US 20090257499A1

a2 Patent Application Publication () Pub. No.: US 2009/0257499 A1

a9 United States

Karczewicz et al.

(43) Pub. Date: Oct. 15, 2009

(54) ADVANCED INTERPOLATION TECHNIQUES
FOR MOTION COMPENSATION IN VIDEO

Publication Classification

(51) Imt.CL
CODING HO04N 7/32 (2006.01)
(75) Inventors: Marta Karczewicz, San Diego, CA HO4N 7726 (2006.01)
(US); Yan Ye, San Diego, CA (US); (52) US.CL 375/240.16; 375/240.12; 375/E07.123
Peisong Chen, San Diego, CA (US)
Correspondence Address: 7 ABSTRACT
QUALCOMM INCORPORATED This disclosure describes various interpolation techniques
5775 MOREHOUSE DR. performed by an encoder and a decoder during the motion
SAN DIEGO, CA 92121 (US) compensation process of video coding. In one example, an
) encoder interpolates pixel values of reference video data
(73) Assignee: QUALCOMM Incorporated, San based on a plurality of different pre-defined interpolation
Diego, CA (US) filters. In this example, the decoder receives a syntax element
that identifies an interpolation filter, and interpolates pixel
(21) Appl. No.: 12/420,235 values of reference video data based on the interpolation filter
oo identified by the syntax element. In another example, a
(22) Filed: Apr. 8,2009 method of interpolating predictive video data includes gen-
N erating half-pixel values based on integer pixel values, round-
Related U.S. Application Data ing the half-pixel values to generate half-pixel interpolated
(60) Provisional application No. 61/044,023, filed on Apr. values, storing the half-pixel values as non-rounded versions
10, 2008, provisional application No. 61/044,240, of the half-pixel values, and generating quarter-pixel values
filed on Apr. 11, 2008, provisional application No. based on the non-rounded versions of the half-pixel values
61/057,373, filed on May 30, 2008. and the integer pixel values.
r—— T T T T T T T T T —— — — |
' |
| RESID. |
+ BLOCK | TRANSFORM QUANTIZATION
| VIDEO BLOCK =/_|_\ > ONIT - uNIT | |
I N 38 40 QUANTIZED |
| —A = - RESIDUAL |
I v 8 COEFFICIENTS |
| MOTION MOTION VECTORS, |
| ESTIMATION i |
I UNIT y I
| 32 |
| MOTION -
COMPENSATION INTERPOLATION SYNTAX |
| UNIT |
| 35 |
: — Y |
RECON. |
| | REFERENCE | RESID. INVERSE INVERSE ENTROPY |
|| FRAME - TRANSFORM | QUANTIZATION | CODING I
|| sTore unIT [T UNIT ~ > UNIT |
| 3 4 2 46 |
| B 51
Y |
| l |
| RECONSTRUCTED |
| VIDEO BLOCK VIDEO ESNOCODER BITSTREAM |
I g
!
1

ASUS-1006

Patent Application Publication Oct. 15,2009 Sheet 1 of 11 US 2009/0257499 A1

/10
DESTINATION
SOURCEZDEVICE DEVICE
- 16
VIDEO SOURCE DISPLAY DEVICE
20 30
VIDEO VIDEO
ENCODER DECODER
22 28
MODEM MODEM
23 27
TRANSMITTER ~ RECEIVER
24 Cj——)- 26
15

FIG. 1

US 2009/0257499 A1

Oct. 15,2009 Sheet2 of 11

Patent Application Publication

III 4
Wv3ylsLig 0% _
¥3JOON3 03AIA Y0074 03aIA I
a31oNY¥LSNODIY _
I
|
17 42 77 7 "

1INN 1INN > LINN 3HolLS
oNiaoo [NOILVZILNVND IWHO4SNVYL ANV I
AdOYIN3 JSYIANI JSUIANI IONIHI4TY ||
I
A — |
gt _
: 1INN _
XVLNAS NOILVIOdN3LNI NOILYSNIdWO9D _

T NOILOW —
43 I
A LINN _
: NOILYWILST _
SHOISTANGILOW NOLLOW _
S1N312144300 8y I
Ivnais3y _ _ _ _
a3zILNVND oy 8¢ |
1INN <«— LNN | -

NOILVZILNVND WHO4SNVYL | yo01g + Y2019 03aIA |
‘aisay I
I

US 2009/0257499 A1

Oct. 15,2009 Sheet 3 of 11

Patent Application Publication

O3dIA
d3aoo3aa
A € 9Old
F4) — —
JHOLS vnais3y 85 9g
JNVHA WHO4SNVYL [«— ‘ZILNVNO
dASUIANI ASUIANI
mozmm_mu_mm_ 9
‘44300
"ZILNVND
[T S SO (4
1INA SHOLDIA NOILOW 1INN
NOILVSN3IdINOD ONIa0d3a WYINLSLIE
NOLLOW 7T R — AdOYLNT O3aIA
NOILLYTOd¥ILNI a300ON3
09
¥3d093d O3AIA

Patent Application Publication Oct. 15,2009 Sheet 4 of 11 US 2009/0257499 A1

A1 A2 A3 {aa i AS A6
i

b’
B1 B2 B3 i bb i B5 B6

C1 c2 C3 a b c C4 C5 c6

D1 D2 D3 hh D4 | D5 D6

Et E2 E3 i E5 E6

F1 F2 F3 ii F4 F5 F6

FIG. 4A

Patent Application Publication Oct. 15,2009 Sheet 5 of 11 US 2009/0257499 A1

[
At A2 y | aa i A4 As A6
.

B1 B2 E bb B4 B5 B6
H

" D4

N
SEEAR
.
B
B

[l
HE

E1 E2 /l/// H E4 E5 E6
H !

F1 F2 % i F4 F5 F6

FIG. 4B

Patent Application Publication Oct. 15,2009 Sheet 6 of 11 US 2009/0257499 A1

At A2 A3 @ " = —

-
B1 B2 B3 V " — —
Y

c1 c2 c3| a / c | ca c5 -
N R SEn D N

- i o ﬁ D4 D5 D6

E1 E2 E3 / E4 o -
o’

F1 F2 F3 /}// 4 - —

FIG. 4C

Patent Application Publication Oct. 15,2009 Sheet 7 of 11 US 2009/0257499 A1

A1 A2 A3 aa A4 A5 A6

B1 B2 B3 i bb g B4 B5 B6

Cc1 Cc2 C5 c6

cc dd ff a4

D1 D2 D5 D6

E1 E2 E3 i E4 ES E6
H }

F1 F2 F3 i F4 F5 F6

FIG. 4D

Patent Application Publication Oct. 15,2009 Sheet 8 of 11 US 2009/0257499 A1

GENERATE PREDICTION DATA
(INTERPOLATE BASED ON PLURALITY OF PRE- 101
DEFINED INTERPOLATION FILTERS)

Yy

ENCODE VIDEO DATA BASED ON PREDICTION DATA 102
ASSOCIATED WITH EACH OF THE PRE-DEFINED —
INTERPOLATION FILTERS

i

SELECT ENCODED VIDEO DATA THAT ACHIEVES 103
HIGHEST LEVELS OF COMPRESSION

i

IDENTIFY THE PARTICULAR INTERPOLATION FILTER 104
ASSOCIATED WITH HIGHEST LEVELS OF —
COMPRESSION
ENCODE SYNTAX ELEMENT TO IDENTIFY THE 105
PARTICULAR INTERPOLATION FILTER D

FIG. 5

Patent Application Publication Oct. 15,2009 Sheet 9 of 11 US 2009/0257499 A1

RECEIVE ENCODED VIDEO DATA

\ 4

RECEIVE SYNTAX ELEMENT THAT IDENTIFIES AN

INTERPOLATION FILTER A PLURALITY OF PRE-
DEFINED INTERPOLATION FILTERS

A

GENERATE PREDICTION DATA

(INTERPOLATE BASED ON INTERPOLATION FILTER

IDENTIFIED BY SYNTAX ELEMENT)

l

DECODE THE VIDEO DATA BASED ON THE
PREDICTION DATA

FIG. 6

10

11

112

113

114

Patent Application Publication Oct. 15,2009 Sheet 10 of 11 US 2009/0257499 A1

GENERATE HALF-PIXEL VALUES BASED ON INTEGER
PIXEL VALUES

A

ROUND HALF-PIXEL VALUES TO GENERATE
HALF-PIXEL INTERPOLATED VALUES

l

STORED NON-ROUNDED HALF-PIXEL VALUES

'

GENERATE QUARTER PIXEL VALUES BASED ON THE
NON-ROUNDED HALF PIXEL VALUES AND INTEGER
PIXEL VALUES

FIG. 7

11

121

122

123

124

Patent Application Publication Oct. 15,2009 Sheet 11 of 11 US 2009/0257499 A1

GENERATE HALF-PIXEL VALUES BASED ON INTEGER 131
PIXEL VALUES —

ROUND HALF-PIXEL VALUES TO GENERATE 132
HALF-PIXEL INTERPOLATED VALUES —

133

STORED NON-ROUNDED HALF-PIXEL VALUES —

i

GENERATE ADDITIONAL HALF-PIXEL VALUE BASED

ON PLURALITY OF THE NON-ROUNDED HALF-PIXEL \,/134
VALUES
ROUND THE ADDITIONAL HALF-PIXEL VALUE IF 135
NECESSARY

i

GENERATE QUARTER PIXEL VALUES BASED ON THE

NON-ROUNDED HALF PIXEL VALUES, THE 136
ADDITIONAL HALF PIXEL VALUE AND THE INTEGER |
PIXEL VALUES

FIG. 8

12

US 2009/0257499 Al

ADVANCED INTERPOLATION TECHNIQUES
FOR MOTION COMPENSATION IN VIDEO
CODING

[0001] This application claims the benefit of U.S. Provi-
sional Application 61/044,023 filed on Apr. 10, 2008, U.S.
Provisional Application 61/044,240 filed on Apr. 11, 2008,
and U.S. Provisional Application No. 61/057,373 filed on
May 30, 2008 the entire contents of which are incorporated
herein by reference.

TECHNICAL FIELD

[0002] This disclosure relates to digital video coding and,
more particularly, fractional interpolations of predictive data
used in video coding.

BACKGROUND

[0003] Digital video capabilities can be incorporated into a
wide range of devices, including digital televisions, digital
direct broadcast systems, wireless broadcast systems, per-
sonal digital assistants (PDAs), laptop or desktop computers,
digital cameras, digital recording devices, video gaming
devices, video game consoles, cellular or satellite radio tele-
phones, and the like. Digital video devices implement video
compression techniques, such as MPEG-2, MPEG-4, or
ITU-T H.264/MPEG-4, Part 10, Advanced Video Coding
(AVC), to transmit and receive digital video information more
efficiently. Video compression techniques may perform spa-
tial prediction and/or temporal prediction to reduce or remove
redundancy inherent in video sequences.

[0004] Block based inter-coding is a very useful coding
technique that relies on temporal prediction to reduce or
remove temporal redundancy between video blocks of suc-
cessive coded units of a video sequence. The coded units may
comprise video frames, slices of video frames, groups of
pictures, or another defined unit of video blocks. For inter-
coding, the video encoder performs motion estimation and
motion compensation to track the movement of correspond-
ing video blocks of two or more adjacent coded units. Motion
estimation generates motion vectors, which indicate the dis-
placement of video blocks relative to corresponding predic-
tion video blocks in one or more reference frames or other
coded units. Motion compensation uses the motion vectors to
generate prediction video blocks from the reference frame or
other coded unit. After motion compensation, residual video
blocks are formed by subtracting prediction video blocks
from the original video blocks being coded.

[0005] The video encoder may also apply transform, quan-
tization and entropy coding processes to further reduce the bit
rate associated with communication of residual blocks.
Transform techniques may comprise discrete cosine trans-
forms (DCTs) or conceptually similar processes. Alterna-
tively, wavelet transforms, integer transforms, or other types
of transforms may be used. In a DCT process, as an example,
a set of pixel values are converted into transform coefficients,
which may represent the energy of the pixel values in the
frequency domain. Quantization is applied to the transform
coefficients, and generally involves a process that limits the
number of bits associated with any given transform coeffi-
cient. Entropy coding comprises one or more processes that
collectively compress a sequence of quantized transform
coefficients. Examples of entropy coding include but are not

Oct. 15,2009

limited to content adaptive variable length coding (CAVLC)
and context adaptive binary arithmetic coding (CABAC).
[0006] A coded video block may be represented by predic-
tion information that can be used to create or identify a pre-
dictive block, and a residual block of data indicative of dif-
ferences between the block being coded and the predictive
block. The prediction information may comprise the one or
more motion vectors that are used to identify the predictive
block of data. Given the motion vectors, the decoder is able to
reconstruct the predictive blocks that were used to code the
residual. Thus, given a set of residual blocks and a set of
motion vectors (and possibly some additional syntax), the
decoder may be able to reconstruct a video frame that was
originally encoded. Inter-coding based on motion estimation
and motion compensation can achieve very good compres-
sion because successive video frames or other types of coded
units are often very similar. An encoded video sequence may
comprise blocks of residual data, motion vectors, and possi-
bly other types of syntax.

[0007] Interpolation techniques have been developed in
order to improve the level of compression that can be
achieved in inter-coding. In this case, the predictive data
generated during motion compensation, which is used to code
a video block, may be interpolated from the pixels of video
blocks of the video frame or other coded unit used in motion
estimation. Interpolation is often performed to generate pre-
dictive half-pixel values (half-pel) and predictive quarter-
pixel values (quarter-pel). Such interpolation often generates
predictive blocks that are even more similar to the video
blocks being coded than the actual video blocks of the pre-
dictive frame or other coded unit used in the video coding.

SUMMARY

[0008] In general, this disclosure describes interpolation
techniques performed by an encoder and a decoder during the
motion compensation process of video coding. According to
the techniques of this disclosure, the encoder may apply a
plurality of pre-defined interpolation filters in order to gener-
ate a plurality of different interpolated prediction data. The
interpolated prediction data that achieves the highest levels of
compression may be selected, and the interpolation filter that
was used may be coded as syntax and communicated to the
decoding device as part of the coded video data. The interpo-
lation filter may be defined once per predictive unit (e.g., once
per prediction frame), or may be defined on a block basis
(e.g., different filtering may be applied to different video
blocks within a predictive unit). Alternatively, the interpola-
tion filter may be defined on a sample basis, or may be defined
on a sub-sample basis.

[0009] The decoder receives the coded video data, and can
interpret the syntax in order to identity the interpolation filter
that was used by the encoder. In this way, the decoder can
identify and use the same interpolation filters during its
motion compensation processes that were used during the
encoding process. By considering multiple different interpo-
lation filters at the encoder, compression may be improved
relative to techniques that have a fixed interpolation filter. At
the same time, the techniques may be significantly less com-
plex than conventional adaptive interpolation filtering, which
adaptively defines the interpolation filter coefficients as part
of the coding process. The different interpolation filters,
according to some aspects of this disclosure, may be pre-
defined by implementing adaptive interpolation filtering or
other techniques on test video sequences in order to pre-

13

US 2009/0257499 Al

define sets of interpolation filter coeflicients that will likely
result in good compression. Alternatively, different numbers
of filter coefficients (different number of taps) or different
types of filters altogether may be pre-defined, and then
selected and used during the encoding and decoding pro-
cesses.

[0010] In addition, this disclosure also recognizes coding
inefficiencies due to conventional rounding of half-pixel val-
ues, and provides techniques that may improve interpolation
by reducing or eliminating intermediate rounding. In this
case, interpolated half-pixel values may be rounded for pur-
poses of half-pixel interpolation. Quarter-pixel values, how-
ever, which may be generated based on one or more of the
interpolated half-pixel values, may rely on non-rounded ver-
sions of the half-pixel values. This can eliminate propagation
of rounding inaccuracies from the half-pixel values to the
quarter-pixel values. In some cases, slight rounding without
sacrificing the accuracy of the final values may be applied to
one specific half-pixel value in order to ensure that sixteen-bit
storage elements can be used to store any intermediate values
of half-pixels. In particular, when fifteen possible sub-pixel
locations are defined for every pixel location, one of the
specific half-pixel values may need to be generated based on
other half-pixel values (i.e., requiring two levels of half-pixel
interpolation), and this specific half-pixel value may require
rounding to ensure that sixteen-bit storage elements can be
used to store all interpolated values.

[0011] In any case, the elimination of intermediate round-
ing tasks may be done with or without the implementation of
a plurality of pre-defined interpolation filters, as described
herein. For example, the elimination of intermediate round-
ing may be performed in the context of an implementation
that uses a plurality of pre-defined interpolation filters, as
described herein. Alternatively, the elimination of intermedi-
ate rounding may be performed in the context of more con-
ventional interpolations, such as in the context of adaptive
interpolation filtering (AIF).

[0012] Inoneexample, this disclosure provides a method of
encoding video data. The method comprises generating pre-
diction data, wherein generating the prediction data includes
interpolating pixel values of reference video data based on a
plurality of different pre-defined interpolation filters. The
method also comprises encoding the video data based on the
prediction data.

[0013] In another example, this disclosure provides a
method of decoding video data. The decoding method com-
prises receiving a syntax element that identifies an interpola-
tion filter from a plurality of different pre-defined interpola-
tion filters, generating prediction data, wherein generating the
prediction data includes interpolating pixel values of refer-
ence video data based on the interpolation filter identified by
the syntax element, and decoding the video data based on the
prediction data.

[0014] In another example, this disclosure provides a
method of interpolating predictive video data for video cod-
ing. The method comprises generating half-pixel values
based on integer pixel values, rounding the half-pixel values
to generate half-pixel interpolated values, storing the half-
pixel values as non-rounded versions of the half-pixel values,
and generating quarter-pixel values based on the non-rounded
versions of the half-pixel values and the integer pixel values.
[0015] In another example, this disclosure provides an
apparatus that encodes video data, the apparatus comprising a
video encoder that includes a motion compensation unit that

Oct. 15,2009

generates prediction data. The motion compensation unit
interpolates pixel values of reference video data based on a
plurality of different pre-defined interpolation filters, and the
video encoder encodes the video data based on the prediction
data.

[0016] In another example, this disclosure provides an
apparatus that decodes video data, the apparatus comprising a
video decoder that includes a motion compensation unit. The
video decoder receives a syntax element that identifies an
interpolation filter from a plurality of different pre-defined
interpolation filters. The motion compensation unit generates
prediction data, wherein generating the prediction data
includes interpolating pixel values of reference video data
based on the interpolation filter identified by the syntax ele-
ment. The video decoder then decodes the video data based on
the prediction data.

[0017] In another example, this disclosure provides an
apparatus that interpolates predictive video data for video
coding, wherein the apparatus includes a motion compensa-
tion unit that generates half-pixel values based on integer
pixel values, rounds the half-pixel values to generate half-
pixel interpolated values, stores the half-pixel values as non-
rounded versions of the half-pixel values, and generates quar-
ter-pixel values based on the non-rounded versions of the
half-pixel values and the integer pixel values.

[0018] In another example, this disclosure provides a
device that encodes video data, the device comprising means
for generating prediction data, wherein means for generating
the prediction data includes means for interpolating pixel
values of reference video data based on a plurality of different
pre-defined interpolation filters, and means for encoding the
video data based on the prediction data.

[0019] In another example, this disclosure provides a
device that decodes video data, the device comprising means
for receiving a syntax element that identifies an interpolation
filter from a plurality of different pre-defined interpolation
filters, means for generating prediction data, wherein means
for generating the prediction data includes means for inter-
polating pixel values of reference video data based on the
interpolation filter identified by the syntax element, and
means for decoding the video data based on the prediction
data.

[0020] In another example, this disclosure provides a
device that interpolates predictive video data for video cod-
ing, the device comprising means for generating half-pixel
values based on integer pixel values, means for rounding the
half-pixel values to generate half-pixel interpolated values,
means for storing the half-pixel values as non-rounded ver-
sions of the half-pixel values, and means for generating quar-
ter-pixel values based on the non-rounded versions of the
half-pixel values and the integer pixel values.

[0021] In another example, this disclosure provides a
device that encodes video data, the device comprising a video
encoder including a motion compensation unit that generates
prediction data by interpolating pixel values of reference
video data based on a plurality of different pre-defined inter-
polation filters, and encodes the video data based on the
prediction data, and a wireless transmitter that transmits the
video data to another device.

[0022] In another example, this disclosure provides a
device that decodes video data, the device comprising a wire-
less receiver that receives the video data, and a video decoder
including a motion compensation unit that receives a syntax
element that identifies an interpolation filter from a plurality

14

US 2009/0257499 Al

of different pre-defined interpolation filters, generates predic-
tion data, wherein generating the prediction data includes
interpolating pixel values of reference video data based on the
interpolation filter identified by the syntax element, and
decodes the video data based on the prediction data.

[0023] In another example, this disclosure provides a
device that encodes video data, the device comprising a video
encoder including a motion compensation unit that generates
half-pixel values based on integer pixel values, rounds the
half-pixel values to generate half-pixel interpolated values,
stores the half-pixel values as non-rounded versions of the
half-pixel values, and generates quarter-pixel values based on
the non-rounded versions of the half-pixel values and the
integer pixel values, and a wireless transmitter that transmits
the video data encoded by the motion compensation unit to
another device.

[0024] In another example, this disclosure provides a
device that decodes video data, the device comprising a wire-
less receiver that receives the video data, and a video decoder
including a motion compensation unit that decodes the video
data. In decoding the video data, the motion compensation
unit generates half-pixel values based on integer pixel values,
rounds the half-pixel values to generate half-pixel interpo-
lated values, stores the half-pixel values as non-rounded ver-
sions of the half-pixel values, and generates quarter-pixel
values based on the non-rounded versions of the half-pixel
values and the integer pixel values.

[0025] The techniques described in this disclosure may be
implemented in hardware, software, firmware, or any combi-
nation thereof. If implemented in software, the software may
be executed in one or more processors, such as a micropro-
cessor, application specific integrated circuit (ASIC), field
programmable gate array (FPGA), or digital signal processor
(DSP). The software that executes the techniques may be
initially stored in a computer-readable medium and loaded
and executed in the processor.

[0026] Accordingly, this disclosure also contemplates a
computer-readable storage medium comprising instructions
that upon execution cause a device to encode video data,
wherein the instructions cause the device to generate predic-
tion data, wherein generating the prediction data includes
interpolating pixel values of reference video data based on a
plurality of different pre-defined interpolation filters, and
encode the video data based on the prediction data.

[0027] This disclosure also contemplates a computer-read-
able storage medium comprising instructions that upon
execution cause a device to decode video data, wherein the
instructions cause the device to, upon receiving a syntax
element that identifies an interpolation filter from a plurality
of different pre-defined interpolation filters, generate predic-
tion data, wherein generating the prediction data includes
interpolating pixel values of reference video data based on the
interpolation filter identified by the syntax element, and
decode the video data based on the prediction data.

[0028] Inaddition, this disclosure also contemplates a com-
puter-readable storage medium comprising instructions that
upon execution cause a device to interpolate predictive video
data for video coding, wherein the instructions cause the
device to generate half-pixel values based on integer pixel
values, round the half-pixel values to generate half-pixel
interpolated values, store the half-pixel values as non-
rounded versions of the half-pixel values, and generate quar-
ter-pixel values based on the non-rounded versions of the
half-pixel values and the integer pixel values.

Oct. 15,2009

[0029] The details of one or more aspects of the disclosure
are set forth in the accompanying drawings and the descrip-
tion below. Other features, objects, and advantages of the
techniques described in this disclosure will be apparent from
the description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

[0030] FIG. 1 is an exemplary block diagram illustrating a
video encoding and decoding system.

[0031] FIG. 2is a block diagram illustrating an example of
a video encoder consistent with this disclosure.

[0032] FIG. 3 is a block diagram illustrating an example of
a video decoder consistent with this disclosure.

[0033] FIGS. 4A-4D are conceptual diagrams illustrating
integer pixels and interpolated pixels that may comprise pix-
els of predictive video blocks.

[0034] FIGS. 5-8 are flow diagrams illustrating techniques
consistent with this disclosure.

DETAILED DESCRIPTION

[0035] Thisdisclosure describes various interpolation tech-
niques performed by an encoder and a decoder during the
motion compensation process of video coding. According to
one aspect of this disclosure, the encoder may apply a plural-
ity of pre-defined interpolation filters in order to generate a
plurality of different interpolated prediction data. The inter-
polated prediction data that achieves the highest levels of
compression may be selected at the encoder, and the interpo-
lation filter that was used may be coded as syntax and com-
municated to the decoding device as part of the coded video
data. The interpolated prediction data comprises reference
data. Video data to be coded (e.g., a video block) may be
subtracted from interpolated prediction data (e.g., an interpo-
lated predictive reference block) in order to define a residual
block of encoded data, which may then be transformed, quan-
tized and entropy coded.

[0036] The interpolation filter may be defined once per
predictive unit (e.g., once per prediction frame), or may be
defined on a sample basis (e.g., different filtering may be
applied to different video blocks or different sample locations
within a predictive unit). Different interpolation filters, for
example, may be defined by different sets of filter coeffi-
cients, different numbers of filter coefficients, or possibly
different filter types. In any case, by providing a plurality of
pre-defined interpolation filters, the interpolated data may
provide for improved data compression.

[0037] The decoder receives the coded video data, and can
interpret the syntax in order to identify the interpolation filter
that was used by the encoder. In this way, the decoder can
identify and use the same interpolation filter during its motion
compensation process that was used during the encoding
process. Again, by considering multiple different interpola-
tion filters at the encoder, compression may be improved
relative to techniques that have a single defined interpolation
filter. At the same time, the techniques may be significantly
less complex than conventional adaptive interpolation filter-
ing, which adaptively defines the interpolation filter (by
selecting filter coefficients) as part of the coding process. In
one example, the interpolation filters may be pre-defined by
implementing adaptive interpolation filtering or other tech-
niques on test video sequences in order to pre-define sets of
interpolation filter coefficients that will likely result in good
compression.

15

US 2009/0257499 Al

[0038] In another aspect of this disclosure, interpolation
techniques are described that eliminate or significantly
reduce intermediate rounding of half-pixel values for quarter-
pixel interpolation. The techniques that eliminate or signifi-
cantly reduce intermediate rounding may be used with or
without the techniques mentioned above that use pre-defined
interpolation filters. In other words, the techniques that elimi-
nate or significantly reduce intermediate rounding may be
used during interpolation according to one or more pre-de-
fined interpolation filters, but could also be used with inter-
polation that uses a fixed interpolation filter or possibly with
adaptive refinement interpolations techniques.

[0039] This disclosure recognizes coding inefficiencies
that can occur due to conventional rounding of half-pixel
values, and proposes techniques to improve interpolation by
eliminating or reducing intermediate rounding. In this case,
interpolated half-pixel values may be rounded for purposes of
half-pixel interpolation. Quarter-pixel values, however,
which may be generated based on one or more of the inter-
polated half-pixel values, may rely on non-rounded versions
of the half-pixel values. This can eliminate propagation of
rounding inaccuracies from the half-pixel values to the quar-
ter-pixel values. In some cases, slight rounding may be
applied to some of'the half-pixel values in order to ensure that
a sixteen-bit data structure can be used to store any interme-
diate values. In some cases, the impact of the slight rounding
on the final accuracy can be zero by performing the rounding
properly. In any case, the elimination or reduction of inter-
mediate rounding may be done with or without the imple-
mentation of a plurality of pre-defined interpolation filters, as
described herein.

[0040] FIG.1isablock diagram illustrating one exemplary
video encoding and decoding system 10 that may implement
techniques of this disclosure. As shown in FIG. 1, system 10
includes a source device 12 that transmits encoded video to a
destination device 16 via a communication channel 15.
Source device 12 and destination device 16 may comprise any
of a wide range of devices. In some cases, source device 12
and destination device 16 comprise wireless communication
devices, such as wireless handsets, so-called cellular or sat-
ellite radiotelephones, or any wireless devices that can com-
municate video information over a communication channel
15, in which case communication channel 15 is wireless. The
techniques of this disclosure, however, which concern motion
compensated interpolation, are not necessarily limited to
wireless applications or settings.

[0041] In the example of FIG. 1, source device 12 may
include a video source 20, video encoder 22, a modulator/
demodulator (modem) 23 and a transmitter 24. Destination
device 16 may include a receiver 26 a modem 27, a video
decoder 28, and a display device 30. In accordance with this
disclosure, video encoder 22 of source device 12 may be
configured to apply one or more of the interpolation tech-
niques of this disclosure as part of a video encoding process.
Similarly, video decoder 28 of destination device 16 may be
configured to apply one or more of the interpolation tech-
niques of this disclosure as part of a video decoding process.
[0042] The illustrated system 10 of FIG. 1 is merely exem-
plary. The interpolation techniques of this disclosure may be
performed by any encoding device that supports motion com-
pensated interpolation to sub-pixel resolution. Source device
12 and destination device 16 are merely examples of such
coding devices. In this case, source device 12 generates coded
video data for transmission to destination device 16. Devices

Oct. 15,2009

12, 16 may operate in a substantially symmetrical manner
such that each of devices 12, 16 include video encoding and
decoding components, e.g., in a combined encoder-decoder
(CODEC). Hence, system 10 may support one-way or two-
way video transmission between video devices 12, 16, e.g.,
for video streaming, video playback, video broadcasting, or
video telephony.

[0043] Video source 20 of source device 12 may include a
video capture device, such as a video camera, a video archive
containing previously captured video, or a video feed from a
video content provider. As a further alternative, video source
20 may generate computer graphics-based data as the source
video, or a combination of live video, archived video, and
computer-generated video. In some cases, if video source 20
is a video camera, source device 12 and destination device 16
may form so-called camera phones or video phones. In each
case, the captured, pre-captured or computer-generated video
may be encoded by video encoder 22. The encoded video
information may then be modulated by modem 23 according
to a communication standard, e.g., such as code division
multiple access (CDMA) or another communication stan-
dard, and transmitted to destination device 16 via transmitter
24. Modem 23 may include various mixers, filters, amplifiers
or other components designed for signal modulation. For
wireless applications, transmitter 24 may include circuits
designed for transmitting data, including amplifiers, filters,
and one or more antennas.

[0044] Receiver 26 of destination device 16 receives infor-
mation over channel 15, and modem 27 demodulates the
information. Again, the video encoding process may imple-
ment one or more of the techniques described herein to
improve the interpolation during motion compensation. The
video decoding process performed by video decoder 28 may
also perform interpolation during its motion compensation
stage of the decoding process. Display device 30 displays the
decoded video data to a user, and may comprise any of a
variety of display devices such as a cathode ray tube, a liquid
crystal display (LCD), a plasma display, an organic light
emitting diode (OLED) display, or another type of display
device.

[0045] In the example of FIG. 1, communication channel
15 may comprise any wireless or wired communication
medium, such as a radio frequency (RF) spectrum or one or
more physical transmission lines, or any combination of wire-
less and wired media. Communication channel 15 may form
part of a packet-based network, such as a local area network,
awide-area network, or a global network such as the Internet.
Communication channel 15 generally represents any suitable
communication medium, or collection of different commu-
nication media, for transmitting video data from source
device 12 to destination device 16.

[0046] Video encoder 22 and video decoder 28 may operate
according to a video compression standard, such as the ITU-T
H.264 standard, alternatively described as MPEG-4, Part 10,
Advanced Video Coding (AVC). The techniques of this dis-
closure, however, are not limited to any particular coding
standard. Although not shown in FIG. 1, in some aspects,
video encoder 22 and video decoder 28 may each be inte-
grated with an audio encoder and decoder, and may include
appropriate MUX-DEMUX units, or other hardware and soft-
ware, to handle encoding of both audio and video in a com-
mon data stream or separate data streams. If applicable,

16

US 2009/0257499 Al

MUX-DEMUX units may conform to the ITU H.223 multi-
plexer protocol, or other protocols such as the user datagram
protocol (UDP).

[0047] The ITU-T H.264/MPEG-4 (AVC) standard was
formulated by the ITU-T Video Coding Experts Group
(VCEGQG) together with the ISO/IEC Moving Picture Experts
Group (MPEG) as the product of a collective partnership
known as the Joint Video Team (JVT). In some aspects, the
techniques described in this disclosure may be applied to
devices that generally conform to the H.264 standard. The
H.264 standard is described in ITU-T Recommendation
H.264, Advanced Video Coding for generic audiovisual ser-
vices, by the ITU-T Study Group, and dated March, 2005,
which may be referred to herein as the H.264 standard or
H.264 specification, or the H.264/AVC standard or specifica-
tion. The Joint Video Team (JVT) continues to work exten-
sions to H.264/MPEG-4 AVC.

[0048] Video encoder 22 and video decoder 28 each may be
implemented as one or more microprocessors, digital signal
processors (DSPs), application specific integrated circuits
(ASICs), field programmable gate arrays (FPGAs), discrete
logic, software, hardware, firmware or any combinations
thereof. Each of video encoder 22 and video decoder 28 may
be included in one or more encoders or decoders, either of
which may be integrated as part of a combined CODEC in a
respective mobile device, subscriber device, broadcast
device, server, or the like.

[0049] A video sequence typically includes a series of
video frames. Video encoder 22 operates on video blocks
within individual video frames in order to encode the video
data. The video blocks may have fixed or varying sizes, and
may differ in size according to a specified coding standard.
Each video frame includes a series of slices. Each slice may
include a series of macroblocks, which may be arranged into
sub-blocks. As an example, the ITU-T H.264 standard sup-
ports intra prediction in various block sizes, such as 16 by 16,
8 by 8, or 4 by 4 for luma components, and 8x8 for chroma
components, as well as inter prediction in various block sizes,
such as 16 by 16, 16 by 8, 8 by 16, 8 by 8, 8 by 4, 4 by 8 and
4 by 4 for luma components and corresponding scaled sizes
for chroma components. Video blocks may comprise blocks
of pixel data, or blocks of transformation coefficients, e.g.,
following a transformation process such as discrete cosine
transform or a conceptually similar transformation process.
[0050] Smaller video blocks can provide better resolution,
and may be used for locations of a video frame that include
high levels of detail. In general, macroblocks (MBs) and the
various sub-blocks may be considered to be video blocks. In
addition, a slice may be considered to be a series of video
blocks, such as MBs and/or sub-blocks. Each slice may be an
independently decodable unit of a video frame. Video
encoder 22 and video decoder 28 perform inter-based predic-
tive coding, which involves the generation of predictive ref-
erence data and the subtraction of a video block to be coded
from the predictive reference data to generate residual data,
which may then be transformed, quantized and entropy
coded. The inter-based predictive coding may include inter-
polation of the predictive data in accordance with this disclo-
sure.

[0051] Following inter-based predictive coding (which
includes the interpolation techniques of this disclosure), and
following any transforms (such as the 4x4 or 8x8 integer
transform used in H.264/AVC or a discrete cosine transform
DCT), quantization may be performed. Quantization gener-

Oct. 15,2009

ally refers to a process in which coefficients are quantized to
possibly reduce the amount of data used to represent the
coefficients. The quantization process may reduce the bit
depth associated with some or all of the coefficients. For
example, a 16-bit value may be rounded down to a 15-bit
value during quantization. Following quantization, entropy
coding may be performed, e.g., according to content adaptive
variable length coding (CAVLC), context adaptive binary
arithmetic coding (CABAC), or another entropy coding
methodology.

[0052] According to the techniques of this disclosure,
video encoder 22 may apply a plurality of pre-defined inter-
polation filters in order to generate a plurality of different
interpolated prediction data. The interpolated prediction data
that achieves the highest levels of compression may be
selected by video encoder 22, and the interpolation filter that
was used for the selected interpolated prediction data may be
coded as syntax and communicated to destination device 16
as part of the coded video data. In this case, video decoder 28
receives the coded video data, and can interpret the syntax in
order to identify the interpolation filter that was used by video
encoder 22. Accordingly, video decoder 28 can identify and
use the same interpolation filter during its motion compensa-
tion decoding process that was used during the encoding
process. The different pre-defined interpolation filters may
comprise similar filters with different sets of filter coefficients
(filter taps). Alternatively, the different pre-defined interpo-
lation filters may comprise filters having different numbers of
filter taps, or possibly different types of filter configurations
altogether.

[0053] Also, according to another aspect of this disclosure,
video encoder 22 and video decoder 28 may apply interpola-
tion techniques that eliminate or significantly reduce inter-
mediate rounding of half-pixel values for quarter-pixel inter-
polation. In this case, video encoder 22 and video decoder 28
may round the interpolated half-pixel values purposes of half-
pixel interpolation. For quarter-pixel interpolation, however,
video encoder 22 and video decoder 28 may store and use
non-rounded versions of the half-pixel values in order to
reduce or eliminate propagation of rounding inaccuracies
from the half-pixel values to the quarter-pixel values. In some
cases, slight rounding may be applied to one particular half-
pixel value that requires two levels of interpolation in order to
ensure that a fixed size storage elements (e.g., sixteen-bit
registers) can be used to store any intermediate values. In
some cases, the impact of the slight rounding on the final
accuracy can be made to be zero by performing the rounding
properly, as described herein.

[0054] FIG. 2 is a block diagram illustrating an example of
a video encoder 50 that may perform motion compensated
interpolation consistent with this disclosure. Video encoder
50 may correspond to video encoder 22 of device 20, or a
video encoder of a different device. Video encoder 50 may
perform intra- and inter-coding of blocks within video
frames, although intra-coding is not illustrated. Intra-coding
relies on spatial prediction to reduce or remove spatial redun-
dancy in video within a given video frame. Inter-coding relies
on temporal prediction to reduce or remove temporal redun-
dancy in video within adjacent frames of a video sequence.
Intra-mode (I-mode) may refer to the spatial based compres-
sion mode and Inter-modes such as prediction (P-mode) or
bi-directional (B-mode) may refer to the temporal based com-
pression modes. The techniques of this disclosure typically
may be applied during inter-coding, and therefore, intra-cod-

17

US 2009/0257499 Al

ing units such as spatial prediction unit are not illustrated in
FIG. 2 for simplicity and ease of illustration. However, the
rounding techniques of this disclosure may also be applicable
to spatial prediction and intra coding techniques.

[0055] As shown in FIG. 2, video encoder 50 receives a
current video block within a video frame to be encoded. In the
example of FIG. 2, video encoder 50 includes motion estima-
tionunit 32, a motion compensation unit 35, areference frame
store 34, an adder 48, a transform unit 38, a quantization unit
40, and an entropy coding unit 46. For video block recon-
struction, video encoder 50 also includes an inverse quanti-
zation unit 42, an inverse transform unit 44 adder 51. A
deblocking filter (not shown) may also be included to filter
block boundaries to remove blockiness artifacts from recon-
structed video. If desired, the deblocking filter would typi-
cally filter the output of adder 51.

[0056] During the encoding process, video encoder 50
receives a video block to be coded, and motion estimation unit
32 and motion compensation unit 35 perform inter-predictive
coding. Motion estimation unit 32 and motion compensation
unit 35 may be highly integrated, but are illustrated separately
for conceptual purposes. Motion estimation is typically con-
sidered the process of generating motion vectors, which esti-
mate motion for video blocks. A motion vector, for example,
may indicate the displacement of a predictive block within a
predictive frame (or other coded unit) relative to the current
block being coded within the current frame (or other coded
unit). Motion compensation is typically considered the pro-
cess of fetching or generating the predictive block based on
the motion vector determined by motion estimation. Again,
motion estimation unit 32 and motion compensation unit 35
may be functionally integrated. The interpolation techniques
described in this disclosure are described as being performed
by motion compensation unit 35. However, interpolation may
be performed during motion estimation in order to facilitate
the selection of the best motion vectors.

[0057] In accordance with this disclosure, motion estima-
tion 32 selects the appropriate motion vector for the video
block to be coded by comparing the video block to video
blocks of a predictive coded unit (e.g., a previous frame). At
this point, motion compensation unit 35 may perform inter-
polation in order to generate predictive data at sub-pixel reso-
lution. In some cases, during motion estimation, the interpo-
lation may be based on a fixed interpolation filter. In other
cases, the different interpolation filters applied during motion
compensation (as outlined below) may also be used during
the motion estimation process for purposes of motion vector
selection.

[0058] Once motion estimation unit 32 has selected the
motion vector for the video block to be coded, motion com-
pensation unit 35 generates the predictive video block asso-
ciated with that motion vector. According to this disclosure,
however, motion compensation unit 35 may consider several
versions of any predictive video block that has sub-pixel
resolution. In this case, motion compensation unit 35 may
apply aplurality of pre-defined interpolation filters in order to
generate a plurality of different interpolated prediction data
for the video block to be coded. Motion compensation unit 35
then selects the interpolated prediction data (e.g., an interpo-
lated video block associated with one of the interpolation
filters) that achieves the highest levels of compression. The
interpolation filter that was used to generate the interpolated
data may be coded as interpolation syntax and communicated
to entropy coding unit 46 for inclusion in the coded bitstream.

Oct. 15,2009

Once motion compensation unit 35 has selected and applied
the best interpolation filter, the motion compensation unit 35
generates the predictive data using that interpolation filter,
and video encoder applies adder 48 to subtract that predictive
data from the video block being coded to generate residual
data.

[0059] Also, according to another aspect of this disclosure,
video encoder 22 and video decoder 28 may apply interpola-
tion techniques that eliminate or significantly reduce inter-
mediate rounding of half-pixel values for quarter-pixel inter-
polation. In this case, video encoder 22 and video decoder 28
may round the interpolated half-pixel values for purposes of
half-pixel interpolation. For quarter-pixel interpolation, how-
ever, video encoder 22 and video decoder 28 may store and
use non-rounded versions of the half-pixel values in order to
reduce or eliminate propagation of rounding inaccuracies
from the half-pixel values to the quarter-pixel values. In some
cases, slight rounding may be applied to one particular half-
pixel value that requires two levels of interpolation in order to
ensure that fixed size storage elements (e.g., 16-bit registers)
can be used to store any intermediate values.

[0060] As noted, once motion compensation unit 35 gener-
ated prediction data (e.g., an interpolated predictive video
block), video encoder 50 forms a residual video block by
subtracting the prediction data from the original video block
being coded. Adder 48 represents the component or compo-
nents that perform this subtraction operation. Transform unit
38 applies a transform, such as a discrete cosine transform
(DCT) or a conceptually similar transform, to the residual
block, producing a video block comprising residual trans-
form block coefficients. Transform unit 38, for example, may
perform other transforms, such as those defined by the H.264
standard, which are conceptually similar to DCT. Wavelet
transforms, integer transforms, sub-band transforms or other
types of transforms could also be used. In any case, transform
unit 38 applies the transform to the residual block, producing
ablock of residual transform coefficients. The transform may
convert the residual information from a pixel domain to a
frequency domain.

[0061] Quantization unit 40 quantizes the residual trans-
form coefficients to further reduce bit rate. The quantization
process may reduce the bit depth associated with some or all
of the coefficients. For example, a 16-bit value may be
rounded down to a 15-bit value during quantization. Follow-
ing quantization, entropy coding unit 46 entropy codes the
quantized transform coefficients. For example, entropy cod-
ing unit 46 may perform content adaptive variable length
coding (CAVLC), context adaptive binary arithmetic coding
(CABACQ), or another entropy coding methodology. Follow-
ing the entropy coding by entropy coding unit 46, the encoded
video may be transmitted to another device or archived for
later transmission or retrieval. The coded bitstream may
include entropy coded residual blocks, motion vectors for
such blocks, and other syntax including the interpolation
syntax that identifies the interpolation filters that were applied
by motion compensation unit 35.

[0062] Inverse quantization unit 42 and inverse transform
unit 44 apply inverse quantization and inverse transforma-
tion, respectively, to reconstruct the residual block in the pixel
domain, e.g., for later use a reference block. Summer 51 adds
the reconstructed residual block to the motion compensated
prediction block produced by motion compensation unit 35 to
produce a reconstructed video block for storage in reference
frame store 34. The reconstructed video block may be used by

18

US 2009/0257499 Al

motion estimation unit 32 and motion compensation unit 35
as a reference block to inter-encode a block in a subsequent
video frame.

[0063] FIG. 3 is a block diagram illustrating an example of
a video decoder 60, which decodes a video sequence that is
encoded in the manner described herein. Video decoder 60
includes a motion compensation unit 55 that performs the
interpolation techniques of this disclosure for decoding. In
particular, on the decoding side, motion compensation unit 55
may receive a syntax element from entropy decoding unit 52
that identifies an interpolation filter from a plurality of differ-
ent pre-defined interpolation filters. Motion compensation
unit 55 may generate prediction data, which includes inter-
polating pixel values of reference video data based on the
interpolation filter identified by the syntax element. Specifi-
cally, motion compensation unit 55 may generate the predic-
tion data based on motion vectors received from entropy
decoding unit 52 and the interpolations as defined by syntax
element (labeled interpolation syntax in FIG. 3). Based on
this interpolated prediction data, the video data (e.g., a recon-
structed residual video block) can be decoded.

[0064] Entropy decoding unit 52 entropy decodes the
received bitstream to generate quantized coefficients and the
syntax (e.g., interpolation syntax and motion vectors sent to
motion compensation unit 55). Inverse quantization unit 56
inverse quantizes, i.e., de-quantizes, the quantized block
coefficients. The inverse quantization process may be a con-
ventional process as defined by H.264 decoding. Inverse
transform unit 58 applies an inverse transform, e.g., an
inverse DCT or conceptually similar inverse transform pro-
cess, to the transform coefficients in order to produce residual
blocks in the pixel domain. Motion compensation unit 55
produces motion compensated blocks in the manner
described herein, e.g., including interpolation based on a set
of interpolation filter coefficients identified by the syntax
element (i.e., the interpolation syntax).

[0065] Summer 64 decodes residual blocks by summing
the residual blocks with the corresponding prediction blocks
generated by motion compensation unit 55 to form decoded
blocks. If desired, a deblocking filter may also be applied to
filter the decoded blocks in order to remove blockiness arti-
facts. The decoded video blocks are then stored in reference
frame store 62, which is a storage element that provides
reference blocks for subsequent motion compensation and
also produces decoded video to a drive display device (such as
device 30 of FIG. 1).

[0066] Again, the techniques of this disclosure concern
motion compensated interpolation in which pixel values of
predictive video blocks are interpolated to sub-pixel resolu-
tion. The encoder uses the techniques of this disclosure to
identify a desirable interpolation filter from a plurality of
pre-defined interpolation filters. The different filters may be
characterized by different sets of filter coefficients, different
numbers of filter coefficients, or different filter types. The
decoder interprets syntax elements sent from the encoder in
order to identify the same desirable set of interpolation filter
coefficients used by the encoder.

[0067] FIGS. 4A-4D are conceptual diagrams illustrating
integer pixels and interpolated pixels that may comprise pix-
els of predictive video blocks. In the conceptual illustration of
FIG. 4, the different boxes represent pixels. Capitalized let-
ters (in the boxes with solid lines) represent integer pixel
locations, while small letters (in the boxes with dotted lines)
represent the interpolated pixel locations. The lettered labels

Oct. 15,2009

may be used herein to describe the pixel locations, or pixel
positions, or may refer to the pixel values associated with the
various locations. Pixel locations “aa,” “bb,” “cc,” “dd,” “ee,”
“ff,” “gg.” “hh,” “ii,” and *jj,” are half-pixel locations used in
the fractional interpolations of various fractional locations
associated with pixel location “C3.”

[0068] Every pixel location may have an associated fifteen
different fractional locations, e.g., in compliance with inter-
polations compliant with the ITU H.264/AVC standard. Inthe
example of FIGS. 4A-4D, these 15 different fractional loca-
tions associated with pixel “C3” are illustrated. For simplicity
and ease of illustration, most of the other fractional locations
are not shown (other than those mentioned above, which are
used to generate one or more of the 15 different fractional
locations associated with pixel “C3”).

[0069] In the ITU H.264/AVC standard, in order to obtain
luma signals at half-pixel positions, a 6-tap Wiener filter with
coefficients [1, -5, 20, 20, -5, 1] is typically used. Then, in
order to obtain luma signals at quarter-pixel locations, a bilin-
ear filter is used. The bilinear filter may also be used in
fractional pixel interpolation for the chroma components,
which may have up to “s-pixel precision in H.264/AVC.

[0070] Half-pixel interpolations of pixel locations “b” and
“h” are demonstrated in FIG. 4B in the horizontal and vertical
directions respectively. In this case, pixel location “b” may be
interpolated based on integer pixels “C1,” “C2,” C3,” “C4,”
“C5,” and “C6.” Similarly, pixel location “h”” may be interpo-
lated based on integer pixels “A3,” “B3,” C3,” “D3,” “E3,”
and “F3.”Different interpolation filters (e.g., different sets of
filter taps) may be applied to generate different interpolated
values of pixel locations “b” and “h” as described herein. In
FIG. 4B, interpolated pixel locations “b” and “h” are shown
with shading, and integer pixel locations “C1,”C2,” C3,”
“C4,” “C5,” “C6,” “A3”, “B3”, “C3”, “D3”, “E3” and “F3”
are shown with cross-hashes.

[0071] FIG. 4C illustrates one special case that may require
two levels of interpolation. In particular, pixel location “” is
unlike the other half-pixel locations insofar as pixel location
“J” is itself interpolated based on other half-pixel values. For
example, pixel location “j” may be interpolated based on
half-pixel interpolated values “cc,” “dd,” “h,” ee,” “ff” and
“gg” in the horizontal direction. Alternatively, pixel location
“” may be interpolated based on half-pixel interpolated val-
ues “aa,” “bb,” “b,” hh,” “ii,” and “jj” in the vertical direction.
In FIG. 4C, interpolated pixel location “j” is shown with
shading, half-pixel interpolated values “aa,” “bb,” “b,” hh,”
“ii,” and “jj” in the vertical direction are shown with right-to-
left cross-hashes, and half-pixel interpolated values “cc,”
“dd,” “h,” ee,” “ff)” and “gg” are shown with left-to-right

cross-hashes.

[0072] FIG. 4D illustrates quarter-pixel locations “a,” “c,”
“d)” e £ “g” “i) “k,” “1,” m,” “n,” and “o” with shading,
and illustrates the integer and half-pixel locations used for
such quarter-pixel interpolation (e.g., “C3,” “b,” “C4,” “h,”j,”
“ee,” “D3,” “hh,” and “D4”) with cross-hashes.

[0073] After motion estimation, the best motion vector for
a given video block may be identified, e.g., possibly using a
rate-distortion model to balance the coding rate and quality.
Then, the prediction video block is formed during motion
compensation using the best motion vector. As outlined
above, the residual video block is formed by subtracting the
prediction video block from the original video block. A trans-

19

US 2009/0257499 Al

form is then applied on the residual block, and the transform
coeflicients are quantized and entropy coded to further reduce
bit rate.

[0074] Again, FIGS. 4A-4D show the integer-pixel
samples (also called full-pixels) in the solid boxes with upper-
case letters. For any given integer-pixel sample, there are
altogether 15 sub-pixel positions, which are shown for inte-
ger-pixel sample “C3” and labeled “a” through “0” in FIGS.
4A-4D. In H.264/AVC, the half-pixel positions “b,” “h,” and
“” may be calculated first using the one-dimensional 6-tap
Wiener filter. As noted, half-pixel position “j” may require
two levels of this interpolation using 6-tap filtering. In this
case, for pixel position “j,” the interpolation filter is applied
first in the horizontal direction and then in the vertical direc-
tion, possibly with intermediate rounding of interpolated
pixel values after interpolation in one dimension in order to
ensure that data can be stored within sixteen-bit storage ele-
ments. Remaining quarter-pixel positions are then interpo-
lated via filtering that uses a bilinear filter and the already
calculated half-pixel samples.

[0075] The ITU-T SG16/Q.6/VCEG (Video Coding Expert
Group) committee has been exploring coding technologies
that offer higher coding efficiency than H.264/AVC. Such
exploration is done in the KTA (Key Technology Areas)
forum. One of the coding tools that have been adopted into
KTA is called adaptive interpolation filter (AIF). AIF offers
large coding gain over H.264/AVC, especially on video
sequences with high resolution (e.g., 720 p). In AIF, the
interpolation filter for each sub-pixel position is analytically
calculated for each video frame by minimizing the prediction
error energy. The analytically derived adaptive filter coeffi-
cients for each frame are then predicted, quantized, coded,
and sent in the video bitstream.

[0076] The techniques of this disclosure may achieve com-
parable coding improvements to those achieved by AIF, while
reducing implementation complexity relative to AIF. The
described techniques may require no analytical process to
derive the filter coefficients for each video frame. Instead, in
one example, different sets of filter coefficients are pre-cal-
culated and pre-defined for real-time application. In this case,
the pre-defining of filter coefficients may be based on AIF
applied to test sequences, or other selection criteria.

[0077] Three different types of AIF schemes have been
adopted into KTA. The first is a two-dimensional non-sepa-
rable AIF (NS-AIF), the second is a separable AIF (S-AIF),
and the third is an AIF with directional filters (DAIF). How-
ever, all three AIF schemes use the same analytical process to
derive the filter coefficients, which is explained below using
non-separable AIF as an example.

[0078] Assume a 6x6 two-dimensional non-separable filter
has coefficients h, JSP where 1,j=0 . .. 5 and SP represents one
of the 15 sub-pixel positions (a through o) shown in FIGS.
4A-4D. Note that 6 of the 15 sub-pixel positions “a,”, “b,” “c,”
“d,” “h” and “1” are one-dimensional sub-pixel positions,
which may use a 6-tap filter to interpolate. Also assume that
the prediction pixels at the integer-pixel positions (Al
through F6 in FIGS. 4A-4D) in the reference frame take the
pixel values of P, wherei,j=0... 5. Thatis, Al takes the value

of Py g, . . ., A6 takes the value of Ps ,,, . . ., F1 takes the value
of P5, ..., and F6 takes the value of Ps 5. Then, the inter-
polated value p** at sub-pixel position SP, SP € {a, . .., o},

may be calculated using the following equation.

Oct. 15,2009

S S
SP SP
= Z Pyl ;
=0 =0

[0079] LetS, , bethe pixel value in the current video frame
at position (X, y).

F=x+|myx]-FO, p=y+|mvy|-FO,

where (mvx, mvy) is the motion vector, (| mvx|,|mvy]) is the
integer component of the motion vector, and FO is the filter
offset. For example, in the case of 6-tap filter, FO=6/2-1=2 .
For each sub-pixel position SP, the prediction error energy
(e*)? between the actual pixel value in the current frame and
the interpolated value can be accumulated for all pixels that
have motion vector precision corresponding to sub-pixel
position SP. The prediction error energy (e*)? is calculated
using the following equation:

@ =2 0 S piy)’ @
x oy

5 5
= g g [Sx,y I A
. Y =0 j=0

K

2

PR

[0080] For each of the sub-pixel positions “a” . . . “0” an
individual set of equations may be set up by computing the
derivative of (¢°")* with respect to the filter coefficients h, *7.
The number of equations, in this case, is equal to the number
of filter coefficients used for the current sub-pel position SP.
For each two-dimensional sub-pixel position “e,” “f)” “g,” “1,”
“I7 k) “m,” “n,” and “0” using a 6x6-tap two-dimensional
filter, a system of 36 equations with 36 unknowns can be
solved. For the remaining sub-pixel positions “a,” “b,” “c,”
“d,” “h,” and “1,” which may only require a one-dimensional

filter, systems of 6 equations can be solved.

@Y ®

T oangh

2] 2
=% Sey —Z Z BT Peiye
o T
14 £
= E E [Sx,y —Z Z h,s:?Pi+i,y+j]Pi+k,jz+l
i
x y

Yk, [ei0;5)

[0081] In summary, an example process of deriving and
applying the AIF filters may have the following steps:

[0082] 1. Motion vectors (mvx,mvy) may be estimated
for every video frame to be coded. During motion esti-
mation, fixed interpolation filter (e.g., the interpolation
process of H.264/AVC) can be applied.

[0083] 2. Using these motion vectors, prediction error
energy for each sub-pixel position SP may be accumu-
lated over the current video frame. Then, adaptive filter
coefficients h, ,].SP can be calculated for each sub-pixel

20

US 2009/0257499 Al

position SP independently by minimizing the prediction
error energy as in the two prediction energy equations
above.

[0084] 3. New motion vectors can then be estimated.
During this motion estimation process, the adaptive
interpolation filters computed in step 2 may be applied.
Using the adaptive interpolation filters, motion estima-
tion errors, caused by aliasing, camera noise, etc., are
reduced and better motion prediction may be achieved.

[0085] All three existing AIF schemes use the same ana-
lytical process as given above. The differences between these
schemes mostly lie in the number of unique filter coefficients
used, whether the interpolation filters are separable or not,
and what filter support (i.e., integer pixel positions used to
interpolate) is used. In each of these schemes, certain sym-
metry constraints on the AIF filters are imposed to reduce the
number of filter coefficients that need to be sent in the video
bitstream.

[0086] As mentioned above, in H.264/AVC, interpolation
is performed with intermediate rounding operations. Conven-
tionally, half-pixel positions (“b,” h,” and “j”") are filtered and
rounded before they are used to obtain the quarter-pixel posi-
tions. Moreover, during bilinear filtering, which is used to
obtain the quarter-pixel values, upward rounding may be used
(i.e., (a+b+1)>>1 may be used in conventional bilinear fil-
ters). Such frequent and biased rounding operations may
reduce precision of the interpolation filters. In particular,
simulations have shown that higher-precision interpolation
filters derived directly from the 6-tap Wiener filter and the
bilinear filter used in H.264/AVC, provides significant gain
over H.264/AVC, especially for the high definition video
sequences, such as the 720 p sequences. A significant portion
of the gains achieved by the AIF schemes (NS-AIF, S-AIF,
and DAIF) may come from the fact that these AIF schemes
use higher precision filters than H.264/AVC.

[0087] In accordance with this disclosure, a relatively
simple switched interpolation filter with offset (SIFO)
scheme may be used. Instead of adaptively deriving the filter
coeflicients for each frame, which is a very costly process at
the encoder side, the SIFO scheme chooses between a plural-
ity fixed filters, e.g., which may be respectively defined by
plurality of different pre-defined sets of interpolation filter
coeflicients. The choice of the interpolation filter may be done
either on the frame level or on the sub-pixel position level,
which may be referred to as a frame-based choice or sample-
based choice, respectively. If desired, DC offsets may also be
added after prediction, and the DC offsets may also be added
on a frame basis or a sample basis. Thus, one or more DC
offsets may be defined for each frame, different DC offsets (or
sets of DC offsets) may be defined for different video blocks
ofa frame. Different DC offsets may be defined for each pixel
and sub-pixel interpolated position. Frames are one example
of coded units, and the phrase “frame-based choice” more
broadly refers to a coded unit-based choice. In some case,
slices or portions of a frame, for example, may be coded
separately as individual coded units.

[0088] Different sets of fixed filters may be used by motion
compensation units 35 and 55 of FIGS. 2 and 3 respectively.
Examples includes a standard H.264 filter set, a filter set
based on H.264/AVC but with higher precision (without inter-
mediate rounding for half-pixel positions and biased round-
ing for quarter-pixel positions), or one or more sets of cus-
tomized interpolation filters. The set or sets of customized
interpolation filters may be obtained by using a set of training

Oct. 15,2009

video sequences. Adaptive filters that minimize prediction
error energy may be derived by applying the analytical pro-
cess used in AIF schemes to the training video set. Then, the
average filters for each sub-pixel position may be calculated
and used as the customized interpolation filters that are
applied by motion compensation units 35 and 55, as described
herein.

[0089] The average filter for a particular sub-pixel position
may also be normalized such that all filter coefficients add up
to 1.0. The average filter may also be quantized to a certain
fixed-point precision (e.g., 13-bit precision). The use of fixed-
point precision in the filter coefficient ensures that implemen-
tations across different platforms will not have drifts. Further-
more, a true fixed-point implementation may be derived from
such pre-defined filter coefficients. Any customized filters
may have different characteristics. Specifically, different fil-
ters may be non-separable filters or separable filters, and
different filters may define different filter supports (e.g., 6x6
or 4x4).

[0090] Inany case, the filter set that offers best prediction in
any given instance (e.g., the smallest prediction error energy)
can be chosen by motion compensation unit 35 during the
encoding process. Again, the filter set selection may be frame-
based or sample-based meaning that filters may be selected
for each frame (or other coded unit), or may be selected for
different video blocks of each frame. When multiple refer-
ence frames are used, different filter sets may be selected for
different reference frames. Furthermore, some reference
frames may have frame-based filter selection, while other
reference frames may have sample-based filter selection.
When frame-based filter selection is used, and when the cus-
tomized filter set is selected, the standard filters may still be
applied on the half-pixel positions (e.g., positions “b,” “h,”
and “”) while the customized filter set may be applied on the
other sub-pixel positions.

[0091] Offset may also be added during interpolation. Add-
ing DC offsets to the prediction values may help to capture
illumination changes between different video frames, such as
flashes, a darkening sky, and the like. In the scheme of this
disclosure, DC offset may be applied on the frame-level (all
pixels in the frame use the same DC offset) or on the sample
position level (different pixel locations have different DC
offsets). When sample-based DC offsets are used, a total of
sixteen DC offsets may need to be sent in the video bitstream
such that integer pixel locations and the fifteen possible non-
integer pixel locations may each define different offsets. The
application of sample-based DC offsets may be beneficial
because it may serve as a simple but effective motion seg-
mentation tool. Take, for example, a video frame that contains
adarkening sky as still background and a moving object as the
foreground. In this case, the background and the foreground
may have different degrees of illumination changes, and
using sample-based DC offsets may help to capture the dif-
ferent degrees of illumination changes in the foreground and
the background.

[0092] When multiple reference frames are used, different
DC offsets may be calculated and sent for different reference
frames. Furthermore, some reference frames may have
frame-based DC offset while others may have sample-based
DC offsets. One particular scheme is to use sample-based DC
offsets only on the reference frame that is closest in temporal
distance to the current frame, and to use frame-based DC
offset for all the other reference frames. Information may be

21

US 2009/0257499 Al

coded in the bitstream to inform the decoder of the type of
offsets used, and the magnitude of such offsets at different
pixel locations.

[0093] A sub-pixel motion vector refers to a sub-pixel posi-
tion in a reference picture which needs to be interpolated.
H.264 defines one interpolation process for sub-pixels in
which sub-pixels b and h (see FIGS. 4A-4D) may be calcu-
lated by horizontal and vertical filtering with a 6-tap filer
having tap values (1, -5, 20, 20, -5, 1) as follows:

b1=C1-5*C2420*C3+20*C4-5*C5+C6

where “C1,” “C2,” “C3,” “C4,” “C5” and “C6” represent the
six closest integer pixels that surround “b” in the horizontal
direction, with pixels “C3” and “C4” being the closest, “C2”
and “C5” being the next closest, and “C1” and “C6” being the
next closest.

h1=A43-5*B3+20*C3+20*D3-5*E3+F3

where “A3.” “B3.” “C3,” “D3,” “E3” and “F3” represent the
six closest integer pixels that surround “h” in the vertical
direction, with pixels “C3” and “D3” being the closest, “B3”
and “E3” being the next closest, and “A3” and “F3” being the
next closest.

[0094]
as:

Inthis case, the values of “b” and “h” may be defined

b=max(0, min(255, (b1+16)>>5))
h=max(0, min(255, (h1+16)>>5))

where “>>" is a right-shift operation. In this disclosure, “>>"
represents a right shift operation and “<<” represents a left
shift operation.

[0095] To interpolate sub-pixel “j,” an intermediate value
“j17 is first derived as:

Jl=aal-5*bb1+20*b1+20%hh1-5*ii1+jjl,

where the intermediate values denoted as “aal,” “bbl”,
“hh1,” “ii1” and “jj1” are derived by applying the 6-tap filter
horizontally in the same manner as the calculation of b1 at the
positions of “aa,” “bb,” “hh,” “ii” and “jj.” The final value j
may be calculated as:

J=max(0, min(253, (j1+512)>>10)).

[0096] The pixels at quarter-pixel positions labeled as “a,”
“ed,) 1“1, “k,” and “n” may be derived according to
Table 1 by averaging the two nearest pixels at integer and

half-pixel positions and then applying upward rounding.

TABLE 1

a=(C3+b+1)>>1
c=(C4+b+1)>>1
d=(C3+h+1)>>1
I=D3+h+1)>>1
f=({+b+1)>>1
i=(+h+1)>>1
k=(+ee+1)>>1
n=(j+hh+1)>>1

[0097] The pixels at quarter-pixel positions labeled as “e,”
“g” “m,” and “0” are calculated according to Table 2 by
averaging the two nearest pixels at half-pixel positions in the

diagonal direction and then applying upward rounding.

Oct. 15,2009

TABLE 2

e=(b+h+1)>>1
g=(b+eec+1)>>1
m=(h+hh+1)>>1
o=(ee+hh+1)>>1

[0098] The final values of those quarter-pixels may be
finally clipped to values in the interval (0,255).

[0099] In order to keep the highest possible precision
through the intermediate steps, any shifting, rounding and
clipping operations may be avoided until the very last step of
the interpolation process. Unlike in the H.264 standard
defined implementation, the pixels at quarter-pixel positions
labeled as “a,” “c,” “d,” “1,” “£” “1,” “k,” and “n” are derived
according to Table 3 by averaging the two nearest pixels at
integer and half-pixel positions “b,” “h,” “j,” “ee” and “hh,”
with upward rounding.

TABLE 3

a=(C3<<5+bl+32)>>6
c=(C4<<5+bl+32)>>6
d=(C3<<5+h1+32)>>6
1=(D3<<5+hl1+32)>>6
f=(l>>5+bl+32)>>6

i=(l>>5+h1+32)>>6

k=(l>>5+eel +32)>>6
n=_(l>>5+hhl +32)>>6

[0100] In this case, the intermediate values denoted as
“eel” and “hh1” are derived by applying the 6-tap filter ver-
tically and horizontally in the same manner as the calculation
of “h1” and “b1” listed above, but at the positions of “ee” and
“hh.” Rounding may be avoided at this stage in the generation
of “eel” and “hh1” as described herein.

[0101] The pixels at quarter-pixel positions labeled as “e,”
“g” “m,” and “0” may be calculated according to Table 4 by
averaging the two nearest pixels at half-pixel positions in the
diagonal direction with upward rounding.

TABLE 4

e=(bl+hl+32)>>6

g=(bl +eel +32)>>6
m = (hl +hhl +32)>>6
o=(eel + hh1 +32)>>6

[0102] The final values of those quarter-pixels may be
clipped to values in the range (0,255). By preserving the full
precision of the intermediate values, the interpolated sub-
pixels will be more accurate. In particular, half-pixel values at
locations “b,” “h,” “ee,” and “hh” may be unrounded values
denoted as “bl,” “hl,” “eel,” and “hh1” for purposes of
quarter-pixel generation.

[0103] Unfortunately, interpolation of value “j” can be
more complicated since the interpolation at position j requires
two levels of half-pixel interpolation. In particular, to inter-
polate “,” twenty bits may be required to represent the inter-
mediate value “j1.” In this case, the intermediate version “j1”
of “j” may be rounded to fit within sixteen bits. In this case,
the operations discussed above may be implemented with
minor modification so that all operations can fit within sixteen
bit data structures without sacrificing precision. The interpo-
lation of “b” and “h” may be the same as that defined above,
except that their intermediate versions “b1” and “h1” may be

22

US 2009/0257499 Al

stored for other sub-pixel interpolation. The following Tables
show the interpolation process for other sub-pixels in sixteen
bit storage elements. In the Tables below, the operations
defined in each column are performed sequentially through
the respective table. Shaded rows contain operations that are
performed at the end of the process, and are not used for
interpolation of other sub-pixel positions.

TABLE 5

positions {a, ¢, d, I} of FIGS. 4A-4D

Min Max Register

Operation Comment value value size
rl=x 1l is integer pixel x 0 255 8u
rl=rl<<5 rlis32%x 0 8160 13u
12 =y0 12 is yO (yO is a one- -2550 10710 15s

dimensional (1-D)

half-pixel such as b1, hl, eel

and hhl before shifting down)
rl=rl+12 1rlis32%*x+y0 -2550 18870 16s
rl=r1+32 rlis32*x+y0+32 -2518 18902 16s
rl=rl>>6 rlis(32*x+y0+32)>>6 -39 295 11s
rl = max clip r1 on the low side 0 295 10u
(0, r1)
rl = min clip r1 on the high side 0 255 8u
(255, 11)

TABLE 6
positions {e, g. m. o} of FIGS. 4A-4D
Min Max Register

Operation Comment value value size
1l =y0 1l is yO (yOis a 1-D half-pixel ~ -2550 10710 15s

such as bl, hl, eel and hhl

before shifting down)
2=yl 12isyl (ylisa1-D half-pixel =~ -2550 10710 15s

such as bl, hl, eel and hhl

before shifting down)
rl=rl+12 1lisy0+yl -5100 21420 16s
rl=r1+32 1rlisy0+yl+32 -5068 21452 16s
rl=rl>>6 1rlis(yO+yl+32)>>6 -79 335 1l1s
rl = max clip r1 on the low side 0 335 10u
0,11)
rl = min clip r1 on the high side 0 255 8u
(255, 11)
[0104] Table 7, below, illustrates a sixteen-bit implementa-

tion of deriving pixel value at pixel location 5. All 1-D
half-pixels “aal,” “bbl,” “bl,” “hh1,” “iil” and “jj1” are
obtained without any shift down. The clipping range to avoid
overflow is (-2372,18640). Again shaded rows in the table
indicate operations that are only performed at the end of the
interpolation process, and these results are not used for the
interpolation of other sub-pixel positions. The intermediate
value “j1” will be saved for the interpolation of “f;” “i,” “k”
and “n.”

11

Oct. 15,2009

TABLE 7

position {j} of FIGS. 4A-4D

Reg-
Min Max | ister
Operation Comment value | value [size
rl =y0 y0is 1-D half-pixel aal -2550 | 10710 | 15s
before shifting down
12=y5 y5 is 1-D half-pixel jj1 -2550 | 10710 | 15s
before shifting down
rl=rl +12 rlisy0 +y5 -5100 | 21420 | 16s
2=yl y1is 1-D half-pixel bb1l -2550 | 10710 | 15s
before shifting down
3 =y4 y4 is 1-D half-pixel iil -2550 | 10710 | 15s
before shifting down
2=1r2+r3 2isyl +y4 -5100 | 21420 | 16s
rl=rl-12 rlis (yO +y5)- (yl +y4) |[-26520 | 26520 | 16s
rl=rl>>2 rlis ((yO +y5) - -6630 | 6630 | 14s
(1 +y4) >>2
3=y2 y2 is 1-D half-pixel bl -2550 | 10710 [15s
before shifting down
4=y3 y3 is 1-D half-pixel hhl -2550 | 10710 | 15s
before shifting down
3=13+rd 3isy2 +y3 -5100 | 21420 | 16s
3= clip 13 to avoid overflow -2372 | 21420 | 16s
max(-2372,13) | (low side)
3= clip 13 to avoid overflow -2372 | 18640 | 16s
min(18640, 13) | (high side)
2=13-14 12 is(y2+y3)-(yl +y4) [-23792 | 23740 | 16s
rl=rl+1r2 rlis ((yO +y5) - -30422 | 30370 | 16s
S* (vl +y4) +
4% (y2 +y3)) >>2
rl=rl>>2 1l is ((yO +y5) - -7605 7592 | 14s
5% (yl +y4) +
4% (y2 +y3)) >4
rl=rl +13 rlis ((yO +y5) - -9977 | 26232 | 16s
5% (yl +y4)) +
207 {y2 y3)) >> 4
jl=rl store result

[0105] Table 8, below demonstrates steps that can be taken
for sixteen-bit implementation of interpolating {f;ik,n},
which are the positions that use to interpolate the intermediate
value “j1.”

TABLE 8

positions {f, i, k, n} of FIGS. 4A-4D

Min Max Register
Operation Comment value value size
r1=y0 11 is yO (1-D half-pixel -2550 10710 15s
such as bl, h1, eel and
hh1 before shifting down)
2=jl 12 is j1 (2-D half-pixel j1 -9914 26232 16s

before shifting down)

23

US 2009/0257499 Al

TABLE 8-continued

positions {f, i, k, n} of FIGS. 4A-4D

Min Max Register

Operation Comment value value size
R=r2>>1 2isjl>>1 -4957 13116 15s
rl=rl+12 rlisy0+(l>>1) -7507 23826 16s
rl=r1+32 rlisy0+(jl>>1)+32 -7491 23842 16s
rl=rl>>6 rlis(yO+(l>>1)+ -235 745 1l1s

32)>>6
rl = max clip r1 on the low side 0 745 10u
(0, 1)
rl = min clip r1 on the high side 0 255 8u
(255, 11)
[0106] In short, the discussion above demonstrates a com-

plete technique for interpolating every possible sub-pixel
location “a,” “b,” “c,” *“d,” “e,” “f)” “g,” “h,” “i,” “},” “k,” “1,”
“m,” “n,” and “o” without exceeding sixteen-bit storage ele-
ments, which is desirable for an implementation. Most inter-
mediate half-pixel values remain unrounded for purposes of
quarter-pixel interpolation. However, pixel location “j” is a
special case that may require rounding of intermediate results
for purposes of generating its half-pixel value since pixel
location “j” requires two levels of half-pixel interpolation. In
accordance with this disclosure, however, the rounding in
pixel location “j”” will not impact the accuracy of the final
value of quarter-pixels which rely on “j.”

[0107] FIG.5 is a flow diagram consistent with one or more
aspects of video encoding consistent with this disclosure.
FIG. 5 will be discussed from the perspective of video
encoder 50 shown in FIG. 2. In particular, motion compen-
sation unit 35 generates prediction data (101), which includes
interpolating based on a plurality of pre-defined interpolation
filters. Motion compensation unit 35 then encodes video data,
e.g., a video block, based on the prediction data associated
with each of the pre-defined interpolation filters (102). For
example, motion compensation unit 35 may invoke adder 48
to generate residual blocks associated with each of the pre-
defined interpolation filters so that the different residual
blocks can be compared to one another to find the best
residual block. Motion compensation unit 35 selects the video
data that achieves the highest levels of compression (103). In
particular, the selected video data is illustrated as the “resid.
block” output of adder 48, which is the final output. This final
output of adder 48 is transformed by transform unit 38, quan-
tized by quantization unit 40, and entropy coded by entropy
coding unit 46.

[0108] Motion compensation unit 35 also identifies the par-
ticular interpolation filter that was associated with the
selected residual video data that achieved the highest levels of
compression (104). Motion compensation unit 35 forwards
an interpolation syntax element to entropy coding unit 46.
The interpolation syntax element identifies the particular
interpolation filter that was used. Entropy coding unit 46
encodes the syntax element (105) to form part of the output
bitstream. In this way, the interpolation filter used at encoder
50 (e.g., the filter coefficients used, or other filter designs or
parameters) can be communicated to a destination device so
that the destination device can perform the proper interpola-
tion filtering during video reconstruction.

[0109] Interpolation filtering may be defined on a frame-
by-frame basis, or may be defined on a video block-by-video
block basis. In still other cases, the interpolation filtering may

Oct. 15,2009

be defined on a sample-by-sample basis, or may be defined on
a sub-sample by sub-sample basis. The term “video units”
may refer to video frames, video blocks, video samples, or
video sub-samples. In any case, video encoder 50 may encode
different syntax elements to identify different interpolation
filters for different reference video units that are used to
generate the predictive data for different coded units of the
video data. Alternatively, video encoder may encode different
syntax elements to identify different interpolation filters that
are used for different video blocks of the reference video data.
In any case, the interpolation filters may be pre-defined using
test video sequences. In this case, for example, adaptive inter-
polation filtering (AIF) may be applied to the video sequences
in order to define different interpolation filters that achieve
desirable results, and these interpolation filters may be pro-
grammed into motion compensation unit 35.

[0110] FIG. 6 is a flow diagram consistent with one or more
aspects of video decoding consistent with this disclosure.
FIG. 6 will be discussed from the perspective of video
encoder 50 shown in FIG. 2. In particular, video encoder 60
receives an encoded video data (111), and receives a syntax
element that identifies an interpolation filter from a plurality
of interpolation filters (112). The encoded bitstream may
include both the encoded residual video data and the syntax
element that identifies the interpolation filter that was used at
the encoder. Entropy decoding unit 52 may entropy decode
the received bitstream to parse out the transformed and quan-
tized residual blocks, which are sent to inverse transform
quantization unit 56 and inverse transform unit 58, and to
parse out the interpolation syntax element and motion vec-
tors, which are sent to motion compensation unit 55.

[0111] Motion compensation unit 55 generates prediction
data (113), which includes interpolations based on the inter-
polation filter identified by the syntax element. Video decoder
60 decodes the video data based on the prediction data (114).
In particular, the prediction data generated by motion com-
pensation unit 55 may be combined with residual data via
adder 64 to reconstruct the video data in the pixel domain.
Decoded video may then be stored in reference frame store 62
for subsequent use in prediction, and may also be output for
presentation to the user, e.g., via a display or other output
device.

[0112] As with the encoding, interpolation filtering during
the decoding process may be defined on a frame-by-frame
basis, or may be defined on a video block-by-video block
basis, a sample-by-sample basis, or a sub-sample by sub-
sample basis. In particular, video decoder 60 may decode
different syntax elements to identify different interpolation
filters for different reference video units that are used to
generate the predictive data for different coded units of the
video data, or alternatively, video decoder 60 may decode
different syntax elements to identify different interpolation
filters that are used for different video blocks of the reference
video data. In any case, the interpolation filters may be pre-
defined using test video sequences, and these interpolation
filters may be programmed into motion compensation unit 55
so that syntax can be used to identify and invoke the proper
interpolation filter within motion compensation unit 55.
[0113] FIG. 7 illustrates an interpolation technique that
may be performed by motion compensation unit 35 during the
encoding process, or by motion compensation unit 55 during
the decoding process. As shown in FIG. 7, motion compen-
sation unit 35 or 55 generates half-pixel values based on
integer pixel values (121). For example, these half-pixel val-

24

US 2009/0257499 Al

ues may correspond to pixel values at locations “b” and “h” of
FIGS. 4A-4D. Motion compensation unit 35 or 55 rounds
these half-pixel values to generate half-pixel interpolated val-
ues (122), but also stores non-rounded versions of the half-
pixel values (123). Motion compensation units 35 and 55 may
have storage elements to facilitate this temporary storage of
intermediate values corresponding to the non-rounded ver-
sions of the half-pixel values. Motion compensation unit 35 or
55 can then generate quarter-pixel values based on the non-
rounded half-pixel values and integer pixel values (124).
These quarter-pixel values, for example, may correspond to
locations “a,” “c,” “d,” and “1”” shown in FIGS. 4A-4D.

[0114] Asexplained above, half-pixel values at location “j
in FIGS. 4A-4D may require some rounding of intermediate
values since location “j”” may require two levels of half-pixel
interpolations. FIG. 8 illustrates an interpolation technique
that may be performed by motion compensation unit 35 dur-
ing the encoding process, or by motion compensation unit 55
during the decoding process in order to generate all of the
interpolated values (“a through o” shown in FIGS. 4A-4D)
within a fixed-bit implementation, such as sixteen bits.

[0115] Like the process of FIG. 7, the process of FIG. 8
begins with motion compensation unit 35 or 55 generating
half-pixel values based on integer pixel values (131), e.g.,
which may correspond to pixel values at locations “b” and “h”
of FIGS. 4A-4D. Motion compensation unit 35 or 55 then
rounds these half-pixel values to generate half-pixel interpo-
lated values (132), but also stores non-rounded versions of the
half-pixel values (133).

[0116] Next, motion compensation unit 35 or 55 generates
an additional half-pixel value (e.g., the value corresponding
to location “§” in FIGS. 4A-4D) based on the non-rounded
half-pixel values. Motion compensation unit 35 or 55 rounds
the additional half-pixel value (e.g., the value corresponding
to location “j” in FIGS. 4A-4D), if necessary, to ensure that
this value falls within a fixed bit depth (e.g., within sixteen
bits) (135) without sacrificing the accuracy of quarter-pixels
relying on “j.” Motion compensation unit 35 or 55 can then
generate quarter-pixel values based on the non-rounded half-
pixel values, the additional half-pixel values and the integer
pixel values (136). In this way, all of the quarter-pixel values
shown with shading in FIG. 4D (e.g., locations “a,” “c,” “d,”
“e”) “g,” <17 k) <1 “m,” “n” and “0” can be generated.
The tables and discussion above provides more specific
details on the operations that may be performed in this pro-
cess.

[0117] The techniques of FIGS. 7 and 8 may apply to many
different interpolation contexts. In particular, these tech-
niques may be used with or without the other techniques
described herein that use pre-defined interpolation filters. In
other words, the techniques of FIGS. 7 and 8 that eliminate or
significantly reduce intermediate rounding may be used dur-
ing interpolation according to one or more pre-defined inter-
polation filters, but could also be used with interpolation that
uses a fixed interpolation filter or possibly with adaptive
refinement interpolations techniques. Accordingly, the differ-
ent techniques described herein are not necessarily need to be
performed together, but may have desirable application in
many different interpolation settings or situations.

[0118] The techniques of this disclosure may be embodied
in a wide variety of devices or apparatuses, including a wire-
less handset, and integrated circuit (IC) or a set of ICs (i.e., a
chip set). Any components, modules or units have been

Oct. 15,2009

described provided to emphasize functional aspects and does
not necessarily require realization by different hardware
units, etc.

[0119] Accordingly, the techniques described herein may
beimplemented in hardware, software, firmware, or any com-
bination thereof. If implemented in hardware, any features
described as modules, units or components may be imple-
mented together in an integrated logic device or separately as
discrete but interoperable logic devices. If implemented in
software, the techniques may be realized at least in part by a
computer-readable medium comprising instructions that,
when executed in a processor, performs one or more of the
methods described above. The computer-readable medium
may comprise a computer-readable storage medium and may
form part of a computer program product, which may include
packaging materials. The computer-readable storage medium
may comprise random access memory (RAM) such as syn-
chronous dynamic random access memory (SDRAM), read-
only memory (ROM), non-volatile random access memory
(NVRAM), electrically erasable programmable read-only
memory (EEPROM), FLASH memory, magnetic or optical
data storage media, and the like. The techniques additionally,
or alternatively, may be realized at least in part by a computer-
readable communication medium that carries or communi-
cates code in the form of instructions or data structures and
that can be accessed, read, and/or executed by a computer.
[0120] The code may be executed by one or more proces-
sors, such as one or more digital signal processors (DSPs),
general purpose microprocessors, an application specific
integrated circuits (ASICs), field programmable logic arrays
(FPGAs), or other equivalent integrated or discrete logic cir-
cuitry. Accordingly, the term “processor,” as used herein may
refer to any of the foregoing structure or any other structure
suitable for implementation of the techniques described
herein. In addition, in some aspects, the functionality
described herein may be provided within dedicated software
modules or hardware modules configured for encoding and
decoding, or incorporated in a combined video encoder-de-
coder (CODEC). Also, the techniques could be fully imple-
mented in one or more circuits or logic elements.

[0121] Various aspects of the disclosure have been
described. These and other aspects are within the scope of the
following claims.

1. A method of encoding video data, the method compris-
ing:

generating prediction data, wherein generating the predic-

tion data includes interpolating pixel values of reference
video data based on a plurality of different pre-defined
interpolation filters; and

encoding the video data based on the prediction data.

2. The method of claim 1, wherein interpolating pixel
values of reference video data based on a plurality of different
pre-defined interpolation filters comprises interpolating pixel
values of reference video data based on a plurality of different
sets of pre-defined interpolation filter coefficients.

3. The method of claim 1, wherein encoding the video data
comprises:

encoding the video data based on the prediction data asso-

ciated with each of the different pre-defined interpola-
tion filters; and

selecting encoded video data that achieves highest levels of

data compression.

4. The method of claim 3, wherein encoding the video data
further comprises:

25

US 2009/0257499 Al

identifying a particular interpolation filter associated with

the highest levels of data compression; and

encoding syntax to identify the particular interpolation

filter to a decoder.

5. The method of claim 4, further comprising:

encoding different syntax elements to identify different

interpolation filters for different reference video units
that are used to generate the predictive data for different
coded units of the video data.

6. The method of claim 4, further comprising:

encoding different syntax elements to identify different

interpolation filters that are used for different video
blocks of the reference video data.

7. The method of claim 1, wherein at least some of the
pre-defined interpolation filters are pre-defined based on
video coding applied to test video sequences.

8. The method of claim 1, wherein interpolating pixel
values associated with at least one of the pre-defined interpo-
lation filters includes:

generating half-pixel values based on integer pixel values;

rounding the half-pixel values to generate half-pixel inter-

polated values;

storing the half-pixel values as non-rounded versions of the

half-pixel values; and

generating quarter-pixel values based on the non-rounded

versions of the half-pixel values and the integer pixel
values.
9. The method of claim 8, wherein every one of the values
can be stored within a sixteen-bit data structure, the method
further comprising:
generating another half-pixel value based on a plurality of
the non-rounded versions of the half-pixel values;

rounding the another half-pixel value so that the another
half-pixel value can be stored within the sixteen-bit data
structure; and

generating additional quarter-pixel values based on the

another half-pixel value and the non-rounded versions of
the half-pixel values.

10. A method of decoding video data, the method compris-
ing:

receiving a syntax element that identifies an interpolation

filter from a plurality of different pre-defined interpola-
tion filters;

generating prediction data, wherein generating the predic-

tion data includes interpolating pixel values of reference
video data based on the interpolation filter identified by
the syntax element; and

decoding the video data based on the prediction data.

11. The method of claim 10, wherein interpolating pixel
values of reference video data based on the interpolation filter
identified by the syntax element comprises interpolating pixel
values of reference video data based on a pre-defined set of
interpolation filter coefficients identified by the syntax ele-
ment.

12. The method of claim 10, wherein at least some of the
pre-defined interpolation filters are pre-defined based on
video coding applied to test video sequences.

13. The method of claim 10, wherein interpolating pixel
values includes:

generating half-pixel values based on integer pixel values;

rounding the half-pixel values to generate half-pixel inter-

polated values;

storing the half-pixel values as non-rounded versions of the

half-pixel values; and

Oct. 15,2009

generating quarter-pixel values based on the non-rounded
versions of the half-pixel values and the integer pixel
values.
14. The method of claim 13, wherein every one of the
values can be stored within a sixteen-bit data structure,
wherein interpolating pixel values includes:
generating another half-pixel value based on a plurality of
the non-rounded versions of the half-pixel values;

rounding the another half-pixel value so that the another
half-pixel value can be stored within the sixteen-bit data
structure; and

generating additional quarter-pixel values based on the

another half-pixel value and the non-rounded versions of
the half-pixel values.

15. The method of claim 10, further comprising receiving
different syntax elements for different reference video units
used to generate the predictive data, and interpolating pixel
values for the different reference video units based on differ-
ent interpolation filters identified by the different syntax ele-
ments.

16. The method of claim 10, further comprising receiving
different syntax elements for different video blocks of a ref-
erence video unit used to generate the predictive data, and
interpolating pixel values for the different video blocks based
on different interpolation filters identified by the different
syntax elements.

17. An apparatus that encodes video data, the apparatus
comprising a video encoder that includes a motion compen-
sation unit that generates prediction data,

wherein the motion compensation unit interpolates pixel

values of reference video data based on a plurality of
different pre-defined interpolation filters; and

the video encoder encodes the video data based on the

prediction data.

18. The apparatus of claim 17, wherein the plurality of
different pre-defined interpolation filters are defined by a
plurality of different sets of pre-defined interpolation filter
coefficients.

19. The apparatus of claim 17, wherein the video encoder:

encodes the video data based on the prediction data asso-

ciated with each of the different pre-defined interpola-
tion filters; and

selects encoded video data that achieves highest levels of

data compression.

20. The apparatus of claim 19, wherein the video encoder:

identifies a particular interpolation filter associated with

the highest levels of data compression; and

encodes syntax to identify the particular interpolation filter

to a decoder.

21. The apparatus of claim 20, wherein the video encoder:

encodes different syntax elements to identify different

interpolation filters for different reference video units
that are used to generate the predictive data for different
coded units of the video data.

22. The apparatus of claim 20, wherein the video encoder:

encodes different syntax elements to identify different

interpolation filters that are used for different video
blocks of the reference video data.

23. The apparatus of claim 17, wherein at least some of the
pre-defined interpolation filters are pre-defined based on
video coding applied to test video sequences.

24. The apparatus of claim 17, wherein the motion com-
pensation unit:

generates half-pixel values based on integer pixel values;

rounds the half-pixel values to generate half-pixel interpo-

lated values;

26

US 2009/0257499 Al

stores the half-pixel values as non-rounded versions of the

half-pixel values; and

generates quarter-pixel values based on the non-rounded

versions of the half-pixel values and the integer pixel
values.
25. The apparatus of claim 24, wherein every one of the
values can be stored within a sixteen-bit data structure,
wherein the motion compensation unit:
generates another half-pixel value based on a plurality of
the non-rounded versions of the half-pixel values;

rounds the another half-pixel value so that the another
half-pixel value can be stored within the sixteen-bit data
structure; and

generates additional quarter-pixel values based on the

another half-pixel value and the non-rounded versions of
the half-pixel values.

26. The apparatus of claim 17, wherein the apparatus com-
prises an integrated circuit.

27. The apparatus of claim 17, wherein the apparatus com-
prises a microprocessor.

28. An apparatus that decodes video data, the apparatus
comprising a video decoder that includes a motion compen-
sation unit, wherein:

the video decoder receives a syntax element that identifies

an interpolation filter from a plurality of different pre-
defined interpolation filters;
the motion compensation unit generates prediction data,
wherein generating the prediction data includes interpo-
lating pixel values of reference video data based on the
interpolation filter identified by the syntax element; and

the video decoder decodes the video data based on the
prediction data.

29. The apparatus of claim 28, wherein the plurality of
different pre-defined interpolation filters are defined by a
plurality of different sets of pre-defined interpolation filter
coeflicients.

30. The apparatus of claim 28, wherein at least some of the
pre-defined interpolation filters are pre-defined based on
video coding applied to test video sequences.

31. The apparatus of claim 28, wherein the motion com-
pensation unit:

generates half-pixel values based on integer pixel values;

rounds the half-pixel values to generate half-pixel interpo-

lated values;

stores the half-pixel values as non-rounded versions of the

half-pixel values; and

generates quarter-pixel values based on the non-rounded

versions of the half-pixel values and the integer pixel
values.
32. The apparatus of claim 31, wherein every one of the
values can be stored within a sixteen-bit data structure,
wherein the motion compensation unit:
generates another half-pixel value based on a plurality of
the non-rounded versions of the half-pixel values;

rounds the another half-pixel value so that the another
half-pixel value can be stored within the sixteen-bit data
structure; and

generates additional quarter-pixel values based on the

another half-pixel value and the non-rounded versions of
the half-pixel values.

33. The apparatus of claim 28, wherein the video decoder
receives different syntax elements for different reference
video units used to generate the predictive data, and the
motion compensation unit interpolates pixel values for the

Oct. 15,2009

different reference video units based on different interpola-
tion filters identified by the different syntax elements.

34. The apparatus of claim 28, wherein the video decoder
receives different syntax elements for different video blocks
of a reference video unit used to generate the predictive data,
and the motion compensation unit interpolates pixel values
for the different video blocks based on different interpolation
filters identified by the different syntax elements.

35. The apparatus of claim 28, wherein the apparatus com-
prises an integrated circuit.

36. The apparatus of claim 28, wherein the apparatus com-
prises a MiCroprocessor.

37. A computer-readable storage medium comprising
instructions that upon execution cause a device to encode
video data, wherein the instructions cause the device to:

generate prediction data, wherein generating the prediction

data includes interpolating pixel values of reference
video data based on a plurality of different pre-defined
interpolation filters; and

encode the video data based on the prediction data.

38. The computer-readable storage medium of claim 37,
wherein the plurality of different pre-defined interpolation
filters are defined by a plurality of different sets of pre-defined
interpolation filter coefficients.

39. The computer-readable storage medium of claim 37,
wherein the instructions cause the device to:

encode the video data based on the prediction data associ-

ated with each of the different pre-defined interpolation
filters; and

select encoded video data that achieves highest levels of

data compression.

40. A computer-readable storage medium comprising
instructions that upon execution cause a device to decode
video data, wherein the instructions cause the device to:

upon receiving a syntax element that identifies an interpo-

lation filter from a plurality of different pre-defined
interpolation filters,

generate prediction data, wherein generating the prediction

data includes interpolating pixel values of reference
video data based on the interpolation filter identified by
the syntax element; and
decode the video data based on the prediction data.
41. The computer-readable storage medium of claim 40,
wherein at least some of the pre-defined interpolation filters
are pre-defined based on video coding applied to test video
sequences.
42. The computer-readable storage medium of claim 40,
wherein the instructions cause the device to:
upon receiving different syntax elements for different ref-
erence video units used to generate the predictive data,

interpolate pixel values for the different reference video
units based on different interpolation filters identified by
the different syntax elements.

43. The computer-readable storage medium of claim 40,
wherein the instructions cause the device to:

upon receiving different syntax elements for different

video blocks of a reference video unit used to generate
the predictive data,

interpolate pixel values for the different video blocks based

on different interpolation filters identified by the differ-
ent syntax elements.

44. A device that encodes video data, the device compris-
ing:

27

US 2009/0257499 Al

means for generating prediction data, wherein means for
generating the prediction data includes means for inter-
polating pixel values of reference video data based on a
plurality of different pre-defined interpolation filters;
and

means for encoding the video data based on the prediction
data.

45. A device decoding video data, the device comprising:

means for receiving a syntax element that identifies an
interpolation filter from a plurality of different pre-de-
fined interpolation filters;

means for generating prediction data, wherein means for
generating the prediction data includes means for inter-
polating pixel values of reference video data based on
the interpolation filter identified by the syntax element;
and

means for decoding the video data based on the prediction
data.

46. A device that encodes video data, the device compris-

ing:

avideo encoder including a motion compensation unit that

generates prediction data by interpolating pixel values of

Oct. 15,2009

reference video data based on a plurality of different
pre-defined interpolation filters, and encodes the video
data based on the prediction data; and
a wireless transmitter that transmits the video data to
another device.
47. The device of claim 46, wherein the device comprises
a wireless communication handset.
48. A device that decodes video data, the device compris-
ing:
a wireless receiver that receives the video data; and
avideo decoder including a motion compensation unit that:
receives a syntax element that identifies an interpolation
filter from a plurality of different pre-defined interpo-
lation filters;
generates prediction data, wherein generating the pre-
diction data includes interpolating pixel values of ref-
erence video data based on the interpolation filter
identified by the syntax element; and
decodes the video data based on the prediction data.
49. The device of claim 48, wherein the device comprises
a wireless communication handset.

&k

28

