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A =(X'X)'X'Y N

11
(X'X)"' X' in Eq. (3.112) is also refereed to as the pseudo-inverse of Xa )
denoted as X*.

When XX is singular or some boundary conditions cause the LSE estimatiop ;
(3.112) to be unattainable, some numeric methods can be used to find an appro:i“on inEq,
tion. Instead of minimizing the quantity in Eq. (3.109), one can minimize thcn;:;le soly-
quantity: Owing

eA) =1 XA-YIP+axllAIP

N 15 sometig

(3.113)

Following a similar procedure, one can obtain the LSE estimate to minimize the

tity above in the following form. Quan-

ALy =(X'X+al)'X'Y o116

The LSE solution in Eq. (3.112) can be used for polynomial functions too. In the prob-
lem of polynomial curve fitting using the least square criterion, we are aiming to find the
coefficients A =(ay,,a,,a,,'**,a,)" that minimize the following quantity:

min E(Y -Y)? @3.115)

a9,a),83 44

where ¥ =a, +ax+a,x* +++a,x’
To obtain the LSE estimate of coefficients A = (ay,a,,a,,-+,a,) , simply change the
formation of matrix X in Eq. (3.108) to the following:

1 x o x
x=|! = * @3.116)
1 X, - x:
ile x/ inEq
i . th dimension of sample x,, while X 11
Note that x/ in Eq. (3.108) means the j-th dlmensmq 0 | A
(3.116) means j—ﬂ; order of value x, . Therefore, the LSE estimate of polynomlal coe
A= (@,0,,8,,°+»@,) has the same form as Eq. (3.112).
3.2.1.3. MMSE/LSE for Nonlinear Functions
. . . - - blem:
i i Jowing minimization pro
As the most general case, consider solving the following (3'”7)
2
min E[Y—g(X)]
£(*)Gy
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Since we need to deal with all possible nonlinear functions, taking a derivative does
not work here. Instead, we use the property of conditional expectation to solve this minimi-
zation problem. By applying Eq. (3.38) to (3.117), we get

Ec,[Y-2(X)] =E, {E”X [[Y— g(x)1x= x]}
=J..:En,\— [[Y-g(/")]2 IX=x]f,\' (x)ax (3.118)
=] By [[Y—g ()] 1x = x] S (x)dx

Since the integrand is nonnegative in Eq. (3.118), the quantity in Eq. (3.117) will be
minimized at the same time the following equation is minimized.

nin By [[Y —gWf X = x] (3.119)

Since g(x) is a constant in the calculation of the conditional expectation above, the
MMSE estimate can be obtained in the same way as the constant functions in Section
3.2.1.1. Thus, the MMSE estimate should take the following form:

Y=gmlSE(X)=En,\'(Y|X) (3.120)

If the value X =x is observed and the value E(Y|X =x) is used to predict ¥, the
mean squared error (MSE) is minimized and specified as follows:

2
B [¥ = B (Y 1 = )] 1 = x| = Ve (¥ X =) G121
The overall MSE, averaged over all the possible values of X, is:

By [¥ - B @1 X)] =By {Em [[Y—-Em.(Y 10T |X]}= Ey [ Var(Y 1 X =x)]
(.122)

It is important to distinguish between the overall MSE E [Varm,(}’ | X )] and the
MSE of the particular estimate when X = x, which is Var,, (Y | X =x) . Before the value of
X is observed, the expected MSE for the process of observing X and predicting Y is
E, [Varm(}’ | X )] . On the other hand, after a particular value x of X has been observed and
the prediction Ey, (¥ |X =x) has been made, the appropriate measure of MSE of the pre-
diction is Var,, (Y | X =x). _

In general, the form of the MMSE estimator for nonlinear functions depends on the
form of the joint distribution of X and Y. There is no mathematical closed-form §olution. To
get the conditional expectation in Eq. (3.120), we have to perform the following integral:

Y= [ (1 X =x)dy (3.123)
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It is difficult to solve this integral calculation. First, different measu
termine different conditional pdf for the integral. Exact information abg
impossible to obtain. Second, there could be no analytic solution for the i
ficulties reduce the interest of the MMSE estimation of nonlinear func
aspects only. The same difficulties also exist for LSE estimation for p
Some certain classes of well-behaved nonlinear functions are typically
problems and numeric methods are used to obtain LSE estimate from sam

1es of x coy)q de-
ut the pdf i often
r.xtcgral. Those gjf.
tloqs to theoretical
onlinear functions,

assumed for | §p
ple data,

3.2.2. Maximum Likelihoed Estimation

Maximum likelihood estlmatlo.n (MLE? is the most widely used parametric estimation
method, largely because of its efficiency. Suppose that a set of random samples
X ={X,X,,...,X,} is to be drawn independently according to a discrete or continuous dis.
tribution with the pf or the pdf p(x|®), where the parameter vector ® belongs to some
parameter space £2. Given an observed vector x =(x,,--,x,), the likelihood of the set of
sample data vectors X with respect to @ is defined as the joint pf or joint pdf p_(x|®)
p,(x | @) is also referred to as the likelihood function.

MLE assumes the parameters of pdfs are fixed but unknown and aims to find the set of
parameters that maximizes the likelihood of generating the observed data. For example, if
the pdf p,(x|®) is assumed to be a Gaussian distribution N(p,X), the components of ®
will then include exactly the components of mean-vector p and covariance matrix L.
Since X,,X,,-..,X, are independent random variables, the likelihood can be rewritien as

follows:

1

p,(x|®)=] [ p(x, 19) a1
k=1

g the sample

The likelihood p,(x|®) can be viewed as the probability of generatin
is denoted as

data set x based on parameter set ® . The maximum likelihood estimator of @
®,,. that maximizes the likelihood p,(x|®). Thatis,

3.125)
Dyue =argglax (x| D) (

» method and is O
y increasing funt-
imize e

This estimation method is called the maximum likelihood estimqtia
ten abbreviated as MLE. Since the logarithm function is a monotonicall
tion, the parameter set ®,,, that maximizes the log-likelihood should a}lso max{akiﬂg the
likelihood. If p, (x| ®) is differentiable function of @, ®,,; can be atiained by(p be a k
partial derivative with respect to @ and setting it to zero. Specifically, et
component parameter vector ® = (®,,®,,...,»,) and V, be the gradient operator:
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oD,
Ve=| ¢ (3.126)
0
oD,
The log-likelihood becomes:
[(®@)=log p,(x| D)= log p(x, | D) (3.127)
k=t
and its partial derivative is:
Vo U(®)=3V, log p(x, | D) (3.128)
k=l

Thus, the maximum likelihood estimate of @ can be obtained by solving the follow-
ing set of k equations:

Vo I(®)=0 (3.129)

Example 3.1

Let’s take a look at the maximum likelihood estimator of a univariate Gaussian pdf, given as
the following equation:

1 = A2
p(x|®)= s exp —(XZG;;) J (3.130)

where 4 and o? are the mean and the variance respectively. The parameter vector @ de-
notes (i,0*) . The log-likelihood is:

log 2, (x| @)=Y log p(x, |®)

k=l
w0 (%, —u)in 3.131)
=>1lo exp| - .
Z’ g\\/27w p[ 20% ]
n 1 2 2
= 2 2y -
5 108(270%) ~—— 3, (% ~ 1)

k=1
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and the partial derivative of the above expression is:

n

2 jog p, (x| 9)= 3~ (3, - )

ou 50

) nooxm(x - p) (G.axn
— O)=-— k )
357 08 Pa(x|®) 2a’+k2=:‘ o

We set the two partial differential derivatives to zero,

n

1
zo_—z(xk ~u)=0

k=l

1o (x - p) (.133)
Ay TH
o2 ga o*

The maximum likelihood estimates for 12 and ¢ are obtained by solving the above equz-
tions:

1 n
Hyeg =_2xk = E(x)
L=
1 (3.139
e = ;E(Xk ~ e = E[(x"' Haue )2]

k=l

Equation (3.134) indicates that the maximum likelihood estimation for mean and vari-
ance is just the sample mean and variance.

Example 3.2
For the multivariate Gaussian pdf p(x)

1 1 - y 135)
p(XI¢)=———-—CXp[ —=(x-p)'Z (x—u), &
(2”)1112 IEIIIZ ! 2 )
The maximum likelihood estimates of p and X can be obtained by a similar procedure.

N 1
Brgs == X
- ng,‘ ‘ (3130

3 1 « ~ A 1 N i f
e =-p—“z,(xk =~ Poe J(X, = Ppge) =E[(x* ~Baas )% = Faae) ]

i : s . . atrix 1
gnce again, the maximum likelihood estimation for mean vector and covariance
€ sample mean - :
Ple mean vector and sample covariance matrix. < E
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In some situations, maximum likelihood estimation of & may not exist, or the maxi-
mum likelihood estimator may not be uniquely defined, i.e., there may be more than one
MLE of ® for a specific set of sample values. Fortunately, according to Fisher’s theorem
for most practical problems with a well-behaved family of distributions, the MLE exists anci
is uniquely defined [4, 25, 26].

In fact, the maximum likelihood estimator can be proven to be sound under certain
conditions. As mentioned before, the estimator 8(X) is a function of the vector of random
variables X that represent the sample data. 8(X) itself is also a random variable, with a
distribution determined by joint distributions of X. Let @ be the parameter vector of true
distribution p(x |®) from which the samples are drawn. If the following three conditions
hold:

1. The sample x is a drawn from the assumed family of distribution,
2. The family of distributions is well behaved,
3. The sample x is large enough,

then maximum likelihood estimator, ®,,,, , has a Gaussian distribution with a mean ® and
a variance of the form 1/nB? [26], where n is the size of sample and B, is the Fisher in-
SJormation, which is determined solely by ® and x . An estimator is said to be consistent, iff
the estimate will converge to the true distribution when there is infinite number of training
samples.

lim®,, =@ (3.137)

n=>oo

®,,. is a consistent estimator based on the analysis above. In addition, it can be
shown that no consistent estimator has a lower variance than ®,, . . In other words, no es-
timator provides a closer estimate of the true parameters than the maximum likelihood esti-
mator.

323 Bayesian Estimation and MAP Estimation

Bayesian estimation has a different philosophy than maximum likelihood estimation. While
MLE assumes that the parameter @ is fixed but unknown, Bayesian estimation assumes
that the parameter @ itself is a random variable with a prior distribution p(®). Suppose we
observe a sequence of random samples x={x,,x2,...,x,,}, which are iid. with a pdf
p(x|®) . According to Bayes’ rule, we have the posterior distribution of ® as:

p(¢|x)=ﬂ'2)i‘°—)« p(x]®)p(®) (3.138)
P

* For simplicity, we assume the parameter & is a scalar instead of a vector here. However, the extension to a pa-

rameter vector ® can be derived according to a similar procedure.
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In Eq. (3.138), we dropped the denominator p(x) here because it
parameter ®. The distribution in Eq. (3.138) is called the posterior ¢
cause it is the distribution of @ after we observed the values of
X, X5o0n X, random Variabje,

is indepeﬂd(:m
i of
18tribution of @ ;he

3.2.3.1. Prior and Posterior Distributions

For mathematical tractability, conjugate priors are often used in Bayesian estim
pose a random sample is taken of a known distribution with pdf p(x |®). A conjugate pr,
for the random variable (or vector) is defined as the prior distribution for the parametefs o;
the probability density function of the random variable (or vector), such that the class.
conditional pdf p(x|®), the posterior distribution p(®|x), and the prior distribution
p(P) belong to the same distribution family. For example, it is well known that the conju-
gate prior for the mean of a Gaussian pdf is also a Gaussian pdf [4]. Now, let’s derive sucha
posterior distribution p(® | x) from the widely used Gaussian conjugate prior.

ation, SUp.

Example 3.3

Suppose X, X,,...,X, are drawn from a Gaussian distribution for which the mean ¢ isa
random variable and the variance o is known. The likelihood function p(x|®) canbe
written as:

2
_%z(__"f =9 } } (3.139)

=\ O

n

1 1a(x-0 Y
Pz —— ———— e 2 e
PRI (27:)"'20" exp[ 2 [ ]

i=] c

o exp

To further simply Eq. (3.139), we could use Eq. (3.140)

Y —®F =n(@-%,7 +3 (x,-%,)° (3.140)
=l i=l

- 1
where X, =—Y x, = the sample mean of x= [t s, o
<
Let’s rewrite p(x|®) in Eq. (3.139) into Eq. (3.141):
p(x1®) <exp| - (d-% ¥ IR
(19) =erp|~-L(0-5, oxp| L 31 -5)

. it mean B
d N.ow S“P? ose the prior distribution of @ is also a Gaussian distribution with m
and vanance v*, i.e., the prior distribution p(®) is given as follows:

@.14)

i 2 42

B(®)= 11/2 €Xp _l_((D—u T oc eXp _l(q)'—#) (3.] )
(2m)"v | 2L v ot v _
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By combining Eqs. (3.141) and (3.142) while dropping the second term in Eq. (3.141)
we could attain the posterior pdf P(P]|x) in the following equation:

Il n -y 1 )
p((D]x)ocexp{——E[o_l (@-x,) +v—2(d>—,u) ” (3.143)

Now if we define p and 7 as follows:

_ou+nv’s,

a2 L (3.144)
., oi?
T =
o +nv? (3.145)
We can rewrite Eq. (3.143) as:
p(®|x) =< exp .—l‘-i(¢—p)z+L(f— )2-' (3.146
2| 1? i H 1 -140)

Since the second term in Eq. (3.146) does not depend on @, it can be absorbed in the
constant factor. Finally, we have the posterior pdf in the following form:

B 2
?((D—p) ] (3.147)

1
p(@{x)= \/'2;1 exp

Equation (3.147) shows that the posterior pdf p(®|x) is a Gaussian distribution with
mean p and variance T° as defined in Egs. (3.144) and (3.145). The Gaussian prior distri-
bution defined in Eq. (3.142) is a conjugate prior.

3.2.3.2, General Bayesian Estimation

The foremost requirement of a good estimator € is that it can yield an estimate of @
(6(X)) which is close to the real value @. In other words, a good estimator is one for
which it is highly probable that the error 8(X)—® is close to 0. In general, we can define a
loss function' R(®,®). It measures the loss or cost associated with the fact that the true

value of the parameter is @ while the estimate is @ . When only the prior distribution

* Bayesian estimation and loss functions are based on Bayes’ decision theory, described in Chapter 4.
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p(®P) is available and no sample data has been observed, if we choose one partic
mate @, the expected loss is: Ular ggg.

E[R(®.9)] = [R(®,P)p@)d® (G143

The fact that we could derive posterior distribution from the likelihood fy

. . . . . - . n i
the prior distribution [as shown in the derivation of Eq. (3.147)] is very importa clon ang

: nth
cause it allows us to compute the expected posterior loss after sample vector x is ob:;e be
The expected posterior loss associated with estimate & is: R

E[R(®.®)|x]= [ R(®,®) p(@| x)dd G1g

The Bayesian estimator of @ is defined as the estimator that attains minimum Bayes
risk, that is, minimizes the expected posterior loss function (3.149). Formally, the Bayesian
estimator is chosen according to:

0 g (x) = argniin E[R(@,B(x)) | x] (3.150)

The Bayesian estimator of P is the estimator B e, for which Eq. (3.150) is satisfied
for every possible value of x of random vector X. Therefore, the form of the Bayesian es-
timator 6p,,, should depend only on the loss function and the prior distribution, but not the
sample value x .

One of the most common loss functions used in statistical estimation is the mean
squared error function [20]. The mean squared error function for Bayesian estimation should
have the following form:

R(®,8(x)) = (P-6(x))’ (3.151)

In order to find the Bayesian estimator, we are seeking 8 to minimize the expected pos-

terior loss function:
E[R(@®,0(x)) x]= E[(@~-0(x))* |x] = E@ | 1)~ 20()E(@|)-6()° (15

The minimum value of this function can be obtained by taking the partial deri\!al!"e of
Eq. (3.152) with respect to 8(x) . Since the above equation is simply a quadratic funcuonodf
6(x), it can be shown that the minimum loss can be achieved when 8,,, is chosen bast
on the following equation:

Bayvs

3
eBa,mr (X) = E((D l X) (3!5 )
0]
Equation (3.153) translates into the fact that the Bayesian estimate of the paragﬂfe‘g 4
tion of -

for mean squared error function is equal to the mean of the posterior distribu
the following section, we discuss another popular loss function (MAP estima
generates the same estimate for certain distribution functions.

tion) that %0
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3.2.3.3. MAP Estimation

One intuitive interpretation of Eq. (3.138) is that a prior pdf p(®) represents the relative
likelihood before the values of X,,X,,...,X, have been observed; while the posterior pdf
p(®|x) represents the relative likelihood after the values of X, X,,..., X, have been ob-
served. Therefore, choosing an estimate ® that maximizes the postérior prgbability is con-
sistent without intuition. This estimator is in fact the maximumn posterior probability (MAP)
estimator and is the most popular Bayesian estimator.

The loss function associated with the MAP estimator is the so-called uniform loss
function [20]:

0, if |[8(x)-DPI|KA
R(tl),e(x)):{] " ||9((3’:))—<I>]|>A where A>0 (3.154)

Now let's see how this uniform loss function results in MAP estimation. Based on the
Joss function defined above, the expected posterior loss function is:

E(R(®,6(x))| x) = P(|6(x)~® [> A x)
=1=-P(O(x)-DP|<A[x)=1- E(X)+Ap((1)|x) (3.155)

f(x)-A

The quantity in Eq. (3.155) is minimized by maximizing the shaded area under
p(®|x) over the interval [0(x)—A,9(x)+A] in Figure 3.16. If p(®|x) is a smooth curve
and A is small enough, the shaded area can be computed roughly as:

a(x)+a

o P(@13) = 28p(®] X)) -ots (3.156)
Thus, the shaded area can be approximately maximized by choosing 6(x) to be the maxi-
mum point of p(®|x). This concludes our proof the using the error function in Eq. (3.154)
indeed will generate MAP estimator.

P 1 - ECP(®,600) 1 x)

/p(oxx)

ax) - A 8(x)+ 4
8(x)

Figure 3.16 Illustration of the minimum expected posterior oss function for MAP estimation

[20].
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MAP estimation is to find th

o ; € parameter estim
maximizes the posterior probability, e

map OF estimator 0

mr(l) that
q) = = —
hap = Opep (X) arg:mx P(®|x) —arg?ax p(x| (D)p((b) Gis;
-17)
D,,.» can also be specified in the logarithm form ag follows:
®,p =argmax [log p(x | )+ log p(®))]
o (3.158)
®,,.» can be attained by solving the following partial differential equation:
dlog p(x | P) +9log p(®) _ 0
B T (3.159)
Thus the MAP equation for finding ®,,,, can be established.
dlog p(x | d) _ —Olog p(®)
- __‘_a(b - “M (3.160)

°=°MAP

There are interesting relationships between MAP estimation and MLE estimation. The
prior distribution is viewed as the knowledge of the statistics of the parameters of interes!
before any sample data is observed. For the case of MLE, the parameter is assumed to be
fixed but unknown. That is, there is no preference (knowledge) of what the values of pa-
rameters should be. The prior distribution p(®) can only be set to constant for the ent‘ire
parameter space, and this type of prior information is often referred to as n_on-infonnanve
prior or uniform prior. By substituting p(®) with a uniform distribution in Eq. (3.157)
MAP estimation is identical to MLE. In this case, the parameter estimation is sq]ely delfﬂf'
mined by the observed data. A sufficient amount of training data is often a requirement ‘::
MLE. On the other hand, when the size of the training data is limited, the use of the :gm
density becomes valuable. If some prior knowledge of the distribu-tion' of the P_afaff‘”;e o
be obtained, MAP estimation provides a way of incorporating prior information i
rameter learning process.

Example 3.4

. -on 3,231
Now, let’s formulate MAP estimation for Gaussian densities. As described ;?S;?gl‘l’g:: i
the conjugate prior distribution for a Gaussian density is also a Gaussxan_an ibuton
larly, we assumed random variables X,,X,,..., X, drawn from a Gaussi o e pror 6
which the mean @ is unknown and the variance ¢ is known, while Lhze CIOI}.; sgh o n SE°
tribution of @ is a Gaussian distribution with mean L and vanance V'I:het ;\/I AP esn'mation
tion 3.2.3.1 that the posterior pdf can be formulated as in Eq. (3.147).

. D:
for @ can be solved by taking the derivative of Eq. (3.147) with respect ©©
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_ ___O’ H+nv'x,
Piur =P ol+m? (3.161)

where  is the total number of training samples and ¥, the sample mean.

The MAP estimate of the mean @ s a weighted average of the sample mean X, and
the prior mean. When » is zero (when there is no training data at all), the MAP estimate is
simply the prior mean A . On the other hand, when # is large (1 — o0 ), the MAP estimate
will converge to the maximum likelihood estimate. This phenomenon is consistent with our
intuition and is often referred to as asymptotic equivalence or asymptotic convergence.
Therefore, in practice, the difference between MAP estimation and MLE is often insignifi-
cant when a lﬁarge axzxount of training data is available. When the prior variance v? is very
large (e.g., vV~ >>0" /i), the MAP estimate will converge to the ML estimate because a
very large v* translates into a non-informative prior.

It is important to note that the requirement of learning prior distributions for MAP es-
timation is critical. In some cases, the prior distribution is very difficult to estimate and MLE
is still an attractive estimation method. As mentioned before, the MAP estimation frame-
work is particularly useful for dealing with sparse data, such as parameter adaptation. For
example, in speaker adaptation, the speaker-independent (or multiple speakers) database can
be used to first estimate the prior distribution [9]. The model parameters are adapted to a
target speaker through a MAP framework by using limited speaker-specific training data as
discussed in Chapter 9.

3.3.  SIGNIFICANCE TESTING

Significance testing is one of the most important theories and methods of statistical infer-
ence. A problem of statistical inference, or, more simply, a statistics problem, is one in
which data that have been generated in accordance with some unknown probability distribu-
tion must be analyzed, and some type of inference about the unknown distribution must be
made. Hundreds of test procedures have developed in statistics for various kinds of hypothe-
ses testing. We focus only on tests that are used in spoken language systems.

The selection of appropriate models for the data or systems is essential for spoken lan-
guage systems. When the distribution of certain sample data is unknown, it, is usua_]ly appro-
priate to make some assumptions about the distribution of the data with a.dlStI'.lbU.[lOl'l
function whose properties are well known. For example, people often use Gaussian d{smbu—
tions to model the distribution of background noise in spoken language sy'stems. One impor-
tant issue is how good our assumptions are, and what the appropnat'e valu‘es of the
parameters for the distributions are, even when we can use the methods in Secm?n 3..2 to
estimate parameters from sample data. Statistical tests are often applied to detem-.une 1f'the
distribution with specific parameters is appropriate to model the sam;.)le fiata.. In th? section,
we describe the most popular testing method for the goodness of distribution fitting — the

x z goodness-of-fit test.
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' Another important type of statistical test
different methods or algorithms for the same
results. To assure that the two systems are ev

perimenters often carefully choose similar or even the exactly same data sets f, :

This is why we refer to this type of statistical test as a paired observations tes(:r Iles"ng‘
spec':ch recogmtlon and speech synthesis, the paired observations test is a very im - In boty
for interpreting the comparison resuits. portant tog)

s is designed to evaluate the e

tasks when there is uncertainty regardip

aluated on the same or similar conditionsg N
ol ex'

xcellence of two

3.3.1. Level of Significance

We now _consider _statistical problems involving a parameter ¢ whose value s unknown byt
must lie in a certain parameter space 2. In statistical tests, we let H, denote the hypothesjg
fhfat @€, and let H, denote the hypothesis that ¢ € , . The subsets Q, and Q, are dis-
joint and Q, UQ, =€, so exactly one of the hypotheses H, and H, must be true, We
must now decide whether to accept H, or H, by observing a random sample X, X
drawn from a distribution involving the unknown parameter ¢ . A problem like this is Calle:!
hypotheses testing. A procedure for deciding whether to accept H, or H, is called a test
procedure or simply a fest. The hypothesis H| is often referred to as the null hypothesis and
the hypothesis H, as the alternative hypothesis. Since there are only two possible decisions,
accepting H, is equivalent to rejecting H, and rejecting H, is equivalent to accepting H,.
Therefore, in testing hypotheses, we often use the terms accepting or rejecting the null hy-
pothesis H, as the only decision choices.

Usually we are presented with a random sample X = (X,,---,X,) to help us in making
the test decision. Let S denote the sample space of n-dimensional random vector X. The test-
ing procedure is equivalent to partitioning the sample space S into two subsets. Onf: subset
specifies the values of X for which one will accept H, and the other subset Spwxﬁes the
values of X for which one will reject H,. The second subset is called the critical region and
is often denoted as C.

Since there is uncertainty associated with the test decision, for each value of ¢E_Q.
we are interested in the probability p(¢) that the testing procedure rejects H,. The function

p(¢) is called the power function of the test and can be specified as follows:

F@)=P(XeCl9)

= is the
For ¢ e Q,, the decision to reject H, is incorrect. Therefore, if .¢ E.Qo ; P(Qﬂfﬁ?al
probability that the statistician will make an incorrect decision (false rejgcuon). Infz i
tests, an upper bound «, (0<a, <1) is specified, and we oply consider testsl of signif
p(#) <, for every value of ¢ ,. The upper bound &, 15 called the leve i sine
cance. The smaller g, is, the less likely it is that the test pfOCEd‘{re,wm.rejegtb ot.he test
@, specifies the upper bound for false rejection, once a hypothesis 18 T ject ﬁins @,
procedure, we can be (1—¢,) confident the decision is correct. In mOSt_aPEJllca c;r 095
set to be 0.05 and the test is said to be carried out at the 0.05 level of significance
level of confidence.

(3.162)
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We‘: deﬁnfe the size & of a given test as the maximum probability, among all the values
of ¢ which satisfy the null hypothesis, of making an incorrect decision.

o= max p®) (3.163)

Once we obtain the value of «, the test procedure is straightforward. First, the statisti-
cian specifies a certain level of significance «, in a given problem of testing hypotheses,
then he or she rejects the null hypothesis if the size o is such thatg < Q.

The size a of a given test is also called the tail area or the p-value corresponding to
the observed value of data sample X because it corresponds to tail area of the distribution.
The hypothesis will be rejected if the level of significance ¢, is such that o, > and
should be accepted for any value of &, <« . Alternatively, we can say the observed value of
X is just significant at the level of significance « without using the level of significance
¢, . Therefore, if we had found that the observed value of one data sample X was just sig-
nificant at the level of 0.0001, while the other observed value of data sample Y was just sig-
nificant at the level of 0.001, then we can conclude the sample X provides much stronger
evidence against /. In statistics, an observed value of one data sample X is generally said
to be statistically significant if the corresponding tail area is smaller than the traditional
value 0.05. For cases requiring more significance (confidence), 0.01 can be used.

A statistically significant observed data sample X that provides strong evidence
against H, does not necessary provide strong evidence that the actual value of ¢ is signifi-
cantly far away from parameter set 2, . This situation can arise, particularly when the size
of random data sample is large, because a test with larger sample size will in general reject
hypotheses with more confidence, unless the hypothesis is indeed the true one.

3.3.2. Normal Test (Z-Test)

Suppose we need to find whether a coin toss is fair or not. Let p be the probability of heads.
The hypotheses to be tested are as follows:

Hy:p=}f

H:pz)

We assume that a random sample size n is taken, and let random variable M denote the
number of times we observe heads as the result. The random variable M has a binomial dis-
tribution B(n, 44) . Because of the shape of binomial distribution, M can lie on either side of
the mean. This is why it is called a typical two-tailed test. The tail area or p-value for the
observed value & can be computed as:

2P(k<M<n) fork>n/2

p={2P0<M<k) fork<n/2 (3.164)
1.0 for k = nf2
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The p-value in Eq. (3.164) can be computed directl
The test procedure will reject H, when p is less than the s
In many situations, the p-value for the dis
tain due to the complexity of the distribution F i
. Fortunately, if isti
sample X has some well-known distribution, th then be done pon Z of

. e test can then be done j
stead. If n is large enough (n>50), a normal test (or Z-test) can be ol

binomial probability. Under H,, the mean and variance for M
Var(M)=n/4. The new random variable Z is defined as,

5| M=n2)-12

.y u.sing the binomig) dist

an t ignificance leve] ¢ .

tribution of data sample X is difﬁcuit 10 ob.
ol

Tibulion_

€ data
ain ip.
used to Approximate a
ae E(M)= nf2 ang

which can be approximated as standard Gaussian distribution N(0,1) under H,. Tne
value can now be cqmputed as p=2P(Z2z) where z is the realized value of Z(;fter M}:s
observed. Thus, H, is rejected if p <a,, where ¢, is the level of significance.

3.3.3. x* Goodness-of-Fit Test

The normal test (Z-test) can be extended to test the hypothesis that a given set of data came
from a certain distribution with all parameters specified. First let’s look at the case of dis-
crete distribution fitting.

Suppose that a large population consists of items of k different types and let p, be the
probability that a random selected item belongs to type i. Now, let g,,...,q, bea set of spe-
cific numbers satisfying the probabilistic constraint (g, 20 for i =1,...,k and 2.-#: =1).
Finally, suppose that the following hypotheses are to be tested:

H,:p=gq fori=l...k

H,: p,#q, foratleast one value of i

Assume that a random sample of size n is to be taken from the given population. For
i=1,...,k, let N, denote the number of observations in the fandom sample which are of
type i. Here, N,,...,N, are nonnegative numbers and > . N =n. Random V@KPJ“
N,,...,N, have a multinomial distribution. Since the p-value for the mulunomlgl dlsmﬂlll-
tion is hard to obtain, instead we use another statistic about N, seswsid Vg » When H, is true, thz
expected number of observations of type i is ng, . In other words, the difference betweenH
actual number of observations N, and the expected number ng; should be small wpen Ho
is true. It seems reasonable to base the test on the differences N, —ng, and to {e{ﬁztl 0
when the differences are large. It can be proved [14] that the following random varia

A= i.(Nr —"qi)z (3-166)

=l ng;

R
converges to the x* distribution with k—1 degrees of freedom as the sample size B
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‘ Ay test. of gogdness—of—ﬁl can be carried out in the following way. Once a level of
significance a, is specified, we can use the following p-value function to find critical point ¢:*

P(A >0)=1-Fp(x=c)=q (3.167)

where F:(x) is the distribution function for »* distribution. The test procedure simply
rejects H, when the realized value 4 is such that A > ¢ . Empirical results show that the o
distribution will be a good approximation to the actual distribution of A as long as the value
of each expectation ng; is not too small (25). The approximation should still be satisfac-
tory if ng, 21.5 fori=1,...,k.

For continuous distributions, a modified y* goodness-of-fit test procedure can be ap-
plied. Suppose that we would like to hypothesize a null hypothesis H, in which continuous
random sample data X,,..., X, are drawn from a certain continuous distribution with all
parameters specified or estimated. Also, suppose the observed values of random sample
Xs..-, X, are bounded within interval 2. First, we divide the range of the hypothesized
distribution into m subintervals within interval Q such that the expected number of values,
say E,, in each interval is at least 5. For i=1,...,k, we let N, denote the number of obser-
vations in the i" subintervals. As in Eq. (3.166), one can prove that the following random
variable 4

E

[

m - 2
A= ZM (3.168)
=

converges to the x? distribution with m—k—1 degrees of freedom as the sample size
n — oo, where k is the number of parameters that must be estimated from the sample data in
order to calculate the expected number of values, E,. Once the x? distribution is estab-
lished, the same procedure can be used to find the critical ¢ in Eq. (3.167) to make test deci-

sions.

Example 3.5

Suppose we are given a random variable X of sample size 100 points and we want to deter-
mine whether we can reject the following hypothesis:

Hy: X ~N(0,1) (3.169)

To perform x> goodness-of-fit test, we first divide the range of X into 10 subintervals.
The corresponding probability falling in each subinterval, the expected number of points
falling in each subinterval and the actual number of points falling in each subintervals [10]
are illustrated in Table 3.1.

* Since x’ pdf is a monotonic function, the test is a one-tail test. Thus, we only need to calculate one tail area.
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Table 3.1 The probability falling in each subinterval of an N(0,1), and 100
expected number of points falling in each subinterval, and the actuaj numb,
in each subinterval [10].

sample POints, lhe
er of points falling

Subinterval I, P(Xel) E =10P(Xel) N

]

[-o0, -1.6] 0.0548 548 2
[-1.6,-1.2] 0.0603 603 9
[-1.2,-0.8] 0.0968 968 6
[-0.8, -0.4] 0.1327 1327 11
[-0.4,0.0] 0.1554 1554 19
[0.0, 0.4] 0.1554 1554 25
[0.4,0.8] 0.1327 1327 17
[0.8,1.2] 0.0968 968 2
(1.2, 1.6] 0.0603 603 6
[-1.6, o] 0.0548 548 3

The value for A can then be calculated as follows:

” _ 2
A:Zﬁ;’ﬂ:w.z%

=1 i

Since A can be approximated as a y* distribution with m—k-1=10~0~1=9 de-
grees of freedom, the critical point ¢ at the 0.05 level of significance is calculated® to be
16.919 according to Eq. (3.167). Thus, we should reject the hypothesis H, because the cal-
culated A is greater than the critical point c.

The ¥ goodness-of-fit test at the 0.05 significance level is in general used to deter-
mine when a hypothesized distribution is not an adequate distribution to use. To accept the
diswtribution as a good fit, one needs to make sure the hypothesized distribution cannot be
rejected at the 0.4 to 0.5 level-of-significance. The alternative is to use the 1 goodness—of—
fit test for a number of potential distributions and select the one with smallest calculated 7"

When all the parameters are specified (instead of estimated), the Kolrpogorov-
Smirnov test [S] can also be used for the goodness-oi-fit test. The Kolmogorov-Smimov test
in general is a more powerful test procedure when the sample size is relatively small.

3.34. Matched-Pairs Test

ms) are 0

In this section, we discuss experiments in which two different methods (or syst® 1 under

be compared to learn which one is better. To assure the two methods are evaluat

6 . . « . live Pmb—
In general, we use a cumulative distribution function table to find the point with specific desired cumula

ability for complicated distributions, like the x* distribution.
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similar conditions, two closely resemble data samples or ideally the same data sample
should be used to evaluate both methods. This type of hypotheses test is called matched-
paired test [5].

3.34.1. The Sign Test

For i=1,...,n, let p, denote the probability that method A is better than method B when
testing on the " paired data sample. We shall assume that the probability p, has the same
value p for each of the n pairs. Suppose we wish to test the null hypothesis that method A is
no better than method B. That is, the hypotheses to be tested have the following form:

Hy:psh

H tp>X

Suppose that, for each pair of data samples, either one method or the other will appear
to be better, and the two methods cannot tie. Under these assumptions, the n pairs represent
n Bemoulli trials, for each of which there is probability p that method A yields better per-
formance. Thus the number of pairs M in which method A yields better performance will
have a binomial distribution B(n, p). For the simple sign test where one needs to decide
which method is better, p will be set to 1/2 . Hence a reasonable procedure is to reject H,, if
M >c, where c is a critical point. This procedure is called a signed test. The critical point
can be found according to

P(M >c)=1-Fy(x=c)=aq, (3.170)

where Fp(x) is the distribution for binomial distribution. Thus, for observed values M >c,
we will reject H,.

334.2. Magnitude-Difference Test

The only information that the sign test utilizes from each pair of data samples, is the sign of
the difference between two performances. To do a sign test, one does not need to obtain a
numeric measurement of the magnitude of the difference between the two performances.
However, if the measurement of magnitude of the difference for each pair is available, a test
procedure based on the relative magnitudes of the differences can be used [11].

We assume now that the performance of each method can be measured for any data
samples. For i=1,...,n, let 4, denote the performance of the method A on the i* pair of
data samples and B, denote the performance of the method B on the i" pair of data sample.
Moreover, we shall let D, =A4,-B,. Since D,,...,D, are generated on n different pairs of
data samples, they should be independent random variables. We also assume that D,,...,D,
have the same distribution. Suppose now we are interested in testing the null hypothesis that
method A and method B have on the average the same performance on the r pairs of data

samples.
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Let u, be the mean of D,. The MLE estimate of p,, is:
n D
l,= ) —
Ho ,2. n G.amy
The test hypotheses are:
Hy,:u,=0
H o u,#0
The MLE estimate of the variance of D, is
2 li (D _ )2
To =gt 3.7
We define a new random variable Z as follows:
Hp
7 =—"r__ 3.1
Op / Jn (.173)

If n is large enough (> 50), Z is proved to have a standard Gaussian distribution
N(0,I). The normal test procedure described in Section 3.3.2 can be used to test H,. This
type of matched-paired tests usually depends on having enough pairs of data samples for the
assumption that Z can be approximated with a Gaussian distribution. It also requires enough
data samples to estimate the mean and variance of the D, .

3.4. INFORMATION THEORY

Transmission of information is a general definition of what we call communication. Claude
Shannon’s classic paper of 1948 gave birth to a new field in information theory that has be-
come the cornerstone for coding and digital communication. In the paper titled “A Mathe-
matical Theory of Communication,” he wrote [21]:

The fundamental problem of communication is that of reproducing at one point
either exactly or approximately a message selected at another point.

Information theory is a mathematical framework for approaching a large class of 'Pf?blf’m;
related to encoding, transmission, and decoding information in a systematic and dlSClPll(;le

way. Since speech is a form of communication, information theory has served as the U et
lying mathematical foundation for spoken language processing.

34.1. Entropy

i : , P amount of
Three interpretations can be used to describe the quantity of information: (1) the Land®
uncertainty before seeing an event, (2) the amount of surprise when seeing an ever
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the amount of information after seeing an event. Although these three interpretations seem
slightly different, they are virtually the same under the framework of information theory.

According to information theory, the information derivable from outcome x, depends
on its probability. If the probability P(x;) is small, we can derive a large degree of informa-
tion, because the outcome that it has occurred is very rare. On the other hand, if the
probability is large, the informaticn derived will be small, because the outcome is well
expected. Thus, the amount of information is defined as follows:

I(x;)=log (3.174)

P(x)
The reason to use a logarithm can be interpreted as follows. The information for two
independent events to occur (where the joint probability is the multiplication of both indi-
vidual probabilities) can be simply carried out by the addition of the individual information
of each event. When the logarithm base is 2, the unit of information is called a bit. This
means that one bit of information is required to specify the outcome. In this probabilistic
framework, the amount of information represents uncertainty. Suppose X is a discrete ran-
dom variable taking value x, (referred to as a symbol) from a finite or countable infinite sam-
ple space S ={x,x,,...,X,...} (referred to as an alphabet). The symbol x, is produced from
an information source with alphabet S, according to the probability distribution of the
random variable X. One of the most important properties of an information source is the
entropy H(S) of the random variable X, defined as the average amount of information (ex-
pected information):

1
P(x,)

H(X)=E[I(X)]= Y, P(x)I(x)= Y, P(x)log = E[-log P(X)] (3.175)

This entropy H(X) is the amount of information required to specify what kind of
symbol has occurred on average. It is also the average uncertainty for the symbol. Suppose
that the sample space S has an alphabet size ||S]| =N . The entropy H(X) attains the maxi-
mum value when the pf has a uniform distribution, i.e.:

P(x,.)=P(xj)=% for all i and j (3.176)

Equation (3.176) can be interpreted to mean that uncertainty reaches its maximum
level when no outcome is more probable than any other. It can be proved that the er.mjogy
H(X) is nonnegative and becomes zero only if the probability function is a deterministic
one, i.e.,

H(X) 2 0 with equality i.f.f. P(x;)=1 for some x; & S (3.177)

There is another very interesting property for the entropy. If we rep]?ce the pf of gen-
erating symbol x, in Eq. (3.175) with any other arbitrary pf, the new value is no smaller than
the original entropy. That is,
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H(X)<E[- log QX)) =~3 P(x,)log 0(x)
S

. G.17

Equation (3.178) has a Very important meanin |
about the data if we misestimate the distribution
Eq. (3.178) occurs if and only if P(x,)=

~[ £.(x)log £, (x)dk < ~[g.(x)log £, (x)ax

| (.179)

with equality occurring if and only if f,(x)=g, (x) Vx.
The proof of Eq. (3.178) follows from the fact lo

] X)<x- ;
quantity must have an non-positive value. A W0 following

O(x;) o)
P(x)log=—"2< ¥ p(x )| =21 _1|=
Zs, x)ogp(xl) Zs, (X‘)[P(xi) 11=0 (3.180)

Based on this property, the negation of the quantity in Eq. (3.180) can be used for the
mc.asurcmcnt of the distance of two probability distributions. Specifically, the Kullback-
Leibler (KL) distance (relative entropy, discrimination, or divergence) is defined as:

[ PX)] P(x,)
KL(P||Q)=E|log=—22 =Y P(x)1 i
PlO) ‘OgQ(X)J )s:, (x) %8 (3.181)

As discussed in Chapter 11, the branching factor of a grammar or language is an im-
portant measure of degree of difficulty of a particular task in spoken language systems. This
relates to the size of the word list from which a speech recognizer or a natural language
processor needs to disambiguate in a given context. According to the entropy definition
above, this branching factor estimate (or average choices for an alphabet) is defined as fol-
lows:

PP(X)= 2" s

PP(X) is called the perplexity of source X, since it describes _how confusmg the
grammar (or language) is. The value of perplexity is equivalent to the size of an lmaﬁl-;hag
equivalent list, whose words are equally probable. The bigger the Perplex{ty. th_e s]way
branching factor. To find out the perplexity of English, Shannon gleitcy o mge;;oil; simi-
[22] to estimate the entropy and perplexity of English words and letters. His met? text hid-
lar to a guessing game where a human subject guesses sequentially the words O ? s of the
den from him, using the relative frequencies of her/his guesses as the es.txma Tj eol
probability distribution underlying the source of the text. Shannon’s perPleXltY;S Chapter
English comes out to be about 2.39 for English letters and 130 for English words.

171 has a detailed description on the use of perplexity for language modeling.
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3.4.2. Conditional Entropy

Now let us consider transmission of symbols through an information channel. Suppose the
input alphabet is X =(x,%,,...,x,), the output alphabet is ¥ =(y,,»,,...,¥,), and the in-
formation channel is defined by the channel matrix M, =P(y, |x,), where 'P( y;|x) is the
conditional probability of receiving output symbol y, when input symbol x, is s’:ent. Figure
3.17 shows an example of an information channel.

X Y
PX) —p P(Y'X) ———

Source Channel

Figure 3.17 Example of information channel. The source is described by source pf P(X) and
the channel is characterized by the conditional pf P(YX).

Before transmission, the average amount of information, or the uncertainty of the in-
put alphabet X, is the prior entropy H(X).

1
H(X)= 2 P(X = x,)logp—()-{;—xl; (3.183)

where P(x,) is the prior probability. After transmission, suppose y, is received; then the
average amount of information, or the uncertainty of the input alphabet A, is reduced to the

following posterior entropy:
HX|Y=y)=—3, P(X=x]Y=y)logP(X =x|¥= v;) (3.184)
X

where the P(x|y,) are the posterior probabilities. Averaging the posterior entropy
H(X | y;)over all output symbols y, leads to the following equation:

HX|V) =Y P¥=y)HX|Y=y)
Y
=-Y P(Y= Y)Y PX=x Y= y)logP(X =x|Y=y)) (3.185)
¥ X

=-Y Y P(X =x,Y = y)log PX =x, |¥=y,)
xr ¥

This conditional entropy, defined in Eq. (3.185), is the average amount of information
or the uncertainty of the input alphabet X given the outcome of the output event Y. Based on
the definition of conditional entropy, we derive the following equation:
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HX,Y)==> Y P(X =x,Y = y,)log P(X = x,Y=y)
X v

=_;Z’P(X =x,Y = y){log P(X = x,) +log P(¥ =ylXx

=x)} (3.186)
=H(X)+H{ | X)
Equation (3.186) has an intuitive meaning — the uncertain
; about t .

ables equals th.e sum of uncertainty about the first variable and :ze co:dit;;:arlandom g
the secgnd variable given the first variable is known. Equations (3.185) and @3 161;1 o o
generalized to random vectors X and Y where each contains several random vari.ab16) s

It can be proved that the chain rule [Eq. (3.16)] applies to entropy. *

H(Xpy X,)= HX, | X, X, ) 4+ HX, LX)+ H(X) (3.187)
Finally, the following inequality can also be proved:
HX|Y,Z)<H(X|Y) (3.188)
With equality i.f.f. X and Z being independent when conditioned on Y. Equation (3.188) ba-
sically confirms the intuitive belief that uncertainty decreases when more information is
known,

3.4.3. The Source Coding Theorem

Information theory is the foundation for data compressing. In this section we describe Shan-
non’s source coding theorem, also known as the first coding theorem. In source coding, we
are interested in lossless compression, which means the compressed information (or sym-
bols) can be recovered (decoded) perfectly. The entropy serves as the upper bound for a
source lossless compression.

Consider an information source with alphabet §={0,1,...,N—1}. The goal of daiz
compression is to encode the output symbols into a string of binary symbols. An interesting
question arises: What is the minimum number of bits required, on the average, to encode the
output symbols of the information source?

Let’s assume we have a source that can emit four symbols {0,1,2,3} with equal prob-
ability P(0) = P(1) = P(2) = P(3)=1/4 . Its entropy is 2 bits as illustrated in Eq. (3.189):

S, 1 189)

H(S)=) P()log, —=2 (3.18

) g;, ())log, B

It is obvious that 2 bits per symbol is good enough to encode this source. A PUSS‘:::
binary code for this source is {00, 01, 10, 11}. It could happen, though some symbos &
more likely than others, for example, P(0)=1/2, P()=1/4, P(2)=1/8, PG) =l -
this case the entropy is only 1.75 bits. One obvious idea is to use fewer bits for Jower V it
that are frequently used and more bits for larger values that are rarely used. To represent
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source we can use a variable-length code {0,10,1 10,111}, where no codeword is a prefix for
the rest and thus a string of 0s and 1s can be uniquely broken into those symbols. The encod-
ing scheme with such a property is called uniquely decipherable (or instantaneous) coding
because as soon as the decoder observes a sequence of codes, it can decisively determine thé
sequence of the original symbols. If we let #(x) be the number of bits (length) used to en-
code symbol x, the average rate R of bits per symbol used for encoding the information
source is:

R=2 r(x)P(x) (3.190)

In our case, R is 1.75 bits as shown in Eq. (3.191):
R=0.5x1+0.25%2+0.125%3+0.125%x3=1.75 (3.191)

Such variable-length coding strategy is called Huffman coding. Huffman coding be-
longs to entropy coding because it matches the entropy of the source. In general, Shannon’s
source coding theorem says that a source cannot be coded with fewer bits than its entropy.
We will skip the proof here. Interested readers can refer to [3, 15, 17] for the detailed proof.
This theorem is consistent with our intuition because the entropy measure is exactly the in-
formation content of the information measured in bits. If the entropy increases, then uncer-
tainty increases, resulting in a large amount of information. Therefore, it takes more bits to
encode the symbols. In the case above, we are able to match this rate, but, in general, this is
impossible, though we can get arbitrarily close to it. The Huffman code for this source offers
a compression rate of 12.5% relative to the code designed for the uniform distribution.

Shannon’s source coding theorem establishes not only the lower bound for lossless
compression but also the upper bound. Let [_x] denote the smallest integer that greater or
equal to x. As in the similar procedure above, we can make the code length assigned to
source output x equal to

I(x) =[-log P(x) | (3.192)
The average length L satisfies the following inequality:
L=Y I(x)P(x)< Y [1-log P(x)] P(x) =1+ H(X) (3.193)

Equation (3.193) means that the average rate R only exceeds the value of entropy by less

than one bit. ‘ )
L can be made arbitrarily close to the entropy by block coding. Instead of encoding

single output symbols of the information source, one can encode each block of'length n.
Let’s assume the source is memoryless, so X,,X,,...,X, are independent. According to Eq.
(3.193), the average rate R for this block code satisfies:

L<1+H(X,,X,,.... X,) =1+ nH(X) (3.194)
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This makes the average number of bits per output symbol, L/n satisfy

limL L < H(X)
n

n—pee

(3.195

In general, Huffman coding arranges the symbols in 5
assigns the bit 0 to the symbol of highest probab)i'lity and u:)erf}: ?ft: is;(;z:sil: ’l; If)FObability,
ceeds the same way for the second highest probability value (which now has a : ; and pro.
iterate. This results in 2.25 bits for the uniform distribution case, which is high ot 10)ang
bits we obtain with equal-length codes. ' 'BRer than the 2

Lempel-Ziv coding is a coding strategy that uses correlation to encode strings of
bols that occur frequently. Although it can be proved to converge to the entropy iso ey
gence rate is much slower [27). Unlike Huffman coding, Lempel-Ziv coding is i.ndeco:;er.
of the distribution of the source; i.e., it needs not be aware of the distribution of lhep:ou:m
before encoding. This type of coding scheme is often referred to as universal encodi;:
scheme.

3.4.4. Mutual Information and Channel Coding

Let’s review the information channel illustrated in Figure 3.17. An intuitively plausible
measure of the average amount of information provided by the random event Y about the
random event X is the average difference between the number of bits it takes to specify the
outcome of X when the outcome of Y is not known and the outcome of Y is known. Murual
information is defined as the difference in the entropy of X and the conditional entropy of X
given 1t

I(X;Y)=H(X)-H(X|Y)
1 1

= ; - P(x,,y.)log————o

2 P(x;)log S X PGny)los s

P(x;) X%
P(x 1 y,) _ P(x,y;) (3.196)
=§;P(x.-,y,-)log—ml)——;;P(xi,y,-)log————},(xi)}p(yi)
s 25D
| P(X)P(Y)
js symmet:

tion between X and Y. I(X;T)

I(X:Y) is referred to as the mutual informa _
T =10 /P(x)P(y) is often referred to as the M

rical; ie., 7(X;¥)=I(Y;X). The quantity P(x,)
tual information between symbol x and y. I(X;Y) is bounded: 3.197)
3.

0<I(X;Y) <min[H(X),H ()] ,
. and Y are n-
I(X;Y) reaches the minimum value (zero) when the random variables X

dependent.
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Mutual information represents the information obtained (or the reduction in uncer-
tainty) through a channel by observing an output symbol. If the information channel is
noiseless, the input symbol can be determined definitely by observing an output symbol. In
this case, the conditional entropy H(X1Y) equals zero and it is called a noiseless channel. We
obtain the maximum mutual information /(X; ¥) = H(X). However, the information channel
is generally noisy so that the conditional entropy H(X1Y) is not zero. Therefore, maximizing
the mutual information is equivalent to obtaining a low-noise information channel, which
offers a closer relationship between input and output symbols.

14
X=0 \‘ P Y=0
X=1 F » Y=1

Figure 3.18 A binary channe! with two symbols.

Let’s assume that we have a binary channel, a channel with a binary input and output
as shown in Figure 3.18. Associated with each output are a probability p that the output is
correct, and a probability (1— p) that it is not, so that the channel is symmetric.

If we observe a symbol Y =1 at the output, we don’t know for sure what symbol X
was transmitted, though we know P(X =1|Y=1)=p and P(X=0|Y=1)=(-p), so
that we can measure our uncertainty about X by its conditional entropy:

H(X|Y=1)=-plog p-(1-p)log(i-p) (3.198)

If we assume that our source X has a uniform distribution, H(X |Y)=H(X|Y=1) as
shown in Eq. (3.198) and H(X) = 1. The mutual information between X and ¥ is given by

I(X,Y)=H(X)-H(X|Y)=1+plog p+(1- p)log(l- p) (3.199)

It measures the information that ¥ carries by about X. The channel capacity C is the maxi-
mum of the mutual information over all distributions of X. That is,

C =max I(X;Y) (3.200)

PLx)

The channel capacity C can be attained by varying the distribution of the information
source until the mutual information is maximized for the channel. The channel capacity C
can be regarded as a channel that can transmit at most C bits of information per unit of time.
Shannon’s channel coding theorem says that for a given channel there exists a code that
permits error-free transmission across the channel, provided that R < C, where R is the rate
of the communication system, which is defined as the number of bits per unit of time being
transmitted by the communication system. Shannon’s channel coding theorem states the fact
that arbitrarily reliable communication is possible at any rate below channel capacity: .

Figure 3.19 illustrates a transmission channel with the source encoder and destmapon
decoder. The source encoder will encode the source symbol sequence X = X;,X,,..-,X, nto
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channel input sequence y,y,,...,y,. The destination decoder tak
Z,,2,,...,2;, from the channel and converts

X =X,,X,,...,X,. The goal of this transmission i

P(X =x) asymptotically close to 1 while keep;
. ’ Ping the compression rati =

possible. Shannon’s source-channel coding theorem (alsopreferr::dﬁtlcil (;sms;_, s 3 large o

annon’s Secongd

coding theorem) says that it is possible to find a
: . n encoder- i
information channel, provided that Rx A(.x )<C. errdecoder pair of rate fora Noisy

- es the outpy
It into the estimates of the s}:) uicieQuence
Outpyt

§ to make the probability of correct decgg:
ng

X 3 X950y X,
Source 1723000 %y Yis¥s
’ ’ ,...,y
P(x) Encoder '
Channe]
P(aly)
Enfzv--,f,. 215233244, 2;
—g Decoder <~

Figure 3.19 Transmission of information through a noisy channel [15].

Because of channel errors, speech coders need to provide error correction codes that
will decrease the bit rate allocated to the speech. In practice, there is a tradeoff between the
bit rate used for source coding and the bit rate for channel coding. In Chapter 7 we will de-

scribe speech coding in great detail.

3.5. HISTORICAL PERSPECTIVE AND FURTHER READING

The idea of uncertainty and probability can be traced all the way back to abogt 3590 ch
when games of chance played with bone objects were developed in Egypt. F:ubxcal dlC; \:ijn
markings virtually identical to modern dice have been found in Egyptian tombs ;t 0%
around 2000 B.C. Gambling with dice played an important part in the early d"'velg"“fbecn
probability theory. Modern mathematical theory of probability is bel{eved to a:(1601'
started by the French mathematicians Blaise Pascal (1623'166_2) aqd Pierre -F;r:::memati-
1665) when they worked on certain gambling problems involving dlge. Engl(ljs tablished 2
cian Thomas Bayes (1702-1761) was first to use probabilit}’.inducn"c‘y an ;ayes’ theo-
mathematical basis for probability inference, leading to what 15 now knownbasn widely 3
rem. The theory of probability has developed steadily since then and has 9¢¢
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plied in diverse fields of study. There are many good textbooks on probability theory. The
book by DeGroot [6] is an excellent textbook for both probability and statistics which covers
all the necessary elements for engineering majors. The authors also recommend [14], [19],
or [24] for interested readers.

Estimation_theory is a basic subject in statistics covered in textbooks. The books by
DeGroot '[6]. Wilks [26] an{i Hoel [13] offer excellent discussions of estimation theory.
They a}l mc.:lude con?prehen‘swe treatments for maximum likelihood estimation and Bayes-
ian estimation. Maximum likelihood estimation was introduced in 1912 by R. A. Fisher
(1890-1962‘) anfi has been applied to various domains. It is arguably the most popular pa-
rameter estimation method due to its intuitive appeal and excellent performance with large
training samples. The EM algorithm in Chapter 4 and the estimation of hidden Markov
models in Chapter 8 are based on the principle of MLE. The use of prior distribution in
Bayesian estimation is very controversial in statistics. Some statisticians adhere to the
Bayesian philosophy of statistics by taking the Bayesian estimation view of the parameter
® having a probability distribution. Others, however, believe that in many problems @ is
not a random variable but rather a fixed number whose value is unknown. Those statisticians
believe that a prior distribution can be assigned to a parameter ® only when there is exten-
sive prior knowledge of the past; thus the non-informative priors are completely ruled out.
Both groups of statisticians agree that whenever a meaningful prior distribution can be ob-
tained, the theory of Bayesian estimation is applicable and useful. The books by DeGroot [6]
and Poor [20] are excellent for learning the basics of Bayesian and MAP estimations. Bayes-
ian and MAP adaptation are particularly powerful when the training samples are sparse.
Therefore, they are often used for adaptation where the knowledge of prior distribution can
help to adapt the model to a new but limited training set. The speaker adaptation work done
by Brown et al. [2] first applied Bayesian estimation to speech recognition and [9] is another
good paper on using MAP for hidden Markov models. References [4], [16] and [14] have
extensive studies of different conjugate prior distributions for various standard distributions.
Finally, [1] has an extensive reference for Bayesian estimation.

Significance testing is an essential tool for statisticians to interpret all the statistical
experiments. Neyman and Pearson provided some of the most important pioneering work in
hypotheses testing [18]. There are many different testing methods presented in most statis-
tics books. The x* test, invented in 1900 by Karl Pearson, is arguably the most widely used
testing method. Again, the textbook by DeGroot [6] is an excellent source for the basics of
testing and various testing methods. The authors recommend [7] as an interesting book that
uses many real-world examples to explain statistical theories and methods, particularly the
significance testing.

Information theory first appeared in Claude Shannon's historical paper: A Mathemati-
cal Theory of Communication [21]. In it, Shannon, analyzed communication as the transmis-
sion of a message from a source through a channel to a receiver. In order to solve the
problem he created a new branch of applied mathematics — information and coding theory.
IEEE published a collection of Shannon’s papers [23] containing all of his published works,
as well as many that have never been published. Those published include his classic papers
on information theory and switching theory. Among the unpublished works are his once-
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secret wartime reports, his Ph.D. thesis on population genetics, yp
memoranda, and a paper on the theory of juggling. The textbook by M
lent for learning all theoretical aspects of information and coding theory. Howeyer
be out of print now. Instead, the books by Hamming [12] and Cover [3] are two ¢ :r, 1t migp
references for information and coding theory. Finally, F. Jelinek’s Statisticq] M:Z"t grea
Speech Recognition [15] approaches the speech recognition problem from an infonzds.for
theoretic aspect. It is a useful book for people interested in both topics. Aon-

published p

ell
CEliece [17) Lk

18 exce).
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CHAPTER 4

Pattern Recognition

S poken language processing relies heavily on
pattern recognition, one of the most challenging problems for machines. In a broader sense,
the ability to recognize patterns forms the core of our intelligence. If we can incorporate the
ability to reliably recognize patterns in our work and life, we can make machines much eas-
ier to use. The process of human pattern recognition is not well understood.

Due to the inherent variability of spoken language patterns, we emphasize the use of
statistical approaches in this book. The decision for pattern recognition is based on appropri-
ate probabilistic models of the patterns. This chapter presents several mathematical funda-
mentals for statistical pattern recognition and classification. In particular, Bayes’ decision
theory and estimation techniques for parameters of classifiers are introduced. Bayes’ deci-
sion theory, which plays a central role for statistical pattern recognition, introduces the con-
cept of decision-making based on both posterior knowledge obtained from specific
observation data, and prior knowledge of the categories. To build such a classifier or predic-
tor, it is critical to estimate prior class probabilities and the class-conditional probabilities

for a Bayes’ classifier.
133
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Supervised learning has class information for the data. Only the probabiii
needs to be learned. Maximum likelihood estimation (MLE) and maxp o o .
ability estimation (MAP) that we discussed in Chapter 3 are two molsr:um Posterior prop.
Both MLE and MAP aim to maximize the likelihood function. The MLEpOVYerf'ul methods
pecessarily minimize the recognition error rate. Various discriminant estimzz’::)enon i
lnFrOC?uced for that purpose. Maximum mutual information estimation (MMIél)rPelhOds B
criteria to achieve maximum model separation (the model for the correct class isls i
rated from other competing models) instead of likelihood criteria. The MMIE c‘:/ifll'sepg-
one step closer but still is not directly related to minimizing the error rate. Other d?s'l‘:in y
nant estimation methods, such as minimum error-rate estimation, use the ultimate goalm (;f

pattern recognition — minimizing the classification errors. Neural networks are one class of
discriminant estimation methods.

tic structype

The EM algorithm is an iterative algorithm for unsupervised learning in which class
information is unavailable or only partially available. The EM algorithm forms the theoreti-
cal basis for training hidden Markov models (HMM) as described in Chapter 8. To better
understand the relationship between MLE and EM algorithms, we first introduce vector
quantization (VQ), a widely used source-coding technique in speech analysis. The well-
known k-means clustering algorithm best illustrates the relationship between MLE and the
EM algorithm. We close this chapter by introducing a powerful binary prediction and re-
gression technique, classification and regression trees (CART). CART represents an impor-
tant technique that combines rule-based expert knowledge and statistical leaming.

4.1. BAYES’ DECISION THEORY

Bayes’ decision theory forms the basis of statistical pattern recognition. The theory is based
on the assumption that the decision problem can be specified in probabilistic terms and that
all of the relevant probability values are known. Bayes’ decision theory can be viewed as2
formalization of a common-sense procedure, i.e., the aim to achieve mlmmum-grror-ra:
classification. This common-sense procedure can be best observed in the following €&
world decision examples.

Consider the peoblcm of making predictions for the stock markel We use the E:;:V
Jones Industrial average index to formulate our example, where we have to decide KB o
Tow’s Dow Jones Industrial average index in one of the three categories (events): Up: Zate:
ot Unchanged. The available information is the probability function P(w) of the “‘2'63‘:) Wi
Bories. The variable @ is a discrete random variable with the value ©= l('d =e1’m; il
row's Ds\? t;:b‘l“y P(w) a_prior probability, since it reflects priot kx;ow T Son e
Probability uF:S Industnal. index. If we have to make a dec1sxo-n base f;nz’ o, with e

highest prior prczsog,tl})lausxble decision may be made by selecting the ¢ alsw aysl o
same decision eve; :h“y P(®,) . This decision is unreasonable, in that We al dustrial in0*
Changes wiy possibl ough we know that all three categories of DOW Jones In ne foderdh
unds interest rage o Y appear. If we are given further observable data, S}lCh as e 2 COF

r the jobless rate, we can make a more informed decision- Letx
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tinuous random variable whose value is the federal-fund interest rate, and £, (x|®) be a
class-conditional pdf For simplicity, we denote the pdf Jow(x|@) as p(x [co.)xlf)where i=1
2, 3 unless there is ambiguity. The class-conditional pfobability density fu'nction is often,
referred to as the likelihood function as well, since it measures how likely it is that the un-
derlying parametric model of class @, will generate the data sample x. Since we know the
prior probability P(w,) and class-conditional pdf p(x|@,), we can compute the conditional
probability P(w, | x) using Bayes’ rule:

p(x|w)P(w,)

P(w, | x)= e

@4.1)

3
where p(x) =Y p(x|®)P(®,).

i=|
The probability term in the left-hand side of Eq. (4.1) is called the posterior probabil-
ity as it is the probability of class w; after observing the federal-funds interest rate x. An
intuitive decision rule would be choosing the class @, with the greatest posterior probabil-
ity. That is,

k =argfna.x P(w |x) 4.2)

In general, the denominator p(x) in Eq. (4.1) is unnecessary because it is a constant term
for all classes. Therefore, Eq. (4.2) becomes

k =argmax P(@), | x) =argmax p(x | @) P(@)) (4.3)

The rule in Eq. (4.3) is referred to as Bayes’ decision rule. It shows how the observed
data x changes the decision based on the prior probability P(w,) to one based on the poste-
rior probability P(w, | x) . Decision making based on the posterior probability is more reli-
able, because it employs prior knowledge together with the present observed data. As a
matter of fact, when the prior knowledge is non-informative ( P(@,) = P(@,) = P(@,;) =1/3),
the observed data fully control the decision. On the other hand, when observed data are am-
biguous, then prior knowledge controls the decision. There are many kinds of decision rules
based on posterior probability. Our interest is to find the decision rule that leads to minimum

overall risk, or minimum error rate in decision.

4.1.1. Minimum-Error-Rate Decision Rules

Bayes’ decision rule is designed to minimize the overall risk involved in making a decision.
Bayes’ decision based on posterior probability P(w, | x) instead of prior probability P(w,)
is a natural choice. Given an observation x, if P(@, | x) 2 P(®, |x) for all i#k, we can de-
cide that the true class is @, . To justify this procedure, we show such a decision resuits in

minimum decision error.
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Let Q={a@,..0,} be the finite set of 5 possible categories 1 be pred:
A={5,,...,5,} be a finite set of 7 possible decisions. Let /(5 @,) be the losir:dm-d ang
curred for making decision &, when the true class is @, . Using the prior pmbab'lll-nchon in.
and class-conditional pdf p(x|®@,), the posterior probability P(g, | x) is co‘n;ng(Ew,

€¢ b

Bayes’ rule as shown in Eq. (4.1). Since the posterior probability P(a)j [ %) is the prob

that the true class is @; after observing the data x, the expected loss associated wip abil‘ily
decision 9, is: Making
R, x)= D 1(8,|0))P(®, ] %) "

= :

In decision-theoretic terminology, the above expression is called conditiong| risks
The overall risk R is the expected loss associated with a given decision rule, The decision
rule is employed as a decision function &(x) that maps the data x to one of the decisions
A={5,,...,5,}. Since R(J, | x) is the conditional risk associated with decision 8, the over.
all risk is given by:

R= .J: R(6(x)| x)p(x)dx (45)

If the decision function 8(x) is chosen so that the conditional risk R(&(x)|x)is minimizd
for every x, the overall risk is minimized. This leads to the Bayes’ decision rule: To mini-
mize the overall risk, we compute the conditional risk shown in Eq. (4.4) for i=1,..,/and
select the decision &, for which the conditional risk R(&,]x) is minimum. The resulting
minimum overall risk is known as Bayes’ risk that has the best performance possible.

The loss function /(5 | @, ) in the Bayes’ decision rule can be defined as:

0 i=y
I(6,|a;,)= iy j=ly,s (46)
1 izj
Thls _loss function assigns no loss to a correct decision where the true class is @ & the
decision is §;, which implies that the true class must be @, . It assigns a unit loss 103 er;
ror where i # j; i.e., all errors are equally costly. This type of loss function is known

; . . i s
Symmetrl‘cal or zero-one loss function. The risk corresponding to this loss function eg¥
the classification error rate, as shown in the following equation.

R@ %)= 318, |0)P(@, | ) =Y P(e, | x)
J= Jxi ! (4'7)
= ;mm, |x)=P(e, | x) =1~ P(w, | x)
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Here P(®, | x) is the conditional probability that decision &, is correct after observing the
data x. Therefore, in order to minimize classification error rate, we have to choose the ﬁeci-
sion of class / that maximizes the posterior probability P(w, | x). Furthermore, since p(x) s
a constant, the decision is equivalent to picking the class i that maximizes p’(xla).)P(w)

The Bayes’ decision rule can be formulated as follows: ' .

5(x)=arg:nax P(®, | x) = arg max P(x | ®,)P()) 48)

This decision rule, which is based on the maximum of the posterior probability
P(w, | x), is called the minimum-error-rate decision rule. It minimizes the classification
error rate. Although our description is for random variable x, Bayes’ decision rule is appli-
cable to multivariate random vector x without loss of generality.

A pattern classifier can be regarded as a device for partitioning the feature space into
decision regions. Without loss of generality, we consider a two-class case. Assume that the
classifier divides the space R into two regions, R, and R,. To compute the likelihood of
errors, we need to consider two cases. In the first case, x falls in R, , but the true class is @,.
In the other case, x falls in R, , but the true class is @, . Since these two cases are mutuany
exclusive, we have

P(error)= P(xe R,,0,)+ P(xe R,,w,)
=P(xe R, |0,)P(w,)+P(xe R, |w)P(w,) 4.9)

= Lx. P(x| ,)P(@,)dx+ j% P(x| @,)P(®,)dx

Figure 4.1 illustrates the calculation of the classification error in Eq. (4.9). The two
terms in the summation are merely the tail areas of the function P(x|w,)P(®,). It is clear

. pixlo,) Pe,)
optimal
decision [

boundary

Pplxlw) P(w) \

decision
boundary

® : ®,
Figure 4.1 Calculation of the likelihood of classification error [22]. The shaded area represents
the integral value in Eq. (4.9).
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that this decision boundary is not optimal. If we move the decisiop b
the left, so that the decision is made to choose the class i based o
of P(x|®,)P(®,), the tail integral area P(error) becomes minimu
decision rule.

oundary 3 Jigge bit 1o
n the_maximum value
m, which is he Bayey

4.1.2. Discriminant Functions

The decision problem above can also be viewed as a pattern classification probler, wh
unknown data x' are classified into known categories, such as the classification of sou;:lz
into phonemes using spectral data x. A classifier is designed to classify data x into § catego-
ries by using s discriminant functions, d,(x), computing the similarities between the un-
known data x and each class @; and assigning x to class @, if

d,(x)>d(x) Vizj .10)

This representation of a classifier is illustrated in Figure 4.2.

d (x)
*
d,(x)
X,
MAX —0 8(x)
X4
d(x)
" ision
Feature Discriminant Maximum Decis!
Vector Function Selector

Figure 4.2 Block diagram of a classifier based on discriminant functions [22]-

' olassifies
A Bayes’ classifier can be represented in the same way. Based on the Baye_;ir‘iiazses the
unknown data x are classified on the basis of Bayes’ decision rule, whlctff_m; is based 01
conditional risk R(, | x) . Since the classification decision of a pattern class! :minan[ func-
the maximum discriminant function shown in Eg. (4.10), we define our s
tion as:

d,(x) =~R(3, | x)

@11

! " 3 . .
Assuming x is a d-dimensional vector.
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As such.. tpe maximum discriminant function corresponds to the minimum conditional risk.
In the minimum-error-rate classifier, the decision rule is to maximize the posterior probabil-
ity P(@, | x) . Thus, the discriminant function can be written as follows:

d'(x) = P(a)'_ |x)= P(Xl(l),.)P(a)‘,) - :p(x l(D,)P((I),-)
p(x) Zp(xla)j)P(a)j)

/=l

(4.12)

There is a very interesting relationship between Bayes’ decision rule and the hypothe-
ses testing method described in Chapter 3. For a two-class pattern recognition problem, the
Bayes’ decision rule in Eq. (4.2) can be written as follows:

px|w)P(a)” p(x|w,)P(w,) (4.13)

FA VE

Eq. (4.13) can be rewritten as:

o
sy - 2x10) > P(@,) .
= P(x|0) < P@) @19

The term ¢(x) is called likelihood ratio and is the basic quantity in hypothesis testing [73].
The term P(w,)/P(®,) is called the threshold value of the likelihood ratio for the decision.
Often it is convenient to use the log-likelihood ratio instead of the likelihood ratio for the
decision rule. Namely, the following single discriminant function can be used instead of

d,(x) and d,(x) for:

d(x)=log #(x) =log p(x | @)~ log p(x|®,)  log P(®,)—log P(w,) 4.15)

FA VE

As the classifier assigns data x to class @, the data space is divided into s regions,
9‘;’,9(‘;,...,9(;‘ , called decision regions. The boundaries between decision regions are called
decision boundaries and are represented as follows (if they are contiguous):

d(x)=d,(x) i#j (4.16)

For points on the decision boundary, the classification can go either way. For a Bayes’ clas-
sifier, the conditional risk associated with either decision is the same and how to break the
tie does not matter. Figure 4.3 illustrates an example of decision boundaries and regions for
a three-class classifier on a scalar data sample x.
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p(xlo,) P(w,)

p(xlo, ) P(wﬁ-\ / P(xla, ) P(a,)

Figure 4.3 An example of decision boundaries and regions. For simplicity, we use scalar vari-
able x instead of a multi-dimensional vector [22].

4.2, How To CONSTRUCT CLASSIFIERS

In the Bayes’ classifier, or the minimum-error-rate classifier, the prior probability P(w)
and class-conditional pdf p(x|w,) are known. Unfortunately, in pattern recognition, we
rarely have complete knowledge of class-conditional pdfs and/or prior probability. They
often must be estimated or learned from the training data. In practice, the estimation of the
prior probabilities is relatively easy. Estimation of the class-conditional pdf is more compli-
cated. There is always concern to have sufficient training data relative to the tractability of
the huge dimensionality of the sample data x. In this chapter we focus on estimation meth-
ods for the class-conditional pdf.

The estimation of the class-conditional pdfs can be nonparametric or parametric. In
nonparametric estimation, no model structure is assumed and the pdf is directly estimatgd
from the training data. When large amounts of sample data are available, nonparametr
learning can accurately reflect the underlying probabilistic structure of the training d"f“‘
However, available sample data are normally limited in practice, and parametric learing
can achieve better estimates if valid model assumptions are made. In parametric leaminé,
some general knowledge about the problem space allows one to parameterize the class-
conditional pdf, so the severity of sparse training data can be reduced significantly. Suppost
the pdf p(x]®,)is assumed to have a certain probabilistic structure, such as the Gaussi®®

pdfin such cases, only the mean vector p, (or mean g,) and covariance matrix Z; (O V&
ance o) need to be estimated,
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Whe.n.the obser.ved data x only takes discrete values from a finite set of N values, the
F:lass-condlth.n%\] pdfis gften assumed nonparametric, so there will be N -1 free parameters
in the prf;babnhty function p(x]w,).” When the observed data x takes continuous values,
pararpf:mc appro'ach'es are usually necessary. In many systems, the continuous class-
conditional pdf (likelihood) p(x |®,) is assumed to be a Gaussian distribution or a mixture
of Gaussian distributions.

In pattern recognition, the set of data samples, which is often collected to estimate the
paramete_rs of the recognizer (including the prior and class-conditional pdf), is referred to as
the training set. In con'trast to the training set, the testing set is referred to the independent
set of data samples, which is used to evaluate the recognition performance of the recognizer.

For parameter estimation or learning, it is also important to distinguish between super-
vised learning and unsupervised learning. Let’s denote the pair (x,w) as a sample, where x
is the observed data and @ is the class from which the data x comes. From the definition, it
is clear that (x,®) are jointly distributed random variables. In supervised learning, @, in-
formation about the class of the sample data x is given. Such sample data are usually called
labeled data or complete data, in contrast to incomplete data where the class information @
is missing for unsupervised learning. Techniques for parametric unsupervised leaming are
discussed in Section 4.4.

In Chapter 3 we introduced two most popular parameter estimation techniques —
maximum likelihood estimation (MLE) and maximum a posteriori probability estimation
(MAP). Both MLE and MAP are supervised learning methods since the class information is
required. MLE is the most widely used because of its efficiency. The goal of MLE is to find
the set of parameters that maximizes the probability of generating the training data actually
observed. The class-conditional pdf is typically parameterized. Let ®, denote the parameter
vector for class i. We can represent the class-conditional pdf as a function of ®, as
p(x|@,,®,). As stated earlier, in supervised leamning, the class name @, is given for each
sample data in training set {X,,X,,...,X, }. We need to make an assumption’ that samples in
class @, give no information about the parameter vector ®, of the other class @, . This
assumption allows us to deal with each class independently, since the parameter vectors for
different categories are functionally independent. The class-conditional pdf can be rewritten
as p(x|®), where <D={¢,,<D,,...,<D,,}. If a set of random samples {X,X,,...,X,}is
drawn independently according to a pdf p(x|®), where the value of the parameter D is
unknown, the MLE method described in Chapter 3 can be directly applied to estimate @ .

Similarly, MAP estimation can be applied to estimate @ if knowledge about a prior
distribution is available. In general, MLE is used for estimating parameters from scratch
without any prior knowledge, and MAP estimation is used for parameter adaptation where
the behavior of a prior distribution is known and only a small amount of adaptation data is
available. When the amount of adaptation data increases, MAP estimation converges to

MLE.

* Since all the probabilities need to add up to one. .
* This assumption is only true for non-discriminative estimation. Samples in class @, may affect parameter vector

®, of the other classes in discriminative estimation methods as described in Section 4.3
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4.2.1. Gaussian Classifiers

A Gaussian classifier is a Bayes’ classifier where class-conditional probabili

p(x|w,) for each class @, is assumed to have a Gaussian distribution: v ensity

IS SRR B I

plixlw)= (271:),//2[2"”2 exp 2 (x—) I (x ul):’ (4.17)

As discussed in Chapter 3, the parameter estimation techniques are well suited for th
Gaussian family. The MLE of the Gaussian parameter is just its sample mean and varian e
(or co-variance matrix). A Gaussian classifier is equivalent to the one using a quadratic d;:e
criminant function. As noted in Eq. (4.12), the discriminant function for a Bayes’ decisios-
rule is the posterior probability p(®, | x) or p(x|®,)P(®,). Assuming p(x|@,) isa mult:
variate Gaussian density as shown in Eq. (4.17), a discriminant function can be written g
follows:

d,(x) = log p(x| w,)P(w,)

1
= =) 7 (x= )+ log P(a),)-%log IZ| —%]og27r (4.18)

If we have a uniform prior P(®,), it is clear that the above discriminant function
d,(x) is a quadratic function. Once we have the s Gaussian discriminant functions, the deci-

sion process simply assigns data x to class @, if

J =argmax d,(x) (4.19)
i

When all the Gaussian pdfs have the same covariance matrix (Z; =Z fori=12,...5)
the quadratic term x‘Z~'x is independent of the class and can be treated as a constant. Thus
the following new discriminant function ,(x) can be used [22]:

d(x)=ax+c, (420
where a, =37y, and ¢, =—Lp!E 'y, +log P(@,). d,(x)in Eq. (4.20) is a lincar discrim;'
nant function. For linear discriminant functions, the decision boundaries are hYPerPla::c_'
For the two-class case (@, and @,), and assuming that data sample X is @ real random
tor, the decision boundary can be shown to be the following hyperplane:

< . . B
The Gaussian distribution may include a mixture of Gaussian pdfs.
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Aeob=0 4.21)
where
A =}:-l(p'| -I,) 4.22)
and
L (1 — 1) log[P(w, /w, ]
b=att)- 5 423
2 T T G R ) @23)

Figure 4.4 shows a two dimensional decision boundary for a two-class Gaussian classifier
with the same covariance matrix. Please note that the decision hyperplane is generally not
orthogonal to the line between the means 1, and p,, although it does intersect that line at
the point b, which is halfway between #, and p,. The analysis above is based on the case
of uniform priors ( p(®@,) = p(®,) ). For nonuniform priors, the decision hyperplane moves
away from the more likely mean.

2 :

/ decision boundary

Figure 4.4 Decision boundary for a two-class Gaussian classifier. Gaussian dieribut_ions for
the two categories have the same covariance matrix X. Each ellipse represents the region with
the same likelihood probability [22].
Finally, if each dimension of random vector X is statistically independer?t anc.i ha.s the
same variance 0°, i.e., £, =%, =0l Figure 4.4 becomes Figur? 4.5. The ellipse in Figure
4.4 becomes a circle because the variance G~ is the same for all dimensions [22].
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Figure 4.5 Decision boundary for a two-class Gaussian classifier. Gaussian distributions for
the two categories have the same covariance matrix 0l . Each circle represents the region
with the same likelihood probability [22].

4.2.2. The Curse of Dimensionality

More features (higher dimensions for sample x) and more parameters for the class-
conditional pdf p(x|®) may lead to lower classification error rate. If the features are statis-
tically independent, there are theoretical arguments that support better classification per-
formance with more features. Let us consider a simple two-class Gaussian classifier.
Suppose the prior probabilities p(w,) are equal and the class-conditional Gaussian pdfs
P(x|K,,Z) share the same covariance matrix . According to Eqs. (4.9) and (4.21), the
Bayes’ classification error rate is given by:

P(error) =2 o P(x]@,)P(e,)dx

[

=2f "u_le'ﬂﬁexp[—%(x—u,)'fl(x—g)] ax (4.24)

v A’ (x=b)=0 (21)

-k e

where 7 =./(y, —p,) =" (1, —1,) . When features are independent, the covariance mamx

becomes a diagonal one. The following equation shows that each independent feature helps
to reduce the error rate:’

5

When the means of a feature
Bayes’ error. Nonetheless,
an additional independent

the
for the two classes are exactly the same, adding such a feature does not reduce ;

f"cc"“ﬁ“g to Eq. (4.25), the Bayes’ error cannot possibly be increased by incorporsté
eature,
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i=l g,

& =ty Y
r= Z( 1 2/] 45

where 4, and p., are the i" -dimension of mean vectors W, and p, respectively.
Unfortunately, in practice, the inclusion of additional features may lead to worse clas-
sification results. This paradox is called the curse of dimensionality. The fundamental issue,
called trainability, refers to how well the parameters of the classifier are trained from the
limited training samples. Trainability can be illustrated by a typical curve-fitting (or regres-
sion) problem. Figure 4.6 shows a set of eleven data points and several polynomial fitting
curves with different orders. Both the first-order (linear) and second-order (quadratic) poly-
nomials shown provide fairly good fittings for these data points. Although the tenth-order
polynomial fits the data points perfectly, no one would expect such an under-determined
solution to fit the new data well. In general, many more data samples would be necessary to
get a good estimate of a tenth-order polynomial than of a second-order polynomial, because
reliable interpolation or extrapolation can be attained only with an over-determined solution.

Figure 4.6 Fitting eleven data points with polynomial functions of different orders [22].

Figure 4.7 shows the error rates for two-phonemes (/ae/ and /ih/) classification whc':re
two phonemes are modeled by mixtures of Gaussian distributions. The parameter_s Of. mix-
tures of Gaussian are trained from a varied set of training samples via maximum likelihood
estimation. The curve illustrates the classification error rate as a function of the number of
training samples and the number of mixtures. For every curve a§sociated with' a finite num-
ber of samples, there are an optimal number of mixtures. This lllg§uates t_he importance of
trainability: it is critical to assure there are enough samples for training an.mcreased number
of features or parameters. When the size of training data is fixed, increasing the number of
features or parameters beyond a certain point is likely to be counterproductive. .

When you have an insufficient amount of data to estimate the para‘.mete‘:rs, some sim-
plification can be made to the structure of your models. In general, the estimation for higher-
order statistics, like variances or co-variance matrices, requires more data than 'that for
lower- order statistics, like mean vectors. Thus more attention often is paid to dealing with
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n
the estimation of covariance matrices. Some frequently used heuristics for
butions include the use of the same covariance matrix for all mixture com
agonal covariance matrix, and shrinka

. ) ge (also referred to ag regulari
analysis), where the covariance matrix js interpolated with the constant
[23, 50].

Gaussiap distrj.
ponents [77]' dic
zed discrimingp
covariance may,

N
' 2 NUMBER OF
10 SAMPLES,n

S0

ERROR
RATE

NUMBER OF MIXTURES, m

Figure 4.7 Two-phoneme (/ae/ and /ih/) classification results as a function of the number of
Gaussian mixtures and the number of training samples,

4.2.3. Estimating the Error Rate

Estimating the error rate of a classifier is important. We want to see whether the classifier is
good enough to be useful for our task. For example, telephone applications show that some
minimum accuracy is required before users would switch from using the t9uch-tone to the
speech recognizer. It is also critical to compare the performance of a classifier (a]g_onﬂ@
against an alternative. In this section we deal with how to estimate the true classification
error rate, .

One approach is to compute the theoretic error rate from the parametrfc model as
shown in Eq. (4.24). However, there are several problems with this approach. First, suqh_an
approach almost always under-estimates, because the parameters estimated from the tralfﬂﬂtg
samples might not be realistic unless the training samples are representative and sufﬁcw;i.-
Second, all the assumptions about models and distributions might be severel).' wmnge:d 4
nally, it is very difficult to compute the exact error rate, as in the simple case illustrat
Eq. (4.24), o

Instead, you can estimate the error rate empirically. In general, the recognition t‘;‘ﬂbe
Tate on the training set should be viewed only as a lower bound, because the estimate ¢& -
made to minimize the error rate on the training data. Therefore, a better estimate of the
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ognition performance should be obtained on an independent test set. The question now is
how representative is the error rate computed from an arbitrary independent test set. The
common process of using some of the data samples for design and reserving the rest for test
is called the holdout or H method.

Suppose the true but unknown classification error rate of the classifier is p, and one
observes that k out of n independent randomly drawn test samples are misclassified. The
random variable K should have a binomial distribution B(n, p) . The maximum likelihood
estimation for p should be

.k
D z (4.26)
The statistical test for binomial distribution is discussed in Chapter 3. For a 0.05 significance

level, we can compute the following equations to getthe range (p,, p,):

2P(k<sm<n)= 22(;](17. )" (1-p,)™ =005 when k> np, 4.27)
m=k
k
2P(0<m<k)= 22( i )( p) (1-p,)"" =005 whenk<np, (4.28)
m=0 m

Equations (4.27) and (4.28) are cumbersome to solve, so the normal test described in
Chapter 3 can be used instead. The null hypothesis H,, is

Hy:p=p
We can use the normal test to find the two boundary points p, and p, at which we would
not reject the null hypothesis H,,.

The range (p,, p,) is called the 0.95 confidence intervals because one can be 95%
confident that the true error rate p falls in the range (p,, p,) . Figure 4.8 illustrates 95% con-
fidence intervals as a function of p and n. The curve certainly agrees with our intuition —
the larger the number of test samples n, the more confidence we have in the MLE estimated
error rate p; otherwise, the p can be used only with caution.

Based on the description in the previous paragraph, the larger the test set is, the better
it represents the recognition performance of possible data. On one hand, we need more train-
ing data to build a reliable and consistent estimate. On the other hand, we need a large inde-
pendent test set to derive a good estimate of the true recognition performance. This creates a
contradictory situation for dividing the available data set into training and independent test
set. One way to effectively use the available database is V-fold cross validation. It first splits
the entire database into V equal parts. Each part is used in turn as an independent test set
while the remaining (V - 1) parts are used for training. The error rate can then be better esti-
mated by averaging the error rates evaluated on the V different testing sets. Th.us, each part
can contribute to both training and test sets during V-fold cross validation. This procedure,
also called the leave-one-out or U method [53}, is particularly attractive when the number of

available samples are limited.
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Figure 4.8 95% confidence intervals for classification error rate estimation with normal test.

4.2.4. Comparing Classifiers

Given so many design alternatives, it is critical to compare the performance of different
classifiers so that the best classifier can be used for real-world applications. It is common for
designers to test two classifiers on some test samples and decide if one is superior to the
other. Relative efficacy can be claimed only if the difference in performance is statistically
significant. In other words, we establish the null hypothesis A, that the two classifiers have
the same error rates. Based on the observed error patterns, we decide whether we could re-
ject H, at the 0.05 level of significance. The test for different classifiers falls into the cate-
gory of matched-pairs tests described in Chapter 3. Classifiers are compared with the same
test samples. .

We present an effective matched-pairs test — McNemar’s test [66] which is parueularly
suitable for comparing classification results. Suppose there are two classiﬁers:‘Q| and 0s-
The estimated classification error rates on the same test set for these two classifiers are };uf
and p, respectively. The null hypothesis H, is p,= p,. The classification performancé
the two classifiers can be summarized as in Table 4.1. We define g, as follows:

90 =P(0, and O, classify data sample correctly)
4oy = P(Q, classifies data sample correctly, but 0, incorrectly)
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G0 = P(Q, classifies data sample correctly, but O, incorrectly)
¢, = P(Q, and Q, classify data sample incorrectly)

Table 4.1 Classification performance table for classifiers O, and QO,. N is the aumber of
samples which O, and @, classify correctly, Ny, is the number of sai‘mples which 0, classi-
fies correctly, but O, incorrectly, N, is the number of samples which Q, classifl'les cor-
rectly. but O, incorrectly, and N, is the numnber of samples which 0 “and 0. classify
incorrectly [30]. )

)
Correct Incorrect
0 Correct Ny, N,
Incorrect Ny, N,

The null hypothesis A, is equivalent to H; : g, = ¢,. If we define
9=q0/(90+9,). H, is equivalent to H? : g=J. H; represents the hypothesis that,
given only one of the classifiers makes an error, it is equally likely to be either one. We can
test H 5 based on the data samples on which only one of the classifiers made an error. Let
n= N, +N,, . The observed random variable ¥, should have a binomial distribution
B(n, ) . Therefore, the normal test (z-test) described in Chapter 3 can be applied directly to
test the null hypothesis H; .

The above procedure is called the McNemar's test [66]. If we view the classification
results as NV (the total number of test samples) independent matched pairs, the sign test as
described in Chapter 3 can be directly applied to test the null hypothesis that classifier Q, is
not better than classifier O,, that is, the probability that classifier O, performs better than
classifier 0, , p, is smaller than or equal to %4.

McNemar’s test is applicable when the errors made by a classifier are independent
among different test samples. Although this condition is true for most static pattern recogni-
tion problems, it is not the case for most speech recognition problems. In speech recognition,
the errors are highly inter-dependent because of the use of higher-order language models
(described in Chapter 11).

The solution is to divide the test data stream into segments in such a way that errors in
one segment are statistically independent of errors in any other segment [30]. A natural can-
didate for such a segment is a sentence or a phrase after which the speaker pauses. Let N
be the number of errors’ made on the i" segment by classifier O, and N; be the number of
errors made on the /" segment by classifier O,. Under this formulation, the magnitude-
difference test described in Chapter 3 can be applied directly to test the null hypothesis that
classifiers O, and Q, have on the average the same error rate on the pairs of # independent

segments.

* The errors for speech recognition include substitutions, insertions and deletions as discussed in Chapter 9.
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4.3. DISCRIMINATIVE TRAINING

Both MLE and MAP criteria maximize the probability of the model assoc;

responding data. Only data labeled as belonging to class @, are used to train the

There is no guarantee that the observed data x from class w, actually have 5 hipahrame:,ters.

hood P(x|®,) than the likelihood P(x|®,) associated with class j, given jf- e likel;.

generated by MLE or MAP have a loose discriminant nature. Several estima“or'] - Modglg

aim for maximum discrimination among models to achieve best pattern recognit’i‘;ilh:eds
T~

formance.

ated with the coy.

4.3.1. Maximum Mutual Information Estimation

The pattern recognition problem can be formalized as an information channel, as illustrateq
in Figure 4.9. The source symbol @ is encoded into data x and transmitted through ap ip.
formation channel to the observer. The observer utilizes pattern recognition techniques o
decode x into source symbol @ . Consistent with the goal of communication channels, the
observer hopes the decoded symbol @ is the same as the original source symbol ¢ . May;.
mum mutual information estimation tries to improve channel quality between input and oy.

put symbols.

Communication Channel

Data Pattern
Generator 9 Decoder %

X )

(0]

Figure 4.9 An information channel framework for pattern recognition.

As described in Section 4.1.1, the decision rule for the minimum-error-rate c:la§siﬁCr
selects the class @, with maximum posterior probability P(a, |x). It is a good Cﬁte”?n B
maximize the posterior probability P(c, | x) for parameter estimation. Recalling Bayes e
in Section 4.1, the posterior probability p(e, |x) (assuming X belongs to class &) s:

P(a, | x) = P& 2)P(@) 429
p(x)

and p(x) can be expressed as follows:
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In the classification stage, p(x)can be considered as a constant. However, during trainin
the value of p(x) depends on the parameters of all models and is differer;t for different i‘
Equation (4.29) is referred to as conditional likelihood. A conditional maximum likelihood.
estimator (CMLE) 6., is defined as follows:

Osne (X) =D, = arg(r:)ax Po (@ | x) (4.31)

The summation in Eq. (4.30) extends over all possible classes that include the correct model
and all the possible competing models. The parameter vector @ in Eq. (4.31) includes not
only the parameter ®, corresponding to class @,, but also those for all other classes.

Note that in Chapter 3, the mutual information between random variable X (observed
data) and €2 (class label) is defined as:

1x,Q=E,l _M)__=E’[ M
( g ‘\ N pP(X)P(R2) 8 P(X)P(RQ) 4.32)

Since we don’t know the probability distribution for p(X,Q), we assume our sample
(x,,) is representative and define the following instantaneous mutual information:

I(x,0,) = log 222

#0P(0) =

If equal prior p(®,) is assumed for all classes, maximizing the conditional likelihood
in Eq. (4.29) is equivalent to maximizing the mutual information defined in Eq.(4.33).
CMLE becomes maximum mutual information estimation (MMIE). It is important to note
that, in contrast to MLE, MMIE is concerned with distributions over all possible classes.
Equation (4.30) can be rewritten as two terms, one corresponding to the correct one, and the
other corresponding to the competing models:

p(x) = p(x| @,)P(@,)+ Y, p(x| & )P(a;) (4.34)
ki
Based on the new expression of p(x) shown in Eg. (4.34), the posterior probability
p(w, ] x) in Eq. (4.29) can be rewritten as:

p(x|@,)P(®;) (4.35)
p(x|@)P@,)+ Y, p(x]| ®,)P(®,)

k#i

P, | x) =

Now, maximization of the posterior probability p(e, | x) with respect to all models leads to
a discriminant model.” It implies that the contribution of p(x| a),.)If(a),) from the 'I“F model
needs to be enforced, while the contribution of all the competing models, specified by

? .. . 0 . - - .
General minimum-error-rate estimation is described in Section 4.3.2.
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ZM p(x|w,)P(®w,), needs to be minimized. Maximization of Eq. (4.35) can B
rewritten as: © futher

1
2. p(x|@)p(@,) (436

ki

P(w; [ x) =

px| @) plw,)

Maximization is thus equivalent to maximization of the following term, which i clear]

discriminant criterion between model @, and the sum of all other competing models, =
p(x|®)p(@,) .

> p(xlo)p(@,) 3

kai

Equation (4.37) also illustrates a fundamental difference between MLE and MMIE. In MLE
only the correct model needs to be updated during training. However, every MMIE model i;
updated even with one training sample. Furthermore, the greater the prior probability (@)
for class @, , the more effect it has on the maximum mutual information estimator 6,,,.
This makes sense, since the greater the prior probability p(w,), the greater the chance for
the recognition system to mis-recognize ®, as @, . MLE is a simplified version of MMIE
by restricting the training of model using the data for the model only. This simplification
allows the denominator term in Eq. (4.29) to contain the correct model so that it can be
dropped as a constant term. Thus, maximization of the posterior probability p(w, |x) canbe
transformed into maximization of the likelihood p(x|®,).

Although likelihood and posterior probability are transformable based on Bayes’ rule,

MLE and MMIE often generate different results. Discriminative criteria like MMIE attempt
to achieve minimum error rate. It might actually produce lower likelihood for the underlym_g
probability density p(x|®,). However, if the assumption of the underlying distributions 1s
correct and there are enough (or infinite) training data, the estimates should converge (0 the
true underlying distributions. Therefore, Bayes’ rule should be satisfied and MLE and
MMIE should produce the same estimate.

Arthur Nadas [71] showed that if the prior distribution (language model) and the 35
?;lzed likelihood distribution family are correct, both MLE and MMIE are con§istent e;tc]);
Va\i?irsi’t?sugMMlE has a greater variance. Hovfrever, when some of those prem.IS;Sr;f:ﬁon
(instéad - T?;(ﬂ:?le to use MMIE to find the estimate that maximizes the mutual_ flft_l Once b
tween these twe thood) between sample data and its class information. The di ?}ieliho
for the Cowect(:;le Stimation techniques is that MMIE not only aims to increase the li o

n generzlss’ but also tries to c_iecr.ease the likelihood for the .1ncorrect classeiés Al
th_ough MMIE is ‘hlit:)srs&:.gses more d{scrnnﬁnating power among different .cate%:OTm .m'ing
with MLE, every dataeSIaCally appealing, computationally it is very expensive. 0 Pon_e_

sponding mode|. mple needs to train all the possible models instead of the €70

It als : . g 8 adi-
ent descent algorithm © lacks an efficient maximization algorithm. You need to use 2 gr
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4.3.1.1. Gradient Descent

To maximize Eq. (4.37) over the entire parameter space (D={¢,,(D,,..‘,<D¢} with §
classes, we define the mutual information term in Eq. (4.37)to be a function of ® . To fit
into the traditional gradient descent framework, we take the inverse of Eq. (4.37) as our op-
timization function to minimize the following function:®

> p, (x| @) p(®,)

F (D = k=i .
@ p,(x|w,)p(@,) (4.38)

The gradient descent algorithm starts with some initial estimate ®° and computes the
gradient vector VF(®) (V is defined in Chapter 3). It obtains a new estimate ®' by mov-
ing ®° in the direction of the steepest descent, i.e., along the negative of the gradient. Once
it obtains the new estimate, it can perform the same gradient descent procedure iteratively
until F(®) converges to the local minimum. In summary, it obtains ®*' from @' by the
following formula:

" =@ —gVF(®) lomer (4.39)

where ¢, is the learning rate (or step size) for the gradient descent.

Why can gradient descent lead F(®) to a local minimum? Based on the definition of
gradient vector, F(®) can be approximated by the first order expansion if the correction
term A® is small enough.

F(®"*) =~ F(®')+AD*VF(®)|, _,, (4.40)
A® can be expressed as the following term based on Eq. (4.39)
AD =@ —@' =—¢,VF(D) | (441)
Thus, we can obtain the following equation:
F(®*) = F(@') = £, (VF(D)|,_o . V(D) oo ) ™
=& [VF@) | <0

where (x,y) represents the inner product of two vectors, and x| represents the Euclidean
norm of the vector. Equation (4.42) means that the gradient descent finds a new estimate
@' that makes the value of the function F(®) decrease.

The gradient descent algorithm needs to go through an itcrative_ hill—climbi_ng proce-
dure to converge to the local minimum (estimate). Gradient descent usually requires many
iterations to converge. The algorithm usually stops when the change of the parameter

A® becomes small enough. That is,

‘ You can use the logarithm of the object function to make it easier to compute the derivative in gradient descent.
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|eVF(@)], o |<2

. (443
where A is a preset threshold.

Based on the derivation above, the learning rate coefficient €, must be sp,
for gradient descent to converge. However, if €, is too small, convergence js needle
slow. Thus, it is very important to choose an appropriate &, . It is proved [47) (4 .

) ) ; 8] that
dient converges almost surely if the learning rate coefficient €, satisfies the following Coﬁ?
. i
tion:

all en()ugh

ZE/ = oo, 28’2 < o9, and £, >0 (444)

1=0 1=0

One popular choice of g, satisfying the above condition is

g =— (4.45)

Another way to find an appropriate &, is through the second-order expansion:

F(@") = F@)+ AVF(®),.,, +(A0) DAD (446

=@’

where D is the Hessian matrix [23] of the second-order gradient operator where the i-th row
and j-th element D, ; are given by the following partial derivative:

Wi @47
7 oD,
By substituting A® from Eq. (4.41) into Eq. (4.46), we can obtain
F@"™) =~ F(®')-¢, |VF| + %erF’DVF (4.48)
From this, it follows that &, can be chosen as follows to minimize F(®) [23]:
e o IVFF 449)

]

VF'DVF
Sometimes it is desirable to impose a different learing rate for the correct model V. con

lgfgnfgl]nodels. Therefore re-estimation Eq. (4.39) can be generalized to the following form

O =@ ‘E,U‘VF(Q) |°=°, (450)

where U, s the |
choice of U, is

s : s ; 5 : - jcular
eamning bias matrix which is a positive definite matrix. One partic

o ne
D", where D is the Hessian matrix defined in Eq. (4.47). When the 1ea™
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rate is set to b_e .1.0, Eq. (4.50) becomes Newton's algorithm, where the gradient descent is
chosen to minimize the second-order expansion. Equation (4.50) becomes:

" =@ -D"'VF(®)|,_, (4.51)

When probabilistic parameters are iteratively re-estimated, probabilistic constraints
must be satisfied in each iteration as probability measure, such as:

1. For discrete distributions, all the values of the probability function ought to
be nonnegative. Moreover the sum of all discrete probability values needs to
be one, i.e., za, =]

i

2. For continuous distributions (assuming Gaussian density family), the vari-
ance needs to be nonnegative. For Gaussian mixtures, the diagonal covari-
ance entries need to be nonnegative and the sum of mixture weights needs to
be one, i.e., Zc,. =1

i

In general, gradient descent is an unconstrained minimization (or maximization) proc-
ess that needs to be modified to accommodate constrained minimization (or maximization)
problems. The tricks to use are parameter transformations that implicitly maintain these con-
straints during gradient descent. The original parameters are updated through the inverse
transform from the transformed parameter space to the original parameter space. The trans-
formation is done in such a way that constraints on the original parameter are always main-
tained. Some of these transformations are listed as follows [48]:

1. For probabilities which need to be nonnegative and sum to one, like discrete
probability function and mixture weight, the following transformation can be
performed:

__exp(@) (4.52)
U T exp(@,)
k

2. For mean y and variance (or diagonal covariance entries) o2, the following
transformation can be used.

1= jic (4.53)

& =exp() (4.54)

After the transformations, we can now compute the gradient with respect to the trans-
formed parameters (4,,/,6) using the chain rule. Once the new.estimate for the trans-
formed parameters is obtained through gradient descent, one can easily transform them back
to the original parameter domain.
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4.3.2. Minimum-Error-Rate Estimation

Parameter estimation techniques described so far aim to maximize either the 1§
(class-conditional probability) (MLLE and MAP) or the posterior ety e hkelihmd
Bayes’ equation, Eq. (4.1). Although the criteria used in those estimation met);, é‘dMIE) in
their own merit and under some conditions should lead to satisfactory results (t)hs a]l.have
parameter estimation criterion for pattern recognition should be to minimize !h'e r: Ulurpgte
error rate (or the Bayes’ risk) directly. Minimum-error-rate estimation is also Caﬁognn_log
mum-classification-error (MCE) training, or discriminative training. Similar to le'l H;mm.
algorithm generally tests the classifier using re-estimated models in the training Proce& the
and subsequently improves the correct models and suppresses mis-recognized or . u're.
models.” Neural networks are in this class. Although minimum-error-rate estimation caﬁ::
be ga§ily applied, it is still attractive that the criterion is identical to the goal of pattern rec.
ognition.

We have used the posterior probability p(w, |x) in Bayes’ rule as the discriminay
function. In fact, just about any discriminant function can be used for minimum-error-rae
estimation. For example, as described in Section 4.2.1, a Bayes’ Gaussian classifier s
equivalent to a quadratic discriminant function. The goal now is to find the estimation of
parameters for a discriminant function family {d,(x)} to achieve the minimum error rate.
One such error measure is defined in Eq. (4.5). The difficulty associated with the discrimina-
tive training approach lies in the fact that the error function needs to be consistent with the
true error rate measure and also suitable for optimization." Unfortunately, the error function
defined in Section 4.1.1 [Eq. (4.5)] is based on a finite set, which is a piecewise constant
function of the parameter vector @ . It is not suitable for optimization.

To find an alternative smooth error function for MCE, let us assume that the discrimi-
nant function family contains s discriminant functions d,(x,®),i=1,2,.,s ® denolefs
the entire parameter set for s discriminant functions. We also assume that all the discrimi-
nant functions are nonnegative. We define the following error (misclassification) measure:

= Vn
€,(x) =—d,(x,®)+ I\s_f-—l Z d,(x,®) ] (455

J#t

where 7 is a positive number. The intuition behind the above measure is [he‘a.ttempt [:
enumerate the decision rule. For a @, class input x, ¢,(x)>0 implies recognition e"f(;'u:
while ¢,(x)<0 implies correct recognition. The number 1 can be thought to be 2 o ¢
cient to select competing classes in Eq. (4.55). When 7 =1, the competing class e ls[im;
average of all the competing discriminant function scores. When 77—, the comﬂI:: top
class term/becomes max d,(x,P) representing the discriminant function score fof

s :
NA near-miss model occurs when the incorrect model has higher likelihood than the correct model.
In general, a function is optimizable if it is a smooth function and has a derivative.
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competing class. By varying the value of 77, one can take all the competing classes into ac-
count based on their individual significance.

To transform ¢,(x) into a normalized smooth function, we can use the sigmoid func-

tion to embed ¢,(x) in a smooth zero-one function. The loss function can be defined as fol-
lows:

L(x; D) = sigmoid(e,(x)) (4.56)

where sigmoid(x) = 1 o 4.57)
l+e

When ¢,(x) is a big negative number, which indicates correct recognition, the loss function
I,(x;®) has a value close to zero, which implies no loss incurred. On the other hand, when
e,(x) is a positive number, it leads to a value between zero and one that indicates the likeli-
hood of an error. Thus /,(x;®) essentially represents a soft recognition error count.

For any data sample x, the recognizer’s loss function can be defined as:

1, ®) =3 1L(x, ®)(0 = 0,) (4.58)

where &(e) is a Boolean function which will return 1 if the argument is true and 0 if the
argument is false. Since X is a random vector, the expected loss according to Eq. (4.58) can
be defined as:

L@)= By, ®) = 3. ], 16 ®)p(xdx (459

Since max U f (x,(D)dx] = I[mgx f (x,d’)]dx, @ can be estimated by gradient descent
<

over /(x,®) instead of expected loss L(®). That is, minimum classification error training
of parameter @ can be estimated by first choosing an initial estimate @, and the following
iterative estimation equation:

o =@’ —£,VI(x,D)| (4.60)

o=0'
You can follow the gradient descent procedure described in Section 4.3.1.1 to achieve the
MCE estimate of ® . .
Both MMIE and MCE are much more computationally intensive than MLE, owing to
the inefficiency of gradient descent algorithms. Therefore, discriminant estimation methods,
like MMIE and MCE, are usually used for tasks containing few classes or data samples. A
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more pragmatic approach is corrective training [6], which is based op
correcting procedure. First, a labeled training set is used to train the a ve
corresponding class by standard MLE. For each training sample,  Jis; OI;ar
is created by running the recognizer and kept as its near-miss list. Then -
the correct class are moved in the direction of the data sample, while thé e Parametay, of
“near-miss” class are moved in the opposite direction of the data samples Parameters ¢ the
samples have been processed; the parameters of all classes are updated -T:f‘er all trajp,
repeated until the parameters for all classes converge. Although there ig ,;0 thls Procedure i
that such a process converges, some experimental results show that it COretical prof
MLE and MMIE methods [4]. Outperformg pey,
We have described various estimators: minimum mean Square estimat :
likelihood estimator, maximum posterior estimator, maximum mutual informa:i) y ma_"lmum
and minimum error estimator. Although based on different training criteria ogles"ma“’r.
powerful estimators for various pattern recognition problems. Every Cstir;m ey are 4l
strengths and weaknesses. It is almost impossible always to favor one oVerile Ozh has it
stead, you should study their characteristics and assumptions and select the PLEE I
ones for the domains you are working on. TOSt Suitabe
In the following section we discuss neural networks. Both neural networks and MCE
estimations follow a very similar discriminant training framework.

Ty Simp]e error.
elers for
fusab;e CfasScS

4.3.3. Neural Networks

In the area of pattern recognition, the advent of new learning procedures and the availability
of high-speed parallel supercomputers have given rise to a renewed interest in neural net
works."" Neural networks are particularly interesting for speech recognition, which requires
massive constraint satisfaction, i.e., the parallel evaluation of many clues and facts and their
interpretation in the light of numerous interrelated constraints. The computational flexibility
of the human brain comes from its large number of neurons in a mesh of axons and der-
drites. The communication between neurons is via the synapse and afferent fibers. There &
many billions of neural connections in the human brain. At a simple level it can be consid-
ered that nerve impulses are comparable to the phonemes of speech. or to letters, in that they
do not themselves convey meaning but indicate different intensities [95, 101] that are ;"Icv'e
preted as meaningful units by the language of the brain. Neural networks attempt oA ]:p
real-time response and humanlike performance using many simple processing elemenlslcu.
erating in parallel as in biological nervous systems. Models of neural networks use 13 151?: s
lar topology for the interactions and interrelations of the connections of tpe neura g
this section we describe the basics of neural networks, including the multi-layer pe

and the back-propagation algorithm for training neural networks.

onist ot

ti
5 o net,ora connec
"' A neural network is sometimes called an artificial neural network (ANN), a neural
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4.3.3.1.  Single-Layer Perceptrons

Figure 4.10 shows a basic single-layer perceptron. Assuming there are N inputs, labeled as
X Xs---3 Xy » We can form a linear function with weights ,

Wy, , W, .. W. ) H
l ]3[1 1 0f Wy e, W, v
t [yj, fi s L) 1 25 » Wy (o) gl (S the

N
Yy =Wo ; W% = WX =g (x) (4.61)

where W, = (Wo;,W, ;,Waj,.... W) and x=(1,x,x,,...,x,).

For pattern recognition purposes, we associate each class @ out of s classes
(0,,@,...,0,) with such a linear discriminant function g,(x). By cojllecting all the dis-
criminant functions, we will have the following matrix representation:

y=g(x)=W'x (4.62)

where g(x) =(g,(x), g(X),.... £,(X))'; W =(wi,w},...,w,) and y=(y,p,...,5,). The
pattern recognition decision can then be based on these discriminant functions as in Bayes’

decision theory. That is,

xe w, iff k=argmaxg,(x) (4.63)
i

The perceptron training algorithm [68], guaranteed to converge for linearly separable
classes, is often used for training the weight matrix W . The algorithm basically divides the
sample space R" into regions of corresponding classes. The decision boundary is character-
ized by hyper-planes of the following form:

gi(x)—gj(x)‘:() Vl'?fj (4.64)
output layer
input layer
: X X2 Xy
Figure 4.10 A single-layer perceptron.
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Unfortunately, for data samples that are not linearly separab)
rithm does not converge. However, if we can relax the definition ofe,lthelpercepxmn i
this case, we can still use a powerful algorithm to train the weight matc' Asificatiop errm;g(L
is the least square error (LSE) algorithm described in Chapter 3 Whi::l}),( W This Pprogg
sum-of-squared-error (SSE) criterion, instead of minimiZing th; cl 'alms a iz,
sum-of-squared-error is defined as: assification

SSE=) 3 llg(x)-6, I
i xeq (4-65)

where &, is an M-dimensional index vector with all zero components except 4
is 1.0, since the desired output for g(x) is typically equal to 1.0 if Xewn anI:l 0‘? the * gpe
The use of LSE leads to discriminant functions that have rea] oultpuls al rxe.m,,.
the values 1 or 0. Suppose there are M input vectors X = (x;,x’z,...,x’u) in mep ?r:i’:‘"mauns
Similar to the LSE for linear functions described in Chapter 3 (cf. Section 3212 Jlrelg[ig&'
estimate of weight matrix W will have the following closed form: - E

W= ((XX"))"'LZ 656)

where L is a (N+1)xXs matrix where the k-th column is the mean verty
n, = (0 lyys fygs--os ey ) Of all the vectors classified into class @, , and I is an sxs ¢
agonal matrix with diagonal entry c,, representing the number of vectors classified into
@, . LSE estimation using linear discriminant functions is equivalent to estimating Bayes'
Gaussian densities where all the densities are assumed to share the same covariance matrix
[98], as described in Section 4.2.1.

Although the use of LSE algorithm solves the convergence problems, it loses the
power of nonlinear logical decision (i.e., minimizing the classification error rate), since itis
only approximating the simple logical decision between alternatives. An alternative &-
proach is to use a smooth and dijfferential sigmoid function as the threshold function:

y = sigmoid(g(x)) = sigmoid((g, (x), g,(X),---,&,(x))') (467)
= (sigmoid (g, (x)), sigmoid (g, (X)), .., sigmoid(g,(x)))

X . + o rooid function:
where sigmoid(x) is the sigmoid function defined in Eq. (4.57). With the sigmoid

g ification error:
the following new sum-of-squared-error term closely tracks the classification €

NSSE= Y ¥ || sigmoid(g(x)) -, If

i xew,

(463

tic way of m.inimlz:
es an item[]ve W
section-

ned above. Since there is no anal)f
d function requir

described in the next

where &, is the same index vector defi
ing a nonlinear function, the use of the sigmoid threshol
dient descent algorithm, back-propagation, which will be
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4.3.3.2. Muiti-Layer Perceptron

One of the technical developments sparking the recent resurgence of interest in neural net-
works has been the popularization of multi-layer perceptrons (MLP) [37, 90]. Figure 4.11
shows a multi-layer perceptron. In contrast to a single-layer perceptron, it has two hidden
layers. The hidden layers can be viewed as feature extractors. Each layer has the same com-
putation models as the single-layer perceptron; i.e., the value of each node is computed as a
linear weighted sum of the input nodes and passed to a sigmoid type of threshold function.

h, = sigmoid(g,, (x)) = sigmoid(W,,x)
h, = sigmoid(g,,(h,)) = sigmoid(W,,h,) (4.69)
y = sigmoid(g,,(h,)) = sigmoid(W h,)

where sigmoid(x) is the sigmoid function defined in Eq. (4.57).

output layer

hidden layer h,

hidden layer £,

input layer

Figure 4.11 A multi-layer perceptron with four total layers. The middle two layers are hidden.

Amazon/VB Assets
Exhibit 1012
Page 187



162 P 4
attern ngni tion

According to Eq. (4.69), we can propagate the computation from in

ut |
layer and denote the output layer as a nonlinear function of the input 1ayerp AYer 1o ougpy,

Y = MLP(x) -

Let’s denote O(x) as the desired output for input vector x . For pattern ¢l
O(x) will be an s-dimensional vector with the desired output pattern set to one and the
maining patterns set to zero. As we mentioned before, there is no analytic way to minimizee-
the mean square esror E = le MLP(x)-O(x)|{ . Instead, an iterative gradient descent algo-
rithm called back propagation [89, 90] needs to be used to reduce error. Without loss of gen-
erality, we assume there is only one input vector x=(1,x,,x,,...,x,) with desired output
0 =(0,,0,,...,0,) . All the layers in the MLP are numbered 0, 1, 2,... upward from the input
layer. The back propagation algorithm can then be described as in Algorithm 4.1,

assiﬁcation,

In computing the partial derivative , you need to use the chain rule. w* is the

dwy (1) v

weight connecting the output layer and the last hidden layer; the partial derivative is:

3 ~ a(lz_l,(yt—ol) )

K= K
ow; oW

§ N
> (-0, 0wy + X W)
5 (;()’. ) )x , 5 AP M -

N X
ay, a(w;;_'_zw;vf-») aw
i=\

i

K-l

=2(y, "oi)yl'(}’l -1y,

. oF
For layers k = K -1,K —2,:--, one can apply chain rules similarly for gradient aw,; (’)-

i er-

The back propagation algorithm is 2 generalizatior'l <?f %he mmm?;lfm m::nbse‘tl:z?: e

ror (MMSE) algorithm. It uses a gradient search to TR t‘he _d’ ?r?rectly related 0
desired outputs and the actual net outputs, where the Optl.mlzﬁd criterion is locedee -
pattern classification. With initial parameters for the weights, the training E; iable value of
repeated to update the weights until the cost function is reduced to an lactr £ning example-
remains unchanged. In the algorithm described above, we assume a sing t; o trining o
In real-world application, these weights are estimated from a large num s
servations in a manner similar to hidden Markov modeling. The welpht upd for the completé

i sent is then estimate! S
accumulated over all the training data. The actual gradient is < estimation cnité:

set of training data before the beginning of the next iteration. ; Jikeliho
2 i . mum
rion for neural networks is directly related to classification rather than maxi
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ALGORITHM 4.1: THE BACK PROPAGATION ALGORITHM

Step 1: Initialization: Set # =0 and choose initial weight matrices W for each layer, Let's de-
note w,']‘. (#) as the weighting coefficients connecting i input node in layer k-1 and j* out-
put node in layer & attime ¢.

Step 2: Forward Propagation: Compute the values in each node from input layer to output layer
in a propagating fashion, fork = 1to K

v
vy = sigmoid(w,, () + Y, wh 1wty V) (4.72)

i=l

N 1 .
where sigmoid(x) = " and v} is denoted as the ;™ node inthe % layer

e—x
Step 3: Back Propagation: Update the weights matrix for each layer from output layer to input
layer according to:

oF

Wit +)=wi()-a——
v J aw; (1)

(4.73)

where E = ZII y,~0, |} and (3, s,...»,) is the computed output vector in Step 2.
=l

o is referred to as the learning rate and has to be small enough to guarantee

convergence. One popular choice is 1/(t+1) .

Step 4: Iteration: Let r = £ +1. Repeat Steps 2 and 3 until some convergence condition is met.

4.4. UNSUPERVISED ESTIMATION METHODS

As described in Section 4.2, in unsupervised learning, information about class @ of the data
sample x is unavailable. Data observed are incomplete since the class data @ is missing.
One might wonder why we are interested in such an unpromising problem, and whether or
not it is possible to learn anything from incomplete data. Interestingly enough, the formal
solution to this problem is almost identical to the solution for the supervised leaming case —
MLE. We discuss vector quantization (VQ), which uses principles similar to the EM algo-
rithm, It is important in its own right in spoken language systems.

4.4.1. Vector Quantization

As described in Chapter 3, source coding refers to techniques that convert the signal source
into a sequence of bits that are transmitted over a communication channel and then used to
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