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Presentation Outline
• Overview
• PHY design overview
• Principles of MIMO eigenvector steering operation
• PHY design details
• Summary
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PHY Design Overview
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Qualcomm 802.11n PHY Design
• Fully backward compatible with 802.11a/b/g

– 20 MHz bandwidth with 802.11a/b/g spectral mask
– OFDM based on 802.11a waveform with additional long OFDM symbols (256

sub-carriers)
• Modulation, coding, interleaving based on 802.11a

– Expanded rate set
• Scalable MIMO architecture

– Supports a maximum of 4 wideband spatial streams
• Two forms of spatial processing

– Eigenvector Steering (ES): via wideband spatial modes/SVD per sub-carrier
• Tx and Rx steering
• Over the air calibration procedure required

– Spatial Spreading (SS): modulation and coding per wideband spatial channel
• No calibration required
• SNR per wideband spatial stream known at Tx

• Sustained high rate operation possible via adaptive rate control
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Observation

• Detailed, up-to-date feedback on channel state is 
fundamental to achieving high throughput in a 
TDD MIMO WLAN

• The challenge is to achieve this reliably with low 
overhead

• We believe that the design described here achieves 
this goal
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OFDM Waveform
• Baseline OFDM structure identical to 802.11a/g

– 64 sub-carriers/20 MHz sampling rate
– Same sub-carrier structure

• 48 sub-carriers for data, 4 sub-carriers for pilot
• “DC” sub-carrier empty, 11 sub-carriers for guard band

– 3.2 µs symbol, 800 ns cyclic prefix
– 20% Physical-layer overhead

• Also introduce a new long OFDM symbol with 256 sub-carriers
– Similar sub-carrier structure

• 192 sub-carriers for data, 16 sub-carriers for pilot
• “DC” sub-carrier empty,  47 sub-carriers for guard band

– 12.8 µs symbol, 800 ns cyclic prefix
– Physical-layer overhead <6%
– Use in conjunction with legacy (short) OFDM symbols for maximum 

efficiency
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Modulation and Coding
• Use existing 802.11 constraint length 7, rate ½ convolutional code and

punctured rates.
• Retain PSK/QAM modulation from 802.11
• Additional rates adopted to provide increased spectral efficiency

– 256 QAM modulation gives increased rates and spectral efficiency
• Code rates range from ½ bit per modulation symbol to 7 bits per sub-

carrier.
• Up to four wideband spatial channels supported with separate

coding/interleaving for each channel.
• Enhanced interleaving over single OFDM symbol for MIMO OFDM

– Based on 802.11a/g interleaver
– Simple backward compatible mode

• Turbo or LDPC may provide future performance enhancements
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Code Rates and Modulation
Bits/tone Bit/s/spatial chan1 Bit/s/spatial chan2 Code Rate Modulation

0.50 6 Mbit/s 7 Mbit/s r=1/2 BPSK
0.75 9 10.6 r=3/4 BPSK
1.00 12 14.1 r=1/2 QPSK
1.50 18 21.2 r=3/4 QPSK
2.00 24 28.2 r=1/2 16 QAM
2.50 30 35.3 r=5/8 16 QAM
3.00 36 42.3 r=3/4 16 QAM
3.50 42 49.4 r=7/12 64QAM
4.00 48 56.5 r=2/3 64QAM
4.50 54 63.5 r=3/4 64QAM
5.00 60 70.6 r=5/6 64QAM
5.00 60 70.6 r=5/8 256 QAM
6.00 72 84.7 r=3/4 256 QAM
7.00 84 98.8 r=7/8 256 QAM

Notes: 1) short OFDM symbols; 2) long OFDM symbols Page 8 of 46



doc.: IEEE 802.11-04/0721r0

Submission

MIMO TechnologyJuly 2004

John Ketchum, et al, Qualcomm IncorporatedSlide 9

Spatial Processing
• Two forms of Spatial Processing for data transmission

– Eigenvector Steering (ES): Tx attempts to steer optimally to intended Rx
– Spatial Spreading (SS): Tx does not attempt to steer optimally to specific 

Rx
• ES operating modes take advantage of channel reciprocity 

inherent in TDD systems
– Full channel state information (CSI) required at Tx
– Calibration procedure required
– Tx steering using per-bin channel eigenvectors from SVD
– Rx steering renders multiple Tx streams orthogonal at receiver, allowing 

transmission of multiple independent spatial streams
– This approach maximizes data rate and range 
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Spatial Processing Tools
• Basic spatial processing techniques used in different 

combinations to maximize throughput, range, and reliability 
under a wide range of conditions

– Cyclic transmit diversity per Tx antenna
– Orthogonal cover across symbols and spatial channels
– Spatial spreading with simple orthogonal matrices
– Eigenvector steering to synthesize wideband eigenmodes

• Eigenvector Steering simplifies processing burden of AP 
support of many STAs

• Spatial Spreading allows STAs without full channel 
characterization to achieve high throughput without Tx 
steering

– ~80% of the throughput of calibrated modes with simple Rx 
processing
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Over-the-Air Calibration

• ES approach requires over-the-air calibration 
procedure 
– Compensates for amplitude and phase differences in Tx 

and Rx chains
– Calibration required infrequently– typically on 

association only
– Simple exchange of calibration symbols and 

measurement information requires little overhead and 
background processing
• Total of ~1000 bytes of calibration data exchanged for 2x2 link
• ~2800 bytes for 4x4 link
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Feedback for ES and SS Modes
• Adaptive rate control

– Receiving STA determines preferred rates on each of up to four wideband 
spatial channels

• One rate per wideband spatial channel – NO adaptive bit loading
– Sends one 4-bit value per spatial channel, differentially encoded, (13 bits 

total) to inform corresponding STA/AP of rate selections
• Corresponding STA/AP uses this info to select Tx rates
• Piggy-backed on out-going PPDUs

– SS Mode can use single rate across all spatial channels
• Channel state information

– For ES operation, Tx must have full channel state information
– This is obtained through exchange of transmitted training sequences that 

are part of PLCP header
• Very low overhead.

– Distributed computation of steering vectors (SVD calculation)
• STAs do SVD, send resulting training sequence to AP

– For SS operation, unsteered training sequences transmitted in PLCP 
header to support channel estimate at receiver

Page 12 of 46
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Feedback Operates with Asynchronous MAC Transmissions

• TXOPs obtained through EDCA, HCCA, or enhanced 
HCCA

• Transmitting STA sends steered or unsteered training 
sequences in each TXOP 
– If operating in ES mode, receiving STA uses received training 

sequences to calculate transmit and receive steering vectors
– If operating in SS mode, receiving STA uses received training 

sequences to determine Rx processing
• Receiving STA estimates rates per wideband spatial stream 

and includes in feedback
• Transmitting STA determines age of Tx steering vectors 

and falls back to SS mode if vectors are too old
• Transmitting STA determines age of rate feedback and 

backs off Tx rates if feedback is too old
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Supported Antenna Configurations
• Scalable deployments 2x2 > 4x4
• Support for up 4 wideband spatial channels

– Typical max antenna configuration is four antennas per 
STA

– Can support more than four antennas on a STA, but 
without adding spatial channels

• May provide increase range or throughput through 
diversity/steering gains

• STAs may have any number of antennas
– STAs in network may have fewer antennas
– Maximum spatial channels available on a link between 

two nodes is limited by STA with fewest antennas
Page 14 of 46
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Principles of MIMO Eigenmode Operation
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Capacity-achieving Approaches to MIMO

• Transmit steering (channel eigenmode 
decomposition)
– Allows straightforward power allocation among channel 

modes (water filling)
– Requires detailed channel knowledge at transmitter

• Successive cancellation
– Can be shown to result in same mutual information as 

eigenmode approach
• No straightforward way to water fill

– Significant complexity hit at receiver
– Sub-optimal receivers (MMSE, ….) result in performance 

hit (~20%)
Page 16 of 46
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Channel Eigenmode Decomposition

• Determine Eigenmodes of channel matrix H
–  Singular Value Decomposition:

•  
• U and V are unitary matrices containing left and right singular 

vectors of H
• U are also eigenvectors of HHH, and V are eigenvectors of HHH
• D is a diagonal matrix of singular values of H (square roots of 

eigenvalues of R=HHH)

• Channel Capacity (no water filling)

– sum of capacities of N parallel AWGN channels

∑
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
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Example: 2x2 Transmit-Receive Structure
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Spatial Matched Filter Receiver

• Received signal:
• Spatial matched filter:
• Estimated transmit vector:

nHVsy +=
H H H= =M V H DU

2 1ˆ H− −= = +s D My s D U n
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Eigenvalue statistics

• Sum of the eigenvalues of HHH is equal to the squared 
Frobenius norm of H:

• For a narrowband, uncorrelated N×N Raleigh channel 
(elements of H are i.i.d. complex Gaussian random 
variables)
– Sum of eigenvalues is chi-square with 2N 2 degrees of freedom 

(N 2–order diversity)
– Smallest eigenvalue is Raleigh
– Larger eigenvalues in ranked set have successively narrower 

distributions (higher orders of diversity)

22

,
i ijFi i j

hλ = =∑ ∑H
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Wideband Eigenmodes and OFDM

• OFDM chosen so that tone spacing << coherence 
bandwidth

• Find ranked eigenmodes/eigenvalues in each OFDM 
sub-carrier:

• Ensemble of eigenmodes of a given rank across 
OFDM symbol comprise a wideband eigenmode

• Highest ranked wideband eigenmodes exhibit very 
little frequency selectivity

• Smallest ranked wideband eigenmode exhibits 
frequency selectivity of underlying channel

1 2( ) ( ) ( )Nk k kλ λ λ> > >
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Wideband Eigenmodes TGn Channel B

Power is relative to average total receive power at a single antenna
Page 24 of 46
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Wideband Eigenmodes TGn Channel B

Power is relative to average total receive power at a single antenna
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Wideband Eigenmodes TGn Channel E

Power is relative to average total receive power at a single antenna
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Wideband Eigenmodes TGn Channel E

Power is relative to average total receive power at a single antenna
Page 27 of 46



doc.: IEEE 802.11-04/0721r0

Submission

MIMO TechnologyJuly 2004

John Ketchum, et al, Qualcomm IncorporatedSlide 28

PHY Design Details
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Spatial Spreading: Partial CSI Spatial Multiplexing

• Transmitter is partially informed
– No explicit knowledge of channel or channel eigenvectors at Tx
– Tx has only data rate per wideband spatial channel

• Primary objectives
– Transmit full power regardless of the number of streams Tx’d

• Requirement for robust CSMA operation
– Maximize diversity per transmitted data stream

• Minimize outage probability  maximize throughput
– Backwards compatible operation

• Basic Concept
– Spatial spreading of data with simple unitary matrices
– Cyclic delay transmission per Tx antenna to introduce additional 

diversity
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Steering for Spatial Spreading

• Tx data vector in OFDM sub-carrier k, s(k), 
preconditioned with orthogonal “spreading” matrix, W
– For Nt = 2 or 4  W is Hadamard matrix (real Walsh functions)
– For Nt = 3  W is Fourier matrix (complex-valued Fourier 

functions)

• Transmit vector is 
• Random steering introduces full Tx diversity per stream

– Each stream is transmitted out all Nt antennas
– Full Tx power is used, regardless of the number of streams, Ns, 

transmitted
• If Ns < Nt, spreading matrix is reduced to Ns columns

( ) ( )k k=x Ws
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Cyclic Delay Transmission

• Each Tx antenna introduces a different cyclic
delay shift
– Creates linear phase shift across OFDM sub-carriers per

antenna
– Each “stream” is subjected to frequency selective

fading across the sub-carriers
• maximizes spatial diversity per Tx stream

– No phase discontinuities introduced from sub-carrier to
sub-carrier
• minimizes degradation in legacy STAs channel estimation
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Spatial Spreading + Cyclic Delay

• Random steering matrix, W, is transformed by 
phase shift matrix

– I is the cyclic shift increment
• Transmit vector is 

– Equivalent to cyclic shift of Ws(k) in time domain

2 /
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Tx Functional Block Diagram
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TDD Reciprocal Channel

• In a TDD MIMO system, the over-the-air portion of the channel is 
reciprocal

– The up-link channel,                , (entity A to entity B) is the transpose of 
the down-link channel,           , ( is the OFDM sub-carrier index):

• Due to gain differences in Tx and Rx chains at both ends of the link, 
the baseband-to-baseband channel is not reciprocal.

– The observed channel is weighted by two diagonal matrices with the 
complex gains of the transmit and receive chains:

– These gain differences can be removed with a simple over-the-air 
calibration procedure that learns the gain matrices

– Result is a very stable calibrated reciprocal channel

, ,

, ,

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
B A A Rx B A B Tx

A B B Rx A B A Tx

k k k k

k k k k
→ →

→ →

=

=

H C H C

H C H C





( )x kC

( ) ( )t
A B B A→ →=H H 

( )A B→H 
( )B A→H  

Page 34 of 46



doc.: IEEE 802.11-04/0721r0

Submission

MIMO TechnologyJuly 2004

John Ketchum, et al, Qualcomm IncorporatedSlide 35

Calibration Procedure
• Find diagonal calibration matrices that can be applied to 

transmit vectors to compensate for amplitude/phase 
variations between Rx and Tx chains in device

• Calibration required once per session; i.e., upon association
• Procedure as follows:
• Entity A (typically a STA) observes MIMO pilot from 

entity B (typically an AP)
– Entity A forms an estimate of channel, 

• Entity A transmits MIMO pilot, which entity B observes
– Entity B forms channel estimate, 

• Entity B transmits                               to A 
– Requires transmitting                 12-bit values 

• 624 B for 2x2;  2496 B for 4x4

ˆ ( ), 26 26A B→ − ≤ ≤H  

ˆ ( ), 26 26B A→ − ≤ ≤H  

ˆ ( ), 26 26A B→ − ≤ ≤H  

104 A BN N
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Calibration Procedure

• Entity A now has both 
• Entity A now solves for diagonal calibration 

matrices 
such that 

• Entity A sends            to entity B, then both ends 
of link have calibration matrix

• Requires transmitting            12-bit values
– 624 B for 4 antennas; 312 B for 2 antennas

• Calibration matrices are incorporated into Tx 
steering vectors.

ˆ ˆ( ) and ( ), 26 26A B B A→ → − ≤ ≤H H  

( ) and ( ), 26 26A B − ≤ ≤K K  

( )ˆ ˆ( ) ( ) ( ) ( )
T

A B A B A B→ →=H K H K   

( )BK 

( ) 1

, ,( ) ( ) ( )T
A A Tx A Rx

−
=K C C  

104 BN
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Wideband Eigenmodes on TDD Reciprocal Channel

• Uplink channel SVD:
– Tx steering matrix:
– Rx matched filter:

• Downlink SVD: 

–  
–                              :  downlink Tx steering matrix

• Transmit steering vectors at one end of the link can be computed 
directly from the receive matched filter at the same end of the link

– Normalize and conjugate
• Since Tx steering vectors can be obtained directly from Rx 

matched filter, eigenvectors only need to be computed at one end 
of the link

( ) ( ) ( ) ( )H
u u uk k k k=H U D V
( )u kV
( ) ( ) ( ) ( ) ( )H H H

u u uk k k k k= =M V H D U

*( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )t H t t t
d d d u u uk k k k k k k k= = =H U D V H V D U

*( ) ( )d uk k=U V
*( ) ( )d uk k=V U
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Channel estimation for Wideband Eigenmodes
• Two kinds of training sequences:

– MIMO Training Sequence: orthogonal pilot is transmitted on each 
antenna allowing the receiver to directly form an estimate of the 
channel matrix, H(k), in each OFDM sub-carrier.
• MIMO OFDM Training Sequence

– Steered MIMO Training Sequence: orthogonal pilot is transmitted 
on each eigenmode, allowing the receiver to directly form an 
estimate of the received matched filter, M(k) in each OFDM sub-
carrier.
• Steered MIMO OFDM Training Sequence

• Some definitions:
– p(k): pseudo-random sequence across OFDM tones (unique word)
– w(n); n∈[0, Ntx-1]: vector of length Ntx orthogonal sequences (n is 

index over time)
• w(n), 0≤n≤Ntx-1 are columns of Hadamard matrix for Ntx= 2,4; or 

Fourier matrix for Ntx= 3
Page 38 of 46
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Pilot Structure
• Common Pilot: 

– MIMO OFDM Training Sequence sent by AP as part of a control 
message containing scheduling information

– Contains 0,2,3,4 MIMO OFDM training symbols
– Number of training symbols equals number of antennas
– For single-antenna AP (if allowed), long PLCP preamble serves as 

training sequence, no MIMO OFDM training sequence required
– Occurs immediately after PLCP Preamble and Signal field

• Dedicated Pilot:
– STA sends steered MIMO OFDM Training Sequence as part of 

header of every PPDU
– Number of steered MIMO OFDM training symbols = number of 

antennas
– For single-antenna station (if allowed), long training sequence 

serves as dedicated training sequence.

PLCP 
Preamble SIGNAL

MIMO 
Training 

Sequence
DATA

Variable Number of short OFDM Symbols0,2,3,or 4 short 
OFDM symbols

2 short 
OFDM symbols

16    s µ
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Channel estimation: MIMO Training Sequence

• MIMO OFDM Training Sequence
• Transmitted waveform is Ntx vector OFDM symbols w/orthogonal 

cover, transformed by cyclic shift matrix:
–     

• Received waveform is 
–  

• Calculate the channel estimate by correlating with orthogonal 
sequence:

–   

( , ) ( ) ( ) ( ); 0 ; 0 51txn k p k k n n N k= ≤ ≤ ≤ ≤s C w

( , ) ( ) ( , ) ( ) ( ) ( ) ( ) ( ) ( )n k k n k k p k k k n k= + = +r H s n H C w n

1
*

0

1ˆ ( ) ( ) ( , ) ( ) ( ) ( ) ( )
txN

H

ntx

k p k n k n k k k
N

−

=
= = +∑H r w C H N
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Channel estimation: Steered Training Sequence
• Steered MIMO OFDM Training Sequence
• Transmitted waveform is  Ntx vector OFDM 

symbols on eigenmodes w/orthogonal cover 
and cyclic shift:
–     

• Received waveform is 
–  

• Calculate the channel estimate by correlating 
with orthogonal cover and integrating:

• Then the estimated spatial matched filter is

( , ) ( ) ( ) ( ) ( ); 0 ; 0 51txn k p k k k n n N k= ≤ ≤ ≤ ≤s C V w

( , ) ( ) ( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( )n k k n k k p k k k k n k= + = +r H s n H C V w n

1
*

0

1( ) ( ) ( , ) ( ) ( ) ( ) ( ) ( )
txN

H

ntx

k p k n k n k k k k
N

−

=
= = +∑A r w C H V N

( ) ( )Hk k=M A Page 41 of 46
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Use of Training Sequences in AP-centric System
• AP transmits MIMO training sequence at the beginning of each SCAP

– This is in addition to legacy training sequences
• STAs receive MIMO training sequence and compute channel estimate 

– STA computes transmit steering vectors via eigen-analysis or SVD on an as-
needed basis, but not more frequently than every 2 msec

– Up-to-date channel estimate and SVD always available at STA
• When an STA transmits a PPDU, steered MIMO training sequence (aka 

dedicated Pilot) is included in the preamble
• AP estimates Rx steering from steered MIMO training sequence

– AP also derives Tx steering vectors from received steered MIMO training 
sequence

– SVD calculation at AP not necessary
– No need for AP to perform SVD for all associated STAs

• When AP transmits a PPDU, includes steered MIMO training sequence 
• If AP does not have recent steered MIMO training sequence from STA, 

reverts to non-eigensteered mode.
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Use of Training Sequences in Peer-to-Peer Mode

• One end of link plays role of AP
– Sends MIMO training sequence and possibly steered MIMO 

training sequence

• Other end plays role of STA
– Sends steered MIMO training sequence only

• Training sequences are included as part of PLCP headers
• Low duty-cycle exchanges revert to non-eigensteered 

mode
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Rate Control

• Rate selection performed based on post-detection SNR per stream
– Post-detection SNR per stream is unique per sub-carrier
– Ensemble of SNRs per stream across sub-carriers used to drive rate 

selection
• Independent coding for each of up to Ntx wideband spatial modes
• Code rate (modulation + coding) assigned based on observed SNRs, 

etc., across wideband spatial mode
– Single rate across all wideband spatial channels in SS mode.

• Rate decisions communicated via short rate control words 
– (13 bits—differential encoding of rates for each for up to four modes)
– Transmitted rates indicated via Data Rate Vector (DRV) in SIGNAL field
– Receiver makes rate selection based on observation of received signal, and 

communicates result to transmitter at other end of link via DRVF (DRV 
feedback) in feedback field in data segment
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PLCP Preamble

t1 t2 t3 t4 t5 t6 t7 t8 t9 -t10 GI2 T1 T2

8 µsec 1.6 µsec 6.4 µsec

• Standard 802.11a preamble with enhancements
– Last short preamble symbol is inverted to provide improved timing 

reference
– Cyclic delay is applied across Tx antennas

• Cyclic delay applied to entire 8 µs short preamble
• Cyclic delay applied to entire 8 µs long preamble 
• Delay increment Tcd=50 ns
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Summary
• MIMO PHY design builds on existing 802.11a,g PHY design
• Two operating modes provide highly robust operation under a wide range of 

conditions
– Eigenvector Steering provides best rate/range performance
– Spatial 

• Adaptive rate control through low-overhead rate feedback supports 
sustained high throughput operation

• Low-overhead training sequence exchange supports high-capacity 
Eigenvector Steered operation for best rate/range performance

• Spatial Spreading operation provides robust high throughput operation when 
Tx does not have sufficiently accurate channel state information
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