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. ing the noise v[n]. The choice of N for a Joy,.
N =0, with the domll;'ﬁltl:rtle(mm;;e;ind the noise level.present in the room,
estimate depends on the ld Iso be estimated by playing sine waves of different frequencieg
The filter h[{l] coul ?n a white noise signal or sine waves may not t.)e Practical, 5.
or a chirp’ [52]. Since playluicting stereo recordings with a close-talking microphope i
other method is based on C(:“lter h[n] of length M is estimated so that Wh?n applied 1o e
far field micro_Phol;i'[r;Iih ii nl1inimizes the squared error with the far field signal yln, whic
::3;‘«;?;(1;5 ;;lgll::ving set of M linear equations:

Varianee

<] (10.14)
S HmR [m=n) =R, [n]

mu0

hich is a generalization of Eq. (10.11) when x[r] is not a white noise signal,
which is

7000
6000 |-
5000}

0 200 40 800 800 1000 1200 J400 1600 1800 2000
Time {samples)

: 16 kHz. It was
Figure 10.1 Typical impulse response of an average office. Sampling rate was

: e th and psing
estimated by driving a 4-minute segment of white noise through an artificial mou
Eq. (10.11). The filter length is about 125 ms,

. in office
. L, illiseconds in ©

It is not uncommon to have reverberation times of over 100 mllhs;t_l -

Tooms. In Figure 10.1 we show the typical impulse response of an average O

1013. A Model of the Environment

A widely used model of th

. r-

g n it gets €O
¢ degradation encountered by the speech signal when it
Tupted by both additiye no

e[‘iVC
. . S . We can d

1se and channel distortion is shown in Figure 10.2
\,

* A chirp function cop

. tinuously varjes its fre
ume: sin(a(e, + @n)) 1ts frequenc

ith
. linearly ¥
¥. For example, a linear chirp varies its frequency
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the relationships between the clean signal and the corry
and cepstrum domains based on such a model [2].

Alm] —pf ] _"'——P? ylm]

nfm]

pted signal both in power-spectrum

Figure 10.2 A model of the environment.

In the time domain, additive noise and linear filtering results in
yim] = x[m] % h{m]+ n{m] (10.15)
It is convenient to express this in the frequency domain using the short-time analysis

methods of Chapter 6. To do that, we window the signal, take a 2K-point DFT in Eq. (10.15)
and then the magnitude squared:

WL =X P [HURE +INGOF +2Re{X(S)HUN' ()}

2 2 s (10.16)
=X [HUO +INGOI + 2| XU H SOV )] cos(6,)

where k=0,1,--+,K , we have used upper case for frequency domain linear spectra, and 8,

is the angle between the filtered signal and the noise for bin k.

The expected value of the cross-term in Eq. (10.16) is zero, since x[m] and n[n] are
statistically independent. In practice, this term is not zero for a given frame, though it is
small if we average over a range of frequencies, as we often do when computing the popular
mel-cepstrum (see Chapter 6). When using a filterbank, we can obtain a relationship for the
energies at each of the M filters:

Y =[x 0P [HE] + IV (10.17)

where it has been shown experimentally that this assumption works well in practice. .

Equation (10.17) is also implicitly assuming that the length of fi[n], the filter’s {mpulse
response, is much shorter than the window length 2N. That means that for filters with long
reverberation times, Eq. (10.17) is inaccurate. For example, for |N(f)|' =0,a wmdqw shift
of 7, and a filter’s impulse response A{n)=08[n—T1], we have L[f,1=X,.[/,], ie. the
output spectrum at frame ¢ does not depend on the input spectrum at that frar'ne. This is a
more serious assumption, which is why speech recognition systems tend to fail under long
feverberation times.
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By taking logarithms in Eq. (10.17), and after some algebraic manipulation, we obtajp
m|y(/) = [ X +n|H(f)f

2 ; 1
+in(1+exp(in| M = In|X (/) ~tn# (£ )) (10.13,

Since most speech recognition systems use cepstrum features, it is useful to see the ef.
fect of the additive noise and channel distortion directly on the cepstrum. To do thar, ler's
define the following, length-(M + 1) cepstrum vectors:

x=C(m|X(P Il - XA )
h:(;(|n|//(/,,)|" |Hff lniiﬂfvf)

; 3 (10.19;
n=CVO N - N, )

y=C(frsof el - mivsf)

where C is the DCT matrix and we have used lower-case bold to represent cepstrum vectors,
Combining kys. (10.18) and (10.19) results in

y=x+htgn-x-h) (10.20
where the nonlinear function g(z) is given by

4(n) = Cin(1+¢") (1021)

Huations (10.20) and (10.21) say that we can compute the cepstrum of the corrupted
specch If we know the cepstrum of the clean speech, the cepstrum of the noise, and the cep-
strum of the filter, In practice, the DCT matrix C is not square, so that the dimension of 'Lhe
cepstrm vector is much smaller than the number of filters. This means that we are losing
resolution when going back to the frequency domain, and thus Eqgs. (10.20) and (10.21) rep-
resent only an approximation, though it has been shown to work reasonably well.

As discussed in Chapter 9, the distribution of the cepstrum of x can be mode'led asa
mixture of Gaussian densitics. Even if we assume that x follows a Gaussian distribution.
Fq. (10.20) is no longer Gaussian because of the nonlinearity in Eq. (10.21)-

Itis difficult to visualize the effect on the distribution, given the nonlinearity involved

To provide some insight, let’s consider the frequency-domain version of Eq. (10.18) et
no filtering is done, i.c., H(f)=1:

Y= X ln(l-l-cxp(n—x)) (10.22)

; is
wheee ¢, n, and y represent the log-spectral energies of the clean signal, noise. and n(; aﬁ
signal, respectively, for a given frequency. Using simulated data, not real speech, Wé
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analyze the effect of this transformation. Let’s assume that both x and n are Gaussia
dom variables. We can use Monte Carlo simulation to draw a large number of ointsnf;an-
those two Gaussian distributions and obtain the corresponding noisy values 5 usin gm
(10.22). Figure 10.3 shows the resulting distribution for several values of o . We gﬁxe?i.
_=0dB, since it is only a relative level, and set o, =2dB, a typical value.‘\;Ve also set
u, =25dB and see that the resulting distribution can be bimodal when o is very large
Fortunately, for modern speech recognition systems that have many Gaussi;n componenis.
o, is never that large and the resulting distribution is unimodal, ,

0.03 0.04 0.08
0.03
0.02 g
0.02 0.04
.01
. 0.01 0.02
0 0
0 50 100 0 20 40 60 4 0 20 40 60

Figure 10.3 Distributions of the corrupted log-spectra y of Eq. (10.22) using simulated data.
The distribution of the noise log-spectrum n is Gaussian with mean O dB and standard devia-
tion of 2 dB. The distribution of the clean log-spectrum x is Gaussian with mean 25 dB and
standard deviations of 25, 10, and 5 dB, respectively (the x-axis is expressed in dB). The first
distribution is bimodal, whereas the other two are approximately Gaussian. Curves are plotied
using Monte Carlo simulation.

Figure 10.4 shows the distribution of y for two values of 1, given the same values for
the noise distribution, 4, =0dB and o, =2dB, and a more realistic value for o, =5dB.
We see that the distribution is always unimodal, though not necessarily symmetric, particu-
larly for low SNR (2, — 1t,, ).

0.08 0.1
0.06
0.4 0.05
0.02
0
oG 10 20 30 0 10 20 %

Figure 10.4 Distributions of the corrupted log-spectra y of Eq. (10.22) using simulated da.ta.
The distribution of the noise log-spectrum # is Gaussian with mean 0_ dB and standar_d (Elevxa-
tion of 2 dB. The distribution of the clean log-spectrum is Gaussian with stzm.dard deviation of
5 dB and means of 10 and 5 dB, respectively. The first distribution is app.roxxmz.nely Gaussian
while the second is nonsymmetric. Curves are plotted using Monte Carlo simulation.
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ns used in an HMM are mixtures o.f C%augsians sO that, evep jf each
ransformed into a non-Gaussian dlsm_buuon, the composite distrib,.
quately by another mixture of Gaussians. In fact, if you retraip the
Gaussian assumption on corrupted speech, you can get good re-

The distributio
Gaussian component is ¢
tion can be modeled ade
model using the standard '
sults, so this approximation is not bad.

10.2. ACOUSTICAL TRANSDUCERS

Acoustical transducers are devices that convert the acoustic energy of §ound into electrica
energy (microphones) and vice versa (loudspeakers). In the case o_f a microphone this trans-
duction is generally realized with a diaphragm, whose movemgnt In response to sound pres-
sure varies the parameters of an electrical system (a variable-resistance conduclor, a
condenser, etc.), producing a variable voltage that constitutes the microphone output. We
focus on microphones because they play an important role in designing speech recognition
systems.

There are near field or close-talking microphones, and far field microphones. Close-
talking microphones, either head-mounted or telephone handsets, pick up much less back-
ground noise, though they are more sensitive to throat clearing, lip smacks, and breath noise.
Placement of such a microphone is often very critical, since, if it is right in front of the
mouth, it can produce pops in the signal with plosives such as /p/. Far field microphones can
be lapel mounted or desktop mounted and pick up more background noise than near field
microphones. Having a small but variable distance to the microphone could be worse than a
larger but more consistent distance, because the corresponding HMM may have lower vari-
ability.

When used in speech recognition systems, the most important measurement is the sig-
nal-to-noise ratio (SNR), since the lower the SNR the higher the error rate. In addition, dif-
ferent microphonzs have different transfer functions, and even the same microphone offers
diffen:ent transfer functions depending on the distance between mouth and microphone.
Varying noise z{nd channel conditions are a challenge that speech recognition systems have
to address, and in this chapter we present some techniques to combat them.

_ The most popular type of microphone is the condenser microphone. We shall study it
detail its directionality pattemns, frequency response, and electrical characteristics.

10.2.1.  The Condenser Microphone

A condenser microphone has a cap:

; - . acitor consisting of a pai | plates separated by an
insulating material called a dielec 8 pair of metd! p a

tric (see Figure 10.5). Its capacitance C is given by

C=emb’/h (10.23)
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where & is a constant, b IS th.e width of the plate, and # is the separation between the plates
If we polarize the capacitor with a voltage V., it acquires a charge Q siven by ;

A= (10.24)

One of the plates is free to move in response to changes in sound pressure, which re-
sults in a change in the plate separation Ak, thereby changing the capacitance and producing
a change in voltage AV = AhV,_/h. Thus, the sensitivity® of the microphone depends on the
polarizing voltage V.., which is why this voliage can often be 100 V or more.

s
v

- ) -

Figure 10.5 A diagram of a condenser microphone.

Electret microphones are a type of condenser microphones that do not require a spe-
cial polarizing voltage V., because a charge is impressed on either the diaphragm or the
back plate during manufacturing and it remains for the life of the microphone. Electret mi-
crophones are light and, because of their small size, they offer good responses at high
frequencies.

From the electrical point of view, a microphone is equivalent to a voltage source (/)
with an impedance Z,,, as shown in Figure 10.6. The microphone is connected to a preampli-
fier which has an equivalent impedance R,. '

Microphone Preamplifier
Zy R,
—o0 o——-i__r-‘_
v(r) [_ a- G
. Pi———

Figure 10.6 Electrical equivalent of a microphone.

——

en-circuit voitage of the electric signal the microphone delivers

*The seasitiyi . pho
e e 94 dB SPL, when there is no load or a high impedance.

fOI‘_a sound wave for a given sound pressure level, often )
This voltage is measured in dBV, where the 0-dB reference 1s 1 Vrms.
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From Figure 10.6 we can se¢ that the voltage on R, is
) R,
MO="0G" 1 (1025)

Maximization of vg(f) in Eq. (10.25) re_sglts in R, =0, or in practice B ssg
which is called bridging. Thus, for highest sensitivity the impedance of the amplifier has"{‘
be at least 10 times higher than that of the microphone. If tl'le microphone js connecteqd an:
amplifier with lower impedance, there is a load loss of signal level. Most low'impedance
microphones are labeled as 150 ohms, though tpe actual vqlues may vary between 100 ang
300. Medium impedance is 600 ohms and high impedance is 600~10,000 ohms. [p practice
the microphone impedance is a function of frequency. Signal power is measure iq dBm)
where the 0-dB reference corresponds to 1 mW dissipated in a 600-ohm resistor, Thus,d
dBm is equivalent to 0.775 V.,

Since the output impedance of a condenser microphone is very high (~ 1 Mohm), 2
JFET transistor must be coupled to lower the equivalent impedance. Such a transistor needs
to be powered with DC voltage through a different wire, as in Figure 10.7. A standard sound
card has a jack with the audio on the tip, ground on the sleeve, DC bjas V,,» on the ring, and
a medium impedance. When using phantom power, the V. bias is provided directly in the
audio signal, which must be balanced to ground.

« Microphone Preamplifier

Figure 10.7 Equivalent circuit for a condenser microphone with DC bias on a separate wire.

‘ It is irpportant to understand how noise affects the signal of a microphone. If therma
noise arises in the resistor R,, it will have a power

Py =4kTB (10.26)

whi = -3 : . i
ere k = 1.38 x 10™ J/K is the Bolzmann’s constant, T is the temperature in °K; and 81

g;: :a;:nzidg o Hane thermal noise in Eq. (10.26) at room temperature (7= 297°K) agd
width of 4 kHz is equivalent to —-132 dBm. In practice, the noise is significanty

highi i i¢
gher than this because of Preamplifier noise, radio-frequency noise and electromagneu_

interfere ; . :
e Lh:.c; i(froorh grounding connections). It is, thus, important to keep the signal P z‘g]esir.
ophone and the preamp as short as possible to avoid extra noise. It 15
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able to have a microphone with low impedance to decrease the effect of noise due to radio-
frequency interfere_nce, and to decrease the signal loss if long cables are used. Most micro-
phones specify their SNR and range where they are linear (dynamic range). For condenser
microphones, a power supply is necessary (DC bjas required). Microphones with balanced
output (the signal appears across two inner wires not connected to ground, with the shield of
the cable connected to ground) are more resistant to radio frequency interference.

10.2.2. Directionality Patterns

A microphone’s directionality pattern measures its sensitivity to a particular direction. Mi-
crophones may also be classified by their directional properties as omnidirectional (or non-
directional) and directional, the latter subdivided into bidirectional and unidirectional, based
upon their response characteristics.

10.2.2.1. Omnidirectional Microphones

By definition, the response of an omnidirectional microphone is independent of the direction
from which the encroaching sound wave is coming. Figure 10.8 shows the polar response of
an omnidirectional mike. A microphone’s polar response, or pickup pattern, graphs its out-
put voltage for an input sound source with constant level at various angles around the mic.
Typically, a polar response assumes a preferred direction, called the major axis or front of
the microphone, which corresponds to the direction at which the microphone is most sensi-
tive. The front of the mike is labeled as zero degrees on the polar plot, but since an omnidi-
rectional mic has no particular direction at which it is the most sensitive, the omnidirectional
mike has no true front and hence the zero-degree axis is arbitrary. Sounds coming from any
direction around the microphone are picked up equally. Omnidirectional microphones pro-
vide no noise cancellation.

Diaphragm +__

(a)

Figure 10.8 (a) Polar response of an ideal omnidirectional microphone and (b) its cross

section.

mnidirectional condenser microphone.
The pressure enters the opening
t converts the diaphragm move-

Figure 10.8 shows the mechanics of the idejals 0
A sound wave creates a pressure all around the mlcroph.one'.
of the mike and the diaphragm moves, An electrical circul

* Ideal - " .
omnidirectional microphones do not exist.
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ge, or response. Sound waves impinging on the mike creaqe 2
pressure at the opening regardless of the direction from which they are coming; therefore we
have a nondirectional, or omnidirectional, microphone. As we have seen in Chapter 2, il the
source signal is Be’™ , the signal at a distance r is given by (4/r)e™ independently of e

ment into an electrical volta

angle. . . ;
This is the most inexpensive of the condenser microphones, and it has the advantage

of a flat frequency response that doesn’t change with the angl? 0{ distance to the micro-
phone. On the other hand, because of its uniform polar pattern, it picks up not only the de-
sired signal but also noise from any direction. For example, if a pair of speakers i
monitoring the microphone output, the sound from the speakers can reenter the microphone
and create an undesirable sound called feedback.

10.2.2.2. Bidirectional Microphones

The bidirectional microphone is a noise-canceling microphone; it responds less to sounds
incident from the sides. The bidirectional mike utilizes the properties of a gradient micro-
phone to achieve its noise-canceling polar response. You can see how this is accomplished
by looking at the diagram of a simplified gradient bidirectional condenser microphone, as
shown in Figure 10.9. A sound impinging upon the front of the microphone creates a pres-
sure at the front opening. A short time later, this same sound pressure enters the back of the
microphone. The sound pressure never arrives at the front and back at the same time. This
creates a displacement of the diaphragm and, just as with the omnidirectional mike, a corre-
sponding electrical signal. For sounds impinging from the side, however, the pressure from
an incident sound wave at the front opening is identical to the pressure at the back. Since
both openings lead to one side of the diaphragm, there is no displacement of the diaphragm,
and the sound is not reproduced.

Speech sound wave
from the front

- ——————

Noise sound wave
from the side

Figure 10.9 Cross section of an ideal bidirectional microphone.
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To compute the polar respo_nse of this gradient microphone let’s make the N——
tion of Figure 10.10, where the microphone signal is the difference between the signal at the
front and rear of the diaphragm, the separation between plates is 2d, and r is the distance
petween the source and the center of the microphone.

source

(-d. 0) (4, 0)
Figure 10.10 Approximation to the noise-canceling microphone of Figure 10.9.

You can see that #, the distance between the source and the front of the diaphragm, is
the norm of the vector specifying the source location minus the vector specifying the loca-
tion of the front of the diaphragm

n =,re’° = d[ (10.27)
Similarly, you obtain the distance between the source and the rear of the diaphragm
r, =|re +d| (10.28)

The source arrives at the front of the diaphragm with a delay 6, =, /c, where c is the
speed of sound in air. Similarly, the delay to the rear of the diaphragm is 8, =r,/c. If the
source is a complex exponential e’*, the difference signal between the front and rear is

given by

x(t) = 4 gmse-s) _ A prsu-sy _ 4 G f,0) (10.29)
I‘, rz r

where A is a constant and, using Egs. (10.27), (10.28) and (10.29), the gain G(/,6) is given
by

-janeP-des e_jz,;|e°+x{rf

e®-2] e+

(10.30)

G(f,0)=5

Wwhere we have defined A =d/r andt=r/c.

The magnitude of Eq. (10.30) is used to plot the polar respo.ns.e '
can be seen by the plot, the pattern resembles a figure eight. The bld}rectlo
interchangeable front and back, since the response has a maximum In two
tions. In practice, this bidirectional microphone is an ideal case, and the pol

10 be measured empirically.

of Figure 10.11. As
nal mike has an
opposite direc-
ar response has
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Figure 10.11 Polar response of a bidirectional microphone obtained through Eq. (10.30) with
d=1cm, r=50cm, ¢ = 33,000 cm/s, and f = 1000 Hz.

According to the idealized model, the frequency response of omnidirectional micro-
phones is constant with frequency, and this approximately holds in practice for real omnidi-
rectional microphones. On the other hand, the polar pattern of directional microphones is not
constant with frequency. Clearly it is a function of frequency, as can be seen in Eq. (10.30).
In fact, the frequency response of a bidirectional microphone at 0° is shown in Figure 10.12
for both near field and far field conditions.

&

—
o

8

Oifierence in air pressure (dB)
& .

&

0
1

o ¢

Frequancy (Hz)
response of a bidirectional microphone with o =1cm at 0° obtained
e larger the distance between plates. the lower the frequency of the

lues are obtained for §250 Hz and 24.750 Hz and the null for 16500

Hz. The solid line comes s to far fi - i
Sponds to far nditions ( A =0.02 ) and the doited line 1© 0
field conditions (A =0.5 ), ° far field condidions (4.=0.02) <

10"
Figure 10.12 Frequency

through Eq. (10.30). Th
maxima, The highest v
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It can be shown, after taking the derivative of G(f,0) in Eq. (10.30) and equating to
zero, that the maxima are given by o

c
Frat (10.31)

with n=12,-+. We can observe from Eq. (10.31) that the larger the width of the dia-
phragm, the lower tl'1e first maximum, N

The increase in frequency response, or sensitivity, in the near field, compared to the
far field, is a measure of noise cancellation. Consequently the microphone is said to be noise
canceling. The microphone is also referred to as a differential or gradient microphone, since
it measures the gradient (difference) in sound pressure between two points in space. The
boost in low-frequency response in the near field is also referred to as the proximity effect,
ofien used by singers to boost their bass levels by getting the microphone closer to their
mouths.

By evaluating Eq. (10.30) it can be seen that low-frequency sounds in a bidirectional
microphone are not reproduced as well as higher frequencies, leading to a thin sounding
mike.

Let’s interpret Figure 10.12. The net sound pressure between these two points, sepa-
rated by a distance D = 2d, is influenced by two factors: phase shift and inverse square law.

The influence of the sound-wave phase shift is less at low frequencies than at high,
because the distance D between the front and rear port entries becomes a small fraction of
the low-frequency wavelength. Therefore, there is little phase shift between the ports at low
frequencies, as the opposite sides of the diaphragm receive nearly equal amplitude and
phase. The result is slight diaphragm motion and a weak microphone output signal. At
higher frequencies, the distance D between sound ports becomes a larger fraction of the
wavelength. Therefore, more phase shift exists across the diaphragm. This causes a higher
microphone output. )

The pressure difference caused by phase shift rises with frequency at a rate of 20 dB
per decade. As the frequency rises to where the microphone port spacing D equals half a
wavelength, the net pressure is at its maximum. In this situation, the diaphragm movement is
also at its maximum, since the front and rear see equal amplitude but in opposite polariges
of the wave front. This results in a peak in the microphone frequency response, as illuS_trated
in Figure 10.12. As the frequency continues to rise to where the microphone port spacing D
€quals one complete wavelength, the net pressure is at its minimum. Here, the dlaphmgm
does not move at all, since the front and rear sides see equal amplitude at the same POlﬂnf)'
;f the wave front. This results in a dip in the microphone frequency response, as showt in

1gure 10.12.
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A second factor creating a net pressure difference across the diaphragm is the impacy
f the inverse square law. If the sound-pressure difference between the front and rear ports
0 ophone were measured near the sound source and again further

of a noise-canceling micr
from the source, the near field measurement would be greater than the far field. In othe,

words, the microphone's net pressure difference: and, therefore, output signal, is greater ip
the near sound field than in the far field. Tt)e mverse-square-lfiw effectlls i_ndependem of
frequency. The net pressure that causes the diaphragm to move s a combination of both the
phase shift and inverse-square-law effect. These two factors influence the frequency re.
sponse of the microphone differently, dependmg on the distance to the sound source. For
distant sound, the influence of the net pressure difference from the inverse-square-law effect
is weaker than the phase-shift effect; thus, the rising 20-dB-per-decade frequency response
dominates the total frequency response. As the microphone is moved closer to the sound
source, the influence of the net pressure difference from the inverse square law is greater
than that of the phase shift; thus the total microphone frequency response is largely flat.

The difference in near field to far field frequency response is a characteristic of all
noise-canceling microphones and applies equally to both acoustic and electronic types.

10.2.2.3.  Unidirectional Microphones

Unidirectional microphones are designed to pick-up the speaker’s voice by directing the
audio reception toward the speaker, focusing on the desired input and rejecting sounds ema-
nating from other directions that can negatively impact clear communications, such as com-
puter noise from fans or other sounds.

Speech sound wave
from the front

[ ——

Noise sound wave
from the side

Figure 10.13 Cross section of a unidirectional microphone.
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Figure “_)-13 shows the_cross—’section of a unidirectional mi
ypon the pfm.mpk?s of a gradient microphone. Notice that the u l'cr'oph(.)ne, which also relies
jar to the bidirectional, except that there is a resistive material mfdlrecuonal mic looks simi-
the diaphragm and the opening of one end. The material's resi (t(') ten cloth or foam) between
ressure on 1ts path from the back opening to the diaphragm ;fl:l}?e[ﬁgerﬁes slow down the
g additional dela

(he back plate i given by T,, the gain can be given by y through

s ,zn‘cv"’-l!rf e—/:zr(rw}c"‘ﬂgr] r

G(/f.0)= "’I

R I ST (10.32)

which was obtained by modifying Eq. (10.30). Unidirecti .
response (0 sound waves impinging from onz grtﬂzgerit‘t;;?lam;c:?;: on(els have the greatest
major fms of the mxcrophone. One typical response of a unidirecliOnrrel “-) asthe fm." L or
cardioid pattern shown in the polar plot of Figure 10.14, plotted from al microphone is the
quency response at 0° is similar to that of Figure 10.12. Because the carc];:'q .'510.32)' il
response is so popular among them, unidirectional mikes are often ref:r):edp?: earsn : ¢ gf)l?;
ardioi

mikes.

crophone. The polar response was obtained

Ei
igure 10,14 Polar response of a unidirectional mi
3,000 cr/s, f= L kHz, and 7, =0.06 ms.

through Eq. (10.32) with d = 1 cm, r=50 cm, ¢ =3

schematic based on Figure 10.10,
response of a real microphone has
d polar pattern of a commercial

whichEi(sll:gl%n (10.32) was derived under a simplified

© be measl ealized model so that, in practice, the polar

Microph ured empirically. The frequency response an
phone are shown in Figure 10.15.
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Figure 10.15 Characteristics of an AKG C1000S cardioid microphone: (top) frequency re-
sponse for near and far field conditions (note the proximity effect) and (bottom) polar pattem
for different frequencies.

Although this noise cancellation decreases the overall response to sound pressure (sen-
sitivity) of the microphone, the directional and frequency-response improvements far out-
weigh the lessened sensitivity. It is particularly well suited for use as a desktop mic or as
part of an embedded microphone in a laptop or desktop computer. Unidirectional micro-
phones achieve superior noise-rejection performance over omnidirectionals. Such perform-
ance is necessary for clean audio input and for audio signal processing algorithms such as
acoustic echo cancellation, which form the core of speakerphone applications.

10.2.3.  Other Transduction Categories

In a passive microphone, sound energy is directly converted to electrical energy, whereas an

acti-ve microphone requires an external energy source that is modulated by the sound wave.
Acuve;;ransducers thus rf:quire' phantom power, but can have higher sensitivity. )

sound wzvi:a?csal (S)(:]dCIa‘:s:fy mlCroph'ones according to the physical property to Whld:isu:;
the pressure inl:x " uS-d pressure .rmcraphone has an electrical response that correspon .
sponding to the diffel: wave, while a pressure gradient microphone has a response f-‘(’sure
microphone is 2 fino ence I pressure across some distance in a sound wave. A Presa .
sponse greatest ; reproducer of sound, but a gradient microphone typically has .

g st in the direction of 5 desired signal or talker and rejects undesired bat_?

round el .
» Where : . . H vere
grades performance, Such is the Zgz’eundesxred signal entering the reproductiy). ¥

In voice recognition or speakerphone application
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In terms of the mechanism by which they create an elec
ihe sound wave they detec't, microphones are classified as elect
piez oelectric. Dynamic microphones are the most popular ty

hone and condenser microphones the most popular type of el

Electromagnetic microphones induce voltage based on
pon microphones are a type of electromagnetic microphones that employ a thin metal ribbon
suspeﬂded between the poles f’f a magnet. Dynamic microphones are electromagnetic mi-
crophones that employ a moving coil suspended by a light diaphragm (see Figure 10 16)
acting like a speaker but in reverse. The diaphragm moves with changes in sound press;ure’
which in turns moves the coil, which causes current to flow as lines of flux from the magne;

are cut. Dynamic microphones need no batteries or power supply, but they deliver low sig-
nal Jevels that need to be preamplified.

Output &~

voltage

trical signal corresponding to
romagnetic, electrostatic, and
pe of electromagnetic micro-
ectrostatic microphone,

a varying magnetic field. Rib-

Figure 10.16 Dynamic microphone schematics.

Piezoresistive and piezoelectric microphones are based on the variation of electric re-
sistance of their sensor induced by changes in sound pressure. Carbon buiton microphones
consist of a small cylinder packed with tiny granules of carbon that, when compacted by
sound pressure, reduce the electric resistance. Such microphones, often used in telephone
handsets, offer a worse frequency response than condenser microphones, and lower dynamic
range.

103. ADAPTIVE ECHO CANCELLATION (AEC)

If a spoken language system allows the user to talk while speech is being output through the
loudspeakers, the microphone picks up not only the user’s voice, but also the speech from
the loudspeaker. This problem may be avoided with a half-duplex system that does not listen
when a signal is being played through the loudspeaker, though such systems oft:er an unnatu-
tal user experience. On the other hand, a full-duplex system that allo“_/s barge-in by the_usc;
10 interrupt the system offers a better user experience. For barge-in to.work, the sxglr;a
played through the loudspeaker needs to be canceled. This is achieved with echo cancelia-
tion (see Figure 10.17), as discussed in this section.

In hands-free conferencing the local user’s voice :
Whose signal is captured by the remote microphone and after some delay is output by the

local loudspeaker. People are tolerant to these echoes if either they are greatl)L'h z;tte?el::zd ﬂ?;
e delay s short, Perceptual studies have shown that the longer the delay, te &

attenyati
enuation needed for user acceptance.

is output by the remote loudspeaker,
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Microphone 4———Of A
noise

Figure 10.17 Block diagram of an echo-canceling application. x[n] represents the signal from
the loudspeaker, s[n] the speech signal, v{n] the local background noise, and ¢[n] the signal
that goes to the microphone.

The use of echo cancellation is mandatory in telephone communications and hands.
free conferencing when it is desired to have full-duplex voice communication. This is par-
ticularly important when the call is routed through a satellite that can have delays larger than
200 ms. A block diagram is shown in Figure 10.18.

In Figure 10.17, the return signal r[n], assuming no local noise, is the sum

r{n] = d[n]+ s[n] (10.33)

where s[n] is the speech signal and d[n] is the attenuated and possibly distorted version of
the loudspeaker’s signal x[r]. The purpose of the echo canceler is to remove the echo d[n]
from the retum signal r{r], which is done by means of an adaptive FIR filter whose coeffi-
cients are computed to minimize the energy of the canceled signal e[n]. The filter coeffi-
cients are reestimated adaptively to track slowly changing line conditions.

This problem is essentially that of adaptive filtering only when s[n]=0, orin other
words when the user is silent. For this reason, you have to implement a double-ialk detection
module that detects when the speaker is silent. This is typically feasible because the ech_o
d[n] is usually small, and if the return signal r{n] has high energy it means that the user s

x{n) Y
Speaker A Adaptive Hybrid |- Speaker B
filter circuit H
= d
eln} d[n) ; [n](% s(n]
<\@<_%_ v[n]
Noise

Figure 10.18 Block d; .
th fagram of echo canceling for a telephone communication. x[n) represents

he i
versr;r:otedc'all sng.nal, s[n] the local outgoing signal. The hybrid circuit H does 2l
and 1s nonideal because of impedance mismatches
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Adaptive Echo Cancellation (AEC) .

not silent. Errors in doublg-talk detection result in divergence of the filter, so it is generall
preferable to be (_:onservauve in the decision and when in doubt not ada;;t the filter coefﬁ):
cients. Initialization could be done by sending a known signal with white spectrum. The
quality of the filtering is measured by the so-called echo-return loss enhancement (ERL.E):

E{d’[n]}

E(dB) =101 —_—
R = o (o~ duyy

(10.34)

The filter coefficients are chosen to maximize the ERLE. Since the telephone-line
characteristics, or the acoustic path (due to speaker movement), can change over time, the
filter is often adaptive. Another reason for adaptive filters is that reliable ERLE maximiza-
tion requires a large number of samples, and such a delay is not tolerable.

In the following sections, we describe the fundamentals of adaptive filtering. While
there are some nonlinear adaptive filters, the vast majority are linear FIR filters, with the
LMS algorithm being the most important. We introduce the LMS algorithm, study its con-
vergence properties, and present two extensions: the normalized LMS algorithm and trans-
form-domain LMS algorithms.

10.3.1. The LMS Algorithm

Let’s assume that a desired signal d[n] is generated from an input signal x[n] as follows

d[n]= Egkx[n—k]+u[n]= G X[n]+u[n] (10.35)

k=0

with G ={g,,g,,"--g,,}, the input signal vector X[n]= {x{n),x{n=1],---x{n=L+1]}, and
uln] being noise that is independent of x[n].

We want to estimate d[n] in terms of the sum of previous samp
we define the estimate signal y[n] as

les of x[n]. To do that

Hn]= Liw‘ [n)x[n— k)= W' [n] X[~} (10.36)
k=0

where W[n] = fwy[n], w[n],---w,_, [n]} is the time-dependent coefficient VECtOr. The instan-
taneous error between the desired and the estimated signal is given by

eln]=d[n]- W' [n]X[n] (10.37)

The least mean square (LMS) al gorithm updates the value of the coefficient vector n

the steepest descent direction
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W(n +1]= Wn]+ee[n]X[n) (10.38)

where & is the step size. This algorithm is very popular because of its simplicity anq
effectiveness [58].

10.3.2. Convergence Properties of the LMS Algorithm
The choice of € is important: if it is too small, the adaptation rate will be slow and it might
not even track the nonstationary trends of x[n], whereas if € is too large, the error might

actually increase. We analyze the conditions under which the LMS algorithm converges,
Let’s define the error in the coefficient vector V[n] as

V[n]=G - Win] (10.39)
and combine Egs. (10.35), (10.37), (10.38), and (10.39) to obtain

Vn+1]= Vin]— eX[n]X" [mIV[n] - eu[n]X[n) (10.40)

Taking expectations in Eq. (10.40) results in

E{VIn+1]} = E{V[n]} - eE{X[mX" [n]V[n]} (10.41)

where we have assumed that u[n] and x[n] are independent and that either is a zero-mean
process. Finally, we express the autocorrelation of X[»] as

R, = EX[n)X"[n]) = QAQT (10.42)
where Q is a matrix of its eigenvectors and A is a diagonal matrix of its eigenvalues
{Am)-.,"',ﬁ-,__l} » which are all real valued because of the symmetry of R, .

) 'Altho'ugh we know that X[n] and V[n] are not statistically independent, we assume
in this section that they are, so that we can cbtain some insight on the convergence proper
ties. With this assumption, Eq. (10.41) can be expressed as

E{(VIn+1]} = E{V[n]}(i-eR_) (10.44)

which, applied recursively, leads to

E{VIn+11} = EQV[0)}(1-eR )" (1045)
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Using Egs. (10.39) and (10.42) in (10.45), we can express the (i + 1)th element of E{W[n]} as
)
L=l
E{w,-[n]}=g,-+?=_;q,,-(1—el,) E([0]} -

where g, is the (i + 1, j + Dth element of the eigenvector matrix Q. and #[n] is the rotated
coefficient error vector defined as i

V[n}=Q"V[n] (10.47)

From Eq. (10.46) we see that the mean value of the LMS filter coefficients converges
exponentially to the true value if

0<e<1/,1, (10.48)

so that the adaptation constant £ must be determined from the largest eigenvalue of X[n]
for the mean LMS algorithm to converge.

10.3.3. Normalized LMS Algorithm

In practice, mean convergence doesn’t tell us the nature of the fluctuations that the coeffi-
cients experience. Analysis of the variance of V[n] together with some more approxima-
tions result in mean-squared convergence if

O<e< (10.49)

Lo}

with 6} = E{x’[n]} being the input signal power and K a constant that depends weakly on

the nature of the input signal statistics but not on its power.
Because of the inaccuracies of the independence assumptions above, a rule of thumb

used in practice to determine the adaptation constant € is

0.1 (10.50)

2
x

O<ec<

Th ' in Eq. (10.49) makes the LMS algorithm track non-
e choice of largest value for £ in Eq. ( rgence. On the other hand, the

Stationary variations in x fastest, and achieve faster conve f

isad; : tion
misadjustment of the filter coefficients increases as both the filter length Lda"dfa?‘il:i[sn o
constant ¢ increase. For this reason, often the adaptation constant can be made 2 fu
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(¢[n)), with Jarger values at first and smaller values once convergence hag been dege
n ] -

mined’-rhe normalized LMS algorithnt (NLMS) uses the result of Eg. (10.49) and, therefore

defines a normalized step $iz€

£
gln]= m (10.51)

where the constant 8 avoids a division by 0 and &;[n] is an estimate of the input sign|
power, which is typically done with an exponential window

62 = (1-B)Sin=11+ B<’[n] (1052

or a sliding rectangular window
2 1 & 2 o a2 1 2 2
6x[n]=——Zx [n—z]=0'x[n—1]+—(x [n]—x [n—N]) (1059
N i=Q N

where both § and N control the effective memory of the estimators in Eqs. (10.52) and
(10.53), respectively. Finally, we need to pick & so that 0 <& <2 to assure convergence.
Choice of the NLMS algorithm simplifies the selection of €, and the NLMS often con-
verges faster than the LMS algorithm in practical situations.

10.3.4. Transform-Domain LMS Algorithm

As discussed in Section 10.3.2, convergence of the LMS algorithm is determined by the
largest eigenvalue of the input. Since complex exponentials are approximate eigenvectors
for LTI systems, the LMS algorithm’s convergence is dominated by the frequency band Wilh
largest. energy, and convergence in other frequency bands is generally much slower. T?lls 15
the r?uonale for the subband LMS algorithm, which performs independent LMS algorithms
for different frequency bands, as proposed by Boll [14].

- ]The block LMS (BLMS) algorithm keeps the coefficients unchanged for a block kof L
ples

L=l
Wik +1]=Wk]+e Y e[kL + m]X[KL +m] (105
m=0
. ¥ . ¥ ﬂ
:;l;whlls Tepresented by a linear convolution and therefore can be implememeq efﬁmgﬂilm)-'
"8 length-2N FFTs according to overlap-save method of Figure 10.19. Notic® that ©

lementi i i
puir nting a linear convolution with a circular convolution operator such as te
quires the use of the dashed box
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Figure 10.19 Block diagram of the constrained frequency-domain block LMS algorithm. The
unconstrained version of this algorithm eliminates the computation inside the dashed box.

An unconstrained frequency-domain LMS algorithm can be implemented by removing
the constraint in Figure 10.19, therefore implementing a circular instead of a linear convolu-
tion. While this is not exact, the algorithm requires only three FFTs instead of five. In some
practical applications, there is no difference in convergence between the constrained and
unconstrained cases.

103.5.  The RLS Algorithm

The search for the optimum filter can be accelerated when the gradient vector is prOPerF}'

c!eviated toward the minimum. This approach uses the Newton-Raphson-met'hod to itera-
gvely compute the root of fix) (see Figure 10.20) so that the value at iteration i + 1 s given
y

_J&x) (10.55)
")
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Figure 10.20 Newton-Raphson method to compute the roots of a function,

To minimize function f{x) we thus compute the roots of f(x) through the above
method:
S(x)

Y =%~ (10.56)

)
In the case of a vector, Eq. (10.56) is transformed into
-t
W =w, —&[n](Ve(w,)) Ve(w,) (10.57)

where we add a step size €[n], and where Ve(w,) is the Hessian of the least-squares func-
tion which, for Eq. (10.37), equals the autocorrelation of x:

Ve(w,) = R[n] = E{x[n)x"[n]} (10.58)

The recursive least squares (RLS) algorithm specifies a method of estimating Eq.
(10.58) using an exponential window:

R[n] = AR[rn-1)+x[n]x"[n] (10.59)

While the RLS algorithm converges faster than the LMS algorithm, it also is more
computationally expensive, as it requires a matrix inversion for every sample. Several algo-
rithms have been derived to speed it up [54].

10.4. MULTIMICROPHONE SPEECH ENHANCEMENT
The use of more than one microphone is motivated by the human auditory system. in wmcg
the use of both ears has been shown to enhance detection of the direction of arrival, as We
as increase SNR when one ear is covered. The methods the human auditory system lfSe:hti(;
accgmplish this task are still not completely known, and the techniques described 11
section do not mimic that behavior.

~ Microphone arrays use multiple microphones and knowledge of the micro
tions to predict delays and thus create a beam that focuses on the direction of

a-
phone IQC
the desired
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speaker and rejects signals (.:oming from other angles. Reverberation, as discussed in Section
{0.1.2, can be combated with these techniques. Blind source separation techniques are an-

other family of statistical techniques that typically do not use spatial constraints, but rather
statistical independence between different sources.

While in this section we describe only linear processing, i.e., the output speech is a

linearly filtered version of the microphone signals, we could also combine these techniques
with the nonlinear methods of Section 10.5.

10.4.1. Microphone Arrays

The goals of microphone arrays are twofold: finding the position of a sound source in a
room, and improving the SNR of the received signal. Steering is helpful in videoconferenc-
ing, where a camera has to follow the current speaker. Since the speaker is typically far
away from the microphone, the received signal likely contains a fair amount of additive
noise. Microphone arrays can also be used to increase the SNR.

Let x[n] be the signal at the source S. Microphone i picks up a signal

y[n]=x[n]* g[n]+v,[n] (10.60)

that is a filtered version of the source plus additive noise v,[n]. If we have N such micro-
phones, we can attempt to recover s{n] because all the signals y,[n] should be correlated.
A typical assumption made is that all the filters g,[n] are delayed versions of the same

filter g[n]

glnl=gln-D,] (10.61)

with the delay D, =d, /¢, d, being the distance between the source S and microphone i, and
¢ the speed of sound in air. We cannot recover signal x[n] without knowledge of g[n] or the
signal itself, so the goal is to obtain the filtered signal y[n]

yn]=x{n]*g[n] (10.62)
5o that, combining Egs. (10.60), (10.61), and (10.62),

y[nl=y[n-D,]+v[n] (10.63)

Assuming v,[n] are independent and Gaussianly distributed, the optimal estimate of
x(n] is given by

Sy (10.64)

Hnl=—3 yiln+ D} = yinl+Hr] :

i=0

which is the so-called delay-and-sum beamformer [24, 29], where the residual noise v(n]
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1 N-l
vin]= ~ ; v[n+D;] (10.65)

has a variance that decreases as the number of microphones N increases, since the nojge
v,[n+ D,] are uncorrelated. .

Equation (10.64) requires estimation of the delays ;. To attenuate the addjtiye noj
v[n], it is not necessary to identify the absolute delays, but rather the delays relative to 0::
reference microphone (for example, the center microphone). It can be shown that the maxi.
mum likelihood solution consists in maximizing the energy of j[n] in Eq. (10.64), whicp, i
the sum of cross-correlations:

Nl Nl

D,=argmax(ZZR,j[D,—D,-] 0<i<N (10.66)
D,

| i=0 j=0 ]

This approach assumes that we know nothing about the geometry of the microphone
placement. In fact, given a point source and assuming no reflections, we can compute the
delay based on the distance between the source and the microphone. The use of geometry
allows us to reduce the number of parameters to estimate from (N - 1) to a maximum of 3, in
case we desire to estimate the exact location, This location is often described in spherical
coordinates (¢,8,p) with ¢ being the direction of arrival, 6 the elevation angle, and p
the distance to the reference microphone, as shown in Figure 10.21.

Speaker

Microphone A 16 - ' »

p

Figur.e 10.21 Spherical coordinates (¢,6,p) with @ being the direction of arrival, 8 the
clevaiion angle, and p the distance to the reference microphone.

V_Vhile 2-D and 3-D microphone configurations can be used, which would allow us to
determine not just the steering angle @, but also distance to the origin p and azimuth 6.
linear microphone arrays are the most widely used configurations because they are the si-
plest. In a linear array all the microphones are placed on a line (see Figure 10.22)- In this
case, we cannot determine the elevation angle 6 . To determine both ¢ and p We need 2
least two microphones in the array.

If the microphones are relatively close to each other compared to the distance to the
source, the angle of arrival ¢ is approximately the same for all signals. With this assm
tion, the normalized delay D, with respect to the reference microphone is given by
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5 =—a sin(@)/c
i N (10.67)

is the y-axis coordinate in Figure 10.22 for micro

where 4, = Phone i, where the reference mi-
one has o = 0 and also D, =0.
croph o
i s
M, G »
o
M,

Figure 10.22 Linear microphone array (five microphones). The source signal arrives at each
microphone with a different delay, which allows us to find the correct angle of arrival.

With approximation, we define 5,. (), the relative delay of the signal at microphone i
to the reference microphone, as a function of the direction of arrival angle ¢ and independ-
entof p . The optimal direction of arrival ¢ is then that which maximizes the energy of the
gstimated signal X[n] over a set of samples

1 N-l - 4
p=argmax Z[y 2 yln+D, (fp)])
(4 n i=0 (10.68)

N-1

=arg :nax 2[-}1\7 Z y.[n- %’-Siﬂ((l’)])

The term beamforming entails that this array favors a specific direction of arrival ¢
and that sources arriving from other directions are not in phase and therefore are .attenuated.
Since the source can move over time, maximization of Eq. (10.68) can be done in an adap-
tive fashion. N .

As the beam is steered away from the broadside, the system exhibits a rg%l:;n:ar:i ::I;
spatial discrimination because the beam pattern broadens. Furthermore, beamwuand e
vith frequency, so an array has an approximate bandwidth given by the upper J
/; frequencies

f.= -
a'rg%x |cos ¢ —cos go" (10.69)
L
N
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with d being the sensor spacing, ¢’ the steering angle Tneasured with respect to the axis of
the array, and ¢ the direction of the source. For a desired range of +30° and fiye sensorg
spaced 5 cm apart, the range is approximately 880 to 440.0.Hz. .We see in Figure 10,23 that
at very low frequencies the response is essentially omnderectlona], since the Microphone
spacing is small compared to the large wavelength. At high frequencies more Jobeg start
appearing, and the array steers toward not only the preferrecI direction but others a5 well
For speech signals, the upshot is that we either need a lot of microphones to provide a direc:
tional polar pattern at low frequencies, or we need them to be spread far enough apart o

both.

Figure 10.23 Polar pattern of a microphone array with steering angle of ¢’=0, five micro-
phones spaced 5 cm apart for 400, 880, 4400, and 8000 Hz from left to right, respectively, for

a source located at 5 m.

The polar pattern in Figure 10.23 was computed as follows:

N i [a, sing’+re’® - Jo, l]l c

P(f,r,@)= ; 4 Ire'@ —ja_l (10.70)

though the sensors could be spaced nonuniformly, as in Figure 10.24, allowing for better
behavior across the frequency spectrum.

Mid-frequency array

I | | I I
— S Y —
RN EN

High-frequency array

L 1 v il

Low-frequency array

FIgure 10.24 Nonuniform linear microphone array containing three subarrays for the high,
mid, and low frequencies.

Amazon/VB Assets
Exhibit 1012
Page 534



Multimiﬂ'ol’hone Speech Enhancement

509

Once a microphone array has been steered towars a direction o
source coming from other directions. The beamwidth depends not only
he signal, but also on the steering direction. If the beam is steered to
then the direction of the source for which the beam response fall to ha

found empirically to be

» it attenuates noise
on the frequency of
ward a direction @',
If its power has been

@5 (f)=COS™ {cosp’ £ ol
: Ndf | (10.71)

with K being a constant. Equation (10.71) shows that the smaller the array, the wider the
beam, and that lower frequencies yield wider beams also. Figure 10.25 shows that the band-
width of the array when steering toward a 30° direction is lower than when steering at 0°.

90 25
60

Figure 10.25 Polar pattern of a microphone array with steering angle of ¢’ =30°, five micro-
phones spaced 5 cm apart for 400, 880, 3000, and 4400 Hz from left to right, respectively, for
asource located at 5 m.

Microphone arrays have been shown to improve recognition accuracy when the mi-
crophones and the speaker are far apart [51]. Several companies are commercializing micro-
phone arrays for teleconferencing or speech recognition applications.

Only in anechoic chambers does the assumption in Eg. (10.61) hold, since in practice
many reflections take place, which are also different for different microphones. In addition,
the assumption of a common direction of arrival for all microphones may not hold either.
For this case of reverberant environments, single beamformers typically fail. While comput-
ing the direction of arrival is much more difficult in this case, the SNR can still be improved.

Let’s define the desired signal d[x] as that obtained in the reference microphone. We
can estimate the vector H[n1]= {h,, > Az s P+ s Poga=s B ons s Py} for the (N-1) L-
tap filters that minimizes the error array [25]

e[n]=d[n]-H[n]Y[n] (10.72)

Where the (N - 1) microphone signals are represented in the vector
Y[n] = {yl[n]v'“’yl[n_[‘ _1],}’2[’1],"':)’2["—14—1],‘",}’N_l[n],"',yn-l["'L—1]}

"“R." filier coefficients G[n] can be estimated through the adaptive filtering techniques de-
scribed in Section 10.3. The clean signal is then estimated as
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fn)= E(d[n] +H[n]Y[n]) (1073
This last method does not assume anything about the geometry of the Mmicropho,
e
array.

10.4.2.  Blind Source Separation

The problem of separating the desired speech fr_om interfering sources, the cocktail sy
effect [15], has been one of the holy grails in signal -processing. Blind source separation
(BSS) is a set of techniques that assume no information about the mixing process or e
sources, apart from their mutual statistical independence, hence is termed blind. Independen
component analysis (ICA), developed in the last few years [19, 38], is a set of techniques ¢
solve the BSS problem that estimate a set of linear filters to separate the mixed signals under
the assumption that the original sources are statistically independent.

Let’s first consider instantaneous mixing. Let’s assume that R microphone signals
y,[n], denoted by y[n]=([n), y2[n], -+ yx[n]), are obtained by a linear combination of R
unobserved source signals x,[n], denoted by x[n]= (xI [n), x,[n), "+, x, [n]) .

y[n]=Gx[n] (10.74)

for all n, with G being the R X R mixing matrix. This mixing is termed instantaneous, since
the sensor signals at time n depend on the sources at the same, but no earlier, time point.
Had the mixing matrix been given, its inverse could have been applied to the sensor signals
to recover the sources by x[#]=G'y[n]. In the absence of any information about the mix-
ing, the blind separation problem consists of estimating a separating matrix H=G™ from
the observed microphone signals alone. The source signals can then be recovered by

x[n]=Hy[n] (10.75)

We’ll use here the probabilistic formulation of ICA, though alternate frameworks for
ICA have been derived also [18]. Let p, (x[#]) be the probability density function (pd) of
the source signals, so that the pdf of microphone signals y[n] is given by

p,(y[n]) = H| p, (Hy[n]) (10.76)

and if we furthermore assume the sources x[n] are independent from themselves in time.
X[n+1i] i 0, then the joint probability is given by

P OOLYOL YN -1) = [ p, 1) < P [T p ety o

n=0 n=0

whose normalized log-likelihood is given by
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1 N-l
9= 10, OUOLY{IL-+ Y IN =1 = In K1+ 3 I p, CHylnD (10.78)

u=0

It can be shown that

dlnj{H -1
%—L("T) (10.79)

so that that the gradient of Y [38]in Eq. (10.78) is given by

W _pryt, 1
5= (1) + 5 2 oByln) (ym)) (10.80)

where ¢(x) is expressed as

_3inp,(x)

#(x) I (10.81)

If we further assume the distribution is a zero mean Gaussian distribution with stan-
dard deviation o, then Eq. (10.81) results in

o= (10.82)
which inserted into Eq. (10.80) yields

¥ gy _HIS T o(mry' - H

=) '\N%y[ﬂl(ﬂn]) )—(H ) -R (10.83)

with R being the matrix of cross-correlations, i.e.,

1 N-1
R, = ;Zoy,-[nly,—[n] (10.84)
Setting Eq. (10.83) to 0 results in maximization of Eq. (10.78) under the Gaussian as-
sumption:

H'H=0'R™ (10.85)

which can be solved using the Cholesky decomposition described in Chapter 6.

Since o'is generally not known, it can be shown from Eq. (10.85) that the sources can
be recovered only to within a scaling factor [17]. Scaling is in general not a big problem,
since speech recognition systems perform automatic gain control (AGC). Moreover, the
sources can be recovered to within a permutation. To see this, let’s define a two-dimensional
matrix A
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A_’o 1] (10
"\1 0, -36)

which is orthogonal:
Aasl (10.87)

If H is a solution of Eq. (10.85), then AH is also a solution. Thus, a permutation of the
sources yields the same correlation matrix in Eq. (10.84). Although we have shown it only
under the Gaussian assumption, separation up to a scaling factor and source permutation is a
general result in blind source separation [17].

Unfortunately, the Gaussian assumption does not guarantee separation. To see this, we
can define a two-dimensional rotation matrix A

‘cos@ —siné ]

10.
sin@ cos@ (0.8

J

which is also orthogonal, so that if H is a solution of Eq. (10.85), then AH is also a solution.

The Gaussian assumption entails considering only second-order statistics, and to en-
sure separation we could consider higher-order statistics. Since speech signals do not follow
a Gaussian distribution, we could use a Laplacian distribution, as we saw in Chapter 7:

P(X)= ge'” W (10.89)

which, using Eq. (10.81), results in

-B x>0

.90
B x<0 (o0

¢(x) = {

and thus a nonlinear function of H for Eq. (10.80). Since a closed-form solution is not possi-
ble, a common solution in this case is gradient descent, where the gradient is given by

a¥

==Y+ (T (1091)

and the update formula by

¥ -
H,.=H, T H, —-8[(H,7,) +¢(H"y[n])(y[n])r] (10.92)

which is the so-called infornax rule [10].
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Often the nonlinearity in Eq. (10.90) is replaced by a sigmoid® function:
4(x) = =P tanh(Bx) (10.93)

which implies a density function

e
P:) = 3 cosh(Bx) (10.94)

The sigmoid converges to the Laplacian as [ — o . Nonlinear functions in Egs.
(10.90) and (10.93) can be expanded in Taylor series so that all the moments of the observed
signals are used and not just the second order, as in the case of the Gaussian assumption.
These nonlinearities have been shown to be more effective in separating the sources. The
use of more accurate density functions for p (x), such as a mixture of Gaussians [9], also
results in nonlinear ¢(x) functions that have shown better separation.

A problem of Eq. (10.92) is that it requires a matrix inversion at every iteration. The
so-called natural gradient [7] was suggested to avoid this, also providing faster conver-
gence. To do this we can multiply the gradient of Eq. (10.91) by a positive definite matrix,
the inverse of the Fisher’s information matrix H,’,H . » for example, to whiten the signal:

H,, =H, —-sg;—H:H,, (10.95)

which, combined with Eq. (10.91), results in
H,, =H,—e[1+o(nDRn) [H, (10.96)

where the estimated sources are given by
x[n}=H, y[n] (10.97)

Notice the similarity of this approach to the RLS algorithm of Section 10.3.5. Similarly to
most Newton-Raphson methods, the convergence of this approach is quadratic instead of
linear as long as we are close enough to the maximum.

Another way of overcoming the lack of separation under the independent Gaussian as-
sumption is to make use of temporal information, which we know is important for speech
signals. If the model of Eq. (10.74) is extended to contain additive noise

¥ln]= Gx{n] + v{n] (10.98)

L} .
The sigmoid function can be expressed in terms of the hyperbolic tangent tanh(x) = inh(x)/ cosh(x)  Where

Sinh(x) = (¢" ~¢™*)/2 and cosh(x)= (" +€™)/2 .
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we can compute the autocorrelation of yln] as

R, [n]=GR,[n]G" +R,[n] (10.99)

or, after some manipulation,
R, [n]=H(R, [n]-R,[xDH’ (10.100)

which we know must be diagonal because the sources X are independent, and thus H cap be
estimated to minimize the squared error of the off-diagonal terms of R, [#] for several va).
ues of n [11]. Equation (10.100) is a generalization of Eq. (10.85) when considering tempo-
ral correlation and additive noise.

x[n] »ln) x,[n]
l &nlnl g '|: h,{n]
gulnl »| hyy[n]
galnl l: by [n]

821 o e hy[n] =

x,[n] bAL) %,[n]

Figure 10.26 Convolutional model! for the case of two microphones.

The case of instantaneous mixing is not realistic, as we need to consider the transfer
functions between the sources and the microphones created by the room acoustics. It can be
shown that the reconstruction filters 4,[n] in Figure 10.26 will completely recover the

original signals x,[n] if and only if their z-transforms are the inverse of the z-transforms of
the mixing filters g, [n]:

Hy(2) Hy(2))_(Gu( G,(@Y
LHZI(Z) Hy(2) - Gy(z) Gy(2)

= 1 (G,,(z) G,z(z)]
Gll(Z)GZZ(Z)_GIZ(Z)GZI(Z)LGZI(Z) Gy (2)

(10.101)

/

_ If the matrix in Eq. (10.101) is not invertible, separability is impossible. This can hap-
pen if both microphones pick up the same signal, which could happen if either the tW0 mi-
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crophones aré too close l(? e_ach cher or the two sources are too close to each other. It’s rea-
sonable to assume the mixing ﬁllers’ g,,..[n] to be FIR filters, whose length will generally
depend on the reverberation time, which in turn. depends on the room size, microphone posi-
tion. wall absorbaice, and so on. In gen;n’gl this means that the reconstruction filters hy[n]
have an infinite impulse response. In agdmm. the filters &[] may have zeroes outside the
unit circle, so that perfe.ct reconstruction filters would need to have poles outside the unit
circle. For Lhis reason itis not' possible, in general, to recover the original signals exactly.

In practice, it's convenient to assume such filters to be FIR of length g. which means
that the original signals x[n] and x,[»], will not be recovered exactly. Thus the problem
consists in estimating the recons.truction .filters fr,,.[n] directly from the microphone signals
y[n] and ya[n], so that the estimated signals %,[n1] are as close as possible to the original
signals. Often we are satlghed if the resulting signals are separated, even if they contain
some amount of reverberation.

An approach commonly used to combat this problem consists of taking a filterbank
and assuming instantaneous mixing within each filter {38). This approach can separate real
sources much more effectively, but it suffers from the problem of permutations, which in
this case is more severe because frequencies from different sources can be mixed together.
To avoid this, we may need a probabilistic model of the sources that takes into account cor-
relations across frequencies [3]. Another problem occurs when the number of sources is lar-

ger than the number of microphones.

10.5. ENVIRONMENT COMPENSATION PREPROCESSING

The goal of this section is to present a number of techniques used to clean up the signal of
additive noise and/or channel distortions prior to the speech recognition system. Although
the techniques presented here are developed for the case of one microphone, they can be
generalized to the case where several microphones are available using the approaches de-
scribed in Section 10.4. These techniques can also be used to enfance the signal captured
with a speakerphone or a desktop microphone in teleconferencing applications.

Since the use of human auditory system is so robust to changes in acoustical environ-
ment, many researchers have attempted to develop signal processing schemes that mimic the
functional organization of the peripheral auditory system [27, 49]. The PLP cepstrum de-
scribed in Chapter 6 has also been shown to be very effective in combating noise and chan-
nel distortions [60].

Another alternative is to consider the feature vector as an integral part of the recog-
nizer, and thus researchers have investigated its design so as to maximize recognition accu-
facy, as discussed in Chapter 9. Such approaches include LDA [34] and neural networks
[45]. These discriminatively trained features can also be optimized to operate better under
noisy conditions, thus possibly beating the standard mel-cepstrum, especially when several
Independent features are combined [50]. The mel-cepstrum is the most popular feature vec-
tor for speech recognition. In this context we present a number of techniques that have been
Proposed over the years to compensate for the effects of additive noise and channel distor-
tions on the cepstrum.
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10.5.1.  Spectral Subtraction

The basic assumption in this section is that the desired clean signal x{m] has bee

. . corru
by additive noise njm}: Pl

yim) = x[m]+n[m] (10.102)

and that both x{m] and n[m] are statistically independent, so that the power spectrum of the
output y[m] can be approximated as the sum of the power spectra:

YOOF <X +[NOOf (10.103)

with equality if we take expected values, as the expected value of the cross term Vanishes
(see Section 10.1.3).

Although we don’t know |N( f )l2 , we can obtain an estimate using the average perio-
dogram over M frames that are known to be just noise (i.., when no signal is present) 45
long as the noise is stationary

“ 2 1 M-l 2
A == X)) (10.104)
M S
Spectral subtraction supplies an intuitive estimate for |X f )[ using Egs. (10.103) and
(10.104) as

NN 2 1A 2 o 1)
& =l ] =lr) Ll— ol (10.109
where we have defined the frequency-dependent signal-to-noise ratio SNR(f) as
SNR(f)=I):—(fl|§- (10.106)
196p]

Equation (10.105) describes the magnitude of the Fourier transform but not the Phas_e'
Thiz is not a problem if we are interested in computing the mel-cepstrum as discuss?.d n
Chapter 6. We can just modify the magnitude and keep the original phase of Y(f) usig?
filter H_(f):

XN =Y(HH,(N (10.107)

where, according to Eq. (10.105), H_(f) is given by

Ho(f)= I'l_ 1 (10.108)
TN SNRG)
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Since ,)? 4 ),‘ is a power speciral density, it has to be positive, and therefore

SNR(f) 21 (10.109)

but we have no guarantee that SNR(f), as computed by Eq. (10.106), satisfies Eq. (10.109).
In fact, it is easy to see that noise frames do not comply. To enforce this constraint, Boll [13]
suggested modifying Eq. (10.108) as follows:;

- n -
Hg(f)=\/maxtl-m’aJ (10.110)

with @ 20, so that the quantity within the square root is always positive, and where fo(x)is
given by

I 7
f;,(x)=“lmaX‘\1-£,a l (10.111)

/

It is useful to express SMR(f) in dB so that
¥ =10log,, SNR (10.112)

and the gain of the filter in Eq. (10.111) also in dB:
8, (X) =20log,, £, (X) (10.113)
Using Egs. (10.111) and (10.112), we can express Eq. (10.113) by

8..(¥)=max (10log,, (1-107"°), - 4) (10.114)

after expressing the attenuation a in dB:
a=10""" (10.115)

Equation (10.114) is plotted in Figure 10.27 for A = 10 dB.

The spectral subtraction rule in Eq. (10.111) is quite intuitive. To implement it we can
do a short-time analysis, as shown in Chapter 6, by using overlapping windowed segments,
zero-padding, computing the FFT, modifying the magnitude spectrum, taking the inverse
FFT, and adding the resulting windows. _

This implementation results in output speech that has significantly less noise, thougl_1 it
exhibits what is called musical noise [12]. This is caused by frequency bands f for which
VO =|if. As shown in Figure 10.27, a frequency f, for which [r(R) <|N(f)[ is
attenuated by A dB, whereas a neighboring frequency £, where |Y(£)| >[N has 2
much smaller attenuation. These rapid changes with frequency introduce tones at varying

frequencies that appear and disappear rapidly.
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Owersubtraction
-10 4
12 . : : .
5 0 5 10 15 20

Instantaneous SNR (dB)

Figure 10.27 Magnitude of the spectral subtraction filter gain as a function of the input
instantaneous SNR for A = 10 dB, for the spectral subtraction of Eq. (10.114), magnitude
subtraction of Eq. (10.118), and oversubtraction of Eq. (10.119) with B =2dB.

The main reason for the presence of musical noise is that the estimates of SNR(f)
through Egs. (10.104) and (10.106) are poor. This is partly because SNR(f) is computed inde-
pendently for each frequency, whereas we know that SNR(f,) and SNR(f)) are correlated if
J, and f; are close to each other. Thus, one possibility is to smooth the filter in Eq. (10.114)
over frequency. This approach suppresses a smaller amount of noise, but it does not distort the
signal as much, and thus may be preferred by listeners. Similarly, smoothing over time

SNR(f,8)= YSNR(f,t—1)+(1—y)|—);£f—)|7 (10.116)
N

can also be done to reduce the distortion, at the expense of a smaller noise attenuation.
Smoothing over both time and frequency can be done to obtain more accurate SNR meas-
urements and thus less distortion. As shown in Figure 10.28, use of spectral subtraction can
reduce the error rate.

Additionally, the attenuation A can be made a function of frequency. This is useful
when we want to suppress more noise at one frequency than another, which is a tradeoff
between noise reduction and nonlinear distortion of speech. '

Other enhancements to the basic algorithm have been proposed to reduce the musical
noise. Sometimes Eq. (10.111) is generalized to

4 7 1 1/a
fm,(x)=[ max I—T;,an (10.117)
X

\ vy
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——Clean Speech Training

—®— Spectral Subtraction

—&— Matched Noisy Training

Word Error Rate (%)
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Figure 10.28 Word error rate as a function of SNR (dB) using Whisper on the Wall Street
Joumal 5000-word dictation task. White noise was added at different SNRs. The solid line
represents the baseline system trained with clean speech, the line with squares the use of spec-
tral subtraction with the previous clean HMMs. They are compared to a system trained on the
same speech with the same SNR as the speech tested on.

where o =2 corresponds to the power spectral subtraction rule in Eq. (10.111), and a =1
corresponds to the magnitude subtraction rule (plotted in Figure 10.27 for A = 10 dB):

8..(%) = max (20log,, (1-107*),-4) (10.118)

Another variation, called oversubtraction, consists of multiplying the estimate of the
noise power spectral density IN(_[)[ in Eq. (10.104) by a constant 107", where >0,
which causes the power spectral subtraction rule in Eq. (10.114) to be transformed to an-
other function

8., (%) = max (101og,q (1-107F#"° ).—4) (10.119)

This causes [Y(Hl <[Nf to occur more often than [Y(Hf’ >|fnl* for frames for which
(O =|R(pf , and thus reduces the musical noise.

10.5.2.  Frequency-Domain MMSE from Stereo Data

You have seen that several possible functions, such as Egs. (10.114), (10.118), or (10.119),
can be used to attenuate the noise, and it is not clear that any one of them is better than. tk.le
others, since each has been obtained through different assumptions. This opens the pOSS-lbll-
i.[y of estimating the curve g(¥) using a different criterion. and, thus, different approxima-
tions than those used in Section 10.5.1.

One interesting possibility occurs when we have pairs of stereo u ! h
been recorded simultaneously in noise-free conditions in one channel and noisy conditions

tterances that have
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in the other channel. In this case, we can estimate f(x) using a minimum mean g

U;
criterion (Porter and Boll [47), Ephraim and Malah [23]), so that quareq
- N=l M) a
fx)= argmin{z > (X,(f,)—f(SNR(f,))Z(f,)) } (10.120)
Sx) =0 j=0 :

or g(x) as

g(x) = argmin{;fI Mi(lOlogw |){,(f,)[2 -g(SNR(f,))~10log,, |y,(fj)|’)z} (10121

£(x) i=0 j=0

which can be solved by discretizing f{x) and g(x) into severaf bins and summing over a)) M
frequencies and N frames. This approach resuits in a curve that is smoother and thus offers
less musical noise and lower distortion. Stereo utterances of noise-free and noisy speech are
needed to estimate f{x) and g(x) through Egs. (10.120) and (10.121) for any given acoustical
environment and can be collected with two microphones, or the noisy speech can be ob-
tained by adding to the clean speech artificial noise from the testing environment.

Another generalization of this approach is to use a different function f{x) or g(x) for
every frequency [2] as shown in Figure 10.29. This also allows for a lower squared error at
the expense of having to store more data tables. In the experiments of Figure 10.29, we note
that more subtraction is needed at lower frequencies than at higher frequencies in this case.

If such stereo data is available to estimate these curves, it makes the enhanced speech
sound better [23] than does spectral subtraction. When used in speech recognition systems, it
also leads to higher accuracies [2].

10.5.3. Wiener F ilfering

Let’s reformulate Eq. (10.102) from the statistical point of view. The process y[n] is the
sum of random process x[r] and the additive noise v[n] process:

y(n]=x[n]+ v[n] (10.122)

We wish to find a linear estimate %[»] in terms of the process y[#]:

X[n] = 2 Hmly[n—m] (10.123)

Mi=—o0

which is the result of a linear time-invariant filtering operation. The MMSE estimate of Hlnl
in Eq. (10.123) minimizes the squared error

E{ x[n]~ i h[m]y[n—m]]z} (10.124)

nr=—on
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Figure 10.29 Empirical curves for input-to-output instantaneous SNR. Eight di.fferem curves
for0, 1,2, 3, 4, 5, 6,7 and 8 kHz are obtained following Eq. (10.121) [2] using speech re-
corded simultaneously from a close-talking microphone and a desktop microphone.

which results in the famous Wiener-Hopf equation

R,(1= 3 HmIR,[1~m] (10.125)

M=o
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so that, taking Fourier transforms, the resulting filter can be expressed in the frequency do

main as
Sy(f)
H(N)=<—"7 (10.
(N 5.0 126)
If the signal x[#] and the noise v[n] are orthogonal, which is often the case, then
5,()=8.(/) and S () =S(f)+5.(/) (10.127
so that Eq. (10.126) is given by
Sa(f)
M= s (10.128
D=5 5. )

Equation (10.128) is called the noncausal Wiener filter. This can be realized only if
we know the power spectra of both the noise and the signal. Of course, if S_(f) and
S, (f) do not overlap, then H(f)=1 in the band of the signal and H(f)=0 in the band

of the noise.
In practice, S, (f) is unknown. If it were known, we could compute its mel-cepstrum,

which would coincide exactly with the mel-cepstrum before noise addition. To solve this
chicken-and-egg problem, we need some kind of model. Ephraim [22] proposed the use of
an HMM where, if we know what state the current frame falls under, we can use its mean
spectrum as S_ (/). In practice we do not know what state each frame falls into either, so
he proposed to weigh the filters for each state by the a posterior probability that the frame
falls into each state. This algorithm, when used in speech enhancement, results in gains of 7
dB or more,

A causal version of the Wiener filter can also be derived. A dynamical state model al-
gorithm called the Kalman filter (see {42] for details) is also an extension of the Wiener fil-
ter.

10.54. Cepstral Mean Normalization (CMN)

Different microphones have different transfer functions, and even the same microphone has
a varying transfer function depending on the distance to the microphone and the room
acoustics. In this section we describe a powerful and simple technique that is designed (0
handle convolutional distortions and, thus, increases the robustness of speech recognition
systems to unknown linear filtering operations. .

Given a signal x[n], we compute its cepstrum through short-time analysis, resulting 18
asetof T cepstral vectors X = {x,,x,,-,X,.,}. Its sample mean ¥ is given by

X (10.129)
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Cepsiral mear normaligazion (CMN) (Atal [8]) consists of subtracting X from each vector
x, to obtain the normalized cepstrum vector g, :
1

sl (10.130)

Let's now consider a signal y[n], which is the output of passing x[n] through a filter
h[n]). We can compute another sequence of cepstrum vectors Y ={y,,y,,-.y,_}. Now
let’s further define a vector h as -1

n=ClinlH @) -~ Tn|H(@, ) (10.131)

where C is the DCT matrix. We can see that
Y, =X +h (10.132)

and thus the sample mean y, equals

=1

_ 1 13 —
=;Zy, =;§o:(x,+h)=X+h (10.133)
=0 1=

and its normalized cepstrum is given by
J.=Y, -V, =%, (10.134)

which indicates that cepstral mean normalization is immune to linear filtering operations.
This procedure is performed on every utterance for both training and testing. Intuitively, the
mean vector X conveys the spectral characteristics of the current microphone and room
acoustics. In the limit, when T — oo for each utterance, we should expect means from utter-
ances from the same recording environment to be the same. Use of CMN to the cepstrum
vectors does not modify the delta or delta-delta cepstrum.

Let’s analyze the effect of CMN on a short utterance. Assume that our utterance con-
tains a single phoneme, say /s/. The mean X will be very similar to the frames in this pho-
neme, since /s/ is quite stationary. Thus, after normalization, X, =0. A similar result will
happen for other fricatives, which means that it would be impossible to distinguish these
ultrashort utterances, and the error rate will be very high. If the utterance contains more than
one phoneme but is still short, this problem is not insurmountable, but the confusion among
phonemes is still higher than if no CMN had been applied. Empirically, it has been found
that this procedure does not degrade the recognition rate on utterances from the same acous-
tical environment, as long as they are longer than 2—4 seconds. Yet the method progdes
significant robustness against linear filtering operations. In fact, for telephone recordings,
where each call has a different frequency response, the use of CMN has been shown to pro-
vide as much as 30% relative decrease in error rate. When a system is trained on one micro-
Phone and tested on another, CMN can provide significant robustness.

Interestingly enough, it has been found in practice that the error ratle.for ufterances
within the same environment is actually somewhat lower, too. This is surprising, given that
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there is no mismatch in channel conditions. One explanation is that, even for the same mi-
crophone and room acoustics, the distance between the mouth an<-i the microphone varies for
different speakers, which causes slightly different transfer functions, as we studied ip Sec.
tion 10.2. In addition, the cepstral mean characterizes not only the channel transfer function
but also the average frequency response of different speakers. By removing the ]ong-tem;
speaker average, CMN can act as sort of speaker normalize_uion.

One drawback of CMN is it does not discriminate silence and voice in computing the
utterance mean. An extension to CMN consists in computing different means for noise ang

speech [5]:

h(j“) = _]_ Z x! = ms
Ve (10.135)

1
U+ — 2 -
n = xl m,,
N, i

i.e., the difference between the average vector for speech frames in the utterance and the
average vector m, for speech frames in the training data, and similarly for the noise frames
m, . Speech/noise discrimination could be done by classifying frames into speech frames
and noise frames, computing the average cepstra for each, and subtracting them from the
average in the training data. This procedure works well as long as the speech/noise classifi-
cation is accurate. It’s best done by the recognizer, since other speech detection algorithms
can fail in high background noise (see Section 10.6.2). To avoid errors in transitions be-
tween speech and noise, delta and delta-delta can be computed prior to this speech/noise
mean normalization so that they are unaffected. As shown in Figure 10.30, this algorithm
has been shown to improve robustness not only to varying channels but also to noise.

16 -
141
12 A
10 -
8 4
6
4
2
0

No CMN
—&— CMN-2

Word Error Rate (%)

10 15 20 30
SNR (dB)
Figure 10.30 Word error rate as a function of SNR (dB) for both no CMN and CMN-2 (5]

White noise was added at different SNRs and the system was trained with speech with the

same SNR. The Whisper system is used on the 5000-word Wall Street Journal task using bi-
gram language model,
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10.5.5. Real-Time Cepstral Normalization

CMN requires the complete utterance to compute the cepstral mean; thus, it cannot be used
in a real-time system, and an approximation needs to be used. In this section we discuss a
modified version of CMN that can address this problem, as well as a set of techniques called
RASTA that attempt to do the same thing.

We can interpret CMN as the operation of subtracting a low-pass filter d[n], where all
the T coefticients are identical and equal 1/7", which is a high-pass filter with a cutoff fre-
quency @, that is arbitrarily close to 0. This interpretation indicates that we can implement
other types of high-pass filters. One that has been found to work well in practice is the ex-
ponential filter, so the cepstral mean X, is a function of time

X, =ax, +(1-Q)X_, (10.136)

where ais chosen so that the filter has a time constant’ of at least 5 seconds of speech.
Other types of filters have been proposed in the literature. In fact, a popular approach
consists of an 1IR bandpass filter with the transfer function:

' 24z =27 =227
= k. S i

H(z)=0.1z —0982" (10.137)
which is used in the so-called relative spectral processing or RASTA [32]. As in CMN, the
high-pass portion of the filter is expected to alleviate the effect of convolutional noise intro-
duced in the channel. The low-pass filtering helps to smooth some of the fast frame-to-frame
spectral changes present. Empirically, it has been shown that the RASTA filter behaves
similarly to the real-time implementation of CMN, albeit with a slightly higher error rate.
Both the RASTA filter and real-time implementations of CMN require the filter to be prop-
erly initialized. Otherwise, the first utterance may use an incorrect cepstral mean. The origi-
nal derivation of RASTA includes a few stages prior to the bandpass filter, and this filter is
performed on the spectral energies, not the cepstrum.

10.5.6. The Use of Gaussian Mixture Models

Algorithms such as spectral subtraction of Section 10.5.1 or the frequency-domain MMSE
of Section 10.5.2 implicitly assume that different frequencies are uncorrelated from each
other. Because of that, the spectrum of the enhanced signal may exhibit abrupt changes
across frequency and not look like spectra of real speech signals. Using the model of the

1 . . " . -
The time constant t of a low-pass filter is defined us the value for which the output Is cutin half. For an exponen

tial filter of parameter ox and sampling rate F,, & =In2/TF)).
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environment of Section 10.1.3, we can express the clean-speech cepstral vector x a5 a fune
tion of the observed noisy cepstral vector y as

x=y—h—C]n(l-—eC-l("_”) (10-]38)
where the noise cepstral vector n is a random vector. The MMSE estimate of x is given by
X = E{X ly}=y-h "CE{]n (] —e )I y} (10.139)

where the expectation uses the distribution of n. Solution to Eq. (10.139) results in a nonlip-
ear function which can be learned, for example, with a neural network [53].

A popular model to attack this problem consists in modeling the probability distriby-
tion of the noisy speech y as a mixture of K Gaussians:

K-l K-l
p(y)= 2 p(y lk)Plk) =Y N(y, ], E, )PIK] (10.140)
k=0 k=0

where P[k] is the prior probability of each Gaussian component k. If x and y are jointly
Gaussian within class &, then p(x|y,k) is also Gaussian [42] with mean:

Eixlyk=pt+25 () y-pb) =Cy+5, (10.141)

so that the joint distribution of x and y is given by

K-l K-l
pY) =Y px.yik)PIkl= 3 p(x|y,k)p(y ! k)PLK]
k=0 k=0 (10.142)

K-l
- gN(X, Cy+5,T)N(Y. b, Z,)P[k]

where 1, is called the correction vector, C, is the rotation matrix, and the matrix T, tells
us how uncertain we are about the compensation.

A maximum likelihood estimate of x maximizes the joint probability in Eq. (10.142)
Assuming the Gaussians do not overlap very much (as in the FCDCN algorithm [2]):

Ry = argmax p(x, y, k) = arg max N(y, i, Z, IN(x, C,.y +1,, T, JPIK] (10.143)
k
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whose solution is

=Cy+n (10.144)

X

where

E:mglnaxN(y,uk,Ek)P[k] (10.145)
K

It is often more robust to compute the MMSE estimate of x (as in the CDCN [2] and
RATZ [43)] algorithms):

k-1 K-l
Rypse = E{x]y} = ;mk IVE{x|y.k}=Y p(k|y)(C,y +r,) (10.146)
= %=0

as a weighted sum for all mixture components, where the posterior probability p(k|y) is
given by

p(kly)=;._’.)—(y~'ﬁm— (10.147)

> p(y | k)P[k]
k=0

where the rotation matrix C, in Eq. (10.144) can be replaced by I with a modest degrada-
tion in performance in return for faster computation [21].

A number of different algorithms [2, 43] have been proposed that vary in how the pa-
rameters |, %, r,, and I', are estimated. If stereo recordings are available from both the
clean signal and the noisy signal, then we can estimate 1,, X, by fitting a mixture Gaussian
model to y as described in Chapter 3. Then C,, r, and I', can be estimated directly by
linear regression of x and y. The FCDCN algorithm [2, 6] is a variant of this approach when
it is assumed that X, =0’I, I, =7’I, and C, =1, so that p, and r, are estimated
through a VQ procedure and r, is the average difference (y —x) for vectors y that belong to
mixture component k. An enhancement is to use the instantaneous SNR of a frame, defined
as the difference between the log-energy of that frame and the average log-energy of the
background noise. It is advantageous to use different correction vectors for different instan-
taneous SNR levels. The log-energy can be replaced by the zeroth-order cepstral coefficient
with little change in recognition accuracy.
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Often, stereo recordings are not available and we neefj other means of estimating pa-
rameters [y, X, T, and I';. CDCN [6] is one sucfh a]gonthrp that has a model of the gy
vironment as described in Section 10.1.3, which defines a nonlinear relationship between x
y and the environmental parameters n and h for the noise and channel. This methog g,
uses an MMSE approach where the correction vector is a weighted average of the correction
vectors for all classes. An extension of CDCN using a vector Taylor series approximation
[44] for that nonlinear function has been shown to offer. improved results. Other methodg
that do not require stereo recordings or a model of the environment are presented in [43].

10.6. ENVIRONMENTAL MODEL ADAPTATION

We describe a number of techniques that achieve compensation by adapting the HMM to the
noisy conditions. The most straightforward method is to retrain the whole HMM with the
speech from the new acoustical environment. Another option is to apply standard adaptive
techniques discussed in Chapter 9 to the case of environment adaptation. We consider a
model of the environment that allows constrained adaptation methods for more efficient
adaptation in comparison to the general techniques.

10.6.1.  Retraining on Corrupted Speech

If there is a mismatch between acoustical environments, it is sensible to retrain the HMM.
This is done in practice for telephone speech where only telephone speech, and no clean
high-bandwidth specch, is used in the training phase.

Unfortunately, training a large-vocabulary speech recognizer requires a very large
amount of data, which is often not available for a specific noisy condition. For example, it is
difficult to collect a large amount of training data in a car driving at 50 mph, whereas it is
much easier to record it at idle speed. Having a small amount of matched-conditions training
data could be worse than a large amount of mismatched-conditions training data. Often we
want to adapt our model given a relatively small sample of speech from the new acoustical
environment.

One option is to take a noise waveform from the new environment, add it to all the ut-
terances in our database, and retrain the system. If the noise characteristics are known ahead
of time, this method allows us to adapt the model to the new environment with a relatively
small amount of data from the new environment, yet use a large amount of training data.
Figure 10.31 shows the benefit of this approach over a system trained on clean speech for
the case of additive white noise.. If the target acoustical environment also has a differer_lt
channel, we can also filter all the utterances in the training data prior to retraining. This
method allows us to adapt the model to the new environment with a relatively small amount
of data from the new environment.
st o g TZ noise sample is available offline, this sim;?lfa technique can proyifie good resu";

st during recognition. Otherwise the noise addition and model retraining would né
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Figure 10.31 Word error rate as a function of the testing data SNR (dB) for Whisper trained
on clean data and a system trained on noisy data at the same SNR as the testing set as in Figure
10.30. White noise at different SNRs is added.

1o occur at runtime. This is feasible for speaker-dependent small-vocabulary systems where
the training data can be kept in memory and where the retraining time can be small, but it is
generally not feasible for large-vocabulary speaker-independent systems because of memory
and computational limitations.

One possibility is to create a number of artificial acoustical environments by corrupt-
ing our clean database with noise samples of varying levels and types, as well as varying
channels. Then all those waveforms from multiple acoustical environments can be used in
training. This is called multistyle training [39], since our training data comes from different
conditions. Because of the diversity of the training data, the resulting recognizer is more
robust to varying noise conditions. In Figure 10.32 we see that, though generally the error-
rate curve is above the matched-condition curve, particularly for clean speech, multistyle
wraining does not require knowledge of the specific noise level and thus is a viable alterna-
tive to the theoretical lower bound of matched conditions.

. 30
°\° "
s = Matched Noise
& o —&— Multistyle
5 15
19
w 10 F
g 5 —_———
; 0 - v 3 T
5 10 15 20 - <)
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anuTe 10.32 Word error rates of multistyle training compared to m

ction of the SNR in dB for additive white noise. Whisper is traine
CTTOr rate of multistyle training is between 12% (for low SNR) and 25%
" telative terms than that of matched-condition training. Nonetheless, mu
e han o system trained on clean data for all conditions other than clean sp

atched-noise training as a
d as in Figure 10.30. The
(for high SNR) higher
ltistyle training does
eech.
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10.6.2. Model Adaptation

We can also use the standard adaptation methods used for speaker adaptation, such ag MAP
or MLLR described in Chapter 9. Since MAP is an unstruct'ure'd'method, it can offer Tesults
similar to those of matched conditions, but it requires a significant amount of adaptation
data. MLLR can achieve reasonable performance with about a minute of speech for minor
mismatches [41]. For severe mismatches, MLLR also rgquires a large number of transformg.
tions, which, in turn, require a larger amount of adaptation data as discussed in Chapter 9,
Let’s analyze the case of a single MLLR transfmrm, where the affine transformation j
simply a bias. In this case the MLLR transform consists only of a vector h that, as in the
case of CMN described in Section 10.5.4, can be estimated from a single utterance. Instead
of estimating h as the average cepstral mean, this method estimates h as the maximum
likelihood estimate, given a set of sample vectors X = {Xp,X;>**»X7_;} and an HMM mode}
A [48], and it is a version of the EM algorithm where all the vector means are tied together
(see Algorithm 10.2). This procedure for estimating the cepstral bias has a very slight reduc-
tion in error rates over CMN, although the improvement is larger for short utterances [48].

ALGORITHM 10.2: MLE SIGNAL BIAS REMOVAL

Step 1: Initialize b'® =0 atiteration j =0
Step 2: Obtain model A by updating the means from m, to m, + h"?, for all Gaussians k.
Step 3: Run recognition with model A%’ on the current utterance and determine a state seg-

mentation 8[¢] for each frame &.
Step 4: Estimate h“/*" as the vector that maximizes the likelihood, which, using covariance

matrices X, , is given by:

) 7-1 “Tro
h" = (%Z;’]J Z,‘z;llzl (x, - mom) (10.148)
1= 1=l

Step 5: If converged, stop; otherwise, increment j and go to Step 2. In practice two iterations
are often sufficient,

If both additive noise and linear filtering are applied, the cepstrum for the noise and
that for most speech frames are affected differently. The speech/noise mean normalization
[5] algorithm can be extended similarly, as shown in Algorithm 10.3. The idea is to estimate
a vector I and h, such that all the Gaussians associated to the noise model are shifted by
i1, and all remaining Gaussians are shifted by h. !

We can make Eq. (10.150) more efficient by tying all the covariance matrices. This
transforms Eq. (10.150) into

1
b =L, —m,

L (10.149)
n(j-rl) =2 X —m
Nn 1524]. (] n
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i.e., the difference between the average vector for speech frames in the utterance and th

average Vector m; ‘for speech frames in the training data, and similarly for the nois fn o
m, . This is essentially the same equation as in the speech-noise cepstral mean nl : ralI'nes
tion described in Sectiqn 10.5.4. The difference is that the speech/noise discrim?r:::iilzz'i-
done by the recognizer instead of by a separate classifier. This method is more accuratn in
high-background-noise conditions where traditional speech/noise classifiers can fail Ae ™
compromise, a codEbook with considerably fewer Gaussians than a recognizer b' o
to estimate nm and h. = D

I—;.GORITHM 10.3: SPEECH/NOISE MEAN NORMALIZATION

Step 1: Initialize b =0, 0 = 0 atiteration ;=0

Step 2: Obtain model A"’ by updating the means of speech Gaussians from m, to
m, +h*”, and of noise Gaussians from m, to m, +n". ‘
Step 3: Run recognition with model A on the current utterance and determine a state seg-
mentation 8[r] for each frame t.

Step 4: Estimate h“*” and n“*" as the vectors that maximize the likelihood for speech
frames (¢ € g, ) and noise frames (1 € g, ), respectively:

’ =1
h* = LZ Zatn ] > Zotn (x, — Mg, )
1eq,

s < <4 (10'150)
nd = Lz z;["l] Z E;[l,] (X, = mB[ll)
r€q, s €

Step 5: If converged, stop; otherwise, increment jand go to Step 2.

10.6.3. Parallel Model Combination

By using the clean-speech models and a noise model, we can approximate the distributions
obtained by training a HMM with corrupted speech. The memory requirements for the algo-
rithm are then significantly reduced, as the training data is not needed online. Parailel model
combination (PMC) is a method to obtain the distribution of noisy speech given the distribu-
tion of clean speech and noise as mixture of Gaussians. As discussed in Section 10.1.3, if the
clean-speech cepstrum follows a Gaussian distribution and the noise cepstrum fgllows another
Gaussian distribution, the noisy speech has a distribution that is no longer Gaussian. _The PMC
method nevertheless makes the assumption that the resulting distribution is Gaussian whgse
mean and covariance matrix are the mean and covariance matrix of the resulting non-Gaussian
distribution, If it is assumed that the distribution of clean speech is a mixture of N Gaussia_ns,
and the distribution of the noise is a mixture of M Gaussians, the distribution of the noisy
speech contains NM Gaussians. The feature vector is often composed 9f L}?e cepstrum, delta
Cepstrum, and delta-delta cepstrum. The model combination can be seen in Figure 10.33.
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Figure 10.33 Parallel model combination for the case of one-state noise HMM.

If the mean and covariance matrix of the cepstral noise vector n are given by p; and
., respectively, we first compute the mean and covariance matrix in the log-spectral do-

main:

Ko =C'pf
21 =C-lzL‘(C-l)T (10151)

In t}‘\e linear domain N=¢", the distribution is lognormal, whose mean vector py
and covariance matrix Zy can be shown (see Chapter 3) to be given by

Hylil=exp{p, [i1+ 2. [i.01/2}

b ) 3 T (1 TN j](exp {Ef, [ j]} N 1) (10.152)

"‘?[; expressions similar to Egs. (10.151) and (10.152) for the mean and covariance matrix
of X.
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Using the model of the environment with no fi

. lter is equiv .
- spec[ral vetor ¥ given by fsse Figure 1033 equivalent to obtaining a random

Y= X+ N
_ (10.153)
and, since X and N are independent, we can obtain the mean uand Covariance matrix of Y as
Ry =HxtHs
5, = Zg+Ex (10.154)

Although the sum of two lognormal distributions is n
sormal approximation [26] consists in assuming that
apply the inverse formulae of Eq. (10.152) to obtain th
log-spectral domain:

§ not lognormal, the popular Jog-
Y is lognormal. In this case we can
€ mean and covariance matrix in the

z’[f.j]=ln{—zY["’4].+l+
Y RyliTny (]
» . 10.155)
L U] (
Prs i
=hpyli]-=In{———2="—4]
e T e
and finally return to the cepstrum domain applying the inverse of Eq. (10.151);
uy =C,
c - (10.156)
L =CL,C

The lognormal approximation cannot be used directly for the delta and delta-delta cep-
strum. Another variant that can be used in this case and is more accurate than the lognormal
approximation is the data-driven parallel model combination (DPMC) [26], which uses
Monte Carlo simulation to draw random cepstrum vectors from both the clean-speech HMM
and noise distribution to create cepstrum of the noisy speech by applying Eqs. (10.20) and
(10.21) to each sample point. These composite cepstrum vectors are not kept in memory,
only their means and covariance matrices are, therefore reducing the required memory
though still requiring a significant amount of computation. The number of vectors drawn
from the distribution was at least 100 in [26]. A way of reducing the number of random vec-
tors needed to obtain good Monte Carlo simulations is proposed in [56]. A version of PMC
Using numerical integration, which is very computationally expensive, yielded the best re-
sults. ‘

Figure 10.34 and Figure 10.35 compare the values estimated through the lognormal
Approximation to the true value, where for simplicity we deal with scalar.s. Thus x, n, 'and y
fepresent the log-spectral energies of the clean signal, noise, and noisy signal, TCSPCC;VCI)_”
for a given frequency. Assuming x and n to be Gaussian with means f, and g, an Vﬁ"'
nces 6, and o, respectively, we see that the lognormal approximation is accurate When
the standard deviations o, and o, are small.

Amazon/VB Assets
Exhibit 1012
Page 559



-~ Environmenta] Robustnegg

Br— : - . s 12
T ’:/bnlecarlo
t v
" H?,‘?rder TS
20
g 15 S
§ g
£ 2]
5 10 :
2 2-%!2@»#;
-I- ?Aonlecarle_rs
t
& F{:/Corder
s . . 0 =
2 -0 0 10 20 20 -10 0 10 20
x mean (dB) x mean (dB)

Figure 10.34 Means and standard deviation of noisy log-spectrum y in dB according to Eq.
(10.165). The distribution of the noise log-spectrum n is Gaussian with mean 0 dB and stan-
dard deviation 2 dB. The distribution of the clean log-spectrum x is Gaussian, having a stan-
dard deviation of 10 dB and a mean varying from —25 to 25 dB. Both the mean and the
standard deviation of y are more accurate in first-order VTS than in PMC.
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Tigure 10.35 Means and standard deviation of noisy log-spectrum y in dB according to Eq.
(10.165). The distribution of the noise log-spectrum n is Gaussian with mean 0 dB and stan-
dard deviation of 2 dB. The distribution of the clean log-spectrum x is Gaussian with a stan-
dard deviation of 5 dB and a mean varying from ~25 dB to 25 dB. The mean of y is well

estimated in both PMC and first-order VTS. The standard deviation of y is more accurate in
first-order VTS than in PMC.
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10.64- Vector Taylor Series

The model of the acoustical environment described in Section 10.1.3 describes the relation-
ship between the cepstral vectors X, n, and y of the clean speech, noise, and noisy speech,

respectively:
y=x+h+g(n-—x-h) (10.157)

where h is the cepstrum of the filter, and the nonlinear function g(z) is given by

g(z)=c1n(1+e‘*") (10.158)

Moreno [44] suggests the use of Taylor series to approximate the nonlinearity in Eq.
(10.158), though he applies it in the spectral instead of the cepstral domain. We follow that
approach to compute the mean and covariance matrix of y [4].

Assume that x, h, and n are Gaussian random vectors with means p_, y,, and u, and
covariance matrices X, Z,, and X, respectively, and furthermore that x, h, and n are
independent. After algebraic manipulation it can be shown that the Jacobian of Eq. (10.157)
with respect to X, h, and n evaluated at p =p_ -, — 1, can be expressed as

g % —A

ax (o Jox i) ah [{TPRTI TS (10.159)
| B SN

an Bk i)

where the matrix A is given by

A=CFC” (10.160)

and F is a diagonal matrix whose elements are given by vector f(i), which in tumn is given
by

(10.161)

(W=
(0 e

Using Eq. (10.159) we can then approximate Eg. ( 10.157) by a first-order Taylor se-

fies expansion around (M, ,[L,) as

V=R +u, +g(1, —1, —Hy) (10.162)
FAX-p )+ A(h—p,)+(I-A)n—p,)

The mean of y, M, . can be obtained from Eq. (10.162) as
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By =W, o+ 1y, 80, — K~ 1) (10.163)

and its covariance matrix X, by
%, =AS AT +AL AT +(I-A)Z,I-AY (10.164)

so thatevenif £ , X,,and X, are diagonal, Z, is no longer diagonal. Nonetheless, we cap
assume it to be diagonal, because this way we can transform a clean HMM to a corrupted
HMM that has the same functional form and use a decoder that has been optimized for di-
agonal covariance matrices.

It is difficult to visualize how good the approximation is, given the nonlinearity in-
volved. To provide some insight, let’s consider the frequency-domain version of Egs.
(10.157) and (10.158) when no filtering is done:

y=x+In(1+exp(n-x)) (10.165)

where x, n, and y represent the log-spectral energies of the clean signal, noise, and noisy
signal, respectively, for a given frequency. In Figure 10.34 we show the mean and standard
deviation of the noisy log-spectral energy y in dB as a function of the mean of the clean log-
spectral energy x with a standard deviation of 10 dB. The log-spectral energy of the noise n
is Gaussian with mean 0 dB and standard deviation 2 dB. We compare the correct values
obtained through Monte Carlo simulation (or DPMC) with the values obtained through the
lognormal approximation of Section 10.6.3 and the first-order VTS approximation described
here. We see that the VTS approximation is more accurate than the lognormal approxima-
tion for the mean and especially for the standard deviation of y, assuming the model of the
environment described by Eq. (10.165).

Figure 10.35 is similar to Figure 10.34 except that the standard deviation of the clean
log-energy x is only 5 dB, a more realistic number in speech recognition systems, In this
case, both the lognormal approximation and the first-order VTS approximation are good
estimates of the mean of y, though the standard deviation estimated through the lognormal
approximation in PMC is not as good as that obtained through first-order VTS, again assum-
ing the model of the environment described by Eq. (10.165). The overestimate of the vari-
ance in the lognormal approximation might, however, be useful if the model of the
environment is not accurate.

To compute the means and covariance matrices of the delta and delta-delta parameters,
let’s take the derivative of the approximation of y in Eq. (10.162) with respect to time:

ay ox

2 A— .166

5 =A% (10.166)
?ggt]h;t the delta-cepstrum computed through Ax, =x,,, —X,_,, is related to the derivative

9 2
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x,

sz4—at—' (10.167)
so that

Hay = Al (10.168)
and similarly

%, =AZ AT +I-AZ,, (I-A) (10.169)

where we assumed that h is constant within an utterance, so that Ah =0 .
Similarly, for the delta-delta cepstrum, the mean is given by

By = Ally, (10.170)

and the covariance matrix by

I =AZg, AT+(I-A)Z,; (I-A) (10.171)

where we again assumed that h is constant within an utterance, so that A’h=0.

Equations (10.163), (10.168), and (10.170) resemble the MLLR adaptation formulae
of Chapter 9 for the means, though in this case the matrix is different for each Gaussian and
is heavily constrained.

We are interested in estimating the environmental parameters J,, W, ,and X, given
aset of T observation frames y, . This estimation can be done iteratively using the EM algo-
rithm on Eq. (10.162). If the noise process is stationary, Z,, could be approximated, assum-
ing independence between m,,, and n,_,, by Z,, =2Z,. Similarly, X, could be
approximated, assuming independence between An,,, and An,_, by X, =4%,. If the
noise process is not stationary, it is best to estimate X,, and Z,, from input data directly.

If the distribution of x is a mixture of N Gaussians, each Gaussian is transformed ac-
cording to the equations above. If the distribution of n is also a mixture of M Gaussians, the
composite distribution has NM Gaussians. While this increases the number of Gaussians, the
decoder is still functionally the same as for clean speech. Because normally you do not want
1o alter the number of Gaussians of the system when you do noise adaptation, it is often as-
sumed that n is a single Gaussian.

10.6.5.  Retraining on Compensated Features

We have discussed adapting the HMM to the new acoustical environment using the S@ndmd
front-end features, in most cases the mel-cepstrum. Section 10.5 dealt with c}eanmg the
noisy feature without retraining the HMMs. It’s logical to consider a combination of both,
Where the features are cleaned to remove noise and channel effects and then the HMMs are

Telrained to take into account that this processing stage is not perfect. This idea is illustrated
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in Figure 10.36, where we compare the word error rate of the standard matched-nojge.
condition training with the matched-noise-condition training after it has been Compensateq
by a variant of the mixture Gaussian algorithms described in Section 10.5.6 [21]. Ap i,
provement is obtained by retraining on compensated features, which beats the unprocessed
matched-condition training.

The low error rates of both curves in Figure 10.36 are hard to obtain in practice, be-
cause they assume we know exactly what the noise level and type are ahead of time, which
in general is hard to do. On the other hand, this could be combined with the multistyle trajn-
ing discussed in Section 10.6.1 or with a set of clustered models discussed in Chapter 9.

—&— SPLICE-processed matched condition

Unprocessed matched condition

Word Error Rate (%)
o o5 @ 3 & 8

10 15 20 25 30
SNR (dB)

;]

Figure 10.36 Word error rates of matched-noise training without feature preprocessing and
with the SPLICE algorithm [21] as a function of the SNR in dB for additive white noise.
Whisper is trained as in Figure 10.30. Error rate with the mixture Gaussian model is up to 30%
lower than that of standard noisy matched conditions for low SNRs while it is about the same
for high SNRs.

10.7. MODELING NONSTATIONARY NOISE

The previous sections deal mostly with stationary noise. In practice, there are many nonsta-
tionary noises that often match a random word in the system’s lexicon better than the silence
model. In this case, the benefit of using speech recognition vanishes quickly. .

The most typical types of noise present in desktop applications are mouth noise (ip
smacks, throat clearings, coughs, nasal clearings, heavy breathing, uhms and uhs, etc), com-
puter noise (keyboard typing, microphone adjustment, computer fan, disk head seeking,
etc.), and office noise (phone rings, paper rustles, shutting door, interfering speakers, etc.):
We <an use a simple method that has been successful in speech recognition [57], a5 s
in Algorithm 10.4. This method consists of adding noise words modeled with HMMs 1o 2b-
sorb these nonstationary noises.
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In practice, updating the transcription turns out to be important, because human label-
ers often miss short noises that the system can uncover. Since the noise training data are
often limited in terms of coverage, some noises can be easily matched to short word models,
such as: if, wo. Due to the unique characteristics of noise rejection, we often need to further
augment confidence measures such as those described in Chapter 9. In practice, we need an
additiona! classifier to provide more detailed discrimination between speech and noise. We
can use a two-level classifier for this purpose. The ratio between the all-speech model score
(fully connected context-independent phone models) and the all-noise model score (fully
connected silence and noise phone models) can be used.

Another approach [S5] consists of having an HMM for noise with several states to
deal with nonstationary noises. The decoder needs to conduct a three-dimensional Viterbi
search which evaluates at each frame every possible speech state as well as every possible
noise state to achieve the speeci/noise decomposition (see Figure 10.37). The computational
complexity of such an approach is very large, though it can handle nonstationary noises

quite well in theory.

ALGORITHM 10.4: ExPLICIT NOISE MODELING

Step 1: Augmenting the vocabulary with noise words (such as ++SMACK++), each composed
of a single noise phoneme (such as +SMACK+), which are thus modeled with a single HMM.
These noise words have to be labeled in the transcriptions so that they can be trained.

Step 2: Training noise models, as well as the other models, using the standard HMM training
procedure.

Step 3: Updating the transcription. To do that, convert the transcription into a network, where
the noise words can be optionally inserted between each word in the original transcription. A
forced alignment segmentation is then conducted with the current HMM optional noise words
inserted. The segmentation with the highest likelihood is selected, thus yielding an optimal tran-
scription.

Step 4: If converged, stop; otherwise go to Step 2.

Noise —

HMM

Speech
HMM

O—0O—-0—40—>»0—0

Observations

Figure 10.37 Speech noise decomposition and a three-dimensional Viterbi decoder.
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10.8. HISTORICAL PERSPECTIVE AND FURTHER READING

er of diverse topics that are often described in different fields;

; it all. For further reading on adaptive filtering, you can check the
!r;gosli[s]il; \r:/jirzzl;fzgvset:’jams [59] and Haykin [?Q]. Theodoridis and Bellanger provide [54]
a good summary of adaptive filtering, and Breining et al. [16] a good summary of echo.
canceling techniques. Lee [38] has a good sumrpary of independent component analysis for

t al. [20] provide a number of techniques for speech ep.

blind source separation. Deller & ' f te ‘
hancement. Juang [35] and Junqua [37] survey techniques used in improving the robustness
of speech recognition systems to noise. Acero [2] compares a number of feature transformg-

tion techniques in the cepstral domain and introduces the model of the environment used ip
this ch:gg{ive filtering theory emerged early in the 1900s. The Wiener and LMS filters
were derived by Wiener and Widrow in 191 9 and 1960, respecuvely.. Norbert Wiener joined
the MIT faculty in 1919 and made profound contributions to generalized harmonic analysis,
the famous Wiener-Hopf equation, and the resulting Wiener filter. The LMS algorithm was
developed by Widrow and his colleagues at Stanford University in the early 1960s.

From a practical point of view, the use of gradient microphones (Olsen [46]) has
proven to be one of the more important contributions to increased robustness. Directional
microphones are commonplace today in most speech recognition systems.

Boll [13] first suggested the use of spectral subtraction. This has been the comerstone
for noise suppression, and many systems nowadays still use a variant of Boll’s original algo-
rithm.

The Cepstral mean normalization algorithm was proposed by Atal [8] in 1974, al-
though it wasn’t until the early 1990s that it became commonplace in most speech recogni-
tion systems evaluated in the DARPA speech programs [33]. Hermansky proposed PLP [31]
in 1950. The work of Rich Stern’s robustness group at CMU (especially the Ph.D. thesis
work of Acero [1] and Moreno {43]) and the Ph.D. thesis of Gales [26] also represented ad-
vances in the understanding of the effect of noise in the cepstrum.

Bell and Sejnowski [10] gave the field of independent component analysis a boost in
1995 with their infomax rule. The field of source separation is a promising alternative to
impqo;;e the robustness of speech recognition systems when more than one microphone is
available.

This chapter contains a numb
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CHAPTER 11

Language Modeling

Acoustic pattern matching, as discussed in
Chapter 9, and knowledge about language are equally important in recognizing and under-
s_tanding natural speech. Lexical knowledge (i.e., vocabulary definition and word pronuncia-
tion) is required, as are the syntax and semantics of the language (the rules that determine
what sequences of words are grammatically well-formed and meaningful). In addition,
k""“’kdge of the pragmatics of language (the structure of extended discourse, and what
people are likely to say in particular contexts) can be important to achieving the goal of spo-
ken language understanding systems. In practical speech recognition, it may be impossible
0 separate the use of these different levels of knowledge, since they are often tightly inte-
grated,

In this chapter we review the basic concept of Chomsky’s formal language theory and
the probabilistic language model. For the formal language model, two things are fundamen-
tak: the grammar and the parsing algorithm. The grammar is a formal specification of the
femissible structures for the language. The parsing technique is the method of analyzing
the sentence to see if its structure is compliant with the grammar. With the advent of bodies
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of text (corpora) that have had their structures hand-annotated, it is now possible to general-
ize the formal grammar to include accurate probabilities. Furthermore, the probabilistic re]s.
tionship among a sequence of words can be directly derived and modeled from the corpora
with the so-called stochastic language models, such as n-gram, avoiding the need to create
broad coverage formal grammars. Stochastic language models play a critical role in building
a working spoken language system, and we discuss a number of important issues associated
with them.

11.1. FORMAL LANGUAGE THEORY

In constructing a syntactic grammar for a language, it is important to consider the generality,
the selectivity, and the understandability of the grammar. The generality and selectivity ba-
sically determine the range of sentences the grammar accepts and rejects. The understand-
ability is important, since it is up to the authors of the system to create and maintain the
grammar, For SLU systems described in Chapter 17, we need to have a grammar that covers
and generalizes to most of the typical sentences for an application. The system also needs to
distinguish the kind of sentences for different actions in a given application. Without under-
standability, it is almost impossible to improve a practical SLU system since it typically
involves a large number of developers to maintain and refine the grammar.

The most common way of representing the grammatical structure of a sentence, “Mary
loves that person,” is by using a tree, as illustrated in Figure 11.1. The node labeled S is the
parent node of the nodes labeled NP and VP for noun phrase and verb phrase, respectively.
The VP node is the parent node of node V—for verb. Each leaf is associated with the word

Rewrite Rules:

. §>NPVP

. VYP— VNP

. VP> AUXVP

. NP— ARTNP!
NP-= ADJNPI
. NP1-> ADJNPI
NPI-> N

. NP— NAME

. NP—~ PRON
10. NAME - Mary
11. V= loves

12. ADJ > that

13. N—- person

W0 N o~

person

Figure 11.1 A tree representation of a sentence and its corresponding grarnmar.
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in the sentence to be analyzed. To construct such a tree for a sentence, we must know th
structure of the language so that a set of rewrite rules can be used tc; describ h?w iy
structures are allowable. These rules, as illustrated in Figure 1.1 L
symbol may be expanded in the tree by a sequence of symbols, ’I:h
helps in determining the meaning of the sentence. [t tells us that
fies person. “Mary loves that person.”

determine that a certain
€ grammatical structure
at in the sentence modi-

11.1.1. Chomsky Hierarchy

[n Chomsky’s formal.language theory (1, 14, 15], 2 grammar is defined as G = (V.T.P, S).
where V qnd T are finite sets of non-terminals and terminals, respectively. V contains all the
non-terminal symbols. We often use upper-case symbols to denote them. In the example
discussed here, S, NP, NP1, VP, NAME, ADJ, N, and V are non-terminal symbols. The rer-
minal set T contains Mary, loves, that, and person, which are often denoted with lower-case
symbols. P is a finite set of production (rewrite) rules, as illustrated in the rewrite rules in
Figure 11.1. S is a special non-terminal, called the srart symbol.

The language to be analyzed is essentially a string of terminal symbols, such as “Mary
loves that person.” It is produced by applying production rules sequentially to the start sym-
bol. The production rule is of the form « — f, where o and J are arbitrary strings of
grammar symbols V and 7, and the & must not be empty. In formal language theory, four
major languages and their associated grammars are hierarchically structured. They are re-
ferred to as the Chomsky hierarchy (1] as defined in Table 11.1. There are four kinds of
automata that can accept the languages produced by these four types of grammars. Among
these automata, the finite-state automaton is not only the mathematical device used to im-
plement the regular grammar but also one of the most significant tools in computational lin-
guistics. Variations of automata such as finite-state transducers, hidden Markov models, and
n-gram models are important examples in spoken language processing.

These grammatical formulations can be compared according to their generative capac-
ity, i.e,, the range that the formalism can cover. While there is evidence that natural lan-
guages are at least weakly context sensitive, the context-sensitive requirements are rare.in
practice. The context-free grammar (CFG) is a very important structure for dealing with
both machine language and natural language. CFGs are not only powerful enough to 'de-
scribe most of the structure in spoken language,l but also restrictive enou'gh to have efﬁc;;nt
parsers to analyze natural sentences. Since CFGs offer a good compromise between parsing
efficiency and power in representing the structure of the language, they have been w1d§1y
applied to natural language processing. Alternatively, regular grammars, as rePresemed with
a finite-state machine, can be applied to more restricted applications. Since ﬁmte:-state. gram-
mars are a subset of the more general context-free grammar, we focus our discussion on
context-free grammars only, although the parsing algorithm for finite-state grammars can be
more efficient.

—

"The effort to prove natural languages are not context-free is summarized in Pullum and Gazdar (54}
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Table 11.1 Chomsky hierarchy and the corresponding machine that accepts the language

Types Constraints Automata
Phrase structure o — f . This is the most general Turing machine
grammar grammar.

Context-sensitive A subset of the phrase structure Linear bounded
grammar grammar. |0] <|f|, where L1 indicates | automata

the length of the string.
Context-free gram- | A subset of the context sensitive Push down automata
mar (CFG) grammar. The production rule is

A— [, where A is a non-terminal.
This production rule is shown to be
equivalent to Chomsky normal form:
A—wand 4> BC,wherewisa
terminal and B, C are non-terminals.

Regular grammar A subset of the CFG. The production | Finite-state auto-
rule is expressed as: 4 —» w mata
and 4 5 wB.

As discussed in Section 11.1.2, a parsing algorithm offers a procedure that searches
through various ways of combining grammatical rules to find a combination that generates a
tree to illustrate the structure of the input sentence, which is similar to the search problem in
speech recognition. The result of the parsing algorithm is a parse tree,’ which can be re-
garded as a record of the CFG rules that account for the structure of the sentence. In other
words, if we parse the sentence, working either top-down from S or bottom-up from each
word, we automatically derive something that is similar to the tree representation, as illus-
trated in Figure 11.1.

A push-down automaton is also called a recursive transition network (RTN), which is
an alternative formalism to describe context-free grammars. A transition network consists of
nodes and labeled arcs. One of the nodes is specified as the initial state S. Starting at the
initial state, we traverse an arc if the current word in the sentence is in the category on the
arc. If the arc is followed, the current word is updated to the next word. A phrase can be
parsed if there is a path from the starting node to a pop arc that indicates a complete parse
for all the words in the phrase. Simple transition networks without recursion are often called
finite-state machines (FSM). Finite-state machines are equivalent in expressive POWer @
regular grammars and, thus, are not powerful enough to describe all languages that can be
described by CFGs. Chapter 12 has a more detailed discussion on RTNs and FSMs used 1"
speech recognition.

- . ice, 8

The result can be more than one parse tree since natural language sentences are often ambiguous: T prect 85
parsing algorithm should not only consider all the possible parse trees but also provide a ranking amon
discussed in Chapter 17,
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11.1.2.  Chart Parsing for Context-Free Grammars

since Chomsky introduced the notion of context-free grammars in the 1950 i

ture has arisen on the parsing algorithms. Most parsing algorithms were dev:,ioa vctils't i
puter science to f'malyze prograrpming languages that are not ambiguous in tg: “:: C(t)l:n;
spoken language is [1,32]. We discuss only the most relevant materials that are fundan)l,ental
to building spoken language systems, namely the chart parser for the context-free sram ;
This algorithm has been widely used in state-of-the-art spoken language understan%ing T;sr-
tems.

11.1.2.1.  Top Down or Bottom Up?

Parsing is a special case of the search problem generally encountered in speech recognition.
A parsing algorithm offers a procedure that searches through various ways of combining
grammatical rules to find a combination that generates a tree to describe the structure of the
input sentence, as illustrated in Figure 11.1. The search procedure can start from the root of
the tree with the S symbol, attempting to rewrite it into a sequence of terminal symbols that
matches the words in the input sentence, which is based on goal-directed search. Alterna-
tively, the search procedure can start from the words in the input sentence and identify a
word sequence that matches some non-terminal symbol. The bottom-up procedure can be
repeated with partially parsed symbols until the root of the tree or the start symbol S is iden-
tified. This data-directed search has been widely used in practical SLU systems.

A top-down approach starts with the S symbol, then searches through different ways to
rewrite the symbols until the input sentence is generated, or until all possibilities have been
examined. A grammar is said to accept a sentence if there is a sequence of rules that allow
us to rewrite the start symbol into the sentence. For the grammar in Figure 11.1, a sequence
of rewrite rules can be illustrated as follows:

S

— NP VP (rewriting S using S—NP)

—SNAME VP (rewriting NP using NP—NAME)
—Mary VP {rewriting NAME using NAME—Mary)

-Mary loves that person (rewriting N using N—)person.) .
Altematively, we can take a bottom-up approach to start with the words in th'e _mput
sentence and use the rewrite rules backward to reduce the sequence of symbols until it t,’e'
comes S. The left-hand side of each rule is used to rewrite the symbol on the right-hand side

as follows:
-NAME loves that person (rewriting Mary using NAME-—Mary)

SNAME V that person (rewriting loves using V—loves)

—NP vp
=S (rewriting NP using S—NP VP)
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