
6.10 Comparison of Digital Modulation Schemes 419 

l/T, with the result that two independent bit streams can be transmitted simulta­
neously and subsequently detected in the receiver. 

6. In the case of coherent MSK, there are two orthogonal carriers, namely, 
V2lT;, cos(27Tfct) and V2lT;, sin(27Tfct), which are modulated by the two antipodal 
symbol shaping pulses cos( 7Tt/2Tb) and sin( 7Tt/2Tb), respectively, over 2Tb intervals, 
where Tb is the bit duration. Correspondingly, the receiver uses a coherent phase 
decoding process over two successive bit intervals to recover the original bit stream. 

7. The MSK scheme differs from its counterpart, the QPSK, in that its receiver has 
memory. In particular, the MSK receiver makes decisions based on observations over 
two successive bit intervals. Thus, although the transmitted signal has a binary for­
mat represented by the transmission of two distinct frequencies, the presence of mem­
ory in the receiver makes it assume a two-dimensional signal space diagram. There 
are four message points, depending on which binary symbol (0 or 1) was sent and 
the past phase history of the FSK signal. 

llil BANDWIDTH EFFICIENCY OF M-ARY DIGITAL MODULATION TECHNIQUES 

In Table 6.9, we have summarized typical values of power-bandwidth requirements for 
coherent binary and M-ary PSK schemes, assuming an average probability of symbol error 
equal to 10-4 and the systems operating in identical noise environments. This table shows 
that, among the family of M-ary PSK signals, QPSK (corresponding to M = 4) offers the 
best trade-off between power and bandwidth requirements. For this reason, we find that 
QPSK is widely used in practice. For M > 8, power requirements become excessive; ac­
cordingly, M-ary PSK schemes with M > 8 are not as widely used in practice. Also, co­
herent M-ary PSK schemes require considerably more complex equipment than coherent 
binary PSK schemes for signal generation or detection, especially when M > 8. (Coherent 
8-PSK is used in digital satellite communications.) 

Basically, M-ary PSK and M-ary QAM have similar spectral and bandwidth char­
acteristics. For M > 4, however, the two schemes have different signal constellations. For 
M-ary PSK the signal constellation is circular, whereas for M-ary QAM it is rectangular. 
Moreover, a comparison of these two constellations reveals that the distance between the 
message points of M-ary PSK is smaller than the distance between the message points of 
M-ary QAM, for a fixed peak transmitted power. This basic difference between the two 
schemes is illustrated in Figure 6.46 for M = 16. Accordingly, in an A WGN channel, 
M-ary QAM outperforms the corresponding M-ary PSK in error performance for M > 4. 

TABLE 6.9 Comparison of power-bandwidth 
requirements for M-ary PSK with binary 
PSK. Probability of symbol error= 10--4 

Value ofM 

4 

16 
32 

(Bandwidth)M~cy 

(Bandwidth )B;nary 

0.5 
0.333 
0.25 
0.2 

From Sharunugan (1979, p. 424). 

(Average power)M-acy 

(Average power)B;muy 

0.34 dB 
3.91 dB 
8.52 dB 

13.52 dB 

Google
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FIGURE 6.46 Signal constellations for (a) M-ary PSK and (b) corresponding M-ary QAM, for 
M = 16. 

However, the superior performance of M-ary QAM can be realized only if the channel 15 
free of nonlinearities. 

As for M-ary FSK, we find that for a fixed probability of error, increasing M results 
in a reduced power requirement. However, this reduction in transmitted power is achieved 
at the cost of increased channel bandwidth. In other words, M-ary FSK behaves in an 
opposite manner to that of M-ary PSK. We will revisit this issue in an information­
theoretical context in Chapter 9, and thereby develop further insight into the contrasting 
behaviors of M-ary PSK and M-ary FSK. 

l 6.11 Voiceband Modems 

The "modem," a contraction of the term modulator-demodulator, is a conversion device 
that facilitates the transmission and reception of data over the public switched telephone 
network (PSTN).13 The data of interest may be digital signals generated by computers or 
service providers. In such an application, the modulator portion of the modern converts 
the incoming digital signal into a standard form suitable for transmission over a telephone 
channel in the PSTN. The demodulator portion of the modem receives the channel output 
and reconverts it into the original digital signal format. In yet another application, namely, 
fax modems, or more precisely moderns with facsimile capability, the data may represent 
text, graphics, pictures, or combinations thereof. In this latter application, the document 
of interest is coded into a series of compressed picture elements (pixels), which are then 
transmitted over the telephone channel by modulating their values according to a prede­
fined modulation standard. When the fax modem is in a receiving mode of operation, the 
demodulator portion of the modem operates on the received analog signal and decom­
presses the corresponding binary data representation of the demodulated signal into a near 
or actual duplicate of the original transmitted image. In what follows, we focus our atten­
tion on modems that provide communication between a user and an Internet Service Pro­
vider (ISP) over the PSTN. 

Traditionally, the PSTN has been viewed as an analog network. In reality, however, 
the PSTN as we presently know it has become an almost entirely digital network. In most 
cases, the only part of the PSTN that has remained analog (and will likely remain so for 
many years to come) is the local loop, which represents the relatively short connection 
from a home to the central office. Thus, depending on how the PSTN is used, we maY 
identify two distinct classes of modem configurations, symmetric and asymmetric, as de­
scribed next. 
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Iii SYMMETRIC MODEM CONFIGURATIONS 

The simplest approach to the design of modems is to treat the entire PSTN as a linear 
analog network, as indicated in Figure 6.47a. (Recall from Chapter 3 that the PSTN is 
almost entirely digital due to the use of pulse-code modulation (PCM) for the transmission 
of voice signals.) In such a setting, analog-to-digital and digital-to-analog conversions are 
needed whenever the modems send signals to and receive signals from the PSTN. The 
modem configuration depicted in Figure 6.4 7 a exhibits -"symmetry" in that both modems 
are identical and the data rate downstream (from the ISP to the user) is exactly the same 
as the data rate upstream (from the user to the ISP). 

The symmetric modem configuration of Figure 6.47a embodies a large number of 
modem types, ranging in data rate from 300 bis to 36,600 bis, as summarized in Table 
A6. 7 on a selection of standard modems. The design of modems began with frequency­
shift keying, which catered to relatively low data rates. As the demand for data transmis­
sion over telephone channels increased, increasingly more sophisticated modulation tech­
niques were employed to better use the information capacity of the telephone channel. 

Consider, for example, the popular V.32 modem standard that.has the following 
characteristics: 

Carrier frequency= 1,800 Hz 
Modulation rate = 2,400 bauds 
Data rate = 9,600 bis 

The signaling data rate of 9,600 bis assumes a high signal-to-noise ratio. The V.32 standard 
specifies two alternative modulation schemes: 

Nonredundant coding. Under this scheme, the incoming data stream is divided into 
quadbits (i.e., groups of four successive bits) and then transmitted over the telephone 
channel as 16-QAM. In each quadbit, the most significant input dibit undergoes 
phase modulation, whereas the least significant input dibit undergoes amplitude 
modulation. Discussing the phase modulation first, practical considerations favor 
the use of differential phase modulation for the receiver need only be concerned with 
the detection of phase charges. This matter is taken care of by using a differential 
encoder, which consists of a read-only memory and a couple of delay units, as 
shown in Figure 6.48a. Let Q1,nQ2,n denote the current value of the most significant 
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FIGURE 6.47 (a) Environmental overview of symmetric modem configuration: the upstream and 
downstream data rates are equal. (b) Environmental overview of "asymmetric" modem configura­
tion: data rate downstream is higher than upstream. 
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FIGURE 6.48 Block diagrams of V.32 modem. (a) Nonredundant coding. (b) Trellis coding. 

input dibit, and let l 1,n_1J2 ,n-l denote the previous value of the corresponding d1bit 
output by the encoder. Then, in response to the dibits Q 1,nQz,n and Ii,n-il2.n-i. the 
differential encoder produces the dibit I 1,nlz,m which, in turn, induces a phase change 
in the modulated signal. This phase change, measured in the counterclockwise di­
rection, is governed by the Gray coding scheme of Table 6.10. Note that the phase 
change is determined entirely by the input dibit Q 1,nQz,n- Insofar as the differential 
phase modulation is concerned, there is one other matter that needs to be addressed: 
a code for identifying the four quadrants of the two-dimensional signal space. This 
second matter is resolved by adopting the Gray coding scheme included in Figure 
6.49. 

Turning next to the amplitude modulation, a code has to be specified for the 
four possible values which the least significant input di bit, denoted by Q3 ,,,Q.,,,, can 
assume in, say, the first quadrant. This matter is taken care of by adopting the Gray 
code for the four signal points in the first quadrant shown lightly shaded in Figure 
6.49. 

The final issue that needs to be resolved is the 90° rotational invariance, which 
is mandated by the use of differential encoding. This form of invariance means that 
the overall M-ary QAM constellation looks exactly the same when it is rotated 



TABLE 6.10 Phase changes 
induced by differential encoding 
in the V.32 modem due to varying 
input dibits 
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Current input dibit 

Qi,n 

0 

0 

1 

Phase change 
Q,,, (degrees) 

0 90 

0 
0 180 

270 

through an integer multiple of 90 degrees, regardless of whether it is coded or un­
coded; then the receiver can correctly decode the transmitted message sequence when 
the local oscillator phase differs from the carrier phase by an integer multiple of 90 
degrees. This final requirement is satisfied by filling in the Gray codes for the signal 
points in the remaining three quadrants in the manner shown in Figure 6.49. Dashed 
arrows are included in Figure 6.49 to illustrate the 90° rotational invariance. 

Putting all of these matters together for the combined amplitude and phase 
modulation, we get the 16-QAM constellation shown previously in Figure 6.17a, 
which is reproduced here as Figure 6.SOa. Correspondingly, the encoding system 
consists of a differential encoder followed by a 16-point signal-space mapper, as 
shown in Figure 6.48a. The V.32 modem so configured is said to be nonredundant 
because, with 16 constellation points, the transmitted 4-bit code word has no redun­
dant bits. 

FIGURE 6.49 Illustrating the Gray encoding of the four quadrants and dibits in each quadrant 
for the V.32 modem. The dashed arrows illustrate the 90° rotational invariance. 
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FIGURE 6.50 (a) Signal constdlation ofV.32 modem using nomedundant coding. (bl Signal 
constellation of V.32 modem using trellis coding. 

As an illustrative example of how this particular V.32 modem operates, let the cur­
rent group of four input bits be 1001 and the dibit previously output by the modem be 
11. For this example, we thus have 

Qi,nQ2,n = 10 

Q3,nQ4,n = 01 

I1,n-1I2,n-1 = 11 

Then in light of the coding scheme for the four quadrants specified in Figure 6.49, the 
previous output dibit 11 means that the modulator was previously residing in the first 
quadrant. Because the corresponding input dibit is 10, it follows from Table 6.10 that the 
modulator experiences a phase change of 180° in the counterclockwise direction, thereby 
switching its operation into the third quadrant identified by the dibit 00. Finally, with the 
current value of the least significant dibit Q 3,nQ4,n being 01, the modulator outputs a 
QAM signal whose coordinates are an= -3 (along the cf> 1-axis) and bn = -1 (along the 
cf>i-axis). This output corresponds to the code word 0001. 

When the signal-to-noise ratio is not high enough, the V.32 modem switches to its 
QPSK mode, operating at the reduced rate of 4,800 bis. In this latter mode of operation, 
the four states of the modem are signified by the points labeled A, B, C, and D in Figure 
6.SOa. 

Trellis Coding 

Trellis coding is a forward-error correction scheme where coding and modulacion
6 are treated as a combined entity rather than as two separate operations. Figure 6.48 
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shows the encoding system of the V.32 modem with trellis coding. The incoming data 
stream is divided into quadbits, but unlike the case of nonredundant coding, they are 
transmitted over the channel as a 32-QAM signal. 

As indicated in Figure 6.48b, the trellis encoder involves the use of a convolu­
tional encoder, which operates on the output of the differential encoder. (Convolutional 
encoders are discussed in Chapter 10.) However, the choice of convolutional encoding is 
restricted in the V.32 modem to accommodate the use of differential encoding (i.e., 90 
degrees rotational invariance). Indeed, this requirement cannot be satisfied by a linear 
convolutional encoder. Rather, the convolutional encoder must be nonlinear;14 see Prob­
lem 10.30. 

The data-encoding process in the V.32 modem with trellis coding proceeds in three 
stages: 

1. The differential encoder in Figure 6.48b, in response to the current input dibit 
Qi,nQ2 ,n and the previous differentially encoded di bit Ii,n- 1I2 ,n-h produces the dibit 
I1,nI2,n-

2. The differentially encoded current dibit I 1,nhn is input to the convolutional encoder 
in Figure 6.48b, which produces a three-bit output. One of these bits is a parity­
check bit, denoted by Yo,n· The value of Yo,n depends on the other two bits, Y1,n and 
Y2,,,, produced by the convolutional encoder. 

3. The bits ¥0,n, Y,,n and ¥2 ,n produced by the convolutional encoder, together with 
the least significant input dibit Q 3,nQ4,n are applied to the signal-space mapper in 
Figure 6.4Sb, which selects one of the states in the 32-point constellation shown in 
Figure 6.SOb as the modem output. 

The parity-check bit Yo.n provides a modem with trellis coding better immunity to 
channel impairments than a V.32 modem with nonredundant coding, an advantage that 
is gained without an increase in bandwidth requirements. In quantitative terms, trellis 
coding provides an effective coding gain of 4 dB compared to 16-QAM. Coding gain 
expresses how much more signal energy per data bit is needed by the uncoded modem for 
the same level of noise performance. 

However, for this advantage of trellis coding to be realized in practice, the signal­
to-noise ratio must be high enough. Otherwise, the V.32 modem is switched to its 
QPSK mode of operation, which is signified by the four states labeled A, B, C, and D 
in Figure 6.50b. In this latter mode of operation, the data rate of the modem is reduced 
to 4,800 bis. 

!II AsYMMETRIC MODEM CONFIGURATIONS 

For a more efficient use of the PSTN, we should treat it as what it really is: an almost 
entirely digital network that is nonlinear. In particular, since the ISP is digitally imple­
mented, the need for analog-to-digital conversion at the ISP modem is eliminated. This 
means that the communication between the ISP and the PSTN can be entirely digital, as 
portrayed in Figure 6.47b. However, the user's modem has to remain analog because the 
local loop is analog. This, in turn, requires the use of analog-to-digital and digital-to-analog 
conversions each time the user's modem sends signals to and receives signals from the 
PSTN. The modem configuration depicted in Figure 6.47b is "asymmetric" in that it is 
possible for the downstream signaling data rate to be much higher than the upstream 
signaling data rate, as explained next. 
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As mentioned earlier, a digital PS1N is based on the use of PCM for the transmissi 
of voice signals. Features of the system relevant to the present discussion are as folio~~ 
(see Chapter 3): 

1> Data signaling rate of 64 kb/s, which is made up of a sampling rate of 8 kHz and 
the representation of each voice sample by an 8-bit code word. 

1> Fifteen-segment companding law (e.g., a logarithmic wlaw withµ, = 255) for com. 
pressing the voice signal at the transmitter and expanding it at the receiver. 

From the discussion on PCM presented in Chapter 3 we also recall that quantization only 
affects analog-to-digital conversion but not digital-to-analog conversion. These observa­
tions have a profound impact on the optimum strategy for the design of asymmetric 
modems. 

Suppose there is no analog-to-digital conversion between a digital modem at the ISP 
and the digital portion of the PSTN, and the digitally connected transmitter of the modem 
is designed to properly use the nonuniformly spaced 256 (discrete) threshold levels of the 
digital PS1N. Then, since digital-to-analog conversion is completely unaffected by quan­
tization noise, it follows that the information transmitted by the ISP's digital modem 
reaches the user's analog modem with no loss whatsoever. On the basis of these arguments, 
in theory, it should be possible to transmit data from the ISP to the user at a rate equal to 
the 64 kb/s data rate of the digital PS1N. But system limitations inherent to the PSlN 
reduce the attainable data rate down to 56 kb/s, as explained in the sequel. 

Digital Modem 

From the description of a PCM voiceband channel presented in Chapter 3, we find 
that the design of the digital modem is constrained by three factors not under our control. 
The design constraints are: 

1. A sampling rate f, = 8 kHz. 
2. A set of M = 256 allowable threshold levels built into the construction of the com· 

pressor (i.e., transmitter portion of the compander). 
3. A baseband (antialiasing) filter of about 3.5 kHz bandwidth, built into the front end 

of the PCM transmitter. 

In light of these constraints, we may now state the fundamental philosophy underlying the 
design of the digital modem as follows: 

Design a signal s(t) at the digital modem's input such that each of its samples taken 
at the rate f, = 8 kHz matches one of the M = 25 6 threshold levels of the com­
pressor, and the transmitted signal satisfies Nyquist's criterion for zero intersymbol 
interference. 

(Nyquist's criterion for zero intersymbol interference was discussed in Chapter 4.) 

One Realization of the Digital Modem 

A solution to this signal design problem is made particularly difficult by the fact t'.131 

the PCM transmit filter has a bandwidth of about 3.5 kHz and not 4 kHz (half the sampling 
rate [,). The immediate implication of this constraint is that instead of the desired set 0! 
8,000 samples, we can only generate 2 X 3,500 = 7,000 independent samples every secon 
in accordance with Nyquist's criterion for zero intersymbol interference. How then do we 
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FIGURE 6.5 l Group of N uniformly spaced samples, repeating every (N + l)T, seconds. 

fit 7,000 independent samples per second within the prescribed framework of 8,000 sam­
ples per second? 

To answer this fundamental question, we make use of the recurrent nonuniform 
equivalent form of the sampling theorem. To be more specific, consider the situation de­
picted in Figure 6.51, where the samples are divided into groups, with each group con­
taining N uniformly spaced samples, and the groups having a recurrent period of (N + 1 )T, 
seconds, where T, = llfs. The illustration presented in Figure 6.51 is for the problem at 
hand: T, = 125 µs and N = 7. The sampling instants in the nonuniform distribution of 
Figure 6.51 are written as 

tk,1 = tk + (N + l)lT, (6.187) 

= (k - l)T, + (N + 1)1T,, 
k = 1, 2, ... , N 

l = 0, ±1, ±2, ... 

The stage is now set for us to define the band-limited signal s(t) as follows:15 

N 

s(t) = L L s(tk,1).Pdt - (N + 1)1T,) (6.188) 
1--w k-1 

where the interpolation function i/!k (t) is itself defined by 

) 

N sin( N 'IT l)T (t - tq)) 
. ( t - tk ( + ' 

.Pk(t) = srnc (N + l)T, !Ji . ( 'IT ) 

q*k sm (N + l)T, (tk - tq) 

(6.189) 

Computing Equation (6.189) for N = 7, we obtain the seven standard pulses plotted in 
Figure 6.52, where time is normalized with respect to the sampling period T,. These pulses 
exhibit the following properties: · 

I>- Each standard pulse is normalized so that we have 

"'{~) = .pk(k - 1) = 1 fork = 1, 2, ... , 7 

Note, however, that the peak of the kth pulse does not occur at time tk = (k - l)T,. 
1> Fork= 1,2, ... , 7 the pulse .Pk(t!T,) goes through zero at times t * (k l)T,modulo 

(N + 1 ), except at those times that aie congruent to t = (-1) modulo (N + 1 ). 

Accordingly, the signaling scheme for the digital modem consists of a recurrent non­
uniform pulse amplitude modulation scheme. The amplitudes of seven uniformly spaced 
samples in each group of eight samples aie determined by the incoming data stream and 
in conformity to the threshold levels of the compressor in the PCM transmitter. In effect, 
these seven samples are the independent samples that are responsible for cairying the 
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FIGlJRE 6.52 A digital modem's waveforms of the standard pulses lf!.(t), k = I, 2, ... , 7. 

incoming data stream across the PSTN every 1,000 µ,s. Moreover, they deliver the data to 
the receiver with zero intersymbol interference. The remaining "eighth" samples are com· 
pletely determined by the independent samples and known beforehand to the system; they 
do not carry information and are therefore discarded at the receiver. Thus the digital 
modem is capable of transmitting digital data across the PSTN almost errorless at a rate 
equal to 56 kb/s, which is calculated as follows: 

7 X 1,000 X log2 256 = 56,000 bis 

One last comment is in order. The standard pulses l/J1<(t) can be constructed so as to 
decay at a rate faster than 1/t. To do so, we simply replace the sine function in Equation 
(6.189) by a Nyquist pulse with a rolloff in a manner similar to that described in Chap­
ter 4. 

Another Reu,li:::ation of the Digital Modem 

The kind of digital modem just described is bidirectional, assuming that both ends 
of the data link are analog. However, a simpler solution to the digital modem ~esi!\'! 
problem ensues when one end of the link is digital and asymmetric data rates are possible. 

Consider what happens when a data sequence consisting of octets (i.e., 8-bit code 
words) arrives at the PSTN. There they will be treated as octets representing speech en· 
coded in accordance with the µ.-law or A-law, depending on the part of the world where 
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the PSTN is located. Consequently, the DIA converter, which drives the analog modem, 
produces a continuous-time signal defined by 

s(t) = 2: a(ck)g(t - kT,) (6.190) 
k 

where ck is the kth octet in the data sequence, a( ck) is the representation level specified by 
the pertinent companding law, T, is the sampling interval (equal to 125 µs), and g(t) is an 
interpolation function bandlimited to a frequency below 1/2't, or about 4 kHz, to satisfy 
the reconstruction part of the sampling theorem; see Section 3.2. 

In the normal operation of the PSTN, the signal s(t) represents a reconstructed speech 
signal. However, in the case of input data, s(t) appears like noise. In any event, from a 
communication theoretical perspective, the signal s(t) in Equation (6.190) may be viewed 
as a pulse-amplitude modulated signal. Herein lies the theoretical basis for the design of 
the digital modem. Specifically, the design is based on a signal constellation as in an analog 
modem, except that the constellation is constructed from one-dimensional PCM symbols 
rather than two-dimensional QAM symbols. 

Ordinarily, the data rate achievable by a digital modem is limited to about 56 kb/s 
because of the following factors: 

1. The inner levels of the compander in the PSTN are very closely spaced, as shown in 
Table 3.4; hence they are susceptible to residual intersymbol interference and noise 
following the modem's equalizer. 

2. Least significant bits (LSBs) are robbed from the data stream for various purposes 
internal to the PSTN; this "bit-robbing" can be as much as (but usually less than) 
8 kb/s and always in a periodic pattern. 

Analog Modem 

Unlike the digital modem, the noise performance of the analog modem is limited 
essentially by quantization noise in the µ-law or A-law governing the operation of the 
PCM compander. Typically, the signal-to-noise ratio on a good PCM voiceband channel 
is on the order of 34 to 38 dB. The other channel impairment that limits the operation of 
the analog modem is the effect of bandlimiting imposed by the antialiasing and interpo­
lation filters, which, as already mentioned, is typically about 3.5 kHz. 

A sophisticated choice for the analog modem is the standard V.34 modem, which 
operates at rates extending up to 33.6 kb/s. The fundamental design philosophy of this 
modem embodies five distinctive features. 17 

1. 960-QAM super-constellation. 
The signal constellation is said to be a super- or nested-constellation in that it consists of 
four constellations: the QAM constellation shown in Figure 6.53 with 240 message points, 
and its rotated versions through 90, 180, and 270 degrees. 

2. Adaptive bandwidth. 
The transmitter probes the channel by sending a set of tones, which permits measurement 
of the signal-to-noise ratio at the channel output as a function of frequency. The modem 
is thereby enabled to select the appropriate carrier frequency and bandwidth according to 
the probing results and available symbol rates. 

3. Adaptive bit rates. 
During the training of the receiver, the bit rate is selected according to the receiver's esti­
mate of the maximum bit rate, which the modem can support at bit error rates as low as 
10-6 to 10-<. 
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FIGURE 6,53 Quartcr-supcrconstellation of V.34 modem with 240 signal points. The full super· 
constellation is obtained by combining the rotated versions of these points by O, 90, 180, and 270 
degrees. (Taken from Forney et al., 1996, "1th permission of the IEEE.) 

4. Trellis coding. 
This error-control coding technique is used to provide an effective coding gain of about 
3.6 dB; there is an optional more powerful trellis code with an effective coding gain of 
about 4.7 dB. 

5. Decision feedback equalization. 
To make full use of the available telephone channel bandwidth, including frequencies near 
the band edges where there can be attenuation as much as 10 to 20 dB, a decision feedback 
equalizer (DFE) is used. (The DFE is discussed in Chapter 4.) However, it is not a straight· 
forward matter to combine coding with DFE because decision feedback requires immediate 
decisions, whereas coding inherently involves decoding delay. The overcome this problem, 
the feedback section of the DFE is moved to the transmitter, which is made possib!e 
through the use of the Tomlinson-Harashima precoding. (This form of equalization via 
precoding is discussed briefly in Note 12 of Chapter 4.) 
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V.90Modem 

The V.90 modem standard embodies digital and analog modems. The digital modem 
at the ISP end is based on the second realization described earlier; it sends data downstream 
at the rate of 56 kb/s. The analog modem at the user's end is a V.34 modem standard, 
transmitting data upstream at the rate of 33.6 kb/s. These two highly different rates confirm 
the asymmetric nature of the V.90 modem. 

The outstanding feature of the V.90 modem, namely, the downstream data rate of 
56 kb/s, makes it suitable for use on the Internet for downloading graphics in intensive 
Web pages, audio, and video at near-ISDN speeds. 

~-I_2_M_u_l_tic_h_a_n_n_e_l_M_o_d_u_l_a_t_ion_ 

The asymmetric digital subscriber line {ADSL), described in Section 4.8, is a data trans­
mission system capable of realizing megabit rates over existing twisted-pair telephone lines. 
Specifically, ADSL runs at a downstream data rate up to 9 Mb/s and an upstream data 
rate up to 1 Mb/s. These data signaling rates fit the access requirements of the Internet 
perfectly. (As mentioned in Section 4.8, the upstream bit rate should be about 10 percent 
of the downstream bit rate for efficient operation of the Internet protocol.) The challenge 
in designing ADSL is to develop a line code that exploits the information capacity of the 
channel as fully as possible. The carrierless amplitude phase modulation (CAP), discussed 
in Section 6.4, provides one approach for solving this difficult passband data transmission 
problem. Another approach is to use an equally elegant modulation technique called dis­
crete multitone. This latter approach is a form of multichannel modulation18 that allows 
the modulator characteristics to be a function of measured channel characteristics. It is 
fitting that we begin the discussion by describing multichannel modulation, which we do 
in this section, followed by discrete multitone in the next section. 

The basic idea of multichannel modulation is rooted in a commonly used engineering 
principle: divide and conquer. According to this principle, a difficult problem is solved by 
dividing it into a number of simpler problems, and then combining the solutions to those 
simple problems. In the context of our present discussion, the difficult problem is that of 
data transmission over a wideband channel with severe intersymbol interference, and the 
simpler problems are exemplified by data transmission over A WGN channels. We may 
thus summarize the essence of multichannel modulation as follows: 

Data transmission over a difficult channel is transformed through the use of ad­
vanced signal processing techniques into the parallel transmission of the given data 
stream over a large number of subchannels, such that each subchannel may be 
viewed effectively as an A WGN channel. 

Naturally, the overall data rate is the sum of the individual data rates over the subchannels 
operating in parallel. 

II CAPACITY OF AWGN CHANNEL 

From the Background and Preview material presented in the opening chapter, we recall 
that, according to Shannon's information capacity theorem, the capacity of an A WGN 
channel (that is free from intersymbol interference) is defined by 

C = B log2 (1 + SNR) bis (6.191) 



432 CHAPTER 6 "' PASSBAND DATA TRANSIUISSION 

where B is the channel bandwidth,_ ai:d SNR denotes the _signal-to-noise ratio measured a 
the channel output. A proof of this rmportant theorem 1s formally presented in Cha t 

9. For now it suffices to say that for a given SNR, we can transmit data over an AW~~ 
channel of bandwidth B at the maximum rate of C bits per second with arbitrarily sm ll 
probability of error, provided that we employ an encoding system of sufficiently hi~ 
complexity. Equivalently, we may express the capacity C in bits per transmission orchan. 
nel use as 

1 
C = 2 log2 (1 + SNR) bits/transmission (6.192) 

In practice, we usually find that a physically realizable encoding system must transmit 
data at a rate R less than the maximum possible rate C for it to be reliable. For an imp]e. 
mentable system operating at low enough probability of symbol error, we thus need to 
introduce a signal-to-noise ratio gap or just gap, denoted by f. The gap is a function of 
the permissible probability of symbol error Pe and the encoding system of interest. It pro. 
vides a measure of the "efficiency" of an encoding system with respect to the ideal trans. 
mission system of Equation (6.192). With C denoting the capacity of the ideal encoding 
system and R denoting the capacity of the corresponding implementable encoding system 
the gap is defined by ' 

Equivalently, we may write 

22c - 1 
f = 22R - 1 

SNR 
= 22R - 1 

1 ( SNR) R = 2log2 1 + f bits/transmission 

(6.193) 

(6.194) 

For encoded PAM or QAM operating at Pe= 10-6
, for example, the gap f is constant at 

8.8 dB. Through the use of codes (e.g., trellis codes discussed in Chapter 10), the gap r 
may be reduced to as low as 1 dB. 

Let P denote the transmitted signal power, and a2 denote the channel noise variance 
measured over the bandwidth B. The signal-to-noise ratio is therefore 

SNR = !_ 
a2 

where 

a2 = N0B 

We may thus finally define the attainable data rate as 

R = 1 log2 ( 1 + f~) bits/transmission (6.195) 

With this formula at hand, we are ready to describe multichannel modulation in quanti· 
tative terms. 

Iii CONTINUOUS-TIME CHANNEL PARTITIONING 

Consider a linear wideband channel (e.g., twisted pair) with an arbitrary frequency rt>­
sponse H(f). Let the squared magnitude response I H(f) I be approximated by a stairca5e 
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[H(fli Staircase 

response 

FIGlJRE 6.54 Staircase approximation of an arbitrary magnitude response I H(f) J; only positive­
frequency portion of the response is shown. 

function as illustrated in Figure 6.54, with 11[ denoting the width of each step. In the limit, 
as the frequency increment 11[ approaches zero, the staircase approximation of the channel 
approaches the actual H(f). Along each step of the approximation, the channel may be 
assumed to operate as an A WGN channel free from intersymbol interference. The problem 
of transmitting a single wideband signal is thereby transformed into the transmission of a 
set of narrowband orthogonal signals. Each narrowband orthogonal signal, with its own 
carrier, is generated using a spectrally efficient modulation technique such as M-ary QAM, 
with additive white Gaussian noise being essentially the only primary source of transmis­
sion impairment. This, in turn, means that data transmission over each subchannel of 
bandwidth 11[ can be optimized by invoking Shannon's information capacity theorem, 
with the optimization of each subchannel being performed independently of all the others. 
Thus, in practical signal-processing terms, the need for complicated equalization of a wide­
band channel is replaced by the need for multiplexing and demultiplexing the transmission 
of the incoming data stream over a large number of narrowband subchannels that are 
contiguous and disjoint. Although the resulting complexity of a multicarrier system is 
indeed high for a large number of subchannels, implementation of the entire system can 
be accomplished in a cost-effective manner through the use of VLSI technology. 

Figure 6.55 shows a block diagram of the multichannel data transmission system in 
its most basic form. The system is configured here using quadrature-amplitude modulation 
whose choice is justified by virtue of its spectral efficiency. The incoming binary data stream 
is first applied to a demultiplexer (not shown in the figure), thereby producing a set of N 
substreams. Each substream represents a sequence of two-element subsymbols, which, for 
the symbol interval 0 :s: t :s: T, is denoted by 

n = 1, 2, ... ,N 

where an and bn are element values along the two coordinates of subchannel n. 
Correspondingly, the passband basis functions of the quadrature-amplitude modu­

lators are defined by the function pairs 

(cf>(t) cos(21Tfnt), cf>(t) sin(21Tfnt)J, n = 1, 2, ... , N (6.196) 

where the carrier frequency fn of the nth modulator is an integer multiple of the symbol 
rate 1/T, as shown by 

n 
fn = r' n = 1, 2, ... , N 
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Symbols Modulators 

cos {21'fivt) <f>(t) sin (2r.f"t) 

Maximum likelihOOd 
detectors 

Transmitter Receiver 

FIGURE 6.55 Block diagram of multichannel data transmission system. 

and the low-pass function <f> ( t) is the sine function: 

<f>(t) = fosinc(~), -co< t <co (6.197) 

The passband basis functions defined here have the following desirable properties (see 
Problem 6.41 for their proofs): 

Property 1 

For each n, the two quadrature-modulated sine functions form an orthogonal pair as 
shown by 

fro (<f>(t) cos(211'fnt))(<f>(t) sin(27Tfnt)) dt = 0 for all n (6.198) 

This orthogonal relationship provides the basis for formulating the signal constellation for 
each of the N modulators in the form of a squared lattice. 
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Property 2 

Recognizing that 

exp(j2Trf,,t) = cos(27rfnt) + j sin(2Trf,,t) 

we may completely redefine the passband basis functions in the complex form 

{ ~ cf>(t) exp(j2Trfnt) }, n = 1, 2, ... , N (6.199) 

where the factor 1/Vl has been introduced to ensure that the scaled function <!> (t)/Vl 
has unit energy. Hence, these passband basis functions form an orthonormal set, as shown 
by 

where the asterisk denotes complex conjugation. 

k = n 

k * n 
(6.200) 

Equation (6.200) provides the mathematical basis for ensuring that the N modulator­
demodulator pairs operate independently of each other. 

Property 3 

The set of channel-output functions {h(t) * <!> (t)] remains orthogonal for a linear channel 
with arbitrary impulse response h(t), where* denotes convolution. 

The channel is thus partitioned into a set of independent subchannels operating in contin­
uous time. 

Figure 6.55 also includes the structure of the receiver. It consists of a bank of N 
coherent detectors, with the channel output being simultaneously applied to the detector 
inputs. Each detector is supplied with a locally generated pair of quadrature modulated 
sine functions operating in synchrony with the pair of passband basis function applied to 
the corresponding modulator in the transmitter. 

Each subchannel may have some residual intersymbol interference (ISI). However, 
as the number of subchannels N approaches infinity, the ISI disappears. Thus, for a 
sufficiently large N, the bank of coherent detectors in Figure 6.55 operates as maximum 
likelihood detectors, independently of each other and on a subsymbol-by-subsymbol basis. 

To define the detector outputs in response to the input subsymbols, we find it con­
venient to use complex notation. Let An denote the subsymbol applied to the nth modulator 
during the symbol interval 0 ::;::; t ::;::; T: 

An= an+ ibm 

The corresponding detector output is 

Y. = H.A. + W,., 

n = 1, 2, ... , N (6.201) 

n = 1, 2, ... , N (6.202) 

where Hn is the complex-valued frequency response of the channel evaluated at the sub­
channel carrier frequency f = fn: 

Hn = H(f,,), n = 1, 2, ... , N (6.203) 

The W. is a complex-valued random variable due to the channel noise w(t); the real and 
imaginary parts of Wn have zero mean and variance N0 /2. With knowledge of the mea-



436 CHAPTER 6 lil PASSBAND DATA TRANSMISSION 

sured frequency response H(f) available, we may therefore use Equation (6.202) to com. 
pute a maximum likelihood estimate of the transmitted subsymbol An. The estimates A 
A2, ••• , AN so obtained are finally multiplexed to produce the corresponding estimate f 
the original binary data transmitted during the interval 0 :5 t :5 T. 

0 

To summarize, for a sufficiently large N, we may implement the receiver as an op. 
timum maximum likelihood detector, operating as N subsymbol-by-subsymbol detectors 
The reason why it is possible to build a maximum likelihood receiver in such a simple wa' 
is the fact that the pass band basis functions constitute an orthonormal set, and their 0:. 

thogonality is maintained for any channel impulse response h(t). 

GEOMETRIC SIGNAL-TO-NOISE RATIO 

In the multichannel transmission system of Figure 6.55, each subchannel is characterized 
by a SNR of its own. It would be highly desirable to derive a single measure for the 
performance of the entire system of Figure 6.55. 

To simplify the derivation of such a measure, we assume that all of the subchannels 
in Figure 6.55 are represented by one-dimensional constellations. Then the channel ca­
pacity of the entire system in bits per transmission is given by 

1 N 
R=-2: R N n=l n 

1 N ( p ) 
= 2N L log2 1 + r "2 

n=l Un 

(6.204) 
1 N ( p ) 

= 2N log2 TI 1 + r n 2 
n=l Un 

= ~ log2[1] ( 1 + r~~) r/N 
Let (SNRlovernll denote the overall signal-to-noise ratio of the entire system. We may then 
express R in bits per transmission as 

R _ 1 l (l (SNR)ovcrnll) 
-2og2 + r (6.205) 

Comparing Equations (6.205) with (6.204), we may thus write 

( 

N ( p )1/N ) 
(SNRlovecall = r IT 1 + r "2 - j 

n=1 Un 
(6.206) 

Assuming that Pnlru~ is high enough to ignore the two unity terms in Equation (6.206), 
we may approximate the overall SNR as 

(SNR) = ]] ( =~) tlN (6.207) 

We may thus characterize the overall system by a SNR that is the geometric mean of the 
SNRs of the individual subchannels. 

The geometric SNR of Equation (6.207) can be improved considerably by disrri~ 
uting the available transmit power among the N subchannels on a nonuniform basis. This 
objective is attained through the use of loading as discussed next. 
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llil LOADING OF THE MULTICHANNEL TRANSMISSION SYSTEM 

Equation ( 6.204) for the bit rate of the entire multichannel system ignores the effect of the 
channel on system performance. To account for this effect, define 

n = 1, 2, ... , N (6.208) 

Then assuming that the number of subchannels N is large enough, we may assume that 
gn is constant over the entire bandwidth fl/ assigned to subchannel n for all n. In such a 
case, we may modify the second line of Equation (6.204) for the overall SNR of the system 
as 

1 N ( ~) R = 
2

N 2: log2 1 + gr ; 
n=l Un 

(6.209) 

The g;'; and r are usually fixed. The noise variance u;'; is fl/ N 0 for all n, where fl/ is the 
bandwidth of each subchannel and N 0/2 is the noise power spectral density. We may 
therefore optimize the overall bit rate R through a proper allocation of the total transmit 
power among the various channels. However, for this optimization to be of practical value, 
we must maintain the total transmit power at some constant value P, say, as shown by 

N 

2; Pn = P = constant 
n=l 

(6.210) 

The optimization we therefore have to deal with is a constrained optimization problem, 
which may be stated as follows: 

Maximize the bit rate R for the entire multichannel transmission system through 
an optimal sharing of the total transmit power P between the N subchannels, subject 
to the constraint that P is maintained constant. 

To solve this optimization problem, we first use the method of Lagrange multipliers19 to 
set up an objective function that incorporates the constraint of Equation (6.210), as shown 
by 

1 N ( g~n) ( N ) J = 2N ~1 log2 1 + fu;'; + A P - ~1 Pn 

1 N ( ~) ( N ) 
= 2Nlog2e ~1 log. 1 + ~u~ +AP - ~1 Pn 

(6.211) 

where A is the Lagrange multiplier. Hence, differentiating J with respect to Pm then setting 
the result equal to zero and finally rearranging terms, we get 

P 
ru;'; 

n +-2-
gn 

=;\ (6.212) 

This result indicates that the solution to our constrained optimization problem is to have 

P fu;'; = K 
n + 2 

gn 
for n = 1, 2, ... , N (6.213) 
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where K is a prescribed constant under the designer's control. That is, the sum of th 
transmit power and the noise variance (power) scaled by the ratio fig~ must be maintain ~ 
constant for each subchannel. The process of allocating the transmit power P to the ie _ 
dividual subchannels so as to maximize the bit rate of the entire multichannel transmiss: 
system is called loading. n 

Ill WATER-FILLING INTERPRETATION OF THE OPTIMIZATION PROBLEM 

In solving the constrained optimization problem just described, two conditions must b 
satisfied, namely, Equations ( 6.210) and ( 6.213 ). The optimum solution so defined has~ 
interesting interpretation as illustrated in Figure 6 .5 6 for N = 6, assuming that the gap r 
is constant over all the subchannels. To simplify the illustration in Figure 6.56 we have set 
u~ = N0 D.f = 1, that is, the average noise power is unity for all N subchannels. Referring 
to this figure, we may now make the following observations: 

"'" The sum of power P n allocated to channel n and the scaled noise power fig;; satisfies 
the constraint of Equation (6.213) for four of the subchannels for a prescribed value 
of the constant K. 

~ The sum of power allocations to these four subchannels consumes all the available 
transmit power, maintained at the constant value P. 

»- The remaining two subchannels have been eliminated from consideration because 
they would each require negative power to satisfy Equation (6.213) for the prescribed 
value of the constant K; this condition is clearly unacceptable. 

The interpretation illustrated in Figure 6.56 prompts us to refer to the optimum solution 
of Equation (6.213), subject to the constraint of Equation (6.210), as the water-filling 
solution. This terminology follows from analogy of our optimization problem with a fixed 
amount of water (standing for transmit power) being poured into a container with a 
number of connected regions, each having a different depth (standing for noise power). 
The water distributes itself in such a way that a constant water level is attained across the 
whole container. We have more to say on the water-filling interpretation of information 
capacity in Chapter 9. 

Returning to the task of how to allocate the fixed transmit power P among the 
various subchannels of a multichannel transmission system so as to optimize the bit rate 

3 4 
Index of subchannel, n 

FIGURE 6, 5 6 Water-filling interpretation of the loading problem. 
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of the entire system, we may proceed as follows. Let the total transmit power be fixed at 
the constant value Pas in Equation (6.210). Let K denote the constant value prescribed 
for the sum Pn + fu~/g~ for all n as in Equation (6.213). We may then use this pair of 
equations to set up the following system of simultaneous equations: 

P1 + P2 + ... PN = p 

P1 - K = -fu2/gi 

P2 - K = -fu2/g~ (6.214) 

= -ru21gf, 

where we have a total of (N + 1) unknowns and (N + 1) equations to solve for them. We 
may rewrite this set of simultaneous equations in matrix form as 

1 1 1 0 P1 p 

1 0 0 -1 P2 -ru2/gi 

0 1 0 -1 -ru2/g~ (6.215) 

PN 
0 0 1 -1 K -ru2/gj:., 

Premultiplying both sides of Equation (6.215) by the inverse of the (N + 1)-by-(N + 1) 
matrix on the left-hand side of the equation, we obtain solutions for the unknowns P1 , 

P2, ••• , PN, and K. We should always find that K is positive, but it is possible for some 
of the Ps to be negative. The negative Ps are discarded as power cannot be negative. 

lt- EXAMPLE 6. 7 

Consider a linear channel whose squared magnirude response I H(f) I 2 has the piecewise-linear 
form shown in Figure 6.57. To simplify the example, we set the gap r = 1 and the noise 
variance a2 = 1. In the siruation so described, the application of Equation ( 6.214) yields 

P, + P2 = P 

P1 - K = -1 

P2 - K = -111 

1.0 

FIGURE 6.57 Squared magnirude response for Example 6. 7. 
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FIGURE 6.58 Water-filling profile for Example 6. 7. 

where the total transmit power P is normalized with respect to the noise variance. Solving 
these three simultaneous equations for P,, P2 , and K, we get 

P, =Hp -1+7) 
P2 =Hp+ 1 -7) 
K=i(P+1+7) 

Since 0 < l < 1, it follows that P1 > 0, but it is possible for P2 to be negative. This latter 
condition can arise if 

l<-1-
p + 1 

But then P 1 exceeds the prescribed value of transmit power P. It follows therefore that in this 
example the only acceptable solution is to have 1/(P + 1) < l < 1. Suppose then we have 
P = 10 and l = 0.1, for which the solution is 

K = 10.5 

P, = 9.5 

P2 = 0.5 

The corresponding water-filling picture is portrayed in Figure 6.58. 

I 6.13 Discrete Multitone 

The material presented in Section 6.12 provides an insightful introduction to the notioo 
of multichannel modulation. In particular, the continuous-time channel partitionin~ ~­
duced by the passband basis functions ofEquation (6.196) or equivalently (6.199) exhibrtS 



6, 13 Discrete Multiflme 441 

a highly desirable property: Orthogonality of the basis functions (and therefore the channel 
partitioning) is preserved despite their convolution with the impulse response of the chan­
nel. However, the system has two shortcomings: 

1. The passband basis functions use a sine function that is nonzero for an infinite time 
interval, whereas practical considerations favor a finite observation interval. 

2. For a finite number of subchannels, N, the system is suboptimal; optimality of the 
system is assured only when N approaches infinity. 

We may overcome these shortcomings by using discrete multitone (DMT), the basic 
idea of which is to transform a wideband channel into a set of N subchannels operating 
in parallel. What makes DMT distinctive is the fact that the transformation is performed 
in discrete time as well as discrete frequency. Consequently, the transmitter input-output 
behavior of the entire communication_ system admits a linear matrix representation, which 
lends itself to implementation using the discrete Fourier transform. 

To explore this new approach, we first recognize that in a realistic situation the 
channel has its nonzero impulse response, h(t), essentially confined to a finite interval 
[O, Tb]· So, let the sequence h0 , h1 , ••• , hv denote the baseband equivalent impulse response 
of the channel sampled at the rate 1/T,, with 

Tb= (1 + v)T, (6.216) 

The sampling rate 1/T, is chosen to be greater than twice the higher frequency component 
of interest in accordance with the sampling theorem. To continue with the discrete-time 
description of the system, let s[n] = s(n'T,) denote a sample of the transmitted symbol s(t), 
w[n] = w(n'T,) denote a sample of the channel noise w(t), and x[n] = x(n'T,) denote the 
corresponding sample of the channel output (received signal). The channel performs linear 
convolution on the incoming symbol sequence {s[n]} of length N, producing a channel 
output sequence {x[n]} of length N + v. Extension of the channel output sequence by v 
samples compared to the channel input sequence is due to the intersymbol interference 
produced by the channel. 

To overcome the effect of intersymbol interference, we create a cyclically extended 
guard interval whereby each symbol sequence is preceded by a periodic extension of the 
sequence itself. Specifically, the last v samples of the symbol sequence are repeated at the 
beginning of the sequence being transmitted, as shown by 

s[-k] = s[N - k] for k = 1, 2, ... , v (6.217) 

This condition is called a cyclic prefix. The excess bandwidth factor due to the inclusion 
of the cyclic prefix is therefore v!N, where N is the number of transmitted samples after 
the guard interval. 

With the cyclic prefix in place, the matrix description of the channel takes the form 

x[N-1] 
x(N- 2] 

x[N-v-1] 
x[N-v-2] 

x[O] 

= [! 1: r ••• :r: ·~, i: ··• :, 1,,:~::, + 1:~~:1,1] 
hv 0 0 0 0 ho ... hv-l s[N-v-2] w[N-v-2] 
: : : : : : : : : 

h1 hi h3 hv 0 0 ... ho s[O] wlOJ 

(6.218) 

Equivalently, we may describe the discrete-time representation of the channel in the com­
pact matrix form 

x=Hs+w (6.219) 



442 CHAPTER 6 OJ PASSBAND DATA TRANSMISSION 

w 

FIGURE 6.59 Discrete-time representation of multichannel data transmission system. 

where the transmitted symbol vector s, the channel noise vector w, and the received signal 
vector x are all N-by-1 vectors which are respectively defined by 

s = [s[N - l], s[N - 2], ... , s[OJV 

w = [w[N - 1], w[N - 2], ... , w[OW 

and 

x = [x[N - l], x[N - 2], ... , x[OJV 

(6.220) 

(6.221) 

(6.222) 

We may thus depict the discrete-time representation of the channel as in Figure 6.59. The 
N-by-N channel matrix His defined by 

ho h, hz hv-1 h. 0 0 
0 ho h, hv-2 h,_, h, 0 

H = 0 0 0 
h. 0 0 

0 

0 

0 0 

(6.223) 

From this definition, we readily see that the matrix H has the following structural com· 
position: Every row of the matrix is obtained by applying a right-shift to the previous row 
by one position, with the added proviso that the rightmost element of the previous row 
spills over in the shifting process to be "circulated" back to the leftmost element of the 
new row. Accordingly, the matrix His referred to as a circulant matrix. 

Before proceeding further, it is befitting that we briefly review the discrete Fourier 
transform and its role in the spectral decomposition of the circulant matrix H. 

i; DISCRETE fOURIER 'TRANSFORM 

Consider the N-by-1 vector x of Equation (6.222). The discrete Fourier transform (DFT) 
of the vector xis defined by the N-by-1 vector 

x = [X[N - 1], X[N - 2], ... , XIOW (6.224) 

where 

X[k] = • r.; L x[n] exp -j __!!_kn , 
1 N-l ( 2 ) 

vN n~1 N 
k = 0, 1, ... , N - 1 (6.225) 

The exponential term exp(-j2Trkn!N) is referred to as the kernel of the DPT. Correspond· 
ingly, the inverse discrete Fourier transform (IDFT) of the N-by-1 vector Xis defined by 

x(n] = • r.; L X[k] exp j __!!_kn , 
1 N-l ( 2 ) 

vN k~o N 
n = 0, 1, ... , N - 1 (6.226) 
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Although Equations (6.225) and (6.226) appear to be similar, they have different inter­
pretations. Given the signal vector x, Equation ( 6.225) provides a spectral representation 
of the signal computed at a set of discrete frequencies: fk = k!N, which are normalized 
with respect to the sampling rate. Given the transformed vector X, Equation (6.226) re­
covers the original signal vector x. We may therefore view Equation ( 6.225) as the analysis 
equation and Equation (6.226) as the synthesis equation. 

An important property of a circulant matrix, exemplified by the channel matrix H 
of Equation (6.223), is that it permits spectral decomposition as shown by 

H = QtAQ (6.227) 

where the superscript t denotes Hermitian transposition (i.e., the combination of complex 
conjugation and ordinary matrix transposition). Descriptions of the matrices Q and A are 
presented in the sequel in that order. 

The matrix Q is a square matrix defined in terms of the kernel of the N-point DFT 
as follows: 

( 27T exp -; N (N l)(N 1)) ··· exp(-j 2;; 2(N - 1)) exp(-i 2;; (N - 1)) 

( 27T 2)) ( 27T 2)) exp(-; 2;; (N - 2)) exp -; N (N l)(N ···exp -1N2(N 
1 

Q=v'N 

exp( -j 2;; (N - 1)) ( 
. 21T ) exp -1 N 2 exp(-; 2;;) 

1 1 

(6.228) 

From this definition, we readily see that the kith element of the N-by-N matrix, Q, starting 
from the bottom right at k = 0 and l = 0 and counting up step-by-step, is 

1 ( 27T ) 
qk1 = vNexp -j N kl, (k, I) = 0, 1, ... , N - 1 (6.229) 

The matrix Q is an orthonormal matrix or unitary matrix in that it satisfies the condition 

qtq =I (6.230) 

where I is the identity matrix. That is, the inverse matrix of Q is equal to the Hermitian 
transpose of Q. 

The matrix A is a diagonal matrix that contains the N discrete Fourier transform 
values of the sequence h0 , hi, ... , hv characterizing the channel. Denoting these transform 
values by AN-l• ... , Ai, A0, we may express A as 

['~' 
0 

AN-2 
A= : 

0 0 

(6.231) 

(The As here are not to be confused with the Lagrange multipliers in Section 6.12.) 
The DFT has established itself as one of the principal tools of digital signal processing 

by virtue of its efficient computation using the fast Fourier transform (FFT) algorithm.20 
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Specifically, the FFT algorithm requires on the order of N log2 N operations rather th 
the N 2 operations for direct computation of the DFT. For efficient implementation of ~n 
FFT algorithm, we should choose the block length Nan integer power of two. The co e 
putational savings obtained by using the FFT algorithm are made possible by exploitt 
the special structure of the DFT defined in Equation (6.225). Moreover, these savinng 
become more substantial as we increase the data length N. gs 

ill FREQUENCY-DOMAIN DESCRIPTION OF THE CHANNEL 

With this brief description of the DFT on hand, we are ready to resume our discussion of 
discrete multitone. First, we define 

s = qts (6.232) 

where S is the frequency-domain vector representation of the transmitter input. Each ele­
ment of the N-by-1 vector Smay be viewed as a complex-valued point in a two-dimen­
sional QAM signal constellation. Given the channel output vector x, we define its corre­
sponding frequency-domain representation as 

X= Qx (6.233) 

Using Equations (6.227), (6.232) and (6.233), we may rewrite Equation (6.219) in the 
equivalent form 

Hence, using the relation of Equation (6.230), we simply get 

X=AS+W 

where 

W=Qw 

In expanded form, Equation (6.235) reads as 

k = 0, 1, ... , N - 1 

(6.234) 

(6.235) 

(6.236) 

(6.237) 

where the set of frequency-domain values {Aklk1=-o' is known for a prescribed channel 
For a channel with additive white noise, Equation (6.237) implies that the receiver 

is composed of a set of independent processors operating in parallel. With the Ak all known, 
we may thus use the block of frequency-domain values {Xk}~01 to compute estimates of 
the corresponding transmitted block of frequency domain-values {Sk}l:",,::-0

1
• 

II DFf-BASED DMT SYSTEM 

Equations (6.235), (6.225), (6.226), and (6.237) provide the mathematical basis for the 
implementation of DMT using the DFT. Figure 6.60 illustrates the block diagram of the 
system derived from these equations and their practical implications. 

The transmitter consists of the following functional blocks: 

1> Demultiplexer, which converts the incoming serial data stream into parallel form. 
1> Constellation encoder, which maps the parallel data into N/2 multibit subchannels 

with each subchannel being represented by a QAM signal constellation. Bit allocat~on 
among the subchannels is also performed here in accordance with a loading 
algorithm. 
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FIGURE 6.60 Block diagram of the discrete-multitone (DMT) data-transmission system. 

• Inverse discrete Fourier transformer (IDFT), which transforms the frequency-domain 
parallel data at the constellation encoder output into parallel time-domain data. For 
efficient implementation of the IDFT using the fast Fourier transform (FFT) algo­
rithm, we need to choose N = 2k where k is a positive integer. 

P.. Parallel-to-serial converter, which converts the parallel time-domain data into serial 
form. Guard intervals stuffed with cyclic prefixes are inserted into the serial data on 
a periodic basis before conversion into analog form. 

• Digital-to-analog converter (DAC), which converts the digital data into analog form 
ready for transmission over the channel. 

Typically, the DAC includes a transmit filter. Accordingly, the time function h(t) should 
be redefined as the combined impulse response of the cascade connection of the transmit 
filter and the channel. 

The receiver performs the inverse operations of the transmitter, as described here: 

"' Analog-to-digital converter (ADC), which converts the analog channel output into 
digital form. 

P.. Serial-to-parallel converter, which converts the resulting bit stream into parallel form. 
Before this conversion takes place, the guard intervals (cyclic prefixes) are removed. 

1> Discrete Fourier transformer (DFT), which transforms the time-domain parallel data 
into frequency-domain parallel data; as with the IDFT, the FFT algorithm is used to 
implement the DFT. 
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ii>- Decoder, which uses the DFT output to compute estimates of the original rnulti-b' 
subchannel data supplied to the transmitter. it 

"' Multiplexer, which combines the estimates so computed to produce a reconstructj 
of the transmitted serial data stream. on 

l!li .APPLICATIONS OF DMT 

An important application of DMT is in the transmission of data over two-way channels 
Indeed, DMT has been standardized for use on asymmetric digital subscriber lines (ADSLs) 
using twisted pairs. The ADSL was described in Chapter 4. For example, DMT provides 
for the transmission of data downstream (i.e., from an Internet service provider to a sub­
scriber) at the DS1 rate of 1.544 Mb/sand the simultaneous transmission of data upstream 
(i.e., from the subscriber to the Internet service provider) at 160 kb/s. This kind of data 
transmission capability is well suited for handling data-intensive applications such as 
video-on-demand. 

DMT is also a core technology in implementing the asymmetric very-high-rate digital 
subscriber lines21 (VDSL), which differs from all other DSL transmission techniques be­
cause of its ability to deliver extremely high data rates. For example, VDSL can provide 
data rates of 13 to 26 Mb/s downstream and 2 to 3 MB/s upstream over twisted pairs that 
emanate from an optical network unit and connect to the subscriber over distances less 
than about 1 km. These high data rates allow the delivery of digital TV, super-fast Web 
surfing and file transfer, and virtual offices at home. 

The use of DMT for ADSL and VDSL provides a number of advantages: 

i>- The ability to maximize the transmitted bit rate, which is provided by tailoring the 
distribution of information-bearing signals across the channel according to channel 
attenuation and noise conditions. 

1> Adaptivity to changing line conditions, which is realized by virtue of the fact that 
the channel is partitioned into a number of subchannels. 

r>- Reduced sensitivity to impulse noise, which is achieved by spreading its energy over 
the many subchannels of the receiver. As the name implies, impulse noise is char­
acterized by long, quiet intervals followed by narrow pulses of randomly varying 
amplitude. In an ADSL or VDSL environment, impulse noise arises due to switching 
transients coupled to wire pairs in the central office and to various electrical devices 
on the user's premises. 

1!1 COMPARISON OF DIGITAL SUBSCRIBER LINES AND VOICEBAND MODEMS 

In Section 6.11 we discussed voiceband modems that are already close to operating at their 
theoretical limits of 33.6 kb/s upstream and 5 6 kb/s downstream. In this section we have 
discussed the application of DMT to VDSLs that can operate at data rates of about 2 to 
3 Mb/s upstream and 13 to 26 Mb/s downstream. These two vastly different sets of up­
stream/downstream data rates prompt the following question: How is it possible for VDSL 
to operate at rates about three orders of magnitude faster than voiceband modems o~er 
the same twisted pairs (i.e., phone lines)? The reason for this vast difference in operatlllg 
data rates between voiceband modems and VDSLs is not the twisted pairs; rather, it is the 
digital switches built into a public switched telephone network that prevent the tran~P.0~ 
of broadband data to subscribers (users) via voiceband modems. Simply put, the.d1gi~ 
switches treat digital data in the same way as voice signals for which they are prunar Y 
designed. 
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FIGURE 6.61 (a) Voiceband modem environment. (b) xDSL (digital subscriber line) environ­
ment, where x stands for "aS)'Dlmetric" or ''very high-rate." 

Figure 6.61 highlights the operational environments of voiceband modems and 
xDSLs, where x stands for A in ADSL and V in VDSL. In the model of Figure 6.61a 
pertaining to a voiceband modem, we have a relatively long transmission path between an 
Internet service provider (ISP) and a subscriber. Most importantly, the transmission path 
traverses through a narrowband public switched telephone network (PSTN), which limits 
the available channel bandwidth to about 3.5 kHz. In contrast, in the model of Figure 
6.61b pertaining to xDSL, the transmission path accommodates the transport of broad­
band data between the ISP and subscriber via a broadband integrated services digital 
network and a relatively short local loop consisting of a twisted pair. The system permits 
the coexistence of POTS and xDSL signals on the same local loop, which is made possible 
through the use of a pair of splitters, as indicated in Figure 6.61b; splitters, consisting of 
bidirectional low-pass and high-pass filters, are discussed in Section 4.8. 

Ill ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING22 

Discrete multitone is one particular discrete form of multichannel modulation. Another 
closely related form of this method of modulation is orthogonal frequency-division mul­
tiplexing (OFDM) that differs from DMT in areas of application and some aspects of its 
design. 

OFDM is used for data transmission over radio broadcast channels and wireless 
communication channels. This domain of application requires some changes to the design 
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of the OFDM system. Unlike DMT that uses loading for bit allocation, OFDM use 
fixed number of bits per subchannel. This restriction is made necessary by the fact tha: a 
broadcast channel involves one-way transmission, and in a wireless communications e ~ 
vironment the channel is varying too rapidly. Accordingly, in both cases it is not feasib~ 
for the transmitter to know the channel and how to "load" it. e 

Thus, the block diagram of Figure 6.60 applies equally to OFDM except for the fact 
that the signal constellation encoder does not include a loading algorithm for bit allocation 
In addition, two other changes have to be made to the design of the system: ' 

;. In the transmitter, an upconverter is included after the digital-to-analog converteno 
translate the transmitted frequency, thereby facilitating the propagation of the trans­
mitted signal over a radio channel. 

I> In the receiver, a downconverter is included before the analog-to-digital converter to 
undo the frequency translation that was performed by the upconverter in the 
transmitter. 

Applications of OFDM include the following: 

1. Wireless communications. 
OFDM, combined with coding and interleaving, provides an effective technique to combat 
multipath fading that is a characteristic feature of wireless communication channels. 

2. Digital audio broadcasting. 
OFDM has been adopted as the standard for digital audio broadcasting in Europe. Here 
again the system involves the combined use of coding and interleaving. 

(Error-control coding and related issues are discussed in Chapter 10.) 

I 6.14 Synchroniz.ution 

The coherent reception of a digitally modulated signal, irrespective of its form, requires 
that the receiver be synchronous to the transmitter. We say that two sequences of events 
(representing a transmitter and a receiver) are synchronous relative to each other when the 
events in one sequence and the corresponding events in the other occur simultaneously. 
The process of making a situation synchronous, and maintaining it in this condition, is 
called synchronization. 23 

From the discussion presented on the operation of digital modulation techniques, we 
recognize the need for two basic modes of synchronization: 

1. When coherent detection is used, knowledge of both the frequency and phase of the 
carrier is necessary. The estimation of carrier phase and frequency is called carrier 
recovery or carrier synchronization. 

2. To perform demodulation, the receiver has to know the instants of time at which 
the modulation can change its state. That is, it has to know the starting and finishing 
times of the individual symbols, so that it may determine when to sample and when 
to quench the product-integrators. The estimation of these times is called clock re· 
covery or symbol synchronization. 

These two modes of synchronization can be coincident with each other, or they can oc.cur 
sequentially one after the other. Naturally, in a noncoherent system, carrier synchroruza· 
tion is of no concern. 
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Synchronization can be implemented in one of two fundamentally different ways: 

1. Data-aided synchronization. 
In data-aided synchronization systems, a preamble is transmitted along with the data­
bearing signal in a time-multiplexed manner on a periodic basis. The preamble contains 
information about the carrier and symbol timing, which is extracted by appropriate pro­
cessing of the channel output at the receiver. Such an approach is commonly used in digital 
satellite and wireless communications, where the motivation is to minimize the time re­
quired to synchronize the receiver to the transmitter. Its limitations are two-fold: (1) re­
duced data-throughput efficiency that is incurred by assigning a certain portion of each 
transmitted frame to the preamble, and (2) reduced power efficiency by allocating a certain 
fraction of the transmitted power to the transmission of the preamble. 

2. Nondata-aided synchronization. 
In this second approach, the use of a preamble is avoided, and the receiver has the task of 
establishing synchronization by extracting the necessary information from the modulated 
signal. Both throughput and power efficiency are thereby improved but at the expense of 
an increase in the time taken to establish synchronization. 

In any event, synchronization is basically a statistical parameter estimation problem. 
A principled approach for solving such a problem is maximum likelihood estimation (see 
Section 5 .5), which proceeds by first formulating a log-likelihood function of the parameter 
of interest given the received signal. This formulation is relatively straightforward by treat­
ing the channel noise as a Gaussian process. Most important, it requires no prior infor­
mation about the modulated signal. 

In this section we confine our attention to nondata-aided forms of carrier and timing 
synchronization systems. In this context, we may identify two approaches for solving the 
synchronization problem, given a modulated signal with suppressed carrier to conserve 
power: 

1. Classical approach. 
An essential building block in the classical approach to synchronization is the phase-locked 
loop. (The phase-locked loop was discussed in Chapter 2.) Specifically, for carrier recovery 
the receiver requires the use of a suppressed-carrier tracking loop for providing a coherent 
secondary carrier (subcarrier) reference. For example, we may use a variant of the Costas 
loop or the Mth power loop for M-ary PSK. The standard Costas loop for double sideband­
suppressed carrier (DSB-SC) modulation was discussed in Chapter 2. As for the Mth power 
loop, it consists of the cascade connection of an Mth power-law device, band-pass filter, 
phase-locked loop, and frequency divider by M. The objective here is to exploit the ac­
quisition and tracking properties of the phase-locked loop. For further discussion of the 
Mth power loop, the reader is referred to Problem 6.47. 

2. Algorithmic (modern) approach. 
In the modern approach, the solution to maximum likelihood estimation is formulated in 
algorithmic form using discrete-time signal processing. Specifically, implementation of the 
synchronizer is built on an algorithm that provides an estimate of carrier phase or symbol 
timing on an iteration-by-iteration basis. The processing is performed in the baseband 
domain to pave the way for the use of discrete-time (digital) signal processing. 

In this section we describe the algorithmic approach to synchronization for M-ary PSK 
systems for both carrier recovery and symbol-timing recovery. 
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The approach taken in the exposition is sequential in that timing recovery is p 
formed before phase recovery. The reason for so doing is that if we know the group detr· 
incurred by transmission through the channel, then one sample per symbol at the mate~~ 
filter output in the receiver is sufficient for estimating the unknown carrier phase. Mor 
over, the computational complexity of the receiver is minimized by using synchronizatioe­
algorithms that operate at the symbol rate 1/T. n 

DECISION· DIRECTED RECURSIVE ALGORITIIM FOR PHASE RECOVERY 

As remarked earlier, the first important step in solving the synchronization problem is 1 
formulate the log-likelihood function for the carrier phase e, given the Gaussian noise~ 
contaminated received signal. Let 1(1:!) denote this log-likelihood function, which serves as 
the objective function for estimating e. The next step is to determine the derivative of l(O) 
with respect to &. The final step is to formulate a recursive (iterative) algorithm for com­
puting a maximum likelihood estimate of the unknown I:! in a step-by-step manner. 

Evaluation of al( O)la fJ" 

Let sk (t) denote the transmitted signal for symbol k = 0, 1, ... , M - 1: 

f2E sdt) = fr cos(2Trf.t + ak), 0 :=; t :=; T (6.238) 

where Eis the symbol energy, Tis the symbol period, and 

27r 27r 
ak = 0, M , ... , (M - 1) M (6.239) 

Equivalently, we may write 

f2E sk(t) = {T cos(27rf.t + ak)g(t) (6.240) 

where g(t) is the shaping pulse, namely, a rectangular pulse of unit amplitude and duration 
T. Let 'Tc denote the carrier (phase} delay, and 'Tg denote the envelope (group) delay, both 
of which are introduced by the channel. By definition, 'Tc affects the carrier and 'Tg affects 
the envelope. Then the received signal is 

f2E x(t) = fr cos(27rf.(t - Tc) + ak)g(t - 'Tg) + w(t) 

f2E 
= vr cos(27rfJ + e + ak)g(t - 'Tg) + w(t) 

(6.241) 

where w(t) is the channel noise and I:! is defined as -2Trf,'Tc to be consistent with the 
notation in Section 6.6. Both the carrier phase I:! and group delay 'T" are unknown. How­
ever, it is assumed that they remain constant over the observation interval 0 '.'£ t !O To or 
through the transmission of L0 = T0/T symbols. Equivalently, we may write (using 1in 
place of 'Tg to simplify matters} 

f2E x(t) = vr cos(27rfct + e + ak) + w(t), (6.242) 

'A reader who is not interested in the formal derivation of al(e)/ae may omit this subsection and move onto the 
next subsection without loss of continuity. 



6.14 Synchronization 4 51 

At the receiver the basis functions are defined by 

</J1(t) = ft cos(27rfct), T $ t $ T + T (6.143) 

<P2(t) ft si~(17rfct), T $ t $ T + T (6.144) 

Here it is assumed that the receiver has perfect knowledge of the carrier frequency fc; 
otherwise, a carrier frequency offset has to be included, which complicates the analysis. 
Accordingly, we may represent the received signal x(t) by the vector 

(6.145) 

where 

J
T+r 

X;(T) = r X(f)cp;(f) dt, i = 1, 1 (6.146) 

In a corresponding fashion, we may express the signal component of x(t) by the vector 

where ak is the transmitted symbol and 

J
T!r f2i 

S;(ak> e, T) = T {T cos(11Tfct + e + ak)cp,(t) dt for i = 1, 1 

Assuming that fc is an integer multiple of the symbol rate llT, we have 

S1(ab e, T) = VE cos(e + ak) 

Sz(ab e, T) = -VE sin(e + ak) 

We may thus write 

where w is the noise vector 

w = [::] 

with 

W; f +r w(t)cp;(t) dt, i= 1, 1 

(6.147) 

(6.148) 

(6.149) 

(6.150) 

(6.151) 

(6.251) 

(6.253) 

Thew; is the sample value of a Gaussian random variable W of zero mean and variance 
N0 ll, where N 0 ll is the (two-sided) power spectral density of the channel noise w(t). 

The conditional probability density function of the random vector X, given the trans­
mission of symbol ak and the occurrence of carrier phase 8 and group delay T, is 

fx(xlab e, T) = 1T~o exp(-~o II xk(T) - s(ab e, T) 11
2
) (6.154) 
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For ak = 0 the received signal x(t) equals the channel noise w(t), so 

fx(xlak = 0) = _Nl exp(-_!_ II xk(T) 11
2

) 
7r. o No 

Hence we may define the likelihood function for M-ary PSK at the receiver as 

L( () ) = fx(xlab 0, T) 
ab 'T fx(xlak = 0) 

= exp(~o xl(T)s(ah 0, T) - ~0 II s(ab 0, T) 11
2

) 

In M-ary PSK, 

II s(ab 0, T) 11 = constant 

(6.255) 

(6.256) 

as the message points lie on a circle of radius v'E. Hence, ignoring the second term in the 
exponent, we may simplify the likelihood function as 

L(ab o, T) = exp(~o xf(T)s(ab o, T)) (6.257) 

Assuming that we transmit a sequence of L 0 statistically independent symbols, namely, 

a = [ao, ai, . .. , aL0--1J'I' 
the resulting likelihood function is 

L(a, (), T) = 

1

TI
1 

exp(N
2 

Xk(T)s(ab (), T)) 
k~O O 

The log-likelihood function is therefore 

l(a, 0, T) = log L(a, 0, T) 
2 Lo-1 

= N 2: xk( T)s(ab 0, T) 
O k=O 

From Equations (6.249) and (6.250) we deduce 

sk(O) = s(ab 0, T) 

= v'E [ cos(&k + O) ] 
-sin(&k + O) ' 

k = 0, 1, ... , L0 - 1 

(6.258) 

(6.259) 

(6.260) 

(6.261) 

where &k is an estimate of the actual Olk produced at the detector output for the symbol 
ak. Correspondingly, we may express the matched filter output as 

_ [ X1,k] x. -
-x2,k 

Hence, using this definition and Equation (6.261) in Equation (6.260), we get 

lv'E Lo-1 
l(O) = -N L [x1,k cos(&k + 0) + x 2,k sin(&k + fJ)] 

O k~O 

lv'E Lo-1 
= -N L [(x1,k cos &k + X2,k sin&k) cos() 

O k~O 

(6.262) 
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Differentiating /(0) with respect to 0, we obtain 

al(O) 2VE Lo-l 

-- = --N 2: [(x1,k cos ak + Xz,k sin ak) sin 0 ao 0 k~o (6.263) 
+ (X1,k sin ak Xz,k cos ak) cos OJ 

We may simplify Equation (6.263) by introducing the following notations: 

ik = x1,k + jx2,k (6.264) 

and 

ak = efak 

= cos ak + j sin ak 
(6.265) 

where xk is the complex envelope (i.e., baseband value) of the matched filter output due 
to the kth transmitted symbol, and ak is a symbol indicator in the message constellation 
of the M-ary PSK. We may thus write 

Re[atxk] = Re[(cos ak - j sin ak)(x1,k + jx2 ,k)] 

= X1,k COS ak + Xz,k sin ak 

Im[aZ xk] = Im[(cos ak - j sinak)(x1,k + jx2,kll 

= - X1,k Sin ak + Xz,k COS ak 

We may also note from Euler's formula: 

e-fO = COS 0 - j sin 0 

Accordingly, we may rewrite Equation (6.263) in the compact form: 

a/(O) 2VE L~ 1 * .,,, * .,,, 
- = L.. {(Re[akxk])(Im[e-1 J) + (Im[akik])(Re[e-1 J)) ao N 0 k~o 

2VE L 0-1 .. 

= -- 2: Im[aZxke-18] 
No k~o 

where ak is an estimate of ak> and the asterisk denotes complex conjugation. 

RECURSIVE ALGORITHM FOR MAxlMUM LIKELIHOOD ESTIMATION 

OF THE CARRIER PHASE 

(6.266) 

(6.267) 

(6.268) 

(6.269) 

With the formula of Equation ( 6.269) for the derivative of the log-likelihood function /(0) 
with respect to the carrier phase e at hand, we are now ready to formulate an algorithm 
that seeks to maximize /(0). We would like to perform the maximization in an iterative 
fashion so that the receiver is enabled to respond to the received signal on a symbol-by­
symbol basis. To that end, we may build on the following algorithmic idea borrowed from 
adaptive filtering (see the discussions on the LMS algorithm presented in Chapters 3 
and 4): 

(
Updated) ( Old ) ( Step-size ) (Error) 
estimate = estimate + parameter signal 

(6.270) 

where the error signal, or the adjustment signal to be more precise, is defined as the 
instantaneous value of the gradient of the log-likelihood function /(OJ with respect to 0. 
Note that the parameter adjustment applied to the old estimate in Equation (6.270) is 
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positive as the objective here is to perform gradient ascent. From Equation (6.269) we 
readily see that the error signal (i.e., the instantaneous value of al(O)/a() due to the trans­
mission of a single symbol) is given by 

(6.271) 

where the scaling factor 2VE/N0 is accounted for in what follows. Also, we have used n 
in place of k to denote a time step or iteration of the algorithm. Accordingly, we use 
Equation (6.270) to write 

e[n + 1] = e[n] + ye[n] (6.272) 

where e[nJ is the old estimate of the carrier phase o, e[n + 11 is the updated estimate of 
(),and y is the step-size parameter; the scaling factor 2VE/N0 is absorbed in y. 

Equations (6.271) and (6.272) define the recursive algorithm for phase recovery. This 
algorithm is implemented using the system shown in Figure 6.62, which may be viewed 
as a recursive generalization of the Costas loop. We may therefore refer to it as the recursive 
Costas loop for phase synchronization. 

The following points should be noted in Figure 6.62: 

I>- The detector supplies an estimate of the transmitted symbol a., given the matched 
filter output. 

I> The look-up table supplies the value of exp(-;il [n]) = cos e [nJ - sin O[n] for an 

input O[n]. 
11> The output of the error generator is the error signal e[ n ]. 

1> The block labeled z- 1 is a unit-delay element with the delay equal to the symbol 
period T. 

The recursive Costas loop of Figure 6.62 uses a first-order digital filter. To improve 
the tracking performance of this synchronization system we may use a second-order digital 
filter. Figure 6.63 shows an example of a second-order digital filter made up of a cascade 
of two first-order sections, with pas an adjustable loop parameter. An important property 
of a second-order filter used in the Costas loop for phase recovery is that it will eventually 
lock onto the incoming carrier with no static error, provided that the frequency error 
between the receiver and transmitter is initially small. 
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FIGURE 6.63 Second-order digital filter. 
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I!! NoNDATA-AfDED RECURSIVE ALGORITHM FOR SYMBOL TIMING 

For timing synchronization the only assumption made is that the receiver has knowledge 
of the carrier frequency fc. The requirement is to develop an algorithm for recursive esti­
mation of the group delay T incurred in the course of transmitting the modulated signal 
through the channel. 

Let L(ak> e, r) denote the likelihood function of r, which is also a function of trans­
mitted symbol ak and carrier phase e. The likelihood function is defined by Equation 
(6.257). To proceed further we must remove the dependencies of L(ak> e, r} on the trans­
mitted data sequence {ak) and carrier phase e, as described next. 

To remove the dependence on ewe average the likelihood function L(ak> e, r}, but 
not its logarithm, over all possible values of e inside the range [O, 217]. Assuming that e is 
uniformly distributed inside this range, which is usually justifiable, we may write 

1 {lrr ( 2 ) 
= 

217 
Jo exp No x'I(r)s(ab e, r) de 

The exponent in L(ab e, T) is expressed by (see Problem 6.49) 

2 T 2VE •- _ 8 Noxk(T)s(ak> e, r) = No Re[akxk(T)e I l 

2v1E 
= No Re[lakxk(r)J exp(j(arg[xk(r)] - arg[ak] - O))] (6.273) 

2v1E 
= No lakxk(T) I cos(arg[xk(r)] arg[ak] e) 

Hence, 

(6.274) 

where, in the last line, we have made the substitution 

qi = arg[xdT)] - arg[ad - 0 

We now invoke the definition of the modified Bessel function of zero order, as shown by 
(see Appendix 3) 

1 l2rr Io(X) = - exco' ~ dcp 
21T 0 

(6.275) 
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Hence, we may express the average likelihood function L.v(ab T) as 

(6.276) 

where x k ( T) is the complex envelope of the matched filter output in the receiver due to th 
kth transmitted symbol ak. For M-ary PSK, we have e 

lakl = 1 

Hence, Equation (6.276) reduces to 

for all k 

(6.277) 

We thus see that averaging the likelihood function over the carrier phase ()has also re­
moved dependence on the transmitted symbol ak far M-ary PSK. 

Finally, taking account of the transmission of L 0 independent symbols a0 , ai, .. , , 
a,-o-" we may express the overall likelihood function of T as 

L0-t 

L.v( T) = IT Lav( ab T) 
k=O 

(6.278) 

Now we can take the logarithm of Lav( T) to obtain the log-likelihood function of T as 

(6.279) 

To proceed further, we need to approximate l.v( T). To that end we first note thatthe 
modified Bessel function I 0 (x) may be expanded in a power series as (see Appendix 3) 

- Gxrm 
I 0 (x) = ~o (m!)2 

For small values of x we may thus approximate I 0 (x) as 

x2 
I 0(x) = 1 + 4 

We may further simplify matters by using the approximation 

log I0(x) = log( 1 + ~
2

) 
x1 

4 
for small x 

For the problem at hand, small x corresponds to small signal-to-noise ratio. Under this 
condition, we may approximate Equation (6.279) as 

(6.280) 
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where, as mentioned earlier, xk (1·) is the complex envelope of the matched filter output 
due to the kth transmitted symbol. 

Differentiating l.v( T) with respect to the group delay T, we obtain 

al.h) _ E 
1~ 1 

a 1_ ( ll 2 -a;- - Ni; 1f20 h xk T 

2E L 0-I 

= N 2 2: Re[xt(T)xk(T)] 
O k~O 

(6.281) 

where x: ( T) is the complex conjugate of xk ( T) and xi, ( T) is its derivative with respect to T, 
Accordingly, we may define the error signal for timing recovery as (accounting for the 
scaling factor 2E!Ni; in what follows) 

e[n] = Re[x~(T)x~(T)] 

where we have used n in place of k to be consistent with the notation in Figure 6.62. Let 
Tn denote the estimate of the unknown delay Tat time t = nT. Then, introducing the 
definitions 

and 

x~(T) = x'(nT + fn) 

we may reformulate the error signal e(n) as 

e[n] = Re[x*(nT + fn)x'(nT + f.)] 
Calculation of the error signal e[n] requires the use of two filters: 

1. The complex matched filter for generating in( T). 

2. The derivative matched filter for generating x~(T). 

(6.282) 

The receiver is already equipped with the first filter. The second one is new. In practice, 
the additional computational complexity due to the derivative matched filter is objection­
able. We may dispense with the need for it by using a finite difference to approximate the 
derivative x ~( T) as 

x'(nT + 7-") = ~ [ x( nT + f + 1'n+ 112 ) - x( nT - f + fn-112) 1 (6.283) 

where rn±Ill are the timing estimates computed at nT ± T/2. It is desirable to make one 
further modification to account for the fact that timing estimates are updated at multiples 
of the symbol period T and the only available quantities are fn. Consequently, we replace 
Tn+ 112 by fn (which represents the latest estimate of T) and replace f._ 112 by f._ 1 (which is 
the estimate of T before the last one). We may thus rewrite Equation (6.283) as 

x'(nT + f.) = ~ [ x( nT + f + f") -x( nT f + fn-i)] (6.284) 

and so finally redefine the error signal as 

e[n] = Re{x*(nT + +n{ x( nT + f + f.) -x( nT - f + fn- 1 )]} (6.285) 

where the scaling factor 1/T is also accounted for in what follows. 
We are now ready to formulate the recursive algorithm for timing recovery: 

c[n + 1] = c[n] + ye[n] (6.286) 
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FIGVRE 6.64 Nondata-aided early-late delay synchronizer. 

where y is the step-size parameter in which 2E/N~ and 1/T are absorbed, and the error 
signal e[n] is defined by Equation (6.285). The c[n] is areal number employed as the control 
for the frequency of an osclllator, referred to as a number-controlled oscillator (NCO). 
The scheme for implementing the timing recovery algorithm of Equations (6.285) and 
(6.286) is shown in Figure 6.64. This scheme is analogous to the continuous-time version 
of the early-late gate synchronizer widely used for timing recovery. It is thus referred to 
as a nondata-aided early-late delay (ND A-ELD) synchronizer. At every iteration, it works 

on three successive samples of the matched filter output, namely, .x( nT + f + 1-,,), 

x( nT + Tn) and x( nT + I - 7,,_1). The first sample is early and the last one is late, 

both with respect to the middle one. 
Note that we could have simplified the derivations presented in this section by using 

the band-pass to complex low-pass transformation described in Appendix 2. We did not 
do so merely for the sake of simplifying the understanding of the material presented here. 

6.15 Computer Experiments: 
Carrier Recovery and Symbol Timing 

In this section we illustrate the operations of the recursive Costas loop and nondata-aided 
early-late delay synchronizer by considering a coherent QPSK system with the following 
specifications: 

(i) Channel response: raised cosine (Nyquist) with rolloff factor a = 0.5. 
(ii) Loop filter: first-order digital filter with its transfer function defined by 

1 
H(z) = z - (1 - yA) 

where y is the step-size parameter and A is a parameter to be defined. 
(iii) Loop bandwidth, BL= 2% of the symbol rate 1/T; that is, BLT= 0.02. 

(6.287) 
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' 
Experiment 1: Carrier Phase Recovery 

In order to investigate the phase-acquisition behavior of the recursive Costas loop, we need 
to have the so-called S-curve of the phase-error generator. This is defined as the expectation 
of the adjustment signal e[n], conditioned on a fixed value of the phase error 

q;=()-0 

where () is the actual value of the carrier phase and e is its estimate. That is, 

S(q;) = E[e[n] I q;] (6.288) 

Experimentally, S(q;) is measured by opening the recursive Costas loop of Figure 6.62 and 
measuring the average of the adjustment signal e[n], as indicated in Figure 6.65. 

The implementation procedure consists of the following steps. First, the complex 
envelope of the received signal is generated, which is given by 

(6.289) 

where ak = 0, 7r/2, 7r, 37r/4; Tc is the carrier delay and Tg is the group delay; and w(t) is 
the complex-valued channel noise. The overall channel response g(t) is given by the Ny­
quist pulse (see Section 4.5) 

( ) _ sin( 7rt/T) . cos( 7rat/T) 
g t - ( 7rt/T) 1 - 4a2t2/T2 (6.290) 

where a = 0.5. As pointed out earlier, we assume that the symbol timing (i.e., group 
delay Tg) is known, and the problem is to estimate the carrier phase () = -27rfcrc. The 
effect of ()is to shift an element of the signal constellation in the manner indicated in Figure 
6.66. 

Using the experimental procedure described in Figure 6.65, the S-curve of the QPSK 
system may now be measured. Figure 6.67a shows the ideal S-curve, assuming an infinitely 
large signal-to-noise ratio. This curve displays discontinuities at <p = ±m7rl4, where 
m = 0, 1, 3, ... , because of ambiguity encountered in the detection of the transmitted 

exp(-jB) 

S(</J) 

FIGURE 6.65 Scheme for measuring the S-curve for carrier phase recovery. 
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FIGURE 6.66 Illustrating the effect of carrier phase 0 on a state of the QPSK signal. 

symbol ak. The presence of channel noise tends to roundoff the discontinuities, as shown 
in the experimentally measured S-curve of Figure 6.67b. The results presented in Figure 
6.67b were obtained for E/N0 = 10 dB. Recall that the in-phase and quadrature compo­
nents of the narrowband noise have an identical Gaussian distribution with zero mean 
and the same variance as the original narrowband noise; these two components define 
w(t). 
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FIGURE 6.67 Performance of recursive Costas loop. (a) S-curve for (E/N0 ) = oo. (b) S-curve for 
(E/N0 ) = IO dB. 
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FIGURE 6.68 Effects of varying the step-size parameter on convergence behavior of the recur­
sive Costas loop. 

When steady-state conditions have been established, the estimated phase 8 will fluc­
tuate around the true value 8. The extent of these fluctuations depends on the step-size 
parameter y and the received signal-to-noise ratio: 

(i) Figure 6.68 plots the phase error <p versus the normalized time t/T for two dilierent 
values of step-size parameter y, namely, 0.1 and 0.5, and fixed EIN0 = 20 dB. This 
figure clearly shows that the smaller we make y the smaller the steady-state fluctu­
ations in the phase error <p will be. However, this improvement is attained at the 
expense of a slower rate of convergence of the algorithm. The number of iterations 
needed by the algorithm to reach steady-state is approximately given by 

L __ 1_ 
o - 2BLT 

The normalized bandwidth BLT is itself approximately given by 

BLT= yA 
4 

(6.291) 

(6.292) 

where A is the slope of the S-curve measured at the ongm. For y = 0.1, and 
BLT= 0.02, Equation (6.291) yields L0 = 25 iterations, which checks with the solid 
curve plotted in Figure 6.68. Moreover, from Equations (6.291) and (6.292) we see 
that L0 is inversely proportional to y, which again checks with the results presented 
in Figure 6.68. 

(ii) Figure 6.69 plots the phase error <p versus the normalized time t/T for three different 
values of E/N0 , namely, 5, 10, and 30 dB, and fixed y = 0.08. We now see that the 
larger we make the signal-to-noise ratio, the smaller the steady-state fluctuations in 
the phase error <p will be. Moreover, the rate of convergence of the algorithm also 
improves with increased signal-to-noise ratio, which is intuitively satisfying. 
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FIGURE 6.69 Convergence behavior of the recursive Costas loop for varying E/N0 • 

Figure 6. 70 plots the variance of the phase error (averaged over 100 trials of the 
experiment) versus EIN0 (measured in decibels) for BLT= 0.02 and'}'= 0.08. This figure 
also includes a plot of the modi"fied Cramer-Rao bound defined by24 

1 
MCRB(fi) = 2L

0
(E/N

0
) (6.293) 

This bound is a modification of the ordinary Cramer-Rao bound, which is a lower bound 
on the variance of any unbiased estimator. The modification to this bound is made to 
overcome computational difficulties encountered in practical synchronization problems. 

10-2.------r---~---~---~----, 

---e-- Tracking 
--· MCRB 

QPSK,BLT= 0.02 

10-5 '---~~~-~---~---~---~ 
5 10 15 20 25 30 

EIN,.dB 

FIGURE 6. 70 Comparison of the measured tracking-error variance of the recursive Costas loop 
against theory for varying E/N0 • 
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FIGURE 6. 71 Scheme for measuring the S-curve for the recursive early-late-delay synchronizer. 

In any event, the experimental and theoretical results presented in Figure 6.70 are in very 
close agreement for (E/N0 ) ~ 10 dB. 

Experiment 2: Symbol Timing Recovery 

To measure the S-curve for the nondata-aided early-late delay synchronizer for symbol 
timing recovery, we may use the experimental set-up shown ion Figure 6.71, where the 15 
in S( 15) refers to the timing offset. The S-curve so measured is plotted in Figure 6. 72 for 
EIN0 = 10 dB and EIN0 = oo. 

Figure 6. 73 plots the normalized value of the experimentally measured symbol timing 
error versus E/N0 for two different values of step-size parameter ')', namely, T/20 and 
T/200. This figure also includes theoretical plots of the corresponding modified Cramer­
Rao bound of Equation (6.293) adapted for symbol-timing error. From the results pre­
sented here, we observe that as the step-size parameter yis reduced, the normalized timing 
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FIGURE 6. 72 S-curve of NDA-ELD synchronizer measured under noiseless and noisy 
conditions. 
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FIGURE 6. 73 Comparison of tracking-error variance of the NOA-ELD synchronizer against 
theory for varying E/N0 and two step-size parameters. 

error is reduced and the range of EIN0 for which the modified Cramer-Rao bound holds 
(albeit in an approximate fashion) is enlarged. 

I 6.16 Summary and Discussion 

With the basic background theory on optimum receivers of Chapter 5 at our disposal, in 
this chapter we derived formulas for, or bounds on, the bit error rate for some important 
digital modulation techniques in an A WGN channel: 

1. Phase-shift keying (PSK), represented by 
1> Coherent binary phase-shift keying (BPSK). 
_. Coherent quadriphase shift keying (QPSK) and its variants, namely, the offset 

QPSK and 1T/4-shifted QPSK. 
1> Coherent M-ary PSK, which includes BPSK and QPSK as special cases withM = 2 

and M = 4, respectively. Coherent M-ary PSK is used in digital satellite 
communications. 

I> Differential phase-shift keying (DPSK), which may be viewed as the pseudo-non· 
coherent form of PSK. 

2. Coherent M-ary quadrature amplitude modulation (QAM), which is a hybrid form 
of modulation that combines amplitude and phase-shift keying. For M = 4 it includes 
QPSK as a special case. M-ary QAM is basic to the construction of high-speeD 
voiceband modems. 

3. Frequency-shift keying (FSK), represented by 
i> Coherent binary frequency-shift keying. 
1> Coherent forms of minimum shift keying (MSK) and Gaussian minimum shift 

keying (GMSK); GMSK is basic to the construction of GSM wireless 
communications. 
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"" Coherent M-ary FSK. 

"'" Noncoherent binary FSK. 

In this chapter we also studied two alternative techniques for passband data trans­
mission: carrierless amplitude/phase modulation (CAP) and discrete multitone (DMT). In 
the case of an A WGN channel, the performance of CAP and DMT are equivalent because 
the DMT may be viewed as a linear reversible transformation of a single-carrier modulated 
signal. However, they perform quite differently in a practical setting that deviates from 
this idealized model.25 DMT has been standardized for use on asymmetric digital sub­
scriber lines (ADSLs) using twisted pairs. CAP, with the use of decision feedback equali­
zation, provides another approach for solving the ADSL problem. CAP is also used for 
data transmission in local area networks for premises' distribution systems. 

DMT is a form of multichannel modulation, and so is orthogonal frequency-division 
multiplexing (OFDM). The basic difference between DMT and OFDM is that DMT per­
mits the use of loading to optimize information capacity, whereas OFDM does not. This 
difference arises because of their different domains of application. DMT applies to two­
wire channels such as ADSLs, whereas OFDM applies to broadcasting and wireless 
channels. 

Irrespective of the digital modulation system of interest, synchronization of the re­
ceiver to the transmitter is essential to the operation of the system. Symbol timing recovery 
is required whether the receiver is coherent or not. If the receiver is coherent, we also 
require provision for carrier recovery. In the latter part of the chapter, we discussed non­
data-aided synchronizers to cater to these two requirements with emphasis on M-ary 
phase-shift keying signals in which the carrier is suppressed. The presentation focused on 
iterative synchronization techniques that are naturally suited for the use of digital signal 
processing. 

I NOTES AND REFERENCES 

1. For an early tutorial paper reviewing different digital modulation techniques (ASK, FSK, 
and PSK) based on a geometric viewpoint, see Arthurs and Dym, (1962). See also the 
following list of books: 

"" Anderson (1998, Chapter 3) 
!> Benedetto and Biglieri (1999, Chapters 4 and 5) 
ll- Lee and Messerschmitt (1994, Part II) 
!>- Proakis (1995, Chapter 5) 
il> Sklar (1988, Chapter 3) 
I> Viterbi and Omura (1979, pp. 47-127) 

2. For an early paper on the offset QPSK, see Gitlin and Ho (1975). 

3. The 1T/4-shifted QPSK was first described in the open literature in Akaiwa and Negata 
(1987). 

4. Chennakeshu and Sauliner (1993) use computer simulations to study the performance of 
1T/4-shifted QPSK in a digital wireless communications environment. The pulse-shaping 
signal used in the generation of the 1T/4-shifted QPSK signal is based on the square root 
raised cosine spectrum (see Problem 4.3 8). In this latter paper, it is shown that the perfor­
mance of 1T/4-shifted QPSK may degrade rapidly in such an environment. The differential 
detector of Figure 6.13 follows Chennakeshu and Sauliner (1993). 
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5. For a derivation of Equation (6.65), see Cioffi (1998). 

6. The derivation of Equation (6.76) was first reported in a 1975 internal Bell Laborat . 
memorandum authored by We1'.1er .. A little la~er, Falconer (1975) issued ~nother Bell~~~ 
oratories memorandum, m which it was pomted out the symbol rotation is not re U 
needed if we did not want to be compatible with existing QAM or oilier bandpass sign~ Y 
thereby simplifying the mathematical representation of CAP signals (and therefore th ~' 
implementation), as shown in Equation (6.77). However, the terminology "CAP" was e1r 
coined until 1987 when carrierless amplitude/phase modulation was replaced by CAP~ 
the standards representative, Garry Smitli, of Bell Laboratories. The first detailed discussi 
of CAP in the context of digital subscriber lines was presented in a two-part report ~n 
Werner (1992, 1993). In'a separate report by Chen, Im, and Werner (1992), the feasibili~ 
of CAP for use on digital subscriber lines was studied; see also the book by Chen (199S) 
pp. 461-473. The application of CAP to local area networks, involving the use of twisted 
pairs for lengtlis less than 100 m, is discussed in the paper by Im and Werner (1995)· the 
maximum length of 100 mis specified by a standard for the wiring of premises. ' 

The digital implementation of a baseband equalizer similar to the CAP receiver of 
Figure 6.24 is discussed in Mueller and Werner (1982). 

7. The MSK signal was first described in Doelz and Heald (1961). For a tutorial review of 
MSK and comparison with QPSK, see Pasupathy (1979). Since die frequency spacing is 
only half as much as the conventional spacing of 1/T b that is used in the coherent detecnon 
of binary FSK signals, this signaling scheme is also referred to as fast FSK; see deBuda 
(1972). 

8. For early discussions of Gaussian MSK, see Murota and Hirade (1981) and Ishizuka and 
Hirade (1980). 

9. The analytical specification of the power spectral density of digital FM is difficult to han­
dle, except for the case of a rectangular shaped modulating pulse. The paper by Garrison 
(1975) presents a procedure based on the selection of an appropriate duration-limited/ 
level-quantized approximation for the modulating pulse. The equations developed theiein 
are particularly suitable for machine computation of the power spectra of digital FM sig· 
nals; see die book by Stuber ( 1996). 

10. A detailed analysis of the spectra of M-ary FSK for an arbitrary value of frequency deviation 
is presented in the paper by Anderson and Salz (1965). The results shown plotted in Figure 
6.36 represent a special case of a formula derived in that paper for a frequency deviation 
of k= 0.5. 

11. The standard method of deriving the bit error rate for noncoherent binary FSK, presented 
in McDonough and Whalen (1995) and that for differential phase-shift keying presented 
in Arthurs and Dym (1962), involves die use of the Rician distribution. This distribution 
arises when the envelope of a sine wave plus additive Gaussian noise is of interest; see 
Chapter 1 for a discussion of the Rician distribution. The derivations presented in Section 
6.6 avoid the complications encountered in the standard method. 

12. The optimum receiver for differential phase-shift keying is discussed in Simon and Divsalar 
(1992). 

13. For a technical discussion of various kinds of modems, with emphasis on their operational 
characteristics, see the books of Lewart (1988) and Hold (1997). 

14. In a two-part paper by Wei (1984), differential encoding is applied to convolutionalchan· 
nel coding. Several eight-state convolutional encoders are described therein, which resuh 
in codes that are transparent to signal element rotations. In particular, in part II of.the 
paper, Wei describes design rules and procedures for a 90-degree rotationally invanant 
convolutional code that has been adopted for use in the V.3 2 modem with trellis coding. 
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15. Nonuniform sampling of band-limited signals is discussed in the paper by Yen (1956). The 
main results derived in that paper are contained in four generalized theorems. Equation 
(6.188) is based on Theorem III of Yen's paper. 

In the paper by Kaler, Mazo, and Saltzberg (1993), this particular theorem due to 
Yen is used to formulate the fundamental philosophy underlying the design of the bidirec­
tional digital modem; see also the patent by Ayanoglu et al. (1995). 

16. For a discussion of the second realization of a digital modem, see the article by Humbler 
and Troulis (1996). 

17. For a detailed description of the V.34 high-speed modem standard, see Forney et al. (1996). 
The trellis codes used in the V.34 modem are due to Wei (1984, 1987). 

18. The idea of multichannel modulation may be traced to the early work of Chang (1966), 
Saltzberg (1967), and Weinstein and Ebert (1971). A mathematical treatment of the opti­
mality of multitone modulation for a linear channel with severe intersymbol interference 
is presented in Kalet (1989). However, it was the work done by Cioffi and co-workers that 
led to the standardization of discrete multitone (DMT) for asymmetric digital subscriber 
lines; for details, see Ruiz et al. (1992), Chow and Cioffi (1995), Section 7.2 of the book 
by Starr et al. (1999), and Chapter 11 of Cioffi (1998). Problem 6.44 is adapted from Cioffi 
(1998). 

19. The method of Lagrange multipliers for determining the extreme values of the function 

y = f(x) 
subject to the constraint 

cp(x) = 0 
follows from the following theorem: A necessary and sufficient condition for an extremum 
of a continuously differentiable function f(x) is that its differential with respect to x van­
ishes at the critical (i.e., maximum and minimum) points of the function. Accordingly, at 
the crirical points of f(x) we have 

'!l dx = 0 (1) 
ax 

Moreover, since cp(x) = 0, its differential also vanis.hes as shown by 

acp dx = O (2) 
ax 

Hence multiplying (2) by some parameter,\. and then adding the result to (1), we get 

(
at + A. acp) dx = 0 
ax ax 

Since dx is an independent increment, we immediately deduce that 

a 
ax (f(x) + ,\. cp(x)) = 0 

This equation is a mathematical statement of the method of Lagrange multipliers. The 
parameter ,\. is called the Lagrange multiplier. The material presented in this note follows 
Sokolnikoff and Redheffer (1966, pp. 341-344). 

20. In the discrete Fourier transform (DIT), both the input and the output consist of sequences 
of numbers defined at uniformly spaced points in time and frequency, respectively. This 
feature makes the DIT ideally suited for numerical computation using the fast Fourier 
transform (FFT) algorithm. FIT algorithms are efficient because they use a greatly reduced 
number of arithmetic operations compared to the brute-force computation of the DFT. 
Basically, an FIT algorithm attains its computational efficiency by following a "divide and 
conquer" strategy, whereby the original DFT computation is decomposed successively into 
smaller DFT computations. For the case of an N-point DFT and N = 2L, the FFT algorithm 
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requires L = log2N stages of computation, with each stage of the computation invoJv· 
complex multiplications and additions of order N. For detailed discussion of the FFr ll!F 
gorithrn, see Oppenheim and Schafer (1989, Chapter 9). a· 

21. An overview of very-high-rate digital subscriber lines (VDSL) is presented in the pape b 
Cioffi et al. (1999); this paper also includes a comparative discussion on VDSL;: X 
Voiceband moderns. n 

22. For discussion of OFDM and its applications, see Casas and Leung (1991), LeFloch etal. 
(1989), and Zou and Wu (1995). For tutonal notes on OFDM and an extensive list f 
references, see Cimini and Li (1999). 

0 

23. For detailed descriptions of phase recovery and symbol-timing recovery using classical 
synchronization systems, see Stiffler (1971), Lindsey ( 1972), and Lindsey and Simon (1973 
Chapters 2 and 9). ' 

For a modem treatment of synchronization systems with emphasis on the use of 
discrete-time signal processing algorithms, see Mengali and D' Andrea (1997), Meyr, 
Moeneclaey, and Fechtel (1998). · 

24. Equation (6.293) on the modified Cramer-Rao bound for phase recovery is derived in 
Mengali and D'Andrea (1997). 

25. Saltzberg (1998) discusses how the performances of CAP and DMT are affected by channel 
impairments and system imperfections in the context of ADSL application. The impair­
ments/imperfections considered therein include impulse noise, narrowband interference 
(e.g., RF ingress from an over-the-air AM radio transmission), timing jitter caused by 
imperfect synchronization, and system nonlinearities. 

I PROBLEMS 

Amplitude-Shift Keying 

6.1 In the on-off keying version of an ~stern, symbol 1 is represented by transmitting a 
sinusoidal carrier of amplitude '\/2Eb/Tb, where Eb is the signal energy per bit and Tb is 
the bit duration. Symbol 0 is represented by switching off the carrier. Assume that symbols 
1 and 0 occur with equal probability. 

For an A WGN channel, determine the average probability of error for this ASK 
system under the following scenarios: 

(a) Coherent reception. 
(b) Noncoherent reception, operating with a large value of bit energy-to-noise spectral 

density ratio E&IN0 • 

Note: When x is large, the modified Bessel function of the first kind of zero order may be 
approximated as follows (see Appendix 3): 

Phase-Shift Keying 

I ( ) _ exp(x) 
oX-\!2m 

6.2 A PSK signal is applied to a correlator supplied with a phase reference that lies within 'P 
radians of the exact carrier phase. Determine the effect of the phase error 'Pon the average 
probability of error of the system. 

6.3 Consider a phase-locked loop consisting of a multiplier, loop filter, and voltage-conttolled 
oscillator (VCO). Let the signal applied to the multiplier input be a PSK signal defined by 

s(t) = A, cos[211'.fct + kpm(t)] 
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where kp is the phase sensitivity, and the data signal m(t) takes on the value + 1 for binary 
symbol 1 and -1 for binary symbol 0. The VCO output is 

r(t) Ac sin[21Tfct + l'l(t)] 

(a) Evaluate the loop filter output, assuming that this filter removes only modulated com­
ponents with carrier frequency 2 fc. 

(b) Show that this output is proportional to the data signal m(t) when the loop is phase 
locked, that is, IJ(t) = 0. 

6.4 The signal component of a coherent PSK system is defined by 

s(t) A,k sin(11rfct) ::':: AcVl=k2 cos(21T/ct) 

where 0 :5 t :5 Tb, and the plus sign corresponds to symbol 1 and the minus sign corre­
sponds to symbol 0. The first term represents a carrier component included for the purpose 
of synchronizing the receiver to the transmitter. 
(a) Draw a signal-space diagram for the scheme described here; what observations can 

you make about this diagram? 
(b) Show that, in the presence of additive white Gaussian noise of zero mean and power 

specttal density N0/2, the average probability of error is 

where 

P, = ~ erfc( ~ (1 - k2)) 

1 2 
Eb= lAJb 

(c) Suppose that 10 percent of the transmitted signal power is allocated to the carrier 
component. Determine the E1,/N0 required to realize a probability of error equal to 
10-•. 

(d) Compare this value of E&IN0 with that required for a conventional PSK system with 
the same probability of error. 

6.5 (a) Given the input binary sequence 1100100010, sketch the waveforms of the in-phase 
and quadrature components of a modulated wave obtained by using the QPSK based 
on the signal set of Figure 6.6. 

(b) Sketch the QPSK waveform itself for the input binary sequence specified in part (a). 
6.6 Let P,1 and P,Q denote the probabilities of symbol error for the in-phase and quadrature 

channels of a narrowband digital communication system. Show that the average proba­
bility of symbol error for the overall system is given by 

Pe = P,, + P,Q - PerPeQ 

6.7 Equation (6.47) is an approximate formula for the average probability of symbol error 
for coherent M-ary PSK. This formula was derived using the union bound in light of the 
signal-space diagram of Figure 6.15b. Given that message point m 1 was transmitted, show 
that the approximate formula of Equation (6.47) may be derived directly from Figure 
6.15b. 

6.8 Find the power spectral density of an offset QPSK signal produced by a random binary 
sequence in which symbols 1and0 (represented by :t::l) are equally likely,and the symbols 
in different time slots are statistically independent and identically distributed. 

6.9 Vestigial sideband modulation (VSB), discussed in Chapter 2, offers another modulation 
method for passband data transmission. 
(a) In particular, a digital VSB transmission system may be viewed as a time-varying one­

dimensional system operating at a rate of 2/T dimensions per second, where Tis the 
symbol period. Justify the validity of this statement. 

(b) Show that digital VSB is indeed equivalent in performance to the offset QPSK. 
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6.10 The binary data stream 01101000 is applied to a 1T/4-shifted DQPSK modulator th t. 
initially in the state (</>1 =VE, </>2 = 0) in Figure 6.lla. Using the relationships bet: IS 

input dibits and carrier-phase shifts summarized in Table 6.2, determine the phase st:ien 
occupied by the modulator in response to the specified data stream. es 

6.11 Just as in an ordinary QPSK modulator, the output of a 1T/4-shifted DQPSK modulat 
may be expressed in terms of its in-phase and quadrature components as follows: or 

s(t) = s1(t) cos(21Tf.t) - sg(t) sin(21Tf.t) 

Formulate the in-phase component s1(t) and quadrature component sg(t) of the '1'/4-
s?ifted DQPSK signal. Hence, outline a scheme for the generation of 1T/4-shifted DQPSK 
signals. 

6.12 An interesting property of 1T/4-shifted DQPSK signals is that they can be demodulated 
using an FM discriminator. Demonstrate the validity of this property. The FM discrimi. 
nator is discussed in Chapter 2. 

6.13 Let ilfh denote the differentially encoded phase in the 1T/4-shifted DQPSK. The symbol 
pairs (I, Q) generated by this scheme may be defined as 

h = h-1 cos(tl!lk) - Qk-l sin(tllh) 

Qk = h-1 sin(il9k) + Qk-1 cos(ilOk) 

where hand Qk are the in-phase and quadrature components corresponding to the kth 
symbol. Show that this pair of relations can be expressed simply as 

h =cos 9k 

Qk =sin 9k 

where 9k is the absolute phase angle for the kth symbol. 

Quadrature-Amplitude Modulation 

6.14 Figure 6.53 shows a 240-QAM signal constellation, which may be viewed as an extended 
form of QAM cross constellation. 
(a) Identify the portion of Figure 6.53 that is a QAM square constellation. 
(b) Build on part (a) to identify the portion of Figure 6.53 that is a QAM cross 

constellation. 
(c) Hence, identify the portion of Figure 6.53 that is an extension to QAM cross 

constellation. 
6.15 Determine the transmission bandwidth reduction and average signal energy of256-QAM, 

compared to 64-QAM. 
6.16 Two passband data transmission systems are to be compared. One system uses 16-PSK, 

and the other uses 16-QAM. Both systems are required to produce an average probability 
of symbol error equal to 10· 3

• Compare the signal-to-noise ratio requirements of these 
two systems. 

Carrierless Amplitude/Phase Modulation (CAP) 

6.17 The two-dimensional CAP and M-ary QAM schemes are closely related. Do the following: 
(a) Given a QAM system, with a prescribed number of amplitude levels, derive the equiv· 

alent CAP system. 
(b) Perform the reverse of part (a). 

6.18 Show that the power spectral density of a CAP signal with a total of L amplitude levels 
is defined by 

S(f) = 1: IP(f)l 2 
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where I P(f) I is the magnitude spectrum of the passband in-phase pulse p(t); the o-~ is the 
variance of the complex symbols A, = a1 + jb1, which is defined by 

1 L 
o-~ = - 2: (ar + brl 

L 1~1 

6.19 You are given the baseband raised-cosine spectrum G(f) pertaining to a certain rolloff 
factor a. Describe a frequency-domain procedure for evaluating the passband in-phase 
pulse p(t) and quadrature pulse p(t) that characterize the corresponding CAP signal. 

Frequency-Shift Keying 

6.20 The signal vectors s1 and s2 are used to represent binary symbols 1 and 0, respectively, in 
a coherent binary FSK system. The receiver decides in favor of symbol 1 when 

xrs, > xrs2 

where xrs, is the inner product of the observation vector x and the signal vector s1, where 
i = 1, 2. Show that this decision rule is equivalent to the condition x1 > x,, where x1 and 
x 2 are the elements of the observation vector x. Assume that the signal vectors s1 and s2 

have equal energy. 
6.21 An FSK system transmits binary data at the rate of 2.5 X 106 bits per second. During the 

course of transmission, white Gaussian noise of zero mean and power spectral density 
10-20 W/Hz is added to the signal. In the absence of noise, the amplitude of the received 
sinusoidal wave for digit 1 or 0 is 1 mV. Determine the average probability of symbol 
error for the following system configurations: 
(a) Coherent binary FSK 
(b) Coherent MSK 
(c) Noncoherent binary FSK 

6.22 (a) In a coherent FSK system, the signals s1(t) and s2(t) representing symbols 1 and 0, 
respectively, are defined by 

s,(t), S2(t) =Ac cos[ 2'17'(.fc :!: a;)t], 0 st s Tb 

Assuming that fc > !lf, show that the correlation coefficient of the signals s1(t) and s2(t) 
is approximately given by 

J Tb s1(t)s2(t) dt 

p = 
0 

= sinc(2/lfTb) f' si(t) dt 

(b) What is the minimum value of frequency shift !lf for which the signals s1 (t) and s2(t) 
are orthogonal? 

(c) What is the value of !!..f that minimizes the average probability of symbol error? 
(d) For the value of /;,.f obtained in part (c), determine the increase in Eb/N0 required so 

that this coherent FSK system has the same noise performance as a coherent binary 
PSK system. 

6.23 A binary FSK signal with discontinuous phase is defined by 

for symbol 1 

for symbol 0 
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6.24 

where Eb is the signal energy per bit, Tb is the bit duration, and li1 and 02 are sa 
1 values of uniformly distributed random variables over the interval 0 to 2'1T. In effec~~ 

two oscillators supplying the transmitted frequencies f; ± !:J.f/2 operate independent! 
each other. Assume that f; >> t:.f. Yof 

(a) Evaluate the power spectral density of the FSK signal. 
(b) Show that for frequencies far removed from the carrier frequency f;, the power sp 

tral density falls off as the inverse square of frequency. ec. 

Set up a block diagram for the generation of Sunde's FSK signal s(t) with continua 
phase by using the representation given in Equation (6.104), which is reproduced here~s 

s(t) = ft cos(;:) cos(2'1Tf;t) + ft sin(;:) sin(21Tf;t) 

6.25 Discuss the similarities between MSK and offset QPSK, and the features that distinguisb 
them. 

6.26 There are two ways of detecting an MSK signal. One way is to use a coherent receiver to 
take full account of the phase information content of the MSK signal. Another way is to 
use a noncoherent receiver and disregard the phase information. The second method offers 
the advantage of simplicity of implementation, at the expense of a degraded noise per­
formance. By how many decibels do we have to increase the bit energy-to-noise density 
ratio EhfN0 in the second case so as to realize an average probability of symbol error 
equal to 10-5 in both cases? 

6.27 (a) Sketch the waveforms of the in-phase and quadrature components of the MSK signal 
in response to the input binary sequence 1100100010. 

(b) Sketch the MSK waveform itself for the binary sequence specified in part (a). 
6.28 A nonreturn-to-zero data stream (of amplitude levels ±1) is passed through a low-pass 

filter whose impulse response is defined by the Gaussian function 

yr; ( 'll"2t2) h(t) = - exp --
" "2 

where a is a design parameter defined in terms of the filter's 3-dB bandwidth by 

a = {J;;g2 ]:__ 
..j2w 

(a) Show that the transfer function of the filter is defined by 

H(f) = exp(-c:r2f2) 

Hence demonstrate that the 3-dB bandwidth of the filter is indeed equal to W. You 
may use Table A6.3 on Fourier-transform pairs. 

(b) Show that the response of the filter to a rectangular pulse of unit amplitude and 
duration T centered on the origin is defined by Equation ( 6.135). 

6.29 Plot the waveform of a GMSK modulator produced in response to the binary sequence 
1101000, assuming the use ofa gain-bandwidth product WTh = 0.3. Compare your result 
with that of Example 6.5. 

6.30 Summarize the similarities and differences between the standard MSK and Gaussian­
filtered MSK signals. 

Noncoherent Receivers 

6.31 In Section 6.8 we derived the formula for the bit error rate of noncoherent binary FS~ 
as a special case of noncoherent orthogonal modulation. In this problem we revisit this 
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issue. As before, we assume that binary symbol 1 represented by signal s1 (t) is transmitted. 
According to the material presented in Section 6.8, we note the following: 
I> The random variable L2 represented by the sample value 12 of Equation (6.164) is Rayleigh 

distributed. 
I> The random variable L 1 represented by the sample value 11 of Equation (6.170) is Rician-

distributed. 
The Rayleigh and Rician distributions are discussed in Chapter 1. Using the probability 
distributions defined in that chapter, derive the formula of Equation (6.181) for the BER 
of noncoherent binary FSK. 

6.32 Figure P6.32a shows a noncoherent receiver using a matched filter for the detection of a 
sinusoidal signal of known frequency but random phase, in the presence of additive white 
Gaussian noise. An alternative implementation of this receiver is its mechanization in the 
frequency domain as a spectrum analyzer receiver, as in Figure P6.32b, where the cor­
relator computes the finite time autocorrelation function Rx( r) defined by 

Filter matched to 
COS (2wfct); 

0St$.T 

Rx(r) = r-T x(t)x(t + r) dt, 

Show that the square-law envelope detector output sampled at time t = Tin Figure P6.32a 
is twice the spectral output of the Fourier transformer sampled at frequency f = fc in 
Figure P6.32b. 

Square-law 
envelope 
detector 

(a) 

~Output 
Sample at 

t=T 

FIGURE P6.32 

Correlator 
Fourier 

transformer 

(b) 

Output 
sampled at 

!=!, 

6.33 The binary sequence 1100100010 is applied to the DPSK transmitter of Figure 6.43a. 
(a) Sketch the resulting waveform at the transmitter output. 
(h) Applying this waveform to the DPSK receiver of Figure 6.43b, show that, in the 

absence of noise, the original binary sequence is reconstructed at the receiver output. 

6.34 Differential M-ary PSK is the M-ary extension of binary DPSK. The present phase angle 
On of the modulator at symbol time n is determined recursively by the relation 

On= 0._1 + (~)mn> modulo 2.,,. 

where On-t is the previous phase angle and mn E {O, 1, ..• , M - 1} is the present mod­
ulator input. The probability of symbol error for this M-ary modulation scheme is ap­
proximately given by 

Pe = erfc( ~ sin(2~) ), 

where it is assumed that E/N0 is large. 

(a) Determine the factor by which the transmitted energy per symbol would have to be 
increased for the differential M-ary PSK to attain the same probability of symbol 
error as coherent M-ary PSK for M "' 4. 

(b) For M = 4, by how many decibels is differential QPSK poorer in performance than 
coherent QPSK? 
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Comparison of Digital Modulation Schemes Using a Single Carrier 

6.35 Binary data are transmitted over a microwave link at the rate of 106 bis, and the po 
spectral density of the noise at the receiver input is 10-10 W /Hz. Find the average carw_er 
power required to maintain an average probability of error Pe :$ 10-• for (a) coherner 
binary PSK, and (b) DPSK. ent 

6.36 The values of Eb/N0 required to realize an average probability of symbol error P, ~ 1o-4 

using coherent binary PSK and coherent FSK (conventional) systems are equal to 7.2 a d 
13.5, respectively. Using the approximation n 

1 
erfc(u) =. / exp(-u2 ) 

V 7rU 

determine the separation in the values of Eb/N0 for P, = 10-•, using 

(a) Coherent binary PSK and DPSK. 
(b) Coherent binary PSK and QPSK. 
(c) Coherent binary FSK (conventional) and noncoherent binary FSK. 
(d) Coherent binary FSK (conventional) and coherent MSK. 

6.37 In Section 6.10 we compared the noise performances of coherent binary PSK, coherent 
binary FSK, QPSK, MSK, DPSK, and noncoherent FSK by using the bit error rate as the 
basis of comparison. In this problem we take a different viewpoint and use the average 
probability of symbol error, P"' to do the comparison. Plot P, versus Eb/N0 for each of 
these schemes and comment on your results. 

6.3 8 The noise equivalent bandwidth of a bandpass signal is defined as the value of bandwidth 
that satisfies the relation 

2BS(fc) = P/2 

where 2B is the noise equivalent bandwidth centered around the midband frequency f, 
S(fc) is the maximum value of the power spectral density of the signal at f = Jc, and Pis 
the average power of the signal. Show that the noise equivalent bandwidths of binary 
PSK, QPSK, and MSK are as follows: 

Type of Modulation 

BinaryPSK 
QPSK 
MSK 

Noise Bandwidth/Bit Rate 

1.0 
0.5 
0.62 

Note: You may use the definite integrals in Table A6.10. A discussion ofnoise equivalent 
bandwidth is presented in Appendix 2. 

Voiceband Modems 

6.39 (a) Refer to the differential encoder used in Figure 6.48a. Table 6.10 defines the phase 
changes induced in the V.32 modem by varying input dibits. Expand this table by 
including the corresponding previous and current values of the differential encoder's 
output. Note that for every input dibit Q1,nQ2,., there are four possible values for the 
differentially encoded dibit I,,.12 ,n and likewise for its previous value I 1,.-1I2,n-1· 

(b) The current quadbit applied to the V.32 modem with nonredundant coding is OOOL 
The previous output of the modem is 01. Find the code word output produced bytbe 
modem and its coordinates. 
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6.40 The V.32 modem standard with nonredundant coding uses a rectangular 16-QAM con­
stellation. The model specifications are as follows: 

Carrier frequency= 1,800 Hz 
Symbol rate = 2,400 bauds 

Data rate = 9 ,600 bis 
Calculate (a) the average signal-to-noise ratio, and (b) the average probability of symbol 
error for this modem, assuming that E.JN0 = 20dB. 

Multichannel Line Codes 

6.41 Consider the passband basis functions defined in Equation (6.196), where t/J(t) is itself 
defined by Equation (6.197). Demonstrate the validity of Properties 1, 2, and 3 of these 
passband basis functions mentioned on pages 434 and 435. 

6.42 The water-filling solution for the loading problem is defined by Equation (6.213) subject 
to the constraint of Equation (6.210). Using this pair of relations, formulate a recursive 
algorithm for computing the allocation of the transmit power P among the N subchannels. 
The algorithm should start with (a) an initial total or sum noise-to-signal ratio 
NSR(i) = 0 for iteration i = 0, and (b) the subchannels sorted in terms of those with the 
smallest power allocation to the largest. 

6.43 The squared magnitude response of a linear channel, denoted by I H(f) I 2, is shown in 
Figure P6.43. Assume that the gap r = 1 and the noise variance~ = 1 for all subchannels. 

(a) Derive the formulas for the optimum powers P1 , P,, and P3 allocated to the three 
subchannels of frequency bands (0, W1), (W,, W2 ), and (W,, W). 

(b) Given that the total transmit power P = 10, 11 = 213 and 12 = 113, calculate the 
corresponding values of P,, P2, and P3• 

IH(f)I' 

I 

--_JL ___ l_ __ ~ 
I 
I 
I 

FIGURE P6.43 

6.44 In this problem we explore the use of singular value decomposition ( SVD) as an alternative 
to the discrete Fourier transform for vector coding. This approach avoids the need for a 
cyclic prefix, with the channel matrix being formulated as 

H -[: : :: h:, '.: JJ 
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where the sequence h0 , hi, ... , hv denotes the sampled impulse response of the cha I 
The SVD of the matrix H is defined by · nne · 

H U[A; ON,vJyt 

wher_e U is an N-by-N unitary matrix and V is an (N + v)-by-(N + v) unitary matr· . 
~~ ~ 

uut I 

vvt =I 

where I is the identity matrix and the superscript t denotes Hermitian transposition. Th 
A is an N-by-N diagonal matrix with singular values Am n = 1, 2, ... , N. Theo .e 
an N-by-v matrix of zeros. N,, Is 

(a) Using this decomposition, show that the N subchannels resulting from the use of 
vector coding are mathematically described by 

Xn = A,,A. + W. 

The X. is an element of the matrix product ut x, where xis the received signal (channel 
output) vector. The A. is the nth symbol a. + jb" and W" is a random variable due 
to channel noise. 

(b) Show that the signal-to-noise ratio for vector coding as described herein is given by 

(SNR)v.ctoc coding = r(ft ( 1 + (S~R).) )'llN+vl f 

where N* is the number of channels for each of which the allocated transmit power 
is nonnegative, (SNR). is the signal-to-noise ratio of subchannel n, and r is a pre­
scribed gap. 

(c) As the block length N approaches infinity, the singular values approach the magni­
tudes of the channel Fourier transform. Using this result, comment on the relationship 
between vector coding and discrete multitone. 

6.45 Compare the performance of DMT and CAP with respect to the following channel 
impairments: 
(a) Impulse noise. 
(b) Narrowband interference. 

Assume that (1) the DMT has a large number of subchannels, and (2) the CAP system is 
uncoded and its receiver uses a pair of adaptive filters for implementation. 

6.46 Orthogonal frequency-division multiplexing may be viewed as a generalization of M-ary 
FSK. Validate the rationale of this statement. 

Synchronization 

6.47 Figure P6.47 shows the block diagram of a continuous-time Mth power loop for phase 
recovery in an M-ary PSK receiver. 

(a) Show that the output of the Mth power-law device contains a tone of frequency MJ,, 
where fc is the original carrier. 

(b) The oscillator in the phase-locked loop is set to a frequency equal to Mfc. Justify this 
choice. 

(c) The Mth power loop suffers from a phase ambiguity problem in that it exhibits~ 
phase ambiguities in the interval [O, 27T]. Explain how this problem arises in the Mt 
power loop. How would you overcome the problem? 
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6.48 (a) ~n the recursive algorithm of Eguation (6.272) for phase recovery, the old estimate 
0 [ n] and the updated estimate 0 [ n + 1 J of the carrier phase 0 are both measured in 
radians. Discuss the units in which the error signal e[ n] and step-size parameter y are 
measured. 

(b) In the recursive algorithm of Equation ( 6.286) for symbol timing recovery, the control 
signals c[n] and c[n + 1] are both dimensionless. Discuss the units in which the error 
signal e [ n] and step-size parameter y are measured. 

6.49 Using the definitions of Equations (6.264) and (6.265) for xk and ab respectively, show 
that the exponent in the likelihood function L(ab 0, r) can be expressed as in Equation 
(6.273). 

6.50 In Section 6.14 we studied a non-data-aided scheme for carrier phase recovery, based on 
the log-likelihood function of Equation (6.260). In this problem we explore the use of 
this equation for data-aid carrier phase recovery. 

(a) Consider a receiver designed for a linear modulation system. Given that the receiver 
has knowledge of a preamble of length L0 , show that the maximum likelihood esti­
mate of the carrier phase is defined by 

{

Lo-1 } 

iJ = arg ,&::
0 

atx(k) 

where the preamble {ak)f«01 is a known sequence of complex symbols, and 
(i(k)Jf«0

1 is the complex envelope of the corresponding received signal. 
(b) Using the result derived in part (a), construct a block diagram for the maximum 

likelihood phase estimator. 
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Computer Experiment 

6.51 The purpose of this computer experiment is to compare the effect of a dispersive chan I 
on the waveforms generated by the following passband modulation techniques: ne 
(a) Binary phase-shift keying (BPSK) 
(b) Quadriphase-shifr keying (QPSK) 
(c) Minimum shift keying (MSK) 
(d) Gaussian MSK with time-bandwidth product WTb = 0.3 
The channel consists of a band-pass Butterworth filter of order 2N = 10 and 3-dB band­
width 2B centered on the midband frequency fc. The low-pass equivalent of the chann I 
has the squared magnitude response e 

I 1
2 - 1 

H(f) - 1 + (f!B)2N 

The channel bandwidth is variable so as to illustrate its effect on the filtered modulated 
wave. 

Assuming the use of a coherent receiver, plot the waveforms of the modulated 
signals under (a), (b), (c) and (d) for the following channel bandwidths: 

(i) 2B = 12 kHz 
(ii) 2B = 16 kHz 

(iii) 2B = 20 kHz 
(iv) 2B = 24 kHz 
(v) 2B = 30 kHz 

Comment on your results. 
Hint. To perform the computations needed for this experiment, it is advisable to perform 
the computations in baseband by performing the band-pass to low-pass transformation 
described in Appendix 2. 



SPREAD-SPECTRLTM 

MODULATION 

This chapter introduces a modulation technique called spread-spectrum modulation, 
which is radically different from the modulation techniques that are covered in preceding 
chapters. In spread-spectrum modulation, channel bandwidth and transmit power are 
sacrificed for the sake of secure communications. 

Specifically, we cover the following topics: 

~Spreading sequences in the form of pseudo-noise sequences, their properties, and methods 
of generation. 

~ The basic notion of spread-spectrum modulation. 

~The two commonly used types of spread-spectrum modulation: direct sequence and 
frequency hopping. 

The material presented in this chapter is basic to wireless communications using code­
division multiple access, which is covered in Chapter 8. 

A major issue of concern in the study of digital communications as considered in Chapters 
4, 5, and 6 is that of providing for the efficient use of bandwidth and power. Notwith­
standing the importance of these two primary communication resources, there are situa­
tions where it is necessary to sacrifice this efficiency in order to meet certain other design 
objectives. For example, the system may be required to provide a form of secure com­
munication in a hostile environment such that the transmitted signal is not easily detected 
or recognized by unwanted listeners. This requirement is catered to by a class of signaling 
techniques known collectively as spread-spectrum modulation. 

The primary advantage of a spread-spectrum communication system is its ability to 
reject interference whether it be the unintentional interference by another user simulta­
neously attempting to transmit through the channel, or the intentional interference by a 
hostile transmitter attempting to jam the transmission. 

The definition of spread-spectrum modulation1 may be stated in two parts: 

1. Spread spectrum is a means of transmission in which the data sequence occupies a 
bandwidth in excess of the minimum bandwidth necessary to send it. 

2. The spectrum spreading is accomplished before transmission through the use of a 
code that is independent of the data sequence. The same code is used in the receiver 

479 
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(operating in synchronism with the transmitter) to despread the received signal so 
that the original data sequence may be recovered. 

Although standard modulation techniques such as frequency modulation and pulse-code 
modulation do satisfy part 1 of this definition, they are not spread-spectrum techniques 
because they do not satisfy part 2 of the definition. 

Spread-spectrum modulation was originally developed for military applications 
where resistance to jamming (interference) is of major concern. However, there arecivilia~ 
applications that also benefit from the unique characteristics of spread-spectrum modu­
lation. For example, it can be used to provide multipath rejection in a ground-based mobile 
radio environment. Yet another application is in multiple-access communications in which 
a number of independent users are required to share a common channel without an ex­
ternal synchronizing mechanism; here, for example, we may mention a ground-based radio 
environment involving mobile vehicles that must communicate with a central station. More 
is said about this latter application in Chapter 8. 

In this chapter, we discuss principles of spread-spectrum modulation, with emphasis 
on direct-sequence and frequency-hopping techniques. In a direct-sequence spread­
spectrum technique, two stages of modulation are used. First, the incoming data sequence 
is used to modulate a wideband code. This code transforms the narrowband data sequence 
into a noiselike wideband signal. The resulting wideband signal undergoes a second mod­
ulation using a phase-shift keying technique. In a frequency-hop spread-spectrum tech­
nique, on the other hand, the spectrum of a data-modulated carrier is widened by changing 
the carrier frequency in a pseudo-random manner. For their operation, both of these tech­
niques rely on the availability of a noiselike spreading code called a pseudo-random or 
pseudo-noise sequence. Since such a sequence is basic to the operation of spread-spectrum 
modulation, it is logical that we begin our study by describing the generation and prop­
erties of pseudo-noise sequences. 

I 7 .2 Pseudo-Noise Sequences 

A pseudo-noise (PN) sequence is a periodic binary sequence with a noiselike waveform 
that is usually generated by means of a feedback shift register, a general block diagram of 
which is shown in Figure 7.1. A feedback shift register consists of an ordinary shift register 
made up of m flip-flops (two-state memory stages) and a logic circuit that are intercon­
nected to form a multiloop feedback circuit. The flip-flops in the shift register are regulated 
by a single timing clock. At each pulse (tick) of the clock, the state of each flip-flop is 
shifted to the next one down the line. With each clock pulse the logic circuit computes a 

FIGURE 7.1 Feedback shift register. 

Output 
sequence 
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Boolean function of the states of the flip-flops. The result is then fed back as the input to 
the first flip-flop, thereby preventing the shift register from emptying. The PN sequence so 
generated is determined by the length m of the shift register, its initial state, and the feed­
back logic. 

Let s;(k) denote the state of the jth flip-flop after the kth clock pulse; this state may 
be represented by symbol 0 or 1. The state of the shift register after the kth clock pulse is 
then defined by the set {s 1(k), s2 (k), . .. , sm(k)), where k 2 0. For the initial state, k is 
zero. From the definition of a shift register, we have 

{
k 2 0 

l:sjsm 
(7.1) 

where s0(k) is the input applied to the first flip-flop after the kth clock pulse. According to 
the configuration described in Figure 7.1, s0(k) is a Boolean function of the individual 
states s1(k), s2 (k), ... , sm(k). For a specified length m, this Boolean function uniquely 
determines the subsequent sequence of states and therefore the PN sequence produced at 
the output of the final flip-flop in the shift register. With a total number of m flip-flops, 
the number of possible states of the shift register is at most 2m. It follows therefore that the 
PN sequence generated by a feedback shift register must eventually become periodic with 
a period of at most 2m. 

A feedback shift register is said to be linear when the feedback logic consists entirely 
of modulo-2 adders. In such a case, the zero state (e.g., the state for which all the flip-flops 
are in state 0) is not permitted. We say so because for a zero state, the input s0(k) produced 
by the feedback logic would be 0, the shift register would then continue to remain in the 
zero state, and the output would therefore consist entirely of Os. Consequently, the period 
of a PN sequence produced by a linear feedback shift register with m flip-flops cannot 
exceed 2m - 1. When the period is exactly 2m - 1, the PN sequence is called a maximal­
length-sequence or simply m-sequence. 

~ EXAMPLE 7 .1 

Consider the linear feedback shift register shown in Figure 7.2, involving three flip-flops. The 
input s0 applied to the first flip-flop is equal to the modulo-2 sum of s1 and s3 • It is assumed 
that the initial state of the shift register is 100 (reading the contents of the three flip-flops from 
left to right). Then, the succession of states will be as follows: 

100, 110, 111, 011, 101, 010, 001, 100, .... 

Modulo-2 
adder 

Clock ___ ._ ___ __,,__ ___ ~ 

Output 
sequence 

FIGURE 7 .2 Maximal-length sequence generator form = 3. 
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The output sequence (the last position of each state of the shift register) is therefore 

00111010 ... 

which repeats itself with period 2 3 
- 1 = 7. 

Note that the choice of 100 as the initial state is arbitrary. Any of the other six permis. 
sible states could serve equally well as an initial state. The resulting output sequence would 
then simply experience a cyclic shift. 11 

PROPERTIES OF MAxlMAL-LENGTH SEQUENCES2 

Maximal-length sequences have many of the properties possessed by a truly random 
binary sequence. A random binary sequence is a sequence in which the presence of binary 
symbql 1 or 0 is equally probable. Some properties of maximal-length sequences are as 
follows: 

1. In e·ach period of a maximal-length sequence, the number of ls is always one more than 
the number of Os. This property is called the balance property. 

2. Among the runs of ls and of Os in each period of a maximal-length sequence, one­
half the runs of each kind are of length one, one-fourth are of length two, one-eighth are 
of length three, and so on as long as these fractions represent meaningful num hers of 
runs. This property is called the run property. By a "run" we mean a subsequence 
of identical symbols (ls or Os) within one period of the sequence. The length of this 
subsequence is the length of the run. For a maximal-length sequence generated by a 
linear feedback shift register of length m, the total number of runs is (N + 1 )/2, where 
N = 2m - 1. 

3. The autocorrelation function of a maximal-length sequence is periodic and binary­
valued. This property is called the correlation property. 

The period of a maximum-length sequence is defined by 

N = lm - 1 (7.2) 

where mis the length of the shift register. Let binary symbols 0 and 1 of the sequence be 
denoted by the levels -1 and +1, respectively. Let c(t) denote the resulting waveform of 
the maximal-length sequence, as illustrated in Figure 7.3a for N = 7. The period of the 
waveform c(t) is (based on terminology used in subsequent sections) 

(7.3) 

where 'fc is the duration assigned to symbol 1 or 0 in the maximal-length sequence. By 
definition, the autocorrelation function of a periodic signal c(t) of period Tb is 

l JT;/2 
Rc(r) = -T. c(t)c(t - r) dt 

b -Tb/2 

(7.4) 
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Binary sequence 0 0 1 1 1 O I O O I 

+1 ---J 
-1 

I 
I 

2 1 
T, T, 

LfLJ 
(a) 

1.0 

(b) 

S,(f) 

I 
I 

\ 
\ 

_;_J L~ 
NT, 

(c) 

I 0 I 

~ 
f 

T, 

FIGURE 7 .3 (a) Waveform of maximal-length sequence for length m = 3 or period N = 7. 
(b) Autocorrelation function. (c) Power spectral density. All three parts refer to the output of the 
feedback shift register of Figure 7.2. 

where the lag rlies in the interval (-Tb/2,Tb/2); Equation (7.4) is a special case of Equation 
(1.26). Applying this formula to a maximal-length sequence represented by c(t), we get 

Rc(T) = {~~ NN;,' 1,1. 

N' 

(7.5) 

for the remainder of the period 

This result is plotted in Figure 7.3b for the case of m = 3 or N = 7. 
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From Fourier transform theory we know that periodicity in the time domain is trans­
formed into uniform sampling in the frequency domain. This interplay between the time 
and frequency domains is borne out by the power spectral density of the maximal-length 
wave c(t). Specifically, taking the Fourier transform of Equation (7.5), we get the sampled 
spectrum 

1 1 + N = . (n) ( n ) 
Sc(f) = N2 15(!) + ---z:J2 )L smc2 N 15 f - NTc (7.6) 

n*O 

which is plotted in Figure 7.3c form = 3 or N = 7. 
Comparing the results of Figure 7.3 for a maximal-length sequence with the corre­

sponding results shown in Figure 1.11 for a random binary sequence, we may make the 
following observations: 

I>" For a period of the maximal-length sequence, the autocorrelation function Ro{-r) is 
somewhat similar to that of a random binary wave. 

"" The waveforms of both sequences have the same envelope, sinc2 (JT), for their power 
spectral densities. The fundamental difference between them is that whereas the ran­
dom binary sequence has a continuous spectral density characteristic, the correspond­
ing characteristic of a maximal-length sequence consists of delta functions spaced 
l/NT" Hz apart. 

As the shift-register length m, or equivalently, the period N of the maximal-length sequence 
is increased, the maximal-length sequence becomes increasingly similar to the random 
binary sequence. Indeed, in the limit, the two sequences become identical when N is made 
infinitely large. However, the price paid for making N large is an increasing storage require­
ment, which imposes a practical limit on how large N can actually be made. 

!Ii CHOOSING A MAxiMAL·LENGTH SEQUENCE 

Now that we understand the properties of a maximal-length sequence and the fact that 
we can generate it using a linear feedback shift register, the key question that we need to 
address is: How do we find the feedback logic for a desired period N? The answer to this 

I TABLE 7 .1 Maximal-length sequences of shift-register lengths 2-8 

Shift-Register 
Length, m Feedback Taps 

2• [2, 1] 
3* [3, 1] 
4 [4, 1] 
5• [5, 21, [5, 4, 3, 21, [5, 4, 2, 11 
6 [6, 1], [6, 5, 2, 1], [6, 5, 3, 2] 
7• [7, 1], [7, 3], [7, 3, 2, l], [7, 4, 3, 2], [7, 6, 4, 2], [7, 6, 3, 1], [7, 6, 5, 2], 

[7, 6, 5, 4, 2, 1], [7, 5, 4, 3, 2, 1] 
8 [8, 4, 3, 2], [8, 6, 5, 3], [8, 6, 5, 2], [8, 5, 3, l], f8, 6, 5, 1], [8, 7, 6, lJ, 

[8, 7, 6, 5, 2, l], [8, 6, 4, 3, 2, 1] 
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question is to be found in the theory of error-control codes, which is covered in Chapter 
10. The task of finding the required feedback logic is made particularly easy for us by 
virtue of the extensive tables of the necessary feedback connections for varying shift­
register lengths that have been compiled in the literature. In Table 7.1, we present the sets 
of maximal (feedback) taps pertaining to shift-register lengths m = 2, 3, ... , 8.3 Note 
that as-m increases, the number of alternative schemes (codes) is enlarged. Also, for every 
set of feedback connections shown in this table, there is an "image" set that generates an 
identical maximal-length code, reversed in time sequence. 

The particular sets identified with an asterisk in Table 7.1 correspond to Mersenne 
prime length sequences, for which the period N is a prime number. 

ii>- ExAMPLE 7 .2 

Consider a maximal-length sequence requiring the use of a linear feedback-shift register of 
length m = 5. For feedback taps, we select the set [5, 2] from Table 7.1. The corresponding 
configuration of the code generator is shown in Figure 7.4a. Assuming that the initial state is 
10000, the evolution of one period of the maximal-length sequence generated by this scheme 
is shown in Table 7.2a, where we see that the generator returns to the initial 10000 after 31 
iterations; that is, the period is 31, which agrees with the value obtained from Equation (7.2). 

Suppose next we select another set of feedback taps from Table 7.1, namely, [5, 4, 2, 1]. 
The corresponding code generator is thus as shown in Figure 7.4b. For the initial state 10000, 
we now find that the evolution of the maximal-length sequence is as shown in Table 7.2b. 
Here again, the generator returns to the initial state 10000 after 31 iterations, and so it should. 
But the maximal-length sequence generated is different from that shown in Table 7.2a. 

Clearly, the code generator of Figure 7.4a has an advantage over that of Figure 7.4b, 
as it requires fewer feedback connections. «! 

Modulo-2 
adder 

(a) 

(b) 

Output 
sequence 

Output 
sequence 

FIGURE 7 .4 Two different configurations of feedback shift register of length m = 5. (a) Feed­
back connections [5, 2]. (b) Feedback connections [5, 4, 2, l]. 
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TABLE 7.2a Evolution of the maximal· 
length sequence generated by the feedback· 
shift register of Fig. 7.4a 

Feedback 
State of Shift Register 

Output 
Symbol 1 0 0 0 0 Symbol 

0 0 1 0 0 0 0 
1 1 0 1 0 0 0 
0 0 1 0 1 0 0 
1 1 0 1 0 1 0 
1 1 1 0 1 0 1 

1 1 1 1 0 1 0 
0 0 1 1 1 0 1 
1 1 0 1 1 1 0 
1 1 1 0 1 1 1 
0 0 1 1 0 1 1 
0 0 0 1 1 0 1 
0 0 0 0 1 1 0 
1 1 0 0 0 1 1 
1 1 1 0 0 0 1 
1 1 1 1 0 0 0 
1 1 1 1 1 0 0 
1 1 1 1 1 1 0 
0 0 1 1 1 1 1 

0 0 0 1 1 1 1 
1 1 0 0 1 1 1 
1 1 1 0 0 1 1 

0 0 1 1 0 0 1 
1 1 0 1 1 0 0 
0 0 1 0 1 1 0 
0 0 0 1 0 1 1 

1 1 0 0 1 0 1 

0 0 1 0 0 1 0 
0 0 0 1 0 0 1 

0 0 0 0 1 0 0 
0 0 0 0 0 1 0 
1 1 0 0 0 0 1 

Code: 0000101011101100011111001101001 



7.2 Pseud-0-Noise Sequences 487 

TABLE 7.2b Evolution of the maximal-
length sequence generated by the feedback-
shift register of Fig. 7.4b 

Feedback 
State of Shift Register 

Output 
Symbol 1 0 0 0 0 Symbol 

1 1 1 0 0 0 0 
0 0 1 1 0 0 0 
1 1 0 1 1 0 0 
0 0 1 0 1 1 0 
1 1 0 1 0 1 1 

0 0 1 0 1 0 1 

0 0 0 1 0 1 0 
1 1 0 0 1 0 1 

0 0 1 0 0 1 0 
0 0 0 1 0 0 1 

0 0 0 0 1 0 0 
1 1 0 0 0 1 0 
0 0 1 0 0 0 1 

1 1 0 1, 0 0 0 
1 1 1 0 1 0 0 
1 1 1 1 0 1 0 
1 1 1 1 1 0 1 
1 1 1 1 1 1 0 
0 0 1 1 1 1 1 

1 1 0 1 1 1 1 
1 1 1 0 1 1 1 

0 0 1 1 0 1 1 

0 0 0 1 1 0 1 
1 1 0 0 1 1 0 
1 1 1 0 0 1 1 
1 1 1 1 0 0 1 

0 0 1 1 1 0 0 
0 0 0 1 1 1 0 
0 0 0 0 1 1 1 

0 0 0 0 0 1 1 

1 1 0 0 0 0 1 

Code: 0000110101001000101111101100111 
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I 7. 3 A Notion of Spread Spectrum 

An important attribute of spread-spectrum modulation is that it can provide protection 
against externally generated interfering (jamming) signals with finite power. The jamming 
signal may consist of a fairly powerful broadband noise or multitone waveform that is 
directed at the receiver for the purpose of disrupting communications. Protection against 
jamming waveforms is provided by purposely making the information-bearing signal oc­
cupy a bandwidth far in excess of the minimum bandwidth necessary to transmit it. This 
has the effect of making the transmitted signal assume a noiselike appearance so as to 
blend into the background. The transmitted signal is thus enabled to propagate through 
the channel undetected by anyone who may be listening. We may therefore think of spread 
spectrum as a method of "camouflaging" the information-bearing signal. 

One method of widening the bandwidth of an information-bearing (data) sequence 
involves the use of modulation. Let (bk} denote a binary data sequence, and (ck} denote a 
pseudo-noise (PN) sequence. Let the waveforms b(t) and c(t) denote their respective polar 
nonreturn-to-zero representations in terms of two levels equal in amplitude and opposite 
in polarity, namely, :tl. We will refer to b(t) as the information-bearing (data) signal, and 
to c(t) as the PN signal. The desired modulation is achieved by applying the data signal 
b(t) and the PN signal c(t) to a product modulator or multiplier, as in Figure 7.Sa. We 
know from Fourier transform theory that multiplication of two signals produces a signal 
whose spectrum equals the convolution of the spectra of the two component signals. Thus, 
if the message signal b(t) is narrowband and the PN signal c(t) is wideband, the product 
(modulated) signal m(t) will have a spectrum that is nearly the same as the wideband PN 
signal. In other words, in the context of our present application, the PN sequence pedorrns 
the role of a spreading code. 

By multiplying the information-bearing signal b(t) by the PN signal c(t), each infor­
mation bit is "chopped" up into a number of small time increments, as illustrated in the 
waveforms of Figure 7.6. These small time increments are commonly referred to as chips. 

For baseband transmission, the product signal m(t) represents the transmitted signal. 
We may thus express the transmitted signal as 

m(t) = c(t)b(t) 

r(t) 

.. T., .. 

c(t) 

c(t) 

(a) 

J
r, 

dt 
0 

(cl 

·"t"" 
Decision 
device 

Threshold= D 

i(t) 

(b) 

Saylifv>D 

SayOifv <D 

(7.7) 

FIGURE 7 .5 Idealized model of baseband spread-spectrum system. (a) Transmitter. (b) Channel. 
(c) Receiver. 
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:~f----l ---+------

><c~--- r.---"' 
(a) Data signal b(r) 

(b) Spreading code c(r) 

LJ ....______.FL 

(c) Product signal m(r) 

FIGURE 7.6 Illustrating the waveforms in the transmitter of Figure 7.Sa. 

The received signal r(t) consists of the transmitted signal m(t) plus an additive interference 
denoted by i(t), as shown in the channel model of Figure 7.Sb. Hence, 

r(t) = m(t) + i(t) 
= c(t)b(t) + i(t) 

(7.8) 

To recover the original message signal b(t), the received signal r(t) is applied to a 
demodulator that consists of a multiplier followed by an integrator, and a decision device, 
as in Figure 7.Sc. The multiplier is supplied with a locally generated PN sequence that is 
an exact replica of that used in the transmitter. Moreover, we assume that the receiver 
operates in perfect synchronism with the transmitter, which means that the PN sequence 
in the receiver is lined up exactly with that in the transmitter. The multiplier output in the 
receiver is therefore given by 

z(t) = c(t)r(t) 

= c2 (t)b(t) + c(t)i(t) 
(7.9) 

Equation (7.9) shows that the data signal b(t) is multiplied twice by the PN signal c(t), 
whereas the unwanted signal i(t) is multiplied only once. The PN signal c(t) alternates 
between the levels -1 and + 1, and the alternation is destroyed when it is squared; hence, 

c2 (t) = 1 for all t (7.10) 

Accordingly, we may simplify Equation (7.9) as 

z(t) = b(t) + c(t)i(t) (7.11) 
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We thus see from Equation (7.11) that the data signal b(t) is reproduced at the multiplier 
output in the receiver, except for the effect of the interference represented by the additive 
term c(t)i(t). Multiplication of the interference i(t) by the locally generated PN signal c(t) 
means that the spreading code will affect the interference just as it did the original signal 
at the transmitter. We now observe that the data component b(t) is narrowband, whereas 
the spurious component c(t)i(t) is wideband. Hence, by applying the multiplier output to 
a baseband (low-pass) filter with a bandwidth just large enough to accommodate the 
recovery of the data signal b(t), most of the power in the spurious component c(t)i(t) is 
filtered out. The effect of the interference i(t) is thus significantly reduced at the receiver 
output. 

In the receiver shown in Figure 7.Sc, the low-pass filtering action is actually per­
formed by the integrator that evaluates the area under the signal produced at the multiplier 
output. The integration is carried out for the bit interval 0 <; t <; Th, providing the sample 
value v. Finally, a decision is made by the receiver: If v is greater than the threshold of 
zero, the receiver says that binary symbol 1 of the original data sequence was sent in the 
interval 0 <; t <; Tb, and if vis less than zero, the receiver says that symbol 0 was sent; if 
v is exactly zero the receiver makes a random guess in favor of 1 or 0. 

In summary, the use of a spreading code (with pseudo-random properties) in the 
transmitter produces a wideband transmitted signal that appears noiselike to a receiver 
that has no knowledge of the spreading code. From the discussion presented in Section 
7.2, we recall that (for a prescribed data rate) the longer we make the period of the spread­
ing code, the closer will the transmitted signal be to a truly random binary wave, and the 
harder it is to detect. Naturally, the price we have to pay for the improved protection 
against interference is increased transmission bandwidth, system complexity, and process­
ing delay. However, when our primary concern is the security of transmission, these are 
not unreasonable,costs to pay. 

7 .4 Direct-Sequence Spread Spectrum 
with Coherent Binary Phase-Shift Keying 

The spread-spectrum technique described in the previous section is referred to as direct­
sequence spread spectrum. The discussion presented there was in the context of baseband 
transmission. To provide for the use of this technique in passband transmission over a 
satellite channel, for example, we may incorporate coherent binary phase-shift keying 
(PSK) into the transmitter and receiver, as shown in Figure 7.7. The transmitter of Figure 
7.7a first converts the incoming binary data sequence {bk) into a polar NRZ waveform 
b(t), which is followed by two stages of modulation. The first stage consists of a product 
modulator or multiplier with the data signal b(t) (representing a data sequence) and the 
PN signal c(t) (representing the PN sequence) as inputs. The second stage consists of a 
binary PSK modulator. The transmitted signal x(t) is thus a direct-sequence spread binary 
phase-shifr-keyed (DS/BPSK) signal. The phase modulation l:l(t) of x(t) has one of two 
values, 0 and 'TT, depending on the polarities of the message signal b(t) and PN signal c(t) 
at time tin accordance with the truth table of Table 7.3. 

Figure 7.8 illustrates the waveforms for the second stage of modulation. Part of the 
modulated waveform shown in Figure 7.6c is reproduced in Figure 7.8a; the waveform 
shown here corresponds to one period of the PN sequence. Figure 7.8b shows the wave­
form of a sinusoidal carrier, and Figure 7.8c shows the DS/BPSK waveform that results 
from the second stage of modulation. 
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FIGURE 7. 7 Direct-sequence spread coherent phase-shift keying. (a) Transmitter. (b) Receiver. 

The receiver, shown in Figure 7.7b, consists of two stages of demodulation. In the 
first stage, the received signal y(t) and a locally generated carrier are applied to a product 
modulator followed by a low-pass filter whose bandwidth is equal to that of the original 
message signal m(t). This stage of the demodulation process reverses the phase-shift keying 
applied to the transmitted signal. The second stage of demodulation performs spectrum 
despreading by multiplying the low-pass filter output by a locally generated replica of the 
PN signal c(t), followed by integration over a bit interval 0 :5 t :5 Tb, and finally decision­
making in the manner described in Section 7.3. 

Ill MODEL FOR ANALYSIS 

In the normal form of the transmitter, shown in Figure 7.7a, the spectrum spreading is 
performed prior to phase modulation. For the purpose of analysis, however, we find it 
more convenient to interchange the order of these operations, as shown in the model of 

l TABLE 7 .3 Truth table for phase modulation 
9(t), radians 

Polarity of Data 
Sequence b{t) at Time t 

+ -

Polarity of PN + 0 1T 

sequence c(t) at time t 1T 0 
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FIGURE 7.8 (a) Product signal m(t) = c(t)b(t). (b) Sinusoidal carrier. (c) DSIBPSK signal. 

Figure 7.9. We are permitted to do this because the spectrum spreading and the binary 
phase-shift keying are both linear operations; likewise for the phase demodulation and 
spectrum despreading. But for the interchange of operations to be feasible, it is important 
to synchronize the incoming data sequence and the PN sequehce. The model of Figure 7.9 
also includes representations of the channel and the receiver. In this model, it is assumed 
that the interference j{t) limits performance, so that the effect of channel noise may be 
ignored. Accordingly, the channel output is given by 

y(t) = x(t) + j(t) 
= c(t)s(t) + j(t) 

(7.12) 

----~Transmitter----""' Channel ..,__-----Receiver-----

Data 
signal 
h(t) 

Binary PSK 
modulator 

Carrier 

Coherent 
detector 

Local 
carrier 

FIGURE 7 .9 Model of direct-sequence spread binary PSK system. 

Estimate 
of b(t) 
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where s(t) is the binary PSK signal, and c(t) is the PN signal. In the channel model included 
in Figure 7.9, the interfering signal is denoted by j(t). This notation is chosen purposely 
to be different from that used for the interference in Figure 7.Sb. The channel model in 
Figure 7.9 is passband in spectral content, whereas that in Figure 7.Sb is in baseband form. 

In the receiver, the received signal y(t) is first multiplied by the PN signal c(t) yielding 
an output that equals the coherent detector input u(t). Thus, 

u(t) = c(t)y(t) 

= c2 (t)s(t) + c(t)j(t) 

= s(t) + c(t)j(t) 

(7.13) 

In the last line of Equation (7.13), we have noted that, by design, the PN signal c(t) satisfies 
the property described in Equation (7.10), reproduced here for convenience: 

for all t 

Equation (7.13) shows that the coherent detector input u(t) consists of a binary PSK signal 
s(t) embedded in additive code-modulated interference denoted by c(t)j(t). The modulated 
nature of the latter component forces the interference signal (jammer) to spread its spec­
trum such that the detection of information bits at the receiver output is afforded increased 
reliability. 

SYNCHRONIZATION 

For its proper operation, a spread-spectrum communication system requires that the locally 
generated PN sequence used in the receiver to despread the received signal be synchronized 
to the PN sequence used to spread the transmitted signal in the transmitter.4 A solution 
to the synchronization problem consists of two parts: acquisition and tracking. In acqui­
sition, or coarse synchronization, the two PN codes are aligned to within a fraction of the 
chip in as short a time as possible. Once the incoming PN code has been acquired, tracking, 
or fine synchronization, takes place. Typically, PN acquisition proceeds in two steps. First, 
the received signal is multiplied by a locally generated PN code to produce a measure of 
correlation between it and the PN code used in the transmitter. Next, an appropriate 
decision-rule and search strategy is used to process the measure of correlation so obtained 
to determine whether the two codes are in synchronism and what to do if they are not. As 
for tracking, it is accomplished using phase-lock techniques very similar to those used for 
the local generation of coherent carrier references. The principal difference between them 
lies in the way in which phase discrimination is implemented. 

7. 5 Signal-Space Dimensionality 
and Processing Gain 

Having developed a conceptual understanding of spread-spectrum modulation and a 
method for its implementation, we are ready to undertake a detailed mathematical analysis 
of the technique. The approach we have in mind is based on the signal-space theoretic 
ideas of Chapter 5. In particular, we develop signal-space representations of the transmit­
ted signal and the interfering signal (jammer). 
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In this context, consider the set of orthonormal basis functions: 

c/>k(t) = {~ cos(27rfct), 

o, 

4>k(t}= {~ sin(27rf,t), 

0, 

k = 0, 1, ... , N - 1 

k'f., s ts (k + l)T0 

otherwise 

otherwise 

(7.14) 

(7.15) 

where Tc is the chip duration, and N is the number of chips per bit. Accordingly, we may 
describe the transmitted signal x(t) for the interval of an information bit as follows: 

x(t) = c(t)s(t) 

~ = ±~y;: c(t) cos(27rfct) (7.16) 

fE;, N-1 

= ± {N ~o ckcpk(t), 

where Eb is the signal energy per bit; the plus sign corresponds to information bit 1, and 
the minus sign corresponds to information bit 0. The code sequence {c0, c" ... , cN_1) 

denotes the PN sequence, with ck = ±1. The transmitted signal x(t) is therefore N­
dimensional in that it requires a minimum of N orthonormal functions for its 
representation. 

Consider next the representation of the interfering signal (jammer), j(t). Ideally, the 
jammer likes to place all of its available energy in exactly the same N-dimensional signal 
space as the transmitted signal x(t); otherwise, part of its energy goes to waste. However, 
the best that the jammer can hope to know is the transmitted signal bandwidth. Moreover, 
there is no way that the jammer can have knowledge of the signal phase. Accordingly, we 
may-represent the jammer by the general form 

N-1 N-1 

i(tl = 2: ik<Pk(tl + 2: 7k4>k(t), (7.17) 
k~o k~o 

where 

fTb 
ik = Jo j(t)cp.(t) dt, · k = 0, 1, ... , N - 1 (7.18) 

and 

k = 0, 1, ... , N - 1 (7.19) 

Thus the interference j(t) is 2N-dimensional; that is, it has twice the number of dimensions 
required for representing the transmitted DS/BPSK signal x(t). In terms of the represen-
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tation given in Equation (7.17), we may express the average power of the interference j(t) 
as follows: 

1 JTb J = r;; 0 j2(t) dt 

1 N-1 l N-1 -

=-l:ii+-l:ii 
Tb k-o Tb k-o ~ 

(7.20) 

Moreover, due to lack of knowledge of signal phase, the best strategy a jammer can apply 
is to place equal energy in the cosine and sine coordinates defined in Equations (7.18) and 
(7.19); hence, we may safely assume 

N-1 N-1 

l:ii=2:7i (7.21) 
k~O k~O 

Correspondingly, we may simplify Equation (7.20) as 

(7.22) 

Our aim is to tie these results together by finding the signal-to-noise ratios measured at 
the input and output of the DS/BPSK receiver in Figure 7.9. To that end, we use Equation 
(7.13) to express the coherent detector output as 

f2JTb 
v = ~T;; 

0 
u(t) cos(27rfct) dt 

(7.23) 

where the components vs and Ve; are due to the despread binary PSK signal, s(t), and the 
spread interference, c(t)j(t), respectively. These two components are defined as follows: 

!I JTb 
v, = ~T;; 

0 
s(t) cos(2Trfct) dt (7.24) 

and 

!I JTb 
Ve; = ~T;; 

0 
c(t)j(t) cos(27r/ct) dt (7.25) 

Consider first the component v, due to the signal. The despread binary PSK signal 
s(t) equals 

f2E;, 
s(t) = ± {T; cos(2Trfct), (7.26) 

where the plus sign corresponds to information bit 1, and the minus sign corresponds to 
information bit 0. Hence, assuming that the carrier frequency fc is an integer multiple of 
1/Tb> we have 

v,= ±~ (7.27) 
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Consider next the component v ci due to interference. Expressing the PN signal c(t) 
in the explicit form of a sequence, {c0, Ci, ••• , CN-t!, we may rewrite Equation (7.25) in 
the corresponding form 

ff N-1 11k+1)T, 

Ve; = {f;, ~o ck kT, j(t) cos(21Tfct) dt (7.28) 

Using Equation (7.14) for cf>k(t), and then Equation (7.18) for the coefficient jb we may 
redefine v ci as 

(7.29) 

We next approximate the PN sequence as an independent and identically distributed (i.i.d.) 
binary sequence. We emphasize the implication of this approximation by recasting Equa­
tion (7.29) in the form 

(7.30) 

where Ve; and Ck are random variables with sample values v,; and ck> respectively. In 
Equation (7.30), the jarnmer is assumed to be fixed. With the Ck treated as i.i.d. random 
variables, we find that the probability of the event Ck = ±: 1 is 

P(Ck = 1) = P(Ck = -1) = ! (7.31) 

Accordingly, the mean of the random variable v;7 is zero since, for fixed k, we have 

E[Ckiklik] = ikP(Ck = 1) - jkP(Ck = -1) 
1 · I· 

= Ilk - 'ifk (7.32) 

=O 

For a fixed vector j, representing the set of coefficients j0, ji, ... , iN-h the variance of V,; 
is given by 

l N-1 

var[Vc; I j] = - 2: ii 
N k~o 

(7.33) 

Since the spread factor N = Tb!T., we may use Equation (7.22) to express this variance in 
terms of the average interference power J as 

(7.34) 

Thus the random variable Ve; has zero mean and variance JTJ2. 
From Equation (7.27), we note that the signal component at the coherent detector 

output (during each bit interval) equals±~, where Ei, is the signal energy per bit. Hence, 
the peak instantaneous power of the signal component is Eb- Accordingly, we may define 
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the output signal-to-noise ratio as the instantaneous peak power E,, divided by the variance 
of the equivalent noise component in Equation (7.34). We thus write 

2Eb 
(SNR)o =]Tc (7.35) 

The average signal power at the receiver input equals E,jTb. We thus define an input signal­
to-noise ratio as 

(SNR)i = Eb/Tb 
J 

(7.36) 

Hence, eliminating Eb/] between Equations (7.35) and (7.36), we may express the output 
signal-to-noise ratio in terms of the input signal-to-noise ratio as 

2Tb 
(SNR)0 = T (SNR)r (7.37) 

It is customary practice to express signal-to-noise ratios in decibels. To that end, we intro­
duce a term called the processing gain (PG), which is defined as the gain in SNR obtained 
by the use of spread spectrum. Specifically, we write 

PG= IJ?. 
T, 

(7.38) 

which represents the gain achieved by processing a spread-spectrum signal over an un­
spread signal. We may thus write Equation (7.37) in the equivalent form: 

10 log10(SNR) 0 = 10 log10(SNR)r + 3 + 10 log10(PG) dB (7.39) 

The 3-dB term on the right-hand side of Equation (7.39) accounts for the gain in SNR 
that is obtained through the use of coherent detection (which presumes exact knowledge 
of the signal phase by the receiver). This gain in SNR has nothing to do with the use of 
spread spectrum. Rather, it is the last term, 10 log10(PG), that accounts for the processing 
gain. Note that both the processing gain PG and the spread factor N (i.e., PN sequence 
length) equal the ratio TJT,. Thus, the longer we make the PN sequence (or, correspond­
ingly, the smaller the chip time Tc is), the larger will the processing gain be. 

~-~ Probability of Error 

Let the coherent detector output v in the direct-sequence spread BPSK system of Figure 
7.9 denote the sample value of a random variable V. Let the equivalent noise component 
v,i produced by external interference denote the sample value of a random variable V,i. 
Then, from Equations (7.23) and (7.27) we deduce that 

(7.40) 

where Eb is the transmitted signal energy per bit. The plus sign refers to sending symbol 
(information bit) 1, and the minus sign refers to sending symbol 0. The decision rule used 
by the coherent detector of Figure 7.9 is to declare that the received bit in an interval (0, 
7/,) is 1 if the detector output exceeds a threshold of zero, and that it is 0 if the detector 
output is less than the threshold; if the detector output is exactly zero, the receiver makes 
a random guess in favor of 1 or 0. With both information bits assumed equally likely, we 
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find that (because of the symmetric nature of the problem) the average probability of error 
P, is the same as the conditional probability of (say) the receiver making a decision in 
favor of symbol 1, given that symbol 0 was sent. That is, 

Pe = P(V > 0 I symbol 0 was sent) 

= P(Ve; > \/E;;) (7.41) 

Naturally, the probability of error Pe depends on the random variable Vei defined by Equa­
tion (7.30). According to this definition, Ve; is the sum of N identically distributed random 
variables. Hence, from the central limit theorem, we deduce that for large N, the random 
variable Ve; assumes a Gaussian distribution. Indeed, the spread factor or PN sequence 
length N is typically large in the direct-sequence spread-spectrum systems encountered in 
practice, under which condition the application of the central limit theorem is justified. 

Earlier we evaluated the mean and variance of Ve;; see Equations (7.32) and (7.34). 
We may therefore state that the equivalent noise component Ve; contained in the coherent 
detector output may be approximated as a Gaussian random variable with zero mean and 
variance JTJ2, where J is the average interference power and Tc is the chip duration. With 
this approximation at hand, we may then proceed to calculate the probability of the event 
Vei > VE;;, and thus express the average probability of error in accordance with Equation 
(7.41) as 

(7.42) 

This simple formula, which invokes the Gaussian assumption, is appropriate for DS/BPSK 
binary systems with large spread factor N. 

Ill AN'TIJAM CHARACTERISTICS 

It is informative to compare Equation (7.42) with the formula for the average probability 
of error for a coherent binary PSK system reproduced here for convenience of presentation 
[see Equation (6.20)] 

(7.43) 

Based on this comparison, we see that insofar as the calculation of bit error rate in a direct­
sequence spread binary PSK system is concerned, the interference may be treated as 
wideband noise of power spectral density N0 /2, defined by 

No JT, 
2 2 

This relation is simply a restatement of an earlier result given in Equation (7.34). 

(7.44) 

Since the signal energy per bit Eb = PTb, where Pis the average signal power and Tb 
is the bit duration, we may express the signal energy per bit-to-noise spectral density ratio 
as 

(7.45) 
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Using the definition of Equation (7.38) for the processing gain PG we may reformulate 
this result as 

L PG 
P Eb/No 

(7.46) 

The ratio ]IP is termed the jamming margin. Accordingly, the jamming margin and the 
processing gain, both expressed in decibels, are related by 

(Jamming margin)ds = (Procesing gain)ds 10 log10 (NEb) . 
0 mm 

(7.47) 

where (E6/N0)min is the minimum value needed to support a prescribed average probability 
of error. 

!>'- EXAMPLE 7 .3 

A spread-spectrum communication system has the following parameters: 

Information bit duration, Tb = 4.095 ms 

PN chip duration, T. = 1 µs 

Hence, using Equation (7.38) we find that the processing gain is 

PG= 4095 

Correspondingly, the required period of the PN sequence is N = 409 5, and the shift-register 
length is m 12. 

For a satisfactory reception, we may assume that the average probability of error 
is not to exceed 10-s. From the formula for a coherent binary PSK receiver, we find that 
Eb/N0 = 10 yields an average probability of error equal to 0.387 X 10-s. Hence, using th.is 
value for Eb/N0, and the value calculated for the processing gain, we find from Equation (7.47) 
that the jamming margin is 

(Jamming margin)dB = 10 log10 4095 - 10 log10(10) 

= 36.1 10 

= 26.1 dB 

That is, information bits at the receiver output can be detected reliably even when the noise 
or interference at the receiver input is up to 409.5 tinies the received signal power. Clearly, 
this is a powerful advantage against interference (jamming), which is realized througli the 
clever use of spread-spectrum modulation. 41 

l 7. 7 Frequency-Hop Spread Spectrum. 

In the type of spread-spectrum systems discussed in Section 7.4, the use of a PN sequence 
to modulate a phase-shift-keyed signal achieves instantaneous spreading of the transmis­
sion bandwidth. The ability of such a system to combat the effects of jammers is determined 
by the processing gain of the system, which is a function of the PN sequence period. The 
processing gain can be made larger by employing a PN sequence with narrow chip dura­
tion, which, in turn, permits a greater transmission bandwidth and more chips per bit. 
However, the capabilities of physical devices used to generate the PN spread-spectrum 
signals impose a practical limit on the attainable processing gain. Indeed, it may turn out 
that the processing gain so attained is still not large enough to overcome the effects of 
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some jammers of concern, in which case we have to resort to other methods. One such 
alternative method is to force the jammer to cover a wider spectrum by randomly hopping 
the data-modulated carrier from one frequency to the next. In effect, the spectrum of the 
transmitted signal is spread sequentially rather than instantaneously; the term "sequen­
tially" refers to the pseudo-random-ordered sequence of frequency hops. 

The type of spread spectrum in which the carrier hops randomly from one frequency 
to another is called frequency-hop (FH) spread spectrum. A common modulation format 
for FH systems is that of M-ary frequency-shift keying (MFSK). The combination of these 
two techniques is referred to simply as FH/MFSK. (A description of M-ary FSK is presented 
in Chapter 6.) 

Since frequency hopping does not cover the entire spread spectrum instantaneously, 
we are led to consider the rate at which the hops occur. In this context, we may identify 
two basic (technology-independent) characterizations of frequency hopping: 

1. Slow-frequency hopping, in which the symbol rate R, of the MFSK signal is an integer 
multiple of the hop rate Rh. That is, several symbols are transmitted on each fre­
quency hop. 

2. Fast-frequency hopping, in which the hop rate Rh is an integer multiple of the MFSK 
symbol rate R,. That is, the carrier frequency will change or hop several times during 
the transmission of one symbol. 

Obviously, slow-frequency hopping and fast-frequency hopping are the converse of one 
another. In the following, these two characterizations of frequency hopping are considered 
in turn. 

!>!! Sww-FREQUENCY HOPPING 

Figure 7.10a shows the block diagram of an FH/MFSK transmitter, which involves fre­
quency modulation followed by mixing. First, the incoming binary data are applied to an 
M-ary FSK modulator. The resulting modulated wave and the output from a digital fre­
quency synthesizer are then applied to a mixer that consists of a multiplier followed by a 
band-pass filter. The filter is designed to select the sum frequency component resulting 
from the multiplication process as the transmitted signal. In particular, successive k-bit 
segments of a PN sequence drive the frequency synthesizer, which enables the carrier fre­
quency to hop over 2k distinct values. On a single hop, the bandwidth of the transmitted 
signal is the same as that resulting from the use of a conventional MFSK with an alphabet 
of M = 2K orthogonal signals. However, for a complete range of 2k frequency hops, the 
transmitted FH/MFSK signal occupies a much larger bandwidth. Indeed, with present-day 
technology, FH bandwidths on the order of several GHz are attainable, which is an order 
of magnitude larger than that achievable with direct-sequence spread spectra. An impli­
cation of these large FH bandwidths is that coherent detection is possible only within each 
hop, because frequency synthesizers are unable to maintain phase coherence over succes­
sive hops. Accordingly, most frequency-hop spread-spectrum communication systems use 
noncoherent M-ary modulation schemes. 

In the receiver depicted in Figure 7.10b, the frequency hopping is first removed by 
mixing (down-converting) the received signal with the output of a local frequency synthe­
sizer that is synchronously controlled in the same manner as that in the transmitter. The 
resulting output is then band-pass filtered, and subsequently processed by a noncoherent 
M-ary FSK detector. To implement this M-ary detector, we may use a bank of M nonco· 
herent matched filters, each of which is matched to one of the MFSK tones. (Noncoherent 
matched filters are described in Chapter 6.) An estimate of the original symbol transmitted 
is obtained by selecting the largest filter output. 
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FIGURE 7.10 Frequency-hop spread M-ary frequency-shift keying. (a) Transmitter. (b) Receiver. 

An individual FH/MFSK tone of shortest duration is referred to as a chip; this ter­
minology should not be confused with that used in Section 7.4 describing DS/BPSK. The 
chip rate, Re, for an FH/MFSK system is defined by 

(7.48) 

where Rh is the hop rate, and R, is the symbol rate. 
A slow FH/MFSK signal is characterized by having multiple symbols transmitted per 

hop. Hence, each symbol of a slow FH/MFSK signal is a chip. Correspondingly, in a slow 
FH/MFSK system, the bit rate Rb of the incoming binary data, the symbol rate R, of the 
MFSK signal, the chip rate R 0 and the hop rate Rh are related by 

Rb 
Re= R, = K ;;=:Rh (7.49) 

where K = log2 M. 
At each hop, the MFSK tones are separated in frequency by an integer multiple of 

the chip rate Re = R,, ensuring their orthogonality. The implication of this condition is 
that any transmitted symbol will not produce any crosstalk in the other M - 1 noncoherent 
matched filters constituting the MFSK detector of the receiver in Figure 7.10b. By "cross­
talk" we mean the spillover from one filter output into an adjacent one. The resulting 
performance of the slow FH/MFSK system is the same as that for the noncoherent detection 
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of conventional (unhopped) MFSK signals in additive white Gaussian noise. Thus the 
interfering (jamming) signal has an effect on the FH/MFSK receiver, in terms of average 
probability of symbol error, equivalent to that of additive white Gaussian noise on a 
conventional noncoherent M-ary FSK receiver experiencing no interference. On the basis 
of this equivalence, we may use Equation ( 6.140) for approximate evaluation of the prob­
ability of symbol error in the FH/MFSK system. 

Assuming that the jammer decides to spread its average power J over the entire 
frequency-hopped spectrum, the jammer's effect is equivalent to an A WGN with power 
spectral density N 012, where N 0 =]/We and We is the FH bandwidth. The spread-spectrum 
system is thus characterized by the symbol energy-to-noise spectral density ratio: 

E Pl] 

N0 WJR, (7.50) 

where the ratio Pl] is the reciprocal of the jamming margin. The other ratio in the denom­
inator of Equation (7.50) is the processing gain of the slow FH/MFSK system, which is 
defined by 

PG= We 
R, 

= zk 
(7.51) 

That is, the processing gain (expressed in decibels) is equal to 10 log10 zk = 3k, where k 
is the length of the PN segment employed to select a frequency hop. 

This result assumes that the jammer spreads its power over the entire FH spectrum. 
However, if the jammer decides to concentrate on just a few of the hopped frequencies, 
then the processing gain realized by the receiver would be less than 3k decibels. 

!!;- EXAMPLE 7,4 

Figure 7. lla illustrates the variation of the frequency of a slow FH/MFSK signal with time 
for one complete period of the PN sequence. The period of the PN sequence is 24 1 = 15. 
The FH/MFSK signal has the following parameters: 

Number of bits per MFSK symbol 

Number of MFSK tones 

Length of PN segment per hop 

Total number of frequency hops 

K=2 
M 2K = 4 

k = 3 

2k 8 

In this example, the carrier is hopped to a new frequency after transmitting two symbols or 
equivalently, four information bits. Figure 7.lla also includes the input binary data, and the 
PN sequence controlling the selection of FH carrier frequency. It is noteworthy that although 
there are eight distinct frequencies available for hopping, only three of them are utilized by 
the PN sequence. 

Figure 7.llb shows the variation of the dehopped frequency with time. This variation 
is recognized to be the same as that of a conventional MFSK signal produced by the given 
input data. <41 

llil FAST-FREQUENCY HOPPING 

A fast FH/MFSK system differs from a slow FH/MFSK system in that there are multiple 
hops per M-ary symbol. Hence, in a fast FH/MFSK system, each hop is a chip. In general, 
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FIGURE 7 .11 Illustrating slow-frequency hopping. (a) Frequency variation for one complete 
period of the PN sequence. (b) Variation of the dehopped frequency with time. 

fast-frequency hopping is used to defeat a smart jammer's tactic that involves two func­
tions: measurements of the spectral content of the transmitted signal, and retuning of the 
interfering signal to that portion of the frequency band. Clearly, to overcome the jammer, 
the transmitted signal must be hopped to a new carrier frequency before the jammer is 
able to complete the processing of these two functions. 

For data recovery at the receiver, noncoherent detection is used. However, the de­
tection procedure is quite different from that used in a slow FH/MFSK receiver. In partic­
ular, two procedures may be considered: 

1. For each FH/MFSK symbol, separate decisions are made on the K frequency-hop 
chips received, and a simple rule based on majority vote is used to make an estimate 
of the dehopped MFSK symbol. 

2. For each FHIMFSK symbol, likelihood functions are computed as functions of the 
total signal received over K chips, and the largest one is selected. 
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A receiver based on the second procedure is optimum in the sense that it minimizes the 
average probability of symbol error for a given Eb/N0 • 

~ EXAMPLE 7 .5 

Figure 7.12a illustrates the variation of the transmitted frequency of a fast FH/MFSK signal 
with time. The signal has the following parameters: 

Number of bits per MFSK symbol 

Number of MFSK tones 

Length of PN segment per hop 

Total nuniber of frequency hops 

K=2 

M = 2K = 4 

k = 3 

2• = 8 

In this example, each MFSK symbol has the same number of bits and chips; that is, the chip 
rate Re is the same as the bit rate Rb. After each chip, the carrier frequency of the transmitted 
MFSK signal is hopped to a different value, except for few occasions when the k-chip segment 
of the PN sequence repeats itself. 

-
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FIGURE 7 .12 Illustrating fast-frequency hopping. (a) Variation of the transmitter frequency with. 
time. (b) Variation of the dehopped frequency with time. 
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Figure 7. l2b depicts the time variation of the frequency of the dehopped MFSK signal, 
which is the same as that in Example 7.4. 4il 

7 .8 C01nputer Experiments: 
Maximal-Length and Gold Codes 

Code-division multiplexing (CDM) provides an alternative to the traditional methods of 
frequency-division multiplexing (FDM) and time-division multiplexing (TDM). It does not 
require the bandwidth allocation of FDM (discussed in Chapter 2) nor the time synchro­
nization needed in TDM (discussed in Chapter 3 ). Rather, users of a common channel are 
permitted access to the channel through the assignment of a "spreading code" to each 
individual user under the umbrella of spread-spectrum modulation. The purpose of this 
computer experiment is to study a certain class of spreading codes for CDM systems that 
provide a satisfactory performance. 

In an ideal CDM system, the cross-correlation between any two users of the system 
is zero. For this ideal condition to be realized, we require that the cross-correlation function 
between the spreading codes assigned to any two users of the system be zero for all cyclic 
shifts. Unfortunately, ordinary PN sequences do not satisfy this requirement because of 
their relatively poor cross-correlation properties. 

As a remedy for this shortcoming of ordinary PN sequences, we may use a special 
class of PN sequences called Gold sequences (wdes),5 the generation of which is embodied 
in the following theorem: 

Let g 1(X) andg2 (X) be a preferred pair of primitive polynomials of degree n whose 
corresponding shift registers generate maximal-length sequences of period 2" - 1 
and whose cross-correlation function has a magnitude less than or equal to 

2(n+l)/2 + 1 for n odd (7.52) 

or 

2(n+2)12 + 1 for n even and n i= 0 mod 4 (7.53) 

Then the shift register corresponding to the product polynomial g1 (X) · g2 (X) will 
generate 2" + 1 different sequences, with each sequence having a period of 2" - 1, 
and the cross-correlation between any pair of such sequences satisfying the preced­
ing condition. 

Hereafter, this theorem is referred to as Gold's theorem. 
To understand Gold's theorem, we need to define what we mean by a primitive 

polynomial. Consider a polynomial g(X) defined over a binary field (i.e., a finite set of two 
elements, 0 and 1, which is governed by the rules of binary arithmetic). The polynomial 
g(X) is said to be an irreducible polynomial if it cannot be factored using any polynomials 
from the binary field. An irreducible polynomial g(X) of degree mis said to be a primitive 
polynomial if the smallest integer m for which the polynomial g(X) divides the factor 
X" + 1 is n = 2~ -1. Further discussion of this topic is deferred to Chapter 8; in particular, 
see Example 8.3. 
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Experiment 1. Correlation Properties of PN Sequences 

Consider a pair of shift registers for generating two PN sequences of period 27 
- 1 == 127 

One feedback shift register has the feedback taps [7, 1] and the other one has the feedback 
taps [7, 6, 5, 4]. Both sequences have the same autocorrelation function shown in Figure 
7.13a, which follows readily from the definition presented in Equation (7.5). 

However, the calculation of the cross-correlation function between PN sequences is 
a more difficult proposition, particularly for large n. To perform this calculation, we resort 
to the use of computer simulation for varying cyclic shift 'T inside the interval 
0 < 'T:;;; 2n - 1. The results of this computation are presented in Figure 7.13b. This figure 
confirms the poor cross-correlation property of PN sequences compared to their autocor­
relation function. The magnitude of the cross-correlation function exceeds 40. 
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FIGURE 7 .13 (a) Autocorrelation function Re( -r), and (b) cross-correlation function R12( -r) of the 
two PN sequences [7, l] and [7, 6, 5, 4]. 
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Gold 
sequence 

FIGURE 7.14 Generator for a Gold sequence of period 27 
- I= 127. 

Experiment 2. Correlation Properties of Gold Sequences 

For our next experiment, we consider Gold sequences with period 27 - 1 = 127. To 
generate such a sequence for n = 7 we need a preferred pair of PN sequences that satisfy 
Equation (7.52) (n odd), as shown by 

2(n+l)/2 + 1 = 24 + 1 = 17 

This requirement is satisfied by the PN sequences with feedback taps [7, 4] anq [7, 6, 5, 4]. 
The Gold-sequence generator is shown in Figure 7.14 that involves the modulo-2 addition 
of these two sequences. According to Gold's theorem, there are a total of 

2" + 1 = 27 + 1 = 129 

sequences that satisfy Equation (7.52). The cross-correlation between any pair of such 
sequences is shown in Figure 7.15, which is indeed in full accord with Gold's theorem. In 
particular, the magnitude of the cross-correlation is less than or equal to 17. 
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FIGURE 7.15 Cross-correlation function R12 ( T) of a pair of Gold sequences based on the two 
PN sequences [7, 4] and [7, 6, 5, 4]. 
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I 7. 9 Sutnmary and Discussion 

Direct-sequence M-ary phase shifr keying,(DSIMPSK) and frequency-hop M-ary frequenc 
shifr-keying (FH/MFSK) represent two principal categories of spread-spectrum comm:. 
nications. Both of them rely on the use of a pseudo-noise (PN) sequence, which is applied 
differently in the two categories. 

In a DS/MPSK system, the PN sequence makes the transmitted signal assume a 
noiselike appearance hy spreading its spectrum over a broad range of frequencies simul­
taneously. For the phase-shift keying, we may use binary PSK (i.e., M = 2) with a single 
carrier. Alternatively, we may use QPSK (i.e., M = 4), in which case the data are trans­
mitted using a pair of carriers in phase quadrature. (Both PSK and QPSK are discussed in 
Section 6.3.) The usual motivation for using QPSK is to provide for improved bandwidth 
efficiency. In a spread-spectrum system, bandwidth efficiency is usually not of prime con­
cern. Rather, the use of QPSK is motivated by the fact that it is less sensitive to some types 
of interference (jamming). 

In an FH/MFSK system, the PN sequence makes the carrier hop over a number of 
frequencies in a pseudo-random manner, with the result that the spectrum of the trans­
mitted signal is spread in a sequential manner. 

Naturally, the direct-sequence and frequency-hop spectrum-spreading techniques 
may be employed in a single system. The resulting system is referred to as hybrid DS/FH 
spread-spectrum system. The reason for seeking a hybrid approach is that advantages of 
both the direct-sequence and frequency-hop spectrum-spreading techniques are realized in 
the same system. 

A discussion of spread-spectrum communications would be incomplete without some 
reference to jammer waveforms. The jammers encountered in practice include the follow­
ing types: 

1. The barrage noise jammer, which consists of band-limited white Gaussian noise of 
high average power. The barrage noise jammer is a brute-force jammer that does not 
exploit any knowledge of the antijam communication system except for its spread 
bandwidth. 

2. The partial-band noise jammer, which consists of noise whose total power is evenly 
spread over some frequency band that is a subset of the total spread bandwidth. 
Owing to the smaller bandwidth, the partial-band noise jammer is easier to generate 
than the barrage noise jammer. 

3. The pulsed noise jammer, which involves transmitting wideband noise of power 

J 
]peak = p 

for a fraction p of the time, and nothing for the remaining fraction 1 - p of the time. 
The average noise power equals]. 

4. The single-tone jammer, which consists of a sinusoidal wave whose frequency lies 
inside the spread bandwidth; as such, it is the easiest of all jamming signals to 
generate. 

5. The multitone jammer, which is the tone equivalent of the partial-band noise januner. 

In addition to these five, many other kinds of jamming waveforms occur in practice. In 
any event, there is no single jamming waveform that is worst for all spread-spectrum 
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systems, and there is no single spread-spectrum system that is best against all possible 
jamming waveforms. 

~OTES AND REFERENCES 

1. The definition of spread-spectrum modulation presented in the Introduction is adapted from 
Pickholtz, Schilling, and Milstein ( 19 82). This paper presents a tutorial review of the theory 
of spread-spectrum communications. 

For introductory papers on the subject, see Viterbi (1979), and Cook and Marsh 
(1983). For books on the subject, see Dixon (1984), Holmes (1982), Ziemer and Peterson 
(1985, pp. 327-649), Cooper and McGillem (1986, pp. 269--411), and Simon, Omura, 
Scholtz, and Levitt (1985, Volumes I, II, and ill). The three-volume book by Simon et al. is 
the most exhaustive treatment of spread-spectrum communications available in the open 
literature. The development of spread-spectrum communications dates back to about the 
mid-1950s. For a historical account of these techniques, see Scholtz (1982). This latter paper 
traces the origins of spread-spectrum communications back to the 1920s. Much of the his­
torical material presented in this paper is reproduced in Chapter 2, Volume I, of the book 
by Simon et al. 

The book edited by Tantaratana and Ahmed (1998) includes introductory and ad­
vanced papers on wireless applications of spread-spectrum modulation. The papers are 
grouped into the following categories: spread-spectrum technology, cellular mobile systems, 
satellite communications, wireless local area networks, and global positioning systems 
(GPS). 

2. For further details on maximal-length sequences, see Golomb (1964, pp. 1-32), Simon, 
Omura, Scholtz, and Levitt (1985, pp. 283-295), and Peterson and Weldon {1972). The 
last reference includes an extensive list of polynomials for generating maximal-length se­
quences; see also Dixon (1984 ). For a tutorial paper on pseudo-noise sequences, see Sarwate 
and Pursley (1980). 

3. Table 7.1 is extracted from the book by Dixon (1984, pp. 81-83), where feedback connec­
tions of maximal-length sequences are tabulated for shift-register length m extending up 
to 89. 

4. For detailed discussion of the synchronization problem in spread-spectrum communications, 
see Ziemer and Peterson (1985, Chapters 9 and 10) and Simon et al. (1985, Volume ill). 

5. The original papers on Gold sequences are Gold (1967, 1968). A detailed discussion of Gold 
sequences is presented in Holmes (1982). 

LPROBLEMS 

Pseudo-Noise Sequences 

7.1 A pseudo-noise (PN) sequence is generated using a feedback shift register of length 
m = 4. The chip rate is 107 chips per second. Find the following parameters: 

(a) PN sequence length. 
(b) Chip duration of the PN sequence. 
{c) PN sequence period. 
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7.2 Figure P7.2 shows a four-stage feedback shift register. The initial state of the register is 
1000. Find the output sequence of the shift register. 

Modulo-2 
adder 

FIGURE P7.2 

Output 
sequence 

7.3 For the feedback shift register given in Problem 7.2, demonstrate the balance property 
and run property of a PN sequence. Also, calculate and plot the autocorrelation function 
of the PN sequence produced by this shift register. 

7.4 Referring to Table 7.1, develop the maximal-length codes for the three feedback config­
urations [6, 1], [6, 5, 2, 1], and [6, 5, 3, 2], whose period is N = 63. 

7.5 Figure P7.5 shows the modular multitap version of the linear feedback shift-register 
shown in Figure 7.4b. Demonstrate that the PN sequence generated by this scheme is 
exactly the same as that described in Table 7.2b. 

FIGUREP7.5 

Direct Sequence/Phase-Shift Keying System 

7.6 Show that the truth table given in Table 7.3 can be constructed by combining the follow­
ing two steps: 
(a) The message signal b(t) and PN signal c(t) are added modulo-2. 
(b) Symbols 0 and 1 at the modulo-2 adder output are represented by phase shifts of 0 

and 180 degrees, respectively. 
7.7 A single-tone jammer 

j(t) = Vi] cos(27r£t + ()) 
is applied to a DS/BPSK system. The N-dimensional transmitted signal x(t) is described 
by Equation (7.16). Find the 2N coordinates of the jarnmer i(t). 

7.8 The processing gain of a spread-spectrum system may be expressed as the ratio of the 
spread bandwidth of the transmitted signal to the despread bandwidth of the received 
signal. Justify this statement for the DS/BPSK system. 
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7 .9 A direct-sequence spread binary phase-shift keying system uses a feedback shift register 
of length 19 for the generation of the PN sequence. Calculate the processing gain of the 
system. 

7.10 In a DS/BPSK system, the feedback shift register used to generate the PN sequence has 
length m = 19. The system is required to have an average probability of symbol error 
due to externally generated interfering signals that does not exceed 10-s. Calculate the 
following system parameters in decibels: 
(a) Processing gain. 
(b) Antijam margin. 

7.11 In Section 7.5, we presented an analysis on the signal-space dimensionality and processing 
gain of a direct sequence spread-spectrum system using binary phase-shift keying. Extend 
the analysis presented therein to the case of such a system using quadriphase-shift keying. 

Frequency-Hop Spread Spectrum 

7.12 A slow FH/MFSK system has the following parameters: 
Number of bits per MFSK symbol = 4 
Number of MFSK symbols per hop = 5 

Calculate the processing gain of the system. 
7.13 A fast FH/MFSK system has the following parameters: 

Number of bits per MFSK symbol = 4 
Number of hops per MFSK symbol = 4 

Calculate the processing gain of the system. 

Computer Experiments 

7.14 Consider two PN sequences of period N = 63. One sequence has the feedback taps [6, l] 
and the other sequence has the feedback taps [6, 5, 2, 1], which are picked in accordance 
with Table 7.1. 
(a) Compute the autocorrelation function of these two sequences, and their cross­

correlation function. 
(b) Compare the cross-correlation function computed in part (a) with the cross­

correlation function between the sequence [6, 5 2, 1] and its mirror image [6, 5, 4, 1]. 
Comment on your results. 

7.15 (a) Compute the partial cross-correlation function of a PN sequence with feedback taps 
[5, 2] and its image sequence defined by the feedback taps [5, 3]. 

(b) Repeat the computation for the PN sequence with feedback taps [5, 2] and the PN 
sequence with feedback taps [5, 4, 2, 1]. 

(c) Repeat the computation for the PN sequence with feedback taps [5, 4, 3, 2] and the 
PN sequence with feedback taps [5, 4, 2, 1]. 

The feedback taps [5, 2], [5, 4, 3, 2], and [5, 4, 2, 1] are possible taps for a maxirnal­
length sequence of period 31, in accordance with Table 7.1. 



MULTIUSER RADIO 

COMMUNICATIONS 

As its name implies, multiuser communications refers to the simultaneous use of a 
communication channel by a number of users. In this chapter, we discuss multiuser 
communication systems that rely on radio propagation for linking the receivers to the 
transmitters. 

In particular, we focus on the following topics: 

~ Multiple-access techniques, which are basic to multiuser communication systems. 

~ Satellite communications, offering global coverage. 

~ Radio link analysis, highlighting the roles of transmitting and receiving antennas and free-
space propagation. 

~ Wireless communications with emphasis on mobility and the multipath phenomenon. 

~ Speech coding for wireless communications. 

~ Adaptive antennas for wireless communications. 

l 8.1 Introduction 

512 

Much of the material on communication theory presented in earlier chapters has been 
based on a particular idealization of the communication channel, namely, a channel model 
limited in bandwidth and corrupted by additive white Gaussian noise (A WGN). The clas­
sical communication theory so developed is mathematically elegant, providing a sound 
introduction to the ever-expanding field of communication systems. An example of a phys­
ical channel that is well represented by such a model is the satellite communications chan­
nel. It is therefore befitting that the first type of multiuser communications discussed in 
this chapter is satellite communications. 

A satellite communication system in geostationary orbit relies on line-of-sight radio 
propagation for the operation of its uplink from an earth terminal to the transponder and 
the downlink from the transponder to another earth terminal. Thus the discussion of 
satellite communications naturally leads to the analysis of radio propagation in free space, 
linking a receiving antenna to a transmitting antenna. 

The use of satellite communications offers global coverage. The other multiuser com­
munication system studied in this chapter, namely, wireless communications, offers mo· 
bility which, in conjunction with existing telephone networks and satellite communication 
systems, permits a mobile unit to communicate with anyone, anywhere in the world. An­
other characteristic feature of wireless communication systems is that they are tetherless 
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(i.e., total freedom of location is permitted), hence the interest in their use for local area 
networks (i.e., data networks confined to buildings up to a few kilometers in size) due to 
significant advantages over conventional cabling: elimination of wiring and rewiring, flex­
ibility of creating new communication services, and mobility of users. 

The radio propagation channel characterizing wireless communications deviates 
from the idealized A WGN channel model due to the presence of multipath, which is a 
non-Gaussian form of signal-dependent phenomenon that arises because of reflections of 
the transmitted signal from fixed and moving objects. The presence of multipath raises 
practical difficulties in the use of a radio propagation channel and complicates its math­
ematical analysis. Simply put, multipath is a physical phenomenon that is intrinsic to the 
operation of indoor and outdoor forms of wireless communications. 

Before proceeding to discuss specific aspects of satellite communications and wireless 
communications, however, it is appropriate that we begin the discussion by describing 
multiple-access techniques, which enable different users to simultaneously (or nearly so) 
access a common channel. 

[ 8.2 Multiple-Access Techniques 

Multiple access is a technique whereby many subscribers or local stations can share the 
use of a communication channel at the same time or nearly so, despite the fact that their 
individual transmissions may originate from widely different locations. Stated in another 
way, a multiple-access technique permits the communication resources of the channel to 
be shared by a large number of users seeking to communicate with each other. 

There are subtle differences between multiple access and multiplexing that should be 
noted: 

1> Multiple access refers to the remote sharing of a communication channel such as a 
satellite or radio channel by users in highly dispersed locations. On the other hand, 
multiplexing refers to the sharing of a channel such as a telephone channel by users 
confined to a local site. 

1> In a multiplexed system, user requirements are ordinarily fixed. In contrast, in a 
multiple-access system user requirements can change dynamically with time, in which 
case provisions are necessary for dynamic channel allocation. 

For obvious reasons it is desirable that in a multiple-access system the sharing of 
resources of the channel be accomplished without causing serious interference between 
users of the system. In this context, we may identify four basic types of multiple access: 

1. Frequency-division multiple access (FDMA). 
In this technique, disjoint subbands of frequencies are allocated to the different users on 
a continuous-time basis. In order to reduce interference between users allocated adjacent 
channel bands, guard bands are used to act as buffer zones, as illustrated in Figute 8.la. 
These guard bands are necessary because of the impossibility of achieving ideal filtering 
for separating the different users. 

2. Time-division multiple access (TDMA). 
In this second technique, each user is allocated the full spectral occupancy of the channel, 
but only for a short duration of time called a time slot. As shown in Figure 8.lb, buffer 
zones in the form of guard times are inserted between the assigned time slots. This is done 
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Time Time Time 

(a) (b) (c) 

FIGURE 8.1 Illustrating the ideas behind multiple-access techniques. (a) Frequency-division 
multiple access. (b) Tirnc"division multiple access. (c) Frequency-hop multiple access. 

to reduce interference between users by allowing for time uncertainty that arises due to 
system imperfections, especially in synchronization schemes. 

3. Code-division multiple access (CDMA). 
In FDMA, the resources of the channel are shared by dividing them along the frequency 
coordinate into disjoint frequency bands, as illustrated in Figure 8.la. In TDMA, the 
resources are shared by dividing them along the time coordinate into disjoint time slots, 
as illustrated in Figure 8.lb. In Figure 8.lc, we illustrate another technique for sharing the 
channel resources by using a hybrid combination of FDMA and TDMA, which represents 
a specific form of code-division multiple access (CDMA). For example, frequency hopping 
may be employed to ensure that during each successive time slot, the frequency bands 
assigned to the users are reordered in an essentially random manner. To be specific, during 
time slot 1, user 1 occupies frequency band 1, user 2 occupies frequency band 2, user 3 
occupies frequency band 3, and so on. During time slot 2, user 1 hops to frequency band 
3, user 2 hops to frequency band 1, user 3 hops to frequency band 2, and so on. Such an 
arrangement has the appearance of the users playing a game of musical chairs. An impor­
tant advantage of CDMA over both FDMA and TDMA is that it can provide for secure 
communications. In the type of CDMA illustrated in Figure 8.lc, the frequency hopping 
mechanism can be implemented through the use of a pseudo-noise (PN) sequence. 

4. Space-division multiple access (SDMA). 
In this multiple-access technique, resource allocation is achieved by exploiting the spatial 
separation of the individual users. In particular, multibeam antennas are used to separate 
radio signals by pointing them along different directions. Thus, different users are enabled 
to access the channel simultaneously on the same frequency or in the same time slot. 

These multiple-access techniques share a common feature: allocating the communication 
resources of the channel through the use of disjointedness (or orthogonality in a loose 
sense) in time, frequency, or space. 

With this background material at hand, we are now ready to discuss some important 
multiuser communication systems. 

I 8.3 Satellite Communications 

In a geostationary satellite communication system, 1 a message signal is transmitted from 
an earth station via an uplink to a satellite, amplified in a transponder (i.e., electronic 
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FIGURE 8,2 Satellite communications system. 

circuitry) on board the satellite, and then retransmitted from the satellite via a downlink 
to another earth station, as illustrated in Figure 8.2. The most popular frequency band for 
satellite communications is 6 GHz (C-band) for the uplink and 4 GHz for the downlink. 
The use of this frequency band offers the following advantages: 

1> Relatively inexpensive microwave equipment. 
1> Low attenuation due to rainfall; rainfall is the primary atmospheric cause of signal 

degradation. 
1> Insignificant sky background noise; the sky background noise (due to random noise 

emissions from galactic, solar, and terrestrial sources) reaches its lowest level between 
1and10 GHz. 

However, radio interference limits the applications of communication satellites operating 
in the 6/4 GHz band, because the transmission frequencies of this band coincide with those 
used for terrestrial microwave systems. This problem is eliminated in the more powerful 
"second-generation" communication satellites that operate in the 14/12 GHz band (i.e., 
Ku-band); moreover, the use of these higher frequencies makes it possible to build smaller 
and therefore less expensive antennas. 

The block diagram of Figure 8.3 shows the basic components of a single transponder 
channel of a typical communication satellite. Specifically, the receiving antenna output of 
the uplink is applied to the cascade connection of the following components: 

• Band-pass filter, designed to separate the received signal from among the different 
radio channels. 

I> Low-noise amplifier. 
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FIGlJRE 8.3 Block diagram of transponder. 
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I> Frequency down-converter, the purpose of which is to convert the received radi 
frequency (RF) signal to the desired downlink frequency. 

0 

1> Traveling-wave tube amplifier, which provides high gain over a wide band of fre­
quencies. In a traveling-wave tube (TWT), an electromagnetic signal travels along a 
helix (i.e., a spring-shaped coil of wire}, while electrons in a high-voltage beam travel 
through the helix at a speed close to that of the signal wave; the net result is the 
transfer of power from the electrons to the wave, which grows rapidly as the signal 
wave travels down the helix. 

The channel configuration shown in Figure 8.3 uses a single frequency translation. Other 
channel configurations do the frequency conversion from the uplink to the downlink fre­
quency in two stages: down-conversion to an intermediate frequency, followed by ampli­
fication, and then up-conversion to the desired transmit frequency. 

Propagation time delay becomes particularly pronounced in a satellite channel be­
cause of the large distances involved. Specifically, speech signals sent by satellite incur a 
transmission delay of approximately 270 ms. Hence, for speech signals, any impedance 
mismatch at the receiving end of a satellite link results in an echo of the speaker's voice 
which is heard back at the transmitting end after a round-trip delay of approximately 540 
ms. We may overcome this problem by using an echo canceller, which is a device that 
subtracts an estimate of the echo from the return path; elimination of the echo is performed 
by means of a special filter that adapts itself to the changing channel characteristics. 

The satellite channel is ,closely represented by an additive white Gaussian noise 
(A WGN) model, which applies to both the uplink and downlink portions of the satellite 
communication system. Accordingly, much of the material presented in Chapter 6 on 
passband systems for the transmission of data, with particular reference to phase-shift 
keying and frequency-shift keying techniques, is directly applicable to digital satellite 
communications. 

A satellite transponder differs from a conventional microwave line-of-sight repeater 
in that many earth stations can access the satellite from widely different locations on earth 
at the same time or nearly so. This capability is made possible by using one of the multiple­
access techniques discussed in Section 8.2. In this context we may offer the following 
observations: 

11> In a satellite channel, nonlinearity of the transponder is the primary cause of inter· 
ference between users. To contain this serious problem, the traveling-wave tube am­
plifier in the transponder is purposely operated below capacity. Consequently, we 
find that in an FDMA system the power efficiency of the system is reduced because 
of the necessary power backoff of the traveling-wave tube amplifier. 

1> In a TDMA system, the users access the satellite transponder one at a time. Accord­
ingly, the satellite transponder is now able to operate close to full power efficiency 
by permitting the traveling-wave tube amplifier to run into saturation. This, in turn, 
means that TDMA uses the transponder more efficiently than FDMA, hence its wide 
use in the implementation of digital satellite communication systems. 

!I> SDMA operates by exploiting the spatial locations of earth stations, which is 
achieved by means of onboard switching. Specifically, the transponder is equipped 
with multiple antennas, with the proper antenna beam being selected for radio trans­
mission to the particular earth station demanding use of the transponder. 

In addition to multiple access, another capability of a satellite channel is that of 
broadcasting with emphasis on broad area coverage. Here we mention broadcasting sat­
ellites, which are characterized by their high power transmission to inexpensive receivers. 
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This characteristic is exploited in the use of direct broadcast satellites (DBS), designed for 
home reception of television services on a very wide scale. By comparison with the large 
earth stations used for satellite communications, the earth stations for DBS are very simple 
and therefore inexpensive. 

l 8.4 Radio Link Analysis 

An important issue that arises in the design of satellite communication systems is that of 
link budget analysis.2 As its name implies, a link budget, or more precisely "link power 
budget," is the totaling of all the gains and losses incurred in operating a communication 
link. In particular, the balance sheet constituting the link budget provides a detailed ac­
counting of three broadly defined items: 

1. Apportionment of the resources available to the transmitter and the receiver. 
2. Sources responsible for the loss of signal power. 
3. Sources of noise. 

Putting all these items together into the link budget, we end up with an estimation pro­
cedure for evaluating the performance of a radio link, which could be the uplink or down­
link of a satellite communication system. Needless to say, the essence of the communication 
link analysis presented in this section also applies to other radio links that rely on line of 
sight for their operation. It is for this reason the treatment of radio link analysis presented 
in this section is of a generic nature. The section finishes with an illustrative example on 
the budget analysis of a downlink of a digital satellite communication system. 

From the material presented in Chapter 6 we learned that the performance of a digital 
communication system, in the presence of channel noise modeled as additive white Gaus­
sian noise, is defined by a formula having the shape of a "waterfall" curve as shown in 
Figure 8.4. This figure portrays the probability of symbol error, P., plotted versus the bit 
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FIGURE 8.4 'Waterfall" curve relating the probability of error to the Eb/N0 ratio. 
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energy-to-noise spectral density ratio, EJN0 • Once a modulation scheme has been chosen 
the first design task is to specify two particular values of EJN0 as described here: ' 

1. Required EJN0• 

Suppose for example, the prescribed probability of symbol error is Pe= 10-3
• Using the 

waterfall curve of Figure 8.4 pertaining to the modulation scheme of interest, the Eb!N 
required to realize the prescribed Pe is detennined. Let (Eb/No),eq denote the value of 
Eh/N0 obtained from this calculation. The prescribed Pe and the calculated (Eb/N0)" de­
fine a point on the waterfall curve of Figure 8.4, which is designated as operating po~t 1. 

2. Received Eb/N0• 

To assure reliable operation of the communication link, the link budget includes a safety 
measure called the link margin. The link margin provides protection against change and 
the unexpected. Thus the (Eb/N0 ) actually received by the system is somewhat larger than 
(Eb/N0 ),eq· Let (Eb/N0 )'°c denote the actual or received Eb!N0 , which defines a second point 
on the waterfall curve of Figure 8.4, designated as operating point 2. The Pe corresponding 
to operating point 2 is shown as 10-s in Figure 8.4 merely for the purpose of illustration. 
In any event, introducing the link margin denoted by M, we may write 

(Eb) _ M(Eb) 
Na rec No req 

(8.1) 

Equivalently, expressing the two Eb/N0 values of interest in decibels, we may define the 
link margin as 

M(dB) = (~) {dB) - (~) (dB) 
0 rec 0 req 

(8.2) 

Clearly, the larger we make the link margin M, the more reliable is the communication 
link. However, the increased reliability of the link is attained at the cost of a higher 
Eb/No. 

FREE-SPACE PROPAGATION MODEL 

The next step in formulating the link budget is to calculate the received signal power. 
Naturally, this calculation accounts for all the gains and losses incurred in the transmission 
and reception of the carrier. 

In a radio communication system, the propagation of the modulated signal is accom­
plished by means of a transmitting antenna, the function of which is twofold: 

il> To convert the electrical modulated signal into an electromagnetic field. In this ca­
pacity, the transmitting antenna acts as an "impedance-transforming" transducer, 
matching the impedance of the antenna to that of free space. 

i.- To radiate the electromagnetic energy in desired directions. 

At the receiver, we have a receiving antenna whose function is the opposite of that of the 
transmitting antenna: It converts the electromagnetic field into an electrical signal from 
which the modulated signal is extracted. In addition, the receiving antenna may be requited 
to suppress radiation originating from directions where it is not wanted. 

Typically, the receiver is located in the farfield of the transmitting antenna, in which 
case, for all practical purposes, we may view the transmitting antenna as a fictitious vol­
umeless emitter or point source. A complete description of the far field of the point source 
requires knowledge of the electromagnetic field as a function of both time and space. 
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However, insofar as link calculations are concerned, such a complete knowledge is not 
necessary. Rather, it is sufficient to merely specify the variation of the power density for 
the antenna. 

By definition, the Poynting vector or power density is the rate of energy fiow per unit 
area; it has the dimensions of watts per square meter. The treatment of the transmitting 
antenna as a point source greatly simplifies matters in that the power density of a point 
source has only a radial component; that is, the radiated energy streams from the source 
along radial lines. 

It is useful to have a "reference" antenna against which the performance of the 
transmitting and receiving antennas can be compared. The customary practice is to assume 
that the reference antenna is an isotropic source, defined as an omnidirectional (i.e., com­
pletely nondirectional) antenna that radiates uniformly in all directions. An isotropic 
source is hypothetical because, in reality, all radio antennas have some directivity, however 
small. Nonetheless, the notion of an isotropic source is useful, especially for gain compar­
ison purposes. 

Consider then an isotropic source radiating a total power denoted by P,, measured 
in watts. The radiated power passes uniformly through a sphere of surface area 41Td2

, 

where dis the distance (in meters) from the source. Hence, the power density, denoted by 
p(d), at any point on the surface of the sphere is given by 

P, 2 
p(d) = 

4
1Td1 watts/m (8.3) 

Equation (8.3) states that the power density varies inversely as the square of the distance 
from a point source. This statement is the familiar inverse-square law that governs the 
propagation of electromagnetic waves in free space. 

Multiplying the power density p(d) by the square of the distance d at which it is 
measured, we get a quantity called radiation intensity denoted by <l>. We may thus write 

(8.4) 

Whereas the power density p(d) is measured in watts per square meter, the radiation 
intensity <l> is measured in watts per unit solid angle (watts per steradian). 

In the case of a typical transmitting or receiving radio antenna, the radiation intensity 
is a function of the spherical coordinates ()and <P defined in Figure 8.5. Thus, in general, 

FIGURE 8.5 Illustrating the spherical coordinates of a point source. 
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we may express the radiation intensity as <1>(11, <P ), and so speak of a radiation-intensity 
pattern. The power radiated inside an infinitesimal solid angle dO is given by <1>(11, </>) dO. 
where (referring to Figure 8.5) ' 

dfl = sin II de dq, steradians (8.5) 

The total power radiated is therefore 

P = J <1>(11, </>) dfl watts (8.6) 

which is a mathematical statement of the power theorem. In words, the power theorem 
states that if the radiation-intensity pattern <1>(11, </>) is known for all values of angle pair 
(II,</>), then the total power radiated is given by the integral of <1>(11, </>)over a solid angle 
of 47T steradians. The average power radiated per unit solid angle is 

Pav = 
4
1
7T J <1>(11, </>) dfl 

p 

47T 
watts/steradian 

(8.7) 

which represents the radiation intensity that is produced by an isotropic source radiating 
the same total power P. 

Directive Gain, Directivity, and Power Gain3 

Now the ability of an antenna to concentrate the radiated power in a given direction 
as in the case of the transmitting antenna or, conversely, to effectively absorb the incident 
power from that direction as in the case of the receiving antenna, is specified in terms of 
its directive gain or directivity. For a direction specified by the angle pair (II, <P ), the directive 
gain of an antenna, denoted by g(ll, <P) is defined as the ratio of the radiation intensity in 
that direction to the average radiated power, as shown by 

g(ll, </>) = <l>~:v</>) 
= <1>(11, </>) 

P/47T 

(8.8) 

The directivity of an antenna, denoted by D, is defined as the ratio of the maximum 
radiation intensity from the antenna to the radiation intensity from an isotropic source. 
That is, the directivity Dis the maximum value of the directive gain g(ll, <P ). Thus, whereas 
the directive gain of the antenna is a function of the angle pair (II, <P ), the directivity Dis 
a constant that has been maximized for a particular direction. 

The definition of directivity is based on the shape of the radiation-intensity pattern 
<1>(11, <P ); as such, it does not involve the effect of antenna imperfections due to dissipation 
loss and impedance mismatch. A quantity called power gain does involve the radiation 
efficiency of the antenna. Specifically, the power gain of an antenna, denoted by G, is 
defined as the ratio of the maximum radiation intensity from the antenna to the radiation 
intensity from a lossless isotropic source, under the constraint that the same input power 
is applied to both antennas. Specifically, using 7lmliotion to denote the radiation efficiency 
factor of the antenna, we may relate the power gain G to the directivity D as 

G = 7JradiationD (8.9) 

Thus, the power gain of an antenna over a lossless isotropic source equals the directivity 
if the antenna is 100 percent efficient (i.e., 7lrndiarion = 1 ), but it is less than the directivity 
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if any losses are present in the antenna (i.e., 1Jm!iation < 1 ). Henceforth, we assume that the 
antenna is 100 percent efficient and therefore refer only to the power gain of the antenna. 

The concept of power gain, which is based on the transmitted power-pattern shape, 
can be extended to a receiving antenna by virtue of the reciprocity principle. An antenna 
is said to be reciprocal if the transmission medium is linear, passive and isotropic. For a 
given antenna structure, the power gains of transmitting and receiving antennas are then 
identical. 

The power gain of an antenna is the result of concentrating the power density in a 
restricted region smaller than 417" steradians, as illustrated in Figure 8.6. In light of the 
picture portrayed in this figure, we may introduce the following two parameters: 

I. Effective radiated power referenced to an isotropic source (EIRP); the EIRP is defined 
as the product of the transmitted power, P,, and the power gain of the transmitting 
antenna, G,, as shown by 

EIRP = P,G, watts (8.10) 

2. Antenna beamwidth, representing a "planar" measure of the antenna's solid angle 
of view; the beamwidth, in degrees or radians, is defined as the angle that subtends 
the two points on the mainlobe of the field-power pattern at which the peak field 
power is reduced by 3 dBs. The higher the power gain of the antenna, the narrower 
is the antenna beamwidth. 

Another matter of interest discernible from Figure 8.6 is the sidelobes of the field-power 
pattern. Unfortunately, every physical antenna has sidelobes, which are responsible for 
absorbing unwanted interfering radiations. 

Effective Aperture 

A term that has a special significance for a receiving antenna is the effective aperture 
of the antenna, which is defined as the ratio of the power available at the antenna terminals 
to the power per unit area of the appropriately polarized incident electromagnetic wave. 
The effective aperture, denoted by A, is defined in terms of the antenna's power gain G as 

A=~G 
41T 

(8.11) 

where A is the wavelength of the carrier. The wavelength A and frequency fare reciprocally 
related as 

c 
A=-

f 
where c is the speed of light (approximately equal to 3 X 108 mis). 

Transmitting ''"""'---­
antenna 

Side lobes 

Point of peak 
output power 

Points where the output power 
is 3 dBs below its peak value 

(8.12) 

FIGURE 8.6 Illustrating the concentration of power density of a transmitting antenna inside a 
region smaller than 417" steradians. 
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The term effective aperture has particular significance in the context of reflector 
antennas and electromagnetic horns that are characterized by a well-defined aperture. For 
these antennas, the ratio of the antenna's effective aperture to its physical aperture is a 
direct measure of the antenna's aperture efficiency, 'T/opmum in radiating power to a desired 
direction or absorbing power from that direction. Nominal values for the efficiency 
'T/operture of reflector antennas lie in the range of 45 to 7 5 percent. 

Friis Free-Space Equation 

With this introductory material on antennas at hand, we are now ready to formulate 
the basic propagation equation for a radio communication link. Consider a transmitting 
antenna with an EIRP defined in Equation (8.10). Invoking the inverse-square law 
of Equation (8.3), we may express the power density of the transmitting antenna as 
EIRP/41Td 2

, where dis the distance between the receiving and transmitting antennas. The 
power P, absorbed by the receiving antenna is the product of this power density and the 
antenna's effective area denoted by A,, as shown by 

P, =(!:;)A, 
P,G,A, 

= 
417

d2 watts 

(8.13) 

According to the reciprocity principle, we may use Equation (8.11) to express the effective 
area of the receiving antenna as 

,\2 
A,= 

417 
G, 

where G, is the power gain of the receiving antenna. Substituting this formula for A, into 
Equation (8.13), we may express the received signal power in the equivalent form 

P, = P,G,G,( 4~d) 
2 

(8.14) 

Equation (8.14) is called the Friis free-space equation.4 
The path loss, PL, representing signal "attenuation" in decibels across the entire 

communication link, is defined as the difference (in decibels) between the transmitted signal 
power P, and received signal power P,, as shown by 

PL = 10 log10(t) 
(

41Td)
2 

= -10 log10(G,G,) + 10 log1o A 
(8.15) 

The minus sign associated with the first term in Equation (8.15) signifies the fact that this 
term represents a "gain." The second term, due to the collection of terms (41Td/A)2

, is called 
the free-space loss, denoted by Lfroe 'P"'"" Note that increasing the distance d separating 
the receiving antenna from the transmitting antenna causes the free-space loss to increase, 
which, in tum, compels us to operate the radio communication link at lower frequencies 
so as to maintain the path loss at a manageable level. 

The Friis free-space equation enables us to calculate the path loss PL for specified 
values of power gains G, and G,, the carrier wavelength A, and distanced. To complete 
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the budget link analysis, we need to calculate the average noise power in the received 
signal, which is considered next. 

NOISE FIGURE 

To perform noise analysis at the receiver of a communication system, we need a convenient 
measure of the noise performance of a linear two-port device. One such measure is fur­
nished by the so-called noise figure. Consider a linear two-port device connected to a signal 
source of internal impedance Z(f) = R(f) + jX(f) at the input, as in Figure 8. 7. The noise 
voltage v(t) represents the thermal noise associated with the internal resistance R(f) of the 
source. The output noise of the device is made up of two contributions, one due to the 
source and the other due to the device itself. We define the available output noise power 
in a band of width D.f centered at frequency f as the maximum average noise power in 
this band, obtainable at the output of the device. The maximum noise power that the two­
port device can deliver to an external load is obtained when the load impedance is the 
complex conjugate of the output impedance of the device, that is, when the resistance is 
matched and the reactance is tuned out. We define the noise figure of the two-port device 
as the ratio of the total available output noise power (due to the device and the source) 
per unit bandwidth to the portion thereof due solely to the source. 

Let the spectral density of the total available noise power of the device output be 
SN0 (f), and the spectral density of the available noise power due to the source at the device 
input be SNs(f). Also let G(f) denote the available power gain of the two-port device, 
defined as the ratio of the available signal power at the output of the device to the available 
signal power of the source when the signal is a sinusoidal wave of frequency f. Then we 
may express the noise figure F of the device as 

SNo(f) 
F = G(f)SNs(f) 

(8.16) 

ff the device were noise free, SNo(f) = G(f)SNs(f), and the noise figure would then be 
unity. In a physical device, however, SN0 (f) is larger than G(f)SNs(f), so that the noise 
figure is always larger than unity. The noise figure is commonly expressed in decibels, that 
is, as 10 logi0 F. 

The noise figure may also be expressed in an alternative form. Let P5(f) denote the 
available signal power from the source, which is the maximum average signal power that 
can be obtained. For the case of a source providing a single-frequency signal component 

l' 

Linear 
two-port 
device 

FIGURE 8. 7 Linear two-port device. 

f-----02' 

f-----02 
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with open-circuit voltage V 0 cos(27rft), the available signal power is obtained when the 
load connected to the source is 

Z*(f) = R(f) jX(f) 

where the asterisk denotes complex conjugation. Under this condition, we find that 

Ps(tl = [1~0nr R(f) 

Vf> 
4R(f) 

The available signal power at the output of the device is therefore 

P0 (f) = G(f)P,s(f) 

(8.17) 

(8.18) 

Then, multiplying both the numerator and denominator of the right-hand side of Equation 
(8.16) by P5(f) ll(f), we obtain 

where 

F = Ps(flSNo(fl llf 
G(f)Ps(flSNs(fl llf 

Ps(f)SNo{fl llf 

Po{flSNS(f) llf 
(8.19) 

(8.20) 

(8.21) 

We refer to p5(f) as the available signal-to-noise ratio of the source and to po{f) as the 
available signal-to-noise ratio at the device output, both measured in a narrow band of 
width llf centered at f. Since the noise figure is always greater than unity, it follows from 
Equation (8.19) that the signal-to-noise ratio always decreases with amplification, which 
is a significant result. 

The noise figure F is a function of the operating frequency f; it is therefore referred 
to as the spot noise figure. In contrast, we may define an average noise figure F0 of a two­
port device as the ratio of the total noise power at the device output to the output noise 
power due solely to the source. That is, 

r~ SNo(fl df 
Fo=-------

r~ G(f)SNs(fl df 

(8.22) 

It is apparent that in the case of thermal noise in the input circuit with R(f) constant and 
constant gain throughout a fixed band with zero gain at other frequencies, the spot noise 
figure F and the average noise figure F0 are identical. 

Equivalent Noise Temperature 

A disadvantage of the noise figure F is that when it is used to compare low-noise 
devices, the values obtained are all close to unity, which makes the comparison rather 
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1' 

Available 
noise power 
N1=kTi1f 

Linear two-port device: 
Noise figure F 

,__ __ -o2' 

f---+---02 

Available 
noise power 

N2 =GN1+Nd 

FIGURE 8.8 Linear two-port device matched to the internal resistance of a source connected to 
the input. 

difficult. In such cases, it is preferable to use the equivalent noise temperature. Consider a 
linear two-port device whose input resistance is matched to the internal resistance of the 
source as shown in Figure 8.8. In this diagram, we have also included the noise voltage 
generator associated with the internal resistance Rs of the source. The mean-square value 
of this noise voltage is 4kTR, llf, where k is Boltzmann's constant. Hence; the available 
noise power at the device input is 

N1 = kT ilf (8.23) 

Let Nd denote the noise power contributed by the two-port device to the total available 
output noise power N2 • We define Nd as 

(8.24) 

where G is the available power gain of the device and T, is its equivalent noise temperature. 
Then it follows that the total output noise power is 

N2 = GN1 +Nd 

= Gk(T + T,) t:.f 

The noise figure of the device is therefore (see the output port of Figure 8.8) 

F = Nz 
N 2 Nd 

Solving for the equivalent noise temperature: 

T, = T(F 1) 

(8.25) 

(8.26) 

(8.27) 

The noise figure Fis measured under matched input conditions, and with the noise source 
at temperature T. By convention the temperature T is taken as "room temperature," 
namely 290 K, where K stands for "degree Kelvin." 

Cascade Connection of Two-Port Networks 

It is often necessary to evaluate the noise figure of a cascade connection of two-port 
networks whose individual noise figures are known. Consider Figure 8.9, consisting of a 
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(F1 -l)N1 (F2 - l)N1 
Available ~ Available 

power gain = G1 power gain = G2 

Ni 
Noise figure = F 1 

F1G1N1 
Noise figure =F2 

FiG1N1G2 + 
-(F2 l)N1G2 

FIGURE 8.9 A cascade of two noisy two-port networks. 

pair of two-port networks of noise figures F1 and F2 and power gains G1 and G2 , connected 
in cascade. It is assumed that the devices are matched, and that the noise figure F2 of the 
second network is defined assuming an input noise power N 1• 

At the input of the first network, we have a noise power N1 contributed by the source 
plus an equivalent noise power (F1 - l)N1 contributed by the network itself. The outpu~ 
noise power from the first network is therefore F1 N1G1• Added to this noise power at the 
input of the second network, we have the equivalent extra power (F2 - 1)N1 contributed 
by the second network itself. The output noise power from this second network is therefore 
equal to F1 G1 N 1 G2 + (F2 - l)N1G2. We may consider the noise figure Fas the ratio of 
the actual output noise power to the output noise power assuming the networks to be 
noiseless. We may therefore express the overall noise figure of the cascade connection of 
Figure 8.9 as 

F = FiG1N1G2 + (F2 - l)N1G2 
NiG1G2 

=F+F2 -1 
1 

G1 

(8.28) 

The result may be readily extended to the cascade connection of any number of two-port 
networks, as shown by 

(8.29) 

where Fi, F2 , F3 , ••• are the individual noise figures, and Gi, G2, G3 , ••• are the available 
power gains, respectively. Equation (8.29) shows that if the first stage of the cascade 
connection in Figure 8.9 has a high gain, the overall noise figure F is dominated by the 
noise figure of the first stage. 

Correspondingly, we may express the overall equivalent noise temperature of the 
cascade connection of any number of noisy two-port networks as follows: 

T2 T_, T4 
T = T1 + - + -- + --- + · · · 

e G1 G1 G2 G1 G2G3 

(8.30) 

where Th T2 , T3, ••• are the equivalent noise temperatures of the individual networks, 
and G" G2 , G3, ••• are the available power gains, respectively. Equation ( 8.30) is known 
as the Friis formula. Here again we note that if the gain G1 of the first stage is high, the 
equivalent noise temperature Te is dominated by that of the first stage. 

Iii> ExAMPLE 8.1 Noise Temperature of Earth-Terminal Receiver 

Figure 8 .10 shows a typical earth-terminal receiver, consisting of a low-noise radio-frequency 
(RF) amplifier (LNA), frequency down-converter (mixer), and intermediate frequency (IF) 
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Frequency 
dawn­
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FIGURE 8,10 Block diagram of earth terminal receiver. 

Output 

amplifier. The equivalent noise temperatures of these components, including the receiving 
antenna, are 

Tantonna = 50 K 

TRF = 50 K 

Tm""•= 500 K 

TIF = 1000 K 

The available power gains of the two amplifiers are 

GRF = 200 = 23 dB 

G,F = 1000 = 30 dB 

To calculate che equivalent noise temperature of the receiver, we use Equation (8.30), 
obtaining 

T T + T"" + Tmixer + T1p 
e = antenna .1'..IC 

GRF 

0 
500 + 1000 

= 50 + 5 + 200 

= 107.5 K 

~ EXAMPLE 8.2 Downlink Budget Analysis of a Digital Satellite 
Communication System 

In a digital satellite communication system, one of the key elements in the overall design and 
analysis of the system is tbe downlink power budget, which is usually more critical than the 
uplink power budget because of the practical constraints imposed on downlink power and 
satellite antenna size. The example presented here addresses a sample downlink budget anal­
ysis, assuming that any required uplink power (within limits) is available for satisfactory 
operation of the system. 

The critical parameter to be calculated is the ratio of received carrier power-to-noise 
spectral density, denoted by C/N0 • According to che Friis free-space equation (8.14), the av­
erage power received at the earth terminal to the average power P, transmitted by the satellite 
is 

P, = P,G,G,(4~dr 
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where, in this example, G, is the power gain of the satellite antenna, G, is the power gain of 
the receiving earth-terminal antenna, A is the carrier wavelength for the downlink, and d is 
the distance between the satellite and the earth terminal. Given that the equivalent noise 
temperature of the system is T., we may use Equation (1.94) of Chapter 1 to express the noise 
spectral density N 0 as kT,, where k is Boltzmann's constant. Moreover, from Equation (8.10) 
we note that P,G, is equal to the EIRl' of the satellite. Hence, dividing P, by N 0, we lllay 
express the CIN0 ratio for the downlink as 

( C) (G') ( A )
2 

1 - = (EIRl'),.,elli<e - -- -
No downlink Te earth terminal 47Td k (8.31) 

For a given satellite system, the free-space loss ( 4'1Td! A)2 is a constant. Viewing the system from 
the earth terminal, we see from Equation ( 8 .31) that the ( CIN0 ) ratio is proportional to 
G,IT,. The ratio G,/T, may therefore be used to assess the "quality" of an earth terminal; it 
is usually shortened to the GIT ratio, which is referred to as the figure of merit of the receiving 
earth terminal. Thus, rewriting the formula (8.31) for the (CIN0 ) ratio measured in decibels 
we may express it as the sum of gains and losses as itemized here: ' 

1. (EIRl'),.,,1t;,~ measured in dBW, where dBW denotes decibels referenced to 1 watt, that 
is, 0 dBW. 

2. ( G!T)e=h '"mi<mb measured in dB/K, where K refers to degree Kelvin. 
3. L,= 'P>=> denoting the free-space loss 10 log10(4'1TdJA)2 in dB. 
4. -10 log10 k, representing the gain in dBW /K-Hz due to division by the Boltzmann 

constant k = 1.38 X 10-23 joule/K. 

Table 8.1 presents the values of these four terms for the downlink of a typical domestic digital 
satellite communication system, based on the following: 

1. The transponder is operated at its maximum output power (i.e., no power backoff is 
employed), yielding an EIRP of 46.5 dBW. 

2. The receiving earth terminal uses a 2m-dish antenna with a power gain G = 45 dB, and 
the receiver is configured as in Example 8.1 with equivalent temperamre T = 107.5 K. 
Hence 

3. The free-space loss is 

G 
T 

45 - 10 log10 107.5 

45 - 20.3 

= 24.7 dB/K 

LfreMpace = 92.4 + 20 log10 f + 20 log10 d dB (8.32) 

TABLE 8.1 Downlink power 
budget for Example 8.2 

Variable 

EIRP 
GIT ratio 
Free-space loss 
Boltzmann constant 

Value 

+46.5 dBW 
+24.7 dB/K 

-206 dB 
+228.6 dBW/K-Hz 

93.8 dB-Hz 
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where the downlink carrier frequency f is in GHz and the distanced between the satellite 
and the earth terminal is in kilometers. For a geostationary satellite, the distance between 
the satellite and an earth terminal lies in the range of 36,000 to 41,000 km. Thus 
choosing d 40,000 km and assuming f = 12 GHz, the use of Equation (8.32) yields 

Lfr~-'P"' 92.4 + 20 log10 12 + 20 log10 40,000 

92.4 + 21.6 + 92.0 

= 206 dB 

4. With the Boltzmann constant k = 1.39 X 10-23 joule/K, its contribution to the C/N0 

ratio is 

-10 log10 k = 10 log10 1.38 X 10-23 

= 228.6 dBW/K-Hz 

Totaling the gains and losses, we thus get 

(N
C) = 93.8 dB-Hz 

0 downlink 

The "received" downlink value of the ( C/N0 ) ratio may also be expressed in terms of 
the "required" value of the bit energy-to-noise spectral density ratio, (Eb/N0),"" dB, at the 
receiving earth terminal as (see Equation (8.2)) 

(~) _ = (:;) + 10 log10 M + 10 log10 R dB 
0 dowJJlink 0 req 

(8.33) 

where 10 log10 Mis the link margin in decibels, and R is the data rate in b/s. The link margin 
allows for excess rain losses in propagation and other power degradations. Typically, the link 
margin is selected as 4 dB for C-band, 6 dB for Ku-band, and higher for the higher K-band 
frequencies because of the higher rain losses. For operation at the Ku-band frequency of 
12 GHz, we choose a link margin of 6 dB. Thus, using the value C/N0 = 93.8 dB-Hz calculated 
from the link budget, the link margin 10 log10 M = 6 dB, and assuming (E,,IN0 ),,q = 12.5 dB, 
the use of Equation (8.33) yields 

10 log10 R = 93.8 12.5 - 6 

= 75.3 

Hence, 

R = 33.9 Mb/s 

Assuming the use of coherent 8-PSK for the transmission of digital data via the satellite, 
and substituting (E&/N0 ) 12.5 dB in Equation (6.47) of Chapter 6, we find that the prob-
ability of symbol error P, = 0.6 X 10-3• 

To summarize, the digital satellite communication system analyzed in this example per-· 
mits, under the worst operating conditions, data transmission on the downlink at a rate 
R = 33.9 Mb/sand with a probability of symbol error P, = 0.6 X 10-3

, assuming the use of 
8-phase PSK. ~ 

I 8.5 Wireless Communications 

In this section we study the second type of multiuser radio communication system, namely, 
wireless communications, which is synonymous with mobile radio. The term mobile radio 
is usually meant to encompass indoor or outdoor forms of wireless communications where 
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a radio transmitter or receiver is ~apable of being moved, re_gardless of _whether it actually 
moves or not. Due to the stochastJ.c nature of the mobile radio channel, its characterization 
mandates the use of practical measurements and statistical analysis. The aim of such an 
evaluation is to quantify two factors of primary concern: 

1. Median signal strength, which enables us to predict the mirumum power needed to 
radiate from the transmitter so as to provide an acceptable quality of coverage over 
a predetermined service area. 

2. Signal variability, which characterizes the fading nature of the channel. 

Our specific interest in wireless communications is in the context of cellular radio' 
that has the inherent capability of building mobility into the telephone network. With such 
a capability, a user can move freely within a service area and simultaneously communicate 
with any telephone subscriber in the world. An idealized model of the cellular radio system, 
illustrated in Figure 8.11, consists of an array of hexagonal cells with a base station located 
at the center of each cell; a typical cell has a radius of 1 to 12 miles. The function of the 
base stations is to act as an interface between mobile subscribers and the cellular radio 
system. The base stations are themselves connected to a switching center by dedicated 
wirelines. 

The mobile switching center has two important roles. First, it acts as the interface 
between the cellular radio system and the public switched telephone network. Second, it 
performs overall supervision an.cl control of the mobile communications. It performs the 
latter function by monitoring the signal-to-noise ratio of a call in progress, as measured 
at the base station in communication with the mobile subscriber involved in the call. When 
the SNR falls below a prescribed threshold, which happens when the mobile subscriber 
leaves its cell or when the radio channel fades, it is switched to another base station. This 
switching process, called a handover or handoff, is designed to move a mobile subscriber 
from one base station to another during a call in a trans parent fashion, that is, without 
interruption of service. 

The cellular concept relies on two essential features, as described here: 

1. Frequency reuse. The term frequency reuse refers to the use of radio channels on the 
same carrier frequency to cover different areas, which are physically separated from 

Cell 

Base station 

FIGURE 8.11 Idealized model of cellular radio. 
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each other sufficiently to ensure that co-channel interference is not objectionable. 
Thus, instead of covering an entire local area from a single transmitter with high 
power at a high elevation, frequency reuse makes it possible to achieve two com­
monsense objectives: keep the transmitted power from each base station to a mini­
mum, and position the antennas of the base stations just high enough to provide for 
the area coverage of the respective cells. 

2. Cell splitting. When the demand for service exceeds the number of channels allocated 
to a particular cell, cell splitting is used to handle the additional growth in traffic 
within that particular cell. Specifically, cell splitting involves a revision of cell bound­
aries, so that the local area formerly regarded as a single cell can now contain a 
number of smaller cells and use the channel complements of these new cells. The new 
cells, which have a smaller radius than the original cells, are called microcells. The 
transmitter power and the antenna height of the new base stations are correspond­
ingly reduced, and the same set of frequencies are reused in accordance with a new 
plan. 

For a hexagonal model of the cellular radio system, we may exploit the basic prop­
erties of hexagonal cellular geometry to lay out a radio channel assignment plan that 
determines which channel set should be assigned to which cell. We begin with two integers 
i and j (i 2': j), called shift parameters, which are predetermined in some manner. We note 
that with a hexagonal cellular geometry there are six "chains" of hexagons that emanate 
from each hexagon and that extend in different directions. Thus, starting with any cell as 
a reference, we find the nearest co-channel cells by proceeding as follows: 

~ Move i cells along any chain of hexagons, turn counterclockwise 60 degrees, and 
move j cells along the chain that lies on this new direction. The jth cells so located 
and the reference cell constitute the set of co-channel cells. 

This procedure is repeated for a different reference cell, until all the cells in the system are 
covered. Figure 8.12 illustrates the application of this procedure for a single reference cell 
and the example of i = 2 and j = 2. 

In North America, the band of radio frequencies assigned to the cellular system is 
800-900 MHz. The subband 824-849 MHz is used to receive signals from the mobile 
units, and the subband 869-894 MHz is used to transmit signals to the mobile units. The 

FIGURE 8.12 Illustrating the determination of co-channel cells. 
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use of these relatively high frequencies has the beneficial feature of providing a good por­
table coverage by penetrating buildings. In Europe and elsewhere, the base-mobile and 
mobile-base subbands are reversed. 

Ill PROPAGATION EFFECTS6 

The major propagation problems encountered in the use of cellular radio in built-up areas 
are due to the fact that the antenna of a mobile unit may lie well below the surrounding 
buildings. Simply put, there is no "line-of-sight" path to the base station. Instead, radio 
propagation takes place mainly by way of scattering from the surfaces of the surrounding 
buildings and by diffraction over and/or around them, as illustrated in Figure 8.13. The 
important point to note from Figure 8.13 is that energy reaches the receiving antenna via 
more than one path. Accordingly, we speak of a multipath phenomenon in that the various 
incoming radio waves reach their destination from different directions and with different 
time delays. 

To understand the nature of the multipath phenomenon, consider first a "static" 
multipath environment involving a stationary receiver and a transmitted signal that con­
sists of a narrowband signal (e.g., unmodulated sinusoidal carrier). Let it be assumed that 
two attenuated versions of the transmitted signal arrive sequentially at the receiver. The 
effect of the differential time delay is to introduce a relative phase shift between the two 
components of the received signal. We may then identify one of two extreme cases that 
can arise: 

I'> The relative phase shift is zero, in which case the two components add constructively, 
as illustrated in Figure 8.14a. 

"' The relative phase shift is 180 degrees, in which case the two component add de-
structively, as illustrated in Figure 8.14b. 

We may also use phasors to demonstrate the constructive and destructive effects of mul­
tipath, as shown in Figures 8.15a and 8.15b, respectively. Note that in the static multipath 
environment described herein, the amplitude of the received signal does not vary with time. 

Consider next a "dynamic" multipath environment in which the receiver is in motion 
and two versions of the transmitted narrowband signal reach the receiver via paths of 

Direction 
to elevated 
base station 

Obstructed 
line-01-sight 

path , 

' 

-- -- --- ---

FIGURE 8.13 Illustrating the mechanism of radio propagation in urban areas. (From Parsons, 
19 9 2, with permission.) 
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FIGURE 8.14 (a) Constructive and (b) destructive forms of the multipath phenomenon for sinu­
soidal signals. 

different lengths. Due to motion of the receiver, there is a continuous change in the length 
of each propagation path. Hence, the relative phase shift between the two components of 
the received signal is a function of spatial location of the receiver. AB the receiver moves, 
we now find that the received amplitude (envelope) is no longer constant as was the case 
in a static environment; rather, it varies with distance, as illustrated in Figure 8.16. At the 
top of this figure, we have also included the phasor relationships for the two components 
of the received signal at various locations of the receiver. Figure 8.16 shows that there is 
constructive addition at some locations, and almost complete cancellation at some other 
locations. This phenomenon is referred to as signal fading. 

In a mobile radio environment encountered in practice, there may of course be a 
multitude of propagation paths with different lengths, and their contributions to the re-
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FIGURE 8.15 Phasor representations of (a) constructive and (b) destructive forms of multipath. 
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FIGURE 8.16 Illustrating how the envelope fades as two incoming signals combine with differ­
ent phases. (From Parsons, 1992, with permission.) 

ceived signal could combine in a variety of ways. The net result is that the envelope of the 
received signal varies with location in a complicated fashion, as shown by the experimental 
record of received signal envelope in an urban area that is presented in Figure 8.17. This 
figure clearly displays the fading nature of the received signal. The received signal envelope 
in Figure 8.17 is measured in dBm. The unit dBm is defined as 10 log10(P/P0 ), with P 
denoting the power being measured and P0 = 1 milliwatt. In the case of Figure 8.17, Pis 
the instantaneous power in the received signal envelope. 

Signal fading is essentially a spatial phenomenon that manifests itself in the time 
domain as the receiver moves. These variations can be related to the motion of the receiver 
as follows. To be specific, consider the situation illustrated in Figure 8.18, where the re­
ceiver is assumed to be moving along the line AA' with a constant velocity v. It is also 
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FIGURE 8.17 Experimental record of received signal envelope in an urban area. (From Parsons, 
1992, with permission.) 
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FIGURE 8.18 Illustrating the calculation of Doppler shift. 

assumed that the received signal is due to a radio wave from a scatterer labeled S. Let tH 
denote the time taken for the receiver to move from point A to A'. Using the notation 
described in Figure 8.18, the incremental change in the path length of the radio wave is 
deduced to be 

t:.l=dcosa 
= - v t!i.t cos a 

(8.34) 

where a is the spatial angle between the incoming radio wave and the direction of motion 
of the receiver. Correspondingly, the change in the phase angle of the received signal at 
point A' with respect to that at point A is given by 

t!i.<P = 2>..7T t:.l 

27TV !J.t 
=--->..-cos a 

(8.35) 

where >.. is the radio wavelength. The apparent change in frequency, or the Doppler-shift, 
is therefore 

v= 
_ _!_ t:.q, 

27T !J.t 
(8.36) 

v 
A COSCl 

The Doppler-shift vis positive (resulting in an increase in frequency) when the radio waves 
arrive from ahead of the mobile unit, and it is negative when the radio waves arrive from 
behind the mobile unit. 

8.6 Statistical Characterization 
of Multipath Channels 

The narrowband characterization of the multipath environment described in Section 8.5 
is appropriate for mobile radio transmissions where the signal bandwidth is very small 
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compared to the reciprocal of the spread in propagation path delays. Multipath in such 
an environment results in two effects: rapid fading of the received signal envelope and a 
spread in Doppler shifts in the received spectrum. Real-life signals radiated in a mobile 
radio environment may, however, occupy a bandwidth wide enough to require more de­
tailed considerations of the effects of multipath propagation on the received signal. In this 
section, we present a statistical characterization of a mobile radio channel.* 

Consider a mobile radio channel with multiple propagation paths. In accordance 
with the complex notation described in Appendix 2, we may express the transmitted band­
pass signal as 

s(t) = Re[s(t) exp(j27Tf ct)] (8.37) 

where s(t) is the complex (low-pass) envelope of s(t), and f c is a nominal carrier frequency. 
Since the channel is time varying due to multipath effects, the impulse response of the 
channel is delay dependent and therefore a time-varying function. Let the impulse response 
of the channel be expressed as 

h( r;t) = Re[ ii( r;t) exp(j27Tfct)] (8.38) 

where ii(r;t) is the (low-pass) complex ~pulse response of the channel, and Tis a delay 
variable. The complex impulse response h ( T;t) is called the input delay-spread function of 
the channel. The (\ow-pass) complex envelope of the channel output is defined by the 
convolution integral 

(8.39) 

where the scaling factor ~ is the result of using complex notation. 
In genera~he behavior of a mobile radio channel can be described only in statistical 

terms. For analytic purposes, the delay-spread function ii(r;t) may thus be modeled as a 
zero-mean complex-valued Gaussian process. Then, at any time t the envelope I ii( r;t) I is 
Rayleigh distributed, and the channel is referred to as a Rayleigh fading channel. When, 
however, the mobile radio environment includes fixed scatterers, we are no longer justified 
in using a zero-mean model to describe the input delay-spread function ii(r;t). In such a 
case, it is more appropriate to use a Rician distribution to describe the envelope I ii( r,t) I, 
and the channel is referred to as a Rician fading channel. The Rayleigh and Rician distri­
butions for a real-valued random process were considered in Chapter 1. In the discussion 
presented in this chapter, we consider only a Rayleigh fading channel. 

The time-varying trans( er function of the channel is defined as the Fourier transform 
of the input delay-spread function ii ( r;t) with respect to the delay variable T, as shown by 

fI{f;t) = f 00 ii(r;t) exp(-i27Tf T) dT (8.40) 

where f denotes the frequency variable. The time-varying transfer function H(f;t) may be 
viewed as a frequency transmission characteristic of the channel. 

*Readers who are not interested in the mathematical details pertaining to the statistical characterization of fading 
multipath channels, may skip the material presented in this section, except for the subsection on the classification' 
of multipath channels at the end of the section. 
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For a statistical characterization of the channel, we make the following assumptions: 

i> The input delay-spread function h(r;t) is a zero-mean, complex-valued Gaussian 
process. Our interest is confined to short-term fading; it is therefore reasonable to 
assume that h( r;t) is also stationary. Because Fourier transformation is linear, the 
time-varying transfer function H(f;t) has similar statistics. 

!l> The channel is an uncorrelated scattering channel, which means that contributions 
from scatterers with different propagation delays are uncorrelated. 

Consider then the autocorrelation function of the input delay-spread functionh(r;t). Since 
h( r;t) is complex valued, we use the following definition for the autocorrelation function: 

(8.41) 

where E is the statistical expectation operator, the asterisk denotes complex conjugation, 
7'1 and r2 are the propagation delays of the two paths involved in the calculation, and t1 

and t2 are the times at which the outputs of the two paths are observed. Invoking station­
arity in the time variable t and uncorrelated scattering in the time-delay variable r, we may 
reformulate the autocorrelation function of h( r;t) as 

R;;(r,,r2;1lt) = E[h*h;t)hh;t + llt)] 

= r;;( r 1 ;1lt) 8( 7'1 - 7'2) 
(8.42) 

where llt is the difference between the observation times, and 8(r1 - r2 ) is a delta function. 
Using 7' in place of r1, the remaining function in Equation (8.42) is redefined as 

r;;(r;llt) = E[h(r,t)h*(r;t + llt)] (8.43) 

The function ri;( r;llt) is called the multipath auto1;;orrelation profile of the channel. 
Consider next a statistical characterization of the channel in terms of the complex­

valued, time-varying transfer function H(f;t). Following a formulation similar to that de­
scribed in Equation (8.41), the autocorrelation function of H(f;t) is defined by 

(8.44) 

where f 1 and fz represent two frequencies in the spectrum of a transmitted signal. The 
autocorrelation function RA(f "t1 ;[z,t,) provides a statistical measure of the extent 
to which the signal is distorted by transmission through the channel. From Equations 
(8.40), (8.41), and (8.44) we find that the autocorrelation functions RA(f ,,t1;[z,tz) and 
Rt,( r 1,t1;r2 .f2) are related by a form of two-dimensional Fourier transformation as follows: 

Invoking stationarity in the time domain, we may reformulate Equation (8.44) as 

RA(fi,fz;llt) = E[H"(f 1;t)H{fz;t + llt)] (8.46) 

This definition suggests that the autocorrelation function RA(f,,f 2;.!lt) may be measured 
by pairs of spaced tones to carry out cross-correlation measurements on the resulting 
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channel outputs. Such a measurement presumes stationarity in the time domain. If weals 
assume stationarity in the frequency domain, we may go one step further and write 

0 

RFI(f ,f + D.f;lit) = rn(D.f ;lit) 

= E[H*(f;t)fi(f + D.f;t + D.t)] (8.47) 

This specialized form of the autocorrelation function of H(/ ;t) is in fact the Fourier trans­
form of the multipath autocorrelation profile n;(r,ilt) with respect to the delay-time vari­
able r, as shown by 

(8.48) 

The function rFl(D.f;ilt) is called the spaced-frequency spaced-time correlation function of 
the channel. 

Finally, we introduce a function S(r;v) that forms a Fourier-transform pair with the 
multipath autocorrelation profile rj;( r;ilt) with respect to the variable ilt, as shown by 

S(r;v) = r= n;(r;ilt) exp(-j21TV ilt) d(ilt) (8.49) 

and 

~r;ilt) = r= S(r;v) exp(j21TV ilt) dv (8.50) 

The function S( r;v) may also be defined in terms ofrFI(D.f;M) by applying a form of double 
Fourier transformation: a Fourier transform with respect to the time variable ilt and an 
inverse Fourier transform with respect to the frequency variable ilf. That is to say, 

S(r;v) = r= roo rr1(ilf;ilt) exp(-j21TV ilt) exp(j21TT ilf) d(ilt) d(ilf) (8.51) 

Figure 8.19 displays the functional relationships between rj;(r;ilt), rFI(ilf;!l.t), and S(r,v) 
in terms of the Fourier transform and its inverse. 

Spaced-frequency F,[•] Multipath FM[•] 
Scattering Spaced-time ...,,....__ autocorrelation ~ 

Correlation function profile ...,,....__ function 
~ S(r; v) rii(Aj; Ml 

Ft;}[·] 
r;;Cr; ,at) F;'[•] 

FT[·]: Fourier transform with respect to de!ay r 

Fi}H: Inverse Fourier transform with respect to frequency increment 1~.f 

F J.tH= Fourier transform with respect to time increment flt 

F;1H: Inverse Fourier transform with respect to Doppler shift,., 

FIGURE 8.19 Functional relationships between the multipath autocorrelation profiler;;( r~t), the 
spaced-frequency spaced-time correlation function rn(ilf;ilt), and the scattering function S( r,v). 
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The function S( T;:v) is called the scattering function of the channel. For a physical 
interpretation of it, consider the transmission of a single tone of frequency f' (relative to 
the carrier). The complex envelope of the resulting filter output is 

s0 (t) = exp(i27Tf't)H{f';t) 

The autocorrelation function of s0 (t) is 

E[s~(t)S0(t + At)] = exp(j27Tf' dt)E[H*(f';t)H(f';t + At)] 

= exp(j27Tf' At)rtf(O;At) 

(8.52) 

(8.53) 

where, in the last line, we have made use of Equation (8.47). Putting Af = 0 in Equation 
(8.48), and then using Equation (8.50), we may write 

rtf(O;At) = r
00 

r,;(T;At) d'T 

= r
00 

[f
00 

S(T;:v) d'T] exp(j27T:v At) d:v 

(8.54) 

Hence, we may view the integral 

as the power spectral density of the channel output relative to the frequency f' of the 
transmitted tone, and with the Doppler shift :v acting as the frequency variable. General­
izing this result, we may state that the scattering function S( 'T; :v) provides a statistical 
measrue of the output power of the channel, expressed as a function of the time delay 'T 
and the Doppler shift :v. 

!!ii DELAY SPREAD AND DOPPLER SPREAD 

Putting At= 0 in Equation (8.43), we may write 

P;;('T) = r,;( r,0) 

= E[I h(T;tJl2] 
(8.55) 

The function P,;( 'T) describes the intensity (averaged over the fading fluctuations) of the 
scattering process at propagation ,delay 'T. Accordingly, P;;('T) is called the delay power 
spectrum or the multipath intensity profile of the channel. The delay power spectrum may 
also be defined in terms of the scattering function S( 'T; :v) by averaging it over all Doppler 
shifts. Specifically, putting At= 0 in Equation (8.50) and then using the first line of Equa­
tion (8.55), we may write 

(8.56) 

Figure 8.20 shows an example of a delay power spectrum that depicts a typical plot 
of the power spectral density versus excess delay; the excess delay is measured with respect 
to the time delay for the shortest echo path. Note, as in Figure 8.17, the power is measured 
in dBm. The "threshold level" included in Figure 8.20 defines the power level below which 
the receiver fails to operate satisfactorily. 
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Excess delay 

FIGURE 8.20 Example of a power-delay profile for a mobile radio channel. (From Parsons, 
1992, \\1th permission.) 

Two statistical moments of Pi;( r) of interest are the average delay, Ta., and the delay 
spread, <rT. The average delay is defined as the first central moment {i.e., the mean) of P;,( 7), 

as shown by 

r rP;,(r) dr 

r P;,(r) dr 

(8.57) 

The delay spread is defined as the square root of the second central moment of P;,(r), as 
shown by 

( )

1/2 

= r (T - Tav)2P;,(r) dr 

U'T roo 
Jo P;,(r) dr 

(8.58) 

The reciprocal of the delay spread <rT is a measure of the coherence bandwidth of the 
channel, which is denoted by Be. 

Consider next the issue of relating the Doppler effects to time variations of the chan­
nel. For this purpose, we first set !:i.f = O, which corresponds to the transmission of a single 
tone (of some appropriate frequency) over the channel. The spaced-frequency spaced-time 
correlation function of the channel then reduces to rf!(O;!:i.t). Hence, evaluating the Fourier 
transform of this function with respect to the time variable !:i.t, we may write 

(8.59) 

The function Sf!( v) defines the power spectrum of the channel output expressed as a func­
tion of the Doppler shift v; it is therefore called the Doppler spectrum of the channel. The 
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Doppler spectrum may also be defined in terms of the scattering function by averaging it 
over all possible propagation delays, as shown by 

(8.60) 

The Doppler shift v may assume positive and negative values with equal likelihood. The 
mean Doppler shift is therefore zero. The square root of the second moment of the Doppler 
spectrum is thus defined by 

(8.61) 

The parameter Uv provides a measure of the width of the Doppler spectrum; it is therefore 
called the Doppler spread of the channel. The reciprocal of the Doppler spread is called 
the coherence time of the channel, which is denoted by 'l'c-

Another useful parameter that is often used in measurements is the fade rate of the 
channel. For a Rayleigh fading channel, the average fade rate is related to the Doppler 
spread u" as 

f, = l.475u" crossings per second (8.62) 

As the name implies, the fade rate provides a measure of the rapidity of fading of the 
channel. 

Some typical values encountered in a mobile radio environment are as follows: 

11> The delay spread, Un amounts to about 20 µ,s. 

II> The Doppler spread, uv, due to the motion of a vehicle may extend up to 40-80 Hz. 

Iii CLASSIFICATION OF MULTIPATH CHANNELS 

The particular form of fading experienced by a multipath channel depends on whether the 
channel characterization is viewed in the frequency domain or the time domain. 

When the channel is viewed in the frequency domain, the parameter of concern is 
the channel's coherence bandwidth, B., which is a measure of the transmission bandwidth 
for which signal distortion across the channel becomes noticeable. A multipath channel is 
said to be frequency selective if the coherence bandwidth of the channel is small compared 
to the bandwidth of the transmitted signal. In such a situation, the channel has a filtering 
effect in that two sinusoidal components, with a frequency separation greater than the 
channel's coherence bandwidth, are treated differently. If, however, the coherence band­
width of the channel is large compared to the message bandwidth, the fading is said to be 
frequency nonselective, or frequency flat. 

When the channel is viewed in the time domain, the parameter of concern is the 
coherence time, 7'" which provides a measure of the transmitted signal duration for which 
distortion across the channel becomes noticeable. The fading is said to be time selective if 
the coherence time of the channel is small compared to the duration of the received signal 
(i.e., the time for which the signal is in flight). For digital transmission, the received signal's 
duration is taken as the symbol duration plus the channel's delay spread. If, however, the 
channel's coherence time is large compared to the received signal duration, the fading is 
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FIGURE 8.21 Illustrating the four classes of multipath channels: 'Tc = coherence time, 
Be = coherence band\>idth. 

said to be time nonselective, or time 'flat, in the sense that the channel appears to the 
transmitted signal as time invariant. 

In light of this discussion, we may classify multipath channels as follows: 

Flat-'flat channel, which is flat in both frequency and time. 
"' Frequency-flat channel, which is flat in frequency only. 
> Time-'flat channel, which is flat in time only. 

Non'flat channel, which is flat neither in frequency nor in time; such a channel is 
sometimes referred to as a doubly dispersive channel. 

The classification of multipath channels, based on this approach, is shown in Figure 8.21. 
The forbidden area, shown shaded in this figure, follows from the inverse relationship that 
exists between bandwidth and time duration. 

8. 7 Binary Signaling over a 
Rayleigh Fading Channel 

In Chapter 6, we determined the average probability of symbol error for the transmission 
of binary data over a channel corrupted by additive white Gaussian noise. In a mobile 
radio environment, we have an additional effect to consider, namely, the fluctuations in 
the amplitude and phase of the received signal due to multipath effects. To be specific, 
consider the transmission of binary data over a Rayleigh fading channel, for which the 
(low-pass) complex envelope of the received signal is modeled as follows: 

x(t) = a exp(-j,P)s(t) + w(t) (8.63) 

where s(t) is the complex envelope of the transmitted {band-pass) signal, a is a Rayleigh­
distributed random variable des<;:ribing the attenuation in transmission, <fJ is a uniformly 
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distributed random variable describing the phase-shift in transmission, and w(t) is a com­
plex-valued white Gaussian noise process. It is assumed that the channel is flat in both 
time and frequency, so that we can estimate the phase-shift <f> from the received signal 
without error. Suppose then that coherent binary phase-shift keying is used to do the data 
transmission. Under the condition that a is fixed or constant over a bit interval, we may 
adapt Equation (6.20) of Chapter 6 for the situation at hand by expressing the average 
probability of symbol error (i.e., bit error rate) due to the additive white Gaussian noise 
acting alone as follows: 

Pe( y) ~ erfc(yY) (8.64) 

where 'Y is an attenuated version of the transmitted signal energy per bit-to-noise spectral 
density ratio Eb/N0 , as shown by 

cl Eb 
'Y = No (8.65) 

Now, insofar as a mobile radio channel is concerned, we may view Pe( y) as a conditional 
probability given that a is fixed. Thus, to evaluate the average probability of symbol error 
in the combined presence of fading and noise, we must average Pe( y) over all possible 
values of y, as shown by 

Pe = r P.( y)f( y) dy (8.66) 

where f(y) is the probability density function of y. From Equation (8.65) we note that 'Y 
depends on the squared value of a. Since a is Rayleigh distributed, we find that 'Y has a 
chi-square distribution with two degrees of freedom. 7 In particular, we may express the 
probability density function of 'Y as 

f(y) = _!_ exp(-1'..), 'Y 2:: 0 (8.67) 
'Yo 'Yo 

The term 'Yo is the mean value of the received signal energy per bit-to-noise spectral density 
ratio, which is defined by . 

'Yo = E[y] 

=Eb E[clJ 
No 

(8.68) 

where E[cl] is the mean-square value of the Rayleigh-distributed random variable a. 
Substituting Equations (8.64) and (8.67) into (8.66), and carrying out the integration, we 
get the final result 

P, = I ( 1 - J 1 :o 'YJ (8.69) 

Equation (8.69) defines the bit error rate for coherent binary phase-shift keying (PSK) 
over a flat-flat Rayleigh fading channel. Following a similar approach, we may derive the 
corresponding bit error rates for coherent binary frequency-shift keying (FSK), binary 
differential phase-shift keying (DPSK), and noncoherent binary FSK. The results of these 
evaluations are summarized in Table 8.2. In Figure 8.22, we have used the exact formulas 
of Table 8.2 to plot the bit error rate versus 'Yo expressed in d~cibels. For the sake of 
comparison, we have also included in Figure 8.22 plots for the bit error rates of coherent 
binary PSK and noncoherent binary FSK for a nonfading channel. We see that Rayleigh 
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TABLE 8.2 Bit error rates for binary signaling over a flat-flat 
Rayleigh fading channel 

Approximate Formula 
Exact Formula for the for the Bit Error Rate, 

Type of Signaling Bit Error Rate P, Assuming Large 'Yo 

Coherent binary PSK 
1(1 ~) 

1 

2 1 +'Yo 4-yo 

Coherent binary FSK 
1(1 ~) 

1 

2 2 +'Yo 2'Yo 

BinaryDPSK 

2(1 + 'Yo) 2'Yo 

Noncoherent binary FSK 1 

2 +'Yo 'Yo 

fading results in a severe degradation in the noise performance of a digital pass band trans­
mission system, the degradation being measured in tens of decibels of additional mean 
signal-to-noise ratio compared to a nonfading channel for the same bit error rate. In par­
ticular, for large 'Yo we may derive the approximate formulas given in the last column of 
Table 8.2, according to which the asymptotic decrease in the bit error ratewith the average 
signal energy per bit-to-noise spectral density ratio 'Yo follows an inverse law. This behavior 
is dramatically different from the case of a nonfading channel, for which the asymptotic 
decrease in the bit error rate with 'Yo follows an exponential law. 

The practical implication of this difference is that in a mobile radio environment, we 
have to provide a large increase in mean signal-to-noise ratio (relative to a nonfading 
environment), so as to ensure a bit error rate that is low enough for practical use. To meet 
such a requirement, we have to increase the transmitted power, antenna size, and so on, 
which can be costly in terms of implementation. Alternatively, we may utilize special mod­
ulation and reception techniques that are less vulnerable to fading effects. Among these 
techniques, the best known and most widely used are the multiple-receiver combining 
techniques referred to collectively as diversity, a brief discussion of which is presented 
next. 

!ill DIVERSITY TECHNIQUES 

Diversity may be viewed as a form of redundancy. In particular, if several replicas of the 
message signal can be transmitted simultaneously over independently fading channels, then 
there is a good likelihood that at least one of the received signals will not be severely 
degraded by fading. There are several methods for making such a provision. In the context 
of our present discussion, the following diversity techniques are of particular interest: 

~ Frequency diversity 
11> Time (signal-repetition) diversity 
~ Space diversity 

In frequency diversity, the message signal is transmitted using several carriers that 
are spaced sufficiently apart form each other to provide independently fading versions of 
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FIGURE 8.22 Performance of binary signaling schemes over a Rayleigh fading channel, shown 
as continuous curves; the dashed curves pertain to a nonfading channel. 

the signal. This may be accomplished by choosing a frequency spacing equal to or larger 
than the coherence bandwidth of the channel. 

In time diversity, the same message signal is transmitted in different time slots, with 
the spacing between successive time slots being equal to or greater than the coherence time 
of the channel. Time diversity may be likened to the use of a repetition code for error­
control coding, (Error-control coding is discussed in Chapter 10.) 

In space diversity, multiple transmitting or receiving antennas (or both) are used, 
with the spacing between adjacent antennas being chosen so as to assure the independence 
of fading events; this may be satisfied by spacing the adjacent antennas by at least seven 
times the radio wavelength. 

Given that by one of these means we create L independently fading channels, we 
may then use a linear diversity combining structure involving L separate receivers, as 
depicted in Figure 8.23. The system is designed to compensate only for short-term effects 
of a fading channel. Moreover, it is assumed that noise-free estimates of the channel at­
tenuation factors {a,} and the channel phase-shifts {<f>,} are available. Then, the linear 
combiner achieves optimum performance for binary data transmission (discussed here for 
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FIGURE 8.24 Performance of binary signaling schemes with diversity. (From Proakis, 1995, 
with permission of McGraw-Hill.) 
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the purpose of illustration) by proceeding as follows: The output of the kth matched filter 
in the eth receiver, v,k(t), is multiplied by a, exp(jcp,) that represents the complex conju­
gate of the fth channel gain, where e = 1, 2, ... , L, and k = 0, 1. Thus, the linear combiner 
results in two output complex envelopes defined by 

L 

vk(t) 2: a, exp(jcp,)v,k(t), k = 0, 1 (8.70) 
e=i 

according to which a, exp( jcp,) plays the role of a weighting factor. One output complex 
envelope v0 (t) corresponds to the transmission of symbol 0, and the other v1 (t) corresponds 
to the transmission of symbol 1. The real parts of v0(t) and v1(t) are then used in the 
decision-making process. The situation described here applies to binary FSK. In the case 
of binary PSK, only a single matched filter is needed, in which case the linear combiner 
produces a single output complex envelope. Here again, however, the real part of the 
combiner output is used in the decision-making process. 

In the linear combiner described herein, the "instantaneous" output signal-to-noise 
ratio (SNR) is the sum of the instantaneous SNRs on the individual diversity branches 
(channels). This optimum form of a linear combiner is therefore referred to as a maxima/­
ratio combiner; see Problem 8.17. 

Figure 8.24 shows the noise performance of coherent binary PSK, binary DPSK, and 
noncoherent binary FSK for L = 2, 4 independently fading channels. For the sake of 
comparison, we have also included in this figure the corresponding graphs for a fading 
channel with no diversity (i.e., L = 1). Figure 8.24 dearly illustrates the effectiveness of 
diversity as a means of mitigating the short-term effects of Rayleigh fading. 

8.8 TDMA and CDMA Wireless 
Communication Systems8 

In wireless communications, as with ordinary telephony, a user would like to talk and 
listen simultaneously. To cater to this natural desire, some form of duplexing is required. 
One way in which this requirement can be satisfied is to provide two frequency bands, 
one for the forward link from the base station to a mobile and the other for the reverse 
link from the mobile to the base station. As pointed out earlier, in North America the 
subband 869-894 MHz is used for the forward link, and the subband 824-849 MHz is 
used for the reverse link. This form of duplexing is called frequency division duplexing 
(FDD). Indeed, FDD is an integral part of the two widely used wireless communication 
systems summarized in Table 8.3. ' 

The first of these systems, namely, GSM, uses TDMA. From Section 8.2 we recall 
that in a TDMA system each subscriber is permitted to access the radio channel during a 
set of predetermined time slots, during which time that particular subscriber will have full 
use of the channel. Consequently, data are transmitted over the channel in bursts, as shown 
in the frame structure of Figure 8.25. The basic frame of GSM is composed of eight 
577 µs slots. The 1-bit flag preceding each data burst of 57 bits is used to identify whether 
the data bits are digitized speech or some other information-bearing signal. The 3 tail bits, 
all logical zeros, are used in convolutional decoding of the channel-encoded data bits. 
(Convolutional codes are discussed in Chapter 10.) The 26-bit training sequence in the 
middle of the time slot is used for channel equalization. Finally, the guard time, occupying 
8.25 bits, is included at the end of each slot to prevent data bursts received at the base 
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TABLE 8.3 Summary of two widely used 
wireless communication systems 

Item 

Number of duplex 
channels 
Channel bandwidth 
(kHz) 
Type of multiple access 
Access users per 
channel 

Modulation type 

Data rate (kb/s) 
Frame period (ms) 

GSM• 

125 

200 

TDMA 
8 

GMSK 

270.833 
4.615 

IS-95t 

20 

1,250 

CDMA 
20 to 35 

BPSK/QPSK 

9.6 or 14.4 
20 

Comments 

CDMA assumes 12.5 MHz in each direction· 
see the next line ' 

A TDMA system is deterministic in that the 
number of access users per channel is defined 
by the number of available time slots. On 
the other hand, a CDMA system is 
interference-limited in that it has a soft limit 
on the number of access users per channel. 
In CDMA, data are modulated as BPSK, but 
the spreading is QPSK 

For CDMA, the frame period equals that of 
the speech codec (coder/decoder) 

'GSM stands for Global System for Mobile Communications; originally, it was introduced as an acronym for 
Groupe de travail Speciale pour Jes services Mobiles. 

tis stands for Interim Standard. 

station from mobiles from overlapping with each other; this is achieved by transmitting 
no signal at all during the guard time. With each slot consisting of 156.25 bits, of which 
40.25 bits are overhead (ignoring the 2 flag bits), the frame efficiency of GSM is 

( 
40.25) 0 1 -
156

_
25 

x 100 = 74.24 Yo 

The second wireless communication system, IS-95, summarized in Table 8.3 uses 
CDMA. From Section 8.2 we recall that in CDMA, each subscriber is assigned a distinct 
spreading code (PN sequence), thereby permitting the subscriber full access to the channel 
all of the time. Consequently, in a CDMA system we have a new form of interference 
called multiple-access interference (MAI), which arises because of deviation of die spread­
ing codes from perfect ortliogonality. A related phenomenon that needs attention is the 
near-far problem, which occurs if die received signals from the mobile units do not have 
equal power at the base station. In such a situation, die strongest received signal from a 
mobile user captures die demodulation process at the base station to the detriment of the 

..,_ ____ Frame= 4.6155 ms 

T Data 
3 57 bits 

rs, I TS4 I TS5 I TS6 I rs, I 

Train 
26 bits 

Data T Guard 
57 3 8.25 

i-'--- Time slot= 156.25 bits= 577 µ.s ____.., 

T: Tail (bits) 
F: Flag (bit) 

Train: Training interval for equalizer 
Guard: Guard time interval 

FIGURE 8.25 Frame structure of the GSM wireless communication system. 
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other users, To overcome the near-far problem, it is customary to use power control at 
the base station, whereby the base station maintains control over the power level of the 
transmitted signal from every mobile being served by that base station. The use of power 
control is particularly important in CDMA systems for another reason. A goal of multiple­
access systems is to maximize system capacity, which is defined as the largest possible 
number of users that can be reliably served by the system, given prescribed resources. 
Clearly, system capacity is compromised if each mobile is free to raise its transmitted power 
level regardless of other users, since that increase in transmitted power will, in turn, raise 
the level of multiple-access interference in the system. To maximize system capacity, it is 
therefore essential that each mobile's transmitter be under the control of the serving base 
station so that the signal-to-interference ratio is maintained at the minimum acceptable 
level needed for reliable service. 

Ill RAKE RECEIVER 

A discussion of wireless communications using CDMA would be incomplete without a 
description of the RAKE receiver.9 The RAKE receiver was originally developed in the 
1950s as a "diversity" receiver designed expressly to equalize the effect of multipath. First, 
and foremost, it is recognized that useful information about the transmitted signa! is con­
tained in the multipath component of the received signal. Thus, taking the viewpoint that 
multipath may be approximated as a linear combination of differently delayed echoes, the 
RAKE receiver seeks to combat the effect of multipath by using a correlation method to 
detect the echo signals individually and then adding them algebraically. In this way, in­
tersymbol interference due to multipath is dealt with by reinserting different delays into 
the detected echoes so that they perform a constructive rather than destructive role. 

Figure 8.26 shows the basic idea behind the RAKE receiver. The receiver consists of 
a number of correlators connected in parallel and operating in a synchronous fashion. 
Each correlator has two inputs: (1) a delayed version of the received signal and (2) a replica 
of the pseudo-noise (PN) sequence used as the spreading code to generate the spread-
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and gain ai, <P1 
adjustors 

Reference 
PN 
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Received 
signal -----......;;,._, Delay Tc Delay Tc 

Decision 
device 

Threshold 
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FIGURE 8.26 Block diagram of the RAKE receiver. 
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spectrum modulated signal at the transmitter. In effect, the PN sequence acts as a "refer­
ence signal." Let the nominal bandwidth of the PN sequence be denoted as W = l!T 
where Tc is the chip duration. From the discussion of spread-spectrum modulation pr;'. 
sented in Chapter 7, we recall that the autocorrelation function of a PN sequence has a 
single peak of width 1/W, and it disappears toward zero elsewhere inside one period of 
the PN sequence (i.e., one symbol period). Thus we need only make the bandwidth W of 
the PN sequence sufficiently large to "identify" the significant echoes in the received signal. 
To be sure that the correlator outputs all add constructively, two other operations are 
performed in the receiver by the functional blocks labeled "phase and gain adjustors": 

1. An appropriate delay is introduced into each correlator output so that the phase 
angles of the correlator outputs are in agreement with each other. 

2. The correlator outputs are weighted so that the correlators responding to strong 
paths in the multipath environment have their contributions accentuated, while the 
correlators not synchronizing with any significant path are correspondingly 
suppressed. 

The weighting coefficients, ab are computed in accordance with the maximal ratio com­
bining principle:10 

The signal-to-noise ratio of a weighted sum, where each element of the sum consists 
of a signal plus additive noise of fixed power, is maximized when the amplitude 
weighting is performed in proportion ro rhe perrinenr signal strength. 

The linear combiner output is 

M 

y(t) = 2: O:kZk(t) (8.71) 
k~l 

where zk(t) is the phase-compensated output of the kth correlator, and Mis the number 
of correlators in the receiver. Provided we use enough correlators in the receiver to span 
a region of delays sufficiently wide to encompass all the significant echoes that are likely 
to occur in the multipath environment, the output y(t) behaves essentially as though there 
was a single propagation path between the transmitter and receiver rather than a series of 
multiple paths spread in time. 

To simplify the presentation, the receiver of Figure 8.26 assumes the use of binary 
phase-shift keying in performing spread-spectrum modulation at the transmitter. Thus the 
final operation performed in Figure 8.26 is that of integrating the linear combiner output 
y(t) over the bit interval Tb and then determining whether binary symbol 1 or 0 was 
transmitted in that bit interval. 

The RAKE receiver derives its name from the fact that the bank of parallel correlators 
has an appearance similar to the fingers of a rake. Because spread spectrum modulation 
is basic to the operation of CDMA wireless communications, it is natural for the RAKE 
receiver to be central to the design of the receiver used in this type of multiuser radio 
comrnunication.11 

8.9 Source Coding of Speech for 
Wireless Cmnmunications 

For the efficient use of channel bandwidth, digital wireless communication systems, be 
they of the TOMA or CDMA type, rely on the use of speech coding to remove almost all 
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of the natural redundancy in speech, while maintaining a high-quality speech on decoding. 
The common approach is to use source coding, which, in one form or another, exploits 
the linear predictive coding (LPC) of speech. 

In this section, we describe two different techniques for speech coding: multi-pulse 
excited LPC and code-excited LPC, versions of which are used in GSM and IS-95, respec­
tively. Our treatment of both of these speech coding techniques is in conceptual terms.12 

!ill MULTI-PULSE EXCITED LPC 

This form of speech coding exploits the principle of analysis by synthesis, which means 
that the encoder includes a replica of the decoder in its design. Specifically, the encoder 
consists of three main parts as indicated in Figure 8.27a: 

1. Synthesis filter for the predictive modeling of speech. It may consist of an all-pole 
filter (i.e., a filter whose transfer function has poles only), which is designed to model 
the short-term spectral envelope of speech; the term short-term refers to the fact that 
the filter parameters are computed on the basis of predicting the present sample of the 
speech signal using eight to sixteen previous samples. The synthesis filter may also 
include a long-term predictor for modeling the fine structure of the speech spectrum; 
in such a case, the long-term predictor is connected in cascade with the short-term 
predictor. In any event, the function of the synthesis filter is to produce a synthetic 
version of the original speech that is of high quality. 

2. Excitation generator for producing the excitation applied to the synthesis filter. The 
excitation consists of a definite number of pulses every 5 to 15 ms. The amplitudes 
and positions of the individual pulses are adjustable. 

3. Error minimization for optimizing the perceptually weighted error between the orig­
inal speech and synthesized speech. The aim of this minimization is to optimize the 
amplitudes and positions of the pulses used in the excitation. Typically, a mean­
square error criterion is used for the minimization. 

Thus, as shown in Figure 8.27a, the three parts of the encoder form a closed-loop 
optimization procedure, which permits the encoder to operate at a bit rate below 16 
kb/s, while maintaining high-quality speech. 

The encoding procedure itself has two main steps: 

i>- The free parameters of the synthesis filter are computed using the actual speech 
samples as input. This computation is performed outside the optimization loop over 
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FIGURE 8.27 Multi-pulse excited linear predictive codec. (a) Encoder. (b) Decoder whose input 
(the received signal) consists of quantized filter parameters and quantized excitation as produced 
by the encoder. 
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a period of 10 to 30 ms, during which the speech signal is treated as pseudo­
stationary. 

1> The optimum excitation for the synthesis filter is computed by minimizing the per-
ceptually weighted error with the loop closed as in Figure 8.27a. 

Thus the speech samples are divided into frames (10 to 30 ms long) for computing the 
filter parameters, and each frame is divided further into subframes (5 to 15 ms) for opti­
mizing the excitation. The quantized filter parameters and quantized excitation constitute 
the transmitted signal. 

Note that by first permitting the filter parameters to vary from one frame to the next 
and then permitting the excitation to vary from one subframe to the next, the encoder i; 
enabled to track the nonstationary behavior of speech, albeit on a batch-by-batch basis. 

The decoder, located in the receiver, consists simply of two parts: excitation generator 
and synthesis filter, as shown in Figure 8.27b. These two parts are identical to the corre­
sponding ones in the encoder. The function of the decoder is to use the received signal to 
produce a synthetic version of the original speech signal. This is achieved by passing the 
decoded excitation through the synthesis filter whose parameters are set equal to those in 
the encoder. 

To reduce the computational complexity of the codec (i.e., contraction of coder/ 
decoder), the intervals between the individual pulses in the excitation are constrained to 
assume a common value. The resulting analysis-by-synthesis codec is said to have a regular­
pulse excitation. 

iiil CODE-ExCITED LPC 

Figure 8.28 shows the block diagram of the code-excited LPC, commonly referred to as 
CELP. The distinguishing feature of CELP is the use of a predetermined codebook of 
stochastic (zero-mean white Gaussian) vectors as the source of excitation for the synthesis 
filter. The synthesis filter itself consists of two all-pole filters connected in cascade, one of 
which performs short-term prediction and the other performs long-term prediction. 

As with the multi-pulse excited LPC, the free parameters of the synthesis filter are 
computed first, using the actual speech samples as input. Next, the choice of a particular 
vector (code) stored in the excitation codebook and the gain factor Gin Figure 8.28 is 
optimized by minimizing the average power of the perceptually weighted error between 
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FIGURE 8,28 Encoder of the code-excited linear predictive codec (CELP): the transmitted sig· 
nal consists of the address of the code selected from the codebook, quantized G, and quantized 
filter parameters. 
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the original speech and synthesized speech (i.e., output of the synthesis filter). The address 
of the stochastic vector selected from the codebook and the corresponding quantized gain 
factor, together with the quantized filter parameters, constitute the transmitted signal. 

An identical copy of the codebook is made available to the decoder, and likewise for 
the synthesis filter. Hence, given the received signal, the decoder is enabled to parameterize 
its own synthesis filter and determine the appropriate excitation for the synthesis filter, 
thereby producing a synthetic version of the original speech signal. 

CELP is capable of producing good-quality speech at bit rates below 8 kb/s. How­
ever, its computational complexity is intensive because of the exhaustive search of the 
excitation codebook. In particular, the weighted synthesized speech in the encoder has to 
be comput~d for all the entries in the codebook and then compared with the weighted 
original speech. Nevertheless, real-time implementation of CELP codecs has been made 
possible by virtue of advances in digital signal processing and VLSI technology. 

8.10 Adaptive Antenna Arrays for 
W.reless Communications 13 

The goal of wireless communications is to allow as many users as possible to communicate 
reliably without regard to location and mobility. From the discussion presented in Sections 
8.5 and 8.6, we find that this goal is seriously impeded by three major channel impairments: 

1. Multipath can cause severe fading due to phase cancellation between different prop­
agation paths. Fading leads to a reduction in available signal power and therefore a 
degraded noise performance. 

2. Delay spread results from differences in propagation delays among the multiple prop­
agation paths. When the delay spread exceeds about 10 percent of the symbol du­
ration, the intersymbol interference experienced by the received signal reaches a sig­
nificant level, thereby causing a reduction in the attainable data rate. 

3. Co-channel interference arises in cellular systems where the available frequency chan­
nels are divided into different sets, with each set being assigned to a specific cell and 
with several cells in the system using the same set of frequencies. Co-channel inter­
ference limits the system capacity (i.e., the largest possible number of users that can 
be reliably served by the system). 

Typically, cellular systems use 120° sectorization at each base station, and only 
one user accesses a sector of a base station at a given frequency. We may combat the 
effects of multipath fading and co-channel interference at the base station by using three 
identical but separate antenna arrays, one for each section of the base station. The 
compensation of delay spread is considered later in the section. Figure 8.29 shows the 
block diagram of an array signal processor, where it is assumed that there are N users 
whose signals are received at a particular sector of the base station, and the array for that 
sector consists of M identical antenna elements. A particular user is treated as the one of 
interest, and the remaining N-1 users give rise to co-channel interference. In addition to 
the co-channel interference, each component of the array signal processor's input is cor­
nipted by additive white Gaussian noise (A WGN). The analysis presented herein is for 
baseband signals, which, in general, are complex valued. This, in turn, means that both 
the channel and array signal processor require complex characterizations of their own. 
The structure depicted in Figure 8.29 is drawn for one output pertaining to the user of 
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FIGURE 8.29 Block diagram of array signal processor that involves M antenna elements, and 
that is being driven by a multipath channel. 

interest. The array signal processor is duplicated for users at other frequencies at the base 
station. 

The multipath channel is ~haracterized by the channel matrix, which is denoted by 
C. The matrix Chas dimensions M-by-N and may therefore be expanded into N column 
vectors, as shown by 

(8.72) 

where each column vector is of dimension M. 
Given the configuration described in Figure 8.29, the goal is to design a linear array 

signal processor for the receiver, which satisfies two requirements: 

1. The co-channel interference produced by the N-1 interfering users is cancelled. 
2. The output signal-to-noise ratio (SNR) for the user of interest is maximized. 

Hereafter, these two requirements are referred to as design requirements 1 and 2. 
To proceed with this design task, it is assumed that the multipath channel is described 

by flat Rayleigh fading. Then, in light of the material presented in Section 8. 7, we find that 
the use of diversity permits the treatment of the column vectors Ci, c2, ••• , cN as linearly 
independent, which is justified provided that the spacing between antenna elements of the 
array is large enough (e.g., seven times the wavelength) for independent fading. To simplify 
the presentation, we suppose that user 1 is the user of interest and the remaining N - 1 
users are responsible for co-channel interference, as indicated in Figure 8.29. The key 
design issue is how to find the weight vector denoted by w, which characterizes the array 
signal processor. To that end, we may proceed as follows: 

1. We choose the M-dimensional weight vector w to be orthogonal to the vectors 
c2 , ••• , cN, which are associated with the interfering users. This choice fulfills design 
requirement 1 (i.e., cancellation of co-channel interference). 

2. To satisfy design requirement 2 (i.e., maximization of the SNR), we will briefly di­
gress from the issue at hand to introduce the notion of a subspace. Given a vector 
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space, or just space, formed by a set of linearly independent vectors, a subspace of 
the space is a subset that satisfies two conditions: 14 

(i) If we add any two vectors z1 and z2 in the subspace, their sum z1 and z2 is still 
in the subspace. 

(ii) If we multiply any vector z in the subspace by any scalar a, the multiple az is 
still in the subspace. 

Returning to the issue of how to maximize the output SNR for user 1, we first 
construct a subspace denoted by 'W, whose dimension is equal to the difference be­
tween the number of antenna elements and the number of interfering users, that is, 
M - (N - 1) = M - N + 1. Next, we project the complex conjugate of the channel 
vector c1 (pertaining to user 1) onto the subspace 'W. The projection so computed 
defines the weight vector w. 

~EXAMPLE 8.3 

To illustrate the two-step subspace method for determining the weight vector w, consider the 
simple example of a system involving two users characterized by the channel vectors c, and 
c,, and an antenna array consisting of three elements; that is, N = 2 and M = 3. Then, for 
this example, the subspace W is two-dimensional, as shown by 

M-N+1=3-2+1=2 
With user 1 viewed as the user of interest and user 2 viewed as the interferer, we may construct 
the signal-space diagram shown in Figure 8.30. The subspace W, shown shaded in this figure, 
is orthogonal to channel vector c2 • The weight vector w of the array signal processor is de­
termined by the projection of the complex-conjugated channel vector of user 1, that is, c~, 
onto the subspace W, as depicted in Figure 8.30. ~ 

The important conclusion drawn from this discussion is that a linear receiver using 
optimum combining with M antenna elements and involving N - 1 interfering users has 
the same performance as a linear receiver with M - N + 1 antenna elements without 
interference, independent of the multipath environment. For this equivalence to be realized, 

•2 
(Interferer) 

·~ (User of interest) 

FIGURE 8.30 Signal-space diagram for Example 8.3, involving a user of interest, a single inter­
ferer, and an antenna array of 3 elements. The subspace W, shown shaded, is two-dimensional in 
this example. 



556 CHAPTER 8 " MULTIUSER RA.mo COMMUNICATIONS 

we of course require that M > N - 1. Provided that this condition is satisfied, the receiver 
cancels the co-channel interference with a diversity improvement equal to M - N + 1 
which represents an N-fold increase in system capacity. ' 

The design of an array signal processor in accordance with the two-step subspace 
procedure described herein is of the zero-forcing kind. We say so because, given M antenna 
elements, the array has enough degrees of freedom to force the output due to the N - 1 
interfering users represented by the linearly independent channel vectors ~ •... , cM to 
zero so long as Mis greater than N - 1. Note also that this procedure includes N ~ 1 
(i.e., a single user with no interfering users) as a special case. In this case, the channel 
matrix consists of vector Ci, which lies in the subspace W, and the zero-forcing solution 
w equals c~. 

The analysis presented thus far has been entirely of a spatial kind, which ignores the 
effect of delay spread. What if the delay spread is significant compared to the symbol 
duration and cannot therefore be ignored? Recognizing that delay spread is responsible 
for intersymbol interference, we may, in light of the material presented in Chapter 4 on 
the equalization of a telephone channel, incorporate a linear equalizer in each antenna 
branch of the array to compensate for delay spread. The resulting array signal processor 
takes the form shown in Figure 8.31, which combines temporal and spatial processing. 

Antenna 
array FIR filters 

FIGURE 8.31 Baseband space-time processor. The blocks labeled z- 1 are unit-delay elements 
with each delay being equal to the symbol period. The filter coefficients are complex valued. The 
FIR filters are all assumed to be of length L. 
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Spatial processing is provided by the antenna array, and the temporal processing is pro­
vided by a bank of finite-duration impulse response (FIR) filters. For obvious reasons, this 
structure is called a space-time processor.15 

Ill ADAPTIVE ANTENNA ARRAY 

The subspace design procedure for the array signal processor in Figure 8.29 assumes that 
the channel impairments are stationary, and that we have knowledge of the channel matrix 
C. In reality, however, multipath fading, delay spread, and co-channel interference are all 
nonstationary in their own individual ways. Also, the channel characterization may be 
unknown. To deal with these practical issues, we need to make the receiving array signal 
processor in Figure 8.29 adaptive. Bearing in mind the scope of this book, we confine the 
discussion to adaptive spatial processing, assuming that the delay spread is negligible. We 
further assume that the multipath fading phenomenon is slow enough to justify the least­
mean-square (LMS) algorithm to perform the adaptation. 

Figure 8.32 shows the structure of an adaptive antenna array, where the output of 
each antenna element is multiplied by an adjustable (controllable) weight, and then the 
weighted elemental outputs of the array are summed to produce the array output signal. 
The adaptive antenna array does not require knowledge of the direction of arrival of the 
desired signal originating from a user of interest as long as the system is supplied with a 
reference signal, which is correlated with the desired signal. The output signal of the array 
is subtracted from the reference signal to generate an error signal, which is used to apply 
the appropriate adjustments to the elemental weights of the array. In this way, a feedback 
system to control the elemental weights is built into the operation of the antenna array, 
thereby making it adaptive to changes in the environment. Note that the block diagram 
of Figure 8.32 is drawn for baseband processing, hence the complex conjugation of the 
elemental weights. In a practical system, a quadrature hybrid is used for each antenna 
element of the array to split the complex-valued received signal at each element into two 
components: one real and the other imaginary. The use of a hybrid has been omitted in 
Figure 8.32 to simplify the diagram. 

x1[n] 

Arra~ of 
M X2(n] antenna 

elements 

xM[n] 

Weight­
control 

algorithm 

Array output 

Reference signal 
d[n] 

y[n] 

FIGURE 8.32 Block diagram of adaptive antenna array. 
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To optimize the performance of the adaptive antenna array, it is customary to use 
the mean-square error 

J = E[i e[n] I 2J (8.73) 

as the cost function to be minimized. The e[n] is the error signal at time t = nT, where T 
is the symbol period and n is an integer serving as discrete time. Minimization of the cost 
function J suppresses the interfering signals and enhances the desired signal in the array 
output. However, the LMS algorithm minimizes the instantaneous value of the cost func­
tion J and, through successive iterations, it strives to reach the minimum mean-square 
error (MMSE) (i.e., optimum solution for the elemental weights). In light of the discussion 
presented in Chapter 4 on temporal equalizers, which carries over to the spatial domain 
we may say that an adaptive antenna array based on the minimum mean-square erro; 
criterion is highly likely to provide a better solution than one based on the zero-forcing 
criterion embodied in the two-step subspace method. 

Let xk[n] denote the output of the kth element in the array at discrete time n, and let 
wk[n] denote the corresponding value of the weight connected to this element. The output 
signal of the array (consisting of M antenna elements) is therefore 

M 

y[n] = L wHnJxk[n] 
k~l 

(8.74) 

where wanJxk[n] is the inner product of the complex-valued quantities wk[n] and xk[n]. 
Denoting the reference signal as d[n], we may evaluate the error signal as 

e[n] = d[n] - y[n] 

Hence, the adjustment applied to the kth elemental weight is 

.6.wk[n] = µ.e*[n]xk[n], k = 1, 2, ... , M 

where µ,is the step-size parameter, and the updated value of this weight is 

(8.75) 

(8.76) 

wk[n + 1] = wk[n] + Llwk[n], k = 1, 2, ... , M (8.77) 

Equations (8.74)-(8.77), in that order, constitute the complex LMS algorithm, which in­
cludes the LMS algorithm for real signals (studied in Chapters 3 and 4) as a special case. 
The algorithm is initiated by setting wk[OJ = 0 for all k. The derivation of the complex 
LMS algorithm is posed as Problem 8.19. 

The advantages of an adaptive antenna array using the complex LMS algorithm are 
three-fold: 

1>- Simplicity of implementation. 
1>- Linear growth in complexity with the number of antenna elements. 
I> Robust performance with respect to disturbances. 

However, the system suffers from the following drawbacks: 

I> Slow rate of convergence, which is typically ten times the number of weights. This 
limits the use of the complex LMS algorithm to a slow-fading environment, for which 
the Doppler spread is small compared to the reciprocal of the duration of the obser· 
vation interval. 

i> Sensitivity of the convergence behavior to variations in the reference signal and co· 
channel interference powers. 

These limitations of the complex LMS algorithm can be overcome by using an al­
gorithm known as direct matrix inversion (DMI), which follows directly from the Wiener 
filter discussed in Chapter 4; see Problem 8.21. Unlike the LMS algorithm, the DMl al-
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gorithm operates in the batch mode in that the computation of the elemental weights is 
based on a batch of K snapshots. The batch size K is chosen as a compromise between 
two conflicting requirements: 

ii> The size K should be small enough for the batch of snapshots used in the computation 
to be justifiably treated as pseudo-stationary. 

11> The size K should be large enough for the computed values of the elemental weights 
to approach the MMSE solution. 

The DMI algorithm is the optimum combining technique for array antennas currently 
deployed in many base stations today. The DMI algorithm may be reformulated for re­
cursive computation, 16 if so desired. 

When the teletraffic is high, the base stations are ordinarily configured as microcells, 
which are small cells such as an office floor or a station deployed along a highway with 
directional antennas. In such a configuration, there are many inexpensive base stations in 
close proximity to each other. The use of adaptive antenna arrays provides the means for 
an alternative configuration where there are fewer (but more expensive) base stations and 
further apart from each other than in the corresponding microcellular system. 

L 8.11 Summary and Discussion 

In this chapter, we discussed two important types of multiuser communications: satellite 
communications and wireless communications. Satellite communication systems offer 
global coverage, whereas wireless communication systems offer mobility. The global cov­
erage and mobility offered by these two communication systems have profoundly trans­
formed the way we communicate, both locally and globally. 

Although satellite communication and wireless communication systems function in 
entirely different ways, both rely on radio propagation to link the receiver to the trans­
mitter. In satellite communications, we have an uplink from an earth terminal to the 
satellite transponder and a downlink from the satellite to another earth terminal. The 
satellite operates like a repeater in the sky. Moreover, with the satellite positioned in a 
geostationary orbit, the uplink and downlink operate as line-of-sight paths of fixed lengths. 
Accordingly, the satellite communication channel, encompassing both of these links, is 
closely modeled as an additive white Gaussian noise (A WGN) channel. 

The wireless communication system also has two links of its own: an uplink, or 
reverse link, for the mobile-to-base station transmission, and a downlink, or forward link, 
for the base station-to-mobile transmission. The base station is fixed, being located at the 
center or on the edge of a coverage region; it consists of radio channels, and transmitter, 
and receiver antennas mounted on a tower. Three major sources of degradation in wireless 
communications, discussed in the chapter, are co-channel interference, fading, and delay 
spread; the latter two are byproducts of multipath. A common characteristic of these 
channel impairments is that they are all signal-dependent phenomena. Unlike the ubiqui­
tous channel noise, the degrading effects of interference and multipath cannot therefore 
be combatted by simply increasing the transmitted signal power. Rather, both interference 
and multipath require the use of specialized techniques, tailor-made to their particular 
physical characteristics. These specialized techniques include diversity, adaptive array an­
tennas, and the RAKE receiver. 

We close the discussion with remarks contrasting wireless communications to wired 
communications. From Chapter 3 we recall that a major source of concern in wired com-



560 CHAPTER 8 Ill MULTIUSER RADIO COMMUNICATIONS 

munication systems is noise; these systems have sufficient channel bandwidth to permit 
the use of pulse-code modulation (PCM) as the standard method for converting speech 
into a 64 kb/s stream, which provides the basic data for an almost noise-free performance. 
In wireless communications, on the other hand, channel bandwidth is a precious resource, 
the conservation of which necessitates the use of spectrally efficient speech coding tech­
niques to produce toll-quality digitized speech at rates that are a small fraction of the PCM 
rate. Unfortunately, the waveform coders exemplified by adaptive differential pulse-code 
modulation, disctissed in Chapter 3, do not satisfy this stringent requirement. The preferred 
approach is to use the spectrally efficient source-coding techniques: multi-pulse excited 
linear predictive coding (LPC) or its regular-pulse excited variant, and code-excited LPC 
(CELP); these source coding techniques produce bit rates below 16 kb/s by removing 
almost all of the natural redundancy in speech, while maintaining high-quality speech, 
albeit of a synthetic kind. To provide protection against noise, channel coding is used 
whereby redundant bits are inserted into the transmitted data stream in a controlled man­
ner. The use of channel coding also helps in other ways: It extends the range of low-power 
handsets as well as battery life. Channel coding is discussed in Chapter 10. 

I NOTES AND REFERENCES 

1. For detailed treatment of satellite communications and related issues, see the following 
books: Sklar (1988), Pratt and Bostian (1986), Wu (1984), Bhargava et al. (1981), and 
Spilker, Jr. (1977). The first, third, fourth, and fifth books emphasize the use of satellites 
for digital communications. The book by Pratt and Bostian presents a broad treatment of 
satellite communications, emphasizing such diverse topics as radio-wave propagation, an· 
tennas, orbital mechanics, signal processing, and radio electronics. 

2. Link budget analysis is discussed in the books by Sklar (1988) and Anderson (1999); for 
satellite communications, it is discussed in Bhargava et al. (1981). 

3. For the fundamentals of antennas, see the book by Kraus (1950) and Chapter 11 of the 
book by Jordan and Balmain (1973). 

4. The free-space equation (Equation 8.14) is named in honor of Friis (1946). For the origin 
of the Friis formula of Equation (8.30), see Friis (1944). 

5. For an original treatment of cellular radio, see the paper by MacDonald (1979). 

6. For a comprehensive treatment of the mobile radio propagation channel, see the book by 
Parsons (1992). This book presents the fundamentals of VHF and UHF propagation, prop­
agation over irregular terrain and in built-up areas, and a statistical characterization of the 
mobile radio channel. The statistical characterization of a mobile radio channel is also 
discussed in Proakis (1995). This book provides a readable account of the effect of fading 
on the error performance of Rayleigh fading channels and a good discussion of diversity 
techniques. For a full treatment of the subject, see Chapters 9-11 by Stein in the book 
edited by Schwartz, Bennett, and Stein (1966). 

7. The chi-square distribution is a special case of the gamma distribution. The probability 
density function of a gamma-distributed random variable X has two parameters: a > 0 
and ,\ > O; it is defined by 

O<x<oo 
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where f( a) is the gamma function, which is itself defined by 

The gamma function has the following properties: 

f( 112) = y:;;: 
f(a + 1) = af(a), a> 0 

By letting ,\ = 112 and a = k/2, where k is a positive integer, we get the chi-square distri­
bution with 2k degrees of freedom, as shown by 

8. For a survey article on the evolution of wireless communications, see Oliphant (1999). For 
books on the fundamentals of wireless communication systems, see Steele and Hanzo 
(1999), Stiiber (1996) and Rappaport (1996). 

For a detailed description of GSM, see Chapter 8 of the book by Steele and Hanzo 
(1999). For a detailed description of the IS-95 system, see the handbook by Lee and Miller 
(1998). 

9. The classic paper on the RAKE receiver is due to Price and Green (1958). 

10. For the original paper on how to maximize the signal-to-noise ratio realizable from the 
sum of several noisy signals, see the classic paper by Brennan (1955). 

11. The application of the RAKE receiver in CDMA wireless communication systems is dis­
cussed in detail in the book by Viterbi (1995). 

12. The idea of multi-pulse excitation for speech coding is due to Atal and Remde (1982). 
Code-excited linear prediction ( CELP) of speech was first introduced by Atal and Schroeder 
(1984). For a detailed mathematical discussion of multi-pulse excited, regular-pulse ex­
cited, and code-excited types of speech coding, particularly as they relate to wireless com­
munications, see Chapter 3 in the book edited by Steele and Hanzo (1999). 

13. In the wireless communications literature, adaptive antenna arrays are often referred to as 
smart antennas. For an overview of the various issues involved in the use of adaptive 
antenna arrays for wireless communications, see the article by Winters (1998) and the 
course notes by Winters (1999). The two-step subspace procedure for designing the array 
signal processor in Figure 8.29 is based on material presented in Winters (1999). The book 
by Rappaport (1999) presents a collection of papers on adaptive antenna arrays, which 
are grouped into algorithms, architectures, hardware applications, channel models, and 
performance evaluation. 

14. The idea of subspace is rooted in matrix algebra. For a discussion of this idea, see Strang 
(1980) and Stewart (1973). For a discussion of subspace decomposition in the context of 
statistical signal processing, see Scharf (1991). 

15. For tutorial discussions of space-time processing for wireless communications, see the ar­
ticles by Paulraj and Ng (1998), Paulraj and Papadias (1997), and Kohno (1998). 

16. Recursive implementation of the DMI algorithm leads to a new algorithm commonly re­
ferred to as the recursive least squares (RLS) algorithm; for a derivation of the RLS algo­
rithm and its variants, see Haykin (1996). 
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I PROBLEMS 

Free-Space Propagation 

8.1 A radio link uses a pair of 2m dish antennas with an efficiency of 60 percent each, as 
transmitting and receiving antennas. Other specifications of the link are: 

Transmitted power 
Carrier frequency 
Distance of the receiver 

= 1 dBw 
= 4 GHz 

from the transmitter = 150 m 

Calculate (a) the free-space loss, (b) the power gain of each antenna, and (c) the received 
power in dBW. 

8.2 Repeat Problem 8.1 for a carrier frequency of 12 GHz. 

8.3 Equation (8.14) is one formulation of the Friis free-space equation. Show that this equa­
tion can also be formulated in the following equivalent forms: 

( ) P,A.Ar 
a P, = A2d2 

(b) P = P ,A,G, 
' 47Td2 

where P, is the transmitted power, A, is the effective area of the transmitting antenna, A 
is the carrier wavelength, d is the distance of the receiver from the transmitter, G, is the 
power gain of the receiving antenna, A, is the effective area of the receiving antenna, and 
P, is the received power. 

Discuss the situations that favor the use of one of these equations over the other. 

8.4 From the mathematical definition of the free-space loss 

(
47Td)

2 

Lfree space = A 

we see that it is dependent on the carrier wavelength A or frequency f. How can this 
dependence on wavelength or frequency be justified in physical terms? 

8.5 In a satellite communication system, the carrier frequency used on the uplink is always 
higher than the carrier frequency used on the downlink. Justify the rationale for this 
choice. 

8.6 A continuous-wave (CW) beacon transmitter is located on a satellite in geostationary 
orbit. The beacon's 12 GHz output is monitored by an earth station positioned 40,000 
km from the satellite. The satellite transmitting antenna is a lm dish with an aperture 
efficiency of 70 percent, and the earth station receiving antenna is a 10m dish with an 
aperture efficiency of 5 5 percent. Calculate the received power, given that the beacon's 
output power is 100 mW. 

Noise Figure 

8.7 Consider a 75-fl resistor maintained at "room temperature" of 290K. Assuming a band· 
width of 1 MHz, calculate the foliowing: 

(a) The root-mean-square (RMS) value of the voltage appearing across the terminals of 
this resistor due to thermal noise. 

(b) The maximum available noise power delivered to a matched load. 
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8.8 In this problem, we revisit Example 8.1 based on the receiver configuration of Figure 
8.10. Suppose that a lossy waveguide is inserted between the receiving antenna and the 
low-noise amplifier. The waveguide loss is 1 dB, and its physical temperature is 290K. 
Recalculate the effective noise temperature of the receiver. 

8.9 Consider the receiver of Figure P8.9, which consists of a lossy waveguide, low-noise RF 
amplifier, frequency down-converter (mixer), and IF amplifier. The figure includes the 
noise figures and power gains of these four components. The antenna temperature is SOK. 

(a) Calculate the equivalent noise temperature for each of the four components in Figure 
P8.9, assuming a room temperature T = 290K. 

(b) Calculate the effective noise temperature of the whole receiver. 

Low-noise 
'---C==}--il>-J amplifier 

F=2 
G=0.2 

F = 1.7 
G= 10 

Frequency 
down­

converter 

F=3 
G=5 

FIGlJRE P8.9 

Budget Link Calculations 

Intermediate 
frequency 
amplifier 

F=5 
G= 5,000 

Output 

8.10 In this problem we address the uplink power budget of the digital satellite communication 
system considered in Example 8.2. The parameters of the link are as follows: 

Carrier frequency 
Power density at tbe TWT 

amplifier in saturation 
Satellite figure of merit, GIT 
Distance of the satellite from the 

14 GHz 

-81 dBW/m2 

1.9 dB/K 

transmitting earth terminal = 40,000 km 

(a} Assuming no power backoff of the TWT, calculate the C/N0 ratio at the satellite. 
(b) Given that the data rate in the uplink is the same as that calculated for the downlink 

in Example 8.2, calculate the probability of symbol error incurred in the uplink al­
lowing for a link margin of 6 dB. Compare your result with that in Example 8.2. 

8.11 The downlink C/N0 ratio in a direct broadcast satellite (DBS) system is estimated to be 
85 dB-Hz. The specifications of the link are: 

Satellite EIRP = 57 dBW 
Downlink carrier frequency = 12.5 GHz 
Data rate = 10 Mb/s 
Required Er)N0 at the receiving earth terminal = 10 dB 
Distance of the satellite from the receiving earth terminal = 41,000 km 

Calculate the minimum diameter of the dish antenna needed to provide a satisfactory TV 
reception, assuming that the dish has an efficiency of 5 5 percent and it is located alongside 
the hoine where the temperature is 310K. For this calculation, assume that the operation 
of the DBS system is essentially downlink-limited. 
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Wireless Communications 

8.12 Both wireless communications and satellite communications rely on radio propagation 
for their operations. Summarize (a) the similarities of these two multiuser communication 
systems, and (b) the major differences that distinguish them from each other. 

8.13 In wireless communication systems, the carrier frequency on the uplink (reverse link) is 
smaller than the carrier frequency on the downlink (forward link). Justify the rationale 
for this choice. 

8.14 Figure PS.14 depicts the direct (line-of-sight) and indirect (reflected) paths of a radio link 
operating over a plane earth. The heights of the transmitting antenna at the base station 
and the receiving antenna of a mobile unit are hb and hm, respectively. Assume the 
following: 
II> The reflection coefficient of the ground is -1. 

11> The distance d between the two antennas is large enough to make the phase difference q, 
between the reflected and direct paths small compared to 1 raclian, so that we may set 
sin</>=</>. 

Hence, show that the received power P, is given by the approximation 

where P, is the transmitted power, and Gb and Gm are the power gains of the transmitting 
base and mobile antennas, respectively. Compare this result with the Friis free-space 
equation. 

d 

FIGURE PS.14 

8.15 The two-path model defined by the impulse response 

h(t) = a1 8(t - r1 ) + a2 exp(-jfi) 8(t - r2 ) 

is frequently used in the analytic treatment of wireless communication systems. The model 
parameters are the delay times T1 and r2, the uniformly distributed phase fi, and the real 
coefficients a1 and a2• 

(a) Determine (i) the transfer function of the model, and (ii) its power-delay profile. 
(b) Show that the model exhibits frequency-selective fading due to variations in the co­

efficients a1 and a2• 

8.16 In the RAKE receiver illustrated in Figure 8.26, each correlator is synchronized by in­
serting the right delay into the received signal. 

(a) Show that, in theory, the same result is obtained by inserting the right delay into the 
reference signal (i.e., pseudo-noise sequence). 

(b) In practice, the preferred method is to use the procedure described in Figure 8.26. 
What reason can you suggest for this preference? 



Problems 565 

8.17 In this problem we study the maximal-ratio combining diversity scheme. To proceed, 
consider a set of noisy signals [xi(t)}j:i, where xi(t) is defined by 

x;(t) = si(t) + nj(t), i = 1, 2, ... , N 
Assume the following: 

I» The signal components s;(t) are locally coherent, that is, 

j = 1, 2, ... , N 

where the zi are positive real numbers, and m(t) denotes a message signal with unit 
power. 

I> The noise components n;(t) have zero mean, and they are statistically independent, that is, 

for k = j 

otherwise 

The output of the linear combiner is defined by 

N 

x(t) = L a;xj(t) 
j=1 

where the parameters a; are to be determined. 
(a) Show that the output signal-to-noise ratio is 

(b) Set 

(#, a;Z;r 
(SNR) 0 = 

N 

2: afaf 
i=J 

u1 = a;a; 

V· =!£ 
I a; 

and reformulate the expression for (SNR) 0 • Hence, applying the Schwarz inequality 
to this reformulation, show that 

N 

(i) (SNR) 0 :5 L (SNR)i 
j=l 

where (SNR); = zf!af. 
(ii) The optimum values of the combiner's coefficients are defined by 

Zj 

a;= aJ 

in which case the Schwarz inequality is satisfied with the equality sign. 

The Schwarz inequality is discussed in Section 5 .2. 

Adaptive Antenna Arrays 

8.18 Consider the array signal processor of Figure 8.29 where there are only two users (N = 
2) and the array consists of two elements (M = 2). Construct the subspace W for this 
problem. Hence, using a signal-space diagram, illustrate the computation of the weight 
characterizing the array signal processor. 
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8.19 In this problem we derive the complex LMS algorithm. Referring to Figure 8.32 and 
starting with the instantaneous cost function 

1 
J=-ie[nJl2 

2 

where e[n] is the error signal and M is the number of antenna elements, do the following: 
(a) Determine the derivative of the cost function] with respect to the kth elemental weight 

wk[n]. 

(b) Using the instantaneous derivative a]lawk[n], denoted by VJ[k], determine the ad­
justment .lwk[n] made to the kth elemental weight in accordance with the rule 

.lwk[n] = -JLV][k] 

(c) Verify the composition of the complex LMS algorithm described in Equations (8.75) 
to (8.77). 
Note that wk[n] is complex valued, and you need to consider its real and imaginary 
parts separately. 

8.20 A practical limitation of an adaptive antenna array using the LMS algorithm is the dy­
namic range over which the array can operate. This limitation is due to the fact that the 
speed of response of the weights in the LMS algorithm is proportional to the average 
signal power at the array input. 
(a) Justify the assertion that the dynamic range of average signal power at the array input 

is proportional to Rblf m;" where Rb is the data rate in bis and fmox is the maximum 
fade rate in Hz. 

(b) Assuming a proportionality factor of 0.2, by which the ratio Rblf =x is scaled, cal­
culate the dynamic range of an adaptive antenna array using the LMS algorithm for 
Ri, = 32 kb/sand !max= 70 Hz. Comment on your result. (The proportionality factor 
of 0.2 is a reasonable choice for systems using PSK.) 

8.21 In this problem we derive the direct matrix inversion algorithm for adjusting the weights 
of an adaptive antenna array. To do so, we revisit the derivation of the Wiener filter 
presented in Chapter 3. 
(a) Show that 

Rxw = rxd 
where R,, is an estimate of the correlation matrix of the input vector x[k]: 

1 K 

:R. = K ~' x[kJx"lkl 

and rxd is an estimate of the cross-correlation vector between x[ k] and the reference 
signal d[k]: 

1 K 

cxd = K ~' x[kJd'lkl 

The superscript Hin the formula for R,. denotes Hermitian transportation (i.e., trans­
position and complex conjugation), so x[k]x"[k] denotes the outer product of x[k] 
with itself. The summations for both Rx and ixd are performed over a total of K 
snapshots, with each snapshot being represented by the pair {x[k], d[k]). 

(b) Using the formulas of part (a), describe an algorithm for computing the weight vector 
w, given a data set consisting of K snapshots. Hence demonstrate that the complexity 
of this algorithm grows as M3 with the size of the weight vector w denoted by M. 



FUNDAMENTAL LIMITS 

IN INFORMATION 

THEORY 

Shannon's landmark paper on information theory in 1948, and its refinements by other 
researchers, were in direct response to the need of electrical engineers to design 
communication systems that are both efficient and reliable. Efficient communication from 
a source to a user destination is attained through source coding. Reliable communication 
over a noisy channel is attained through error-control coding. This chapter addresses these 
important issues as summarized here: 

~ Entropy as the basic measure of information. 

~ Source coding theorem and data compaction algorithms. 

~ Mutual information and its relation to the capacity of a communication channel for 
information transmission. 

~ Channel coding theorem as the basis for reliable communication. 

~ Information capacity theorem as the basis for a tradeoff between channel bandwidth and 
signal-to-noise ratio. 

~ Rate-distortion theory for source coding with a fidelity criterion. 

As mentioned in the Backgronnd and Preview chapter and reiterated along the way, the 
purpose of a communication system is to carry information-bearing baseband signals from 
one place to another over a communication channel. In preceding chapters of the book, 
we have described a variety of modulation schemes for accomplishing this objective. But 
what do we mean by the term information? To address this issue, we need to invoke 
information theory.1 This broadly based mathematical discipline has made fundamental 
contributions, not only to communications, but also to computer science, statistical phys­
ics, statistical inference, and probability and statistics. 

In the context of communications, information theory deals with mathematical mod­
eling and analysis of a commnnication system rather than with physical sources and phys­
ical channels. In particular, it provides answers to two fundamental questions (among 
others): 

t» What is the irreducible complexity below which a signal cannot be compressed? 

i> What is the ultimate transmission rate for reliable communication over a noisy 
channel? 

567 
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The answers to these questions lie in the entropy of a source and the capacity of a channe~ 
respectively. Entropy is defined in terms of the probabilistic behavior of a source of infor­
mation; it is so named in deference to the parallel use of this concept in thermodynamics. 

·Capacity is defined as the intrinsic ability of a channel to convey information; it is naturally 
related to the noise characteristics of the channel. A remarkable result that emerges from 
information theory is that if the entropy of the source is less than the capacity of the 
channel, then error-free communication over the channel can be achieved. It is therefore 
befitting that we begin our study of information theory by discussing the relationships 
among uncertainty, information, and entropy. 

I 9 .2 Uncertainty, Information, and Entropy 

Suppose that a probabilistic experiment involves the observation of the output emitted bv 
a discrete source during every unit of time (signaling interval). The source output is mod­
eled as a discrete random variable, S, which takes on symbols from a fixed finite alphabet 

(9.1) 

with probabilities 

k = 0, 1, ... , K - 1 (9.2) 

Of course, this set of probabilities must satisfy the condition 
K-1 

2: Pk= 1 (9.3) 
k~O 

We assume that the symbols emitted by the source during successive signaling intervals 
are statistically independent. A source having the properties just described is called a dis­
crete memoryless source, memoryless in the sense that the symbol emitted at any time is 
independent of previous choices. 

Can we find a measure of how much information is produced by such a source? To 
answer this question, we note that the idea of information is closely related to that of 
uncertainty or surprise, as described next. 

Consider the event S = sb describing the emission of symbol sk by the source with 
probability pk, as defined in Equation (9.2). Clearly, if the probability Pk = 1 and p1 = 0 
for all i * k, then there is no "surprise," and therefore no "information," when symbol 
skis emitted, because we know what the message from the source must be. If, on the other 
hand, the source symbols occur with different probabilities, and the probability Pk is low, 
then there is more surprise, and therefore information, when symbol skis emitted by the 
source than when symbol s1, i * k, with higher probability is emitted. Thus, the words 
uncertainty, surprise, and information are all related. Before the event S = sk occurs, there 
is an amount of uncertainty. When the event S = sk occurs there is an amount of surprise. 
After the occurrence of the event S = sb there is gain in the amount of information, the 
essence of which may be viewed as the resolution of uncertainty. Moreover, the amount 
of information is related to the inverse of the probability of occurrence. 

We define the amount of information gained after observing the event S = sk> which 
occurs with probability Pb as the logarithmic function2 

J(sk) = log(~) (9.4) 
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This definition exhibits the following important properties that are intuitively satisfying: 

1. 

2. 

3. 

for Pk = 1 (9.5) 

Obviously, if we are absolutely certain of the outcome of an event, even before it 
occurs, there is no information gained. 

(9.6) 

That is to say, the occurrence of an event S = sk either provides some or no infor­
mation, but never brings about a loss of information. 

for Pk< p, (9.7) 

That is, the less probable an event is, the more information we gain when it occurs. 

4. I(sks1) = I(sk) + J(s1) if sk and s1 are statistically independent. 

The base of the logarithm in Equation (9.4) is quite arbitrary. Nevertheless, it is the 
standard practice today to use a logarithm to base 2. The resulting unit of information is 
called the bit (a contraction of binary digit). We thus write 

I(sk) = log2(p~) 
(9.8) 

= -log2 Pk for k = 0, 1, ... , K - 1 

When Pk = 1/2, we have I(sk) = 1 bit. Hence, one bit is the amount of information that 
we gain when one of two possible and equally likely (i.e., equiprobable) events occurs. 
Note that the information J(sk) is positive, since the logarithm of a number less than one, 
such as a probability, is negative. 

The amount of information I(sk) produced by the source during an arbitrary signaling 
interval depends on the symbol sk emitted by the source at that time. Indeed, I(sk) is a 
discrete random variable that takes on the values J(s0), J(si), ... , J(sK_1) with probabilities 
p0 , Pi. ... , PK-t respectively. The mean of J(sk) over the source alphabet g is given by 

(9.9) 

= L Pk log2 -
K-1 ( 1) 
k~O Pk 

The important quantity HW) is called the entropy' of a discrete memoryless source with 
source alphabet g, It is a measure of the average information content per source symbol. 
Note that the entropy HW) depends only on the probabilities of the symbols in the al­
phabet g of the source. Thus the symbol g in HW) is not an argument of a function but 
rather a label for a source. 
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!iii SOME PROPERTIES OF ENTROPY 

Consider a discrete memoryless source whose mathematical model is defined by Equations 
(9.1) and (9.2). The entropy H(:f) of such a source is bounded as follows: 

(9.10) 

where K is the radix (number of symbols) of the alphabet g' of the source. Furthermore 
we may make two statements: ' 

1. H(:f) =' 0, if and only if the probability pk = 1 for some k, and the remaining 
probabilities in the set are all zero; this lower bound on entropy corresponds to no 
uncertainty. 

2. H(g') = log2 K, if and only if Pk = 1/K for all k (i.e., all the symbols in the alphabet 
g' are equiprobable); this upper bound on entropy corresponds to maximum 
uncertainty. 

To prove these properties of H(g'), we proceed as follows. First, since each proba­
bility Pk is less than or equal to unity, it follows that each term Pk log2(1/pk) in Equation 
(9.9) is always nonnegative, and so H(:f) 2: 0. Next, we note that the product term 
Pk log2 (1/pk) is zero if, and only if, Pk = 0 or 1. We therefore deduce that H(g') = O if, 
and only if, Pk = 0 or 1, that i~, Pk = 1 for some k and all the rest are zero. 

This completes the proofs of the lower bound in Equation (9.10) and statement (1). 
To prove the upper bound in Equation (9.10) and statement (2), we make use of a 

property of the natural logarithm: 

log x 5 x - 1, x 2: 0 (9.11) 

This inequality can be readily verified by plotting the functions log x and (x - 1) versus 
x, as shown in Figure 9.1. Here we see that the line y = x 1 always lies above the curve 
y = log x. The equality holds only at the point x = 1, where the line is tangential to the 
curve. 

FIGURE 9.1 Graphs of the functions x 1 and log x versus x, 
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To proceed with the proof, consider first any two probability distributions 
{Po, Pi. ... , PK-1) and {qo, q,, .. . , qK-il on the alphabet 9' = {s0, Sr. ... , sK-il of a 
discrete memoryless source. Then, changing to the natural logarithm, we may write 

K-1 (qk) 1 K-l (qk) L Pk log2 - = -
1 2 

L Pk log -
k-o Pk og k-o Pk 

Hence, using the inequality of Equation (9.11), we get 

L Pk log2 Cf.!!_ s -- L Pk qk - 1 K-1 ( ) 1 K-1 ( ) 
k-o Pk log 2 k~o Pk 

l K-1 
s -I 2 L (qk - Pk) 

og k-o 

1 (K-1 
s-- 2: qk 

log 2 k-o 

K-1 ) 

~o Pk = 0 

We thus have the fundamental inequality 

~
1 

Pk log2(Cf.!!.) s O 
k-o Pk 

where the equality holds only if qk =Pk for all k. 
Suppose we next put 

1 
qk = K' k = 0, 1, ... , K - 1 

(9.12) 

(9.13) 

which corresponds to an alphabet 9' with equiprobable symbols. The entropy of a discrete 
memoryless source with such a characterization equals 

L qk log2 - = loKi K 
K-1 ( 1) 
k-0 qk 

(9.14) 

Also, the use of Equation (9.13) in Equation (9.12) yields 

L Pk log2 - s log2 K 
K-1 ( 1) 
k-o Pk 

Equivalently, the entropy of a discrete memoryless source with an arbitrary probability 
distribution for the symbols of its alphabet 9' is bounded as 

H(9') s log2 K 

Thus H(9') is always less than or equal to log2 K. The equality holds only if the symbols 
in the alphabet g are equiprobable, as in Equation (9.13). This completes the proof of 
Equation (9.10) and statements (1) and (2). 

ExAMPLE 9.1 Entropy of Binary Memoryless Source 

To illustrate the properties of H(:J'), we consider a binary source for which symbol 0 occurs 
with probability Po and symbol 1 with probability p1 = 1 - Po· We assume that the source 
is memoryless so that successive symbols emitted by the source are statistically independent. 
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Symbol probability. Po 

FIGURE 9.2 Entropy function 'JC(p0 ). 

The entropy of such a source equals 

H(9') = -Po logz Po - Pi log2 P1 

-Po log2 Po (1 - Po) log2(l - Po) bits 
(9.15) 

from which we observe the following: 

1. When Po = 0, the entropy H(g') O; this follows from the fact that x log x --> 0 as 
x--> 0. 

2. When Po = 1, the entropy H(Ef) = 0. 

3. The entropy H(&') attains its maximum value, Hmax = 1 bit, when p1 = Po = 112, that 
is, symbols 1 and 0 are equally probable. 

The function of Po given on the right-hand side of Equation (9.15) is frequently en­
countered in information-theoretic problems. It is therefore customary to assign a special 
symbol to this function. Specifically, we define 

'ife(Po) = -Po logz Po - (1 - Po) log2(1 - Po) (9.16) 

We refer to 'Jf(p0 ) as the entropy function. The distinction between Equation (9.15) and Equa­
tion (9.16) should be carefully noted. The H(g') of Equation (9.15) gives the entropy of 
a discrete memoryless source with source alphabet 9'. The 'Jf(p0 ) of Equation (9.16), on 
the other hand, is a function of the prior probability Po defined on the interval [O, 1]. Accord­
ingly, we may plot the entropy function 'Jf(p0 ) versus p0 , defined on the interval [O, 1], as 
in Figure 9 .2. The curve in Figure 9 .2 highlights the observations made under points 1, 2, 
and 3. <Iii 

!Ill ExTENSION OF A DISCRETE MEMORYLESS SOURCE 

In discussing information-theoretic concepts, we often find it useful to consider blocks 
rather than individual symbols, with each block consisting of n successive source symbols. 
We may view each such block as being produced by an extended source with a source 
alphabet ;f'" that has K" distinct blocks, where K is the number of distinct symbols in the 
source alphabet El of the original source. In the case of a discrete memoryless source, the 
source symbols are statistically independent. Hence, the probability of a source symbol in 
El" is equal to the product of the probabilities of the n source symbols in El constituting 
the particular source symbol in El". We may thus intuitively expect that H(Ef"), the entropy 
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of the extended source, is equal to n times H(!f), the entropy of the original source. That 
is, we may write 

H(!f") = nH(!f) (9.17) 

~ EXAMPLE 9.2 Entropy of Extended Source 

Consider a discrete memoryless source with source alphabet [/ = {s0, s1 , s2) with respective 
probabilities 

Po= i 
Pi= t 
P2 = ! 

Hence, the use of Equation (9.9) yields the entropy of the source as 

HW) =Po log2(~) + p, log2(f.) + P2 log,(f,) 

1 1 1 
= 4 log2{4) + 4 log2(4) + 2 log2 (2) 

3 b' = l its 

Consider next the second-order extension of the source. With the source alphabet [! 
consisting of three symbols, it follows that the source alphabet [/2 of the extended source has 
nine symbols. The first row of Table 9.1 presents the nine symbols of [! 2

, denoted as <To, 
<Ti. ••• , <T8• The second row of the table presents the composition of these nine symbols in 
terms of the corresponding sequences of source symbols s0, s1, and sz, taken two at a time. 
The probabilities of the nine source symbols of the extended source are presented in the last 
row of the table. Accordingly, the use of Equation (9.9) yields the entropy of the extended 
source as 

8 1 
H{[f

2
) = ~ P(<T;) log2 p(a';) 

1 1 1 1 
= 

16 
log2{16) + 

16 
log2 (16) + 8 log2(8) + 

16 
log2{16) 

1 1 1 1 1 
+ 

16 
log2 (16) + 8 log2 (8) + 8 log2{8) + S log2 (8) + 4 log2{4) 

= 3 bits 

We thus see that H{[/2) = 2H{[f} in accordance with Equation (9.17). 

TABLE 9.1 Alphabet particulars of second-order exte11sio11 
of a discrete memoryless source 

Symbols of [/2 
<To <Ti <rz <r3 <r4 <rs ,,.. 

Corresponding sequences Soso SoS1 SoS2 S1So S1S1 S1S1 S2So 

of symbols of [! 
Probabiliry p(cr;), 1 1 1 1 ..L 1 1 

16 16 8 I6 " 8 8 
i = 0, 1, ... ' 8 

1 
4 
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I 9.3 Source-Coding Theoreni 

An important problem in communications is the efficient representation of data generated 
by a discrete source. The process by which this representation is accomplished is called 
source encoding. The device that performs the representation is called a source encoder. 
For the source encoder to be efficient, we require knowledge of the statistics of the source. 
In particular, if some source symbols are known to be more probable than others, then 
we may exploit this feature in the generation of a source code by assigning short code 
words to frequent source symbols, and long code words to rare source symbols. We refer 
to such a source code as a variable-length code. The Morse code is an example of a variable­
length code. In the Morse code, the letters of the alphabet and numerals are encoded into 
streams of marks and spaces, denoted as dots "." and dashes "-", respectively. In the 
English language, the letter E occurs more frequently than the letter Q, for example, so 
the Morse code encodes E into a single dot".", the shortest code word in the code, and 
it encodes Q into"- - . -",the longest code word in the code. 

Our primary interest is in the development of an efficient source encoder that satisfies 
two functional requirements: 

1. The code words produced by the encoder are in binary form. 

2. The source code is uniquely decodable, so that the original source sequence can be 
reconstructed perfectly from the encoded binary sequence. 

Consider then the scheme shown in Figure 9.3, which depicts a discrete memoryless 
source whose output sk is converted by the source encoder into a block of Os and ls, 
denoted by bk. We assume that the source has an alphabet with K different symbols, and 
that the kth symbol sk occurs with probability Pb k 0, 1, ... , K 1. Let the binary 
code word assigned to symbol sk by the encoder have length lb measured in bits. We define 
the average code-word length, I, of the source encoder as 

K-1 

I= 2; Pklk (9.18) 
k~O 

In physical terms, the parameter I represents the average number of bits per source S)'mbol 
used in the source encoding process. Let Lm;n denote the minimum possible value of I. 
We then define the coding efficiency of the source encoder as 

Lrnin 
T/ =-=-

L 
(9.19) 

With I 2: Lm;m we clearly have T/ :5 1. The source encoder is said to be efficient when 17 

approaches unity. 
But how is the minimum value Lm;n determined? The answer to this fundamental 

question is embodied in Shannon's first theorem: the source-coding theorem,4 which may 
be stated as follows: 

Given a discrete memoryless source of entropy H( :J), the average code-word length 
I for any distortionless source encoding scheme is bounded as 

Discrete 
memoryless 

source 

I;:=: H(9') 

Source 
encoder 

bk Binary 
-----;;... sequence 

FIGURE 9.3 Source encoding. 

(9.20) 
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(A proof of this theorem for a particular class of source codes is presented in the next 
section.) According to the source-coding theorem, the entropy H(Ef) represents a funda­
mental limit on the average number of bits per source symbol necessary to represent a 
discrete memoryless source in that it can be made as small as, but no smaller than, the 
entropy H(Ef). Thus with Lmin = H(Ef), we may rewrite the efficiency of a source encoder 
in terms of the entropy H('J') as 

H(Ef) 
T/ = ---=-

L 
(9.21) 

L 9 .4 Data Compaction 

A common characteristic of signals generated by physical sources is that, in their natural 
form, they contain a significant amount of information that is redundant, the transmission 
of which is therefore wasteful of primary communication resources. For efficient signal 
transmission, the redundant information should be removed from the signal prior to trans­
mission. This operation, with no loss of information, is ordinarily performed on a signal 
in digital form, in which case we refer to it as data compaction or lossless data compression. 
The code resulting from such an operation provides a representation of the source output 
that is not only efficient in terms of the average number of bits per symbol but also exact 
in the sense that the original data can be reconstructed with no loss of information. The 
entropy of the source establishes the fundamental limit on the removal of redundancy from 
the data. Basically, data compaction is achieved by assigning short descriptions to the most 
frequent outcomes of the source output and longer descriptions to the less frequent ones. 

In this section, we discuss some source-coding schemes for data compaction. We 
begin the discussion by describing a type of source code known as a prefix code, which is 
not only decodable but also offers the possibility of realizing an average code-word length 
that can be made arbitrarily close to the source entropy. 

I!! PREFIX CODING 

Consider a discrete memoryless source of alphabet {s0, s1' ..• , sK-il and statistics 
{p 0 , pi, ... , PK-ii· For a source code representing the output of this source to be of 
practical use, the code has to be uniquely decodable. This restriction ensures that for each 
finite sequence of symbols emitted by the source, the corresponding sequence of code words 
is different from the sequence of code words corresponding to any other source sequence. 
We are specifically interested in a special class of codes satisfying a restriction known 
as the prefix condition. To define the prefix condition, let the code word assigned to 
source symbol sk be denoted by (mk

1
, mk

2
, ••• , mkJ, where the individual elements 

mk,, ... , mkn are Os and ls, and n is the code-word length. The initial part of the code 
word is represented by the elements mk,, ... , mk, for some i,;:; n. Any sequence made up 
of the initial part of the code word is called a prefix of the code word. A prefix code is 
defined as a code in which no code word is the prefix of any other code word. 

To illustrate the meaning of a prefix code, consider the three source codes described 
in Table 9.2. Code I is not a prefix code since the bit 0, the code word for s0 , is a prefix 
of 00, the code word for s2 • Likewise, the bit 1, the code word for s,, is a prefix of 11, the 
code word for s3 • Similarly, we may show that code III is not a prefix code, but code II is. 

To decode a sequence of code words generated from a prefix source code, the source 
decoder simply starts at the beginning of the sequence and decodes one code word at a 
time. Specifically, it sets up what is equivalent to a decision tree, which is a graphical 
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I TABLE 9.2 Illustrating the definition of a prefix code 

Source Symbol Probability of Occurrence Code I Code II Code III 

So 0.5 0 0 0 
s, 0.25 10 01 
Si 0.125 00 110 011 
53 0.125 11 111 0111 

portrayal of the code words in the particular source code. For example, Figure 9.4 depicts 
the decision tree corresponding to code II in Table 9.2. The tree has an initial state and 
four terminal states corresponding to source symbols s0 , s1, s2 , and s3 • The decoder always 
starts at the initial state. The first received bit moves the decoder to the terminal state 50 

if it is 0, or else to a second decision point if it is 1. In the latter case, the second bit moves 
the decoder one step further down the tree, either to terminal state s 1 if it is 0, or else to 
a third decision point if it is 1, and so on. Once each terminal state emits its symbol, the 
decoder is reset to its initial state. Note also that each bit in the received encoded sequence 
is examined only once. For example, the encoded sequence 1011111000 ... is readily 
decoded as the source sequence s1s3s2s0s0 • ••• The reader is invited to carry out this 
decoding. 

A prefix code has the important property that it is always uniquely decodable. But 
the converse is not necessarily true. For example, code III in Table 9.2 does not satisfy the 
prefix condition, yet it is uniquely decodable since the bit 0 indicates the beginning of each 
code word in the code. 

Moreover, if a prefix code has been constructed for a discrete memoryless source 
with source alphabet (s0, s1, ••• , sK_1) and source statistics (p0, p,, .. . , PK-1) and the 
code word for symbol sk has length lb k = 0, 1, ... , K - 1, then the code-word lengths 
of the code always satisfy a certain inequality known as the Kraft-McMillan Inequality,' 
as shown by 

Initial 
state 

K-1 

2: i-1, o'O i 
k~O 

FIGlJRE 9.4 Decision tree for code II of Table 9.2. 

(9.22) 
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where the factor 2 refers to the radix (number of symbols) in the binary alphabet. It is 
important to note, however, that the Kraft-McMillan inequality does not tell us that a 
source code is a prefix code. Rather, it is merely a condition on the code-word lengths of 
the code and not on the code words themselves. For example, referring to the three codes 
listed in Table 9.2, we note the following: 

I> Code I violates the Kraft-McMillan inequality; it cannot therefore be a prefix code. 

"' The Kraft-McMillan inequality is satisfied by both codes II and III; but only code II 
is a prefix code. 

Prefix codes are distinguished from other uniquely decodable codes by the fact that 
the end of a code word is always recognizable. Hence, the decoding of a prefix can be 
accomplished as soon as the binary sequence representing a source symbol is fully received. 
For this reason, prefix codes are also referred to as instantaneous codes. 

Given a discrete memoryless source of entropy H(:f), a prefix code can be constructed 
with an average code-word length I, which is bounded as follows: 

H(:f) -s I < H(:f) + 1 (9.23) 

The left-hand bound of Equation (9.23) is satisfied with equality under the conwtion that 
symbol sk is emitted by the source with probability 

(9.24) 

where lk is the length of the code word assigned to source symbol sk. We then have 

K-1 K-1 

22 2-t, = 22 Pk = 1 
k-0 k-0 

Under this condition, the Kraft-McMillan inequality of Equation (9.22) tells us that we 
can construct a prefix code, such that the length of the code word assigned to source symbol 
skis -log2Pk· For such a code, the average code-word length is 

- K-1 /k 
L = 22 2'• 

k-0 

and the corresponding entropy of the source is 

K-1 ( 1) 
H(:f) = "J;

0 21, log2 (21•) 

K-1 h 
k~O 21

' 

(9.25) 

(9.26) 

Hence, in this special (rather meretricious) case, we find from Equations (9.25) and (9.26) 
that the prefix code is matched to the source in that I = H(:f). 

But how do we match the prefix code to an arbitrary discrete memoryless source? 
The answer to this problem lies in the use of an extended code. Let I. denote the average 
code-word length of the extended prefix code. For a uniquely decodable code, I. is the 
smallest possible. From Equation (9.23), we deduce that 

H(:f") -s I. < H(:f") + 1 

Substituting Equation (9.17) for an extended source into Equation (9.27), we get 

nH(:f) -s I. < nH(:f) + 1 

(9.27) 
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or, equivalently, 

H(9') :s In < H(9') + ~ 
n n (9.28) 

In the limit, as n approaches infinity, the lower and upper bounds in Equation (9.28) 
converge, as shown by 

1-
lim - Ln = H(9') 
n~= n 

(9.29) 

We may therefore state that by making the order n of an extended prefix sauce 
encoder large enough, we can make the code faithfully represent the discrete memoryless 
source 9' as closely as desired. In other words, the average code-word length of an extended 
prefix code can be made as small as the entropy of the source provided the extended code 
has a high enough order, in accordance with the source-coding theorem. However, the 
price we have to pay for decreasing the average code-word length is increased decoding 
complexity, which is brought about by the high order of the extended prefix code. 

HUFFMAl" CODING 

We next describe an important class of prefix codes known as Huffman codes. The basic 
idea behind Huffman coding6 is t,o assign to each symbol of an alphabet a sequence of bits 
roughly equal in length to the amount of information conveyed by the symbol in question. 
The end result is a source code whose average code-word length approaches the funda­
mental limit set by the entropy of a discrete memoryless source, namely, H(9'). The essence 
of the algorithm used to synthesize the Huffman code is to replace the prescribed set of 
source statistics of a discrete memoryless source with a simpler one. This reduction process 
is continued in a step-by-step manner until we are left with a final set of only two source 
statistics (symbols), for which (0, 1) is an optimal code. Starting from this trivial code, we 
then work backward and thereby construct the Huffman code for the given source. 

Specifically, the Huffman encoding algorithm proceeds as follows: 

1. The source symbols are listed in order of decreasing probability. The two source 
symbols of lowest probability are assigned a 0 and a 1. This part of the step is referred 
to as a splitting stage. 

2. These two source symbols are regarded as being combined into a new source symbol 
with probability equal to the sum of the two original probabilities. (The list of source 
symbols, and therefore source statistics, is thereby reduced in size by one.) The prob­
ability of the new symbol is placed in the list in accordance with its value. 

3. The procedure is repeated until we are left with a final list of source statistics (sym­
bols) of only two for which a 0 and a 1 are assigned. 

The code for each (original) source symbol is found by working backward and tracing the 
sequence of Os and ls assigned to that symbol as well as its successors. 

~ ExAMl>LE 9.3 Huffman Tree 

The five symbols of the alphabet of a discrete memoryless source and their probabilities are 
shown in the two leftmost columns of Figure 9.Sa. Following through the Huffman algorithm, 
we reach the end of the computation in four steps, resulting in the Huffman tree shown in 
Figure 9.Sa. The code words of the Huffman c.ode for the source are tabulated in Figure 9.Sb. 
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Stage I Stage II Stage Ill Stage IV Symbol Probability 

So 0.4 s, 0.2 s, 0.2 
83 0.1 
S4 0.1 

(b) 

0.4 0.4 ;f 0.4 3:F 0.6] 

0.2;f 0.2 0.4 0.4 
O 1 

0.2 0.2 0.2 

0 1 
0.1 0.2 

1 
0.1 

(a) 

FIGlJRE 9.5 (a) Example of the Huffman encoding algorithm. (b) Source code. 

The average code-word lengrh is therefore 

I = o.4(2) + 0.2(2) + o.2(2) + o.1(3) + o.1(3) 

= 2.2 

Code word 

00 
10 
11 

010 
Oll 

The entropy of the specified discrete memoryless source is calculated as follows [see 
Equation (9.9)]: 

H(:'I') = 0.4 log2 (..l.) + 0.2 log,(..l.) + 0.2 log2 (..l.
2

) 
0.4 0.2 0. 

+ O.l log2 ( 0\) + O.l log2 ( 0\) 

= 0.52877 + 0.46439 + 0.46439 + 0.33219 + 0.33219 

= 2.12193 bits 

For the example at hand, we may make two observations: 

1. The average code-word length L exceeds the entropy H(:'I') by only 3.67 percent. 
2. The average code-word length L does indeed satisfy Equation (9.23). 

It is noteworthy that the Huffman encoding process (i.e., the Huffman tree) is not 
unique. In particular, we may cite two variations in the process that are responsible for 
the nonuniqueness of the Huffman code. First, at each splitting stage in the construction 
of a Huffman code, there is arbitrariness in the way a 0 and a 1 are assigned to the last 
two source symbols. Whichever way the assignments are made, however, the resulting 
differences are trivial. Second, ambiguity arises when the probability of a combined symbol 
(obtained by adding the last two probabilities pertinent to a particular step) is found to 
equal another probability in the list. We may proceed by placing the probability of the 
new symbol as high as possible, as in Example 9.3. Alternatively, we may place it as low 
as possible. (It is presumed that whichever way the placement is made, high or low, it is 
consistently adhered to throughout the encoding process.) But this time, noticeable differ­
ences arise in that the code words in the resulting source code can have different lengths. 
Nevertheless, the average code-word length remains the same. 

As a measure of the variability in code-word lengths of a source code, we define the 
variance of the average code-word length I over the ensemble of source symbols as 

K-1 

a2 = 2: pk(lk - I)2 (9.30) 
k-o 

where p0, pi, ... , PK-I are the source statistics, and lk is the length of the code word 
assigned to source symbol sk. It is usually found that when a combined symbol is moved 
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as high as possible, the resulting Huffman code has a significantly smaller variance a2- than 
when it is moved as low as possible. On this basis, it is reasonable to choose the former 
Huffman code over the latter. 

l>l LEMPEL-ZIV CODING 

A drawback of the Huffman code is that it requires knowledge of a probabilistic model 
of the source; unfortunately, in practice, source statistics are not always known a priori. 
Moreover, in modeling text we find that storage requirements prevent the Huffman code 
from capturing the higher-order relationships between words and phrases, thereby com­
promising the efficiency of the code. To overcome these practical limitations, we may use 
the Lempel-Ziv algorithm, 7 which is intrinsically adaptive and simpler to implement than 
Huffman coding. 

Basically, encoding in the Lempel-Ziv algorithm is accomplished by parsing the 
source data stream into segments that are the shortest subsequences not encountered pre­
viously. To illustrate this simple yet elegant idea, consider the example of an input binary 
sequence specified as follows: 

000101110010100101 ... 

It is assumed that the binary symbols 0 and 1 are already stored in that order in the code 
book. We thus write 

Subsequences stored: 

Data to be parsed: 

0, 1 
000101110010100101 ... 

The encoding process begins at the left. With symbols 0 and 1 already stored, the shortest 
subsequence of the data stream encountered for the first time and not seen before is 00; 
so we write 

Subsequences stored: 

Data to be parsed: 

0, 1, 00 

0101110010100101 ... 

The second shortest subsequence not seen before is 01; accordingly, we go on to write 

Subsequences stored: 

Data to be parsed: 

0, 1, 00, 01 

01110010100101 ... 

The next shortest subsequence not encountered previously is 011; hence, we write 

Subsequences stored: 

Data to be parsed: 

0, 1, 00, 01, 011 

10010100101 ... 

We continue in the manner described here until the given data stream has been completely 
parsed. Thus, for the example at hand, we get the code book of binary subsequences shown 
in the second row of Figure 9.6. 

Numerical positions: 
Subsequences: 
Numerical representations: 
Binary encoded blocks: 

1 
0 

2 
1 

3 
00 
11 

0010 

4 
01 
12 

0011 

5 
011 
42 

1001 

6 
10 
21 

0100 

7 
010 

41 
1000 

8 
100 

61 
1100 

9 
101 

62 
1101 

FIGURE 9.6 Illustrating the encoding process performed by the Lempel-Ziv algorithm on the 
binary sequence 000101110010100101. ... 



9.5 Disc~te Memoryless Channels 581 

The first row shown in this figure merely indicates the numerical positions of the 
individual subsequences in the code book. We now recognize that the first subsequence of 
the data stream, 00, is made up of the concatenation of the first code book entry, 0, with 
itself; it is therefore represented by the number 11. The second subsequence of the data 
stream, 01, consists of the first code book entry, 0, concatenated with the second code 
book entry, 1; it is therefore represented by the number 12. The remaining subsequences 
are treated in a similar fashion. The complete set of numerical representations for the 
various subsequences in the code book is shown in the third row of Figure 9.6. As a further 
example illustrating the composition of this row, we note that the subsequence 010 consists 
of the concatenation of the subsequence 01 in position 4 and symbol 0 in position 1; hence, 
the numerical representation 41. The last row shown in Figure 9.6 is the binary encoded 
representation of the different subsequences of the data stream. 

The last symbol of each subsequence in the code book (i.e., the second row of Figure 
9.6) is an innovation symbol, which is so called in recognition of the fact that its appendage 
to a particular subsequence distinguishes it from all previous subsequences stored in the 
code book. Correspondingly, the last bit of each uniform block of bits in the binary en­
coded representation of the data stream (i.e., the fourth row in Figure 9.6) represents the 
innovation symbol for the particular subsequence under consideration. The remaining bits 
provide the equivalent binary representation of the "pointer" to the root subsequence that 
matches the one in question except for the innovation symbol. 

The decoder is just as simple as the encoder. Specifically, it uses the pointer to identify 
the root subsequence and then appends the innovation symbol. Consider, for example, the 
binary encoded block 1101 in position 9. The last bit, 1, is the innovation symbol. The 
remaining bits, 110, point to the root subsequence 10 in position 6. Hence, the block 1101 
is decoded into 101, which is correct. 

From the example described here, we note that, in contrast to Huffman coding, the 
Lempel-Ziv algorithm uses fixed-length codes to represent a variable number of source 
symbols; this feature makes the Lempel-Ziv code suitable for synchronous transmission. 
In practice, fixed blocks of 12 bits long are used, which implies a code book of 4096 
entries. 

For a long time, Huffman coding was unchallenged as the algorithm of choice for 
data compaction. However, the Lempel-Ziv algorithm has taken over almost completely 
from the Huffman algorithm. The Lempel-Ziv algorithm is now the standard algorithm 
for file compression. When it is applied to ordinary English text, the Lempel-Ziv algorithm 
achieves a compaction of approximately 55 percent. This is to be contrasted with a com­
paction of approximately 43 percent achieved with Huffman coding. The reason for this 
behavior is that, as mentioned previously, Huffman coding does not take advantage of the 
intercharacter redundancies of the language. On the other hand, the Lempel-Ziv algorithm 
is able to do the best possible compaction of text (within certain limits) by working effec­
tively at higher levels. 

I 9.5 Discrete Menwryless Channels 

Up to this point in the chapter, we have been preoccupied with discrete memoryless sources 
responsible for information generation. We next consider the issue of information trans­
mission, with particular emphasis on reliability. We start the discussion by considering a 
discrete memoryless channel, the counterpart of a discrete memoryless source. 

A discrete memoryless channel is a statistical model with an input X and an output 
Y that is a noisy version of X; both X and Y are random variables. Every unit of time, the 
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FIGURE 9. 7 Discrete memoryless channel. 

channel accepts an input symbol X selected from an alphabet it' and, in response, it emits 
an output symbol Y from an alphabet C\ll. The channel is said to be "discrete" when both 
of the alphabets :i£ and C\ll have finite sizes. It is said to be "memoryless" when the current 
output symbol depends only on the current input symbol and not any of the previous ones. 

Figure 9. 7 depicts a view of a discrete memoryless channel. The channel is described 
in terms of an input alphabet 

an output alphabet, 

C\ll = {yo, Y1> • · · , YK-1), 

and a set of transition probabilities 

for all j and k 

Naturally, we have 

for all j and k 

(9.31) 

(9.32) 

(9.33) 

(9.34) 

Also, the input alphabet it' and output alphabet C\ll need not have the same size. For 
example, in channel coding, the size K of the output alphabet C\ll may be larger than the 
size J of the input alphabet it'; thus, K ;;:;,: J. On the other hand, we may have a situation 
in which the channel emits the same symbol when either one of two input symbols is sent, 
in which case we have K s J. 

A convenient way of describing a discrete memoryless channel is to arrange the 
various transition probabilities of the channel in the form of a matrix as follows: 

P(Y1 lxo) 

p(y, I xtl 
P(YK-1 I xo) ] 
P(YK-1 lx1) 

P(YK-~ I X1-1l 

(9.35) 

The J-by-K matrix Pis called the channel matrix, or transition matrix. Note that each row 
of the channel matrix P corresponds to a fixed channel input, whereas each column of the 
matrix corresponds to a fixed channel output. Note also that a fundamental property of 
the channel matrix P, as defined here, is that the sum of the elements along any row of the 
matrix is always equal to one; that is, 

K-1 

L P(Yklx;) = 1 
k~O 

for all j (9.36) 
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Suppose now that the inputs to a discrete memoryless channel are selected according 
to the probability distribution {p(xi), j = 0, 1, ... , J 1). In other words, the event that 
the channel input X = X; occurs with probability 

for j = 0, 1, ... , J - 1 (9.37) 

Having specified the random variable X denoting the channel input, we may now specify 
the second random variable Y denoting the channel output. The joint probability distri­
bution of the random variables X and Y is given by 

p(x1, Yk) = P(X = xi, Y = Yk) 

= P(Y = YklX = xi)P(X =Xi) 

= P(Yk I x1)P(x1) 

(9.38) 

The marginal probability distribution of the output random variable Y is obtained by 
averaging out the dependence of p(x1, Yk) on xi, as shown by 

p(yk) = P(Y = Yk) 
J-1 

= L P(Y = YklX = x1)P(X = x;) 
j=O 

/-1 

= 2: P(Yk lx;)P(x1) fork = 0, 1, ... , K - 1 
j=O 

(9.39) 

The probabilities p(x;) for j = O, 1, ... , J - 1, are known as the a priori probabilities 
of the various input symbols. Equation (9.39) states that if we are given the input a pri­
ori probabilities p(x;) and the channel matrix [i.e., the matrix of transition probabilities 
p(yk I x1)], then we may calculate the probabilities of the various output symbols, the p(yk). 

~ ExAMPLE 9.4 Binary Symmetric Channel 

The binary symmetric channel is of great theoretical interest and practical importance. It is a 
special case of the discrete memoryless channel with] = K = 2. The channel has two input 
symbols (x 0 = 0, x1 = 1) and two output symbols (y0 = 0, y1 1). The channel is symmetric 
because the probability of receiving a 1 if a 0 is sent is the same as the probability of receiving 
a 0 if a 1 is sent. This conditional probability of error is denoted by p. The transition prob­
ability diagram of a binary symmetric channel is as shown in Figure 9.8. ~ 

1-p 
x0 = 0 <:<------------;:>Yo= 0 

p 

FIGURE 9.8 Transition probability diagram of binary symmetric channel. 
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It is of interest to relate the transition probability diagram of Figure 9 .8 to the con­
ditional probabilities of error p10 and Po1 that were determined for the PCM receiver in 
Section 3.3. For the case when the binary symbols 0 and 1 are equiprobable, we showed 
that the optimized values of these two error probabilities are equal. Indeed, recalling the 
following definitions (using the terminology of Figure 9.8): 

P10 = P(y = l Ix = 0) 

and 

Po1 = P(y = 0 Ix= 1) 

we immediately see that for the PCM receiver of Figure 3.4: 

P10 = Po1 = P 

I 9.6 Mutuallnformation 

Given that we think of the channel output Y (selected from alphabet <J.li) as a noisy version 
of the channel input X (selected from alphabet ilf), and that the entropy H(ilf) is a measure 
of the prior uncertainty about X, how can we measure the uncertainty about X after 
observing Y? To answer this question, we extend the ideas developed in Section 9.2 by 
defining the conditional entropy of X selected from alphabet'/£, given that Y = Yk· Spe­
cifically, we write 

1-
1 

[ 1 J H(irl Y = Yk) = L p(xilYk) log2 -(-1 -) 
;-o p X; Yk 

(9.40) 

This quantity is itself a random variable that takes on the values 
H(OC I Y = y0), ••. , H(ilf I Y = YK-1) with probabilities p(yo), ..• , P(YK-1), respectively. 
The mean of entropy H(OC I Y = Yk) over the output alphabet '!I/ is therefore given by 

K-1 

H(ilf I <J.li) = L H(ilf I y = Yk)p(yk) 
k-0 

(9.41) 

where, in the last line, we have made use of the relation 

(9.42) 

The quantity H('/£ I <J.li) is called a conditional entropy. It represents the amount of uncer­
tainty remaining about the channel input after the channel output has been observed. 

Since the entropy H(ilf) represents our uncertainty about the channel input before 
observing the channel output, and the conditional entropy H(OC I <J.li) represents our uncer­
tainty about the channel input after observing the channel output, it follows that the 
difference H(OC) - H(ilf I <J.li) must represent our uncertainty about the channel input that is 
resolved by observing the channel output. This important quantity is called the mutual 
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information of the channel. Denoting the mutual information by J(:?'e; q]J), we may thus 
write 

J(:?'e; DY) = H(:?'e) - H(:?'e I DY) (9.43) 

Similarly, we may write 

I(DY; :?'e) = H(DY) - H(q]J I :?'e) (9.44) 

where H(q]J) is the entropy of the channel output and H(q]J I :?'e) is the conditional entropy 
of the channel output given the channel input. 

ll1l PROPERTIES OF MUTUAL INFORMATION 

The mutual inforamtion J(:?'e; DY) has the following important properties. 

Property 1 

The mutual information of a channel is symmetric; that is 

(9.45) 

where the mutual information J(:?'e; q]J) is a measure of the uncertainty about the channel 
input that is resolved by observing the channel output, and the mutual information 
J(q]J; :?'e) is a measure of the uncertainty about the channel output that is resolved by sending 
the channel input. 

To prove this property, we first use the formula for entropy and then use Equations 
(9.36) and (9.38), in that order, to express H(:?'e) as 

]-I [ 1 J 
H(:?'e) = L p(x;) log2 -(-·) 

1~o p x1 

f-1 [ 1 J K-1 

= ~ p(x;) log2 p(x;) ~o P(Yk Ix;) 
(9.46) 

J-1 K-1 [ 1 J 
= ~ ~o P(Yklx;)p(x;) log2 p(x;) 

Hence, substituting Equations (9.41) and (9.46) into Equation (9.43) and then combining 
terms, we obtain 

(9.47) 

From Bayes' rule for conditional probabilities, we have [see Equations (9.38) and (9.42)] 

p(x;IYk) = P(Yklx;) 

p(x;) p(yk) 
(9.48) 
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Hence, substituting Equation (9.48) into Equation (9.47) and interchanging the order of 
summation, we may write 

which is the desired result. 

Property2 

The mutual information is always nonnegative; that is 

I(OC; 0J) 2: 0 

To prove this property, we first note from Equation (9.42) that 

( I ) 
_ p(xi, Yk) 

p X; Yk - p(yk) 

(9.49) 

(9.50) 

(9.51) 

Hence, substituting Equation (9.51) into Equation (9.47), we may express the mutual 
information of the channel as 

(9.52) 

Next, a direct application of the fundamental inequality [defined by Equation (9.12)] yields 
the desired result 

I(OC; 0J) 2: 0 

with equality if, and only if, 

p(x;, Yk) = p(x;)P(Yk) for all; and k (9.53) 

Property 2 states that we cannot lose information, on the average, by observing the 
output of a channel. Moreover, the mutual information is zero if, and only if, the input 
and output symbols of the channel are statistically independent, as in Equation (9.53). 

Property 3 

The mutual information of a channel is related to the ;oint entropy of the channel input 
and channel output by 

l(OC; 0J) = H(OC) + H(0J) - H(OC, 0J) 

where the ;oint entropy H(OC, 0J) is defined by 

]-1 K-1 ( l ) 
H(OC, 0J) = L L p(x;, Yk) log2 -(--) 

j~O k~O p X;, Yk 

(9.54) 

(9.55) 

To prove Equation (9.54), we first rewrite the definition for the joint entropy 
H(OC, 0J) as 

J-1 K-1 [p(Xj)p(yk)] 
H(OC, 0J) = L L p(x;, Yk) log2 ( . ) 

1~0 k~O p x,, Yk 
]-1 K-1 [ l ] 

+ L L p(x;, yk) log2 p( }p( ) 
1~0 k~o x1 Yk 

(9.56) 
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H('J:,'!J) 

FIGURE 9.9 Illustrating the relations among various channel entropies. 

The first double summation term on the right-hand side of Equation (9.56) is recognized 
as the negative of the mutual information of the channel, J(:ir; 'Y), previously given in 
Equation (9.52). As for the second summation term, we manipulate it as follows: 

j-l K-l [ l J J-1 [ 1 J K-1 

L L p(xi, Yk) log2 p( )p( ) = L log2 -p( ) L p(xi, Yk) 
1~o k~o X1 Yk 1~o X; k~o 

K-1 [ 1 J J-1 

+ ~o log2 p(yk) ~ p(xi, Yk) 

J-l [ 1 J 
= L p(xi) log2 -(-) 

1~0 p Xi 
(9.57) 

K-1 [ 1 J 
+ 2: p(ykl !og2 P-( l 

k~o Yk 

H(:ie) + H('Y) 

Accordingly, using Equations (9.52) and (9.57) in Equation (9.56), we get the result 

H(:ie, 0,)/) -J(OC; 0,)/) + H(:ir) + H(0,)/) (9.58) 

Rearranging terms in this equation, we get the result given in Equation (9.54), thereby 
confirming Property 3. 

We conclude our discussion of the mutual information of a channel by providing a 
diagramatic interpretation of Equations (9.43), (9.44), and (9.54). The interpretation is 
given in Figure 9.9. The entropy of channel input Xis represented by the circle on the left. 
The entropy of channel output Y is represented by the circle on the right. The mutual 
information of the channel is represented by the overlap between these two circles. 

I 9. 7 Channel Capacity 

Consider a discrete memoryless channel with input alphabet OC, output alphabet 0,)/, and 
transition probabilities p(yk I xi), where j = 0, 1, ... , J - 1 and k = 0, 1, ... , K - 1. The 
mutual information of the channel is defined by the first line of Equation (9.49), which is 
reproduced here for convenience: 
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Here we note that [see Equation (9.38)] 

p(x;, Yk) = P(Yk I x;)P(x;) 

Also, from Equation (9.39), we have 

J-1 

P(Yk) = L P(Yk I x;)P(x;) 
j=O 

From these three equations we see that it is necessary for us to know the input probability 
distribution [p(x;) Ii= O, 1, ... , J - 1) so that we may calculate the mutual information 
!('!£; 'llJ). The mutual information of a channel therefore depends not only on the channel 
but also on the way in which the channel is used. 

The input probability distribution {p(x;)) is obviously independent of the channel. 
We can then maximize the mutual information I(OC; 'lY) of the channel with respect to 
[p(x;)). Hence, we define the channel capacity of a discrete memoryless channel as the 
maximum mutual information !('!£; 'lY) in any single use of the channel (i.e., signaling 
interval}, where the maximization is over all possible input probability distributions (p(x;)} 
on Ir. The channel capacity is commonly denoted by C. We thus write 

C =max!('!£; 'llJ) 
(p(x,)} 

(9.59) 

The channel capacity C is measured in bits per channel use, or bits per transmission. 
Note that the channel capacity C is a function only of the transition probabilities 

p(yk Ix;), which define the channel. The calculation of C involves maximization of the 
mutual information!('!£; 'lY) over J variables [i.e., the input probabilities p(x0 ), ••• ,p(x1_1)] 

subject to two constraints: 

and 

J-1 

L p(x;) = 1 
j=O 

In general, the variational problem of finding the channel capacity C is a challenging task. 

~ ExAMPLE 9.5 Binary Symmetric Channel (Revisited) 

Consider again the binary symmetric channel, which is described by the transition probability 
diagram of Figure 9.8. This diagram is uniquely defined by the conditional probability of error 
p. 

The entropy H(X) is maximized when the channel input probability p(x0 ) = p(x1 ) = 
112, where x 0 and x 1 are each 0 or 1. The mutual information J(X; '!ii) is similarly maximized, 
so that we may write 

C = J(X; "ll) I p(x0 )~p(x,)~112 

From Figure 9.8, we have 

and 

P(Yo lxo) = P(Y1 lx1) = 1 p 
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FIGURE 9.10 Variation of channel capacity of a binary symmetric channel with transition proba­
bility p. 

Therefore, substituting these channel transmon probabilities into Equation (9.49) with 
J = K = 2, and then setting the input probability p(x0 ) = p(x1) in accordance with Equation 
(9.59), we find that the capacity of the binary symmetric channel is 

C = 1 + p log2 p + (1 - p) log,(1 - p) (9.60) 

Using the definition of the entropy function given in Equation (9.16), we may reduce Equation 
(9.60) to 

C = 1 - H(p) 

The channel capacity C varies with the probability of error (transition probabiliry) pin 
a convex manner as shown in Figure 9.10, which is symmetric about p = 112. Comparing the 
curve in this figure with that in Figure 9.2, we may make the following observations: 

1. When the channel is noise free, permitting us to set p = 0, the channel capaciry C attains 
its maximum value of one bit per channel use, which is exactly the information in each 
channel input. At this value of p, the entropy function H(p) attains its minimum value 
of zero. 

2. When the condirional probability of error p = 112 due to noise, the channel capacity C 
attains its minimum value of zero, whereas the entropy function H(p) attains its max­
imum value of unity; in such a case the channel is said to be useless. <Ill 

I 9.8 Channel-Coding Theorem 

The inevitable presence of noise in a channel causes discrepancies (errors) between the 
output and input data sequences of a digital communication system. For a relatively noisy 
channel (e.g., wireless communication channel), the probability of error may reach a value 
as high as 10-i, which means that (on the average) only 9 out of 10 transmitted bits are 
received correctly. For many applications, this level of reliability is unacceptable. Indeed, 
a probability of error equal to 10-6 or even lower is often a necessary requirement. To 
achieve such a high level of performance, we resort to the use of channel coding. 

The design goal of channel coding is to increase the resistance of a digital commu­
nication system to channel noise. Specifically, channel coding consists of mapping the 
incoming data sequence into a channel input sequence, and inverse mapping the channel 
output sequence into an output data sequence in such a way that the overall effect of 
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channel noise on the system is minimized. The first mapping operation is performed in th 
transmitter by a channel encoder, whereas the inverse mapping operation is performed~ 
the receiver by a channel decoder, as shown in the block diagram of Figure 9.11; to simplify 
the exposition, we have not included source encoding (before channel encoding) and source 
decoding (after channel decoding) in Figure 9.11. 

The channel encoder and channel decoder in Figure 9 .11 are both under the de­
signer's control and should be designed to optimize the overall reliability of the commu­
nication system. The approach taken is to introduce redundancy in the channel encoder 
so as to reconstruct the original source sequence as accurately as possible. Thus, in a rather 
loose sense, we may view channel coding as the dual of source coding in that the former 
introduces controlled redundancy to improve reliability, whereas the latter reduces redun­
dancy to improve efficiency. 

The subject of channel coding is treated in detail in Chapter 10. For the purpose of 
our present discussion, it suffices to confine our attention to block codes. In this class of 
codes, the message sequence is subdivided into sequential blocks each k bits long, and each 
k-bit block is mapped into an n-bit block, where n > k. The number of redundant bits 
added by the encoder to each transmitted block is n - k bits. The ratio kin is called the 
code rate. Using r to denote the code rate, we may thus write 

k 
r=­

n 

where, of course, r is less than unity. For a prescribed k, the code rate r (and therefore the 
system's coding efficiency) approaches zero as the block length n approaches infinity. 

The accurate reconstruction of the original source sequence at the destination re­
quires that the average probability of symbol error be arbitrarily low. This raises the 
following important question: Does there exist a channel coding scheme such that the 
probability that a message bit will be in error is less than any positive number e (i.e., as 
small as we want it), and yet the channel coding scheme is efficient in that the code rate 
need not be too small? The answer to this fundamental question is an emphatic "yes." 
Indeed, the answer to the question is provided by Shannon's second theorem in terms of 
the channel capacity C, as described in what follows. Up until this point, time has not 
played an important role in our discussion of channel capacity. Suppose then the discrete 
memoryless source in Figure 9.11 has the source alphabet :J and entropy H('J') bits per 
source symbol. We assume that the source emits symbols once every T, seconds. Hence, 
the average information rate of the source is H('J')/T, bits per second. The decoder delivers 
decoded symbols to the destination from the source alphabet :J and at the same source 
rate of one symbol every Ts seconds. The discrete memoryless channel has a channel ca­
pacity equal to C bits per use of the channel. We assume that the channel is capable of 
being used once every Tc seconds. Hence, the channel capacity per unit time is QT, bits 
per second, which represents the maximum rate of information transfer over the channel. 
We are now ready to state Shannon's second theorem, known as the channel coding 
theorem. 

Discrete 
memoryless 

source 

Transmitter 

Channel 
encoder 

Discrete 
memoryless 

channel 

t 
Noise 

Channe! 
decoder 

Receiver 

Destination 

FIGURE 9.11 Block diagram of digital communication system. 
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Specifically, the channel coding theorem" for a discrete memoryless channel is stated 
in two parts as follows. 

(i) Let a discrete memoryless source with an alphabet~ have entropy HW) and produce 
symbols once every T, seconds. Let a discrete memoryless channel have capacity C 
and be used once every T, seconds. Then, if 

H(~) < C 
T, - T, (9.61) 

there exists a coding scheme for which the source output can be transmitted over the 
channel and be reconstructed with an arbitrarily small probability of error. The 
parameter C/Tc is called the critical rate. When Equation (9.61) is satisfied with 
the equality sign, the system is said to be signaling at the critical rate. 

(ii) Conversely, if 

H(~) > _g_ 
T, T, 

it is not possible to transmit information over the channel and reconstruct it with an 
arbitrarily small probability of error. 

The channel coding theorem is the single most important result of information the­
ory. The theorem specifies the channel capacity C as a fundamental limit on the rate at 
which the transmission of reliable error-free messages can take place over a discrete 
memoryless channel. However, it is important to note the following: 

I>- The channel coding theorem does not show us how to construct a good code. Rather, 
the theorem should be viewed as an existence proof in the sense that it tells us that 
if the condition of Equation (9.61) is satisfied, then good codes do exist. (Later in 
Chapter 10 we describe several good codes for discrete memoryless channels.) 

Ii> The theorem does not have a precise result for the probability of symbol error after 
decoding the channel output. Rather, it tells us that the probability of symbol error 
tends to zero as the length of the code increases, again provided that the condition 
of Equation (9.61) is satisfied. 

Note also that power and bandwidth constraints were hidden in the discussion presented 
here. Nevertheless, these two system constraints do actually show up in the channel matrix 
P of the discrete memoryless channel. This observation is readily confirmed by linking the 
results of Example 9 .5 on the binary symmetric channel with the noise analysis for the 
PCM receiver presented in Section 5.3. 

llil APPLICATION OF THE CHANNEL CODING THEOREM 

TO BINARY SYMMETRIC CHANNELS 

Consider a discrete memoryless source that emits equally likely binary symbols (Os and 
ls) once every T, seconds. With the source entropy equal to one bit per source symbol (see 
Example 9.1), the information rate of the source is (1/T,) bits per second. The source 
sequence is applied to a channel encoder with code rate r. The channel encoder produces 
a symbol once every T, seconds. Hence, the encoded symbol transmission rate is (l/T,) 
symbols per second. The channel encoder engages a binary symmetric channel once every 
T, seconds. Hence, the channel capacity per unit time is (C/Tc) bits per second, where C 
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is determined by the prescribed channel transition probability p in accordance with Equa­
tion (9.60). Accordingly, the channel coding theorem [part (i)] implies that if 

1 c 
-<-
Ts - Tc (9.62) 

the probability of error can be made arbitrarily low by the use of a suitable channel 
encoding scheme. But the ratio TJTs equals the code rate of the channel encoder: 

Tc 
r =-

Ts 

Hence, we may restate the condition of Equation (9.62) simply as 

r:os C 

(9.63) 

(9.64) 

That is, for r :OS C, there exists a code (with code rate less than or equal to C) capable of 
achieving an arbitrarily low probability of error. 

!> ExAMPLE 9.6 Repetition Code 

In this example, we present a graphical interpretation of the channel coding theorem. We also 
bring out a surprising aspect of the theorem by taking a look at a simple coding scheme. 
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FIGl.JRE 9.12 Illustrating significance of the channel coding theorem. 
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TABLE 9.3 Average probability of error 
for repetition code 

Code Rate, r = 1/n 

1 
J 
1 
< 
1 
7 
I 
9 
1 

IT 

Average Probability of Error, P, 

10-2 
3 x 10-• 
10-• 
4 x 10-7 

10-• 
5 x 10-10 

Consider first a binary symmetric channel with transition probability p = 10-2• For this 
value of p, we find from Equation (9.60) that the channel capacity C = 0.9192. Hence, from 
the channel coding theorem, we may state that for any < > 0 and r s 0.9192, there exists a 
code of large enouigh length n and code rate r, and an appropriate decoding algorithm, such 
that when the coded bit stream is sent over the given channel, the average probability of 
channel decoding error is less than e. This result is depicted in Figure 9 .12 for the limiting 
value e = 10-•. 

To put the significance of this result in perspective, consider next a simple coding scheme 
that involves the use of a repetition code, in which each bit of the message is repeated several 
times. Let each bit (0 or 1) be repeated n times, where n = 2m + 1 is an odd integer. For 
example, for n = 3, we transmit 0 and 1 as 000 and 111, respectively. Intuitively, it would 
seem logical to use a majority rule for decoding, which operates as follows: If in a block of n 
received bits (representing one bit of the message}, the number of Os exceeds the number of 
1s, the decoder decides in favor of a 0. Otherwise, it decides in favor of a 1. Hence, an error 
occurs when m + 1 or more bits out of n = 2m + 1 bits are received incorrectly. Because of the 
assumed symmetric nature of the channel, the average probability of error P, is independent of 
the a priori probabilities of 0 and 1. Accordingly, we find that P,is given by (see Problem 9.24) 

P, = ;~t+, (7 )p;(1 - pr-; (9.65) 

where p is the transition probability of the channel. 
Table 9.3 gives the average probability of error P, for a repetition code, which is cal­

culated by using Equation (9.65) for different values of the code rater. The values given here 
assume the use of a binary symmetric channel with transition probability p = 10-2

• The 
improvement in reliability displayed in Table 9.3 is achieved at the cost of decreasing code 
rate. The results of this table are also shown plotted as the curve labeled "repetition code" in 
Figure 9.12. This curve illustrates the exchange of code rate for message reliability, which is 
a characteristic of repetition codes. 

This example highlights the unexpected result presented to us by the channel coding 
theorem. The result is that it is not necessary to have the code rate r approach zero (as in 
the case of repetition codes) so as to achieve more and more reliable operation of the com­
mullication link. The theorem merely requires that the code rate be less than the channel 
capacity C. <!ii 

9. 9 Differential Entro-py and Mutual 
Information for Continuous Ensembles 

The sources and channels considered in our discussion of information-theoretic concepts 
thus far have involved ensembles of random variables that are discrete in amplitude. In 
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this section, we extend some of these concepts to continuous random variables and randorn 
vectors. The motivation for doing so is to pave the way for the description of another 
fundamental limit in information theory, which we take up in Section 9.10. 

Consider a continuous random variable X with the probability density function 
fx(x). By analogy with the entropy of a discrete random variable, we introduce the fol­
lowing definition: 

(9.66) 

We refer to h(X) as the differential entropy of X to distinguish it from the ordinary or 
absolute entropy. We do so in recognition of the fact that although h(X) is a useful math­
ematical quantity to know, it is not in any sense a measure of the randomness of X. 
Nevertheless, we justify the use of Equation (9.66) in what follows. We begin by viewing 
the continuous random variable X as the limiting form of a discrete random variable that 
assumes the value xk = k ~x, where k = 0, ±1, ±2, ... , and ~ approaches zero. By 
definition, the continuous random variable X assumes a value in the interval [xb xk + .:lx] 
with probability fx(xk) .:lx. Hence, permitting ~x to approach zero, the ordinary entropy 
of the continuous random variable X may be written in the limit as follows: 

H(X) }!~o k~oo fx(xk) ilx. log2(fx(x~) ~J 
= lx~o [k~oo fx(xk) log2(fx~XJ ~x - log2 .:lx k~oo fx(xk) ~x J 

(9.67) 

= roo fx(x) log2(fx~x)) dx - l!~o log2 ~ roo fx(x) dx 

= h(X) - Jim log2 ~x 
.6.x--+0 

where, in the last line, we have made use of Equation (9.66) and the fact that the total 
area under the curve of the probability density function fx(x) is unity. In the limit as 
.:lx approaches zero, -log2 .:lx approaches infinity. This means that the entropy of a con­
tinuous random variable is infinitely large. Intuitively, we would expect this to be true, 
because a continuous random variable may assume a value anywhere in the interval 
(- oo, oo) and the uncertainty associated with the variable is on the order of infinity. We 
avoid the problem associated with the term log2 .:lx by adopting h(X) as a differential 
entropy, with the term - log2 ~x serving as reference. Moreover, since the information 
transmitted over a channel is actually the difference between two entropy terms that have 
a common reference, the information will be the same as the difference be.tween the cor­
responding differential entropy terms. We are therefore perfectly justified in using the term 
h(X), defined in Equation (9.66), as the differential entropy of the continuous random 
variable X. 

When we have a continuous random vector X consisting of n random variables Xb 
X2, ••• , Xm we define the differential entropy of X as the n-fold integral 

h(X) = f 00 fx(x) log2 [fx~x,] dx (9.68) 

where f x(x) is the joint probability density function of X. 
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I> ExAMPLE 9. 7 Uniform Distribution 

Consider a random variable X uniformly distributed over the interval (0, a). The probability 
density function of X is 

fx(x) = {~' 
0, 

O<x<a 

otherwise 

Applying Equation (9.66) to this distribution, we get 

la 1 
h(X) = - log(a) dx 

o a 

=log a 
(9.69) 

Note that log a< 0 for a< 1. Thus this example shows that, unlike a discrete random variable, 
the differential entropy of a continuous random variable can be negative. "11 

~ ExAMPLE 9.8 Gaussian Distribution 

Consider an arbitrary pair of random variables X and Y, whose probability density functions 
are respectively denoted by fv(x) and fx(x) where xis merely a dummy variable. Adapting 
the fundamental inequality of Equation (9.12) to the situation at hand, we may write9 

[ fy(x) log2(j:i:D dx :s 0 (9.70) 

or, equivalently, 

-foo fv(x) log2 fv(x) dx :s -foo fv(x) log2 fx(x) dx (9.71) 

The quantity on the left-hand side of Equation (9.71) is the differential entropy of the random 
variable Y; hence, 

h(Y) ::=: - r~ fv(x) log2 fx(x) dx 

Suppose now the random variables X and Y are described as follows: 

I> The random variables X and Y have the same mean µ, and the same variance ci2. 
!>- The random variable X is Gaussian distributed as shown by 

1 ( (x - µ,)2) 
fx(x) = ~u exp -~ 

(9.72) 

(9.73) 

Hence, substituting Equation (9.73) into Equation (9.72), and changing the base of the log­
arithm from 2 toe= 2.7183, we get 

J~ ( (x - µ,)2 • ,., ) 
h(Y) :s -log, e -~ fv(x) -~ - log(v27TU) dx (9.74) 

We now recognize the following properties of the random variable Y (given that its mean is 
µ, and its variance is er): 

[ fv(x) dx = 1 

r~ (x - µ,)2fy(x) dx = ci2 
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We may therefore simplify Equation (9.74) as 

h(Y) :Sf log2 (21rea2) (9.75) 

The quantity on the right-hand side of Equation (9.75) is in fact the differential entropy of 
the Gaussian random variable X: 

h(X) = f log2(21rea2) 

Finally, combining Equations (9.75) and (9.76), we may write 

h(Y) :S h(X), {
X: Gaussian random variable 

Y: another random variable 

where equality holds if, and only if, Y = X. 

(9.76) 

(9.77) 

We may now summarize the results of this important example as rwo entropic properties 
of a Gaussian random variable: 

1. For a finite variance a.2, the Gaussian random variable has the largest differential en­
tropy attainable by any random variable. 

2. The entropy of a Gaussian random variable X is uniquely determined by the variance 
of X (i.e., it is independent of the mean of X). 

Indeed, it is because of Property 1 that the Gaussian channel model is so widely used as a 
conservative model in the study of digital communication systems. <II 

~ MUTUAL INFORMATION 

Consider next a pair of continuous random variables X and Y. By analogy with Equa­
tion (9.47), we define the mutual information between the random variables X and Y as 
follows: 

Joo J00 

[fx(xly)J J(X; Y) = _
00 

_

00 

fx,y(x,y) log2 fx(x) dx dy (9.78) 

where fx,y(x, y) is the joint probability density function of X and Y, and fx(x IYl is the 
conditional probability density function of X, given that Y = y. Also, by analogy with 
Equations (9.45), (9.50), (9.43), and (9.44) we find that the mutual information J(X; Y) 
has the following properties: 

1. J(X; Y) = J(Y; X) 

2. I(X; Y) 2: 0 

3. I(X; Y) = h(X) - h(X I Y) 

= h(Y) - h(YI X) 

(9.79) 

(9.80) 

(9.81) 

The parameter h(X) is the differential entropy of X; likewise for h(Y). The parameter 
h(X I Y) is the conditional differential entropy of X, given Y; it is defined by the double 
integral (see Equation (9.41)) 

(9.82) 
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The parameter h(YIX) is the conditional differential entropy of Y, given X; it is defined 
in a manner similar to h(XI Y). 

L 9.10 Information Capacity Theorem 

In this section, we use the idea of mutual information to formulate the information capacity 
theorem for band-limited, power-limited Gaussian channels. To be specific, consider a 
zero-mean stationary process X(t) that is band-limited to B hertz. Let Xb k = 1, 2, ... , 
K, denote the continuous random variables obtained by uniform sampling of the process 
X(t) at the Nyquist rate of 1B samples per second. These samples are transmitted in T 
seconds over a noisy channel, also band-limited to B hertz. Hence, the number of samples, 
K, is given by 

K = 1BT (9.83) 

We refer to Xk as a sample of the transmitted signal. The channel output is perturbed 
by additive white Gaussian noise (A WGN) of zero mean and power spectral density 
N 0 /2. The noise is band-limited to B hertz. Let the continuous random variables Yk> 
k = 1, 2, ... , K denote samples of the received signal, as shown by 

k = 1, 2, ... , K (9.84) 

The noise sample Nk is Gaussian with zero mean and variance given by 

(9.85) 

We assume that the samples Yk> k = 1, 2, ... , Kare statistically independent. 
A channel for which the noise and the received signal are as described in Equations 

(9.84) and (9.85) is called a discrete-time, memoryless Gaussian channel. It is modeled as 
in Figure 9.13. To make meaningful statements about the channel, however, we have to 
assign a cost to each channel input. Typically, the transmitter is power limited; it is there­
fore reasona hie to define the cost as 

E[Xi] = P, k = 1, 2, ... , K (9.86) 

where P is the average transmitted power. The power-limited Gaussian channel described 
herein is of not only theoretical but also practical importance in that it models many 
communication channels, including line-of-sight radio and satellite links. 

The information capacity of the channel is defined as the maximum of the mutual 
information between the channel input Xk and the channel output Y k over all distributions 
on the input Xk that satisfy the power constraint of Equation (9.86). Let I(Xk; Yk) denote 

x,Tr, 
Nk 

FIGURE 9.13 Model of discrete-time, memoryless Gaussian channel. 
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the mutual information between Xk and Yk. We may then define the information capacity 
of the channel as 

C = max{J(Xk; Yk):E[Xt] = P] 
fx,.(x) 

(9.87) 

where the maximization is performed with respect to f x,(x), the probability density func­
tion of xk. 

The mutual information I(Xk; Yk) can be expressed in one of the two equivalent 
forms shown in Equation (9.81). For the purpose at hand, we use the second line of this 
equation and so write 

(9.88) 

Since Xk and Nk are independent random variables, and their sum equals Y1,, as in Equa­
tion (9.84), we find that the conditional differential entropy of Yb given Xk> is equal to 
the differential entropy of Nk (see Problem 9.28): 

(9.89) 

Hence, we may rewrite Equation (9.88) as 

(9.90) 

Since h(Nk) is independent of the distribution of Xk> maximizing I(Xk; Yk) in accor­
dance with Equation (9.87) requires maximizing h(Yk), the differential entropy of sample 
Yk of the received signal. For h(Yk) to be maximum, Yk has to be a Gaussian random 
variable (see Example 9.8). That is, the samples of the received signal represent a noiselike 
process. Next, we observe that since Nk is Gaussian by assumption, the sample Xk of the 
transmitted signal must be Gaussian too. We may therefore state that the maximization 
specified in Equation (9.87) is attained by choosing the samples of the transmitted signal 
from a noiselike process of average power P. Correspondingly, we may reformulate Equa­
tion (9.87) as 

E[X~] = P (9.91) 

where the mutual information I(Xk; Yk) is defined in accordance with Equation (9.90). 
For the evaluation of the information capacity C, we proceed in three stages: 

1. The variance of sample Yk of the received signal equals P + u 2
• Hence, the use of 

Equation (9. 76) yields the differential entropy of Yk as 

h(Yk) = ! log2 [21re(P + u 2
)] (9.92) 

2. The variance of the noise sample Nk equals u 2
• Hence, the use of Equation (9.76) 

yields the differential entropy of Nk as 

(9.93) 

3. Substituting Equations (9.92) and (9.93) into Equation (9.90) and recognizing the 
definition of information capacity given in Equation (9 .91), we get the desired result: 

1 1 ( p) b" .. C = l og2 1 + u 2 its per transm1ss1on (9.94) 

With the channel used K times for the transmission of K samples of the process X(t) 
in T seconds, we find that the information capacity per unit time is (KIT) times the result 
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given in Equation (9.94). The number K equals 2BT, as in Equation (9.83). Accordingly, 
we may express the information capacity in the equivalent form: 

C = B log2 (1 + __i__) bits per second (9.95) 
N 0B 

where we have used Equation (9.85) for the noise variance u 2
• 

Based on the formula of Equation (9.95), we may now state Shannon's third (and 
most famous) theorem, the information capacity theorem;10 as follows: 

The information capacity of a continuous channel of bandwidth B hertz, perturbed by 
additive white Gaussian noise of power spectral density N0 /2 and limited in bandwidth 
to B, is given by 

C = B log2 (1 + __i__) bits per second 
N 0B 

where P is the average transmitted power. 

The information capacity theorem is one of the most remarkable results of infor­
mation theory for, in a single formula, it highlights most vividly the interplay among three 
key system parameters: channel bandwidth, average transmitted power (or, equivalently, 
average received signal power), and noise power spectral density at the channel output. 
The dependence of information capacity Con channel bandwidth Bis linear, whereas its 
dependence on signal-to-noise ratio P/N0B is logarithmic. Accordingly, it is easier to in­
crease the information capacity of a communication channel by expanding its bandwidth 
than increasing the transmitted power for a prescribed noise variance. 

The theorem implies that, for given average transmitted power P and channel band­
width B, we can transmit information at the rate of C bits per second, as defined in 
Equation (9.9 5), with arbitrarily small probability of error by employing sufficiently com­
plex encoding systems. It is not possible to transmit at a rate higher than C bits per second 
by any encoding system without a definite probability of error. Hence, the channel capacity 
theorem defines the fundamental limit on the rate of error-free transmission for a power­
limited, band-limited Gaussian channel. To approach this limit, however, the transmitted 
signal must have statistical properties approximating those of white Gaussian noise. 

ill SPHERE PACKINGll 

To provide a plausible argument supporting the information capacity theorem, suppose 
that we use an encoding scheme that yields K code words, one for each sample of the 
transmitted signal. Let n denote the length (i.e., the number of bits) of each code word. It 
is presumed that the coding scheme is designed to produce an acceptably low probability 
of symbol error. Furthermore, the code words satisfy the power constraint; that is, the 
average power contained in the transmission of each code word with n bits is nP, where 
P is the average power per bit. 

Suppose that any code word in the code is transmitted. The received vector of n bits 
is Gaussian distributed with mean equal to the transmitted code word and variance equal 
to nu2

, where u 2 is the noise variance. With high probability, the received vector lies inside 
a sphere of radius V1Ui', centered on the transmitted code word. This sphere is itself 
contained in a larger sphere of radius V n(P + u 2 ), where n(P + u 2

) is the average power 
of the received vector. 
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FIGURE 9.14 The sphere-packing problem. 

We may thus visualize the picture portrayed in Figure 9.14. With everything inside 
a small sphere of radius VncT1 assigned to the code word on which it is centered, it is 
reasonable to say that when this particular code word is transmitted, the probability that 
the received vector will lie inside the correct "decoding" sphere is high. The key question 
is: How many decoding spheres can be packed inside the larger sphere of received vectors? 
In other words, how many code words can we in fact choose? To answer this question, 
we first recognize that the volume of an n-dimensional sphere of radius r may be written 
as Anrn, where An is a scaling factor. We may therefore make the following statements: 

"' The volume of the sphere of received vectors is A"[n(P + u 2)r12. 
I> The volume of the decoding sphere is An(nu2

)"
12

, 

Accordingly, it follows that the maximum number of nonintersecting decoding spheres 
that can be packed inside the sphere of possible received vectors is 

An[n(P + u2Jr12 = (i + ~),,;2 
An(nu2 )nl2 u 2 

= 2 (n/2) log2(1 + P/rr"l 
(9.96) 

Taking the logarithm of this result to base 2, we readily see that the maximum number of 
bits per transmission for a low probability of error is indeed as defined previously in 
Equation (9.94) . 

.,_ EXAMPLE 9.9 Reconfiguration of Constellation for Reduced Power 

To illustrate the idea of sphere packing, consider the 64-QAM square constellation of Figure 
9.15a. The figure depicts two-dimensional nonintersecting decoding spheres centered on the 
message points in the constellation. In trying to pack the decoding spheres as tightly as possible 
while maintaining the same Euclidean distance between the message points as before, we 
obtain the alternative constellation shown in Figure 9.15b. With a common Euclidean dis­
tance between the message points, the two constellations of Figure 9.15 produce approxi­
mately the same bit error rate, assuming the use of a high enough signal-to-noise ratio over 
an AWGN cliannel; see, for example, Equation (5.95). However, comparing these two con­
stellations, we find that the sum of squared Euclidean distances from die message points to 

the origin in Figure 9.15b is smaller than that in Figure 9.15a. It follows therefore that the 
tightly packed constellation of Figure 9.15b has an advantage over the square constellation 
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FIGURE 9.15 (a) Square 64-QAM constellation. (b) The most tightly coupled alternative to that 
of part a. 

of Figure 9.15a: a smaller transmitted average signal energy per symbol for the same bit error 
rate on an A WGN channel. <Ill 

9.11 Implications of the Information 
Capacity Theorem 

Now that we have an intuitive feel for the information capacity theorem, we may go on 
to discuss its implications in the context of a Gaussian channel that is limited in both 
power and bandwidth. For the discussion to be useful, however, we need an ideal frame­
work against which the performance of a practical communication system can be assessed. 
To this end, we introduce the notion of an ideal system defined as one that transmits data 
at a bit rate Rb equal to the information capacity G. We may then express the average 
transmitted power as 

(9.97) 

where Eb is the transmitted energy per bit. Accordingly, the ideal system is defined by the 
equation 

~ = logz(1 + Eb~) 
B N 0 B 

(9.98) 

Equivalently, we may define the signal energy-per-bit to noise power spectral density ratio 
E1,/N0 in terms of the ratio GIB for the ideal system as 

Eb 2c1B - 1 

N 0 GIB 
(9.99) 

A plot of bandwidth efficiency Rb/B versus Eh/N0 is called the bandwidth-efficiency dia­
gram. A generic form of this diagram is displayed in Figure 9.16, where the curve labeled 
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"capacity boundary" corresponds to the ideal system for which Rb = C. Based on Figure 
9.16, we can make the following observations: 

1. For infinite bandwidth, the ratio Eb/N0 approaches the limiting value 

(~t -;~(~) 
= log 2 = 0.693 

(9.100) 

This value is called the Shannon limit for an A WGN channel, assuming a code rate 
of zero. Expressed in decibels, it equals -1.6 dB. The corresponding limiting value 
of the channel capacity is obtained by letting the channel bandwidth Bin Equation 
(9.95) approach infinity; we thus find that 

(9.101) p 
No log2 e 

where e is the base of the natural logarithm. 
2. The capacity boundary, defined by the curve for the critical bit rate Rb = C, separates 

combinations of system parameters that have the potential for supporting error-free 
transmission (Rb < C) from those for which error-free transmission is not possible 
(Rb> C). The latter region is shown shaded in Figure 9.16. 

3. The diagram highlights potential trade-offs among Eb/N0 , Rb!B, and probability of 
symbol error P,. In particular, we may view movement of the operating point along 
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FIGURE 9.16 Bandwidth-efficiency diagram. 
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a horizontal line as trading Pe versus Eb/N0 for a fixed Rb!B. On the other hand, we 
may view movement of the operating point along a vertical line as trading Pe versus 
Rb!B for a fixed Eb!N0 • 

I> EXAMPLE 9.10 M-ary PCM 

In this example, we look at an M-ary PCM system in light of the channel capacity theorem 
under the assumption that the system operates above the error threshold. That is, the average 
probability of error due to channel noise is negligible. 

We assume that the M-ary PCM system uses a code word consisting of n code elements, 
each having one of M possible discrete amplitude levels; hence the name "M-ary." From 
Chapter 3 we recall that for a PCM system to operate above the error threshold, there must 
be provision for a noise margin that is sufficiently large to maintain a negligible error rate due 
to channel noise. This, in turn, means there must be a certain separation between these M 
discrete amplitude levels. Call this separation ku, where k is a constant and u 2 = N 0B is the 
noise variance measured in a channel bandwidth B. The number of amplitude levels M is 
usually an integer power of 2. The average transmitted power will be least if the amplitude 
range is symmetrical about zero. Then the discrete amplitude levels, normalized with respect 
to the separation ku, will have the values ±112, +312, ... , ± (M - 1)/2. We assume that 
these M different amplitude levels are equally likely. Accordingly, we find that the average 
transmitted power is given by 

(9.102) 

Suppose that the M-ary PCM system described herein is used to transmit a message 
signal with its highest frequency component equal to W hertz. The signal is sampled at the 
Nyquist rate of 2W samples per second. We assume that the system uses a quantizer of the 
midrise type, with L equally likely representation levels. Hence, the probability of occurrence 
of any one of the L representation levels is 1/L. Correspondingly, the amount of information 
carried by a single sample of the signal is log2 L bits. With a maximum sampling rate of 2 W 
samples per second, the maximum rate of information transmission of the PCM system, mea­
sured in bits per second, is given by 

Rb = 2 W log2 L bits per second (9.103) 

Since the PCM system uses a code word consisting of n code elements, each having one of M 
possible discrete amplitude values, we have M" different possible code words. For a unique 
encoding process, we require 

L =M" (9.104) 

Clearly, the rate of information transmission in the system is unaffected by the use of 
an encoding process. We may therefore eliminate L between Equations (9.103) and (9.104) 
to obtain 

Rb = 2 Wn log2 M bits per second (9.105) 

Equation (9.102) defines the average transmitted power required to maintain an M-ary 
PCM system operating above the error threshold. Hence, solving this equation for the number 
of discrete amplitude levels, M, we get 

( 
12P )'

12 

M = l + k2N
0
B (9.106) 
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where cr2 = N 0B is the variance of the channel noise measured in a bandwidth B. Therefore 
substituting Equation (9.106) into Equation (9.105), we obtain ' 

( 
12P ) 

Rb = Wn log2 1 + k2NoB (9.107) 

The channel bandwidth B required to transmit a rectangular pulse of duration 1 /2n W (rep­
resenting a code element in the code word) is given by (see Chapter 3) 

B = KnW 

where K is a constant with a value lying between 1 and 2. Using the minimum possible value 
K = 1, we find that the channel bandwidth B = nW. We may thus rewrite Equation (9.107) 
as 

( 
12P ) 

R& = B log, 1 + k'NoB (9.108) 

The ideal system is described by Shannon's channel capacity theorem, given in Equation (9.95). 
Hence, comparing Equation (9.108) with Equation (9.95), we see that they are identical if 
the average transmitted power in the PCM system is increased by the factor k'/12, compared 
with the ideal system. Perhaps the most interesting point to note about Equation (9.108) is 
that the form of the equation is right: Power and bandwidth in a PCM system are exchanged 
on a logarithmic basis, and the information capacity C is proportional to the channel band­
width B. <$ 

~ ExAMPLE 9.11 M-ary PSKand M-ary FSK 

In this example, we compare the bandwidth-power exchange capabilities of M-ary PSK and 
M-ary FSK signals in light of Shannon's information capacity theorem. Consider first a co­
herent M-ary PSK system that employs a nonorthogonal set of M phase-shifted signals for the 
transmission of binary data. Each signal in the set represents a symbol with log2 M bits. Using 
the definition of null-to-null bandwidth, we may express the bandwidth efficiency of M-ary 
PSK as follows [see Equation (6.51)]: 

In Figure 9 .17 a, we show the operating points for different numbers of phase levels M = 2, 
4, 8, 16, 32, 64. Each point corresponds to an average probability of symbol error P, = 10-'. 
In the figure we have also included the capacity boundary for the ideal system. We observe 
from Figure 9 .1 7 a that as M is increased, the bandwidth efficiency is improved, but the value 
of E;}N0 required for error-free transmission moves away from the Shannon limit. 

Consider next a coherent M-ary FSK system that uses an orthogonal set of M frequency­
shifred signals for the transmission of binary data, with the separation between adjacent signal 
frequencies set at 1/2T, where Tis the symbol period. As with the M-ary PSK, each signal in 
the set represents a symbol with log2 M bits. The bandwidth efficiency of M-ary FSK is as 
follows [see Equation (6.143)]: 

Rb= 2 log2 M 
B M 

In Figure 9.17b, we show the operating points for different numbers of frequency levels M = 
2, 4, 8, 16, 32, 64 for an average probability of symbol error P, = 10-s. In the figure, we 
have also included the capacity boundary for the ideal system. We see that increasing Min 
(orthogonal) M-ary FSK has the opposite effect to that in (nonorthogonal) M-ary PSK. In 
particular, as M is increased, which is equivalent to increased bandwidth requirement, the 
operating point moves closer to the Shannon limit. 41 
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FIGURE 9.17 (a) Comparison of M-ary PSK against the ideal system for P, 10 5 and increas­
ing M. (b) Comparison of M-ary FSK against the ideal system for P, = 10-s and increasing M. 

Ii>- ExAMPLE 9.12 Capacity ofBinary-InputAWGN Channel 

In this example, we investigate the capacity of an A WGN channel using encoded binary an­
tipodal signaling (i.e., levels -1 and + 1 for binary symbols 0 and 1, respectively). In partic­
ular, we address the issue of determining the minimum achievable bit error rate as a function 
of EJN0 for varying code rate r. It is assumed that the binary symbols 0 and 1 are 
equiprobable. 

Let the random variables X and Y denote the channel input and channel output, re­
spectively; Xis a discrete variable, whereas Y is a continuous variable. In light of the second 
line of Equation (9.81), we may express the mutual information between the channel input 
and channel output as 

I(X; Y) = h(Y) - h(YIX) 

The second term, h( YI X), is the conditional differential entropy of the channel ourput Y, given 
the channel input X. By virtue of Equations (9.89) and (9.93), this term is just the entropy of 
a Gaussian distribution. Hence, using a2 to denote the variance of the channel noise, we may 
write 

1 
h(YI X) = 2 log2 (2rre<T2

) 

Next, the first term, h(Y), is the differential entropy of the channel output Y. With the use of 
binary antipodal signaling, the probability density function of Y, given X = x, is a mixtute 
of two Gaussian distributions with common variance <T2 and mean values -1 and + 1, as 
shown by 

I 
1 [exp(-(y, + 1)2f2<T2

) exp(-(y, 1)2f2ir')] 
fv(Y1 x) = 2 Vh<T + ~= (9.109) 
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Hence, we may determine the differential entropy of Y using the formula 

h(Y) = -roo fy(y, Ix) log2[f¥(y,I x)] dy, 

where fy(y,I x) is defined by Equation (9.109). From the formulas of h(Y IX) and h(Y), it is 
clear that the mutual information is solely a function of the noise variance a.2. Using M(a2) 
to denote this functional dependence, we may thus write 

I(X; Y) = M(a2) 

Unfortunately, there is no closed formula that we can derive for M(rr2
) because of the difficulty 

of determining h(Y). Nevertheless, the differential entropy h(Y) can be well approximated 
using Monte Carlo integration, which is straightforward to program on a digital computer; 
see Problem 9.36. 

Because symbols 0 and 1 are equiprobable, it follows that the channel capacity C is 
equal to the mutual information between X and Y. Hence, for error-free data transmission 
over the A WGN channel, the code rate r must satisfy the condition 

r < M(a2) (9.110) 

A robust measure of the ratio EJN0 is 

Eb P P 
No = Nor = 2crr 

where P is the average transmitted power, and N 0/2 is the two-sided power spectral density 
of the channel noise. Without loss of generality, we may set P = 1. We may then express the 
noise variance as 

~ 
2Ebr 

(9.111) 

Substituting Equation (9 .111) into (9 .110) and rearranging terms, we getthe desired relation: 

Code rater, bits/transmission 

(a) 

co 10-2 

~ 

~ 
15 10-3 

E 
E: 
·;o 

:'E 10-4 

(9.112) 

10-5 '--~~~_J_~u._.L___J~~~__J~--'"~~~ 

-2 -1.5 -1 0.5 

FIGURE 9.18 Binary antipodal signaling over an AWGN channel. (a) Minimum Eb/N0 versus 
the code rater. (b) Minimum bit error rate (BER) versus Eh/N0 for varying code rater. 
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where M-'(r) is the inverse of the mutual information between the channel input and output, 
expressed as a function of the code rate r. 

Using the Monte Carlo method to estimate the differential entropy h(Y) and therefore 
M- 1(r), the plots of Figure 9.18 are computed." Figure 9.18a plots the minimum Et/No versus 
the code rater for error-free communication. Figure 9.18b plots the minimum achievable bit 
error rate versus Eb/N0 with the code rater as a running parameter. From Figure 9.18 we 
may draw the following conclusions: 

II> For uncoded binary signaling (i.e., r = 1), an infinite Eb!N0 is required for error-free 
communication, which agrees with what we know about uncoded data transmission 
over an A WGN channel. 

O> The minimum EJN0 decreases with decreasing code rate r, which is intuitively satis-
fying. For example, for r 112, the minimum value of Eb/N0 is slightly less than 0.2 
dB. 

11> As r approaches zero, the minimum Eb/N0 approaches the limiting value of -1.6 dB, 
which agrees with the Shannon limit derived earlier; see Equation (9.100). «! 

9 .12 Information Capacity of Colored 
Noise Channel 13 

The information capacity theorem as formulated in Equation (9.95) applies to a band­
limited white noise channel. In this section, we extend Shannon's information capacity 
theorem to the more general case of a nonwhite, or colored, noise channel. To be specific, 
consider the channel model shown in Figure 9.19a where the transfer function of the 
channel is denoted by H(f). The channel noise n(t), which appears additively at the channel 
output, is modeled as the sample function of a stationary Gaussian process of zero mean 
and power spectral density SN(f). The requirement is twofold: 

1. Find the input ensemble, described by the power spectral density Sx(f), that maxi­
mizes the mutual information between the channel output y(t) and the channel input 
x(t), subject to the constraint that the average power of x(t) is fixed at a constant 
value P. 

2. Hence, determine the optimum information capacity of the channel. 

This problem is a constrained optimization problem. To solve it, we proceed as follows: 

11> Because the channel is linear, we may replace the model of Figure 9.19a with the 
equivalent model shown in Figure 9.19b. From the viewpoint of the spectral char­
acteristics of the signal plus noise measured at the channel output, the two models 
of Figure 9.19 are equivalent, provided that the power spectral density of the noise 

lnput--;i..~~ Output 

M ~ t yOO 

Colored noise 
n(t) 

(a) 

x(t)~Output T '-----..J y(t) 

Modified 
colored noise 

n'(t) 
(b) 

FIGURE 9.19 (a) Model of band-limited, power-limited noisy channel. (b) Equivalent model of 
the channel. 
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n'(t) in Figure 9.19b is defined in terms of the power spectral density of the noise 
n(t) in Figure 9.19a as 

(9.111) 

where I H(f) I is the magnitude response of the channel. 
!>- To simplify the analysis, we use the "principle of divide and conquer" in a manner 

similar to that described in Section 6.12. Specifically, the channel is divided into a 
large number of adjoining frequency slots, as illustrated in Figure 9.20. The smaller 
we make the incremental frequency interval !1f of each subchannel, the better is this 
approximation. 

The net result of these two points is that the original model of Figure 9.19a is replaced by 
the parallel combination of a finite number of subchannels, N, each of which is corrupted 
essentially by "band-limited white Gaussian noise." 

The kth subchannel in the approximation to the model of Figure 9.19b is described 
by 

k = 1, 2, ... , N (9.14) 

The average power of the signal component xk (t) is 

k = 1, 2, ... , N (9.115) 

where Sx(fk) is the power spectral density of the input signal evaluated at the frequency 
f = fk· The variance of the noise component nk(t) is 

k = 1, 2, ... , N (9.116) 

where SN(fk) and I H(f k) I are the noise spectral density and the channel's magnitude re­
sponse evaluated at the frequency f kl respectively. The information capacity of the kth 
subchannel is 

IH(f)I 

k = 1, 2, ... , N 

Staircase 
approximation 

_( 

response 

(9.117) 

FIGURE 9.20 Staircase approximation of an arbitrary magnitude response I H(f) I; only positive­
frequency portion of the response is shown. 
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where the factor 1/2 accounts for the fact that l:!.f applies to both positive and negative 
frequencies. All the N subchannels are independent of one another. Hence the total ca­
pacity of the overall channel is approximately given by the summation 

N 

c = 2: ck 
k=l 

1 N ( p) 
= -

2 
L l:!.f log2 1 + -1 
k~l U'k 

(9.118) 

The problem we have to address is to maximize the overall information capacity C subject 
to the constraint: 

N 

L Pk = P = constant 
k~l 

(9.119) 

The usual procedure to solve a constrained optimization problem is to use the method of 
Lagrange multipliers; see Note 19 in Chapter 6. To proceed with this optimization, we 
first define an objective function that incorporates both the information capacity C and 
the constraint [i.e., Equations (9.118) and (9.119)], as shown by 

] = i ~1 !if log2( 1 + :f) + A(P - ~1 Pk) (9.120) 

where A is the Lagrange multiplier. Next, differentiating the objective function J with 
respect to Pk and setting the result equal to zero, we obtain 

!if log2 e 
~-~--A=O 
pk+ (J'~ 

To satisfy this optimizing solution, we impose the following requirement: 

fork = 1, 2, ... , N (9.121) 

where K is a constant that is the same for all k. The constant K is chosen to satisfy the 
average power constraint. 

Inserting the defining values of Equations (9.115) and (9.116) in the optimizing con­
dition of Equation (9.121), simplifying, and rearranging terms, we get 

k = 1, 2, ... , N (9.122) 

Let :If A denote the frequency range for which the constant K satisfies the condition 

> SN(f) 
K - IH(f)]2 

Then, as the incremental frequency interval !if is allowed to approach zero and the number 
of subchannels N goes to infinity, we may use Equation (9.122) to formally state that the 
power spectral density of the input ensemble that achieves the optimum information ca­
pacity is a nonnegative quantity defined by 

Sx(f) = {: 
for fE:lf A 

otherwise 

(9.123) 
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Since the average power of a random process is the total area under the curve of the power 
spectral density of the process, we may express the average power of the channel inpur 
x(t) as 

p = J (K - SN(f) ) df 
fE7'A IH(f)i2 (9.124) 

For a prescribed P and specified SN(f) and H(f), the constant K is the solution to Equation 
(9.124). 

The only thing that remains for us to do is to find the optimum information capacity. 
Substituting the optimizing solution of Equation (9.121) into Equation (9.118) and then 
using the defining values of Equations (9.115) and (9.116), we obtain 

c = .!_ "£ ~f log,(K iH(fkW) 
2 k~l SN(fd 

When the incremental frequency interval 11f is allowed to approach zero, this equation 
takes the limiting form: 

1 J00 

( IH(f)i2) C = l _
00 

log2 K SN(f) df (9.125) 

where the constant K is chosen as the solution to Equation (9.124) for a prescribed input 
signal power P. 

li!l WATER-FILLING INTERPRETATION 

OF THE INFORMATION CAPACI'IY THEOREM 

Equations (9.123) and (9.124) suggest the picture portrayed in Figure 9.21. Specifically, 
we make the following observations: 

Ii> The appropriate input power spectral density Sx(f) is described as the bottom regions 
of the function SN([)/ I H(f) 1

2 that lie below the constant level K, which are shown 
shaded. 

£>- The input power P is defined by the total area of these shaded regions. 

The spectral domain picture portrayed here is called the water-filling (pouring) inter­
pretation in the sense that the process by which the input power is distributed across 

FIGURE 9.21 Water-filling interpretation of information-capacity theorem for a colored noisy 
channel. 
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the function SN(f)/ I H(f) ] 2 is identical to the way in which water distributes itself in a 
vessel. 

Consider now the idealized case of a band-limited signal in additive white Gaussian 
noise of power spectral density N(f) = N 0/2. The transfer function H(f) is that of an ideal 
band-pass filter defined by 

H(f) = {1, 
0, 

B B 
:s]f]:Sfc+-

2 2 
otherwise 

where fc is the midband frequency and Bis the channel bandwidth. For this special case, 
Equations (9.124) and (9.125) reduce to, respectively, 

p 2B(K - ~o) 
and 

Hence, eliminating K between these two equations, we get the standard form of Shannon's 
capacity theorem, defined by Equation (9.95). 

11!> ExAMPLE 9.13 Capacity of NEXT-Dominated Channel 

From the discussion presented in Section 4.8, we recall that a major channel impairment in 
digital subscriber lines is near-end crosstalk (NEXT). The power spectral density of this cross­
talk may be taken as 

(9.126) 

where Sx(f) is the power spectral density of the transmitted signal and HNExr(f) is the transfer 
function that couples adjacent twisted pairs. The only constraint we have to satisfy in this 
example is that rhe power spectral density function Sx(f) be nonnegative for all f. Substituting 
Equation (9.126) into (9.123), we readily find that this condition is satisfied by solving for 
K as 

K = (1 + I H,,EXTUW)s (f) 
IH(f)i2 x 

Finally, using this result in Equation (9.125), we find that the capacity of the NEXT-dominated 
digital subscriber channel is given by 

c 11 ( IH(f)IZ ) l °'A log2 1 + ]HNExT(fJl2 df 

where ;!Ji A is the set of positive and negative frequencies for which Sx(f) > 0. 

I 9 .13 Hate Distortion Theory 

In Section 9 .3 we introduced the source coding theorem for a discrete memoryless source, 
according to which the average code-word length must be at least as large as the source 
entropy for perfect coding (i.e., perfect representation of the source). However, in many 
practical situations there are constraints that force the coding to be imperfect, thereby 
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resulting in unavoidable distortion. For example, constraints imposed by a communication 
channel may place an upper limit on the permissible code rate and therefore average code­
word length assigned to the information source. As another example, the information 
source may have a continuous amplitude as in the case of speech, and the requirement is 
to quantize the amplitude of each sample generated by the source to permit its represen­
tation by a code word of finite length as in pulse-code modulation. In such cases, the 
problem is referred to as source coding with a fidelity criterion, and the branch of infor­
mation theory that deals with it is called rate distortion theory. 14 Rate distortion theory 
finds applications in two types of situations: 

I> Source coding where the permitted coding alphabet cannot exactly represent the 
information source, in which case we are forced to do lossy data compression. 

~ Information transmission at a rate greater than channel capacity. 

Accordingly, rate distortion theory may be viewed as a natural extension of Shannon's 
coding theorems. 

!Ill RATE DISTORTION FUNCTION 

Consider a discrete memoryless source defined by an M-ary alphabet X: [x, Ii = 1, 2, ... , 
M}, which consists of a set of statistically independent symbols together with the associated 
symbol probabilities {p, Ii = 1, 2, ... , M}. Let R be the average code rate in bits per code 
word. The representation code words are taken from another alphabet Y: {Yi Ii= 1, 2, ... , 
N}. The source coding theorem states that this second alphabet provides a perfect repre­
sentation of the source provided that R > H, where His the source entropy. But if we are 
forced to have R < H, then there is unavoidable distortion and therefore loss of 
information. 

Let p(x,, Yi) denote the joint probability of occurrence of source symbol x, and rep­
resentation symbol Y;· From probability theory, we have 

(9.127) 

where p(yi Ix;) is a transition probability. Let d(x,, y) denote a measure of the cost incurred 
in representing the source symbol x, by the symbol Y;; the quantity d(x,, Y;) is referred to 
as a single-letter distortion measure. The statistical average of d(x,, Y;) over all possible 
source symbols and representation symbols is given by 

M N 

d = 2:, 2:, p(x,)p(yi Ix;) d(x,, Yi) (9.128) 
i=l j=I 

Note that the average distortion d is a nonnegative continuous function of the transition 
probabilities P(Y; I x1) that are determined by the source encoder-decoder pair. 

A conditional probll:bility assignment p(y; IX;) is said to be D-admissible if and only 
if the average distortion d is less than or equal to some acceptable value D. The set of all 
D-admissible conditional probability assignments is denoted by 

(9.129) 

For each set of transition probabilities, we have a mutual information 

MN (p(ylx)) 
I(X; Y) = ~ ~ p(x1)P(Yilx,) log p(y;)' (9.130) 
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occurrence= p1 

\ Transition 

x, ~p;~~;r~;~J Yj 

Distortion 
measure 
d{x;, Y) 

FIGURE 9.22 Summary of rate distortion theory. 

A rate distortion function R(D) is defined as the smallest coding rate possible for which 
the average distortion is guaranteed not to exceed D. Let Pn denote the set to which the 
conditional probability p(yi I x1) belongs for a prescribed D. Then, for a fixed D we write15 

R(D) = min J(X; Y) (9.131) 
P(Yj I x;)EPD 

subject to the constraint 

N 

L P(Y;lx,) = 1 for i = 1, 2, ... , M (9.132) 
j=l 

The rate distortion function R(D) is measured in units of bits if the base-2 logarithm is 
used in Equation (9.130). Intuitively, we expect the distortion D to decrease as the rate 
distortion function R(D) is increased. We may say conversely that tolerating a large dis­
tortion D permits the use of a smaller rate for coding and/or transmission of information. 

Figure 9.22 summarizes the main parameters of rate distortion theory. In particular, 
given the source symbols [x;} and their probabilities {p,} and given a definition of the single­
letter distortion measure d(x1, Yi), the calculation of the rate distortion function R(D) 
involves finding the conditional probability assignment p(yi I x1) subject to certain con­
straints imposed on p(yi I x1). This is a variational problem, the solution of which is un­
fortunately not straightforward in general. 

~EXAMPLE 9.14 Gaussian Source 

Consider a discrete-time, memoryless Gaussian source with zero mean and variance er. Let x 
denote the value of a sample generated by such a source. Let y denote a quantized version of 
x that permits a finite representation of it. The squared error distortion 

d(x, y) (x - y)2 

provides a distortion measure that is widely used for continuous alphabets. The rate distortion 
function for the Gaussian source with squared error distortion, as described herein, is given 
by 

R(D) = {I log ( ~), 
0, 

(9.133) 

In this case, we see that R(D)--> 00 as D-+ 0, and R(D) = 0 for D = er. 
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FIGURE 9.23 Reverse water-filling picture for a set of parallel Gaussian processes. 

!I>- EXAMPLE 9.15 Set of Parallel Gaussian Sources 

Consider next a set of N independent Gaussian random variables [X;))'i,, where X, has zero 
mean and variance cif. Using the distortion measure 

N 

d = 2: (x, - x;)' 
i~· 1 

and building on the result of Example 9.14, we may express the rate distortion function for 
the set of parallel Gaussian sources described here as 

where D, is itself defined by 

N 1 (cif) R(D) = 2: -
2 

log -2: 
1=1 D: 

D, = {~ if,\< O'; 

ifA::>:uf 

and the constant ,\ is chosen so as to satisfy the condition 

N 

2: D, = D 
i=1 

(9.134) 

(9.135) 

(9.136) 

Equations (9.135) and (9.136) may be interpreted as a kind of "water-filling in reverse," as 
illustrated in Figure 9 .23. First, we choose a constant A and only the subset of random variables 
whose variances exceed the constant A. No bits are used to describe the remaining subset of 
random variables whose variances are less than the constant A. <Iii 

I 9.14 Data Compression 

Rate distortion theory naturally leads us to consider the idea of data compression that 
involves a purposeful or unavoidable reduction in the information content of data from a 
continuous or discrete source. Specifically, we may think of a data compressor, or signal 
compressor, as a device that supplies a code with the least number of symbols for the 
representation of the source output, subject to a permissible or acceptable distortion. The 
data compressor thus retains the essential information content of the source output by 
blurring fine details in a deliberate but controlled manner. Accordingly, data compression 
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is a lossy operation in the sense that the source entropy is reduced (i.e., information is 
lost), irrespective of the type of source being considered. 

In the case of a discrete source, the reason for using data compression is to encode 
the source output at a rate smaller than the source entropy. By so doing, the source coding 
theorem is violated, which means that exact reproduction of the original data is no longer 
possible. 

In the case of a continuous source, the entropy is infinite, and therefore a signal 
compression code must always be used to encode the source output at a finite rate. Con­
sequently, it is impossible to digitally encode an analog signal with a finite number of bits 
without producing some distortion. This statement is in perfect accord with the idea of 
pulse-code modulation, which was studied in Chapter 3. There it was shown that quan­
tization, which is basic to the analog-to-digital conversion process in pulse-code modula­
tion, always introduces distortion (known as quantization noise) into the transmitted sig­
nal. A quantizer may therefore be viewed as a signal compressor. 

The uniform and nonuniform quantizers considered in Chapter 3 are said to be sc.alar 
quantizers in the sense that they deal with samples of the analog signal (i.e., continuous 
source output) one at a time. Each sample is converted into a quantized value, with the 
conversion being independent from sample to sample. A scalar quantizer is a rather simple 
signal compressor, which makes it attractive for practical use. Yet it can provide a sur­
prisingly good performance; this is especially so if nonuniform quantization is used. 

There is another class of quantizers known as vector quantizers that use blocks of 
consecutive samples of the source output to form vectors, each of which is treated as a 
single entity. The essential operation in a vector quantizer is the quantization of a random 
vector16 by encoding it as a binary code word. The vector is encoded by comparing it with 
a codebook consisting of a set of stored reference vectors known as code vectors or pat­
terns. Each pattern in the codebook is used to represent input vectors that are identified 
by the encoder to be similar to the particular pattern, subject to the maximization of an 
appropriate fidelity criterion. The encoding process in a vector quantizer may thus be 
viewed as a pattern matching operation. 

Let N be the number of code vectors in the codebook, k be the dimension of each 
vector (i.e., the number of samples in each pattern), and r be the coded transmission rate 
in bits per sample. These three parameters are related as follows: 

log2 N 
r = --k- (9.137) 

Then, assuming that the size of the code book is sufficiently large, the signal-to-quanti­
zation noise ratio (SNR) for the vector quantizer is given by 

(
log2 N) 10 log10(SNR) = 6 -k- + Ck dB (9.138) 

where Ck is a constant (expressed in dB) that depends on the dimensions k. According to 
Equation (9.138), the SNR for a vector quantizer increases approximately at the rate of 
6/k dB for each doubling of the codebook size. Equivalently, we may state that the SNR 
increases by 6 dB per unit increase in rate (bits per sample) as in the standard PCM using 
a uniform scalar quantizer. The advantage of the vector quantizer over the scalar quantizer 
is that its constant term Ck has a higher value, because the vector quantizer optimally 
exploits the correlations among the samples constituting a vector. Specifically, the constant 
ck increases with the dimension k, approaching the ultimate rate-distortion limit for a 
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given source of information. However, the improvement in SNR is attained at the cost of 
increased encoding complexity, which grows exponentially with the dimension k for a 
specified rate r. Unfortunately, this is the main obstacle to the wide use of vector quanti­
zation in practice. Nevertheless, in certain applications, the issue of computational com­
plexity is mitigated by exploiting the capability of VLSI technology to concentrate a highly 
complex signal processor on a silicon chip. For example, that is precisely what is done in 
the use of code-excited linear predictive (CELP) modeling of speech in wireless commu­
nication systems of the CDMA type, namely, the IS-95 system. From the description of 
CELP presented in Section 8.9, it is clear that the CELP modeling of speech is an example 
of vector quantization. 

I 9 .15 Summary and Discussion 

In this chapter we established four fundamental limits on different aspects of a commu­
nication system. The limits are embodied in the source coding theorem, the channel coding 
theorem, the information capacity theorem, and the rate distortion function. 

The source coding theorem, Shannon's first theorem, provides the mathematical tool 
for assessing data compaction, that is, lossless compression of data generated by a discrete 
memoryless source. The theorem tells us that we can make the average number of binary 
code elements (bits) per source symbol as small as, but no smaller than, the entropy of the 
source measured in bits. The entropy of a source is a function of the probabilities of the 
source symbols that constitute the alphabet of the source. Since entropy is a measure of 
uncertainty, the entropy is maximum when the associated probability distribution gener­
ates maximum uncertainty. 

The channel coding theorem, Shannon's second theorem, is both the most surprising 
and the single most important result of information theory. For a binary symmetric chan­
nel, the channel coding theorem tells us that for any code rate r less than or equal to the 
channel capacity C, codes do exist such that the average probability of error is as small as 
we want it. A binary symmetric channel is the simplest form of a discrete memoryless 
channel. It is symmetric because the probability of receiving a 1 if a 0 is sent is the same 
as the probability of receiving a 0 if a 1 is sent. This probability, the probability that an 
error will occur, is termed a transition probability. The transition probability p is deter­
mined not only by the additive noise at the channel output but also by the kind of receiver 
used. The value of p uniquely defines the channel capacity C. 

Shannon's third remarkable theorem, the information capacity theorem, tells us that 
there is a maximum to the rate at which any communication system can operate reliably 
(i.e., free of errors) when the system is constrained in power. This maximum rate is called 
the information capacity, measured in bits per second. When the system operates at a rate 
greater than the information capacity, it is condemned to a high probability of error, 
regardless of the choice of signal set used for transmission or the receiver used for pro­
cessing the received signal. 

Finally, the rate distortion function provides the mathematical tool for signal com­
pression (i.e., solving the problem of source coding with a fidelity criterion): The rate 
distortion function can be applied to a discrete as well as continuous memoryless source. 

When the output of a source of information is compressed in a lossless manner, the 
resulting data stream usually contains redundant bits. These redundant bits can be removed 
by using a lossless algorithm such as Huffman coding or the Lempel-Ziv algorithm for 
data compaction. We may thus speak of data compression followed by data compaction 
as two constituents of the dissection of source coding, which is so called because it refers 
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exclusively to the sources of information. In some source coding applications, we have a 
third constituent, namely, data encryption, which follows data compaction. The purpose 
of data encryption is to disguise the data (bit) stream in such a way that it has no meaning 
to an unauthorized receiver. Some basic aspects of cryptography, which encompasses both 
encryption and decryption, follow quite naturally from information theory, as discussed 
in Appendix 5. Other issues relating to cryptography are also discussed in that appendix. 

One last comment is in order. Shannon's information theory, as presented in this 
chapter, has been entirely in the context of memoryless sources and channels. The theory 
can be extended to deal with sources and channels with memory, in which case a symbol 
of interest depends on preceding symbols; however, the level of exposition needed to do 
this is beyond the scope ofthis book. 17 

l NOTES AND REFERENCES 

1. According to Lucky (1989), the first mention of the term information theory by Shannon 
occurs in a 1945 memorandum entitled "A Mathematical Theory of Cryptography." It is 
rather curious that the term was never used in the classic 1948 paper by Shannon, which 
laid down the foundations of information theory. For an introductory treatment of infor­
mation theory, see Chapter 2 of Lucky (1989) and the paper by Wyner (1981); see also 
the books of Adamek (1991), Hamming (1980), and Abramson (1963). For more advanced 
treatments of the subject, see the books of Cover and Thomas (1991), Blahut (1987), 
McEliece (1977), and Gallager (1968). For a collection of papers on the development of 
information theory (including the 1948 classic paper by Shannon), see Slepian (1974). For 
a collection of the papers published by Shannon, see Sloane and Wyner (1993). 

2. The use of a logarithmic measure of information was first suggested by Hartley (1928); 
however, Hartley used logarithms to base 10. 

3. In statistical physics, the entropy of a physical system is defined by (Reif, 1967, p. 147) 

Ef = k log fl 

where k is Boltzmann's constant, fl is the number of states accessible to the system, and 
log denotes the natural logarithm. This entropy has the dimensions of energy because its 
definition involves the constant k. In particular, it provides a quantitative measure of the 
degree of randomness of the system. Comparing the entropy of statistical physics with that 
of information theory, we see that they have a similar form. For a detailed discussion of 
the relation between them, see Pierce (1961, pp. 184-207) and Brillouin (1962). 

4. For the original proof of the source coding theorem, see Shannon (1948). A general proof 
of the source coding theorem is also given in the following books: Viterbi and Omura 
(1979, pp. 13-19), McEliece (1977, Chapter 3), and Gallager (1968, pp. 38-55). The 
source coding theorem is also referred to in the literature as the noiseless coding theorem, 
noiseless in the sense that it establishes the condition for error-free encoding to be possible. 

5. For proof of the Kraft-McMillan inequality, see Cover and Thomas (1991, pp. 82-84), 
Blahut (1990, pp. 298-299), and McEliece (1977, pp. 239-240). For a proof of Equation 
(9.23), see Cover and Thomas (1991), pp. 87-88), Blahut (1990, pp. 300-301), and 
McEliece (1977, pp. 241-242). 

6. The Huffman code is named after its inventor: D. A. Huffman (1952). For a readable 
account of Huffman coding and its use in data compaction, see Adamek (1991). 

7. The original papers on the Lempel-Ziv algorithm are Ziv and Lempe! (1977, 1978). For 
readable descriptions of the Lempel-Ziv algorithm, see Lucky (1989, pp. 118-122), Blahut 
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(1990, pp. 314-319), and Gitlin, Hayes, and Weinstein (1992, pp. 120-122). For the 
application of the Lempel-Ziv algorithm to the compaction of English text, see Lucky 
(1989, pp. 122.:.128) and the paper by Welch (1984); see also the review paper by Weiss 
and Shremp (1993). 

8. The channel coding theorem is also known as the noisy coding theorem. The original proof 
of the theorem is given in Shannon (1948). A proof of the theorem is also presented in 
Hamming (1980, Chapters 9 and 10) in sufficient detail so that a general appreciation of 
relevant results is developed. The second part of the theorem is referred to in the literature 
as the converse to the coding theorem. A proof of this theorem is presented in the following 
references: Viterbi and Omura (1979, pp. 28-34) and Gallager (1968, pp. 76-82). 

9. The quantity 

[ fy(x) log2G:i:;) dx 

on the left-hand side of Equation (9.70) is called relative entropy or the Kullback-Leibler 
divergence between the probability density functions fx{x) and fy(x); see Kullback (1968). 

10. Shannon's information capacity theorem is also referred to in the literature as the Shannon­
Hartley law in recognition of early \\'Ork by Hartley on information transmission (Hartley, 
1928). In particular, Hartley showed that the amount of information that can be trans­
mitted over a given channel is proportional to the product of the channel bandwidth and 
the time of operation. 

11. A lucid exposition of sphere packing is presented in Cover and Thomas (1991, pp. 242-
243); see also Wozencraft and Jacobs (1965, pp. 323-341). 

12. Parts a and b of Figure 9.18 follow the corresponding parts of Figure 6.2 in the book by 
Frey (1998). 

13. For a rigorous treatment of the information capacity of a colored noisy channel, see Gal­
lager (1968). The idea of replacing the channel model of Figure 9.19a with that of Figure 
9.19b is discussed in Gitlin, Hayes, and Weinstein (1992). 

14. For a complete treatment of rate distortion theory, see the book by Berger (1971); this 
subject is also treated in somewhat less detail in Cover and Thomas (1991), McEliece 
(1977), and Gallager (1968). 

15. For the derivation of Equation (9.131), see Cover and Thomas (1991,p. 345). An algorithm 
for computation of the rate distortion function R(D) defined in Equation (9.131) is de­
scribed in Blahut (1987, pp. 220-221) and Cover and Thomas (1991, pp. 364-367). 

16. For the early papers on vector quantization, see Gersho (1979) and Linde, Buzo, and Gray 
(1980). For a tutorial review of vector quantization, see Gray (1984). Equation (9.138), 
defining the SNR for a vector quantizer, is discussed in Gersho and Cuperman (1983). For 
a complete treatment of vector quantization, see the book by Gersho and Gray (1992). 

17. For detailed discussion of discrete channels with memory, see Gallager (1968, pp. 97-112) 
and Ash (1965, pp. 211-229). 

I PROBLEMS 

Entropy 

9.1 Let p denote the probability of some event. Plot the amount of information gained by the 
occurrence of this event for 0 ~ p ~ 1. 
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9.2 A source emits one of four possible symbols during each signaling interval. The symbols 
occur with the probabilities: 

Po = 0.4 

P1 = 0.3 

P2 = 0.2 
p, = 0.1 

Find the amount of information gained by observing the source emitting each of these 
symbols. 

9.3 A source emits one of four symbols s0, s1 , s,, and s3 with probabilities 1/3, 116, 114, and 
114, respectively. The successive symbols emitted by the source are statistically indepen­
dent. Calculate the entropy of the source. 

9.4 Let X represent the outcome of a single roll of a fair die. What is the entropy of X? 
9.5 The sample function of a Gaussian process of zero mean and unit variance is uniformly 

sampled and then applied to a uniform quantizer having the input-output amplitude char­
acteristic shown in Figure P9 .5. Calculate the entropy of the quantizer output. 

Output 

FIGURE P9.5 

9.6 Consider a discrete memoryless source with source alphabet :J' = {s0 , s,, •.. , sK-1) and 
source statistics {p0 , p,, .. . , PK-1 ). The nth extension of this source is another discrete 
memoryless source with source alphabet ff" = {a0, a,, ... , aM_ 1), where M = K". Let 
P(a;) denote the probability of a1• 

(a) Show that 
M-1 

L P(a1) = 1 
i=O 

which is to be expected. 

(b) Show that 

M-1 ( 1) L P(a,) log2 -:- = H(:J'), 
t=O p,k 

k = 1, 2, ... , n 

where p1, is the probability of symbols,,, and H(:J') is the entropy of the original 
source. 

(c) Hence, show that 
M-1 1 

H(Ef") = ~ P(a1) log2 P(a;) 

=nH(:J') 
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9.7 Consider a discrete memoryless source with source alphabet 'Cf = {so, s,, s2 ) and source 
statistics {0.7, 0.15, 0.15). 

(a) Calculate the entropy of the source. 
(b) Calculate the entropy of the second-order extension of the source. 

9.8 It may come as a surprise, but the number of bits needed to store text is much less than 
that required to store its spoken equivalent. Can you explain the reason for it? 

Data Compaction 

9.9 Consider a discrete memoryless source whose alphabet consists of K equiprobable 
symbols. 

(a) Explain why the use of a fixed-length code for the representation of such a source is 
a bout as efficient as any code can be. 

(b) What conditions have to be satisfied by K and the code-word length for the coding 
efficiency to be 100 percent? 

9.10 Consider the four codes listed below: 

Symbol Code I Code 11 Code III Code IV 

So 0 0 0 00 
51 10 01 01 01 
Sz 110 001 011 10 
S3 1110 0010 110 110 
54 1111 0011 111 111 

(a) Two of these four codes are prefix codes. Identify them, and construct their individual 
decision trees. 

(b) Apply the Kraft-McMillan inequality to codes I, II, III, and IV. Discuss your results 
in light of those obtained in part (a). 

9.11 Consider a sequence of leters of the English alphabet with their probabilities of occurrence 
as given here: 

Letter 

Probability 

a 

0.1 0.1 

m 

0.2 0.1 

n 0 

0.1 0.2 

p 
0.1 

y 

0.1 

Compute two different Huffman codes for this alphabet. In one case, move a combined 
symbol in the coding procedure as high as possible, and in the second case, move it as 
low as possible. Hence, for each of the two codes, find the average code-word length and 
the variance of the average code-word length over the ensemble of letters. 

9.12 A discrete memoryless source has an alphabet of seven symbols whose probabilities of 
occurrence are as described here: 

Symbol 

Probability 

So 

0.25 

s, Sz 

0.25 0.125 

s6 

0.125 0.125 0.0625 0.0625 

Compute the Huffman code for this source, moving a "combined" symbol as high as 
possible. Explain why the computed source code has an efficiency of 100 percent. 

9.13 Consider a discrete memoryless source with alphabet {s0, s,, s2 ) and statistics {0.7, 0.15, 
0.15) for its output. 

(a) Apply the Huffman algorithm to this source. Hence, show that the average code­
word length of the Huffman code equals 1.3 bits/symbol. 
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(b) Let the source be extended to order two. Apply the Huffman algorithm to the resulting 
extended source, and show that the average code-word length of the new code equals 
1.1975 bits/symbol. 

(c) Compare the average code-word length calculated in part (b) with the entropy of the 
original source. 

9.14 Figure P9.14 shows a Huffman tree. What is the code word for each of the symbols A, 
B, C, D, E, F, and G represented by this Huffman tree? What are their individual code­
word lengths? 

A 
3/8 

3/16 
B 

c 3/16 0 

D 
1/8 0 

0 

1/16 

G 

FIGURE P9,14 

9.15 A computer executes four instructions that are designated by the code words 
(00, 01, 10, 11). Assuming that the instructions are used independently with probabilities 
(1/2, 1/8, 118, 1/4), calculate the percentage by which the number of bits used for the 
instructions may be reduced by the use of an optimum source code. Construct a Huffman 
code to realize the reduction. 

9.16 Consider the following binary sequence 

11101001100010110100 ... 

Use the Lempel-Ziv algorithm to encode this sequence. Assume that the binary symbols 
0 and 1 are already in the codebook. 

Binary Symmetric Channel 

9.17 Consider the transition probability diagram of a binary symmetric channel shown in 
Figure 9.8. The input binary symbols 0 and 1 occur with equal probability. Find the 
probabilities of the binary symbols 0 and 1 appearing at the channel output. 

9.18 Repeat the calculation in Problem 9.17, assuming that the input binary symbols 0 and 1 
occur with probabilities 1/4 and 3/4, respectively. 

Mutual Information and Channel Capacity 

9.19 Consider a binary symmetric channel characterized by the transition probability p. Plot 
the mutual information of the channel as a function of Pi. the a priori probability of 
symbol 1 at the channel input; do your calculations for the transition probability p = 0, 
0.1, 0.2, 0.3, 0.5. 
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9.20 Figure 9.10 depicts the variation of the channel capacity of a binary symmetric chann ] 
with the transition probability p. Use the results of Problem 9.19 to explain this variatio e n. 

9.21 Consider the binary symmetric channel described in Figure 9.8. Let Po denote the prob­
ability of sending binary symbol x0 = 0, and let p, = 1 - Po denote the probability f 
sending binary symbol x 1 1. Let p denote the transition probability of the channel. 

0 

(a) Show that the mutual information between the channel input and channel output is 
given by 

where 

and 

I('if; 'Y) = '.le(z) - '.le(p) 

H(z) = z log2G) + (1 - z) log2(; ~ z) 

z = PoP + (1 - Po)(l - p) 

(b) Show that the value of Po that maximizes I(1£; '!11) is equal to 112. 
(c) Hence, show that the channel capacity equals 

C = 1 - H(p) 

9.22 Two binary symmetric channels are connected in cascade, as shown in Figure P9.22. Find 
the overall channel capacity of the cascaded connection, assuming that both channels 
have the same transition probability diagram shown in Figure 9.8. 

lntput 
Binary 

symmetric 
channel 1 

Binary 
symmetric 
channel 2 

FIGURE P9.22 

Output 

9.23 The binary erasure channel has two inputs and three outputs as described in Figure P9.23. 
The inputs are labeled 0 and 1, and the outputs are labeled 0, 1, and e. A fraction a of 
the incoming bits are erased by the channel. Find the capacity of the channel. 

1-" 

1-a 

FIGURE P9,23 
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9 .24 Consider a digital communication system that uses a repetition code for the channel 
encoding/decoding. In particular, each transmission is repeated n times, where n = 2m + 
1 is an odd integer. The decoder operates as follows. If in a block of n received bits, the 
number of Os exceeds the number of ls, the decoder decides in favor of a 0. Otherwise, 
it decides in favor of a 1. An error occurs when m + 1 or more transmissions out of n = 
2m + 1 are incorrect. Assume a binary symmetric channel. 
(a) For n = 3, show that the average probability of error is given by 

P, = 3p2{1 p) + p3 

where pis the transition probability of the channel. 
(b) For n = 5, show that the average probability of error is given by 

P, = 1op3(1 - p)1 + Sp4(1 p) + p5 

{c) Hence, for the general case, deduce that the average probability of error is given by 

P, = ± (~)p'(l p)"-' 
i=m+1 t 

Differential Entropy 

9.25 Let X,, X2,. •• , Xn denote the elements of a Gaussian vector X. The X, are independent 
with meanµ,, and variance a}, i = 1, 2, ... , n. Show that the differential entropy of the 
vector X equals 

n 
h(X) = l log2 [21Te(afai ... a~) 11"] 

What does h(X) reduce to if the variances are equal? 
9.26 A continuous random variable X is constrained to a peak magnitude M; that is, 

-M<X<M. 
(a) Show that the differential entropy of Xis maximum when it is uniformly distributed, 

as shown by 

{
1/2M, 

fx(x) = O, 
-M < x :o; M 

otherwise 

(b) Show that the maximum differential entropy of Xis log2 2M. 
9.27 Prove the properties given in Equations (9.79) to (9.81) for the mutual information 

l(X; Y). 
9.28 Consider the continuous random variable Y defined by 

Y=X+N 

where X and N are statistically independent. Show that the conditional differential en­
tropy of Y, given X, equals 

h(YIX) = h(N) 

where h(N) is the differential entropy of N. 

Information Capacity 

9.29 A voice-grade channel of the telephone network has a bandwidth of 3.4 kHz. 
{a) Calculate the information capacity of the telephone channel for a signal-to-noise ratio 

of 30 dB. 
(b) Calculate the minimum signal-to-noise ratio required to support information trans­

mission through the telephone channel at the rate of 9,600 b/s. 
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9.30 Alphanumeric data are entered into a computer from a remote terminal through a voice. 
grade telephone channel. The channel has a bandwidth of 3.4 kHz and output signal-to­
noise ratio of 20 dB. The terminal has a total of 128 symbols. Assume that the symbol 
are equiprobable and the successive transmissions are statistically independent. s 
(a) Calculate the information capacity of the channel. 
(b) Calculate the maximum symbol rate for which error-free transmission over the chan­

nel is possible. 
9.31 A black-and-white television picture may be viewed as consisting of approximately 

3 X 105 elements, each of which may occupy one of 10 distinct brightness levels with 
equal probability. Assume that ( 1) the rate of transmission is 30 picture frames per second 
and (2) the signal-to-noise ratio is 30 dB. ' 

Using the information capacity theorem, calculate the minimum bandwidth re­
quired to support the transmission of the resulting video signal. 
Note: As a matter of interest, commercial television transmissions actually employ a band­
width of 4.2 MHz, which fits into an allocated bandwidth of 6 MHz. 

9.32 In this problem, we continue with Example 9.9. Suppose that the tightly packed constel­
lation of Figure 9.15b is scaled upward so that the transmitted signal energy per symbol 
is maintained at the same average value as that consumed by the 64-QAM square con­
stellation of Figure 9.15a. Construct the new constellation that results from this scaling. 
How does the bit error rate of this new constellation compare with that of Figure 9.15a? 
Justify your answer. 

9.33 The squared magnitude response of a twisted-pair channel can be modeled as 

IH(/)12 = exp(-aVf) 

The constant a is defined by 

kl 
a=/;; 

where k is a constant depending on wire gauge, /0 is a reference line length, and I is the 
actual length of the twisted pair under study. The squared magnitude response of the 
coupling responsible for NEXT has the form 

I HNEdf) 12 = {3/312 

where {3 is a constant that depends on the type of cable used. 
Formulate the expression for the information capacity of the NEXT-dominated 

channel described here. 

Data Compression 

9.34 Equation (9.138) for the signal-to-noise ratio (SNR) of a vector quantizer includes the 
SNR formula of Equation (3.33) for standard pulse-code modulation as a special case for 
which k = 1. Justify the validity of this inclusion. 

9 .35 All practical data compression and data transmission schemes lie between two limits set 
by the rate distortion function and the channel capacity theorem. Both of these theorems 
involve the notion of mutual information, but in different ways. Elaborate on the issues 
raised by these two statements. 

Computer Experiment 

9.36 In this problem, we revisit Example 9.12, which deals with coded binary antipodal sig­
naling over an additive white Gaussian noise (AWGN) channel. Starting with Equation 
(9.112) and the underlying theory, develop a software package for computing the mini­
mum Eb/N0 required for a given bit error rate, where Eb is the signal energy per bit, and 
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Area A 

----+-- Shaded area 

FIGURE P9.36 

=fg(.y)dy 
=pA 

where p is the fraction of 
randomly chosen points that 
lie under the curve of g(y). 

N0/2 is the noise spectral density. Hence, compute the results plotted in parts a and b of 
Figure 9.18. 

As mentioned in Example 9.12, the computation of the mutual information between 
the channel input and channel output is well approximated using Monte Carlo integra­
tion. To explain how this method works, consider a function g(y) that is difficult to sample 
randomly, which is indeed the case for the problem at hand. (For our problem, the func­
tion g(y) represents the complicated integrand in the formula for the differential entropy 
of the channel output.) For the computation, proceed as follows: 
I» Find an area A that includes the region of interest and that is easily sampled. 
Ii> Choose N points, uniformly randomly inside the area A. 
Then the Monte Carlo integration theorem states that the integral of the function g(y) 
with respect to y is approximately equal to the area A multiplied by the fraction of points 
that reside below the curve of g, as illustrated in Figure P9 .36. The accuracy of the ap­
proximation improves with increasing N. 



ERROR-CONTROL 

CODING 

This chapter is the natural sequel to the preceding chapter on Shannon's information 
theory. In particular, in this chapter we present error-control coding techniques that 
provide different ways of implementing Shannon's channel-coding theorem. Each error­
control coding technique involves the use of a channel encoder in the transmitter and a 
decoding algorithm in the receiver. 

The error-control coding techniques described herein include the following important 
classes of codes: 

Ill> Linear block codes . 

..,. Cyclic codes. 

Ill> Convolutional codes. 

Ill>- Compound codes exemplified by turbo codes and low-density parity-check codes, and 
their irregular variants. 

I 10.l Introduction 

626 

The task facing the designer of a digital communication system is that of providing a cost­
effective facility for transmitting information from one end of the system at a rate and a 
level of reliability and quality that are acceptable to a user at the other end. The two key 
system parameters available to the designer are transmitted signal power and channel 
bandwidth. These two parameters, together with the power spectral density of receiver 
noise, determine the signal energy per bit-to-noise power spectral density ratio Eb!N0• In 
Chapter 6, we showed that this ratio uniquely determines the bit error rate for a particular 
modulation scheme. Practical considerations usually place a limit on the value that we can 
assign to Eb/N0 • Accordingly, in practice, we often arrive at a modulation scheme and find 
that it is not possible to provide acceptable data quality (i.e., low enough error perfor­
mance). For a fixed Eb/N0 , the only practical option available for changing data quality 
from problematic to acceptable is to use error-control coding. 

Another practical motivation for the use of coding is to reduce the required Eh/No 
for a fixed bit error rate. This reduction in Eb/N0 may, in turn, be exploited to reduce the 
required transmitted power or reduce the hardware costs by requiring a smaller antenna 
size in the case of radio communications. 

Error control' for data integrity may be exercised by means of forward error cor­
rection (FEC). Figure 10.1a shows the model of a digital communication system using such 
an approach. The discrete source generates information in the form of binary symbols. 
The channel encoder in the transmitter accepts message bits and adds redundancy accord­
ing to a prescribed rule, thereby producing encoded data at a higher bit rate. The channel 
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FIGURE 10.1 Simplified models of digital communication system. (a) Coding and modulation 
performed separately. (h J Coding and modulation combined. 

decoder in the receiver exploits the redundancy to decide which message bits were actually 
transmitted. The combined goal of the channel encoder and decoder is to minimize the 
effect of channel noise. That is, the number of errors between the channel encoder input 
(derived from the source) and the channel decoder output (delivered to the user) is 
minimized. 

For a fixed modulation scheme, the addition of redundancy in the coded messages 
implies the need for increased transmission bandwidth. Moreover, the use of error-control 
coding adds complexity to the system, especially for the implementation of decoding op­
erations in the receiver. Thus, the design trade-offs in the use of error-control coding to 
achieve acceptable error performance include considerations of bandwidth and system 
complexity. 

There are many different error-correcting codes (with roots in diverse mathematical 
disciplines) that we can use. Historically, these codes have been classified into block codes 
and convolutional codes. The distinguishing feature for this particular classification is the 
presence or absence of memory in the encoders for the two codes. 

To generate an (n, k) block code, the channel encoder accepts information in suc­
cessive k-bit blocks; for each block, it adds n - k redundant bits that are algebraically 
related to the k message bits, thereby producing an overall encoded block of n bits, where 
n > k. Then-bit block is called a code word, and n is called the block length of the code. 
The channel encoder produces bits at the rate R 0 = (nlk)R,, where Rs is the bit rate of the 
information source. The dimensionless ratio r = kin is called the code rate, where 
0 < r < 1. The bit rate R0 , coming out of the encoder, is called the channel data rate. 
Thus, the code rate is a dimensionless ratio, whereas the data rate produced by the source 
and the channel data rate are both measured in bits per second. 

In a convolutional code, the encoding operation may be viewed as the discrete­
time convolution of the input sequence with the impulse response of the encoder. The 
duration of the impulse response equals the memory of the encoder. Accordingly, the 
encoder for a convolutional code operates on the incoming message sequence, using 
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a "sliding window" equal in duration to its own memory. This, in turn, means that in 
a convolutional code, unlike a block code, the channel encoder accepts message bits as a 
continuous sequence and there by generates a continuous sequence of encoded bits at 
a higher rate. 

In the model depicted in Figure 10.1a, the operations of channel coding and modu­
lation are performed separately in the transmitter; likewise for the operations of detection 
and decoding in the receiver. When, however, bandwidth efficiency is of major concern 
the most effective method of implementing forward error-control correction coding is t~ 
combine it with modulation as a single function, as shown in Figure 10.1b. In such an 
approach, coding is redefined as a process of imposing certain patterns on the transmitted 
signal. 

I!!! AUTOMATIC-REPEAT REQUEST 

Feed-forward error correction (FEC) relies on the controlled use of redundancy in the 
transmitted code word for both the detection and correction of errors incurred during 
the course of transmission over a noisy channel. Irrespective of whether the decoding of 
the received code word is successful, no further processing is performed at the receiver. 
Accordingly, channel coding techniques suitable for FEC require only a one-way link be­
tween the transmitter and receiver. 

There is another approach known as automatic-repeat request (ARQ) 2 for solving 
the error-control problem. The underlying philosophy of ARQ is quite different from that 
of FEC. Specifically, ARQ uses redundancy merely for the purpose of error detection. Upon 
the detection of an error in a transmitted code word, the receiver requests a repeat trans­
mission of the corrupted code word, which necessitates the use of a return path (i.e., a 
feedback channel). As such, ARQ can be used only on half-duplex or full-duplex links. In 
a half-duplex link, data transmission over the link can be made in either direction but not 
simultaneously. On the other hand, in a full-duplex link, it is possible for data transmission 
to proceed over the link in both directions simultaneously. 

A half-duplex link uses the simplest ARQ scheme known as the stop-and-wait strat­
egy. In this approach, a block of message bits is encoded into a code word and transmitted 
over the channel. The transmitter then stops and waits for feedback from the receiver. The 
feedback signal can be acknowledgment of a correct receipt of the code word or a request 
for transmission of the code word because of an error in its decoding. In the latter case, 
the transmitter resends the code word in question before moving onto the next block of 
message bits. 

The idling problem in stop-and-wait ARQ results in reduced data throughput, which 
is alleviated in another type of ARQ known as continuous ARQ with pullback. This second 
strategy uses a full-duplex link, thereby permitting the receiver to send a feedback signal 
while the transmitter is engaged in sending code words over the forward channel. Specif­
ically, the transmitter continues to send a succession of code words until it receives a 
request from the receiver (on the feedback channel) for a retransmission. At that point, 
the transmitter stops, pulls back to the particular code word that was not decoded correctly 
by the receiver, and retransmits the complete sequence of code words starting with the 
corrupted one. 

In a refined version of continuous ARQ known as the continuous ARQ with selective 
repeat, data throughout is improved further by only retransmitting the code word that. 
was received with detected errors. In other words, the need for retransmitting the success­
fully received code words following the corrupted code word is eliminated. 
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The three types of ARQ described here offer trade-offs of their own between the 
need for a half-duplex or full-duplex link and the requirement for efficient use of com­
munication resources. In any event, they all rely on two premises: 

i- Error detection, which makes the design of the decoder relatively simple. 

I!> Noiseless feedback channel, which is not a severe restriction because the rate of 
information flow over the feedback channel is typically quite low. 

For these reasons, ARQ is widely used in computer-communication systems. 
Nevertheless, the fact that FEC requires only one-way links for its operation makes 

the FEC much wider in application than ARQ. Moreover, the increased decoding com­
plexity of FEC due to the combined need for error detection and correction is no longer 
a pressing practical issue because the decoder usually lends itself to microprocessor or 
VLSI implementation in a cost-effective manner. 

I 10.2 Discrete-Memoryless Channels 

Returning to the model of Figure 10.la, the waveform channel is said to be memoryless 
if the detector output in a given interval depends only on the signal transmitted in that 
interval, and not on any previous transmission. Under this condition, we may model the 
combination of the modulator, the waveform channel, and the detector as a discrete 
memoryless channel. Such a channel is completely described by the set of transition prob­
abilities p( j Ii), where i denotes a modulator input symbol, j denotes a demodulator output 
symbol, and p( j Ii) denotes the probability of receiving symbol j, given that symbol i was 
sent. (Discrete memoryless channels were described previously at some length in Section 
9.5.) 

The simplest discrete memoryless channel results from the use of binary input and 
binary output symbols. When binary coding is used, the modulator has only the binary 
symbols 0 and 1 as inputs. Likewise, the decoder has only binary inputs if binary quan­
tization of the demodulator output is used, that is, a hard decision is made on the demod­
ulator output as to which symbol was actually transmitted. In this situation, we have a 
binary symmetric channel (BSC) with a transition probability diagram as shown in Figure 
10.2. The binary symmetric channel, assuming a channel noise modeled as additive white 
Gaussian noise (A WGN) channel, is completely described by the transition probability p. 
The majority of coded digital communication systems employ binary coding with hard­
decision decoding, due to the simplicity of implementation offered by such an approach. 
Hard-decision decoders, or algebraic decoders, take advantage of the special algebraic 

1-p 

Symbol 0 CF-----;,,__ ___ .., Symbol 0 
1-p 

FIGURE 10.2 Transition probability diagram of binary symmetric channel. 
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FIGURE 10.3 Binary input Q-ary·output discrete memoryless channel. (a) Receiver for binary 
phase-shift keying. (b) Transfer characteristic of multilevel quantizer. (c) Channel transition prob­
ability diagram. Parts (b) and (c) are illustrated for eight levels of quantization. 

structure that is built into the design of channel codes to make the decoding relatively easy 
to perform. 

The use of hard decisions prior to decoding causes an irreversible loss of information 
in the receiver. To reduce this loss, soft-decision coding is used. This is achieved by in­
cluding a multilevel quantizer at the demodulator output, as illustrated in Figure 10.3a 
for the case of binary PSK signals. The input-output characteristic of the quantizer is 
shown in Figure 10.3b. The modulator has only the binary symbols 0 and 1 as inputs, but 
the demodulator output now has an alphabet with Q symbols. Assuming the use of the 
quantizer as described in Figure 10.3b, we have Q = 8. Such a channel is called a binary 
input Q-ary output discrete memoryless channel. The corresponding channel transition 
probability diagram is shown in Figure 10.3c. The form of this distribution, and conse­
quently the decoder performance, depends on the location of the representation levels of 
the quantizer, which, in turn, depends on the signal level and noise variance. Accordingly, 
the demodulator must incorporate automatic gain control if an effective multilevel quan­
tizer is to be realized. Moreover, the use of soft decisions complicates the implementation 
of the decoder. Nevertheless, soft-decision decoding offers significant improvement in per­
formance over hard-decision decoding by taking a probabilistic rather than an algebraic 
approach. It is for this reason that soft-decision decoders are also referred to as probabi­
listic decoders. 

ill CHANNEL CODING THEOREM REVISITED 

In Chapter 9, we established the concept of channel capacity, which, for a discrete 
memoryless channel,. represents the maximum amount of information transmitted per 
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channel use. The channel coding theorem states that if a discrete memoryless channel has 
capacity C and a source generates information at a rate less than C, then there exists a 
coding technique such that the output of the source may be transmitted over the channel 
with an arbitrarily low probability of symbol error. For the special case of a binary sym­
metric channel, the theorem tells us that if the code rate r is less than the channel capacity 
C, then it is possible to find a code that achieves error-free transmission over the channel. 
Conversely, it is not possible to find such a code if the code rate r is greater than the 
channel capacity C. 

The channel coding theorem thus specifies the channel capacity C as a fundamental 
limit on the rate at which the transmission of reliable (error-free) messages can take place 
over a discrete memoryless channel. The issue that matters is not the signal-to-noise ratio, 
so long as it is large enough, but how the channel input is encoded. 

The most unsatisfactory feature of the channel coding theorem, however, is its non­
constructive nature. The theorem asserts the existence of good codes but does not tell us 
how to find them. By good codes we mean families of channel codes that are capable of 
providing reliable transmission of information (i.e., at arbitrarily small probability of sym­
bol error) over a noisy channel of interest at bit rates up to a maximum value less than 
the capacity of that channel. The error-control coding techniques described in this chapter 
provide different methods of designing good codes. 

Ii NOTATION 

The codes described in this chapter are binary codes, for which the alphabet consists only 
of symbols 0 and 1. In such a code, the encoding and decoding functions involve the binary 
arithmetic operations of modulo-2 addition and multiplication performed on code words 
in the code. 

Throughout this chapter, we use an ordinary plus sign(+) to denote modulo-2 ad­
dition. The use of this terminology will not lead to confusion because the whole chapter 
relies on binary arithmetic. In so doing, we avoid the use of a special symbol EB, as we did 
in preceding chapters. Thus, according to the notation used in this chapter, the rules for 
modulo-2 addition are as follows: 

O+O=O 
1 + 0 = 1 
0 + 1 = 1 

1 + 1 = 0 

Because 1 + 1 = 0, it follows that 1 = -1. Hence, in binary arithmetic, subtraction is the 
same as addition. The rules for modulo-2 multiplication are as follows: 

Division is trivial in that we have 

0 x 0 = 0 

1 x 0 = 0 

0 x 1 = 0 

1 x 1 = 1 

1+1=1 

0 + 1 = 0 
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and division by 0 is not permitted. Modulo-2 addition is the EXCLUSIVE-OR operation 
in logic, and modulo-2 multiplication is the AND operation. 

I 10.3 Linear Block Codes 

A code is said to be linear if any two code words in the code can be added in modulo-2 
arithmetic to produce a third code word in the code. Consider then an (n, k) linear block 
code, in which k bits of the n code bits are always identical to the message sequence to be 
transmitted. The n k bits in the remaining portion are computed from the message bits 
in accordance with a prescribed encoding rule that determines the mathematical structure 
of the code. Accordingly, these n - k bits are referred to as generalized parity check bits 
or simply parity bits. Block codes in which the message bits are transmitted in unaltered 
form are called systematic codes. For applications requiring both error detection and error 
correction, the use of systematic block codes simplifies implementation of the decoder. 

Let m 0 , mi, ••. , mk-l constitute a block of k arbitrary message bits. Thus we have 
2k distinct message blocks. Let this sequence of message bits be applied to a linear block 
encoder, producing an n-bit code word whose elements are denoted by c0, Ci, ••• , cn-l• 

Let b0 , bi, ... , bn-k-t denote the (n - k) parity bits in the code word. For the code to 
possess a systematic structure, a code word is divided into two parts, one of which is 
occupied by the message bits and the other by the parity bits. Clearly, we have the option 
of sending the message bits of a 'code word before the parity bits, or vice versa. The former 
option is illustrated in Figure 10.4, and its use is assumed in the sequel. 

According to the representation of Figure 10.4, the (n - k) left-most bits of a code 
word are identical to the corresponding parity bits, and the k right-most bits of the code 
word are identical to the corresponding message bits. We may therefore write 

{
b;, 

C· = 
t mi+k-m 

i = 0, 1, ... , n - k - 1 

i = n - k, n - k. + 1, ... , n - 1 
(10.1) 

The (n - k) parity bits are linear sums of the k message bits, as shown by the generalized 
relation 

b; = Po1mo + P11m1 + · · · + Pk-1.1mk-1 

where the coefficients are defined as follows: 

if b1 depends on m; 

otherwise 

(10.2) 

(10.3) 

The coefficients p1i are chosen in such a way that the rows of the generator matrix are 
linearly independent and the parity equations are unique. 

The system of Equations (10.1) and (10.2) defines the mathematical structure of the 
(n, k) linear block code. This system of equations may be rewritten in a compact form 

Parity bits Message bits 

FIGURE I 0,4 Structure of systematic code word. 
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using matrix notation. To proceed with this reformulation, we define the 1-by-k message 
vector, or information vector, m, the 1-by-(n - k) parity vector b, and the 1-by-n code 
vector c as follows: 

m = [m0 , m,, ... , mk-il 

b = [ho, b,, ... , bn-k-1] 

c = [co, c,, ... , Cn-1t 

(10.4) 

(10.5) 

(10.6) 

Note that all three vectors are row vectors. The use of row vectors is adopted in this chapter 
for the sake of being consistent with the notation commonly used in the coding literature. 
We may thus rewrite the set of simultaneous equations defining the parity bits in the 
compact matrix form: 

b = mP (10.7) 

where Pis the k-by-(n - k) coefficient matrix defined by 

Po,n-k-1 ] 
P1,n-k-1 

Pk-1~-k-1 r 

Poo 

Pio 

P = Pk~t.o 

Po1 

Pu 
(10.8) 

Pk-1,1 

where p,; is 0 or 1. 
From the definitions given in Equations (10.4 )-(10.6), we see that c may be expressed 

as a partitioned row vector in terms of the vectors m and b as follows: 

c = [b :m] (10.9) 

Hence, substituting Equation (10.7) into Equation (10.9) and factoring out the common 
message vector m, we get 

(10.10) 

where Ik is the k-by-k identity matrix: 

(10.11) 

Define the k-by-n generator matrix 

(10.12) 

The generator matrix G of Equation (10.12) is said to be in the canonical form in that its 
k rows are linearly independent; that is, it is not possible to express any row of the matrix 
G as a linear combination of the remaining rows. Using the definition of the generator 
matrix G, we may simplify Equation (10.10) as 

c = mG (10.13) 

The full set of code words, referred to simply as the code, is generated in accordance 
with Equation (10.13) by letting the message vector m range through the set of all 2k 
binary k-tuples (1-by-k vectors). Moreover, the sum of any two code words is another 
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code word. This basic property of linear block codes is called closure. To prove its validity 
consider a pair of code vectors C; and c; corresponding to a pair of message vectors m; and 
rn;, respectively. Using Equation (10.13) we may express the sum of C; and c; as 

c,+c;=m,G+m;G 

= (m, + m;)G 

The modulo-2 sum of m; and m; represents a new message vector. Correspondingly, the 
modulo-2 sum of C; and c; represents a new code vector. 

There is another way of expressing the relationship between the message bits and 
parity-check bits of a linear block code. Let H denote an (n - k)-by-n matrix, defined as 

(10.14) 

where pT is an (n - k)-by-k matrix, representing the transpose of the coefficient matrix P, 
and J,,_k is the (n - k)-by-(n - k) identity matrix. Accordingly, we may perform the 
following multiplication of partitioned matrices: 

HGT= [J,,_k; P1][~] 
= pT + pT 

where we have used the fact that multiplication of a rectangular matrix by an identity 
matrix of compatible dimensions leaves the matrix unchanged. In modulo-2 arithmetic, 
we have pT + pT = 0, where 0 denotes an (n - k)-by-k null matrix (i.e., a matrix that has 
zeros for all of its elements). Hence, 

(10.15) 

Equivalently, we have GHT = 0, where 0 is a new null matrix. Postmultiplying both sides 
of Equation (10.13) by HT, the transpose of H, and then using Equation (10.15), we get 

cHT = mGHT 

=O 
(10.16) 

The matrix H is called the parity-check matrix of the code, and the set of equations spec­
ified by Equation (10.16) are called parity-check equations. 

The generator equation (10.13) and the parity-check detector equation (10.16) are 
basic to the description and operation of a linear block code. These two equations are 
depicted in the form of block diagrams in Figure 10.5a and 10.5b, respectively. 

Message vector 
m 

Code vector 

(a) 

(b) 

Code 11ector 

Null vector 
0 

FIGURE 10.5 Block cliagram representations of the generator equation (10.13) and the parity­
check equation (10.16). 
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~ EXAMPLE IO. I Repetition Codes 

Repetition codes represent the simplest type of linear block codes. In particular, a single mes­
sage bit is encoded into a block of n identical bits, producing an (n, 1) block code. Such a 
code allows provision for a variable amount of redundancy. There are only two code words 
in the code: an all-zero code word and an all-one code word. 

Consider, for example, the case of a repetition code with k = 1 and n = 5. In this case, 
we have four parity bits that are the same as the message bit. Hence, the identity matrix Ik = 
1, and the coefficient matrix P consists of a 1-by-4 vector that has 1 for all of its elements. 
Correspondingly, the generator matrix equals a row vector of all ls, as shown by 

G = [1 1 1 1 ; 1] 

The transpose of the coefficient matrix P, namely, matrix PT, consists of a 4-by-1 vector that 
has 1 for all of its elements. The identity matrix In-k consists of a 4-by-4 matrix. Hence, the 
parity-check matrix equals 

[

1 0 0 0 ~ 1] 
0 1 0 0·1 

H= : 
0 0 1 0:1 

0 0 0 1:1 

Since the message vector consists of a single binary symbol, 0 or 1, it follows from Equation 
(10.13) that there are only two code words: 00000 and 11111 in the (5, 1) repetition code, 
as expected. Note also that HGT= 0, modulo-2, in accordance with Equation (10.15). -<ii 

!ill SYNDROME: DEFINITION AND PROPERTIES 

The generator matrix G is used in the encoding operation at the transmitter. On the other 
hand, the parity-check matrix H is used in the decoding operation at the receiver. In the 
context of the latter operation, let r denote the 1-by-n received vector that results from 
sending the code vector cover a noisy channel. We express the vector r as the sum of the 
original code vector c and a vector e, as shown by 

r = c + e (10.17) 

The vector e is called the error vector or error pattern. The ith element of e equals 0 if the 
corresponding element of r is the same as that of c. On the other hand, the ith element of 
e equals 1 if the corresponding element of r is different from that of c, in which case an 
error is said to have occurred in the ith location. That is, for i = 1, 2, ... , n, we have 

e· = {1 
' 0 

if an error has occurred in the ith location 

otherwise 
(10.18) 

The receiver has the task of decoding the code vector c from the received vector r. 
The algorithm commonly used to perform this decoding operation starts with the com­
putation of a 1-by-(n - k) vector called the error-syndrome vector or simply the syn­
drome.3 The importance of the syndrome lies in the fact that it depends only upon the 
error pattern. 

Given a 1-by-n received vector r, the corresponding syndrome is formally defined as 

(10.19) 

Accordingly, the syndrome has the following important properties. 
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Property I 

The syndrome depends only on the error pattern, and not on the transmitted code word. 

To prove this property, we first use Equations (10.17) and (10.19), and then Equation 
(10.16) to obtain 

s = (c + e)HT 

= cHT + eHT 

= eHT 
(10.20) 

Hence, the parity-check matrix H of a code permits us to compute the syndrome s, which 
depends only upon the error pattern e. 

Property2 

All error patterns that differ by a code word have the same syndrome. 

For k message bits, there are 2k distinct code vectors denoted as c1, i = 0, 1, ... , 
2k - 1. Correspondingly, for any error pattern e, we define the 2k distinct vectors e1 as 

i = 0, 1, . .. ' 2k - 1 (10.21) 

The set of vectors ( e,, i = 0, 1, ... , 2 k - 1 J so defined is called a cos et of the code. In 
other words, a coset has exactly 2k elements that differ at most by a code vector. Thus, 
an (n, k) linear block code has 2n-k possible cosets. In any event, multiplying both sides 
of Equation (10.21) by the matrix Hr, we get 

e;HT = eHT + c;IIT 
(10.22) 

= eHT 

which is independent of the index i. Accordingly, we may state that each coset of the code 
is characterized by a unique syndrome. 

We may put Properties 1 and 2 in perspective by expanding Equation (10.20). Spe­
cifically, with the matrix H having the systematic form given in Equation (10.14), where 
the matrix Pis itself defined by Equation (10.8), we find from Equation (10.20) that the 
(n - k) elements of the syndrome s are linear combinations of then elements of the error 
pattern e, as shown by 

So = ea + en-kPoo + en-k~1P10 + ... + en-1Pk-l,O 

S1 = el + en-kP01 + en-k+1P11 + ... + en-iPk-l,l 
(10.23) 

Sn-k-1 = en-k-l + en-kPo,n-k-l + ... + en-1Pk-l,n-k-l 

This set of (n - k) linear equations clearly shows that the syndrome contains information 
about the error pattern and may therefore be used for error detection. However, it should 
be noted that the set of equations is underdetermined in that we have more unknowns 
than equations. Accordingly, there is no unique solution for the error pattern. Rather, 
there are 2" error patterns that satisfy Equation (10.23) and therefore result in the same 
syndrome, in accordance with Property 2 and Equation (10.22). In particular, with 2"-k 
possible syndrome vectors, the information contained in the syndrome s about the error 
pattern e is not enough for the decoder to compute the exact value of the transmitted code 
vector. Nevertheless, knowledge of the syndrome s reduces the search for the true error 
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pattern e from in to 2n-k possibilities. Given these possibilities, the decoder has the task 
of making the best selection from the cosets corresponding to s. 

Ill MINIMUM DISTANCE CONSIDERATIONS 

Consider a pair of code vectors c1 and c2 that have the same number of elements. The 
Hamming distance d(ci. c2) between such a pair of code vectors is defined as the number 
of locations in which their respective elements differ. 

The Hamming weight w(c) of a code vector c is defined as the number of nonzero 
elements in the code vector. Equivalently, we may state that the Hamming weight of a 
code vector is the distance between the code vector and the all-zero code vector. 

The minimum distance dmin of a linear block code is defined as the smallest Hamming 
distance between any pair of code vectors in the code. That is, the minimum distance is 
the same as the smallest Hamming weight of the difference between any pair of code 
vectors. From the closure property of linear block codes, the sum (or difference) of two 
code vectors is another code vector. Accordingly, we may state that the minimum distance 
of a linear block code is the smallest Hamming weight of the nonzero code vectors in the 
code. 

The minimum distance drun is related to the structure of the parity-check matrix H 
of the code in a fundamental way. From Equation (10.16) we know that a linear block 
code is defined by the set of all code vectors for which cHT = 0, where HT is the transpose 
of the parity-check matrix H. Let the matrix H be expressed in terms of its columns as 
follows: 

H = [hi, hz, ... , hn] (10.24) 

Then, for a code vector c to satisfy the condition cHT = O, the vector c must have ls in 
such positions that the corresponding rows of HT sum to the zero vector 0. However, by 
definition, the number of ls in a code vector is the Hamming weight of the code vector. 
Moreover, the smallest Hamming weight of the nonzero code vectors in a linear block 
code equals the minimum distance of the code. Hence, the minimum distance of a linear 
block code is defined by the minimum number of rows of the matrix HT whose sum is 
equal to the zero vector. 

The minimum distance of a linear block code, dmin• is an important parameter of the 
code. Specifically, it determines the error-correcting capability of the code. Suppose an 
(n, k) linear block code is required to detect and correct all error patterns (over a binary 
symmetric channel), and whose Hamming weight is less than or equal to t. That is, if a 
code vector c; in the code is transmitted and the received vector is r = c; + e, we require 
that the decoder output c = c;, whenever the error pattern e has a Hamming weight 
w(e) :5 t. We assume that the 2k code vectors in the code are transmitted with equal 
probability. The best strategy for the decoder then is to pick the code vector closest to the 
received vector r, that is, the one for which the Hamming distance d(c,, r) is the smallest. 
With such a strategy, the decoder will be able to detect and correct all error patterns of 
Hamming weight w(e) :5 t, provided that the minimum distance of the code is equal to or 
greater than 2t + 1. We may demonstrate the validity of this requirement by adopting a 
geometric interpretation of the problem. fu particular, the 1-by-n code vectors and the 
1-by-n received vector are represented as points in an n-dimensional space. Suppose that 
we construct two spheres, each of radius t, around the points that represent code vectors 
c; and ci. Let these two spheres be disjoint, as depicted in Figure 10.6a. For this condition 
to be satisfied, we require that d(c;, c;) ~ 2t + 1. If then the code vector c; is transmitted 
and the Hamming distance d(c;, r) :5 t, it is clear that the decoder will pick c; as it is the 
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(a) (b) 

FIGURE 10.6 {a) Hamming distance d(c,, c1) 2: 2t + 1. (b) Hamming distance d(c,, c;) < 2t. 
The received vector is denoted by r. 

code vector closest to the received vector r. If, on the other hand, the Hamming distance 
d(e;, ci) ~ 2t, the two spheres around c1 and ci intersect, as depicted in Figure 10.6b. Here 
we see that if c1 is transmitted, there exists a received vector r such that the Hamming 
distance d(c,, r) ~ t, and yet r is as close to ci as it is to c,. Clearly, there is now the 
possibility of the decoder picking the vector c;, which is wrong. We thus conclude that an 
(n, k) linear block code has the power to correct all error patterns of weight t or less if, 
and only if, 

for all c, and c; 

By definition, however, the smallest distance between any pair of code vectors in a code 
is the minimum distance of the code, dmin· We may therefore state that an (n, k) linear 
block code of minimum distance'dmin can correct up to terrors if, and only if, 

(10.25) 

where L J denotes the largest integer less than or equal to the enclosed quantity. Equation 
(10.25) gives the error-correcting capability of a linear block code a quantitative meaning. 

Ii SYNDROME DECODING 

We are now ready to describe a syndrome-based decoding scheme for linear block codes. 
Let c,, c,, ... , c2 • denote the 2k code vectors of an (n, k) linear block code. Let r denote 
the received vector, which may have one of 2" possible values. The receiver has the task 
of partitioning the 2n possible received vectors into 2k disjoint subsets '2ll,, '2ll 2, ... , '!!! 2• in 
such a way that the ith subset '2ll1 corresponds to code vector c1 for 1 ~ i ~ 2k. The received 
vector r is decoded into c, if it is in the ith subset. For the decoding to be correct, r must 
be in the subset that belongs to the code vector c, that was actually sent. 

The 2k subsets described herein constitute a standard array of the linear block code. 
To construct it, we may exploit the linear structure of the code by proceeding as follows: 

1. The 2k code vectors are placed in a row with the all-zero code vector c1 as the left­
most element. 

2. An error pattern ~ is picked and placed under Ci, and a second row is formed by 
adding e2 to each of the remaining code vectors in the first row; it is important that 
the error pattern chosen as the first element in a row not have previously appeared 
in the standard array. 

3. Step 2 is repeated until all the possible error patterns have been accounted for. 

Figure 10. 7 illustrates the structure of the standard array so constructed. The lk columns 
of this array represent the disjoint subsets '2lli, '2ll 2, .•. , '2il 2k. The r-k rows of the array 
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c, =D c, c, C; Cz' ., C2 + e2 C3 + e2 C;+ e2 C2k+ e2 ., Cz + 83 C3 + e3 Ci+ e3 C:f + e3 

.j C2 + ej C3 + ej Ci+ el C2k+ ej 

e2n-k c2 + e2"-k c3 + B;ti-k C; + 8'2_'1-k C2k + e2n-k 

FIGURE 10.7 Standard array for an (n, k) block code. 

represent the cosets of the code, and their first elements e2' ... , e2 n-k are called coset 
leaders. 

For a given channel, the probability of decoding error is minimized when the most 
likely error patterns (i.e., those with the largest probability of occurrence) are chosen as 
the coset leaders. In the case of a binary symmetric channel, the smaller the Hamming 
weight of an error pattern the more likely it is to occur. Accordingly, the standard array 
should be constructed with each coset leader having the minimum Hamming weight in its 
coset. 

We may now describe a decoding procedure for a linear block code: 

1. For the received vector r, compute the syndrome s = rHT. 
2. Within the coset characterized by the syndrome s, identify the coset leader (i.e., the 

error pattern with the largest probability of occurrence); call it e0• 

3. Compute the code vector 

c=r+e0 

as the decoded version of the received vector r. 

This procedure is called syndrome decoding. 

!!>- ExAMPLE 10,2 Hamming Codes4 

Consider a family of (n, k) linear block codes that have the following parameters: 

Block length: 

Nwnber of message bits: 

Nwnber of parity bits: 

n = 2m - 1 

k = 2m - m - 1 

n k = m 

where m 2: 3. These are the so-called Hamming codes. 

(10.26) 

Consider, for example, the (7, 4) Hamming code with n = 7 and k = 4, corresponding 
to m = 3. The generator matrix of the code must have a structure that conforms to Equation 
(10.12). The following matrix represents an appropriate generator matrix for the (7, 4) Ham­
ming code: 

G= 
[

1 1 o : 1 o o ol 
0 1 1;0 1 0 0 

1 1 1;0 0 1 0 

101:0001 
'--,----' . ._,___...., 

P r. 
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TABLE 10.l Code words of a (7, 4) Hamming code 

Message Weight of Message Weight of 
Word Code Word Code Word Word Code Word Code Word 

0000 0000000 0 1 0 0 0 1101000 3 
0 0 0 1 1010001 3 1001 0111001 4 
0010 1110010 4 101 0 0011010 3 
0 0 11 0100011 .3 101 1 1001011 4 
0100 0110100 3 1100 1011100 4 
0 101 1100101 4 1101 0001101 3 
0 11 0 1000110 3 111 0 0101110 4 
0 111 0010111 4 11 1 1 1111111 7 

The corresponding parity-check matrix is given by 

[

1 0 0: 1 0 1 

H=010~11 0 

0 0 1·0 1 '-,--' . ~-v--_,.. 
J,,_k pT 

With k = 4, there are 2k = 16 distinct message words, which are listed in Table 
10.1. For a given message word, the corresponding code word is obtained by using Equa­
tion (10.13). Thus, the application of this equation results in the 16 code words listed in 
Table 10.1. 

In Table 10.1, we have also listed the Hamming weights of the individual code words 
in the (7, 4) Hamming code. Since the smallest of the Hamming weights for the nonzero code 
words is 3, it follows that the minimum distance of the code is 3. Indeed, Hamming codes 
have the property that the minimum distance dmm = 3, independent of the value assigned to 
the number of parity bits m. 

To illustrate the relation between the minimum distance dmin and the structure of the 
parity-check matrix H, consider the code word 0110100. In the matrix multiplication defined 
by Equation (10.16), the nonzero elements of this code word "sift" out the second, third, and 
fifth columns of the matrix H yielding 

[:] + [:] + [:]. [:] 

We may perform similar calculations for the remaining 14 nonzero code words. We thus find 
that the smallest number of columns in H that sums to zero is 3, confirming the earlier state­
ment that dmm = 3. 

An important property of Hamming codes is that they satisfy the condition of Equation 
(10.25) with the equality sign, assuming that t = 1. This means that Hamming codes are 
single-error correcting binary perfect codes. 

Assuming single-error patterns, we may formulate the seven coset leaders listed in the 
right-hand column of Table 10.2. The corresponding 23 syndromes, listed in the left-hand 
column, are calculated in accordance with Equation (10.20). The zero syndrome signifies no 
transmission errors. 

Suppose, for example, the code vector [1110010] is sent, and the received vector is 



TABLE 10.2 Decoding 
table for the ( 7, 4) 
Hamming code defined 
in Table 10.1 

Syndrome Error Pattern 

000 0000000 
1 0 0 1000000 
0 1 0 0100000 
001 0010000 
11 0 0001000 
0 11 0000100 
111 0000010 
101 0000001 
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[1100010] with an error in the third bit. Using Equation (10.19), the syndrome is calculated 
to be 

1 0 0 

0 1 0 

0 0 1 

s = [1100010] 1 0 

0 1 

1 

0 

= [O 0 1] 

From Table 10.2 the corresponding coset leader (i.e., error pattern with the highest probability 
of occurrence} is found to be [0010000], indicating correctly that the third bit of the received 
vector is erroneous. Thus, adding this error pattern to the received vector, in accordance with 
Equation (10.26), yields the correct code vector actually sent. <ii 

1111 DuALCODE 

Given a linear block code, we may define its dual as follows. Taking the transpose of both 
sides. of Equation (10.15), we have 

where HT is the transpose of the parity-check matrix of the code, and 0 is a new zero 
matrix. This equation suggests that every (n, k) linear block code with generator matrix 
G and parity-check matrix H has a dual code with parameters (n, n - k), generator matrix 
Hand parity-check matrix G. 

I 10.4 Cyclic Codes 

Cyclic codes form a subclass of linear block codes. Indeed, many of the important linear 
block codes discovered to date are either cyclic codes or closely related to cyclic codes. An 
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advantage of cyclic codes over most other types of codes is that they are easy to encode. 
Furthermore, cyclic codes possess a well-defined mathematical structure, which has led to 
the development of very efficient decoding schemes for them. 

A binary code is said to be a cyclic code if it exhibits two fundamental properties: 

1. Linearity property: The sum of any two code words in the code is also a code word. 
2. Cyclic property: Any cyclic shift of a code word in the code is also a code word. 

Property 1 restates the fact that a cyclic code is a linear block code (i.e., it can be described 
as a parity-ch_eck code); To restate Property 2 in mathematical terms, let the n-tuple 
(c0, Ci, ••• , Cn- 1) denote a code word of an (n, k) linear block code. The code is a cyclic 
code if the n-tuples 

are all code words in the code. 

( Cn-1' Co, • • • ' Cn-2), 

(cn-2' Cn-b • • • , Cn-3), 

To develop the algebraic properties of cyclic codes, we use the elements c0, c1, ... , 
Cn-l of a code word to define the code polynomial 

(10.27) 

where Xis an indeterminate. Naturally, for binary codes, the coefficients are ls and Os. 
Each power of X in the polynomial c(X) represents a one-bit shift in time. Hence, multi­
plication of the polynomial c(X) by X may be viewed as a shift to the right. The key 
question is: How do we make such a shift cyclic? The answer to this question is addressed 
next. 

Let the code polynomial c(X) be multiplied by X 1, yielding 

X1c(X) = Xi(co + c1X + · · · + c._1_ 1xn-i-l + cn_,xn-i 

+ · · · + Cn-lxn-l) 

= c0X' + c1X1+1 + · · · + cn_1_1x•-1 + c._,xn 
+ ... + c.-1Xn+1-1 

= c._,x• + · · · + Cn-1Xn+i-1 + c0X' + c1x1+ 1 

+ · · · + Cn-i-1xn-l 

(10.28) 

where, in the last line, we have merely rearranged terms. Recognizing, for example, that 
Cn-i + c._1 = 0 in modulo-2 addition, we may manipulate the first i terms of Equation 
(10.28) as follows: 

X'c(X) = c.-1 + · · · + Cn-1X
1- 1 + c0X 1 + c1X1+1 + · · · + cn-1-1Xn-1 

+ cn-1(X" + 1) + · · · + c._1x1
-

1 (Xn + 1) 

Next, we introduce the following definitions: 

c<1>(X) = Cn-i + · · · + Cn-1X
1- 1 + eaX1 + c1X 1+ 1 

+ ... + Cn-1-1Xn-1 

q(X) = Cn-i + Cn-1+1X + · · · + Cn-1X1- 1 

(10.29) 

(10.30) 

(10.31) 
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Accordingly, Equation (10.29) is reformulated in the compact form 

X'c(X) = q(X)(X" + 1) + d'l(X) (10.32) 

The polynomial d 11 (X) is recognized as the code polynomial of the code word (cn-i• ... , 
Cn-1' c0 , Ci. ••. , Cn-;- 1 ) obtained by applying i cyclic shifts to the code word (c0 , c,, ... , 
cn-i-1' cn-;, ... , c"_i). Moreover, from Equation (10.32) we readily see that cl'1(X) is the 
remainder that results from dividing X'c(X) by (X" + 1). We may thus formally state the 
cyclic property in polynomial notation as follows: If c(X) is a code polynomial, then the 
polynomial 

(10.33) 

is also a code polynomial for any cyclic shift i; the term mod is the abbreviation for modulo. 
The special form of polynomial multiplication described in Equation (10.33) is referred to 
as multiplication modulo X" + 1. In effect, the multiplication is subject to the constraint 
X" = 1, the application of which restores the polynomial X 1c(X) to order n 1 for all 
i < n. (Note that in modulo-2 arithmetic, X" + 1 has the same value as xn - 1.) 

!!ii GENERATOR POLYNOMIAL 

The polynomial X" + 1 and its factors play a major role in the generation of cyclic codes. 
Let g(X) be a polynomial of degree n - k that is a factor of xn + 1; as such, g(X) is the 
polynomial of least degree in the code. In general, g(X) may be expanded as follows: 

n-k-1 

g(X) = 1 + L g,X' + xn-k (10.34) 
i=l 

where the coefficient g1 is equal to 0 or 1. According to this expansion, the polynomial 
g(X) has two terms with coefficient 1 separated by n - k - 1 terms. The polynomial g(X) 
is called the generator polynomial of a cyclic code. A cyclic code is uniquely determined 
by the generator polynomial g(X) in that each code polynomial in the code can be ex­
pressed in the form of a polynomial product as follows: 

c(X) = a(X)g(X) (10.35) 

where a(X) is a polynomial in X with degree k - 1. The c(X) so formed satisfies the 
condition of Equation (10.33) since g(X) is a factor of X" + 1. 

Suppose we are given the generator polynomial g(X) and the requirement is to encode 
the message sequence (m0 , m,, ... , mk_1 ) into an (n, k) systematic cyclic code. That is, 
the message bits are transmitted in unaltered form, as shown by the following structure 
for a code word (see Figure 10.4): 

(bo, b1, ... ' bn-k-1' --------.­
n - k parity bits 

Let the message polynomial be defined by 

m0 , m1, ••• , mk-1) 
'---y--------' 

k message bits 

m(X) = m0 + m1X + · · · + mk_1xk-I 

and let 

(10.36) 

(10.37) 
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According to Equation (10.1), we want the code polynomial to be in the form 

c(X) = b(X) + X"-km(X) 

Hence, the use of Equations (10.35) and (10.38) yields 

a(X)g(X) = b(X) + xn-km(X) 

Equivalently, in light of modulo-2 addition, we may write 

xn-km(X) ( b(X) 
g(X) = a X) + g(X) 

(10.38) 

(10.39) 

Equation (10.39) states that the polynomial b(X) is the remainder left over after dividing 
xn-km(X) by g(X). 

We may now summarize the steps involved in the encoding procedure for an (n, k) 
cyclic code assured of a systematic structure. Specifically, we proceed as follows: 

1. Multiply the message polynomial m(X) by xn-k. 

2. Divide xn-km(X) by the generator polynomial g(X), obtaining the remainder b(X). 
3. Add b(X) to xn-km(X), obtaining the code polynomial c(X). 

!Ii PARITY-CHECK POLYNOMIAL 

An (n, k) cyclic code is uniquely specified by its generator polynomial g(X) of order 
(n - k). Such a code is also uniquely specified by another polynomial of degree k, which 
is called the parity-check polynomial, defined by 

k-1 

h(X) = 1 + :L h;X + xk (10.40) 
i=J 

where the coefficients h; are 0 or 1. The parity-check polynomial h(X) has a form similar 
to the generator polynomial in that there are two terms with coefficient 1, but separated 
by k - 1 terms. 

The generator polynomial g(X) is equivalent to the generator matrix Gas a descrip­
tion of the code. Correspondingly, the parity-check polynomial, denoted by h(X), is an 
equivalent representation of the parity-check matrix H. We thus find that the matrix re­
lation HGT= 0 presented in Equation (10.15) for linear block codes corresponds to the 
relationship 

g(X)h(X) mod(Xn + 1) = 0 (10.41) 

Accordingly, we may state that the generator polynomial g(X) and the parity-check poly­
nomial h(X) are factors of the polynomial X" + 1, as shown by 

g(X)h(X) = X" + 1 (10.42) 

This property provides the basis for selecting the generator or parity-check polynomial of 
a cyclic code. In partirngr, we may state that if g(X) is a polynomial of degree (n- k) 
and it is also a factor of xn+ l, then g(X) is the generator polynomial of an (n, k) cyclic 
code. Equivalently, we may state that if h(X) is a polynomial of degree k and it is also a 
factor of X" + 1, then h(X) is the parity-check polynomial of an (n, k) cyclic code. 

A final comment is in order. Any factor of X" + 1 with degree (n - k), the number 
of parity bits, can be used as a generator polynomial. For large values of n, the polynomial 
xn + 1 may have many factors of degree n - k. Some of these polynomial factors generate 
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good cyclic codes, whereas some of them generate bad cyclic codes. The issue of how to 
select generator polynomials that produce good cyclic codes is very difficult to resolve. 
Indeed, coding theorists have expended much effort in the search for good cyclic codes. 

llll GENERATOR AND PARI'IY·CHECK MATRICES 

Given the generator polynomial g(X) of an (n, k) cyclic code, we may construct the gen­
erator matrix G of the code by noting that the k polynomials g(X), Xg(X), ... , xk-1g(X) 
span the code. Hence, the n-tuples corresponding to these polynomials may be used as 
rows of the k-by-n generator matrix G. 

However, the construction of the parity-check matrix H of the cyclic code from the 
parity-check polynomial h(X) requires special attention, as described here. Multiplying 
Equation (10.42) by a(x) and then using Equation (10.35), we obtain 

c(X)h(X) = a(X) + Xna(X) (10.43) 

The polynomials c(X) and h(X) are themselves defined by Equations (10.27) and (10.40), 
respectively, which means that their product on the left-hand side of Equation (10.43) 
contains terms with powers extending up to n + k - 1. On the other hand, the polynomial 
a(X) has degree k - 1 or less, the implication of which is thatthe powers of Xk, Xk+ 1

, ••• , 

xn-1 do not appear in the polynomial on the right-hand side of Equation (10.43). Thus, 
setting the coefficients of Xk, xk- 1

, ••• , xn-1 in the expansion of the product polynomial 
c(X)h(X) equal to zero, we obtain the following set of n - k equations: 

j+k 

2: c,hk+i-i = 0 
i=j 

forOsjsn-k-1 (10.44) 

Comparing Equation ( 10.44) with the corresponding relation of Equ<1tion ( 10.16), we may 
make the following important observation: The coefficients of the parity-check polynomial 
h(X) involved in the polynomial multiplication described in Equation (10.44) are arranged 
in reversed order with respect to the coefficients of the parity-check matrix H involved in 
forming the inner product of vectors described in Equation (10.16). This observation sug­
gests that we define the reciprocal of the parity-check polynomial as follows: 

k-1 (10.45) 

= 1 + 2: hk-X' + xk 
i=1 

which is also a factor of xn + 1. The n-tuples pertaining to the (n - k) polynomials 
Xkh(X- 1 ), xk+1h(X-1 ), ••• , xn- 1h(X-1 ) may now be used in rows of the (n - k)-by-n 
parity-check matrix H. 

In general, the generator matrix G and the parity-check matrix H constructed in the 
manner described here are not in their systematic forms. They can be put into their sys­
tematic forms by performing simple operations on their respective rows, as illustrated in 
Example 10.3. 

~ ENCODER FOR CYCLIC CODES 

Earlier we showed that the encoding procedure for an (n, k) cyclic code in systematic form 
involves three steps: (1) multiplication of the message polynomial m(X) by xn-k, (2) di-
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Flip-flop Modulo-2 
adder 

Message bits 0------0·-' 

FIGURE 10.S Encoder for an (n, k) cyclic code. 

Code 
Wllrd 

vision of xn-km(X) by the generator polynomial g(X) to obtain the remainder b(X), and 
(3) addition of b(X) to xn-km(X) to form the desired code polynomial. These three steps 
can be implemented by means of the encoder shown in Figure 10.8, consisting of a linear 
feedback shi~ register with (n - k) stages. 

The boxes in Figure 10.8 represent flip-flops, or unit-delay elements. The flip-flop is 
a device that resides in one of two possible states denoted by 0 and 1. An external clock 
(not shown in Figure 10.8) controls the operation of all the flip-flops. Every time the clock 
ticks, the contents of the flip-flops (initially set to the state 0) are shifted out in the direction 
of the arrows. In addition to the flip-flops, the encoder of Figure 10.8 includes a second 
set of logic elements, namely, adders, which compute the modulo-2 sums of their respective 
inputs. Finally, the multipliers multiply their respective inputs by the associated coeffi­
cients. In particular, if the coefficient g; = 1, the multiplier is just a direct "connection." 
If, on the other hand, the coefficient g; = 0, the multiplier is "no connection." 

The operation of the encoder shown in Figure 10.8 proceeds as follows: 

1. The gate is switched on. Hence, the k message bits are shifted into the channel. As 
soon as the k message bits have entered the shift register, the resulting (n - k) bits 
in the register form the parity bits [recall that the parity bits are the same as the 
coefficients of the remainder b(X)]. 

2. The gate is switched off, thereby breaking the feedback connections. 
3. The contents of the shift register are read out into the channel. 

ill CALCULATION OF THE SYNDROME 

Suppose the code word (c0, Ci, ••• , Cn-i) is transmitted over a noisy channel, resulting in 
the received word (ro, r 1, ••• , r n- 1). From Section 10.3, we recall that the first step in the 
decoding of a linear block code is to calculate the syndrome for the received word. If the 
syndrome is zero, there are no transmission errors in the received word. If, on the other 
hand, the syndrome is nonzero, the received word contains transmission errors that require 
correction. 

In the case of a cyclic code in systematic form, the syndrome can be calculated easily. 
Let the received word be represented by a polynomial of degree n - 1 or less, as shown 
by 

r(X) = ro + r,X + · · · + rn_ 1xn-t (10.46) 



10.4 Cyclic COtks 647 

Let q(X) denote the quotient and s(X) denote the remainder, which are the results of 
dividing r(X) by the generator polynomialg(X). We may therefore express r(X) as follows: 

r(X) = q(X)g(X) + s(X) (10.47) 

The remainder s(X) is a polynomial of degree n - k - 1 or less, which is the result of 
interest. It is called the syndrome polynomial because its coefficients make up the (n - k)­
by-1 syndromes. 

Figure 10.9 shows a syndrome calculator that is identical to the encoder of Figure 
10.8 except for the fact that the received bits are fed into the (n - k) stages of the feedback 
shift register from the left. As soon as all the received bits have been shifted into the shift 
register, its contents define the syndrome s. 

The syndrome polynomial s(X) has the following useful properties that follow from 
the definition given in Equation (10.47). 

1. The syndrome of a received word polynomial is also the syndrome of the corresponding 
error polynomial. 

Given that a cyclic code with polynomial c(X) is sent over a noisy channel, the received 
word polynomial is defined by 

r(X) = c(X) + e(X) 

where e(X) is the error polynomial. Equivalently, we may write 

e(X) = r(X) + c(X) 

Hence, substituting Equations (10.35) and (10.47) into (10.49), we get 

e(X) = u(X)g(X) + s(X) 

(10.48) 

(10.49) 

(10.50) 

where the quotient is u(X) = a(X) + q(X). Equation (10.50) shows that s(X) is also the 
syndrome of the error polynomial e(X). The implication of this property is that when the 
syndrome polynomial s(X) is nonzero, the presence of transmission errors in the received 
word is detected. 

2. Let s(X) be the syndrome of a received word polynomial r(X). Then, the syndrome of 
Xr(X), a cyclic shift of r(X), is Xs(X). 

Applying a cyclic shift to both sides of Equation (10.47), we get 

Xr(X) = Xq(X)g(X) + Xs(X) 

Flip-flop Modulo-2 
adder 

FIGl.JRE 10,9 Syndrome calculator for (n, k) cyclic code. 

(10.51) 
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from which we readily see that Xs(X) is the remainder of the division of Xr(X) by g(X). 
Hence, the syndrome of Xr(X) is Xs(X) as stated. We may generalize this result by stating 
that if s(X) is the syndrome of r(X), then X's(X) is the syndrome of X'r(X). 

3. The syndrome polynomial s(X) is identical to the error polynomial e(X), assuming that 
the errors are confined to the (n - k) parity-check bits of the received word polynomial 
r(X). 

The assumption made here is another way of saying that the degree of the error polynomial 
e(X) is less than or equal to (n - k - 1). Since the generator polynomial g(X) is of degree 
(n - k), by definition, it follows that Equation (10.50) can only be satisfied if the quotient 
u(X) is zero. In other words, the error polynomial e(X) and the syndrome polynomial s(X) 
are one and the same. The implication of Property 3 is that, under the aforementioned 
conditions, error correction can be accomplished simply by adding the syndrome poly­
nomial s(X) to the received word polynomial r(X). 

ii> EXAMPLE 10.3 Hamming Codes Revisited 

To illustrate the issues relating to the polynomial representation of cyclic codes, we consider 
the generation of a (7, 4) cyclic code. With the block length n = 7, we start by factorizing 
X7 + 1 into three irreducible polynomials: 

X7 + 1 = (1 + X)(l + X2 + X3)(1 + X + X3
) 

By an "irreducible polynomial" we mean a polynomial that cannot be factored using only 
polynomials with coefficients from the binary field. An irreducible polynomial of degree 
m is said to be primitive if the smallest positive integer n for which the polynomial divides 
X" + 1 is n = 2m - 1. For the example at hand, the two polynomials (1 + X2 + X3) and 
( 1 + X + X3

) are primitive. Let us take 

g(X) = 1 + X + X3 

as the generator polynomial, whose degree equals the number of parity bits. This means that 
the parity-check polynomial is given by 

h(X) = (1 + X)(l +X2 + X3
) 

=l+x+x2 +X4 

whose degree equals the number of message bits k = 4. 
Next, we illustrate the procedure for the construction of a code word by using this 

generator polynomial to encode the message sequence 1001. The corresponding message poly­
nomial is given by 

m(X) = 1 + X3 

Hence, multiplying m(X) by x•-k = X3, we get 

xn-km(X) = X 3 + X 6 

The second step is to divide x•-km(X) by g(X), the details of which (for the example at hand) 
are given below: 

X3 + X 
X' + X + 1)x• + X3 

X6 + X4 + X3 

x• 
x• + x 2 + x 

x 2 + x 
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Note that in this long division we have treated subtraction the same as adclition, since we are 
operating in modulo-2 arithmetic. We may thus write 

X' + x6 = x + X' + x + xi 
1 + X + X 3 1 + X + X 3 

That is, the quotient a(X) and remainder b(X) are as follows, respectively: 

a(X) = X + X 3 

b(X) = X + X2 

Hence, from Equation (10.38) we find that the desired code polynomial is 

c(X) = b(X) + x•-•m(X) 

X + X2 + X3 + X6 

The code word is therefore 0111001. The four right-most bits, 1001, are the specified message 
bits. The three left-most bits, 011, are the parity-check bits. The code word thus generated is 
exactly the same as the corresponding one shown in Table 10.1 for a (7, 4) Hamming code. 

We may generalize this result by stating that any cyclic code generated by a primitive 
polynomial is a Hamming code of minimum distance 3. 

We next show that the generator polynomial g(X) and the parity-check polynomial 
h(X) uniquely specify the generator mattix G and the parity-<:heck matrix H, respectively. 

To construct the 4-by-7 generator matrix G, we start with four polynomials represented 
by g(X) and three cyclic-shifted versions of it, as shown by 

g(X) = 1 + X + X 3 

Xg(X) = X + X2 + X4 

X2g(X) = X2 + X3 + X5 

X3g(X) = X3 + X4 + X6 

The polynomials g(X), Xg(X), X2g(X), and X3g(X) represent code polynomials in the (7, 4) 
Hamming code. If the coefficients of these polynomials are used as the elements of the rows 
of a 4-by-7 matrix, we get the following generator matrix: 

G' = [~ ~ ~ ~ ~ ~ ~1 
0 0 1 1 0 1 0 

0 0 0 1 1 0 1 

Clearly, the generator matrix G' so constructed is not in systematic form. We can put it into 
a systematic form by adding the first row to the third row, and adcling the sum of the first 
two rows to the fourth row. These manipulations result in the desited generator matrix: 

[

1 1 o 1 o o ol 
0 1 1 0 1 0 0 

G= 
1 1 1 0 0 1 0 

1 0 1 0 0 0 1 

which is exactly the same as that in Example 10.2. 
We next show how to construct the 3-by-7 parity-check matrix H from the parity-check 

polynomial h(X). To do this, we first take the reciprocal of h(X), namely, X4h(X- 1
). For the 

problem at hand, we form three polynomials represented by X 4h(X-1) and two shifted ver­
sions of it, as shown by 

X4h(x-1
) = 1 + x 2 + x' + x• 

X'h(X- 1
) = X + X3 + X4 + X-' 

X 6h(x- 1
) = x 2 + x• + x' + X6 
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Message bits 0------0.0,-

Code 
word 

FIGURE IO.IO Encoder for the (7, 4) cyclic code generated by g(X) = l + X + X'. 

Using the coefficients of these three polynomials as the elements of the rows of the 3-by-7 
parity-check matrix, we get 

[

1 0 1 1 

H'=OlOl 

0 0 1 0 

0 OJ 1 0 

1 1 

Here again we see that the matrix H' is not in systematic form. To put it into a systematic 
form, we add che third row to the first row to obtain 

H = [~ ~ ~ ~ 0 

0 0 1 0 

1 1] 
1 0 

1 1 

which is exactly the same as that of Example 10.2. 
Figure 10.10 shows the encoder for the (7, 4) cyclic Hamming code generated by the 

polynomial g(X) = 1 + X + X 1
• To illustrate the operation of this encoder, consider the 

message sequence (1001 ). The contents of the shift register are modified by the incoming 
message bits as in Table 10.3. After four shifts, the contents of the shift register, and therefore 
the parity bits, are (011). Accordingly, appending these parity bits to the message bits (1001 ), 
we get the code word (0111001); this result is exa~-rly the same as that determined earlier in 
the example. 

Figure 10.11 shows the corresponding syndrome calculator for the (7, 4) Hamming 
code. Let the transmitted code word be (0111001) and the received word be (0110001); that 
is, the middle bit is in error. As the received bits are fed into the shift register, initially set to 
zero, its contents are modified as in Table 10.4. At the end of the seventh shift, the syndrome 
is identified from the contents of the shift register as 110. Since the syndrome is nonzero, the 
received word is in error. Moreover, from Table 10.2, we see that the error pattern corre­
sponding to this syndrome is 0001000. This indicates that the error is in the middle bit of the 
received word, which is indeed the case. _,. 

TABLE 10.3 Contents of the 
shift register in the encoder 
of Figure 10.10 for message 
sequence ( 1001) 

Shift Input Register Contents 

0 0 0 (initial state) 
1 1 1 0 

2 0 0 1 1 
3 0 11 1 
4 0 11 
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Received 
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bits .l )D .l )D .~ 
Modulo-2 Flip-flop 

adder 

FIGURE 10.11 Syndrome calculator for the (7, 4) cyclic code generated by the polynomial 
g(X) = 1 +X+X3

• 

~ EXAMPLE 10.4 Maximal-Length Codes 

For any positive integer m ::o- 3, there exists a maximal-length code with the following 
parameters: 

Block length: 

Number of message bits: 

Minimum distance: 

n = 2m 

k=m 

Maximal-length codes are generated by polynomials of the form 

1 + X" 
g(X) = ---;;(X} (10.52) 

where h(X) is any primitive polynomial of degree m. Earlier we stated that any cyclic code 
generated by a primitive polynomial is a Hamming code of minimum distance 3 (see Example 
10.3). It follows therefore that maximal-length codes are the dual of Hamming codes. 

The polynomial h(X) defines the feedback connections of the encoder. The generator 
polynomial g(X) defines one period of the maximal-lengch code, assuming chat the encoder is 
in the initial state 00 ... 01. To illustrate these points, consider the example of a (7, 3) 
maximal-length code, which is the dual of the (7, 4) Hamming code described in Example 
10.3. Thus, choosing 

h(X) 1 + X + X 3 

we find that the generator polynomial of the (7, 3) maximal-length code is 

g(X) 1 + x + x1 + X 4 

TABLE I 0.4 Contents of the syndrome 
calculator in Figure 10.11 for the 
received word 0110001 

Shift Input Bit Contents of Shift Register 

0 0 0 (initial state) 
1 1 1 0 0 
2 0 0 1 0 
3 0 001 
4 0 11 0 
5 11 1 
6 0 0 1 
7 0 1 1 0 
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Modulo-2 Flip-flop 
adder 

FIGURE 10.12 Encoder for the (7, 3) maximal-length code; the initial state of the encoder is 
shown in the figure. 

Figure 10.12 shows the encoder for the (7, 3) maximal-length code, the feedback connections 
of which are exactly the same as those shown in Figure 8.2 in Chapter 8. The period of the 
code is n = 7. Thus, assuming that the encoder is in the initial state 001, as indicated in Figure 
10.12, we find the output sequence is described by 

1 0 0 1 1 1 0 1 0 0 
'----y------' 

initial g(X) = 1 + x + x2 + x• 
state 

This result may be readily validated by cycling through the encoder of Figure 10.12. 
Note that if we were to choose the other primitive polynomial 

h(X) = 1 + X 2 + X' 

for the (7, 3) maximal-length code, we would simply get the "image" of the code described 
above, and the output sequence would be "reversed" in time. ~ 

Ill OTHER CYCLIC CODES 

We conclude the discussion of cyclic codes by presenting the characteristics of three other 
important classes of cyclic codes. 

Cyclic Redundancy Check Codes 

Cyclic codes are extremely well-suited for error detection. We make this statement 
for two reasons. First, they can be designed to detect many combinations of likely errors. 
Second, the implementation of both encoding and error-detecting circuits is practical. It is 
for these reasons that many of the error-detecting codes used in practice are of the cyclic­
code type. A cyclic code used for error-detection is referred to as cyclic redundancy check 
(CRC) code. 

We define an error burst of length B in an n-bit received word as a contiguous 
sequence of B bits in which the first and last bits or any number of intermediate bits are 
received in error. Binary (n, k) CRC codes are capable of detecting the following error 
patterns: 

1. All error bursts of length n - k or less. 
2. A fraction of error bursts of length equal to n - k + 1; the fraction equals 

1 _ 2-(n-k-1)
0 

3. A fraction of error bursts of length greater than n - k + 1; the fraction equals 
1 2-(n-k-1)• 

4. All combinations of dmin - 1 (or fewer) errors. 
5. All error patterns with an odd number of errors if the generator polynomial g(X) 

for the code has an even number of nonzero coefficients. 
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I TABLE 10.5 CRC codes 

Code 

CRC-12 code 
CRC-16 code (USA) 
CRC-ITIJ code 

Generator Polynomial, g(X) 

1 + x + x2 + x' + x11 + x12 

1 + x2 + X 15 + x1
• 

1 + X 5 + X 12 + X 16 

n -k 

12 
16 
16 

Table 10.5 presents the generator polynomials of three CRC codes that have become 
international standards. All three codes contain 1 + X as a prime factor. The CRC-12 
code is used for 6-bit characters, and the other two codes are used for 8-bit characters. 
CRC codes provide a powerful method of error detection for use in automatic-repeat 
request (ARQ) strategies discussed in Section 10.1, and digital subscriber lines discussed 
in Chapter 4. 

Bose-Chaudhuri-Hocqnenghem (BCH) Codes5 

One of the most important and powerful classes of linear-block codes are BCH codes, 
which are cyclic codes with a wide variety of parameters. The most common binary BCH 
codes, known as primitive BCH codes, are characterized for any positive integers m (equal 
to or greater than 3) and t [less than (2m - 1)/2] by the following parameters: 

Block length: n = 2m - 1 

Number of message bits: k 2: n - mt 

Minimum distance: dm;n 2: 2t + 1 
Each BCH code is a t-error correaing code in that it can detect and correct up tot random 
errors per code word. The Hamming single-error correcting codes can be described as 
BCH codes. The BCH codes offer 'flexibility in the choice of code parameters, namely, 
block length and code rate. Furthermore, for block lengths of a few hundred bits or less, 
the BCH codes are among the best known codes of the same block length and code rate. 

A detailed treatment of the construction of BCH codes is beyond the scope of 
our present discussion. To provide a feel for their capability, we present in Table 10.6, the 
code parameters and generator polynomials for binary block BCH codes of length up to 
25 

- 1. For example, suppose we wish to construct the generator polynomial for (15, 7) 

I TABLE 10.6 Binary BCH codes of length up to 2 5 
- 1 

n k Generator Polynomial 

7 4 011 
15 11 1 10 011 
15 7 2 111 010 001 
15 5 3 10 100 110 111 
31 26 100 101 
31 21 2 11 101 101 001 
31 16 3 000 111 110 101 111 
31 11 5 101 100 010 011 011 010 101 
31 6 7 11 001 011 011 110 101 000 100 111 

Notation;n block length 
k = number of message bits 
t = maximum number of detectable errors 

The high-order coefficients of the generator polynomial g(X) are at the left. 
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BCH code. From Table 10.6 we have (111 010 001) for the coefficients of the generator 
polynomial; hence, we write 

g(Xl = X 8 + x 1 + X6 + X4 + 1 

Heed-Solomon Codes6 

The Reed-Solomon codes are an important subclass of nonbinary BCH codes; they 
are often abbreviated as RS codes. The encoder for an RS code differs from a binary 
encoder in that it operates on multiple bits rather than individual bits. Specifically, an RS 
(n, k) code is used to encode m-bit symbols into blocks consisting of n = 2m - 1 symbols, 
that is, m(2m - 1) bits, where m ;:,,: 1. Thus, the encoding algorithm expands a block of k 
symbols to n symbols by adding n k redundant symbols. When m is an integer power 
of two, the m-bit symbols are called bytes. A popular value of m is 8; indeed, 8-bit RS 
codes are extremely powerful. 

A t-error-correcting RS code has the following parameters: 

Block length: 

Message size: 

Parity-check size: 

Minimum distance: 

n = 2m - 1 symbols 

k symbols 

n - k = 2t symbols 

dmin = 2t + 1 symbols 

The block length of the RS code is one less than the size of a code symbol, and the minimum 
distance is one greater than the number of parity-check symbols. The RS codes make highly 
efficient use of redundancy, and block lengths and sy~bol sizes can be adjusted readily to 
_accommodate a wide range of message sizes. Moreover, the RS codes provide a wide range 
of code rates that can be chosen to optimize performance. Finally, efficient decoding tech­
niques are available for use with RS codes, which is one more reason for their wide ap­
plication (e.g., compact disc digital audio systems). 

I 10.5 Convolutional Codes7 

In block coding, the encoder accepts a k-bit message block and generates an n-bit code 
word. Thus, code words are produced on a block-by-block basis. Clearly, provision must 
be made in the encoder to buffer an entire message block before generating the associated 
code word. There are applications, however, where the message bits come in serially rather 
than in large blocks, in which case the use of a buffer may be undesirable. In such situa­
tions, the use of convolutional coding may be the preferred method. A convolutional coder 
generates redundant bits by using modulo-2 convolutions, hence the name. 

The encoder of a binary convolutional code with rate 1/n, measured in bits per 
symbol, may be viewed as a finite-state machine that consists of an M-stage shift register 
with prescribed connections to n modulo-2 adders, and a multiplexer that serializes the 
outputs of the adders. An L-bit message sequence produces a coded output sequence of 
length n(L + M) bits. The code rate is therefore given by 

L 
r = n(L + M) bits/symbol 

Typically, we have L >> M. Hence, the code rate simplifies to 

1 
r = -

n 
bits/symbol 

(10.53) 

(10.54) 
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The constraint length of a convolutional code, expressed in terms of message bits, is defined 
as the number of shifts over which a single message bit can influence the encoder output. 
In an encoder with an M-stage shift register, the memory of the encoder equals M message 
bits, and K = M + 1 shifts are required for a message bit to enter the shift register and 
finally come out. Hence, the constraint length of the encoder is K. 

Figure 10.13a shows a convolutional encoder with n = 2 and K = 3. Hence, the 
code rate of this encoder is 1/2. The encoder of Figure 10.13a operates on the incoming 
message sequence, one bit at a time. 

We may generate a binary convolutional code with rate kin by using k separate shift 
registers with prescribed connections to n modulo-2 adders, an input multiplexer and 

Input 

Flip-flop 

Input 

(a) 

Flip-flop 

(b) 

Modulo-2 
adder 

FIGURE 10.13 (a) Constraint length-3, rate-t convolutional encoder. (b) Constraint length-2, 
rate-~ convolutional encoder. 
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an output multiplexer. An example of such an encoder is shown in Figure 10.13b 
where k = 2, n = 3, and the two shift registers have K = 2 each. The code rate is 213. fu 
this second example, the encoder processes the incoming message sequence two bits at a 
time. 

The convolutional codes generated by the encoders of Figure 10.13 are nonsystematic 
codes. Unlike block coding, the use of nonsystematic codes is ordinarily preferred over 
systematic codes in convolutional coding. 

Each path connecting the output to the input of a convolutional encoder may be 
characterized in terms of its impulse response, defined as the response of that path to a 
symbol 1 applied to its input, with each flip-flop in the encoder set initially in the zero 
state. Equivalently, we may characterize each path in terms of a generator polynomial, 
defined as the unit-delay transform of the impulse response. To be specific, let the generator 
sequence (gg1, g~1 , gYl, ... , g\:}) denote the impulse response of the ith path, where the 
coefficients gg1, g¥1, g~l, ... , gl:} equal 0 or 1. Correspondingly, the generator polynomial 
of the ith path is defined by 

(10.55) 

where D denotes the unit-delay variable. The complete convolutional encoder is described 
by the set of generator polynomials {g(11(D), g 121(D), ... , g(nl(D)). Traditionally, different 
variables are used for the description of convolutional and cyclic codes, with D being 
commonly used for convolutional codes and X for cyclic codes. 

~EXAMPLE 10.5 

Consider the convolutional encoder of Figure 10.13a, which has two paths numbered 1 and 
2 for convenience of reference. The impulse response of path 1 (i.e., upper path) is (1, 1, 1). 
Hence, the cortesponding generator polynomial is given by 

g111(D) = 1 + D + D2 

The impulse response of path 2 (i.e., lower path) is (1, 0, 1). Hence, the corresponding gen­
erator polynomial is given by 

For the message sequence (10011), say, we have the polynomial representation 

m(D) = 1 + D 3 + D 4 

As with Fourier transformation, convolution in the time domain is transformed into multi­
plication in the D-domain. Hence, the output polynomial of path 1 is given by 

d'l(D) = gl'i(D)m(D) 

= (1 + D + D 2 )(1 + D' + D 4
) 

= 1 + D + D 2 + D 3 + D 6 

From this we immediately deduce that the output sequence of path 1 is (1111001). Similarly, 
the output polynomial of path 2 is given by 

c121(D) = if2l(D)m(D) 

= (1 + D 2 )(1 + D3 + D 4
) 

= 1 + D 2 + D 3 + D4 + D5 + D 6 
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The output sequence of path 2 is therefore (1011111). Finally, multiplexing the two output 
sequences of paths 1 and 2, we get the encoded sequence 

c = (11, 10, 11, 11, 01, 01, 11) 

Note that the message sequence of length L = 5 bits produces an encoded sequence of length 
n(L + K 1) = 14 bits. Note also that for the shift register to be restored to its zero initial 
state, a terminating sequence of K 1 = 2 zeros is appended to the last input bit of the 
message sequence. The terminating sequence of K - 1 zeros is called the tail of the message. 

<1!l 

!Ill CODE TREE, TRELLIS, AND STATE DIAGRAM 

Traditionally, the structural properties of a convolutional encoder are portrayed in graph­
ical form by using any one of three equivalent diagrams: code tree, trellis, and state dia­
gram. We will use the convolutional encoder of Figure 10.13a as a running example to 
illustrate the insights that each one of these three diagrams can provide. 

We begin the discussion with the code tree of Figure 10.14. Each branch of the tree 
represents an input symbol, with the corresponding pair of output binary symbols indi­
cated on the branch. The convention used to distinguish the input binary symbols 0 and 
1 is as follows. An input 0 specifies the upper branch of a bifurcation, whereas input 1 
specifies the lower branch. A specific path in the tree is traced from left to right in accor­
dance with the input (message) sequence. The corresponding coded symbols on the 
branches of that path constitute the input (message) sequence. Consider, for example, the 
message sequence (10011) applied to the input ofthe encoder of Figure l0.13a. Following 
the procedure just described, we find that the corresponding encoded sequence is 
(11, 10, 11, 11, 01), which agrees with the first 5 pairs of bits in the encoded sequence {c;} 
derived in Example 10.5. 

From the diagram of Figure 10.14, we observe that the tree becomes repetitive after 
the first three branches. Indeed, beyond the third branch, the two nodes labeled a are 
identical, and so are all the other node pairs that are identically labeled. We may establish 
this repetitive property of the tree by examining the associated encoder of Figure l0.13a. 
The encoder has memory M = K - 1 = 2 message bits. Hence, when the third message 
bit enters the encoder, the first message bit is shifted out of the register. Consequently, 
after the third branch, the message sequences (100 m 3m4 • •• ) and (000 m 3m4 •• • ) generate 
the same code symbols, and the pair of nodes labeled a may be joined together. The same 
reasoning applies to other nodes. Accordingly, we may collapse the code tree of Figure 
10.14 into the new form shown in Figure 10.15, which is called a trellis. 8 It is so called 
since a trellis is a treelike structure with remerging branches. The convention used in Figure 
10.15 to distinguish between input symbols 0 and 1 is as follows. A code branch produced 
by an input 0 is drawn as a solid line, whereas a code branch produced by an input 1 is 
drawn as a dashed line. As before, each input (message) sequence corresponds to a specific 
path through the trellis. For example, we readily see from Figure 10.15 that the message 
sequence (10011) produces the encoded output sequence (11, 10, 11, 11, 01), which agrees 
with our previous result. 

A trellis is more instructive than a tree in that it brings out explicitly the fact that 
the associated convolutional encoder is a finite-state machine. We define the state of a 
convolutional encoder of rate lln as the (K - 1) message bits stored in the encoder's shift 
register. At time j, the portion of the message sequence containing the most recent K bits 
is written as (m;-K-l• ... , m;-1' m;), where m; is the current bit. The (K - 1)-bit state of 
the encoder at time j is therefore written simply as (m;_,, •. . , m;-K+2, m;-K+1). In the 
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FIGURE 10.14 Code tree for the convolutional encoder of Figure IO.Ba. 

case of the simple convolutional encoder of Figure 10.13a we have (K 1) = 2. Hence, 
the state of this encoder can assume any one of four possible values, as described in Table 
10.7. The trellis contains (L + K) levels, where Lis the length of the incoming message 
sequence, and K is the constraint length of the code. The levels of the trellis are labeled as 
j = 0, 1, ... , L + K - 1 in Figure 10.15 for K = 3. Level j is also referred to as depth i; 
both terms are used interchangeably. The first (K - 1) levels correspond to the encoder's 
departure from the initial state a, and the last (K - 1) levels correspond to the encoder's 
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Level}= 0 

FIGURE 10.15 Trellis for the convolutional encoder of Figure 10.13a. 

return to the state a. Clearly, not all the states can be reached in these two portions of the 
trellis. However, in the central portion of the trellis, for which the level j lies in the range 
K - 1 :5 j :5 L, all the states of the encoder are reachable. Note also that the central 
portion of the trellis exhibits a fixed periodic structure. 

Consider next a portion of the trellis corresponding to times j and j + 1. We assume 
that j 2: 2 for the example at hand, so that it is possible for the current state of the encoder 
to be a, b, c, or d. For convenience of presentation, we have reproduced this portion of 
the trellis in Figure 10.16a. The left nodes represent the four possible current states of the 
encoder, whereas the right nodes represent the next states. Clearly, we may coalesce the 
left and right nodes. By so doing, we obtain the state diagram of the encoder, shown in 
Figure 10.16b. The nodes of the figure represent the four possible states of the encoder, 
with each node having two incoming branches and two outgoing branches. A transition 
from one state to another in response to input 0 is represented by a solid branch, whereas 
a transition in response to input 1 is represented by a dashed branch. The binary label on 
each branch represents the encoder's output as it moves from one state to another. Suppose, 
for example, the current state of the encoder is (01), which is represented by node c. The 
application of input 1 to the encoder of Figure 10.13a results in the state (10) and the 
encoded output (00). Accordingly, with the help of this state diagram, we may readily 
determine the output of the encoder of Figure 10.13a for any incoming message sequence. 
We simply start at state a, the all-zero initial state, and walk through the state diagram in 
accordance with the message sequence. We follow a solid branch if the input is a 0 and a 
dashed branch if it is a 1. As each branch is traversed, we output the corresponding binary 
label on the branch. Consider, for example, the message sequence (10011). For this input 
we follow the path abcabd, and therefore output the sequence (11, 10, 11, 11, 01 ), which 

TABLE IO. 7 State table 
for the convolutional 
encoder of Figure 10.13a 

State 

a 
b 
c 

d 

Binary Description 

00 
10 
01 
11 
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FIGURE 10.16 (a) A portion of the central part of the trellis for the encoder of Figure IO.Ba 
(h) State diagram of the convolutional encoder of Figure IO.Ba. 

agrees exactly with our previous result. Thus, the input-output relation of a convolutional 
encoder is also completely described by its state diagram. 

I 0.6 Maximum Likelihood 
Decoding of Convolutional Codes 

Now that we understand the operation of a convolutional encoder, the next issue to be 
considered is the decoding of a convolutional code. In this section we first describe the 
underlying theory of maximum likelihood decoding, and then present an efficient algo­
rithm for its practical implementation. 

Let m denote a message vector, and c denote the corresponding code vector applied 
by the encoder to the input of a discrete memoryless channel. Let r denote the received 
vector, which may differ from the transmitted code vector due to channel noise. Given the 
received vector r, the decoder is required to make an estimate m of the message vector. 
Since there is a one-to-one correspondence between the message vector m and the code 
vector c, the decoder may equivalently produce an estimate c of the code vector. We may 
then put m = m if and only if c = c. Otherwise, a decoding error is committed in the 
receiver. The decoding rule for choosing the estimate c, given the received vector r, is said 
to be optimum when the probability of decoding error is minimized. From the material 
presented in Chapter 6, we may state that for equiprobable messages, the probability of 
decoding error is minimized if the estimate c is chosen to maximize the log-likelihood 
function. Let p(r I c) denote the conditional probability of receiving r, given that c was sent. 
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The log-likelihood function equals log p(r I c). The maximum likelihood decoder or deci­
sion rule is described as follows: 

Choose the estimate c for which the 
log-likelihood function log p(r I c) is maximum. 

(10.56) 

Consider now the special case of a binary symmetric channel. In this case, both the 
transmitted code vector c and the received vector r represent binary sequences of length 
N, say. Naturally, these two sequences may differ from each other in some locations be­
cause of errors due to channel noise. Let c; and r; denote the ith elements of c and r, 
respectively. We then have 

N 

p(r I c) = IT p(r; I c;) 
i=l 

Correspondingly, the log-likelihood is 
N 

log p(r I c) = L log p(r; I c,) 
i=l 

Let the transition probability p(r; I c;) be defined as 

p(r,lc,) = g• _ p, 
if T; ef= C; 

if r; = C; 

(10.57) 

(10.58) 

(10.59) 

Suppose also that the received vector r differs from the transmitted code vector c in exactly 
d positions. The number d is the Hamming distance between vectors r and c. Then, we 
may rewrite the log-likelihood function in Equation (10.58) as 

log p(rlc) = d log p + (N - d) log(l - p) 

= d log(
1 
~ P) + N log(l - p) 

(10.60) 

In general, the probability of an error occurring is low enough for us to assume p < 112. 
We also recognize that N log(l - p) is a constant for all c. Accordingly, we may restate 
the maximum-likelihood decoding rule for the binary symmetric channel as follows: 

Choose the estimate c that minimizes the Hamming distance 
between the received vector r and the transmitted vector c. 

(10.61) 

That is, for the binary symmetric channel, the maximum-likelihood decoder reduces to a 
minimum distance decoder. In such a decoder, the received vector r is compared with each 
possible transmitted code vector c, and the particular one closest to r is chosen as the 
correct transmitted code vector. The term "closest" is used in the sense of minimum num­
ber of differing binary symbols (i.e., Hamming distance) between the code vectors under 
investigation. 

Ell THE VITERBI .ALGORITHM9 

The equivalence between maximum likelihood decoding and minimum distance decoding 
for a binary symmetric channel implies that we may decode a convolutional code by choos­
ing a path in the code tree whose coded sequence differs from the received sequence in the 
fewest number of places. Since a code tree is equivalent to a trellis, we may equally limit 
our choice to the possible paths in the trellis representation of the code. The reason for 
preferring the trellis over the tree is that the number of nodes at any level of the trellis 
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does not continue to grow as the number of incoming message bits increases; rather, it 
remains constant at 2K-1, where K is the constraint length of the code. 

Consider, for example, the trellis diagram of Figure 10.15 for a convolutional code 
with rate r = 112 and constraint length K = 3. We observe that at level j = 3, there are 
two paths entering any of the four nodes in the trellis. Moreover, these two paths will be 
identical onward from that point. Clearly, a minimum distance decoder may make a de­
cision at that point as to which of those two paths to retain, without any loss of perfor­
mance. A similar decision may be made at level j = 4, and so on. This sequence of decisions 
is exactly what the Viterbi algorithm does as it walks through the trellis. The algorithm 
operates by computing a metric or discrepancy for every possible path in the trellis. The 
metric for a particular path is defined as the Hamming distance between the coded sequence 
represented by that path and the received sequence. Thus, for each node (state) in the trellis 
of Figure 10.15 the algorithm compares the two paths entering the node. The path with 
the lower metric is retained, and the other path is discarded. This computation is repeated 
for every level j of the trellis in the range M :S j :S L, where M = K - 1 is the encoder's 
memory and L is the length of the incoming message sequence. The paths that are retained 
by the algorithm are called survivor or active paths. For a convolutional code of constraint 
length K= 3, for example, no more than 2K-t = 4 survivor paths and their metrics will 
ever be stored. This list of 2K -t paths is always guaranteed to contain the maximum­
likelihood choice. 

A difficulty that may arise in the application of the Viterbi algorithm is the possibility 
that when the paths entering a state are compared, their metrics are found to be identical. 
In such a situation, we make the choice by flipping a fair coin (i.e., simply make a guess). 

In summary, the Viterbi algorithm is a maximum-likelihood decoder, which is op­
timum for an A WGN channel. It proceeds in a step-by-step fashion as follows: 

Initialization 

Label the left-most state of the trellis (i.e., the all-zero state at level 0) as 0, since 
there is no discrepancy at this point in the computation. 

Computation step j + 1 

Let j = 0, 1, 2, ... , and suppose that at the previous step j we have done two things: 

~ All survivor paths are identified. 

1> The survivor path and its metric for each state of the trellis are stored. 

Then, at level (clock time) j + 1, compute the metric for all the paths entering each state 
of the trellis by adding the metric of the incoming branches to the metric of the connecting 
survivor path from level j. Hence, for each state, identify the path with the lowest metric 
as the survivor of step j + 1, thereby updating the computation. 

Final Step 

Continue the computation until the algorithm completes its forward search through 
the trellis and therefore reaches the termination node (i.e., all-zero state), at which tinte it 
makes a decision on the maximum likelihood path. Then, like a block decoder, the se­
quence of symbols associated with that path is released to the destination as the decoded 
version of the received sequence. In this sense, it is therefore more correct to refer to the 
Viterbi algorithm as a maximum likelihood sequence estimator. 

However, when the received sequence is very long (near infinite), the storage require· 
ment of the Viterbi algorithm becomes too high, and some compromises must be made. 
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The approach usually taken is to "truncate" the path memory of the decoder as described 
here. A decoding window of length e is specified, and the algorithm operates on a corre­
sponding frame of the received sequence, always stopping after e steps. A decision is then 
made on the "best" path and the symbol associated with the first branch on that path is 
released to the user. The symbol associated with the last branch of the path is dropped. 
Next, the decoding window is moved forward one time interval, and a decision on the 
next code frame is made, and so on. The decoding decisions made in this way are no longer 
truly maximum likelihood, but they can be made almost as good provided that the decod­
ing window is long enough. Experience and analysis have shown that satisfactory results 
are obtained if the decoding window length e is on the order of 5 times the constraint 
length K of the convolutional code or more. 

Iii> EXAMPLE 10.6 Correct Decoding of Received All-Zero Sequence 

Suppose that the encoder of Figure 10.13a generates an all-zero sequence that is sent over a 
binary symmetric channel, and that the received sequence is (0100010000 ... ). There are two 
errors in the received sequence due to noise in the channel: one in the second bit and the other 
in the sixth bit. We wish to show that this double-error pattern is correctable through the 
application of the Viterbi decoding algorithm. 

In Figure 10.17, we show the results of applying the algorithm for level j = 1, 2, 3, 4, 
5. We see that for j = 2 there are (for the first time) four paths, one for each of the four states 
of the encoder. The figure also includes the mettic of each path for each level in the 
computation. 

In the left side of Figure 10.17, for j = 3 we show the paths entering each of the states, 
together with their individual metrics. In the right side of the figure, we show the four survivors 
that result from application of the algorithm for level j = 3, 4, 5. 

Examining the four survivors in Figure 10 .17 for j = 5, we see that the all-zero path 
has the smallest metric and will remain the path of smallest metric from this point forward. 
This clearly shows that the all-zero sequence is the maximum likelihood choice of the Viterbi 
decoding algorithm, which agrees exactly with the transmitted sequence. <!l 

EXAMPLE 10. 7 Incorrect Decoding of Received All-Zero Sequence 

Suppose next that the received sequence is (1100010000 ... ), which contains three errors 
compared to the transmitted all-zero sequence. 

In Figure 10.18, we show the results of applying the Viterbi decoding algorithm for j = 
1, 2, 3, 4. We see that in this example the correct path has been eliminated by level j = 3. 
Clearly, a triple-error pattern is uncorrectable by the Viterbi algorithm when applied to a 
convolutional code of rate 112 and constraint length K = 3. The exception to this rule is a 
triple-error pattern spread over a time span longer than one constraint length, in which case 
it is very likely to be correctable. <Ill 

iii FREE DISTANCE OF A CONVOLUTIONAL CODE 

The performance of a convolutional code depends not only on the decoding algorithm 
used but also on the distance properties of the code. In this context, the most important 
single measure of a convolutional code's ability to combat channel noise is the free distance, 
denoted by dfree· The free distance of a convolutional code is defined as the minimum 
Hamming distance between any two code words in the code. A convolutional code with 
free distance dfrcc can correct t errors if and only if dfree is greater than 2t. 

The free distance can be obtained quite simply from the state diagram of the con­
volutional encoder. Consider, for example, Figure 10.16b, which shows the state diagram 
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FIGURE I 0.18 Illustrating breakdown of the Viterbi algorithm in Example I 0. 7. 

of the encoder of Figure 10.13a. Any nonzero code sequence corresponds to a complete 
path beginning and ending at the 00 state (i.e., node a). We thus find it useful to split this 
node in the manner shown in the modified state diagram of Figure 10.19, which may be 
viewed as a signal-flow graph with a single input and a single output. A signal-flow graph 
consists of nodes and directed branches; it operates by the following rules: 

1. A branch multiplies the signal at its input node by the transmittance characterizing 
that branch. 

2. A node with incoming branches sums the signals produced by all of those branches. 
3. The signal at a node is applied equally to all the branches outgoing from that node. 
4. The transfer function of the graph is the ratio of the output signal to the input signal. 



666 CHAPTER 10 Ill ERROR-CONTROL CODING 

DLj 

I 

I 
I 

I 

I 

DL 

{'\ 
I I 
I I 
\ I 

I 
I 

I 

d 

DL 

D2L I DL D2L 
.--- -3:- ---<f-/ --~------;;i--... 
flo b ...... .._ ___ --E- _____ .,.... c a, 

L 

FIGURE 10.19 Modified state diagram of convolutional encoder. 

Returning to the signal-flow graph of Figure 10.19, we note that the exponent of Don a 
branch in this graph describes the Hamming weight of the encoder output corresponding 
to that branch. The exponent of L is always equal to one, since the length of each branch 
is one. Let T(D, L) denote the transfer function of the signal-flow graph, with D and L 
playing the role of dummy variables. For the example of Figure 10.19, we may readily use 
rules 1, 2, and 3 to obtain the following input-output relations: 

c = DLb + DLd 
b = D

2
La0 + Le} 

d = DLb + DLd (l0.6l) 

a1 = D 2Lc 

where a0 , b, c, d, and a1 denote the node signals of the graph. Solving the set of Equations 
(10.62) for the ratio a1/a 0 , we find that the transfer function of the graph in Figure 10.19 
is given by 

D5L3 
T(D, L) = 1 - DL(1 + L) 

Using the binomial expansion, we may equivalently write 

T(D, L) = D 5L3 L (DL(1 + L))' 
i=O 

(10.63) 

(10.64) 

Setting L = 1 in Equation (10.64), we thus get the distance transfer function expressed in 
the form of a power series: 

T(D, 1) = D 5 + 2D 6 + 4D 7 + · · · (10.65) 

Since the free distance is the minimum Hamming distance between any two code words 
in the code and the distance transfer function T(D, 1) enumerates the number of code 
words that are a given distance apart, it follows that the exponent of the first term in the 
expansion of T(D, 1) defines the free distance. Thus, on the basis of Equation (10.65), the 
convolutional code of Figure 10.l3a has a free distance diree = 5. 

This result indicates that up to two errors in the received sequence are correctable, 
for two or fewer transmission errors will cause the received sequence to be at most at a 
Hamming distance of 2 from the transmitted sequence but at least at a Hamming distance 
of 3 from any other code sequence in the code. In other words, in spite of the presence of 
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TABLE 10.8 Maximum free distances 
attainable with systematic and 
nonsystematic convolutional codes 
of rate 112 

Constraint 
Length K Systematic Nonsystematic 

2 3 3 
3 4 5 

4 4 6 
5 5 7 
6 6 8 
7 6 10 
8 7 10 

any pair of transmission errors, the received sequence remains closer to the transmitted 
sequence than any other possible code sequence. However, this statement is no longer true 
if there are three or more closely spaced transmission errors in the received sequence. These 
observations confirm the results reported earlier in Examples 10.6 and 10.7. 

In using the distance transfer function T(D, 1) to calculate the free distance of a 
convolutional code, it is assumed that the power series in the unit-delay variable D rep­
resenting T(D, 1) is convergent (i.e., its sum has a "finite" value). This assumption is 
required to justify the expansion given in Equation (10.65) for the convolutional code of 
Figure 10.13a. However, there is no guarantee that T(D, 1) is always convergent. When 
T(D, 1) is nonconvergent, an infinite number of decoding errors are caused by a finite 
number of transmission errors; the convolutional code is then subject to catastrophic error 
propagation, and the code is called a catastrophic code.10 In this context it is noteworthy 
that a systematic convolutional code cannot be catastrophic. Unfortunately, for a pre­
scribed constraint length K, the free distances that can be attained with systematic con­
volutional codes using schemes such as those shown in Figure 10.13 are usually smaller 
than for the case of nonsystematic convolutional codes, as indicated in Table 10.8. 

AsYMPTOTIC CODING GAIN11 

The transfer function of the encoder state diagram, modified in a manner similar to that 
illustrated in Figure 10.19, may be used to evaluate a bound on the bit error rate for a 
given decoding scheme; details of this evaluation are, however, beyond the scope of our 
present discussion. Here we simply summarize the results for two special channels, namely, 
the binary symmetric channel and the binary-input additive white Gaussian noise (A WGN) 
channel, assuming the use of binary phase-shift keying (PSK) with coherent detection. 

1. Binary symmetric channel. The binary symmetric channel may be modeled as an ad­
ditive white Gaussian noise channel with binary phase-shift keying (PSK) as the modula­
tion and with hard-decision demodulation. The transition probability p of the binary sym­
metric channel is then equal to the bit error rate (BER) for the uncoded binary PSK system. 
From Chapter 6 we recall that for large values of Eh/N0 , the ratio of signal energy per bit­
to-noise power spectral density, the bit error rate for binary PSK without coding is dom­
inated by the exponential factor exp(-Eh!N0 ). On the other hand, the bit error rate for 
the same modulation scheme with convolutional coding is dominated by the exponential 
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factor exp(-d1""rEb/2N0), where r is the code rate and dfree is the free distance of the 
convolutional code. Therefore, as a figure of merit for measuring the improvement in error 
performance made by the use of coding with hard-decision decoding, we may use the 
exponents to define the asymptotic coding gain (in decibels) as follows: 

G = 10 l (dimr) dB a og10 2 (10.66) 

2. Binary-input A WGN channel. Consider next the case of a memoryless binary-input 
A WGN channel with no output quantization [i.e., the output amplitude lies in the interval 
(-oo, oo)]. For this channe~ theory shows that for large values of Eb/N0 the bit error rate 
for binary PSK with convolutional ~oding is dominated by the exponential factor 
exp(-dfreerEb/N0 ), where the parameters are as previously defined. Accordingly, in this 
case, we find that the asymptotic coding gain is defined by 

(10.67) 

From Equations (10.66) and (10.67) we see that the asymptotic coding gain for the 
binary-input A WGN channel is greater than that for the binary symmetric channel by 3 
dB. In other words, for large Eb/N0 , the transmitter for a binary symmetric channel must 
generate an additional 3 dB of signal energy (or power) over that for a binary-inputAWGN 
channel if we are to achieve the same error performance. Clearly, there is an advantage to 
be gained by permitting an unquantized demodulator output instead of making hard de­
cisions. This improvement in performance, however, is attained at the cost of increased 
decoder complexity due to the requirement for accepting analog inputs. 

The asymptotic coding gain for a binary-input A WGN channel is approximated to 
within about 0.25 dB by a binary input Q-ary output discrete memoryless channel with 
the number of representation levels Q = 8. This means that we may avoid the need for 
an analog decoder by using a soft-decision decoder that performs finite output quantization 
(typically, Q = 8), and yet realize a performance close to the optimum. 

I 10. 7 Trellis-Coded Modulation12 

In the traditional approach to channel coding described in the preceding sections of the 
chapter, encoding is performed separately from modulation in the transmitter; likewise for 
decoding and detection in the receiver. Moreover, error control is provided by transmitting 
additional redundant bits in the code, which has the effect of lowering the information bit 
rate per channel bandwidth. That is, bandwidth efficiency is traded for increased power 
efficiency. 

To attain a more effective utilization of the available bandwidth and power, coding 
and modulation have to be treated as a single entity. We may deal with this new situation 
by redefining coding as the process of imposing certain patterns on the transmitted signal. 
Indeed, this definition includes the traditional idea of parity coding. 

Trellis codes for band-limited channels result from the treatment of modulation and 
coding as a combined entity rather than as two separate operations. The combination itself 
is referred to as trellis-coded modulation (TCM). This form of signaling has three basic 
features: 

1. The number of signal points in the constellation used is larger than what is required 
for the modulation format of interest with the same data rate; the additional points 
allow redundancy for forward error-control coding without sacrificing bandwidth. 
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2. Convolutional coding is used to introduce a certain dependency between successive 
signal points, such that only certain patterns or sequences of signal points are 
permitted. 

3. Soft-decision decoding is performed in the receiver, in which the permissible sequence 
of signals is modeled as a trellis structure; hence, the name "trellis codes." 

This latter requirement is the result of using an enlarged signal constellation. By increasing 
the size of the constellation, the probability of symbol error increases for a fixed signal­
to-noise ratio. Hence, with hard-decision demodulation we would face a performance loss 
before we begin. Performing soft-decision decoding on the combined code and modulation 
trellis ameliorates this problem. 

In the presence of A WGN, maximum likelihood decoding of trellis codes consists of 
finding that particular path through the trellis with minimum squared Euclidean distance 
to the received sequence. Thus, in the design of trellis codes, the emphasis is on maximizing 
the Euclidean distance between code vectors (or, equivalently, code words) rather than 
maximizing the Hamming distance of an error-correcting code. The reason for this ap­
proach is that, except for conventional coding with binary PSK and QPSK, maximizing 
the Hamming distance is not the same as maximizing the squared Euclidean distance. 
Accordingly, in what follows, the Euclidean distance is adopted as the distance measure 
of interest. Moreover, while a more general treatment is possible, the discussion is (by 
choice) confined to the case of two-dimensional constellations of signal points. The im­
plication of such a choice is to restrict the development of trellis codes to multilevel am­
plitude and/or phase modulation schemes such as M-ary PSK and M-ary QAM. 

The approach used to design this type of trellis codes involves partitioning an M-ary 
constellation of interest successively into 2, 4, 8, ... subsets with size M/2, M/4, M/8, ... , 
and having progressively larger increasing minimum Euclidean distance between their re­
spective signal points. Such a design approach by set partitioning represents the "key idea" 
in the construction of efficient coded modulation techniques for band-limited channels. 

In Figure 10.20, we illustrate the partitioning procedure by considering a circular 
constellation that corresponds to 8-PSK. The figure depicts the constellation itself and the 
2 and 4 subsets resulting from two levels of partitioning. These subsets share the common 
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FIGlJRE 10.21 Partitioning of 16-QAM constellation, wlrich shows that do < d1 < d, < d,. 

property that the minimum Euclidean distances between their individual points follow an 
increasing pattern: d0 < d1 < d2 • 

Figure 10.21 illustrates the partitioning of a rectangular constellation corresponding 
to 16-QAM. Here again we see that the subsets have increasing within-subset Euclidean 
distances: d0 < d1 < d2 < d3 • 

Based on the subsets resulting from successive partitioning of a two-dimensional 
constellation, we may devise relatively simple and yet highly effective coding schemes. 
Specifically, to send n bits/symbol with quadrature modulation (i.e., one that has in-phase 
and quadrature components), we start with a two-dimensional constellation of 2"+1 signal 
points appropriate for the modulation format of interest; a circular grid is used for M-ary 
PSK, and a rectangular one for M-ary QAM. In any event, the constellation is partitioned 
into 4 or 8 subsets. One or two incoming bits per symbol enter a rate-1/2 or rate-2/3 
binary convolutional encoder, respectively; the resulting two or three coded bits per symbol 
determine the selection of a particular subset. The remaining uncoded data bits determine 
which particular point from the selected subset is to be signaled. This class of trellis codes 
is known as Ungerboeck codes. 

Since the modulator has memory, we may use the Viterbi algorithm to perform 
maximum likelihood sequence estimation at the receiver. Each branch in the trellis of the 
Ungerboeck code corresponds to a subset rather than an individual signal point. The first 
step in the detection is to determine the signal point within each subset that is closest to 
the received signal point in the Euclidean sense. The signal point so determined and its 
metric (i.e., the squared Euclidean distance between it and the received point) may be used 
thereafter for the branch in question, and the Viterbi algorithm may then proceed in the 
usual manner. 

ili UNGERBOECK CODES FOR 8-PSK 

The scheme of Figure 10.22a depicts the simplest Ungerboeck 8-PSK code for the trans­
mission of 2 bits/symbol. The scheme uses a rate-1/2 convolutional encoder; the corre-
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FIGURE 10.22 (a) Four-state Ungerboeckcode for 8-PSK; the mapper follows Figure 10.20. 
(b) Trellis of the code. 

sponding trellis of the code is shown in Figure 10.22b, which has foUI states. Note that 
the most significant bit of the incoming binary word is left uncoded. Therefore, each branch 
of the trellis may correspond to two different output values of the 8-PSK modulator or, 
equivalently, to one of the four 2-point subsets shown in Figure 10.20. The trellis of Figure 
l0.22b also includes the minimum distance path. 

The scheme of Figure 10.23a depicts another Ungcrbocck 8-PSK code for trans­
mitting 2 bits/sample; it is next in the level of complexity. This second scheme uses a 
rate-2/3 convolutional encoder. Therefore, the corresponding trellis of the code has eight 
states, as shown in Figure 10.23b. In this case, both bits of the incoming binary word are 
encoded. Hence, each branch of the trellis corresponds to a specific output value of the 
8-PSK modulator. The trellis of Figure 10.23b also includes the minimum distance path. 

Figures 10.22b and 10.23b also include the encoder states. In Figme 10.22, the state 
of the encoder is defined by the contents of the two-stage shift register. On the other hand, 
in Figme 10.23, it is defined by the content of the single-stage (top) shift register followed 
by that of the two-stage (bottom) shift register. 
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m'I Asnwronc CODING GAIN 

Following the discussion in Section 10.6, we define the asymptotic coding gain of Unger­
boeck codes as 

Ga = 10 logrn(~ee) 
d 

(10.68) 

where dfree is the free Euclidean distance of the code and dref is the minimum Euclidean 
distance of an uncoded modulation scheme operating with the same signal energy per bit. 
For example, by using the Ungerboeck 8-PSK code of Figure 10.22a, the signal constel­
lation has 8 message points, and we send 2 message bits per point. Hence, uncoded trans­
mission requires a signal constellation with 4 message points. We may therefore regard 
uncoded 4-PSK as the reference for the Ungerboeck 8-PSK code of Figure 10.22a. 

The Ungerboeck 8-PSK code of Figure 10.22a achieves an asymptotic coding gain 
of 3 dB, calculated as follows: 

1. Each branch of the trellis in Figure 10.22b corresponds to a subset of two antipodal 
signal points. Hence, the free Euclidean distance diree of the code can be no larger 
than the Euclidean distance d2 between the antipodal signal points of such a subset. 
We may therefore write 

where the distance d2 is defined in Figure 10.24a; see also Figure 10.20. 
2. The minimum Euclidean distance of an uncoded QPSK, viewed as a reference op­

erating with the same signal energy per bit, equals (see Figure 10.24b) 

Hence, as previously stated, the use of Equation (10.68) yields an asymptotic coding gain 
of 10 log10 2 = 3 dB. 

The asymptotic coding gain achievable with Ungerboeck codes increases with the 
number of states in the convolutional encoder. Table 10.9 presents the asymptotic coding 
gain (in dB) for Ungerboeck 8-PSK codes for increasing number of states, expressed with 
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FIGURE 10.24 Signal-space diagrams for calculation of asymptotic coding gain of Ungerboeck 
8-PSK code. (a) Definition of distance d2 • (b) Definition of reference distanced,.,. 
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TABLE 10.9 Asymptotic coding gain of Vngerboeck 8-PSK codes, 
with respect to uncoded 4-PSK 

Number of states A 16 32 64 128 256 

Coding gain (dB) 3 3.6 4.1 4.6 4.8 5 5.4 

512 

5.7 

respect to uncoded 4-PSK. Note that improvements on the order of 6 dB require codes 
with a very large number of states. 

I 10.8 Turbo Codes13 

Traditionally, the design of good codes has been tackled by constructing codes with a great 
deal of algebraic structure, for which there are feasible decoding schemes. Such an ap­
proach is exemplified by the linear block codes and convolutional codes discussed in pre­
ceding sections. The difficulty with these traditional codes is that, in an effort to approach 
the theoretical limit for Shannon's channel capacity, we need to increase the code-word 
length of a linear block code or the constraint length of a convolutional code, which, in 
turn, causes the computational complexity of a maximum likelihood decoder to increase 
exponentially. Ultimately, we reach a point where complexity of the decoder is so high 
that it becomes physically unrealizable. 

Various approaches have been proposed for the construction of powerful codes with 
large "equivalent" block lengths structured in such a way that the decoding can be split 
into a number of manageable steps. Building on these previous approaches, the develop­
ment of turbo codes and low-density parity-check codes has been by far most successful. 
Indeed, this development has opened a brand new and exciting way of constructing good 
codes and decoding them with feasible complexity. Turbo codes are discussed in this sec­
tion and low-density parity-check codes are discussed in Section 10.10. 

l!'l TuRBO CODING 

In its most basic form, the encoder of a turbo code consists of two constituent systematic 
encoders joined together by means of an interleaver, as illustrated in Figure 10.25. 

An interleaver is an input-output mapping device that permutes the ordering of a 
sequence of symbols from a fixed alphabet in a completely deterministic manner; that is, 
it takes the symbols at the input and produces identical symbols at the output but in a 
different temporal order. The interleaver can be of many types, of which the periodic and 
pseudo-random are two. Jurbo codes use a pseudo-random interleaver, which operates 

Message 
bits x 

.----------------';;.. Sy~i~~=tic 

Encoder 1 

Interleaver 

r--------,;;.- Parity-check 
bits •1 Output 

Encoder 2 Parity-check 
bits Z2 

FIGURE 10.25 Block diagram of turbo encoder. 
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only on the systematic bits. There are two reasons for the use of an interleaver in a turbo 
code: 

~ To tie together errors that are easily made in one half of the turbo code to errors 
that are exceptionally unlikely to occur in the other half. This is indeed the main 
reason why the turbo code performs better than a traditional code. 

~ To provide robust performance with respect to mismatched decoding, which is a 
problem that arises when the channel statistics are not known or have been incor­
rectly specified. 

Typically, but not necessarily, the same code is used for both constituent encoders 
in Figure 10.25. The constituent codes recommended for turbo codes are short constraint­
length recursive systematic convolutional (RSC) codes. The reason for making the con­
volutional codes recursive {i.e., feeding one or more of the tap outputs in the shift register 
back to the input) is to make the internal state of the shift register depend on past outputs. 
This affects the behavior of the error patterns (a single error in the systematic bits produces 
an infinite number of parity errors), with the result that a better performance of the overall 
cod.ing strategy is attained. 

~ ExAMPLE 10.8 Eight-state RSC Encoder 

Figure 10.26 shows an example eight-state RSC encoder. The generator matrix for this re­
cursive convolutional code is 

(D) = [1 1 + D + D2 + D3] 
g ' 1 + D + D 3 (10.69) 

where D is the delay variable. The second entry of the matrix g(D) is the transfer function of 
the feedback shift register, defined as the transform of the output divided by the transform 
of the input. Let M(D) denote the transform of the message sequence [m1)~~ 1 and B(D) denote 
the transform of the parity sequence [b;)7.:-{ By definition, we have 

B(D) 1 + D + D 2 + D 3 

M(D) 1 + D + D 3 

Cross-multiplying, we get: 

(1 + D + D2 + D3)M(D) = (1 + D + D 3 )B(D) 

which, on inversion into the time domain, yields 

mi + m;-1 + mi-2 + mi-3 + bi + ht-1 + bi-3 = 0 (10.70) 

'---------;o.. Par~~~eck 
FIGURE 10.26 Example eight-state recursive systematic convolutional (RSC) encoder. 
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where the addition is modulo-2. Equation (10.70) is the parity-check equation, which the 
convolutional encoder of Figure 10.26 satisfies at each time step i. -<II 

In Figure 10.25 the input data stream is applied directly to encoder 1, and the pseudo. 
randomly reordered version of the same data stream is applied to encoder 2. The systematic 
bits (i.e., original message bits) and the two sets of parity-check bits generated by the two 
encoders constitute the output of the turbo encoder. Although the constituent codes are 
convolutional, in reality turbo codes are block codes with the block size being determined 
by the size of the interleaver. Moreover, since both RSC encoders in Figure 10.25 are 
linear, we may describe turbo codes as linear block codes. 

The block nature of the turbo code raises a practical issue: How do we know the 
beginning and the end of a code word? The common practice is to initialize the encoder 
to the all-zero state and then encode the data. After encoding a certain number of data 
bits a number of tail bits are added so as to make the encoder return to the all-zero state 
at the end of each block; thereafter the cycle is repeated. The termination approaches of 
turbo codes include the following: 

I> A simple approach is to terminate the first RSC code in the encoder and leave the 
second one unterminated. A drawback of this approach is that the bits at the end of 
the block due to the second RSC code are more vulnerable to noise than the other 
bits. Experimental work has shown that turbo codes exhibit a leveling off in perfor­
mance as the SNR increase~. This behavior is not like an error floor, but it has the 
appearance of an error floor compared to the steep drop in error performance at low 
SNR. This error fioor is affected by a number of factors, the dominant one of which 
is the choice of interleaver. 

I>- A more refined approach14 is to terminate both constituent codes in the encoder in 
a symmetric manner. Through the combined use of a good interleaver and dual 
termination, the error floor can be reduced by an order of magnitude compared to 

the simple termination approach. 

In the original version of the turbo encoder, the parity-check bits generated by the 
two encoders in Figure 10.25 were punctured prior to data transmission over the channel 
to maintain the rate at 1/2. A punctured code is constructed by deleting certain parity 
check bits, thereby increasing the data rate. Puncturing is the inverse of extending a code. 
It should, however, be emphasized that the use of a puncture map is not a necessary 
requirement for the generation of turbo codes. 

The novelty of the parallel encoding scheme of Figure 10.25 is in the use of recursive 
systematic convolutional (RSC) codes and the introduction of a pseudo-random interleaver 
between the two encoders. Thus a turbo code appears essentially random to the channel 
by virtue of the pseudo-random interleaver, yet it possesses sufficient structure for the 
decoding to be physically realizable. Coding theory asserts that a code chosen at random 
is capable of approaching Shannon's channel capacity, provided that the block size is 
sufficiently large. 15 This is indeed the reason behind the impressive performance of turbo 
codes, as discussed next. 

l!ll PERFORMANCE OF TURBO CODES 

Figure 10.27 shows the error performance of a 1/2 rate, turbo code with a large block size 
for binary data transmission over an AWGN channel.16 The code uses an interleaver of 
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- Shannon limit 
· · Uncoded 
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FIGURE 10,27 Noise performances of 1/2 rate, turbo code and uncoded transmission for 
AWGN channel; the figure also includes Shannon's theoretical limit on channel capacity for code 
rater= 112. 

size 65,536 and a BCJR-based decoder; details of this decoder are presented later in the 
section. Eighteen iterations of turbo decoding were used in the computation. 

For the purpose of comparison, Figure 10.27 also includes two other curves for the 
same A WGN channel: 

"' Uncoded transmission (i.e., code rater= 1). 
i.- Shannon's theoretical limit for code rate 1/2, which follows from Figure 9.18b. 

From Figure 10.27, we may draw two important conclusions: 

1. Although the bit error rate for the turbo-coded transmission is significantly higher 
than that for uncoded transmission at low Eb/N0 , the bit error rate for the turbo­
coded transmission drops very rapidly once a critical value of Eb/N0 has been 
reached. 

2. At a bit error rate of 10-5
, the turbo code is less than 0.5 dB from Shannon's theo­

retical limit. 

Note, however, attaining this highly impressive performance requires that the size of 
the interleaver, or, equivalently, the block length of the turbo code, be large. Also, the 
large number of iterations needed to improve performance increases the decoder latency. 
This drawback is due to the fact that the digital processing of information does not lend 
itself readily to the application of feedback, which is a distinctive feature of the turbo 
decoder. 

Now that we have an appreciation for the impressive performance of turbo codes, 
the stage is set for a discussion of how turbo decoding is actually performed. 

ill TuRBO DECODING 

Turbo codes derive their distinctive name from analogy of the decoding algorithm to the 
"turbo engine" principle. Figure 10.28a shows the basic structure of the turbo decoder. It 
operates on noisy versions of the systematic bits and the two sets of parity-check bits in 
two decoding stages to produce an estimate of the original message bits. 
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FIGURE I 0,28 (a) Block diagram of turbo decoder. (b) Extrinsic form of turbo decoder, where I 
stands for interleaver, D for de-interleaver, and BCJR for BCJR algorithm for log-MAP decoding. 

Each of the two decoding stages uses a BCJR algorithm,17 which was originally 
invented by Bahl, Cocke, Jelinek, and Raviv (hence the name) to solve a maximum a 
posteriori probability (MAP) detection problem. The BCJR algorithm differs from the 
Viterbi algorithm in two fundamental respects: 

1. The BCJR algorithm is a so~ input-soft output decoding algorithm with two recur­
sions, one forward and the other backward, both of which involve soft decisions. In 
contrast, the Viterbi algorithm is a soft input-hard output decoding algorithm, with 
a single forward recursion involving soft decisions; the recursion ends with a hard 
decision, whereby a particular survivor path among several ones is retained. In com­
putational terms, the BCJR algorithm is therefore more complex than the Viterbi 
algorithm because of the backward recursion. 

2. The BCJR algorithm is a MAP decoder in that it minimizes the bit errors by esti­
mating the a posteriori probabilities of the individual bits in a code word; to recon­
struct the original data sequence, the soft outputs of the BCJR algorithm are hard­
limited. On the other hand, the Viterbi algorithm is a maximum likelihood sequence 
estimator in that it maximizes the likelihood function for the whole sequence, not 
each bit. As such, the average bit error rate of the BCJR algorithm can be slightly 
better than the Viterbi algorithm; it is never worse. 

Most important, formulation of the BC] R algorithm rests on the fundamental assumptions 
that (1) the channel encoding, namely, the convolutional encoding performed in the trans­
mitter, is modeled as a Markov process, and (2) the channel is memoryless. In the context 
of our present discussion, the Markovian assumption means that if a code can be repre-
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sented as a trellis, then the present state of the trellis depends only on the past state and 
the input bit. (A mathematical treatment of the BCJR algorithm is given later in this 
section.) 

Before proceeding to describe the operation of the two-stage turbo decoder in Figure 
10.28a, we find it desirable to introduce the notion of extrinsic information. The most 
convenient representation for this concept is as a log-likelihood ratio, in which case ex­
trinsic information is computed as the difference between two log-likelihood ratios as 
depicted in Figure 10.29. Formally, extrinsic information, generated by a decoding stage 
for a set of systematic (message) bits, is defined as the difference between the log-likelihood 
ratio computed at the output of that decoding stage and the intrinsic information repre­
sented by a log-likelihood ratio fed back to the input of the decoding stage. In effect, 
extrinsic information is the incremental information gained by exploiting the dependencies 
that exist between a message bit of interest and incoming raw data bits processed by the 
decoder. 

On this basis, we may depict the flow of information in the two-stage turbo decoder 
of Figure 10.28a in a symmetric extrinsic manner as shown in Figqre 10.28b. The first 
decoding stage uses the BCJR algorithm to produce a soft estimate of systematic bit x;, 
expressed as the log-likelihood ratio 

l ( ·) = 1 (P(x; = 1 lu, t" i2 (x))) 1 x
1 

og _ , 
P(x; = 0 I u, ti. li(x)) 

j = 1, 2, ... , k (10.71) 

where u is the set of noisy systematic bits, ti is the set of noisy parity-check bits generated 

by encoder 1, and i2 (x) is the extrinsic information about the set of message bits x derived 
from the second decoding stage and fed back to the first stage. Assuming that the k message 
bits are statistically independent, the total log-likelihood ratio at the output of the first 
decoding stage is therefore 

k 

11(x) = 2: 11(x;) 
j=1 

(10.72) 

Hence, the extrinsic information about the message bits derived from the first decoding 
stage is 

7,(x) = l,(x) - i2 (x) (10.73) 

where i2 (x) is to be defined. 

Before application to the second decoding stage, the extrinsic information l, (x) is re­
ordered to compensate for the psuedo-random interleaving introduced in the turbo en­
coder. In addition, the noisy parity-check bits t2 generated by encoder 2 are used as input. 
Thus by using the BCJR algorithm, the second decoding stage produces a more refined 

Other 
information 

Raw 
data 

,___ __ _..., Soft-input/soft-output 
decoder Intrinsic 

information 

Extrinsic 
information 

FIGURE 10.29 Illustrating the concept of extrinsic information. 
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soft estimate of the message bits x. This estimate is re-interleaved to produce the total log­

likelihood ratio /2(x). The extrinsic information /2 (x) fed back to the first decoding stage 
is therefore 

(10.74) 

where /1 (x) is itself defined by Equation (10. 73 ), and /2(x) is the log-likelihood ratio com­
puted by the second stage. Specifically, for the jth element of the vector x, we have 

I ( ·)=I (P(xi = 1 lu, t2 , / 1 (x))) 
2 x, ogz - , 

P(xi = Olu, t2, /1(x)) 
j = 1, 2, ... , k (10.75) 

Through the application of /2 (x) to the first stage, the feedback loop around the pair of 
decoding stages is thereby closed. Note that although in actual fact the set of noisy sys­
tematic bits u is only applied to the first decoding stage as in Figure 10.28a, by formulating 
the information flow in the symmetric extrinsic manner depicted in Figure 10.28b we find 
that u is, in effect, also applied to the second decoding stage. 

An estimate of the message bits x is computed by hard-limiting the log-likelihood 
ratio /2 (x) at the output of the second stage, as shown by 

(10.76) 

where the signum function operates on each element of /2 (x) i12dividually. 
To initiate the turbo decoding algorithm, we simply set /2(x) = 0 on the first itera­

tion of the algorithm; see Figure 10.28b. 
The motivation for feeding only extrinsic information from one stage to the next in 

the turbo decoder of Figure 10.28 is to maintain as much statistical independence between 
the bits as possible from one iteration to the next. The feedback decoding strategy described 
herein implicitly relies on this assumption. If this assumption of statistical independence 
is strictly true, it can be shown that the estimate x defined in Equation (10. 76) approaches 
the MAP solution as the number of iterations approaches infinity.18 The assumption of 
statistical independence appears to be close to the truth in the vast majority of cases en­
countered in practice. 

a THE BCJR ALGORITHM 

For a discussion of turbo decoding to be complete, a mathematical exposition of the BCJR 
algorithm for MAP estimation is in order. 

Let x(t) be the input to a trellis encoder at time t. Let y(t) be the corresponding output 
observed at the receiver. Note that y(t) may include more than one observation; for ex­
ample, a rate l/n code produces n bits for each input bit, in which case we have an 
n-dimensional observation vector. Let the observation vector be denoted by 

fo,t) = [y(1), y(2), ... ' y(t)] 

Let Am(t) denote the probability that a state s(t) of the trellis encoder equals m, where 
m = 1, 2, ... , M. We may then write 

>..(t) = P[s(t) IYl (10.77) 
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where s(t) and A(t) are both M-by-1 vectors. Then, for a rate 1/n linear convolutional code 
with feedback as in the RSC code, the probability that a symbol "1" was the message bit 
is given by 

P(x(t) = 1 I y) = 2: A,(t) (10.78) 
SE:J'A 

where~ A is the set of transitions that correspond to a symbol "1" at the input, and A,(t) 
is the s-component of A.(t). 

Define the forward estimation of state probabilities as the M-by-1 vector 

a(t) = P(s(t) I y(1,n) (10.79) 

where the observation vector Y(l,t) is defined above. Also define the backward estimation 
of state probabilities as the M-by-1 vector 

j3(t) = P(s(t) I Y{t,kJ) (10.80) 

where 

Y{t,k) = [y(t), y(t + 1), ... ' y(k)] 

The vectors a(t) and 13(t) are estimates of the state probabilities at time t based on the past 
and future data, respectively. We may then formulate the separability theorem as follows: 

The state probabilities at time tare related to the forward estimator a(t) and back­
ward estimator (3( t) by the vector 

a(t) · (3(t) 
A.(t) = 11 a(t) · 13(t) II 1 

(10.81) 

where a(t) · (3(t) is the vector product of a(t) and (3(t), and II a(t) • (3(t) 11 1 is the 
L 1 norm of this vector product. 

The vector product a(t) · j3(t) (not to be confused with the inner product) is defined in 
terms of the individual elements of a(t) and 13(t) by 

r 

a 1(t)/31(t)] 
a2(t)/32(t) 

a(t) · 13(t) = · 

D'M(t)J3M(t) 

(10.82) 

and the L 1 norm of a(t) · j3(t) is defined by 

M 

II a(t) • (3(t) II 1 = 2: °'m(t)f3m(t) (10.83) 
m=1 

The separability theorem says that the state distribution at time t given the past is 
mdependent of the state distribution at time t given the future, which is intuitively satisfying 
recalling the Markovian assumption for channel encoding, which is basic to the BCJR 
algorithm. Moreover, this theorem provides the basis of a simple way of combining the 
forward and backward estimates to obtain a complete description of the state probabilities. 

To proceed further, let the state transition probability at time t be defined by 

"Ym',m(t) = P(s(t) = m, y(t) I s(t 1) = m') (10.84) 



682 CHAPI'ER IO II ERROR•CONTROL CODING 

and denote the M-by-M matrix of transition probabilities as 

r(t) = l'Ym',m(t)] (10.85) 

We may then formulate the recursion theorem as follows: 

The forward estimate o:(t) and backward estimate j}(t) are computed recursively as 

and 

f(t + l)j}(t + 1) 
il(tl = 11 r(t + lJ!l(t + lJ lh 

where the superscript T denotes matrix transposition. 

(10.86) 

(10.87) 

The separability and recursion theorems together define the BCJR algorithm for the 
computation of a posteriori probabilities of the states and transitions of a code trellis, 
given the observation vector. Using these estimates, the likelihood ratios needed for turbo 
decoding may then be computed by performing summations over selected subsets of states 
as required. 

IO. 9 Computer Experiment: 
Turbo Decoding 

Two properties constitute the hallmark of turbo codes: 

Property 1: 

The error performance of the turbo decoder improves with the number of iterations of the 
decoding algorithm. This is achieved by feeding extrinsic information from the output of 
the first decoding stage to the input of the second decoding stage in the forward path and 
feeding extrinsic information from the output of the second stage to the input of the first 
stage in the backward path, and then permitting the iterative decoding process to take its 
natural course in response to the received noisy message and parity bits. 

Property2 

The turbo decoder is capable of approaching the Shannon theoretical limit of channel 
capacity in a computationally feasible manner; this property has been demonstrated ex­
perimentally but not yet proven theoretically. 

Property 2 requires that the block length of the turbo code be large. Unfortunately, a 
demonstration of this property requires the use of sophisticated implementations of the 
turbo decoding algorithm that are beyond the scope of this book. Accordingly, we focus 
our attention on a demonstration of Property 1 in this computer experiment. 

So, as the primary objective of this computer experiment, we wish to use the log­
MAP implementation of the BCJR algorithm to demonstrate Property 1 of turbo decoding. 
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FIGURE 10.30 Result• of the computer experiment on turbo decoding, for increasing number of 
iterations. 

The only channel impairment assumed in the experiment is additive white Gaussian noise. 
Details of the turbo encoder and decoder are as follows: 

Turbo Encoder (described in Figure 10.25): 

Encoder 1: convolutional encoder [1, 1, l] 
Encoder 2: convolutional encoder [1, 0, 1] 

Block (i.e., interleaver) length: 1,200 bits 

Turbo Decoder (described in Figure 10.28): 

The BCJR algorithm for log-MAP decoding. 

The experiment was carried out for Eb/N0 = 1, 1.5, 2, and 2.5 dB, with varying 
number of iterations at each Eb/N0 • For each trial of the experiment, the number of bit 
errors was calculated after accumulating a total of 20 blocks of data (each 1,200 bits long) 
that were noise-corrupted. The probability of error was then evaluated as the ratio of bit 
errors to the total number of encoded bits. Note that in this calculation, many of the blocks 
of encoded bits were correctly decoded. 

The results of the experiment are plotted in Figure 10.30. The following observations 
can be made from this figure: 

1. For a given Eb/N0 , the probability of error decreases with increasing number of 
iterations, confirming Property 1 of turbo decoding. 

2. After eight iterations, there is no significant improvement in decoding performance. 

3. For a fixed number of iterations, the probability of error decreases with increasing 
Eb/N0 , which is to be expected. 

I 10.10 Low-Density Parity-Check Codes 19 

Turbo codes, discussed in Section 10.8, and low-density parity-check (LDPC) codes, dis­
cussed in this section, belong to a broad family of error-control coding techniques called 
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compound codes. The two most important advantages of LDPC ~odes over turbo codes 
are: 

"° Absence of low-weight code words. 
~ Iterative decoding of lower complexity. 

With regard to the issue of low-weight code words, we usually find that a small 
number of code words in a turbo code are undesirably close to the given code word. Due 
to this closeness in weights, once in a while the channel noise causes the transmitted code 
word to be mistaken for a nearby code word. Indeed, it is this behavior that is responsible 
for the error floor (typically around a bit error rate of 10-s to 10-6

) that was mentioned 
earlier. In contrast, LDPC codes can be easily constructed so that they do not have such 
low-weight code words, and they can therefore achieve vanishingly small bit error rates. 
The error-floor problem in turbo codes can be alleviated by careful design of the 
interleaver. 

Turning next to the issue of decoding complexity, we note that the computational 
complexity of a turbo decoder is dominated by the BCJR algorithm, which operates on 
the trellis for the convolutional code used in the encoder. The number of computations in 
each recursion of the BCJR algorithm scales linearly with the number of states in the trellis. 
Commonly used turbo codes employ trellises with 16 states or more. In contrast, LDPC 
codes use a simple parity-check trellis that has just two states. Consequently, the decoders 
for LDPC codes are significantly simpler than those for turbo decoders. Moreover, being 
parallelizable, LDPC decoding may be performed at greater speeds than turbo decoding. 

However, a practical objection to the use of LDPC codes is that for large block 
lengths, their encoding complexity is high compared to turbo codes. 

~ CONSTRUCTION OF LDPC CODES 

LDPC codes are specified by a parity-check matrix denoted by A, which is sparse; that is, 
it consists mainly of Os and a small number of ls. In particular, we speak of (n, tn t,) 
LDPC codes, where n denotes the block length, tc denotes the weight (i.e., number of ls) 
in each column of the matrix A, and t, denotes the weight of each row with t, > tc. The 
rate of such a LDPC code is 

r = 1 (10.88) 

whose validity may be justified as follows. Let p denote the density of ls in the parity­
check matrix A. Then, following the terminology introduced in Section 10.3, we may set 

t, = p(n - k) 

and 

t, = pn 

where (n - k) is the number of rows in A and n is the number of columns (i.e., the block 
length). Therefore, dividing tc by t,, we get 

1 
k 

t, n 
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By definition, the code rate of a block code is kin, hence the result of Equation (10.8 8) 
follows. For this result to hold, however, the rows of A must be linearly independent. 

The structure of LDPC codes is well portrayed by bipartite graphs. Figure 10.31 
shows such a graph for the example code of n = 10, tc = 3, and t7 = 5. The left-hand 
nodes in the graph of Figure 10.31 are variable nodes, which correspond to elements of 
the code word. The right-hand nodes of the graph are check nodes, which correspond to 
the set of parity-check constraints satisfied by code words in the code. LD PC codes of the 
type exemplified by the graph of Figure 10.31 are said to be regular in that all the nodes 
of a similar kind have exactly the same degree. In the example graph of Figure 10.31, the 
degree of the variable nodes is tc = 3, and the degree of the check nodes is t, = 5. As the 
block length n approaches infinity, each check node is connected to a vanishingly small 
fraction of variable nodes, hence the term low-density. 

The matrix A is constructed by putting 1s in A at random, subject to the regularity 
constraints: 

i.. Each column contains a small fixed number, t0 of 1s. 
~ Each row contains a small fixed number, t,, of 1s. 

In practice, these regularity constraints are often violated slightly in order to avoid having 
linearly dependent rows in the parity-check matrix A. 

Unlike the linear block codes discussed in Section 10.3, the parity-check matrix A of 
LDPC codes is not systematic (i.e., it does not have the parity-check bits appearing in 
diagonal form), hence the use of a symbol different from that used in Section 10.3. Nev­
ertheless, for coding purposes, we may derive a generator matrix G for LDPC codes by 
means of Gaussian elimination performed in modulo-2 arithmetic; this procedure is illus­
trated later in Example 10.9. Following the terminology introduced in Section 10.3, the 
1-by-n code vector c is first partitioned as 

Variable 
nodes 

c = [b ; m] 

FIGURE 10.31 Bipartite graph of the (10, 3, 5) LDPC code. 
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where mis the k-by-1 message vector, and bis the (n-k)-by-1 parity vector; see Equation 
(10.9). Correspondingly, the parity-check matrix A is partitioned as 

(10.89) 

where A1 is a square matrix of dimensions (n-k) X (n-k), and A2 is a rectangular matrix 
of dimensions k X (n-k); transposition symbolized by the superscript T is used in the 
partitioning of matrix A for convenience of presentation. Imposing the constraint of Equa­
tion (10.16) on the LDPC code, we may write 

or, equivalently, 

bAi + mA2 = 0 (10.90) 

Recall from Equation ( 10. 7) that the vectors m and b are related by 

b = mP 

where Pis the coefficient matrix. Hence, substituting this relation into Equation (10.90), 
we readily find that, for any nonzero message vector m, the coefficient matrix of LDPC 
codes satisfies the condition 

PAi + A2 = 0 

which holds for all nonzero message vectors and, in particular, for m in the form 
[O · · · 0 1 0 · · · OJ that will isolate individual rows of the generator matrix. 

Solving this equation for matrix P, we get 

(10.91) 

where A1i is the inverse of matrix A1 , which is naturally defined in modulo-2 arithmetic. 
Finally, the generator matrix of LDPC codes is defined by 

G=[P:Ik] 

= [A2A1 1 
: lk] 

(10.92) 

where lk is the k-by-k identity matrix; see Equation (10.12). 
It is important to note that if we take the parity-check matrix A for some arbitrary 

LDPC code and just pick (n - k) columns of A at random to form a square matrix A,, 
there is no guarantee that A1 will be nonsingular (i.e., the inverse A11 will exist), even if 
the rows of A are linearly independent. In fact, for a typical LDPC code with large block 
length n, such a randomly selected A1 is highly unlikely to be nonsingular, because it is 
very likely that at least one row of Ai will be all Os. Of course, when the rows of A are 
linearly independent, there will be some set of (n - k) columns of A that will make a 
nonsingular Ai. as illustrated in Example 10.9. For some construction methods for LDPC 
codes the first (n - k) columns of A may be guaranteed to produce a nonsingular Ai, or 
at least do so with a high probability, but that is not true in general. 
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P. ExAt'1PLE 10.9 (10, 3, 5) LDPC Code 

Consider the bipartite graph of Figure 10.31 pertaining to a (10, 3, 5) LDPC code. The parity-
check matrix of the code is defined by 

1 0 1 0 1 0 0 1 

!I 
0 1 1 0 0 1 0 

1 0 0 0 0 0 

A= 0 1 0 1 1 0 0 

0 0 1 0 0 0 

0 0 0 1 0 0 
'--------.,---' 

Af Af 
which appears to be random, while maintaining the regularity constraints: tc = 3 and t, = 5. 
Partitioning the matrix A in the manner described in Equation (10.89): 

0 0 1 

ii 
1 0 0 

0 1 0 1 
A, 

0 0 0 

0 1 0 

0 0 

~ ~ [l 
0 1 0 

~] 1 0 0 

0 0 0 

0 0 

To derive the inverse of matrix A., we first use Equation (10.90) to write 

1 0 1 0 1 

ii 
1 1 0 1 0 

0 1 0 1 1 

[po, b., b2'. h, b., bs) 1 0 0 1 0 [~0, uh u2,,u3, u4, u5J 

b 0 1 1 0 1 u = mA2 

1 0 1 1 0 
'--------.,---' 

A, 

where we have introduced the vector u to denote the matrix product mA2 • By using Gaussian 
elimination, the matrix A1 is transformed into lower diagonal form (i.e., all the elements above 
the main diagonal are zero), as shown by 

1 0 0 0 0 0 

1 0 0 0 0 

0 0 0 0 
A,-> 

1 0 1 0 0 

0 0 0 

1 0 0 0 
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This transformation is achieved by the following modulo-2 additions performed on the col­
umns of square matrix A1: 

11> Columns 1 and 2 are added to column 3. 
I> Column 2 is added to column 4. 
I> Columns 1 and 4 are added to column 5. 
I> Columns 1, 2 and 5 are added to column 6. 

Correspondingly, the vector u is transformed as 

Accordingly, premultiplying the transformed matrix A1 by the parity vector b, using successive 
eliminations in modulo-2 arithmetic working backwards, and putting the solutions for the 
elements of the parity vector b in terms of the elements of the vector u in matrix form, we get 

[
~ ~ ~ ~ 0 
1 1 1 0 0 0 

[u0 , u,, u,, u,, u4, u5] 1 1 0 0 0 

~0100 
1 1 1 1 0 1 
'-------v------

A!' 

The inverse of matrix A1 is therefore 

0 0 0 

0 0 0 

A-1 - 1 0 0 0 
1 -

1 0 0 0 

0 0 0 1 

0 

The matrix product A2A1 1 is (using the given value of A2 and the value of A11 just found) 

[

1 0 0 1 

A A_ 1 _ 0 0 0 1 
21 -0011 

0 1 0 1 

Finally, using Equation (10.92), the generator of the (10, 3, 5) LDPC code is 

G-[! 
0 0 1 0 : 1 0 0 

!] 
0 0 1 1 : 0 1 0 

0 1 1 o:o 0 1 

1 0 1 o:o 0 0 
'-------v------

A2A!' Ik 

It is important to recognize that the LDPC code described in this example is intended 
only for the purpose of illustrating the procedure involved in the generation of such a code. 
In practice, the block length n is orders of magnitude larger than that considered in this 
example. Moreover, in constructing the matrix A, we may constrain all pairs of columns to 
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have a matrix overlap (i.e., inner product of any two columns in matrix A) not to exceed 1; 
such a constraint, over and above the regularity constraints, is expected to improve the per­
formance of LDPC codes. Unfortunately, with a small block length as that considered in this 
example, it is difficult to satisfy this additional requirement. 4 

MINIMUM DISTANCE OF LDPC CODES 

In practice, the block length of a LDPC code is large, ranging from 103 to 106
, which 

means that the number of code words in a particular code is correspondingly large. Con­
sequently, the algebraic analysis of LDPC codes is rather difficult. It is much more pro­
ductive to perform a statistical analysis on an ensemble of LDPC codes. Such an analysis 
permits us to make statistical statements about certain properties of member codes in the 
ensemble. Moreover, an LDPC code with these properties can be found with high prob­
ability by a random selection from the ensemble. 

Among these properties, the minimum distance of the member codes is of particular 
interest. From Section 10.3 we recall that the minimum distance of a linear block code is, 
by definition, the smallest Hamming distance between any pair of code vectors in the code. 
Over an ensemble of LDPC codes, the minimum distance of a member code is naturally a 
random variable. Elsewhere20 it is shown that as the block length n increases, for fixe.d 
tc 2: 3 and t, > tc the probability distribution of the minimum distance can be overbounded 
by a function that approaches a unit step function at a fixed fraction ll,, of the block 
length n. Thus, for large n, practically all the LDPC codes in the ensemble h;;e a minimum 
distance of at least nil,"' Table 10.10 presents the rate r and ll,J, of LDPC codes for 
different values of the weight-pair (t., t,). From this table we see that for tc = 3 and t, = 6 
the code rater attains its highest value of 1/2 and the fraction ll,

0
,, attains its smallest value, 

hence the preferred choice of tc = 3 and t, = 6 in the design of LDPC codes. 

!lll PROBABILISTIC DECODING OF LDPC CODES 

At the transmitter, a message vector m is encoded into a code vector c = mG, where G is 
the generator matrix for a specified weight-pair (t., t,) and therefore minimum distance 
dmin• The vector c is transmitted over a noisy channel to produce the received vector 

r = c + e 

where e is the error vector due to channel noise; see Equation (10.17). By construction, 
the matrix A is a parity matrix of the LDPC code; that is, AGT = 0. Given the received 

TABLE 10, IOa The rate r and 
fractional term ..dv, of LDPC codes 
for varying weights tc and t, 

t, t, Rater ,dtctr 

5 6 0.167 0.255 
4 5 0.2 0.210 
3 4 0.25 0.122 
4 6 0.333 0.129 
3 5 0.4 0.044 
3 6 0.5 0.023 

'Adapted from Gallager (1962) with permission of the IEEE. 
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vector r, the bit-by-bit decoding problem is to find the most probable vector c that satisfies 
the condition CAT 0. 

In what follows, a bit refers to an element of the received vector r, and a check refers 
to a row of matrix A. Let :J(i) denote the set of bits that participate in check i. Let :Ji(j) 
denote the set of checks in which bit j participates. A set :J(i) that excludes bit j is denoted 
by :J(i)\j. Likewise, a set !i(j) that excludes check i is denoted by !:P(j)\i. 

The decoding algorithm has two alternating steps: horizontal step and vertical step, 
which run along the rows and columns of matrix A, respectively. In the course of these 
steps, two probabilistic quantities associated with nonzero elements of matrix A are alter­
nately updated. One quantity, denoted by Pij, defines the probability that bit j is symbol 
x (i.e., symbol 0 or 1 ), given the information derived via checks performed in the horizontal 
step, except for check i. The second quantity, denoted by Q~, defines the probability that 
check i is satisfied, given that bit j is fixed at the value x and the other bits have the 
probabilities P;;· : j' E :J(i)\j. 

The LDPC decoding algorithm then proceeds as follows:21 

Initialization 

The variables Pg and P); are set equal to the a priori probabilities pJ and pJ of symbols 
0 and 1, respectively, with pJ + Pl = 1. 

Horizontal Step 

In the horizontal step of the algorithm, we run through the checks i. Define 

For each weight-pair (i, j), compute 

Hence, set 

Vertical Step 

aQ;; = TI aPij' 
f'E9(<JV 

In the vertical step of the algorithm, the values of the probabilities Pg and P}; are 
updated using the quantities computed in the horizontal step. In particular, for each bit j, 
compute 

pi = Ol.;;P7 TI Q?-; 
i'E:J(j)\i 

p~ = Ol.;;PJ TI Qf·; 
i'E<J{j)\i 

where the scaling factor a,1 is chosen to make 

PZ + P); = 1 
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In the vertical step, we may also update the pseudo-posterior probabilities: 

PJ = a;PJ IT Q~ 
iE§(J) 

Pj = aipJ IT QI; 
it.:J.(J) 

where a; is chosen to make 

PJ + P} = 1 

The quantities obtained in the vertical step are used to compute a tentative estimate 
c. If the condition cAT = 0 is satisfied, the decoding algorithm is terminated. Otherwise, 
the algorithm goes back to the horizontal step. If after some maximum number of iterations 
(e.g., 100 or 200) there is no valid decoding, a decoding failure is declared. The decoding 
procedure described herein is a special case of the general low-complexity sum-product 
algorithm. 

Simply stated, the sum-product algorithm passes probabilistic quantities between the 
check nodes and variable nodes of the bipartite graph. By virtue of the fact that each 
parity-check constraint can be represented by a simple convolutional coder with one bit 
of memory, we find that LDPC decoders are simpler to implement than turbo decoders, 
as stated earlier. 

In terms of performance, however, we may say the following in light of experimental 
results reported in the literature: Regular LDPC codes do not appear to come as close to 
Shannon's limit as do their turbo code counterparts. 

L! o_.11 Irregular Codes 

The turbo codes discussed in Section 10.8 and the LDPC codes discussed in Section 10.10 
are both regular codes, each in its own individual way. The error-correcting performance 
of both of these codes over a noisy channel can be improved substantially by using their 
respective irregular forms. 

In a standard turbo code with its encoder as shown in Figure 10.25, the interleaver 
maps each systematic bit to a unique input bit of convolutional encoder 2. In contrast, 
irregular turbo codes 22 use a special design of interleaver that maps some systematic bits 
to multiple input bits of the convolutional encoder. For example, each of 10 percent of 
the systematic bits may be mapped to eight inputs of the convolutional encoder instead of 

Message 
bits 

r------------_,... Sy~~~;tic 

Irregular 
interleaver 1 

Irregular 
interleaver 2 

Parity-check 
bits Z1 

Parity-check 
bits z2 

Output 

FIGURE 10.32 Block diagram of irregular turbo encoder. 
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a single one. As shown in Figure 10.32, similar irregular interleavers are used in both 
convolutional encoding paths to generate the parity-check bits z1 and z2 in response to the 
message bits x. Irregular turbo codes are decoded in a similar fashion to regular turbo 
codes. 

To construct an irregular LDPC code,23 the degrees of the variable and check nodes 
in the bipartite graph are chosen according to some distribution. For example, we may 
have an irregular LDPC code with the following graphical representation: 

~ One half of the variable nodes have degree 5 and the other half of the variable nodes 
have degree 3. 

J>. One half of the check nodes have degree 6 and the other half of the check nodes 
have degree 8. 

For a given block length and a given degree sequence, we define an ensemble of codes by 
choosing the edges (i.e., the connections between the variable and check nodes) in a ran­
dom fashion. Specifically, the edges emanating from the variable nodes are enumerated in 
some arbitrary order, and likewise for the edges emanating from the check nodes. 

Figure 10.33 plots the error performances of the following codes:24 

I<> Irregular LDPC code: k = 50,000, n = 100,000, rate = 112 
J>. Turbo code (regular): k = 65,536, n = 131,072, and rate = 112 
J>. Irregular turbo code: k = 65,536, n = 131,072, and rate = 1/2 

where k is the number of message bits and n is the block length. The generator polynomials 
for the two convolutional encoders in the regular/irregular turbo codes are as follows: 

Encoder 1: g(D) = 1 + D 4 

Encoder 2: g(D) = 1 + D + D 2 + D 3 + D 4 

Figure 10.33 also includes the corresponding theoretical limit on channel capacity for code 
rater= 112. 

.!!! 
~ 

10-1 

10-2 

e 10-3 

l;; 

10-5 

~1 - Shannon limit 
Regular turbo code 
Irregular turbo code 

- - Irregular LDPC code 

10-5 ~~~~-~-~-~-~-~-~~ 
-1 --0.8 --0.6 -0.4 --0.2 0 0.2 0.4 0.6 0.8 

Eb/No, dB 

FIGURE 10.33 Noise performances of regular turbo code, irregular turbo code and irregular 
low-density parity-check (LDPC) code, compared to the Shannon limit for code rate r = 1 /2. 
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Based on the results presented in Figure 10.33, we may make the following 
observations: 

,. The irregular LDPC code outperforms the regular turbo code in that it comes closer 
to Shannon's theoretical limit by 0.175 dB. 

!» Among the three codes displayed therein, the irregular turbo code is the best in that 
it is just 0.213 dB away from Shannon's theoretical limit. 

l~ 0.12 Summary and Discussion 

In this chapter, we studied error-control coding techniques that have established themselves 
as indispensable tools for reliable digital communication over noisy channels. The effect 
of errors occurring during transmission is reduced by adding redundancy to the data prior 
to transmission in a controlled manner. The redundancy is used to enable a decoder in the 
receiver to detect and correct errors. 

Error-control coding techniques may be divided into two broadly defined families: 

1. Algebraic codes, which rely on abstract algebraic structure built into the design 
of the codes for decoding at the receiver. Algebraic codes include Hamming codes, 
maximal-length codes, BCH codes, and Reed-Solomon codes. These particular 
codes share two properties: 
Linearity property, the sum of any two code words in the code is also a code word. 
Cyclic property, any cyclic shift of a code word is also a code word in the code. 
Reed-Solomon codes are very powerful codes, capable of combatting both random 
and burst errors; they find applications in difficult environments such as deep-space 
communications and compact discs. 

2. Probabilistic codes, which rely on probabilistic methods for their decoding at the 
receiver. Probabilistic codes include trellis codes, turbo codes, and low-density parity­
check codes. In particular, the decoding is based on one or the other of two basic 
methods, as summarized here: 
Soft input-hard output, which is exemplified by the Viterbi algorithm that performs 
maximum likelihood sequence estimation in the decoding of trellis codes. 
Soft input-soft output, which is exemplified by the BCJR algorithm that performs 
maximum a posteriori estimation on a bit-by-bit basis in the decoding of turbo codes, 
or a special form of the sum-product algorithm in the decoding of low-density parity­
check codes. 

Trellis codes combine linear convolutional encoding and modulation to permit significant 
coding gains over conventional uncoded multilevel modulation without sacrificing band­
width efficiency. Turbo codes and low-density parity-check codes share the following 
properties: 

"' Random encoding of a linear block kind. 
"'" Error performance within a hair's breadth of Shannon's theoretical limit on channel 

capacity in a physically realizable fashion. 

In practical terms, turbo codes and low-density parity-check codes have made it possible 
to achieve coding gains on the order of 10 dB, which is unmatched previously. These 
coding gains may be exploited to dramatically extend the range of digital communication 
receivers, substantially increase the bit rates of digital communication systems, or signifi-
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candy decrease the transmitted signal energy per symbol. These benefits have significant 
implications for the design of wireless communications and deep-space communications, 
just to mention two important applications of digital communications. Indeed, turbo codes 
have already been standardized for use on deep-space communication links and wireless 
communication systems. 
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I PROBLEMS 

Soft-Decision Coding 

10.1 Consider a binary input Q-ary output discrete memoryless channel. The channel is said 
to be symmetric if the channel transition probability p(j Ii) satisfies the condition: 

PUI OJ = p(Q - 1 - ii 1), i = o, 1, ... , Q - 1 

Suppose that the channel input symbols 0 and 1 are equally likely. Show that the channel 
output symbols are also equally likely; chat is, 

p(j) = ~' j = o, 1, ... ' Q - 1 

10.2 Consider the quantized demodulator for binary PSK signals shown in Fig. 10.3a. The 
quantizer is a four-level quantizer, normalized as in Fig. P10.2. Evaluate the transition 
probabilities of the binary input-quarternary output discrete memoryless channel so 
characterized. Hence, show chat it is a symmetric channel. Assume that the transmitted 
signal energy per bit is Eb, and the additive white Gaussian noise has zero mean and 
power spectral density N0 /2. 

Quantizer 
output 

+3 

+1 

0 

-1 

-3 

FIGURE Pl0,2 

Quantizer 
input 

10.3 Consider a binary input A WGN channel, in which the binary symbols 1 and 0 are equally 
likely. The binary symbols are transmitted over the channel by means of phase-shift 
keying. The code symbol energy is E, and the A WGN has zero mean and power spectral 
density N 0/2. Show chat the channel transition probability is given by 

p(ylOJ = -
1

- exp[-.!: (y + f2E)
2

], -oo < y < oo 
VIiT 2 ~Na 

Linear Block and Cyclic Codes 

10.4 In a single-parity-check code, a single parity bit is appended to a block of k message bits 
(mi. m,, ... , mk). The single" parity bit b1 is chosen so that the code word satisfies the 
even parity rule: 

m 1 + m 2 + · · · + mk + b1 = 0, mod 2 

For k = 3, set up the 2k possible code words in the code defined by chis rule. 
10.5 Compare the parity-check matrix of the (7, 4) Hamming code considered in Example 

10.2 with chat of a (4, 1) repetition code. 
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10.6 Consider the (7, 4) Hamming code of Example 10.2. The generator matrix G and the 
parity-check matrix H of the code are described in that example. Show that these two 
matrices satisfy the condition 

HGT= 0 

10.7 (a) For the (7, 4) Hamming code described in Example 10.2, construct the eight code 
words in the dual code. 

(b) Find the minimum distance of the dual code determined in part (a). 

10.8 Consider the (5, 1) repetition code of Example 10.1. Evaluate the syndromes for the 
following error patterns: 
(a) All five possible single-error patterns 
(b) All 10 possible double-error patterns 

10.9 For an application that requires error detection only, we may use a nonsystematic code. 
In this problem, we explore the generation of such a cyclic code. Let g(X) denote the 
generator polynomial, and m(X) denote the message polynomial. We define the code 
polynomial c(X) simply as 

c(X) = m{X)g(X) 

Hence, for a given generator polynomial, we may readily determine the code words in 
the code. To illustrate this procedure, consider the generator polynomial for a (7, 4) 
Hamming code: 

g(X) = 1 + X + X 3 

Determine the 16 code words in the code, and confirm the nonsystematic nature of the 
code. 

10.10 The polynomial 1 + X 7 has 1 + x + X3 and 1 + X 2 + X 3 as primitive factors. In 
Example 10.3, we used 1 + X + X 3 as the generator polynomial for a (7, 4) Hamming 
code. In this problem, we consider the adoption of 1 + X 2 + X3 as the generator 
polynomial. This should lead to a (7, 4) Hamming code that is different from the code 
analyzed in Example 10.3. Develop the encoder and syndrome calculator for the gen­
erator polynomial: 

g(X) = 1 + X 2 + X 3 

Compare your results with those in Example 10.3. 
10.11 Consider the (7, 4) Hamming code defined by the generator polynomial 

g(X) = 1 + X + X3 

The code word 0111001 is sent over a noisy channel, producing the received word 
0101001 that has a single error. Determine the syndrome polynomial s(X) for this re­
ceived word, and show that it is identical to the error polynomial e(X). 

10.12 The generator polynomial of a (15, 11) Hamming code is defined by 

g(X) = 1 + X + X 4 

Develop the encoder and syndrome calculator for this code, using a systematic form for 
the code. 

10.13 Consider the (15, 4) maximal-length code that is the dual of the (15, 11) Hamming code 
of Problem 10.12. Do the following: 
(a) Find the feedback connections of the encoder, and compare your results with those 

of Table 7.1 on maximal-length codes presented in Chapter 7. 
(b) Find the generator polynomial g(X); hence, determine the output sequence assuming 

the initial state 0001. Confirm the validity of your result by cycling the initial state 
through the encoder. 
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10.14 Consider the (31, 15) Reed-Solomon code. 
(a) How many bits are there in a symbol of the code? 
(b) What is the block length in bits? 
(c) What is the minimum distance of the code? 
(d) How many symbols in error can the code correct? 

Convolutional Codes 

10.15 A convolutional encoder has a single-shift register with two stages, (i.e., constraintlength 
K = 3), three modulo-2 adders, and an output multiplexer. The generator sequences of 
the encoder are as follows: 

g11) = (1, o, 1) 

g12) = (1, 1, 0) 

gi31 = (1, 1, 1) 

Draw the block diagram of the encoder. 
Note: For Problems 10.16-10.23, the same message sequence 10111 ... is used so that 
we may compare the outputs of different encoders for the same input. 

10.16 Consider the rater= 112, constraint length K = 2 convolutional encoder of Fig. Pl0.16. 
The code is systematic. Find the encoder output produced by the message sequence 
10111. ... 

Output 

Input o-_ _..,.., 

Flip-flop 

FIGURE Pl0.16 

10.17 Figure Pl0.17 shows the encoder for a rater= 112, constraint length K = 4 convolu­
tional code. Determine the encoder output produced by the message sequence 10111. ... 

Input Output 

FIGURE Pl0.17 
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10.18 Consider the encoder of Fig. 10.13b for a rate r = 113, constraint length K = 2 con­
volutional code. Determine the code sequence produced by the message sequence 
10111. ... 

10.19 Construct the code tree for the convolutional encoder of Fig. Pl0.16. Trace the path 
through the tree that corresponds to the message sequence 10111 ... , and compare the 
encoder output with that determined in Problem 10.16. 

10.20 Construct the code tree for the encoder of Fig. P10.17. Trace the path through the tree 
that corresponds to the message sequence 1011L ... Compare the resulting encoder 
output with that found in Problem 10.17. 

10.21 Construct the trellis diagram for the encoder of Fig. Pl 0.17, assuming a message sequence 
of length 5. Trace the path through the trellis corresponding to the message sequence 
10111. ... Compare the resulting encoder output with that found in Problem 10.17. 

10.22 Construct the state diagram for the encoder of Fig. Pl0.17. Starting with the all-zero 
state, trace the path that corresponds to the message sequence 10111 ... , and compare 
the resulting code sequence with that determined in Problem 10.17. 

10.23 Consider the encoder of Fig. 10.13b. 
(a) Construct rhe state diagram for chis encoder. 
(b) Starting from the all-zero scare, trace the path that corresponds to the message se­

quence 10111. ... Compare the resulting sequence with char determined in Problem 
10.18. 

10.24 By viewing the minimum shift keying (MSK) scheme as a finite-scare machine, construct 
the trellis diagram for MSK. (A description of MSK is presented in Chapter 6.) 

10.25 The trellis diagram of a rate-112, constraint length-3 convolurional code is shown in 
Figure Pl0.25. The all-zero sequence is transmitted, and the received sequence is 
100010000 .... Using the Viterbi algorithm, compute the decoded sequence. 

State 

00 

01 

10 

ll 

FIGURE Pl0.25 

10.26 Consider a rate-112, constraint length-7 convolutional code with free distance dfroe = 10. 
Calculate the asymptotic coding gain for the following two channels: 
(a) Binary symmetric channel 
(b) Binary input AWGN channel 

10.27 In Section 10.6 we described the Viterbi algorithm for maximum likelihood decoding of 
a convolutional code. Another application of the Viterbi algorithm is for maximum 
likelihood demodulation of a received sequence corrupted by intersymbol interference 
due to a dispersive channel. Figure Pl0.27 shows the trellis diagram for intersymbol 
interference, assuming a binary data sequence. The channel is discrete, described by the 
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finite impulse response (1, 0.1). The received sequence is (1.0, -0.3, -0.7, 0, ... ). Use 
the Viterbi algorithm to determine the maximum likelihood decoded version of this 
sequence. 

-0.9 

1.1 

-1.1 

FIGURE Pl0.27 

1.1 

-1.1 

10.28 FigureP10.28 depicts 32-QAM i;ross constellation. Partition this constellation into eight 
subsets. At each stage of the partitioning, indicate the within-subset (shortest) Euclidean 
distance. 

FIGURE P 10.28 

10.29 As explained in the Introduction to this chapter, channel coding can be used to reduce 
the Eb/N0 required for a prescribed error performance or reduce the size of the receiving 
antenna for a prescribed Eb/N0 • In this problem we explore these two practical benefits 
of coding by revisiting Example 8.2 in Chapter 8 on the downlink power calculations 
for a domestic satellite communication system. In particular, we now assume that the 
design of the downlink includes the use of a coding scheme consisting of a rate-112 
convolutional encoder with length K = 7 and Viterbi decoding. The coding gain of this 
scheme is 5.1 dB, assuming the use of soft quantization. Hence do the following: 
(a) Recalculate the required EJN0 ratio of the system. 
(b) Assuming that the required EbfN0 ratio remains unchanged, calculate the reduction 

in the size of the receiving dish antenna that is made possible by the use of this 
coding scheme in the downlink. 

10.30 Unlike the convolutional codes considered in this chapter, we recall from Chapter 6 that 
the convolutional code used in the voiceband modem V.32 modem is nonlinear. Figure 
Pl0.30 shows the circuit diagram of the convolutional encoder used in this modem; it 
uses modulo-2 multiplication and gates in addition to modulo-2 additions and delays. 
Explain the reason for nonlinearity of the encoder in Fig. Pl0.30, and use an example 
to illustrate your explanation. 
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Output 

10.31 Let r~') = plq1 and r~2> = plq2 be the code rates of RSC encoders 1 and 2 in the turbo 
encoder of Fig. 10.25. Find the code rate of the turbo code. 

10.32 The feedback nature of the constituent codes in the turbo encoder of Fig. 10.25 has the 
following implication: A single bit error corresponds to an infinite sequence of channel 
errors. Illustrate this phenomenon by using a message sequence consisting of symbol 1 
followed by an infinite number of symbols 0. 

10.33 Consider the following generator matrices for rate 1/2 turbo codes: 

[ 
1 + D + D

2
] 

4-state encoder: g(D) = 1, 
1 

+ Di 

[ 
1 + D

2 + D 3 
] 

8-state encoder: g(D) = 1, 1 + D + D 2 + D' 

16-state encoder: g(D) - [i 1 + D
4 

] 
- ' 1 + D + D 2 + D 3 + D4 

(a) Construct the block diagram for each one of these RSC encoders. 
(b) Setup the parity-check equation associated with each encoder. 

10.34 The turbo encoder of Fig. 10.25 involves the use of two RSC encoders. 
(a) Generalize this encoder to encompass a total of M interleavers. 
(b) Construct the block diagram of the turbo decoder that exploits the M sets of parity­

check bits generated by such a generalization. 
10.35 Turbo decoding relies on the feedback of extrinsic information. The fundamental prin­

ciple adhered to in the turbo decoder is to avoid feeding a decoding stage information 
that stems from the stage itself. Explain the justification for this principle in conceptual 
terms. 

10.36 Suppose a communication receiver consists of two components, a demodulator and a 
decoder. The demodulator is based on a Markov model of the combined modulator and 
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channel, and the decoder is based on a Markov model of a forward error correction 
code. Discuss how the turbo principle may be applied to construct a joint demodulator/ 
decoder for this system. 

Computer Experiment 

10.3 7 In this experiment we continue the investigation into turbo codes presented in Section 
10.9 by evaluating the effect of block size on the noise performance of the decoder. 

As before, the two convolutional encoders of the turbo encoder are as follows: 

Encoder 1: [1, 1, 1] 
Encoder 2: [1, 0, 1] 

The trapsmitted E&IN0 is 1 dB. The block errors to termination are prescribed not to 
exceed 15. 

With this background information, plot the bit error rate of the turbo decoder 
versus the number of iterations for two different block (i.e., interleaver) sizes: 200 and 
400. 



PROBABILITY THEORY 

I Al. I Probabilistic Concepts 

Probability theory is rooted in phenomena that, explicitly or implicitly, can be modeled 
by an experiment with an outcome that is subject to chance. Moreover, if the experiment 
is repeated, the outcome can diHer because of the influence of an underlying random 
phenomenon or chance mechanism. Such an experiment is referred to as a random exper­
iment. For example, the experiment may be the observation of the result of tossing a fair 
coin. In this experiment, the possible outcomes of a trial are "heads" or "tails." 

To be more precise in the description of a random experiment, we ask for three 
features: 

1. The experiment is repeatable under identical conditions. 

2. On any trial of the experiment, the outcome is unpredictable. 

3. For a large number of trials of the experiment, the outcomes exhibit statistical reg­
ularity; that is, a definite average pattern of outcomes is observed if the experiment 
is repeated a large number of times. 

REIATIVE-FREQUENCY APPROACH 

Let event A denote one of the possible outcomes of a random experiment. For example, 
in the coin-tossing experiment, event A may represent "heads." Suppose that in .n trials of 
the experiment, event A occurs N"(A) times. We may then assign the ratio Nn(A)ln to the 
event A. This ratio is called the relative frequency of the event A. Clearly, the relative 
frequency is a nonnegative real number less than or equal to one. That is to say, 

(Al.1) 

If event A occurs in none of the trials, N.(A)/n = 0. If, on the other hand, event A occurs 
in all the n trials, Nn(A )In = 1. 

We say that the experiment exhibits statistical regularity if for any sequence of n 
trials the relative frequency N.(A)/n converges to the same limit as n becomes large. It thus 
seems natural for us to define the probability of event A as 

P(A) = lim(N.(A)) 
,._,w n 

(Al.2) 

The limit shown in Equation (Al.2) should not be viewed in a mathematical sense. Rather, 
we think of Equation (Al.2) as a statement that the probability of an event is the long­
term proportion of times that a particular event A occurs in a long sequence of trials. For 
example, in the coin-tossing experiment, we may expect.that out of a million tosses of a 
fair coin, about one half of them will show up heads. 

The probability of an event is intended to represent the likelihood that a trial of the 
experiment will result in the occurrence of that event. For many engineering applications 
and games of chance, the use of Equation (Al.2) to define the probability of an event is 
acceptable. However, for many other applications, this definition is inadequate. Consider, 
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for example, the statistical analysis of the stock market: How are we to achieve repeata­
bility of such an experiment? A more satisfying approach is to state the properties that 
any measure of probability is expected to have, postulate them as axioms, and then use 
relative-frequency interpretations to justify them. 

iii! AxlOMS OF PROBABILl'IY 

When we perform a random experiment, it is natural for us to be aware of the various 
outcomes that are likely to arise. In this context, it is convenient to think of an experiment 
and its possible outcomes as defining a space and its points. With the kth outcome of the 
experiment, say, we associate a point called the sample point, which we denote by sk. The 
totality of sample points corresponding to the aggregate of all possible outcomes of the 
experiment is called the sample space, which we denote by S. An event corresponds to 
either a single sample point or a set of sample points. In particular, the entire sample space 
S is called the sure event; the null set 0 is called the null or impossible event; and a single 
sample point is called an elementary event. 

Consider, for example, an experiment that involves the throw of a die. In this ex­
periment there are six possible outcomes: the showing of one, two, three, four, five, and 
six dots on the upper face of the die. By assigning a sample point to each of these possible 
outcomes, we have a one-dimensional sample space that consists of six sample points, as 
shown in Figure A1.1. The elementary event describing the statement "a six shows" cor­
responds to the sample point {6}. On the other hand, the event describing the statement 
"an even number of dots shows" corresponds to the subset {2, 4, 6) of the sample space. 
Note that the term event is used interchangeably to describe the subset or the statement. 

We are now ready to make a formal definition of probability. A probability system 
consists of the triple: 

1. A sample space S of elementary events (outcomes). 
2. A class '& of events that are subsets of S. 
3. A probability measure P{·) assigned to each event A in the class'&, which has the 

following properties: 
{i) 

P{S) = 1 (Al.3) 

{ii) 

0 :s; P{A) :s; 1 {A1.4) 

{iii) If A + B is the union of two mutually exclusive events in the class '&, then 

P{A + B) = P{A) + P{B) (A1.5) 

Properties {i), {ii), and {iii) are known as the axioms of probability. Axiom {i) states that 
the probability of the sure event is unity. Axiom (ii) states that the probability of an event 

Sample paint 

3 4 6 

One-dimensional sample space 

FIGURE Al.1 Sample space for the experiment of throwing a die. 
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is a nonnegative real number that is less than or equal to unity. Axiom (iii) states that the 
probability of the union of two mutually exclusive events is the sum of the probabilities 
of the individual events. These three axioms are sufficient to deal with experiments with 
finite sample spaces. 

Although the axiomatic approach to probability theory is abstract in nature, all three 
axioms have relative-frequency interpretations of their own. Axiom (ii) corresponds to 
Equation (Al.1). Axiom (i) corresponds to the limiting case of Equation (Al.1) when the 
event A occurs in all the n trials. To interpret axiom (iii), we note that if event A occurs 
N"(A) times inn trials and event B occurs N"(B) times, then the union event "A or B" 
occurs in Nn(A) + Nn(B) trials (since A and B can never occur on the same trial). Hence, 
Nn(A + B) = Nn(A) + Nn(B), and so we have 

_N_n(_A_+_B_) = _Nn_(A_) + N_n_(B_) 
n n n 

which has a mathematical form similar to that of axiom (iii). 
Axioms (i), (ii), and (iii) constitute an implicit definition of probability. We may use 

these axioms to develop some other basic properties of probability, as described next. 

Property I 

P(A) = 1 - P(A) (Al.6) 

where A (denoting "not A") is the complement of event A. 

The use of this property helps us investigate the nonoccurrence of an event. To prove 
it, we express the sample space S as the union of two mutually exclusive events A and A: 

S=A+A 

Then, the use of axioms (i) and (iii) yields 

1 = P(A) + P(A) 

from which Equation (Al.6) follows directly. 

Property2 

If M mutually exclusive events Ai. A"' ... , AM have the exhaustive property 

A1 + A1 ... + AM = s (Al.7) 

then 

(Al.8) 

To prove this property, we first use axiom (i) in Equation (Al.7), and so write 

Next, we generalize axiom (iii) by writing 
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Hence, the result of Equation (A1.8) follows. When the M events are equally likely (i.e., 
they have equal probabilities of occurrence), then Equation (Al.8) simplifies as 

Property3 

1 
P(A;) =M, i = 1,2, ... ,M 

When events A and B are not mutually exclusive, then the probability of the union event 
"A or B" equals 

P(A + B) = P(A) + P(B) - P(AB) 

where P(AB) is the probability of the joint event "A and B." 

(Al.9) 

The probability P(AB) is called a joint probability. It has the following relative­
frequency interpretation: 

P(AB) = lim(Nn(AB)) 
,,__,.~ n 

(Al.10) 

where N.(AB) denotes the number of times the events A and B occur simultaneously inn 
trials of the experiment. Axiom (iii) is a special case of Equation (A1.9); when A and B 
are mutually exclusive, P(AB) is" zero, and Equation (A1.9) reduces to the same form as 
Equation (Al.5). 

II CONDITIONAL PROBABILITY 

Suppose we perform an experiment that involves a pair of events A and B. Let P(B IA) 
denote the probability of event B, given that event A has occurred. The probability 
P(B I A) is called the conditional probability of B given A. Assuming that A has nonzero 
probability, the conditional probability P(B IA) is defined by 

P(BIA) = P(AB) 
P(A) 

where P(AB) is the joint probability of A and B. 

(Al.11) 

We justify the definition of conditional probability given in Equation (Al.11) by 
presenting a relative-frequency interpretation of it. Suppose that we perform an experiment 
and examine the occurrence of a pair of events A and B. Let Nn(AB) denote the number 
of times the joint event AB occurs in n trials. Suppose that in the same n trials, the event 
A occurs N.(A) times. Since the joint event AB corresponds to both A and B occurring, it 
follows that Nn(A) must include Nn(AB). In other words, we have 

N 11(AB) :s: 
1 

Nn(A) 

The ratio N 11(AB)IN.(A) represents the relative frequency of B given that A has occurred. 
For large n, this ratio equals the conditional probability P(B I A); that is, 

P(BIA) = lim(N"(AB)) 
,,,...~ Nn(A) 



AI.I Probabilistic Concepts 707 

or, equivalently, 

Recognizing that 

and 

P(BIA) = lim(Nn(AB)ln) 
n-ro N.(A)/n 

P(AB) = lim(N"(AB)) 
~oo n 

P(A) = lim(Nn(A)) 
n----'l>oo n 

the result of Equation (Al.11) follows. 
We may rewrite Equation (Al.11) as 

P(AB) = P(BIA)P(A) 

It is apparent that we may also write 

P(AB) = P(A I B)P(B) 

(Al.12) 

(A1.13) 

Accordingly, we may state that the joint probability of two events may be expressed as 
the product of the conditional probability of one event given the other, and the elementary 
probability of the other. Note that the conditional probabilities P(B I A) and P(A I B) have 
essentially the same properties as the various probabilities previously defined. 

Situations may exist where the conditional probability P(A I B) and the probabilities 
P(A) and P(B) are easily determined directly, but the conditional probability P(BjA) is 
desired. From Equations (Al.12) and (A1.13), it follows that, provided P(A) of- 0, we may 
determine P(B IA) by using the relation 

P(BIA) = P(AIB)P(B) 
P(A) 

This relation is a special form of Bayes' rule. 

(A1.14) 

Suppose that the conditional probability P(B I A) is simply equal to the elementary 
probability of occurrence of event B, that is, 

P(BIA) = P(B) 

Under this condition, the probability of occurrence of the joint event AB is equal to the 
product of the elementary probabilities of the events A and B: 

P(AB) = P(A)P(B) 

so that 

P(AIB) = P(A) 

That is, the conditional probability of event A, assuming the occurrence of event B, is 
simply equal to the elementary probability of event A. We thus see that in this case a 
knowledge of the occurrence of one event tells us no more about the probability of oc­
currence of the other event than we knew without that knowledge. Events A and B that 
satisfy this condition are said to be statistically independent. 
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I Al .2 Random Variables 

It is customary, particularly when using the language of sample space, to think of the 
outcome of an experiment as a variable that can wander over the set of sample points and 
whose value is determined by the experiment. A function whose domain is a sample space 
and whose range is some set of real numbers is called a random variable of the experiment. 
However, the term random variable is somewhat confusing. First, the word random is not 
used in the sense of equal probability of occurrence, for which it should be reserved. 
Second, the word variable does not imply dependence (on the experimental outcome), 
which is an essential part of the meaning. Nevertheless, the term is so deeply imbedded in 
the literature of probability that its usage has persisted. 

When the outcome of an experiment is s, the random variable is denoted as X(s) or 
simply X. For example, the sample space representing the outcomes of the throw of a die 
is a set of six sample points that may be taken to be the integers 1, 2, ... , 6. Then if we 
identify the sample point k with the event that k dots show when the die is thrown, the 
function X(k) = k is a random variable such that X(k) equals the number of dots that 
show when the die is thrown. In this example, the random variable takes only a discrete 
set of values. In such a case, we say that we are dealing with a discrete random variable. 
More precisely, the random variable X can take only a finite number of values in any finite 
observation interval. If, however, the random variable X can take any value in a whole 
observation interval, Xis called q. continuous random variable. For example, the random 
variable that represents the amplitude of a noise voltage at a particular instant of time is 
a continuous random variable because it may take any value between plus and minus 
infinity. 

To proceed further, we need a probabilistic description of random variables that 
works equally well for discrete as well as continuous random variables. Let us consider 
the random variable X and the probability of the event X :S x. We denote this probability 
by P(X :S x). It is apparent that this probability is a function of the dummy variable x. To 
simplify the notation, we write 

Fx(x) = P(X :S x) (Al.15) 

The function Fx(x) is called the cumulative distribution function (cdf) or simply the dis­
tribution function of the random variable X. Note that Fx(x) is a function of x, not of the 
random variable X. However, it depends on the assignment of the random variable X, 
which accounts for the use of X as subscript. For any point x, the distribution function 
Fx(x) expresses a probability. 

The distribution function Fx(x) has the following properties, which follow directly 
from Equation {Al.15): 

1. The distribution function Fx(x) is bounded between zero and one. 

2. The distribution function Fx(x) is a nondecreasing function of x; that is, 

(Al.16) 

An alternative description of the probability of the random variable Xis often useful. 
This is the derivative of the distribution function, as shown by 

d 
fx(x) = dx Fx(x) (Al.17) 
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which is called the probability density function (pdf) of the random variable X. Note that 
the differentiation in Equation (Al .17) is with respect to the dummy variable x. The name, 
density function, arises from the fact that the probability of the event x1 < X :5 x2 equals 

P(x1 < X :5 x 2 ) = P(X :5 x 2 ) - P(X :5 x 1) 

= Fx(x2 ) - Fx(x1) (Al.18) 

= Ix' fx(x) dx Jx, 
The probability of an interval is therefore the area under the probability density function 
in that interval. Putting x 1 = -oo in Equation (Al.18), and changing the notation some­
what, we readily see that the distribution function is defined in terms of the probability 
density function as follows: 

(Al.19) 

Since Fx("") = 1, corresponding to the probability of a certain event, and Fx(-oo) = 0, 
corresponding to the probability of an impossible event, we readily find from Equation 
(Al.18) that 

roo fx(x) dx = 1 (Al.20) 

Earlier we mentioned that a distribution function must always be nondecreasing. This 
means that its derivative or the probability density function must always be nonnegative. 
Accordingly, we may state that a probability density function must always be a nonneg­
ative function, and with a total area of one. 

Thus far we have focused attention on situations involving a single random variable. 
However, we find frequently that the outcome of an experiment requires several random 
variables for its description. We now consider situations involving two random variables. 
The probabilistic description developed in this way may be readily extended to any number 
of random variables. 

Consider two random variables X and Y. We define the joint distribution function 
Fx,v(x, y) as the probability that the random variable Xis less than or equal to a specified 
value x and that the random variable Y is less than or equal to a specified value y. The 
variables X and Y may be two separate one-dimensional random variables or the com­
ponents of a single two-dimensional random variable. In either case, the joint sample space 
is the xy-plane. The joint distribution function Fx,v(x, y) is the probability that the outcome 
of an experiment will result in a sample point lying inside the quadrant ( - "' < X :5 x, 
- oo < Y :5 y) of the joint sample space. That is, 

Fx,y(x, y) = P(X :5 x, Y :5 y) (Al.21) 

Suppose that the joint distribution function Fx, y{x, y) is continuous everywhere, and 
that the partial derivative 

f (x ) = a1
Fx,y(x, y) 

X,Y 'y axay (Al.22) 

exists and is continuous everywhere. We call the function fx,Y(x, y) the joint probability 
density function of the random variables X and Y. The joint distribution function 
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Fx,y(x, y) is a nondecreasing function of both x and y. Therefore, from Equation (A1.22) 
it follows that the joint probability density function fx,y(x, y) is always nonnegative. Also 
the total volume under the graph of a joint probability density function must be unity, as 
shown by 

(Al.23) 

The probability density function for a single random variable (X, say) can be ob­
tained from its joint probability density function with a second random variable (Y, say) 
in the following way. We first note that 

(Al.24) 

Therefore, differentiating both sides of Equation (A1.24) with respect to x, we get the 
desired relation: 

(Al.25) 

Thus the probability density function fx(x) is obtained from the joint probability density 
function f x, y(x, y) by simply integrating it over all possible values of the undesired random 
variable Y. The use of similar arguments in the other dimension yields fy(y). The proba­
bility density functions fx(x) and fy(y) are called marginal densities. Hence, the joint 
probability density function fx,y(x, y) contains all the possible information about the joint 
random variables X and Y. 

Suppose that X and Y are two continuous random variables with joint probability 
density function fx,Y(x, y). The conditional probability density function of Y given that 
X = x is defined by 

f ( I ) = fx,y(x, y) 
Y y x fx(x) (Al.26) 

provided that fx(x) > 0, where fx(x) is the marginal density of X. The function fy(yix) 
may be thought of as a function of the variable y, with the variable x arbitrary, but fixed. 
Accordingly, it satisfies all the requirements of an ordinary probability density function, 
as shown by 

fy(y Ix) "' o 
and 

If the random variables X and Y are statistically independent, then knowledge of the 
outcome of X can in no way affect the distribution of Y. The result is that the conditional 
probability density function fy(y Ix) reduces to the marginal density f y( y), as shown by 

fy(ylx) = fy(y) 

In such a case, we may express the joint probability density function of the random vari­
ables X and Y as the product of their respective marginal densities, as shown by 

fx,Y(x, y) = fx(x)f y(y) 
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In words, we may state that if the joint probability density function of the random variables 
X and Y equals the product of their marginal densities, then X and Y are statistically 
independent. 

I Al.3 Statistical Averages 

Having discussed probability and some of its ramifications, we now seek ways for deter­
mining the average behavior of the outcomes arising in random experiments. 

The expected value or mean of a random variable X is defined by 

µx = E[X] = f 00 xfx(x) dx (A1.27) 

where E denotes the statistical expectation operator. That is, the mean µx locates the center 
of gravity of the area under the probability density curve of the random variable X. To 
interpret the expected value µx, we write the integral in the defining Equation (A1.27) as 
the limit of an approximating sum formulated as follows. Let [xk I k = 0, ±1, ±2, ... } 
denote a set of uniformly spaced points on the real line: 

Xk = ( k + ~) Ll, k = 0, ±1, ±2, ... (Al.28) 

where Ll is the spacing between adjacent points. We may then rewrite Equation (A1.27) 
as the limiting fonn of a sum: 

- f,(k+1),;. 

E[X] = lim 2: xdx(x) dx 
~-o k=-a> k A 

- ( Ll Ll) = Jim 2: xkP xk - - < X :s xk + -
a-o k~-- 2 2 

(Al.29) 

For a physical interpretation of the sum on the right-hand side of Equation (A1.29), sup­
pose that we make n independent observations of the random variable X. Let Nn(k) denote 
the number of times that the random variable X falls inside the kth bin: 

Ll Ll 
xk--<X:sxk+-

2 2' 
k = 0, ±1, ±2, ... 

Then, as the number of observations, n, is made large, the ratio Nn(k)ln approaches the 
probability P(xk - Ll/2 < X :s xk + Ll/2). Accordingly, we may approximate the expected 
value of the random variable X as 

(Al.30) 
n large 

We now recognize the quantity on the right-hand side of Equation (A1.30) simply as the 
sample average. The sum is taken over all the values xk> each of which is weighted by the 
number of times it occurs; the sum is then divided by the total number of observations to 
give the sample average. Indeed, Equation (Al.30) provides the basis for computing the 
expected value E[X]. 
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We next consider a more general situation. Let X denote a random variable, and let 
g(X) denote a function of X defined on the real line. The quantity obtained by letting the 
argument of the function g(X) be a random variable is also a random variable, which we 
denote as 

Y=g(X) (Al.31) 

To find the expected value of the random variable Y, we could of course find the probability 
density function fy(y) and then apply the standard formula 

E[Y] = f 00 yfy(y) dy 

A simpler procedure, however, is to write 

E[g(X)] = f 00 g(x)f x(x) dx (Al.32) 

Indeed, Equation (Al.32) may be viewed as generalizing the concept of expected value to 
an arbitrary fullction g(X) of a random variable X. 

ilil MOMENTS 

For the special case of g(X) = xn, using Equation (Al.32) we obtain the nth moment of 
the probability distribution of the random variable X; that is, 

(Al.33) 

By far the most important moments of X are the first two moments. Thus putting n = 1 
in Equation (Al.33) gives the mean of the random variable as shown in Eq. (Al.27), 
whereas putting n = 2 gives the mean-square value of X: 

(Al.34) 

We may also define central moments, which are simply the moments of the difference 
between a random variable X and its mean /Lx· Thus, the nth central moment is 

E[(X - /Lxtl = r
00 

(x - /Lxinfx(x) dx (Al.35) 

For n = 1, the central moment is, of course, zero, whereas for n = 2 the second central 
moment is referred to as the variance of the random variable X, which is written as 

var[X] = E[(X - JLxJ2] = r
00 

(x - /Lx)2fx(x) dx (Al.36) 

The variance of a random variable Xis commonly denoted as~- The square root of the 
variance, namely, <Tx, is called the standard deviation of the random variable X. 

The variance ~ of a random variable X in some sense is a measure of the variable's 
"randomness." By specifying the variance~. we essentially constrain the effective width 
of the probability density function fx(x) of the random variable X about the mean /Lx· 
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A precise statement of this constraint is due to Chebyshev. The Chebyshev inequality states 
that for any positive number €, we have 

P( IX - JLx I 2: €) S 1 (Al.37) 

From this inequality we see that the mean and variance of a random variable give a partial 
description of its probability distribution, hence their common use in practice. 

We note from Equations (Al.34) and (Al.36) that the variance ai and mean-square 
value E[X2

] are related by 

ai = E[X2 
- 2JLxX + JLk] 

= E[X2
] - 2JLxE[X] + JLi 

= E[X2
] - JLi 

(Al.38) 

where, in the second line, we have used the linearity property of the statistical expectation 
operator E. Equation (Al.38) shows that if the mean JLx is zero, then the variance u}. and 
the mean-square value E[X2

] of the random variable X are equal. 

!II CHARACTERISTIC FUNCTION 

Another important statistical average is the characteristic function <Px(v) of the probability 
distribution of the random variable X, which is defined as the expectation of the complex 
exponential function exp( jvX), as shown by 

<Px(v) = E[exp(jvX)] 

= roo fx(x) exp(jvx) dx 

(Al.39) 

where vis real and j = v=T. In other words, the characteristic function <Px(v) is (except 
for a sign change in the exponent) the Fourier transform of the probability density function 
fx(x); the Fourier transform is reviewed in Appendix 2. In this relation we have used 
exp(jvx) rather than exp(-jvx), so as to conform with the convention adopted in proba­
bility theory. Recognizing that v and x play analogous roles to the variables 2nf and t of 
Fourier transforms, respectively, we deduce the following inverse relation from analogy 
with the inverse Fourier transform: 

1 Joo fx(x) = 
2

7T _
00 

<Px(v) exp(-jvx) dv (Al.40) 

This relation may be used to evaluate the probability density function fx(x) of the random 
variable X from its characteristic function <Px(v). 

111 JOINT MOMENTS 

Consider next a pair of random variables X and Y. A set of statistical averages of impor­
tance in this case is the joint moments, namely, the expected value of X'Y\ where i and 
k may assume any positive integer values. We may thus write 

(Al.41) 
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A joint moment of particular importance is the correlation deifned by E[XY], which cor­
responds to i = k = 1 in Equation (Al.41). 

The correlation of the centered random variables X - E[X] and Y - E[Y], that is 
the joint moment ' 

cov[XY] = E[(X - E[X])(Y - E[Y])] (Al.42) 

is called the covariance of X and Y. Letting /kx = E[X] and µ,y = E[Y], we may expand 
Equation (A1.42) to obtain the result 

cov[XY] = E[XY] - lkx/kY (Al.43) 

Let ai and ~denote the variances of X and Y, respectively. Then the covariance of X 
and Y, normalized with respect to (]"x(]"y, is called the correlation coefficient of X and Y: 

cov[XY] 
p=--­

(]"x(]"y (Al.44) 

We say that the two random variables X and Y are uncorrelated if and only if their 
covariance is zero, that is, if and only if 

cov[XY] = 0 

We say that they are orthogonal if and only if their correlation is zero, that is, if and 
only if 

E[XY] = 0 

From Equation (Al.43) we observe that if one of the random variables X and Y or both 
have zero means, and if they are orthogonal, then they are uncorrelated, and vice versa. 
Note also that if X and Y are statistically independent, then they are uncorrelated; however, 
the converse of this statement is not necessarily true. 



REPRESENTATION OF 

SIGNALS AND SYSTEMS 

I A2. l Fourier Analysis 

Let g(t) denote a nonperiodic deterministic signal, expressed as some function of time t. 
By definition, the Fourier transform of the signal g(t) is given by the integral 

G(f) = f
00 

g(t) exp(-j27rft) dt (A2.1) 

where j = \!=I, and the variable f denotes frequency. Given the Fourier transform G(f), 
the original signal g(t) is recovered exactly using the formula for the inverse Fourier 
transform: 

g(t) = f 00 G(f) exp(jlnft) df (A2.2) 

Note that in Equations (A2.1) and (A2.2) we have used a lowercase letter to denote the 
time function and an uppercase letter to denote the corresponding frequency function. The 
functions g(f) and G(f) are said to constitute a Fourier-transform pair. 

For the Fourier transform of a signal g(t) to exist, it is sufficient but not necessary 
that g(t) satisfies three conditions known collectively as Dirichlet's conditions: 

1. The function g(t) is single-valued, with a finite number of maxima and minima in 
any finite time interval. 

2. The function g(t) has a finite number of discontinuities in any finite time interval. 
3. The function g(t) is absolutely integrable, that is, 

roo jg(t)j dt < 00 

We may safely ignore the question of the existence of the Fourier transform of a time 
function g(t) when it is an accurately specified description of a physically realizable signal. 
In other words, physical realizability is a sufficient condition for the existence of a Fourier 
transform. Indeed, we may go one step further and state that all energy signals, that is, 
signals g(t) for which 

are Fourier transformable. 
The Fourier transform provides the mathematical tool for measuring the frequency 

content, or spectrum, of a signal. For this reason, the terms Fourier transform and spectrum 
are often used interchangeably. Thus, given a signal g(t) with Fourier transform G(f), we 
may refer to G(f) as the spectrum of the signal g(t). By the same token, we refer to I G(f)j 
as the magnitude spectrum of the signal g(t), and refer to arg {G(f)} as its phase spectrum. 

715 
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ill PROPERTIES OF THE FOURIER 'TRANSFORM 

It is useful to have insight into the relationship between a time function g(t) and its Fourier 
transform G(f), and also into the effects that various operations on the function g(t) have 
on the transform G(f). This may be achieved by examining certain properties of the Fourier 
transform, which are summarized in Table A6.2. 

Ii!! DIRAC DELTA FUNCTION 

Strictly speaking, the theory of the Fourier transform is applicable only to time functions 
that satisfy the Dirichlet conditions. Such functions include energy signals. However, it 
would be highly desirable to extend this theory in two ways: 

1. To combine the Fourier series and Fourier transform into a unified theory, so that 
the Fourier series may be treated as a special case of the Fourier transform. 

2. To include power signals (i.e., signals for which the average power is finite) in the 
list of signals to which we may apply the Fourier transform. 

It turns out that both of these objectives can be met through the "proper use" of the Dirac 
delta function, or unit impulse. 

The Dirac delta function or just delta function, denoted by 8(t), is defined as having 
zero amplitude everywhere except at t = 0, where it is infinitely large in such a way that 
it contains unit area under its curve; that is, 

8(t) = 0, t * 0 (A2.3) 

and 

r
00 

B(t) dt = 1 (A2.4) 

An implication of this pair of relations is that the delta function 8(t) must be an even 
function of time t, which is centered at t = 0. 

For the delta function to have meaning, however, it has to appear as a factor in the 
integrand of an integral with respect to time and then, strictly speaking, only when the 
other factor in the integrand is a continuous function of time. Let g(t) be such a function, 
and consider the product of g(t) and the time-shifted delta function 8(t - t0 ). In light of 
the two defining equations, Equations (A2.3) and (A2.4), we may express the integral of 
this product as follows: 

roo g(t) 8(t - ta) dt = g(ta) (A2.5) 

The operation indicated on the left-hand side of this equation sifts out the value g(ta) of 
the function g(t) at time t = ta, where -oo < t < oo. Accordingly, Equation (A2.5) is 
referred to as the sifting property of the delta function. This property is sometimes used 
as the defining equation of a delta function; in effect, it incorporates Equations (A2.3) and 
(A2.4) into a single relation. 

Noting that the delta function 8(t) is an even function oft, we may rewrite Equation 
(A2.5) so as to emphasize its resemblance to the convolution integral, as shown by 

f 00 g(T) 8(t - T) dT = g(t) (A2.6) 
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In words, the convolution of any function with the delta function leaves that function 
unchanged. We refer to this statement as the replication property of the delta function. 

It is important to realize that no function in the ordinary sense has the two properties 
of Equations (A2.3) and (A2.4) or the equivalent sifting property of Equation (A2.5). 
However, we can imagine a sequence of functions that have progressively taller and thinner 
peaks at t = 0, with the area under the curve remaining equal to unity, whereas the value 
of the function tends to zero at every point except t = 0, where it tends to infinity. That 
is, we may view the delta function as the limiting form of a pulse of unit area as the 
duration of the pulse approaches zero. It is immaterial what sort of pulse shape is used. 

!!! FOURIER TRANSFORMS OF PERIODIC SIGNALS 

It is well known that by using the Fourier series, a periodic signal can be represented as a 
sum of complex exponentials. Also, in a limiting sense, Fourier transforms can be defined 
by complex exponentials. Therefore, it seems reasonable to represent a periodic signal in 
terms of a Fourier transform, provided that this transform is permitted to include delta 
functions. 

Consider then a periodic signal gy
0
(t) of period T0 • We can represent gr

0
(t) in terms 

of the complex exponential Fourier series: 

gy
0
(t) = L Cn exp(j21Tnfot) 

where cn is the complex Fourier coefficient defined by 

1 JTa/2 
Cn = -T. gy

0
(t) exp(-j21Tnfo) dt 

o -To/2 

(A2.7) 

(A2.8) 

and fo is the fundamental frequency defined as the reciprocal of the period T0; that is, 

1 
fo =­

To 
(A2.9) 

Let g(t) be a pulselike function, which equals gy
0
(t) over one period and is zero elsewhere; 

that is 

To To 
-2<t:S2 (A2.10) 
elsewhere 

The periodic signal gy
0
(t) may now be expressed in terms of the function g(t) as an infinite 

summation, as shown by 

gy
0
(t) = 2: g(t - mTo) (A2.11) 

Based on this representation, we may view g(t) as a generating function, which generates 
the periodic signal gy

0
(t). 

The function g(t) is Fourier transformable. Accordingly, we may rewrite the formula 
for the complex Fourier coefficient as follows: 

Cn =for~ g(t) exp(-j21Tnfot) dt 

= foG(nfo) (A2.12) 
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where G(nf al is the Fourier transform of g(t) evaluated at the frequency nf a· We may thus 
rewrite the formula for the reconstruction of the periodic signal gy

0
(t) as 

gy0(t) =fa L G(nfa) exp(j2'TT'nf0t) (A2.13) 

or, equivalently, in light of Equation (A2.11) 

~ ~ 

L g(t - mTo) =fa L G(nfo) exp(j2=f at) (A2.14) 

Equation (A2.14) is one form of Poisson's sum formula. 
It is of interest to observe that the function g(t), which constitutes one period of the 

periodic signal gy
0
(t), has a continuous spectrum defined by G(f). On the other hand, the 

period signal gy
0
(t) itself has a discrete spectrum. We conclude, therefore, that periodicity 

in the time domain has the effect of changing the frequency-domain description or spec­
trum of the signal into a discrete form de-fined at integer multiples of the fundamental 
frequency. 

FOURIER· TRANSFORM PAIRS 

Table A6.3 presents a listing of some commonly used Fourier-transform pairs, the deri­
vations of which follow from the material just presented. 

Ill! TRANSMISSION OF SIGNALS THROUGH LINEAR SYSTEMS 

A system refers to any physical device that produces an output signal in response to an 
in put signal. It is customary to refer to the input signal as the excitation and to the output 
signal as the response. In a linear system, the principle of superposition holds; that is, the 
response of a linear system to a number of excitations applied simultaneously is equal to 
the sum of the responses of the system when each excitation is applied individually. 

In the time domain, a linear system is described in terms of its impulse response, 
which is defined as the response of the system (with zero initial conditions) to a unit impulse 
or delta function 6(t) applied to the input of the system. If the system is time invariant, 
then the shape of the impulse response is the same no matter when the unit impulse is 
applied to the system. Thus, assuming that the unit impulse or delta function is applied at 
time t = 0, we may denote the impulse response of a linear time-invariant system by h(t). 
Let this system be subjected to an arbitrary excitation x(t). The response, y(t), of the system 
is defined in terms of the impulse response h(t) by 

y(t) = roo X(T)h(t - T) dT 

which is called the convolution integral. Equivalently, we may write 

y(t) = r
00 

h{T) X(t - 'T) dT 

Hence, convolution is commutative. 

(A2.15) 

(A2.16) 

In the convolution integral, three different time scales are involved: excitation time 
T, response time t, and system-memory time t - T. This relation is the basis of time-domain 
analysis of linear time-invariant systems. According to Equation (A2.15), the present value 
of the response of a linear time-invariant system is a weighted integral over the past history 
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of the input signal, weighted according to the impulse response of the system. Thus the 
impulse response acts as a memory function for the system. 

!Iii FREQUENCY RESPONSE OF LINEAR TIME·INVARIANT SYSTEMS 

Consider a linear time-invariant system of impulse response h(t) driven by a complex 
exponential input of unit amplitude and frequency f, that is, 

x(t) = exp(j27rf t) 

Using this excitation in Equation (A2.16), the response of the system is obtained as 

y(t) = r
00 

h(T) exp[j21rf(t - 7)] dr 

= exp(j21rft) roo h(r) exp(-j21rfr) dr 
(A2.17) 

Define the frequency response of the system as the Fourier transform of its impulse re­
sponse, as shown by 

H(f) = f 00 h(t) exp(-j27rft) dt (A2.18) 

The integral in the last line of Equation (A2.17) is the same as that of Equation (A2.18), 
except that 7 is used in place of t. Hence, we may rewrite Equation (A2.17) in the form 

y(t) = H(f) exp(j21rft) (A2.19) 

The response of a linear time-invariant system to a complex exponential function of fre­
quency f is, therefore, the same complex exponential function multiplied by a constant 
coefficient H(f). 

The frequency response H(f) is, in general, a complex quantity, so we may express 
it in the form 

H(f) = I H(f) I exp[j/3(/)] (A2.20) 

where I H(f) I is called the magnitude response, and /3(f) is the phase, or phase response. 
In the special case of a linear system with a real-valued impulse response h(t), the frequency 
response H(f) exhibits conjugate symmetry, which means that 

IH(f)I = IH(-f)I 

and 

/3(/) = -/3(-f) 

That is, the magnitude response I H(f) I of a linear system with real-valued impulse response 
is an even function of frequency, whereas the phase /3(/) is an odd function of frequency. 

In some applications, it is preferable to work with the logarithm of H(f) expressed 
in polar form rather than with H(f) itself. Define the natural logarithm 

log H(f) = o:(f) + j/3(/) (A2.21) 

where 

o:(f) = log I H(f) I (A2.22) 
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The function a(f) is called the gain of the system. It is measured in nepers, whereas /3(!) 
is measured in radians. Equation (A2.21) indicates that the gain a(f) and phase {3(f) are 
the real and imaginary parts of the (natural) logarithm of the frequency response H(f), 
respectively. The gain may also be expressed in decibels (dB) by using the definition 

a' (f) = 20 log10 I H(f} I 
The two gain functions a(f} and a'(f) are related by 

a' (f} = 8.69a(f} 

That is, 1 neper is equal to 8.69 dB. 

I A2 .2 Bandwidth 

(Al.23) 

(A2.24) 

The time-domain and frequency-domain descriptions of a signal are inversely related. In 
particular, we may make the following important statements: 

1. If the time-domain description of a signal is changed, the frequency-domain descrip­
tion of the signal is changed in an inverse manner, and vice versa. This inverse re­
lationship prevents arbitrary specifications of a signal in both domains. In other 
words, we may specify an arbitrary function of time or an arbitrary spectrum, but 
we cannot specify both of them together. 

2. If a signal is strictly limited in frequency, the time-domain description of the signal 
will trail on indefinitely, even though its amplitude may assume a progressively 
smaller value. We say a signal is strictly limited in frequency or strictly band limited 
if its Fourier transform is exactly zero outside a finite band of frequencies. The sine 
pulse 

sinc(t) = sin(m) 
1Tt 

is an example of a strictly band-limited signal. It is also asymptotically limited in 
time, which confirms the opening statement we made for a strictly band-limited 
signal. In an inverse manner, if a signal is strictly limited in time (i.e., the signal is 
exactly zero outside a finite time interval), then the spectrum of the signal is infinite 
in extent, even though the amplitude spectrum may assume a progressively smaller 
value. This behavior is exemplified by a rectangular pulse. Accordingly, we may state 
that a signal cannot be strictly limited in both time and frequency. 

The bandwidth of a signal provides a measure of the extent of significant spectral 
content of the signal for positive frequencies. When the signal is strictly band limited, the 
bandwidth is well defined. For example, the sine pulse sinc(2Wt) has a bandwidth equal 
to W. However, when the signal is not strictly band limited, as is generally the case, we 
encounter difficulty in defining the bandwidth of the signal. The difficulty arises because 
the meaning of "significant" attached to the spectral content of the signal is mathematically 
imprecise. Consequently, there is no universally accepted definition of bandwidth. Nev­
ertheless, there are some commonly used definitions for bandwidth, as discussed next. 

When the spectrum of a signal is symmetric with a main lobe bounded by well-defined 
nulls (i.e., frequencies at which the spectrum is zero), we may use the main lobe as the 
basis for defining the bandwidth of the signal. Specifically, if the signal is low-pass (i.e., 
its spectral content is centered around the origin), the bandwidth is defined as one half the 
total width of the main spectral lobe since only one half of this lobe lies inside the positive 
frequency region. For example, a rectangular pulse of duration T seconds has a main 
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spectral lobe of total width 2/T hertz centered at the origin. Accordingly, we may define 
the bandwidth of this rectangular pulse as 1/T hertz. If, on the other hand, the signal is 
band-pass with main spectral lobes centered around ±1" where le is large enough, the 
bandwidth is defined as the width of the main lobe for positive frequencies. This definition 
of bandwidth is called the null-to-null bandwidth. For example, an RF pulse of duration 
T seconds and frequency le has main spectral lobes of width 2/T hertz centered around 
±10 where it is assumed that le is large compared to 1/T. Hence, we may define the null­
to-null bandwidth of this RF pulse as 2/T hertz. On the basis of the definitions presented 
here, we may state that shifting the spectral content of a low-pass signal by a sufficiently 
large frequency has the effect of doubling the bandwidth of the signal; such a frequency 
translation is attained by using modulation. 

Another popular definition of bandwidth is the 3-dB bandwidth. Specifically, if the 
signal is low-pass, the 3-dB bandwidth is defined as the separation between zero frequency, 
where the magnitude spectrum attains its peak value, and the positive frequency, at which 
the amplitude spectrum drops to 1/\/2 of its peak value. For example, the decaying ex­
ponential exp(-at) has a 3-dB bandwidth of al2Tr hertz. If, on the other hand, the signal 
is band-pass, centered at ±le, the 3-dB bandwidth is defined as the separation (along the 
positive frequency axis) between the two frequencies at which the magnitude spectrum of 
the signal drops to 1/Vl of the peak value of I,. The 3-dB bandwidth has the advantage 
in that it can be read directly from a plot of the magnitude spectrum. However, it has the 
disadvantage in that it may be misleading if the magnitude spectrum has slowly decreasing 
tails. 

Yet another measure for the bandwidth of a signal is the root mean square (rms) 
bandwidth, which is defined as the square root of the second moment of a properly nor­
malized form of the squared magnitude spectrum of the signal about a suitably chosen 
point. We assume that the signal is low-pass, so that the second moment may be taken 
about the origin. As for the normalized form of the squared magnitude spectrum, we use 
the nonnegative function 

I G(l)i2 

roo IG(fll 2 di 

in which the denominator applies the correct normalization in the sense that the integrated 
value of this ratio over the entire frequency axis is unity. We may thus formally define the 
rms bandwidth of a low-pass signal g(t) with Fourier transform G(f} as follows: 

w,U1, = ([,00 !21G(fl12 dl)112 
J_oo I G(f} 1

2 di 
(A2.25) 

An attractive feature of the rms bandwidth Wrms is that it lends itself more readily to 
mathematical evaluation than the other two definitions of bandwidth, but it is not as easily 
measurable in the laboratory. 

l!I TIME· BANDWIDTH PRODUCT 

For any family of pulse signals that differ by a time-scaling factor, the product of the 
signal's duration and its bandwidth is always a constant, as shown by 

(duration X bandwidth) = constant 
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The product is called the time-bandwidth product or bandwidth-duration product. The 
constancy of the time-bandwidth product is another manifestation of the inverse relation­
ship that exists between the time-domain and frequency-domain descriptions of a signal. 
In particular, if the duration of a pulse signal is decreased by reducing the time scale by a 
factor a, the frequency scale of the signal's spectrum, and therefore the bandwidth of the 
signal, is increased by the same factor a, by virtue of the time-scaling property of the Fourier 
transform, and the time-bandwidth product of the signal is thereby maintained constant; 
see item 2 of Table A6.2. For example, a rectangular pulse of duration T seconds has a 
bandwidth (defined on the basis of the positive-frequency part of the main lobe) equal to 
1/T hertz, making the time-bandwidth product of the pulse equal unity. Whatever defini­
tion we use for the bandwidth of a signal, the time-bandwidth product remains constant 
over certain classes of pulse signals. The choice of a particular definition for bandwidth 
merely changes the value of the constant. 

To be more specific, consider therms bandwidth defined in Equation (A2.25). The 
corresponding definition for therms duration of the signal g(t) is 

T,m, = r: t2

lg(t) 1
2 

dt 

L~ 1g(t)l2 dt ( )

1/2 

(A2.26) 

where it is assumed that the signal g(t) is centered around the origin. It may be shown 
that, using the rms definitions of Equations (A2.25) and (A2.26), the time-bandwidth 
product has the following form: 

(A2.27) 

where the constant is 1!4'1T. The Gaussian pulse exp(-m2
) satisfies this condition with the 

equality sign. 

Iii NOISE EQUIVALENT BANDWIDTH 

The definitions of bandwidth just presented (i.e., 3-dB bandwidth, null-to-null bandwidth, 
and rms bandwidth) are all formulated in terms of deterministic signals. Another definition 
of bandwidth that presents itself in the study of random signals and systems is the noise 
equivalent bandwidth. Suppose that a white noise source of power spectral density N0 /2 
is connected to the input of the simple RC low-pass filter of Figure A2.1; the corresponding 
value of the average output noise power is equal to N 0/(4RC). For this filter, the half­
power or 3-dB bandwidth is equal to 1/(2'7TRC). Here again we find that the average output 
noise power of the filter is proportional to the bandwidth. 

We may generalize this statement to include all kinds of low-pass filters by defining 
a noise equivalent bandwidth as follows. Suppose that we have a source of white noise of 

R 

White ~Colored 
noise C I noise 
w(t) n{t) 

0 0 

FIGURE A2.l RC low-pass filter. 
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FIGURE A2.2 Illustrating the definition of noise-equivalent bandvvidth for a low-pass filter. 

zero mean and power spectral density N 0 /2 connected to the input of an arbitrary low­
pass filter of transfer function H(f). The resulting average output noise power is therefore 

Nout = ~o roo IH(f)l 2 df 

=Nor IH(f) 1

2 
df 

(A2.28) 

where, in the last line, we have made use of the fact that the magnitude response I H(f) I 
is an even function of frequency. 

Consider next the same source of white noise connected to the input of an ideal low­
pass filter of zero-frequency response H(O) and bandwidth B. In this case, the average 
output noise power is 

(A2.29) 

Therefore, equating this average output noise power to that in Equation (A2.28), we may 
formally define the noise equivalent bandwidth as 

r IH(f)i2df 

B = H2(0) (A2.29) 

Thus the procedure for calculating the noise equivalent bandwidth consists of replacing 
the arbitrary low-pass filter of transfer function H(f) by an equivalent ideal low-pass filter 
of zero frequency response H(O) and bandwidth B, as illustrated in Figure A2.2. In a similar 
way, we may define a noise equivalent bandwidth for bandpass filters. 

I A2.3 Hilbert Transform 

The Fourier transform is particularly useful for evaluating the frequency content of an 
energy signal or, in a limiting sense, that of a power signal. As such, it provides the math­
ematical basis for analyzing and designing frequency-selective filters for the separation of 
signals on the basis of their frequency content. Another method of separating signals is 
based on phase selectivity, which uses phase shifts between the pertinent signals to achieve 
the desired separation. The simplest phase shift is that of 180 degrees, which is merely a 
polarity reversal in the case of a sinusoidal signal. Shifting the phase angles of all com­
ponents of a given signal by 180 degrees requires the use of an ideal transformer. Another 
phase shift of interest is that of ±90 degrees. In particular, when the phase angles of all 
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components of a given signal are shifted by ±90 degrees, the resulting function of time is 
known as the Hilbert transform of the signal. 

To be specific, consider a signalg(t) with Fourier transform G(f). The Hilbert trans­
form of g(t), which we shall denote by g(t), is defined by 

g(t) = _!. J00 

g(T) dT (A2.31) 
7T -oo t - 'T 

Clearly, the Hilbert transformation of g(t) is a linear operation. The inverse Hilbert trans­
form, by means of which the original signal g(t) is recovered from g(t), is defined by 

1 J00 

g(T) g(t) = -- -- dT (A2.32) 
7T -oo t - 'T 

The functions g(t) and g(t) are said to constitute a Hilbert-transform pair. A short table 
of Hilbert-transform pairs is given in Table A6.4. 

We note from the definition of the Hilbert transform that g(t) may be interpreted as 
the convolution of g(t) with the time function 1/7rt. We also know from the convolution 
theorem that the convolution of two functions in the time domain is transformed into the 
multiplication of their Fourier transforms in the frequency domain; see item 12 of Table 
A6.2. For the time function 117rt, we have (see Table A6.3) 

_!_ ~ -j sgn(f) 
7T,t 

where sgn(f) is the signum function defined in the frequency domain as 

{ 

1, 
sgn(f) = 0, 

-1, 

f>O 
f=O 
f<O 

It follows therefore that the Fourier transform G(f) of g(t) is given by 

G(f) = -j sgn(f)G(f) 

(A2.33) 

(A2.34) 

(A2.35) 

Equation (A2.35) states that given a signal g(t), we may obtain its Hilbert transform 
g(t) by passing g(t) through a linear two-port device whose frequency response is equal to 
-j sgn(f). This device may be considered as one that produces a phase shift of -90 degrees 
for all positive frequencies of the input signal and + 90 degrees for all negative frequencies, 
as in Figure A2.3. The amplitudes of all frequency components in the signal, however, ate 

arg{H(f)) 

-------1+90° 

-90°------

FIGURE A2.3 Phase characteristic of linear two-port device for obtaining the Hilbert transform 
of a real-valued signal. 
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uuaffected by transmission through the device. Such an ideal device is referred to as a 
Hilbert transformer. 

1111 PROPERTIES OF THE HILBERT TRANSFORM 

The Hilbert transform differs from the Fourier transform in that it operates exclusively in 
the time domain. It has a number of useful properties, some of which are listed next. The 
signal g(t) is assumed to be real valued, which is the usual domain of application of the 
Hilbert transform. For this class of signals, we may state the following: 

1. A signal g(t) and its Hilbert transform g(t) have the same magnitude spectrum. 
2. If g(t) is the Hilbert transform of g(t), then the Hilbert transform of g(t) is -g(t). 
3. A signal g(t) and its Hilbert transformg(t) are orthogonal over the entire time interval 

(-oo, oo), as shown by 

f _ g(t)g(t)dt = 0 

Proofs of these properties are left as exercises for the reader; the proofs follow from Equa­
tions (A2.31), (A2.32) and (A2.35). 

A2 .4 Complex Representation 
of Signals and Systems 

1111 PRE-ENVELOPE 

Consider a real-valued signal g(t). We define the pre-envelope, or analytic signal, of the 
signal g(t) as the complex-valued function 

g+(t) = g(t) + jg(t) (A2.36) 

where g(t) is the Hilbert transform of g(t). We note that the given signal g(t) is the real 
part of the pre-envelope g+(t), and the Hilbert transform of the signal is the imaginary 
part of the pre-envelope. Just as the use of phasors simplifies manipulations of alternating 
currents and voltages, so we find that the pre-envelope is particularly useful in handling 
band-pass signals and systems. 

One of the important features of the pre-envelope g+(t) is the behavior of its Fourier 
transform. Let G+(fl denote the Fourier transform of g+(t). Then we may write 

G+(fl = G(f) + sgn(f)G(f) 

from which we readily find that 

{

2G(f), f > 0 

G+(fl = G(O), f = 0 

o, f < 0 

(A2.37) 

where G(O) is the value of G(f) at frequency f = 0. This means that the pre-envelope of 
a signal has no frequency content (i.e., its Fourier transform vanishes) for all negative 
frequencies. 
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From the foregoing analysis it is apparent that for a given signal g(t) we may deter­
mine its pre-envelope g+(t) in one of two equivalent ways: 

1. We detennine the Hilbert transform g(t) of the signal g(t), and then use Equation 
(Al.36) to compute the pre-envelope g+(t). 

2. We determine the Fourier transform G(f) of the signal g(t), use Equation (Al.37) to 
determine G+(fl, and then evaluate the inverse Fourier transform of G+(f) to obtain 

g+(t) = 2 r G(f) exp(j21Tl t) dl (Al.38) 

For a particular signal g(t) of Fourier transform G(f), one of these two ways may be better 
than the other. 

Equation (Al.36) defines the pre-envelope g+(t) for positive frequencies. Symmetri­
cally, we may define the pre-envelope for negative frequencies as 

g_(t) = g(t) - jg(t) (Al.39) 

The two pre-envelopes g+(t) and g_(t) are simply the complex conjugate of each other, as 
shown by 

(Al.40) 

where the asterisk denotes complex conjugation. The spectrum of the pre-envelope g+(t) 
is nonzero only for positive frequencies, as emphasized in Equation (Al.37); hence, the 
use of a plus sign as the subscript. In contrast, the spectrum of the other pre-envelope g_ (t) 
is nonzero only for negative frequencies, as shown by the Fourier transform 

{

o, l > o 
G_(f) = G(O), l = 0 

2G(f), l < 0 

(A2.41) 

Thus the pre-envelopes g+(t) and g_(t) constitute a complementary pair of complex-valued 
signals. Note also that the sum of g+(t) and g_(t) is exactly twice the original signal g(t). 

!!!! CANONICAL REPRESENTATIONS OF BAND-PASS SIGNALS 

Consider a band-pass signal g(t) whose Fourier transform G(f) is nonnegligible only in a 
band of frequencies of total extent 2 W, say, centered about some frequency ± l c- This is 
illustrated in Figure A2.4a. We refer to l c as the carrier frequency. In the majority of 
communication signals, we find that the bandwidth 2W is small compared with l" and 
so we refer to such a signal as a narrowband signal. However, a precise statement about 
how small the bandwidth must be for the signal to be considered narrowband is not 
necessary for our present discussion. 

Let the pre-envelope of a narrowband signal g(t), with its Fourier transform G(f) 
centered about some frequency ±le, be expressed in the form 

g+(t) = g(t) exp(j27T/J) (Al.42) 

We refer to g(t) as the complex envelope of the signaL Equation (Al.42) may be viewed 
as the basis of a definition for the complex envelope g(t) in terms of the pre-envelopeg+(t). 
We note that the spectrum of g+(t) is limited to the frequency band le - W:::: l :::: le+ W, 
as illustrated in Figure A2.4b. Therefore, applying the frequency-shifting property of the 
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IG(fll 

l~<&J~----

(a) 

(b) 

IG(fll 

~~~~~~-'------'~--'-~~~~~~! 

-W 0 W 

(c) 

FIGURE A2.4 (a) Magnitude spectrum of band-pass signal g(t). (h) Magnitude spectrum of pre­
envelope g,, (t). (c) MagnHudc spectrum of complex envelope g(t). 

Fourier transform to Equation (A2.42), which is described as item 5 in Table A6.2, we 
find that the spectrum of the complex envelope g(t) is limited to the band - W :sf :S W 
and centered at the origin as illustrated in Figure A2.4c. That is, the complex envelope 
g(t) of a band-pass signal g(t) is a low-pass signal, which is an important result. 

By definition, the given signal g(t) is the real part of the pre-envelope g+(t). We may 
thus express the original band-pass signal g(t) in terms of the complex envelope g(t) as 
follows: 

g(t) = Re[g(t) exp(j21Tfct)] (A2.43) 

In general, g(t) is a complex-valued quantity; to emphasize this property, we may express 
it in the form 

(A2.44) 
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where gr(t) and gQ(t) are both real-valued low-pass functions; their low-pass property is 
inherited from the complex envelope g(t). We may therefore use Equations (Al.43) and 
(A2.44) to express the original band-pass signal g(t) in the canonical, or standard, form: 

g(t) = gr(t) cos(21Tfct) - gQ(t) sin(21Tfct) (A2.4S) 

We refer to gr(t) as the in-phase component of the band-pass signal g(t) and to gQ(t) as 
the quadrature component of the signal; this nomenclature recognizes that sin(21Tfct) [i.e., 
the multiplying factor of gQ(t)] is in phase-quadrature with respect to cos(21Tfct) [i.e., the 
multiplying factor of gr(t)] and cos(21Tfct) is viewed as the reference. 

According to Equation (Al.44), the complex envelopeg(t) may be pictured as a time­
varying phasor positioned at the origin of the (g" gQ)-plane, as indicated in Figure Al.Sa. 
With time t varying, the end of the phasor moves about in the plane. Figure Al.Sb shows 
the phasor representation of the complex exponential exp(j27Tfct). In the definition given 
in Equation (Al.43), the complex envelope g(t) is multiplled by the complex exponential 
exp(j21Tfct). The angles of these two phasors therefore add and their lengths multiply, as 
shown in Figure Al.Sc. Moreover, in this latter figure, we show the (g" gQ)-plane rotating 
with an angular velocity equal to 21Tfc radians per second. Thus, in the picture portrayed 
here, the phasor representing the complex envelope g(t) moves in the (gr, gQ)-plane and 
at the same time the plane itself rotates about the origin. The original band-pass signal 
g(t) is the projection of this time-varying phasor on a fixed line representing the real axis, 
as indicated in Figure Al.Sc. 

(a) 

gQ\ 
\ 
\ 
\ 

\ 
\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

g(t) 

(c) 

Imaginary 
axis 

(b) 

FIGURE A2.5 Illustrating an interpretation of the complex envelope g(t) and its multiplication 
by exp(j271'Jct). 
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Since both gr(t) and gg(t) are low-pass signals limited to the band - W :s: f :s: W, 
they may be derived from the band-pass signal g(t) using the scheme shown in Figure 
A2.6a. Both low-pass filters in this figure are identical, each of which has a bandwidth 
equal to W. To reconstruct g{t) from its in-phase and quadrature components, we may 
use the scheme shown in Figure A2.6b. 

The two schemes shown in Figure A2.6 are basic to the study of linear modulation 
systems. The multiplication of the low-pass in-phase component gr(t) by cos(27Tf,J) and 
the multiplication of the low-pass quadrature component gg(t) by sin(27T.fct) represent 
linear forms of modulation. Given that the carrier frequency .fc is sufficiently large, the 
resulting band-pass function g(t) defined in Equation {A2.45) is referred to as a passband 
signaling waveform. Correspondingly, the mapping fromgr(t) and gg{t) into g(t) is known 
as passband modulation. 

Equation (A2.44) is the Cartesian form of expressing the complex envelope g(t). 
Alternatively, we may express it in the polar form 

g(t) = a(t) exp[j<P(t)] {A2.46) 

where a(t) and cf> (t) are both real-valued low-pass functions. Based on this polar represen­
tation, the original band-pass signal g(t) is defined by 

g(t) = a{t) cos[27T.fct + cf> {t)] (A2.47) 

We refer to a{t) as the natural envelope or simply the envelope of the band-pass signalg(t) 
and to c/>(t) as the phase of the signal. Equation {A2.47) represents a hybrid form of 
amplitude modulation and angle modulation; indeed, it includes amplitude modulation, 
frequency modulation, and phase modulation as special cases. 

From this discussion it is apparent that, whether we represent a band-pass (modu­
lated) signal g(t) in terms of its in-phase and quadrature components as in Equation 
(A2.45) or in terms of its envelope and phase as in Equation (A2.47), the information 
content of the signal g(t) is completely preserved in the complex envelope g(t). 

Low-pass gl(t) 
filter 

gl(t) 

2 cos (2'1rfcr) cos (2'1rfi~t} 
Oscillator Oscillator 

+ 

l: g(t) 

90°-phase -90°-phase 
shifter shifter 

Low-pass gQ(t) 
gQ(t) 

filter 

(a) (b) 

FIGURE A2,6 (a) Scheme for deriving the in-phase and quadrature components of a band-pass 
signal. (b) Scheme for reconstructing the band-pass signal from its in-phase and quadrature 
components. 
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!ii TERMINOLOGY 

The distinctions among the three different envelopes that we have introduced to describe 
a band-pass signal g(t) should be carefully noted. We summarize their definitions here: 

1. The pre-envelope g+(t) for positive frequencies is defined by 

g+(t) = g(t) + jg(t) 

where g(t) is the Hilbert transform of the signal g(t). According to this representation, 
g(t) may be viewed as the quadrature function of g(t). Correspondingly, in the fre: 
quency domain we have 

{

2G(f), f > 0 

G+(fl = G(O), f = 0 

o, f < 0 

2. The complex envelope g(t) equals a frequency-shifted version of the pre-envelope 
g+(t), as shown by 

g(t) = g+(t) exp(-j2Trf;t) 

where f; is the carrier frequency of the band-pass signal g(t). 
3. The envelope a(t) equals the ,magnitude of the complex envelope g(t) and also that 

of the pre-envelope g+(t), as shown by 

a(tl = I g(tJ I = I g~(tJ I 
Note that for a band-pass signal g(t), the pre-envelope g+(t) is a complex band-pass signal 
whose value depends on the carrier frequency f;. On the other hand, the envelope a(t) is 
always a real low-pass signal and, in general, the complex envelope g(t) is a complex low­
pass signal; the values of the latter two envelopes are independent of the choice of the 
carrier frequency f;. This property gives the complex envelope g(t) an analytic advantage 
over the original signal g(t). 

The envelope a(t) and phase </>(t) of g(t) are related to the quadrature components 
g1(t) and gQ(t) as follows (see the time-varying phasor representation of Figure A2.5a): 

Conversely, we may write 

a(t) = V gy(t) + ib(t) 

</>(t) = tan-l(gg(t)) 
gr(t) 

gi(t) = a(t) cos[</>(t)] 

gQ(t) = a(t) sin[</>(t)] 

Thus, each of the quadrature components of a band-pass signal contains both amplitude 
and phase information. Both components are required for a unique definition of the phase 
</>(t), modulo 2Tr. 

ill BAND·PASS SYSTEMS 

Now that we know how to handle the complex low-pass representation of band-pass 
signals, it is logical that we develop a corresponding procedure for handling the analysis 
of band-pass systems. Specifically, we wish to show that the analysis of band-pass systems 
can be greatly simplified by establishing an analogy (or, more precisely, an isomorphism) 
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between low-pass and band-pass systems. This analogy is based on the use of the Hilbert 
transform for the representation of band-pass signals. 

Consider a narrowband signal x(t), with its Fourier transform denoted by X(f). We 
assume that the spectrum of the signal x(t) is limited to frequencies within ± W Hz of the 
carrier frequency fc. Also, we assume that W < fc. Let this signal be represented in terms 
of its in-phase and quadrature components as follows: 

x(t) = x1(t) cos(27Tfct) - XQ(t) sin(27Tfct) (A2.48) 

where x1(t) is the in-phase component and xQ(t) is the quadrature component. Then, using 
x(t) to denote the complex envelope of x(t), we may write 

x(t) = Xr(t) + jxQ(t) (A2.49) 

Let the signal x(t) be applied to a linear time-invariant band-pass system with impulse 
response h(t) and frequency response H(f). We assume that the frequency response of the 
system is limited to frequencies within ±B of the carrier frequency fc. The system band­
width 2B is usually narrower than or equal to the input signal bandwidth 2 W. We wish 
to represent the band-pass impulse response h(t) in terms of two quadrature components, 
denoted by h1 (t) and hQ(t). Thus, by analogy to the representation of band-pass signals, 
we may express h(t) in the form 

h(t) = h1(t) cos(27Tfct) - hQ(t) sin(27T/ct) 

Define the complex impulse response of the band-pass system as 

h(t) h1(t) + jhQ(t) 

Hence, we have the complex representation 

h(t) = Re[h(t) exp(j27Tfct)] 

(A2.50) 

(A2.51) 

(A2.52) 

Note that h,(t), h0 (t), and h(t) are all low-pass functions limited to the frequency band 
-B$f$B. -

We may determine the complex impulse response h(t) in terms of the quadrature 
components h,(t) and hQ(t) of the band-pass impulse response h(t) by using Equation 
(A2.51). Alternatively, we may determine it from the band-pass frequency response H(f) 
in the following way. We first note from Equation (A2.52) that 

2h(t) = h(t) exp(j21Tfct) + h*(t) exp(-j21Tfct) (A2.53) 

where h*(t) is the complex conjugate of h(t). Therefore, applying the Fourier transform 
to Equation (A2.53), and using the complex-conjugation property of the Fourier trans­
form, which is described in item 10 in Table A6.2, we get 

2H(f) = H(f fc) + H*(-f fc) (A2.54) 

where H(f) is the Fourier transform of h(t), and H(f) is the Fourier transform of h(t). 
Equation (AJ..54) satisfies the requirement that H* (f) = H( - f) for a real impulse response 
h(t). Since H(f) represents a low-pass frequency response limited to If I s B with B <Jc, 
we deduce from Equation (A2.54) that 

H(f - fc) = 2H(f), f>O (A2.55) 

Equation (A2.55) indicates that for a specified band-pass frequency response H(f), we 
may determine H(f) by taking the part of H(f) corresponding to positive frequencies, 
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shifting it to the origin and then scaling it by the factor 2. To determine the complex 
impulse response h(t), we take the inverse Fourier transform of H(f}, obtaining 

h(t) = f 00 H(f) exp(i27rft) df (A2.56) 

The representations just described for band-pass signals and systems provide the basis 
of an efficient method for determining the output of a band-pass system driven by a band­
pass signal. We assume that the spectrum of the input signal x(t) and the frequency re­
sponse H(f) of the system are both centered around the same frequency fc. In practice, 
there is no need to consider a situation in which the carrier frequency of the input signal 
is not aligned with the midband frequency of the band-pass system, since we have consid­
erable freedom in choosing the carrier or midband frequency. Thus, changing the carrier 
frequency of the input signal by an amount !:;.Jc, say, simply corresponds to absorbing (or 
removing) the factor exp(:i:j271" /:;.f~t) in the complex envelope of the input signal or the 
complex impulse response of the band-pass system. We are therefore justified in proceeding 
on the assumption that X(f) and H(f) are both centered around fc. Suppose then we use 
y(t) to denote the output signal of the system. It is clear that y{t) is also a band-pass signal, 
so that we may represent it in terms of its low-pass complex envelope ji{t), as follows: 

y{t) = Re[ji{t) exp(j27rfct)] (A2.57) 

The output signal y(t) is related to the input signal x(t) and impulse response h{t) of 
the system in the usual way by the convolution integral 

y(t) = roo h(r}x(t r} dr (A2.58) 

In terms of pre-envelopes, we have h(t) = Re[h~(t)] and x(t) = Re[x+(t)]. We may therefore 
rewrite Equation (Al.58) in terms of the pre-envelopes x+(t) and h+(t) as follows: 

y(t) = f 00 Re[h+(r)J Re[x+(t - r)] dr (A2.59) 

To proceed further, we make use of a basic property of pre-envelopes that is described by 
the following relation (presented here without proof}: 

r
00 

Re[h_,_(r)] Re[x+(r)] dr = ~ Re[f
00 

h+(r}x:(r} dr] {A2.60) 

where we have used r as the integration variable to be consistent with that in Equation 
{A2.59). Next, we note that using x(-r) in place of x(r} has the effect of removing the 
complex conjugation on the right-hand side of Equation (A2.60). Hence, bearing in mind 
the algebraic difference between the argument of x+(r) in Equation {A2.60) and that of 
x+{t - r) in Equation (A2.59), and using the relationship between the pre-envelope and 
complex envelope of a band-pass function, we get 

y(t) = ~ Re[f
00 

h+(r)x+(t - r} dr] 

= ~ Re[f
00 

h(r} exp(j27rfcr)i:{t - r) exp{j27rfc(t - r}} dr] 

= ~ Re[ ex!J( j271"fct) roo h( r}i:{t - r) dr J 

(A2.61) 
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Thus comparing the right-hand sides of Equations (A2.57) and (A2.61), we readily deduce 
that for a large enough carrier frequency fc, the complex envelope ji(t) of the output signal 
i.:> related to the complex envelope x(t) of the input signal and the complex impulse response 
h(t) of the band-pass system as follows: 

2ji(t) = r= h(T)x(t - T) dr (A2.62) 

or, using the shorthand notation for convolution, 

2y(t) = h(t) * x(t) (A2.63) 

where* denotes convolution. In other words, except for the scaling factor 2, the complex 
envelope ji(t) of the output_ signal of a band-pass system is obtained by convolving the 
complex impulse response h(t) of the system with the complex envelope x(t) of the input 
band-pass signal. Equation (A2.63) is the result of the isomorphism, for convolution, 
between a band-pass function and the corresponding low-pass function. 

The significance of this result is that in dealing with band-pass signals and systems, 
we need only concern ourselves with the low-pass functionsx(t), ji(t), and h(t), representing 
the excitation, the response, and the system, respectively. That is, the analysis of a band­
pass system, which is complicated by the presence of the multiplying factor exp( j27rfct), 
is replaced by an equivalent but much simpler low-pass analysis that completely retains 
the essence of the filtering process. This procedure is illustrated schematically in Figure 
A2.7. 

The_complex envelope x(t) of the input band-pass signal and the complex impulse 
response h(t) of the band-pass system are defined in terms of their respective in-phase and 
quadrature components by Equations (A2.49) and (A2.51), respectively. Substituting these 
relations in Equation (A2.63), we get 

(A2.64) 

Because convolution is distributive, we may rewrite Equation (A2.64) in the equivalent 
form 

Let the complex envelope ji(t) of the response be defined in terms of its in-phase and 
quadrature components as 

ji(t) = Y1(t) + jyQ(t) (A2.66) 

Comparing the real and imaginary parts in Equations (A2.65) and (A2.66), we have for 
the in-phase component y1(t) the relation 

(A2.67) 

x(t) = Re [i(t) exp (j2rrfct)] y(t) =Re ty(t) exp (j2rrfct)] 

(a) (h) 

FIGURE A2. 7 (a) Narrowband filter of impulse response h(t) with narrowband input signal x(t). 
(b) Equivalent low-pass filter of complex impulse response h(t) with complex low-pass input x(t). 
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FIGURE A2.8 Block diagram illustrating the relationships between the in-phase and quadrature 
components of the response of a band-pass filter and those of the input signal. 

and for the quadrature component yg(t} the relation 

2yg(t) = hQ(t) * x,(t) + h1(t) * xQ(t) (A2.68) 

Thus, for the purpose of evaluating the in-phase and quadrature components of the com­
plex envelope y(t) of the system output, we may use the low-pass equivalent model shown 
in Figure A2.8. All the signals and impulse responses shown in this model are real-valued 
low-pass functions. Accordingly, this equivalent model provides a practical basis for the 
efficient simulation of band-pass filters or communication channels on a digital computer. 

To sum up, the procedure for evaluating the response of a band-pass system (with 
mid-band frequency fc) to an input band-pass signal (of carrier frequency fc) is as follows: 

1. The input band-pass signal x(t) is replaced by its complex envelope x(t), which is 
related to x(t) by 

x(t) = Re[x(t) exp(j21Tfct)] 

2. The band-pass system, with impulse response h(t), is replaced by a low-pass analog, 

which is characterized by a complex impulse response h(t) related to h(t) by 

h(t) = Re[h(t) exp(j21Tfct)J 

3. The complex envelope y(t) of the output band-pass signal y(t) is obtained by con­

volving h(t) with x(t), as shown by 

2y(t) = h(t) * x(t) 

4. The desired output y(t) is finally derived from the complex envelope y(t) by using 
the relation 

y(t) = Refji(t} exp(j21Tfct)] 



BESSEL FLTNCTIONS 

I A3 .1 Series Solution of Bessel's Equation 

In its most basic form, Bessel's equation of order n is written as 

d2y dy 
x 2 

- + x - + (x 2 - n2 )y = 0 
dx 2 dx 

(A3.1) 

which is one of the most important of all variable-coefficient differential equations.1 For 
each n, a solution of this equation is defined by the power series 

00 (-1r(~ x r+ 2

m 

J.(x) = ~o m!(n + m)! (A3.2) 

The functionJ.(x) is called a Bessel function of the first kind of order n. Equation (A3.1) 
has two coefficient functions, namely, 1/x and (1 - n2/x 2

). Hence, it has no finite singular 
points except the origin. It follows therefore that the series expansion of Equation (A3.2) 
converges for all x > 0. Equation (A3.2) may thus be used to numerically calculate fn(x) 
for n = 0, 1, 2, .... Table A6.5 presents values of fn(x) for different orders n and varying 
x. It is of interest to note that the graphs of J0(x) and J 1(x) resemble the graphs of cos x 
and sin x, respectively; see the graphs of Figure 2.23 in Chapter 2. 

The functionJ.(x) may also be expressed in the form of an integral as 

1 f" fn(x) = - cos(x sin() - n8) d(J 
1r 0 

(A3.3) 

or, equivalently, 

J.(x) = __!__ f" exp(jx sin() - jn8) d8 
27r -,, 

(A3.4) 

I A3 .2 Properties of the Bessel Function 

The Bessel function J.(x) has the following properties: 

1. J.(x) = (-ltJ-h) (A3.5) 

To prove this relation, we replace() by ( 7r - 8) in Equation (A3.3). Then, noting that 
sin( 7r - ()) = sin 8, we get 

1 f" J.(x) = - cos(x sin() + n(J 
1r 0 

= .!. {" [cos(n7r) cos(x sin() + n(J) + sin(n7r) sin(x sin() + n8)] d() 
7r Jo 

735 
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For integer values of n, we have 

Therefore, 

cos(mr) = (-lt 

sin(mr) = 0 

(-1)" J" fn(x) = -- cos(x sine + ne) de 
1T 0 

From Equation (A3.3), we also find that by replacing n with -n: 

11" f-n(x) = - cos(x sine+ ne) de 
1T 0 

The desired result follows immediately from Equations (A3.6) and (A3.7). 

(A3.6) 

(A3.7) 

2. fn(x) = (-l)"Jn(-x) (A3.8) 

3. 

This relation is obtained by replacing x with -x in Equation (A3.3), and then using 
Equation (A.3.6). 

(A3.9) 

This recurrence formula is useful in constructing tables of Bessel coefficients; its der­
ivation follows from the power series of Equation (A3.2). 

4. For small values of x, we have 

xn 
J.(x) = -2n I 

n. 
(A3.10) 

This relation is obtained simply by retaining the first term in the power series of 
Equation (A3.2) and ignoring the higher-order terms. Thus, when xis small, we have 

] 0 (x) = 1 

]1(x) = ~ 
2 

fn(x) = 0 for n > 1 

(A3.11) 

5. For large values of x, we have 

(A3.12) 

This shows that for large values of x, the Bessel function J"(x) behaves like a sine 
wave with progressively decreasing amplitude. 

6. With x real and fixed, J.(x) approaches zero as the order n goes to infinity. 

7. 2: J.(x) exp(jntp) = exp(jx sin </1) (A3.13) 

To prove this property, consider the sum 2:::'~-oo fn(x) exp(jn,P) and use the formula 
of Equation (A3.4) for fn(x) to obtain 

00 1 
00 J" n,?= J.(x) exp(jn,P) = l1T n,?= exp(jn,P) -r. exp(jx sine - jne) de 
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Interchanging the order of integration and summation: 

oo l Irr oo 2: fn(x) exp(jnt/1) = - _ de exp(jx sine) 2:; exp[jn(</> - e)] 
n=-oo 21r 7r n=-oo 

(A3.14) 

We now invoke the following relation from Fourier transform theory: 

1 00 

o(</>) = 27T nl- exp[jn(</>)], (A3.15) 

where 8(</>) is a delta function. Therefore, using Equation (A3.15) in (A3.14) and 
then applying the sifting property of the delta function, we get 

i: fn(x) exp(jn</>) = r exp(jx sine) o(<P - e) de 
n- -

00 

= e;;(jx sin <P) 

which is the desired result. -2: J~(x) = 1 for all x (A3.16) 

To prove this property, we may proceed as follows. We observe that J.(x) is real. 
Hence, multiplying Equation (A3.4) by its own complex conjugate and summing 
over all possible values of n, we get 

n~- J~(x) = (2~)2 n~- rrr rrr exp(jx sine - jne - jx sin <P + jn<P) de dq, 

faterchanging the order of double integration and summation: 

-2: J~(x) = 
n=-:<> 

1 Jrr Irr . • 
(l7T)2 -rr -rr d() dq, exp[jx(sine - sin</>)] n~- exp[jn(</> - e)] 

(A3.17) 

Using Equation (A3.15) in (A3.l 7) and then applying the sifting property of the delta 
function, we finally get 

• 1 Jrr 
n~- J;(x) = 27T -rr de = 1 

which is the desired result. 

Many of these properties of the Bessel function fn(x) may also be illustrated in nu­
merical terms by referring to Table A6.5. 

l~~-!l'Jodified Bessel Function 

The modified Bessel equation of order n is written as 

2 d2y dy 
x dx2 + x dx (x2 + nz)y = 0 (A3.18) 



738 APPENDIX 3 !!l BESSEL FUNCTIONS 

With j 2 = -1, where j is the square root of -1, we may rewrite this equation as 

d 2y dy . 
x 2 

- + x - + (J2x 2 
- n2 )y = 0 

dx 2 dx 

From this rewrite it is evident that Equation (A3.18) is nothing but Bessel's equation, 
namely, Equation (A3.1), with x replaced by jx. Thus replacing x by jx in Equation (A3.2), 
we get 

= (-ir(~r+2m 
fn(jx) = J;o m!(n + m)! 

(~)"+2m 

= r 'L 
m~o m!(n + m)! 

Next we note that fn( jx) multiplied by a constant will still be a solution of Bessel's equa­
tion. Accordingly, we multiply fn(jx) by the constant ;-n, obtaining 

= Gx r+2m 
rnfn(jx) = ];o m!(n + m)! 

This new function is called the modified Bessel function of the first kind of order n, denoted 
by In(x). We may thus formally express a solution of the modified Bessel equation, Equa­
tion (A3.18), as 

In(x) = ;-n]n(jx) 

= Gx r+2m 
J;o m!(n + m)! 

(A3.19) 

The modified Bessel function In(x) is a monotonically increasing real function of the ar­
gument x for all n, as shown in Figure A3.1 for n = 0, 1, 2. 

30 n=O 

.::; 
~· c 
0 

i 20 
... 
1 
"' al 
~ 10 

~ 

4 5 
x 

FIGlJRE A3.l Modified Bessel function I.(x) of varying order n. 
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The modified Bessel function In(x) is identical to the original Bessel function J n(x) 
except for an important difference: The terms in the series expansion of Equation (A3.19) 
are all positive, whereas they alternate in sign in the series expansion of Equation (A3.2). 
The relationship between]n(x) and In(x) is analogous to the way in which the trigonometric 
functions cos x and sin x are related to the hyperbolic functions cosh x and sinh x. 

An interesting property of the modified Bessel function In(x) is derived from Equation 
(A3.13). Specifically, replacing x by jx and the angle </>by (} - '1Tf2 in this equation, and 
then invoking the definition of In(X) in the first line of Equation (A3.19), we obtain 

2: In(X) exp(jn(}) = exp{x cos fl) (A3.20) 

From this relation it follows that 

1 f"' In(x) = Z'TT _,,, exp(x cos(}) cos(nfi) de (A3.21) 

This integral formula for In(x) may, of course, also be derived from Equation (A3.4) by 
making the appropriate changes. 

When the argument x is small, we obtain the following asymptotic estimates directly 
from the series representation of Equation (A3.19): 

I 0 (x) ---'> 1 for x---'> 0 (A3.22) 

and 

for n 2: 1 and x ~ 0 (A3.23) 

For large values of x we have the following asymptotic estimate for In(x), which is valid 
for all integers n 2: 0: 

In(x) = exp(x) 
V27TX 

for x---'> oo (A3.24) 

Note that this asymptotic behavior of In(x) is independent of the order n for large values 
of x. 

I No~Es AND REFERENCES 

1. Equation (A3.1) is named for the German mathematician and astronomer Friedrich Wilhelm 
Bessel (1784-1846). For detailed treatments of the solution to this equation and related 
issues, see Wylie and Barrett (1982) and Watson (1966). 



CONFLUENT 

ffYPERGEOMETRIC 

FUNCTIONS 

I A4. l Kummer's Equation 

The confluent hypergeometric function' is a solution of Kummer's differential equation: 

d2y dy 
x - + (b - x) - - ay = 0 

dx 2 dx 
(A4.1) 

where, in general, the parameters a and b are complex numbers. For the case when 
b 1' 0, -1, - 2, ... , the solution of Kummer's equation is defined by the series 

a x a(a + 1) x 2 

1F1 (a· b· x) = 1 + - - + --- - + · · · , , b 1! b(b + 1) 2! (A4.2) 

where 1F1(a; b; x) denotes a confluent hypergeometric function parameterized by a and b. 
In this notation, the first subscript denotes the number of factorials in the numerator of 
the general term in Equation (A4.2), the second subscript denotes the number of factorials, 
apart from n!, in the denominator. In Equation (A4.2), both subscripts are clearly 1. 

A4.2 Properties of the Confluent 
Hypergeometric Function 

Property 1 

For small values of x, the confluent hypergeometric function approximates as 

for x --"" 0 (A4.3) 

This property follows directly from the series expansion of Equation (A4.2). 

Property2 

For a = -1 and b = 1 we have the exact identity: 

1F1(-l; 1; x) = 1 - x for all x (A4.4) 

This property also follows directly from the series expansion of Equation (A4.2). 

740 



Notes and References 7 41 

Property 3 

The con-fluent hypergeometric function for a = -112 and b = 1 is related exactly to the 
modified Bessel function for all x as follows: 

(A4.5) 

where In(x) is the modified Bessel function of order n. 

A special case of Equation (A4.5) occurs when xis large. From the definition of the 
modified Bessel function given in Appendix 3, we have the following asymptotic formula 
for large x: 

In(x) = exp(x) 
~ 

for x - oo 

Hence, combining Equations (A4.5) and (A4.6), we obtain the simple result 

I NOTES AND REFERENCES 

F (-_!_· 1· -x) = 2 ~ 
1 1 2' ' ~; for x - oo 

(A4.6) 

(A4.7) 

1. For a discussion of confluent hypergeometric functions, see Jeffreys and Jeffreys (1956). 
Tabulated values of these functions are presented in Abramowitz and Stegun (1965). 



CRYPTOGRAPHY 

Secrecy is certainly important to the security or integrity of information transmission. 
Indeed, the need for secure communications is more profound than ever, recognizing that 
the conduct of much of our commerce, business, and personal matters is being carried out 
today through the medium of computers, which has replaced the traditional medium of 
papers. 

Cryptology is the umbrella term used to describe the science of secret communica­
tions; it is derived from the Greek kryptos and logos which mean "hidden" and "word," 
respectively.1 The subject matter of cryptology may be partitioned neatly into cryptogra­
phy and cryptanalysis. Cryptography deals with the transformations of a message into 
coded form by encryption and the recovery of the original message by decryption. The 
original message to be encrypted (enciphered) is called the plaintext, and the result pro­
duced by encryption is called a cryptogram or ciphertext; the latter two terms are used 
interchangeably. The set of data transformations used to do the encryption is called a 
cipher; normally, the transformations are parameterized by one or more keys. Cryptanal­
ysis, on the other hand, deals with how to undo cryptographic communications by break­
ing a cipher or forging coded signals that may be accepted as genuine. 

Cryptographic systems offer three important services: 

1. Secrecy, which refers to the denial of access to information by unauthorized users. 

2. Authenticity, which refers to the validation of the source of a message. 

3. Integrity, which refers to the assurance that a message was not modified by accidental 
or deliberate means in transit. 

A conventional cryptographic system relies on the use of a single piece of private and 
necessarily secret information known as the key; hence, conventional cryptography is re­
ferred to as single-key cryptography or secret-key cryptography.2 This form of cryptog­
raphy operates on the premise that the key is known to the encrypter (sender) and by the 
decrypter (receiver) but to no others; the assumption is that once the message is encrypted, 
it is (probably) impossible to do the decryption without knowledge of the key. 

Public-key cryptography,3 also called two-key cryptography, differs from conven­
tional cryptography in that there is no longer a single secret key shared by two users. 
Rather, each user is provided with key material of one's own, and the key material is 
divided into two portions: a public component and a private component. The public com­
ponent generates a public transformation, and the private component generates a private 
transformation. But, of course, the private transformation must be kept secret for secure 
communication between the two users. 

I A5 .1 Secret-Key Cryptography 

742 

Basically, the flow of information in a secret-key cryptographic system is as shown in 
Figure AS.1. The message source generates a plaintext message, which is encrypted into a 
cryptogram at the transmitting end of the system. The cryptogram is sent to an authorized 
user at the receiving end over an "insecure" channel; a channel is considered insecure if 
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Message 
source Encrypter 

z 

Key 

y 

Enemy 

Secure 
channel 

Decrypter Message X 

FIGlJRE A5.l Block diagram of secret-key cryptographic system. 

its security is inadequate for the needs of its users. It is assumed that in the course of 
transmission the cryptogram may be. intercepted by an enemy cryptanalyst4 (i.e., would­
be intruder into a cryptographic system). The requirement is to do the encryption in such 
a way that the enemy is prevented from learning the contents of the plaintext message. 

In abstract terms, a cryptographic system or cipher (for short) is defined as a set of 
invertible transformations of the plaintext space (i.e., the set of possible plaintextmessages) 
into the cryptogram space (i.e., the set of all possible cryptograms). Each particular trans­
formation corresponds to encryption (enciphering) of a plaintext with a particular key. 
The invertibility of the transformation means that unique decryption (deciphering) of the 
cryptogram is possible when the key is known. Let X denote the plaintext message, Y 
denote the cryptogram, and Z denote the key. Let F denote the invertible transformation 
producing the cryptogram Y, as follows: 

Y = F(X, Z) = F.(X) (A5.1) 

The transformation is intended to make the cryptogram Y useless to the enemy. At the 
receiving end of the system, the cryptogram Y is decrypted with the inverse transformation 
F-1 to recover the original plaintext message X, as shown by 

(A5.2) 

In physical terms, the cryptographic system consists of a set of instructions, a piece 
of physical hardware, or a computer program. In any event, the system is designed to have 
the capability of encrypting the plaintext (and, of course, decrypting the resulting cryp­
togram) in a variety of ways; the particular way chosen to do the actual encryption is 
determined by the specific key. 

The security of the system resides in the secret nature of the key, which requires that 
the key must be delivered to the receiver over a secure channel (e.g., registered mail, courier 
service) as implied in Figure AS .1. The cryptographic system depicted in this figure provides 
a solution to the secrecy problem, preventing an enemy from extracting information from 
messages transmitted over an insecure communication channel. Cryptography also pro­
vides a solution to the authentication problem, preventing an enemy cryptanalyst from 
impersonating the message sender. In this second situation, the enemy cryptanalyst is the 
one who originates a "fraudulent" cryptogram Y' that is delivered to the receiver (decryp­
ter), as shown in Figure A5.2. The authentic cryptogram Y is shown as a dashed input to 
the enemy cryptanalyst, indicating that the enemy produces the fraudulent cryptogram Y' 
without ever seeing the authentic one. The receiver may be able to recognize Y' as fraud­
ulent by decrypting it with the correct key Z; hence, the line from the receiver output to 
the destination is shown dashed to suggest rejection of the fraudulent cryptogram Y' by 
the receiving user. 



7 44 APPENDIX 5 Ill CR1:'PTOGRAPHY 
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FIGURE A5.2 lllustrating the intrusion of an enemy cryptanalyst. 

I A5.2 Block and Stream Ciphers 

Much as error-correcting codes are classified into block codes and convolutional codes, 
cryptographic systems (ciphers) may be classified into two broad classes: block ciphers and 
stream ciphers. Block ciphers operate in a purely combinatorial fashion on large blocks of 
plaintext, whereas stream ciphers process the plaintext in small pieces (i.e., characters or 
bits). 

Figure A5.3 shows the generic form of a block cipher. The plaintext (c~nsisting of 
serial data) is divided into large blocks, each of which is usually made up of a fixed number 
of bits. Successive blocks of the plaintext are enciphered (encrypted) using the same secret 
key, otherwise independently; the resulting enciphered blocks are finally converted into 
serial form. Thus, a particular plaintext block identical to a previous such block gives rise 
to an identical ciphertext block. Specifically, each bit of a particular ciphered block is 
chosen to be a function of all the bits of the associated plaintext block and the key; the 
goal of a block cipher is to have no specific bit of the plaintext ever appear in the ciphertext 
directly. 

Block ciphers operate with a fixed transformation applied to large blocks of plaintext 
data, on a block-by-block basis. In contrast, a stream cipher operates on the basis of a 
time-varying transformation applied to individual bits of the plaintext. The most popular 
stream ciphers are the so-called binary additive stream ciphers, the generic form of which 
is shown in Figure AS.4. In such a cipher, the secret key is used to control a keystream 
generator that emits a binary sequence called the keystream, whose length is much larger 
than that of the key. Let Xm Yno and Zn denote the plaintext bit, ciphertext bit, and key­
stream bit at time n, respectively. The ciphertext bits are then determined by simple mod­
ulo-2 addition of the plaintext bits and the keystream bits, as shown by 

n = 1, 2, ... , N (AS.3) 

where N is the length of the keystream. Because addition and subtraction in modulo-2 
arithmetic are exactly the same, Equation (A5.3) also implies the following relation 

Plainte>ct 
in serial 

form 

Seri al­
to-block 
converter 

n = 1, 2, ... , N 

Cipher 
logic 

Key 

Block­
to-serial 
converter 

FIGURE A5.3 Block diagram of a block cipher. 

(A5.4) 

Ciphertext 
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FIGURE A5.4 Binary additive stream cipher. 

We thus see that in binary additive stream ciphers, identical devices can be used to perform 
encryption and decryption, as shown in Figure A5.4. The secret key is chosen according 
to some probability distribution. To provide secure encryption, the keystream should re­
semble a coin-tossing (i.e., completely random) sequence as closely as possible. 

Block ciphers are normally designed in such a way that a small change in an input 
block of plaintext produces a major change in the resulting output. This error propagation 
property of block ciphers is valuable in authentication in that it makes it improbable for 
an enemy cryptanalyst to modify encrypted data, unless knowledge of the key is available. 
On the other hand, a binary additive stream cipher has no error propagation; the decryp­
tion of a distorted bit in the ciphertext affects only the corresponding bit of the resulting 
output. 

Stream ciphers are generally better suited for the secure transmission of data over 
error-prone communication channels; they are used in applications where high data rates 
are a requirement (as in secure video, for example) or when a minimal transmission delay 
is essential.5 

REQUIREMENT FOR SECRECY 

In cryptography, a fundamental assumption is that an enemy cryptanalyst has knowledge 
of the entire mechanism used to perform encryption, except for the secret key. We may 
identify the following forms of attack that may be attempted by the enemy cryptanalyst, 
depending on the availability of additional knowledge: 

1. Ciphertext-only attack is a cryptanalytic attack in which the enemy cryptanalyst has 
access to part or all of the ciphertext. 

2. Known-plaintext attack is a cryptanalytic attack in which the enemy cryptanalyst 
has knowledge of some ciphertext-plaintext pairs formed with the actual secret key. 

3. Chosen-plaintext attack is a cryptanalytic attack in which the enemy cryptanalyst is 
able to submit any chosen plaintext message and receive in return the correct 
ciphertext for the actual secret key. 

4. Chosen-ciphertext attack is a cryptanalytic attack in which the enemy cryptanalyst 
is able to choose an arbitrary ciphertext and find the correct result for its decryption. 

A ciphertext-only attack occurs frequently in practice. In this form of attack, an 
enemy cryptanalyst uses only knowledge of the statistical structure of the language in use 
(e.g., in English the letter e occurs with a probability of 13 percent, and the letter q is 
always followed by u) and knowledge of some probable words (e.g., a letter probably 
begins with "Dear Sir/Madam:"). A known-plaintext attack may take place by virtue of 
the standard computer formats used in programming languages and data generation. In 
any case, the ciphertext-only attack is viewed as the weakest threat to which a crypto-
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graphic system can be subjected, and any system that succumbs to it is therefore considered 
totally insecure. Thus, for a cryptographic system to provide secrecy, at the minimum it 
should be immune to ciphertext-only attacks; ideally, it should also be immune to known­
plaintext attacks. 

I A5.3 lnformatian-TheoreticApproach 

In the Shannon model of cryptography, named in recognition of Shannon's 1949 landmark 
paper on the information-theoretic approach to secrecy systems, the enemy cryptanalyst 
is assumed to have unlimited time and computing power. But the enemy is presumably 
restricted to a ciphertext-only attack. Cryptanalysis in the Shannon model is defined as the 
process of finding the secret key, given the cryptogram (dphertext) and the a priori prob­
abilities of the various plaintexts and keys. The secrecy of the system is considered broken 
when the enemy cryptanalyst performs decryption successfully, obtaining a unique solution 
to the cryptogram. 6 

Let X = (Xi. X 2, ••• , XN) denote an N-bit plaintext message, and Y = (Yi. Y2, ••• , 

YN) denote the corresponding N-bit cryptogram; that is, both the plaintext and the cryp­
togram have the same number of bits. It is assumed that the secret key Z used to construct 
the cryptogram is drawn according to some probability distribution. The uncertainty about 
Xis expressed by the entropy H(X), and the uncertainty about X given knowledge of Y 
is expressed by the conditional entropy H(X I Y). The mutual information between X and 
Y is defined by 

I(X; Y) = H(X) - H(X I Y) (A5.5) 

The mutual information I(X; Y) represents a basic measure of security (secrecy) in the 
Shannon model. 

Iii PERFECT SECURITY 

Assuming that an enemy cryptanalyst can observe only the cryptogram Y, it seems appro­
priate that we define the perfect security of a cryptographic system to mean that the plain­
text X and the cryptogram Y are statistically independent. In other words, we have 

I(X; Y) = 0 (A5.6) 

Then, using Equation (A5.5), we find that the condition for perfect security may be re­
written as 

H(X I Y) = H(X) (A5.7) 

Equation (A5.7) states that the best an enemy cryptanalyst can do, given the cryptogram 
Y, is to guess the plaintext message X according to the probability distribution of all 
possible messages. 

Given the secret key Z, we recognize that 

H(XIY) :5 H(X, ZIY) 

= H(ZIYl + H(XIY, Z) 
(A5.8) 

The conditional entropy H(X I Y, Z) is zero if, and only if, Y and Z together uniquely 
determine X; this is indeed a valid assumption when the decryption process is performed 
with knowledge of the secret key Z. Hence, we may simplify Equation (A5.8) as follows: 

H(XIYl :5 H(ZIYJ 

:5 H(Z) 
(A5.9) 
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Thus, substituting Equation (A5.9) into (A5.7), we find that for a cryptographic system to 
provide perfect security, the following condition must be satisfied: 

H(Z) 2: H(X) (AS.10) 

The inequality of Equation (AS.10) is Shannon's fundamental bound for perfect security; 
it states that for perfect security, the uncertainty of a secret key Z must be at least as large 
as the uncertainty of the plaintext X that is concealed by the key. 

For the case when the plaintext and key alphabets are of the same size, the use of 
Shannon's bound for perfect security yields the following result: The key must be at least 
as long as the plaintext. The conclusion to be drawn from this result is that the length of 
the secret key needed to build a perfectly secure cryptographic system may be impractically 
large for most applications. Nevertheless, perfect security has a place in the practical pic­
ture: It may be used when the number of possible messages is small or in cases where the 
greatest importance is attached to perfect security. 

A well-known, perfectly secure cipher is the one-time pad7 (sometimes called the 
Vernam cipher), which is used for unconventional applications such as two users com­
municating on a hotline with high confidentiality requirements. The one-time pad is a 
stream cipher for which the key is the same as the keystream, as shown in Figure AS.5. 
For encryption the input consists of two components: a message represented by a sequence 
of message bits !xn In = 1, 2, ... }, and a key represented by a sequence of statistically 
independent and uniformly distributed bits {znln = 1, 2, ... }. The resultant cipher 
!Yn In = 1, 2, ... ) is obtained by the modulo-2 addition of the two input sequences, as 
shown by 

n = 1, 2, ... 

Consider, for example, the binary message sequence 00011010 and the binary key se­
quence 01101001. The modulo-2 addition of these two sequences is written as follows: 

Message: 

Key: 

Cipher: 

00011010 

01101001 

01110011 

In the encryption rule described here, key bit 1 interchanges Os and 1 s in the message 
sequence, and key bit 0 leaves the message bits unchanged. The message sequence is re­
covered simply by modulo-2 addition of the binary cipher and key sequences, as shown 
by 

Cipher: 

Key: 

Message: 

01110011 

01101001 

00011010 

The one-time pad is perfectly secure, because the mutual information between the message 
and the cipher is zero; it is therefore completely undecipherable. 

Key 

Message Cipher 
n 

Encrypter Decrypter 

FIGURE A5.5 One-time pad (Vernarn cipher). 
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Ill lJNICfIY DISTANCE 

Consider now the practical case of an imperfect cipher and ask the question: When can 
an enemy cryptanalyst break the cipher? As the amount of intercepted text increases, 
intuitively we expect that a point may be reached at which it becomes possible for 
an enemy cryptanalyst with unlimited time and computing power to find the key and 
thus break the cipher. This critical point in the Shannon model is called the unicity dis­
tance, which is formally defined as the smallest N such that the conditional entropy 
H(Z I Yi, Y2, ••• , Y N) is approximately zero. For a particular kind of "random cipher," 
the unicity distance is approximately given by' 

Na= H(Z) 
r log Ly 

(AS.11) 

where H(Z) is the entropy of the key Z, and Ly is the size of the ciphertext alphabet. The 
parameter r is the percentage redundancy of the message information contained in the 
N-bit ciphertext; it is itself defined by 

r = 1 - H(X) 
N log Ly 

(AS.12) 

where H(X) is the entropy of the plaintext X. In most cryptographic systems, the size L, 
of the ciphertext alphabet is the same as the size Lx of the plaintext alphabet; in such a 
case, r is just the percentage redundancy of the plaintext itself. Although the derivation of 
Equation (AS.11) assumes a certain well-defined "random cipher," it can be used to esti­
mate the unicity distance for ordinary types of ciphers, which is the routine practice today. 

Let K be the number of digits in the key Z that are chosen from an alphabet of size 
L,; then we may express the entropy of the key Z as follows: 

H(Z) !S log(L~) = K log Lz (AS.13) 

with equality if and only if the key is completely random. Let the size L, of the key alphabet 
be the same as the size Ly of the ciphertext alphabet, and let the key be chosen completely 
at random to maximize the unicity distance. Then, substituting Equation (A5.13) with 
equality into Equation (A5.11), we get the simple result 

K 
Na=­

r 
(A5.14) 

To illustrate the application of Equation (A5.14), consider a cryptographic system with 
Lx = L, = L., which is used for the encryption of English text. The percentage redundancy 
r for typical English text is about 75 percent. Hence, according to Equation (A5.14), an 
enemy cryptanalyst can break the cipher after intercepting only about 1.333K bits of 
ciphertext data, where K is the key size. 

However, it is important to note that an imperfect cipher that is potentially breakable 
can still be of practical value. When the intercepted ciphetext contains sufficient infor­
mation to satisfy Equation (A5.11), there is no guarantee that an enemy cryptanalyst with 
limited computational resources can actually break the cipher. Specifically, it is possible 
for the cipher to be designed in such a way that the task of the cryptanalysis, though 
known to be attainable with a finite amount of computation, is so overwhelming that it 
will literally exhaust the physical computing resources of the universe. In such a case, the 
imperfect cipher is said to be computationally secure. 
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ROLE OF DATA COMPRESSION IN CRYPTOGRAPHY 

Lossless data compression or data compaction is a useful tool in cryptography. We say 
this because data compaction removes redundancy, thereby increasing the unicity distance 
N 0 in accordance with Equation (A5.11). To exploit this idea, data compaction is used 
prior to encryption in the transmitter, and the redundant information is reinserted after 
decryption in the receiver; the net result is that the authorized user at the receiver output 
sees no difference, and yet the information transmission has been made more secure. It 
would be tempting to consider the use of perfect data compaction to remove all redun­
dancy, thereby transforming a message source into a completely random source and re­
sulting in N 0 = oo with any key size. Unfortunately, we do not have a device capable of 
performing perfect data compaction on realistic message sources, nor is it likely that there 
will ever be such a device. It is therefore futile to rely on data compaction alone for data 
security. Nevertheless, limited data compaction tends to increase security, which is the 
reason why cryptographers view data compression as a useful trick. 

a DIFFUSION AND CONFUSION 

In the Shannon model of cryptography, two methods suggest themselves as general prin­
ciples to guide the design of practical ciphers. The methods are called diffusion and con­
fusion, the aims of which (by themselves or together) are to frustrate a statistical analysis 
of ciphertext by the enemy and therefore make it extremely difficult to break the cipher. 

In the method of diffusion, the statistical structure of the plaintext is hidden by 
spreading out the influence of a single bit in the plaintext over a large number of bits in 
the ciphertext. This spreading has the effect of forcing the enemy to intercept a tremendous 
amount of material for the determination of the statistical structure of the plaintext, since 
the structure is evident only in many blocks, each one of which has a very small probability 
of occurrence. In the method of confusion, the data transformations are designed to com­
plicate the determination of the way in which the statistics of the ciphertext depend on the 
statistics of the plaintext. Thus, a good cipher uses a combination of diffusion and 
confusion. 

For a cipher to be of practical value, however, it must not only be difficult to break 
the cipher by an enemy cryptanalyst, but also it should be easy to encrypt and decrypt 
data given knowledge of the secret key. We may satisfy these two design objectives using 
a product cipher, based on the notion of "divide and conquer." Specifically, the imple­
mentation of a strong cipher is accomplished as a succession of simple component ciphers, 
each of which contributes a modest amount of diffusion and confusion to the overall 
makeup of the cipher. Product ciphers are often built using substitution ciphers and trans­
position ciphers as basic components; these simple ciphers are described next. 

1. Substitution cipher. 
In a substitution cipher each letter of the plaintext is replaced by a fixed substitute, usually 
also a letter from the same alphabet, with the particular substitution rule being determined 
by the secret key. Thus the plaintext 

X = (Xi, X2, X3, X4, ••• ) 

where xi> x2, x3, •.. are the successive letters, is transformed into the ciphertext 

Y (yi, Y2, y3, y4, · · .) 

= (f(x,), f(x2), f(x3), f(x4), ... ) 
(A5.15) 
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Plaintext 
letters 

Ciphertext 
letters 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 

YDUBHNACSVXELPFMKQJRWGOZIT 

FIGURE A5,6 Substitution cipher. 

where /(·) is a function with an inverse. When the substitutes are letters, the key is a 
permutation of the alphabet. Consider, for example, the ciphertext alphabet of Figure 
AS .6, where we see that the first letter Y is the substitute for A, the second letter D is the 
substitute for B, and so on. The use of a substitution cipher results in confusion. 

2. Transposition cipher. In a transposition cipher, the plaintext is divided into groups of 
fixed period d and the same permutation is applied to each group, with the particular 
permutation rule being determined by the secret key. For example, consider the permu­
tation rule described in Figure A5.7, for which the period is d = 4. According to this 
cipher, letter x 1 is moved from position 1 in the plaintext to position 4 in the ciphertext. 
Thus, the plaintext 

is transformed into the ciphertext 

Although the single-letter statistics of the ciphertext Y are the same as those of the plaintext 
X, the higher-order statistics are changed. The use of a transposition cipher results in 
diffusion. 

By interleaving the simple substitutions and transpositions and repeating the interleaving 
process many times, it is possible to build a strong cipher equipped with good diffusion 
and confusion. 

~EXAMPLE A5.l 

Consider the plaintext message 

THE KING IS DEAD LONG LIVE THE KING 

Using the permuted alphabet described.in Figure A5.6 for the substitution cipher, this plaintext 
is transformed into the ciphertext 

RCHXSPASJBHYBEFP AESGHRCHXSPA 

Suppose next we apply the permutation rule described in Figure AS. 7 for the transposition 
cipher; accordingly, the ciphertext resulting from the substitution cipher is further transformed 
into 

HXCRASPSHYBJFBEBSGEACHRHPASX 

which has no resemblance to the original plaintext. 

Plaintext 
Xi x, x, X4 letters 

Ciphertext 
X3 X4 x, Xi 

letters 

FIGUREA5.7 Transposition cipher. 
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I A5 .4 Data Encryption Standard 

The data encryption standard (DES)9 is certainly the best known, and arguably the most 
widely used, secret-key cryptoalgorithm; the term algorithm is used to describe a sequence 
of computations. The basic DES algorithm can be used for both data encryption and data 
authentication. It is the standard cryptoalgorithm for data storage and mail systems, elec­
tronic funds transfers (retail and wholesale), and electronic business data interchange. 

The DES algorithm is a strong block cipher that operates on 64-bit blocks of plaintext 
data and uses a 56-bit key; it is designed in accordance with Shannon's methods of dif­
fusion and confusion. Essentially the same algorithm is used for encryption and decryption. 
The overall transformations employed in the DES algorithm may be written as 
p-1{F[P(X)]}, where X is the plaintext, P is a certain permutation, and the function F 
combines substitutions and transpositions. The function F is itself obtained by cascading 
a certain function f, with each stage of the cascade referred to as a round. 

The flow-chart of Figure AS. 8 shows the details of the DES algorithm for encryption. 
After a certain initial permutation, a plaintext of 64 bits is divided into a left-half L 0 and 
a right-half R0 , each of which is 32 bits long. The algorithm then performs 16 rounds of 
a key-dependent computation, with the ith round of the computation described as follows: 

L;= R,_ 1 

R, = L,_1 ® f(R;-i. Z1) 

i = 1, 2, ... ' 16 

i = 1, 2, ... , 16 

(A5.16) 

(AS.17) 

On the right-hand side of Equation (A5.17), the addition is modulo-2 and each Z, is a 
different 48-bit block of the key used in round i. The function/(',·) is a function with a 
32-bit output. The result of the 16th round is reversed, obtaining the sequence R16L16• 

This 32-bit sequence is input into a final permutation p-l to produce the 64-bit ciphertext. 
The aim is that after 16 rounds of key-dependent computations, the patterns in the original 
plaintext are undetectable in the ciphertext. From Equations (AS.16) and (AS.17), we note 
that for decryption the function f(-, ·)need not be invertible, because (L;-i. R1_ 1 ) can be 
recovered from (L1, R1) simply as follows: 

R1_ 1 = L; 

L,_1 = R 1 ® f(L,, Z,) 

i = 1, 2, ... ' 16 

i = 1, 2, ... ' 16 

(A5.18) 

(A5.19) 

Equation (A5.19) holds even if the function f(-, ·)is a many-to-one function (i.e., it does 
not have a unique inverse). 

Figure AS.9 shows the flowchart for computing the function/(',·). The 32-bit block 
R is first expanded into a new 48-bit block R' by repeating the edge bits of each successive 
4-bit word (i.e., the bits numbered 1, 4, 5, 8, 9, 12, 13, 16, ... , 28, 29, 32). Thus, given 
the 32-bit block R written as 

R = r1r2r3r4 
'---y-----' 

first 
4-bit word 

r51·6 r7 r8 
'---y-----' 

second 
4-bit word 

we construct the expanded 48-bit block R' as follows: 

R' = r32r1r2r3r4r5 
'---.,-----' 

first 
6-bit word 

r4r5r 6r7r8r9 
'---.,--------' 

second 
6-bit word 

eighth 
4-bit word 

eighth 
6-bit word 
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64-Bit 
plaintext 

Initial 
permutation 

64-Bit 
ciphertext 

FIGURE A5.8 Data encryption standard. (From Diffie and Helhnan, 1979, with permission of 
the IEEE.) 
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32-Bit R 

48-Bit R' 

48-Bit Z; 

32-Bit f(R:Z;J 

FIGURE A5.9 f(R, K) flowchart. (From Diffie and Hellman, 1979, with permission of the 
IEEE.) 

The 48-bit blocks R' and Z; are added modulo-2, and the resultant is divided into eight 
6-bit words. Let these words be denoted by B,, B2, ••• , B8 • We thus write 

(A5.20) 

Each 6-bit word B, is input to a substitution box S; in the form of a look-up table, pro­
ducing a 4-bit output S,(B1). Each output bit of the substitution box S; (B;) is a Boolean 
function of the 6-bit word B1• The eight outputs S1(B1 ), S2 (B2 ), ••• , S8(B 8) are arranged 
into a single 32-bit block that is input to the permutation box denoted by P[·J. The per­
muted output so produced is the desired 32-bit function f(R, Z1), as shown by 

(A5.21) 

The 48-bit block Z1 for the ith iteration uses a different subset of the 64-bit key Z0 • 

The procedure used to determine each Z; is called the key-schedule c.alculation, the flow­
chart of which is shown in Figure AS.10. The key Z 0 has eight parity bits in positions 8, 
16, ... , 64, which are used for error detection in their respective 8-bit bytes; the errors 
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z, 

z, 

Permuted 
choice 2 

Permuted 
choice 2 

Permuted 
choice 2 

Shift registers 

FIGURE A5.10 Flowchart for the key-schedule calculation. (From Diffie and Hellman, 1979, 

with permission of the IEEE.) 

of concern may arise in the generation, distribution, and storage of the key Z0 • The per­
muted choice 1 disregards the parity bits of Z 0 and then permutes the remaining 56 bits 
that are loaded into two 28-bit shift registers, each with 24 taps. The 48 taps of the two 
shift registers are subjected to 16 iterations of computation, with each iteration involving 
one or two cyclic left shifts followed by a permutation, referred to as permuted choice 2. 
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The outputs resulting from these 16 iterations provide the different 48-bit blocks Z,, 
Z2 , ••• , Z 16 of the key used in iteration 1, 2, ... , 16, respectively. 

Despite all the claims to the contrary, it appears that no one has yet demonstrated a 
fundamental weakness of the DES algorithm. Notwithstanding all the controversy sur­
rounding its use, perhaps the most significant contribution of the DES algorithm is the fact 
that it has been instrumental in raising the level of interest in using cryptography as a 
mechanism for secure computer networks. 

I A5.5 Public-Key Cryptography 10 

For a pair of users to engage in cryptographic communication over an insecure channel, 
it is necessary for the users to exchange key information prior to communication. The 
requirement for a secure distribution of keys among authorized users applies to all cryp­
tographic systems, regardless of their type. In conventional cryptography, the users employ 
a physically secure channel (e.g., courier service or registered mail) for key distribution. 
However, the use of such a supplementary channel points to a major limitation of con­
ventional cryptography. Needless to say, the use of courier service or registered mail for 
key distribution is costly, inconvenient, low-bandwidth, and slow; also, it is not always 
secure. 

The problem of key distribution is particularly accentuated in large communication 
networks, where the number of possible connections grows as (n2 

- n)/2 for n users. For 
large n, the cost of key distribution becomes prohibitive. Thus, in the development of large, 
secure communication networks, we are compelled to rely on the use of insecure channels 
for both exchange of key information and subsequent secure communication. This con­
straint raises a fundamental question: How can key information be exchanged securely 
over an insecure channel? In public-key cryptography, this seemingly difficult issue is re­
solved by making some key material "public" and thereby considerably simplifying the 
task of key management. This is in direct contrast to conventional cryptography, where 
the key is kept completely secret from an enemy cryptanalyst. 

A public key cryptographic system is described by two sets of algorithms that com­
pute invertible functions (transformations). Let these two sets of algorithms be denoted by 
[E,] and {D,} that are indexed by z. The invertible transformations computed by these 
algorithms may be written as follows 

E,: f.(x) = y 

D,: f;1(y) = x 

(A5.22) 

(A5.23) 

where x is a certain input message in the domain of some function f, indexed by z, and y 
is the corresponding cryptogram in the range of f,. A fundamental requirement of the 
system is that the function f, must be a trapdoor one-way function. The term "one-way" 
refers to the fact that for x in the domain of f., it must be easy to compute f,(x) from 
knowledge of the algorithm E., but for a certain cryptogram y in the range off., an enemy 
cryptanalyst must find it extremely difficult to compute the inverse f; 1 (y). On the other 
hand, an authorized user in possession of the associated algorithm D, would find it easy 
to compute the inverse f; 1(y). Thus the private key (algorithm) D, provides a "trapdoor" 
that makes the problem of inverting the function f, appear extremely difficult from the 
viewpoint of the cryptanalyst, but easy for the (sole authorized) possessor of D,. Since 
knowledge of the key (algorithm) E, does not by itself make it possible to compute the 
inverse off., it may be made public; hence, the name "public-key cryptography." 
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The notion emerging from the description of a public-key cryptographic system pre­
sented herein is that the keys come in inverse pairs (i.e., public key and private key), and 
that each pair of keys has two basic properties: 

1. Whatever message is encrypted with one of the keys can be decrypted with the other 
key. 

2. Given knowledge of the public key, it is computationally infeasible to find the secret 
key. 

The use of public-key cryptography as described herein makes it possible to solve 
the secrecy problem as follows. Subscribers to a secure communication system list their 
public keys in a "telephone directory" along with their names and addresses. A subscriber 
can then send a private message to another subscriber simply by looking up the public key 
of the addressee and using the key to encrypt the message. The encrypted message (i.e., 
ciphertext) can only be read by the holder of that particular public key. In fact, should the 
original message (i.e., plaintext) be lost, even its sender would find it extremely difficult to 
recover the message from the ciphertext. 

The key management of public-key cryptography makes it well suited for the devel­
opment of large, secure communication networks. Indeed, it has evolved from a simple 
concept to a mainstay of cryptographic technology. 

DIFFIE-HELLMAN PUBLIC KEY DISTRIBVTION. 

In a simple and yet elegant system known as the Diffee-Hellman public key-distribution 
system, use is made of the fact that it is easy to calculate a discrete exponential but difficult 
to calculate a discrete logarithm. To be more specific, consider the discrete exponential 
function 

Y =ax mod p for 1,;:; X,;:; p - 1 (AS.24) 

where the arithmetic is performed modulo-p. The a is an integer that should be prinzitive 
(i.e., all powers of a generate all the elements mod p relatively prime top - 1). Corre­
spondingly, Xis referred to as the discrete logarithm of Y to the base a, mod p, as shown 
by 

for1o;;Yo;;p-1 (A5.25) 

The calculation of Y from X is easy, using the trick of square-and-multiply. For example, 
for X = 16 we have 

On the other hand, the problem of calculating X from Y is much more difficult. 
In the Diffie-Hellman public key-distribution system, all users are presumed to know 

both a and p. A user i, say, selects an independent random number X1 uniformly from the 
set of integers {1, 2, ... , p] that is kept as a private secret. But the discrete exponential 

Y, = ~·modp (AS.26) 

is deposited in a public directory with the user's name and address. Every other user of 
the system does the same thing. Now, suppose that users i and j wish to communicate 



A5.6 11.i-vest--Shamir-Adleman System 7 5 7 

privately. To proceed, user i fetches Yi from the public directory and uses the private secret 
X, to compute 

Kii = (Yj)x' mod p 
= ( cr1)X' mod p 
= ax,x, mod p 

In a similar way, user j computes K;;· But we have 

K;;= K;; 

(AS.27) 

(AS.28) 

Accordingly, users i and j arrive at K;; as the secret key in a conventional cryptosystem. 
Another user must compute K;; using the information Y; and Y; obtained from the public 
directory, applying the alternative formula 

K;; = (Y;)10•Y, mod p (AS.29) 

Apparently, there is no other method for an enemy to find the secret key K;;; however, 
there is no proof for it. In light of what we said earlier, Equation (AS.29) is difficult to 
calculate as it involves a discrete logarithm, whereas Equation (AS .2 7) is easy to calculate 
as it involves a discrete exponential. Thus, security of the system depends on the difficulty 
encountered in computing a discrete logarithm. 

The Diffie-Hellrnan public key-distribution system is the oldest system in its class; 
nevertheless, it is still generally considered to be one of the most secure and practical public 
key-distribution systems. 

I A5.6 Rivest-Shamir-Adleman System 

To develop a public-key cryptographic system is no easy task. Indeed, numerous such 
systems have been proposed in the literature, but unfortunately most of them have proven 
to be insecure. To date, the most successful implementation of public-key cryptography is 
the Rivest-Shamir-Adleman (RSA) system,11 which uses ideas from classical number the­
ory. It is considered to be one of the most secure cryptographic systems in that it has 
withstood many attempts by experts in the field to break it. 

The RSA algorithm is a block cipher based on the fact that finding a random prime 
number of large size (e.g., 100 digit) is computationally easy, but factoring the product of 
two such numbers is currently considered computationally infeasible. Specifically, the com­
putation of parameters specific to the RSA algorithm proceeds as follows: 

1. Choose two very large prime numbers, p and q, at random; the prime numbers have 
to be fairly carefully chosen as some prime numbers lead to a very weak system. 

2. Multiply the numbers p and q, obtaining the product 

pq = n (A5.30) 

Find the Euler totient function of n, using the formula 

<f>(n) = (p - 1)(q- 1) (A5.31) 

Equation (A5.31) follows from the definition of the Euler totient function <f>(n) as 
the number of positive integers i less than n, such that the greatest common divisor 
of i and n is equal to one. 
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3. Let e be a positive integer less than </> (n), such that the greatest common divisor of 
e and </>(n) is equal to one. Hence, find a positive integer d less than </>(n), such that 

de = 1 mod </>(n) (A5.32) 

The RSA trapdoor one-way function is then defined simply by computing the discrete 
exponentiation 

f,(x) = x• = y mod n (A5.32) 

The values of n and e constitute the public key; hence, publishing the easy-to-find algorithm 
E, to compute the function f, amounts just to publishing the numbers n and e. 

The prime numbers p and q constitute the private key. Since dis related to p and q, 
possession of the easy-to-find (when one knows the trapdoor z) algorithm D. to compute 
the inverse function r; 1 amounts just to knowing p and q. In particular, the inverse func­
tion is defined by 

f; 1 (y) = y1 mod n (A5.34) 

The decrypting exponent d is found using Equation (A5.32), which is equivalent to the 
statement (in ordinary integer arithmetic) that 

de= </>(n)Q + 1 (A5.35) 

for some integer Q. Note that </>(n) i~ itself related top and q by Equation (AS.31). Since 
y = x•, we may use Equations (A5.32) and (A5.33) to write 

yd= xde 

= x<l>(n)Q+l (A5.36) 

We now make use of a celebrated theorem of Euler, which states that for any positive 
integers x and n with x < n, we have 

x<l>(n) = 1 mod n 

Hence, the use of Equation (A5.37) in (A5.36) yields the desired decryption: 

yd= x 

(A5.37) 

(A5.38) 

We thus see that finding the inverse function /; 1 is easy, given knowledge of the prime 
numbers p and q. 

The security of the RSA cryptoalgorithm rests on the premise that any method of 
inverting the function fz is equivalent to factoring n = pq. This equivalence raises the 
question: Is an attack by factoring n computationally feasible? It appears that the answer 
is no, provided that the prime numbers p and q are on the order of 100 decimal digits 
each and that there is no revolutionary breakthrough in factoring algorithms. 

Ill DIGITAL SIGNATURES12 

For an electronic mail system to replace the use of ordinary paper mail for business trans­
actions, it must be possible for a user of the system to "sign" an electronic message. The 
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use of a digital signature provides proof that the message did originate from the sender. 
To satisfy this requirement, the digital signature must have the following properties: 

1>- The receiver of an electronic message is able to verify the sender's signature. 

"' The signature is not forgeable. 
1> The sender of a signed electronic message is unable to disclaim it. 

To implement digital ~ignatures using the RSA algorithm, we may proceed as follows. 
A user in possession of the private key d may sign a given message block m by forming 
the signature 

s = md mod n (AS.39) 

It is difficult to compute s unless the private key d is known. Hence, a digital signature 
defined in accordance with Equation (AS.39) is difficult to forge. Moreover, the sender of 
message m cannot deny having sent it, since no one else could have created the signature 
s. The receiver proceeds by using the public key e to compute 

se = (md)' mod n 

= mde mod n (AS.40) 

= m mod n 

where, in the last line, use is made of Equation (AS.32). Hence, the receiver is able to 
validate the sender's signature by establishing that the computation of se mod n produces 
the same result as the deciphered message m. Thus, the RSA algorithm satisfies all the 
three necessary properties of a digital signature. 

I A5. 7 Summary and Discussion 

Cryptography is a "hot" research area. This statement should not come as a surprise. 
Considering the fact that we are in an information society, the importance of cryptography 
as a security mechanism will continue to grow. In this appendix, we have presented an 
introductory treatment of this highly important subject. 

We may classify cryptography into secret-key cryptography and public-key cryptog­
raphy, depending on whether the key used for the encryption of a message and its decryp­
tion is completely secret or partly public. Alternatively, we may classify a cryptographic 
system into a block cipher or stream cipher, depending on the method of implementation. 
A block cipher exhibits error propagation, which can prove highly valuable in 
authentication. 

Among the many cryptographic systems developed to date, the data encryption stan­
dard (DES) and the Rivest-Shamir-Adleman (RSA) algorithms stand out as the most suc­
cessful ones. Both of these cryptoalgorithms are block ciphers. They differ from each other 
in that the DES algorithm involves the use of a secret key whereas the RSA algorithm 
involves the use of a public key. In a secret-key system, the same key is shared both by the 
sender and the receiver. On the other hand, in a public-key system, the key is split into 
two parts: a public key located in the transmitter and a private (secret) key located in the 
receiver; in the latter system, it is computationally infeasible to recover the plaintext mes­
sage from its encrypted version without knowledge of the private key. 

Although public-key cryptosystems such as RSA provide an effective method for key 
management, they are inefficient for the bulk encryption of data due to low bandwidths. 
In contrast, conventional cryptosystems such as DES provide better throughput, but they 
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require key management. This suggests the possible use of a hybrid approach exploiting 
the best elements of both cryptosystems as the basis for the practical design of a secure 
communication system. For example, the RSA algorithm may be used for authentication, 
and the DES algorithm for encryption. 

I NOTES AND REFERENCES 

1. For an introductory treatment of cryptography, see Chapter 15 of the book by Adamek 
(1991). For a comprehensive treatment of the many facets of cryptology, see the book 
edited by Simmons (1992); this book is an expanded edition of a Special Issue of the 
Proceedings of the IEEE (1988) on cryptology. The chapter contributions of the book by 
Simmons are written by leading authorities on the subject of cryptology. A nice treatment 
of cryptology is also presented in the book by van Tilborg (1988). 

2. The era of scientific secret-key cryptography was ushered in with the publication of a 
landmark paper by Shannon (1949), which established the connection between cryptog­
raphy and information theory. 

3. The era of public-key cryptography was established with the publication of another land­
mark paper by Diffie and Hellman (1976), which showed for the first time that it is possible 
to have secret communications without any transfer of a key between sender and receiver. 
It was the paper by Diffie and Hellman that sparked the explosion of research interest in 
cryptology, which has continued eyer since. 

4. The term enemy cryptanalyst is commonly used in cryptology to refer to a cryptogram 
interceptor (eavesdropper); its usage originates from military applications. 

5. For a comprehensive treatment of stream ciphers, see Chapter 2 written by R. A. Rueppel 
in the book Contemporary Cryptology, edited by Simmons (1992). 

6. For a highly readable account of the Shannon model of cryptography, see the opening 
chapter by J. L. Massey in the book edited by Simmons (1992). 

7. The one-time pad derives its name from its use (shortly before, during, and after World 
War II) by spies of several governments, who were given a pad of paper with a randomly 
chosen key and told to use it only for a single encryption. The one-time pad is also known 
as Vernam's cipher, so named in recognition of its originator, G. S. Vernam. 

8. For a derivation of Equation (A5.11), see the original paper by Shannon (1949). 

9. The history of the DES algorithm is recounted by M. E. Smid and D. K. Branstad in Chapter 
1 of the book edited by Simmons (1992). For a description of the DES algorithm, see Diffie 
and Hellman (1979). See also the books by Meyer and Matyas (1982) and Torrieri (1992, 
Chapter 6). 

10. For a comprehensive treatment of public-key cryptography, see Chapter 4 by]. Nechvatal 
in the book edited by Simmons (1992). This book also includes a chapter contribution by 
W. Diffie that describes the several attempts to devise secure public-key cryptoalgorithms 
and the gradual evolution of a variety of protocols based on them. 

11. The RSA system is patented; it is named in recognition of its originators R. L. Rivest, 
A. Shamir, and L. Adleman. The original reference for this cryptosystem is Rivest, Shamir, 
and Adleman (1978). 

12. The idea of a digital signature was first discussed by Diffie and Hellman (1976). Its imple­
mentation using the RSA algorithm is described by Rivest, Shamir, and Adleman (1978). 
For a detailed treatment of digital signatures, see Chapter 6 by C. ]. Michell, F. Piper, and 
R. Wild in the book edited by Simmons (1992). 



The twelve tables compiled in this final appendix cover the following: 

~ASCII code 

~ Fourier and Hilbert transforms 

~ Bessel functions 

~ Error function 

~ Selected modem standards 

~ Trigonometric identities, series expansions, and integrals 

~ Useful constants and recommended unit prefixes 
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I TABLEA6.l ASCII code 

Bit Position 
7 0 0 0 0 1 1 1 
6 0 0 1 1 0 0 1 

4 3 2 5 0 1 0 1 0 1 0 

0 0 0 0 NUL DLE SP 0 @ p p 
0 0 0 1 SOH DCl A Q a q 
0 0 0 STX DC2 2 B R b 
0 0 1 ETX DC3 # 3 c s 
0 0 0 EOT DC4 $ 4 D T d 
0 0 1 ENQ NAK % 5 E u e u 
0 0 ACK SYN & 6 F v v 
0 BEL ETB 7 G w g w 

0 0 0 BS CAN 8 H x h x 

0 0 1 HT EM 9 I y y 
0 0 LF SUB J z j z 
0 1 1 VT ESC + K [ k 

0 0 FF FS < L '- I 
0 CR GS M l m 

0 so RS > N I\ n 

SI us 0 0 DEL 

ACK Acknowledge ENQ Enquiry NUL Null or all zeros 
BEL Bell or alarm EOT End of transmission RS Record separator 
BS Backspace ESC Escape SI Shift in 
CAN Cancel ETB End of transmission block so Shift out 
CR Carriage return ETX End of text SOH Start of heading 
DCl Device control 1 FF Form feed SP Space 
DC2 Device control 2 FS File separator STX Start of text 
DC3 Device control 3 GS Group separator SUB Substitute 
DC4 Device control 4 HT Horizontal tab SYN Synchronous idle 
DEL Delete LF Line feed us Unit separator 
DLE Data link escape NAK Negative acknowledge VT Vertical tab 
EM End of medium 

(From Couch, 1990, with permission of Macmillan.) 
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I TABLE A6.2 Summary of properties of the Fourier transform 

Property 

1. Linearity 

2. Time scaling 

3. Duality 

4. Time shifting 
5. Frequency shifting 

6. Area under g(t) 

7. Area under G(f) 

8. Differentiation in the time domain 

9. Integration in the time domain 

10. Conjugate functions 

11. Multiplication in the time domain 

12. Convolution in the tinle domain 

Mathematical Description 

agi(t) + bg2(t) ~ aG,(f) + bG2(f) 
where a and b are constants 

g(at) ~Th c(~) 
where a is a constant 
If g(t) ~ G(f), 
then G(t) ~ g(- f) 

g(t - t0 ) ~ G(f) exp(-j27Tfto) 

exp(j27Tf,t)g(t) ~ G(f - f,) 

r~ g(t) dt = G(O) 

g(O) = [ G(f) df 

1, g(t) ~ j27TfG(f) 

I' 1 G(O) 
g(T) dT~-2 f G(f) + - 8(f) 

-~ J 7T 2 
If g(t) ~ G(f), 
then g*(t)~G"(-f) 

g,(t)g2(t) ~ f 00 G1(A)G2(f - A) dA 

roo g,(T)g2(t - T) dT~ G,(f)G2(f) 
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I TABLE A6.3 Fourier-transform pairs 

Time Function Fourier Transform 

rect(~) Tsinc(fT) 

sinc(2Wt) 2 ~ rect(2 {v) 
exp(-at)u(t), a> 0 

1 
a + j2rrf 

exp(-a I ti), a> O 
la 

a2 + (2rrf)2 

exp(-rrt2) exp(-11f2
) 

{1 11 ltl < T Tsinc2(fT) T , 

0, ltl "= T 
li(t) 1 
1 li(f) 
li(t - to) exp(-f21T'fto) 
exp(j2Trit) li(f - i) 
cos(21T'fct) Ho(f - tl + li(f + ill 

sin(21T'it) 
1 2j [li(f - Jc) - 15(f + £)] 

sgn(t) 
f'TT'f 

1 
-j sgn(f) m 

u(t) .!_ 15(!) + _1_ 
2 j21T'f 

L:: li(t - iT0 ) t n~~ li(J i) i=-«> 

Notes: u(t) unit step function 
B(t) = delta function, or unit impulse 
rect(t) = rectangular function of unit amplitude and unit 
duration centered on the origin 
sgn(t) = signum function 
sinc(t) = sine function 



I TABLEA6.4 Hilbert transform pairs" 

Time Function 

m(t) cos(271"f;t) 
m(t) sin(271"f;t) 
cos(271"f,J) 
sin(271"f;t) 
sin t 

rect(t) 

.5(t) 

1 + t2 

Hilbert Transform 

m(t) sin(2,,-.fct) 
-m(t) cos(2'11"fJ) 
sin(271".fct) 
-cos(271"fJ) 
1 - cos t 

1 
t - -

1 2 
--log--

71" 1 
t+2 

'In the first two pairs, it is assumed that m(t) is band­
limited to the interval - W s f s W, where W < !.,. 
Notes: 6(t): delta function 

rect(t): rectangular function of unit amplitude and 
unit duration centered on the origin 
log: natntal logarithm 

I TABLEA6.5 Table of Bessel .functions• 

Jn(x) 

n\x 0.5 2 3 4 6 

0 0.9385 0.7652 0.2239 -0.2601 -0.3971 0.1506 
0.2423 0.4401 0.5767 0.3391 -0.0660 -0.2767 

2 0.0306 0.1149 0.3528 0.4861 0.3641 -0.2429 
3 0.0026 0.0196 0.1289 0.3091 0.4302 0.1148 
4 0.0002 0.0025 0.0340 0.1320 0.2811 0.3576 
5 0.0002 0.0070 0.0430 0.1321 0.3621 
6 0.0012 0.0114 0.0491 0.2458 
7 0.0002 0.0025 0.0152 0.1296 
8 0.0005 0.0040 0.0565 
9 0.0001 0.0009 0.0212 

10 0.0002 0.0070 
11 0.0020 
12 0.0005 
13 0.0001 
14 
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8 10 12 

0.1717 -0.2459 0.0477 
0.2346 0.0435 -0.2234 

-0.1130 0.2546 -0.0849 
-0.2911 0.0584 0.1951 
-0.1054 -0.2196 0.1825 

0.1858 -0.2341 -0.0735 
0.3376 -0.0145 -0.2437 
0.3206 0.2167 -0.1703 
0.2235 0.3179 0.0451 
0.1263 0.2919 0.2304 
0.0608 0.2075 0.3005 
0.0256 0.1231 0.2704 
0.0096 0.0634 0.1953 
0.0033 0.0290 0.1201 
0.0010 0.0120 0.0650 

"For more extensive tables of Bessel functions, see Watson (1966, pp. 666-697), and Abramowitz and Stegun (1965, pp. 
358-406). 
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TABLEA6.6 The error function" 

u erf(u) u erf(u) 

0.00 0.00000 1.10 0.88021 
0.05 0.05637 1.15 0.89612 
0.10 0.11246 1.20 0.91031 
0.15 0.16800 1.25 0.92290 
0.20 0.22270 1.30 0.93401 
0.25 0.27633 1.35 0.94376 
0.30 0.32863 1.40 0.95229 
0.35 0.37938 1.45 0.95970 
0.40 0.42839 1.50 0.96611 
0.45 0.47548 1.55 0.97162 
0.50 0.52050 1.60 0.97635 
0.55 0.56332 1.65 0.98038 
0.60 0.60386 1.70 0.98379 
0.65 0.64203 1.75 0.98667 
0.70 0.67780 1.80 0.98909 
0.75 0.71116 1.85 0.99111 

0.80 0.74210 1.90 0.99279 
0.85 0.77067 1.95 0.99418 

0.90 0.79691 2.00 0.99532 
0.95 0.82089 2.50 0.99959 
1.00 0.84270 3.00 0.99998 
1.05 0.86244 3.30 0.999998 

aThe error function is tabulated extensively in several 
references; see for example, Abramowitz and Stegun 
(1965, pp. 297-316). 
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I TABLEA6.7 Selection of ITV voiceband (telephone line) modem standards 

ITU 
Standarda Type of modulation 

(a) Symmetric modems: V.21 Binary FSK 
V.22 bis QPSK 
V.26 QPSK 
V.27 8-PSK 
V.32 16-QAM 
V.34 1024-QAM 
V.34 High Speed Nested-constellation 

of four 960-QAM 
constellations 

(b) Asymmetric modems: V.90: Downstream Digital 
Upstream V.34 High Speed 

aThe suffix "bis" designates the second version of a particular standard. 

I TABLE A6.8 Trigonometric identities 

exp( ±jli) = cos Ii ± j sin Ii 
cos Ii= Hexp(jli) + exp{-jli)] 

sin 0 =-it [exp(jO) - exp(-jO)] 

sin'O+ cos2 1i= 1 
cos2 Ii - sin' 0 = cos(20) 
cos2 Ii = ![1 + cos(2 Ii)] 
sin2 Ii= i[l - cos(21i)] 
2 sin 0 cos 0 = sin(20) 
sin( a± /3) =sin a cos f3 ±cos a sin f3 
cos(a ± /3) = cos a cos f3:;: sin a sin f3 

{ ) 
tan a± tan/3 

tan a± f3 = ----~ 
1 :;: tan a tanf3 

sin a sin f3 =![cos( a - /3) - cos{ a + /3)] 
cos a cos f3 = Hcos(a - /3) + cos( a + /3)] 
sin a cos f3 = Hsin(a - /3) + sin( a + /3)] 

Bit rate, bis Symbol rate, bauds 

300 300 
1,200 600 
2,400 1,200 
4,800 2,400 
9,600 2,400 

28,800 3,429 
33,600 

56,000 
33,600 
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I TABLE A6.9 Series expansions 

Taylor series 

f(x) = f(a) + f'(a) (x - a) + f'(a) (x - a)2 + · · · + jl"l(a) (x - a)" + 
1! 2! n! 

where 

MacLaurin series 
f'(O) f'(O) jl•l(O) 

f(x) = f(O) + U x + 2! x 2 + · · · + ---;? x" + · · · 

where 

Binomial series 

Exponential series 

Logarithmic series 

Trigonometric series 

n(n - 1) 
(1+x)"=1 + nx + --

2
-
1
-x2 + · · ·, 

log(l + x) = x - fx 2 + fx' - · · · 

sin x = x - .!. x 3 + .!. x 5 - • •• 
3! 5! 

cos x = 1 - .!. x 2 + .!. x 4 - • •• 
2! 4! 

tan x = x + ! x 3 + -3:_ x 5 + · .. 
3 15 

sin-1 x = x + ! x 3 + 1_ x 5 + · · · 
6 40 

lnxl < 1 

tan-l X = X - ! x 3 + l x 5 - • • • 
3 5 ' lxl < 1 

sine x = 1 - .!. (m:)2 + .!. (11X)4 - • • • 
3! 5! 



I TABLE A6.10 Integrals 

Indefinite integrals 

Definite integrals 

J x sin(ax) dx = ~ [sin(ax) ax cos(ax)] 

J x cos(ax) dx = ~ [cos(ax) + ax sin(ax)] 

J 
1 . 

x exp(ax) dx =-;}. exp(ax)(ax - 1) 

J x exp(ax2
) dx = 2. exp(ax2

) 
la 

J exp(ax) sin(bx) dx = a2 : b2 exp(ax)[a sin(bx) b cos(bx)] 

J exp(ax) cos(bx) dx = a2 : b2 exp(ax)[a cos(bx) + b sin(bx)] 

J dx 1 _1 (bx) 
az + bzxz = ~ tan -:i 

J x
2 

dx x a _,(bx) 
az + bzxz = b2 - /} tan -:i 

(

00 

x sin(ax) d = :!! (- b) 
Jo bi + x2 x l exp a , 

(

00 cos(ax) 7r 

Jo b1 + x2 dx = lb exp(-ab), 

a> 0, b > 0 

a> 0, b > 0 
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(

00 cos(ax) 7r • 

Jo (b2 - x2)2 dx = 4b3 [sm(ab) ab cos(ab)], a> 0, b > 0 

roo Joo 1 
Jo sine x dx = 

0 
sinc2 x dx = 2 

(

00 

exp(-ax2) dx = !. E., a> 0 
Jo l {;; 

(

00 

x 2 exp(-ax2 ) dx = 2. E., a> 0 k 4a~~ 
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I TABLE A6.l 1 Useful constants 

Physical Constants 
Boltzmann's constant 
Planck's constant 
Electron (fundamental) charge 
Speed of light in vacuum 
Standard (absolute) temperature 
Thermal voltage 
Thermal energy kT at standard temperature 
One hertz (hz) = 1 cycle/second; 1 cycle = 21T radians 
One watt (W) = 1 joule/second 

Mathematical Constants 
Base of natural logarithm 
logarithm of e to base 2 
Logarithm of 2 to base e 
Logarithm of 2 to base 10 
Pi 

k = 1.38 X 10-23 joule/degree Kelvin 
h 6.626 X 10-34 joule-second 
q = 1.602 X 10-19 coulomb 
c = 2.998 X 108 meters/second 
T0 = 273 degrees Kelvin 
V,. = 0.026 volt at room temperature 
kT0 = 3.77 X 10-21 joule 

e = 2.7182818 
log2 e = 1.442695 
log 2 = 0.693147 
log10 2 = 0.30103 
1T = 3.1415927 

I TABLE A6.12 Recommended unit preftxes 

Multiples and Submultiples Prefixes Symbols 

1012 tera T 
109 giga G 
10• mega M 
103 kilo K(k) 
10-3 milli m 
10-6 micro µ, 
10-9 nano n 
10-12 pico p 



I Conventions and Notations 

1. The symbol I I means the absolute value, or magnitude, of the complex quantity 
contained within. 

2. The symbol arg( ) means the phase angle of the complex quantity contained within. 

3. The symbol Re[ ] means the "real part of," and Im[ ] means the "imaginary part of." 

4. Unless stated otherwise, the natural logarithm is denoted by log. Logarithms to bases 
2 and 10 are denoted by log2 and log10, respectively. 

5. The use of an asterisk as superscript denotes complex conjugate, e.g., x• is the com­
plex conjugate of x. 

6. The symbol ~ indicates a Fourier-transform pair, e.g., g(t) ;;;:::':: G(f), where a low­
ercase letter denotes the time function and a corresponding uppercase letter denotes 
the frequency function. 

7. The symbol F[ ] indicates the Fourier-transform operation, e.g., F[g(t)] = G(f), 
and the symbol p-1

[ ] indicates the inverse Fourier-transform operation, e.g., 
p-1 [G(f)] = g(t). 

8. The symbol* denotes convolution, e.g., 

X(t) * h(t) = f 00 X(T)h(t 7) dT 

9. The symbol EB denotes modulo-2 addition, except in Chapter 10 where binary arith­
metic is used and modulo-2 addition is denoted by an ordinary plus sign throughout 
that chapter. 

10. The use of subscript T0 indicates that the pertinent functiong70(t), say, is a periodic 
function of time t with period T0• 

11. The use of a hat over a function indicates one of two things: 

(a) the Hilbert transform of a function, e.g., the function g(t) is the Hilbert transform 
of g(t), or 

(b) the estimate of an unknown parameter, e.g., the quantity &(x) is an estimate of 
the unknown parameter a, based on the observation vector x. 

12. The use of a tilde over a function indicates the complex envelope of a narrowband 
signal, e.g., the function g(t) is the complex envelope of the narrowband signal g(t). 
The exception to this convention is in Section 10. 8, where, in the description of turbo 
decoding, the tilde is used to signify extrinsic information and thereby distinguish it 
from log-likelihood ratio. 

13. The use of subscript + indicates the pre-envelope of a signal, e.g., the function 
g+(t) is the pre-envelope of the signal g(t). We may thus write g+(t) = g(t) + jg(t), 
where g(t) is the Hilbert transform of g(t). The use of subscript - indicates that 
g_(t) = g(t) - jg(t) = g+ *(t). 

14. The use of subscripts I and Q indicates the in-phase and quadrature components of 
a narrowband signal, a narrowband random process, or the impulse response of a 
narrow-band filter, with respect to the carrier cos(2rrjj). 
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15. For a low-pass message signal, the highest frequency component or message band­
width is denoted by W. The spectrum of this signal occupies the frequency interval 
- W s; f s; Wand is zero elsewhere. For a band-pass signal with carrier frequency 
fc, the spectrum occupies the frequency intervals, fc - W s; f s; fc + W and 
- fc - W s; f s; - /., + W, and so 2 W denotes the bandwidth of the signal. The 
(low-pass) complex envelope of this band-pass signal has a spectrum that occupies 
the frequency interval - W s; f s; W. 

For a lowpass filter, the bandwidth is denoted by B. A common definition of filter 
bandwidth is the frequency at which the magnitude response of the filter drops by 
3 dB below the zero-frequency value. For a band-pass filter of mid-band frequency 
fc the bandwidth is denoted by 2B, centered on fc. The complex low-pass equivalent 
of this band-pass filter has a bandwidth equal to B. 

The transmission bandwidth of a communication channel, required to transmit a 
modulated wave, is denoted by Br. 

16. Random variables or random vectors are uppercase (e.g., X or X), and their sample 
values are lowercase (e.g., x or x). 

17. A vertical bar in an expression means "given that," e.g., f x(x I H 0 ) is the probability 
density function of the random variable X, given that hypothesis H 0 is true. 

18. The symbol E[ ] means the expected value of the random variable enclosed within; 
the E acts as an operator. 

19. The symbol var[ ] means the variance of the random variable enclosed within. 
20. The symbol cov[ ] means the covariance of the two random variables enclosed 

within. 
21. The average probability of symbol error is denoted by Pe. 

In the case of binary signaling techniques, p 10 denotes the conditional probability 
of error given that symbol 0 was transmitted, and p01 denotes the conditional prob­
ability of error given that symbol 1 was transmitted. The a priori probabilities of 
symbols 0 and 1 are denoted by Po and p1, respectively. 

22. The symbol ( ) denotes the time average of the sample function enclosed within. 
23. Boldface letter denotes a vector or matrix. The inverse of a square matrix R is denoted 

by R- 1
• The transpose of a vector w is denoted by wr. The Hermitian transpose of 

a complex-valued vector xis denoted by xH; Hermitian transposition involves both 
transposition and complex conjugation. 

24. The length of a vector xis denoted by 11x11· The Euclidean distance between the 
vectors x, and xi is denoted by d;; = II X; - X; II. 

25. The inner product of two real-valued vectors x and y is denoted by xry; their outer 
product is denoted by xyr. If the vectors x and y are complex valued, their inner 
product is XHy, and their outer product is xr. 

26. The vector product of two M-by-1 vectors a and 13 is an M-by-1 vector defined by 

a • 13 = [ ::~: 1 
aMf3M 

where ak and f3k are the kth elements of a and 13, respectively. The L1 norm of the 
vector product a · 13 is defined by 

M 

II a • 13 II 1 = L aml3m 
m=1 



I Functions 

1. Rectangular function: 

2. Unit step function: 

3. Signum function: 

4. (Dirac) delta function: 

or, equivalently, 

5. Sine function: 

6. Sine integral: 

7. Error function: 

Complementary error function: 

8. Binomial coefficient 

9. Bessel function of the first kind 
of order n: 

10. Modified Bessel function of the 
first kind of zero order: 

11. Confluent hypergeometric 
function 

I Abbreviations 

A: 
AC: 

ADC: 

ADM: 

ampere 
alternating current 

analog-to-digital converter 

adaptive delta modulation 

Abbreviations 7 7 3 

{
1, -! < t < ! 

rect(t) = 
0, ltl > t 

{
1, t > 0 

u(t) = 0, t < 0 

{ 

1, 

sgn(t) = 0, 

-1, 

8(t) = 0, t * 0 

roo 8(t) dt = 1 

t > 0 

t = 0 

t < 0 

roo g(t) 8(t - to) dt = g(to) 

. ( ) sin(1Tx) 
SIIlC X = --.-

1TX 

. f"sinx S1(u) = --dx 
0 X 

2 {" 
erf(u) = y:;;: Jo exp(-z2) dz 

erfc(u) = 1 - erf(u). 

(:) = (n -n~)!k! 
f n(x) = 2

1
7T r .. exp(jx sin() - in()) de 

1 f" Io(x) = l1T - .. exp(x cos()) de 

a x a(a + 1) x 2 

iF1(a; b; x) = 1 + b ii + b(b + 1) 2! + ... 

AD PCM: 

ADSL: 

AM: 

adaptive differential pulse-code modulation 

asymmetric digital subscriber line 

amplitude modulation 

ANSI: 

APB: 
APF: 
AQB: 

American National Standards Institute 

adaptive prediction with backward estimation 
adaptive prediction with forward estimation 

adaptive quantization with backward estimation 
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AQF: 
ARQ: 
ASCII: 
ASK: 
ATM: 
AWGN: 
bis: 
BER: 
BISDN: 
BPF: 
BSC: 
CAP: 
CCITT: 

CDM: 
CDMA: 
CELP: 
CO: 
codec: 
CPFSK: 

·cRC: 

CW: 
DAC: 
dB: 
dBW: 
dBmW: 
DC: 
DEM: 
DES: 
DFT: 
DM: 
DMT: 
DPCM: 
DPSK: 
DSB-SC: 
DS/BPSK: 
DSL: 
exp: 
FDM: 
FDMA: 
FEXT: 
FFT: 
FH: 

adaptive quantization with forward estimation 
automatic-repeat request 
American National Standard Code for Information Interchange 
amplitude-shift keying 
asynchronous transfer mode 
additive white Gaussian noise 
bits /second 
bit error rate 
broadband ISDN 
band-pass filter 
binary symmetric channel 
carrierless amplitude/phase modulation 
Consultative Committee for International Telephone and Telegraph (Now 
renamed the ITU) 
code-division multiplexing 
code-division multiple access 
code excited linear predictive (model) 
central office 
coder/decoder 
continuous-phase frequency-shift keying 
cyclic redundancy check 
continuous wave 
digital-to-analog converter 
decibel 
decibel referenced to 1 watt 
decibel reference to 1 milliwatt 
direct current 
demodulator 
data encryption standard 
discrete Fourier transform 
delta modulation 
discrete multitone 
differential pulse-code modulation 
differential phase-shift keying 
double sideband-suppressed carrier 
direct sequence/binary phase-shift keying 
digital subscriber line 
exponential 
frequency-division multiplexing 
frequency-division multiple access 
far-end crosstalk 
fast Fourier transform 
frequency hop 



FH/MFSK: 
FMFB: 
FSK: 
GMSK: 
GSM: 
HDTV: 
Hz: 
IDFT: 
IF: 

1/0: 
IP: 

IS-95: 
ISON: 
ISi: 

ISO: 

ITU: 

JPEG: 
LAN: 
LDM: 
LMS: 
log: 
log2 : 

log10: 

LPC: 
LPF: 
MAP: 

ML: 
mmse: 
modem: 
MPEG: 
ms: 
µs: 

MSK: 
NCO: 
NEXT: 
nm: 
NRZ: 
NTSC: 
OC: 
OFDM: 
OOK: 
OSI: 

PAM: 

frequency hop/M-ary frequency-shift keying 
frequency modulator with feedback 
frequency-shift keying 
Gaussian filtered MSK 
global system for mobile communication 
high definition television 
Hertz 
inverse discrete Fourier transform 
intermediate frequency 
input/output 
internet protocol 
intermediate standard-95 
integrated services digital network 
intersymbol interference 
International Organization for Standardization 
International Telecommunications Union 
joint photographic experts group 
local-area network 
linear delta modulation 
least-mean-square 
natural logarithm 
logarithm to base 2 
logarithm to base 10 
linear predictive coding (model) 
low-pass filter 
maximum a posteriori probability 
maximum likelihood 
minimum mean-square error 
modulator-demodulator 
motion photographic experts group 
millisecond 
microsecond 
minimum shift keying 
number-controlled oscillator 
near-end crosstalk 
nanometer 
nonreturn-to-zero 
National Television Systems Committee 
optical carrier 
orthogonal frequency-division multiplexing 
on-off keying 
open systems interconnection 
pulse-amplitude modulation 
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PCM: 

PDM: 

PG: 
PLL: 

PN: 

POTS: 

PPM: 

PSK: 
PSTN: 

PWM: 

QAM: 

QoS: 

QPSK: 

RF: 
nns: 

RS: 
RS-232 

RSA: 

RSC: 

RZ: 

s: 

SDH: 

SDMA: 

SDR: 

SNR: 

SONET: 
STFT: 

STM: 

TC: 

TCM: 

TDM: 

TDMA: 

TV: 
UHF: 

V: 
VCO: 

VHF: 

VLSI: 

W: 

WDM: 

pulse-code modulation 

pulse-duration modulation 
processing gain 

phase-locked loop 

pseudo-noise 

plain old telephone service 

pulse-position modulation 
phase-shift keying 

public switched telephone network 
pulse-width modulation 

quadrature amplitude modulation 

quality of service 

quadriphase-shift keying 

radio frequency 

root-mean-square 
Reed-Solomon 

Recommended standard-232 (port) 

Rivest-Shamir-Adelman 

recursive systematic convolutional (code) 

return-to-zero 

second 

synchronous digital hierarchy 

space-division multiple access 
signal-to-distortion ratio 

signal-to-noise ratio 

synchronous optical network 

short-time Fourier transform 

synchronous transfer mode 

time compression 

trellis-coded modulation 

time-division multiplexing 

time-division multiple access 
television 

ultra high frequency 

volt 
voltage-controlled oscillator 
very high frequency 

very-large-scale integration 

watt 
wavelength division multiplexing 
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CPFSK. See continuous-phase 

frequency-shift keying 
Cramer-Rao bound 

defined as, 462 
modification of, 462 

CRC code. See cyclic redundancy 
check (CRC) code 

critical band, 234 
cross constellations, 369-370, 372 
cross-correlation functions, 40, 52 
cross-spectral densities, 52 
crosstalk, 21 

cause of, 2 79 
defined as, 501 
as impairment, 2 79 
types of, 2 79-280 

cryptanalysis, 7 4 2 
and authorized user, 742-743 
definition of, 746 
description of, 742 

cryptogram, 742-743 
cryptographic system 

classes of, 744 
classifications of, 7 5 9 
consists of, 7 4 3 
definition of, 743 
services of, 742 

cryptography, 617, 742 
and authentication problem, 743 
classifications of, 7 59 
data compression in, 749 
fundamental assumption, 745 
importance of, 7 59 
and secrecy pro bl em, 7 4 3 

cryptology, 7 4 2 

crystal-controlled oscillator, 120 
cumulative distribution function, 

708 
cyclic code, 641-643 

advantage of, 641-642 
characteristics of, 652-654 
classes of, 652-654 
encoder for, 645-646 
generation of, 643 
properties of, 642 
in systematic form, 645, 646 

cyclic prefix, 441 
cyclic property, 642 
cyclic redundancy check ( CRC) 

code 

D 

for error detection, 652 
generator polynomials of, 653 

damping factor, 160 
data-aided synchronization, 449 
data bits 

binary pattern of, 6 
for error detection, 7 

data communication, 7 
data compaction, 8, 575 

achieved by, 5 7 5 
assessing, 616 
schemes for, 5 7 5 

data compression, 7, 614-616 
in cryptography, 749 
forms of, 7-8 
idea of, 614 
as a lossy operation, 614-615 
reason for using, 615 
system components, 749 
techniques for, 218 

data compressor, 614 
data encryption, 617 
data encryption standard (DES), 

751-755, 759 
data encryption standard (DES) 

algorithm, 754 
data-modulated carrier, 500 
data multiplexers, 7 
data network, 11 
data signaling rate, 426 
data transmission system 

asynchronous versus 
synchronous, 7 

capabilities of, 446 
performance of, 293 

decision device, 259 
decision-directed mode, 290-291 
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decision-directed recursive 
algorithm, 450 

decision errors, 210 
decision feedback, 270 
decision feedback equalization, 

291-293,379,430 
decision feedback equalizer (DFE) 

consists of, 292 
error propagation in, 292-293 
feedback section of, 292 
feedforward section of, 292 

decision-making criterion, 323 
decision-making device 

designs of, 2 77 
opera ti on of, 25 

decision rule, 350-351, 357 
applying, 382 
defined as, 661 
as the MAP rule, 323-324 
as the maximum likelihood rule, 

324 
used by the coherent detector, 

497 
decision threshold, 194 
decision tree, 575-576 
decoder, 446 

condition for optimality, 
200-201 

consists of, 552 
function of, 5 52 
units of, 235 

decoding algorithms, 678 
decoding complexity, 684 
decoding decisions, 663 
decoding error, 660 
decoding process 

methods of, 69 3 
and pulse generation, 208 
requirements of, 261 

decoding rule, 660 
decoding spheres 

maximum number of, 600 
packing of, 600 

decoding window, 663 
decommutator, 211 
decorrelation time, 3 7 
decryption, 742 
de Forest, Lee, 2 7 
delay, average, 540 
delay power spectrum, 539 
delay spread, 539 

as a channel impairment, 553 
defined as, 540 
effect of, 5 5 6 
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delta function, 62 
property of, 716-717 
sifting property of, 190, 320 

delta modulation (DM), 218-221 
advantage of, 219, 23 7 
and digital pulse modulation, 

237 
principles of, 218-219 
quantization error of, 220 
simplicity of, 223 
and transmitters, 228 

delta-sigma modulation, 221-223 
demodulation, 20, 8 8 

method of, 99 
stages of, 491 

demodulation scheme, 132 
demodulator output, 92 
demultiplexer 

in receiver, 359, 445-446 
in transmitter, 444 

demultiplexing system, 125-126 
DES. See data encryption 

standarddetection 
and error correction, 628 
of a pulse signal, 248 

detector, 326, ~ 349 
deviation ratio, 387 

definition of, 119 
versus modulation index, 119 

DFT. See discrete Fourier transform 
diagonal matrix, 443 
dibits, 276 
difference-frequency term, 158 
differential detector 

components of, 364 
tangenttype,364-365 

differential encoder 
of the binary wave, 414 
consists of, 4 21-4 22 
method used, 207 
requirement of, 207 

differential entropy, 593-597 
differential phase encoder, 415 
differential phase modulation, 422 
differential phase-shift keying 

(DPSK), 407, 41+-417 
bit error rate of, 41 7 
generation and detection of, 415 
receiver, 416 
transmitter, 415-416 

differential pulse-code modulation 
(DPCM), 227-229 

basic idea of, 227 
and digital pulse modulation, 

237 

system comparison, 228 
and transmitters, 228 

differential quantization scheme, 
227, 228 

differentiator, 143 
Diffie-Hellman public key-

distribution system, 7 5 6 
diffraction, 17-18 
diffusion, 7 4 9 
digital audio broadcasting, 448 
digital circuit technology, 189 
digital communication 

basic form of, 3 0 9-310 
and bit error rate, 24 
and design goals, 354 
elements of, 24-25 
receiver, 337 
reliability of, 23, 24-26 
requirements of, 23 
and system design, 22 
task of designer, 626 
use of, 21 

digital data transmission, 24 7 
digital filter, second-order, 

454-455 
digital hierarchy, 214 
digital modem 

bidirectional, 428 
capabilities of, 428 
and data rates, 429 
design constraints of, 426 
fundamental design philosophy 

of, 426 
one realization of, 426-427 
signaling scheme for, 4 2 7 
solution to design problems, 428 
theoretical basis for the design 

of, 429 
digital modulation schemes 

comparison of, 417-4 20 
probability of error, 417 
types of, 346 
using a single carrier, 417-420 
virtues of, 34 7 

digital modulation techniques 
operation of, 448 
types of, 34 5-346 

digital multiplexers, 214-215 
design problems, 215 
major groups of, 214 

digital multiplexing-demultiplexing 
operation, 214 

digital passband transmission 
system, 344 

assessing performance of, 3 3 5 

performance degradation of, 544 
digital PSTN, 426 
digital pulse modulation 

basic form of, 193 
feature of, 23 6 
transmission of, 183 

digital satellite communication, 419 
digital signals, 214 
digital signal zero (DSO), 214 
digital signature 

for electronic mail systems, 
758-759 

properties of, 759 
use of, 758-759 

digital subscriber line (DSL) 
as a growing application, 277 
line codes for, 280-281 
operational environment of, 277, 

447 
and twisted pairs, 277, 297 
versus voiceband modems, 446 

digital switch, 215, 446 
digital-to-analog converter (DAC), 

445 
digital transmission facility, 215 
digital wireless communication 

systems, 5 5 0-5 51 
Dirac delta function. See delta 

function 
direct broadcast satellite (DBS) 

simplicity and affordability of, 
517 

direct broadcast satellites (DBS) 
use of, 517 

direct frequency modulation, 
120-121, 396 

directive gain, 520 
directivity, 520 
direct matrix inversion (DMI), 558, 

559 
direct-sequence M-ary phase shift 

keying (DS/MPSK), 508 
direct-sequence spread binary 

phase-shift-keyed (DS/BPSK) 
signal, 490, 492 

direct-sequence spread spectrum 
with coherent BPSK, 490-493 
principles of, 480 
systems, 498 

Dirichlet's conditions, 715 
discrete cosine transform (DCT), 8 
discrete cosine transform 

coefficients, 8 
discrete Fourier transform (DFT), 

445 



defined as, 442 
and digital signal processing, 44 3 

discrete memoryless channel, 
581-584,629-631 

channel ca pa city of, 5 8 8 
defined as, 581-582 

discrete memoryless source, 570 
extension of, 572 
properties of, 568 

discrete multitone (DMT), 431, 
440-443,444-446 

applications of, 446 
basic idea of, 441 
and multichannel modulation, 

447-448 
use of, 441 

discrete pulse-amplitude 
modulation (PAM), 259 

discrete pulse modulation, 259 
discrete random variable, 708 
discrete source, 615 
discrete-time, memoryless Gaussian 

channel, 597 
discrete-time channel, 291 
discrete-time convolution, 62 7 
discrete-time Fourier transform, 

185 
discriminator, 144 
discriminator output, 145, 155 
dispersive channel, doubly, 542 
distance transfer function, 666 
distortion, 2 

acceptable, 614 
methods of reduction, 103 
produced by, 102-103 
unavoidable, 611-612 

distortion, amplitude, 191 
distortionless baseband binary 

transmission, 261-262 
distortion measure, 199 
distribution function 

properties of, 708 
of a stationary random process, 

34 
diversity techniques, 544-547 

performance with, 546-547 
specialized techniques, 559 

"divide and conquer", 4 31 
DMI. See direct matrix inversion 
DMT. See discrete multitone 
Donald Duck voice effect, 99-100 
Doppler shift, 535 
Doppler spectrum, 540-541 
Doppler spread, 539, 541 
double-frequency term, 158 

double sideband-suppressed carrier 
(DSB-SC) modulated signal 
(wave), 95, 96 

double sideband-suppressed carrier 
(DSB-SC) modulation, 133, 
134 

definition of, 93 
generated by, 94 
transmission of sidebands, 163 

double sideband-suppressed carrier 
(DSB-SC) receiver 

compared to an AM receiver, 
136-137 

model of, 132-133 
doubly dispersive channel, 542 
down conversion, 105 
downconverter, 448 
downlink, 19, 514-515 
downstream data transmission, 

281-282 
DPSK. See differential phase-shift 

keying 
DS/BPSK waveform, 490, 492 
DSL environment, 44 7 
DS/MPSK system, 508 
dual code, 641 
duobinary code, modified, 281 
duobinary coding, 270 
duobinary conversion filter, 

268-269 
duobinary encoder, 267-268 
duobinary signaling scheme, 

267-271 
frequency response of, 268 
technique, 271-272 

duobinary technique, 274-275 
"dynamic" multipath environment, 

532-533 

E 
echo cancellation, 277-278 

comparison of schemes, 278-279 
mode of operation for, 277-278 

echo canceller 
in transceiver, 278-2 79 
use of, 516 

effective aperture, 521 
effective radiated power referenced 

to an isotropic source (EIRP), 
521 

Einstein-Wiener-Khintchine 
relations, 46 

EIRP. See effective radiated power 
referenced to an isotropic 
sourceelastic store, 215 
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electromagnetic interference (EM!), 
17 

electron beam, 4 
elementary event, 704 
encoded text, 6 
encoder 

condition for optimality of, 
199-200 

functional units of, 235 
main parts of, 551 
operation of, 646 
states of, 659, 667 

encoding process 
operations of, 9 
steps of, 551 
use of, 203-204 

encryption, 742 
enemy cryptanalyst 

forms of attack by, 7 45 
intrusion of, 743, 744 

energy gap, 99 
energy signals, 312 
energy spectral density, 48, 353 
ENIAC,28 
ensemble average 

autocorrelation function, 284 
estimation of, 41 
parameter, 7 5 
substituting time averages for, 41 

entropic coding redundancy, 9 
entropy 

conditional, 584 
definition of, 5 69 
formula for, 568 
properties of, 570-571 

entropy, conditional, 584 
envelope 

defined as, 730 
and phase components, 67-69 
types of, 730 

envelope delay, 16 
envelope detection, 102-103, 131 
envelope detector, 123, 143 

consists of, 92 
found in, 92 
loss of message in, 13 8 
need for, 406 
performance of, 13 7 
signal comparison, 141-142 

envelope distortion, 90-91 
equalizer, 191 
equiprobable symbols, 571 
equivalent noise temperature, 61, 

524-525 
ergodic process, 41-42, 51 
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error 
minimization of, SS 1 
possible kinds, 2S4 
probability of, 497-499 

error burst, 6S2 
error control, 626 
error-control code 

theory of, 48S 
types of, 627 

error-control coding 
classes of, 626 
for reliable communication, S 67 
techniques, 626 
techniques for, 683, 693 
use of, 626, 62 7 

error-detection bit, 7 
error-free communication, S68 
error function, complementary, 2SS 
error minimization, S51 
error pattern, 63S 
error probabilities, conditional, 352 
error propagation 

elimination of possibility, 273 
phenomenon, 270 
property, 745 

error rate, 253 
error signal 

calculation of, 457 
definition of, 288, 453 
for timing recovery, 457 
use of, 5S7 

error-syndrome vector, 63S-636 
error threshold, 209-210 
error vector, 635 
estimation procedure, Sl 7 
Euler's formula, 45 3 
excess bandwidth factor, 441 
excess mean-square error, 291 
excitation generator, 551, 552 
excitation time, 718 
expander, 203 
expansion laws, 203 
exponential law, 193 
extended code 

average code-word length, S78 
use of, 577 

extended prefix code, 578 
extended source, 572 
extended-threshold demodulators, 

152, 153 
extraction, 261 
extrinsic information, 679 
eye opening, 293 
eye pattern 

F 

definition of, 29 3 
as an experimental too~ 29 3 
interpretation of, 29 3 
and performance information, 

293 

facsimile (fax) machine 
basic principle of, 6 
purpose of, 6 
in a receiving mode of operation, 

420 
fade rate, 541 
fading channel 

characteristics of, 5 41 
effects of, 545 

fading multipath channel, 536-539 
far-end crosstalk (FEXT), 279-280 
Farnsworth, Philo T., 27 
fast Fourier transform (FFT) 

algorithm, 443-444 
fast-frequency hopping, 502-503, 

504 
FDM. See frequency division 

multiplexing 
FDMA. See frequency division 

multiple access 
FDMA system, S16 
FDM system 

block diagram of, 105-106 
modulation steps in, 107 

FEC. See feed-forward error 
correction 

feedback shift register, 480, 481 
feedback system, second-order, 160 
feed-forward error correction 

(FEC), 628, 629 
Fessenden, Reginald, 2 7 
FHJMFSK system 

fast versus slow, S02-503 
jamming effect on receiver, 502 
symbol error in, S 02 

field-power pattern, S21 
figure of merit, 134 

for amplitude modulation, 136 
definition of, 132, 193 
for frequency modulation, 14 7 

filtering, 128, 208-209 
filtering scheme, 100 
fine synchronization, 493 
finite-duration impulse response 

(FIR) filter, 379 
finite-state machine, 654 
fixed channel input, 582 

fixed channel output, 582 
fixed modulation scheme, 627 
fixed point-to-point links, 18-19 
fixed scatterers, 536 
flat-fading channel, 71-72 
flat-flat channel, 542 
flat Rayleigh fading channel, 5S4 
flat-top samples, 191 
Fleming, John Ambrose, 2 7 
flip-flops, 646 
flyback. See horizontal retrace 
FM demodulator 

with negative feedback, 153 
and oscillator types, 152 

FMFB demodulator, 152, 153, 154 
FMFB receiver, 154 
FM receiver 

breaking point of, 149 
interference suppression in, 

148-149 
model of, 142-143 
noise analysis of, 146 
noise in, 142 
threshold effects in, 152 

FM signal 
average power of, 115 
complex envelope of, 114 
demodulation of, 121-124 
desirable properties, 397 
detection of, 397 
distinguishing from AM signal, 

109 
effective bandwidth for, 117-119 
fundamental characteristic of, 

110 
generation of, 120-121 
side frequencies of, 117 
spectral analysis of, 110 
spectrum of, 115 
in theory and practice, 117 

FM signal, single-tone, 112-113 
FM stereo 

multiplexing, 124-126 
specification of standards, 124 
transmission, 124 

FM system 
emphasis in, 154-156 
nonlinear effects in, 126-128 
See also frequency modulation 

(FM) system 
FM threshold effect, 149-1S2 
FM threshold reduction, 152-154 
FM wave 

bandwidth requirement, 118 



with reduced modulation index, 
152-153 

forward error-control coding, 628, 
668 

forward error correction (FEC), 
626 

forward estimation, 681 
forward link, 547 
Fourier analysis, 715-720 
Fourier series expansion, 317 
Fourier series representation, 114 
Fourier transform 

definition of, 715 
inverse, 715 
of periodic signals, 717-718 
properties of, 716 
theory of, 716 

fractionally spaced equalizer (FSE), 
287 

frame, 552 
make-up of, 5 
method of synchronization, 

215-216 
srructure, 54 7 

frame packing, 9 
frame-packing unit, 236 
free distance, 6 63 
free propagation 

channels based on, 15 
types of, 15 

free-space loss, 522 
free-space propagation model, 

518-523 
frequency demodulation 

defined as, 121 
methods of, 121 

frequency deviation, 110, 152 
frequency-discrimination method 

stages of, 98-99 
use of, 100 

frequency discriminator, 121, 
124 

consists of, 121-122 
input, 149 
requirements of, 99 

frequency diversity, 544-545 
frequency division duplexing 

(FDD), 547 
frequency division multiple access 

(FDMA), 513, 516 
frequency-division multiplexing 

(FDM) 
defined as, 20-21, 105 
method of modulation in, 106 

frequency-domain description, 444, 
720 

frequency down converter, 105, 
516 

frequency flat, 541 
frequency-flat channel, 542 
frequency-hop M-ary frequency 

shift-keying (FH/MFSK), 508 
frequency hopping, 500 
frequency-hop spread spectrum, 

499,500 
communication systems, 500 
principles of, 480 

frequency-modulated wave, 413 
frequency modulation (FM), 20, 

27, 729 
capability of, 165 
cases of, 111 
characteristic of, 149 
definition of, 108-109 
direct, 120--121 
and mixing, 500 
as a nonlinear process, 109 
theory of, 126 

frequency modulation (FM) system 
noise analysis of, 142-147 
similarities to PPM system, 19 3 

frequency multiplication ratio, 
121 

frequency multiplier 
consists of, 120 
diagram of, 120-121 

frequency parameters, 128 
frequency response 

choice of, 15 5 
to denote, 44-45 

frequency reuse, 5 30 
frequency-shift keying (FSK) 

basic signaling scheme, 344-345 
and design of modems, 421 
and frequency modulation, 34 5 
represented by,· 464 

frequency-shift keying (FSK) 
schemes, 418 

frequency-shift keying (FSK) signal, 
386 

frequency translation, 103, 
103-105 

frequency up converrer, 105 
Friis formula, 526 
Friis free-space equation 

defined as, 522 
used for, 522 

FSK. See frequency-shift keying 
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full amplitude modulation, 
162-163 

full-cosine rolloff characteristic, 
266 

full-duplex link, 628 
functional 

defined as, 54 
versus function, 54 

fundamental frequency, 717 
fundamental inequality, 571 

G 
gain, 720 
gap, 432 
Gaussian assumption, 498 
Gaussian channel, 5 97 
Gaussian-distributed random 

variable, 54 
Gaussian distribution, 54, 72-73 
Gaussian filter, 397 
Gaussian-filtered minimum shift 

keying (GMSK) 
as a special kind of binary 

frequency modulation, 398 
undesirable feature of, 398 

Gaussian-filtered minimum shift 
keying (GMSK) modulator 

frequency shaping pulse of, 397 
and intersymbol interference, 

398 
Gaussian-filtered minimum shift 

keying (GMSK) signal, 397 
power spectrum of, 400 
spectral compactness of, 

398-400 
Gaussian-filtered MSK, 396-400 
Gaussian function, 397 
Ga ussianity, 7 5 
Gaussian model, 5 5 
Gaussian process, 54-58 

definition of, 57 
mathematical justification, 55-56 
in the study of communications, 

55 
useful properties of, 56-58 
virtues of, 5 5 

Gaussian random variable, 54, 58 
generator equation, 634 
generator polynomial, 645 

of a cyclic code, 643 
definition of, 65 6 

geometric mean, 436 
geometric representation of signals, 

311 
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geometric signal-to-noise ratio, 436 
geostationary satellite 

communications system, 
514-515 

global coverage, 512 
Global System for Mobile 

Communications (GSM), 548 
frame efficiency of, 548 
wireless communication system, 

548 
glottis, 4 
GMSK. See Gaussian-filtered 

minimum shift keying 
Gold's theorem, 505 
Gold sequences (codes) 

class of, 5 0 5 
correlation properties of, 507 

good codes, 631 
Gram-Schmidt orthogonalization 

procedure, 315-317 
granular noise, 220 

and distortion, 221 
versus quantization noise, 221 

Gray coding scheme, 422-423 
Gray encoder, 2 7 6 
Gray-encoded dibits, 363 
GSM. See Global System for 

Mobile Communications 
guard bands, 513 
guard interval, 441 
guard time, 54 7 
guided propagation 

H 

channels based on, 15 
types of, 15 

half-cycle cosine pulse, 389 
half-cycle sine pulse, 389-390 
half-duplex link, 628 . 
Hamming distance, 637, 661, 

666 
Hamming single-error correcting 

code, 653 
Hamming weight, 637, 666 
handover, 5 3 0 
hard-decision coding, 630 
hard-decision decoders, 629-630 
hard-decision demodulation, 669 
hard decisions, 630 
harmonic distortion, 112 
harmonic structure, 4 
head end, 17 
hearing mechanism, 4 
Hermitian transposition, 443 
Hertz, Heinrich, 26-27 

heterodyning function, 128 
hexagonal cellular geometry, 5 31 
high-performing CAP system, 375 
Hilbert transform, 374, 408, 

723-725 
properties of, 725 
of a signal, 724 

Hilbert-transform pair, 376, 724 
Hockham, G. A., 29 
hop rate, 501 
horizontal retrace, 5 
host, 13 
Huffman code 

algorithm used to synthesize, 
578 

as a class of prefix codes, 578 
dra whack of, 5 8 0 
nonuniqueness of, 579 

Huffman coding, 578-580, 616 
basic idea of, 578 
compared to Lempel-Ziv 

algorithm, 581 
and data compression, 8 
as entropic coding, 8 

Huffman decoding, 8-9 
Huffman encoding process, 578, 

579 
human auditory system, 234 
human communication, 4 
hybrid-modulated signal, 123 
hybrid modulation process, 374 
hybrid transformer 

definition of, 2 78 
simplified circuit of, 278-279 

I-channel, 97 
ideal baseband pulse transmission, 

262 
ideal delay element, 268 
ideal envelope detector, 135 
ideal frequency discriminator, 124 
ideal narrowband filter, 45 
ideal Nyquist channel, 262-264, 

265-266 
difficulties of, 263-264 
use of, 263-264 

ideal sampled signal, 184 
ideal slope circuit 

characterized by, 121-122 
frequency response of, 122 

ideal system, 601 
identity matrix, 329 
image interference, 129 
impossible event, 704 

impulse function, 62 
impulse noise, 446 
impulse response, 656, 718 
index of performance, 224 
indirect frequency modulation, 

120-121 
individual demodulators, 106 
infinite bandwidth, 602 
information, 2 
information-bearing signal, 31-32, 

88 
in the digital domain, 2 77 
multiplying by the PN signal, 

488 
information capacity, 598, 616 

of a channel, 597-598 
defined as, 23, 5 98 
evaluation of, 598 
increasing of, 599 

information capacity theorem, 616 
application of, 607 
argument for, 599-600 
as a colored noise channel, 607 
and Gaussian channels, 5 9 7 
implications of, 601-603 
system parameters of, 5 9 9 
water-filling interpretation of, 

610 
information-theoretic concepts, 

572 
information theory 

fundamental limits in, 567 
important result of, 591 
as a mathematical discipline, 

567 
Shannon's landmark paper, 567 

information transmission, 581 
information vector, 633 
inner conductor, 17 
inner product, 313, 314 
innovation symbol, 581 
in-phase channel, 408 
in-phase coherent detector, 97 
in-phase component, 93 

power spectral density of, 
395-396 

properties of, 65-66 
representation of, 67-69 

in-phase noise component, 131 
input alphabet, 582 
input signal-to-noise ratio, 134 

definition of, 131 
equation for, 497 

insertion loss, 16 
instantaneous codes, 577 



instantaneous frequency, 110 
definition of, 163 
equation for, 108 

instantaneous sampling, 184 
integration 

beneficial effects of, 221-222 
as a linear operation, 223 

interface, 11 
interference 

average power of, 495 
effect of, 490 
and fading, 71-72 
strength of, 148-149 
as unintentional or intentional, 

479 
interference suppression, 148-149 
interframe rednndancy, 9 
interlaced fields, 5 
interlaced raster scan, 5 
interleaver 

definition of, 67 4 
types of, 674 
use of, 675 

intermediate frequency (IF), 128 
intermediate frequency (IF) band, 

18 
Internet, 13-14 

architectnre of, 13-14 
evolution of, 28-29 
growth of, 29 
protocols for, 13-14 

Internet architecture 
fnnctional blocks of, 13-14 

Internet protocol (IP), 13-14 
Internet Service Provider (ISP), 420 

and communication between 
PSTN,425 

and public switched telephone 
network (PSTN), 420-425 

and voice modems, 420-422 
interpixel redundancy, 9 
interpolation formula, 186 
interpolation fnnction, 186, 427 
intersymbol interference (ISi), 

259-261,398 
and bit errors, 24 7 
as channel impairment, 379 
condition of, 282-283 
under designer's control, 268 
as a dominant impairment, 279 
effects of, 294, 296 
as a form of interference, 296 
minimizing effects of, 260 
and noise presence, 294 
overcoming effects of, 441 

in peak distortion, 28 8 
and timing error, 266 
as an undesirable effect, 267 

intrinsic information, 679 
invariance, 331 
inverse discrete Fourier transform 

(IDFT), 442, 445 
inverse Fourier transform, 186, 

715 
inverse mapping, 589 
inverse-square law, 519 
irreducible polynomial, 505 
irregular codes, 691 
irregnlar interleavers, 691-692 
irregnlar LDPC code, 692 
irregular turbo code, 691, 692 

J 
jammer, 493 

strategy of, 495 
types of, 508 
waveforms of, 508 

jammer, barrage noise, 508 
jammer, multitone, 508 
jammer, pulse noise, 508 
jammer, single-tone, 508 
jamming margin, 499 
jamming signal, 488 
jamming waveforms, 488 
jitter, 208 
joint distribution fnnction, 33, 709 
joint moments, 713-714 
Joint Photographic Experts Group 

(JPEG), 8 
joint probability, 706, 707 
joint probability density function, 

594, 709-710 
joint probability distribution, 583 
JPEG image coding standard, 8 

K 
Kao, K. C., 29 
keys, 756 
key-schedule calculation, 753, 754 
keystream, 744, 745 
Kotel'nikov, V. A., 27 
Kraft-McMillan inequality, 

576-577 
Kummer's differential equation, 

740 

L 
Lagrange multipliers 

method of, 437 
use of, 609 

laser, 29 
layer, 11 
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layered architecture, 11 
layer-to-layer interface, 13 
least-mean-square (LMS) 

algorithm, 288-290, 557 
for adaptive equalization, 

288-289 
and combined use, 297 
equations for, 289 
for linear adaptive prediction, 

226 
popularity of, 226, 227 
similarities, 290 
simplification of, 289 
summary of, 289 
uses of, 292 
using matrix notation, 289 

Leibniz's rule, 257 
Lempel-Ziv algorithm, 8, 616 

compared to Huffman coding, 
581 

definition of, 580 
encoding process performed by, 

580 
standard for file compression, 

581 
Lempel-Ziv coding, 580-581 
light, 6 
likelihood functions, 322 
linear adaptive prediction, 225-227 
linear array signal processor 

to design, 554 
for the receiver, 554 
requirements of, 5 54 

linear block code 
basic property of, 634 
classes of, 653-654 
decoding procedure for, 639 
definition of, 632 
mathematical structure of, 

632-633 
minimum distance of, 637 
standard array of, 638 

linear combiner, 547 
linear delta modulator, 221, 

232-233 
linear diversity combining 

structure, 5 4 5 
linear equalization, 379, 556 
linear function, 54 
linearity property, 642 
linear modulation 

definition of, 93 
examples of, 163 
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linear modulation (Continued) 
forms of, 93-94 
types of, 93 

linear modulation systems, 729 
linear prediction, 223-22 7 
linear predictive coding (LPC), 551 
linear pre-emphasis and de-

emphasis filters 
applications in, 157 
use of, 157 

linear receiver, 248 
design of, 283 
performance of, 13 2 
using coherent detection, 132 

linear system, 718 
linear time-invariant filter 

defined as, 250-251 
impulse response of, 44 
as a matched filter, 250-251 
use of, 248 

linear time-invariant system, 
719-720 

line codes 
candidates for, 281 
comparison of, 281 
for electrical representation, 

204-207 
power spectra of, 206 
selection of, 280-281 
types of, 205-207 
use of, 204-207 

line-scanning frequency, 5-6 
link budget, 518 
link budget analysis, 517 
link budget balance sheet, 517 
Lloyd-Max quantizer, 198, 

200-201 
loading problem, 438 
loading process, 438 
local loop, 420 
local oscillator, 97 
Lodge, Oliver, 27 
logarithmic function, 322 
log-likelihood function, 452 

defined as, 322 
defined for A WGN channel, 325 
relationship of, 322 

loop filter, 157, 159-160 
loop-gain parameter, 159 
lossless compression 

definition of, 7-8 
for digital text, 8 
versus lossy compression, 8 

lossless data compression, 57 5 

lossy compression 
definition of, 8 
the preferred approach, 8 

low-density parity-check (LDPC) 
codes, 683-686 

advantages of, 684 
block length of, 689 
construction of, 684-6 85 
decoding algorirhm, 690 
decoding of, 689-690 
initialization of, 690 
minimum distance of, 689 
shared properties of, 693 
statistical analysis of, 689 
sreps of, 690-691 
use of, 684 

low-noise amplifier, 515 
low-weight code words, 684 
LPC. See linear predictive coding 
Lucky, Robert, 2 8 
luminance signal, 6 

M 
magnitude response, .45, 608, 719 
magnitude spectrum, 715 
main lobe, 368, 720 
Manchester code, 207, 281 
many-to-one mapping, 8 
MAP decoder, 678 
Marconi, Guglielmo, 27 
marginal densiries, 710 
marginal probability distribution, 

583 
Markov process, 678 
M-ary digital modulation 

techniques, 419-420 
M-ary frequency-shift keying 

(MFSK), 398-400 
consists of, 401 
for frequency hopping systems, 

500 
property of, 400 

M-ary FSK signal 
bandwidth efficiency of, 

401-402 
bandwidth requirements, 401 
orthogonal signals of, 401-402 
power spectra of, 401 
spectral analysis of, 401, 402 

M-ary PAM system 
in a channel bandwidth., 2 7 6 
consideration of, 276 
design complexity of, 277 
power requirements of, 276-277 

M-ary PSK 
comparison of, 419 
likelihood function for, 452 
power-bandwidth requirements 

for, 419-420 
signal constellations of, 365, 

420 
similar spectral and bandwidth 

characteristics, 419 
special case, 365 
symbol duration of, 367 
symbol error equation for, 

365-366 
M-ary PSK signal 

bandwidth efficiency of, 368 
baseband power spectral density 

of, 367 
power spectra of, 367 
as spectrally efficient, 402 

M-ary PSK systems, 449-450 
M-aryQAM 

detection for, 371 
functions in, 369 
performance of, 420 
symbol error probability for, 371 
transmitted energy in, 3 71 

M-ary QAM signal, 372 
M-ary quadrature amplitude 

modulation (QAM), 369-373 
M-ary signal, 402 
M-ary signaling scheme, 345-346 
M-ary system, 276 
masking threshold, 9, 234, 

234-235 
matched filter, 248-252, 286 

in the frequency domain, 251 
output, 406 
properties of, 251-252 

matched filter receiver 
correlation and, 326-327 
detector part of, 328 

mathematical models 
classes of, 31 
in probabilistic terms, 31 

matrixer 
difference signal generation, 125 
sum signal generation, 125 

maximal-length sequence 
autocorrelation function of, 482 
balance property of, 482 
choosing a, 484 
defined as, 482 
properties of, 482-484 

maximal-ratio combiner, 547 



maximal ratio combirung principle, 
550 

maximum a posteriori probability 
(]l,l[A]>)detection,678 

maximum a posteriori probability 
(MAP) rule, 323-324 

maximum likelihood decision rule 
for an A WGN channel, 325 
purpose of, 325 

maximum likelihood decoder, 
322-326 

for computation, 324 
defined as, 661 
as an implementation device, 324 
theory of, 660-661 

maximum likelihood decoding rule, 
661 

maximum likelihood detection, 
330,337 

maximum likelihood detectors, 435 
maximum likelihood estimation 

of the carrier phase, 453-458 
for problem solving, 449 

maximum likelihood rule, 324 
maximum likelihood signal 

detection, 346 
maximum-power transfer theorem 

applying, 61 
use of, 61 

Maxwell, James Clerk, 26 
mean, 35 
mean Doppler shift, 541 
mean functions, 35-39 
mean output noise power 

definition of, 13 9 
equation for, 141 

mean output signal, 139 
mean-square distortion, 199 
mean-square error, 285 

as the cost function, 5 5 8 
definition of, 284 

mean-square error criterion 
for receiver design, 283 
uses of, 288 

median signal strength, 530 
melodic structure, 4 
memoryless channel, 321 
memoryless Gaussian channel, 

discrete-time, 597 
memoryless quantizer, 194 
Mersenne prime length sequences, 

485 
message, 155 
message bandwidth, 90 

message point, 322-323 
message polynomial, 643 
message signal, 132-133 

description of, 2 
generation of, 2 

message source, 348 
message spectrum 

for negative frequencies, 103 
requirement of, 99 

message vector, 660 
method of steepest descent, 

225-226 
microcells, 5 31 
microphone, 15-16 
Middleton, D., 27 
minimum average energy, 332 
minimum distance 

considerations of, 637-638 
definition of, 637 

minimum distance decoder, 661 
minimum energy signals, 331-332 
minimum energy translate, 332 
minimum mean square error 

(MMSE), 558 
criterion for, 5 5 8 
equilizer, 285 
receiver, 286-287 

minimum shifr keying (MSK), 387 
as a form of binary FSK, 3 61 
signal-space diagram of, 

389-392 
minimum shifr keying (MSK) signal 

power spectra of, 360 
mixer 

consists of, 103-104 
function of, 129 
operation of, 105 

mobile radio, 18, 529 
mobile radio channel 

capability of, 18 
as a linear time-varying channel, 

18 
propagation effects of, 18 

mobile switching center, 530 
mobility, 18 
modem, 7 

configuration of, 421 
as a conversion device, 420 
design of, 4 21 
and the Internet, 420 
portions of, 4 20 

modem, facsimile, 420 
modem configuration, 421 
modified Bessel equation, 738 
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modified Bessel function, 737-739 
modified duobinary code, 281 
modified duobinary coder 

responses of, 272, 273 
useful feature of, 2 72-2 73 

modified duobinary conversion 
filter, 273 

modulated signal (wave), 95 
modulating signal (wave), 88 
modulation, 19 

operations of, 628 
stages of, 490 

modulation format, 101-102 
modulation index 

defined as, 110 
restriction of, 112 
small values of, 119 
values of, 117-118 

modulation process, 19-21 
classification of, 20 
definition of, 8 8 

modulation scheme, bandwidth­
conserving, 354 

modulation system, binary-coded, 
197 

modulator-demodulator, 420 
modulo-211" correction logic, 364 
moments, 712 
Morse, Samuel, 26 
Morse code, 26, 574 
Motion Picture Experts Group 

(MPEG), 9, 234 
moving-coil receiver, 15-16 
MPEG-1 audio coding standard, 9 

capabilities of, 234 
operation of, 235 
performance of, 234 
suitable for, 10 

MPEG-1 video coding standard, 9 
MPEG audio coding standard, 234, 

237 
MSK receiver, 394, 395 
MSK signal, 391 

characteristics of, 396 
demodulation of, 394 
detection of, 394 
error probability of, 392 
generation of, 394, 396 
possible forms of, 390 
power spectra of, 394-396, 398 
properties of, 396 

MSK system, 391 
MSK transmitter, 394, 395 
µ-law, 202-203 
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multibeam antennas, 514 
multichannel data transmission 

system, 433, 434 
multichannel modulation, 440-441 

basic idea of, 4 31 
form of, 431, 465 

multichannel transmission system, 
437-438 

multilevel encoding, 348, 378 
multiloop feedback citcuit, 480 
multipath 

physical phenomenon of, 513 
presence of, 513 

multipath autocorrelation profile, 
537 

multipath channel 
as a channel impairment, 553 
classification of, 541-542 
frequency selection, 541-542 
model of, 71-72 
statistical characterization of, 

535-542,554 
type of fading exhibited, 72 

multipath component, 549 
multipath intensity profile, 539 
multipath phenomenon 

forms of, 532-533 
in a mobile radio environment, 

18 
nature of, 532 

multiple access 
basic types of, 513-514 
versus multiplexing, 513 

multiple-access interference (MAJ), 
548 

multiple-access system 
goal of, 549 
interference, 548 

multiple-access techniques 
conitnon feature of, 514 
defined as, 513-514 
ideas behind, 513, 514 
and shared communication 

resources, 513 
multiple-receiver combining 

techniques, 544 
multiplexed signal, 125-126 
multiplexed systems, 34 7 
multiplexer, 446 
multiplexing, 105 

definition of, 2 0 
of digital signals, 214 
types of, 20-21 

multiplier, 157, 646 

multi-pulse excited LPC, 551-552 
multitone jammer, 508 
multiuser communications, 512 

environment, 396 
types of, 5 5 9 

music 
as a source of information, 4 
structures of, 4 

musical signals 
and channel bandwidth, 4 
versus speech signals, 4 

mutual information, 584-585 
for continuous ensemble, 

N 

593-597 
defined as, 596 
properties of, 585-587, 596 
in the Shannon model, 7 46 

narrowband AM signal (wave), 
112-113 

narrowband FM signal (wave), 
111-112, 113 

narrowband FM waves, 112-113 
narrowband frequency modulation, 

111-113 
narrowband noise, 64 

characterization of, 64 
components of, 64, 65-66 
effects of, 64 
representation and coordinate 

system for, 67-68 
representation of, 64-66, 67-69 

narrowband noise analyzer, 64-66 
narrowband noise synthesizer, 

64-66 
narrowband phase modulator, 120 
narrowband process, 65-66 
National Television System 

Committee (NTSC), 6 
natural frequency, 160 
N-dimensional Euclidean space 

angles in, 312 
lengths of vectors, 312 
vectors in, 311, 312 

N-dimensional vector, 311 
near-end crosstalk (NEXT), 

279-280,380 
nearest neighbor condition, 200 
near-far problem, 548, 549 
negative-going click, 150 
network, 10 
network, interconnected, 13 
network resources, 11, 14 

90 degrees rotational invariance, 
422-423 

noise 
absence of, 261 
calculations, 61 
in communications systems, 5 8 
definition of, 3 
effect of, 3 
minitnizing the effects of, 157, 

260 
presence of, 589 
signals in, 322-326 
sources of, 3, 5 8 
as unwanted signals, 5 8 

noise analysis 
comparison of, 163-164 
at the receiver, 523 

noise calculations, 61 
noise channel, colored, 607-611 
noise enhancement, 283 
noise equivalent bandwidth, 

722-723 
for bandpass filters, 723 
defined as, 723 

noise figure, 523-526 
noise-free estitnates, 545 
noise jammer, barrage, 508 
noise jammer, partial-band, 508 
noise margin, 281 
noise masking, 234 
noise power, 3, 61 
noise power, average 

outputcalculation of, 151 
determining, 145-14 7 

noise-quieting effect, 14 7 
noise-to-mask ratio (NMR), 234 
noise vector 

covariance matrix of, 330 
particular realization of, 323 
statistical characteristics of, 330 

noisy receiver model, 130 
noisy resistor, 60 
noncoherent binary DPSK, 407 
noncoherent binary frequency-shifr 

keying (FSK), 407, 413-414 
bit error rate for, 414 
consideration of, 413 
expressions for, 417 

noncoherent M-ary FSK detector, 
500 

noncoherent matched filter, 406 
noncoherent orthogonal 

modulation, 407-409 
noise performance of, 407 



receiver for, 408 
special case of, 414 

noncoherent receiver, 405-406, 
409 

nondata-aided early-late delay 
(NOA-ELD} synchronizer, 458 

nondata-aided recursive algorithm, 
455 

nondata-aided synchronization, 
449 

nonflat channel, 542 
nonlinearity 

basic forms of, 126 
effects of, 126 
the presence of, 126 

nonlinear modulation process, 163 
nonlinear pre-emphasis and 

de-emphasis techniques, 157 
nonredundant coding, 421 
nonreturn-to-zero level encoder, 

359 
nonsystematic code, 656 
nonuniform quantizer, 202-203 
normalized Gaussian distribution, 

54-55,56 
normalized transmission 

bandwidth, 164 
North, D. 0., 27 
North American digital TOM 

hierarchy, 214-215 
Norton equivalent circuit, 60 
Noyce, Robert, 28 
NRZ binary data, 398 
NTSC system, 6 
null evenc, 704 
null-to-null bandwidth, 368, 721 
number-controlled oscillator 

(NC0),458 
Nyquist, Harry, 27 
Nyquist bandwidth, 262 
Nyquist criterion, 262 
Nyquist interval, 186-187 
Nyquist rate, 186-187, 262 

0 
observable element, 321 
observation space, 324, 325-326 
observation vector, 321, 331 
octaphase-shift-keying, 365-366 
octet, 7 
offset QPSK, 362 
onboard switching, 516 
one-time pad, 747 
on-off level encoder, 384 

on-off signaling, 205 
open systems interconnection (OSI) 

reference model, 11 
optical communication, 29 
optical fiber 

advantages of, 17 
consists of, 17 
properties of, 17 
as a transmission medium, 17 

optical transmission system, 15 
optimization problem, 438-440 
optimum CAP receiver, 379 
optimum decision rule, 323-324 
optimum equalizer, 288 
optimum filter 

consists of, 3 78-3 79 
impulse response of, 250-251 

optimum information capacity, 610 
optimum in-phase filter, 378-379 
optimum linear receiver, 282-287 

interpretation of, 2 8 6 
and transmitter, 286 

optimum quadratic receiver, 
403-405 

optimum quadrature filter, 
378-379 

optimum quantization problem, 
199-201 

optimum receiver 
as a correlation receiver, 

326-327 
design of, 310 
detector part of, 328 
subsystems of, 326-327 

optimum receiver subsystems, 
326-327 

optimum threshold, 257 
orthogonal frequency-division 

multiplexing (OFDM), 
447-448 

applications of, 448 
techniques for broadcasting, 344 
use of, 44 7-448 

orthonormal basis functions, 311, 
315, 494 

as a desirable property, 440-441 
for MSK, 390 
shortcomings of, 441 

orthonormal matrix, 443 
oscillator, crystal-controlled, 120 
OSI model, 11-13 
outer conductor, 17 
output alphabet, 582 
output current, 4-5 
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output noise power, 523 
output signal-to-noise ratio 

of AM receiver, 136 
calculation of, 151 
versus carrier-to-noise ratio, 151 
definition of, 131, 14 5 
determining, 133 
equation for, 139, 497 
to evaluate, 135 
improvement factor in, 155-156 
increasing of, 15 5 
of a uniform quantizer, 197 

overmodulated, 90 

p 
packet switching 

network, 11 
principle of, 11 

pairwise error probability, 334 
PAM. See pulse amplitude 

modulation (PAM) 
PAM signal 

generation of, 188-189 
performance of, 191 
sampling of, 189 
transmission of, 191 
waveform of, 188-189 

PAM system, 191 
parallel encoding scheme, 676 
parallel-to-serial converter, 445 
parity bit, 7, 632 
parity-check equations, 634 
parity-check matrix, 634 
parity-check polynomial 

defined as, 644 
reciprocal of, 645 

partial-band noise jammer, 508 
partial-response signaling, 269, 

274-275 
partial-response signaling scheme, 

267 
achieved by, 274-275 
classes of, 2 7 5 
useful characteristics of, 275 

partitioning, 670 
passband basis functions 

properties of, 4 34-4 3 6 
time variations of, 373 

passband data transmission, 344 
alternative techniques for, 465 
applications of, 344 
communication channel used for, 

344 
over nonlinear channels, 345 
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passband data transmission systems 
determining the bandwidth 

efficiency of, 348 
goal of, 346 

passband in-phase filter, 375, 378 
passband in-phase pulse, 375 
passband line code, 344 
passband modulation, 729 
pass band pulse, 3 7 5 
passband quadrature pulse, 374 
passband signaling waveform, 

729 
passband transmission model, 

348-349 
path loss, 522 
pattern matching operation, 615 
PCM. See pulse-code modulation 
peak distortion, 288 
peak pulse signal-to-noise ratio 

defined as, 248-249, 250 
of a matched filter, 251 

peer process, 13 
percentage modulation, 90 
perception, 4 
perceptual coding, 9 
perfect security, 746-747 
periodicity, 718 
periodic signals, 717-718 
periodogram, 51 
persistence of vision, 5 
personal computers (PCs), 6, 6-7 
"phase and gain adjustors'', 550 
phase continuity, 388 
phase correction, 365 
phase decisions, 394 
phase demodulation, 492 
phase-difference computer, 364 
phase discriminator, 97 
phase distortion 

and the human ear, 99-100 
presence of, 99-100 

phase error 
defined as, 15 8 
effect of, 99 

phase-error generator, 459 
phase-locked loop, 121 

complexity of, 159-160 
components of, 157-160 
limitation of, 159-160 
loop filter in, 158 
model of, 158-160 
simplest form of, 159-160 
understanding, 157, 158 
use of, 157-160 

phase-locked loop demodulator, 
152 

and threshold extension capacity, 
154 

as a tracking filter, 154 
phase-locked loop theory, 157 
phase modulation (PM), 20, 108, 

729 
phase modulation schemes, 368 
phase nonlinearity, 127 
phase recovery, 4 5 0 
phase-recovery circuit, 345 
phase response, 719 
phase selectivity, 723-725 
phase sensitivity, 108 
phase-shift keying (PSK), 24 

and coherent systems, 490 
of phase modulation, 345 
represented by, 464 
signaling scheme, 344-345 

phase-shift keying (PSK) schemes, 
418 

phase spectrum, 715 
phase tree, 388 
phase trellis, 388-389 
phasors, 532 
photocathode, 4 
photodetector circuit, 58-59 
physical layer, 13 
7T/4-shifted DQPSK signals, 364 
7T/4-shifted DQPSK symbols, 363 
7T/4-shifted QPSK scheme, 363 
7T/4-shifted QPSK signal 

demodulation of, 365 
residing in one of eight possible 

phase states, 362 
pictures 

and the human visual system, 4 
perception of, 4 
as a source of information, 4 

piecewise linear approximation, 
203 

Pierce, John R., 29 
pilot carrier, 99 
plain old telephone service (POTS), 

281-282 
plaintext, 7 4 2 
PM signal, 109 
PN sequence 

correlation properties of, 506 
as an independent and identically 

distributed (iid) binary 
sequence, 496 

as a reference signal, 5 5 0 

pointer, 5 81 
point-to-point communication, 2-3 
Poisson's sum formula, 718 
Poisson distribution, 59 
polar nonreturn-to-zero (NRZ) 

level encoder, 352 
polar nonreturn-to-zero (NRZ) 

signaling 
binary PCM system based on, 

253 
disadvantages of, 205-206 

polyvinylchloride (PVC) sheath, 16 
positive-going click, 150 
postdetection filter, 143 
power, available, 61 
power control 

in CDMA systems, 549 
use of, 549 

power gain, 523 
of an antenna, 520 
concept of, 521 
definition of, 520 

power-limited channel, 3 
power spectra, 34 7 
power spectral density, 44-46, 

347 
and amplitude spectrum, 50-52 
frequency portions of, 155 
graphical summary of, 75-76 
properties of, 46-4 7 
of random process, 50, 52 
significance of, 45 

power spectrum, 4, 45 
power theorem, 520 
Poynting vector, 519 
PPM. See pulse-position 

modulation 
precoded duobinary scheme, 

270-271 
prediction, 9 
prediction filter, 228 
pre-envelope 

basic property of, 732 
defined as, 725, 730 
determining, 726 
quadrature components of, 374 

prefix code 
definition of, 575-576 
distinguished by, 577 
property of, 576 

prefix coding, 575 
prefix condition, 575 
premodulation low-pass filter, 

396-397 



preset threshold values, 277 
primary colors, 6 

represented by video signals, 6 
trans1nission of, 6 

primary rate, 214-215 
primitive BCH codes, 653 
primitive polynomial, 505 
principle of analysis by synthesis, 

551-552 
principle of rotational invariance 

illustration of, 330-331 
stated as, 330 

principle of superposition, 718 
principle of translational invariance 

application of, 331-332 
stated as, 331 

probabilistic code, 693 
probabilistic concepts, 703-707 
probabilistic decoder, 630 
probability 

axioms of, 704-706 
basic properties of, 705-706 
of bit errur, 384 
of a correct decision, 357 
of error, 254, 409 
of symbol error, 258, 328-329, 

352 
probability, conditional, 706-707 
probability density function, 

67-68,255,594, 708-709, 
710 

probability distribution, 583 
probability of error, 328-329, 

497-499 
invariance of, 329-331 
for a noisy channel, 5 89 
union bound on the, 332-335 

probability of occurrence, 568 
probability of symbol error, 334 

determination of, 3 73 
evaluation of, 346-347 
fonnula for, 401 
for signal constellation, 337 

probability system, 704 
probability theory, 703, 705 
processing gain (PG) 

defined as, 229, 497 
produced by, 229 

product cipher, 749 
product modulator, 94, 98-99, 

111, 490 
propagation, 4 
propagation effects, 532-535 
propagation time delay, 516 

protocol 
of the Internet, 13-14 
types of, 13-15 

pseudo-noise (PN) sequence, 480, 
488 

consists of, 288 
generation and properties of, 

480 
as a training sequence, 28 8 

pseudo-random-ordered sequence, 
500 

PSK. See phase-shift keying 
psychoacoustic modeling, 9 
psychovisual redundancy, 9 
public-key cryptographic system, 

755 
public-key cryptography, 742, 

755-757 
public-key system, 759 
public switched telephone network 

(PSTN), 237, 420 
as an analog network, 420, 421 
distortion on, 286-287 
efficient use of, 425 

pulse, 5 
pulse-amplitude modulated signal, 

429 
pulse-amplitude modulation 

(PAM), 20, 188-191, 236 
definition of, 18 8 
and modulator design, 277 
and natural sampling, 188 

pulse-code modulation (PCM), 
193, 615 

advantages of, 217, 237 
bandwidth requirement of, 218 
basic condition of, 194 
cost of advantages, 217-218 
definition of, 201 
as a form of digital pulse 

modulation, 237 
performance of, 22 7 
as the preferred method, 20 
for speech coding, 229-230 
use of, 217-218, 560 

pulse-code modulation (PCM) link, 
210 

pulse-code modulation (PCM) 
receiver, 258 

pulse-code modulation (PCM) 
signal, 208 

pulse-code modulation (PCM) 
system, 218 

basic operations of, 201 
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characteristic of, 210 
description of, 201-209 
and interference, 210 
noise considerations in, 209-210 
operation of, 212 
performance influenced by noise, 

209 
pulse demodulator, 211 
pulse-duration modulation (PDM), 

20, 191-192,236 
pulse-modulated signal, 23 7 
pulse modulation 

families of, 183 
forms of, 191-193, 237 
lossy nature of, 237-238 
method used to transmit, 211 
as source coding techniques, 

237 
standard digital form of, 20 
types of, 20 

pulse-modulation process 
incurred information loss of, 238 
loss of information and designer 

control, 23 8 
pulse modulation systems, 236 
pulse modulator, 211 
pulse noise jammer, 508 
pulse-position modulation (PPM), 

20, 192,236-237 
pulse-position modulation (PPM) 

system 
versus frequency modulation 

system, 193 
noise analysis of, 193 
performance of, 19 3 

pulse shaping, 247 
pulse-shaping filter 

desirable properties of, 396-397 
Gaussian impulse response of, 

398 
pulse-shaping function, 373 
pulse-width modulation, 191 
punctured code, 676 
puncturing, 676 

2 
QAM. See quadrature-amplitude 

modulation 
Q-channel, 97 
QPSK. See quadriphase-shift keying 
quad bits, 4 21 
quadratic receiver 

equation for, 405 
forms of, 405 
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quadrature-amplitude modulatiou 
(QAM}, 97-98 

versus CAP, 369 
cross constellation, 3 71 

quadrature-amplitude modulation 
(QAM) constellations, 
369-370 

quadrature-amplitude modulators, 
433-434 

quadrature-carrier multiplexing, 
97-98, 354 

quadrature-carrier multiplexing 
system, 98 

quadrature channel, 408-409 
quadrature component, 93 

power spectral density of, 386 
properties of, 65-66 
role of, 93, 101 

quadrature modulation, 670 
quadrature noise component, 131 
quadrature null effect, 97 
quadrature-phase coherent 

detector, 9 7 
quadrature receiver 

channels of, 408 
using correlators, 405-406 
using matched filters, 405-406 

quadriphase-shift keying (QPSK), 
354,354-361 

characterization of, 354-355 
error probability of, 356-358 
mode of operation, 425 
motivation for using, 508 
signal-space diagram, 354-355 

quadriphase-shift keying ( QPSK) 
receiver, 360 

quadriphase-shift keying (QPSK} 
signal 

amplitude fluctuations, 362 
and binary PSK signal, 360 
commonly used constellations 

for, 362 
filtered, 361 
interference production, 3 96 
observations of, 360 
phase transitions of, 361 
power spectra of, 360-361 

quadriphase-shift keying (QPSK) 
transmitter, 359 

quality of service (QoS), 14 
quantization 

application of, 202-203 
and coding, 9 
purpose of, 8 
types of, 194-195 

use of, 195 
function of, 196 
types of, 22 0 

quantization noise, 195-197, 228 
designer's control of, 209 
in delta modulation, 221 
as a function of time, 195 
and human ear perception, 9 
in PCM systems, 209 

quantization process, 193-195, 
236 

in the generation of a binary 
PCM wave, 193 

illustration of, 195 
nonlinear nature of, 198 
results of, 20 

quantization table, 8 
quantized excitation, 552 
quantized filter parameters, 552 
quantizer 

characteristics of, 194 
classes of, 615 
components of, 199 
as a signal compressor, 615 
types of, 194 

quantizer, nonuniform, 202-203 
quantizerinput,221 
quantum, 194 
quaternary system 

R 

eye diagram for, 294-295 
output of, 2 76 

radiation efficiency factor, 520 
radiation intensity, 519 
radiation-intensity pattern, 520 
radio communication link, 522 
radio communication system, 31 
radio link analysis, 51 7-523 
radio propagation 

in free space, 512 
in urban areas, 532-533 

radix, 570, 576-577 
raised cosine spectrum 

flat portion of, 264-265 
rolloff portion of, 264-265 

RAKE receiver, 549-550 
basic idea of, 5 4 9 
consists of, 549 
as a diversity receiver, 549 
techniques of, 5 59 

random binary sequence, 482 
random experiment 

description of, 703 
features of, 703 

random hopping, 500 
random interference, 31-32 
random process 

average power of, 610 
classes of, 7 5 
definition of, 33 
ensemble averages of, 41 
expectations of, 41 
in linear systems, 42-44 
mathematical definition of, 

32-33 
parameter of, 75 
properties of, 32 
through a linear time-invariant 

filter, 42-44 
random variable, 33, 594, 708-710 

definition of, 708 
description of, 708 
distribution of, 55-56 
expected value of, 711 
mean of, 711 
standard deviation of, 712 
variance of, 712 

random vectors, 594 
raster scanning, 4-5 
rate distortion function, 612-613, 

616 
application of, 616 
definition of, 613 

rate distortion theory, 611-613 
application of, 612 
main parameters of, 613 
and Shannon's coding theorems, 

612 
Rayleigh's energy theorem 

definition of, 251 
use of, 251-252 

Rayleigh distribution, 68-69, 70, 
74-75 

Rayleigh fading channel, 536, 541 
binary signaling over, 542-547 
performance of, 54 5 

received signal 
components of, 31-32 
mean value of energy, 543 

received signal point, 323 
received vector, 660, 
receive filter, 259 
receiver 

of an analog communication 
system, 88-89 

assumptions of, 403 
de-emphasis in, 154-155 
model, 130 
moving-coil, 15-16 



noise performance of, 387 
as an optimum maximum 

likelihood detector, 436 
and preprocessing the received 

signal, 64 
receiver model, 130 
receiving antenna, 518 
reciprocity principle in antennas, 

521 
reconstruction filter, 187-188 
reconstruction levels, 194 
rectangular function, 262 
recursion theorem, 682 
recursive algorithm 

for phase recovery, 454 
for timing recovery, 457-458 

recursive symmetric convolutional 
(RSC) code, 675 

recursive Costas loop, 454 
convergence behavior of, 461, 

462 
operations of, 458 
phase-acquisition behavior of, 

459 
for phase synchronization, 454 

recursive early-late-delay 
synchronizer, 463-464 

redundancy 
addition of, 626 
basic forms of, 9 
controlled use of, 628 

redundant information, 227, 575 
Reed-Solomon codes, 654, 693 
Reeves, Alec, 2 7 
reference antenna 

definition of, 519 
as an isotropic source, 519 

reference signal, 557 
reflector antenna, 522 
regeneration, 208 
regenerative repeater, 208 
region of integration, 332 
regular-pulse excitation, 552 
regular turbo code, 692 
relative-frequency approach, 

703-704 
relative phase difference, 414 
relative phase shift, 532 
replication of delta function 

property, 717 
representation levels, 194 
reproduction quality, 5-6 
residual amplitude modulation, 112 
resolurion, 6 
resolution of uncertainty, 568 

response time, 718 
reverse link 

versus forward link, 559 
subbands for, 547 

Rician distribution 
graphical presentation of, 70-71 
normalized form of, 71 

Rician fading channel, 536 
Rivest-Shamir-Adleman (RSA) 

algorithm, 759 
Rivest-Shamir-Adleman (RSA) 

system, 757 
ems duration, 722 
robust system, 22 
rolloff factor, 265 

frequency response for, 265-266 
time response for, 265-266 

root mean square (rms) bandwidth, 
721 

rotated noise vector, 330 
router 

defined as, 13 
and host devices, 10 
primary purpose of, 10 

row vectors, 633 
RS-232 standard, 6-7 
RSA algorithm, 757-758 
RSA cryptoalgorithm, 758 
RSA trapdoor one-way function, 

758 

s 
sample functions, 32-33 
sample point, 32, 704 
sample space, 32, 704 
sampling, 201-202 
sampling period, 184 
sampling process, 236 

and digital signal processing and 
digital communications, 184 

in the generation of a binary 
PCM wave, 193 

and pulse modulation systems, 
184,236 

use of, 184 
sampling rate, 184, 201 
sampling theorem, 201, 236 

for band-limited signals, 
186-187 

derivation of, 186-187 
essence of, 184 
of a pulse-modulation system, 

186-187 
recurrent nonuniform equivalent 

form of, 427 
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satellite 
for communication, 29 
in geostationary orbit, 18 
services of, 18-19 

satellite channel 
capabilities of, 516 
coverage of, 18 
remote area access, 18 

satellite communications, 514-517 
frequency band for, 19 
global coverage, 512 
most popular frequency band 

for, 515 
as a type of multiuser 

communications, 512 
satellite communication system, 18 

design of, 517 
global coverage, 559 
rely on, 512 
unique system capabilities of, 

18-19 
scalar quantization 

form of, 194 
use of, 194 

scalar quantizer 
conditions for optimality of, 

198-201 
designing of, 198 
as a simple signal compressor, 

615 
scanning, 4-5, 4-6 
scanning spot, 5 
scattered beams, 71 
scatterers, 71-72 
scattering function, 539 
Schwarz's inequality 

as a mathematical result, 
249-250 

proving, 313, 314 
SOMA, 516 
second flyback. See vertical 

retracesecond-order digital 
filter, 454-455 

second-order feedback system, 160 
secrecy, 7 4 5 
secret key 

versus public key, 759 
selection of, 745 

secret-key cryptoalgorithm, 751 
secret-key cryptography, 742-743 
secret-key system, 759 
secure channel, 743 
secure communications 

in a hostile environment, 479 
need for, 742 
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security of transmission, 490 
segments, 11 

See also packets 
separability theorem, 681 
sequential scanning 

of pictures, 4 
process of, 4-6 

serial-to-parallel converter, 445 
Shannon, Claudecapacity theorem, 

611 
and "The Mathematical Theory 

of Communication", 27-28 
and the theoretical foundations 

of digital communications, 
27-28 

Shannon's capacity theorem, 611 
Shannon's fundamental bound for 

perfect security, 74 7 
Shannon's information capacity 

theorem, 23-24, 433 
Shannon's information theory, 617 
Shannon's second theorem, 616 
Shannon's third remarkable 

theorem, 616 
Shannon's third theorem, 599 
Shannon limit, 602 
Shannon model of cryptography 

method of confusion, 749 
method of diffusion, 749 
methods of designing, 749 

shift parameters, 5 31 
shift register, 481 
Shockley, William, 28 
shot noise, 5 8-6 0 
sideband, upper and lower, 91 
side information, 230 
sigma-delta modulation, 222 
signal 

definition of, 3-4 
detection in noise, 322-326 
dimensions of, 3-4 
received versus transmitted, 2 

signal bandwidth, 3 
signal constellation, 322-323, 337 

as circularly symmetric, 335 
constructed from one­

dimensional PCM symbols, 
429 

defining minimum distance of, 
335 

signal detection problem, 322 
likelihood function for, 405 
stated as, 323 

signal energy-to-noise spectral 
density ratio, 252 

signal fading, 532-533 
signal-flow graph, 665-666 
signaling binary information, 345 
signaling interval, 568 
signaling rate, 2 7 6 
signal parameters, 403 
signal power average, 3 
signal regeneration, 208 
signal-space analysis, 337 
signal-space dimensionality, 312, 

493 
signal-space representations 

of the interfering signal 
(jammer), 493 

of the transmitted signal, 493 
signals with unknown phase, 

403-406 
signal-to-mask ratio (SMR), 234 
signal-to-noise ratio 

basic definitions of, 3, 130-132 
at the device output, 524 
of an FMFB receiver, 153 
limitation of, 261 
of the source, 524 . 

signal-to-noise ratio gap, 432 
signal-to-quantization noise ratio, 

229 
signal transitions, 207 
signal transmission decoder, 326, 

349 
signal transmission encoder, 348, 

352 
signal variability, 530 
signal vector, 311 
simplex signals, 342 
signum function, 724 
sine function, 262 
sine wave plus narrowband noise, 

69, 69-71 
single-key cryptography, 742 
single keyed oscillator, 384 
single-letter distortion measure, 612 
single sideband (SSB) modulation, 

98-100, 163 
basic operation in, 103 
definition of, 9 3 
in frequency-division 

multiplexing, 106 
single-sideband modulated signal, 

98-99 
single-tone FM signal, 112-113 
single-tone jammer, 508 
single-tone modulation 

and a narrowband FM signal, 
110 

and a wideband FM signal, 110 
sinusoidal carrier wave 

defined as, 90 
waveform of, 490, 492 

sinusoidal modulating signal 
(wave), 110 

sinusoidal modulation, 112-113 
sinusoidal wave, 8 8 
slicing levels, 2 77 
slope circuit, 121-122 
slope network, 143 
slope overload distortion, 220, 

221 
slow FH/MFSK signal, 501 
slow FH/MFSK system, 502 
slow-frequency hopping, 500-502 
smoothness, 223 
SNR ratio. See signal-to-noise 

ratiosoft-decision coding, 630 
soft-decision decoding, 6 69 
soft decisions, 630 
soft input-hard output, 693 
soft input-soft output, 693 
SONET, 15 
source code, 574 

type of, 575 
variability in lengths of, 579 

source code word, 21 
source coding, 574 

dissection of, 616-61 7 
for efficient communication, -

567 
with a fidelity criterion, 611-612 

source-coding theorem, 574-575, 
612, 616 

average code-word length of, 
611 

in Shannon's first theorem, 
574-575 

source decoder, 575 
source encoder, 21, 574 

functional requirements of, 574 
purpose of, 21 

spaced-frequency spaced-time 
correlation function, 538 

space diversity, 544-545 
space diversity technique, 546 
space-division multiple access 

{SDMA),514 
space-time processor, 557 
spatial phenomenon, 534 
spatial sampling, 4-5 
spectral analysis, 110 
spectral content, 492, 493 
spectral decomposition, 443 



spectrally efficient modulation, 34 7 
spectrally efficient schemes, 34 7 
spectral nulls, 368 
spectral shaping, 348 
spectrum, 3, 4, 715 
spectrum despreading 

in demodulation, 491 
as a linear operation, 492 

spectrum spreading 
as a linear operation, 492 
and phase modulation, 491 

speech coding 
applications of, 229-230 
design philosophy of, 230 
at low bit rates, 229-230 
techniques for, 5 51 

speech communication process, 4 
speech-production process, 4 
speech signal, 4 

as bipolar, 6 
limits of, 16 

sphere packing, 599-600 
split-phase signaling, 207 
splitter, 282 
spontaneous fluctuations, 58-61 
spreading code 

with pseudo-random properties, 
490 

use of, 490 
spread spectrum 

communications, 508 
important attribute of, 488 
notion of, 488-490 

spread-spectrum communication 
system 

advantage of, 4 79 
rejection of interference, 4 79 
requirements of, 493 

spread-spectrum modulation 
definition of, 4 79-480 
for military applications, 480 
principles of, 480 
to provide multipath rejection, 

480 
secure communications of, 479, 

480 
signaling techniques known as, 

479 
spread-spectrum techniques 

as direct-sequence spread 
spectrum, 490 

in passband transmission, 490 
versus standard modulation 

techniques, 480 
square constellations, 369-370 

square law, 193 
SSB modulated signal, 99 
SSB modulation, 134 
standard modulation techniques, 

480 
state diagram, 657-660, 659 
state probabilities, 681 
static picture, 4 
stationary process, 33-34 

versus strictly stationary, 33 
various names for, 36 

statistical average, 711-714 
statistical expectation operator, 

711 
statistical regularity, 703 
step-size, 194 
step-size parameter, 225-226 
stereo multiplexing 

in FM radio broadcasting, 124 
as a form of frequency-division 

multiplexing, 124 
stochastic process, 32 
stop-and-wait automatic repeat 

request, 628 
stop-and-wait strategy, 628 
stream ciphers, 744-746 

operation of, 7 44 
used in, 745 

strictly stationary process, 35 
Strowger, A. B., 27 
Strowger switch, 27 
subframes, 552 
subnets, 13 
substitution cipher 

description of, 749-750 
use of, 749-750 

successive errors, 232 
sufficient statistics, 321 
sum-product algorithm, 691 
Sunde's FSK, 381, 385-386, 388 
Sunde's FSK signal, 386 
superhet, 128 
superheterodyne receiver, 27, 

128-129 
consists of, 128 
differences between AM: and FM, 

129 
survivor paths, 662 
switching center, mobile, 530 
symbol, 2 
symbol energy-to-noise spectral 

density ratio, 502 
symbol error 

average probability of, 276 
conditional probability of, 333 
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symbol error probability 
versus bit error rate (BER), 

335-336 
to calculate, 357 
definition of, 209, 310 
evaluation of, 543 
formula for, 256-257 
to minimize, 310, 346 
as a ratio, 35 8 
simplification of, 335 

symbol rate, 501 
symbol shaping function 

defined as, 3 5 3 
energy spectral density of, 386, 

395 
symbol synchronization, 448 
symbol timing, 455, 458, 

463-464 
symbol timing recovery, 463-464, 

465 
symmetric modem configurations, 

421-425 
synchronization, 448-450, 493 

algorithmic (modern) approach, 
449 

basic modes of, 448 
classical approach to, 449 
implementation of, 449 
process of, 448 
as a statistical parameter 

estimation problem, 449 
in a TDM system, 212 
of transmitter and receiver 

clocks, 212 
synchronization problem 

approaches for solving, 449 
solution to, 493 

synchronizing pulses, 5, 212 
synchronous demodulation 

quadrature null effect, 96 
synchronous optical network 

(SONET), 15 
syndrome 

calculation of, 646-648 
importance of, 635 
properties of, 635-636 

syndrome calculator, 64 7 
syndrome decoding, 635-636, 638, 

639 
syndrome polynomial, 647 
synthesis equation, 442-443 
synthesis filter, 552 

consists of, 5 52 
as part of the encoder, 551 

systematic block code, 632 
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system capacity 
definition of, 549 
description of, 718 
to maximize, 549 

system-dependent scaling factor, 
132-133 

system design objectives, 3 
system-memory time, 718 

T 
TDMA. See time-division multiple 

access 
te]ecommunications environment, 

3-7 
telegraph, 26 
telegraphic code, Baudot's, 26 
telephone channel, 15-17, 287 
telephone circuit frequencies, 3 
telephone network, 2 7 

as a communication network, 
10 

first commercial service, 28 
primary purpose of, 15 

television network, 14 
television picture, 5-6 
television signals, 101-103, 

modulation format of, 101-102 
as wideband signals, 7 

Telstar satellite, 29 
temporal autocorrelation function, 

284 
ternary code, 204 
t-error-correcting RS code, 654 
theorem of irrelevance, 321, 

321-322 
theory of error-control codes, 485 
theory of spectral analysis of 

random processes, 46 
thermal noise, 32, 60 
Thevenin equivalent circuit, 60 
3-dB bandwidth, 721 
three-level output, 267-268 
threshold effect, 137-138 

AM and FM, 164 
clicks heard in, 14 9-15 0 
definition of, 138, 149 
in an envelope detector, 138 

threshold extension, 154 
threshold reduction, 152 
time-averaged autocorrelation 

function, 42, 51 
time-bandwidth product, 721-722 

choice of, 398 , 
as a design parameter, 397 

time compression (TC) 
multiplexing 

scheme, 278-279 
use of, 277-278 

time diversity, 544-545 
time-division multiple access 

(TDMA), 211, 211-212, 513 
efficient system, 516 
as wireless communications 

systems, 547-550 
time-division multiplexing (TDM) 

concept of, 211 
defined as, 21, 105 
use of, 211-212 

time-domain description, 720 
time-flat channel, 542 
time-frequency mapping, 9 
time response, 266 
time-scaling property, 722 
time slot, 513 
time-to-frequency mapping 

network, 235 
time-varying phasor, 728 
time-varying transfer function, 536 
timing error, 264 
timing synchronization, 455 
Toeplitz property, 225 
toll connection, 16 
Tomlinson-Harashima precoding, 

430 
tone-modulation analysis, 119 
tracking, 493 
tracking filter, 154 
trade-offs, 602 
training mode, 290 
transceiver, 2 7 8 
transistor, 28 
transition matrix, 5 82 
transition probability, 582, 616 
transmission bandwidth 

defined as, 118 
instantaneous spreading, 499 

transmission delay, 260 
transmission path, 212 
transmission security, 490 
transmit filter, 259 
transmitted code vector, 660 
transmitted FH/MFSK signal, 500 
transmitted power 

definition of, 3 
primary communication 

resource, 92 
transmitted pulse amplitude, 253 
transmitted pulse shape, 261 

transmitted signal, 280-281 
transmitted signal energy per bit, 

258 
transmitted signal point, 322-323 
transmitted TV signal, 102 
transmitter 

of an analog communication 
system, 88-89 

by combining operations, 414 
location of, 2 
power limited, 597 
purpose of, 2 
use of pre-emphasis in, 154-155 

transmitting antenna 
function of, 518 
mounting of, 17-18 
as a point source, 519 
and power density, 521 

transorthogonal signals. See 
simplex signals 

transponder, 19, 514-515 
transponder channel, 515 
transposition cipher 

description of, 7 50 
use of, 750 

transversal equalizer, 286 
trapdoor one-way function, 755 
traveling-wave tube amplifier, 

516 
trellis, 657-660, 661-662 
trellis-coded modulation, 668-669 
trellis codes 

for band-limited channels, 
668-669 

design of, 669 
trellis coding 

as an error-control coding 
technique, 430 

as a forward-error correction 
scheme, 424 

trellis encoder, 425 
turbo codes 

consist of, 674 
development of, 674 
performance of, 67 6-677 
properties of, 682, 693 
termination approaches of, 676 

turbo coding, 674 
turbo decoder 

basic structure of, 677-678 
complexity of, 684 
details of, 683 

turbo decoding, 677-680, 682-683 
turbo encoder, 683 



twisted-pair cable 
versus coaxial cables, 17 
consists of, 16 
susceptible to, 16-17 
uses of, 277 

2B1Q code, 281 
amplitude levels of, 317 
compared to other line codes, 

281 
desirable properties of, 281 
as the North American standard, 

281 
two-dimensional matched filter, 

378-379 
two-dimensional optimum receiver, 

378 
two-key cryptography, 742 
two-stage spectral analysis, 110 
two-step subspace procedure, 

556 
two-way transmission, 106 

u 
Ungerboeck, G., 28 
Ungerboeck codes, 670 

for 8-PSK, 670-672 
asymptotic coding gain of, 673 

unicity distance, 748 
uniform quantizer, 196 
union bound, 337 

illustration of, 333 
simplification of, 335 
as a useful upper bound, 

332-333 
use of, 401 

union of events, 333 
unipolar nonreturn-to-zero (NRZ) 

signaling, 205 
unipolar return-to-zero (RZ) 

signaling 
disadvantages of, 207 
feature of, 207 

uniquely decodable, 574 
unitary matrix, 443 
unit delay, 219 
unit-delay elements, 646 
universal curve, 118-119 
unmodulated carrier, 108 
up conversion, 104-105 
upconverter, 448 
uplink, 19,514-515 
upper bound, 401 
upstream data transmission, 

281-282 

v 
V.32 modemand nonredundant 

coding, 423--424 
phase changes in, 422--423 
switching to QPSK mode, 424 
and trellis coding, 423--424, 425 

V.32 modem standardand 
alternative modulation 
schemes, 4 21 

characteristics of, 4 21 
V.90 modem, 431 
van Duuren, H, C. A., 28 
Van Vleck, J. H., 27 
variable-length code, 574 
variable nodes, 685 
variance, 579 
VDSL. See very-high-rate digital 

subscriber lines 
vector product, 681 
vector quantizer 

advantage of, 615 
encoding process in, 615 
versus scalar quantizer, 615 
signal-to-quantization noise ratio 

for, 615 
vectors, 6 3 3 
vector space, 554-555 
Vernam cipher, 747 
veryChigh-rate digital subscriber 

lines (VDSL) 
advantages of, 446 
use of, 446 

very-large-scale integrated (VLSI) 
circuits 

development of, 28 
vestigial sideband (VSB) filter 

frequency response of, 102 
magnitude response of, 100-101 

vestigial sideband (VSB) modulated 
wave 

methods of generating, 100 
quadrature component of, 

102-103 
vestigial side band (VSB) 

modulation, 100-101, 163 
vestigial sideband (VSB) shaping 

filter, 102 
vestigial sideband modulation 

definition of, 9 3 
and its role in commercial TV 

broadcasting, 101-102 
video bandwidth, 6 
video-on-demand, 9, 282 
video signal, 4-5, 6 
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virtual communication, 13 
Viterbi algorithm, 661-663, 670 

difficulty in the application of, 
662 

as a maximum likelihood 
decoder, 662 

as a maximum likelihood 
sequence estimator, 662 

VLSI. See very-large-scale 
integrated (VLSI) circuits 

vocal tract, 4 
voiceband modem, 420 

versus digital subscriber lines, 
446 

operational environment of, 44 7 
voice communication, 22 
voice effect, Donald Duck, 99-100 
voice signals, 9 9 
voice spectrum, 3 
voltage-controlled oscillator 

(VCO), 152-153, 157-158 
von Neumann, John, 28 
VSB. See vestigial sideband 

w 
water-filling interpretation, 

610-611 
water-filling solution, 438 
waveform, 21, 276 

of important line codes, 204-207 
in modulation, 490, 492 

waveform distortion, 102-103 
wavelength-division multiplexing 

(WDM),21 
wave motion, 18 
weak signal suppression, 142 
weight vector, 5 5 4 
white Gaussian noise, 62 

identically distributed, 334 
process, 392 

white noise, 61-63 
autocorrelation function of, 

61-62 
characteristics of, 61-62 
mathematical properties of, 62 
power spectral density of, 61-63 

white noise process, 62 
wideband communication channels, 

218 
wideband FM signal, 118 
wideband frequency modulation, 

113-115 
wideband signal, 7 
wideband transmitted signal, 490 
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Wiener-Hopf equations, 224 
wired communications, 559-560 
wireless broadcast channels, 17-18 
wireless communications, 529-535 

adaptive antenna arrays for, 
553 

features of, 512 
goal of, 553 
major channel impairments of, 

553 
and mobility, 512 

and OFDM, 448 
source coding for, 550-553 
as a type of multiuser 

communication, 512 
as a type of multiuser radio 

communication system, 
529-530 

versus wired communications, 
559-560 

wireless communication system 
mobility of, 559 

practical requirements of, 396 
problems using MSK, 396 

World Wide Web, 28-29 

z 
zero-forcing equalizer, 283 
zero-forcing kind, 556 
zero-mean white Gaussian noise 

process, 310 
zero state, 481 
Zworykin, Vladimir K., 27 
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