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Thus the tree can be automaticaJJy constructed by searching, for each node th 
' I · J ' e questi that renders the maximum entropy decrease. A ternat1ve y, complex questions can bet 0n 

for each node for improved splitting. 
0rmed 

When we grow the tree, it needs to be pruned using cross-validation as dis . 
Chapter 4. When the algorithm tenninates, the leaf nodes of the tree represent the scussed •n 

. . enones to 
be used. Figure 9.6 shows an example tree we budt to classify the second state of 

1 . . . Af th . b ·1 · b a I lkl triphones seen m a trammg corpus. ter e tree 1s m t, It can e applied to the 
· h k h a1· b'l' f th b' second state _of any~ tnp~one, t an_ s ~o t e gener 1za 1 1ty o e mary tre~ and the general lin-

guistic quesuons. Figure 9.6 md1cates that the seco~d st~te of the /kl tnphone in welcome is 
mapped to the second senone, no matter whether this tnphone occurs in the training c orpus 
or not. 

I I I I I I I I I I I I I I I I I 11 

0 

I I I I I I I I I 
b~(k) 

Figure 9.S State-based vs. model-based clustering. These two models are very sintilar, as bolh 
the firSt and the second output distributions are almost identical. The key difference is lhe out­
put di5tribution of the third state. If we measure the overaJI model similarity, which is often 
based on tbe accumulative output distribution similarities of aJI states, these two models rn~Y 
b~ cl~stered, leading to a very inaccurate distribution for the last state. If we cluster output dis· 
tnbu~ons at state level, we can cluster the first two output distributions while leaving !he last 
ones intact leading to . ' more accurate representations. 
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Table 9.3 Some example questions used . b 'Id' · m m mg senone trees 

Questions Phones in Each Question Category 

Aspseg lih 
Sil sil 

Alvsrp dt 
Dental dh th 

Labsrp bp 

Liquid tr 

Lw fw 

S!Sh ssh 

Sylbic eraxr 
Velstp gk 

A/fric chjh 

Lqgl-B l rw 

Nasal m llng 

Retro reraxr 

Schwa ax ixaxr 
Velar ng g k 

Fric2 th s shf 

Fric3 dh z VIV 

Lqgl l rwy 

SIZ/Sh/Zh s z sh zh 
Wglide uwawow w 
Labial wmbpv 
Palatl y chjh sh zh 

Yglide iyay ey oy y 

High ih ixiyuh uw y 

Lax eh ih ix uh ah ax 
Low ae aa ao away oy 
Orstp2 ptk 
Orsrp3 bdg 
Alvelr 11 d t S Z 

Diph uw away ey iy ow oy 

Friel dh th s sh z zh v f 
Round uh ao uw ow oy w axr er 

Fmt-R ae eh ih ix iy ey ah ax y aw 

Tense iy ey ae uw ow aa ao ay oy aw 

Back-L uh ao uw ow aa eraxr l rw aw 

Fmt-L ae eh ih ix iy ey ah ax y oy ay 

Back-R uh ao uw ow aa er axr oy I r way 

Orstpl b dg p tkchjh 
Vowel ae eh ih ix iy uh ah ax aa ao uw away ey ow oy er axr 

Son ae eh ih ix iy ey ah ax oy ay uh ao uw ow aa eraxraw I rw y 

Voiced ae eh ih ix iy uh ah ax aa ao uw aw ay ey ow oy l r w y er axr m 

n rlI! ih b d dh 2 V Z zh 
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j 1s lert phone a sonorant or nasal? j 
_____ Y_.es~----. ~ 
Is righl phone a back-R?j r -:1:--s~l.:-ft-ph-o-ne-,-s,-:,s-/z-,:J-i/?-. -J 

/ 0 ~ , -,"-

ml ls right phone voiced? . . ffil 
senone I ~ 

yes ~~enone 5 senone 6 

___ Is_l_er-t-ph_o_n_e -a -ba_.c=-k--L-o_r_--. ID] 
(is lefl phone neither a nasal nor a Y • ' f 
glide and right phone a LAX-vowel)? 

senone 4 

Acoustic Model' •ng 

Figure 9.6 A decision tree for classifying the second state of K-triphone HMMs (48). 

In practice, senone models significantly reduce the word recognition error rate in 
comparison with model-based clustered triphone models, as illustrated in Table 9.4. It is the 
senonic model's significant reduction of the overall system parameters that enables the con­
tinuous mixture HMMs to perform well for large-vocabulary speech recognition [56]. 

Table 9.4 Relative error reductions for different modeling units. The reduction is relative to 
that of the preceding row. 

Units Relative Error Reductions 

Context-independent phone Baseline 

Context-dependent phone +25% 

Clustered triphone +15% 

Senone +24% 

9.4.4. Lexical Baseforms 

Wh · · · for each en appropnate subword units are used we must have the correct pronunciation 
, be reco11• 

word so that concatenation of subword units can accurately represent the word to . /" 
n· d Th . . . point ior 

ize · e dictionary represents the standard pronunciation used as a starang 
b ·1ct· · ronun· 

~
1

. mg a workable speech recognition system. We also need to provide altemauve P 1 
ciations for words such as tomato that may have very different pronunciations. for exam~ 

~e CQMLEX dictionary from LDC has about 90 000 basefonns that cover most wo~ds u as 
m many years f -r'h n, ' . . . ary which w 

. . 0 
i' e "all Street Journal. The CMU Pronunciation D1ct1on ' 

optimized for continuous speech recognition, has about I 00,000 baseforms. 
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In continuous speech recognition, we must also use ph 1 . 
. · h · ono og1c rules to modify inte 

word pronunciations or to ave reduced sounds. Assimilatio . . . . r-
. . . n is a typical coarticulat1on phe-

nomenon--a change m a segment to make It more like a . hb . 
. h ·h . . neig onng segment. Typical 

examples include p rases su1,; as du/ you Id 1h j/z y ah/. set you I. ,1 1 ., 
1 • lb . k I ' s l z c I er,. ast year I l ae s 

ch i)' rl, because you 11e 1y a I zh uw vi. etc. Deletion is al ' . . 
I I d ld 1 so common m continuous 

speech. For example, t an I are often deleted before a consona t Th . . 
fi d I I. . n · us, m conversational 

speech you may n examp es 1ke find /um If ay 11 fr ml. aro,,,,d ti . ,. . ' • 11s 11X raw 11 1'1 sl. and 
Let me in/l eh m eh 11/. • 

Dictionaries often don't include proper names. For example th "0 000 . 
. OMLEX d' . . , e - , names m-

cluded_rn the C 1cttonary are a small fr_act1on of 1-2 million names in the USA. To 
deal with these new words, we often have to derive their pronunciation automatically. These 
new words have to be added on the fly, either by the user or through an int rf ~ 

1. · u l"k S . e ace trom 
speech-aware a~p 1~at10ns .. n I e . pani~h or Italian, rule-based letter-to-sound (LTSJ con-
version for Enghs~ 1s often 1mpract1cal, ~mce so many words in English don't follow phono­
logical rules. A tra1~able LTS converter 1s attractive, since its performance can be improved 
by constantly learning from examples so that it can generalize rules for the specific task. 
Trainable L TS converters can be based on neural networks, HMMs, or the CART described 
in Chapter 4. In practice, CART-based LTS has a very accurate performance [10, 61, 71, 
89]. 
. When CART is used, the basic YES-NO question for LTS conversion looks like: Is 
the second right letter 'p '? or: Is the first left output phone lay/? The question for letters and 
phones can be on either the left or the right side. The range of question positions should be 
long enough to cover the most important phonological variations. Empirically, a IO-letter 
window (5 for left letter context and 5 for right letter context) and 3-phone window context 
is generally sufficient. A primitive set of questions can include all the singleton questions 
about each letter or phone identity. If we allow the node to have a complex question-that 
is, a combination of primitive questions-the depth of the tree can be greatly reduced and 
performance improved. For example, a complex question: ls the second left letter 't' and the 
first left letter 'i' and the first right letter 'n '? can capture o in the common suffix tion and 
convert it to the correct phone. Complex questions can also alleviate possible data­
fragmentation problems caused by the greedy nature of the CART algorithm. 

Categorical questions can be formed in both the letter and phone domains with our 
common linguistic knowledge. For example, the most often used set includes the letter or 
phone clusters for vowels, consonants, nasals, liquids, fricatives, and so on. In growing the 
~ecision tree, the context distance also plays a major role in the overal! quality. It is very 
important to weight the entropy reduction according to the distance (either letter or pho­
neme) to avoid overgeneralization which forces the tree to look more carefully at the nearby 
context than at the far-away cont;xt. Each leaf of the tree has a probability distribution for 

letter-to-phoneme mapping. . . . 
There are a number of ways to improve the effectiveness of the dec1s1on tree. First, 

Pruning controls the tree's depth. For example, certain criteria have to be ~e~ for a node to 
be split. Typically splitting requires a minimum number of counts aod a mmimum en~op_y 
reduction. Second, the distribution at the leaves can be smoothed. For example, a leaf diSln-
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bution can be interpolated with the distributions of its ancestor nodes using d 1 · · · · d t d b 'Id I · e eted. interpolation Finally we can part1l!on the trammg a a an ut mu tlple trees with d'f 
' ' • • I fer-

ent prediction capabilities. These trees accommodate different phonological rules with dif-
ferent language origins. 

When the decision tree is used to derive the phonetic pronunciation, the phonetic 
I 

con-
version error is about 8% for the Wall Street Jouma newspaper text corpora [6I]. Th 

· Tlfi ·1 ese eirnrs can be broadly classified into two categoncs .. 1e 1rst me udes errors of proper nouns 
and foreign words. For example, Pacino can be mistakenly converted to Ip ax s iy n ow 1 
instead of /p ax ch iy 12 owl. The second category includes generalization errors. For exam­
ple, shier may be converted to /sh ih rl instead of the correct pronunciation /sh ay r/ if the 
word cashier /k ae sh ih r/ appears in the training data. The top three phone confusion pairs 
are /ix/ax/, /dxlt/, and /aelaxl. The most confusing pair is /ix/ax/. This is not surprising, be­
cause /ix/ax/ is among the most inconsistent transcriptions in most of the published diction­
aries. There is no consensus for /ix/ax/ transcription among phoneticians. 

Although automatic LTS conversion has a reasonable accuracy, it is hardly practical if 
you don't use an exception dictionary. This is especially true for proper nouns. In practice, 
you can often ask the person who knows how to pronounce the word to either speak or write 
down the correct phonetic pronunciation, updating the exception dictionary if the correct one 
disagrees with what the LTS generates. When acoustic examples are available, you can use 
the decision tree to generate multiple results and use these results as a language model to_ 
perfonn phone recognition on the acoustic examples. The best overall acoustic and LTS 
probability can be used as the most likely candidate in the exception dictionary. Since there 
may be many ways to pronounce a word, you can keep multiple pronunciations in the dic­
tionary with a probability for each possible one. If the pronunciation probability is inaccu­
rate, an increase in multiple pronunciations essentially increases the size and confusion of 
the vocabulary, leading to increased speech recognition e1TOr rate. 

Even if you have accurate phonetic baseforrns, pronunciations in spontaneous speech 
differ significantly from the standard baseforrn. Analysis of manual phonetic transcription of 
conversational speech reveals a large number (> 20%) of cases of genuine ambiguity: in· 
stances where human labelers disagree on the identity of the surface form [95]. For example. 
the word because has more than 15 different pronunciation variations, such as lb iy k ah:.!, 
~ ix k ah 'd. fl' ah 'd. lk ~ d, lb ix k ax 'l.!, lb ax k ah zJ, lb ih k ah z/, /k sl,_lk ix d. lk ih zl: 
zy k ah sl. lb zy k ah/, lb zy k ah z}zl, lax v, etc., in the context of conversat10nal speech 13 ]. 
To characterize the acoustic evidence in the context of this ambiguity, you can partly resol~e 
the ambiguity by deriving a suitable phonetic baseform from speech data [29, 95, 9?]. ThiS 
is because the widespread variation can be due either to a lexical fact (such as that me ~0rd 

because can be 'cause in infonnal speech) or to the dialect differences. African Amencan 
vemacula: English has many vowels different from general American English. a· 

. To incorporate widespread pronunciations, we can use a probabilistic finite state "\ 
chme to model each word's pronunciation variations as shown in Figure 9.7. The probabi 
·1 · h · · ' I ave a 1 Y wit each arc indicates how likely that path is to be taken with all the arcs thal e i 

node summin t I A · h H ' 1 corpus ior g O · s wit MMs, these weights can be estimated from a rea 
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·rniJroved speech recognition (20, 85, 102, 103, 110]. In practice th 
1 

. . 
1 -1- ·• fi · h' · , ere alive error reduction of using probab1 1st1c mite state mac mes 1s very modest (5_ 1 O% ). 

/m/ 

~ - ~- 0.8, 

~-2 

Figure 9.7 A possible pronunciation network for word tomato. The vowel 1 ,f · 1.k 1 · 1 · h . . e) 1s more I e y 
to flap, thereby havmg a ug er transmon probability into /dx!. 

9.5. ACOUSTIC MODELING-SCORING ACOUSTIC FEATURES 

After feature extraction, we have a sequence of feature vectors, X, such as the MFCC vector, 
as our input data. We need to estimate the probability of these acoustic features, given the 
word or phonetic model, W, so that we can recognize the input data for the correct word. 
This probability is referred to as acoustic probability, P(X I W). In this section we focus our 
discussion on the HMM. As discussed in Chapter 8, it is the most successful method for 
acoustic modeling. Other emerging techniques are discussed in Section 9.8. 

9.5.1. Choice of HMM Output Distributions 

As discussed in Chapter 8, you can use discrete, continuous, or semicontinuous HMMs. 
When the amount of training data is sufficient, parameter tying becomes unnecessary· A 
continuous model with a large number of mixtures offers the best recognition ac_curacy, al­
though its computational complexity also increases linearly with the number of mixtures. On 
the other hand, the discrete model is computationally efficient, but has the worSl p~rfonn­
ance among the thret models. The semicontinuous model provides a viable altemauve be-
tween system robustness and trainability. . . 

When either the discrete or the semicontinuous HMM is employed, it is helpful to use 
multiple codebooks for a number of features for significantly improved performa~ce. Each 
codebook then represents a set of different speech parameters. One way to ~ombme these 
multiple output observations is to assume that they are independent, computing lhe output 
pro~ability as the product of the output probabilities of each codebook. For example, the 
sem1continuous HMM output probability of multiple codebooks can be computed as the 
Product of each codebook: 
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l. 

h;(x) = IT Lf"'(x"' Jo;")b;'(o;) 
m k=I 

Acoustic Mode~l ...... 
lhg 

(9.12) 

where superscript 111 denotes the codebook-m related parameters. Each codebook co . 
· · f · ns1sts of E" -mixture continuous density unctions. 

Following our discussion in Chapter 8, the re-estimation algorithm for the m 1• 
H Id b d d S. I . 

1
. . u llple-

codebook-based MM cou e exten e . mce mu lip 1cat1on of the output prob bT 
density of each codebook leads to several independent terms in the Q-function, for cod:b

1~i 
m, t;,(j,km) can be modified as follows: 

(9.13) 

Other intermediate probabilities can also be computed in a manner similar to what we 
discussed in Chapter 8. 

Multiple codebooks can dramatically increase the representation power of the VQ 
codebook and can substantially improve speech recognition accuracy. You can typically 
build a codebook for c* , AC*, and AAC*, respectively. As energy has a very different dy­
namic range, you can further improve the performance by building a separate codebook for 
c* [O], Act [OJ , and AAC* [O]. In comparison to building a single codebook for x* as illus­
trated in Eq. (9.6), the multiple-codebook system can reduce the error rate by more than 
10%. 

In practice, the most important parameter for the output probability distribution is the 
number of mixtures or the size of the codebooks. When there are sufficient training dal.a, 
relative error reductions with respect to the discrete HMM are those shown in Figure 9.8. 

12 
Q) 10 iu 
a: 8 -+-DHM~ '-
~ 6 --- SCHMM '-
w 
-e 4 -tr- CH MM 

~ 
___, 

2 ..... -· .. 
0 

1 2 3 4 5 6 

Training Set Size (thousands) 

Figure 9·8 Continuous speaker-independent word recognition error rates of the discrete ~ 
(DHMM), SCHMM, and the continuous HMM (CHMM) with respect to the training set siz~ 
(thousands of training sentences). Both the DHMM and SCHMM have multiple codebooks. 
The CHMM has 20 · . mixture diagonal Gaussian density functions. 

Amazon/VB Assets 
Exhibit 1012 

Page 466



Acoustic Modeling-Scoring Acoustic Features 
441 

As you can see from Figure 9.8, the SCHMM offers im 1 . . . . provec accuracy m comparison 
with the discrete HMM or the contmuous HMM when the amount ft . . d . . . _ _ . . . . _ . . o rammg ata 1s hm1ted. 
When we 1nc1ease the trammg data size, the contmuous 011·xtu d . HMM . . . re ensuy starts to out-
perfonn both the discrete and the sem1cont111uous HMM since the d 1 . . , nee to s ,are model pa-
rameters becomes less crmcal. 

Performance is also a function of the number of mixtures W'th 11 . . 1 a sma number of 
mixtures, the contmuous HMM lacks the modeling power and it actual! -'-' _ y pe11onns worse 
than the discrete HMM ~cross the board. Only after we dramatically increase the number of 
mixtures does the continuous HMM start to offer improved recognition ace Th 

· II d h d' uracy. e SCHMM can typ1ca y re uce t e 1screte HMM error rate by 10-15% across th b d Th 
M . h "0 ct· I G . . . e oar . e 

continuous HM wit ~ iagona aussian density functions performed worse than either 
the discrete or the SCHMM when the size of training data was small. It outperformed either 
the discrete HMM or the SCHMM when sufficient amounts of training data became avail­
able. When the amount of training data is sufficiently large, it can reduce the error rate of the 
semicontinuous HMM by 15-20%. 

9.5.2. Isolated vs. Continuous Speech Training 

If we build a word HMM for each word in the vocabulary for isolated speech recognition, 
the training or recognition can be implemented directly, using the basic algorithms intro­
duced in Chapter 8. To estimate model parameters, examples of each word in the vocabulary 
are collected. The model parameters are estimated from all these examples using the for­
ward-backward algorithm and the reestimation formula. It is not necessary to have precise 
end-point detection, because the silence model automatically determines the boundary if we 
concatenate silence models with the word model in both ends. 

If subword units.3 such as phonetic models, are used, we need to share them across dif­
ferent words for large-vocabulary speech recognition. These subword units are concatenated 
lo form a word model, possibly adding silence models at the beginning and end, as illus­
trated in Figure 9.9. 

To concatenate subword units to form a word model, you can have a null transition 
from the final state of the previous subword HMM to the initial state of the next subword 
HMM, as indicated by the dotted line in Figure 9.9. As described in Chapter 8, you can es­
timate the parameters of the concatenated HMM accordingly. Please notice that the added 
null transition arc should satisfy the probability constraint with the transi~ion pro~ab~li~y of 
each phonetic HMM. The self-loop transition probability of the last state m each md1_v1dual 
HMM has the topology illustrated in Figure 9.9. If we estimate these p~ameters with ~he 
concatenated model, the null arc transition probability, ai, should satisfy th_e conSlramt 
L .(ay +ai) = I such that the self-loop transition probability of the l~t state is no_ Io_nger 
eq 1a] I · . · · Ivi·no multiple pronunciations, u to . For mterword concatenation or concatenation mvo o 

you can use multiple null arcs to concatenate indi victual models together. 

1 

We hijve a delailed discussion on word models vs. subword models in Section 9.4.I. 
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Dictionary ~ 
"----______-/ 

One lwah 11/ 
Two It uw/ 

Zero 
Silence 

/z ih row/ 
/sill / 

A composed HMM for word two: 

------Acoustic Mod 1. e 1ng 

/aa/ ~ 

Jae/ ~ 

~ 

~ 
~ --~ --~ -~ 

/sill It/ /uw/ /sill 

Figure 9.9 The construction of an isolated word model by concatenating multiple phone1ic 
models based on the pronunciation dictionary. 

In the example given in Figure 9.9, we have ten English digits in the vocabulary. We 
build an HMM for each English phone. The dictionary provides information on each word's 
pronunciation. We have a special word, Silence, that maps to a /sill HMM that has the same 
topology as the standard phonetic HMM. For each word in the vocabulary we first derive the 
phonetic sequence for each word from the dictionary. We link these phonetic models to­
gether to fonn a word HMM for each word in the vocabulary. The link between two pho­
netic models is shown in the figure as the dotted arrow. 

For example, for word two, we create a word model based on the beginning silence 
/sill, phone It/, phone luw/, and ending silence /sill. The concatenated word model is then 
treated in the same manner as a standard large composite HMM. We use the standard ~or­
ward-backward algorithm to estimate the parameters of the composite HMM from mulnple 
sample utterances of the word two. After several iterations, we automatically get the HMM 
parameters for /sill, It/, and luw/. Since a phone can be shared across different words, (he 
phonetic parameters may be estimated from acoustic data in different words. 

The ability to automatically align each individual HMM to the corresponding unseg­
mented speech observation sequence is one of the most powerful features in the forward· 
backward algorithm. When the HMM concatenation method is used for continuous s~eechf, 

d . ton o you nee to compose multiple words to form a sentence HMM based on the transcnp 1 

lhe utterance. In the same manner, the forward-backward algorithm absorbs a range of pas· 
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sible word boundary inf~rmation of models automatically. There is no need to have a precise 
segmentation of the continuous speech. 

In general, to estimate t~e parameters of the HMM, each word is instantiated with its 
concatenated word model (wh1c~ may be a concatenation of subword models). The words in 
the sentence are concatenated. w~th optional silence models between them. If there is a need 
to modify interword pronunc1at1ons due to interword pronunciation change such as t 

'f" · , wan 
you, you can add a dt 1erent optional phonetic sequence for t-y in the concatenated sentence 
HMM. 

In the digit recognition example, if we have a continuous training utterance one three 
we compose a sentence HMM, as shown in Figure 9.10, where we have an optional silenc~ 
HMM between the words one and three, linked with a null transition from the last state of 
the word model one to the first state of the word model three. There is also a direct null arc 
connection between the models one and three because a silence may not exist in the training 
example. These optional connections ensure that all the possible acoustic realizations of the 
natural continuous speech are considered, so that the forward-backward algorithm can 
automatically discover the correct path and accurately estimate the corresponding HMM 
from the given speech observation. 

In general, the concatenated sentence HMM can be trained using the forward­
backward algorithm with the corresponding observation sequence. Since the entire sentence 
HMM is trained on the entire observation sequence for the corresponding sentence, most 
possible word boundaries are inherently considered. Parameters of each model are based on 
those state-to-speech alignments. It does not matter where the word boundaries are. Such a 
training method allows complete freedom to align the sentence model against the observa­
tion, and no explicit effort is needed to find word boundaries. 

In speech decoding, a word may begin and end anywhere within a given speech signal. 
As word boundaries cannot be detected accurately, all possible beginning and end points 
have to be accounted for. This converts a linear search (as for isolated word recognition) to a 
tree search, and a polynomial recognition algorithm to an exponential one. How to design an 
efficient decoder is discussed in Chapters 12 and 13. 

~ . 
/' .. \ 
I /sill i 

~~---~~ 
/sil/ one three /sill 

· d b a word HMM or a composite Figure 9.10 A composite sentence HMM. Each wor can e 
phonetic word HMM, as illustrated in Figure 9.9. 
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9.6. ADAPTIVE TECHNIQUES-MINIMIZING MISMATCHES 

As Figure l .2 illustrated, it is important to adapt both acous~ic models and l~nguage models 
for new situations. A decent model can accommo~ate a w~~e range of vanabilities. Row. 
ever, the mismatch between the model and operating con~1ttons ~l\'."a~s exists. One of the 
most important factors in making a speech syst~m u~able is to mmi~ize the possible mis­
match dynamicaJly with a small amount of calibratw~ ~ata. _Ada~tive techniques can be 
used to modify system parameters to better match vanations m microphone, transmissio 

I
. . n 

channel, environment noise, speaker, style, and app 1cauon contexts. As a concrete example 
speaker-dependent systems can provide a significant word error-rate reduction in compan: 
son to speaker-independent systems if a large amount of speaker-dependent training data 
exists [50]. Speaker-adaptive techniques can bridge the gap between these two configura­
tions with a small fraction of the speakeMpecific training data needed to build a full 
speaker-dependent system. These techniques can also be used incrementally as more speech 
is available from a particular speaker. When speaker-adaptive models are built, you can have 
not only improved accuracy but also improved speed and potentially reduced model parame­
ter sizes because of accurate representations, which is particularly appealing for practical 
speech recognition. 

There are a number of ways to use adaptive techniques to minimize mismatches. You 
can have a nonintrusive adaptation process that works in the background all the time. This is 
typically unsupervised, using only the outcome of the recognizer (with a high confidence 
score, as discussed in Section 9.7) to guide the model adaptation. This approach can con­
tinuously modify the model parameters so that any nonstationary mismatches can be elimi­
nated. As discussed in Chapter 13, systems that are required to transcribe speech in a non­
real-time fashion may use multiple recognition passes. You can use unsupervised adaptation 
on the test data to improve the models after each pass to improve perfonnance for a subse­
quent recognition pass. 

Since the use of recognition results may be imperfect, there is a possibility of diver­
gence if the recognition error rate is high. If the error rate is low, the adaptation results may 
still not be as good as supervised adaptation in which the correct transcription is provided 
for the user to read, a process referred to as the enrollment process. In this process you can 
check a wide range of parameters as follows: 

• Check the background noise by asking the user not to speak. 

• Adjust the microphone gain by asking the user to speak nocmally. 

• Adapt the acoustic parameters by asking the user to read several sentences. 

• Change the decoder parameters for the best speed with no loss of accuracy. 

• Compose dynamically new enrollment sentences based on the user-specific 
error patterns. 

bl d
The challe~ge for model adaptation is that we can use only a small amount of obse~-

a e ata to modify mod I . 1. rrateg1es 
e parameters. This constraint requires different mode ing s 
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from the ones we discussed in building the baseline system as th f . . _ 
- . " ffl " . . , e amount o training data IS 

enerally sufficient ,or o me tram111g. In this section we ,,0,.. . g . , --tis on a number of adaptive 
techniques that can be appltcd to compensate either speaker or en\'ironm t . . M · I b . en vanat1ons. ost 
Of the.se rechmques are mode - ased, smce the acoustic model . . . . _ , . p.1rameters rather than the 
·•cousuc feature vectors ,11e adapled. We use speaker-adaptation exa I t .11 .. . _ mp es o I ustrate how 
these techniques can be used lo improve system perfonnance We 1. . . . . . can genera 1ze to envi-
ronment adaptation by using en\'lronrnent-specific adaptation data and a - . . . , no1se-compensat1on 
nlodel which we discuss 111 Chapter 10. In a similar manner we can d"f th 1 , . , mo I y e anouaoe 
model as discussed m Chapter I I. ,,. I:> 

9.6.1. Maximum a Posteriori (MAP) 

Maximum a posteriori (MAP) estimation. as discussed in Chapter 4, can effectively deal 
with data-sparse pr_oblems, as we can take ad~antage of prior information about existing 
models. We can adJust the parameters of pretramed models in such a way that limited new 
training data would modify the model parameters guided by the prior knowledge to compen­
sate for the adverse effect of a mismatch r35]. The prior density prevents large deviations of 
the parameters unless the new training data provide strong evidence. 

More specifically, we assume that an HMM is characterized by a parameter vector ct> 
that is a random vector, and that prior knowledge about the random vector is available and 
characterized by a prior probability density function p(<l>), whose parameters are to be de­
termined experimentally. 

With the observation data X , the MAP estimate is expressed as follows: 

ci> = arg max[p(<l> IX)]= argmax[p(X I <l>)p(<I>)] (9.14) 
C, C, 

If we have no prior information, p( <I>) is the unifonn distribution, and the MAP esti­
mate becomes identical to the ML estimate. We can use the EM algorithm as the ML to es­
timate the parameters of HMMs. The corresponding Q-function can be defined as: 

(9.15) 

The EM algorithm for the ML criterion can be applied here directly. The actual ex­
pression depends on the assumptions made about the prior density. For the widely used con­
tinuous Gaussian mixture HMM, there is no joint conjugate prior density. W~ c_an ~ssume 
different components of the HMM to be mutually independent, so that the opt1m1zat1on can 
be split into different subproblems involving only a single component of the parameter set. 
For example, the prior density function for the mixture Gaussian can be as follows: 

P,.,(c;,µ;,E;) = P~,(c;)IIP,,,. (µ;k,1:;k) 
k 

(9.16) 

Where P ( c.) is a Dirichlet prior density for the mixing coefficient vector of all mixture 
compone%ts 'in the Markov state i, and P1>;,. (µ;k' 1:;k) denotes the prior density for parameters 
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of the .(.1h Gaussian component in the state i. The Dirichlet prior density p (c ) . 
. . h h h r, 1 IS characte ized by a vector v, of positive yperparameters sue t at: r-

(9.17) 

For full covariance D-dimensional Gaussian densities, the prior density c b 
. . · an ea nor-mal-Wishart density parametenzed by two values 1] > D-1, r > 0, the vector µ 

symmetric positive definite matrix S as follows: ... ' 8nd the 

Pb;). (µik, L;k) oc 

jde«_L;k)D-,i exp(-1(µ;k -µ,,.,.)L;'(µ,k -µ,,".)' -½ rr(SL;')) (9.18) 

We can apply the same procedure as the MLE Baum-Welch reestimation algorithm 
For example, with the Q-function defined in Eq. (9.15), we can apply the Lagrange meth~ 
to derive the mixture coefficients as follows: 

Based on Eqs. (9.17) and (9.19), the solution is: 

v,k -1 + I~,(i.k) 
C = I 

lk L,(V;1 -1 + L~,(i,l)) 
I I 

(9.19) 

(9.20) 

A comparison between Eq. (9.20) and the ML estimate Eq. (8.58) shows that the MAP 
estimate is a weighted average between the mode of the prior density and the ML estimate 
with proportions given by v!.ik -1 and I,~,(i.k). respectively. . . . 

We can optimize Eq. (9.15) with respect to mean and covariance parameters ma simi­
lar fashion. For example, the solution of these estimates is: 

T 

. T;kµ""'it + Is,(i,k)x, 
µ..k = 1:e) 

I T 
(9.20 

-r;. + IJ,<i,k) 
t=I 

S A T 
+ -r;. (µ - )( A / ~ r • A A )' i: - r7c ik ik µ,,., ... µik -µ,,,.,.) + L.,':l,(z,k)(x-µ;k)(x-µik 

ik - I I 
(9.22) 

T 

T/,k -D+ 2,{,(i,k) 
t=I 
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here r . is the parameter in the nomrnl-gamma density ior the d' w ,t . . corrcspon 1110 state i 
Thus, the reest1mat10n fonnula for the Gaussian mean is . h d O 

• • 
r r - a weig te sum of the prior 

mean with the ML mean eStimate ~s,(i,k)x, (~J,(i.k) · rit is a balancing factor between 
1-1 /el 

Pn·or mean and the ML mean estimate. When -r 1 is large the value or th . k . , , e prior nowledge 
is small and the value of the mean µ,,.,.,, 1s assumed to have high certainty, leading to the 

dominance of the final estimate: When the amount of adaptation data increases, the MAP 
estimate ~pproaches the ML es~1mate, a~ t~e adaptation data overwrite any important piior 
that may influence the final estimate. S1milarly. the covariance estimation fonnula has the 
same interpretation of the balance between the prior and new data. 

One major limitation of the MAP-based approach is that it requires an accurate initial 
guess for the prior p(<I>), which is often difficult to obtain. We can use the already trained 
initial models that en~b?~Y some c~aract~ris~ics of the original training conditions. A typical 
way to generate an mltlal Gaussian pnor 1s to cluster the initial training data based on 
speaker or environment similarity measures. We can derive a set of models based on the 
partition, which can be seen as a set of observations drawn from a distribution having p{cl>). 
We can, thus, estimate the prior based on the sample moments to derive the corresponding 
prior parameters. 

Another major limitation is that the MAP-based approach is a local approach to updat­
ing the model parameters. Namely, only model parameters that are observed in the adapta­
tion data can be modified from the prior value. When the system has a large number of free 
parameters, the adaptation can be very slow. Thus in practice we need to find correlations 
between lhe model parameters, so that the unobserved or poorly adapted parameters can be 
altered [3, 22J. Another possibility is to impose structural infonnation so the model parame­
ters can be shared for improved adaptation speed [96]. 

The MAP training can be iterative, too, which requires an initial estimate of model pa­
rameters. A careful initialization for the Gaussian densities is also very important. Unlike the 
discrete distributions, there is no such a thing as a uniform density for a total lack of infor­
mation about the value of the parameters. We need to use the same initialization procedure 
as discussed in Chapter 8. 

For speaker-adaptive speech recognition, it has been experimentally f~und ~at -r,1 can 
be a fixed constant value for all the Gaussian components across all the dimensmns. Thus 
the MAP HMM can be regarded as an interpolated model between the speaker-independent 
and speaker-dependent HMM. Both are derived from the standar~ ML :0 rward-backward 
algorithm. Experimental performance of MAP training is discussed m Secuon 9-6·3· 

9.6.2. Maximum Likelihood Linear Regression (MLLR) 

Wh th . . d 1- th st important parameter set en e continuous HMM is used for acoustic mo e mg, e mo . 
to ad · · th mean vector and the covanance apt 1s the output Gaussian density parameters, 1.e., e 
matrix. We can use a set of linear regression transformation functions to map both means 
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and covariances in order to maximize the likelihood of the adaptation data [68]. Th . . . . · . e rn:ix1• mum likelihood linear regression (MLLR) mapping is consiSlent With the underlyin . 
· · h b f f g cnte. rion for building the HMM while keeping t e num er O ree parameters under . f . control 

Since the transformation parameters can be estimated rom a relatively small amount f · 
aptation data, it is very effective for rapid adaptation. MLLR has been widely used to 

0
b a~-

. d' . o tam 
adapted models for either a new s~eaker ?r a n_ew env1~onment _con 1t1on. 

More specifically, in the mixture Gaussian density functions. the i1h mean vecto 
. ~ I . • • r µit 

for each state; can be transfonned using ,ol owmg equallon. 

(9.23) 

where A, is a regression matrix and b,. is an additive bias vector associated with some 
broad class c, which can be either a broad phone class or a set of tied Markov states. The 
goal of Eq. (9.23) is to map the mean vector into a new space such that the mismatch can be 
eliminated. Because the amount of adaptation data is small, we need Lo make sure the num­
ber of broad classes c is small so we have only a small number of free parameters to esti­
mate. Equation (9.23) can be simplified into: 

(9.24) 

where µi.l: is extended as [l,µ:kl' and W<: is the extended transform, (b,.,A,.]. 
This mapping approach is based on the assumption that W, can be tied for a wide 

range of broad phonetic classes so that the overall number of free parameters is significantly 
less than the number of mean vectors. Therefore, the same transformation can be used for 
several distributions if they represent similar acoustic characteristics. 

To estimate these transformation parameters in the MLE framework, we can use the 
same Q-function we discussed in Chapter 8. We need to optimize only 

M 

IIQb, (<I>,6,t) (9.25) 
i k=I 

wilh re~pect to W~. M~imi_zation of Qn, (<l>,b,.) with respect to We c~n be achie~ed ~ 
c_om~utm~ the partial derivatives. For the Gaussian mixture density funct10n, the partial d 
nvat1ve with respect to we is: 

(9.26) 

l 
Let us denote the set of Gaussian components fonning the broad transfonnatithoo 

c asses as C; we use b C d "' . . . . b I ngs to e ;• e to enote that the k Gaussian density in state I e 0 

, 
I 
I 
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class. We ~an expa~d the Q-function with the partial derivatives and set it t I d' 
the following equation: 0 zero, ea mg to 

We can rewrite Eq. (9.27) as: 

Z == I Vik WcDik 
h,.ec 

where 

T 

Z== I I (,(i,k)l:;1x,µ~k• 
t•I l>ii,eC 

T 

'Y;* = r,,(i.k)l:;'. 
t=I 

and 

D - I 
ik - µil:µik . 

(9.27) 

(9.28) 

(9.29) 

(9.30) 

(9.31) 

Estimating We for Eq. (9.28) is computationally expensive, as it requires solving si­
multaneous equations. Nevertheless, if we assume that the covariance matrix is diagonal, we 
can have a closed-form solution that is computationally efficient. Thus, we can define 

(9.32) 

where vqq denotes the q'~ diagonal element of matrix V1*. The transformation matrix can be 
computed row by row. So for the q'1' row of the transfonnation matrix Wq, we can derive it 
from the q11i row of Zq [defined in Eq. (9.29)] as follows: 

W =Z G-1 
q q q 

(9.33) 

Since G
9 

may be a singular matrix, we need to make sure we have enough training 
data for the broad class. Thus, if the amount of training data is limited, we must tie a number 

of transformation classes together. 
We can run several iterations to maximize the likelihood for the given adaptation data. 

At each iteration, transformation matrices can be initialized to identity transfo1mations. We 
can iteratively repeat the process to update the means until convergence is achieved. We can 
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also incrementally adapt the mean vectors after each observation sequence or set f 
h'l h · d · · I d · 0 Observ tion sequences w 1 e t e require stat1st1cs are accumu ate over time. Under the a-

that the alignment of each observation sequence against the model is reasonabtsurnption 
th . d . d h . y accurate we can accumulate ese est11nate countc; over time an use t em incrementally 1 , 

deal with the tradeoff between specificity and robust estimation, we can dynami~;I 
0rder to 

ate regression classes according to the senone tree. Thus, we can incrementally incr~!:ner­
number of regression classes when more and more data become available. tbe 

MLLR adaptation can be generalized to include the variances with the ML frarn 
d. . 1 . f i . . f ework, although the ad 1t1ona gam a ter mean trans ormatton 1s o ten less significant (less th 

relative 2% error reduction). When the user donates about 15 sentences for enrollment tra·a~ 
ing, Table 9.5 iHustrates how the MLLR adaptation technique can be used to further red~n 
the word recognition error rate for a typical dictation application. Here, there is only 

0
~: 

context-independent phonetic class for all the context-dependent Gaussian densities. As we 
can see, most of the error reduction came from adapting the mean vectors. 

We can further extend MLLR to speaker-adaptive training (SAT) [6, 74]. In conven­
tional speaker-independent training, we simply use data from different speakers to build a 
speaker-independent model. An inherent difficulty in this approach is that spectral variations 
of different speakers give the speaker-independent acoustic model higher variance than the 
corresponding speaker-dependent model. We can include MLLR transformation in the proc­
ess of training to derive the MLLR parameters for each individual speaker. Thus the training 
data are transformed to maximize the likelihood for the overall speaker-independent model. 
This process can be run iteratively to reduce mismatches of different speakers. By explicitly 
accounting for the interspeaker variations during training and decoding, SAT reduces the 
error rate by an additional 5-10%. 

Table 9.S Relative error reductions with MLLR methods. The reduction is relative to that of 
the preceding row. 

Models ~elative Error Reduction 

CHMM Baseline 

MLLR on mean only +12% 

MLLR on mean and variance +2% 

MLLRSA"1 +8% 

9.6.3. MLLR and MAP Comparison 

The MLLR method can be combined with MAP. This guarantees that with tbe i_ncrease~ 
amount f tr · · " rrnauon func 
. 

0 ammg data, we can have not only a set of compact MLLR transio the 
:s fo~ rapid adaptation, but also directly modified model parameters that conve:~~~ 10 

eSllmates. We can use MAP to adapt the model parameters and then add d. c~Y 
transfonn these ad t d . AP ·nciple ire . ap e models. It 1s also possible to incorporate the M pn 
mto MLLR [18, 19]. 
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As an example, t~e re_sult of a 6~,000-word dictation application using various adapta­
tion methods is shown m Figure 9.11. The speaker-dependent model used 1000 utterances. 
Also included as a reference is the speaker-independent result, which is used as the starting 
point for adaptive training. ~hen the speaker-independent model is adapted with about 200 
utterances, the speaker-adaptive model has already outperformed both speaker-independent 
and speaker-dependent systems. The results clearly demonstrate that we have insufficient 
training data for speaker-dependent speech recognition, as MAP-based outperform ML­
based models. This also illustrates that we can make effective use of speaker-independent 
data for speaker-dependent speech recognition . Also, notice that the MLLR method has a 
faster adaptation rate than the MAP method. The MLLR method has context-independent 
phonetic classes. So, when the amount of adaptation data is limited, the MLLR method of­
fers better overall performance. 

However. the MAP becomes more accurate when the amount of adaptation data in­
creases to 600 per speaker. This is because we can modify all the model parameters with the 
MAP training, and the MLLR transformation can never have the same degrees of freedom as 
the MAP method. When the MLLR is combined with MAP, we can have not only rapid ad­
aptation but also superior performance over either the MLLR or MAP method across a wide 
range of adaptation data points. There arc a number of different ways to combine both 
MLLR and MAP for improved performance [4, 98]. 

IU 

12.0 .. 
;; 
er: 
] 11.S · 

11.0 · 

10.S · 

100 .L..,_ _____ _ 

0 200 400 bOll 

Number of Adaptation Utterances 

- ---, 

suo 1000 

---MU.ROal) 

- .'ip:.lk.C'r• 
lnu.:p:nJcllt 

. LR MAP and combined MLLR and MAP. The 
Figure 9.ll Comparison of Whisper with ML ' '. Th eaker-dependent and 
error rate is shown for a different amount of adaptallon data. d e :odel was trained with 
speaker-independent models are also included. The speaker-depen ent 
I 000 sentences. 

• . . . odel is used. the baseline performance may ~ very 
In pracuce, 1f a large well-trained, speaker-independent m . be smaller tlian for smaller and simpler 

gOOd, and hence, the relative error reduction from speaker adapiauon may 
models. 
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9.6.4. Clustered Models 

Both MAP and MLLR techniques are based on using an appropriate initial model e 
· · · I d I ct· I ,or adap tive modeling. How accurate we make the mllia mo e 1rect y affects the overall · 

ance An effective way to minimize the mismatch is, thus, to cluster similar spe pek rfonn. 
. . . . . . f d I c a ers and 

environments 111 the trammg data, bmldmg a set o mo e s 1or each cluster that has .. 
. . h 1 . . min1ma1 

mismatch for different cond'.t'.ons. "'.hen we ave enoug ~ tr~mmg da~a, and enough cover-
age for a wide range of cond1t1ons, this approach ensures s1gn1ficantly improved robu t . s ness. 

For example, we often need a set of clustered models for d1_fferent telephone channels, 
including different cellular phone standards. We also need to bmld gender-dependent mod­
els or speaker-clustered models for improved perfonnance. In fact, when we constru 
speaker-clustered models, we can apply MLLR transfonnations or neural networks to min~'. 
mize speaker variations such that different speakers can be mapped to the same golden 
speaker that is the representative of the cluster. 

Speaker clusters can be created based on the infonnation of each speaker-dependent 
HMM. The clustering procedure is similar to the decision-tree procedure discussed in Sec­
tion 9.4.3. Using clustered models increases the amount of computational complexity. It also 
fragments the training data. Clustering is often needed to combine other smoothing tech­
niques, such as deleted interpolation or MLLR transformation, in order to create clustered 
models from the pooled model. We can also represent a speaker as a weighted sum of indi­
vidual speaker cluster models with the cluster adaptive training (33] or eigenvoice tech­
niques [64]. 

When we select an appropriate model, we can compute the likelihood of the test 
speech against all the models and select the model that has the highest likelihood. Alterna­
tively, we can compute likelihoods as part of the decoding process and prune away less 
promising models dynamically without significantly increasing the computational load. 
When multiple models are plausible, we can compute the weighted sum of the clustered 
models with pretrained mixing coefficients for different clusters, much as we train the de· 
leted interpolation weights. 

Traditionally speaker clustering is performed across different speakers without consid· 
ering phonetic similarities across different speakers. In fact, clustered speaker groups rnay 
hav~ very different de~ees of variations for different phonetic classes. You ca~ fu~er g:: 
erahze speaker clustenng to the subword or subphonetic level [62]. With multiple IOStan . 

~erived f~~m clusrering for each subword or subphonetic unit, you can model speaker vana· 
tion exphc1tly across different subword or subphonetic models. 

In practice, gender-dependent models can reduce the word recognition error by io%. 
More refined speaker-clustered models can further reduce the error rate, but not as much: 
lhe gain from gender-dependent models, unless we have a large number of clustered spe ~ 
ers. If the new user h b . . can approac appens to e s1m1lar to one of these speaker clusters, we od· 
speaker-de~en~ent speech recognition without enrollment. For environment-dep~ndent mt or 
els, clustenng 1s mor ·t· al T . d f nvironrnen . . e en 1c . he challenge is to anticipate the km O e . le we 
channel d1ston1ons the system will have to deal with. Since this is ofcen unpred1ctab ' 
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need to use adaptive techniques such as MAP and MLLR to m· . . h . . . . . m1m1ze t e mismatch We 
discuss this 111 more detail m Chapter IO. · 

9.7. CONFIDENCE MEASURES: MEASURING THE RELIABILITY 

One of the most critical_ components in a p~actical speech recognition system is a reliable 
confidenc~ measure. With an acc~1rate co~tidence measure for each recognized word, the 
conversational back end can repair potential speech recognition errors ca · f . . , n reJect out-o -
vocabulary words, and can 1dent1fy key words (perform word spotting) that are relevant to 
the back end. In a speaker-de~e~dent o~ speaker-adaptive system, the confidence measure 
can help user enrollment (to ehmmate mispronounced words). It is also critical for u _ 

d · 
11 

· . nsuper 
vised speaker a aptat1on, a ow_mg selective use of recognition results so that transcriptions 
with lower confidence can be discarded for adaptation. 

[n theory, an accurate estimat~ of P(W IX), the posterior probability, is itself a good 
c?~fidence mea~ure fo~ word W given. th_e acoustic in~ut X. Most practical speech recog­
nition systems simply ignore P(X), as 1t 1s a constant m evaluating P(W)P(X I W)/ P(X) 
across different words. P(W I X) can be expressed: 

P(W IX)= P(W)P(X I W) = P(W)P(X / W) 
P(X) L, P(W)P(X / W) 

(9.34) 

w 

Equation (9.34) essentially provides a solid framework for measuring confidence lev­
els. It is the ratio between the score for the word hypothesis P(W)P(X I W) and the acous­
tic probability Lw P(W)P(X I W). In the sections that follow we discuss a number of ways 
to model and use such a ratio in practical systems. 

9.7.1. Filler Models 

You can compute P(X) in Eq. (9.34) with a general-purpose recognizer. It should be able to 
recognize anything such that it can fill the holes of the grammar in the normal speech recog­
nizer. The filler model has various fonns [7, 63). One of the most widely used is the so­
called all-phone network, in which all the possible phonetic and nonspeech HMMs are con­
nected to each other, and with which any word sequence can be recognized. 

In addition to evaluating P(W)P(X I W) as needed in normal speech recognition, a 
separate decoding process is used to evaluate LwP(W)P(X I W) . H~r~. W is either a ~ho­
netic or a word model. You can also apply phonetic n-gram probab1ht1es that are denve_d 
from a lexicon targeted for possible new words. The best path from the all-phone network 1s 
compared with the best path from the normal decoder. The . ratio between the two, as ex­
pressed in Eq. (9.34), is used to measure the confidence for either word or p~one._In th~ de­
coding process (see Chapters 12 and 13), you can accumulate the phonetic i:3t10 denved 
from Eq. (9.34) on a specific word. If the accumulative P(W IX) for the word 1s less than a 
predetermined threshold, the word is rejected as either a new word or a nonspeech event. 
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Both context-independent and context-dependent phonetic models can be us d ~ 
. e ,or th 

fully connected network. When context-dependent phonetic models are used, you e 
al h . . need to 

make sure that only correct contextu p onetlc connections are made. Although co 
" . 'ti . t .c h . . ntext-dependent models ouer s1gm 1cant 1mprovemen 1or speec recognition, the filler ph . 
• . . d d . . . 

1 
one11c 

network seems to be insens1t1ve to context- epen ency m empmca experiments. 
There are word-spotting applications that need to spot just a small number f k 

. d O ey 
words. You can use the filler models descnbe here for word spotting. You can also b .1 
anti word models trained with all the data that are not associated with the key words of in~~: 
est. Empirical experiments indicate that large-vocabulary speech recognition is the most 
suitable choice for word spotting. You can use a general-purpose n-gram (see Chapter li)to 
generate recognition results and identify needed key words from the word lattice. This is 
because a large-vocabulary system provides a better estimate of Lw P(W)P(X I W) with a 
more accurate language model probability. In practice, we don't need to use all the hypothe­
ses to compute LwP(W)P(X I W). Instead, 11-best lists and scores [40) can be used 10 
provide an effective estimate of LwP(W)P(X I W). 

9.7.2. Transformation Models 

To determine the confidence level for each word, subword confidence information is often 
helpful. Different phones have different impacts on our perception of words. The weight for 
each subword confidence score can be optimized from the real training data. If a word w has 
N phones, we-can compute the confidence score of the word as follows: 

N 

CS(w) = L,IP;(x;)I N (9.35) 
i•I 

where CS(w) is the confidence score for word w, x; is the confidence score for subword unit 
i in word w, and IP; is the mapping function that may be tied across a number of subword 
units. The transformation function can be defined as: 

FP,(x) =ax+ b (9.36) 

We can use discriminative training to optimize the parameters a and b, resp.:ciiveiy. A 
cost function can be defined as a sigmoid function of CS(w). As shown in Figure 9. 12• !he 

· . · htfor optimal transformation para.meters vary substantially across different phones. The weig 
consonants is also typically larger than that of vowels. 

The transformation function can be context dependent. Figure 9.13 illustrates tbe R~ 
curve of the context-dependent transformation model in comparison with the correspoo<ling 
phonetic filler model. The filler model essentially has a unifonn weight across all me phones 
. . error 
m a given word. The estimated transformation model has 15-40% false-acceptance . 
r~duction at various fixed false-rejection rates. The false-acceptance rate of the transfo[ltla 
tion model is consistently lower than that of the filler model [63]. 
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Figure 9.12 Transfonnation parameter a for each context-independent phone class. The weight 
of consonants is typically larger than that of vowels [63). 
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Figure 9.13 The ROC curve of phoneLic filler models with and without optimal feature 

transfonnaLion [63]. 
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9.7.3. Combination Models 

In practical systems, there are a number of featu~es you can use to improve the perfonnance 
of confidence measures. For example, the following features are helpful: 

• Word stability ratio from different language model weights ( WrdStabRatio). 
This is obtained by applying different language weights to see how stably 
each word shows up in the recognition n-best list. 

• Logarithm of the average number of active words around the ending frame of 

the word (WrdCntEnd). 

• Acoustic score per frame within the word normalized by the corresponding 
active senone scores (AscoreSen). 

• Logarithm of the average number of active words within the word 
(WrdCntW). 

• Acoustic score per frame within the word normalized by the phonetic filler 
model (AscoreFiller). 

• Language model score (lMScore). 

• Language model back-off (trigram, bigram, or unigram hit) for the word 
(lMBackOJf). 

• Logarithm of the average number of active states within the word (StateCnt). 

• Number of phones in the word (Nphones). 

• Logarithm of the average number of active words around the beginning frame 
of the word (WrdCntBeg). 

• Whether the word has multiple pronunciations (Mpron). 

• Word duration (WordDur) . 

. To clarify each feature's relative importance, Table 9.6 shows its linear correlation_~o­
efficient against the correct/incorrect tag for each word in the training set. Word 5Labdicy 
ratio (WrdStabRatio) has the largest correlation value. 

Several kinds of classifiers can be used to compute the confidence scores. Previous re­
search has shown that the difference between classifiers such as linear classifiers, general· 
ized !inear models, decision trees, and neural networks, ls insignificant. The simple5I linear 
c~ass1fier based on disc~inative training performs well in practice. As some fea~res ~ 
highly correlated, you can iteratively remove features to combat the curse of dimensionahty. 
The co~bi~ati.on n:odel can have up to 40-80% false-acceptance error reduction at fixed 
false-reJection rate m comparison to the single-feature approach. 
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Table 9.6 Correlmion coefficiems of several feai · . ures against correcl/mcorrect tag. 

Feature Correlation 
WrdStabRatio 0.590 
WrdCntW -0.223 
LMBadOff 0.171 
Ascor('Sen 0.250 
LMSCOl"C' 0.175 
Npho11es 0,091 
Won/D11r 0.012 
WrdCmE11d --0.321 
AscoreFiller 0.219 
StateCnt -0.155 
Mpro11 0.057 
WrdC111Be>! -0.067 

9.8. OTHER TECHNIQUES 

In addition to HMMs, a number of interesting alternative techniques are being actively in­
vestigated by researchers. We briefly review two promising methods here. 

9.8.1. Neural Networks 

You have seen both single-layer and multilayer neural nets in Chapter 4 for dealing with 
static patterns. In dealing with nonstationary signals, you need to address how to map an 
input sequence properly to an output sequence when two sequences are not synchronous, 
which should include proper alignment, segmentation, and classification. The basic neural 
networks are not well equipped to address these problems in a unified way. 

Recurrent neural networks have an internal state that is a function of the current input 
and the previous internal state. A number of them use time-step delayed recurrent loops on 
the hidden or output units of a feedforward network, as discussed in earlier chapters. For 
sequences of finite numbers of delays, we can transform these networks into equivalent 
feedforward networks by unfolding them over the time period. They can be trained with the 
standard back propagation procedure, with the following modifications: 

• The desired outputs are functions of time, and error functions have to be com­
puted for every copy of the output layer. This requires the selection of an 
appropriate time-dependent target function, which is often difficult to define. 

• All copies of the unfolded weights are constrained to be identical during the 
training. We can compute the correction terms separately for each weight and 
use the average to update the final estimate. 
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In most of these networks, you can_ have a partially recurrent network that has feed. 
back of the hidden and output units to the input lay_er. For_ exampl~, the feedforward network 

b Sed in a set of local feedforward connections with one time-step delay. These 
can e u . fi Id . d . . net­
works are usually implemented by extending the input ie with a d1t1?nal feedback uniis 
containing both the hidden and output vaJues _generated b~ the precedmg input. You can 
encode the past nonstationary informatio~ th~t 1s often required to generate the correct out­
put, given the current input, as illustrated m Figure 9.14. 

Output Layer 

Input Layer 

Figure 9.14 A recurrent network with contextual inputs, hidden vector feedback, and output 
vector feedback. 

One of the popular neural networks is the Time Delay Neural Network (TONN) [l05]. 
Like static networks, the TONN can be trained to recognize a sequence of predefined length 
(defined by the width of the input window). The activation in the hidden layer is computed 
from the current and multiple time-delayed values of the preceding layer, and the output 
units are activated only when a complete speech segment has been processed. A typical 
TONN is illustrated in Figure 9.15. The TONN has been successfully used to classify pre­
segmented phonemes. 

All neural networks have been shown to yield good performance for small-vocabul~ 
speech recognition. Sometimes they are better than HMMs for short, isolated speech un~ts. 
By recurrence and the use of temporal memory, they can perfonn some kind of integration 
over time. It remains a challenge for neural networks to demonstrate that they can be as ef· 
fective as HMMs for deaJing with nonstationary signals, as is often required for large­
vocabulary speech recognition. 

. To deaJ with continuous speech, the most effective solution is to integrate neuraJ nets 
With HM~s [91: I 13J. The neural network can be used as the output probabilities to replac~ 
the Gaussian mixture densities. Comparable results can be obtained with the integrated ap 
:;ach. These HMM output probabilities could be estimated by applying the Bayes'. rul~~ 

output of neural networks that have been trained to classify HMM state categones. . 
neural networks c · . p of sepa 

. an consist either of a single large trained network or of a grou 
rately tramed small networks [21, 31' 75, 90]. 
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A number of techniques have been developed to improv th ...- . . 
T 

. . e e pe11ormance of trammg 
these networks. rammg can be embedded in an EM-style pro F . . cess. or example dynamic 
Programming can be used to segment the training data The segmented d t h' . . · a a are t en used to 
retrain the network. It 1s also possible to have Baum-Welch style training [ 14, 421_ 

Input Layer 

Figure 9.15 A time-delay neural network (TONN), where the box h, denotes the hidden vec­
tor at timer, the box x 1 denotes the input vector al lime t, and the box z-1 denotes a delay of 
one sample. 

9.8.2. Segment Models 

As discussed in Chapter 8, the HMM output-independence asswnprion results in a piecewise 
stationary process within an HMM state. Although the nonstationary speech may be mod­
eled sufficiently with a large number of states, the states in which salient speech features are 
present are far from stationary [25, 99). While the use of time-derivative features (e.g., delta 
and/or delta-delta features) alleviates these limitations, the use of such longer-time-span 
features may invalidate the conditional independence assumption. 

state 1 ...... state 2 
...... ......... ,,,, .... , 

............ .... < _,,"' __ ,_, ... ___ _ 
,. ... 

... --
Figure 9.16 Diagram illustrating that HMM's output observation can hop between two unex­
pected quasi-stationary states [ 46). 

The use of Gaussian mixtures for continuous or semicontinuous HMMs, as described in 
Chapter 8, could introduce another potential problem, where arbitrary transitions ~mong the 
Gaussian mixture components between adjacent HMM scates are allowed [59], Figure 9·1.6 

ill~strates two HMM states with two mixture components. The sol!d lines d~note the vah~ 
lra_iectories actually observed in the training data. However, m m~dehn_g these rn: 
trajectories, the Gaussian mixtures inadvertently allow two phantom traJectones, shown m 
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dashed lines in Figure 9. I 6, because no constraint is imposed on the mixture tra . . . . d d . . nsn1ons 
across the state. It is possible that such phantom tra!ectones egra e recogmt1on perfonnance 
because the models can overrepresent. speech signals that ~hould ~ ~odeled by othe; 
acoustic units. Segment models can alleviate such HMM modeling defic1enc1es [77, 7g]. 

In the standard HMM, the output probability distribution is modeled by a quasi-

stationary process, i.e., 

L 

P(xt 1 s) = IT b,(x,) (9.37) ,~, 

For the segment model (SM), the output observation distribution is modeled by two stochas­
tic processes: 

P(xt 1 s) = P(xf I s,L)P(L Is) (9.38) 

The first tenn of Eq. (9.38) is no longer decomposable in the absence of the output­
independence assumption. The second tenn is similar to the duration model described in 
Chapter 8. In contrast to the HMM whose quasi-stationary process for each states generates 
one frame x,, a state in a segment model can generate a variable-length observation se­
quence {xp x2 , • • · xL} with random length L. 

Since the likelihood evaluation of segment models cannot be decomposed, the compu­
tation of the evaluation is not shareable between different segments (even for the case where 
two segments differ only by one frame). This results in a significant increase in computation 
for both training and decoding [77]. In general, the search state space is increased by a factor 
of Lrrax , the maximum segment duration. If segment models are used for phone segments, 
Lr:,u could be as large as 60. On top of this large increase in search state space, the evalua­
tion of segment models is usually an order of magnitude more expensive than for HMM, 
since the evaluation involves several frames. Thus. th~ se2II1ent model is often implemented 
in a multipass search framework, as described in Chapter 13. 

Segment models have produced encouraging performance for small-vocabulary or iso­
lated recognition tasks [25, 44, 79]. However, their effectiveness on Iarn.e-vocabulary con· 
tinuous speech recognition remains an open issue because of necessary compromises 10 

reduce the complexity of implementation. 

9.8.2.1. Parametric Trajectory Models 

Paramet~c trajectory models [25, 37] were first proposed to model a speech segment wilh 
cXurve-fittmg parameters. They approximate the D-dimensional acoustic observation vector 

:: (x,,x, ··· x ) by a polyn ·~1 &. • • • r .1 can be ·' ' r Olllla.i 1uncaon. Spec1ficallv the observaaon vecto , 
represented as J • 

l 
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0 c' N c, I C1 
f,(1) l 

x :CxF,+e,(l:J= 
c~ c~ cf fr(t) 

I : +e,(l:) 

co l , 
cN D CD c; 0 .fvU) 

(9.39) 

where the matrix C is the trajectory parameter matrix F · th " .1 ,,h . . d ( . . • , 1s e ,am1 y of ,v -order 
Polyno1mal functions, an e, I:) 1s the residual fitting error Equ t· (9 39 d r h . . . a ton . ) can be 
regarded as mo e 1?g t e t11n~-v~ry1~g mean in the output distribution for an HMM state To 
simplify computation, the d1stnbuuon of the residual error ·1s oft d · . . . . en assume to be an 
independent and 1dent1cally d1stnbuted random process with a normal ct· t 'b · N(O . . 1s n ut1on ,1:) . 
To accommodate diverse durations for the same segment the relative 11· ea t· 1. . . , n r 1me samp mg 
of the fixed traJectory 1s assumed [37). 

Each segm~nt ':f- is characterized by a trajectory parameter matrix c,,, and covariance 
matrix rm. The hkehhood for each frame can be specified (46) as 

IC r. )= exp{-tr[(x,-CmF,)T.;,'(x,-C,,,F,)']/2} 
P(x, rn• ,,, '½ ½ (9.40) 

(2n) 2 I T.m I 2 

If we let Fr =(F'o,F;, .. ,Fr-a>'. then the likelihood for the whole acoustic observation vector 
can be expressed as 

(9.41) 

Multiple mixtures can also be applied to SM. Suppose segment Mis modeled by K tra­
jectory mixtures. The likelihood for the acoustic observation vector X becomes 

K 

L,WtPt(X I Ck,1:k) 
1-,,1 

(9.42) 

Hon et al. [47] showed that only a handful of target trajectories are needed for speaker­
independent recognition, in contrast to the many mixtures required for continuous Gaussian 
HMMs. This should support the phantom-trajectory argument involved in Figure 9.16. 

The estimation of segment parameters can be accomplished by the EM algorit~m 
described in Chapter 4. Assume a sample of L observation segments Xi, X2, .. ·,XL, wilh 
corresponding duration i;, J;, ... , TL , are generated by the segment model M. The MLE for-

mulae using the EM algorithm are: 

r! = 111,p.(X; 1 ck,rk) 
P(X; I <l>m) 

(9.43) 

Amazon/VB Assets 
Exhibit 1012 

Page 487



--------------------
Acoustic MOd;' 462 1ng 

(9.44) 

(9.45) 

(9.46) 

Parametric trajectory models have been succe~sfully applied to phone classification 
[25, 46) and word spotting [37], and offer a modestly improved performance over HMMs. 

9.8.2.2. Unified Frame- and Segment-Based Models 

The strengths of the HMM and the segment-model approaches are complementary. HMMs 
are very effective in modeling the subtle details of speech signals by using one state for each 
quasi-stationary region. However, the transitions between quasi-stationary regions arc 
largely neglected by HMMs-because of their short durations. In contrast, segment models 
are powerful in modeling the transitions and longer-range speech dynamics, but might need 
to give up the detailed modeling to assure trainability and tractability. It is possible to have a 
unified framework to combine both methods [47]. 

In the unified complementary framework, the acoustic model p(Xr I W) can be con­
sidered as two joint hidden processes, as in the following equation: 

p(XI W) = LLP(X,qh ,q' I W) 
qh q' (9.47) 

wher~. qh represents the hidden process of the HMM and q' , the segment model. The 
conditional probability of the acoustic signal p(X I q' ,q'') can be further decomposed into 
two separate terms: 

p(X I q' ,qh) == p(X I q")p(X I q' )° (9.48) 

whe · · · · n re a is a constant that is called segment-model weight The first tenn is the contnbutio 
from n_o~al frame-based HMM evaluation. We further· assume for the second term !hat 
rl~cogmuon ?f segment units can be performed by detecting and decoding a sequence of sa· 
ient events m the acou ti d s c Slream that are statistically independent. In other wor s, 

p(X I q') = fl p(X, I q:) (9.49) 
i 

where X, denotes the th segment. 
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We assume that the phone sequence and the phoiie b d · h . · 
. oun anes ypothes1zed by 

HMMs and segment models agree with each other Based O h . d 
. . · n t e m ependent-segment as-sumption, this leads to a segment duration model as 

p(q' I q") = f1p(t,.t,+1 -11 x,) 
I (9.50) 

By treating the combination as a hidden-data problem, we can apply th d d" d 
. · . · h · . . e eco mg an 

iterative EM reest1mat1on ~e~ mques h~re. This unified framework enables both frame- and 
segment-base~ mode!s to 101111/y contnbu_te to optimal segmentations, which leads to more 
efficient pr~n'.ng ~urmg the search. The inclusion of the segment models does not require 
massive rev1S1ons m the decoder, because the segment model scores can be handled in the 
same manner as the language model scores; whereas the segment evaluation is performed at 
each segment boundary. 

Since subphon~tic units are ofte~ used in HMMs to model the detailed quasi­
stationary speech region, the segment untts should be used to model long-range transition. 
As studies have shown that phone transitions play an essential role in humans' perception, 
the phone-pair segment unit that spans over two adjacent phones can be used [47]. Let e 

and 11 denote the phone and the starting time of the th segment, respectively. For a phone-pai~ 
(e1_1, e;) segment between 11 and 11 • ., the segment likelihood can be computed as follows: 

(9.51) 

Rather than applying segment evaluation for every two phones, an overlapped evalua­
tion scheme can be used, as shown in Figure 9. 17 (a), where a phone-pair segment model 
evaluation is applied at each phone boundary. The overlapped evaluation implies that each 
phone is evaluated twice in the overall score. Most importantly, the overlapped evaluation 
places constraints on overlapped regions to assure consistent trajectory transitions. This is an 
important feature, as trajectory mixtures prohibit phnllfom trajectories within a segment unit, 
but there is still no mechanism to prevent arbitrary trajectory transitions between adjacent 
segment units. 

Some phone-pairs might not have sufficient training data. Units containing silence 
might also have obscure trajectories due to the arbitrary duration of silence. As a result, a 

....__L ---"'~~@4-"'W~ 

iiw111111111 

(a) phone-pair segment models 

(b) two phone (monophone or 
gen. triphone) segment models 

Figure 9.17 Overlapped evaluation using (a) a phone-pair segment m~el, ~r (b) back-off to 
two phone units when the phone-pair (e1.1• e,) segment model does not exist [4 ]. 
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phone-pair unit (e;." e) can be backed off with two phone units as shown in Figure 917 
Th P

hone units can be context independent or context dependent [46]. Thus the b. (b), 
e • ack-off 

segment-model evaluation becomes: 

p(X, I q:) = fJ * p(x::., I eH )p(x;:+• I e,) (9.52) 

where /3 is the back-off weight, generally small_er than 1.0. The use of back-off weight has 
the effect of giving more preference to phone-pair segment models than to two-phone-based 

back-off segment models. 
The phone-pair segment model outperfonned the ~hone-pair HMM by more than 20% 

in a phone-pair classification experiment [46]. The unified framework achieved about B% 
word-error-rate reduction on the WSJ dictation task in comparison to the HMM-based 
Whisper [47]. 

9.9. CASE STUDY: WHISPER 

Microsoft's Whisper engine offers general-purpose speaker-independent continuous speech 
recognition [49]. Whisper can be used for command and control, dictation. and conversa­
tional applications. Whisper offers many features such as continuous speech recognition, 
speaker-independence with adaptation, and dynamic vocabulary. Whisper has a unified ar­
chitecture that can be scaled to meet different application and platfonn requirements. 

The Whisper system uses MFCC representations (see Chapter 6) and both first- and 
second-order delta MFCC coefficients. Two-mean cepstral normalization discussed in Chap­
ter 10 is used to eliminate channel distortion for improved robustness. 

The HMM topology is a three-state left-to-right model for each phone. Senone models 
discussed in Section 9.4.3 are derived from both inter- and intraword context-dependent 
phones. The generic shared density function architecture can support either semicontinuous 
or continuous density hidden Markov models. 

The SCHMM has a multiple-feature front end. Independent codebooks are built for the 
MFCC, first-order delta MFCC, second-order delta MFCC, and power and first and second 

power, respectively. Deleted interpolation is used to interpolate output distributions of con­
text-dependent and context-independent senones. All codebook means and covariance ma­
trice~ are re~stimated together with the output distributions except the power covariance 
matnces, which are fixed. 

. The overall senone models can reduce the error rate si2:11ificantly in comparison to !he 
tnp~one or clustered triphone model. The shared Markov s~e also makes it possible to use 
co~unuous-density HMMs efficiently for large-vocabulary speech recognition. When_a suf­
ficie~t amount of training data becomes available the best performance is obtained wilh tbe 
~ontmuous-density mixture HMM. Each senone has 20 mixtures, albeit such an error reduc· 
t10n came at the cost of 5• ·fi tl - . . igm _1can y mcreased cornputat10nal complexity. . ility 

. We c~ further generalize sharing to the level of each individual Gaussian probab n 
density function. Each Gaussian function is treated as the basic unit to be shared across a ~ 
Markov state. At this extreme th - any more, an • ere 1s no need to use senones or shared states 
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the shared probability density functions become the ac t' k 
, rm any mixture function for any Markov state with appous 

1
~ em~ls that can be used to 

10 ropnate mixture we· ht p 
ter sharing is, thus, advanced from a phone unit to a Markov stat . ( ig s. ara~e-

·t e unu senones) to a denstty 
component um . 

Regarding lexicon modeling, most words have one pron . . . 
. h d" . unc1at1on m the lexicon For 

words that are not mt e 1cttonary, the LTS conversion is based th d . . · . 
· · 1 · F on e ec1s1on tree that 1s 

trained from the ex1stmg ex1con. or the purpose of efficiency th d' . . . , e 1ct1onary 1s used to 
store the most frequently used words. The LTS is only used for ne d h 

tl 
w wor s t at need to be 

added on the Y· 
For speaker adaptation, the diagonal variances and means are adapted using the MAP 

method. Whisper also uses MLLR to modify the mean vectors only The MLLR 1 .. .. . · c asses are 
phone dependent. The tra~s1t1on probab1ht1es are context independent and they are not 
modified during the adaptation stage. 

The language model used in Whisper can be either the trigram or the context-free 
grammar. The difference is largely related to the decoder algorithm, as discussed in Chapter 
13. The trigram lexicon has the 60,000 most-frequent words extracted from a large text cor­
pus. Word selection is based on both the frequency and the word's part-of-speech infonna­
tion. For example, verbs and the inflected fonns have a higher weight than proper nouns in 
the selection process. 

Whisper's overall word recognition error rate for speaker-independent continuous 
speech recognition is about 7% for the standard DARPA business-news dictation test set. 
For isolated dictation with similar materials, the error rate is less than 3%. If speaker­
dependent data are available, it can further reduce the error rate by 15-30%, with less than 
30 minutes' speech from each person. The performance can be obtained real-time on today's 
PC systems. 

9.10. HISTORICAL PERSPECTIVE AND FURTHER READING 

The first machine to recognize speech was a commercial toy named Radio Rex manufac­
tured in the 1920s. Fueled by increased computing resources, acoustic-phonetic modeling 
has progressed significantly since then. Relative word error rates have been reduced by 10% 
every year, as illustrated in Figure 9.] 8, thanks to the use of HMMs, the availability of large 
spe~~~ and ~ext corpora, the establishment of standards for perfonnance evaluation, and ad­
vances in computer technology. Before the HMM was established as the standard, there 
were many competing techniques, which can be traced back to the 1950s. Gold and Mor­
gan's book provides an excellent historical perspective (38]. 

The HMM is powerful in that. with the availability of training data, the parameters of 
the model can be estimated and adapted automatically to give optimal perfonnance. There 
are many HMM-based state-of-the-art speech recognition systems (1, 12, 27, 34, 49, ~5· 72• 
73• 93, 108, 109, 112]. Alternatively, we can first identify speech segments, then classify the 
segm . d Thi approach has produced com-ents and use the segment scores to recognize wor s. s . 
petit· · . . . . HMM b d systems m several small- to tve recognition performance that 1s s1m1Iar to - ase 
medium-vocabulary tasks (115]. 
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Speech recognition systems attempt to model the sources of variability . 
· · dd' · MFC In sever I ways. At the level of signal representation, m a itlon to C, researchers h a 

· II · · ave deve1 oped representations chat emphasize perceptua y important speaker-mdependent ~ · 
. d h . . eatures of 

the signal, and deemphasize speaker-depen ent c aractenstics [43]. Other methods b 
· · b'I' [28 5 ased on linear discriminant analysis to improve class separa I ity , 4] and speaker nonn 1. . 

. . [51 67 86 0 a izat1on transfonnation to minimize speaker vanations , , , I 6, 107, 114] have a h' 
. . . . . b d b k . , c 1eved 

limited success. Linear d1scnmmant analysis can e trace ac to Fishers linear d ' . . . 
1 

. 1 1
. th . 1scnm1. 

nant [30], which projects a dimens1ona vector onto a smg e me at 1s oriented to max· . 
. h . . b i: d . 1m1ze class separability. Its extension to speec recognition can e ,oun m [65]. 

At the level of acoustic-phonetic modeling, we need to provide an accurate dista 
. th h . nee 

measure of the input feature vectors against e p onet1c or word models from the signal-
processing front end. Before the HMM was used, the most successful acoustic-phonetic 
model was based on the speech template where the feature vectors are stored as the model 
and dynamic-programming-based time warping was used to measure the distance between 
the input feature vectors and the word or phonetic templates [88, 94]. The biggest problem 
for template-based systems is that they are not as trainable as HMMs, since it is difficult to 
generate a template that is as representative as all the speech samples we have for the par­
ticular units of interest. 

25% -,-----------------------~ 
20% +------------------4.~-----1 
15% -t-------.---b=:::--------~~-----l 
10% 1 ~"-=-~ -_ -_-:.._-------.,._~~---io==:::;:---...l:1--e-i 
5%-t------.;._;;;a,, ..... _____ :,.. _________ ----l 
0%........__..:..__:,____;~....._:-___.,! _ ___.,!_......J._......J. _ _,_ _ _,!_ _ _!..,.----I 

-+-RM C&C 

---ATIS Spontaneous Speech 

-a- WSJ Read Speech 

-e- NAB Broadcast Speech 

Fifu~e 9•18 Hist0ry of DARPA speech recognition word-error-rate benchmark evaluation rt· 
su ts rom 1988 to 1999. There are four major tasks: the Resource Management command and 
control task (RM C&C 1000 d ) . . speech d . • wor s , the A1r Travel Informauon System spontaneous OOo 
un ~~tand10g task (ATIS, 2000 words), the Wall Street Journal dictation task (WSJ, ZO, 
wor 5 

• and the Broadcast News Transcription Task (NAB, 60,000 words) [80-84] . 

. . Another approach that attracted many researchers is the knowledge-based one !hat 
ongmated from the Art'fi · 1 1 . • h uires e:<· 

. 1 tcia ntelhgence research community. This approac reg . 
tensive knowledge engin · h' D to the com eenng, w 1ch often led to many inconsistent rules. ue 
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Plexity of speech recognition, rule-based approaches generally h 
. h h cannot mate the perfonn-

ance of data-dnven approac es sue as HMMs. which can automaticall ext . 
I ge amount of training data l I 05) Y ract salient rules ~maM . 

Senones are now widely used in many state-of-the-art systems w d d 
1 . . . or mo e s or allo-

phone models can also be bmlt by concatenation of basic structures d b . . . . ma e y states, transi-
tions, and d1str1but1ons such asfenones [8, 9) or senones [58}. 

Segment models, as proposed by Roucos and Ostendorf [79 92] h . , , assume t at each 
variable-length segment 1s mapped to a fixed number of representative frames Th 1 . · ·1 h HMM · h . e resu tmg 
model is very s1m1 ar to t e wit a large number of states. Ostendorf published a 
comprehen~ive survey paper [77] on segment 1~odels. The parametric trajectory segment 
model was introduced by Deng et al. [25] and Gish et al. [37] independently. Gish's k · 

d 
. . . wor 1s 

very similar to o~r escnpt1~n m_ Section 9.8.2.1, which is based on Hon et al. [46, 471, 
where the evaluation _and_ esttmat1on are more efficient because no individual polynomial 
fitting is required for hkelthood computation. In addition to the phone-pair units described in 
this chapter, segment models have also been applied to phonetic units [25], subphonetic 
units [25), diphones [36), and syllables [78]. The dynamic model [24, 26) is probably the 
most aggressive attempt to impose a global transition constraint on the speech model. It uses 
the phonetic target theories on unobserved vocal-tract parameters, which are fed to an MLP 
to produce the observed acoustic data. 

Today, it is not uncommon to have tens of thousands of sentences available for system 
training and testing. These corpora pennit researchers to quantify the acoustic cues impor­
tant for phonetic contrasts and to detennine parameters of the recognizers in a statistically 
meaningful way. While many of these corpora were originally collected under the sponsor­
ship of the U.S. Defense Advanced Research Projects Agency (ARPA) to spur human lan­
guage technology development among its contractors [82], they have nevertheless gained 
international acceptance. Recognition of the need for shared resources led to the creation of 
the Linguistic Data Consortium (LDC)' in the United States in 1992 to promote and support 
the widespread development and sharing of resources for human language technology. The 
LDC supports various corpus development activities and distributes corpora obtained _from a 
variety of sources. Currently, LDC distributes about twenty different speech corpora mclud­
ing those cited above, comprising many hundreds of hours of speec~. The availab!lity of a 
large body of data in the public domain, coupled with the specification of evaluation st~­
dards, has resulted in unifonn documentation of test results, thus contributing to greater reh­
ability in monitoring progress. 

To further improve the performance of acoustic-phonetic models, we need a r~?ust 

system so that perfonnance degrades gracefully (rather than catastrophically) as con<l1ttons 
diverge from those under which it was trained. The best approach is likely to have syStems 
continuously adapted to changing conditions (new speakers, microphone, task,_ et~.). Such 
ada t · . b d dels word pronunciations, lan-p atLon can occur at many levels m systems, su wor mo ' . di 
guage models, and so on. We also need to make the system portable, so that we can rapif' Y 
de · . . At sent systems tend to su 1er sign, develop, and deploy systems for new apphcauons. pre ' 

' hnp:l/www.cis.upenn.edu/ldc 
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. 'fi t degradation when moved to a new task. In order to retain peak performa s1gm ,can . h' h . . nee, they 
must be trained on examples specific to the new task, w 1c 1s. time consuming and expen. 
sive. In the new cask, system users may not know exactly which words are in the systern 
ocabulary. This leads to a certain percentage of out-of-vocabulary words in natural . 

V th d f d . COnd1-
ti onS. Currently, systems lack a very robust me o . o etectmg s_uch out-of-vocabulary 
words. These words often are inaccurately mapped mto the words m the system, causing 
unacceptable errors. 

An introduction to all aspects of acoustic modeling can be found in Spoken Dialo 
· S h R · · [8 gues with Computers [76] and Fundamentals oj peec ecogmtwn 7]. A good treatment of 

HMM-based speech recognition is give~ _in [52, 60, 105]. Bourlard and Morgan's book [IS] 
is a good introduction to speech recogmuon based on neural networks. There are a range of 
applications such as predictive networks that estimate each frame's acoustic vector, given 
the history [69, 104] and nonlinear transformation of observation vectors [13, 53, 101]. 

You can find tools to build acoustic models from Carnegie Mellon University's speech 
open source Web site.6 This site contains the release of CMU's Sphinx acoustic modeling 
toolkit and documentation. A version of Microsoft's Whisper system can be found in the 
Microsoft Speech SDK.

7 
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CHAPTER 1 0 

Environmental Robustness 

A speech recognition system trained in the 
lab with clean speech may degrade significantly in the real world if the clean speech used in 
tr~ning doesn't match real-world speech. If its accuracy doesn't degrade very much under 
mismatched conditions, the system is called robust. There are several reasons why real­
world speech may differ from clean speech; in this chapter we focus on the influence of the 
~coustical environment, defined as the transformations that affect the speech signal from the 
lime it leaves the mouth until it is in digital fonnat. 
. Chapter 9 discussed a number of variability factors that are critical to speech recogni­

tion. Because the acoustical environment is so important to practical systems, we devote this 
chapter to ways of increasing the environmental robustness, including microphone, echo 
cancellation, and a number of methods that enhance the speech signal, its spectrum, and the 
corresponding acoustic model in a speech recognition system. 

477 
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10.1. THE ACOUSTICAL ENVIRONMENT 

Environmental ;---­
obustness 

The acoustical environment is defined as t~e set of tran_sf~n~a~ions_ that affect the s ee 
· al from the time it leaves the speaker s mouth until rt 1s rn digital form. T P ~h 

srgn . . . . dd. . . . wo main 
sources of distortion are described here. a 1t1ve noise and channel distortion. Ad .. 

· · h b k d d I h dn,ve noise such as a fan running m t e ac groun . oor s ams, or ot er speakers' s h . 
' . . . . b d b . peec ' is 

Common in our daily hfe. Channel d1stort1on can e cause y reverberatton the f . . . . : requency 
response of a microphone, the presence of an electncal filter m the AID circuitry th 

I. h d ' ere-
sponse of the local loop of a telep_hone me, a speec c_o ec. etc. Reverberation, caused by 
reflections of the acoustical wave m walls and other obJects, can also dramatically alter the 

speech signal. 

10.1.1. Additive Noise 

Additive noise can be stationary or nonstationary. Stationary noise, such as that made by a 
computer fan or air conditioning, has a power spectral density that does not change over 
time. Nonstationary noise, caused by door slams, radio, TV, and other speakers' voices, has 
statistical properties that change over time. A signal captured with a close-talking micro­
phone has little noise and reverberation, even though there may be lip smacks and breathing 
noise. A microphone that is not close to the speaker's mouth may pick up a lot of noise 
and/or reverberation. 

As described in Chapter 5, a signal x[n] is defined as white noise if its power spectrum 
is flat, Sxx(f) = q, a condition equivalent to different samples being uncorrelated, 
R.u[n] = q8[n]. Thus, a white noise signal has to have zero mean. This definition tells us 
about the second-order moments of the random process, but not about its distribution. Such 
noise can be generated synthetically by drawing samples from a distribution p(x); thus we 
could have unifonn white noise if p(x) is uniform, or Gaussian white noise if p(x) is Gaus­
sian. While typically subroutines are available that generate uniform white noise, we are 
often interested in white Gaussian noise as it resembles better the noise that tends to occur 
in practice. See Algorithm 10.1 for a me~hod to generate white Gaussian noise. Variable xis 
normally continuous, but it can also be discrete. 

White noise is useful as a conceptual entity, but it seldom occurs in practice. ~os~ of 
the noise captured by a microphone is colored since its spectrum is not flat. Pink noise 15 3 

particular type of colored noise that has a low~pass nature as it has more energy at the 10~ 
frequ~~cies and rolls off at higher frequencies. The noise g~nerated by a computer fan, an _air 
condttmner O . . . ynthes1ze 

. k . ' ran automobile engme can be approximated by pink n01se. We can 5 . d 
pm n01se by filt · . . . al the desire enng white nmse with a filter whose magnitude squared cqu s 
power spectrum. 

A great deal of dd' · . . . . . . . rties change 
over time 1 . a itive noise 1s nonstahonary, smce its stat1sttcal prope ran 

· n practice even th . . · · system, 0 
automobile are ' e noises from a computer, an air cond1t10nmg d licks 

not perfectly stat' . . h keyboar c ' are caused by ph . 
1 

. ionary. Some nonstat1onary noises, sue as h as lip 
ys1ca ob•ects Th - · es sue 

J • e speaker can also cause nonstauonary nms 

l 
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The Acoustical Environment 479 

acks and breath noise. The cncktail party effect is the phenomena d h' h sin . n un er w 1c a human 
listener can focus onto one conversat10~ out of many in a cocktail party. The noise of the 

nversations that are not focused upon 1s called babble noise When the . . co . . 
0 

• • nonstaltonary noise 
. correlated with a known s1e,nal, the adaptive echo-canceling (AEC) tee! · f S . 1s 1111ques o ect1on 
!0.3 can be used. 

ALGORITHM 10.1 : WHITE NOISE GENERATION 

To generate white noise in a computer, we can first generate a random variable p with a 

Rayleigh distribution: 

P/P) = pe-p'11 (10.1) 

from another random variable rwith a uniform distribution between {0, 1), p,(r) = 1, by simply 

equating the probability mass pf'(P)!dPI = P,(r)!drl so that 1:~1 = pe-P'12; with integration, 

it results in r = e-P' ;2 and the inverse is given by 

p == J-2 In r (10.2) 

If ris uniform between (0, 1), and p is computed through Eq. (10.2), it follows a Rayleigh dis­
tribution as in Eq. (10.1 ). We can then generate Rayleigh white noise by drawing independent 
samples from such a distribution. 

If we want to generate white Gaussian noise, the method used above does not work, be­
cause the integral of the Gaussian distribution does not exist in closed torm. However, it p fol­
lows a Rayleigh distribution as in Eq. (10.1), obtained using Eq. (10.2) where r is uniform 
between (0, 1), and 0 is uniformly distributed between (0, 21r ), then the white Gaussian noise 
can be generated as the following two variables x and y. 

x = pcos(0) (10.3) 
y= psin(0) 

They are independent Gaussian random variables with zero mean and unity variance, since the 

Jacobian of the transformation is given by 

ap, ap ... 
J= ap ae =lcos0 -psin01==p (10.4) 

ap,, apy sin0 pcos0 
ap ae 

and the joint density p(x, y) is given by 

p(x,y) = p(p,0) = p(p)p(0) =-' e-p' 12 

J p 2Tr (10.5) 

1 (' • 
= 

2
,c e- ·' +r>12 == N(x,0,l)N(y,0, I) 
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Environmental Rob~ 

Of additive noise can sometimes change the way the speaker speaks Th Toe presence . k . . · e 
,f:f. [ 401 is a phenomenon by which a spea er increases his vocal effort in th 

Lombard e11 ect f . . e 
f b k round noise. When a large amount o noise 1s present, the speaker tends 1 presence o ac g . b I f h · · 0 

h. h tai'ls not only a higher amphtude, ut a so o ten igher pitch, slightly di~ shout w 1c en . . uer-
&' t and a different coloring of the spectrum. It 1s very difficult to characten· ent 1onnan s, ze 

& rmati'ons analytically but recently some progress has been made [36] these trans1 o ' · 

10.1.2. Reverberation 

If both the microphone and the speaker are in an anechoic' chamber or in free space, a mi­
crophone picks up only the direct acoustic path. _In pr~ctice, in addition to the direct acoustic 
path, there are reflections of walls and other obJects m the room. We are well aware of this 
effect when we are in a large room, which can prevent us from understanding if the rever­
beration time is too long. Speech recognition systems are much less robust than humans and 
they start to degrade with shorter reverberation times, such as those present in a normal of­
fice environment. 

As described in Chapter 2, the signal level at the microphone is inversely proportional 
to the distance r from the speaker for the direct path. For the kth reflected sound wave, the 
sound has to travel a larger distance '* , so that its level is proportionally lower. This reflec­
tion also takes time 4 = '• 'c to arrive, where c is the speed of sound in air.2 Moreover, 
some energy absorption a takes place each time the sound wave hits a surface. The impulse 
response of such filter looks like 

- p 1 - p 
h[n]= I,-* 8[n-4]=-I,-* O[n-4] 

k•O rk C bO 4 
(10.6) 

where P* is the combined attenuation of the kth reflected sound wave due to absorption. 
Anechoic rooms have p. :: 0 . In general p* is a (generally decreasing) function of fre­
quency, so that instead of impulses 8[n] in Eq. (10.6), other ()ow-pass) impulse responses 
are used. 

. Often we have available a large amount of speech data recorded with a close-tal_king 
microphone, and we would like to use the speech recognition system with a far field micro­
phone. To do that we can filter the clean-speech training database with a filter h[n], so mat 
the filtered speech resembles speech collected with the far field microphone, and then retrain 
the sySlem. This requires estimating the impulse response h[n] of a room. Alternatively, we 
can ~lter the signal from the far field microphone with an inverse filter to make it resemble 
the signal from the close-talking microphone. 

' An anechoic chamber is th rb' materials SO 
that it 

8 
1 room at has walls made of special fiberglass or other sound-abso mg . sur-

faces. bsorbs all echoes. It is equivalent to being in free space, where there are neither walls nor reflecung 
2 
ln air at standard atmo h · ) 1 varies with 

d'rn . . sp enc pressure and humidity the speed of sound is c=33 l.4+0.6T (ml s · 1 

t erent media and different levels of humidity and pressure. 
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One way to estimate the impulse response is to play a white noise s· 1 [ ) hr 
· · h· th · 1gna x n t ough 

a loudspeaker or art1fic1al mout , e signal y[n] captured at the microphone is given by 

y(nJ = x[n] * h[n] + v[n] (I0.7) 

where v[n] is the additive noise present at the microphone. This noise is due to sources such 

as air conditioning and computer fans and is an obstacle to measuring h[n] The . 1 · db · · · · . 1mpu se 
response can be estimate y mm1m1zmg the error over N samples 

E =-I, y[nJ- Lh[mJx[n-m] 
} V-1( M-1 Jl 
N nc.O m=-0 

(10.8) 

which, taking the derivative with respect to lz[m] and equating to O, results in our estimate 

h[/] : 

- =-I, y[n]- Lh[mJx[n-m] [n-1] a£ I 1 N-1( M - , ·} 

dh[/J Ji//J,.h{/} N n=O m=O 

=-Ly[n}x[n-/]- L h[mJ - Ix[n-m]x[n-/] 
1 N-1 M-1 A ( I N-1 J 
N nsO m=O N n=O 

(10.9) 

=-Ly[nJx(n-1]-h[/]- Lh[m] -Ix[n-m]x[n-l]-8[m-l] =O 
1 N- 1 M-1 ( I N-1 J 
N n=O m;O N n=O 

Since we know our white process is ergodic, it follows that we can replace time averages by 
ensemble averages as N ~ 00 : 

} N-1 

lim-I,x[n-m]x[n-l] = E{x[n-m]x[n-1]}= 8[m-/J 
N-. N n=O 

so that we can obtain a reasonable estimate of the impulse response as 

A } .Y-1 

h[l] =-LY[n]x[n-l] 
N n..o 

Inserting Eq. (10.7) into Eq. (IO.I 1) ,we obtain 

h[l] = h[l] + e(/] 

where the estimation error e[n] is given by 

I N-1 M-1 ( 1 N - 1 J' 
e[l]=-I,v[n]x[n-1]+ Lh[m] -Ix[n-m]x[n-l]-8[m-l] 

N ns O m =O N n: O 

(JO.IO) 

(10.11) 

(10.12) 

(10.13) 

If v[n] and x[n] are independent processes, then E{e(/]} = 0 , sin~e x[nJ is zero-mi:~ 
so that the estimate of Eq. (10. 11) is unbiased. The covariance matnx decreases to 
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