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(3.I 12) 

(X1Xf1 X1 in Eq. (3.112) is also refereed to as the pseudo-inverse of x d . 
.l an 1s some•; 

denoted as X . limes 
When X1 X is singular or some boundary conditions cause the LSE e u· . . 

· bl · s matlon m F.q (3.112) to be unattama e, some numenc methods can be used to find an ap . · 
d f · · · · th . . proximate solu 

tion. Jnstea o mm1m1zmg e quantity m Eq. (3.109) one can minimi·ze th " 1 · . ' e 1olow1· quanuty: ng 

e(A) = II XA- Y 112 +a II A 112 
(3.113) 

Following a similar procedure, one can obtain the LSE estimate to minimize the 
· th ~ 11 · f quan. tity above m e 10 owmg orm. 

(3.114) 

The LSE solution in Eq. (3.112) can be used for polynomial functions too. In the proo­
lem of polynomial curve fitting using the least square criterion, we are aiming to find the 
coefficients A= (a0 ,a1,a2 ,···,ad)1 that minimize the following quantity: 

min E(Y-Y)2 (3.115) 
ao,01 ,a2 .· ·· ,ad 

~ 2 d 
where Y=a0 +a1x+a2x +··-+adx 

To obtain the LSE estimate of coefficients A = ( a0 , a,, a2 , ···,ad Y , simply change the 
formation of matrix X in Eq. (3 .108) to the following: 

(3.116) 

d 
1 xn xn 

I . Eq . . . f ample x while X1 in . 
Note that xf in Eq. (3.108) means the J-th d1mens1on_ o s f l ; ~mial coefficients 

(3.116) meansj-th order of value x,. Therefore, the LSE esumate o po yn 

A 
- ( a a ... a ), has the same form as Eq. (3.112). 

LSE - Go, I' 2• ' d 

3.2.1.3. MMSE/LSE for Nonlinear Functions 

. f II · minimization problem: 
As the most general case, consider solvmg the o owmg 

(3.1 J7) 

min E[Y-g(X)]2 
g(•")EG.i 
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Since we need to deal with all possible nonlinear functi'ons t k' d · · d , a mg a envative oes 
not_ work here. Instead, w_e use the property of conditional expectation to solve this minimi­
zation problem. By applying Eq. (3.38) to (3. l 17), we get 

Ex ,r [ Y - g ( X) r = Ex { Er,x [ [ Y - g ( X) r I X = x ]} 

= J: Erix [ [ y - g ( X) r j X = X] Ir ( X) dx 

= J: Er,x [ [ Y - g ( x) J I X = x] fx ( x) dx 

(3.118) 

Since the integrand is nonnegative in Eq. (3.118), the quantity in Eq. (3.117) will be 
minimized at the same time the following equation is minimized. 

min Eri:< [[r - g(x)]
2 

IX= x] 
s(x)eR 

(3.119) 

Since g(x) is a constant in the calculation of the conditional expectation above, the 
MMSE estimate can be obtained in the same way as the constant functions in Section 
3.2.1.1. Thus, the MMSE estimate should take the following form: 

(3.120) 

If the value X = x is observed and the value E(Y IX= x) is used to predict Y, the 
mean squared error (MSE) is minimized and specified as follows: 

Er,x [[r-Er,x(Y IX= x)r IX= X ]= Va'i.,x(Y IX =x) (3.121) 

The overall MSE, averaged over all the possible values of X, is: 

Ex[Y-Enx(Y IX)J = Ex {Enx[[Y-Er1x(Y IX)r IX ]}=Ex [r1xVar(Y IX= x)] 
(3.122) 

It is important to distinguish between the overall MSE Ex[Varrix(YIX)] and the 
MSE of the particular estimate when X = x, which is Vary,x(Y IX= x) . Before the value of 
X 1s observed, the expected MSE for the process of ~bserving X and predicting Y is 
Ex [va'i·ix(Y IX)] . On the other hand, after a particular value x of X has been observed and 
the prediction Erix(Y IX= x) has been made, the appropriate measure of MSE of the pre-

diction is Va'i.,x(Y IX= x). 
In general, the form of the MMSE estimator for nonlinear functions depends on the 

form of the joint distribution of X and Y. There is no mathematical closed-form solution. To 
get the conditional expectation in Eq. (3. I 20), we have to perform the following integral: 

Y(x) = J:yJ;. (y Ix= x)dy (3.123) 
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It is difficult to solve this integral calculation. First, different measu 
~ermin~ different ~onditional pdf for the integral. Exact information abo:t~~f x c~uld de. 
11nposs1ble to obtarn. Second, there could be no analytic solution for the int 

1
pdf is often 

ficulties reduce the interest of the MMSE estimation of nonlinear functi'oegra · Those dif. 
. . . ns to theoret' 

aspects only. The same d1fficult1es also exist for LSE estimation for nonl· fu tea] 
. rnear net' 

Some certarn classe~ of well-behaved nonlinear functions are typically assumed for ions. 
problems and numenc methods are used to obtain LSE estimate from sample data. LSE 

3.2.2. Maximum Likelihood Estimation 

Maximum likelihood estimation (MLE) is the most widely used parametric estimation 
method, largely because of its efficiency. Suppose that a set of random samples 
X = {X"X2 , ... ,XJ is to be drawn independently according to a discrete or continuous dis­
tribution with the pf or the pdf p(x I <I>), where the parameter vector (J> belongs to some 
parameter space .Q . Given an observed vector x = (x1, • • · , xn) , the likelihood of the set of 
sample data vectors x with respect to <I> is defined as the joint pf or joint pelf P.(x lcI>); 
Pn(x l<I>) is also referred to as the likelihood.function. 

MLE assumes the parameters of pdf s are fixed but unknown and aims to find the set of 
parameters that maximizes the likelihood of generating the observed data. For example, if 
the pdf Pn(x I <I>) is assumed to be a Gaussian distribution N(µ,:E), the components of Cl> 

will then include exactly the components of mean-vector µ and covariance matrix I:. 
Since XI>X

2
, ••• ,Xn are independent random variables, the likelihood can be rewritten as 

follows: 

n 

Pn(x I <I>)= TI p(xk I <I>) 
(3.124) 

.t"I 

The likelihood p (x I <I>) can be viewed as the probability of generating the sample 
n . l'k l 'h d . t of (J> is denoted as data set x based on parameter set <I> . The ma.xzmum z e I oo estzma or 

<l>MLE that maximizes the likelihood p,,(x I <I>). That is, 

<I> MLE = argmax p,, ( x I <I>) 
d> 

(3.125) 

. . ['h d . r· n method and is of· 
This estimation method is called the maximum like z oo estima IO . . rune· 

. . . t ·cally increasing ten abbreviated as MLE. Since the logarithm funcuon 1s a mono om . ·ze the 
l.k l'h d h Id also max1m1 

tion, the parameter set <I> MLE that maximizes the log- 1 e 1 00 s ou . d b taking [be 
like~ihood._If f,,(x I 4') is differentiable functio~ of _4>, <l> ,\JLE can b_e attamelet ycl> beak· 
partial denvattve with respect to <ll and settmg 1t to zero. Specifically, . 

, o b th d'ent operator. component parameter vector <1>=(4'1><1>2, ... ,<I>k) and vd> e egra 1 
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a 
a<1>, 

V = II> 

a 
(3.126) 

a<1>* 

The log-likelihood becomes: 

" 
/(<I>)= logp,,(x I <I>)= L logp(xk I <I>) 

.1:~, 
(3.127) 

and its partial derivative is: 

II 

VII> /(<I>)= LV II> logp(x. l<I>) (3.128) .. , 
Thus, the maximum likelihood estimate of <I> can be obtained by solving the follow­

ing set of k equations: 

V 11> /(<1>)=0 (3,129) 

Example 3.1 

Let's take a look at the maximum likelihood estimator of a univariate Gaussian pdf, given as 
the following equation: 

1 [ (x-µ)
2

] p(x I <I>)= J2iri exp 
27r<J - 2<Y

2 
(3,130) 

where µ and a 2 are the mean and the variance respectively. The parameter vector <I> de­
notes (µ,<Y 2

) . The log-likelihood is: 

" 
logp,,(x I <I>)= Llogp(xt I <I>) 

= I,log(' ~ exp[ (x.1: - ~)2 ]1 
... , v 2rc a 2<:J ' - / 

(3.131) 

n 2 1 ~( )2 =--log(21r<J )--2 .£.. x. -µ 
2 2<:J bl 
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and the partial derivative of the above expression is: 

o n 1 
-logpn(x I Cl>)= _L-2 (xk - µ) 
aµ. k=I (J 

a n n (x µ)2 

-Iogp (xlCI>)= - -+ ~ 4 -
d0- 2 

n 2a2 f:t 20"4 
(3.132) 

We set the two partial differential derivatives to zero, 

_...!!...+ ~ (xk -µ)2 = 0 
2 ~ 4 

(J k=I (J 

(3.133) 

The maximum likelihood estimates for µ and <J
2 are obtained by solving the above equa­

tions: 

1 n 

µMLE =-IxA = E(x) 
n k=I 

a!LE =.!... f (x.t -µMLE)2 =E[(x-µMLE)2] 
n.t-:, 

(3.134) 

Equation (3.134) indicates that the maximum likelihood estimation for mean and vari­
ance is just the sample mean and variance. 

Example 3.2 
For the multivariate Gaussian pdf p(x) 

p(xlll>) (
2
ir/,JI:J'" exp[-~ (x-µ)'r'(x-11)] 

(3.135) 

The maximum likelihood estimates of µ and l: can be obtained by a similar procedure. 

(3.136) 

tMLE = .!.. i<x.t -µMLE )(xk -µMLE )' = E[ (x.t -µML£ )(x.t -µMLE)'] 
n k• I 

0 . . ce matrix is 
nee agam, the maximum likelihood estimation for mean vector and covanan 

the sample mean vector and sample covariance matrix. 
-------------------------
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In some situations, maximum likelihood estimation of <I> may not exist, or the maxi­
mum likelihood estimator may not be uniquely defined, i.e., there may be more than one 
MLE of <I> for a specific set of sample values. Fortunately, according to Fisher's theorem 
for most practical problems with a well-behaved family of distributions, the MLE exists and 
is uniquely defined [4, 25, 26]. 

In fact, the maximum likelihood estimator can be proven to be sound under certain 
conditions. As mentioned before, the estimator 0(X) is a function of the vector of random 
variables X that represent the sample data. O(X) itself is also a random variable, with a 
distribution detennined by joint distributions of X. Let <i> be the parameter vector of true 
distribution p(x I <J)) from which the samples are drawn. If the following three conditions 
hold: 

l. The sample x is a drawn from the assumed family of distribution, 

2. The family of distributions is well behaved, 

3. The sample x is large enough, 

then maximum likelihood estimator, <I> MLE , has a Gaussian distribution with a mean (J) and 
a variance of the fonn 1 / nB; [26], where n is the size of sample and B

1 
is the Fisher in­

formation, which is detennined solely by <i> and x . An estimator is said to be consistent, iff 
the estimate will converge to the true distribution when there is infinite number of training 
samples. 

!im <f) MLE = (J> 
n->oo 

(3.137) 

<I> MLE is a consistent estimator based on the analysis above. In addition, it can be 
shown that no consistent estimator has a lower variance than <l>uu. In other words, no es­
timator provides a closer estimate of the true parameters than the maximum likelihood esti­
mator. 

3.2.3. Bayesian Estimation and MAP Estimation 

Bayesian estimation has a different philosophy than maximum likelihood estimation. While 
MLE assumes that the parameter <t> 3 is fixed but unknown, Bayesian estimation assumes 
that the parameter <l> itself is a random variable with a prior distribution p(<I>). Suppose we 
observe a sequence of random samples x={x1,x2 , •• • ,xJ , which are i.i.d. with a pdf 
p(x I <I>) . According to Bayes' rule, we have the posterior distribution of <l> as: 

p(<I> Ix)= p{x I <I>)p{<I>) oc p{x I <I>)p(<I>) 
p{x) 

(3.138) 

' F · 1· · h t r ... ·15 a scalar instead of n vector here. However, the e,ctension co a pa-or s1mp 1c1ty, we assume t e parame e .., 
rameter vector ct, can be derived according to a similar procedure. 
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In Eq. (3.138), we dropped the denominator p(x) here because it is i d 
parameter <I>. The distribution in Eq. (3.138) is called the posterior distri: e~endent of the 
cause it is the distribution of <l> after we observed the values of r~~on or ~ be. 
X

1
,X

2
, ••• ,Xn. om vanables 

3.2.3.1. Prior and Posterior Distributions 

For mathematical tractability, conjugate priors are often used in Bayesian estimati S 
pose a random sample is taken of a known distribution with pdf p(x I <I>). A conjug:: ~P· 
for the random variable (or vector) is defined as the prior distribution for the paramet/no~ 
the probability density function of the random variable (or vector), such that the c~o­
conditional pdf p(x I <l>), the posterior distribution p(<l> Ix), and the prior distributi:n 
p(<l>) belong to the same distribution family. For example, it is well known that theconju. 
gate prior for the mean of a Gaussian pdf is also a Gaussian pdf [4]. Now, let's derive such a 
posterior distribution p(<l> Ix) from the widely used Gaussian conjugate prior. 

Example3.3 

Suppose X.,X2 , ... ,X" are drawn from a Gaussian distribution for which the mean <I> isa 
random variable and the variance <J

2 is known. The likelihood function p(x I <1>) can be 
written as: 

p(xl<l>)= :,
2 

"exp[-_!_ t(x,-<l> )
2

- oc exp -_ _!_ fl' x,-4>)
2

] (3.139) 
( 2,r) (J 2 i=I (J ., 2 i=I (J 

To further simply Eq. (3.139), we could use Eq. (3.140) 

n n 

I,(x, -<1>)2 = n(<l>-xn)2 + I,(x, -xn>2 
l=I 1=1 

(3.140) 

I " 
where xn=-Ix1= thesamplemeanofx={x,,X2,•••,xn}• 

n ;.,,, 

Let's rewrite p(x I <l>) in Eq. (3.139) into Eq. (3.141): 

P ( x I <I>) ~ ex+ 2::., ( <I>-x. )' }xp [-2:' t. ( x, - x. )'] (J.1411 

N . . ·b · with rnean µ 
ow suppose the pnor distribution of <I> is also a Gaussian d1stn uuon 

and variance v
2

, i.e., the prior distribution p(<I>) is given as follows: 

(3.142) 
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By co1~bining Eqs. _(3.141) and (3.142) while dropping the second term in E . (3.141 
we could attain the posterior pdf p(<f.> Ix) in the following equation: q ) 

p(<I> Ix)~ ex+ a:, (<1>-x.)' + v', (<1>-µ )']} 

Now if we define p and r as follows: 

. ·-,rµ +nv·x 
p= " 

a2 +nv2 

0"2V2 
r2=--­

a2 +nv2 

We can rewrite Eq. (3.143) as: 

p(<f.> Ix) oc exp{-.!_1-~(<t>-p)2 + • n (x -µ)2 ·1·f 
2 r a·+nv2 n 

- ~ ., . 

(3.143) 

(3.144) 

(3.145) 

(3.146) 

Since the second term in Eq. (3.146) does not depend on <J>, it can be absorbed in the 
constant factor. Finally, we have the posterior pdf in the following form: 

l 1·-1 2] p(<f.> Ix)= ~ exp - , ( cl>- p) 
v2rcr _2r-

(3.147) 

Equation (3.147) shows that the posterior pdf p(<f.> Ix) is a Gaussian distribution with 
mean p and variance r 2 as defined in Eqs. (3.144) and (3.145). The Gaussian prior distri­
bution defined in Eq. (3.142) is a conjugate prior. 

3.2.3.2. General Bayesian Estimation 

The foremost requirement of a good estimator 0 is that it can yield an estimate of <J> 
( O{X) ) which is close to the real value <I> . In other words, a good estimator is one for 
which it is highly probable that the error 0(X)-<f.> is close to 0. In general, we can define a 
loss function~ R(<l>, <I>) . It measures the loss or cost associated with the fact that the true 
value of the parameter is <I> while the estimate is <I> . When only the prior distribution 

'Bayesian estimation and loss functions arc based on Bayes' decision theory. described in Chapter 4. 
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p(<l>) is available and no sample data has been observed, if we choose one part· 
- . ICUlar . mate <l> , the expected loss 1s: es11. 

E[ R(<I>, 4>)] = J R(<I>, 4>)p(<I>)d<I> 
(3.148) 

The fact that we could derive posterior distribution from the likelihood funcf 
the p1ior distribution [as shown in the derivation of Eq. (3. l 47)] is very important tn aod 

. 11 h d . l f ere be-cause 1t a ows us to compute t e expecte posterior oss a ter sample vector x is ob 
Th d · 1 · d · h · ~ . served e expecte postenor oss associate wit estimate '*' 1s: · 

E[ R(<I>,4>) Ix]= J R(<l>,4>)p(<l> I x)d<l> (3.149) 

The Bayesian estimator of <I> is defined as the estimator that attains minimum Baye 
risk, that is, minimizes the expected posterior loss function (3.149). Formally, the Bayesi~ 
estimator is chosen according to: 

0&}\!/x) = argn1in E[R(<l>,0(x)) Ix] 
~ 

(3.150) 

The Bayesian estimator of <I> is the estimator 0 Bayes for which Eq. (3.150) is satisfied 
for every possible value of x of random vector X. Therefore, the form of the Bayesian es­
timator 88aY<·• should depend only on the loss function and the prior distribution, but not the 
sample value x. 

One of the most common loss functions used in statistical estimation is the mean 
squared error function (20]. The mean squared error function for Bayesian estimation should 
have the following form: 

R(<l>,0(x)) = (<l>-0(x))2 (3.151) 

In order to find the Bayesian estimator, we are seeking 88aye, to minimize the expected pos­
terior Joss function: 

E[ R(<l>,8(x)) Ix]= E[ (<I>-8(x))2 Ix]= E(<l>2 Ix)-20(x)E(<l> I x)-8(x)2 (3.152) 

The minimum value of this function can be obtained by taking the partial deriva~veo~ 
Eq. (3.152) with respect to 8(x). Since the above equation is simply a quadratic funcuon; 
8(x), it can be shown that the minimum loss can be achieved when 8nay.,, is chosen ba 
on the following equation: 

Bal1)~1 (x) = E(tt> Ix) (3.153) 

4> 
Equation (3.153) translates into the fact that the Bayesian esti~ate _of ~he ~~e:. In 

for mean squared error function is equal to the mean of the postenor d1stnbut1o a!So 
th &" 11 · · · · · tion) that e 10 owmg sectton, we discuss another popular loss function (MAP esttma 
generates the same estimate for certain distribution functions. 
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3.2.3.3. MAP Estimation 

One intuitive interpretation of Eq. (3.138) is that a prior pdf p(<I>) represents the relative 
likelihood before the values of X"X2 , ••• ,X,, have been observed; while the posterior pdf 
p(<l> Ix) represents the relative likelihoo~ after the values of X 1,X1 , ••• ,X,, have been ob­
served. Therefore, choosing an estimate <I> that maximizes the posterior probability is con­
sistent without intuition. This estimator is in fact the maximum posterior probability (MAP) 
estimator and is the most popular Bayesian estimator. 

The loss function associated with the MAP estimator is the so-called unifonn loss 

function [20): 

{
o, if 10(x)-<I>l::;Li 

R(<l>,0(x)) = where Li> 0 
I, if I 8(x)-<I> I> Li 

(3.154) 

Now let's see how this uniform loss function results in MAP estimation. Based on the 
loss function defined above, the expected posterior loss function is: 

E(R{<l>,8(x)) Ix)= P(l 8(x)-<I> I> Li Ix) 

J
O(x)+6 

= t-P(I 0(x)-<l> 1::; Li Ix)= t- p(<l> Ix) 
8(x)- 6 

(3.155) 

The quantity in Eq. (3.155) is minimized by maximizing the shaded area under 
p{<l> Ix) over the interval [0(x)-~0(x)+~) in Figure 3.16. If p(<l> Ix) is a smooth curve 
and ~ is small enough, the shaded area can be computed roughly as: 

J8(x)+6 I 
p(<l> Ix)= 2Lip(<l> IX) <t>=9(xl 

9(x)-6 

(3.156) 

Thus, the shaded area can be approximately maximized by choosing 0(x) to be the maxi­
mum point of p(<l> Ix). This concludes our proof the using the error function in Eq. (3.154) 

indeed will generate MAP estimator. 

I - E( P(.P,8(x)) t x ) 

8(x)-A 8(x) +A 
8(x) 

Figure 3.16 Illustration of the minimum expected posterior loss function for MAP estimation 

[20). 

Amazon/VB Assets 
Exhibit 1012 

Page 137



112 --Probability, Statistics ------d 
'and lnforrna~ 

Oh Theory 
. ~AP estimation is to find the parameter e . 

max1m1zes the posterior probability, st1mate <J.>,.,AP or estimator 0 
AUp(X) lhat 

¢>MAP == 0MAP (x) == arg~1ax p(<l> I x) = ar~ax p(x I <l>) p(<'P) 

<l>AuP can also be specified in the logarithm fonn as follows: 

<I> MAP = arg::iax [ log p( x I <I>)+ Jog p( <I>) J 

<l>MAP can be attained by solving the following parti'al di'fc ·a1 . 
1erenti equation: 

a tog p(x I <I>) a log p(<l>) 
a<I> + d<I> = 0 

Thus the MAP equation for finding <J.> MAP can be established. 

a log p(x I <I>) 

d<l> 
--t) log p(<I>) 

41:G>MAP d<J> G>:.G>MAP 

(3.157) 

(3. 158) 

(3.159) 

(3.160) 

There are interesting relationships between MAP estimation and MLE estimation. The 
prior distribution is viewed as the knowledge of the statistics of the parameters of interest 
before any sample data is observed. For the case of MLE, the parameter is assumed to be 
fixed but unknown. That is, there is no preference (knowledge) of what the values of pa· 
rameters should be. The prior distribution p(<J.>) can only be set to constant for the entire 
parameter space, and this type of prior infonnation is often referred to as non-informarive 
prior or uniform prior. By substituting p(cf>) with a uniform distribution in Eq. (3.157), 
MAP estimation is identical to MLE. In this case, the parameter estimation is solely deter· 
mined by the observed data. A sufficient amount of training data is often a requirement !0r 
MLE. On the other hand, when the size of the training data is limited, the use of the pnor 
density becomes valuable. If some prior knowledge of the distribution of the P~~eters c~ 
be obtained, MAP estimation provides a way of incorporating prior infonnauon 10 !he pa 
rameter learning process. 

Example 3.4 
. . . · d · Section 3.2.3.l, 

Now, let's fonnulate MAP estimation for Gaussian dens1ues. As descnbe 1~ . . 
0 

Sil!li· 
. . . . al G ssian d1s1nbuuo . the conJugate prior distribution for a Gaussian density 1s so a au . . 'bution for 

larly, we assumed random variables Xi,X2 , • •• ,X" drawn from a_ Gaussian_d•s:priordis· 
which the mean <I> is unknown and the variance a 2 is known, while the co~Jugh wn in see· 
~bution of <I> is a Gaussian distribution with mean µ and variance V

2 

• ~~~;estimation 
hon 3.2.3.l that the posterior pdf can be formulated as in Eq. (3.147), Th . 
for <I> can be solved by taking the derivative of Eq. (3.147) with respect to 4> · 

l 
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(3.161) 

where n is the total number of training samples and x the sample m 
M P 

. ,, ean. 
The A estimate of the mean ct> is a weighted average of th I -. . e samp e mean x and 

the pnor mean. When n 1s zero (when there is no training data at all) the MAP · n · . . , estimate 1s 
simply the pnor mean µ . On the other hand when n is large ( n _,_ ) th MAP · 

• • • ' ------, 
00 

, e estimate 
~1ll_~onverge ~o the maximum likelihood estimate. This phenomenon is consistent with our 
mtu1t1on a~d 1s o~ten refe~ed to as asymptotic equivalence or asymptotic convergence. 
Therefore, m practice, the d1ffer~~ce betw~en M~P estimation and MLE is often insignifi­
cant when a l~ge a'!1ount of trammg data 1s available. When the prior variance v 2 is ve 
large (e.g., ~- >> (r In), the MAP estimate will converge to the ML estimate because~ 
very large v· translates into a non-informative prior. 

It is important to note that the requirement of learning prior distributions for MAP es­
timation is critical. In some cases, the prior distribution is very difficult to estimate and MLE 
is still an attractive estimation method. As mentioned before, the MAP estimation frame­
work is particularly useful for dealing with sparse data, such as parameter adaptation. For 
example, in speaker adaptation, the speaker-independent (or multiple speakers) database can 
be used to first estimate the prior distribution [9]. The model parameters are adapted to a 
target speaker through a MAP framework by using limited speaker-specific training data as 
discussed in Chapter 9. 

3.3. SIGNIFICANCE TESTING 

Significance testing is one of the most important theories and methods of statistical infer­
ence. A problem of statistical inference, or, more simply, a statistics problem, is one in 
which data that have been generated in accordance with some unknown probability distribu­
tion must be analyzed, and some type of inference about the unknown distribution must be 
made. Hundreds of test procedures have developed in statistics for various kinds of hypothe­
ses testing. We focus only on tests that are used in spoken language systems. 

The selection of appropriate models for the data or systems is essential for spoken lan­
guage systems. When the distribution of certain sample data is unknown, it is usually appro­
priate to make some assumptions about the distribution of the data with a distribution 
function whose properties are well known. For example, people often use Gaussian distribu­
tions to model the distribution of background noise in spoken language systems. One impor­
tant issue is how good our assumptions are, and what the appropriate values of the 
parameters for the distributions are, even when we can use the methods in Section 3.2 to 
estimate parameters from sample data. Statistical tests are often applied to detern:iine if_ the 
distribution with specific parameters is appropriate to model the sample data. In this sect.!On, 
we describe the most popular testing method for the goodness of distribution fitting - the 

2 X goodness-of-fit test. 
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. Another important type of statistical tests is designed to evaluate 
different methods or algorithms for the same tasks h th . the excellence oftw 

w en ere IS uncertai ty o 
results. To assure that the two systems are evaluated th . . n regarding the 

. fi on e same or s1m1lar c ct· . 
penmenters o ten carefully choose similar or even th 1 on tllons, ex. 
Th. . e exact y same data s t t 

is is why we refer to this type of statistical test as a . d b . e s or testing. 
h . . paire o servatzons t I 

spe:c reco~mt1on and speech synthesis, the paired observations test is ave . est. n both 
for mteipretmg the comparison results. ry important tool 

3.3.1. Level of Significance 

We now consider statistical problems involving a parameter "' whose value 1·s kn 
I
. . . 'I' un own but 

must 1e m a certam parameter space n . In statistical tests we let H denote the h th . 
th 

r. • o ypo es1s 
at </> e u 0 and let H1 denote the hypothesis that ¢ e Q 1 • The subsets n and n d' 

·· dr. n o ,arc1s-
JOmt an .:11~0 u .:11~ 1 = Q , so exactly one of the hypotheses H and H must be true w 

d 
'd O I • e 

must now ec1 e whether to accept HO or H1 by observing a random sample x ... x 
drawn from a distribution involving the unknown parameter ¢ . A problem like this i~ c~led 
hypotheses testing. A procedure for deciding whether to accept H0 or H1 is called a test 
procedure or simply a test. The hypothesis H0 is often referred to as the null hypothesis and 
the hypothesis H1 as the alternative hypothesis. Since there are only two possible decisions, 
accepting H0 is equivalent to rejecting H1 and rejecting H0 is equivalent to accepting H1• 

Therefore, in testing hypotheses, we often use the terms accepting or rejecting the null hy­
pothesis HO as the only decision choices. 

Usually we are presented with a random sample X = (X1,···,Xn) to help us in making 
the test decision. Let S denote the sample space of n-dimensional random vector X. The test· 
ing procedure is equivalent to partitioning the sample space S into two subsets. One subset 
specifies the values of X for which one will accept H0 and the other subset specifies the 
values of X for which one will reject H

0
• The second subset is called the critical region and 

is often denoted as C. 
Since there is uncertainty associated with the test decision, for each value of ¢e~, 

we are interested in the probability p( q,) that the testing procedure rejects Ho. The function 
p( tfJ) is called the power function of the test and can be specified as follows: 

p(<f,)=P(Xe Cj<f,) 
(3.162) 

For q, e .Q the decision to reiect H is incorrect. Therefore, if 'Pe ilo, p(¢) _is .
th

ale 
o , ;,, o . . · · ) In statJstlc 

probability that the statistician will make an incorrect dec1S1on (false reJecuon · hi' h 
·d tests for w c 

tests, an upper bound a (0 < a < I) is specified, and we only consi er if . iJi 
o o . d th l l O s1gni • 

p(q,) $, o:0 for every value of </> e Q
0

• The upper bound O:o JS calle . e ~ve H Since 
cance. The smaller a

0 
is, the less likely it is that the test procedure will re3ect 0

th· test 
· th · · ·ected by e 

O:o specifies the upper bound for false rejection, once a hypo eSJS is reJ . . a is 
procedure, we can be (1-a ) confident the decision is correct. In moSt apphcauons, 0°95 

o f . 'ficance or . 
set to be 0.05 and the test is said to be carried out at the 0.05 level O sigm 1 

level of confidence. 

Amazon/VB Assets 
Exhibit 1012 

Page 140



Significance Testing llS 

We define the size a of a given test as the maximum probability, among all the values 
of ¢ which satisfy the null hypothesis, of making an incorrect decision. 

a= max p( </>) 
9€0. (3.163) 

Once we obtain the value of a, the test procedure is straightforward. First, the statisti­
cian specifies a certain level of significance a0 in a given problem of testing hypotheses, 
then he or she rejects the null hypothesis if the size a is such that a::; a

0
• 

The size a of a given test is also called the tail area or the p-value corresponding to 
the observed value of data sample X because it corresponds to tail area of the distribution. 
The hypothesis will be rejected if the level of significance a0 is such that a

0 
> a and 

should be accepted for any value of a0 <a. Alternatively, we can say the observed value of 
X is just significant at the level of significance a without using the level of significance 
a0 • Therefore, if we had found that the observed value of one data sample X was just sig­
nificant at the level of 0.0001, while the other observed value of data sample Y was just sig­
nificant at the level of 0.001, then we can conclude the sample X provides much stronger 
evidence against H0 • In statistics, an observed value of one data sample X is generally said 
to be statistically significant if the corresponding tail area is smaller than the traditional 
value 0.05. For cases requiring more significance (confidence), 0.01 can be used. 

A statistically significant observed data sample X that provides strong evidence 
against H0 does not necessary provide strong evidence that the actual value of <f, is signifi­
cantly far away from parameter set n0 • This situation can arise, particularly when the size 
of random data sample is large, because a test with larger sample size will in general reject 
hypotheses with more confidence, unless the hypothesis is indeed the true one. 

3.3.2. Normal Test (Z-Test) 

Suppose we need to find whether a coin toss is fair or not. Let p be the probability of heads. 

The hypotheses to be tested are as follows: 

Ho: p=½ 
H,: P'*½ 
We assume that a random sample size n is taken, and let random variable M denote the 

number of times we observe heads as the result. The random variable M has a binomial dis­
tribution B(n,½). Because of the shape of binomial distribution, ~ can lie on either side of 
the mean. This is why it is called a typical two-tailed test. The tail area or p-value for the 

observed value k can be computed as: 

f 
2P(k =:;MS n) 

p= 2P(0SMSk) 

1.0 

fork> n/2 

fork <n/2 

fork =n/2 

(3.164) 
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The p-value in Eq. (3.164) can be computed directl u . . 
The test procedure will reject Ho when pis less than th _Y -~ng the binomial distribur 

In many situations, the p-value for the distributio~ :;~• :ance level ao. . ion. 
tain due to the complexity of the distribution. Fortunatel :f sample~ i~ difficult to ob­
sample X has some well-known distribution, the test can ~en ~ome st~t1st1c Z of the data 
s~ead. ~f n is larg_e enough ( n > 50 ), a normal test (or Z-test ca: done m the Z domain in-
bmomial probability. Under H the mean and . ) .- be used to approximate a 
Vi ( / 0 ' vanance 1or M are E(M 
ar M) = n 4. The new random variable z is defined as, ) == n/2 and 

z = IM - n/21-1/2 
J;/4 (3.165) 

which can be approximated as standard Gaussian distribution N(O,l) under H 
value can now be computed as p = 2P(Z ~ z) where z is the realized value of z °ar The~­
observed. Thus, H0 is rejected if p < a0 , where a

0 
is the level of significance. ter Mis 

3.3.3. x2 Goodness-of-Fit Test 

The normal test (Z-test) can be extended to test the hypothesis that a given set of data came 
from a certain distribution with all parameters specified. First let's look at the case of dis­
crete distribution fitting. 

Suppose that a large population consists of items of k different types and Jet p, be the 
probability that a random selected item belongs to type i. Now, let qw··,qt be a set of spe­
cific numbers satisfying the probabilistic constraint ( q; 2': 0 for i = 1, .. . ,k and 1;_

1
q1 =l ). 

Finally, suppose that the following hypotheses are to be tested: 
H 0 : P; = q, for i = 1, .. . ,k 

H1 : p, -:t: q1 for at least one value of i 
Assume that a random sample of size n is to be taken from the given population. For 

i = 1, ... , k , let N, denote the number of observations in the random sample which are of 
type i. Here, N" ... , N k are nonnegative numbers and I:., N; = n . Random varia?Ies 
N

1
, ••• ,N1: have a multinomial distribution. Since the p-value for the multinomial distnbu­

tion is hard to obtain, instead we use another statistic about Nw .. ,N1 • When Ho is trUe, the 
expected number of observations of type i is nq1 • In other words, the difference between :e 
actual number of observations N; and the expected number nq; should be small w~en ° 
is true. It seems reasonable to base the test on the differences N, - nq, and to reJect : 0 

when the differences are large. It can be proved [14] that the following random variable 

A=± (N, - nq; )2 (3.166) 
,~, nq, 

converges to the X2 distribution with k-1 degrees of freedom as the sample size n ~ 
00 

• 
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A x" test of goodness-of-fit can be carried out in the following way. Once a level of 
significance a0 is specified, we can use the following p-value function to find critical point d 

P(..:l >c) = l-Fx~(x ==c);;; a
0 (3. 167) 

where Fxi (x) is the distribution function for z2 distribution. The test procedure simply 
rejects H0 when the realized value ..:l is such that A> c. Empirical results show that the X~ 
distribution will be a good approximation to the actual distribution of ..:l as long as the value 
of each expectation nq; is not too small ( ~ 5 ). The approximation should still be satisfac­
tory if nq, ~ l .5 for i = I, . .. , k . 

For continuous distributions, a modified X2 goodness-of-fit test procedure can be ap­
plied. Suppose that we would like to hypothesize a null hypothesis H

0 
in which continuous 

random sample data X., . .. ,Xk are drawn from a certain continuous distribution with all 
parameters specified or estimated. Also, suppose the observed values of random sample 
x" ... ,xk are bounded within interval .Q. First, we divide the range of the hypothesized 
distribution into m subintervals within interval .Q such that the expected number of values, 
say E,, in each interval is at least 5. For i = l, ... ,k, we let N; denote the number of obser­
vations in the t subintervals. As in Eq. (3.166), one can prove that the following random 
variable ..:l 

(3.168) 

converges to the x2 distribution with m-k-1 degrees of freedom as the sample size 
n ~ oo , where k is the number of parameters that must be estimated from the sample data in 
order to calculate the expected number of values, E; . Once the X2 distribution is estab­
lished, the same procedure can be used to find the critical c in Eq. (3.167) to make test deci­
sions. 

Example 3.5 

Suppose we are given a random variable X of sample size 100 points and we want to deter­
mine whether we can reject the following hypothesis: 

H0 : X - N(O, I) (3.169) 

To perfonn x2 goodness-of-fit test, we first divide the range of X into 10 subinterv~s. 
The corresponding probability falling in each subinterval, the ex~ected num~r of pomts 
falling in each subinterval and the actual number of points falling m each subrntervals [10] 
are illustrated in Table 3.1. 

' · z · · · · ·11 st Thus we only need to calculate one tail area. Smee X pdf 1s a monotomc funcuon, the test 1s a one-tai e · , 
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Table 3.1 The probability falling in each subinterval of an N(O I) and 100 • , sample p · 
expecced n~mber of points falling in each subinterval, and the actual number of . omts, ~he 
in each subinterval [ lOJ. po1ncs falhng 

Subinterval / 1 P(X el,) E, = lOOP(X e J,) N, 
[-oo, -1.6] 0.0548 5.48 2 
[-1.6, -1.2] 0.0603 6.03 9 
[-1.2, -0.8] 0.0968 9.68 6 
[-0.8, -0.4] 0.1327 13.27 11 
[-0.4, 0.0] 0.1554 15.54 19 
[0.0, 0.4] 0.1554 15.54 25 
[0.4, 0 .8] 0.1327 13.27 17 
[0.8, 1.2] 0.0968 9.68 2 
[1.2, 1.6] 0.0603 6.03 6 
[-1.6, oo] 0.0548 5.48 3 

The value for A can then be calcu]ated as follows: 

Since ;L can be approximated as a z2 distribution with m -k- l = 10-0-1 = 9 de­
grees of freedom, the critica1 point c at the 0.05 Jevel of significance is calculated6 to be 
16.919 according to Eq. (3.167). Thus, we should reject the hypothesis H0 because the cal­
culated ;L is greater than the critical point c. 

The z2 goodness-of-fit test at the 0.05 significance level is in general used to deter­
mine when a hypothesized distribution is not an adequate distribution to use. To accept the 
diswtribution as a good fit, one needs to make sure the hypothesized distribution cannot be 
rejected at the 0.4 to 0.5 Jevel-of-significance. The alternative is to use the X2 

goodness-0f­
fit test for a number of potential distributions and select the one with smallest calculated X- · 

When all the parameters are specified (instead of estimated), the Kolmogorov­
Smirnov test [5] can also be used for the goodness-of-fit test. The Kolmogorov-Smimov teSI 

in general is a more powerful test procedure when the sample size is relatively small. 

3.3.4. Matched-Pairs Test 

In this section, we discuss experiments in which two different methods (or systems) are to 

be compared to learn which one is better. To assure the two methods are evaluated uo
d
er 

. -~ 
~ _general, we use a cumulative distribution function table to find the point with specific desired cumulauve 

abihty for complicated distributions, like the z2 distribution. 
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similar conditions, two closely resemble data samples or ideally the same data sample 
should be used to evaluate both methods. This type of hypotheses test is called matched­
paired test [5]. 

3.3.4.1. The Sign Test 

For i =I, ... , n, let P; denote the probability that method A is better than method B when 
testing on the i'h paired data sample. We shall assume that the probability p has the same 
value p for each of the n pairs. Suppose we wish to test the null hypothesis that method A is 
no better than method B. That is, the hypotheses to be tested have the following form: 

Ho: P~½ 
H,: p>½ 

Suppose that, for each pair of data samples, either one method or the other will appear 
to be better, and the two methods cannot tie. Under these assumptions, then pairs represent 
n Bernoulli trials, for each of which there is probability p that method A yields better per­
formance. Thus the number of pairs M in which method A yields better performance will 
have a binomial distribution B(n, p). For the simple sign test where one needs to decide 
which method is better, p will be set to I/2 . Hence a reasonable procedure is to reject H

0 
if 

M > c, where c is a critical point. This procedure is called a signed test. The critical point 
can be found according to 

P( M > c) = 1-F8 ( x = c) = a0 (3.170) 

where F8 (x) is the distribution for binomial distribution. Thus, for observed values M > c, 
we will reject H0 • 

3.3.4.2. Magnitude-Difference Test 

The only information that the sign test utilizes from each pair of data samples, is the sign of 
the difference between two performances. To do a sign test, one does not need to obtain a 
numeric measurement of the magnitude of the difference between the two performances. 
However, if the measurement of magnitude of the difference for each pair is available, a test 
procedure based on the relative magnitudes of the differences can be used [l l]. 

We assume now that the performance of each method can be measured for any data 
samples. For i = l, ... , n , let A, denote the performance of the method A on the t.JJt pair of 
data samples and B. denote the perfonnance of the method B on the th pair of data sample. 
Moreover, we shall I let D; = A; - B; . Since D 1, ••• , D,. are generated on n different pairs of 
data samples, they should be independent random variables. We also assume that D,, .. . ,D,, 
have the same distribution. Suppose now we are interested in testing the null hypothesis that 
method A and method B have on the average the same performance on the n pairs of data 
samples. 
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Let µ 0 be the mean of D, . The MLE estimate of µ 0 is: 

II D. 
Jlo=I-' ,,,, n 

The test hypotheses are: 

Ho : µD = 0 

HI : µ[) :;t: 0 

The MLE estimate of the variance of D, is 

We define a new random variable Z as follows: 

• aeory 

(3,171) 

(3.172) 

(3.173) 

If n is large enough (> 50), Z is proved to have a standard Gaussian distribution 
N(O, I). The normal test procedure described in Section 3.3.2 can be used to test H

0
• This 

type of matched-paired tests usually depends on having enough pairs of data samples for the 
assumption that Z can be approximated with a Gaussian distribution. It also requires enough 
data samples to estimate the mean and variance of the D, . 

3.4. INFORMATION THEORY 

Transmission of information is a general definition of what we call communication. Claude 
Shannon's classic paper of 1948 gave birth to a new field in information theory that has be­
come the cornerstone for coding and digital communication. In the paper titled "A Mathe­
matical Theory of Communication," he wrote (21]: 

The fundamental problem of cornmunication is that of reproducing at one point 
either exactly or approximately a message selected at another point. 

Information theory is a mathematical framework for approaching a large class of _p~bl_ems 
related to encoding, transmission, and decoding information in a systematic and disciphned 
way· Since speech is a fonn of communication, information theory has served as the und

er­
lying mathematical foundation for spoken language processing. 

3.4.1. Entropy 

Th · . . th amount of 
ree 1~terpretat1ons can be used to describe the quantity of infonnatwn: (1) e d (3) 

uncenainty before seeing an event, (2) the amount of surprise when seeing an event, an 
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the amount of information after seeing an event. Although these three interpretations seem 
slightly different, they are virtually the same under the framework of information theory. 

According to information theory, the information derivable from outcome x depends 
on its probability. If the probability P(x,.) is small, we can derive a large degree of infonna­
tion, because the outcome that it has occurred is very rare. On the other hand. if the 
probability is large, the information derived will be small, because the outcome is well 
expected. Thus, the amount of information is defined as follows: 

1 
/(x.) = log--

, P(x;) (3.174) 

The reason to use a logarithm can be interpreted as follows. The information for two 
independent events to occur (where the joint probability is the multiplication of both indi­
vidual probabilities) can be simply carried out by the addition of the individual information 
of each event. When the logarithm base is 2, the unit of information is called a bit. This 
means that one bit of information is required to specify the outcome. In this probabilistic 
framework, the amount of information represents uncertainty. Suppose Xis a discrete ran­
dom variable taking value x, (referred to as a symbol) from a finite or countable infinite sam­
ple space S = {xi,x2 , ••• ,x1, ••• } (referred to as an alphabet). The symbol x, is produced from 
an information source with alphabet S, according to the probability distribution of the 
random variable X. One of the most important properties of an information source is the 
entropy H(S) of the random variable X, defined as the average amount of information (ex­
pected information): 

H(X) = E[J(X)] = I,P(x1)I(x1) = LP(x1) log-
1
- = E[-logP(X)] 

s s P(~) 
(3.175) 

This entropy H(X) is the amount of information required to specify what kind of 
symbol has occurred on average. It is also the average uncertainty for the symbol. Suppose 
that the sample space S has an alphabet size l!Sjj = N. The entropy H(X) attains the maxi­
mum value when the pf has a uniform distribution, i.e.: 

1 
P(x,. ) = P(x,.) = - for all i andj 

N 
(3.176) 

Equation (3.176) can be interpreted to mean that uncertainty reaches its maximum 
level when no outcome is more probable than any other. It can be proved that the entropy 
H(X) is nonnegative and becomes zero only if the probability function is a deterministic 

one, i.e., 

H(X) ~ O with equality i.f.f. P(x,) = 1 for some X; e S (3.177) 

There is another very interesting property for the entropy. If we repl~ce the pf of gen­
erating symbol x, in Eq. (3.175) with any other arbitrary pf, the new value 1s no smaller than 

the original entropy. That is, 
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H(X) :5 E(-logQ(X)] =-I,P(x;)logQ(x.) 
s , 

. (3.178) 

Probability, Statistics ::----_ 
, and lnfotmati 

on l'heory 

Equation (3.178) has a very important . 
about the data if we misestimate the distn'b _meanmg. It shows that we are mo 
E (3 178) ut1on governing th d re uncena· 

q. . occurs if and only if P(x ) = Q(x ) . e . ata source. The u . in 

as Jen~e~, s ineq_uality, is the basis for the ;ro;/;f ~~. Equ~tton \3.178), often;ef:l~!dfor 
Jensen s mequahty can be extended to continuous pdf: algonthm m Chapter 4. Similar!~~ 

-J fx(x) logfxCxxJx s-J g_,(x) Jogfx(x)dx 
(3.179) 

with equality occurring if and only if /, (x) = g (x) V 
_The proof of Eq. (3.178) follow~ from the fac:io (x)<x-1 

quantity must have an non-positive value. g - , 't:/x, so the following 

(3.180) 

Based on this pr~perty, the negation of the quantity in Eq. (3.180) can be used for the 
me_asurement ~f the d1stan~e of two probability distributions. Specifically, the Kullback­
Lezbler (KL) dzstance (relatlve entropy, discrimination, or divergence) is defined as: 

KL(PIIQ)=E -logP(X)]= _I,P(xi)logP(x;) (3.181) 
_ Q(X) s Q(x1) 

As discussed in Chapter 1 I, the branching factor of a grammar or language is an im­
portant measure of degree of difficulty of a particular task in spoken language systems. This 
relates to the size of the word list from which a speech recognizer or a natural language 
processor needs to disambiguate in a given context. According to the entropy definition 
above, this branching factor estimate (or average choices for an alphabet) is defined as fol­
lows: 

PP(X) = 2H(X) 
(3.182) 

PP(X) is called the perplexity of source X, since it describes how con~sin~ !he 
grammar (or language) is. The value of perplexity is equivalent to the size of an ima~nary 
equivalent list, whose words are equally probable. The bigger the perplexity, ~e higher 
branching factor. To find out the perplexity of English, Shannon devised an ingemo_us ~a_y 

H. thod 1s sum· 
[22] to estimate the entropy and perplexity of English words and letters. is me h.d 

· th d of a text 1 • lar to a guessing game where a human subject guesses sequentially e wor s_ f the 
den from him, using the relative frequencies of her/his guesses as the es~imate~ 

0 
te of 

prob~bility distribution underlying the source of the text. Shannon's pe~lexity : .u~:apter 
English comes out to be about 2.39 for English letters and 130 for English WOfi 

11 has a detailed description on the use of perplexity for language modeling. 
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3.4.2. Conditional Entropy 

~ow let us con_sider transmission of symbols through an information channel. Suppose the 
mput ~lphabet is ~ = (xi, x1 , ••• , x,) , the output alphabet is Y = (Yi, y2 , ... , _v,), and the in­
formation channel 1s defined by the channel matrix M, = P(y I x,) , where P(y . Ix ) is the 
conditional probability of receiving output symbol yi !/when i~put symbol x; is ~ent Figure 
3.17 shows an example of an information channel. 

P(X) 

Source 

X .. P(YlX) 

Channel 

y .. 

Figure 3.17 Example of information channel. The source is described by source pf P(X) and 
the channel is characterized by the conditional pf P(YlX). 

Before transmission, the average amount of information, or the uncertainty of the in­

put alphabet X, is the prior entropy H(X). 

H(X)= LP(X =x,)log--
1
-

.r P(X =xi) 
(3.183) 

where P(x;) is the prior probability. After transmission, suppose y1 is received; then the 
average amount of information, or the uncertainty of the input alphabet A, is reduced to the 

following posterior entropy: 

H(X I Y = y
1

) =-I.P(X = x, I Y = y1 )logP(X = x, I Y = Y1) 
(3.184) 

X 

where the P(x, I y
1

) are the posterior probabilities. Averaging the posterior entropy 
H(X I y

1
) over all output symbols y1 leads to the following equation: 

H(X I Y) = IP(Y = Y1)H(X If= Y1) 
y 

= -IP(Y = y
1
)LP(X = X; I Y = y1 )logP(X = X; I Y = Y1 ) 

(3.185) 

y X 

=-LLP(X =x,,Y = y1)JogP(X =x; I Y=y1) 
X y 

This conditional entropy, defined in Eq. (3.185), is the average amount of infonnation 
or the uncertainty of the input alphabet X given the outcome of the output event Y. Based on 
the definition of conditional entropy, we derive the following equation: 
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H(X,Y)=-L,L,P(X =x,,Y = y,)logP(X =x ,Y=y) 
X Y I I 

=-~f-'P(X = x,, y = y,){logP(X = x,)+ logP(Y = Y, IX== x,)} 

=H(X)+H(YJX) 

, ueory 

(3.186) 

Equation (3.186) has an intuitive meaning - the uncertat'nty b 
bl . a out two rand . 

a es equals the sum of uncertainty about the first variable and th d' . om van. 
th d - b - . . e con 1t1onal entr 

e secon vana le given the first vanable 1s known Equations (3 lSS) opy for 
. · · and (3 186) 

generahzed to random vectors X and Y where each contains several d .' can be 
. ran om vanables 

It can be proved that the cham rule [Eq. (3. I 6)J applies to entropy. · 

H(X1, .. ·,Xn) =H(Xn I X,,··,X,,_1)+ .. ·+H(X
2 

!X,)+H(X,) 
(3,187) 

Finally, the following inequality can also be proved: 

H(X I Y,Z) ~ H(X I Y) 
(3.188) 

'-:ith equality i.f.f. X ~nd ~-being i_ndependent when conditioned on Y. Equation (3.188) ba­
sically confirms the mtultlve behef that uncertainty decreases when more information is 
known. 

3.4.3. The Source Coding Theorem 

Information theory is the foundation for data compressing. In this section we describe Shan­
non's source coding theorem, also known as the first coding theorem. In source coding, we 
are interested in lossless compression, which means the compressed information (or sym­
bols) can be recovered (decoded) perfectly. The entropy serves as the upper bound for a 
source lossless compression. 

Consider an information source with alphabet S = { 0, 1, ... , N - I} . The goal of data 
compression is to encode the output symbols into a string of binary symbols. An interesting 
question arises: What is the minimum number of bits required, on the average. to encode the 
output symbols of the information source? 

Let's assume we have a source that can emit four symbols {0,1,2,3) with equal prob­
ability P(0) = P(l) = P(2) = P(3) = 1/ 4 . Its entropy is 2 bits as illustrated in Eq. (3. I 89): 

3 1 
H(S)=LP(i)log2-. =2 

icO P(z) 
(3.189) 

I . . . . d th. e A possible t 1s obvious that 2 bits per symbol 1s good enough to enco e 1s sourc · 
binary _code for this source is {00, 01, IO, 11 ) . It could happen, though some sy~~~-~ 
more likely than others, for example, P(0) = 1/ 2, P(l) = 1 / 4, P(2) = 1/8, P(J)-
h. b" " lower values t is case the entropy is only 1.75 bits. One obvious idea is to use fewer its !Or thi 
that are frequently used and more bits for larger values that are rarely used. To represent 

5 
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source we can use a ~ariable-length code {O, 10,110,111}, where no codeword is a prefix for 
the rest and thus a strmg of Os and ls can be uniquely broken into those symbols. The encod­
ing scheme with such a property is called uniquely decipherable (or instantaneous) coding, 
because as soon as. t~e decoder observes a sequence of codes, it can decisively detennine the 
sequence of the ongmal symbols. If we let r(x) be the number of bits (length) used to en­
code symbol x, the average rate R of bits per symbol used for encoding the information 
source is: 

R = Ir(x)P(x) (3 .190) 
" 

In our case, R is 1.75 bits as shown in Eq. (3 .191): 

R = 0.5xl + 0.25x2+ 0.125x3+0.125x3 = l.75 (3.191) 

Such variable-length coding strategy is called Huffman coding. Huffman coding be­
longs to entropy coding because it matches the entropy of the source. In general, Shannon's 
source coding theorem says that a source cannot be coded with fewer bits than its entropy. 
We will skip the proof here. Interested readers can refer to [3, 15, 17J for the detailed proof. 
This theorem is consistent with our intuition because the entropy measure is exactly the in­
formation content of the information measured in bits. If the entropy increases, then uncer­
tainty increases, resulting in a large amount of information. Therefore, it takes more bits to 
encode the symbols. In the case above, we are able to match this rate, but, in general, this is 
impossible, though we can get arbitrarily close to it. The Huffman code for this source offers 
a compression rate of 12.5% relative to the code designed for the uniform distribution. 

Shannon's source coding theorem establishes not only the lower bound for lossless 
compression but also the upper bound. Let Ix l denote the smallest integer that greater or 
equal to x. As in the similar procedure above, we can make the code length assigned to 
source output x equal to 

/(x) =f-logP(x) l (3.192) 

The average length L satisfies the following inequality: 

L = LJ(x)P(x) < I[l-logP(x)]P(x) = 1 + H(X) (3.193) 

" " 

Equation (3 .193) means that the average rate R only exceeds the value of entropy by less 

than one bit. 
L can be made arbitrarily close to the entropy by block coding. Instead of encoding 

single output symbols of the information source, one can encode each block of length n. 
Let's assume the source is memoryless, so X.,X2 , ... ,X,, are independent. According to Eq. 
(3 .193), the average rate R for this block code satisfies: 

L < 1 + H(X1 ,X2 , • • • , X,,) = 1 + nH(X) (3 .194) 

Amazon/VB Assets 
Exhibit 1012 

Page 151



126 Probability, Statistics and In" -:----
• 10rtnation 'l'L 

This makes the average number of bits per output symbol, LI n, satisfy 

lim_!L :S H(X) 
n ....... -n 

•Qtory 

(3.195) 

In general, Huffman coding arranges the symbols in order of deer · 
. . . easmg probabT 

assigns the btt O to the symbol of highest probability and the bit J to what · 1 f 
1 lly, 

. 1s e ~ and p 
ceeds the same way for the second highest probability value (which now has od ro-
iterate. This results in 2.25 bits for the uniform distribution case, which is hi ~c ~ lO) and 
bits we obtain with equal-length codes. g er t an the 2 

Lempel-Ziv coding is a coding strategy that uses correlation to encode st,· f 
mgs o sym 

bols that occur frequently. Although it can be proved to converge to the entropy ·
1 

• 
• • . , 1 s conver-

gence rate 1s much slower [27]. Unhke Huffman coding, Lempel-Ziv coding is inde d 
f th d . .b . f th . . pen ent 

o e 1stn ut1on o e source; 1.e., 1t needs not be aware of the distribution of the sour 
before encoding. This type of coding scheme is often referred to as universal encodi: 
scheme. 

3.4.4. Mutual Information and Channel Coding 

Let's review the information channel illustrated in Figure 3.17. An intuitively plausible 
measure of the average amount of information provided by the random event Y about the 
random event X is the average difference between the number of bits it takes to specify the 
outcome of X when the outcome of Y is not known and the outcome of Y is known. Mutual 
information is defined as the difference in the entropy of X and the conditional entropy of X 
given Y: 

l(X;Y) = H(X) - H(X I Y) 

1 1 
= LP(x;)log--- LL,P(x,,yi)log P( I ) 

x P(x;) x y x, Yi 

P(x1 I y1 ) ~ P(x;, y j ) 
= I,IP(x;,Yi)log P( ) = L4'P(x;,yi)log P(x.)P(y.) 

X y x, X l I I 

(3. I 96) 

- E[lo P(X,Y) ] 
- g P(X)P(Y) 

- !(X- Y) is symrnet· 
/(X;Y) is referred to as the mutual infonnation between_X and Y. ferr;d to as the mu· 

rical; i.e., /(X;Y)=l(Y;X). The quantity P(x.y)/P(x)P(y) is often re 
tual information between symbol x and y. I ( X; Y) is bounded: 

(3.197) 
0 ~l(X;Y) ~min[H(X),H(Y)] . 

d yare in· 
dom variables X an /(X;Y) reaches the minimum value (zero) when the ran 

dependent. 
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. Mutual information represents the infonnation obtained (or the reduction in uncer-
ta1?ty) throug~ a channel by observing an output symbol. If the infonnation channel is 
noiseless, the mput symbol can be determined definitely by observing an output s b 1 I 
h
. th d' . I ym o . n 

t 1s case, econ 1t10na entropy H(XlY) equals zero and it is calJed a noiseless cli l w · h · anne. e 
obtmn t e maximum mutual information l(X; Y) = H(X). However, the information channel 
is generally .noisy so. tha~ the c~nditional entropy H(XI Y) is not zero. Therefore, maximizing 
the mutual mformat1on 1s equivalent to obtaining a low-noise information channel wh· h 

" I I . ' IC ofiers a c oser re at1onship between input and output symbols. 

p 
X=O ---..._ Y=O 

2s. X=l ~Y=l 

Figure 3.18 A binary channel with two symbols. 

Let's assume that we have a binary channel, a channel with a binary input and output 
as shown in Figure 3.18. Associated with each output are a probability p that the output is 
correct, and a probability (I-p) that it is not, so that the channel is symmetric. 

If we observe a symbol Y = 1 at the output, we don't know for sure what symbol X 
was transmitted, though we know P(X = 11 Y = 1) = p and P(X = 0 I Y = 1) = (l- p) , so 
that we can measure our uncertainty about X by its conditional entropy: 

H(X I Y = l) =-plogp-(1-p)log(l-p) (3.198) 

If we assume that our source X has a uniform distribution, H(X I Y) = H(X I Y = l) as 
shown in Eq. (3.198) and H(X) = 1. The mutual information between X and Y is given by 

l(X,Y) = H(X)-H(X I Y) = 1+ p logp+(l- p)log(l- p) (3.199) 

It measures the information that Y carries by about X. The channel capacity C is the maxi­
mum of the mutual information over all distributions of X. That is, 

C=maxl(X;Y) 
P(x) 

(3.200) 

The channel capacity C can be attained by varying the distribution of the information 
source until the mutual information is maximized for the channel. The channel capacity C 
can be regarded as a channel that can transmit at most C bits of information per unit of time. 
Shannon's channel coding theorem says that for a given channel there exists a code that 
permits error-free transmission across the channel, provided that R ~ C, where R is the rate 
of the communication system, which is defined as the number of bits per unit of time being 
transmitted by the communication system. Shannon's channel coding theorem states the fact 
that arbitrarily reliable communication is possible at any rate below channel capacity. 

Figure 3.19 illustrates a transmission channel with the source encoder and destination 
decoder. The source encoder will encode the source symbol sequence x = x" x2 , ••• , xn into 
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on Theo 

channel input sequence y y y The d · . ry 
, , 2, •.• , k • estmatmn decoder 

z,, z2, ... , zk from the channel and converts ' t . . takes the output - _ - - - . 1 mto the estI seque 
x - x, 'X2 • ••• 'xn . The goal of this transmission is to mates of the sourc nee 
P(i_= x) asymptotically close to I while keepin th:ake the pr?babil~ty of correct ;ccou1~u1 
pos~1ble. Shannon, s source-channel coding the!em compression ratio ~ == n/ k as I O<hng 
codmg theorem) says that it is possible to find a ~lso referred to as Shannon' arge as 
information channel, provided that 9t x H(X) r ncenco er-decoder pair of rate 9t fos sec~nd 

~ . r a noisy 

Source x,,Xi,, .. ,xn ... Y1,Y2, ... ,y • 
P(x) ~ Encoder ... .... 

-
Channel 
P(zly) 

-

- -x,,xi, .. ,,x,. z1,z2 , ... ,z1 
- Decoder --..... ., 

Figure 3.19 Transmission of infonnation through a noisy channel [15]. 

Because of channel errors, speech coders need to provide error correction codes that 
will decrease the bit rate allocated to the speech. In practice, there is a tradeoff between the 
bit rate used for source coding and the bit rate for channel coding. In Chapter 7 we will de­
scribe speech coding in great detail. 

3.5. HISTORICAL PERSPECTIVE AND FuRTHER READING 

The idea of uncertainty and probability can be traced all the way back to about 3500 B.~., 
when games of chance played with bone objects were developed in Egypt. Cubical dice ~ th 

markings virtually identical to modem dice have been found in Egyptian tombs datUlg 
around 2000 B.C. Gambling with dice played an important part in the early development of 
probability theory. Modem mathematical theory of probability is believed to have been 
started by the French mathematicians Blaise Pascal (1623-1662) and Pierre Fermat (IW~-

1665) when they worked on certain gambling problems involving dice. English ma~e;:
0
; 

cian Thomas Bayes ( 1702-1761) was first to use probability inductively and eSrabh~ ;eo­
mathematical basis for probability inference, leading to what is now known as Bay~ 1 ap­
rem. The theory of probability has developed steadily since then and has been wi e y 
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plied in diverse field~ of study. There are many good textbooks on probability theory. The 
book by DeGroot [6] 1s an excellent textbook for both probability and statistics which covers 
all the nec~ssary elements for enginee.ring majors. The authors also recommend [14], [19], 
or [24] for mterested readers. 

Estimation theory is a basic subject in statistics covered in textbooks. The books by 
DeGroot [6], Wilks [26] and Hoel [13] offer excellent discussions of estimation theory. 
They all include comprehensive treatments for maximum likelihood estimation and Bayes­
ian estimation. Maximum likelihood estimation was introduced in 1912 by R. A. Fisher 
(1890-1962) and has been applied to various domains. It is arguably the most popular pa­
rameter estimation method due to its intuitive appeal and excellent performance with large 
training samples. The EM algorithm in Chapter 4 and the estimation of hidden Markov 
models in Chapter 8 are based on the principle of MLE. The use of prior distribution in 
Bayesian estimation is very controversial in statistics. Some statisticians adhere to the 
Bayesian philosophy of statistics by taking the Bayesian estimation view of the parameter 
<I> having a probability distribution. Others, however, believe that in many problems <I> is 
not a random variable but rather a fixed number whose value is unknown. Those statisticians 
believe that a prior distribution can be assigned to a parameter <I> only when there is exten­
sive prior knowledge of the past; thus the non-infonnative priors are completely ruled out. 
Both groups of statisticians agree that whenever a meaningful prior distribution can be ob­
tained, the theory of Bayesian estimation is applicable and useful. The books by DeGroot [6] 
and Poor [20] are excellent for learning the basics of Bayesian and MAP estimations. Bayes­
ian and MAP adaptation are particularly powerful when the training samples are sparse. 
Therefore, they are often used for adaptation where the knowledge of prior distribution can 
help to adapt the model to a new but limited training set. The speaker adaptation work done 
by Brown et al. [2] first applied Bayesian estimation to speech recognition and [9] is another 
good paper on using MAP for hidden Markov models. References [4], [16] and [14] have 
extensive studies of different conjugate prior distributions for various standard distributions. 
Finally, [1] has an extensive reference for Bayesian estimation. 

Significance testing is an essential tool for statisticians to interpret all the statistical 
experiments. Neyman and Pearson provided some of the most important pioneering work in 
hypotheses testing [18]. There are many different testing methods presented in most statis­
tics books. The x2 test, invented in 1900 by Karl Pearson, is arguably the most widely used 
testing method. Again, the textbook by DeGroot [6] is an excellent source for the basics of 
testing and various testing methods. The authors recommend [7] as an interesting book that 
uses many real-world examples to explain statistical theories and methods, particularly the 
significance testing. 

Information theory first appeared in Claude Shannon's historical paper: A Mathemati­
cal Theory of Communication [21]. In it, Shannon, analyzed communication as the transmis­
sion of a message from a source through a channel to a receiver. In order to solve the 
problem he created a new branch of applied mathematics - infonnation and coding theory. 
IEEE published a collection of Shannon's papers [23] containing all of his published works, 
as well as many that have never been published. Those published include his classic papers 
on infonnation theory and switching theory. Among the unpublished works are his once-
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secret wartime reports, his Ph.D. thesis on population genetics, unpubr h 
memoranda, and a paper on the theory of juggling. The textbook by McEii ts ed 8~11 labs 
lent for learning all theoretical aspects of information and coding theory Hece [l?] is excel-

. · owever ·1 · 
be out of print now. Instead, the books by Hammmg [12J and Cover [3] are tw ' 1 mtglu 

• .& • d d" th p· II F . o CUJTentg ..... references for m1ormat10n an co mg eory. ma y, . Jehnek's Statistical M ''-<11 

Speech Recognition [ 15) approaches the speech recognition problem from an . !th0ds for 
. . · . mionnatio theoretic aspect. It 1s a useful book for people mterested m both topics. n-
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CHAPTER 4 

Pattern Recognition 

Spoken language pr~cessing relies heavily on 
pattern recognition, one of the most challenging problems for machines. In a broader sense, 
the ability to recognize patterns fonns the core of our intelligence. If we can incorporate the 
ability to reliably recognize patterns in our work and life, we can make machines much eas­
ier to use. The process of human pattern recognition is not well understood. 

Due to the inherent variability of spoken language patterns, we emphasize the use of 
statistical approaches in this book. The decision for pattern recognition is based on appropri­
ate probabilistic models of the patterns. This chapter presents several mathematical funda­
mentals for statistical pattern recognition and classification. In particular, Bayes' decision 
theory and estimation techniques for parameters of classifiers are introduced. Bayes' deci­
sion theory, which plays a central role for statistical pattern recognition, introduces the con­
cept of decision-making based on both posterior knowledge obtained from specific 
observation data, and prior knowledge of the categories. To build such a classifier or predic­
tor, it is critical to estimate prior class probabilities and the class-conditional probabilities 
for a Bayes' classifier. 

133 
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Supervised learning has class information for the data. Only the pr b b"I· . 
d b 1 

. . . . . o a I tshc stru t 
nee s to e earned. Maximum hkehhood esttmat1on (MLE) and maximu . cure 
b·1· · · m postenor p b 

a 1 1ty estimation (MA~) that w~ d~scussed_ in ~hapter 3 are two most powerful met ro · 
Both MLE and MAP aim to max1m1ze the hkehhood function. The MLE c ·t . hods. 

·1 . . . h . . n enon does not 
necessan y mm1m1ze t e recogmuon error rate. Various discriminant estimatio h . d . . . n met ods are 
mtro uced for that purpose. Maximum mutual infonnation estimation (MMIE) · b 

· · h' . . 1s ased on 
cntednaf to ac h1eve maxm~um moddel s~paratlon (th_e m_odel for the correct class is well sepa-
rate rom ot er competing mo els) mstead of hkehhood criteria. The MMIE criterion i 
one step closer but still is not d irectly related to minimizing the error rate. Other discrimi~ 
nant estimation methods, such as minimum error-rate estimation, use the ultimate goal of 
pattern recognition - minimizing the classification errors. Neural networks are one class of 

discriminant estimation methods. 
The EM algorithm is an iterative algorithm for unsupervised learning in which class 

information is unavailable or only partially available. The EM algorithm fonns the theoreti­
cal basis for training hidden Markov models (HMM) as described in Chapter 8. To better 
understand the relationship between MLE and EM algorithms, we first introduce vector 
quantization (VQ), a widely used source-coding technique in speech analysis. The well­
known k-means clustering algorithm best illustrates the relationship between MLE and the 
EM algorithm. We close this chapter by introducing a powerful binary prediction ~d re­
gression technique, classification and regression trees (CART). C~~T repres~nts an impor­
tant technique that combines rule-based expert knowledge and statJst1cal learmng. 

4.1. BAYES' DECISION THEORY 

Bayes' decision theory fonns the basis of statistical pattern recognition. The theory is basethd 
. . bT . t nns and at 

on the assumption that the decision problem can be specified m proba 1 
ISllC e . eel 

, d · · th ory can be view as a 
all of the relevant probability values are known. Bayes ec1s1on e _ . te · · h · eve mm1mum-error-ra 
formalization of a commor.-sense procedure, 1.e., the aim to ac I f 11 ·ng real-

b d in the o owi 
classification. This common-sense procedure can be best o serve 

world decision examples. W use the Dow 
Consider the problem of making predictions for the st0ck market. ed ·de tomor-

J I h we have to ec1 
ones Industrial average index to fonnulate our examp e, w ere . )· U Down, 

row's Dow Jones Industrial average index in one of the three cate~ones (eve~~- tee cate­
or ~nchanged. The available information is the probability function P(W) 

0 
. ~ 1 2 3) . We 

gones. The variable ro is a discrete random variable with the value w = w, (i - ' r' tomor-
cau the b b" . . fl · r knowledge o pro a 1hty P(ro) a prior probability since 1t re ects pno the prior 
row's D J ' ' · · b d only on 

b 
. ~w ones Industrial index. If we have to make a decision ase ith the 

pro ab1hty th · th class (J), w 
high . · e most plausible decision may be made by selecung e make the 

est pnor pr b bT · th t we always 
same dee· . 0 a 1 ity P(ro,). This decision is unreasonable, in a I d u,·aJ inde~ 

lSlon even th . D J nes n us 
changes w'l\ ough we know that all three categones of ow O the federal· 
f 

I possibly a 1 . 1 d such as unds interest ppear. f we are given further observab e ata, be a con· 
rate or th · b · · Letx e JO less rate, we can make a more infonned decision. 

Amazon/VB Assets 
Exhibit 1012 

Page 160



Bayes• Decision Theory 
135 

tilmous random variable whose value is the federal-fund interest rate a d /, ( I, ) b 
d

. . . • n ,
1
b, x ,u e a 

class-con 1t1onal pdf For s1mplicity, we denote the pdf /, (x I (J)) "S ( I (J) ). h · - I 
• • • .,1<l.l u p x ,. , w ere 1 - , 

2, 3 unless there 1~ a~b1gu1ty. T~e class-conditional probability density function is often 
refen:ed to as the f ikelthood funct10n as well, since it measures how likely il is that the un­
de~lymg par~~etnc model of class {1)1 will generate the data sample x. Since we know the 
prior probability P(w,.) and class-conditional pdf p(x I w.). we can compute the conditional 
probability P(ro, Ix) using Bayes' rule: ' 

P(ro,. Ix)= p(x I ro,. )P(ro,.) 
p(x) 

3 

where p(x) = LP(x I ro,.)P(ro,.) . 
l =I 

(4. )) 

The probability term in the left-hand side of Eq. ( 4.1) is called the posterior probabil­
ity as it is the probability of class ro,. after observing the federal-funds interest rate x. An 
intuitive decision rule would be choosing the class ro* with the greatest posterior probabil­
ity. That is, 

k =argmaxP(~ Ix) 
I 

(4.2) 

In general, the denominator p(x) in Eq. (4.1) is unnecessary because it is a constant term 
for all classes. Therefore, Eq. (4.2) becomes 

k =argmaxP(~ Ix) =argmaxp(x l~)P(m,.) (4.3) 
I i 

The rule in Eq. (4.3) is referred to as Bayes' decision rule. It shows how the observed 
data x changes the decision based on the prior probability P( w,) to one based on the poste­
rior probability P( (J)1 Ix) . Decision making based on the posterior probability is more reli­
able, because it employs prior knowledge together with the present observed data. As a 
matter of fact, when the prior knowledge is non-informative ( P(w,) = P(w2 ) = P(w,) = 1 /3 ), 
the observed data fully control the decision. On the other hand, when observed data are am­
biguous, then prior knowledge controls the decision. There are many kinds of decision rules 
based on posterior probability. Our interest is to find the decision rule that leads to minimum 
overall risk, or minimum eJTor rate in decision. 

4.1.1. Minimum-Error-Rate Decision Rules 

Bayes' decision rule is designed to minimize the overall risk involved in making a decision. 
Bayes' decision based on posterior probability P( m, Ix) instead of prior probability P( ro,.) 
is a natural choice. Given an observation x, if P(w* Ix) 2'. P(m,. Ix) for all i -:;t:. k, we can de­
cide that the true class is ro* . To justify this procedure, we show such a decision results in 
minimum decision error. 
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Let Q={~ , ... ,wJ be the finite set of s possible categories to b . 
A=={8w .. ,8,} be a finite set oft possible decisions. Let /(8, lroi) be the ~!r;dict~d and 
curred for making decision 81 when the true class is wi . Using the prior p b b'u~ctton in. 

. ro a ihty p 
and class-conditional pdf p(x I a>;), the postenor probability P(w Ix) is (©,) 
Bayes' rule as shown in Eq. (4.1). Since the posterior probability P(w

1 

Ix) is t~omputed by 
that the true class is m. after observing the data x, the expected loss :ssociated e ~rhobability 

.i Wtt ma)( 
decision 81 is: ing 

s 

R(o, Ix)= "'221(8, lm1)P(a>j Ix) 
jcl (4.4) 

In decision-t~eoretic terminology, the _above ~xpres~ion is called conditional risks. 
The overall risk R 1s the expected loss associated with a given decision rule The dee· . 

• • • • ISIOn 
rule is employed as a dec1s1on function o(x) that maps the data x to one of the decisio 
~=={8,, ... ,8, }. Since R(8; Ix) is the conditional risk associated with decision o,, theove:'. 
all risk is given by: 

.. 
R= J R(o(x)jx)p(x)dx (4.5) 

If the decision function o(x) is chosen so that the conditional risk R(o(x) Ix) is minimized 
for every x, the overall risk is minimized. This leads to the Bayes' decision rule: To mini­
mize the overall risk, we compute the conditional risk shown in Eq. (4.4) for i=l, ... ,land 
select the decision O; for which the conditional risk R(81 Ix) is minimum. The resulting 
minimum overall risk is known as Bayes' risk that has the best performance possible. 

The loss function /(81 I w) in the Bayes' decision rule can be defined as: 

{

o i=j 

/(o, I w1) = i, J = 1, ... ,s 
1 i -1:- j 

(4.6) 

Thi l f · · · and the s oss unction assigns no loss to a correct decision where the true class 1s m; 
decision is O; , which implies that the true class must be w, . It assigns a unit loss to any er· 
ror wher~ i * J; i.e., all errors are equally costly. This type of loss function is ~own asal: 
symmetr~cal ~r zero-one loss function. The risk corresponding to this loss functton equ 
the class1ficauon error rate, as shown in the following equation_ 

• 
R(S, Ix)= ~l(o, I W1)P(w1 Ix)= LP(wi Ix) 

J-1 J~i (4.7) 
J 

= L,P(w1 lx)-P(w, lx)=l-P(w Ix) 
}"'I I 
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Here P(m; Ix) is the conditional probability that decision 81 is correct after observing the 
data x. Therefore, in order to minimize classification error rate, we have to choose the deci­
sion of class i that maximizes the posterior probability P(m; Ix) . Furthennore, since p(x) is 
a constant, the decision is equivalent to picking the class i thal maximizes p(x J m, )P( m,). 
The Bayes' d~cision rule can be formulated as follows: 

8(x) =argmax P(W; Ix)= arg max P(x I CO;)P{CO;) (4.8) 
I I 

This decision rule, which is based on the maximum of the posterior probability 
P(m1 Ix) , is called the minimum-error-rate decision rule. It minimizes the classification 
error rate. Although our description is for random variable x, Bayes' decision rule is appli­
cable to multivariate random vector x without loss of generality. 

A pattern classifier can be regarded as a device for partitioning the feature space into 
decision regions. Without loss of generality, we consider a two-class case. Assume that the 
classifier divides the space 9t into two regions. 9t1 and 9t2 • To compute the likelihood of 
errors, we need to consider two cases. In the first case, x falls in 9t1 , but the true class is m2 • 

In the other case, x falls in 9t2 , but the true class is m1 • Since these two cases are mutuaJly 
exclusive, we have 

P(error) = P(x E 9t11 m2 )+ P(xe 9t2 ,mi) 

= P(xe 9t1 I m2 )P(m2 )+P(xe 9t2 I m1)P(m1) (4.9) 

=J P(xlm2 )P(m2)dx+J P(xJm1)P(m1)dx 
9!, 9!2 

Figure 4.1 illustrates the calculation of the classification error in Eq. (4.9). The two 
tenns in the summation are merely the tail areas of the function P(x I w1)P(mi) . It is clear 

optimal 
decision 
boundary 

+----- :)ti --- . : :)tl 

Figure 4.1 Calculation of the likelihood of classification error [22]. The shaded area represents 

the integral value in Eq. (4.9). 
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that this decision boundary is not optimal. If we move the decision bound . 
the left, so that the decision is made to choose the class i based on the ary ~ httle bit to 
of P(x ! roi)P(ro,), the tail integral area P(error) becomes minimum wh· mh~imum Value 

, IC IS the B decision rule. ayes' 

4.1.2. Discriminant Functions 

The decision problem above can also be viewed as a pattern classification problem h 
d , l 'fi d . kn . w ere unknown ata x are c ass1 1e mto own categones, such as the classification of 

50 
ds 

into phonemes using spectral data x. A classifier is designed to classify data x into s cat~n o­
ries by using s discriminant functions, d,(x), computing the similarities between the ~n­
known data x and each class m; and assigning x to class w1 if 

This representation of a classifier is illustrated in Figure 4.2. 

x, 

x2 

xd 

Feature 
Vector 

d! 

d2 

• 
• 
• 
• 

Discriminant 

Function 

MAX 

Maximum 
Selector 

(4.10) 

6(x) 

Decision 

d. · · t functions [22). Figure 4.2 Block diagram of a classifier based on 1scnmman . 
. ed on the Bayes' classifier, 

A Bayes' classifier can be represented m the same way. Bas h' h mi·oimiies the 
· f B ' d · sion rule w ic unknown data x are classified on the basis o ayes eel ' .6 is based on 

. d . . f pattern class1 ier 
conditional risk R(o, Ix) . Since the classification ec1S1on ° a discriminant funC· 
the maximum discriminant function shown in Eq. (4.10), we define our 
tion as: 

(4.11) 

' Assuming x is ad-dimensional vector. 
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As such,_ t~e maximum discriminant function corresponds to the minimum conditional risk. 
!n the mm1mum-error-rat~ cl~s~ifier, the decision rule is to maximize the posterior probabil­
ity P(m; Ix). Thus, the d1scnmmant function can be written as follows: 

(4.12) 

T~ere is a very int~resti~g relationship between Bayes' decision rule and the hypothe­
ses te~tmg -~ethod d~scnbed m Chapter 3. For a two-class pattern recognition problem, the 
Bayes dec1s1on rule m Eq. (4.2) can be written as follows: 

~ 

> 
p(xlm,)P(mi) p(xlm2 )P(m2 ) 

< 
Q)i 

Eq. ( 4. 13) can be rewritten as: 

(4.13) 

(4.14) 

The term £(x) is called likelihood ratio and is the basic quantity in hypothesis testing [73]. 
The term P(ro2)/ P((J)1) is called the threshold value of the likelihood ratio for the decision. 
Often it is convenient to use the log-likelihood ratio instead of the likelihood ratio for the 
decision rule. Namely, the following single discriminant function can be used instead of 
d1(x) and d2 (x) for: 

~ 

> 
d(x) = log£(x) = logp(x I ro1 )-logp(x I m2 ) logP(ro2 )-logP(ro1) 

< 
Cl'l 

(4.15) 

As the classifier assigns data x to class m,, the data space is divided into s regions, 
9t1 , 9t~, ... , 9t; , called decision regions. The boundaries between decision regions are called 
decision boundaries and are represented as follows (if they are contiguous): 

(4.16) 

For points on the decision boundary, the classification can go either way. For a Bayes' clas­
sifier, the conditional risk associated with either decision is the same and how to break the 
tie does not matter. Figure 4.3 illustrates an example of decision boundaries and regions for 
a three-class cJassifier on a scalar data sample x. 
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I 
p(xlw1 ) P(ro~ 

p(xlw3 ) P(co
3
) 

Pattern-:----_R 
ecogniUon 

/ p(xlwi) P(w,) 

X 
------ 9{,-------9t3-----,.--~2------- 9t3 ___ _ 

Figure 4.3 An example of decision boundaries and regions. For simplicity, we use scalar vari­
able x instead of a multi-dimensional vector [22]. 

4.2. How To CONSTRUCT CLASSIFIERS 

In the Bayes' classifier, or the minimum-error-rate classifier, the prior probability P(w;) 
and class-conditional pdf p(x I w,) are known. Unfortunately, in pattern recognition, we 
rarely have complete knowledge of class-conditional pdfs and/or prior probability. They 
often must be estimated or learned from the training data. In practice, the estimation of the 
prior probabilities is relatively easy. Estimation of the class-conditional pdf is more compli­
cated. There is always concern to have sufficient training data relative to the tractability of 
the huge dimensionality of the sample data x. In this chapter we focus on estimation meth­
ods for the class-conditional pdf. 

The estimation of the class-conditional pdfs can be nonparametric or parametric. In 
nonparametric estimation, no model structure is assumed and the pdf is directly estimated 
from the training data. When large amounts of sample data are available, nonparametric 
learning can accurately reflect the underlying probabilistic structure of the training d~ta. 
However, available sample data are normally limited in practice, and parametric le~g 
can achieve better estimates if valid model assumptions are made. In parametric learmng, 
some general knowledge about the problem space allows one to parameterize the class­
conditional pdf, so the severity of sparse training data can be reduced significantly. Sup~se 
the pdf p(x Ill),) is assumed to have a certain probabilistic structure, such as the Gau5513:° 
pdfln s~ch cases, only the mean vector fli (or mean µ,) and covariance matrix L; (or van· 
ance a ) need to be estimated. 
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When the observed data x only takes discrete values from a finite set of N values the 
~lass-conditio?~l pdf is ?ften assumed.nonparametric, so there will be N -1 free param;ters 
m the probability function p(x I w1 ) : When the observed data x takes continuous values 
parametric approaches are usually necessary. In many systems, the continuous class~ 
conditional pdf (likelihood) p(x I (.u;) is assumed to be a Gaussian distribution or a mixture 
of Gaussian distributions. 

In pattern recognition, the set of data samples, which is often collected to estimate the 
parameters of the recognizer (including the prior and class-conditional pdf), is referred to as 
the training set. In contrast to the training set, the testing set is referred to the independent 
set of data samples, which is used to evaluate the recognition performance of the recognizer. 

For parameter estimation or leaming, it is also important to distinguish between super­
vised learning and unsupervised learning. Let's denote the pair (x,ro) as a sample, where x 
is the observed data and w is the class from which the data x comes. From the definition, it 
is clear that (x,w) are jointly distributed random variables. In supervised learning, w, in­
formation about the class of the sample data x is given. Such sample data are usually called 
labeled data or complete data, in contrast to incomplete data where the class information w 
is missing for unsupervised learning. Techniques for parametric unsupervised learning are 
discussed in Section 4.4. 

In Chapter 3 we introduced two most popular parameter estimation techniques -
maximum likelihood estimation (MLE) and maximum a posteriori probability estimation 
(MAP). Both MLE and MAP are supervised learning methods since the class information is 
required. MLE is the most widely used because of its efficiency. The goal of MLE is to find 
the set of parameters that maximizes the probability of generating the training data actually 
observed. The class-conditional pdf is typically parameterized. Let ct>1 denote the parameter 
vector for class i. We can represent the class-conditional pdf as a function of <I>, as 
p(x I W;, ct> 1) • As stated earlier, in supervised learning, the class name m; is given for each 
sample data in training set { x,, x2 , .• • , xn}. We need to make an assumption

3 
that samples in 

class w
1 

give no information about the parameter vector ct> 1 of the other class w1 . This 
assumption allows us to deal with each class independently, since the parameter vectors for 
different categories are functionally independent. The class-conditional pdf can be rewritten 
as p(x I <I>), where cf> ={<I>" <I>"' .. , ct>n}. If a set of random samples {X"X2 , ••• ,Xn} ~s 
drawn independently according to a pdf p(x I <I>) , where the value of the parameter ct> 1s 
unknown, the MLE method described in Chapter 3 can be directly applied to estimate ct> . 

Similarly, MAP estimation can be applied to estimate ct> if knowledge about a prior 
distribution is available. In general, MLE is used for estimating parameters from scratch 
without any prior knowledge, and MAP estimation is used for parameter adapta~on whe~e 
the behavior of a prior distribution is known and only a small amount of adaptation data 1s 
available. When the amount of adaptation data increases, MAP estimation converges to 

MLE. 

! Since all the probabilities need to add up to one. 
'This assumption is only true for non-discriminative estimation. Sa~ples_ in cla~s w, may affect parameter vector 
CZ>, of the other classes in discriminative estimation methods as descnbcd m Secuon 4.3 
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4.2.1. Gaussian Classifiers 

A Gaussian classifier is a Bayes' classifier where class-conditional probability d . 
p(x Im;) for each class W; is assumed to have a Gaussian distribution:4 ens,ty 

(4.17) 

As discussed in Chapter 3, the parameter estimation techniques are well suited fo b 
Gaussian family. The MLE of the Gaussian parameter is just its sample mean and va _rt e 

. . ) A G . l "fi . . l nance (or co-vanance matnx . auss,an c ass1 1er 1s equ1va ent to the one using a quadratic d'. 
criminant function. As noted in Eq. (4.12), the discriminant function for a Bayes' dee· -

15 

. . b b · 1 · I ) IS!on rule 1s the posterior pro a 1 1ty p(w, x or p(x Im, )P(m,). Assuming p(x I w,) is a multi-
variate Gaussian density as shown in Eq. ( 4.17), a discriminant function can be written as 
follows: 

d,(x) = logp(x I mi)P(m;) 

) / -1 ) d = -
2 

( x - µ;) :I:1 ( x - µ,) + log P( w, )-2 Iog I r I - 2 log 2n 
(4.18) 

If we have a uniform prior P(m;), it is clear that the above discriminant function 
d;(x) is a quadratic function. Once we have the s Gaussian discriminant functions, the deci­
sion process simply assigns data x to class w1 if 

j = argmax d,(x) (4.19) 
I 

When all the Gaussian pdfs have the same covariance matrix ( :E, =L for i = 1,2, ... ,s ), 
the quadratic tenn x':2::-•x is independent of the class and can be treated as a constant. Thus 

the following new discriminant function d;(x) can be used (22]: 

(4.20) 

where a, =:E-1µ. and c. =-.lµ!r·•µ. +logP(w.). d.(x)in Eq. (4.20) is a linear discrirni· 
, , 2 , , , , , • • h e lanes. 

nant function. For linear discriminant functions the decision boundanes are YP rp 
, . I random vec· 

For the two-class case ( w
1 

and w
2 
), and assuming that data sample x 1s a rea 

tor, the decision boundary can be shown to be the following hyperplane: 

• The Gaussian distribution may include a mixture of Gaussian pdfs. 
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A'(x-b)=O 
(4.21) 

where 

(4.22) 

and 

(4.23) 

Figure 4.4 shows a two dimensional decision boundary for a two-class Gaussian classifier 
with the same covariance matrix. Please note that the decision hyperplane is generally not 
orthogonal to the line between the means µ 1 and µ 2 , although it does intersect that line at 
the point b, which is halfway between µ 1 and µ2 • The analysis above is based on the case 
of unifonn priors ( p(m1) = p(m2 ) ). For nonuniform priors, the decision hyperplane moves 
away from the more likely mean. 

Figure 4.4 Decision boundary for a two-class Gaussian classifier. Gaussian distributions for 
the two categories have the same covariance matrix L Each ellipse represents the region with 
the same likelihood probability [22). 

Finally, if each dimension of random vector x is statistically independe~t an~ h~s the 
same variance ci2 , i.e., 1:1 = :E2 = <1 ~1, Figure. 4 .4 becomes Figur~ 4.5. !he ellipse m Figure 
4.4 becomes a circle because the vanance a 1s the same for all dnnens1ons [22J. 
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decision boundary 

Figure 4.5 Decision boundary for a two-class Gaussian classifier. Gaussian distributions for 
the two categories have the same covariance matrix crl . Each circle represents the region 
with the same likelihood probability [22]. 

4.2.2. The Curse of Dimensionality 

More features (higher dimensions for sample x) and more parameters for the class­
conditional pdf p(x I <l>) may lead to lower classification error rate. If the features are statis­
tically independent, there are theoretical arguments that support better classification per­
formance with more features. Let us consider a simple two-class Gaussian classifier. 
Suppose the prior probabilities p(w;) are equal and the class-conditional Gaussian pdfs 
p(x 1 µ,,!:) share the same covariance matrix :E. According to Eqs. (4.9) and (4.21), the 
Bayes' classification error rate is given by: 

P( error) = 2J P( x I W1 )P( W1 )dx 
'Jtl 

f--2 -~-ex -- x- 1: x- dx - 1 [ I )' -1 ] 

·_,A1 (K-b)=0(2,r)"11Ij11 l p 2( JI., ( µ,) 
(4.24) 

I s- ~-l =--=- e-- dz 
..JJ.tr L 

l 

where r ==~(µ1 -µ2)'L""1(µ1 -µ,). When features are independent, the covariance matrix 
becomes a diagonal one. The foilowing equation shows that each independent feature helps 
to reduce the error rate:5 

'BWhe~ tbe means of a feature for the two classes are exactly the same, adding such a feature does not reduce ~e 
ayes error. Nonetheless ace di Eq . · ed b ·nconvirann8 . . . • or ng to . (4.25), the Bayes' error cannot possibly be mcreas Y 1 •r-

an add1t1onal independent feature. 
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(4.25) 

where µ 11 and µ~; are the th -dimension of mean vectors µ and µ t' I u fi · . . . , 2 respec 1ve y. 
. . n ortunately,. m practice, the inclusion of additional features may lead to worse cJas-

s1fication results. This paradox is called the curse of dimensionafin, The fundamental · 
II d · b'f' " . .,. issue, 

~a _e traz~~ 1 ity, re,ers to how well the parameters of the classifier are trained from the 
h_mtted trammg s_amples. Trainability can be illustrated by a typical curve-fitting (or regres­
sion) pro~le~. Figure 4.6 shows a set of eleven data points and several polynomial fitting 
curv~s with differen~ orde~s. Both the ~rst-order (linear) and second-order (quadratic) poly­
nomials shown provide fairly good fittings for these data points. Although the tenth-order 
poly~omial fits the data points perfectly, no one would expect such an under-determined 
solution to fit _the new data well. In general, many more data samples would be necessary to 
ge~ a go?d est1ma~e of a tenth-order polynomial than of a second-order polynomial, because 
reliable mterpolatton or extrapolation can be attained only with an over-determined solution. 

Figure 4.6 Fitting eleven data points with polynomial functions of different orders (22). 

Figure 4.7 shows the error rates for two-phonemes (/ae/ and /ihl) classification where 
two phonemes are modeled by mixtures of Gaussian distributions. The parameters of mix­
tures of Gaussian are trained from a varied set of training samples via maximum likelihood 
estimation. The curve illustrates the classification error rate as a function of the number of 
training samples and the number of mixtures. For every curve associated with a finite num­
ber of samples, there are an optimal number of mixtures. This illustrates the importance of 
trainability: it is critical to assure there are enough samples for training an increased number 
of features or parameters. When the size of training data is fixed, increasing the number of 
features or parameters beyond a certain point is likely to be counterproductive. 

When you have an insufficient amount of data to estimate the parameters, some sim­
plification can be made to the structure of your models. In general, the estimation for higher­
order statistics, like variances or co-variance matrices, requires more data than that for 
lower- order statistics, like mean vectors. Thus more attention often is paid to dealing with 
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the estimation of covariance matrices. Some frequently d h · . 
b . . I d th use eunsttcs for G . 

ut1ons me u e e use of the same covariance matn· f 11 . auss,an distri 
l . x or a mixture co · 

agona covariance matrix, and shrinkage (also referred t ~ponents [77], di-
I . ) h h . o as regulanzed d' . . ana ys1s , w ere t e covanance matrix is interpolated 'th h iscnnunant 

(23, 50]. . w1 t e constant covariance matrix 

ERROR 
RATE 

NUMBER OF 
10 SAMPU:S, n 

so 

500 

~ ... 
10000 -

10 100 1000 

NUMBER OF MDm.lRES, m 

Figure 4.7 Two-phoneme (lael and lihl) classification results as a function of the number of 
Gaussian mixtures and the number of training samples. 

4.2.3. Estimating the Error Rate 

Estimating the error rate of a classifier is important. We want to see whether the classifier is 
good enough to be useful for our task. For example, telephone applications show that some 
minimum accuracy is required before users would switch from using the touch-tone to the 
speech recognizer. It is also critical to compare the performance of a classifier (algorithm) 
against an alternative. In this section we deal with how to estimate the true classification 
error rate. 

One approach is to compute the theoretic error rate from the parametric model as 
shown in Eq. (4.24). However, there are several problems with this approach. First, sµ~h_an 
approach almost always under-estimates, because the parameters estimated from the trai~ing 
samples might not be realistic unless the training samples are representative and sufficien~­
Second, all the assumptions about models and distributions might be severely wrong. ~i­

nally, it is very difficult to compute the exact error rate, as in the simple case illustra1ed m 
Eq. (4.24). 

Instead, you can estimate the error rate empirically. In general, the recognition error 
rate on th tr · · · te can be e ammg set should be viewed only as a lower bound, because the esttma 
made to minim· h · t of the rec-tze t e error rate on the training data. Therefore, a better est1ma e 
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ognition performance should be obtained on an independent test set Th · · . . . e question now 1s 
how representative 1s _the error rate computed from an arbitrary independent test set. The 
~ommon process of usmg some of the data samples for design and reserving the rest for test 
1s called the holdout or H method. 

Suppose the true but unknown classification error rate of the classifier is p and one 
observes th~t k out of n independent randomly drawn test samples are misclassified. The 
ra~dom_ variable K should have a binomial distribution B(n,p). The maximum likelihood 
est1mat1on for p should be 

A k 
p=­

n (4.26) 

The statistical test for binomial distribution is discussed in Chapter 3. For a 0.05 significance 
level, we can compute the following equations to get the range (p,, p

2
) : 

2P(k ~ m $ n) = 2 i( n J(p1 r (1-p1 r-m = 0.05 when k > np
1 

(4.27) 
mck m 

2P(0,; m,; k) =2t.(; }p,f (1- p, r-• =0.05 when k < np, (4.28) 

Equations (4.27) and (4.28) are cumbersome to solve, so the normal test described in 
Chapter 3 can be used instead. The null hypothesis H

0 
is 

Ho: p=p 
We can use the normal test to find the two boundary points p1 and p 2 at which we would 
not reject the null hypothesis H

0
• 

The range (Pi,P2 ) is caHed the 0.95 confidence intervals because one can be 95% 
confident that the true error rate p falls in the range (pp p2 ) • Figure 4.8 illustrates 95% con­
fidence intervals as a function of p and n. The curve certainly agrees with our intuition -
the larger the number of test samples n, the more confidence we have in the MLE estimated 
error rate p ; otherwise, the p can be used only with caution. 

Based on the description in the previous paragraph, the larger the test set is, the better 
it represents the recognition performance of possible data. On one hand, we need more train­
ing data to build a reliable and consistent estimate. On the other hand, we need a large inde­
pendent test set to derive a good estimate of the true recognition performance. This creates a 
contradictory situation for dividing the available data set into training and independent test 
set. One way to effectively use the available database is V-Jold cross validation. It first splits 
the entire database into V equal parts. Each part is used in tum as an independent test set 
while the remaining (V - I) parts are used for training. The error rate can then be better esti­
mated by averaging the error rates evaluated on the V different testing sets. Thus, each part 
can contribute to both training and test sets during V-fold cross validation. This procedure, 
also called the leave-one-out or U method (53], is particularly attractive when the number of 
available samples are limited. 
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Figure 4.8 95% confidence intervals for c)assification error rate estimation with nonnal tesL 

4.2.4. Comparing Classifiers 

Given so many design alternatives, it is critical to compare the performance of different 
classifiers so that the best classifier can be used for real-world applications. It is common for 
designers to test two classifiers on some test samples and decide if one is superior to the 
other. Relative efficacy can be claimed only if the difference in performance is statistically 
significant. In other words, we establish the null hypothesis H0 that the two classifiers have 
the same error rates. Based on the observed error patterns, we decide whether we could re­
ject H 0 at the 0.05 level of significance. The test for different classifiers falls into the cate· 
gory of matched-pairs tests described in Chapter 3. Classifiers are compared with the same 
test samples. 

We present an effective matched-pairs test - McNemar's test [66] which is particularly 
suitable for comparing classification results. Suppose there are two classifiers: Q, 3nd Q2 • 

The estimated classification error rates on the same test set for these two classifiers are Pf 
and Pz respectively. The null hypothesis H 0 is Pi= p2 • The classification perfonnance 

0 

the two classifiers can be summarized as in Table 4. I. We define qJJ as follows: 

%o =P(Q1 and Q2 classify data sample correctly) 

%
1 
= P (Q

1 
classifies data sample correctly, but Q2 incorrectly) 
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q,o = P(Q2 classifies data sample correctly, but Q, incorrectly) 

q" = P(Q, and Q~ classify data sample incorrectly) 

Table 4.i Classification pe1formance table for classifiers O and Q .,., · th b f . • _, ~- ,v00 1s e num er o 
samples which Q, and _Q~ classify co1Tectly, N01 is the number of samples which Q, classi-
fies con·ectly, but Q~ mcon-ectly, N 10 is the number of samples which O, classifies cor­
rectly, but Q, incon-ectly, and N11 is the number of samples which Q -;nd Q cl· ·r _, , ass, y 
incorrectly [JO]. · 

Correct 

Incorrect 

Correct 

Noo 

Jncorrecl 

149 

The null hypothesis H 0 is equivalent to H~ . %, = q
10

• If we define 
q =q10/(%, +q,0 ), Ho is equivalent to H; : q = ½. Hg represenls the hypothesis that, 
given only one of the classifiers makes an error, it is equally likely to be either one. We can 
test Hg based on the data samples on which only one of the classifiers made an error. Let 
n = N01 + N10 • The observed random variable N01 should have a binomial distribution 
B(n,½). Therefore, the normal test (z-test) described in Chapter 3 can be applied directly to 
test the null hypothesis H; . 

The above procedure is called the McNemar's test [66). If we view the classification 
results as N (the total number of test samples) independent matched pairs, the sign test as 
described in Chapter 3 can be directly applied to test the null hypothesis that classifier Q, is 
not better than classifier Q2 , that is, the probability that classifier Q, perfonns better than 
classifier Q2 , p, is smaller than or equal to ½. 

McNemar's test is applicable when the errors made by a classifier are independent 
among different test samples. Although this condition is true for most static pattern recogni­
tion problems, it is not the case for most speech recognition problems. In speech recognition, 
the errors are highly inter-dependent because of the use of higher-order language models 
(described in Chapter 11). 

The solution is to divide the test data stream into segments in such a way that errors in 
one segment are statistically independent of errors in any other segment [30]. A natural can­
didate for such a segment is a sentence or a phrase after which the speaker pauses. Let N; 
be the number of errors6 made on the ith segment by classifier Q, and N~ be the number of 
errors made on the r segment by classifier Q2 • Under this formulation, the magnitude­
difference test described in Chapter 3 can be applied directly to test the null hypothesis that 
classifiers Q

1 
and Q

2 
have on the average the same error rate on the pairs of n independent 

segments. 

• The errors for speech recognition include substitutions. insertions and·deletions as discussed in Chapter 9. 
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4.3. DISCRIMINATIVE TRAINING 

Both MLE and MAP criteria maximize the probability of the model associated . 
responding data. Only data labeled as belonging to class w

1 
are used to train th Wtlb the cor. 

There is no guarantee tha~ th~ observed data X fro~ cJass (J)i actually have a ~r~am~ter~. 
hood P(x I w,) than the hkehhood P(x I w1 ) associated with class j, given . g. er hkeh. 
generated by MLE or MAP have a loose discriminant nature. Several estim;/t 

1 
• MOdels 

. . d. . . . d l . ton methOd aim for maximum 1scnminat1on among mo e s to achieve best pattern recog . . s 
nn1on pe formance. r-

4.3.1. Maximum Mutual Information Estimation 

!he .pattem recognition problem can ~e formalize_d as an information channel, as illustrated 
m Figure 4.9. The source symbol w 1s encoded mto data x and transmitted through an in­
formation channel to the observer. The observer utilizes pattern recognition techniques to 
decode x into source symbol ro. Consistent with the goal of communication channels, the 
observer hopes the decoded symbol ciJ is the same as the original source symbol w. Maxi­
mum mutual infonnation estimation tries to improve channel quality between input and out­
put symbols. 

(i) 

Communication Channel 
! .................. _ ..... - ........ ·-···---·---··1 

l I 
.------;;---, ,.....,',---------. 

Dataj l Pattern 

Generator I Decoder 

X 
. . 
~•••H• ••••••••••- ••• •••••••••••••••••••-••••••0•0000000"" 

Figure 4.9 An infonnation channel framework for pattern recognition. 

As described in Section 4.1.1, the decision rule for the minimum-error-rate ~l~sifier 
selects the class W; with maximum posterior probability P(w1 Ix). It is a g~od cnten?n to 
maximize the posterior probability P(w; Ix) for parameter estimation. Recalhng B~yes rule 
in Section 4.1, the posterior probability p(W

1 
Ix) (assuming x belongs to class rot) is: 

P(w, Ix)= p(x I w;)P(m1) 

p(x) 

and p(x) can be expressed as follows: 

p(x)= L,p(xlw*)p(cok) 
k 

(4.29) 

(4.30) 
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In the classification stage, p(x) can be considered as a constant H d · · · 
f ( 

. owever, unng tramrng 
the value o P x) depends on the parameters of all models and is different " ct·f" ' 
E · 4 'J9) · f d . . . . 1or 1 1erent x. 

quation { -- 1s re erre to as co11duwnal LLkelchood. A conditional maximum likelihood 
estimator (CMLE) 0c.l1LE is defined as follows: 

~·.1/LE(x)=<l>.1,.,p =argmax pfl>(ffi; jx) 
(J) (4.31) 

The summation in Eq. (4.30) extends over all possible classes that include the correct model 
and all the possible competing models. The parameter vector <I> in Eq. (4.31) includes not 
only the parameter <I>,. corresponding to class w,, but also those for all other classes. 

Note that in Chapter 3, the mutual infonnation between random variable X (observed 
data) and .Q (class label) is defined as: 

J(X,Q) = Er/ log p(X,.Q) )= El/ log p(X I Q)P(Q)) 
p(X)P(Q) p(X)P(.Q) 

' 
(4.32) 

Since we don't know the probability distribution for p(X,Q), we assume our sample 
(x,w,.) is representative and define the following instantaneous mutual information: 

J(x,wJ = log p(x,m;) 
p(x)P((J)1) 

(4.33) 

If equal prior p((J)1 ) is assumed for all classes, maximizing the conditional likelihood 
in Eq. (4.29) is equivalent to maximizing the mutual information defined in Eq.(4.33). 
CMLE becomes maximum mutual information estimation (MMIE). It is important to note 
that, in contrast to MLE, MMIE is concerned with distributions over all possible classes. 
Equation (4.30) can be rewritten as two terms, one corresponding to the correct one, and the 
other corresponding to the competing models: 

p(x) = p(x I (J)1)P((J)1)+ L,P(X I (J)* )P((J)i) (4.34) 
k~i 

Based ori the new expression of p(x) shown in Eq. (4.34), the posterior probability 
p(w, Ix) in Eq. (4.29) can be rewritten as: 

P((JJ,lx)= p(x l(JJ;)P((JJ,.) 
p(x)(J),)P((J);)+ LP(x)w*)P((J)1 ) 

(4.35) 

k# 

Now, maximization of the posterior probability p((J), Ix) with respect to all models leads to 
a discriminant model.7 It implies that the contribution of p(x I (J),. )~(w,) from the tru.e model 
needs to be enforced, while the contribution of all the competmg models, specified by 

' General minimum-error-rate estimation is described in Section 4.3.2. 
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LA-,.,p(x I w*)P(w*), needs to be minimized. Maximization of Eq. (4.35) can 
rewritten as: be further 

1 
P( w, I x) = ------=r=--p(_x_l w-;)-p(_w_;) (4.36) 

1 + -"-*"'-'-; ____ _ 

p(x I w, )p(w,) 

Maximization is thus equivalent to maximization of the following term, which is cl 
1 

d. · · · · b d I d h ear Ya 1scnmmant criterion etween mo e w, an t e sum of all other competing models. 

p(x I w, )p(w,) 

LP(x I w* )p(w*) 
(4.37) 

Equation ( 4.3 7) also illustrates a fundamental difference between MLE and MMIE. In MLE 
only the correct model needs to be updated during training. However, every MMIE model i~ 
updated even with one training sample. Furthermore, the greater the prior probability p(ro

1
) 

for class w* , the more effect it has on the maximum mutual information estimator e.1/1.uc. 

This makes sense, since the greater the prior probability p(w*), the greater the chance for 
the recognition system to mis-recognize W; as w* . MLE is a simplified version of MMIE 
by restricting the training of model using the data for the model only. This simplification 
allows the denominator term in Eq. (4.29) to contain the correct model so that it can be 
dropped as a constant term. Thus, maximization of the posterior probability p(m, Ix) can be 
transfonned into maximization of the likelihood p(x I w,). 

Although likelihood and posterior probability are transformable based on Bayes' rule, 
MLE and MMIE often generate different results. Discriminative criteria like MMIE attempt 
to achieve minimum error rate. It might actually produce lower likelihood for the underlying 
probability density p(x I w*) . However, if the assumption of the underlying distributions is 
correct and there are enough (or infinite) training data, the estimates should converge to the 
true underlying distributions. Therefore, Bayes' rule should be satisfied and MLE and 
MMIE should produce the same estimate. 

Arthur Nadas [71] showed that if the prior distribution (language model) and tbe ~­
sumed likelihood distribution family are correct, both MLE and MMIE are consistent eS!J· 

ma~ors, but MMIE has a greater variance. However, when some of those premises are ~ot 
vahd it is d · b . . . 1 · fi nnatton 
(. ' esu-a le to use MMIE to find the estimate that max1m1zes the mutua m 0 

instead of l"k l'h d'fti ce be-
tw 

1 e 1 ood) between sample data and its class infonnation. The 1 eren 
een these tw · . . . . . th 1·kelibood fo th O estimation techmques 1s that MMIE not only aims to mcrease e 1 

r e correct cla b · . . · l es Thus, MMIE . ss, ut also tnes to decrease the likelihood for the mcorrect c ass · 
1 

though ~;:e~al poss~ses more discriminating power among different categories. ~ · 
with MLE is tbeoretically appealing, computationally it is very expensive. Companng 

, every data s 1 . d f th corre· 
sponding model. It 

1 
amp e needs to train all the possible models mstea o e di· 

ent descent algorith~~o lacks an efficient maximization algorithm. You need to use a gra 
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4.3.1.1. Gradient Descent 

To maximize Eq. (4.37) ove~ the en_tire parameter space (J)={cl>11 (1)~,···,ct>s} with s 
classes, we define the mutual mfonnatJon term in Eq. (4.37) to be a function of (I). To fit 
i~t~ th~ traditio~al gradi_e~t ~escent framework, we take the inverse of Eq. (4.37) as our op­
um1zat10n function to mm1m1ze the following function:ij 

2'P:1 (x I ro*)p(ro*) 
F(<I>) = .;:.;*";.;..' ----­

P:, (x I ro,)p(ro;) 
(4.38) 

The gradient descent algorithm starts with some initial estimate <1>0 and computes the 
gradient vector V F(<J>) ( V is defined in Chapter 3). It obtains a new estimate <1>1 by mov­
ing <1>0 in the direction of the steepest descent, i.e., along the negative of the gradient. Once 
it obtains the new estimate, it can perfonn the same gradient descent procedure iteratively 
until F(<I>) converges to the local minimum. In summary, it obtains c1>1

•
1 from ct>' by the 

following formula: 

<1>l+1 =<I>'-£ 'vF(cl>) I 
I Cl>•CI>' 

(4.39) 

where E, is the learning rate (or step size) for the gradient descent. 
Why can gradient descent lead F(<I>) to a local minimum? Based on the definition of 

gradient vector, F(<I>) can be approximated by the first order expansion if the correction 

term .1<1> is small enough. 

(4.40) 

,1(1) can be expressed as the following term based on Eq. (4.39) 

.1cJ> = <I>'+ I -<I>' = -t: V F(<I>) I I 
I «1>=4> 

(4.41) 

Thus, we can obtain the following equation: 

F(<l>1
+

1 
)- F(cI>') = -£, (v F(<I>) ICl>z4>', V F(<I>) 14>~') 

= - e, IIV F (<I>) ICl>=CI>' f < o 
(4.42) 

where (x,y) represents the inner product of two vectors,_ and llx/j represents the Eucl~dean 
norm of the vector. Equation (4.42) means that the gradient descent finds a new estimate 

<l>r+1 that makes the value of the function F(<I>) decrease. 
The gradient descent algorithm needs to go through an iterative_ hill-climbi~g proce­

dure to converge to the local minimum (estimate). Gradient descent usually reqmres many 
iterations to converge. The algorithm usually stops when the change of the parameter 

.1(1) becomes small enough. That is, 

'You can use the logarithm of the object function to make it easier to compute the derivative in gradient descent. 
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(4.43) 

where il is a preset threshold. 
Based on the derivation above, the learning rate coefficient e, must be sm 11 

H ·r . a enough 
for gradient descent to converge. owever, 1 e, 1s too small, convergence is ne di 

... rt th ·1 1· eess[y slow .. Thus, 1t 1s very 1mpo a~t o c oos~ an appropna ~ e,. t 1s _proved [47] [48] that a-
dient converges almost surely if the learmng rate coefficient e, satisfies the following gr. 
. cond1-

t10n; 

f e, = oo, f e,2 < 00, and 1;1>0 
1~0 t=O 

One popular choice of e, satisfying the above condition is 

1 
e =--

1 t + 1 

Another way to find an appropriate e
1 

is through the second-order expansion: 

(4.44) 

(4.45) 

(4.46) 

where Dis the Hessian matrix [23] of the second-order gradient operator where the i-th row 
andj-th element D,.1 are given by the following partial derivative: 

D _ if F(<I>) 
I.} - d<f> .d<I> · 

I J 

By substituting .1<1>from Eq. (4.41) into Eq. (4.46), we can obtain 

From this, it follows that e, can be chosen as follows to minimize F(<I>) [23]: 

E = IIVFll2 
I VF'DVF 

(4.47) 

(4.48) 

(4.49) 

Sometimes it is desirable to impose a different learning rate for the correct model vs. com· 
peting models. Therefore re-estimation Eq. (4.39) can be generalized to the following forlTI 
[19, 48]: . 

.W,.l+J .W,.I 

.., =w -EUVF(<l>)I 
I I c1,~1 

(4.50) 

where U is the 1 . . . 0 particular 
h . f' earnmg bias matrix which is a positive definite matnx. ne . 

c 01ce o u is n-1 h . th Jearning 
' , w ere D 1s the Hessian matrix defined in Eq. (4.47). When e 
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rate is set t~ ~e ~ .0, Eq. ( 4.50) becomes Newton's algorithm, where the gradient descent is 
chosen to m1mm1ze the second-order expansion. Equation (4.50) becomes: 

cpr+I = Cl>' - n·'VF(CI>) I 
cl>=tD' (4.51) 

When probabilistic parameters are iteratively re-estimated, probabilistic constraints 
must be satisfied in each iteration as probability measure, such as: 

l. For discrete distributions, all the values of the probability function ought to 
be nonnegative. Moreover the sum of all discrete probability values needs to 
be one, i.e., I.a,= I 

I 

2. For continuous distributions (assuming Gaussian density family), the vari­
ance needs to be nonnegative. For Gaussian mixtures, the diagonal covari­
ance entries need to be nonnegative and the sum of mixture weights needs to 
be one, i.e., I, C; = l 

I 

In general, gradient descent is an unconstrained minimization (or maximization) proc­
ess that needs to be modified to accommodate constrained minimization (or maximization) 
problems. The tricks to use are parameter transformations that implicitly maintain these con­
straints during gradient descent. The original parameters are updated through the inverse 
transform from the transformed parameter space to the original parameter space. The trans­
formation is done in such a way that constraints on the original parameter are always main­
tained. Some of these transformations are listed as follows [48): 

1. For probabilities which need to be nonnegative and sum to one, like discrete 
probability function and mixture weight, the following transformation can be 
performed: 

(4.52) 

2. For mean µ and variance (or diagonal covariance entries) a 2
, the following 

transformation can be used. 

µ =jla (4.53) 

a= exp(o') (4.54) 

After the transformations, we can now compute the gradient with _respect to the trans­
formed parameters (a,,µ, a) using the chain rule. Once the new. estimate for the trans­
formed parameters is obtained through gradient descent, one can eastly transform them back 

to the original parameter domain. 
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4.3.2. Minimum-Error-Rate Estimation 

Parameter estimation techniques described so far aim to maximize eith . 
(class-conditional probability) (MLE and MAP) or the posterior proba~~- lhe hkelihOOd 
Bayes' equation, Eq. (4.1). AJthough the criteria used in those estimation 

1i (MMJEJ in 
their own merit and under some conditions should lead to satisfactory res~~ ~s all_have 
parameter estimation criterion for pattern recognition should be to minimize th. e u1t,~_a1e 
error rate (_or th~ Bayes' risk) direc~I~. Minim~m-~r~or-~ate estimation is also\~~;:nit~o~ 
mum-classification-error (MCE) l~~mmg~ or d1scn_mrnative training. Similar to MMIEmm,. 
algorithm generally tests the class1f1er using re-estimated models in the training 'lhe 

· th d I . procedure and subsequently improves e correct mo e s and suppresses mis-recognized or . ' 
9 • • • • near-miss 

models. Neural networks are m this class. Although minimum-error-rate estimation c 
be easily applied, it is still attractive that the criterion is identical to the goal of pane annot mrec­
ognition. 

We have used the posterior probability p(m; Ix) in Bayes' rule as the discriminant 
function. In fact, just about any discriminant function can be used for minimum-error-rate 
estimation. For example, as described in Section 4.2.1, a Bayes' Gaussian classifier is 
equivalent to a quadratic discriminant function. The goal now is to find the estimation of 
parameters for a discriminant function family {d/x)} to achieve the minimum error rate. 
One such error measure is defined in Eq. (4.5). The difficulty associated with the discrimina­
tive training approach lies in the fact that the error function needs to be consistent with the 
true error rate measure and also suitable for optimization. 10 Unfortunately, the error function 
defined in Section 4.1.1 [Eq. (4.5)] is based on a finite set, which is a piecewise constant 
function of the parameter vector Cl> . It is not suitable for optimization. 

To find an alternative smooth error function for MCE, let us assume that the discrimi· 
nant function family contains s discriminant functions d,(x,CI>), i = t, 2, ... , s. Cl> denotes 
the entire parameter set for s discriminant functions. We also assume that all the discrimi­
nant functions are nonnegative. We define the following error (misclassification) measure: 

[ ]

1/IJ 

ei(x) =-d,(x,CI>)+ -
1
-Ld/x,(!))17 

s-1 j-,.; 
(4.55) 

where 7J is a positive number. The intuition behind the above measure is the attempt 
10 

enumerate the decision rule. For a m. class input x e (x) > 0 implies recognition errffior, 
. ' ' ' beacoe•· while e;(x) $ 0 implies correct recognition. The number 1J can be thought to . the 

cient to select competing classes in Eq. (4.55). When 77 =I, the competing cJass tenn \ng 
average of all the competing discriminant function scores. When 7J ~ 00 

• 
the com: cop 

class term becomes max d .(x (I)) representing the discriminant function score for e 
__,,,,- j .. ; J ' 

:/ near-miss model occurs when the incorrect model has higher likelihood than the correct model. 
In general, a function is optimizable if it is a smooth function and has a derivative. 
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competing class. B_y _var:yi_ng the_ value of 77, one can take all the competing classes into ac­
count based on their md1v1dual significance. 

. To transform e_,(x) into a nonnalized smooth function, we can use the sigmoid func-
tion to embed e;(x) m a smooth zero-one function. The loss function can be defined as fol­
lows: 

l;(x;<I>) = sigmoid(e;(x)) 

where sigmoid(x) = _l_ 
l+e-.r 

(4.56) 

(4.57) 

When e,(x) is a big negative number, which indicates correct recognition, the loss function 
/i(x;<I>) has a value close to zero, which implies no loss incurred. On the other hand, when 
e1(x) is a positive number, it leads to a value between zero and one that indicates the likeli­
hood of an error. Thus /1(x;<I>) essentially represents a soft recognition error count. 

For any data sample x, the recognizer's loss function can be defined as: 

s 

/(x,<I>) = L((x,<1>)8{w = ro,) (4.58) 
/=I 

where 8(•) is a Boolean function which will return l if the argument is true and O if the 
argument is false. Since x is a random vector, the expected loss according to Eq. (4.58) can 

be defined as: 

L(<I>) = Ex(/(x,<I>)) = IL_, l(x,<l>)p(x)dx 
l=I 

(4.59) 

Since m_:x[ff(x,<l>)dx]= J[ m_:xf(x,<l>)]dx, (J> can be estimated by gradient descent 

over /(x, <I>) instead of expected loss L(<I>). That is, minimum classification error training 

of parameter <I> can be estimated by first choosing an initial estimate <1>0 and the following 

iterative estimation equation: 

ci,1+1 = -' -e V/(x <I>) I 
.,.,. I ' Cll=CII' 

(4.60) 

You can follow the gradient descent procedure described in Section 4.3.1.l to achieve the 

MCE estimate of Cl) . 
Both MMIE and MCE are much more computationally intensive than MLE, owing to 

the inefficiency of gradient descent algorithms. Therefore, discriminant estimation methods, 
like MMIE and MCE, are usually used for tasks containing few classes or data samples. A 
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more pragmatic approach is corrective training (6], which is based 
· d p· t 1 b I d · · · on a very · correctmg proce ure. irs , a a e e trammg set 1s used to trai· th simple err 

. n e Pararn or. 
corresponding class by standard MLE. For each training sample a I' eters for each 
is created by running the recognizer and kept as its near-miss list ~ of confusable classe 
the correct class are moved in the direction of the data sample, wh·l e;, tbe Parameters 

0
~ 

"near-miss" class are moved in the opposite direction of the data s:~ ~e~ Parameters of the 
samples have been processed; the parameters of all classes are upd f d · A~ter all training 
repeated until the parameters for all classes converge. Although the a _e · This procedure is 

re 1s no the . 
that such a process converges, some experimental results show that it oretical Proof 
MLE and MMIE methods [4]. outperforms both 

We have described various estimators: minimum mean square . 
l.k l'h d . . . . estimator max· 
1 e 1 oo estimator, maximum postenor estimator, maximum mutual i ~ . ' . 1mum 

and minimum error estimator. Although based on different traini·ng n ~rrnt ~lion estimator, 
. . en ena they 

powerful estimators for vanous pattern recognition problems Every . ' are all 
. . . · estimator has · 

strengths and weaknesses. It 1s almost 1mposs1ble always to favor one 
O 

th its 
d Id d . h . . ver e others In 

stea , you shou . stu y their c ai:actenst1cs and assumptions and select the most . · · 
ones for the domams you are workmg on. sunable 

In the following section we discuss neural networks. Both neural network d M 
estimations follow a very similar discriminant training framework. s an CE 

4.3.3. Neural Networks 

In the area of pattern recognition, the advent of new learning procedures and the availability 
of high-speed paraHel supercomputers have given rise to a renewed interest in neural net­
works. 11 Neural networks are particularly interesting for speech recognition, which requires 
massive constraint satisfaction, i.e., the parallel evaluation of many clues and facts and their 
interpretation in the light of numerous interrelated constraints. The computatio:1al flexibility 
of the human brain comes from its large number of neurons in a mesh of axons and den· 
drites. The communication between neurons is via the synapse and afferent fibers. There ~c 
many billions of neural connections in the human brain. At a simple level it can be coosid-

. th I they ered that nerve impulses are comparable to the phonemes of speech. or to letters, 10 3
• 

do not themselves convey meaning but indicate different intensities [95, 101] that are 1~ier-
k t to achieve 

preted as meaningful units by the language of the brain. Neural networ s attemp 
• • . · 1 ssino elements op-real-llme response and humanhke performance usmg many s1mp e proce O particu· 

erating in parallel as in biological nervous systems. Models of neural networks use: units. In 
lar topology for the interactions and interrelations of ~e con~ections of ~e neura rcepuons 
this section we describe the basics of neural networks, mcludmg the mulu-Iayer pe 
and the back-propagation algorithm for training neural networks. 

uonis1 ,noclll 
ANN) eural net, or a connec 

11 A neural network is sometimes called an artificial neural network ( • 8 n 
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4.3.3.1. Single-Layer Perceptrons 

Figure 4.10 shows a basic single-layer perceptron. Assuming there are N inputs, labeled as 
x,, x2 , ••• , x,.... , we can form a linear function with weights w w . w w to g·ive the 

fi d OJ• 11• '}'"'' 1:j output y1 , de me as - , 

.,· 
Y1 = %1 + L w!ix, =Wix'= g1(x) 

i=I (4.61) 

where w1 = (w01 ,w,1,w11 , ••• ,w.".J.) and x = (l,x1,x2 , ••• ,x.v). 
For pattern recognition purposes, we associate each class {J). out of s classes 

({J)1,co1 , ... ,co,)with such a linear discriminant function g
1
(x). By c~llecting all the dis­

criminant functions, we will have the following matrix representation: 

y =g(x) = W'x (4.62) 

where g(x)=(g1(x),g2(x), ... ,gs(x))';W=(w~,w~, ... ,w:)' and y=(yi,y
2

, ••• ,y,)1 • The 
pattern recognition decision can then be based on these discriminant functions as in Bayes' 
decision theory. That is, 

xerot iff k=argmaxg,(x) (4.63) 
I 

The perceprron training algorithm [68], guaranteed to converge for linearly separable 
classes, is often used for training the weight matrix W . The algorithm basically divides the 
sample space 9tN into regions of corresponding classes. The decision boundary is character­
ized by hyper-planes of the following fonn: 

g;(x)-g;(x)=O Vi-:t,j (4.64) 

output layer 

input layer 

1 

Figure 4.10 A single-layer perceptron. 
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"'Cogllltion 

Unfortunately, for data samples that are not linearly se b 
· h d H "f para le the p nt m oes not converge. owever, 1 we can relax the definit' ' erceptron 1 . . . 10n of class'fi . a go. 

this case, we can still use a powerful algonthm to train the weight . 1 tcatton erro . 
. th l (LSE) I "th d . matnx W 'l'L · rs in 1s e east square error a gon m escnbed in Chapter 3 h. . · uns approa h 
sum-of-squared-error (SSE) criterion, instead of minimizing th~ w 

1 
ich_ aims at minilllizi~ 

sum-of-squared-error is defined as: c assification errors. lh! 
SSE= L,L,ilg(x)-8, u2 

i lEc,J1 (4.65) 

where o, is an M-dimensional index vector with all zero components e 
· 1 0 · h d · d ~ ( · · xcept that the " 1s . , smce t e esue output tor g x) 1s typically equal to 1.0 if xe 00 and 

O
. 1 one 

The use of LSE leads to discriminant functions that have real ou'tp t if xe ro, · 
u s approxim · 

the values 1 or 0. Suppose there are M input vectors X == (x' x' x' ) i'n th .. at1ng 
1, 2 , ••• , M e trainin 

Similar to the LSE for linear functions described in Chapter 3 (cf. Section 3.2_1 2) theg SCl 

estimate of weight matrix W will have the following closed fonn: · ' l..SE 

W == ((XX')f1Ll: (4.66) 

where L is a (N + l)xs matrix where the k-th column is the mean vector 
µ1 = (1, µ11 , µ12 , ••• , µlcN )' of all the vectors classified into class ro1 , and r, is an sxs di­
agonal matrix with diagonal entry cu representing the number of vectors classified into 
m1 • LSE estimation using linear discriminant functions is equivalent to estimating Bayes' 
Gaussian densities where all the densities are assumed to share the same covariance matril 

[98], as described in Section 4.2.1 . 
Although the use of LSE algorithm solves the convergence problems, it loses the 

power of nonlinear logical decision (i.e., minimizing the classification error rate), since it~ 
only approximating the simple logical decision between alternatives. An alternative ap­
proach is to use a smooth and differential sigmoid function as the threshold function: 

y = sigmoid(g(x)) = sigmoid((g1 (x),g2 (x), ... ,g,(x))') (4.67) 

= (sigmoid(g1 (x)), sigmoid(g2 (x)), ... ,sigmoid(g, (x)))' 

. W'th th sigmoid function, 
where sigmoid(x) is the sigmoid function defined m Eq. (4.57). 1 ~ . 
the following new sum-of-squared-error term closely tracks the classificatIOn error. 

NSSE = I, I, II sigmoid(g(x))-o; 11
2 

(4.68) 

I JEG), . 

. . analytic way of ~ininuz: 
where o, is the same index vector defined above. Smee there is no . an iteranve gr'J 

ing a nonlinear function, the use of the sigmoid threshold fun~tion ~~ir~:xt section. 
dient descent algorithm, back-propagation, which will be descnbed in e 
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4.3.3.2. Multi-Layer Perceptron 

One of the technical developments sparking the recent resurgence of interest in neural net­
works has been the popularization of multi-layer perceptrons (MLP) [37, 90]. Figure 4.11 
shows a multi-layer perceptron. In contrast to a single-layer perceptron, it has two hidden 
layers. The hidden layers can be viewed as feature extractors. Each layer has the same com­
putation models as the single-layer perceptron; i.e., the value of each node is computed as a 
linear weighted sum of the input nodes and passed to a sigmoid type of threshold function. 

h1 = sigmoid(g,.1(x)) = sigmoid(Wf,1x) 

h2 = sigmoid(g,.2 (h1 )) = sigmoid(W:,2h1) 

y = sigmoid(gy(h2 )) = sigmoid(W;.h 2 ) 

where sigmoid(x) is the sigmoid function defined in Eq. (4.57). 

output layer 

hidden layer h2 

hidden layer h1 

input layer 

(4.69) 

Figure 4_11 A multi-layer perceptron with four total layers. The middle two layers are hidden. 
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According to Eq. (4.69), we can propagate the computation from input 1 
layer and denote the output layer as a nonlinear function of the input layer. ayer 10 output 

Y=MLP(x) 
(4.70) 

Let's denote O(x) as the desired output for input vector x. For pattern cla .fi . 
0( ) ·11 b d. . I . h d . ss1 icatton 

~ . w1 e an s- 1rnens1ona vector wt~ the esired outp~t pattern set to one and the re'. 
mammg patterns set to zero. As we mentioned before, there 1s no analytic way to m· . . 

~ 2 • • m1m1ze 
the mean square error E = ~II MLP(x)-O(x) II . Instead, an 1terat1ve gradient descent al 
rit~ called back propaga~ion [89, 90J_needs to be used to reduce error. Without loss of g:: 
erahty, we assume there 1s only _one mput vector x = (1,x,,x.i, ... ,xN) with desired output 
o = ( o1, o2 , ••• , o,) . All the layers m the MLP are numbered 0, 1, 2, ... upward from lhe input 
layer. The back propagation algorithm can then be described as in Algorithm 4.1. 

. h . I d . . a£ d th h . - x In computmg t e partia envat1ve k , you nee to use e c am rule. w
0 

is the 
awlj(t) 

weight connecting the output layer and the last hidden layer; the partial derivative is: 

s 

o(L(Y, -o,)2) 
l =I 

N 

a( K "' K K-1) 
WoJ + ~wifv, 0Y1· i•I 

i=I X X------'~---= -~---- -----:-N:-------- d K 
0Y1 d(w~+ Iiw:vt1

) wij 

(4.71) 

/=I 

aE 
For layers k = K -1, K - 2,. · · , one can apply chain rules similarly for gradient aw; (t) · 

. . . . th . . um mean squared er-
The back propagation algonthm 1s a generahzauon of e mmm~ b en the 

· · · th difference etwe 
ror (MMSE) algorithm. It uses a gradient search to mmimize . e . . d. tly related 10 

h h t" · zed en tenon 1s irec desired outputs and the actual net outputs, w ere t e op ,mi . . dure is then 
f h . ht the trrumng proce 

pattern classification. With initial parameters or t e weig s, table value or 
· fu · · educed to an accep repeated to update the weights until the cost nction is r . . ·ng exainple. 

. . d b ssume a single traini b-remains unchanged. In the algonthm descnbe a ove, we a f training o 
. d f a large number o 

In real-world application, these weights are estimate . rom . dates in Step 3 are 
servations in a manner similar to hidden Markov modeling. The weig_ht upd &or the complete 

d. · then esomate 1' · accumulated over all the training data. The actual gr~ 1ent_ is the estimation cnte· 
set of training data before the beginning of the next 1terat1on. Note that . m Jikeiihood· 
· "fi · ther than maximu non for neural networks is directly related to class1 1cat1on ra 
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Unsupervised Estimation Methods 

ALGORITHM 4.1: THE BACK PROPAGATION ALGORITHM 

Step 1 :k Initialization: ~et ~ = O a~d. choose initial weight matrices w for each layer. Let's de­
note wli (I) as the weighting coeff1c1ents connecting i'" input node in layer k-1 and j'h out­
put node in layer k at time t . 

~tep 2: Forw~rd Pro~agation: Compute the values in each node from input layer to output layer 
in a propagating fashion, fork = 1 to K 

N 

vJ = sigmoid(w0 /t)+ L w; (t)v,•-1
) VJ 

l•I 
(4.72) 

where sigmoid(x) = 
1 
+ ~-.. and vJ is denoted as the j'h node in the k'h layer 

Step 3: Bac_k Propagation: Update the weights matrix for each layer from output layer to input 
layer according to: 

-k t dE 
w9.(t+I)= wii(l)-a-*- (4.73) 

awij(t) 
., 

where E = L II Y, - o; 112 and (y, , y 2 , • • • Y.) is the computed output vector in Step 2. 
;:::1 

a is referred to as the learning rate and has to be small enough to guarantee 
convergence. One popular choice is 1/(t + 1) . 

Step 4: Iteration: Let t = t +I. Repeat Steps 2 and 3 until some convergence condition is met. 

4.4. UNSUPERVISED ESTIMATION METHODS 

163 

As described in Section 4.2, in unsupervised learning, information about class (J) of the data 
sample x is unavailable. Data observed are incomplete since the class data (J) is missing. 
One might wonder why we are interested in such an unpromising problem, and whether or 
not it is possible to learn anything from incomplete data. Interestingly enough, the formal 
solution to this problem is almost identical to the solution for the supervised learning case -
MLE. We discuss vector quantization (VQ), which uses principles similar to the EM algo­
rithm. It is important in its own right in spoken language systems. 

4.4.1. Vector Quantization 

As described in Chapter 3, source coding refers to techniques that convert the signal source 
into a sequence of bits that are transmitted over a communication channel and then used to 
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