US 20080198935A1

a2 Patent Application Publication (0 Pub. No.: US 2008/0198935 A1

a9y United States

Srinivasan et al.

43) Pub. Date: Aug. 21, 2008

(54) COMPUTATIONAL COMPLEXITY AND
PRECISION CONTROL IN
TRANSFORM-BASED DIGITAL MEDIA
CODEC

Inventors: Sridhar Srinivasan, Redmond, WA
(US); Chengjie Tu, Sammamish,
WA (US); Shankar Regunathan,

Bellevue, WA (US)

(75)

Correspondence Address:

KLARQUIST SPARKMAN LLP

121 S.W. SALMON STREET, SUITE 1600
PORTLAND, OR 97204

(73) Assignee: Microsoft Corporation, Redmond,
WA (US)
(21) Appl. No.: 11/772,076

| Computing Environment 600

(22) Filed: Jun. 29, 2007
Related U.S. Application Data

(60) Provisional application No. 60/891,031, filed on Feb.

21, 2007.

Publication Classification

(51) Int.CL

HO4N 7/24 (2006.01)
(52) US.CL .o 375/240.23; 375/E07.001
(57) ABSTRACT

A digital media encoder/decoder includes signaling of vari-
ous modes relating to computation complexity and precision
at decoding. The encoder may send a syntax element indicat-
ing arithmetic precision (e.g., using 16 or 32-bit operations)
of the transform operations performed at decoding. The
encoder also may signal whether to apply scaling at the
decoder output, which permits a wider dynamic range of
intermediate data at decoding, but adds to computational
complexity due to the scaling operation.

Communication
Connection(s) 670

Memory

Unit 610 620

I
|
I
I
| Processing
I
I
I
I

Input Device(s) 650

Output Device(s) 660

Software 680 Implementing Digital Media
Codec

ASUS-1013

Patent Application Publication Aug. 21, 2008 Sheet 1 of 5 US 2008/0198935 A1

Figure 1
Prior Art
L~ 120
X FORWARD
! TRANSFORM
130
5| QUANTIZATION/
ENTROPY CODE
X FORWARD
2 TRANSFORM
L 121
100 ENCODER
\ 110
DECODER
150
170 —~
INVERSE o
160 | TRANSFORM Xi
|| DEQUANTIZATION/
ENTROPY DECODE
INVERSE o>
> TRANSFORM X2
171 —

Patent Application Publication Aug. 21, 2008 Sheet 2 of 5 US 2008/0198935 A1

Figure 2
X

FORWARD
2D INPUT PART|2T3|8>N|NG OVERLAP
DATA [——» 240
210
BLOCK
TRANSFORM
\ @
DC
COEFFICIENTS
260
[
QUANTIZATION <«
270
AC
COEFFICIENTS
262
COMPRESSED
ENTROPY
CODING—————» PACKE;;gAT'ON —»| BITSTREAM
280 20 220

Patent Application Publication = Aug. 21, 2008 Sheet 3 of 5 US 2008/0198935 A1

Figure 3
|

COMPRESSED
EXTRACTING DECODING

BITSTREAM > 310 —> 30

220

AC COEFFICIENTS
342 v
DE-QUANTIZATION
330
v
j’ DC |
COEFFICIENTS
340
INVERSE
BLOCK
TRANSFORM
350
2D DATA
—_— e
INVERSE 390
OVERLAP
360

US 2008/0198935 A1l

Aug. 21,2008 Sheet 4 of 5

Patent Application Publication

obejs 38114

Ridisodyxy

Lidisody

ON
PLgalN
Pt e
27 i sieuo)
s -
soA ~o”
SOA
PIS
-’ ~
<& \\ ob ==
<
Ssqyange”

ON

pie

sbeigisy

TLOI Xy

abejs puooes

BYIfIsodexe
ON

“ ’

'
Je1|141s0dZ H ¢, selepunog S
\

SOA Il Pl
- -
L4 -
\\
,'

‘l ‘\
H =
“ x
- !u.q._mm>0\ .5_ o

“~
,, S48UI0 L]
(4 o} -
SAA

[

< o>.6 n ON.v \‘l

P At D
0 G ==

Ssdynang.”

i‘l

sbeigpuz

101 oxp

¥
'l ‘\
oN
ON

< -’

s
SOA

SOA

9Nid1sodpxy

H ~

- -

- ~

-~
. -
¢ slouIo) >
‘\

-~ -

-~ -

ON

-

\ ’

19]|141S0d P “ om@:mn:zom \]
\

-

00t

 2.nbi4

Patent Application Publication Aug. 21, 2008 Sheet 5 of 5 US 2008/0198935 A1

Figure 5

forward transform

inverse transform

Communication
Connection(s) 670
I

Input Device(s) 650

Processing
Unit 610 Output Device(s) 660

i_ __E Storage 640
x

— — — — — — — — —]

Software 680 Implementing Digital Media
Codec

US 2008/0198935 Al

COMPUTATIONAL COMPLEXITY AND
PRECISION CONTROL IN
TRANSFORM-BASED DIGITAL MEDIA
CODEC

CROSS REFERENCE TO RELATED
APPLICATION

[0001] This application claims the benefit of U.S. Provi-
sional 60/891,301, filed Feb. 21, 2007 and is incorporated
herein by reference.

BACKGROUND
[0002] Block Transform-Based Coding
[0003] Transform coding is a compression technique used

in many digital media (e.g., audio, image and video) com-
pression systems. Uncompressed digital image and video is
typically represented or captured as samples of picture ele-
ments or colors at locations in an image or video frame
arranged in a two-dimensional (2D) grid. This is referred to as
a spatial-domain representation of the image or video. For
example, a typical format for images consists of a stream of
24-bit color picture element samples arranged as a grid. Each
sample is a number representing color components at a pixel
location in the grid within a color space, such as RGB, or YIQ,
among others. Various image and video systems may use
various different color, spatial and time resolutions of sam-
pling. Similarly, digital audio is typically represented as time-
sampled audio signal stream. For example, a typical audio
format consists of a stream of 16-bit amplitude samples of an
audio signal taken at regular time intervals.

[0004] Uncompressed digital audio, image and video sig-
nals can consume considerable storage and transmission
capacity. Transform coding reduces the size of digital audio,
images and video by transforming the spatial-domain repre-
sentation of the signal into a frequency-domain (or other like
transform domain) representation, and then reducing resolu-
tion of certain generally less perceptible frequency compo-
nents of the transform-domain representation. This generally
produces much less perceptible degradation of the digital
signal compared to reducing color or spatial resolution of
images or video in the spatial domain, or of audio in the time
domain.

[0005] More specifically, a typical block transform-based
encoder/decoder system 100 (also called a “codec”) shown in
FIG. 1 divides the uncompressed digital image’s pixels into
fixed-size two dimensional blocks (X, . . . X,,), each block
possibly overlapping with other blocks. A linear transform
120-121 that does spatial-frequency analysis is applied to
each block, which converts the spaced samples within the
block to a set of frequency (or transform) coefficients gener-
ally representing the strength of the digital signal in corre-
sponding frequency bands over the block interval. For com-
pression, the transform coefficients may be selectively
quantized 130 (i.e., reduced in resolution, such as by drop-
ping least significant bits of the coefficient values or other-
wise mapping values in a higher resolution number set to a
lower resolution), and also entropy or variable-length coded
130 into a compressed data stream. At decoding, the trans-
form coefficients will inversely transform 170-171 to nearly
reconstruct the original color/spatial sampled image/video
signal (reconstructed blocks)A(I, o Xn).

[0006] The block transform 120-121 can be defined as a
mathematical operation on a vector x of size N. Most often,

Aug. 21, 2008

the operation is a linear multiplication, producing the trans-
form domain output y=Mx, M being the transform matrix.
When the input data is arbitrarily long, it is segmented into N
sized vectors and a block transform is applied to each seg-
ment. For the purpose of data compression, reversible block
transforms are chosen. In other words, the matrix M is invert-
ible. In multiple dimensions (e.g., for image and video), block
transforms are typically implemented as separable opera-
tions. The matrix multiplication is applied separably along
each dimension of the data (i.e., both rows and columns).

[0007] For compression, the transform coefficients (com-
ponents of vector y) may be selectively quantized (i.e.,
reduced in resolution, such as by dropping least significant
bits of the coefficient values or otherwise mapping values in a
higher resolution number set to a lower resolution), and also
entropy or variable-length coded into a compressed data
stream.

[0008] At decoding in the decoder 150, the inverse of these
operations (dequantization/entropy decoding 160 and inverse
block transform 170-171) are applied on the decoder 150
side, as show in FIG. 1. While reconstructing the data, the
inverse matrix M~" (inverse transform 170-171) is applied as
amultiplier to the transform domain data. When applied to the
transform domain data, the inverse transform nearly recon-
structs the original time-domain or spatial-domain digital
media.

[0009] Inmany block transform-based coding applications,
the transform is desirably reversible to support both lossy and
lossless compression depending on the quantization factor.
With no quantization (generally represented as a quantization
factor of 1) for example, a codec utilizing a reversible trans-
form can exactly reproduce the input data at decoding. How-
ever, the requirement of reversibility in these applications
constrains the choice of transforms upon which the codec can
be designed.

[0010] Many image and video compression systems, such
as MPEG and Windows Media, among others, utilize trans-
forms based on the Discrete Cosine Transform (DCT). The
DCT is known to have favorable energy compaction proper-
ties that result in near-optimal data compression. In these
compression systems, the inverse DCT (IDCT) is employed
in the reconstruction loops in both the encoder and the
decoder of the compression system for reconstructing indi-
vidual image blocks.

[0011] Quantization

[0012] Quantization is the primary mechanism for most
image and video codecs to control compressed image quality
and compression ratio. According to one possible definition,
quantization is a term used for an approximating non-revers-
ible mapping function commonly used for lossy compres-
sion, in which there is a specified set of possible output
values, and each member of the set of possible output values
has an associated set of input values that result in the selection
of'that particular output value. A variety of quantization tech-
niques have been developed, including scalar or vector, uni-
form or non-uniform, with or without dead zone, and adaptive
or non-adaptive quantization.

[0013] The quantization operation is essentially a biased
division by a quantization parameter QP which is performed
at the encoder. The inverse quantization or multiplication
operation is a multiplication by QP performed at the decoder.
These processes together introduce a loss in the original

US 2008/0198935 Al

transform coefficient data, which shows up as compression
errors or artifacts in the decoded image.

SUMMARY

[0014] The following Detailed Description presents tools
and techniques to control computational complexity and pre-
cision of decoding with a digital media codec. In one aspect of
the techniques, the encoder signals one of scaled or unscaled
precision modes to use at the decoder. In the scaled precision
mode, the input image is pre-multiplied (e.g., by 8) at the
encoder. The output at the decoder also is scaled by rounded
division. In the unscaled precision mode, no such scaling
operations are applied. In the unsclaed precision mode, the
encoder and decoder can deal with a smaller dynamic range
for transform coeflicient, and thus has lower computational
complexity.

[0015] In another aspect of the techniques, the codec may
also signal the precision required for performing transform
operations to the decoder. In one implementation, an element
of the bitstream syntax signals whether to employ a lower
precision arithmetic operations for the transform at the
decoder.

[0016] This Summary is provided to introduce a selection
of concepts in a simplified form that is further described
below in the Detailed Description. This summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used as an aid
in determining the scope of the claimed subject matter. Addi-
tional features and advantages of the invention will be made
apparent from the following detailed description of embodi-
ments that proceeds with reference to the accompanying
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] FIG. 1 is a block diagram of a conventional block
transform-based codec in the prior art.

[0018] FIG.2 is a flow diagram of a representative encoder
incorporating the block pattern coding.

[0019] FIG. 3 is a flow diagram of a representative decoder
incorporating the block pattern coding.

[0020] FIG. 4 is a diagram of the inverse lapped transform
including a core transform and post-filter (overlap) operation
in one implementation of the representative encoder/decoder
of FIGS. 2 and 3.

[0021] FIG. 5 is a diagram of identifying the input data
points for the transform operations.

[0022] FIG. 6 is a block diagram of a suitable computing
environment for implementing the media encoder/decoder of
FIGS. 2 and 3.

DETAILED DESCRIPTION

[0023] The following description relates to techniques to
control precision and computational complexity of a trans-
form-based digital media codec. The following description
describes an example implementation of the technique in the
context of a digital media compression system or codec. The
digital media system codes digital media data in a com-
pressed form for transmission or storage, and decodes the
data for playback or other processing. For purposes of illus-
tration, this exemplary compression system incorporating the
computational complexity and precision control is an image
or video compression system. Alternatively, the technique
also can be incorporated into compression systems or codecs

Aug. 21, 2008

for other digital media data. The computational complexity
and precision control technique does not require that the
digital media compression system encodes the compressed
digital media data in a particular coding format.

1. Encoder/Decoder

[0024] FIGS. 2 and 3 are a generalized diagram of the
processes employed in a representative 2-dimensional (2D)
data encoder 200 and decoder 300. The diagrams present a
generalized or simplified illustration of a compression system
incorporating the 2D data encoder and decoder that imple-
ment compression using the computational complexity and
precision control techniques. In alternative compression sys-
tems using the control techniques, additional or fewer pro-
cesses than those illustrated in this representative encoder and
decoder can be used for the 2D data compression. For
example, some encoders/decoders may also include color
conversion, color formats, scalable coding, lossless coding,
macroblock modes, etc. The compression system (encoder
and decoder) can provide lossless and/or lossy compression
of the 2D data, depending on the quantization which may be
based on a quantization parameter varying from lossless to
lossy.

[0025] The 2D data encoder 200 produces a compressed
bitstream 220 that is a more compact representation (for
typical input) of 2D data 210 presented as input to the
encoder. For example, the 2D data input can be an image, a
frame of a video sequence, or other data having two dimen-
sions. The 2D data encoder divides a frame of the input data
into blocks (illustrated generally in FIG. 2 as partitioning
230), which in the illustrated implementation are non-over-
lapping 4x4 pixel blocks that form a regular pattern across the
plane of the frame. These blocks are grouped in clusters,
called macroblocks, which are 16x16 pixels in size in this
representative encoder. In turn, the macroblocks are grouped
into regular structures called tiles. The tiles also form a regu-
lar pattern over the image, such that tiles in a horizontal row
are of uniform height and aligned, and tiles in a vertical
column are of uniform width and aligned. In the representa-
tive encoder, the tiles can be any arbitrary size that is a
multiple of 16 in the horizontal and/or vertical direction.
Alternative encoder implementations can divide the image
into block, macroblock, tiles, or other units of other size and
structure.

[0026] A “forward overlap” operator 240 is applied to each
edge between blocks, after which each 4x4 block is trans-
formed using a block transform 250. This block transform
250 can be the reversible, scale-free 2D transform described
by Srinivasan, U.S. patent application Ser. No. 11/015,707,
entitled, “Reversible Transform For Lossy And Lossless 2-D
Data Compression,” filed Dec. 17, 2004. The overlap operator
240 can be the reversible overlap operator described by Tu et
al., U.S. patent application Ser. No. 11/015,148, entitled,
“Reversible Overlap Operator for Efficient Lossless Data
Compression,” filed Dec. 17, 2004; and by Tu et al., U.S.
patent application Ser. No. 11/035,991, entitled, “Reversible
2-Dimensional Pre-/Post-Filtering For Lapped Biorthogonal
Transform,” filed Jan. 14, 2005. Alternatively, the discrete
cosine transform or other block transforms and overlap opera-
tors can be used. Subsequent to the transform, the DC coef-
ficient 260 of each 4x4 transform block is subject to a similar
processing chain (tiling, forward overlap, followed by 4x4
block transform). The resulting DC transform coefficients

US 2008/0198935 Al

and the AC transform coefficients are quantized 270, entropy
coded 280 and packetized 290.

[0027] The decoder performs the reverse process. On the
decoder side, the transform coefficient bits are extracted 310
from their respective packets, from which the coefficients are
themselves decoded 320 and dequantized 330. The DC coet-
ficients 340 are regenerated by applying an inverse transform,
and the plane of DC coefficients is “inverse overlapped” using
a suitable smoothing operator applied across the DC block
edges. Subsequently, the entire data is regenerated by apply-
ing the 4x4 inverse transform 350 to the DC coefficients, and
the AC coefficients 342 decoded from the bitstream. Finally,
the block edges in the resulting image planes are inverse
overlap filtered 360. This produces a reconstructed 2D data
output.

[0028] In an exemplary implementation, the encoder 200
(FIG. 2) compresses an input image into the compressed
bitstream 220 (e.g., a file), and the decoder 300 (FIG. 3)
reconstructs the original input or an approximation thereof,
based on whether lossless or lossy coding is employed. The
process of encoding involves the application of a forward
lapped transform (LT) discussed below, which is imple-
mented with reversible 2-dimensional pre-/post-filtering also
described more fully below. The decoding process involves
the application of the inverse lapped transform (ILT) using the
reversible 2-dimensional pre-/post-filtering.

[0029] The illustrated LT and the ILT are inverses of each
other, in an exact sense, and therefore can be collectively
referred to as a reversible lapped transform. As a reversible
transform, the LT/ILT pair can be used for lossless image
compression.

[0030] The input data 210 compressed by the illustrated
encoder 200/decoder 300 can be images of various color
formats (e.g., RGB/YUV4:4:4, YUV4:2:2 orYUV4:2:0 color
image formats). Typically, the input image always has a lumi-
nance (Y) component. Ifitis aRGB/YUV4:4:4,YUV4:2:2 or
YUV4:2:0 image, the image also has chrominance compo-
nents, such as a U component and a V component. The sepa-
rate color planes or components of the image can have differ-
ent spatial resolutions. In case of an input image in the YUV
4:2:0 color format for example, the U and V components have
half of the width and height of the’ Y component.

[0031] As discussed above, the encoder 200 tiles the input
image or picture into macroblocks. In an exemplary imple-
mentation, the encoder 200 tiles the input image into 16x16
pixel areas (called “macroblocks™) in the Y channel (which
may be 16x16, 16x8 or 8x8 areas in the U and V channels
depending on the color format). Each macroblock color plane
is tiled into 4x4 pixel regions or blocks. Therefore, a macrob-
lock is composed for the various color formats in the follow-
ing manner for this exemplary encoder implementation:

[0032] 1. For a grayscale image, each macroblock con-
tains 16 4x4 luminance (Y) blocks.

[0033] 2.ForaYUV4:2:0 format color image, each mac-
roblock contains 16 4x4 Y blocks, and 4 each 4x4
chrominance (U and V) blocks.

[0034] 3.ForaYUV4:2:2 format color image, each mac-
roblock contains 16 4x4 Y blocks, and 8 each 4x4
chrominance (U and V) blocks.

[0035] 4. For a RGB or YUV4:4:4 color image, each
macroblock contains 16 blocks each of Y, U and V chan-
nels.

[0036] Accordingly, after transform, a macroblock in this
representative encoder 200/decoder 300 has three frequency

Aug. 21, 2008

sub bands: a DC sub band (DC macroblock), a low pass sub
band (low pass macroblock), and a high pass sub band (high
pass macroblock). In the representative system, the low pass
and/or high pass sub bands are optional in the bitstream—
these sub bands may be entirely dropped.
[0037] Further, the compressed data can be packed into the
bitstream in one of two orderings: spatial order and frequency
order. For the spatial order, different sub bands of the same
macroblock within a tile are ordered together, and the result-
ing bitstream of each tile is written into one packet. For the
frequency order, the same sub band from different macrob-
locks within a tile are grouped together, and thus the bitstream
of a tile is written into three packets: a DC tile packet, a low
pass tile packet, and a high pass tile packet. In addition, there
may be other data layers.
[0038] Thus, for the representative system, an image is
organized in the following “dimensions™:
[0039] Spatial dimension: Frame—Tile—=Macroblock;
[0040] Frequency dimension: DCILow pass|High pass; and
[0041] Channel dimension: LuminancelChrominance
OlChrominance 1 ... (e.g. asYIUIV).
The arrows above denote a hierarchy, whereas the vertical
bars denote a partitioning.
[0042] Although the representative system organizes the
compressed digital media data in spatial, frequency and chan-
nel dimensions, the flexible quantization approach described
here can be applied in alternative encoder/decoder systems
that organize their data along fewer, additional or other
dimensions. For example, the flexible quantization approach
can be applied to coding using a larger number of frequency
bands, other format of color channels (e.g., YIQ, RGB, etc.),
additional image channels (e.g., for stereo vision or other
multiple camera arrays).

2. Inverse Core and Lapped Transform

[0043] Overview
[0044] In one implementation of the encoder 200/decoder
300, the inverse transform on the decoder side takes the form
of a two-level lapped transform. The steps are as follows:
[0045] An Inverse Core Transform (ICT) is applied to
each 4x4 block corresponding to reconstructed DC and
lowpass coeflicients arranged in a planar array known as
the DC plane.
[0046] A postfilter operation is optionally applied to 4x4
areas evenly straddling blocks in the DC plane. Further,
a post filter is applied to boundary 2x4 and 4x2 areas,
and the four 2x2 corner areas are left untouched.
[0047] The resulting array contains DC coefficients of
the 4x4 blocks corresponding to the first-level trans-
form. The DC coefficients are (figuratively) copied into
a larger array, and the reconstructed highpass coeffi-
cients populated into the remaining positions.
[0048] An ICT is applied to each 4x4 block.
[0049] A postfilter operation is optionally applied to 4x4
areas evenly straddling blocks in the DC plane. Further,
a post filter is applied to boundary 2x4 and 4x2 areas,
and the four 2x2 corner areas are left untouched.
[0050] This process is shown in FIG. 4.
[0051] The application of post filters is governed by an
OVERLAP_INFO syntax element in the compressed bit-
stream 220. OVERLAP_INFO may take on three values:
[0052] If OVERLAP_INFO=0, no post filtering is per-
formed.

US 2008/0198935 Al

[0053] IfOVERLAP_INFO=1, only the outer post filter-
ing is performed.
[0054] IfOVERLAP_INFO=2,both inner and outer post
filtering is performed.
[0055] Inverse Core Transform
[0056] The Core Transform (CT) is inspired by the conven-
tionally known 4x4 Discrete Cosine Transform (DCT), yet it
is fundamentally different. The first key difference is that the
DCT is linear whereas the CT is nonlinear. The second key
difference is that due to the fact that it is defined on real
numbers, the DCT is not a lossless operation in the integer to
integer space. The CT is defined on integers and is lossless in
this space. The third key difference is that the 2D DCT is a
separable operation. The CT is non-separable by design.
[0057] The entire inverse transform process can be written
as the cascade of three elementary 2x2 transform operations,
which are:
[0058] 2x2 Hadamard transform: T_h

[0059] Inverse ID rotate: InvT_odd
[0060] Inverse 2D rotate: InvT_odd_odd
[0061] These transforms are implemented as non-separable

operations and are described first, followed by the description
of the entire ICT.

[0062] 2D 2x2 Hadamard Transform T_h

[0063] The encoder/decoder implements the 2D 2x2 Had-
amard transform T_h as shown in the following pseudo-code
table. R is a rounding factor which may take on the value 0 or
1 only. T_h is involutory (i.e. two applications of T_h on a
data vector [a b ¢ d] succeed in recovering the original values
of [a b ¢ d], provided R is unchanged between the applica-
tions). The inverse T_h is T_h itself.

T_h(ab,ed,R) {
a+=d;
b-=c¢;
inttl =((a-b+R)>>1);
intt2 =c;
c=tl-d;
d=tl -t2;
a-=d;
b+=c¢;

[0064] Inverse 1D Rotate InvT_odd
[0065] The lossless inverse of T_odd is defined by the
pseudocode in the following table.

InvT_odd (a,b,e,d) {

b+=d;
a-=c;
d-=(b>>1);

c+=((a+1)>>1);

a-=((3*b+4)>>3);
b+=((3*a+4)>>3);
c—=((3*d +4)>>3);
d+=((3*c+4)>>3);
c—=(b+1)>>1);

d=(a+1)>>1)-d;

b+=c¢;
a-=d;
}
[0066] Inverse 2D Rotate InvT_odd_odd
[0067] Inverse 2D rotate InvT_odd_odd is defined by the

pseudocode in the following table.

Aug. 21, 2008

InvT_odd_odd (a,b,c,d) {
int t1,t2;
d+=a;
c—=b;
a-=(tl=d>>1);
b+=(t2=c>>1);
a-=((b*3+3)>>3);
b+=(a*3+3)>>2);
a-=((b*3+4)>>3);
b-=1t2;
a+=tl;
c+=Db;
d-=a;
b=-b
c=-c

[0068] ICT Operations

[0069] The correspondence between 2x2 data and the pre-
viously listed pseudocode is shown in FIG. 5. Color coding
using four gray levels to indicate the four data points is
introduced here, to facilitate the transform description in the
next section.

[0070] The 2D 4x4 point ICT is built using T_h, inverse
T _odd and inverse T_odd_odd. Note the inverse T_his T _h
itself. The ICT is composed of two stages, which are shown in
the following pseudo-code. Each stage consists of four 2x2
transforms which may be done in any arbitrary sequence, or
concurrently, within the stage.

[0071] Ifthe input data block is

o
R
= 0 o

5
~

4x4_IPCT_ 1stStage() and 4x4_IPCT_ 2ndStage() are
defined as:

4x4_IPCT (a..p) {
T_h(a,c,i,k);
InvT__odd(b, d, j, 1);
InvT_odd(e, m, g, 0);
InvT_odd_odd(f, h, n, p);
T_h(a, d, m, p);
T_hlk, j, g D)
T_h(c, b, 0, n);
T_h(, 1, e, h);

[0072] The function 2x2_ICT is the same as T_h.

[0073] Post Filtering Overview

[0074] Four operators determine the post filters used in the
inverse lapped transform. These are:

[0075] 4x4 post filter
[0076] 4 point post filter
[0077] 2x2 post filter
[0078] 2 point post filter

[0079] The post-filter uses T_h, InvT_odd_odd, invScale
and invRotate. invRotate and invScale are defined in the
below tables, respectively.

10

US 2008/0198935 Al

Aug. 21, 2008

invRotate (a,b) {
a-=(b*3+8) >>4);
b4+=((a*3+4)>>3);
a-=((b*3+8>>4);

}

invScale (a,b) {
b +=a;
a-=(b+1)>>1);
b4+=((a*3+0)>>3);
a+=((b*3+8)>>4);
b+=((a*3+4)>>3);
a+=(b+1)>>1);

b-=a;
}
[0080] 4x4 Post Filter
[0081] Primarily, the 4x4 post-filter is applied to all block

junctions (areas straddling 4 blocks evenly) in all color planes
when OVERLAP_INFO is 1 or 2. Also, the 4x4 filter is
applied to all block junctions in the DC plane for all planes
when OVERLAP_INFO is 2, and for only the luma plane
when OVERLAP_INFO is 2 and color format is either YUV
4:2:00r YUV 4:2:2.

[0082] If the input data block is

~

B
a
&

N
™

the 4x4 post-filter, 4x4PostFilter (a, b, ¢, d, e, f, g, h, 1, j, k, 1,
m, 1, 0, p), is defined in the following table:

4x4PostFilter
(a,b,.p) {
T_h(a,d, m,p,0);
T_h(b,c, n, 0, 0);
T_h(e h,i,1,0)
T h(f, g ik 0)
invRotate (n, m);
invRotate (j, 1);
invRotate (h, d);
invRotate (g, ¢);
InvT_odd_odd (k, I, 0, p);
invScale (a, p);
invScale (b, 1);
invScale (e, 0);
invScale (f, k);
T_h(a,m,d,p,0);
T_h(b,n,c,0,0);
T_h (e, i,h,1,0);
T_h(f] gk 0);

[0083] 4-Point Post-Filter

[0084] Linear 4-point filters are applied to edge straddling
2x4 and 4x2 areas on the boundary of the image. If the input
data is [a b ¢ d], the 4-point post-filter, 4PostFilter(a, b, ¢, d),
is defined in the following table.

4PostFilter (a,b,c,d) {
a+=d;
b+=c¢;
d-=(a+1)>>1);
c—=(b+1)>>1);
invRotate(c, d);
d+=((a+1)>>1);
c+=((b+1)>>1);
a-=d-((d*3+16)>>3);
b-=c-((c*3+16)>>5);
d+=((a*3+8)>>4);
c+=((b*3+8)>>4);
a+=((d*3+16)>>5);
b+=((c*3+16)>>5);

[0085] 2x2 Post-Filter

[0086] The 2x2 post-filter is applied to areas straddling
blocks in the DC plane for the chroma channels of YUV 4:2:0
and YUV 4:2:2 data. If the input data is

[2}

the 2x2 post-filter 2x2PostFilter (a, b, ¢, d), is defined in the
following table:

2x2PostFilter
(ab.ed) {
a+=d;
b+=c¢;
d-=(a+1)>>1);
c—=(b+1)>>1);
b+=((a+2)>>2);
at+=(b+1)>>1);
b+=((a+2)>>2);
d+=((a+1)>>1);
c+=((b+1)>>1);
a-=d;
b-=c¢;

[0087] 2-Point Post-Filter

[0088] The 2-point post filter is applied to boundary 2x1
and 1x2 samples that straddle blocks. The 2-point post-filter,
2PostFilter (a, b) is defined in the following table:

2PostFilter (a,b) {
b+=((a+4)>>3);
a+=((b+2)>>2);
b+=((a+4)>>3);

[0089] Signaling of the precision required for performing
transform operations of the above described lapped transform
can be performed in the header of a compressed image struc-
ture. In the example implementation, LONG_WORD_FLAG
and NO_SCALED_FLAGS are syntax elements transmitted
in the compressed bitstream (e.g., in the image header) to
signal precision and computational complexity to be applied
by the decoder.

11

US 2008/0198935 Al

3. Precision and Word Length

[0090] The example encoder/decoder performs integer
operations. Further, the example encoder/decoder supports
lossless encoding and decoding. Therefore, the primary
machine precision required by the example encoder/decoder
is integer.

[0091] However, integer operations defined in the example
encoder/decoder lead to rounding errors for lossy coding.
These errors are small by design, however they cause drops in
the rate distortion curve. For the sake of improved coding
performance by the reduction of rounding errors, the example
encoder/decoder defines a secondary machine precision. In
this mode, the input is pre multiplied by 8 (i.e. left shifted by
3 bits) and the final output is divided by 8 with rounding (i.e.
right shifted by 3 bits). These operations are carried out at the
front end of the encoder and the rear end of the decoder, and
are largely invisible to the rest of the processes. Further, the
quantization levels are scaled accordingly such that a stream
created with the primary machine precision and decoded
using the secondary machine precision (and vice versa) pro-
duces an acceptable image.

[0092] The secondary machine precision cannot be used
when lossless compression is desired. The machine precision
used in creating a compressed file is explicitly marked in the
header.

Aug. 21, 2008

[0093] The secondary machine precision is equivalent to
using scaled arithmetic in the codec, and hence this mode is
referred to as Scaled. The primary machine precision is
referred to as Unscaled.

[0094] The example encoder/decoder is designed to pro-
vide good encoding and decoding speed. A design goal of the
example encoder/decoder is that the data values on both
encoder and decoder do not exceed 16 signed bits for an 8 bit
input. (However, intermediate operation within a transform
stage may exceed this figure.) This holds true for both modes
of machine precision.

[0095] Conversely, when the secondary machine precision
is chosen, the range expansion of the intermediate values is by
8 bits. Since the primary machine precision avoids a pre-
multiplication by 8, its range expansion is 8-3=5 bits.
[0096] The first example encoder/decoder uses two differ-
ent word lengths for intermediate values. These word lengths
are 16 and 32 bits.

[0097]
[0098] The second example bitstream syntax and semantics

is hierarchical and is comprised of the following layers:
Image, Tile, Macroblock and Block.

Second Example Bitstream Syntax and Semantics

Num bits Descriptor

IMAGE (){

IMAGE__HEADER

Image (IMAGE)

Variable struct

bAlphaPlane = FALSE

IMAGE_PLANE_HEADER

Variable struct

iflALPHACHANNEL_ FLAG) {

}
INDEX_TABLE
TILE

bAlphaPlane = TRUE
IMAGE_PLANE_HEADER

Variable Struct

Variable struct
Variable struct

Image Header IMAGE_HEADER)

IMAGE_HEADER (){

GDISIGNATURE 64 uimsbf
RESERVED1 4 uimsbf
RESERVED?2 4 uimsbf
TILING_FLAG 1 bool
1 uimsbf
FREQUENCYMODE__BITSTREAM__ FLAG
IMAGE__ ORIENTATION 3 uimsbf
1 uimsbf
INDEXTABLE PRESENT_FLAG

OVERLAP__INFO 2 uimsbf
SHORT_HEADER_ FLAG 1 bool
LONG_WORD_ FLAG 1 bool
WINDOWING__FLAG 1 bool
TRIM__FLEXBITS_ FLAG 1 bool
RESERVED3 3 uimsbf
ALPHACHANNEL_FLAG 1 bool
SOURCE_CLR__FMT 4 uimsbf
SOURCE__BITDEPTH 4 uimsbf
If(SHORT__HEADER_FLAG) {

WIDTH__MINUS1 16 uimsbf

HEIGHT__MINUS1 16 uimsbf
}
else {

WIDTH_MINUS1 32 uimsbf

HEIGHT_MINUS1 32 uimsbf

12

US 2008/0198935 Al

-continued

Num bits Descriptor

¥
if(TILING__FLAG) {
NUM_VERT_TILES__MINUS1

NUM_HORIZ_TILES_MINUS1

for(n=0;n<
NUM__VERT_TILES_ MINUS1; N++) {
If (SHORT__HEADER_ FLAG)

WIDTH_IN_MB_ OF_TILE_MINUSI1[n]
else

WIDTH_IN_MB_ OF_TILE_MINUSI1[n]
for(n=0;n<

NUM__HORIZ_ TILES_ MINUSI; n++) {
If (SHORT_HEADER_FLAG)

HEIGHT IN_MB_ OF_TILE_MINUS1[n]
else

HEIGHT_IN_MB_OF_TILE_ MINUS1[n]
}
if (WINDOWING_FLAG) {
NUM_TOP_ EXTRAPIXELS
NUM_LEFT_EXTRAPIXELS

NUM_BOTTOM_EXTRAPIXELS
NUM_RIGHT__EXTRAPIXELS
}

}
IMAGE_ PLANE_ HEADER () {

CLR_FMT

NO__SCALED_ FLAG

BANDS__PRESENT

if (CLR_FMT ==YUV444) {
CHROMA__CENTERING
COLOR_INTERPRETATION

)

Else if (CLR_FMT == NCHANNEL) {
NUM__CHANNELS_MINUS1
COLOR_INTERPRETATION

¥

if (SOURCE__CLR__FMT == BAYER) {
BAYER__PATTERN
CHROMA_ CENTERING_ BAYER
COLOR_INTERPRETATION

}
if (SOURCE_ BITDEPTH €
{BD16,BD168,BD32,BD325}) {
SHIFT_BITS

¥

if (SOURCE__BITDEPTH == BD32F) {
LEN_ MANTISSA
EXP__BIAS

J

DC_FRAME_UNIFORM

if (DC_FRAME_UNIFORM) {
DC_QP()

if (BANDS_ PRESENT != SB_DC_ONLY) {
USE_DC_QP
if (USE_DC_ QP == FALSE) {
LP_FRAME_UNIFORM
if (LP_ FRAME_ UNIFORM) {
NUM_LP_QPS =1
LP_QP()

if (BANDS__PRESENT != SB__NO__HIGHPASS) {

USE_LP_QP
if (USE_LP_ QP == FALSE) {

12
12

NS —_

INEN

variable

variable

uimsbf
uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf
uimsbf
uimsbf

uimsbf

uimsbf
bool

uimsbf
uimsbf

uimsbf

uimsbf
uimsbf

uimsbf
uimsbf
uimsbf

uimsbf
uimsbf
uimsbf
bool

struct

bool

bool

struct

bool

13

Aug. 21, 2008

US 2008/0198935 Al

-continued

Aug. 21, 2008

Num bits Descriptor

HP__FRAME__UNIFORM 1

if (HP_ FRAME UNIFORM) {
NUM_HP_QPS=1
HP_QP()

3
}

¥
FLUSH_BYTE
1
I

variable

bool

variable struct

[0099] Some selected bitstream elements from the second
example bitstream syntax and semantics are defined below.
[0100] Long Word Flag (LONG_WORD_FLAG) (1 bit)
[0101] LONG_WORD_FLAG is a 1-bit syntax element
and specifies whether 16-bit integers may be used for trans-
form computations. In this second example bitstream syntax,
it LONG_WORD_FLAG==0 (FALSE), 16-bit integer num-
bers and arrays may be used for the outer stage of transform
computations (intermediate operations within the transform
(such as (3*a+1)>>1) are performed with higher accuracy). If
LONG_WORD_FLAG==TRUE, 32-bit integer numbers and
arrays shall be used for transform computations.

[0102] Note: 32-bit arithmetic may be used to decode an
image regardless of the value of LONG_WORD_FLAG. This
syntax element can be used by the decoder to choose the most
efficient word length for implementation.

[0103] No Scaled Arithmetic Flag (NO_SCALED_
FLAG)(1 bit)

[0104] NO_SCALED_FLAG is a 1-bit syntax element that
specifies whether the transform wuses scaling. If
NO_SCALED_FLAG==1, scaling shall not be performed. If
NO_SCALED_FLAG==0, scaling shall be used. In this case,
scaling shall be performed by appropriately rounding down
the output of the final stage (color conversion) by 3 bits.
[0105] Note: NO_SCALED_FLAG shall be set to TRUE if
lossless coding is desired, even if lossless coding is used for
only a subregion of an image. Lossy coding may use either
mode.

[0106] Note: The rate-distortion performance for lossy
coding is superior when scaling is used (i.e. NO_SCALED_
FLAG==FALSE), especially at low QPs.

4. Signaling and Use of Long Word Flag

[0107] One example image format for the representative
encoder/decoder supports a wide range of pixel formats,
including high dynamic range and wide gamut formats. Sup-
ported data types include signed integer, unsigned integer,
fixed-point float and floating-point float. Supported bit depths
include eight, 16, 24 and 32 bits per color channel. The
example image format allows for lossless compression of
images that use up to 24 bits per color channel, and lossy
compression of images that use up to 32 bits per color chan-
nel.

[0108] At the same time, the example image format has
been designed to provide high quality images and compres-
sion efficiency and allow low-complexity encoding and
decoding implementations.

[0109] To support low-complexity implementation, the
transform in an example image format has been designed to

minimize expansion in dynamic range. The two-stage trans-
form increases dynamic range by only five bits. Therefore, if
the image bit depth is eight bits per color channel, 16 bit
arithmetic may be sufficient for performing all transform
operations at the decoder. For other bit depths, higher preci-
sion arithmetic may be needed for transform operations.
[0110] The computational complexity of decoding a par-
ticular bitstream can be reduced if the precision required for
performing transform operations is known at the decoder.
This information can be signaled to a decoder using a syntax
element (e.g., a 1-bit flag in an image header). Described
signaling techniques and syntax elements can reduce compu-
tational complexity in decoding bitstreams.

[0111] In one example implementation, the 1-bit syntax
element LONG_WORD_FLAG is used. For example, if
LONG_WORD_FLAG==FALSE, 16-bit integer numbers
and arrays may be used for the outer stage of transform
computations, and if LONG_WORD_FLAG==TRUE, 32 bit
integer numbers and arrays shall be used for transform com-
putations.

[0112] In the one implementation of the representative
encoder/decoder, the in-place transform operations may be
performed on 16-bit wide words, but intermediate operations
within the transform (such as computation of the product 3*a
for a “lifting” step given by b+=(3*a+1)>>1)) are performed
with higher accuracy (e.g., 18 bits or higher precision). How-
ever, in this example, the intermediate transform values a and
b themselves may be stored in 16-bit integers.

[0113] 32-bit arithmetic may be used to decode an image
regardless of the value of the LONG_WORD_FLAG ele-
ment. The LONG_WORD_FLAG element can be used by the
encoder/decoder to choose the most efficient word length for
implementation. For example, an encoder may choose to set
the LONG_WORD_FLAG element to FALSE if it can verify
that the 16-bit and 32-bit precision transform steps produce
the same output value.

5. Signaling and Use of NO_SCALED_FLAG

[0114] One example image format for the representative
encoder/decoder supports a wide range of pixel formats,
including high dynamic range and wide gamut formats. At the
same time, the design of the representative encoder/decoder
optimizes image quality and compression efficiency and
enables low-complexity encoding and decoding implemen-
tations.

[0115] As discussed above, the representative encoder/de-
coder uses two stage hierarchical block-based transform,
where all the transform steps are integer operations. The small
rounding errors present in these integer operations result in

14

US 2008/0198935 Al

loss of compression efficiency during lossy compression. To
combat this problem, one implementation of the representa-
tive encoder/decoder defines two different precision modes
for decoder operations: the scaled mode and the unscaled
mode.

[0116] In the scaled precision mode, the input image is pre
multiplied by 8 (i.e. left shifted by 3 bits) at the encoder, and
the final output at the decoder is divided by 8 with rounding
(i.e. right shifted by 3 bits). Operation in the scaled precision
mode minimizes the rounding errors, and results in improved
rate-distortion performance.

[0117] In the unscaled precision mode, there is no such
scaling. An encoder or decoder operating in unscaled preci-
sion mode has to deal with a smaller dynamic range for
transform coefficients, and thus has lower computational
complexity. However, there is a small penalty in compression
efficiency for operating in this mode. Lossless coding (with
no quantization, i.e. setting the Quantization Parameter or QP
to 1) can only use the unscaled precision mode for guaranteed
reversibility.

[0118] The precision mode used by the encoder in creating
acompressed file is explicitly signaled in the image header of
the compressed bitstream 220 (FIG. 2) using the NO_S-
CALED_FLAG. It is recommended that the decoder 300 use
the same precision mode for its operations.

[0119] NO_SCALED_FLAG is a 1-bit syntax element in
the image header that specifies the precision mode as follows:
[0120] If NO_SCALED_FLAG==TRUE, unscaled mode
should be used for decoder operation.

[0121] If NO_SCALED_FLAG==FALSE, scaling should
be used. In this case, scaled mode should be used for opera-
tion by appropriately rounding down the output of the final
stage (color conversion) by 3 bits.

[0122] The rate-distortion performance for lossy coding is
superior when unscaled mode is used (i.e. NO_SCALED_
FLAG==FALSE), especially at low QPs. However, the com-
putation complexity is lower when unscaled mode is used due
to two reasons:

[0123] Smaller dynamic range expansion in the unscaled
mode means that shorter words may be used for transform
computations, especially in conjunction with the “LONG_
WORD_FLAG.” In VLSI implementations, the reduced
dynamic range expansion means that the gate logic imple-
menting the more significant bits may be powered down.
[0124] The scaled mode requires an add and right bit shift
by 3 bits (implementing a rounded divide by 8) on the decoder
side. On the encoder side, it requires a left bit shift by 3 bits.
This is slightly more computationally demanding than the
unscaled mode overall.

[0125] Further, the unscaled mode allows for the compres-
sion of more significant bits than does the scaled mode. For
instance, the unscaled mode permits the lossless compression
(and decompression) of up to 27 significant bits per sample,
using 32 bit arithmetic. In contrast, the scaled mode allows
the same for only 24 bits. This is because of the three addi-
tional bits of dynamic range introduced by the scaling pro-
cess.

[0126] The data values on decoder do not exceed 16 signed
bits for an 8 bit input for both modes of precision. (However,
intermediate operation within a transform stage may exceed
this figure.)

[0127] Note: NO_SCALED_FLAG is set to TRUE by the
encoder, if lossless coding (QP=1) is desired, even if lossless
coding is required for only a subregion of an image.

Aug. 21, 2008

[0128] The encoder may use either mode for lossy com-
pression. Itis recommended that the decoder use the precision
mode signaled by NO_SCALED_MODE for its operations.
However, the quantization levels are scaled such that a stream
created with the scaled precision mode and decoded using the
unscaled precision mode (and vice versa) produces an accept-
able image in most cases.

6. Scaling Arithmetic for Increased Accuracy

[0129] In one implementation of the representative
encoder/decoder, the transforms (including color conversion)
are integer transforms and implemented through a series of
lifting steps. In those lifting steps, truncation errors hurt trans-
form performance. For lossy compression cases, to minimize
the damage of truncation errors and thus maximize transform
performance, input data to a transform needs to be left shifted
several bits. However, another highly desired feature is if the
input image is 8 bits, then the output of every transform
should be within 16 bits. So the number of left shift bits
cannot be large. The representative decoder implements a
technique of scaling arithmetic to achieve both goals. The
scaling arithmetic technique maximizes transform perfor-
mance by minimizing damage of truncation errors, and still
limits output of each transform step to be within 16 bits if
input image is 8 bits. This makes simple 16-bit implementa-
tion possible.

[0130] The transforms utilized in the representative
encoder/decoder are integer transforms and implemented by
lifting steps. Most lifting steps involve a right shift, which
introduces truncation errors. A transform generally involves
many lifting steps, and accumulated truncation errors hurt
transform performance visibly.

[0131] One way to reduce the damage of truncation errors is
to left shift the input data before the transform in the encoder,
and right shift the same number of bits after transform (com-
bined with quantization) at the decoder. As described above,
the representative encoder/decoder has a two-stage transform
structure: optional first stage overlap+first stage CT+optional
second stage overlap+second stage CT. Experiments show
that left shift by 3 bits is necessary to minimize the truncation
errors. So in lossy cases, before color conversion, input data
may be left shifted by 3 bits, i.e. multiplied or scaled by a
factor of 8 (e.g., for the scaled mode described above).

[0132] However, color conversion and transforms expand
data. If input data is shifted by 3 bits, the output of second
stage 4x4 DCT has a 17-bit dynamic range if input data is 8
bits (output of every other transform is still within 16 bits).
This is hugely undesired since it prevents 16-bit implemen-
tation, a highly desired feature. To get around this, before the
second stage 4x4 CT, the input data is right shifted by 1 bit
and so the output is also within 16 bits. Since the second stage
4x4 CT applies to only Yis of the data (the DC transform
coefficients of the first stage DCT), and the data is already
scaled up by first stage transform, so the damage of truncation
errors here is minimal.

[0133] So in lossy cases for 8-bit images, on encoder side,

input is left shifted by 3 bits before color conversion, and right
shifted 1 bit before second stage 4x4 CT.On thedecoderside,

15

US 2008/0198935 Al

the input is left shifted by 1 bit before first stage 4x4 IDCT,
and right shifted by 3 bits after color conversion.

7. Computing Environment

[0134] The above-described processing techniques for
computational complexity and precision signaling in a digital
media codec can be realized on any of a variety of digital
media encoding and/or decoding systems, including among
other examples, computers (of various form factors, includ-
ing server, desktop, laptop, handheld, etc.); digital media
recorders and players; image and video capture devices (such
as cameras, scanners, etc.); communications equipment (such
as telephones, mobile phones, conferencing equipment, etc.);
display, printing or other presentation devices; and etc. The
computational complexity and precision signaling tech-
niques in a digital media codec can be implemented in hard-
ware circuitry, in firmware controlling digital media process-
ing hardware, as well as in communication software
executing within a computer or other computing environ-
ment, such as shown in FIG. 6.

[0135] FIG. 6 illustrates a generalized example of a suitable
computing environment (600) in which described embodi-
ments may be implemented. The computing environment
(600) is not intended to suggest any limitation as to scope of
use or functionality of the invention, as the present invention
may be implemented in diverse general-purpose or special-
purpose computing environments.

[0136] With reference to FIG. 6, the computing environ-
ment (600) includes at least one processing unit (610) and
memory (620). In FIG. 6, this most basic configuration (630)
is included within a dashed line. The processing unit (610)
executes computer-executable instructions and may be a real
or a virtual processor. In a multi-processing system, multiple
processing units execute computer-executable instructions to
increase processing power. The memory (620) may be vola-
tile memory (e.g., registers, cache, RAM), non-volatile
memory (e.g., ROM, EEPROM, flash memory, etc.), or some
combination of the two. The memory (620) stores software
(680) implementing the described digital media encoding/
decoding with computational complexity and precision sig-
naling techniques.

[0137] A computing environment may have additional fea-
tures. For example, the computing environment (600)
includes storage (640), one or more input devices (650), one
or more output devices (660), and one or more communica-
tion connections (670). An interconnection mechanism (not
shown) such as a bus, controller, or network interconnects the
components of the computing environment (600). Typically,
operating system software (not shown) provides an operating
environment for other software executing in the computing
environment (600), and coordinates activities of the compo-
nents of the computing environment (600).

[0138] The storage (640) may be removable or non-remov-
able, and includes magnetic disks, magnetic tapes or cas-
settes, CD-ROMs, CD-RWs, DVDs, or any other medium
which can be used to store information and which can be
accessed within the computing environment (600). The stor-
age (640) stores instructions for the software (680) imple-
menting the described digital media encoding/decoding with
computational complexity and precision signaling tech-
niques.

[0139] The input device(s) (650) may be a touch input
device such as a keyboard, mouse, pen, or trackball, a voice
input device, a scanning device, or another device that pro-

10

Aug. 21, 2008

vides input to the computing environment (600). For audio,
the input device(s) (650) may be a sound card or similar
device that accepts audio input in analog or digital form from
a microphone or microphone array, or a CD-ROM reader that
provides audio samples to the computing environment. The
output device(s) (660) may be a display, printer, speaker,
CD-writer, or another device that provides output from the
computing environment (600).

[0140] The communication connection(s) (670) enable
communication over a communication medium to another
computing entity. The communication medium conveys
information such as computer-executable instructions, com-
pressed audio or video information, or other data in a modu-
lated data signal. A modulated data signal is a signal that has
one or more of its characteristics set or changed in such a
manner as to encode information in the signal. By way of
example, and not limitation, communication media include
wired or wireless techniques implemented with an electrical,
optical, RF, infrared, acoustic, or other carrier.

[0141] The described digital media encoding/decoding
with flexible quantization techniques herein can be described
in the general context of computer-readable media. Com-
puter-readable media are any available media that can be
accessed within a computing environment. By way of
example, and not limitation, with the computing environment
(600), computer-readable media include memory (620), stor-
age (640), communication media, and combinations of any of
the above.

[0142] The described digital media encoding/decoding
with computational complexity and precision signaling tech-
niques herein can be described in the general context of
computer-executable instructions, such as those included in
program modules, being executed in a computing environ-
ment on a target real or virtual processor. Generally, program
modules include routines, programs, libraries, objects,
classes, components, data structures, etc. that perform par-
ticular tasks or implement particular abstract data types. The
functionality of the program modules may be combined or
split between program modules as desired in various embodi-
ments. Computer-executable instructions for program mod-
ules may be executed within a local or distributed computing
environment.

[0143] For the sake of presentation, the detailed description
uses terms like “determine,” “generate,” “adjust,” and
“apply” to describe computer operations in a computing envi-
ronment. These terms are high-level abstractions for opera-
tions performed by a computer, and should not be confused
with acts performed by a human being. The actual computer
operations corresponding to these terms vary depending on
implementation.

[0144] Inview of the many possible embodiments to which
the principles of our invention may be applied, we claim as
our invention all such embodiments as may come within the
scope and spirit of the following claims and equivalents
thereto.

We claim:

1. A digital media decoding method comprising:

receiving a compressed digital media bitstream at a digital
media decoder;

parsing a syntax element from the bitstream signaling a
degree of arithmetic precision to use for transform com-
putations during processing of the digital media data;
and

outputting a reconstructed image.

16

US 2008/0198935 Al

2. The digital media decoding method of claim 1 wherein
the syntax element signals to use one of a high arithmetic
precision or a low arithmetic precision.

3. The digital media decoding method of claim 2 wherein
the high arithmetic precision is 32-bit number processing, and
the low arithmetic precision is 16-bit number processing.

4. The digital media decoding method of claim 2 further
comprising:

decoding blocks of transform coefficients from the com-

pressed digital media bitstream;

in the case that the syntax element signals use of the high

arithmetic precision, applying an inverse transform to
the transform coefficients using high arithmetic preci-
sion processing; and

in the case that the syntax element signals use of the low

arithmetic precision, applying an inverse transform to
the transform coefficients using low arithmetic precision
processing.

5. The digital media decoding method of claim 4 wherein
the high arithmetic precision is 32-bit number processing, and
the low arithmetic precision is 16-bit number processing.

6. The digital media decoding method of claim 2 further
comprising:

decoding blocks of transform coefficients from the com-

pressed digital media bitstream;

applying an inverse transform to the transform coefficients

using high arithmetic precision processing regardless of
the degree of arithmetic precision signaled via the syn-
tax element.

7. A digital media encoding method comprising:

receiving digital media data at a digital media encoder;

making a decision whether to use lower precision arith-
metic for transform computations during processing of
the digital media data;

representing the decision whether to use the lower preci-

sion arithmetic for transform computations with a syn-
tax element in an encoded bitstream, wherein the syntax
element is operable to communicate the decision to a
digital media decoder; and

outputting the encoded bitstream.

8. The digital media encoding method of claim 7 wherein
said making a decision comprises:

verifying whether the lower precision arithmetic for trans-

form computations produces a same decoder output as
using a higher precision arithmetic for transform com-
putations; and

deciding whether to use the lower precision arithmetic

based upon said verifying.

9. The digital media encoding method of claim 7 wherein
said lower precision arithmetic is a 16-bit arithmetic preci-
sion.

10. The digital media encoding method of claim 7 further
comprising:

making a decision whether to apply a scaling of the input

digital media data prior to transform coding; and
representing the decision whether to apply the scaling with
a syntax element in the encoded bitstream.

11. The digital media encoding method of claim 10
wherein said making a decision whether to apply a scaling
comprises deciding not to apply scaling of the input digital
media data when losslessly encoding the digital media data.

12. A digital media decoding method comprising:

receiving a compressed digital media bitstream at a digital

media decoder;

Aug. 21, 2008

parsing a syntax element from the bitstream signaling
choice of precision modes for transform computations
during processing of the digital media data;

in the case that a first precision mode using scaling is

signaled, scaling output of the decoder;

in the case that a second precision mode without scaling is

signaled, omitting to apply scaling of the output; and
outputting a reconstructed image.

13. The digital media decoding method of claim 12
wherein said scaling output of the decoder comprises rounded
division of the output by a number.

14. The digital media decoding method of claim 12
wherein said rounded division of the output is a rounded
division by the number 8.

15. The digital media decoding method of claim 12 further
comprising:

parsing a second syntax element from the bitstream signal-

ing whether to use a lower arithmetic precision for trans-
form computations during processing of the digital
media data;

decoding blocks of transform coefficients from the com-

pressed digital media bitstream; and

in the case that the second precision mode without scaling

and the use of lower arithmetic precision are signaled,
performing inverse transform processing of the trans-
form coefficients using the lower arithmetic precision.

16. The digital media decoding method of claim 15
wherein said lower arithmetic precision is a 16-bit arithmetic
precision.

17. The digital media decoding method of claim 12
wherein the digital media data is encoding using a two stage
transform structure having a first stage transform followed by
a second stage transform on DC coefficients of the first stage
transform, the digital media decoding method further com-
prising:

decoding digital media data from the compressed digital

media bitstream;

applying an inverse second stage transform to the digital

media data;

applying an inverse first stage transform to the digital

media data;

performing color conversion of the digital media data; and

wherein said scaling output of the decoder in the case that

the first precision mode using scaling is signaled, com-

prises:

left shifting the digital media data by a single bit before
input to the inverse first stage transform; and

right shifting the digital media data by three bits after the
color conversion.

18. The digital media decoding method of claim 12
wherein said compressed digital media bitstream is encoded
according to a syntax scheme defining separate primary
image plane and alpha image plane for an image, the syntax
element signaling choice of precision mode being signaled
per image plane, whereby the precision mode of the primary
image plane and the alpha image plane are independently
signaled, and the decoding method comprises performing
said actions of parsing the syntax element signaling choice of
precision mode for each image plane, and in the case that the
first precision mode using scaling is signaled for a respective
image plane, scaling output of the decoder for the respective
image plane.

17

