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Thus, the tree can be automatically constructed by searching, for each node, the que.;
that renders the maximum entropy decrease. Alternatively, complex questiong can b;]fesnon
for each node for improved splitting. Ormeg
When we grow the tree, it needs to be pruned using cross-validation ag discusseg
Chapter 4. When the algorithm terminates, the leaf nodes of the tree represent the senone in
be used. Figure 9.6 shows an example tree we built to classify the second stae of aﬁslm
triphones seen in a training corpus. After the tree is built, it can be applied to the SECOI;I
state of any /&/ triphone, thanks to the generalizability of the binary tree and the genera) Ii:
guistic questions. Figure 9.6 indicates that the second state of the /k/ triphone in welcome i;
mapped to the second senone, no matter whether this triphone occurs in the training corpus

or not.

4 1 2
>
A b odi i el
by (k) by (k) by (k)
0 1 2
||I||l|| |||||l|J !lll |||
by (k) b (k) by (k)

Figure 9.5 State-based vs. model-based clustering. These two models are very similar, 25 both

the ﬁxrst and the second output distributions are almost identical. The key difference is the out-
put distribution of the third state. If we measure the overall model similarity, which is often
based on the accumulative output distribution similarities of all states, these two models M8y
b? Cll.!slered, leading to a very inaccurate distribution for the last state. If we cluster output dis*
tributions at state level, we can cluster the first two output distributions while Jeaving the 2t

ones intact, leading to more accurate representations.
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Phonetic Modeling—Selecting Appropriate Units 435
Table 9.3 Some example questions used in building senone trees.
Questions Phones in Each Question Category
Aspseg hh
Sil sil
Alvsip dt
Dental dh th
Labstp bp
Liquid lr
Lw Iw
S/Sh ssh
Sylbic er axr
Velstp 8k
Affric ch jh
Lqgl-B lrw
Nasal mnng
Retro reraxr
Schwa ax ix axr
Velar nggk
Fric2 thsshf
Fric3 dhzztv
Lqgl Irwy
S/Z/Sh/Zh | szshzh
Wglide uw aw ow w
Labial wmbpv
Palati y ch jh sh zh
Yglide iyayeyoyy
High ihixiyuhuwy
Lax eh ih ix uh ah ax
Low ae aa ao aw ay oy
Orstp2 ptk
Orstp3 bdg
Alvelr ndtsz
Diph uw aw ay ey iy ow 0y
Fricl dhthsshzzhvf
Round uh ao uw ow oy w axr er
Frat-R ae eh ik ix iy ey ah ax y aw
Tense iy ey ae uw ow aa ao ay oy aw
Back-L uh ao uw ow aa er axr L rwaw
Frni-L ae eh ih ix iy ey ah ax y oy ay
Back-R uh ao uw ow aa eraxroy lrway
Orstpl bdgptkchjh
Vowel ae eh ik ix iy uh ah ax aa ao uw aw ay €y ow oy er axr
Son aeehihixiyeyahzzxoyayuhaouwowaaeraxrawlrwy
Voiced ae eh ik ix iy uh ah ax aa ao uw aw ay ey ow oy Irwyeraxrin
nngjhbddhgvzh —
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I Is left phone a sonorant or nasal? l

y \\\
I Is right phone a back-R? I |is left phone /s,z,sh,2h/? |
> ‘

/

T

7N,
\Q‘ ™
I Is right phone voiced? l @
senone 1 | -
3 yes/ \\scnone 5 senoneé

Is left phone a back-L or 2
(is left phone neither a nasal nora Y-

glide and right phone a LAX-vowel)?

Yes
senone 2 g ,:: senone 3
[ g

Figure 9.6 A decision tree for classifying the second state of K-triphone HMMs [48],

senone 4

In practice, senone models significantly reduce the word recognition error rate in
comparison with model-based clustered triphone models, as illustrated in Table 9.4. It is the
senonic model’s significant reduction of the overall system parameters that enables the con-
tinuous mixture HMMs to perform well for large-vocabulary speech recognition [56).

Table 9.4 Relative error reductions for different modeling units. The reduction is relative to
that of the preceding row.

Units Relative Error Reductions
Context-independent phone Baseline
Context-dependent phone +25%
Clustered triphone +15%
Senone +24%

9.44. Lexical Baseforms

When appropriate subword units are used, we must have the correct pronunciation for caC:
Wword 50 that concatenation of subword units can accurately represent the word © beArBC%r
nized. The dictionary represents the standard pronunciation used as a starting PoiT*
ot ilding a workable speech recognition system, We also need to provide alternative pronu]:
ciations for words such as romato that may have very different pronunciations. For examP el
the COMLEX dictionary from LDC has about 90,000 baseforms that cover most Wo(ds usas
0 many years of The Wall Street Journal. The CMU Pronunciation Dictionary: which ¥
optimized for continuous speech recognition, has about 100,000 baseforms.
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In continuous speech recognition, we must also use
word pronunciations or to have reduced sounds, Assimilati
pnomenon—-a change in a segment to make it more like
examples include phrases such as did yon /d ih ji; ¥

ch iy 1, because yoir've /b iv k ah zh uw v/, etc. Deletion is . .
spee)ch- For example, /t/ and /d/ are often deleted before a conso:alj\(t). CT%]::,]?: cI:nsz:;;?il;?,l;
speech, you may find examples like find him /f ay n ix v/, around this fix r aw n ih s/, and
Letme in /L eh m eh nl. ’
Qictionaries often (%m}'t include proper names. For example, the 20,000 names in-
cluded in the COMLEX dictionary are a small fraction of |-2 million names in the USA. To
deal with these new words, we often have to derive their pronunciation automatically Th.ese
new words have to be added on the fly, either by the user or through an interfac.c from
speech-aware applications. Unlike Spanish or ltalian, rule-based letter-to-sound (LTS) con-
version for English is often impractical, since so many words in English don’t follow phono-
logical rules. A trainable LTS converter is attractive, since its performance can be improved
by constantly learning from examples so that it can generalize rules for the specific task.
Trainable LTS converters can be based on neural networks, HMMs, or the CART described
in Chapter 4. In practice, CART-based LTS has a very accurate performance [10, 61, 71,
89).
. When CART is used, the basic YES-NO question for LTS conversion looks like: Is
the second right letter 'p’? or. Is the first left output phone /ay/? The question for letters and
phones can be on either the left or the right side. The range of question positions should be
long enough to cover the most important phonological variations. Empirically, a 10-letter
window (5 for left letter context and 5 for right letter context) and 3-phone window context
is generally sufficient. A primitive set of questions can include all the singleton questions
about each letter or phone identity. If we allow the node to have a complex question—that
s, a combination of primitive questions—the depth of the tree can be greatly reduced and
performance improved. For example, a complex question: Is the second left letter 't’ and the
first left letter ‘i’ and the first right letter ‘n’? can capture o in the common suffix fion and
convert it to the correct phone. Complex questions can also alleviate possible data-
fragmentation problems caused by the greedy nature of the CART algorithm. .
Categorical questions can be formed in both the letter and phone domains with our
common linguistic knowledge. For example, the most often used set includes the lc?tter or
Phone clusters for vowels, consonants, nasals, liquids, fricatives, and so on. In growing the
decision tree, the context distance also plays a major role in the overall quality. It is very
important to weight the entropy reduction according to the distance (either letter or pho-
fleme) to avoid overgeneralization, which forces the tree to look more can:e.full)" at .lhe 'nearby
context than at the far-away context. Each leaf of the tree has a probability distribution for
letter-to-phoneme mapping.
-There are a number of ways to improve the effectiver_less o
E;u =l Con@ls the tree’s depth. For examp le, cedalfi Guteria. iaks ;odb; minimum entropy
SPlit. Typically splitting requires a minimum number of counts T e
reduction, Second, the distribution at the leaves can be smoothed. For example,

phonologic rules 1o modify inter-
on is a typical coarticulation phe-
a neighboring segment. Typical
all, set you /s oh ch er/, last year /1 ae s

f the decision tree. First,
met for a node to

Amazon/VB Assets
Exhibit 1012
Page 463



438 Acoustic Modeli:g

bution can be interpolated with the distributions of its ancestor nodes using dele,
interpolation. Finally, we can partition the training data and build multiple treeg With difde.
ent prediction capabilities. These trees accommodate different phonological ry] u:
ferent language origins.

When the decision tree is used to derive the phonetic pronunciation, the Phonetic cgp
version error is about 8% for the Wall Street Journal newspaper text corpora [61), Thes;_
errors can be broadly classified into two categories. The first includes errors of Proper noypg
and foreign words. For example, Pacino can be mistakenly converted to /p ax 5 iy now/
instead of /p ax ch iy n ow/. The second category includes generalization errors, For exam.
ple, shier may be converted to /sh ih r/ instead of the correct pronunciation /sh ay / if the
word cashier [k ae sh ih r/ appears in the training data. The top three phone confusion pairs
are /ix/ax/, /dx/t/, and /ae/ax/. The most confusing pair is /ix/ax/. This is not surprising, be.
cause /ix/ax/ is among the most inconsistent transcriptions in most of the published dictiop.
aries. There is no consensus for /ix/ax/ transcription among phoneticians.

Although automatic LTS conversion has a reasonable accuracy, it is hardly practical if
you don’t use an exception dictionary. This is especially true for proper nouns. In practice,
you can often ask the person who knows how to pronounce the word to either speak or write
down the correct phonetic pronunciation, updating the exception dictionary if the correct one
disagrees with what the LTS generates. When acoustic examples are available, you can use
the decision tree to generate multiple results and use these results as a langnage model to
perform phone recognition on the acoustic examples. The best overall acoustic and LTS
probability can be used as the most likely candidate in the exception dictionary. Since there
may be many ways to pronounce a word, you can keep multiple pronunciations in the dic-
tionary with a probability for each possible one. If the pronunciation probability is inaccu-
rate, an increase in multiple pronunciations essentially increases the size and confusion of
the vocabulary, leading to increased speech recognition error rate.

Even if you have accurate phonetic baseforms, pronunciations in spontaneous speech
differ significantly from the standard baseform. Analysis of manual phonetic transcription of
conversational speech reveals a large number (> 20%) of cases of genuine ambiguity: in-
stances where human labelers disagree on the identity of the surface form [95]. For example.
the word because has more than 15 different pronunciation variations, such as /b iy kah 7,
Mixkahd, kahd, kaxd, /b ixkax o, /b ax k ah o, /b i k ah o, /k s/, /k ix & b 2
iykah s/, /b iy k ah/, /b iy k ah 2h/, Jax o, etc., in the context of conversational speech [3%)
To cha:zfcte.rize the acoustic evidence in the context of this ambiguity, you can partly Feso"{e
the ambiguity by deriving a suitable phonetic baseform from speech data [29, 95, 97). Thlé
is because the widespread variation can be due either to a lexical fact (such as that the B
because can be ’cause in informal speech) or to the dialect differences. African Amencan
Vemacula'r English has many vowels different from general American English. .
e st oo, v i s pOI T
ity with each arc indic::tr Shpron}lncmt]on varxat-lons, M " Figure 7. [ha;: leave 2
o g es how likely that path is to be taken, with all the arcs e

ming to 1. As with HMMs, these weights can be estimated from 2 real corp

es with gif.

Amazon/VB Assets
Exhibit 1012
Page 464



Acoustic Modeling—Scoring Acoustic Features

439

jmproved speech recognition [20, 85, 102, 103, 110]. Ip
of using probabilistic finite state machines is very mode

Practice, the relative error reduction
st (5~10%).

Figure 9.7 A possible pronunciation network for word fomato. The vowel /eyl is more likely
to flap, thereby having a higher transition probability into /dx/,

9.5. ACOUSTIC MODELING—SCORING ACOUSTIC FEATURES

After feature extraction, we have a sequence of feature vectors, X, such as the MFCC vector,
as our input data. We need to estimate the probability of these acoustic features, given the
word or phonetic model, W, so that we can recognize the input data for the correct word.
This probability is referred to as acoustic probability, P(X | W). In this section we focus our
discussion on the HMM. As discussed in Chapter 8, it is the most successful method for
acoustic modeling. Other emerging techniques are discussed in Section 9.8.

95.1.  Choice of HMM Output Distributions

As discussed in Chapter 8, you can use discrete, continuous, or semicontinuous HMMs.
When the amount of training data is sufficient, parameter tying becomes unnecessary. A
continuous model with a large number of mixtures offers the best recognition accuracy, al-
though its computational complexity also increases linearly with the number of mixtures. On
the other hand, the discrete model is computationally efficient, but has the worst pe‘rform-
ance among the three models. The semicontinuous model provides a viable altemative be-
tveen system robustness and trainability. .

When either the discrete or the semicontinuous HMM is employed, it 15 helpful to use
multiple codebaoks for a mumber of features for sigaificantly improved performance. Each
codebook thep represents a set of different speech parameters. One way to c.ombme these
multiple output observations is to assume that they are independent, cCOmputing the OUtI:l:“
Probability as the product of the output probabilities of each codebook. For exarr(ljple. Lhe
$eMicontinuous HMM output probability of multiple codebooks can be computed as the
Product of each codebook:
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L) =12/ " [ (oF) 0.1

where superscript m denotes the codebook-m related parameters. Each codebook o
L" -mixture continuous density functions.

Following our discussion in Chapter 8, the re-estimation algorithm for the multjp]
codebook-based HMM could be extended. Since multiplication of the output pr(’babi[;ie-
density of each codebook leads to several independent terms in the Q-function, for codebooti
m, {,(j,k™) can be modified as follows:

nsists of

S o (Da,br k" (x VOTT 80 R (%, 1vDB,()

somy | men_ k
C,(.k")= S ® 0.13)
&

Other intermediate probabilities can also be computed in a manner similar to what we
discussed in Chapter 8.

Multiple codebooks can dramatically increase the representation power of the VQ
codebook and can substantially improve speech recognition accuracy. You can typically
build a codebook for ¢, , ac,, and aac,, respectively. As energy has a very different dy-
namic range, you can further improve the performance by building a separate codebook for
¢,[0], ac[0], and aac,[0]. In comparison to building a single codebook for x, as itlus-
trated in Eq. (9.6), the multiple-codebook system can reduce the error rate by more than
10%.

In practice, the most important parameter for the output probability distribution is the
number of mixtures or the size of the codebooks. When there are sufficient training daia
relative error reductions with respect to the discrete HMM are those shown in Figure 9.38.

D

m e
T | {—e— DHMM
Lgu —| |—m— SCHMM
'§ —f— CHVM |

1 2 3 4 5 6

Training Set Size (thousands)

Fl;gure 9.8 Continuous speaker-independent word recognition error rates of the ‘?iS.CTe‘e ! s
(DHMM), SCHMM, and the continuous HMM (CHMM) with respect to the trainio set Soks.
(thousands of raining sentences). Both the DHMM and SCHMM have multiple codet®

‘The CHMM has 20 mixture diagonal Gaussian density functions.
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As you can see from Figure 9.8, the SCHMM offers improved accuracy in compari
with the discrete HMM or the continuous HMM when the amount of training data is IF') r'lsiin
When we increase the training data size, the continuouys mixture density HI\%M starts ltmlte ‘
perform both the discretg .zmd the semicontinuous HMM, since the need to share m.odglou't-
rameters becomes less critical. P

Performance is also a function of the number of mixtures, With a small number of
mixtures, the continuous HMM lacks the modeling power and it actually performs worge
than the discrete HMM across the board. Only after we dramatically increase the number of
mixtures does the continuous HMM start to offer improved recognition accuracy. The
SCHMM can typically reduce the discrete HMM error rate by 10~15% across the board. The
continuous HMM with 20 diagonal Gaussian density functions performed worse than t;ither
the discrete or the SCHMM when the size of training data was small. [t outperformed either
the discrete HMM or the SCHMM when sufficient amounts of training data became avail-
able. When the amount of training data is sufficiently large, it can reduce the error rate of the
semicontinuous HMM by 15-20%.

9.5.2.  Isolated vs. Continuous Speech Training

If we build a word HMM for each word in the vocabulary for isolated speech recognition,
the training or recognition can be implemented directly, using the basic algorithms intro-
duced in Chapter 8. To estimate model parameters, examples of each word in the vocabulary
are collected. The model parameters are estimated from all these examples using the for-
ward-backward algorithm and the reestimation formula. It is not necessary to have precise
end-point detection, because the silence model automatically determines the boundary if we
concatenate silence models with the word model in both ends.

If subword units,’ such as phonetic models, are used, we need to share them across dif-
ferent words for large-vocabulary speech recognition. These subword units are concatenated
to form a word model, possibly adding silence models at the beginning and end, as illus-
trated in Figure 9.9.

To concatenate subword units to form a word model, you can have a null transition
from the final state of the previous subword HMM to the initial state of the next subword
HMM, as indicated by the dotted line in Figure 9.9. As described in Chapter 8, you can es-
timate the parameters of the concatenated HMM accordingly. Please notice that the.afdded
null transition arc should satisfy the probability constraint with the transit_ion prot.)abfh'ty of
each phonetic HMM. The self-loop transition probability of the last state in each mdnyndual
HMM has the topology illustrated in Figure 9.9. If we estimate these pz'lrameters with t'he
concatenated model, the null arc transition probability, aj; , should satisfy ‘h_e consfraint

ay +a;)=1 such that the self-loop transition probability o_f the las-t state is no.lo.nger
equal to 1. For interword concatenation or concatenation involving multiple pronunciations,
You can use multiple null arcs to concatenate individual models together.

L .
We have a detailed discussion on word models vs. subword models in Section 9.4.1
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One Iwahn/ i @_Q_)@
Two It uw/
[ae/

CIRCIRG

Zero Iz ih row/ M

A composed HMM for word two:

Isil/ 1) law/ Isil/

Figure 9.9 The construction of an isolated word model by concatenating multiple phonetic
models based on the pronunciation dictionary.

In the example given in Figure 9.9, we have ten English digits in the vocabulary. We
build an HMM for each English phone. The dictionary provides information on each word’s
pronunciation. We have a special word, Silence, that maps to a /sil/ HMM that has the same
topology as the standard phonetic HMM. For each word in the vocabulary we first derive the
phonetic sequence for each word from the dictionary. We link these phonetic models to-
gether to form a word HMM for each word in the vocabulary. The link between two pho-
netic models is shown in the figure as the dotted arrow.

For example, for word two, we create a word model based on the beginning silence
Isill, phone /t/, phone /uw/, and ending silence /sil/. The concatenated word model is the?
treated in the same manner as a standard large composite HMM. We use the standard for
ward-backward algorithm to estimate the parameters of the composite HMM from multiple
sample utterances of the word two. After several iterations, we automatically get the HMM
parameters for /sill, /t/, and /uwl. Since a phone can be shared across different words, the
phonetic parameters may be estimated from acoustic data in different words.

The ability to automatically align each individual HMM to the corresponding Unsee’
mented speech observation sequence is one of the most powerful features in the forward-
backward algorithm. When the HMM concatenation method is used for continuous S}?”Ch'
you need to compose multiple words to form a sentence HMM based on the transcriptior ?
the utterance. In the same manner, the forward-backward algorithm absorbs a range of po¥
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‘ble word boundary information of models automati i .
- mentation of the continuous speech. cally. There is no need to have a precise

In general, to estimate tl}e parameters of the HMM, each word is instantiated with its
concatenated word model (which may be a concatenation of subword models). The words i
the sentence are concatenated with optional silence models between them. If ;here is(:z n: l:il
to modify interword pronunciations due to interword pronunciation char;ge such as wafzt
you, you can add a different optional phonetic sequence for t-y in the concaténated sentence
HMM. .

In the digit recognition example, if we have a continuous training utterance one three
we compose a sentence HMM, as shown in Figure 9.10, where we have an optional Silence:
HMM between the words one and three, linked with a null transition from the ast state of
the word model one to the first state of the word model thiree. There is also a direct null arc
connection between the models one and three because a silence may not exist in the training
example. These optional connections ensure that all the possible acoustic realizations of the
natural continuous speech are considered, so that the forward-backward algorithm can
automatically discover the correct path and accurately estimate the corresponding HMM
from the given speech observation.

In general, the concatenated sentence HMM can be trained using the forward-
backward algorithm with the corresponding observation sequence. Since the entire sentence
HMM is trained on the entire observation sequence for the corresponding sentence, most
possible word boundaries are inherently considered. Parameters of each model are based on
those state-to-speech alignments. It does not matter where the word boundaries are. Such a
training method allows complete freedom to align the sentence model against the observa-
tion, and no explicit effort is needed to find word boundaries.

In speech decoding, a word may begin and end anywhere within a given speech signal.
As word boundaries cannot be detected accurately, all possible beginning and end points
have to be accounted for. This converts a linear search (as for isolated word recognition) to a
tree search, and a polynomial recognition algorithm to an exponential one. How to design an
efficient decoder is discussed in Chapters 12 and 13.

seg

Isil/ one

Figure 9.10 A composite sentence HMM. Each word can be a word HMM or a composite
Phonetic word HMM, as illustrated in Figure 9.9.
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9.6. ADAPTIVE TECHNIQUES—MINIMIZING MISMATCHEg

As Figure 1.2 illustrated, it is important to adapt both acous'tic models and language models
for new situations. A decent model can accommodate a wide range of variabilities, How.
ever, the mismatch between the model and operating cond'itions always exists. Ope of the
most important factors in making a speech system usable is to minimize the possible mjs.
match dynamically with a small amount of calibration data. Adaptive techniques can be
used to modify system parameters to better match variations in microphone, Lransmissiop
channel, environment noise, speaker, style, and application contexts. As a concrete example,
speaker-dependent systems can provide a significant word error-rate reduction in compag.
son to speaker-independent systems if a large amount of speaker-dependent training data
exists [50]. Speaker-adaptive techniques can bridge the gap between these two configura-
tions with a small fraction of the speaker-specific training data needed to build a fyj
speaker-dependent system. These techniques can also be used incrementally as more speech
is available from a particular speaker. When speaker-adaptive models are built, you can have
not only improved accuracy but also improved speed and potentially reduced model parame-
ter sizes because of accurate representations, which is particularly appealing for practical
speech recognition.

There are a number of ways to use adaptive techniques to minimize mismatches. You
can have a nonintrusive adaptation process that works in the background all the time. This is
typically unsupervised, using only the outcome of the recognizer (with a high confidence
score, as discussed in Section 9.7) to guide the model adaptation. This approach can con-
tinuously modify the model parameters so that any nonstationary mismatches can be elimi-
nated. As discussed in Chapter 13, systems that are required to transcribe speech in a non-
real-time fashion may use multiple recognition passes. You can use unsupervised adaptation
on the test data to improve the models after each pass to improve performance for a subse-
quent recognition pass.

Since the use of recognition results may be imperfect, there is a possibility of diver-
gence if the recognition error rate is high. If the error rate is low, the adaptation results may
still not be as good as supervised adaptation in which the correct transcription is provided
for the user to read, a process referred to as the enrollment process. In this process you can
check a wide range of parameters as follows:

® Check the background noise by asking the user not to speak.

Adjust the microphone gain by asking the user to speak normally.

Adapt the acoustic parameters by asking the user to read several sentences.
Change the decoder parameters for the best speed with no loss of accuracy-
Compose dynamically new enroliment sentences based on the user-specific
€ITOr patterns.

e d:ll';elchaller.lge for model adaptation is that we can use only a small amount of obsel.';:
0 modify model parameters. This constraint requires different modeling strateg!
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from the ones we discussed .in building the baseline system, as the amount of training data i
genem“y sufficient for oﬂjlme training. In this section we focus on a number of z%daa[? .
rechniques that can be applied to compensate either speaker or environment variati I?/Iwe
of these techniques are model-based, since the acoustic model parameters rathe'l(') [:lia ?hS[
qcoustic feature vectors are adapied. We use speaker-adaptation examples to illugtratenh y
these techniques can be .used to improve system performance. We can generalize to en(\)"'y
ronment adaptation by using environment-specific adaptation data and a noise-com ensat'ol-
model, which we discuss in Chapter 10. In a similar manner, we can modify the P;a o 1an
model as discussed in Chapter 11. d i

9.6.1.  Maximum a Posteriori (MAP)

Maximum a posteriori (MAP) estimation. as discussed in Chapter 4, can effectively deal
with data-sparse problems, as we can take advantage of prior information about existing
models. We can adjust the parameters of pretrained models in such a way that limited new
training data would modify the model parameters guided by the prior knowledge to compen-
sate for the adverse effect of a mismatch [35]. The prior density prevents large deviations of
the parameters unless the new training data provide strong evidence.

More specifically, we assume that an HMM is characterized by a parameter vector ¢
that is 2 random vector, and that prior knowledge about the random vector is available and
characterized by a prior probability density function p(®), whose parameters are to be de-
termined experimentally.

With the observation data X , the MAP estimate is expressed as follows:

& = arg max[ p(® | X)] = argmax[ p(X | @) p(D)] 9.14)

If we have no prior information, p(®) is the uniform distribution, and the MAP esti-
mate becomes identical to the ML estimate. We can use the EM algorithm as the ML to es-
timate the parameters of HMMs. The corresponding O-function can be defined as:

Q1r(®, D) =log p(d) + (D, D) (©.15)

The EM algorithm for the ML criterion can be applied here directly. The actual ex-
pression depends on the assumptions made about the prior density. For the widely used con-
tinuous Gaussian mixture HMM, there is no joint conjugate prior density. W? t{an gssume
different components of the HMM to be mutually independent, so that the optimization can
be split into different subproblems involving only a single component of the parameter set.
For example, the prior density function for the mixture Gaussian can be as follows:

.16
Pu(Cb, E) = p, (ci)H Puy (Mi» Zt) ©.16)
¥

the mixing coefficient vector of all mixture

where p_(c,) is a Dirichlet prior density for
. (€;) irichlet p ty ) denotes the prior density for parameters

components in the Markov state £, and pj, (Hix> Zit
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of the kth Gaussian component in the state i. The Dirichlet prior density p.(e,) isch

ized by a vector v, of positive hyperparameters such that: aractey.

g =1

p(e)=]1ci )

For full covariance D-dimensional Gaussian densities, the prior densit
mal-Wishart density parameterized by two values 77> D—1,T>0, the vecy,
symmetric positive definite matrix S as follows:

Y Can be 4 nor
or lJ'm.:) and [he

Py, (Bi» Zig ) o<
~ D7 1
del(zik )D_" exp(—%(ul'k - p’nw )E;l (p'ik T p’nu')l - 5 Ir(SZ;c' )) (9]8)

We can apply the same procedure as the MLE Baum-Welch reestimation algorithm,
For example, with the Q-function defined in Eq. (9.15), we can apply the Lagrange methog
to derive the mixture coefficients as follows:

0 u . N
——(og p, (€)+ D, Y & (5, k) logé, )+ A =0,Vk
¢, e
: .19
> 8 =1
k
Based on Egs. (9.17) and (9.19), the solution is:
U — 1+ 2 E (LK)
9.20)

N 0, ~1+ S EGD)

A comparison between Eq. (9.20) and the ML estimate Eq. (8.58) shows that the _MAP
estimate is a weighted average between the mode of the prior density and the ML estimaie
with proportions given by Uy —1 and z.‘,‘,(i,k) , respectively. o

We can optimize Eq. (9.15) with respect to mean and covariance parameters 102 simi-
lar fashion. For example, the solution of these estimates is:

T
Tk, 2GR,
H, = Tl=l (9-21)
T+ 3 86 k)
1=l
a R T . n
b Sﬂ‘ + Tik (p'lk . u'nn'& )(u'ik . “'nwﬂ )l + 2 C’ (l) k)(x - p'ik )(x - p'lk) (9 22)
= — pay '

=
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where Ty is the parameter in the normal-gamma density for the corre

. . sponding state ;.
Thus, the reestimation formula for the Gaussian mean is a wi : .

eighted sum of the prior

L T
ith the ML mean estimate Lk)x / ; . _
mean with ;gl( 9.9 Z,gl(l.k). Ty 1s a balancing Factor between
prior mean and the ML mean estimate. When 7, is large, the value of the prior knowledge
is small and the value of the mean W, is assumed Lo have high certainty, leading to the

dominance of the final estimate. When the amount of adaptation data increases, the MAP
estimate approaches the ML estimate, as the adaptation data overwrite any imp(;rtant rior
that may influence the final estimate. Similarly. the covariance estimation formula has the
same interpretation of the balance between the prior and new data.

One major limitation of. the‘MAP-based approach is that it requires an accurate initial
guess for the prior p(®), which is often difficult to obtain. We can use the already trained
initial models that em'b<_)<:.|y some characteristics of the original training conditions. A typical
way to generate an initial Gaussian prior is to cluster the initial training data based on
speaker or environment similarity measures. We can derive a set of models based on the
partition, which can be seen as a set of observations drawn from a distribution having p(®).
We can, thus, estimate the prior based on the sample moments to derive the corresponding
prior parameters.

Another major limitation is that the MAP-based approach is a local approach to updat-
ing the model parameters. Namely, only model parameters that are observed in the adapta-
tion data can be modified from the prior value. When the system has a large number of free
parameters, the adaptation can be very slow. Thus in practice we need to find correlations
between the model parameters, so that the unobserved or poorly adapted parameters can be
altered [3, 22]. Another possibility is to impose structural information so the model parame-
ters can be shared for improved adaptation speed [96].

The MAP training can be iterative, too, which requires an initial estimate of model pa-
rameters. A careful initialization for the Gaussian densities is also very important. Unlike the
discrete distributions, there is no such a thing as a uniform density for a total lack of infor-
mation about the value of the parameters. We need to use the same initialization procedure
asdiscussed in Chapter 8.

For speaker-adaptive speech recognition, it has been experimentally found tl?at Ty Can
be a fixed constant value for all the Gaussian components across all the dimeqsxons. Thus
the MAP HMM can be regarded as an interpolated model between the speaker-independent
and speaker-dependent HMM. Both are derived from the standard ML forwar&baﬁkwafd
algorithm. Experimental performance of MAP training is discussed in Section 9.6.3.

962.  Maximum Likelihood Linear Regression (MLLR)

When the continuous HMM is used for acoustic modeling, the most imponantlpararczi:?;;;é
to ad.apt is the output Gaussian density parameters, i.e., thc.: mean Vf:ctor and nebcoth s
Matrix. We can use a set of linear regression transformation functions to map boO
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and covariances in order to maximize the likelihood .of the ?daptatipn data [68]. Ty,
mum likelihood linear regression (MLLR) mapping is consistent with the underly;
rion for building the HMM while keeping thfa number of free parameters under Conto|
Since the transformation parameters can be esllm'uted from a relatively s.ma]] amount of ad:
aptation data, it is very effective for rapid adaplatxon..MLLR has bef;*,r} widely used 1o obtaip
adapted models for either a new speaker or a new envu."onment.condmon.

More specifically, in the mixture Gaussna_n densny‘ functions, the kth meap vector y,
for each state i can be transformed using following equation:

€ may;.
N crite.

i =AMy +b, (9.23)

where A, is a regression matrix and b, is an additive bias vectot associated with some
broad class ¢, which can be either a broad phone class or a set of tied Markov states, The
goal of Eq. (9.23) is to map the mean vector into a new space such that the mismatch can e
eliminated. Because the amount of adaptation data is small, we need to make sure the num-
ber of broad classes ¢ is small so we have only a small number of free parameters to estj-
mate. Equation (9.23) can be simplified into:

where ., is extended as [I,u;J and W. is the extended transform, [b_,A ].

This mapping approach is based on the assumption that W, can be tied for a wide
range of broad phonetic classes so that the overall number of free parameters is significantly
less than the number of mean vectors. Therefore, the same transformation can be used for
several distributions if they represent similar acoustic characteristics.

To estimate these transformation parameters in the MLE framework, we can use the
same Q-function we discussed in Chapter 8. We need to optimize only

¥3.0,@5,) 925

i k=1

with respect to W.. Maximization of o, (d),l;,‘) with respect to W, can be achieved by

computing the partial derivatives. For the Gaussian mixture density function, the partal de
rivative with respect to W, is:

35.1- (x)

= TR .26)
oW, NGy X )Zikl (x-Wp, )T &

¢

. ation
Let us denote the set of Gaussian components forming the proad transform

y . o the
classes as C; we use by € C to denote that the k" Gaussian density in staté ! belongs !
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class. We can expand the Q-function with the partial derivatives and set it

5 to i
he following equation: zero, leading to

T T
L% pl = i k)X !
mzlm.zecg,(l VX Z,EC G L)z, Wl (9.27)

We can rewrite Eq. (9.27) as:

z=Y V,W,D, (9.28)
beeC
where
L - t
Z= z z (89> ATV (9.29)
t=1 byeC
T -1
LAED NA ) (9.30)
=]
and
Dy =Pty - (9.31)

Estimating W, for Eq. (9.28) is computationally expensive, as it requires solving si-
multaneous equations. Nevertheless, if we assume that the covariance matrix is diagonal, we
can have a closed-form solution that is computationally efficient. Thus, we can define

Gy = 2 VD 9.32)

bEC
where v, denotes the q" diagonal element of matrix V, . The transformation matrix can be
computed row by row. So for the ¢" row of the transformation matrix W, , we can derive it

from the q"' row of Zq [defined in Eq. (9.29)] as follows:
= -1 9.33
wq - Zqu ( )

Since G, may be a singular matrix, we need to make sure we have enough training
data for the broad class. Thus, if the amount of training data is limited, we must tie a number

of transformation classes together. . .
We can run several jterations to maximize the likelihood for the given adaptation data.

At each iteration, transformation matrices can be initialized to identity transfc?rmations. We
can iteratively repeat the process to update the means until convergence is achieved. We can
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also incrementally adapt the mean vectors after each observation sequence or g
tion sequences while the required statistics are accumulated over time. Under ¢
that the alignment of each observation sequence against the model is reasonably g,

we can accumulate these estimated counts over time and use them incrementally, [p or:ra[e'
deal with the tradeoff between specificity and robust estimation, we can dy““micany er o
ate regression classes according to the senone tree. Thus, we can incrementally jnere ags:n:;lr.
number of regression classes when more and more data become available, ¢

MLLR adaptation can be generalized to include the variances with the M, framewory.
although the additional gain after mean transformation is often less significant (less thap
relative 2% error reduction). When the user donates about 15 sentences for enroliment trap.
ing, Table 9.5 illustrates how the MLLR adaptation technique can be used to further teduce
the word recognition error rate for a typical dictation application. Here, there js only one
context-independent phonetic class for all the context-dependent Gaussian densities, A we
can see, most of the error reduction came from adapting the mean vectors.

We can further extend MLLR to speaker-adaptive training (SAT) [6, 74]. In convey.
tional speaker-independent training, we simply use data from different speakers to build 2
speaker-independent model. An inherent difficulty in this approach is that spectral variations
of different speakers give the speaker-independent acoustic model higher variance than the
corresponding speaker-dependent model. We can include MLLR transformation in the proc-
ess of training to derive the MLLR parameters for each individual speaker. Thus the training
data are transformed to maximize the likelihood for the overall speaker-independent model.
This process can be run iteratively to reduce mismatches of different speakers. By explicitly
accounting for the interspeaker variations during training and decoding, SAT reduces the
error rate by an additional 5-10%.

€L of obsery,,
he ASsumptign

Table 9.5 Relative error reductions with MLLR methods. The reduction is relative to that of
the preceding row.

Models Relative Error Reduction
CHMM Baseline
MLLR on mean only +12%
MLLR on mean and variance +2%
MLLR SA1 +8%

9.6.3.  MLLR and MAP Comparison

. ] ed
The MLLR n?e_thod can be combined with MAP. This guarantees that with the l.ncrefif!c.
amount of training data, we can have not only a set of compact MLLR transformatl:’:w e
tions for rapid adaptation, but also directly modified model parameters that convell\‘zL A
ML estimates. We can use MAP to adapt the model parameters and then add

.t directly
transform these adapted models. It ; ) i he MAP principle direc
into MLLR {18, 19 els. It is also possible to incorporate the
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As an example, the result of a 60,000-word dictatj - . .
tion methods is ShOWf‘l in Figure 9.11." The speake:féit;(;zggﬁlﬁaggg : S'Zg]\(;%r(;ous ddgpta
Also included asa reference is the speaker-independent result, which isse d Ulteranc'es_
point for adaptive training. When the speaker-independent mo,del is ada lisfi «".S il L
utterances, the speaker-adaptive model has already outperforimed both sp . kwn'h i
and speaker-dependent systems. The results clearly demonstrate that wiezrlx e’f 'l{ldepellqent
training data for speaker-dependent speech recognition, as MAP-based I ms?mmem
pased models. This also illustrates that we can make effective use of s e:kmp?rijmm ot
data for speaker-dependent speech recognition. Also, notice that the MiLRer‘mtl e%endem
faster adaptation rate than the MAP method. The MLLR method has contexlt]-]iendlo hjs ’
phonetic classes. So, when the amount of adaptation data is limited, the MLLR i
fers better overall performance. ' eitod oF

However, the MAP becomes more accurate when the amount of adaptation data i
creases to 600 per speaker. This is because we can modify all the model parameters witl‘:l tll:‘c-
MAP training, and the MLLR transformation can never have the same degrees of freedom as
the MAP method. When the MLLR is combined with MAP, we can have not only rapid ad-
aptation but also superior performance over either the MLLR or MAP method across a wide
range of adaptation data points. There arc a number of different ways to combine both
MLLR and MAP for improved performance [4, 98].

13.0 5 —_— e —

=01 AR + MAP

~@—=MLLK Oaly

—tr=MAP Only

Error Rate

— Spoaker-
independent

wavma Speaker-Derendent

800 1000

0 200 400 600
Number of Adaptation Utierances

d combined MLLR and MAP. The
data. The speaker-dependent and
dependent model was trained with

Figure 9.11 Comparison of Whisper with MLLR, MAP, an
error rate is shown for a different amount of adaptation
speaker-independent models are also included. The speaker-
1000 sentences.

4

In practice, if a large well-trained, speaker-independent model is used. the baseline performance may be very
EO;d. and hence, the relative error reduction from speaker adaptation may be smaller than for smaller and simpler
models,

Amazon/VB Assets
Exhibit 1012
Page 477



452 Acoustic MO(;]in\
3

9.6.4. Clustered Models

Both MAP and MLLR techniques are based on using an appropriate initial mod
tive modeling. How accurate we make the initial model directly affects the ove,
ance. An effective way to minimize the mismatch is, thus, to cluster similar
environments in the training data, building a set of models for each cluster thy
mismatch for different conditions. When we have enough training data, and enough coy
age for a wide range of conditions, this approach ensures significantly improved robusmeszr.

For example, we often need a set of clustered models for different telephone channel;
including different cellular phone standards. We also need to build gender-dependent mod:
els or speaker-clustered models for improved performance. In fact, when we COnstrucy
speaker-clustered models, we can apply MLLR transformations or neural networks to mini-
mize speaker variations such that different speakers can be mapped to the same golden
speaker that is the representative of the cluster.

Speaker clusters can be created based on the information of each speaker-dependent
HMM. The clustering procedure is similar to the decision-tree procedure discussed in Sec.
tion 9.4.3. Using clustered models increases the amount of computational complexity. It also
fragments the training data. Clustering is often needed to combine other smoothing tech-
niques, such as deleted interpolation or MLLR transformation, in order to create clustered
models from the pooled model. We can also represent a speaker as a weighted sum of indi-
vidual speaker cluster models with the cluster adaptive training [33] or eigenvoice tech-
niques [64].

When we select an appropriate model, we can compute the likelihood of the test
speech against all the models and select the model that has the highest likelihood. Altemnz-
tively, we can compute likelihoods as part of the decoding process and prune away less
promising models dynamically without significantly increasing the computational load
When multiple models are plausible, we can compute the weighted sum of the clustered
models with pretrained mixing coefficients for different clusters, much as we train the dé-
leted interpolation weights. 5

Traditionally speaker clustering is performed across different speakers without consid-
ering phonetic similarities across different speakers. In fact, clustered speaker groups may
have very different degrees of variations for different phonetic classes. You can further &%
eralize speaker clustering to the subword or subphonetic level [62]. With multiple inst2nc®
derived f_ro.m clustering for each subword or subphonetic unit, you can model speaker e
tion exphcltly_ across different subword or subphonetic models. 0%

In practice, gender-dependent models can reduce the word recognition efror by | as.
Migre refined speaker-clustered models can further reduce the error rate, but not 5 et :
g;: gl";l;‘h:rg?wgende;-dependent models, unless we have a large number of Clus;re;:,;f;ac
spé aker-dependléietr appens to be similar to one of these speaker clusters, V\éﬂ cendeﬂl ol
els, ¥listesing: s rnSPeeCh.1‘.ecogmt10n without enrollment. For env;ror}ment- efi, ;ronment Of
channel distortjon i The challenge is to anticipate the kind of ¢ dictable, ¥

s the system will have to deal with. Since this is often unprec!

el for adap.

all Perfom.
Peﬂkers and
has minim:ll
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need to use adaptive techniques such as MAP and MLLR to minimi i ‘
discuss this in more detail in Chapter 10. mize the mismatch. We

97. CONFIDENCE MEASURES: MEASURING THE RELIABILITY

One of the most critical components in a practical speech recognition system is a reliable
confidence measure. With an accurate confidence measure for each recognized word, the
conversational back end can repair potential speech recognition errors, can reject ou’t—of-
vocabulary words, and can identify key words (perform word spotting) that are relevant to
the back end. In a speaker-dependent or speaker-adaptive system, the confidence measure
can help user enroliment (to eliminate mispronounced words). It is also critical for unsuper-
vised speaker adaptation, allowing selective use of recognition results so that transcriptions
with lower confidence can be discarded for adaptation.

In theory, an accurate estimate of P(W | X), the posterior probability, is itself a good
confidence measure for word W given the acoustic input X. Most practical speech recog-
nition systems simply ignore P(X), as it is a constant in evaluating P(W)P(X| W)/ P(X)
across different words. P(W | X) can be expressed:

P(W)P(X|W) _ _P(W)P(X|W)
P(X) 2 P(W)P(X| W)

P(W|X)= 9.34)

Equation (9.34) essentially provides a solid framework for measuring confidence lev-
els. It is the ratio between the score for the word hypothesis P(W)P(X| W) and the acous-
tic probability Zw P(W)P(X | W). In the sections that follow we discuss a number of ways
to mode! and use such a ratio in practical systems.

9.7.1. Filler Models

You can compute P(X) in Eq. (9.34) with a general-purpose recognizer. It should be able to
recognize anything such that it can fill the holes of the grammar in the normal speech recog-
nizer. The filler model has various forms [7, 63]. One of the most widely used is the so-
called all-phone network, in which all the possible phonetic and nonspeech HMMs are con-
nected to each other, and with which any word sequence can be recognized. B

In addition to evaluating P(W)P(X|W) as needed in normal speech_ recognition, a
separate decoding process is used to evaluate Y, , P(W)P(X| W) . Here W is either a pho-
netic or a word model. You can also apply phonetic n-gram probabilities that are denve.d
from a lexicon targeted for possible new words. The best path frc?m the all-phone network is
compared with the best path from the normal decoder. The ratio between the two, as ex-
pressed in Eq. (9.34), is used to measure the confidence for either word or phone. In the de-
coding process (see Chapters 12 and 13), you can accumulate the phonetic ratio derived
from Eq. (9.34) on a specific word. If the accumulative P(W | X) for the word is less than a
predetermined threshold, the word is rejected as either a new word or a nonspeech event.
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Both context-independent and context-dependent phonetic models can be used
fully connected network. When context-dependent phonetic models are used, you
make sure that only correct contextual phonetic connections are made. Although conte
dependent models offer significant improvement for speech recognition, the fije, phonefF.
network seems to be insensitive to context-dependency in empirical experiments, ¢

There are word-spotting applications that need to spot just a small number of ke
words. You can use the filler models described here for word spotting. You can also builz
antiword models trained with all the data that are not associated with the key words of inter-
est. Empirical experiments indicate that large-vocabulary speech recognition is the most
suitable choice for word spotting. You can use a general-purpose n-gram (see Chapter 11)
generate recognition results and identify needed key words from the word lattice. Thjs is
because a large-vocabulary system provides a better estimate of zw P(W)P(X|W) with
more accurate language model probability. In practice, we don’t need to use all the hypothe-
ses to compute Zw P(W)P(X|W). Instead, n-best lists and scores [40} can be used 1o
provide an effective estimate of ZWP(W)P(X | W).

for (he
heed 1

9,7.2. Transformation Models

To determine the confidence level for each word, subword confidence information is often
helpful. Different phones have different impacts on our perception of words. The weight for
each subword confidence score can be optimized from the real training data. If a word w has
N phones, we-can compute the confidence score of the word as follows:

CS(w)= igo,.(x,.)/N 9.35)

i=l

where CS(w) is the confidence score for word w, x; is the confidence score for subword unit

i in word w, and g, is the mapping function that may be tied across a number of subword
units. The transformation function can be defined as:

@, (x)=ax+b 9.36)

We can use discriminative training to optimize the parameters a and b, espeeuvely. A
cost function can be defined as a sigmoid function of CS(w). As shown in Figure 9- 12, the
optimal transformation parameters vary substantially across different phones. The weight for
consonants is also typically larger than that of vowels. C

The transformation function can be context dependent. Figure 9.13 illustrates the RQ
curve of the context-dependent transformation model in comparison with the correspondin
phonetic filler model. The filler model essentially has a uniform weight across all the phonesr
In a given word. The estimated transformation model has 15-40% false-acceptanc® eno-
r.eduction at various fixed false-rejection rates. The false-acceptance rate of the transform®
tion model is consistently lower than that of the filler model [63].
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Figure 9.12 Transformation parameter a for each context-independent phone class. The weight
of consonants is typically larger than that of vowels [63].
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Figure 9.13 The ROC curve of phonetic filler models with and without optimal feature
transformation [63].
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9.7.3. Combination Models

In practical systems, there are a number of features you can use to improve the

r performapee
of confidence measures. For example, the following features are helpful:

e Word stability ratio from different language model weights (WdetabRan'o)‘
This is obtained by applying different language weights to see how stably
each word shows up in the recognition n-best list.

e Logarithm of the average number of active words around the ending frame of
the word (WrdCntEnd).

e Acoustic score per frame within the word normalized by the corresponding
active senone scores (AscoreSen).

e Logarithm of the average number of active words within the word
(WrdCntW).

e Acoustic score per frame within the word normalized by the phonetic filler
model (AscoreFiller).

e Language model score (LMScore).

e Language model back-off (trigram, bigram, or unigram hit) for the word
(LMBackOff).

e Logarithm of the average number of active states within the word (StateCnr).
e Number of phones in the word (Nphones).

e Logarithm of the average number of active words around the beginning frame
of the word (WrdCntBeg).

e Whether the word has multiple pronunciations (Mpron).
* Word duration (WordDur).

To clarify each feature’s relative importance, Table 9.6 shows its linear correlation c¢-
efficient against the correct/incorrect tag for each word in the training set. Word stability
ratio (WrdStabRatio) has the largest correlation value.

Several kinds of classifiers can be used to compute the confidence scores. Previous re-
search has shown that the difference between classifiers, such as linear classifiers, generah
1zed linear models, decision trees, and neural networks, is insignificant. The simplest lineé"
cl.assxﬁer based on discrimipative training performs w;.ll in practice. As some features arc
highly corr.elated, you can iteratively remove features to combat the curse of dimensionality-
The combination model can have up to 40-80% false-acceptance error reduction at fixe

false-rejection rate in comparison to the single-feature approach.
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Table 9.6 Correlation coefficients of several features against correct/incorrect tag

Feature Correlation
WrdStabRario 0.590
WrdCrtw -0.223
LMBackOff 0.171
AscoreSen 0.250
LMScore 0.175
Nphones 0.091
WordDur 0.012
WrdCntEnd -0.321
AscoreFiller 0.219
StareCnt -0.155
Mpron 0.057
WrdCniBeg -0.067

9.8. OTHER TECHNIQUES

In addition to HMMs, a number of interesting alternative techniques are being actively in-
vestigated by researchers. We briefly review two promising methods here.

9.8.1. Neural Networks

You have seen both single-layer and multilayer neural nets in Chapter 4 for dealing with
static patterns. In dealing with nonstationary signals, you need to address how to map an
input sequence properly to an output sequence when two sequences are not synchronous,
which should include proper alignment, segmentation, and classification. The basic neural
networks are not well equipped to address these problems in a unified way.

Recurrent neural networks have an internal state that is a function of the current input
and the previous internal state. A number of them use time-step delayed recurrent loops on
the hidden or output units of a feedforward network, as discussed in earlier chapters. For
sequences of finite numbers of delays, we can transform these networks into equivalent
feedforward networks by unfolding them over the time period. They can be trained with the
standard back propagation procedure, with the following modifications:

¢ The desired outputs are functions of time, and error functions have tc.) be com-
puted for every copy of the output layer. This requires the selection of an
appropriate time-dependent target function, which is often difficult to define.

* All copies of the unfolded weights are constrained to be identical duﬁng the
training. We can compute the correction terms separately for each weight and
use the average to update the final estimate.
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In most of these networks, you can have a partially recurrent network that hag feed
back of the hidden and output units to the input lay_er. For‘ example, the feedforwgrg nelWoﬂ;
can be used in a set of local feedforward connecu_ons with ong time-step delay. Thege -
works are usually implemented by extending the input field with additiona] feedback uniits
containing both the hidden and output values .generated b)_' the preceding input. Yoy i
encode the past nonstationary information thz_it is often required to generate the correct gy
put, given the current input, as illustrated in Figure 9.14.

?

z! B Output Layer
— z Hidden Layer

et

(xm i X, = T | x , ﬂ-J z X, Input Layer

-2 n-

Figure 9.14 A recurrent network with contextual inputs, hidden vector feedback, and output
vector feedback.

One of the popular neural networks is the Time Delay Neural Network (TDNN) [105].
Like static networks, the TDNN can be trained to recognize a sequence of predefined length
(defined by the width of the input window). The activation in the hidden layer is computed
from the current and multiple time-delayed values of the preceding layer, and the output
units are activated only when a complete speech segment has been processed. A typical
TDNN is illustrated in Figure 9.15. The TDNN has been successfully used to classify pre-
segmented phonemes.

All neural networks have been shown to yield good performance for small-vocabulary
speech recognition. Sometimes they are better than HMMs for short, isolated speech units
By recurrence and the use of temporal memory, they can perform some kind of integration
over time. It remains a challenge for neural networks to demonstrate that they can be a5 of-
fective as HMMs for dealing with nonstationary signals, as is often required for large
vocabulary speech recognition.

To deal with continuous speech, the most effective solution is to integrate neural 1
gy HMMS (91, 113]. The neural network can be used as the output probabilities t0 replace
the Gaussian mixture densities. Comparable results can be obtained with the integrated aPt;
glroach. These HMM output probabilities could be estimated by applying the Bay est i

© output of neural networks that have been trained to classify HMM state categones.

:\:tu;ai networks can consist either of a single large trained network or of a group of s
ely trained smal) networks [21, 31, 75, 90].
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A number of techniques have been developed to improve the performance of traini
these networks. Training can be embedded in an EM-style process. For example dfnl;:;i
programming can be used to segment the training data. The segmented data are thén Z’xsed to
retrain the network. It is also possible to have Baum-Welch style training [ 14, 42]

Output
Xooa [ 20 B x,, ] ' = x, Input Layer

Figure 9.15 A time-delay neural network (TDNN), where the box #, denotes the hidden vec-
tor at time ¢, the box x, denotes the input vector at time r, and the box z~' denotes a del ay of
one sample.

9.8.2.  Segment Models

As discussed in Chapter 8, the HMM ourput-independence assurnption results in a piecewise
stationary process within an HMM state. Although the nonstationary speech may be mod-
eled sufficiently with a large number of states, the states in which salient speech features are
present are far from stationary [25, 99]. While the use of time-derivative features (e.g., delta
and/or delta-delta features) alleviates these limitations, the use of such longer-time-span
features may invalidate the conditional independence assumption.

StAte |  me— state 2
‘s\\,—

Figure 9.16 Diagram illustrating that HMM’s output observation can hop between two unex-
Pected quasi-stationary states [46).

The use of Gaussian mixtures for continuous or semicontinuous HMMs, as described in

Chapter 8, could introduce another potential problem, where ar bitralx;y :m:s{i;i;}ns;gﬁggt?g
Gaussian mj diacent HMM states are allowe - Fi 0
Ixture components between ad] The solid lines denote the valid

illustrates e i i onents.
0 HMM states with two mixture comp 1 :
trajectories actually observed in the training data. However, in modeling these two

trajecton‘es, the Gaussian mixtures inadvertently allow two phantom trajectories, shown in
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dashed lines in Figure 9.16, because no constraipt is ‘imposed on the mixture tFansiions
across the state. It is possible that such phantom tragectones degrade recognition Performance
because the models can overrepresent speech signals that §hould be modeled by 0lhe;
acoustic units. Segment models can alleviate such HMM .m0f1e1u.1g deficiencies (77, 79),

In the standard HMM, the output probability distribution is modeled by a quag;.
stationary process, i.e.,

L
Px;1s)=[]b.(x) ©.37)

i=l

For the segment model (SM), the output observation distribution is modeled by two stochas.
tic processes:

P(x; | s)= P(x; |5, L)P(L|5) (9.38)

The first term of Eq. (9.38) is no longer decomposable in the absence of the output-
independence assumption. The second term is similar to the duration model described in
Chapter 8. In contrast to the HMM whose quasi-stationary process for each state s generates
one frame x,, a state in a segment model can generate a variable-length observation se-
quence {x,,x,,---X,} with random length L.

Since the likelihood evaluation of segment models cannot be decomposed, the compu-
tation of the evaluation is not shareable between different segments (even for the case where
two segments differ only by one frame). This results in a significant increase in computation
for both training and decoding [77]. In general, the search state space is increased by a factor
of L ., the maximum segment duration. If segment models are used for phone segments,
L_,, could be as large as 60. On top of this large increase in search state space, the evaluz-
tion of segment models is usually an order of magnitude more expensive than for HMM,
since the evaluation involves several frames. Thus. the segment model is often implemented
in a multipass search framework, as described in Chapier 13.

Segment models have produced encouraging performance for small-vocabulary or s>
lated recognition tasks [25, 44, 79]. However, their effectiveness on large-vocabulary cor-

tnuous speech recognition remains an open issue because of necessary compromises 10
reduce the complexity of implementation.

9.8.2.1. Parametric Trajectory Models

Par ametric trajectory models [25, 37] were first proposed 1o model a speech segment il
C;rrfz;ﬁttxmg Paml)niters_ They approximate the D-dimensional acoustic observation Ye&t”
=X;,X,,0-+,X;) by a polynomial functi ; , -ation vector X, a0

represented as T potyn unction. Specifically, the observation ve 1

Amazon/VB Assets
Exhibit 1012
Page 486



Other Techniques .

@ d Y A0

'O tes
x, =CxF+e(Z)= (2 g -4 fl:(t) te(Z)

RS

(9.39)

0 1 2 N
Cp Cp ¢p cp S

where the matrix C is the trajectory parameter matrix, £ is the family of N"-order
polynomial functions, and e,(X) is the residual fitting error. Equation (9.39) can be
regarded as modeling the time-varying mean in the output distribution for an HMM state. To
simplify computation, the distribution of the residual error is often assumed to be- an
independent and identically distributed random process with a normal distribution N(0,X).
To accommodate diverse durations for the same segment, the relative linear time sam;;lin g
of the fixed trajectory is assumed [37].

Each segment M is characterized by a trajectory parameter matrix C,, and covariance
matrix Z,,. The likelihood for each frame can be specified [46] as

exp {—tr [(x, - Cmp; )E;-l(xl —C,,,F, y ]/2}
en% iz,

P(x, |Cm’zln) S (940)

If we let ¥ =(F,,F,--~,F,,) , then the likelihood for the whole acoustic observation vector
can be expressed as

exp{~r[(X-C,E)E; (X -C,E) /2]

(9.41)
en Az, 1"

PXIC,,Z,) =

m?

Multiple mixtures can also be applied to SM. Suppose segment M is modeled by X tra-
jectory mixtures. The likelihood for the acoustic observation vector X becomes

K
Y wp(X1C,LZ) 9.42)
k=]

Hon et al. [47] showed that only a handful of target trajectories are nee@ed for speak.er-
independent recognition, in contrast to the many mixtures required for 'confmuous Gaussian
HMMs. This should support the phantom-trajectory argument involved in Figure 9.16. .
The estimation of segment parameters can be accomplished by the EM algoml}m
described in Chapter 4. Assume a sample of L observation segments XI,X:,---,XIL‘ E :nh
corresponding duration 1;,7;,:--, T}, are generated by the segment model M. The M or-

mulae using the EM algorithm are:

yi = X1 C 3 9.43)
PX; 1D, )
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o 1 mpXICeR)
WELE PR ID,) G

a L ! < ] l-
Ck=[27LX.-Fr,]/ ;YkFr,Fz 945)

i=l

. L f L i
£, = 37X, ~CF; )X, ~C,F; ) ;m (9.46)
I=1 =

Parametric trajectory models have been succe§sfully applied to phone classificatiop
[25, 46] and word spotting [37], and offer a modestly improved performance over HMMs,

9.8.2.2. Unified Frame- and Segment-Based Models

The strengths of the HMM and the segment-model approaches are complementary. HMMs
are very effective in modeling the subtle details of speech signals by using one state for each
quasi-stationary region. However, the transitions between quasi-stationary regions are
largely neglected by HMMs: because of their short durations. In contrast, segment models
are powerful in modeling the transitions and longer-range speech dynamics, but might need
to give up the detailed modeling to assure trainability and tractability. It is possible to havea
unified framework to combine both methods [47].

In the unified complementary framework, the acoustic model p(X! |W) can be con-
sidered as two joint hidden processes, as in the following equation:

pXIW)=Y Y p(X,q".q" | W)
¢ o 9.47)
=ZZP(XIqh,q‘)p(q‘ lq")p(q" | W)
T q

where g" represents the hidden process of the HMM and q°, the segment model. The
conditional probability of the acoustic signal p(X|q’,q") can be further decomposed iff0
two separate terms:

P(qu’,q")= p(X]q")p(X| q‘ ) (948)

where a is a constant that is called segment-model weight. The first term is the contribution
from normal frame-based HMM evaluation. We further assume for the second tem &2
recognition _°f segment units can be performed by detecting and decoding a sequence of &
lient events in the acoustic stream that are statistically independent. In other words,

PRI =] p(X, 147 °
where X, denotes the segment.
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We assume that the phone sequence and the
HMMs and segment models agree with each other. By
sumption, this leads to a segment duration mode| ag

phone boundaries hypothesized by
sed on the independent-segment as-

5 h = ,f.+ -1 2
pq'lq’) HP(’] i —1X,) (9.50)

By treating the combination as a hidden-data problem, we can apply the decoding and
iterative EM reestimation techniques here. This unified framework enables both frameg- and
segment-based iodels to jointly contribute to optimal segmentations, which leads to more
efficient pruning during the search. The inclusion of the segment models does not require
massive revisions in the decoder, because the segment model scores can be handled in the
same manner as the language model scores; whereas the segment evaluation is performed at
each segment boundary.

Since subphonetic units are often used in HMMs to model the detailed quasi-
stationary speech region, the segment units should be used to model long-range transition.
As studies have shown that phone transitions play an essential role in humans’ perception,
the phone-pair segment unit that spans over two adjacent phones can be used [47]. Let g
and ¢, denote the phone and the starting time of the " segment, respectively. For a phone-pair
{e,,, €) segment between ¢, and f,,, the segment likelihood can be computed as follows:

p(X;1q)= p(x;" ley,e) 9.51)

Rather than applying segment evaluation for every two phones, an overlapped evalua-
tion scheme can be used, as shown in Figure 9.17 (a), where a phone-pair segment model
evaluation is applied at each phone boundary. The overlapped evaluation implies that each
phone is evaluated twice in the overall score. Most importantly, the overlapped evaluation
places constraints on overlapped regions to assure consistent trajectory transitions. This is an
important feature, as trajectory mixtures prohibit phantom trajectories within a segment unit,
but there is still no mechanism to prevent arbitrary trajectory transitions between adjacent
segment units.

Some phone-pairs might not have sufficient training data. Units containing silence
might also have obscure trajectories due to the arbitrary duration of silence. As a result, a

L A (a) phone-pair segment models

(b) two phone (monophone or
gen. triphone) segment models

(a) a phone-pair segment model, or (b) back-off to

Figure 9.17 Overlapped evaluation using ¢ exist [47]

wo phone units when the phone-pair (e, e)) segment model does no
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phone-pair unit (¢, ¢)) can be backed off with two phone units as shown in F;
The phone units can be context independent or context dependent [46]. Thys
segment-model evaluation becomes:

Sure 9.17 )
, the back -off

p(X, 1g))=B*p(x, le.)p(x" &) 05

where B is the back-off weight, generally smal].er than 1.0. The use of back-off weight hag
the effect of giving more preference to phone-pair segment models than to two-phone.
back-off segment models.

The phone-pair segment model outperformed the phone-pair HMM by more thap 20%
in a phone-pair classification experiment [46]. The umf"led framework achieved aboy 8%
word-error-rate reduction on the WSJ dictation task in comparison to the HMM.-baseq

Whisper [47].

based

9.9. CASE STUDY: WHISPER

Microsoft’s Whisper engine offers general-purpose speaker-independent continuous speech
recognition [49]. Whisper can be used for command and control, dictation, and converss-
tional applications. Whisper offers many features such as continuous speech recognition,
speaker-independence with adaptation, and dynamic vocabulary. Whisper has a unified ar-
chitecture that can be scaled to meet different application and platform requirements.

The Whisper system uses MFCC representations (see Chapter 6) and both first- and
second-order delta MFCC coefficients. Two-mean cepstral normalization discussed in Chap-
ter 10 is used to eliminate channel distortion for improved robustness.

The HMM topology is a three-state left-to-right model for each phone. Senone models
discussed in Section 9.4.3 are derived from both inter- and intraword context-dependent
phones. The generic shared density function architecture can support either semicontinuous
or continuous density hidden Markov models.

The SCHMM has a multiple-feature front end. Independent codebooks are built for the
MFCC, first-order delta MFCC, second-order delta MFCC, and power and first and second
power, respectively. Deleted interpolation is used to interpolate output distributions of con-
X t-dependent and context-independent senones. All codebook means and covariance mé
trices are reestimated together with the output distributions except the power covariance
matrices, which are fixed,

_ The overall senone models can reduce the error rate significantly in comparison ©© e
triphone or clustered triphone model. The shared Markov state also makes it possible © llsfe
e ot A nty o g vy sech gnivn V.
Pl 1{11::5 data becomes available, the best pcrformange is Ob[amir i
lion came at the cz:sltnc?f(s're PfEMM E_ach - g albeft suehan®

We can further crign él‘lcanuy fHCreased comp utational. COT“PleXKy. :an probability
demsity Fongtion. Eachg Ga: 12¢ sharing to the level of each individual Gaussxau:l gcross -
Bakoua, APty ssian funfzuon is treated as the basic unit to be share "

g me, there is no need to use senones or shared states any ™
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the shared probability f:lensity functions become the acoustic ke
form any mixture function for any Markov state with appropriate
(er sharing is, thus, advanced from a phone unit to a Markov state
component ur1it.l . ol

Regarding lexicon modeling, most words have one pr. D ]
words that are not in the dictionary, the LTS conversion ispb::eudnzrttlr?: d':c?s]'e leXlCOU}; FQF
rained from the existing lexicon. For the purpose of efficiency, the diCtiOnl:n tir:et Zt is
store the most frequently used words. The LTS is only used for new words th;{ neel:istt? t:o
added on the fly. 0oe

For speaker adaptation, the diagonal variances and means are adapted using the MAP
method. Whisper also uses MLLR to modify the mean vectors only. The MLLR classes are
phone dependent. The transition probabilities are context independent and they are not
modified during the adaptation stage.

The language model used in Whisper can be either the trigram or the context-free
grammar. The difference is largely related to the decoder algorithm, as discussed in Chapter
13. The trigram lexicon has the 60,000 most-frequent words extracted from a large text cor-
pus. Word selection is based on both the frequency and the word’s part-of-speech informa-
tion. For example, verbs and the inflected forms have a higher weight than proper nouns in
the selection process.

Whisper’s overall word recognition error rate for speaker-independent continuous
speech recognition is about 7% for the standard DARPA business-news dictation test set.
For isolated dictation with similar materials, the error rate is less than 3%. If speaker-
dependent data are available, it can further reduce the error rate by 15-30%, with less than
30 minutes’ speech from each person. The performance can be obtained real-time on today’s
PC systems.

mels that can be used to
mixture weights. Parame-
unit (senones) to a density

9.10. HISTORICAL PERSPECTIVE AND FURTHER READING

The first machine to recognize speech was a commercial toy named Radio Rex manuﬁac—
tured in the 1920s. Fueled by increased computing resources, acoustic-phonetic modeling
has progressed significantly since then. Relative word error rates have been reduc.ed by 10%
every year, as illustrated in Figure 9.18, thanks to the use of HMMs, the availabi}lty of large
speech and text corpora, the establishment of standards for performance evaluation, and ad-
vances in computer technology. Before the HMM was established as the standard, there
Were many competing techniques, which can be traced back to the 1950s. Gold and Mor-
gan’s book provides an excellent historical perspective [38].
The HMM is powerful in that, with the availability of training
the model can be estimated and adapted automatically to give optimal performance. There
are many HMM-based state-of-the-art speech recognition systems (1, 12,27, 34, 49, 5,5' 72,
73,93, 108, 109, 112). Alternatively, we can first identify speech segments, then classify the
Segments and use the segment scores to recognize words. This approach has produceda;:lcm-
Petitive recognition performance that is similar to HMM-based systems in several small- to

Medium-vocabulary tasks [115].

data, the parameters of
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Speech recognition systems atten?pt t(_) modf:l_ the sources of variability i
ways. At the level of signal representation, 1n ad_dmon to MFCC, researchers haye
oped representations that emphasize perceptually 1mporta.mt_ speaker-independent feat
the signal, and deemphasize speaker-dependent chara&c_tensncs [43]. Other metho ds b
linear discriminant analysis to improve class separability [28, 54) and speaker norm
transformation to minimize speaker variations [51, 67, 86, 106, 107, 114) have
limited success. Linear discriminant analysis can be traced back to Fisher's lineqy
nant [30), which projects a dimensional vector onto a single line that is oriented to
class separability. Its extension to speech recognition can be found in [65).

At the level of acoustic-phonetic modeling, we need to provide an accurate distance
measure of the input feature vectors against the phonetic or word models from the signal-
processing front end. Before the HMM was used, the most successful acoustic-phonetic
model was based on the speech template where the feature vectors are stored as the mode]
and dynamic-programming-based time warping was used to measure the distance betweep
the input feature vectors and the word or phonetic templates [88, 94]. The biggest problem
for template-based systems is that they are not as trainable as HMMs, since it is difficult to
generate a template that is as representative as all the speech samples we have for the par-
ticular units of interest.

25%
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—&— WSJ Read Speech
—©—NAB Broadcast Speech

Figure 9.18 History of DARPA speech recognition word-error-rate benchmark evaluation &
sults from 1988 t0 1999. There are four major tasks: the Resource Management comsmand anh
control task (RM C&C, 1000 words), the Air Travel Information System spontaneous spee”
understanding task (ATIS, 2000 words), the Wall Streer Journal dictation task (WS, 20,
words), and the Broadcast News Transcription Task (NAB, 60,000 words) [80-84]-

N Another approach that attracted many researchers is the knowledge-bas
onginated from the Artificial Intellj

tensive knowledge engineering,

ed one that
] ) ires €X°
gence research community. This approach reqltlhe com-
which often led to many inconsistent rules. Due t
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plexity of spee.ch recognition, rule-based approaches
ance of data-driven approaches such as HMMs, which
from a large amount of training data [ 105].

Senones are NOW Widel)_’ used in many state-of-the-art systems. Word models or allo-
phone models can also be built by concatenation of basic structy
tions, and distributions such as fenones [8, 9] or senones [58].

Segment models, gs proposed by Roucos and Ostendorf [79, 92], assume that each
variable-length segment is mapped (o a fixed number of representative frames. The resulfin
model is very similar to the HMM with a large number of states. Ostendorf published i
comprehensive survey paper [77] on segment models. The parametric trajectory segment
model was introduced by _De_ng gt al. [2§] and Gish et al. [37] independently. Gish's work is
very similar to ou.r descrlpthn m. Section 9.8.2.1, which is based on Hon et al. [46, 47],
where the ev.aluanon _and. estimation are more efficient because no individual polynomial
fiting is required for likelihood computation. In addition to the phone-pair units described in
this chapter, segment models have also been applied to phonetic units [25], subphonetic
units [25], diphones {36], and syllables [78]. The dynamic model [24, 26] is probably the
most aggressive attempt to impose a global transition constraint on the speech model. It uses
the phonetic target theories on unobserved vocal-tract parameters, which are fed to an MLP
to produce the observed acoustic data.

Today, it is not uncommon to have tens of thousands of sentences available for system
training and testing. These corpora permit researchers to quantify the acoustic cues impor-
tant for phonetic contrasts and to determine parameters of the recognizers in a statistically
meaningful way. While many of these corpora were originally collected under the sponsor-
ship of the U.S. Defense Advanced Research Projects Agency (ARPA) to spur human lan-
guage technology development among its contractors [82], they have nevertheless gained
international acceptance. Recognition of the need for shared resources led to the creation of
the Linguistic Data Consortium (L.LDC)’ in the United States in 1992 to promote and support
the widespread development and sharing of resources for human language technology. The
LDC supports various corpus development activities and distributes corpora obtained .from a
variety of sources. Currently, LDC distributes about twenty different speech corpora -lnc]ud-
ing those cited above, comprising many hundreds of hours of speech. The avaxlabfhty ofa
large body of data in the public domain, coupled with the specification of evaluation staq-
dards, has resulted in uniform documentation of test results, thus contributing to greater reli-
ability in monitoring progress. .

To further improve the performance of acoustic-phonetic model§, we need a rprust
System so that performance degrades gracefully (rather than catasn.'op.hlcally) as conditions
diverge from those under which it was trained. The best approach is likely to have sys;em;
continuously adapted to changing conditions (new speakers, microphone, task,.et.c.;.S lu;] i
adaptation can occur at many levels in systems, subword models, word pronunciations, il
8uage models, and so on. We also need to make the system portable, so that we can rap 'ffy
design, develop, and deploy systems for new applications. At present, systems tend to suffer

generally cannot match the perform-
can automatically extract salient rules

Tes made by states, transi-

3
hl\p://www.cis.upenn.edu/ldC
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significant degradation when movc‘:d to a new task. In orde'r to_ret?in peak perform
must be trained on examples specific to the new task, which 15 time consuming ang ey
sive. In the new task, system users may not know exactly which words are i the syster
vocabulary. This leads to a certain percentage of OUt-Of-VOcabuI'ary words in naturgj cond.
tions. Currently, systems lack a very robust methOC_i of detecting such out-of-vocapy
words. These words often are inaccurately mapped into the words in the system, Causing
unacceptable errors. _

An introduction to all aspects of acoustic modeling can be found in Spoken Dialogye;
with Computers [16) and Fundamentals of Speech Recognition [87). A good treatmen of
HMM-based speech recognition is given in [52, 60, 105]). Bourlard and Morgan’s book (13)
is a good introduction to speech recognition based on neural networks. There are 3 range of
applications such as predictive networks that estimate each frame’s acoustic vector, given
the history [69, 104] and nonlinear transformation of observation vectors [13, 53, 101].

You can find tools to build acoustic models from Carnegie Mellon University’s speech
open source Web site.® This site contains the release of CMU’s Sphinx acoustic modeling
toolkit and documentation. A version of Microsoft’s Whisper system can be found in the
Microsoft Speech SDK.’

ancey thty
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CHAPTER 1

Environmental Robustness

A speech recognition system trained in the

lab_ \Yith clean speech may degrade significantly in the real world if the clean speech used in
tr{umng doesn’t match real-world speech. If its accuracy doesn’t degrade very much under
mismatched conditions, the system is called robust. There are several reasons why real-
world speech may differ from clean speech; in this chapter we focus on the influence of the
acoustical environment, defined as the transformations that affect the speech signal from the
tme it leaves the mouth until it is in digital format.
, Chapter 9 discussed a number of variability factors that are critical to speech recogni-
tion. Because the acoustical environment is s important to practical systems, we devote this
chapter to ways of increasing the environmental robustness, including microphone, echo
cancellation, and a number of methods that enhance the speech signal, its spectrum, and the
corresponding acoustic model in a speech recognition system.

477

Amazon/VB Assets
Exhibit 1012
Page 503



. \
] Enwronmental Robustm

10.1. THE ACOUSTICAL ENVIRONMENT

The acoustical environment is defined as lfxe set of tran‘sf(.)npal.ions that affect the e

signal from the time it leaves the speaker’s r_n.outh u-ntll It 1s in digital form, Ty, m;ih
sources of distortion are described here: additive noise and channel distortigy, 1
noise, such as a fan running in the background, door slams, or other speaker’ ¢
common in our daily life. Channel distortion can be caused by reverberation, the frequenc
response of a microphone, the presence 'of an electrical filter in the A/D Circuitry, the ri
sponse of the local loop of a telephone line, a speech cpdec, etc. Reverberation, caused b
reflections of the acoustical wave in walls and other objects, can also dramatical]y alter the

speech signal.

Additiye
peech, is

10.1.1. Additive Noise

Additive noise can be stationary or nonstationary. Stationary noise, such as that made bya
computer fan or air conditioning, has a power spectral density that does not change over
time. Nonstationary noise, caused by door slams, radio, TV, and other speakers’ voices, has
statistical properties that change over time. A signal captured with a close-talking micro-
phone has little noise and reverberation, even though there may be lip smacks and breathing
noise. A microphone that is not close to the speaker’s mouth may pick up a lot of noise
and/or reverberation.

As described in Chapter 5, a signal x[#] is defined as white noise if its power spectrum
is flat, S_(f)=gq, a condition equivalent to different samples being uncorelated,
R_[n]=qd8[n]. Thus, a white noise signal has to have zero mean. This definition tells us
about the second-order moments of the random process, but not about its distribution. Such
noise can be generated synthetically by drawing samples from a distribution p(x); thus we
could have uniform white noise if p(x) is uniform, or Gaussian white noise if p(x) is Gaus-
sian. While typically subroutines are available that generate uniform white noise, we ¢
often interested in white Gaussian noise, as it resembles better the noise that tends to occl
in practice. See Algorithm 10.1 for a method to generate white Gaussian noise. Variable x 18
normally continuous, but it can also be discrete. £

White noise is useful as a conceptual entity, but it seldom occurs in practice. MOSFO
the r'\oise captured by a microphone is colored, since its spectrum is not flat. Pink noise 18 ‘3
‘f’:‘::s:r“af type of colored noise that has a low-pass nature, as it has more energy ‘;‘ mfmk:ﬁr

conditi;:;i a:rd rolls off at hlgher .frequenmes. The noise generated bx a computer anéhesize
> Or an automobile engine can be approximated by pink noise. We can Sy’

pink noise by filtering white noise wi : als the esir®
power spectrum, & White noise with a filter whose magnitude squared equ

A great deal of additj
over time, In practice, eve
automobile are pot perfect

. : ; ; e ies changé
ve noise is nonstationary, since its statistical properti®s of
0 the noises from a computer, an air conditioning system:

. clicks:
ly Stationary. Some nonstationary noises, such as keyboard ¢

are ca : . . i
tsed by physical objects. The speaker can also cause nonstationary noises U™ f
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qmacks and breath noise. The cockrail party effect is the phenomenon under which a human
jistener can focus onto one conversation out of many in a cocktail party. The noise of the
conversations that are not focused upon is called babble noise. When the nonstationary noise
is correlated with a known signal, the adaptive echo-canceling (AEC) techniques of gection
10.3 can be used.

ALGORITHM 10.1: WHITE NOISE GENERATION

To generes whie nose in @ computer, we can first generate a random variable p with a
Rayleigh distribution:

p,(p)=pe? " -_
from another random variable rwith a uniform distribution between (0, 1), p,(+)=1, by simply

-pti2

equating the probability mass p, P)IdP| = p,(r)] dr\ so that

a ith integrati
il PP
dp p ; with integration,

itresults in r = e ' and the inverse is given by

p=v2lnr (10.2)
if ris uniform between (0, 1), and p is computed through Eq. (10.2), it follows a Rayleigh dis-
tribution as in Eq. (10.1). We can then generate Rayleigh white noise by drawing independent
samples from such a distribution.

If we want to generate white Gaussian noise, the method used above does not work, be-
cause the integral of the Gaussian distribution does not exist in closed form. However, if p fol-
lows a Rayleigh distribution as in Eq. (10.1), obtained using Eq. (10.2) where ris uniform
between (0, 1), and 6 is uniformly distributed between (0, 2 ), then the white Gaussian noise
can be generated as the following two variables xand y.

x = pcos(f) (103)

y=psin(@)

They are independent Gaussian random variables with zero mean and unity variance, since the
Jacobian of the transformation is given by

LA
_|dp 06 _|cos@ -p sin@ _ (10.4)
9& aﬂ " |sin@  pcos
dp 96|
and the joint density p(x, y) is given by
p(x,y)= 2P0 _ PPIPO) _ L o2
J p 27 (10.5)
=_l. ~(x 4yt _
e = N(x,0,)N(»,0.1)
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The presence of additive noise can sometimes change Fhe way the speaker speaks, The
bard effect [40] is 2 phenomenon by which a speake‘r increases his vocal effort i the
Lomba d noise. When a large amount of noise is present, the speaker tends to

ce of backgroun i ) .
f;ziinwhiCh entails not only a higher amplitude, but also of'ten hlghe'r pitch, slightly diffe.
ent fc;rmams, and a different coloring of the spectrum. It is very difficult to characterjze

these transformations analytically, but recently some progress has been made [36).

10.1.2. Reverberation

If both the microphone and the speaker are in an anechf)ic' .chamber or in free space, a m-
crophone picks up only the direct acoustic path. .In practice, in addition to the direct acoustic
path, there are reflections of walls and other objects in the room. We are well aware of this
effect when we are in a large room, which can prevent us from understanding if the rever-
beration time is too long. Speech recognition systems are much less robust than humans and
they start to degrade with shorter reverberation times, such as those present in a normal of-
fice environment.

As described in Chapter 2, the signal level at the microphone is inversely proportional
to the distance » from the speaker for the direct path. For the kth reflected sound wave, the
sound has to travel a larger distance r,, so that its level is proportionally lower. This reflec-
tion also takes time T, =r,/c to arrive, where c is the speed of sound in air.” Moreover,
some energy absorption a takes place each time the sound wave hits a surface. The impulse
response of such filter looks like

Y. 1S oy
Hn =Y L §n-T =._§: - 10.6
[n] ; . [7-T,] AT é[n-T,] (10.6)

where p, is the combined attenuation of the kth reflected sound wave due to absorption.
Anechoic rooms have P, =0. In general p, is a (generally decreasing) function of fre-
quency, so that instead of impulses §[#] in Eq. (10.6), other (low-pass) impulse responses
are used.

_ Often we have available a large amount of speech data recorded with a close-talking
microphone, and we would like to use the speech recognition system with a far field micro-
phone. To do that we can filter the clean-speech training database with a filter k(n], $0 that
the filtered speech resembles speech collected with the far field microphone, and then retrail
the system. This requires estimating the impulse response [n] of a room. Alternatively, %
can filter the signal from the far field microphone with an inverse filter to make it resemble
the signal from the close-talking microphone.

materials $0
flecting Sur”

! An anechoic chamber is a
that it absorbs al] echoes.
faces,

1 . - ' 'lh
d?f:lr at stan.dard atmospheric pressure and humidity the speed of sound is c=331.4+0.6T (m/s): i
rent media and different levels of humidity and pressure.,

room t.hat has walls made of special fiberglass or other sound-absorbing
It is equivalent to being in free space, where there are neither walls nor 1
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One way to estimate the impulse response is to play a white noise s; nal x[n
oy ; t
a loudspeaker or artificial mouth; the signal y[n] captured at the microphonf is giv[ell b};,rough
y{n] = x[n)* h{n]+v{n] (10.7)

where v[n] is the additive noise present at the microphone. This noise is due to sources such
air conditioning and computer fans and is an obstacle to measuring Afn). The impulse

as i
response can be estimated by minimizing the error over N samples
13 M=l 2
= -];Z(ylﬂl- 2 h[mlr[n—rn]J —_—
n=0 m=0

which, taking the derivative with respect to A[m] and equating to 0, results in our estimate
B

aE 1 N=if Mt )
N _1 T ;
MM lyryoiin N"Z..!(y["] ,.XJJ [mx[n—rm] Mn—1]

=%Nz:}’[nlx[n—1]‘§0fz[m](xll-gx[n—m]x[n-qJ -

N=l & Mol N-l
=iZy[n1r[n-1]-h[1]— Zh[rn][-l—zx{n -m]x[n-l]-b'[m—l]): 0
N n=0 m=0 N a=0

Since we know our white process is ergodic, it follows that we can replace time averages by
ensemble averages as N —oo:

N-1
lim %Zx[n— mlx[n—1]= E{x[n~mx{n—11} = 6[m-I] (10.10)
e n=0
so that we can obtain a reasonable estimate of the impulse response as

5[1]=%~2_': yinlx{n-1] (10.11)

Inserting Eq. (10.7) into Eq. (10.11) ,we obtain

hl1=h{I)+efl] (10.12)
where the estimation error e[n] is given by
N=l A -1 -1 b
dl]= A_l,-zv[n]x[n-l]+ '2 h[m](%ix[n—m]x[n-l]—5[m"[]J (10.13)
n=0 m=0 n=0

nce x{n] is zero-mean,

If v : EleI}=0, si
(] and x[n] are independent processes, then E{e{/]} B ererscs 10 0 a5

S0 that the estimate of Eq. (10.11) is unbiased. The covariance ma
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