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Introduction
This paper describes a new point-to-point com-

munication architecture employing an equal number

of antenna array elements at both the transmitter and

receiver. The architecture is designed for a Rayleigh

fading environment in circumstances in which the

transmitter does not have knowledge of the channel

characteristic. This new communication structure,

termed the layered space-time architecture, targets appli-

cation in future generations of fixed wireless systems,

bringing high bit rates to the office and home. The

architecture might also be used in future wireless local

area network (LAN) applications for which it promises

extraordinarily high bit rates.

The architecture is a method of presenting and

processing higher dimensional signals with the aim of

leveraging the already highly developed one-dimen-

sional (1-D) codec technology. Note that in this con-

text, “higher dimensional” refers to space. (Generally, a

bandwidth-efficient 1-D code involves many dimen-

sions over the temporal domain. 1-D refers to a complex

alphabet which is, of course, 2-D in terms of reals.)

As the paper points out, the capacity that this

architecture enables is enormous. At first, the number

of bits per cycle might seem too great to be meaning-

ful. The capacity is achieved, however, in terms of n

equal lower component capacities, one for each

antenna at the receiver (or transmitter). A form of the

new architecture attains a capacity equal to a tight
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This paper addresses digital communication in a Rayleigh fading environment when
the channel characteristic is unknown at the transmitter but is known (tracked) at
the receiver. Inventing a codec architecture that can realize a significant portion of
the great capacity promised by information theory is essential to a standout long-
term position in highly competitive arenas like fixed and indoor wireless. Use (nT, nR)
to express the number of antenna elements at the transmitter and receiver. An (n, n)
analysis shows that despite the n received waves interfering randomly, capacity
grows linearly with n and is enormous. With n = 8 at 1% outage and 21-dB average
SNR at each receiving element, 42 b/s/Hz is achieved. The capacity is more than 40
times that of a (1, 1) system at the same total radiated transmitter power and band-
width. Moreover, in some applications, n could be much larger than 8. In striving for
significant fractions of such huge capacities, the question arises: Can one construct
an (n, n) system whose capacity scales linearly with n, using as building blocks n sep-
arately coded one-dimensional (1-D) subsystems of equal capacity? With the aim of
leveraging the already highly developed 1-D codec technology, this paper reports
just such an invention. In this new architecture, signals are layered in space and time
as suggested by a tight capacity bound.
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lower bound on the capacity attainable using multi-

element arrays (MEAs) with an equal number of ele-

ments at both ends of the link. The next section

describes this lower bound on capacity. Subsequently,

the layered space-time architecture is discussed.

Although additional background details are avail-

able,1 this paper provides a self-contained description

of the architecture. The perspective is one of a com-

plex baseband view of signaling over a fixed linear

matrix channel with additive white Gaussian noise

(AWGN). Time proceeds in discrete steps, normalized

so that t = 0, 1, 2, ... . The following notation and basic

assumptions should be reviewed:

• Number of antennas. The MEA at the transmit-

ter has nT. The MEA at the receiver has nR. For

convenience, the pair (nT, nR) denotes a com-

munication system with nT transmit elements

and nR receive elements. Figure 1 illustrates

the notation.

• Transmitted signal s(t). This signal has fixed nar-

row bandwidth. The total power is constrained

to regardless of nT (which is the dimension

of s(t)). The bandwidth is narrow enough that

the channel frequency characteristic can be

treated as flat across the band.

• Noise at receiver This is the complex nR-

dimensional AWGN. The components are sta-

tistically independent and of identical power N

at each of the nR antenna outputs.

• Received signal r(t). At each point in time, this is

an nR-dimensional signal. There is one com-

plex vector component per receive antenna.

With each transmit antenna transmitting

power , P denotes the average power at

the output of each receiving antenna, with

“average” meaning spatial average.

• Average signal-to-noise ratio (SNR) at each receive

antenna. This is ρ = P/N, independent of nT.

• Matrix channel impulse response g(t). This matrix

has nT columns and nR rows. The notation h(t)

is used for the normalized form of g(t). The

normalization is such that each element of h(t)

has a spatial average power loss of unity.

The basic vector equation describing the channel

operating on the signal is

r = g * s + ν, (1)

where “*” means convolution. These three vectors are

complex nR-dimensional vectors (2nR real dimen-

sions). Because of the narrowband assumption, the

channel Fourier transform G is treated as a matrix

constant over the band of interest. Thus, g is written

for the nonzero value of the channel impulse

response, thereby suppressing the time dependence of

g(t). The same is true for h and its Fourier transform

H. Thus, in normalized form, (1) becomes

. (1a)

The random channel model we use is the Rayleigh

channel model. Assume that the MEA elements at

each end of the communication link are separated by

about half a wavelength. At 5 GHz, for example, half a

wavelength measures only about 3 cm, so many

antenna elements are often possible. (Additionally,

there are two states of polarization [see Figure 2]).

With a half-wavelength separation, the Rayleigh

model for the nR 3 nT matrix H representing the chan-

nel in the frequency domain is approximated by a

matrix having the following independent identically

distributed (iid), complex, zero-mean, unit-variance

entries:

•

• |Hij|2 is a chi-squared variate with two degrees

of freedom denoted by but normalized so

E|Hij|2 = 1.

Capacity
The viewpoint assumed in treating capacity is dis-

cussed next. We stress that capacity is a limit to error-

free bit rate that is provided by information theory,
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Panel 1. Abbreviations, Acronyms, and Terms

AWGN—additive white Gaussian noise
BER—bit error rate
codec—coder/decoder
iid—independent identically distributed
LAN—local area network
MEA—multi-element array
MMSE—minimum mean square error
SNR—signal-to-noise ratio
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and this limit can only be approached in practice with

the advance of technology: any working system can

only achieve a bit rate (at some desired small bit error

rate [BER]) that is only a fraction of capacity. In what

follows, the term “capacity” will often be used as an

indicator of some smaller deliverable bit rate.

Long-Burst Perspective
Communication in long bursts means bursts hav-

ing many symbols—so many that an infinite time

horizon information-theoretic description of commu-

nication portrays a meaningful idealization. Yet bursts

are assumed to be of short enough duration that a

channel is essentially unchanged during a burst. The

channel is assumed to be unknown to the transmitter

but learned (tracked) by the receiver. The channel

might change considerably from one burst to the next.

By a channel being unknown to the transmitter,

we mean that the realization of H during a burst is

unknown. Actually, the average SNR value and even

nR might not be known to the transmitter.

Nonetheless, for purposes of this discussion, these two

parameters are considered to be known. The reason

for this is that at the transmitter, one assumes that

communication is taking place with a user for which

at least a certain nR and average SNR are available.

These minimum values represent what the transmit-

ter conservatively uses to determine a capacity value

that is nearly always available.

In a given system, not all communication bursts

are successful. As explained below, for some small per-

centage of instances of H, the transmitter’s assumed

capacity value may be too optimistic. In such cases,

delivering the bit rate at the desired BER required of a

successful burst may be impossible. When it is impossi-

ble, a channel outage is said to have occurred and the

channel is considered to be in the OUT state.

Outage is dealt with probabilistically because H is

random; thus, capacity is a random variable. The

channel is random even though the base and user in

an office LAN environment or the communication

sites in fixed wireless applications may be “fixed.” In

actuality, the reason for this is that such sites are only

nominally fixed because perturbations of the commu-

nicators and the communication medium are possible.

For indoor LANs—even for a user at a desk—

some motion in and around the workspace is likely.

Not only people but various (especially metal) objects

could be moving in the propagation path. For pre-

dominately outdoor fixed wireless links, weather-

related motion of antenna structures occurs, as well as

significant channel changes due to, say, vehicles and

foliage. Half-wavelength movements can be impor-

tant. Thus, assuming that the channel is fixed during

a burst, the channel may vary from burst to burst,

Transmitter Receiver

(9, 12)

Processor

Figure 1.
Shorthand notation (nT , nR ) for the number of transmit antennas nT and receive antennas nR (dipole antennas shown).
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and one might be interested in the capacity that can

be attained in nearly all transmissions (for example,

95 to 99% or even higher).

Complementary capacity distributions, discussed

below, focus on the high-probability tail. (In special

applications like very large file transfers, however,

maximum attainable throughput over long time dura-

tions may be a preferable figure of merit.) A compan-

ion article1 mentions that based on the results of

research,2,3 the transmitter can use a single code even

though the specific value of the H matrix is unknown.

The distribution of capacity is derived from an

ensemble of statistically independent Gaussian nR 3 nT

H matrices (the aforementioned Rayleigh model). In

this paper, the system is considered to be either OUT

or NOT OUT for each realization of H. As mentioned

earlier, the OUT state corresponds to the event that a

prespecified capacity level (for example, X) cannot be

met. For instance, given a 1% outage level, one would

say a certain capacity can be assured at that level.

By employing MEAs, capacity tail probabilities can

be significantly improved. The subsection

“Opportunity for Enormous Bit Rates” below discusses

the great capacity available and how the tail probabil-

ity improves with larger and larger n.

(For cases in which the time constant of channel

change is very large, extra receive antenna elements

may be needed to ensure that outage is minimal (see

the end of the “Conclusion” section). In very severe

situations, provision for movement of the receive

antenna may be desirable to avoid the risk of being

stuck with an undesirable H for excessive time.

Deployment of a relay site is yet another alternative.

Fading correlation time and its incorporation into

more refined performance criteria is an interesting

subject for future investigation in measurement and

analytical studies.)

Key Capacity Expressions
A generalized capacity formula and a capacity

lower-bound formula are referred to below.1 The gen-

eralized formula is derived from other basic formu-

las.4-6 Additionally, the capacity formula for optimum

ratio combining is needed.

The generalized capacity formula for the general

(nT, nR) case is

. (2)

In this equation, “det” means determinant, In
R

is the

nR 3 nR identity matrix and “†“ means transpose

conjugate.

The capacity lower bound for the (n, n) case in

terms of n independent chi-squared variates is
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Figure 2.
Section of casing paved with half-wavelength lattice.
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Notice that some nonstandard notations have been

used—for example, to denote directly a chi-

squared variate with 2k degrees of freedom. Because

the entries of H are zero mean unit variance complex

Gaussians, the mean of this variate is k. As discussed

later in an asymptotic sense, the bound in (3) for large

ρ and n is quite tight. While (3) was initially derived

elsewhere,1 the subsection “A (6, 6) Example of

Processing at the Receiver” below includes a rederiva-

tion of (3) that is constructive. That is, the right-hand
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Figure 3(a).
Capacity in b/s/Hz versus the number of antenna elements at each site.
Figure 3(b).
Capacity in b/s/Hz/dimension versus the number of antenna elements at each site.
Figure 3(c).
Capacity in b/s/Hz versus the number of antenna elements at each site.
Figure 3(d).
Capacity in b/s/Hz/dimension versus the number of antenna elements at each site.
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side will be associated with the capacity of a limiting

form of a communication architecture using 1-D

codecs.

A special application of (2)—important to this dis-

cussion—is the case of optimum combining, which

corresponds to (1, n) receive diversity. OC(n) is writ-

ten to convey a system employing optimum combin-

ing with n-fold receive diversity.

The capacity formula for optimum ratio combin-

ing or receive diversity (nT = 1, nR = n) is

. (4)

The lower-bound (3) suggests that in some sense, one

might be able to embed n OC(k) systems (with

k = 1, 2, ... n) in an (n, n) system. The argument of the

logarithm in (3) suggests that each of the n single-

transmit antenna systems would have transmit power

so that each receive array element has an aver-

age SNR of ρ/n. As explained below, such embedding

is indeed possible.

Opportunity for Enormous Bit Rates
Before demonstrating how to do the embedding,

the great capacity at stake is worth reviewing. 

Figure 3(a) shows the capacity 99 percentile (1% out-

age) for SNRs of 0 dB to 24 dB in steps of 6 dB. As

noted from the ordinate, which ranges to 300 b/s/Hz,

the capacities are enormous. For example, at a 12-dB

SNR and even for modest numbers of antenna ele-

ments like eight or 12, significant capacity is avail-

able—that is, about 21 and 32 b/s/Hz, respectively.

Even at a 0-dB SNR, very significant capacity exists.

About 25 b/s/Hz is available for, say, n = 32.

From the standpoint of signal constellations, one

must be concerned with per-dimension capacities.

Figure 3(b) shows the same capacity results as Figure

3(a) but they are expressed in terms of the b/s/Hz/sig-

nal dimension. In preparing Figure 3(b), the cases

n = 1, 2, 4, 8, 16, 32, and 64 were actually computed

and the remaining cases interpolated. Note that even

when the overall capacities are great, the per-dimen-

sion capacities can be reasonable. Figures 3(a) and 3(b)

depict the capacity (bold curves), as well as the capac-

ity lower bound (light curves). The capacity lower

bound is quite tight at the higher ρ values.

As the antennas increase in number, saturation of

the lower bound on the per-dimension capacity

becomes evident as Figure 3(b) indicates. This asymp-

totic behavior can be explained by looking at the

right-hand side of the inequality in (3). For the right-

hand side divided by n, the large n asymptote is1

(5)

Note that in the limit of large ρ, the dominant term in

the last expression is log2 (ρ/e). For example, as Figure

3(b) shows, for an SNR of 24 dB and n = 64, an

asymptotic value of about 6.5 b/s/Hz/dimension and

indeed log2 (102.4) ' 6.5. The “Asymptotic Optimality

of the Layered Architecture” subsection later on con-

cludes that not just the lower bound but also the

capacity per dimension or C/n converges to log2 (ρ/e)

as ρ and n increase without bound.

Figures 3(c) and 3(d) correspond to Figures 3(a)

and 3(b) but only for SNRs that are negative when

expressed in dB. Note that even at negative SNRs,

interesting capacity levels are possible. The tightness of

the lower bound deteriorates more and more, how-

ever, as ρ is lowered. The “Related Options” section

later in the paper further discusses these aspects. 
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Layered Space-Time Architecture
This section provides a high-level description of a

form of the new architecture having an equal number

of antenna elements at both ends of the link. Its capac-

ity is associated with the lower bound (3) on the

capacity achievable with MEAs for the higher SNR val-

ues indicated in Figure 3(a). A simple description of

the architecture is provided following some brief

mathematical background information, which is

needed to establish that the architecture indeed offers

tremendous capacity. The previously mentioned

“Related Options” section provides some advantageous

variations on the architectural theme.

Mathematical Background
The following linear algebra helps clarify the

architecture. Let with 1 ≤ j ≤ n denote the n

columns of the H matrix ordered left to right so 

that . For each k such that

1 ≤ k ≤ n + 1, let denote the vector space

spanned by the column vectors satisfying

k ≤ j ≤ n. Because no such column vectors exist when

k = n + 1, the space is simply the null space.

Note that the joint density of the entries of H is a

spherically symmetric (complex) n2-dimensional

Gaussian. This makes it possible to state that, with

probability one, is of dimension n – k + 1.

Furthermore, with probability one, the space of vec-

tors perpendicular to denoted as is k – 1

dimensional. For j = 1, 2, ... n, ηj is defined as the pro-

jection of into the subspace .

As explained next, with probability one, each ηj is

essentially a complex j-dimensional vector with iid

N(0,1) components (ηn is just ). Strictly speaking,

an ηj is n dimensional. When viewing ηj using an

orthonormal basis—with the first basis vectors being

those spanning and the remaining vectorsH⋅
⊥
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being those spanning —the first j components

of ηj are iid complex Gaussians while the remaining

components are all zero. Looking at these projections

in the order ηn, ηn–1, ... η1 shows that the totality of

the n 3 (n+1)/2 nonzero components are all iid stan-

dard complex Gaussians. Consequently, the ordered

sequence of squared lengths are statistically indepen-

dent chi-squared variates having 2n, 2(n – 1), ... 2

degrees of freedom, respectively. With the choice of

normalization presented in this paper, the mean of the

squared length of ηj is j.

Transmission
In a spectrally economical system, the layered

space-time architecture described here would be

employed in conjunction with an efficient 1-D code.

The form of the code employed in a specific instance of

the architecture is not within the scope of this paper.

For expositional simplicity, however, it is best to begin

the description by considering some nonspecific block

code rather than a convolutional code implementa-

tion.

Figure 4 illustrates the transmission process. A

primitive data stream is demultiplexed into n data

streams of equal rate. Each data stream is encoded in

some unspecified way except to say that the encoders

can proceed without sharing any information with

each other. Rather than committing each of the n-

encoded streams to an antenna, the bit-

stream/antenna association is periodically cycled. The

dwelling time on any association is τ seconds so that a

full cycle takes n 3 τ seconds. The n-encoded sub-

streams, then, share a balanced presence over all n

paths to the receiver. Therefore, none of the individual

substreams is hostage to the worst of the n paths.

With communication structured in this balanced

way, each subchannel has the same capacity. This

setup serves to “uniformize” the multiplexing/demulti-

plexing and coding/decoding processes—that is, all n

constituents are rendered virtually identical in struc-

ture. Of course, because the balance makes it possible

to use the same constellation for each subchannel, the

lowest maximum number of constellation points per

subchannel is obtained. Each channel is essentially the

same regarding the opportunity for coding.
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In the next subsection, it will be seen that within

each substream, “good” symbols (those with a high

SNR) can compensate for “bad” symbols (those with a

low SNR) through coding. The subsection will help

clarify that in a certain sense, the capacity obtained is

the sum given by the right-hand side of (3).

As pointed out in the “Related Options” section

below, advantages can be achieved by allowing an

optional second stage of multiplexing/demultiplexing.

For now, however, this discussion assumes only one

stage of multiplexing/demultiplexing as indicated in

Figure 4.

A (6, 6) Example of Processing at the Receiver
In describing processing at the receiver, a (6, 6)

example is used. The extension to arbitrary (n, n) is

immediate. A training phase (not described here) is

assumed to be already completed. During this start-up

phase, known signals were transmitted and processed

at the receiver to expedite the H matrix becoming

accurately known to the receiver. The transmitter,

however, does not know the channel.

The top of Figure 5 shows the first eight of a finite

sequence of rectangles. Each rectangle in this linear

sequence symbolizes a sequence of τ 6–D received vec-

tors. The right side of the figure illustrates the succes-

sion of τ 6–D vectors (with complex components)

corresponding to the eighth rectangle. These are the τ
vectors arriving on the time interval [7τ, 8τ). The

heavy dots in the planes (circular sections shown) rep-

resent the complex received signal components that

can be seen for the first and last of this sequence of τ
vectors. Each of these vectors includes noise plus n-

interfering transmitted signals from the transmit

antennas.

For clarification, visualize constructing a stack of

six identical copies of this aforementioned sequence of

rectangles, one atop the other as shown in the figure.

This stack is a visual aid for explaining how the

received signals are preprocessed. A spatial element is

associated with each rectangle on this “wall” of rectan-

gles—specifically, a transmitter antenna—depending

on the ordinate value. These elements are numbered

1, 2, ... 6 as are the ordinate values to which they cor-

respond. The resulting rectangular partition of space-

time must be understood figuratively as both space

and time are discrete. The duration τ can span any

number of time units and, as previously mentioned,

each space element is associated with the single trans-

mitter element as indicated on the left of the stack.

Note that for the same rectangle base interval of

duration τ, the very same τ-consecutive vector sig-

nals with complex components are associated with

each of the six vertically stacked rectangles. The six

rectangles having the same τ-duration base interval

will be distinguished by the preprocessing applied to

the vector signals. The transmitter antenna associa-

tions were made because a rectangle at ordinate i will

play a key role in the process of extracting the signal

radiated by the ith transmitter. As explained later,

besides relating to the nature of information to be

extracted, the ordinate also determines the way in

which interference must be handled in the course of

extracting information.

Processing time is distinct from signal reception

time. Figure 5 illustrates the flow of time in processing

the received signal. As processing time passes, process-

ing proceeds top to bottom along a succession of con-

Set layer index to initial

Detect bits in current layer

Reconstruct ideal received
version of signal in current layer

Remove all interference stemming
from signal in current layer

Is
layer index

equal to
final?

End

Increment
layer index

Yes

No

Figure 7.
Temporal view of the processing of successive 
space-time layers.
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secutive space-time layers (diagonals), moving left to

right as indicated by the thin solid directed line (really

an ordered sequence of directed lines). The time flow

in Figure 5 is only nominal for two reasons. First, with

block coding where we assume that a layer is synony-

mous with a code block, no time arrow need be associ-

ated with the processing of the symbols of a block.

Second, for convolutional coding, which has a definite

time direction, a significant modification of the obvi-

ous time progression within each full layer might have

an advantage as explained later.

The central theme of the architecture is interference

avoidance, and this discussion assumes that interfering

signals will be nulled out. (As discussed later, instead

of nulling, SNR could be maximized. In such a case,

“noise” means including not just AWGN but all inter-

ferers not yet subtracted out.) Fewer interferers must

be nulled at the higher stack levels. The interferences

that need not be nulled are those that will be sub-

tracted out. Of course, when nulling interferers, any

possible enhancement of the noise caused by the inter-

ference nulling process must be carefully assessed. As

explained later in reference to the mathematical setup

that has been carefully tailored for capacity analysis,

the noise assessment will be easy to do.

Figure 6 illustrates additional details of the steps

required for proceeding along iterated diagonal layers.

For expositional convenience, a repetitive abcdef label-

ing on the stack is included. Detection of the first com-

plete diagonal a layer through which is drawn a

dashed diagonal line is described. Other layers, includ-

ing boundary layers, are handled similarly. Boundary

layers are those layers involved with where a burst

starts or ends (those having fewer than six rectangles).

The first complete a layer comprises six parts,

ajτ(t) (j = 1, 2, ... 6), in which the subscript indicates at

Sampled n–D vector signal
from receiver front end

First: top of stack

Seeking signal from
transmitter n

Linear
combination
avoiding no
interference

Second: next to top

Seeking signal from
transmitter n–1

Linear
combination

avoiding
interference

from transmit
antenna n

Last: bottom of stack

Seeking signal from
transmitter 1

Linear
combination

avoiding
interference

from transmit
antennas n, n–1 … 2

Sum of
n–1 unavoided
interferences

+
–

Sum of
n–2 unavoided
interferences

+
–

n scalar signals for
further processing

n spatial coordinates for a
fixed time interval of duration τ

(unavoided interferences can be subtracted only
after the signals from which they stem have been detected)

Figure 8.
Spatial view of receiver processing.
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what point in time the part that lasts for τ time units

begins. All layers relatively disposed to be located par-

tially underneath this a layer are assumed already suc-

cessfully detected while all layers disposed to be

partially above the a layer are yet to be detected. The

capacity associated with this case will also be found,

and then the capacity associated with the (n, n) case

will be apparent. (With block coding, a full layer could

correspond to exactly one block, although as pointed

out later, associating more than one block within a

layer can sometimes be advantageous).

Next, before computing capacity, a connection is

made to the earlier “Mathematical Background” sub-

section by pointing out the relevance of projecting a

received signal vector into . Assume that one

received signal vector within a rectangle of ordinate k

is being preprocessed. The purpose of the preprocess-

ing stage is to help later determine the signal sent from

antenna k. The aim of the preprocessing is to yield a

vector free of interference from all signals that were

simultaneously transmitted from antennas other than

the kth. The interference stemming from signals that

were simultaneously transmitted from antennas

1, 2, ..., k–1 are inconsequential because these signals

are assumed to have been already perfectly detected

and subtracted out. What is necessary is to null out the

interference from yet undetected signals—namely,

those simultaneously transmitted from antennas

k+1, k+2, ... n. This is exactly what is accomplished by

projecting a received signal vector into 

because that space is the maximal subspace orthogonal

to the subspace spanned by the signals received from

transmitters k+1, ... n.

This discussion has stressed that on each of the six

time intervals for the a layer, a different number of

interferers to be nulled must be addressed. For each of

the six intervals in turn, the capacity of a correspond-

ing hypothetical system is expressed in which the

additive interference situation holds for all time. For

the first time interval, the five layers below have

H⋅
⊥
[ k+1,n]

H⋅
⊥
[ k+1,n]

Primitive
bit stream

Encoder

Symbol
stream

x

Periodic
t-varying

vector

+

Interference
vector from
periodically

varying set of
n–1 antennas

+

AWGN
vector

Periodic t-varying
vector to avoid

interference from
detected bits*

Periodic t-varying
vector to avoid

interference from
undetected bits*

<., .>

<., .> +–

Compose vector
of interfering

detected symbols

Interference-free
encoded stream

Decoder*

Memory of
previously

detected symbols

1:n
DEMUX

n:1
MUX

Detected
bitstream

n–1 detected
substreams

Notationally, “<., .>” means complex scalar product.
AWGN – Additive white Gaussian noise
* Channel knowledge required.

n equal rate
substreams

Figure 9.
System diagram of the processing involved at the receiver (discrete time baseband perspective).
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already been detected and all interference from the

signal components transmitted from antennas labeled

1 to 5 has been subtracted out. Therefore, no interfer-

ers are present. Consequently, for the first time inter-

val, a sixfold receive diversity effectively exists. Under

such nonexistence of interference, the capacity would

be 

b/s/Hz.

One interferer is present during the next interval;

the other four have been subtracted out. For a system

in which this level of interference prevailed forever,

the capacity would be 

b/s/Hz.

The process of nulling one interferer is what

caused the reduction of the chi-squared subscript (giv-

ing in place of ). This process is repeated

until finally encountering the sixth interval. In this

case, all five signals from the other antennas interfere.

Therefore, they must be nulled out so that the corre-

sponding capacity would be 

b/s/Hz.

Because each signal radiated by the six transmit-

ting elements multiply a different , the six 

variates are statistically independent of each other for

the reason given in the previous section. Similar to

what was reported elsewhere,1 for a system cycling

among these six conditions with an equal amount of

time τ spent on each, the capacity would be 

b/s/Hz.

Assume that six such systems are running in par-

allel with the same realization of (k = 1, 2, ... 6)

occurring in each one. The capacity would then be six

times that given by the previous sixfold sum, or 

b/s/Hz.

In the limit of infinitely many symbols in a layer

and because every sixth layer is an a layer, this last

expression gives the capacity of the layered architec-

ture for the (6, 6) case. Obviously then, in the large
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2
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6
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2= + ⋅

=
∑ ρ χ

χ
2k
2

C (1/6) log 1 ( / 6)
2
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6

2k
2= ⋅ + ⋅

=
∑ ρ χ

χ
⋅
2

H
j⋅
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χ
12

2χ10
2

C log 1 ( / 6)
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2= + ⋅ρ χ

C log 1 ( / 6)
2 12

2= + ⋅ρ χ

Space

6

5

4

3

2

1

Processing is completed below and to the left
of the layer currently being processed. The
corresponding interferences do not impair
the layer currently being processed.

Time

No processing is done above and to the right
of the layer currently being processed. The
corresponding interferences do impair the
layer currently being processed.

A layer in space-time can correspond to a
superblock. Illustrated above is a superblock
comprising three separate blocks, which can
be independently coded and decoded. Each
block comprises six sub-blocks.

Three blocks each comprising six sub-blocks.

Figure 10.
Blocks and sub-blocks in a space-time layer show how parallel processing can be used to advantage.
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number of symbols limit, the capacity for an (n, n) sys-

tem is given by

. (6)

Figure 7 provides a high-level temporal view of

the major steps in the iterative detection of the n lay-

ers. In providing a spatial view, Figure 8 highlights

how interferences are handled differently at the dis-

tinct vertical levels for the same received vectors.

Figure 9 is a system diagram of the processing

involved. The way past and future decisions are han-

C log 1 ( / n) b/s/Hz
2

k 1

n

2k
2= + ⋅

=
∑ ρ χ

Code

Bit rate x/6

Periodic
time-varying

channel
Decode To

multiplexer

Code

Bit rate x/18

Periodic
time-varying

channel
Decode

To
sub-multiplexer

Code

Bit rate x/18

Periodic
time-varying

channel
Decode

Code

Bit rate x/18

Periodic
time-varying

channel
Decode

Subsystem at the top is replaced by three subsystems of one-third the bit rate.

Figure 11.
In parallel receiver processing, three time-varying channels run in parallel.
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dled is reminiscent of zero forcing decision feedback.7

Factors corresponding to catastrophic error propaga-

tion in decision feedback systems are discussed next.

Robustness
In case the layered architecture described earlier

seems fragile, an explanation of why it can be quite

robust is included. At first, the architecture might seem

fragile. After all, the successful detection of each layer

relies on the successful detection of the underlying lay-

ers. Thus, any failure in any layer but the last will

likely cause the detection of all subsequent layers to

fail. A quantitative discussion is included in this sub-

section to illustrate that fragility generally is not a sig-

nificant problem, especially when huge capacity is

available. As depicted in Figure 3(a), a huge capacity

can be a very reasonable assumption.

In practical implementations, the huge capacity

available can be invested in selecting a code that pro-

vides the required bit rate with very substantial error

protection. Let ERROR denote the event that a packet

(= long burst) contains at least one error for whatever

reason. Decomposing the ERROR event into two dis-

joint events gives

.

ERRORnonsupp denotes the event that channel real-

ization simply does not support the required BER even

if receiver processing could be enhanced magically by

a genie removing interference entirely from all under-

lying layers.

ERRORsupp denotes the remaining ERROR events.

Assume that the required outage is 1%, packet size

(payload) is 10,000 bits, and a BER of 10–7 is required.

The extra capacity can be used instead to provide a

BER at least one order of magnitude lower. Because

, roughly one packet in 104 con-

tains an error. Inflate the bit-error occurrences by

labeling all bits in such a packet “in error.” Such a

drastic inflation in the accounting of errors is a

harmless exaggeration. The reason for this is those

packets containing errors can be ascribed to outage

because they carry insignificant probability com-

pared to Probability[ERRORnonsupp]. In effect, the

huge capacity available allows the luxury of taking

the perspective that ERROR = OUT. When the sys-

tem is not out, essentially error-free transmission is

provided.

Despite the robustness just described, providing

error-free transmission over a burst for an

extremely high fraction of the bursts can erode the

bit rate so that codes must be carefully selected for

any application.

Related Options
This section discusses some modifications of the

communication architecture previously described.

Suggestions are provided as to what might be gained

or lost by these changes. Some of these items are pre-

liminary ideas that are included as possibilities for

future research.

Asymptotic Optimality of the Layered Architecture
The layered space-time approach to communica-

tion was based on the premise that the channel was

not known at the transmitter. Suppose instead that the

channel is known at the transmitter and that this

knowledge is used to transmit n noninterfering signal

components of equal power. Typically, this is done by

using the eigenmodes of HH† to derive what amount

to n uncoupled subchannels. Other research has been

published on how these eigenmodes arise as the nat-

ural modes to drive when the channel is known to the

transmitter.8

For the large n and large ρ asymptote, the capacity

benefit of communicating in the way just described is

compared below with using the layered space-time

architecture. It will be seen later in this paper that in

an asymptotic sense, the per-dimension capacity is not

improved by knowing the channel at the transmitter.

Under the assumption of a Rayleigh fading chan-

nel,9 research has shown that as n increases, the den-

sity of the eigenvalues of HH† approaches

(0 elsewhere). 

For the purpose of computing the per-dimension

capacity, convenience motivates renormalization in

the following capacity-invariant ways:

• Channel in place of H,

• Transmit signal power per dimension 

instead of /n, and

• Noise power per dimension unity.

$P

$P

H/ n
1

2

1 1

4
0 4

n

n
d on n

π λ
λ λ− ≤ ≤
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Previously, an multiplier was attached to

each scalar transmit signal component to keep the

transmitter’s total radiated power constant at inde-

pendent of n. This multiplier has been moved off

the transmit signal components and onto the Hijs. This

action fixes the limiting set of eigenvalue support of

HH†/n to [0, 4].

Consider that for each n, the matrix representa-

tion for each random channel stems from an infinite

random matrix with indices ij (i ≥ 1, j ≥ 1), where for

each n the infinite matrix is projected into its north-

west n 3 n corner submatrix to obtain the random

n 3 n channel matrix. For any fixed x on [0, 4] and a

corresponding integer η(n) on [0, n], it can be written

that, with probability one,

(7)

Obviously, the per-dimension capacity Cch_knwn/n is

now expressed by

(8)

The right-hand side of (8) follows from integration

by parts. In the limit of large ρ, the last integral simpli-

fies, enabling one to conclude that

(9a)

This is the same asymptotic behavior as that for

the layered space-time architecture for which the

assumption was that the transmitter does not know the

channel. In the large-ρ large-n asymptote, capacity

per dimension is not lost by lack of channel knowl-

edge. Furthermore, in light of (9a), one can now con-

clude that the equation’s right-hand side also

expresses the limiting behavior of C/n for the capacity

C given by (2).

The large ρ asymptote is anticipated to be of inter-

est in some applications. However, the following is

worth mentioning: One can derive that the advantage

of knowing the channel for large n but vanishingly

small ρ is a factor of two in capacity

(9b)

The next subsection provides additional information

about the small-ρ realm.

The following question, related to the subject of

this subsection, is left for possible future research: Does

the lack of channel knowledge significantly diminish

the per-dimension capacity if x is allowed dependence

in the power distribution at the transmitter (optimal

ρ(x) in place of constant ρ)? So far, the constraint of

equal power out of all nT transmit elements has been

tacitly imposed. It would be worthwhile to explore the

aforementioned question while relaxing this restriction

even when H is unknown to the transmitter.

Despite the distributional spherical symmetry of

the elements of H, the receiver can break from sym-

metry in the reception process in an H-independent

manner that is known to the transmitter. Indeed, the

layered space-time reception process involves a sym-

metry breaking. The example associated with Figure 6

shows that the signal from transmit antenna six is

attended to first, then the signal from five, and so on.

The capacity advantage that comes from using infor-

mation on reception asymmetry to distribute power

judiciously among the transmit antennas is an area

currently being researched.

Slowing Processing With Parallelism
Parallel processing can be used to advantage as

shown in Figure 10. The example involves slowing

processors by a factor of three. (In theory, one could

slow processing by any factor). To do so, each of the six

streams is further demultiplexed at the transmitter into

three demultiplexed substreams. At the receiver and

for each of the six streams, three separate processors

operate in parallel on the three distinctly encoded sub-

streams. For block codes, each of the three sublayers

could constitute separate blocks. In effect, Figure 11
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stresses that three time-varying channels run in paral-

lel. Even a sublayer could be decomposed into blocks

for the purpose of block coding, especially if n is large.

Maximizing SNR Instead of Nulling
Assume that interference from underlying layers is

subtracted out. In the previous “Layered Space-Time

Architecture” section, the linear combinations formed

to avoid remaining interferences were those combina-

tions that null out all the remaining interferers. In the

(6, 6) example, zero to five such interferers existed

depending on the transmit antenna. The following

option can surpass the capacity denoted by the right-

hand side of (3): In processing the signal component

radiated from a specified transmit array element, pro-

ceed as before except choose the linear combination

that gives the maximum SNR instead of nulling. Note

that here, the meaning of “noise” includes all non-

canceled interference along with thermal noise.

The maximum SNR alternative to nulling is remi-

niscent of minimum mean square error (MMSE) deci-

sion feedback10-13 as an alternative to the zero

forcing7 approach. For the maximum SNR method,

capacity could be assessed assuming the code is so

advanced that it produces essentially white Gaussian

interference signals. From the curves (essentially lines)

in Figure 3(a), the capacity improvement over nulling

offered by maximizing SNR is marginal for the higher

SNR values. Not much improvement can be expected

for a ρ of more than about 12 dB. This conclusion is

reached even though the curves for maximum SNR

are not depicted in Figure 3(a); such curves would

occur between the corresponding bold and light lines

shown.

Given the marginality and the Gauss-like

requirement on the interference, nulling could be

preferred over maximizing SNR. For the lower SNR

values in Figure 3(a), however—and especially for all

the low SNR values of Figure 3(c)—the lower bound

has lost its tightness. Thus, maximizing SNR looms as

an alternative.

Does the maximum SNR method perform well

when ρ is small? While it is beyond the scope of this

paper to report performance curves, the maximum

SNR method does perform well in an important limit-

ing sense. This conclusion is reached after reviewing

(2) in the context of the form of the expressions for

the n-maximum SNRs. One can establish that for fixed

n—as ρ tends toward zero—the capacity constrained

to use the maximum SNRs divided by the true capac-

ity converges to one. The next paragraph delineates

the two steps required to show this effect.

First, consider each one of the n-maximum SNRs,

taking care to note that the so-called noise power in

the denominators involves thermal noise plus interfer-

ence from yet unsubtracted signal components. When

expanding each of the n SNRs in a power series in ρ,

the interference terms in the denominator do not reg-

ister in the terms of first-order importance. Second,

derive the linear-ρ term in the argument of the loga-

rithm in (2). Some of these terms clearly can be

neglected. From this derivation, one learns that the

capacity using the maximum SNR on each subchannel

is precisely the same as the capacity given by (2) when

contributions of only first-order importance are

retained. This derivation for the small-ρ realm results

in a capacity tending toward the total capacity of n

parallel systems with n-fold optimal combining.

Namely, as ρ tends to zero,

(10)

The dot between vectors is the complex n-D scalar

product. As before, the extra k subscript on is

employed to index over independent chi-squared vari-

ates. Because the limit of small ρ has been carefully

analyzed insofar as retaining terms that are linear in ρ,

one can write

(11)

“Trace” in this context means the sum of the diagonal

elements.

Coding
We previously stressed block coding for exposi-

tional simplicity. In practice, convolutional codes or

a form of trellis-coded modulation for more band-

width efficiency might have a role. (The block-con-

volutional distinction is blurred if a block code is
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formed by blocking off a convolutional code.)

Comments about parallelism are equally true for

both convolutional and block codes. With convolu-

tional codes, adjoining layers can be decoded simulta-

neously at times as long as a decision depth

requirement is met. The depth constraint stipulates

that the detection processes of the different processors

be staggered in such a way to ensure that each layer is

decoded after the interferences below them have been

detected and subtracted off. Such subtraction is essen-

tial for approaching the high capacities expressed by

(2) and (3).

A preliminary idea related to convolutional cod-

ing is mentioned for addressing the nonstandard

context in which the AWGN variance is a periodi-

cally changing value. For illustrative purposes,

assume the existence of five symbols per sub-block

and elaborate the sequence of transmit antenna ele-

ments used for any of the three sub-blocks over

time. The 6 3 5 = 30 consecutive time intervals

result in 666665555544444333332222211111. A 6

symbol (meaning a symbol transmitted from antenna

6) tends to need the least error protection (no interfer-

ences). A 5 symbol tends to need more protection

(one interference)—and so on down to a 1 symbol,

which tends to need the most protection (five interfer-

ences). “Tend” is used because noise, interference

level, and channel realization are all random variables.

In decoding convolutional codes, one could pair

protector and protected symbols in a 

more sensible way if doing so signifi-

cantly expedites bit decisions. For example,

616161616125252525254343434343 would be an

improvement. The encoding (decoding) to accomplish

this involves nothing more than a straightforward per-

mutation (inverse permutation) in the encoding

(decoding) process. Careful study is needed to quantify

the resulting benefit of this idea for promoting timeli-

ness in making bit decisions.

The actual choice of codes remains an important

open issue, one that is best addressed in the context of

specific applications, However, it is worth mentioning

that a transformation of the architecture that renders

the coding context much more standard does exist—

albeit at a price of about one-half the available capacity.

In explaining the transformation, n is assumed to

be even; n odd is a trivial extension. At the transmit-

ter, the primitive bit stream is demultiplexed to n/2

streams rather than n streams. However, n transmit

(and receive) antennas are still used. During each

interval of duration τ, each of the n/2 demultiplexed

signals is now associated with a distinct pair of trans-

mit antennas. The same coded and modulated signal

is transmitted out of the array elements in each pair

but at different times. The pairing is as follows: the

best with the worst symbols, the next to best with the

next to worst, and so on. (To be precise, one should

not simply say “best” and “worst.” “Tending to be the

best” and “tending to be the worst” are more defini-

tive because of the random power-transfer characteris-

tics.)

The motivation for pairing transmit antennas is to

have each demultiplexed signal component possess

the same optimum combining diversity level. Say, for

explanatory purposes, n = 6. As far as time of trans-

mission is concerned, refer also to the (6, 6) example

in Figure 6. A signal transmitted out of antenna 6 dur-

ing [τ, 2 τ) is the same as that transmitted out of

antenna 1 during [6 τ, 7 τ). Antenna pairs 5 and 2 and

4 and 3 are configured the same way, the latter pair

being associated with the contiguous time intervals,

the union of which is [3 τ, 5 τ).

Evidently, with this pairing, n/2 optimal combin-

ers exist in effect for arbitrary n, each of which has

n+1-fold diversity. Therefore, subject to the constraint

to communicate in this way, the formula for capacity

differs from (6). Specifically, instead of chi-squared

variates having the arithmetically progressing indices

2, 4, ..., 2n, all n/2 indices are 2n+2 so that the capac-

ity is given by

. (12)

The subscript k indexes statistically independent

variates. Thus, a good part of the cyclic volatil-

ity of the received signal SNR has been removed.

Clearly, as n increases, the arguments of the n/2 base

two logarithms in (12) converge to 1+ρ. The price in

lost capacity for the large n asymptote is easy to see.

That is, the capacity now increases linearly with only
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an n/2 slope rather than an n slope. Considerable

capacity, however, is still possible.

No Cycling
As Figure 4 illustrates, cycling the substream to

antenna association was required at the transmitter. Is

this cycling really necessary? A straightforward but

tedious asymptotic argument shows that, in the limit

of large n, the receive diversity compensates for any

inferior Hijs. Consequently, the asymptotic linear

capacity growth with n also occurs even without

cycling.

Discussion and Conclusion
With growing multiuser applications, efficient use

of spectral resources is especially important to avoid

highly contentious channel demand in a limited fre-

quency band. Bit-rate delivery issues can be difficult to

decide solely from a fundamental standpoint. Indeed,

determination of implementation complexity can be

influenced by the legacy of past technology choices

limiting what is readily available for the short term.

Nonetheless, the results discussed in this paper inform

the evolution toward meeting future demand for

greater bit rates.

When the transmit volume is sufficient to allow

driving transmit antenna elements separated by one-

half a wavelength, the results presented in this paper

suggest considering doing so. When the receive vol-

ume (also assumed to be amply sized) is radiated by

waves involving distinct spatial degrees of freedom—

all in the same frequency band—receive antenna ele-

ments with half-wavelength spacing can serve to

capture that energy. Thus, transmit/receive volume

can be used to improve capacity dramatically over that

of systems in which the spatial dimension is not

exploited.

The layered space-time architecture is designed

largely to undo the coupling between distinct spatial

modes, yielding a system in which capacity increases

linearly with n for both fixed bandwidth and fixed

total radiated power. This n-D architecture can be

viewed in terms of n 1-D architectures of equal capaci-

ties. In future theoretical studies, a comparison of

extreme approaches would be informative—for exam-

ple, a narrowband system using MEAs at both the

transmitter and receiver with wideband alternatives to

using MEAs to meet required capacity demands.

Understanding the relative merits of extreme

approaches could help clarify how the spatial and fre-

quency domains should be combined to provide chan-

nels in various applications.

When adding more receiver elements than n to an

(n, n) system, the excess nR – n can be used to improve

performance simply by adding twice the excess to the

degrees of freedom of the chi-squared variates appear-

ing on the right-hand side of (6). If other users of the

same frequency spectrum are identified, the excess

receiver elements are effective for reducing co-channel

interference. The results of research have been pub-

lished concerning handling co-channel interferers in a

Rayleigh fading environment.14
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