if the 
clean-speech cepstrum follows a Gaussian distribution and the noise cepstrum follows another 
Gaussian distribution, the noisy speech has a distribution that is no longer Gaussian. The PMC 
method nevertheless makes the assumption that the resulting distribution is Gaussian whose 
mean and covariance matrix are the mean and covariance matrix of the resulting non-Gaussian 
distribution. If it is assumed that the distribution of clean speech is a mixture of N Gaussians, 
and the distribution of the noise is a mixture of M Gaussians, the distribution of the noisy 
speech contains NM Gaussians. The feature vector is often composed of the cepstrum, delta 
cepstrum, and delta-delta cepstrum. The model combination can be seen in Figure 10.33. 
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Figure 10.33 Parallel model combination for the case of one-state noise HMM. 

If the mean and covariance matrix of the cepstral noise vector n are given by µ: and 
I~, respectively, we first compute the mean and covariance matrix in the log-spectral do­
main: 

µ~ =C-•µ: 
I~= c-•1::<c-•t (10.151) 

In the linear domain N = e" , the distribution is lognormal, whose mean vector µN 
and covariance matrix IN can be shown (see Chapter 3) to be given by 

µN[i] = exp{µ~[i] + I:~ [i,i]/ 2} 
l:N[i,j] = µN[i]µN[j]( exp { l:~ [i,jJ}- 1) (10.152) 

with expressions similar to Eqs. (10.151) and (10.152) for the mean and covariance matrix 
ofX. 

Amazon/VB Assets 
Exhibit 1012 

Page 558



-~;.m~e:n~t,~·1I~M;od;e~l~A~d~a~p~ta~t:io~n~--------------------
533 

Using the model of the environment with no filt . . . 
]inear spectral vector Y given by (see Figure 10_33) 

1 
er is equivalent to obtaining a random 

Y==X+N 
. (10.153) 

and, since X and N are mdependent, we can obtain the . . 
mean and covanance matrix of y as 

µy =µx +µr-; 

l:v=l:x+:EN (10.154) 

Although the sum of two lognom1al distributions is not 1 
normal approximation [26] consists in assuming that y is 1 ognorml al, th.e popular log-

. ' I f ognorma . In this case we c 
apply Lhe inverse 1onnu ae o Eq. (10.152) to obtain the mean d . . . an 

1 d 
. . an covanance matrix m the 

log-spectra omam. 

r'[i ·1==1n{ :Ey[i,j] +I-~ 
y 'J [ ') [ '] µy l µy J . 

µ~[i) = lnµy[i]-.!.1n .,r l::[i,j]. + ·} 
2 µy[t)µy[J] 

(10,155) 

and finaJly return to the cepstrum domain applying the inverse of Eq. (10.151): 

µ; =Cµ~ 

r =CI:'Cr y y 

(10.156) 

The lognonnal approximation cannot be used directly for the delta and delta-delta cep­
strum. Another variant that can be used in this case and is more accurate than the lognonnal 
approximation is the data-driven parallel model combination (DPMC) [26], which uses 
Monte Carlo simulation to draw random cepstrum vectors from both the clean-speech HMM 
and noise distribution to create cepstrum of the noisy speech by applying Eqs. (10.20) and 
(10.21) to each sample point. These composite cepstrum vectors are not kept in memory, 
only their means and covariance matrices are, therefore reducing the required memory 
though still requiring a significant amount of computation. The number of vectors drawn 
from the distribution was at least t 00 in [26]. A way of reducing the number of random vec­
tors needed to obtain good Monte Carlo simulations is proposed in [56]. A version of PMC 
using numerical integration, which is very computationally expensive, yielded the best re­
sult~. 

Figure 10.34 and Figure 10.35 compare the values estimated through the lognormal 
approximation to the true value, where for simplicity we deal with scalars. Thus x. n, ~nd Y 
represe_nt the log-spectral energies of the clean signal, noise, and noisy signal, respecavel~, 
for a given frequency. Assuming x and n to be Gaussian with means ':'r ~nd µ,, and van­
ances (J, and (j respectively we see that the lognormal approximation is accurate when 
llie n ' 

standard deviations G and G are small. 
% II 
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Figure 10.34 Means and standard deviation of noisy log-spectrum y in dB according to Eq. 
(10.165). The distribution of the noise log-spectrum n is Gaussian with mean O dB and stan­
dard deviation 2 dB. The distribution of the clean log-spectrum x is Gaussian, having a stan­
dard deviation of JO dB and a mean varying from -25 to 25 dB. Both the mean and the 
standard deviation of y are more accurate in first-order VTS than in PMC. 
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Figure 10.35 Means and standard deviation of noisy log-spectrum y in dB according to Eq. 
(10.165). The distribution of the noise log-spectrum n is Gaussian with mean O dB and stan­
dard deviation of 2 dB. The distribution of the clean log-spectrum x is Gaussian with a stan­
dard deviation of 5 dB and a mean varying from -25 dB to 25 dB. The mean of y is well 
estimated in both PMC and first-order VTS. The standard deviation of y is more accurate in 
first-order VTS than in PMC. 
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The model of the acoustical environment described in Section 10.1 .3 describes the relation­
ship between the cepstral vectors x, n, and y of the clean speech, noise, and noisy speech, 

respectively: 

y=x+h+g(n-x-h) (10.157) 

where h is the cepstrum of the filter, and the nonlinear function g(z) is given by 

( e:'z) g(z)=Cln l+e · (10.158) 

Moreno [44] suggests the use of Taylor series to approximate the nonlinearity in Eq. 
(10.158), though he applies it in the spectral instead of the cepstral domain. We follow that 
approach to compute the mean and covariance matrix of y [4]. 

Assume that x, h, and n are Gaussian random vectors with means µ .. , µ", and µn and 
covariance matrices .E .. , .l:1,, and l:,,, respectively, and furthermore that x, h, and n are 
independent. After algebraic manipulation it can be shown that the Jacobian of Eq. (10.157) 
with respect to x, h, and n evaluated at µ = µn - µx - µh can be expressed as 

~ == I-A 
anl {J1,.,J1,,,1'1,l 

where the matrix A is given by 

A=CFC-1 

(10.159) 

(10,160) 

and Fis a diagonal matrix whose elements are given by vector f(µ) , which in tum is given 
by 

f(µ):::: \ __ , 
l+e 11 

(10.161) 

Using Eq. (10.159) we can then approximate Eq. (10.157) by a first-order Taylor se­
ries expansion around (µn, µx, µh) as 

ya:::µ _f +µJ, +g(µll -µX -µ,,) (10.162) 

+A(x-µ_.) + A(h-µ,,)+(1-A)(n-µ,,) 

The mean of y, µ, .. can be obtained from Eq. (10.162) as 
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(10.163) 

and its covariance matrix Iy by 

(10.164) 

so that even if r..t , .t,,, and I,, are diagonal, l:Y is no longer diagonal. Nonetheless, we can 
assume it to be diagonal, because this way we can transfonn a clean HMM to a corrupted 
HMM that has the same functional form and use a decoder that has been optimized for di­
agonal covariance matrices. 

It is difficult to visualize how good the approximation is, given the nonlinearity in­
volved. To provide some insight, let's consider the frequency-domain version of Eqs. 
(10.157) and (10. I 58) when no filtering is done: 

y = x + In ( 1 + exp ( n - x)) (10.165) 

where x, n, and y represent the log-spectral energies of the clean signal, noise, and noisy 
signal, respectively, for a given frequency . In Figure 10.34 we show the mean and standard 
deviation of the noisy log-spectral energy y in dB as a function of the mean of the clean log­
spectral energy x with a standard deviation of 10 dB. The log-spectral energy of the noise n 
is Gaussian with mean O dB and standard deviation 2 dB. We compare the correct values 
obtained through Monte Carlo simulation (or DPMC) with the values obtained through the 
lognonnal approximation of Section 10.6.3 and the first-order VTS approximation described 
here. We see that the VTS approximation is more accurate than the lognormal approxima­
tion for the mean and especially for the standard deviation of y, assuming the model of the 
environment described by Eq. (l 0. I 65). 

Figure 10.35 is similar to Figure 10.34 except that the standard deviation of the clean 
log-energy x is only 5 dB, a more realistic number in speech recognition systems. In this 
case, both the lognormal approximation and the first-order VTS approximation are good 
estimates of the mean of y, though the standard deviation estimated through the lognonnal 
approximation in PMC is not as good as that obtained through first-order VTS, again assum­
ing the model of the environment described by Eq. (10.165). The overestimate of the vari­
ance in the lognonnal approximation might, however, be useful if the model of the 
environment is not accurate. 

To compute the means and covariance matrices of the delta and delta-delta parameters, 
let's take the derivative of the approximation of yin Eq. (10.162) with respect to time: 

ay ""A ax 
ar a1 (10.166) 

so that the delta-cepstrum computed through ~ = x -x 1·s related to the derivative 
I t+2 1-2' 

[28] by 
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(10.167) 

so that 

µ6>. = Aµ.1.x (10.168) 

and similarly 

l:Ay =AL~AT +(I-A):tAll(I-A)7 (I 0.169) 

where we assumed that his constant within an utterance, so that f1h = o. 
Similarly, for the delta-delta cepstrum, the mean is given by 

µ42,· = AµA2• (10.170) 

and the covariance matrix by 

1:tiy = Al:4-;A
7 + (l-A).I:A2n (I-A{ (IO. 171) 

where we again assumed that h is constant within an utterance, so that /12h = O . 
Equations (10.163), (10.168), and (I 0.170) resemble the MLLR adaptation fonnulae 

of Chapter 9 for the means, though in this case the matrix is different for each Gaussian and 
is heavily constrained. 

We are interested in estimating the environmental parameters µn , µh, and :En, given 
a set of T observation frames y, . This estimation can be done iteratively using the EM algo­
rithm on Eq. (10.162). lf the noise process is stationary, l:611 could be approximated, assum­
ing independence between n,+2 and n,_2 , by l:AII = 21:n. Similarly, l:42n could be 
approximated, assuming independence between 11n,.1 and '1n1_ 1 , by 1:

4
2" = 41:0 • If the 

noise process is not stationary, it is best to estimate l:.111 and l:
4

2n from input data directly. 
If the distribution of x is a mixture of N Gaussians, each Gaussian is transformed ac­

cording to the equations above. If the distribution of n is also a mixture of M Gaussians, the 
composite distribution has NM Gaussians. While this increases the number of Gaussians, the 
decoder is still functionally the same as for clean speech. Because normally you do not want 
to alter the number of Gaussians of the system when you do noise adaptation, it is often as­
sumed that n is a single Gaussian. 

10.6.5. Retraining on Compensated Features 

We have discussed adapting the HMM to the new acoustical environment us_ing the s~ndard 
front-end features, in most cases the mel-cepstrum. Section 10.5 dealt with cleanmg the 
noisy feature without retraining the HMMs. It's logical to consider a combination of both, 
where the features are cleaned to remove noise and channel effects and then the HMMs are 
~etra· d - . · · --' t Th1·s idea is illustrated ine to take mto account that this processmg stage 1s not peuec · 
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in Figure t 0.36, where we compare the word_ ~rror r~t~ of the ~tandard matched-noise. 
condition training with the matched-noise-c_ond1tton tr~mmg_ after 1~ has been compensated 
by a variant of the mixture Gaussian algonthms descnbed m Section 10.5.6 [21]. An im­
provement is obtained by retraining on compensated features, which beats the unprocessed 
matched-condition training. 

The low en-or rates of both curves in Figure I 0.36 are hard to obtain in practice, be­
cause they assume we know exactly what the noise level and type are ahead of time, which 
in general is hard to do. On the other hand, this could be combined with the multistyle train­
ing discussed in Section J 0.6.1 or with a set of clustered models discussed in Chapter 9. 

30 

[ 25 · 
-+-SPLICE-processed matched condition 

Ill 
20 ~ 

--Unprocessed matched condition 
a: .. 15 0 
t:: 
w 

10 "C .. 
0 

5 
== 

0 -+------------,-----,------,----, 
5 10 15 20 25 30 

SNR (dB) 

Figure 10.36 Word error rates of matched-noise training without feature preprocessing and 
with the SPLICE algorithm [211 as a function of the SNR in dB for additive white noise. 
Whisper is trained as in Figure 10.30. Error rate with the mixture Gaussian model is up to 30% 
lower than that of standard noisy matched conditions for low SNRs while it is about the same 
for high SNRs. 

10.7. MODELING NONSTATIONARY NOISE 

The previous sections deal mostly with stationary noise. In practice, there are many nonsta­
tionary noises that often match a random word in the system's lexicon better than the silence 
model. In this case, the benefit of using speech recognition vanishes quickly. . 

The most typical types of noise present in desktop applications are mouth noise (hp 
smacks, throat clearings, coughs, nasal clearings, heavy breathing, uhms and uhs, etc), com­
puter noise (keyboard typing, microphone adjustment, computer fan, disk head seeking, 
etc.), and office noise (phone rings, paper rustles, shutting door, interfering speakers, etc.). 
yve can ~se a simple method that has been successful in speech recognition [57], as shown 
m Algonthm 10.4. This method consists of adding noise words modeled with HMMs to ab­
sorb these nonstationary noises. 
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In practice, updating the transcription turns out to be important, because human label­
ers often miss short noises that the system can uncover. Since the noise training data are 
often limited in terms of coverage, some noises can be easily matched to short word models, 
such as: if, two. Due to the unique characteristics of noise rejection, we often need to further 
augment confidence measures such as those described in Chapter 9. In practice, we need an 
additional classifier to provide more detailed discrimination between speech and noise. We 
can use a two-level classifier for this purpose. The ratio between the all-speech model score 
(fully connected context-independent phone models) and the all-noise model score (fully 
connected silence and noise phone models) can be used. 

Another approach [55] consists of having an HMM for noise with several states to 
deal with nonstationary noises. The decoder needs to conduct a three-dimensional Viterbi 
search which evaluates at each frame every possible speech state as well as every possible 
noise state to achieve the speech/noise decomposition (see Figure I 0.37). The computational 
complexity of such an approach is very large, though it can handle nonstationary noises 
quite well in theory. 

ALGORITHM 10.4: EXPLICIT NOISE MODELING 

Step 1: Augmenting the vocabulary with noise words (such as ++SMACK++), each composed 
of a single noise phoneme (such as +SMACK+), which are thus modeled with a single HMM. 
These noise words have to be labeled in the transcriptions so that they can be trained. 
Step 2: Training noise models, as well as the other models, using the standard HMM training 
procedure. 
Step 3; Updating the transcription. To do that, convert the transcription into a network, where 
lhe noise words can be optionally inserted between each word in the original transcription. A 
forced alignment segmentation is then conducted with the current HMM optional noise words 
inserted. The segmentation with the highest likelihood is selected, thus yielding an optimal tra n­
scription. 
Step 4: If converged, stop; otherwise go to Step 2. 

0---+0-.o-+0--+0-+0 
Observations 

Figure 10.37 Speech noise decomposition and a three-dimensional Viterbi decoder. 
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10.8. HISTORICAL PERSPECTIVE AND FURTHER READING 

. . umber of diverse topics that are often described in different fields· 
This chapter contains a n . . fi · • 

. 
1 

rerence covers it all For further reading on adaptive tltenng, you can check the 
no sing e re1 ' • · Th d 'd" d B 11 

b W.dr and Stearns [59] and Haykin [30]. eo on 1s an . e anger provide [S4] 
books y I ow , . [ 6] 

d Of adaptive filtering and Breinmg et al. 1 a good summary of echo 
a goo summary ' . -

I. t h ·gues Lee [38] has a good summary of independent component analysis for cance mg ec m . . . 
bl. d ce separation. Deller et al. [20) provide a number of techniques for speech en-

m sour h · d · · · 
hancement. Juang [35] and Junqua [37] survey tee mques use m 1mprovmg the robustness 
of speech recognition systems to noi~e. Ac~ro (2) compares a number of fe~ture transforma­
tion techniques in the cepstral domam and introduces the model of the environment used in 

this chapter. . . 
Adaptive filtering theory emerged early m the 1900s. i:ne Wiener and LMS filters 

were derived by Wiener and Widrow in 1919 and 1960, respectively. Norbert Wiener joined 
the MIT faculty in 1919 and made profound contributions to generalized harmonic analysis, 
the famous Wiener-Hopf equation, and the resulting Wiener filter. The LMS algorithm was 
developed by Widrow and his colleagues at Stanford University in the early 1960s. 

From a practical point of view, the use of gradient microphones (Olsen [46]) has 
proven to be one of the more important contributions to increased robustness. Directional 
microphones are commonplace today in most speech recognition systems. 

Boll [13] first suggested the use of spectral subtraction. This has been the cornerstone 
for noise suppression, and many systems nowadays still use a variant of Boll's original algo­
rithm. 

The Cepstral mean normalization algorithm was proposed by Atal [8] in 1974, al­
though it wasn't until the early 1990s that it became commonplace in most speech recogni­
tion systems evaluated in the DARPA speech programs [33]. Hennansky proposed PLP [31] 
in 1990. The work of Rich Stem's robustness group at CMU (especially the Ph.D. thesis 
work of Acero [l] and Moreno [43]) and the Ph.D. thesis of Gales (26] also represented ad­
vances in the understanding of the effect of noise in the cepstrum. 

B~II and_ S~jnowski [1 OJ gave the field of independent component analysis a boost in 
_l 995 with thetr mfomax rule. The field of source separation is a promising alternative to 
improve the robustness of speech recognition systems when more than one microphone is 
available. 
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CHAPTER 1 1 

Language Modeling 

Acoustic pattern matching, as discussed in 
Chapter 9, and knowledge about language are equally important in recognizing and under­
standing natural speech. Lexical knowledge (i.e., vocabulary definition and word pronuncia­
tion) is required, as are the syntax and semantics of the language (the rules that detennine 
what sequences of words are grammatically well-formed and meaningful). In addition, 
knowledge of the pragmatics of language (the structure of extended discourse, and what 
people are likely to say in particular contexts) can be important to achieving the goal of spo­
ken language understanding systems. In practical speech recognition, it may be impossible 
to separate the use of these different levels of knowledge, since they are often tightly inte­
grated. 

In this chapter we review the basic concept of Chomsky's fonnal language theory and 
the probabilistic languaoe model. For the formal language model, two things are fundamen­
tal· th b · & 1 "fi t1· f the e. _e _grammar and the parsing algorithm. The grammar_ 1s a _ionna spec1 1ca on o . 
P rrn1ss1ble structures for the language. The parsing technique 1s the method of analyzi_ng 
lhe sentence to see if its structure is compliant with the grammar. With the advent of bodies 
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~f text (corpora) that have had their structures hand-annotated, it is now possible to general­
ize the formal grammar to include accurate probabilities. Furthennore, the probabilistic rela­
ti~nship among a sequence of words can be directly derived and modeled from the corpora 
with the so-called stochastic language models, such as n-gram, avoiding the need to create 
broad coverage fonnal grammars. Stochastic language models play a critical role in building 
a working spoken language system, and we discuss a number of important issues associated 
with them. 

11.1. FORMAL LANGUAGE THEORY 

In constructing a syntactic grammar for a language, it is important to consider the generality, 
the selectivity, and the understandability of the grammar. The generality and selectivity ba­
sically determine the range of sentences the grammar accepts and rejects. The understand­
ability is important, since it is up to the authors of the system to create and maintain the 
grammar. For SLU systems described in Chapter 17, we need to have a grammar that covers 
and generalizes to most of the typical sentences for an application. The system also needs to 
distinguish the kind of sentences for different actions in a given application. Without under­
standability, it is almost impossible to improve a practical SLU system since it typically 
involves a large number of developers to maintain and refine the grammar. 

The most common way ofrepresenting the grammatical structure of a sentence, "Mary 
loves that person, " is by using a tree, as illustrated in Figure I 1.1. The node labeled S is the 
parent node of the nodes labeled NP and VP for noun phrase and verb phrase, respectively. 
The VP node is the parent node of node V-for verb. Each leaf is associated with the word 

Mary 

~) 

that 

Rewrite Rules: 

1. s-NP VP 
2. VP- VNP 
3. VP-AUXVP 
4. NP- ART NP/ 
5. NP-a- ADJ NP/ 
6. NPJ-ADJNPI 
7. NPJ-N 
8. NP- NAME 
9. NP- PRON 
JO. NAME - Mary 
11. V-;,. loves 
12. ADJ-+ that 
I 3. N-;,. person 

person 

Figure 11.1 A tree representation of a sentence and its corresponding grammar. 
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in the sentence to be analyzed. To construct such a tree for a se l n ence, we must know the 
structure of the langunge so that a set of rewrite rules can b d d . . e use to escnbe what tree 
structures are allowable. These rules, as illustrated in Figure 11 1 d . ·h . . . , etermme t at a certain 
symbol may be expanded m the tree by a sequence of symbols Th -

1 . . . . . e grammat1ca structure 
helps in determ1111ng the meaning ol the sentence It tells us that ti t · 1 . , ,. · 1a m t 1e sentence modi-
fies person. ·Mary loves that person. 

11.1.1. Chomsky Hierarchy 

In Chomsky'sformal_language theory [I,_ 14, 15), a grammar is defined as G = (V, T. P, S). 
where V and Tare fimte sets of 11011-termmals and terminals, respectively. v contains all the 
11011-termi11al symbols. We often use upper-case symbols to denote them. In the example 
discussed here, S, NP, NP!, VP, NAME, ADJ, N, and Vare non-tenninal symbols. The ter­
minal set T contains Mary, loves, that, and person, which are often denoted with tower-case 
symbols.Pis a finite set of production (rewrite) rules, as illustrated in the rewrite rules in 
Figure 11.1. Sis a special non-tenninal, called the start symbol. 

The language to be analyzed is essentially a string of terminal symbols, such as "Mary 
loves that person." It is produced by applying production rules sequentially to the start sym­
bol. The production rule is of the form a ~ f3 , where a and f3 are arbitrary strings of 
grammar symbols V and T, and the a must not be empty. In formal language theory, four 
major languages and their associated grammars are hierarchically structured. They are re­
ferred to as the Chomsky hierarchy ( 1] as defined in Table 11.1. There are four kinds of 
automata that can accept the languages produced by these four types of grammars. Among 
these automata, the finite-state automaton is not only the mathematical device used to im­
plement the regular grammar but also one of the most significant tools in computational lin­
guistics. Variations of automata such as finite-state transducers, hidden Markov models, and 
n-gram models are important examples in spoken language processing. 

These grammatical fonnulations can be compared according to their generative capac­
ity, i.e., the range that the fomialism can cover. While there is evidence that natural lan­
guages are at least weakly context sensitive. the context-sensitive requirements are rare in 
practice. The context-free grammar (CFG) is a very important structure for dealing with 
both machine language and natural language. CFGs are not only powerful enough to _de­
scribe most of the structure in spoken language,' but also restrictive enou_gh to have effic1~nt 
parsers to analyze natural sentences. Since CFGs offer a good compromise between pa~smg 
efficiency and power in representing the structure of the language, they have been wid~ly 
applied to natural language processing. Alternatively, regular grammru:s, as re~resented with 
a finite-state machine, can be applied to more restricted applications. Smee fimt~-state_ gram­
mars are a subset of the more general context-free grammar, we_ focus our d1scuss1on on 
context-free grammars only, although the parsing algorithm for finite-state grammars can be 
more efficient. 

' Th rr fi · · cd in Pullum and Gazdar [54]. e e ,ort to prove natural languages are not context- ree 1s summanz 
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Table 11.1 Chomsky hierarchy and the corresponding machine that accepts the language. 

Types Constraints Automata --
Phrase structure a --) f3 . This is the most general Turing machine -
grammar grammar. 
Context-sensitive A subset of the phrase structure Linear bounded -

grammar grammar. la! $1,81, where I.I indicates automata 

the length of the string. 

Context-free gram- A subset of the context sensitive Push down automata 
mar (CFG) grammar. The production rule is 

A --) f3 , where A is a non-terminal. 

This production rule is shown to be 
equivalent to Chomsky normal form: 
A --) w and A --) BC , where w is a 
terminal and B, C are non-terminals. 

Regular grammar A subset of the CFG. The production Finite-state auto-
rule is expressed as: A--) w mata 
and A-) wB. 

As discussed in Section 11.1.2, a parsing algorithm offers a procedure that searches 
through various ways of combining grammatical rules to find a combination that generates a 
tree to illustrate the structure of the input sentence, which is similar to the search problem in 
speech recognition. The result of the parsing algorithm is a parse tree/ which can be re­
garded as a record of the CFG rules that account for the structure of the sentence. In other 
words, if we parse the sentence, working either top-down from S or bottom-up from each 
word, we automatically derive something that is similar to the tree representation, as illus­
trated in Figure I I. I. 

A push-down automaton is also called a recursive transition network (RTN), which is 
an alternative formalism to describe context-free grammars. A transition network consists of 
nodes and labeled arcs. One of the nodes is specified as the initial state S. Starting at the 
initial state, we traverse an arc if the current word in the sentence is in the category on lhe 
arc. If the arc is followed, the current word is updated to the next word. A phrase can be 
parsed if there is a path from the starting node to a pop arc that indicates a complete parse 
for all the words in the phrase. Simple transition networks without recursion are often called 
finite-state machines (FSM). Finite-state machines are equivalent in expressive power to 
regular grammars and, thus, are not powerful enough to describe all languages that can ~ 
described by CFGs. Chapter 12 has a more detailed discussion on RTNs and FSMs used in 
speech recognition. 

z Th I . I p111ctice, a 
e resu t can be more than one parse tree since natural language sentences are often ambiguous. n as 

P~ing a)~oritbm should not only consider all the possible parse trees but also provide a ranking among the!O, 
discussed m Chapter 17. 
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11.1.2. Chart Parsing for Context-Free Grammars 

Since Chomsky introduced the notion of context-free grammars · th 1950 . 
· h · · m e s, a vast litera-

ture has ansen on t e parsmg algorithms. Most parsing algorith d 1 . . ms were eve oped m com-
puter science to analyze programmmg languages that are not amb· . h . . 1guous m t e way that 
spoken ~anguage 1s [ 1, 32]. We discuss only the most relevant materials that are fundamental 
to building spoken language systems, namely the chart parser for the co t t fi . . . . n ex - ree grammar. 
This algonthm has been widely used m state-of-the-art spoken language d t d' , un ers an mg sys-
tems. 

11.1.2.1. Top Down or Bottom Up? 

Parsing is a special case of the search problem generally encountered in speech recognition. 
A parsing algorithm offers a procedure that searches through various ways of combining 
grammatical rules to find a combination that generates a tree to describe the structure of the 
input sentence, as illustrated in Figure 11.1. The search procedure can start from the root of 
the tree with the S symbol, attempting to rewrite it into a sequence of terminal symbols that 
matches the words in the input sentence, which is based on goal-directed search. Alterna­
tively, the search procedure can start from the words in the input sentence and identify a 
word sequence that matches some non-terminal symbol. The bottom-up procedure can be 
repeated with partially parsed symbols until the root of the tree or the start symbol S is iden­
tified. This data-directed search has been widely used in practical SLU systems. 

A top-down approach starts with the S symbol, then searches through different ways to 
rewrite the symbols until the input sentence is generated, or until all possibilities have been 
examined. A grammar is said to accept a sentence if there is a sequence of rules that allow 
us to rewrite the start symbol into the sentence. For the grammar in Figure I I.I, a sequence 
of rewrite rules can be illustrated as follows: 

s 
~ NP VP (rewriting S using S~NP) 
~NAME VP (rewriting NP using NP~NAME) 
4Mary VP {rewriting NAME using NAME~Mary) 

4Mary loves that person {rewriting N using N~person_l . 
Alternatively, we can take a bottom-up approach to start with the words m t~e _mput 

sentence and use the rewrite rules backward to reduce the sequence of symb~ls until it ~e­
comes S. The left-hand side of each rule is used to rewrite the symbol on the nght-hand Slde 
as follows: 

· · M ry using NAME~Mary} 4NAME 

-,NAME 
loves that person (rewriting a 
V that person (rewriting loves using V~loves) 

4NP VP 

-,s (rewriting NP using S~NP VP) 
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