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Preface

The last decade has seen a quiet revolution in digital video technology. Digital video is

everywhere: on our televisions, our DVD and Blu-Ray players, our computers, our music

players and our mobile handsets. Only recently, a video image in a web page was an unusual

sight. Nowadays, many of us are just as likely to catch the latest news on the web as on the

TV. With the explosion of digital video applications, a billion-dollar industry has developed

and expanded, with new companies and niche markets emerging, thriving and disappearing

faster than anyone can easily track. Video compression is essential to all of these applications

and markets, and the H.264 format is considered by many to be the state of the art in video

compression.

When I wrote the first edition of this book in 2003, H.264 Advanced Video Compression

had just been published as an International Standard and it was hard to predict its impact on

industry. Its predecessor, MPEG-4 Visual, had arguably failed to live up to its promise, with

only limited adoption in the market. Since 2003, the significant performance improvements

that are built into H.264 have made it the clear successor to the older MPEG video standards in

many applications, from mobile video to High Definition broadcasting. At the time of writing,

the MPEG and VCEG standards committees are debating the possible successor to H.264. It is

likely to be several years before a new standard is released, and several years after that before

H.264 begins to become obsolete.

This book is intended to be a practical, accessible and unbiased guide to the H.264 video 
compression standard. As always, I have chosen to explain the details of H.264 in my own 
way, concentrating on what I feel is important to the engineer, researcher or student who needs 
a ‘way in’ to this complex yet important technical subject. This book is not the final word on 
H.264. By definition, that final word is provided by the standard itself and I advise any serious 
developer or implementer of H.264 to get hold of a copy of the standard. There is a need for 
a guidebook to the standard that explains the concepts, tools, benefits and disadvantages of 
the format, just as a good guidebook helps the tourist to get to know a foreign country and to 
become more at home there. Some visitors may be disappointed that their favourite subject 
is not covered in as much depth as they would like. I have made a deliberate choice to cover 
certain topics such as Scalable and Multiview Video Coding only briefly as they are still, in 
my view, in the early stages of practical implementation.

My sincere thanks to the many people who have helped to shape this book, including the 
readers of my earlier books who told me what they liked and what they wanted; the many 
companies and individuals who have asked me to solve their video compression problems; 
Kourosh Soroushian for discussions on Hypothetical Reference Decoders; Abharana Bhat,

17



xvi Preface

Maja Bystrom, Sam Jansen, Sampath Kannangara and Yafan Zhao for reading and commenting

on draft chapters; Gary Sullivan for many comments, corrections, suggestions and discussions;

Nicky, Simone and the editorial team at John Wiley & Sons; and to Pat for reading the

manuscript, cracking the whip and making me finish it.

I hope that you find the book useful; more importantly, I hope you enjoy it. Visit my website

at www.vcodex.com and tell me what you think.

Iain Richardson

Aberdeen, 2010

18



Glossary

4:2:0 (sampling) Sampling method: chrominance components have

half the horizontal and vertical resolution of

luminance component

4:2:2 (sampling) Sampling method: chrominance components have

half the horizontal resolution of luminance

component

4:4:4 (sampling) Sampling method: chrominance components have

same resolution as luminance component

access unit Complete coded frame or field

arithmetic coding Coding method to reduce redundancy

artefact Visual distortion in an image

ASO Arbitrary Slice Order, in which slices may be

coded out of raster sequence

block Region of macroblock

block matching Motion estimation carried out on rectangular

picture areas

blocking Square or rectangular distortion areas in an image

B slice Coded slice predicted using bidirectional motion

compensation

CABAC Context-based Adaptive Binary Arithmetic

Coding

CAVLC Context Adaptive Variable Length Coding

chrominance or chroma Colour difference component

CIF Common Intermediate Format, a colour image

format

CODEC COder / DECoder pair

Coded Picture Buffer (CPB) Buffer containing coded frames or fields

colour space Method of representing colour images

DCT Discrete Cosine Transform, a mathematical

transform and/or its practical approximation(s)

direct prediction A coding mode in which no motion vector is

transmitted

DPCM Differential Pulse Code Modulation
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xviii Glossary

DSCQS Double Stimulus Continuous Quality Scale, a

scale and method for subjective quality

measurement

DWT Discrete Wavelet Transform

entropy coding Coding method to reduce redundancy

error concealment Post-processing of a decoded image to remove or

reduce visible error effects

Exp-Golomb or ExpG Exponential Golomb variable length codes

field Odd- or even-numbered lines from an interlaced

video sequence

FMO Flexible Macroblock Order, in which

macroblocks may be coded out of raster sequence

Full Search A motion estimation algorithm

Fully Configurable Video Coding A framework for video coding in which a codec

may be completely re-configured during a

communication session

GOP Group of Pictures, a set of coded video images

H.261 A video coding standard

H.263 A video coding standard

H.264 A video coding standard

HDTV High Definition Television

Huffman coding Coding method to reduce redundancy

HVS Human Visual System, the system by which

humans perceive and interpret visual images

hybrid (CODEC) CODEC model featuring motion compensation

and transform

Hypothetical Reference Decoder (HRD) Decoder ‘model’ that may be used to test

bitstream conformance

IEC International Electrotechnical Commission, a

standards body

inter (coding) Coding of video frames using temporal prediction

or compensation

interlaced (video) Video data represented as a series of fields

intra (coding) Coding of video frames without temporal

prediction

I slice Slice coded without reference to any other frame

ISO International Standards Organisation, a standards

body

ITU International Telecommunication Union, a

standards body

JPEG Joint Photographic Experts Group, a committee of

ISO (also an image coding standard)

latency Delay through a communication system

Level A set of conformance parameters (applied to a

Profile)
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Glossary xix

loop filter Spatial filter placed within encoding or decoding

feedback loop

luminance or luma Monochrome or brightness component

Macroblock Region of frame coded as a unit (usually 16 × 16

pixels in the original frame)

Macroblock partition Region of macroblock with its own motion vector

Macroblock sub-partition Region of macroblock with its own motion vector

motion compensation Prediction of a video frame with modelling of

motion

motion estimation Estimation of relative motion between two or

more video frames

motion vector Vector indicating a displaced block or region to be

used for motion compensation

MPEG Motion Picture Experts Group, a committee of

ISO/IEC

MPEG-1 A multimedia coding standard

MPEG-2 A multimedia coding standard

MPEG-4 A multimedia coding standard

MVC Multiview Video Coding, in which multiple views

of a scene may be jointly coded

NAL Network Abstraction Layer

objective quality Visual quality measured by algorithm(s)

Picture (coded) Coded (compressed) video frame

P-picture (slice) Coded picture (or slice) using

motion-compensated prediction from one

reference frame

profile A set of functional capabilities (of a video

CODEC)

progressive (video) Video data represented as a series of complete

frames

PSNR Peak Signal to Noise Ratio, an objective quality

measure

QCIF Quarter Common Intermediate Format

quantize Reduce the precision of a scalar or vector quantity

rate control Control of bit rate of encoded video signal

rate-distortion Measure of CODEC performance (distortion at a

range of coded bit rates)

RBSP Raw Byte Sequence Payload

RVC Reconfigurable Video Coding, a framework for

video coding in which a decoder may be

constructed from pre-defined Functional Units.

RGB Red/Green/Blue colour space

ringing (artefacts) ‘Ripple’-like artefacts around sharp edges in a

decoded image

RTP Real Time Protocol, a transport protocol for

real-time data
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xx Glossary

scalable coding Coding a signal into a number of layers

SVC Scalable Video Coding

SI slice Intra-coded slice used for switching between

coded bitstreams (H.264)

slice A region of a coded picture

SP slice Inter-coded slice used for switching between

coded bitstreams

statistical redundancy Redundancy due to the statistical distribution of

data

studio quality Lossless or near-lossless video quality

subjective quality Visual quality as perceived by human observer(s)

subjective redundancy Redundancy due to components of the data that

are subjectively insignificant

sub-pixel (motion compensation) Motion-compensated prediction from a reference

area that may be formed by interpolating between

integer-valued pixel positions

test model A software model and document that describe a

reference implementation of a video coding

standard

texture Image or residual data

tree-structured motion compensation Motion compensation featuring a flexible

hierarchy of partition sizes

VCEG Video Coding Experts Group, a committee of ITU

VCL Video Coding Layer

video packet Coded unit suitable for packetization

VLC Variable Length Code

VLD Variable Length Decoder

VLE Variable Length Encoder

VLSI Very Large Scale Integrated circuit

VQEG Video Quality Experts Group

weighted prediction Motion compensation in which the prediction

samples from two references are scaled

YCrCb Luminance/Red chrominance/Blue chrominance

colour space
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1

Introduction

1.1 A change of scene

2000:

Most viewers receive analogue television via terrestrial, cable or satellite trans-

mission.

VHS video tapes are the principal medium for recording and playing TV programs,

movies, etc.

Cell phones are cell phones, i.e. a mobile handset can only be used to make calls

or send SMS messages.

Internet connections are slow, primarily over telephone modems for home users.

Web pages are web pages, with static text, graphics and photos and not much else.

Video calling requires dedicated videoconferencing terminals and expensive

leased lines. Video calling over the internet is possible but slow, unreliable and

difficult to set up.

Consumer video cameras, camcorders, use tape media, principally analogue tape.

Home-made videos generally stay within the home.

2010:

Most viewers receive digital television via terrestrial, cable, satellite or internet,

with benefits such as a greater choice of channels, electronic programme guides

and high definition services. Analogue TV has been switched off in many countries.

Many TV programmes can be watched via the internet.

DVDs are the principal medium for playing pre-recorded movies and TV pro-

grams. Many alternatives exist, most of them digital, including internet movie

downloading (legal and not-so-legal), hard-disk recording and playback and a

The H.264 Advanced Video Compression Standard, Second Edition Iain E. Richardson
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variety of digital media formats. High definition DVDs, Blu-Ray Disks, are in-

creasing in popularity.

Cell phones function as cameras, web browsers, email clients, navigation systems,

organizers and social networking devices. Occasionally they are used to make

calls.

Home internet access speeds continue to get faster via broadband and mobile

connections, enabling widespread use of video-based web applications.

Web pages are applications, movie players, games, shopping carts, bank tellers,

social networks, etc, with content that changes dynamically.

Video calling over the internet is commonplace with applications such as Skype

and iChat. Quality is still variable but continues to improve.

Consumer video cameras use hard disk or flash memory card media. Editing,

uploading and internet sharing of home videos is widespread.

A whole range of illegal activities has been born – DVD piracy, movie sharing via

the internet, recording and sharing of assaults, etc.

Video footage of breaking news items such as the Chilean earthquake is more

likely to come from a cell phone than a TV camera.

All these changes in a ten-year period signify a small revolution in the way we create, share

and watch moving images. Many factors have contributed to the shift towards digital video –

commercial factors, legislation, social changes and technological advances. From the technol-

ogy viewpoint, these factors include better communications infrastructure, with widespread,

relatively inexpensive access to broadband networks, 3G mobile networks, cheap and effec-

tive wireless local networks and higher-capacity carrier transmission systems; increasingly

sophisticated devices, with a bewildering array of capabilities packed into a lightweight cel-

lular handset; and the development of easy-to-use applications for recording, editing, sharing

and viewing video material. This book will focus on one technical aspect that is key to the

widespread adoption of digital video technology – video compression.

Video compression or video encoding is the process of reducing the amount of data required

to represent a digital video signal, prior to transmission or storage. The complementary

operation, decompression or decoding, recovers a digital video signal from a compressed

representation, prior to display. Digital video data tends to take up a large amount of storage

or transmission capacity and so video encoding and decoding, or video coding, is essential for

any application in which storage capacity or transmission bandwidth is constrained. Almost

all consumer applications for digital video fall into this category, for example:

◦ Digital television broadcasting: TV programmes are coded prior to transmission over a

limited-bandwidth terrestrial, satellite or cable channel (Figure 1.1).

◦ Internet video streaming: Video is coded and stored on a server. The coded video is trans-

mitted (streamed) over the internet, decoded on a client and displayed (Figure 1.1).
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Figure 1.1 Video coding scenarios, one-way

◦ Mobile video streaming: As above, but the coded video is transmitted over a mobile network

such as GPRS or 3G (Figure 1.1).

◦ DVD video: Source video is coded and stored on a DVD or other storage medium. A DVD

player reads the disk and decodes video for display (Figure 1.1).

◦ Video calling: Each participant includes an encoder and a decoder (Figure 1.2). Video from

a camera is encoded and transmitted across a network, decoded and displayed. This occurs

in two directions simultaneously.

Each of these examples includes an encoder, which compresses or encodes an input video

signal into a coded bitstream, and a decoder, which decompresses or decodes the coded

bitstream to produce an output video signal. The encoder or decoder is often built in to a

device such as a video camera or a DVD player.

PC display

Camera

Encode

Decode

Network

Decode

Encode
Camera

PC display

Figure 1.2 Video coding scenario, two-way
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1.2 Driving the change

The consumer applications discussed above represent very large markets. The revenues in-

volved in digital TV broadcasting and DVD distribution are substantial. Effective video coding

is an essential component of these applications and can make the difference between the suc-

cess or failure of a business model. A TV broadcasting company that can pack a larger number

of high-quality TV channels into the available transmission bandwidth has a market edge over

its competitors. Consumers are increasingly discerning about the quality and performance of

video-based products and there is therefore a strong incentive for continuous improvement

in video coding technology. Even though processor speeds and network bandwidths continue

to increase, a better video codec results in a better product and therefore a more competitive

product. This drive to improve video compression technology has led to significant investment

in video coding research and development over the last 15-20 years and to rapid, continuous

advances in the state of the art.

1.3 The role of standards

Many different techniques for video coding have been proposed and researched. Hundreds

of research papers are published each year describing new and innovative compression tech-

niques. In contrast to this wide range of innovations, commercial video coding applications

tend to use a limited number of standardized techniques for video compression. Standard-

ized video coding formats have a number of potential benefits compared with non-standard,

proprietary formats:

r Standards simplify inter-operability between encoders and decoders from different manu-

facturers. This is important in applications where each ‘end’ of the system may be produced

by a different company, e.g. the company that records a DVD is typically not the same as

the company that manufactures a DVD player.
r Standards make it possible to build platforms that incorporate video, in which many different

applications such as video codecs, audio codecs, transport protocols, security and rights

management, interact in well-defined and consistent ways.
r Many video coding techniques are patented and therefore there is a risk that a particular

video codec implementation may infringe patent(s). The techniques and algorithms required

to implement a standard are well-defined and the cost of licensing patents that cover these

techniques, i.e. licensing the right to use the technology embodied in the patents, can be

clearly defined.

Despite recent debates about the benefits of royalty-free codecs versus industry standard video

codecs [i], video coding standards are very important to a number of major industries. With

the ubiquitous presence of technologies such as DVD/Blu-Ray, digital television, internet

video and mobile video, the dominance of video coding standards is set to continue for some

time to come.

1.4 Why H.264 Advanced Video Coding is important

This book is about a standard, jointly published by the International Telecommunications

Union (ITU) and the International Standards Organisation (ISO) and known by several names:
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‘H.264’, ‘MPEG-4 Part 10’ and ‘Advanced Video Coding’. The standard itself is a document

over 550 pages long and filled with highly technical definitions and descriptions. Developed

by a team consisting of hundreds of video compression experts, the Joint Video Team, a

collaborative effort between the Moving Picture Experts Group (MPEG) and the Video Coding

Experts Group (VCEG), this document is the culmination of many man-years’ work. It is

almost impossible to read and understand without an in-depth knowledge of video coding.

Why write a book about this document? Whilst the standard itself is arguably only accessible

to an insider expert, H.264/AVC has huge significance to the broadcast, internet, consumer

electronics, mobile and security industries, amongst others. H.264/AVC is the latest in a series

of standards published by the ITU and ISO. It describes and defines a method of coding video

that can give better performance than any of the preceding standards. H.264 makes it possible

to compress video into a smaller space, which means that a compressed video clip takes up less

transmission bandwidth and/or less storage space compared to older codecs. A combination

of market expansion, technology advances and increased user expectation is driving demand

for better, higher quality digital video. For example:

r TV companies are delivering more content in High Definition. Most new television sets can

display HD pictures. Customers who pay a premium for High Definition content expect

correspondingly high image quality.
r An ever-increasing army of users are uploading and downloading videos using sites such as

YouTube. Viewers expect rapid download times and high resolution.
r Recording and sharing videos using mobile handsets is increasingly commonplace.
r Internet video calls, whilst still variable in quality, are easier to make and more widely used

than ever.
r The original DVD-Video format, capable of supporting only a single movie in Standard

Definition seems increasingly limited.

In each case, better video compression is the key to delivering more, higher-quality video in 
a cost effective way. H.264 compression makes it possible to transmit HD television over a 
limited-capacity broadcast channel, to record hours of video on a Flash memory card and to 
deliver massive numbers of video streams over an already busy internet.

The benefits of H.264/AVC come at a price. The standard is complex and therefore chal-

lenging to the engineer or designer who has to develop, program or interface with an H.264 
codec. H.264 has more options and parameters – more ‘control knobs’ – than any previous 
standard codec. Getting the controls and parameters ‘right’ for a particular application is not 
an easy task. Get it right and H.264 will deliver high compression performance; get it wrong 
and the result is poor-quality pictures and/or poor bandwidth efficiency. Computationally ex-

pensive, an H.264 coder can lead to slow coding and decoding times or rapid battery drain on 
handheld devices. Finally, H.264/AVC, whilst a published industry standard, is not free to use. 
Commercial implementations are subject to licence fees and the intellectual property position 
in itself is complicated.

1.5 About this book

The aim of this book is to de-mystify H.264 and its complexities. H.264/AVC will be a key 
component of the digital media industry for some time to come. A better understanding of
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the technology behind the standard and of the inter-relationships of its many component parts

should make it possible to get the most out of this powerful tool.

This book is organized as follows.

Chapter 2 explains the concepts of digital video and covers source formats and

visual quality measures.

Chapter 3 introduces video compression and the functions found in a typical video

codec, such as H.264/AVC and other block-based video compression codecs.

Chapter 4 gives a high-level overview of H.264/AVC at a relatively non-technical

level.

Chapters 5, 6 and 7 cover the standard itself in detail. Chapter 5 deals with the

H.264/AVC syntax, i.e. the construction of an H.264 bitstream) including picture

formats and picture management. Chapter 6 describes the prediction methods

supported by the standard, intra and inter prediction. Chapter 7 explains the

residual coding processes, i.e. transform and quantization and symbol coding.

Chapter 8 deals with issues closely related to the main standard – storage and

network transport of H.264 data, conformance or how to ensure compatibility

with H.264 and licensing, including the background and details of the intellectual

property licence associated with H.264 implementations.

Chapter 9 examines the implementation and performance of H.264. It explains

how to experiment with H.264, the effect of H.264 parameters on performance,

implementation challenges and performance optimization.

Chapter 10 covers extensions to H.264/AVC, in particular the Scalable and Mul-

tiview Video Coding extensions that have been published since the completion

of the H.264 standard. It examines possible future developments, including Re-

configurable Video Coding, a more flexible way of specifying and implementing

video codecs, and possible successors to H.264, currently being examined by the

standards groups.

Readers of my earlier book, “H.264 and MPEG-4 Video Compression”, may be interested

to know that Chapters 4–10 are largely or completely new material.

1.6 Reference

i. Ian Hickson, ‘Codecs for <audio> and <video>’, HTML5 specification discussion, http://lists.whatwg.org/

htdig.cgi/whatwg-whatwg.org/2009-June/020620.html, accessed August 2009.

38



2

Video formats and quality

2.1 Introduction

Video coding is the process of compressing and decompressing a digital video signal. This

chapter examines the structure and characteristics of digital images and video signals and intro-

duces concepts such as sampling formats and quality metrics. Digital video is a representation

of a natural or real-world visual scene, sampled spatially and temporally. A scene is typically

sampled at a point in time to produce a frame, which represents the complete visual scene at that

point in time, or a field, which typically consists of odd- or even-numbered lines of spatial sam-

ples. Sampling is repeated at intervals (e.g. 1/25 or 1/30 second intervals) to produce a moving

video signal. Three components or sets of samples are typically required to represent a scene in

colour. Popular formats for representing video in digital form include the ITU-R 601 standard,

High Definition formats and a set of ‘intermediate formats’. The accuracy of a reproduction of

a visual scene must be measured to determine the performance of a visual communication sys-

tem, a notoriously difficult and inexact process. Subjective measurements are time consuming

and prone to variations in the response of human viewers. Objective or automatic measure-

ments are easier to implement but as yet do not accurately match the behaviour of a human

observer.

2.2 Natural video scenes

A ‘real world’ or natural video scene is typically composed of multiple objects each with

their own characteristic shape, depth, texture and illumination. The colour and brightness

of a natural video scene changes with varying degrees of smoothness throughout the scene,

i.e. it has continuous tone. Characteristics of a typical natural video scene (Figure 2.1) that

are relevant for video processing and compression include spatial characteristics such as

texture variation within scene, number and shape of objects, colour, etc, and temporal char-

acteristics such as object motion, changes in illumination and movement of the camera or

viewpoint.

The H.264 Advanced Video Compression Standard, Second Edition Iain E. Richardson
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Figure 2.1 Still image from natural video scene

2.3 Capture

A natural visual scene is spatially and temporally continuous. Representing a visual scene in

digital form involves sampling the real scene spatially, usually on a rectangular grid in the

video image plane, and temporally, as a series of still frames or components of frames sampled

at regular intervals in time (Figure 2.2). Digital video is the representation of a sampled video

scene in digital form. Each spatio-temporal sample, a picture element or pixel, is represented

as one or more numbers that describes the brightness or luminance and the colour of the

sample.

To obtain a 2-D sampled image, a camera focuses a 2-D projection of the video scene onto

a sensor, such as an array of Charge Coupled Devices (CCDs). In the case of colour image

capture, each colour component is separately filtered and projected onto a CCD array (see

section 2.4).

. . . . . . .

Spatial samples

Temporal samples

Figure 2.2 Spatial and temporal sampling of a video sequence
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Figure 2.3 Image with two sampling grids

2.3.1 Spatial sampling

The output of a CCD array is an analogue video signal, a varying electrical signal that represents 
a video image. Sampling the signal at a point in time produces a sampled image or frame that 
has defined values at a set of sampling points. The most common format for a sampled image 
is a rectangle with the sampling points positioned on a square or rectangular grid. Figure 
2.3 shows a continuous-tone frame with two different sampling grids superimposed upon it. 
Sampling occurs at each of the intersection points on the grid and the sampled image may be 
reconstructed by representing each sample as a square picture element or pixel. The number 
of sampling points influences the visual quality of the image. Choosing a ‘coarse’ sampling 
grid, the black grid in Figure 2.3, produces a low-resolution sampled image (Figure 2.4) whilst 
increasing the number of sampling points slightly, the grey grid in Figure 2.3, increases the 
resolution of the sampled image (Figure 2.5).

2.3.2 Temporal sampling

A moving video image is formed by taking a rectangular ‘snapshot’ of the signal at periodic 
time intervals. Playing back the series of snapshots or frames produces the appearance of 
motion. A higher temporal sampling rate or frame rate gives apparently smoother motion 
in the video scene but requires more samples to be captured and stored. Frame rates below 
10 frames per second may be used for very low bit-rate video communications, because the 
amount of data is relatively small, but motion is clearly jerky and unnatural at this rate. Between 
10–20 frames per second is more typical for low bit-rate video communications; the image 
is smoother but jerky motion may be visible in fast-moving parts of the sequence. Temporal
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Figure 2.4 Image sampled at coarse resolution (black sampling grid)

Figure 2.5 Image sampled at finer resolution (grey sampling grid)
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top field
bottom field

top field
bottom field

Figure 2.6 Interlaced video sequence

sampling at 25 or 30 complete frames per second is the norm for Standard Definition television

pictures, with interlacing to improve the appearance of motion, see below; 50 or 60 frames

per second produces very smooth apparent motion at the expense of a very high data rate.

2.3.3 Frames and fields

A video signal may be sampled as a series of complete frames, progressive sampling, or as a

sequence of interlaced fields, interlaced sampling. In an interlaced video sequence, half of the

data in a frame, one field, is typically sampled at each temporal sampling interval. A field may

consist of either the odd-numbered or even-numbered lines within a complete video frame and

an interlaced video sequence (Figure 2.6) typically contains a series of fields, each representing

half of the information in a complete video frame, illustrated in Figure 2.7 and Figure 2.8. The

Figure 2.7 Top field
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Figure 2.8 Bottom field

advantage of this sampling method is that it is possible to send twice as many fields per second

as the number of frames in an equivalent progressive sequence with the same data rate, giving

the appearance of smoother motion. For example, a PAL video sequence consists of 50 fields

per second and when played back, motion appears smoother than in an equivalent progressive

video sequence containing 25 frames per second. Increasingly, video content may be captured

and/or displayed in progressive format. When video is captured in one format (e.g. interlaced)

and displayed in another (e.g. progressive), it is necessary to convert between formats.

2.4 Colour spaces

Most digital video applications rely on the display of colour video and so need a mechanism

to capture and represent colour information. A monochrome image (Figure 2.1) requires just

one number to indicate the brightness or luminance of each spatial sample. Colour images, on

the other hand, require at least three numbers per pixel position to accurately represent colour.

The method chosen to represent brightness, luminance or luma and colour is described as a

colour space.

2.4.1 RGB

In the RGB colour space, a colour image sample is represented with three numbers that indicate

the relative proportions of Red, Green and Blue, the three additive primary colours of light.

Combining red, green and blue in varying proportions can create any colour. Figure 2.9 shows

the red, green and blue components of a colour image: the red component consists of all the

red samples, the green component contains all the green samples and the blue component

contains the blue samples. The person on the right is wearing a blue sweater and so this

appears ‘brighter’ in the blue component, whereas the red waistcoat of the figure on the left
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Figure 2.9 Red, Green and Blue components of colour image

appears brighter in the red component. The RGB colour space is well suited to capture and

display of colour images. Capturing an RGB image involves filtering out the red, green and

blue components of the scene and capturing each with a separate sensor array. Colour displays

show an RGB image by separately illuminating the red, green and blue components of each

pixel according to the intensity of each component. From a normal viewing distance, the

separate components merge to give the appearance of ‘true’ colour.

2.4.2 YCrCb

The human visual system (HVS) is less sensitive to colour than to luminance. In the RGB colour

space the three colours are equally important and so are usually all stored at the same resolution

but it is possible to represent a colour image more efficiently by separating the luminance from

the colour information and representing luma with a higher resolution than colour.

The Y:Cr:Cb colour space is a popular way of efficiently representing colour images. Y is

the luminance component and can be calculated as a weighted average of R, G and B:

Y = kr R + kgG + kb B (2.1)

where k are weighting factors.

The colour information can be represented as colour difference (chrominance or chroma)

components, where each chrominance component is the difference between R, G or B and the

luminance Y:

Cr = R − Y

Cb = B − Y (2.2)

Cg = G − Y

The complete description of a colour image is given by Y, the luminance component, and three 
colour differences Cr, Cb and Cg that represent the difference between the colour intensity 
and the mean luminance of each image sample. Figure 2.10 shows the red, green and blue 
chroma components corresponding to the RGB components of Figure 2.9. Here, mid-grey is 
zero difference, light grey is a positive difference and dark grey is a negative difference. The 
chroma components only have significant values where there is a large difference between 
the
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14 The H.264 Advanced Video Compression Standard

Figure 2.10 Cr, Cg and Cb components

colour component and the luma image (Figure 2.1). Note the strong blue and red difference

components.

So far, this representation has little obvious merit since we now have four components

instead of the three in RGB. However, Cr+Cb+Cg is a constant and so only two of the three

chrominance components need to be stored or transmitted since the third component can

always be calculated from the other two. In the Y:Cr:Cb colour space, only the luma (Y) and

red and blue chroma (Cr, Cb) are transmitted. Y:Cr:Cb has an important advantage over RGB,

in that the Cr and Cb components may be represented with a lower resolution than Y because

the HVS is less sensitive to colour than luminance. This reduces the amount of data required

to represent the chrominance components without having an obvious effect on visual quality.

To the casual observer, there is no obvious difference between an RGB image and a Y:Cr:Cb

image with reduced chrominance resolution. Representing chroma with a lower resolution

than luma in this way is a simple but effective form of image compression.

An RGB image may be converted to Y:Cr:Cb after capture in order to reduce storage and/or

transmission requirements. Before displaying the image, it is usually necessary to convert

back to RGB. The equations for converting an RGB image to and from Y:Cr:Cb colour space

and vice versa are given in (2.3 and 2.4). Note that G can be extracted from the Y:Cr:Cb

representation by subtracting Cr and Cb from Y, demonstrating that it is not necessary to store

or transmit a Cg component.

Y = 0.299R + 0.587G + 0.114B

Cb = 0.564(B − Y ) (2.3)

Cr = 0.713(R − Y )

R = Y + 1.402Cr

G = Y − 0.344Cb − 0.714Cr (2.4)

B = Y + 1.772Cb

2.4.3 YCrCb sampling formats

Figure 2.11 shows three sampling patterns for Y, Cr and Cb that are supported by H.264/AVC.

4:4:4sampling means that the three components (Y:Cr:Cb) have the same resolution and hence
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Y sample

Cr sample

Cb sample

4:2:0 sampling

4:2:2 sampling 4:4:4 sampling

Figure 2.11 4:2:0, 4:2:2 and 4:4:4 sampling patterns (progressive)

a sample of each component exists at every pixel position. The numbers indicate the relative 
sampling rate of each component in the horizontal direction, i.e. for every 4 luminance samples 
there are 4 Cr and 4 Cb samples. 4:4:4 sampling preserves the full fidelity of the chrominance 
components. In 4:2:2 sampling, sometimes referred to as YUY2, the chrominance components 
have the same vertical resolution as the luma but half the horizontal resolution. The numbers 
4:2:2 mean that for every 4 luminance samples in the horizontal direction there are 2 Cr and 2 
Cb samples. 4:2:2 video is used for high-quality colour reproduction.
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16 The H.264 Advanced Video Compression Standard

In the popular 4:2:0 sampling format (‘YV12’), Cr and Cb each have half the horizontal

and vertical resolution of Y. The term ‘4:2:0’ is rather confusing because the numbers do

not actually have a logical interpretation and appear to have been chosen historically as a

‘code’ to identify this particular sampling pattern and to differentiate it from 4:4:4 and 4:2:2.

4:2:0 sampling is widely used for consumer applications such as video conferencing, digital

television and digital versatile disk (DVD) storage. Because each colour difference component

contains 1/4 of the number of samples in the Y component, 4:2:0 Y:Cr:Cb video requires exactly
1/2 as many samples as 4:4:4 or R:G:B video.

Example

Image resolution: 720 × 576 pixels

Y resolution: 720 × 576 samples, each represented with 8 bits

4:4:4 Cr, Cb resolution: 720 × 576 samples, each 8 bits

Total number of bits: 720 × 576 × 8 × 3 = 9953280 bits

4:2:0 Cr, Cb resolution: 360 × 288 samples, each 8 bits

Total number of bits: (720 × 576 × 8) + (360 × 288 × 8 × 2) = 4976640 bits

The 4:2:0 version requires half as many bits as the 4:4:4 version.

4:2:0 sampling is sometimes described as ‘12 bits per pixel’. The reason for this can be seen by

examining a group of 4 pixels, enclosed in dotted lines in Figure 2.11. Using 4:4:4 sampling, a

total of 12 samples are required, 4 each of Y, Cr and Cb, requiring a total of 12 × 8 = 96 bits,

an average of 96/4 = 24 bits per pixel. Using 4:2:0 sampling, only 6 samples are required, 4

Y and one each of Cr, Cb, requiring a total of 6 × 8 = 48 bits, an average of 48/4 = 12 bits

per pixel.

In a 4:2:0 interlaced video sequence, the Y, Cr and Cb samples corresponding to a complete

video frame are allocated to two fields.

Figure 2.12 shows the method of allocating Y, Cr and Cb samples to a pair of fields adopted

in H.264. It is clear from this figure that the total number of samples in a pair of fields is the

same as the number of samples in an equivalent progressive frame.

2.5 Video formats

2.5.1 Intermediate formats

The video compression algorithms described in this book can compress a wide variety of video

frame formats. In practice, it is common to capture or convert to one of a set of ‘intermediate

formats’ prior to compression and transmission. The Common Intermediate Format (CIF) is

the basis for a popular set of formats listed in Table 2.1. Figure 2.13 shows the luma component

of a video frame sampled at a range of resolutions, from 4CIF down to Sub-QCIF. The choice

of frame resolution depends on the application and available storage or transmission capacity.

For example, 4CIF is appropriate for standard-definition television and DVD-video; CIF

and QCIF are popular for videoconferencing applications; QCIF or SQCIF are appropriate

for mobile multimedia applications where the display resolution and the bitrate are limited.
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Top field
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Bottom field

Bottom field

Bottom field

Figure 2.12 Allocation of 4:2:0 samples to top and bottom fields

Table 2.1 lists the number of bits required to represent 1 uncompressed frame in each format,

assuming 4:2:0 sampling and 8 bits per luma and chroma sample.

2.5.2 Standard Definition

A widely-used format for digitally coding video signals for television production is ITU-R

Recommendation BT.601-5 [i]. Note that the term ‘coding’ in the Recommendation title means

conversion to digital format and does not imply compression. The luminance component of

the video signal is sampled at 13.5MHz and the chrominance at 6.75MHz to produce a 4:2:2

Y:Cr:Cb component signal. The parameters of the sampled digital signal depend on the video

frame rate, 30Hz for an NTSC signal and 25Hz for a PAL/SECAM signal, and are shown

in Table 2.2. The higher 30Hz frame rate of NTSC is compensated for by a lower spatial

resolution so that the total bit rate is the same in each case, 216Mbps. The actual area shown

Table 2.1 Video frame formats

Format

Luminance resolution

(horiz. × vert.)

Bits per frame (4:2:0,

8 bits per sample)

Sub-QCIF 128 × 96 147456

Quarter CIF (QCIF) 176 × 144 304128

CIF 352 × 288 1216512

4CIF 704 × 576 4866048
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18 The H.264 Advanced Video Compression Standard

Figure 2.13 Video frame sampled at range of resolutions

on the display, the active area, is smaller than the total because it excludes horizontal and

vertical blanking intervals that exist ‘outside’ the edges of the frame.

Each sample has a possible range of 0 to 255. Levels of 0 and 255 are reserved for

synchronization and the active luminance signal is restricted to a range of 16 (black) to 235

(white).

2.5.3 High Definition

Several High Definition (HD) video formats exist [ii]. The most widely used television display

formats are listed in Table 2.3 and shown graphically in Figure 2.14. Note that equivalent

versions are defined for base frame rates of 30Hz, rather than the European 25Hz base frame

Table 2.2 ITU-R BT.601-5 Parameters

30Hz frame rate 25Hz frame rate

Fields per second 60 50

Lines per complete frame 525 625

Luminance samples per line 858 864

Chrominance samples per line 429 432

Bits per sample 8 8

Total bit rate 216 Mbps 216 Mbps

Active lines per frame 480 576

Active samples per line (Y) 720 720

Active samples per line (Cr,Cb) 360 360
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Table 2.3 HD display formats

Format Progressive or Interlaced Horizontal pixels Vertical pixels Frames or fields per second

720p Progressive 1280 720 25 frames

1080i Interlaced 1920 1080 50 fields

1080p Progressive 1920 1080 25 frames

rate. It is clear that HD formats require an even larger uncompressed storage or transmission

rate than SD formats. SD video has (720 × 576 × 25) = 10368000 displayed pixels per second.

720p HD video has (1280 × 720 × 25) = 23040000 displayed pixels per second and at the top

end, 1080p HD has (1920 × 1080 × 25) = 51840000 displayed pixels per second. The very

large storage or transmission capacity required for uncompressed video at these resolutions

means it is essential to compress video for practical applications.

2.6 Quality

In order to specify, evaluate and compare video communication systems it is necessary to

determine the quality of the video images displayed to the viewer. Measuring visual quality is

a difficult and often imprecise art because there are so many factors that can affect the results.

Visual quality is inherently subjective and is therefore influenced by many subjective factors

that make it difficult to obtain a completely accurate measure of quality. For example, a viewer’s

opinion of visual quality can depend very much on the task at hand, such as passively watching

a DVD movie, actively participating in a videoconference or trying to identify a person in

High Definition: 1080i,p
1920x1080

High Definition: 720p
1280x720

Standard Definition
720x576

Figure 2.14 SD and HD formats
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20 The H.264 Advanced Video Compression Standard

a surveillance video scene. Measuring visual quality using objective criteria gives accurate,

repeatable results but as yet there are no objective measurement systems that completely

reproduce the subjective experience of a human observer watching a video display.

2.6.1 Subjective quality measurement

2.6.1.1 Factors influencing subjective quality

Our perception of a visual scene is formed by a complex interaction between the components

of the Human Visual System (HVS), the eye and the brain. The perception of visual quality is

influenced by spatial fidelity, i.e. how clearly parts of the scene can be seen, whether there is

any obvious distortion, and temporal fidelity, i.e. whether motion appears natural and ‘smooth’.

However, a viewer’s opinion of ‘quality’ is also affected by other factors such as the viewing

environment, the observer’s state of mind and the extent to which the observer interacts with

the visual scene. A user carrying out a specific task that requires concentration on part of a

visual scene will have a quite different requirement for quality than a user who is passively

watching a movie. It has been shown that a viewer’s opinion of visual quality is measurably

higher if the viewing environment is comfortable and non-distracting, regardless of the quality

of the visual image itself.

Other important influences on perceived quality include visual attention, i.e. the way an

observer perceives a scene by fixating on a sequence of points in the image rather than by

taking in everything simultaneously [iii], and the so-called ‘recency effect’, i.e. our opinion

of a visual sequence is more heavily influenced by recently-viewed material than older video

material [iv, v]. All of these factors make it very difficult to accurately and quantitatively

measure visual quality.

2.6.1.2 ITU-R 500

Several test procedures for subjective quality evaluation are defined in ITU-R Recommendation

BT.500-11 [vi]. A widely-used procedure from the standard is the Double Stimulus Continuous

Quality Scale (DSCQS) method in which an assessor is presented with a pair of images or

short video sequences A and B, one after the other, and is asked to give A and B a ‘quality

score’ by marking on a continuous line with five intervals ranging from ‘Excellent’ to ‘Bad’.

In a typical test session, the assessor is shown a series of pairs of sequences and is asked to

grade each pair. Within each pair of sequences, one is an unimpaired ‘reference’ sequence and

the other is the same sequence, modified by a system or process under test. Figure 2.15 shows

an experimental set-up appropriate for the testing of a video CODEC in which the original

sequence is compared with the same sequence after encoding and decoding. The selection of

which sequence is ‘A’ and which is ‘B’ is randomized.

The order of the two sequences, original and ‘impaired’, is randomized during the test

session so that the assessor does not know which is the original and which is the impaired

sequence. This helps prevent the assessor from pre-judging the impaired sequence compared

with the reference sequence. At the end of the session, the scores are converted to a normalized

range and the end result is a score, sometimes described as a ‘mean opinion score’ (MOS) that

indicates the relative quality of the impaired and reference sequences.
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Figure 2.15 DSCQS testing system

Tests such as DSCQS are accepted as realistic measures of subjective visual quality. How-

ever, this type of test suffers from practical problems. The results can vary significantly

depending on the assessor and also on the video sequence under test. This variation is com-

pensated for by repeating the test with several sequences and several assessors. An ‘expert’

assessor who is familiar with the nature of video compression distortions or ‘artefacts’ may

give a biased score and it is recommended to use ‘non-expert’ assessors. This means that a

large pool of assessors is required because a non-expert assessor will quickly learn to recognize

characteristic artefacts in the video sequences and so will become ‘expert’. These factors make

it expensive and time consuming to carry out the DSCQS tests thoroughly.

2.6.2 Objective quality measurement

The complexity and cost of subjective quality measurement make it attractive to be able to

measure quality automatically using an algorithm. Developers of video compression and video

processing systems rely heavily on so-called objective (algorithmic) quality measures. The

most widely used measure is Peak Signal to Noise Ratio (PSNR) but the limitations of this

metric have led to many efforts to develop more sophisticated measures that approximate the

response of ‘real’ human observers.

2.6.2.1 PSNR

Peak Signal to Noise Ratio (PSNR) (2.5) is measured on a logarithmic scale and depends on

the mean squared error (MSE) between an original and an impaired image or video frame,

relative to (2n − 1)2, the square of the highest-possible signal value in the image, where n is

the number of bits per image sample.

PSNRdB = 10 log10

(2n − 1)2

MSE
(2.5)

PSNR can be calculated easily and quickly and is therefore a very popular quality measure, 
widely used to compare the ‘quality’ of compressed and decompressed video images. Figure 
2.16 shows a close-up of three images: the first image (a) is the original and (b) and (c) are 
degraded (blurred) versions of the original image. Image (b) has a measured PSNR of 30.6dB 
whilst image (c) has a PSNR of 28.3dB, reflecting the poorer image quality.
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Figure 2.16 PSNR examples: (a) Original; (b) 30.6dB; (c) 28.3dB

The PSNR metric suffers from a number of limitations. PSNR requires an unimpaired

original image for comparison but this may not be available in every case and it may not

be easy to verify that an ‘original’ image has perfect fidelity. PSNR does not correlate well

with subjective video quality measures such as ITU-R 500. For a given image or image

sequence, high PSNR usually indicates high quality and low PSNR usually indicates low

quality. However, a particular value of PSNR does not necessarily equate to an ‘absolute’

subjective quality. For example, Figure 2.17 shows a distorted version of the original image

from Figure 2.16 in which only the background of the image has been blurred. This image has

a PSNR of 27.7dB relative to the original. Most viewers would rate this image as significantly

better than image (c) in Figure 2.16 because the face is clearer, in opposition to the PSNR

rating. This example shows that PSNR ratings do not necessarily correlate with ‘true’ subjective

Figure 2.17 Image with blurred background (PSNR = 27.7dB)
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quality. In this case, a human observer gives a higher importance to the face region and so is

particularly sensitive to distortion in this area.

2.6.2.2 Other objective quality metrics

Because of the limitations of crude metrics such as PSNR, there has been a lot of work in

recent years to try to develop a more sophisticated objective test that more closely approaches

subjective test results. Many different approaches have been proposed. It has proved difficult to

establish reliable objective video quality metrics that accurately predict the results of subjective

tests. Recent proposals have included Just Noticeable Difference (JND) [vii], Digital Video

Quality (DVQ) [viii], Structual SIMilarity index (SSIM) [ix], PSNRplus [x] and Predicted

Mean Opinion Score (MOSp) [xi]. These metrics have varying degrees of success in predicting

subjective test scores, with reported correlations of between 70 per cent and 90 per cent between

each objective metric and measured subjective quality scores.

The ITU-T Video Quality Experts Group (VQEG) aims to develop industry standards related

to video and multimedia quality assessment. VQEG has developed Recommendation J.247,

which covers ‘full reference’ video quality measurement, i.e. quality metrics that require

access to an original, uncompressed version of a video signal [xii]. The Recommendation lists

four objective quality metrics that ‘can be recommended by ITU-T at this time’:

A: NTT Full Reference Method.

B: OPTICOM Perceptual Video Quality Method.

C: Psytechnics Full Reference Method.

D: Yonsei Full Reference Method.

The general approach of these methods is as follows. First, the original (reference) and test 
(degraded) video sequences are aligned spatially and temporally. Next, a series of degradation 
parameters are calculated. Each of the four metrics calculates a different set of parameters such 
as blurring, edges introduced by compression, blockiness, etc. Finally, these parameters are 
combined to produce a single number that is an estimate of subjective quality. The correlation 
between subjective and estimated quality is reported as ranging from 77 per cent to 84 per 
cent in the Recommendation, indicating that there is still scope for developing better Full 
Reference objective quality metrics.

An even more challenging task is to measure or estimate quality when a full reference, an 
unimpaired copy of the original video, is not available. This is the case in many practical 
applications. For example, the original source may not be available in the case of user-

generated video content, or it may be desirable to monitor quality at the receiver, for example 
in a customer’s digital television receiver, where there is no access to the original video. In 
these situations, No Reference (NR) or Reduced Reference (RR) quality estimation is required. 
No Reference metrics attempt to estimate subjective quality based only on characteristics of 
the decoded video clip. This is a difficult task but some success has been reported using 
methods such as modelling typical image/video compression artefacts [xiii, xiv]. Reduced 
Reference metrics calculate a quality ‘signature’, typically a low-bitrate side signal, which is
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communicated to the decoder. A quality estimate is formed by processing the decoded video

clip together with the side information [xv].

2.7 Summary

Sampling analogue video produces a digital video signal, which has the advantages of accuracy,

quality and compatibility with digital media and transmission but which typically occupies

a prohibitively large bitrate. Issues inherent in digital video systems include spatial and

temporal resolution, colour representation and the measurement of visual quality. The next

chapter introduces the basic concepts of video compression, necessary to accommodate digital

video signals on practical storage and transmission media.
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Video coding concepts

3.1 Introduction

compress vb.: to squeeze together or compact into less space; condense

compression noun: the act of compression or the condition of being compressed

Compression is the act or process of compacting data into a smaller number of bits. Video

compression (video coding) is the process of converting digital video into a format suitable

for transmission or storage, whilst typically reducing the number of bits. ‘Raw’ or uncom-

pressed digital video typically requires a large bitrate, approximately 216Mbits for 1 second

of uncompressed Standard Definition video, see Chapter 2, and compression is necessary for

practical storage and transmission of digital video.

Compression involves a complementary pair of systems, a compressor (encoder) and a

decompressor (decoder). The encoder converts the source data into a compressed form occu-

pying a reduced number of bits, prior to transmission or storage, and the decoder converts the

compressed form back into a representation of the original video data. The encoder/decoder

pair is often described as a CODEC (enCOder/DECoder) (Figure 3.1).

Data compression is achieved by removing redundancy, i.e. components that are not nec-

essary for faithful reproduction of the data. Many types of data contain statistical redundancy

and can be effectively compressed using lossless compression, so that the reconstructed data

at the output of the decoder is a perfect copy of the original data. Unfortunately, lossless

compression of image and video information gives only a moderate amount of compression.

The best that can be achieved with lossless image compression standards such as JPEG-LS [i]

is a compression ratio of around 3–4 times. Lossy compression is necessary to achieve higher

compression. In a lossy compression system, the decompressed data is not identical to the

source data and much higher compression ratios can be achieved at the expense of a loss

of visual quality. Lossy video compression systems are based on the principle of removing

subjective redundancy, elements of the image or video sequence that can be removed without

significantly affecting the viewer’s perception of visual quality.

Most video coding methods exploit both temporal and spatial redundancy to achieve

compression. In the temporal domain, there is usually a high correlation or similarity between

The H.264 Advanced Video Compression Standard, Second Edition Iain E. Richardson
C© 2010 John Wiley & Sons, Ltd
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Figure 3.1 Encoder / Decoder

frames of video that were captured at around the same time. Temporally adjacent frames,

i.e. successive frames in time order, are often highly correlated, especially if the temporal

sampling rate or frame rate is high. In the spatial domain, there is usually a high correlation

between pixels (samples) that are close to each other, i.e. the values of neighbouring samples

are often very similar (Figure 3.2).

The H.264 Advanced Video Coding standard shares a number of common features with

other popular compression formats such as MPEG-2 Video, MPEG-4 Visual, H.263, VC-1,

etc. Each of these formats is based upon a CODEC ‘model’ that uses prediction and/or block-

based motion compensation, transform, quantization and entropy coding. In this chapter we

examine the main components of this model, starting with the prediction model, including

intra prediction, motion estimation and compensation, and continuing with image transforms,

quantization, predictive coding and entropy coding. The chapter concludes with a ‘walk-

through’ of the basic model, following through the process of encoding and decoding a block

of image samples.

3.2 Video CODEC

A video CODEC (Figure 3.3) encodes a source image or video sequence into a compressed

form and decodes this to produce a copy or approximation of the source sequence. If the

spatial correlation

temporal correlation

Figure 3.2 Spatial and temporal correlation in a video sequence
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Figure 3.3 Video encoder block diagram

decoded video sequence is identical to the original, then the coding process is lossless; if the 
decoded sequence differs from the original, the process is lossy.

The CODEC represents the original video sequence by a model, an efficient coded rep-

resentation that can be used to reconstruct an approximation of the video data. Ideally, the 
model should represent the sequence using as few bits as possible and with as high a fidelity 
as possible. These two goals, compression efficiency and high quality, are usually conflicting, 
i.e. a lower compressed bit rate typically produces reduced image quality at the decoder.

A video encoder (Figure 3.3) consists of three main functional units: a prediction model, a 
spatial model and an entropy encoder. The input to the prediction model is an uncompressed 
‘raw’ video sequence. The prediction model attempts to reduce redundancy by exploiting the 
similarities between neighbouring video frames and/or neighbouring image samples, typically 
by constructing a prediction of the current video frame or block of video data. In H.264/AVC, 
the prediction is formed from data in the current frame or in one or more previous and/or future 
frames. It is created by spatial extrapolation from neighbouring image samples, intra predic-

tion, or by compensating for differences between the frames, inter or motion compensated 
prediction. The output of the prediction model is a residual frame, created by subtracting the 
prediction from the actual current frame, and a set of model parameters indicating the intra 
prediction type or describing how the motion was compensated.

The residual frame forms the input to the spatial model which makes use of similarities 
between local samples in the residual frame to reduce spatial redundancy. In H.264/AVC 
this is carried out by applying a transform to the residual samples and quantizing the results. 
The transform converts the samples into another domain in which they are represented by 
transform coefficients. The coefficients are quantized to remove insignificant values, leaving 
a small number of significant coefficients that provide a more compact representation of the 
residual frame. The output of the spatial model is a set of quantized transform coefficients.

The parameters of the prediction model, i.e. intra prediction mode(s) or inter prediction 
mode(s) and motion vectors, and the spatial model, i.e. coefficients, are compressed by the en-

tropy encoder. This removes statistical redundancy in the data, for example representing com-

monly occurring vectors and coefficients by short binary codes. The entropy encoder produces 
a compressed bit stream or file that may be transmitted and/or stored. A compressed sequence 
consists of coded prediction parameters, coded residual coefficients and header information.

The video decoder reconstructs a video frame from the compressed bit stream. The coef-

ficients and prediction parameters are decoded by an entropy decoder after which the spatial 
model is decoded to reconstruct a version of the residual frame. The decoder uses the prediction
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parameters, together with previously decoded image pixels, to create a prediction of the current

frame and the frame itself is reconstructed by adding the residual frame to this prediction.

3.3 Prediction model

The data to be processed are a set of image samples in the current frame or field. The goal of the

prediction model is to reduce redundancy by forming a prediction of the data and subtracting

this prediction from the current data. The prediction may be formed from previously coded

frames (a temporal prediction) or from previously coded image samples in the same frame

(a spatial prediction). The output of this process is a set of residual or difference samples

and the more accurate the prediction process, the less energy is contained in the residual. The

residual is encoded and sent to the decoder which re-creates the same prediction so that it

can add the decoded residual and reconstruct the current frame. In order that the decoder can

create an identical prediction, it is essential that the encoder forms the prediction using only

data available to the decoder, i.e. data that has already been coded and transmitted.

3.3.1 Temporal prediction

The predicted frame is created from one or more past or future frames known as reference

frames. The accuracy of the prediction can usually be improved by compensating for motion

between the reference frame(s) and the current frame.

3.3.1.1 Prediction from the previous video frame

The simplest method of temporal prediction is to use the previous frame as the predictor for

the current frame. Two successive frames from a video sequence are shown in Figure 3.4 and

Figure 3.5. Frame 1 is used as a predictor for frame 2 and the residual formed by subtracting

the predictor (frame 1) from the current frame (frame 2) is shown in Figure 3.6. In this image,

mid-grey represents a difference of zero and light or dark greys correspond to positive and

negative differences respectively. The obvious problem with this simple prediction is that a lot

of energy remains in the residual frame (indicated by the light and dark areas) and this means

that there is still a significant amount of information to compress after temporal prediction.

Much of the residual energy is due to object movements between the two frames and a better

prediction may be formed by compensating for motion between the two frames.

3.3.1.2 Changes due to motion

Causes of changes between video frames include motion, uncovered regions and lighting

changes. Types of motion include rigid object motion, for example a moving car, deformable

object motion, for example a person speaking, and camera motion such as panning, tilt, zoom

and rotation. An uncovered region may be a portion of the scene background uncovered by a

moving object. With the exception of uncovered regions and lighting changes, these differences

correspond to pixel movements between frames. It is possible to estimate the trajectory of each

pixel between successive video frames, producing a field of pixel trajectories known as the
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Figure 3.4 Frame 1

Figure 3.5 Frame 2

Figure 3.6 Difference

optical flow or optic flow [ii]. Figure 3.7 shows the optical flow field for the frames of Figure 
3.4 and Figure 3.5. The complete field contains a flow vector for every pixel position but for 
clarity, the field is sub-sampled so that only the vector for every 2nd pixel is shown.

If the optical flow field is accurately known, it should be possible to form an accurate predic-

tion of most of the pixels of the current frame by moving each pixel from the reference frame 
along its optical flow vector. However, this is not a practical method of motion compensation 
for several reasons. An accurate calculation of optical flow is very computationally intensive,
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Figure 3.7 Optical flow

since the more accurate methods use an iterative procedure for every pixel, and for the decoder

to re-create the prediction frame it would be necessary to send the optical flow vector for every

pixel to the decoder resulting in a large amount of transmitted data and negating the advantage

of a small residual.

3.3.1.3 Block-based motion estimation and compensation

A practical and widely used method of motion compensation is to compensate for movement

of rectangular sections or ‘blocks’ of the current frame. The following procedure is carried

out for each block of MxN samples in the current frame:

r Search an area in the reference frame, a past or future frame, to find a similar MxN-sample

region. This search may be carried out by comparing the MxN block in the current frame

with some or all of the possible MxN regions in a search area, e.g. a region centred on the

current block position, and finding the region that gives the ‘best’ match. A popular matching

criterion is the energy in the residual formed by subtracting the candidate region from the

current MxN block, so that the candidate region that minimises the residual energy is chosen

as the best match. This process of finding the best match is known as motion estimation.
r The chosen candidate region becomes the predictor for the current MxN block (a motion

compensated prediction) and is subtracted from the current block to form a residual MxN

block (motion compensation).
r The residual block is encoded and transmitted and the offset between the current block and

the position of the candidate region (motion vector) is also transmitted.

The decoder uses the received motion vector to re-create the predictor region. It decodes the

residual block, adds it to the predictor and reconstructs a version of the original block.

Block-based motion compensation is popular for a number of reasons. It is relatively

straightforward and computationally tractable, it fits well with rectangular video frames and

with block-based image transforms such as the Discrete Cosine Transform and it provides a
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reasonably effective temporal model for many video sequences. There are however a number

of disadvantages. For example, ‘real’ objects rarely have neat edges that match rectangular

boundaries, objects often move by a fractional number of pixel positions between frames and

many types of object motion are hard to compensate for using block-based methods, e.g.

deformable objects, rotation, warping and complex motion such as a cloud of smoke. Despite

these disadvantages, block-based motion compensation is the basis of the temporal prediction

model used by all current video coding standards.

3.3.1.4 Motion compensated prediction of a macroblock

The macroblock, corresponding to a 16 × 16-pixel region of a frame, is the basic unit for

motion compensated prediction in a number of important visual coding standards including

MPEG-1, MPEG-2, MPEG-4 Visual, H.261, H.263 and H.264. For source video material in

the popular 4:2:0 format (Chapter 2), a macroblock is organised as shown in Figure 3.8. A

16 × 16-pixel region of the source frame is represented by 256 luminance samples arranged

in four 8 × 8-sample blocks, 64 red chrominance samples in one 8 × 8 block and 64 blue

chrominance samples in one 8 × 8 block, giving a total of six 8 × 8 blocks. An H.264/AVC

codec processes each video frame in units of a macroblock.

Motion estimation:

Motion estimation of a macroblock involves finding a 16 × 16-sample region in a reference

frame that closely matches the current macroblock. The reference frame is a previously

encoded frame from the sequence and may be before or after the current frame in display

order. A search area in the reference frame centred on the current macroblock position is

searched and the 16 × 16 region within the search area that minimizes a matching criterion is

chosen as the ‘best match’ (Figure 3.9).

Motion compensation:

The luma and chroma samples of the selected ‘best’ matching region in the reference frame is

subtracted from the current macroblock to produce a residual macroblock that is encoded and

transmitted together with a motion vector describing the position of the best matching region

relative to the current macroblock position.

There are many variations on the basic motion estimation and compensation process. The

reference frame may be a previous frame in temporal order, a future frame or a combination
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Figure 3.8 Macroblock (4:2:0)
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current macroblock

search area current frame

reference frame

best match

Figure 3.9 Motion estimation

of predictions from two or more previously encoded frames. If a future frame is chosen as the

reference, it is necessary to encode this frame before the current frame, i.e. frames must be

encoded out of order. Where there is a significant change between the reference and current

frames, for example a scene change or an uncovered area, it may be more efficient to encode

the macroblock without motion compensation and so an encoder may choose intra mode

encoding using intra prediction or inter mode encoding with motion compensated prediction

for each macroblock. Moving objects in a video scene rarely follow ‘neat’ 16 × 16-pixel

boundaries and so it may be more efficient to use a variable block size for motion estimation

and compensation. Objects may move by a fractional number of pixels between frames, e.g.

2.78 pixels rather than 2.0 pixels in the horizontal direction, and a better prediction may be

formed by interpolating the reference frame to sub-pixel positions before searching these

positions for the best match.

3.3.1.5 Motion compensation block size

Two successive frames of a video sequence are shown in Figure 3.10 and Figure 3.11. Frame 1

is subtracted from frame 2 without motion compensation to produce a residual frame (Figure

3.12). The energy in the residual is reduced by motion compensating each 16 × 16 macroblock

(Figure 3.13). Motion compensating each 8 × 8 block instead of each 16 × 16 macroblock

reduces the residual energy further (Figure 3.14) and motion compensating each 4 × 4 block

gives the smallest residual energy of all (Figure 3.15). These examples show that smaller

motion compensation block sizes can produce better motion compensation results. However,

a smaller block size leads to increased complexity, with more search operations to be carried

out, and an increase in the number of motion vectors that need to be transmitted. Sending each
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Figure 3.10 Frame 1

Figure 3.11 Frame 2

Figure 3.12 Residual : no motion compensation
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Figure 3.13 Residual : 16 × 16 block size

Figure 3.14 Residual : 8 × 8 block size

Figure 3.15 Residual : 4 × 4 block size
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motion vector requires bits to be transmitted and the extra overhead for vectors may outweigh

the benefit of reduced residual energy. An effective compromise is to adapt the block size

to the picture characteristics, for example choosing a large block size in flat, homogeneous

regions of a frame and choosing a small block size around areas of high detail and complex

motion (Chapter 6).

3.3.1.6 Sub-pixel motion compensation

Figure 3.16 shows a close-up view of part of a reference frame. In some cases, predicting from

interpolated sample positions in the reference frame may form a better motion compensated

prediction. In Figure 3.17, the reference region pixels are interpolated to half-pixel positions

and it may be possible to find a better match for the current macroblock by searching the

interpolated samples. Sub-pixel motion estimation and compensation involves searching sub-

pixel interpolated positions as well as integer-pixel positions and choosing the position that

gives the best match and minimizes the residual energy. Figure 3.18 shows the concept of

quarter-pixel motion estimation. In the first stage, motion estimation finds the best match on

the integer pixel grid (circles). The encoder searches the half-pixel positions immediately next

to this best match (squares) to see whether the match can be improved and if required, the

quarter-pixel positions next to the best half-pixel position (triangles) are then searched. The

final match, at an integer, half-pixel or quarter-pixel position, is subtracted from the current

block or macroblock.

The residual in Figure 3.19 is produced using a block size of 4 × 4 pixels using half-pixel

interpolation and has less residual energy than Figure 3.15. This approach may be extended

further by interpolation onto a 1/4-pixel grid to give a still smaller residual (Figure 3.20). In
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Figure 3.16 Close-up of reference region
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Figure 3.17 Reference region interpolated to half-pixel positions

general, ‘finer’ interpolation provides better motion compensation performance, producing

a smaller residual at the expense of increased complexity. The performance gain tends to

diminish as the interpolation steps increase. Half-pixel interpolation gives a significant gain

over integer-pixel motion compensation, quarter-pixel interpolation gives a moderate further

improvement, eighth-pixel interpolation gives a small further improvement again and so on.

Some examples of the performance achieved by sub-pixel interpolation are given in Table

3.1. A motion-compensated reference frame, the previous frame in the sequence, is subtracted

from the current frame and the energy of the residual, approximated by the Sum of Absolute

Errors (SAE), is listed in the table. A lower SAE indicates better motion compensation

performance. In each case, sub-pixel motion compensation gives improved performance

compared with integer-pixel compensation. The improvement from integer to half-pixel is

Integer search positions

Best integer match

Half-pel search positions

Best half-pel match

Quarter-pel search positions

Best quarter-pel match

Key:

Figure 3.18 Integer, half-pixel and quarter-pixel motion estimation
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Figure 3.19 Residual : 4 × 4 blocks, 1/2-pixel compensation

Figure 3.20 Residual : 4 × 4 blocks, 1/4-pixel compensation

Table 3.1 SAE of residual frame after motion compensation, 16 × 16 block size

Sequence

No motion

compensation Integer-pel Half-pel Quarter-pel

‘Violin’, QCIF 171945 153475 128320 113744

‘Grasses’, QCIF 248316 245784 228952 215585

‘Carphone’, QCIF 102418 73952 56492 47780
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more significant than the further improvement from half- to quarter-pixel. The sequence

‘Grasses’ has highly complex motion and is particularly difficult to motion-compensate, hence

the large SAE; ‘Violin’ and ‘Carphone’ are less complex and motion compensation produces

smaller SAE values.

Searching for matching 4 × 4 blocks with 1/4-pixel interpolation is considerably more

complex than searching for 16 × 16 blocks with no interpolation. In addition to the extra

complexity, there is a coding penalty since the vector for every block must be encoded and

transmitted to the receiver in order to correctly reconstruct the image. As the block size is

reduced, the number of vectors that have to be transmitted increases. More bits are required to

represent 1
2

or 1/4-pixel vectors because the fractional part of the vector, e.g. 0.25 or 0.5, must

be encoded as well as the integer part. Figure 3.21 plots the integer motion vectors that are

transmitted along with the residual of Figure 3.13. The motion vectors required for the residual

of Figure 3.20 are plotted in Figure 3.22, in which there are 16 times as many vectors, each

represented by two fractional numbers DX and DY with 1/4-pixel accuracy. There is therefore

a trade-off in compression efficiency associated with more complex motion compensation

schemes, since more accurate motion compensation requires more bits to encode the vector

field, but fewer bits to encode the residual whereas less accurate motion compensation requires

fewer bits for the vector field but more bits for the residual. The efficiency of sub-pixel

interpolation schemes can be improved by using sophisticated interpolation filters [iii].

3.3.2 Spatial model: intra prediction

The prediction for the current block of image samples is created from previously-coded

samples in the same frame. Figure 3.23 shows a block that is to be predicted, centre, in the

current frame. Assuming that the blocks of image samples are coded in raster-scan order,

which is not always the case, the upper/left shaded blocks are available for intra prediction.

These blocks have already been coded and placed in the output bitstream. When the decoder

processes the current block, the shaded upper/left blocks are already decoded and can be used

to re-create the prediction.

Many different approaches to intra prediction have been proposed. H.264/AVC uses spatial

extrapolation to create an intra prediction for a block or macroblock. Figure 3.24 shows the

Figure 3.21 Motion vector map : 16 × 16 blocks, integer vectors
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Figure 3.22 Motion vector map : 4 × 4 blocks, 1/4-pixel vectors

Previously coded (available for intra prediction)

Current block

Not yet coded

Figure 3.23 Intra prediction: available samples

Previously coded samples

Current block

Figure 3.24 Intra prediction: spatial extrapolation

71



40 The H.264 Advanced Video Compression Standard

Figure 3.25 2D autocorrelation function of image

general concept. One or more prediction(s) are formed by extrapolating samples from the top

and/or left sides of the current block. In general, the nearest samples are most likely to be

highly correlated with the samples in the current block (Figure 3.25) and so only the pixels

along the top and/or left edges are used to create the prediction block. Once the prediction has

been generated, it is subtracted from the current block to form a residual in a similar way to

inter prediction. The residual is transformed and encoded, together with an indication of how

the prediction was generated. Intra prediction is described in detail in Chapter 6.

3.4 Image model

A natural video image consists of a grid of sample values. Natural images are often difficult

to compress in their original form because of the high correlation between neighbouring

image samples. Figure 3.25 shows the two-dimensional autocorrelation function of a natural

video image (Figure 3.4) in which the height of the graph at each position indicates the

similarity between the original image and a spatially-shifted copy of itself. The peak at the

centre of the figure corresponds to zero shift. As the spatially-shifted copy is moved away

from the original image in any direction, the function drops off as shown in the figure, with

the gradual slope indicating that image samples within a local neighbourhood are highly

correlated.

A motion-compensated residual image such as Figure 3.20 has an autocorrelation function

(Figure 3.26) that drops off rapidly as the spatial shift increases, indicating that neighbouring

samples are weakly correlated. Efficient motion compensation or intra prediction reduces local

correlation in the residual making it easier to compress than the original video frame. The

function of the image model is to further decorrelate image or residual data and to convert it

into a form that can be efficiently compressed using an entropy coder. Practical image models

typically have three main components, transformation to decorrelate and compact the data,

quantization to reduce the precision of the transformed data and reordering to arrange the data

to group together significant values.
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Figure 3.26 2D autocorrelation function of residual

3.4.1 Predictive image coding

Motion compensation is an example of predictive coding in which an encoder creates a

prediction of a region of the current frame based on a previous or future frame and subtracts

this prediction from the current region to form a residual. If the prediction is successful, the

energy in the residual is lower than in the original frame and the residual can be represented

with fewer bits.

Predictive coding was used as the basis for early image compression algorithms and is an

important component of H.264 Intra coding, see section 3.3.2 and Chapter 6. Spatial prediction

involves predicting an image sample or region from previously-transmitted samples in the same

image or frame and is sometimes described as ‘Differential Pulse Code Modulation’ (DPCM),

a term borrowed from a method of differentially encoding PCM samples in telecommunication

systems.

Figure 3.27 shows a pixel X that is to be encoded. If the frame is processed in raster order,

then pixels A, B and C in the current and previous rows are available in both the encoder

Raster

scan

order

Current pixel

B C

A X

Figure 3.27 Spatial prediction (DPCM)
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and the decoder since these should already have been decoded before X. The encoder forms

a prediction for X based on some combination of previously coded pixels, subtracts this

prediction from X and encodes the residual, the result of the subtraction. The decoder forms

the same prediction and adds the decoded residual to reconstruct the pixel.

Example

Encoder prediction P(X) = (2A + B + C)/4

Residual R(X) = X − P(X) is encoded and transmitted.

Decoder decodes R(X) and forms the same prediction:

P(X) = (2A + B + C)/4

Reconstructed pixel X = R(X) + P(X)

If the encoding process is lossy, i.e. if the residual is quantized – see section 3.4.3, then the

decoded pixels A′, B′ and C′ may not be identical to the original A, B and C due to losses

during encoding and so the above process could lead to a cumulative mismatch or ‘drift’

between the encoder and decoder. To avoid this, the encoder should itself decode the residual

R’(X) and reconstruct each pixel. Hence the encoder uses decoded pixels A′, B′ and C′ to form

the prediction, i.e. P(X) = (2A′ + B′ + C′) / 4 in the above example. In this way, both encoder

and decoder use the same prediction P(X) and drift is avoided.

The compression efficiency of this approach depends on the accuracy of the prediction P(X).

If the prediction is accurate, i.e. P(X) is a close approximation of X, then the residual energy

will be small. However, it is usually not possible to choose a predictor that works well for all

areas of a complex image and better performance may be obtained by adapting the predictor

depending on the local statistics of the image for example, using different predictors for areas

of flat texture, strong vertical texture, strong horizontal texture, etc. It is necessary for the

encoder to indicate the choice of predictor to the decoder and so there is a tradeoff between

efficient prediction and the extra bits required to signal the choice of predictor.

3.4.2 Transform coding

3.4.2.1 Overview

The purpose of the transform stage in an image or video CODEC is to convert image or

motion-compensated residual data into another domain, the transform domain. The choice of

transform depends on a number of criteria:

1. Data in the transform domain should be decorrelated, i.e. separated into components within

minimal inter-dependence, and compact, i.e. most of the energy in the transformed data

should be concentrated into a small number of values.

2. The transform should be reversible.
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3. The transform should be computationally tractable, e.g. low memory requirement, achiev-

able using limited-precision arithmetic, low number of arithmetic operations, etc.

Many transforms have been proposed for image and video compression and the most popular

transforms tend to fall into two categories, block-based and image-based. Examples of block-

based transforms include the Karhunen-Loeve Transform (KLT), Singular Value Decompo-

sition (SVD) and the ever-popular Discrete Cosine Transform (DCT) and its approximations

[iv]. Each of these operates on blocks of N × N image or residual samples and hence the image

is processed in units of a block. Block transforms have low memory requirements and are well

suited to compression of block-based motion compensation residuals but tend to suffer from

artefacts at block edges (‘blockiness’). Image-based transforms operate on an entire image or

frame or a large section of the image known as a ‘tile’. The most popular image transform is the

Discrete Wavelet Transform, DWT or just ‘wavelet’. Image transforms such as the DWT have

been shown to out-perform block transforms for still image compression but they tend to

have higher memory requirements because the whole image or tile is processed as a unit and

they do not necessarily ‘fit’ well with block-based motion compensation. The DCT and the

DWT both feature in MPEG-4 Visual, with approximations to the DCT incorporated in H.264,

and are discussed further in the following sections.

3.4.2.2 DCT

The Discrete Cosine Transform (DCT) operates on X, a block of N × N samples, typically

image samples or residual values after prediction, to create Y, an N × N block of coefficients.

The action of the DCT and its inverse, the IDCT can be described in terms of a transform

matrix A. The forward DCT (FDCT) of an N × N sample block is given by:

Y = AXAT (3.1)

and the inverse DCT (IDCT) by:

X = ATYA (3.2)

where X is a matrix of samples, Y is a matrix of coefficients and A is an N × N transform

matrix. The elements of A are:

Ai j = Ci cos
(2 j + 1)iπ

2N
where Ci =

√

1

N
(i = 0), Ci =

√

2

N
(i > 0) (3.3)

(3.1) and (3.2) may be written in summation form:

Yxy = Cx Cy

N−1
∑

i=0

N−1
∑

j=0

X i j cos
(2 j + 1)yπ

2N
cos

(2i + 1)xπ

2N
(3.4 2–D FDCT)

X i j =

N−1
∑

x=0

N−1
∑

y=0

Cx CyYxy cos
(2 j + 1)yπ

2N
cos

(2i + 1)xπ

2N
(3.5 2–D IDCT)
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Example: N = 4

The transform matrix A for a 4 × 4 DCT is:

A =
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The cosine function is symmetrical and repeats after 2π radians and hence A can be simplified

to:
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or
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Evaluating the cosines gives:

A =









0.5 0.5 0.5 0.5

0.653 0.271 −0.271 −0.653

0.5 −0.5 −0.5 0.5

0.271 −0.653 0.653 −0.271









The output of a 2-dimensional FDCT is a set of N × N coefficients representing the image

block data in the DCT domain which can be considered as ‘weights’ of a set of standard basis

patterns. The basis patterns for the 4 × 4 and 8 × 8 DCTs are shown in Figure 3.28 and Figure

3.29 respectively and are composed of combinations of horizontal and vertical cosine functions.

Any image block may be reconstructed by combining all N × N basis patterns, with each basis

multiplied by the appropriate weighting factor (coefficient).
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Figure 3.28 4 × 4 DCT basis patterns

Figure 3.29 8 × 8 DCT basis patterns

Example 1 Calculating the DCT of a 4 × 4 block

Let X be a 4 × 4 block of samples from an image:

J = 1 2 3

0

i= 5 11 8 10

0

1 9 8 4 12

2 1 10 11 4

3 19 6 15 7

77



46 The H.264 Advanced Video Compression Standard

The Forward DCT of X is given by: Y = AXAT. The first matrix multiplication, Y
′
=AX,

corresponds to calculating the 1-dimensional DCT of each column of X. For example, Y
′

00 is

calculated as follows:

Y′
00 = A00X00 + A01X10 + A02X20 + A03X30 =

(0.5 ∗ 5) + (0.5 ∗ 9) + (0.5 ∗ 1) + (0.5 ∗ 19) = 17.0

The complete result of the column calculations is:

Y ′ = AX =









17 17.5 19 16.5

−6.981 2.725 −6.467 4.125

7 −0.5 4 0.5

−9.015 2.660 2.679 −4.414









Carrying out the second matrix multiplication, Y = Y
′
AT, is equivalent to carrying out a 1-D

DCT on each row of Y’:

Y = AX AT =









35.0 −0.079 −1.5 1.115

−3.299 −4.768 0.443 −9.010

5.5 3.029 2.0 4.699

−4.045 −3.010 −9.384 −1.232









Note that the order of the row and column calculations does not affect the final result.

Example 2 Image block and DCT coefficients

Figure 3.30 shows an image with a 4 × 4 block selected and Figure 3.31 shows the block in

close-up, together with the DCT coefficients. The advantage of representing the block in the

DCT domain is not immediately obvious since there is no reduction in the amount of data;

Figure 3.30 Image section showing 4 × 4 block
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Figure 3.32 Block reconstructed from (a) 1, (b) 2, (c) 3, (d) 5 coefficients
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instead of 16 pixel values, we need to store 16 DCT coefficients. The usefulness of the DCT

becomes clear when the block is reconstructed from a subset of the coefficients.

Setting all the coefficients to zero except the most significant, coefficient (0,0) described as the

‘DC’ coefficient, and performing the IDCT gives the output block shown in Figure 3.32 (a), the

mean of the original pixel values. Calculating the IDCT of the two most significant coefficients

gives the block shown in Figure 3.32 (b). Adding more coefficients before calculating the IDCT

produces a progressively more accurate reconstruction of the original block and by the time five

coefficients are included (Figure 3.32 (d)), the reconstructed block is a reasonably close match

to the original. Hence it is possible to reconstruct an approximate copy of the block from a

subset of the 16 DCT coefficients. Removing the coefficients with insignificant magnitudes, for

example by quantization, see section 3.4.3, enables image data to be represented with a reduced

number of coefficient values at the expense of some loss of quality.

3.4.2.3 Wavelet

The ‘wavelet transform’ that is popular in image compression is based on sets of filters with

coefficients that are equivalent to discrete wavelet functions [v]. The basic operation of the

transform is as follows, applied to a discrete signal containing N samples. A pair of filters is

applied to the signal to decompose it into a low frequency band (L) and a high frequency band

(H). Each band is subsampled by a factor of two, so that the two frequency bands each contain

N/2 samples. With the correct choice of filters, this operation is reversible.

This approach may be extended to apply to a 2-dimensional signal such as an intensity

image (Figure 3.33). Each row of a 2D image is filtered with a low-pass and a high-pass

filter (Lx and Hx) and the output of each filter is down-sampled by a factor of two to produce

the intermediate images L and H. L is the original image low-pass filtered and downsampled

in the x-direction and H is the original image high-pass filtered and downsampled in the

x-direction. Next, each column of these new images is filtered with low- and high-pass filters

Lx

Hx

Ly

Hy

Ly

Hy

down-
sample

down-
sample

down-

sample

down-
sample

down-
sample

down-
sample

LL

LH

HL

HH

L

H

Figure 3.33 Two-dimensional wavelet decomposition process
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LL LH

HL HH

Figure 3.34 Image after one level of decomposition

Ly and Hy and down-sampled by a factor of two to produce four sub-images LL, LH, HL and

HH. These four ‘sub-band’ images can be combined to create an output image with the same

number of samples as the original (Figure 3.34). ‘LL’ is the original image, low-pass filtered

in horizontal and vertical directions and subsampled by a factor of two. ‘HL’ is high-pass

filtered in the vertical direction and contains residual vertical frequencies, ‘LH’ is high-pass

filtered in the horizontal direction and contains residual horizontal frequencies and ‘HH’ is

high-pass filtered in both horizontal and vertical directions. Between them, the four sub-band

images contain all of the information present in the original image but the sparse nature of the

LH, HL and HH sub-bands makes them amenable to compression.

In an image compression application, the 2-dimensional wavelet decomposition described

above is applied again to the ‘LL’ image, forming four new sub-band images. The resulting

low-pass image, always the top-left sub-band image, is iteratively filtered to create a tree

of sub-band images. Figure 3.35 shows the result of two stages of this decomposition and

Figure 3.35 Two-stage wavelet decomposition of image
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Figure 3.36 Five-stage wavelet decomposition of image

Figure 3.36 shows the result of five stages of decomposition. Many of the samples (coefficients)

in the higher-frequency sub-band images are close to zero, shown here as near-black, and

it is possible to achieve compression by removing these insignificant coefficients prior to

transmission. At the decoder, the original image is reconstructed by repeated up-sampling,

filtering and addition, reversing the order of operations shown in Figure 3.33.

3.4.3 Quantization

A quantizer maps a signal with a range of values X to a quantized signal with a reduced range

of values Y. It should be possible to represent the quantized signal with fewer bits than the

original since the range of possible values is smaller. A scalar quantizer maps one sample of

the input signal to one quantized output value and a vector quantizer maps a group of input

samples, a ‘vector’, to a group of quantized values.

3.4.3.1 Scalar quantization

A simple example of scalar quantization is the process of rounding a fractional number to the

nearest integer, i.e. the mapping is from R to Z. The process is lossy (not reversible) since it is

not possible to determine the exact value of the original fractional number from the rounded

integer.

A more general example of a uniform quantizer is:

FQ = round

(

X

QP

)

Y = FQ.QP

(3.9)
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where QP is a quantization ‘step size’. The quantized output levels are spaced at uniform

intervals of QP as shown in the following example.

Example Y = QP.round(X/QP)

Y

X QP=1 QP=2 QP=3 QP=5

−4 −4 −4 −3 −5

−3 −3 −2 −3 −5

−2 −2 −2 −3 0

−1 −1 0 0 0

0 0 0 0 0

1 1 0 0 0

2 2 2 3 0

3 3 2 3 5

4 4 4 3 5

5 5 4 6 5

6 6 6 6 5

7 7 6 6 5

8 8 8 9 10

9 9 8 9 10

10 10 10 9 10

11 11 10 12 10

. . . . . ..

Figure 3.37 shows two examples of scalar quantizers, a linear quantizer with a uniform 
mapping between input and output values and a non-linear quantizer that has a ‘dead zone’ 
about zero, in which small-valued inputs are mapped to zero.

In image and video compression CODECs, the quantization operation is usually made up of 
two parts, a forward quantizer FQ in the encoder and an ‘inverse quantizer’ or ‘rescaler’ (IQ) 
in the decoder. A critical parameter is the step size QP between successive re-scaled values. 
If the step size is large, the range of quantized values is small and can therefore be efficiently 
represented and hence highly compressed during transmission, but the re-scaled values are a 
crude approximation to the original signal. If the step size is small, the re-scaled values match 
the original signal more closely but the larger range of quantized values reduces compression 
efficiency.

Quantization may be used to reduce the precision of image data after applying a transform 
such as the DCT or wavelet transform and to remove insignificant values such as near-zero 
DCT or wavelet coefficients. The forward quantizer in an image or video encoder is designed 
to map insignificant coefficient values to zero whilst retaining a small number of significant, 
non-zero coefficients. The output of a forward quantizer is therefore typically a ‘sparse’ array 
of quantized coefficients, mainly containing zeros.
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Figure 3.37 Scalar quantizers: linear; non-linear with dead zone

3.4.3.2 Vector quantization

A vector quantizer maps a set of input data such as a block of image samples to a single

value (codeword) and at the decoder, each codeword maps to an approximation to the original

set of input data, a ‘vector’. The set of vectors are stored at the encoder and decoder in

a codebook. A typical application of vector quantization to image compression [vi] is as

follows:

1. Partition the original image into regions such as N × N pixel blocks.

2. Choose a vector from the codebook that matches the current region as closely as possible.

3. Transmit an index that identifies the chosen vector to the decoder.

4. At the decoder, reconstruct an approximate copy of the region using the selected vector.

A basic system is illustrated in Figure 3.38. Here, quantization is applied in the image

(spatial) domain, i.e. groups of image samples are quantized as vectors, but it can equally be

applied to motion compensated and/or transformed data. Key issues in vector quantizer design

include the design of the codebook and efficient searching of the codebook to find the optimal

vector.

3.4.4 Reordering and zero encoding

Quantized transform coefficients are required to be encoded as compactly as possible prior

to storage and transmission. In a transform-based image or video encoder, the output of the

quantizer is a sparse array containing a few non-zero coefficients and a large number of zero-

valued coefficients. Re-ordering to group together non-zero coefficients and efficient encoding

of zero coefficients are applied prior to entropy encoding.
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Figure 3.38 Vector quantization

3.4.4.1 DCT

Coefficient distribution

The significant DCT coefficients of a block of image or residual samples are typically the ‘low

frequency’ positions around the DC (0,0) coefficient.

Figure 3.39 plots the probability of non-zero DCT coefficients at each position in an 8 ×

8 block in a QCIF residual frame (Figure 3.6). The non-zero DCT coefficients are clustered

around the top-left (DC) coefficient and the distribution is roughly symmetrical in the horizontal

and vertical directions.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Figure 3.39 8 × 8 DCT coefficient distribution (frame)
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Figure 3.40 Residual field picture

Figure 3.41 plots the probability of non-zero DCT coefficients for a residual field

(Figure 3.40); here, the coefficients are clustered around the DC position but are ‘skewed’,

i.e. more non-zero coefficients occur along the left-hand edge of the plot. This is because a

field picture may have a stronger high-frequency component in the vertical axis due to the

subsampling in the vertical direction, resulting in larger DCT coefficients corresponding to

vertical frequencies (Figure 3.28).

Scan

After quantization, the DCT coefficients for a block are reordered to group together non-

zero coefficients, enabling efficient representation of the remaining zero-valued quantized

coefficients. The optimum re-ordering path or scan order depends on the distribution of

non-zero DCT coefficients. For a typical frame block with a distribution similar to Figure

3.39, a suitable scan order is a zigzag starting from the DC or top-left coefficient. Starting

with the DC coefficient, each quantized coefficient is copied into a one-dimensional array in

the order shown in Figure 3.42. Non-zero coefficients tend to be grouped together at the start

of the re-ordered array, followed by long sequences of zeros.

The zig-zag scan may not be ideal for a field block because of the skewed coefficient

distribution, Figure 3.41, and a modified scan order such as Figure 3.43 may be more effective

for some field blocks, in which coefficients on the left hand side of the block are scanned

before the right hand side.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Figure 3.41 8 × 8 DCT coefficient distribution (field)
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Figure 3.42 Zigzag scan example : frame block

start

etc.

end

Figure 3.43 Zigzag scan example : field block

87



56 The H.264 Advanced Video Compression Standard

Run-Level Encoding

The output of the re-ordering process is an array that typically contains one or more clusters of

non-zero coefficients near the start, followed by strings of zero coefficients. The large number

of zero values may be encoded to represent them more compactly. The array of re-ordered

coefficients are represented as (run,level) pairs where run indicates the number of zeros

preceding a non-zero coefficient and level indicates the magnitude of the non-zero coefficient.

Example

1. Input array: 16,0,0,−3,5,6,0,0,0,0,−7,. . .

2. Output values: (0,16),(2,−3),(0,5),(0,6),(4,−7). . .

3. Each of these output values (a run-level pair) is encoded as a separate symbol by

the entropy encoder.

Higher-frequency DCT coefficients are very often quantized to zero and so a reordered

block will usually end in a run of zeros. A special case is required to indicate the final non-zero

coefficient in a block. If ‘two-dimensional’ run-level encoding is used, each run-level pair is

encoded as above and a separate code symbol, ‘last’, indicates the end of the non-zero values.

If ‘three-dimensional’ run-level encoding is used, each symbol encodes three quantities, run,

level and last. In the example above, if –7 is the final non-zero coefficient, the 3-D values are:

(0, 16, 0), (2, −3, 0), (0, 5, 0), (0, 6, 0), (4, −7, 1)

The 1 in the final code indicates that this is the last non-zero coefficient in the block.

3.4.4.2 Wavelet

Coefficient distribution

Figure 3.36 shows a typical distribution of 2D wavelet coefficients. Many coefficients in

higher sub-bands, towards the bottom-right of the figure, are near zero and may be quantized

to zero without significant loss of image quality. Non-zero coefficients tend to be related to

structures in the image; for example, the violin bow appears as a clear horizontal structure in

all the horizontal and diagonal sub-bands. When a coefficient in a lower-frequency sub-band is

non-zero, there is a strong probability that coefficients in the corresponding position in higher-

frequency sub-bands will also be non-zero. We may consider a ‘tree’ of non-zero quantized

coefficients, starting with a ‘root’ in a low-frequency sub-band. Figure 3.44 illustrates this

concept. A single coefficient in the LL band of layer 1 has one corresponding coefficient

in each of the other bands of layer 1, i.e. these four coefficients correspond to the same

region in the original image. The layer 1 coefficient position maps to four corresponding child

coefficient positions in each sub-band at layer 2. Recall that the layer 2 sub-bands have twice

the horizontal and vertical resolution of the layer 1 sub-bands.

Zerotree encoding

It is desirable to encode the non-zero wavelet coefficients as compactly as possible prior to

entropy coding [vii]. An efficient way of achieving this is to encode each tree of non-zero

coefficients starting from the lowest or root level of the decomposition. A coefficient at the
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Layer 1 Layer 2

Figure 3.44 Wavelet coefficient and ‘children’

lowest layer is encoded, followed by its child coefficients at the next layer up, and so on. The 
encoding process continues until the tree reaches a zero-valued coefficient. Further children 
of a zero-valued coefficient are likely to be zero themselves and so the remaining children are 
represented by a single code that identifies a tree of zeros (zerotree). The decoder reconstructs 
the coefficient map starting from the root of each tree; non-zero coefficients are decoded and 
reconstructed and when a zerotree code is reached, all remaining ‘children’ are set to zero. 
This is the basis of the embedded zero tree (EZW) method of encoding wavelet coefficients. 
An extra possibility is included in the encoding process, where a zero coefficient may be 
followed by (a) a zero tree, as before or (b) a non-zero child coefficient. Case (b) does not 
occur very often but reconstructed image quality is slightly improved by catering for the 
occasional occurrences of case (b).

3.5 Entropy coder

The entropy encoder converts a series of symbols representing elements of the video sequence 
into a compressed bitstream suitable for transmission or storage. Input symbols may include 
quantized transform coefficients, run-level or zerotree encoded as described in section 3.4.4, 
motion vectors with integer or sub-pixel resolution, marker codes that indicate a resynchro-

nization point in the sequence, macroblock headers, picture headers, sequence headers etc and 
supplementary information, ‘side’ information that is not essential for correct decoding.

3.5.1 Predictive coding

Certain symbols are highly correlated in local regions of the picture. For example, the average 
or DC value of neighbouring intra-coded blocks of pixels may be very similar, neighbouring 
motion vectors may have similar x and y displacements and so on. Coding efficiency can be 
improved by predicting elements of the current block or macroblock from previously-encoded 
data and encoding the difference between the prediction and the actual value.

89



58 The H.264 Advanced Video Compression Standard

A

B

X

C

Figure 3.45 Motion vector prediction candidates

The motion vector for a block or macroblock indicates the offset to a prediction reference

in a previously encoded frame. Vectors for neighbouring blocks or macroblocks are often

correlated because object motion may extend across large regions of a frame. This is especially

true for small block sizes, e.g. 4 × 4 block vectors (Figure 3.22) and/or for large moving

objects. Compression of the motion vector field may be improved by predicting each motion

vector from previously encoded vectors. A simple prediction for the vector of the current

macroblock X is the horizontally adjacent macroblock A (Figure 3.45); alternatively three or

more previously-coded vectors may be used to predict the vector at macroblock X, e.g. A,

B and C in Figure 3.45. The difference between the predicted and actual motion vector, the

Motion Vector Difference or MVD, is encoded and transmitted.

The quantization parameter or quantizer step size controls the trade-off between compression

efficiency and image quality. In a real-time video CODEC it may be necessary to modify

the quantization within an encoded frame, for example to change the compression ratio in

order to match the coded bit rate to a transmission channel rate. It is usually sufficient

to change the parameter by a small amount between successive coded macroblocks. The

modified quantization parameter must be signalled to the decoder and instead of sending a

new quantization parameter value, it may be preferable to send a delta or difference value,

e.g. +/−1 or +/−2, indicating the change required. Fewer bits are required to encode a small

delta value than to encode a completely new quantization parameter.

3.5.2 Variable-length coding

A variable-length encoder maps input symbols to a series of codewords, variable length codes

or VLCs. Each symbol maps to a codeword and codewords may have varying length but must

each contain an integral number of bits. Frequently-occurring symbols are represented with

short VLCs whilst less common symbols are represented with long VLCs. Over a sufficiently

large number of encoded symbols this leads to compression of the data.

3.5.2.1 Huffman coding

Huffman coding assigns a VLC to each symbol based on the probability of occurrence of

different symbols. According to the original scheme proposed by Huffman in 1952 [viii], it is

necessary to calculate the probability of occurrence of each symbol and to construct a set of

variable length codewords. This process will be illustrated by two examples.
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Table 3.2 Probability of occurrence of motion vectors in sequence 1

Vector Probability p log2(1/p)

−2 0.1 3.32

−1 0.2 2.32

0 0.4 1.32

1 0.2 2.32

2 0.1 3.32

Example 1: Huffman coding, Sequence 1 motion vectors

The motion vector difference data (MVD) for video sequence 1 is required to be encoded.

Table 3.2 lists the probabilities of the most commonly-occurring motion vectors in the encoded

sequence and their information content, log2(1/p). To achieve optimum compression, each

value should be represented with exactly log2(1/p) bits. ‘0’ is the most common value and the

probability drops for larger motion vectors. This distribution is representative of a sequence

containing moderate motion.

1. Generating the Huffman code tree

To generate a Huffman code table for this set of data, the following iterative procedure is

carried out:

1. Order the list of data in increasing order of probability.

2. Combine the two lowest-probability data items into a ‘node’ and assign the joint probability

of the data items to this node.

3. Re-order the remaining data items and node(s) in increasing order of probability and repeat

step 2.

The procedure is repeated until there is a single ‘root’ node that contains all other nodes

and data items listed ‘beneath’ it. This procedure is illustrated in Figure 3.46.

Original list: The data items are shown as square boxes. Vectors (−2) and

(+2) have the lowest probability and these are the first

candidates for merging to form node ‘A’.

Stage 1: The newly-created node ‘A’, shown as a circle, has a

probability of 0.2, from the combined probabilities of (−2)

and (2). There are now three items with probability 0.2.

Choose vectors (−1) and (1) and merge to form node ‘B’.

Stage 2: A now has the lowest probability (0.2) followed by B and the

vector 0; choose A and B as the next candidates for merging to

form ‘C’.

Stage 3: Node C and vector (0) are merged to form ‘D’.

Final tree: The data items have all been incorporated into a binary ‘tree’

containing five data values and four nodes. Each data item is a

‘leaf’ of the tree.
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Figure 3.46 Generating the Huffman code tree: Sequence 1 motion vectors

2. Encoding

Each ‘leaf’ of the binary tree is mapped to a variable-length code. To find this code, the tree

is traversed from the root node, D in this case, to the leaf or data item. For every branch, a 0

or 1 is appended to the code, 0 for an upper branch, 1 for a lower branch, shown in the final

tree of Figure 3.46, giving the following set of codes (Table 3.3).

Encoding is achieved by transmitting the appropriate code for each data item. Note that

once the tree has been generated, the codes may be stored in a look-up table.

High probability data items are assigned short codes, e.g. 1 bit for the most common vector

‘0’. However, the vectors (−2, 2, −1, 1) are each assigned 3-bit codes despite the fact that

–1 and 1 have higher probabilities than –2 and 2. The lengths of the Huffman codes, each an

integral number of bits, do not match the ideal lengths given by log2(1/p). No code contains

any other code as a prefix, which means that, reading from the left-hand bit, each code is

uniquely decodable.

For example, the series of vectors (1, 0, −2) would be transmitted as the binary sequence

0111000.

Table 3.3 Huffman codes for sequence 1 motion vectors

Vector Code Bits (actual) Bits (ideal)

0 1 1 1.32

1 011 3 2.32

−1 010 3 2.32

2 001 3 3.32

−2 000 3 3.32
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Table 3.4 Probability of occurrence of motion vectors in sequence 2

Vector Probability log2(1/p)

−2 0.02 5.64

−1 0.07 3.84

0 0.8 0.32

1 0.08 3.64

2 0.03 5.06

3. Decoding

In order to decode the data, the decoder must have a local copy of the Huffman code tree or

look-up table. This may be achieved by transmitting the look-up table itself or by sending the

list of data and probabilities prior to sending the coded data. Each uniquely-decodeable code

is converted back to the original data, for example:

1. 011 is decoded as (1)

2. 1 is decoded as (0)

3. 000 is decoded as (−2).

Example 2: Huffman coding, sequence 2 motion vectors

Repeating the process described above for a second sequence with a different distribution of

motion vector probabilities gives a different result. The probabilities are listed in Table 3.4

and note that the zero vector is much more likely to occur in this example, representative of a

sequence with little movement.

The corresponding Huffman tree is given in Figure 3.47. The ‘shape’ of the tree has changed

because of the distribution of probabilities and this gives a different set of Huffman codes,

shown in Table 3.5. There are still four nodes in the tree, one less than the number of data

items (5), as is always the case with Huffman coding.
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Figure 3.47 Huffman tree for sequence 2 motion vectors
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Table 3.5 Huffman codes for sequence 2 motion vectors

Vector Code Bits (actual) Bits (ideal)

0 1 1 0.32

1 01 2 3.64

−1 001 3 3.84

2 0001 4 5.06

−2 0000 4 5.64

If the probability distributions are accurate, Huffman coding provides a relatively compact

representation of the original data. In these examples, the frequently occurring (0) vector is

represented efficiently as a single bit. However, to achieve optimum compression, a separate

code table is required for each of the two sequences because of their different probabil-

ity distributions. The loss of potential compression efficiency due to the requirement for

integral-length codes is very clear for vector ‘0’ in sequence 2, since the optimum number

of bits (information content) is 0.32 but the best that can be achieved with Huffman coding

is 1 bit.

3.5.2.2 Pre-calculated Huffman-based coding

The Huffman coding process has two disadvantages for a practical video CODEC. First, the

decoder must use the same codeword set as the encoder. This means that the encoder needs to

transmit the information contained in the probability table before the decoder can decode the

bit stream and this extra overhead reduces compression efficiency, particularly for shorter video

sequences. Second, the probability table for a large video sequence, required to generate the

Huffman tree, cannot be calculated until after the video data is encoded which may introduce

an unacceptable delay into the encoding process. For these reasons, image and video coding

standards define sets of codewords based on the probability distributions of ‘generic’ video

material. The following two examples of pre-calculated VLC tables are taken from MPEG-4

Visual (Simple Profile).

Transform Coefficients (TCOEF)

MPEG-4 Visual uses 3-D coding of quantized coefficients in which each codeword represents

a combination of (run, level, last). A total of 102 specific combinations of (run, level, last)

have VLCs assigned to them and 26 of these codes are shown in Table 3.6.

A further 76 VLCs are defined, each up to 13 bits long. The last bit of each codeword

is the sign bit ‘s’, indicating the sign of the decoded coefficient, where 0=positive and

1=negative. Any (run, level, last) combination that is not listed in the table is coded using an

escape sequence, a special ESCAPE code (0000011) followed by a 13-bit fixed length code

describing the values of run, level and last.

Some of the codes shown in Table 3.6 are represented in ‘tree’ form in Figure 3.48. A

codeword containing a run of more than eight zeros is not valid, hence any codeword starting

with 000000000. . . indicates an error in the bitstream or possibly a start code, which begins

with a long sequence of zeros, occurring at an unexpected position in the sequence. All other

sequences of bits can be decoded as valid codes. Note that the smallest codes are allocated to
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Table 3.6 MPEG-4 Visual Transform Coefficient

(TCOEF) VLCs : partial, all codes < 9 bits

Last Run Level Code

0 0 1 10s

0 1 1 110s

0 2 1 1110s

0 0 2 1111s

1 0 1 0111s

0 3 1 01101s

0 4 1 01100s

0 5 1 01011s

0 0 3 010101s

0 1 2 010100s

0 6 1 010011s

0 7 1 010010s

0 8 1 010001s

0 9 1 010000s

1 1 1 001111s

1 2 1 001110s

1 3 1 001101s

1 4 1 001100s

0 0 4 0010111s

0 10 1 0010110s

0 11 1 0010101s

0 12 1 0010100s

1 5 1 0010011s

1 6 1 0010010s

1 7 1 0010001s

1 8 1 0010000s

ESCAPE 0000011s

. . . . . . . . . . . .

short runs and small levels since these occur most frequently, e.g. code ‘10’ represents a run 
of 0 and a level of +/−1.

Motion Vector Difference (MVD)

Differentially coded motion vectors (MVD) are each encoded as a pair of VLCs, one for the 
x-component and one for the y-component. Part of the table of VLCs is shown in Table 3.7. 
A further 49 codes, 8–13 bits long, are not shown here. Note that the shortest codes represent 
small motion vector differences, e.g. MVD=0 is represented by a single bit code ‘1’.

These code tables are clearly similar to ‘true’ Huffman codes since each symbol is assigned 
a unique codeword, common symbols are assigned shorter codewords and, within a table, 
no codeword is the prefix of any other codeword. The main differences from ‘true’ Huffman 
coding are (a) the codewords are pre-calculated based on ‘generic’ probability distributions 
and (b) in the case of TCOEF, only 102 commonly-occurring symbols have defined codewords 
with any other symbol encoded using a fixed-length code.
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10 (0,0,1)

110 (0,1,1)

1110 (0,2,1)

1111 (0,0,2)

0111 (1,0,1)

01100 (0,4,1)

01101 (0,3,1)

01011 (0,5,1)

010101 (0,0,3)

010100 (0,1,2)

010011 (0,6,1)

010010 (0,7,1)

010001 (0,8,1)

010000 (0,9,1)

... 19 codes

... 17 codes

0000011 (escape)

... 24 codes

... 8 codes

... 4 codes

... 4 codes

000000000X(error)

0

1

0

1

0

1

Start

... 12 codes

Figure 3.48 MPEG4 TCOEF VLCs (partial)

3.5.2.3 Other variable-length codes

As well as Huffman and Huffman-based codes, a number of other families of VLCs are

of interest in video coding applications. One serious disadvantage of Huffman-based codes

for transmission of coded data is that they are sensitive to transmission errors. An error

in a sequence of VLCs may cause a decoder to lose synchronization and fail to decode

subsequent codes correctly, leading to spreading or propagation of an error in a decoded
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Table 3.7 MPEG4 Motion

Vector Difference (MVD) VLCs

MVD Code

0 1

+0.5 010

−0.5 011

+1 0010

−1 0011

+1.5 00010

−1.5 00011

+2 0000110

−2 0000111

+2.5 00001010

−2.5 00001011

+3 00001000

−3 00001001

+3.5 00000110

−3.5 00000111

. . . . . .

sequence. Reversible VLCs (RVLCs) that can be successfully decoded in either a forward or

a backward direction can dramatically improve decoding performance when errors occur. A

drawback of pre-defined code tables such as Table 3.6 and Table 3.7 is that both encoder and

decoder must store the table in some form. An alternative approach is to use codes that can be

generated automatically ‘on the fly’ if the input symbol is known. Exponential Golomb codes

(Exp-Golomb) fall into this category and are described in Chapter 7.

3.5.3 Arithmetic coding

The variable length coding schemes described in section 3.5.2 share the fundamental dis-

advantage that assigning a codeword containing an integral number of bits to each symbol

is sub-optimal, since the optimal number of bits for a symbol depends on the information

content and is usually a fractional number. Compression efficiency of variable length codes

is particularly poor for symbols with probabilities greater than 0.5 as the best that can be

achieved is to represent these symbols with a single-bit code.

Arithmetic coding provides a practical alternative to Huffman coding that can more closely

approach theoretical maximum compression ratios [ix]. An arithmetic encoder converts a

sequence of data symbols into a single fractional number and can approach the optimal

fractional number of bits required to represent each symbol.

Example

Table 3.8 lists the five motion vector values (−2, −1, 0, 1, 2) and their probabilities from 
Example 1 in section 3.5.2.1. Each vector is assigned a sub-range within the range 0.0 to 1.0, 
depending on its probability of occurrence. In this example, (−2) has a probability of 0.1 and 
is given the subrange 0–0.1, i.e. the first 10 per cent of the total range 0 to 1.0. (−1) has a 
probability of 0.2 and is given the next 20 per cent of the total range, i.e. the sub-range 0.1–0.3.
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After assigning a sub-range to each vector, the total range 0–1.0 has been divided amongst the

data symbols (the vectors) according to their probabilities (Figure 3.49).

Table 3.8 Motion vectors, sequence 1: probabilities

and sub-ranges

Vector Probability log2(1/P) Sub-range

−2 0.1 3.32 0–0.1

−1 0.2 2.32 0.1–0.3

0 0.4 1.32 0.3–0.7

1 0.2 2.32 0.7–0.9

2 0.1 3.32 0.9–1.0

10 0.1 0.3 0.7 0.9

Total range

(-2) (-1) (0) (+1) (+2)

Figure 3.49 Sub-range example

Encoding procedure for vector sequence (0, −1, 0, 2).

Encoding procedure Range (L → H) Symbol

Sub-range

(L → H) Notes

1. Set the initial range 0 → 1.0

2. For the first data symbol,

find the corresponding

sub-range (Low to High).

(0) 0.3 → 0.7

3. Set the new range (1) to

this sub-range

0.3 → 0.7

4. For the next data symbol,

find the sub-range L to H

(−1) 0.1 → 0.3 This is the sub-range

within the interval 0 - 1

5. Set the new range (2) to

this sub-range within the

previous range

0.34 → 0.42 0.34 is 10% of the range;

0.42 is 30% of the range

6. Find the next sub-range (0) 0.3 → 0.7

7. Set the new range (3)

within the previous range

0.364 → 0.396 0.364 is 30% of the range;

0.396 is 70% of the range

8. Find the next sub-range (2) 0.9 → 1.0

9. Set the new range (4)

within the previous range

0.3928 → 0.396 0.3928 is 90% of the

range; 0.396 is 100% of

the range
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0 0.1 0.3 0.7 0.9 1

(0)

0.3 0.70.34 0.42 0.58 0.66

(-1)

0.34 0.420.348 0.364 0.396 0.412

(0)

0.364 0.3960.3672 0.3736 0.3864 0.3928

(2)

0.394

Figure 3.50 Arithmetic coding example

Each time a symbol is encoded, the range (L to H) becomes progressively smaller. At the

end of the encoding process, four steps in this example, we are left with a final range (L to

H). The entire sequence of data symbols can be represented by transmitting any fractional

number that lies within this final range. In the example above, we could send any number in

the range 0.3928 to 0.396: for example, 0.394. Figure 3.50 shows how the initial range (0, 1) is

progressively partitioned into smaller ranges as each data symbol is processed. After encoding

the first symbol, vector 0, the new range is (0.3, 0.7). The next symbol (vector –1) selects

the sub-range (0.34, 0.42) which becomes the new range, and so on. The final symbol, vector

+2, selects the sub-range (0.3928, 0.396) and the number 0.394 falling within this range is

transmitted. 0.394 can be represented as a fixed-point fractional number using 9 bits, so our

data sequence (0, −1, 0, 2) is compressed to a 9-bit quantity.

Decoding procedure

Decoding procedure Range Sub-range Decoded symbol

1. Set the initial range 0 → 1

2. Find the sub-range in which the

received number falls. This

indicates the first data symbol.

0.3 → 0.7 (0)

3. Set the new range (1) to this

sub-range

0.3 → 0.7

(Continued)
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Decoding procedure Range Sub-range Decoded symbol

4. Find the sub-range of the new

range in which the received

number falls. This indicates the

second data symbol.

0.34 → 0.42 (−1)

5. Set the new range (2) to this

sub-range within the previous range

0.34 → 0.42

6. Find the sub-range in which the

received number falls and decode

the third data symbol.

0.364 → 0.396 (0)

7. Set the new range (3) to this

sub-range within the previous range

0.364 → 0.396

8. Find the sub-range in which the

received number falls and decode

the fourth data symbol.

0.3928 → 0.396

The principal advantage of arithmetic coding is that the transmitted number, 0.394 in this

case, which may be represented as a fixed-point number with sufficient accuracy using 9 bits,

is not constrained to an integral number of bits for each transmitted data symbol. To achieve

optimal compression, the sequence of data symbols should be represented with:

log2(1/P0) + log2(1/P−1) + log2(1/P0) + log2(1/P2) bits = 8.28 bits

In this example, arithmetic coding achieves 9 bits, which is close to optimum. A scheme

using an integral number of bits for each data symbol such as Huffman coding is unlikely to

come so close to the optimum number of bits and in general, arithmetic coding can out-perform

Huffman coding.

3.5.3.1 Context-based Arithmetic Coding

Successful entropy coding depends on accurate models of symbol probability. Context-based

Arithmetic Encoding (CAE) uses local spatial and/or temporal characteristics to estimate the

probability of a symbol to be encoded. CAE is used in the JBIG standard for bi-level image

compression [x] and has been adopted for coding binary shape ‘masks’ in MPEG-4 Visual

and entropy coding in certain Profiles of H.264 (Chapter 7).

3.6 The hybrid DPCM/DCT video CODEC model

The major video coding standards released since the early 1990s have been based on the

same generic design or model of a video CODEC that incorporates a motion estimation and

compensation first stage, sometimes described as DPCM, a transform stage and an entropy

encoder. The model is often described as a hybrid DPCM/DCT CODEC. Any CODEC that is

compatible with H.261, H.263, MPEG-1, MPEG-2, MPEG-4 Visual, H.264/AVC or VC-1 has

to implement a similar set of basic coding and decoding functions, although there are many

differences of detail between the standards and between implementations.
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Figure 3.51 DPCM/DCT video encoder

Figure 3.51 and Figure 3.52 show the basic DPCM/DCT hybrid encoder and decoder. In

the encoder, video frame n (Fn) is processed to produce a coded or compressed bitstream. In

the decoder, the compressed bitstream, shown at the right of the figure, is decoded to produce

a reconstructed video frame F’n. The reconstructed output frame is not usually identical to

the source frame. The figures have been deliberately drawn to highlight the common elements

within encoder and decoder. Most of the functions of the decoder are actually contained within

the encoder, the reason for which will be explained later.

Encoder data flow

There are two main data flow paths in the encoder, left to right (encoding) and right to left

(reconstruction). The encoding flow is as follows:

1. An input video frame Fn is presented for encoding and is processed in units of a macroblock,

corresponding to a 16 × 16 pixel region of the video image.

2. Fn is compared with a reference frame, for example the previous encoded frame (F’n−1).

A motion estimation function finds a 16 × 16 region in F’n−1 that ‘matches’ the current

macroblock in Fn. The offset between the current macroblock position and the chosen

reference region is a motion vector MV.

3. Based on the chosen motion vector MV, a motion compensated prediction P is generated,

the 16 × 16 region selected by the motion estimator. P may consist of interpolated

sub-pixel data.

4. P is subtracted from the current macroblock to produce a residual or difference macroblock

D.
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Entropy
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Figure 3.52 DPCM/DCT video decoder
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5. D is transformed using the DCT. Typically, D is split into 8 × 8 or 4 × 4 sub-blocks and

each sub-block is transformed separately.

6. Each sub-block is quantized (X).

7. The DCT coefficients of each sub-block are reordered and run-level coded.

8. Finally, the coefficients, motion vector and associated header information for each mac-

roblock are entropy encoded to produce the compressed bitstream.

The reconstruction data flow is as follows:

1. Each quantized macroblock X is rescaled and inverse transformed to produce a decoded

residual D’. Note that the non-reversible quantization process means that D’ is not identical

to D, i.e. distortion has been introduced.

2. The motion compensated prediction P is added to the residual D’ to produce a reconstructed

macroblock. The reconstructed macroblocks are combined to produce reconstructed frame

F’n.

After encoding a complete frame, the reconstructed frame F’n may be used as a reference

frame for the next encoded frame Fn+1.

Decoder data flow

1. A compressed bitstream is entropy decoded to extract coefficients, motion vector and header

for each macroblock.

2. Run-level coding and reordering are reversed to produce a quantized, transformed mac-

roblock X.

3. X is rescaled and inverse transformed to produce a decoded residual D’.

4. The decoded motion vector is used to locate a 16 × 16 region in the decoder’s copy of the

previous (reference) frame F’n−1. This region becomes the motion compensated prediction

P.

5. P is added to D’ to produce a reconstructed macroblock. The reconstructed macroblocks

are saved to produce decoded frame F’n.

After a complete frame is decoded, F’n is ready to be displayed and may also be stored as a

reference frame for the next decoded frame F’n+1.

It is clear from the figures and from the above explanation that the encoder includes a

decoding path : rescale, IDCT, reconstruct. This is necessary to ensure that the encoder and

decoder use identical reference frames F’n−1 for motion compensated prediction.

Example

A 25-Hz video sequence in CIF format, with 352 × 288 luminance samples and 176 × 144

red/blue chrominance samples per frame, is encoded and decoded using a DPCM/DCT CODEC.

Figure 3.53 shows a CIF video frame (Fn) that is to be encoded and Figure 3.54 shows the

reconstructed previous frame F’n−1. Note that F’n−1 has been encoded and decoded and shows

some distortion. The difference between Fn and F’n−1 without motion compensation (Figure

3.55) clearly still contains significant energy, especially around the edges of moving areas.
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Figure 3.53 Input frame Fn

Figure 3.54 Reconstructed reference frame F’n−1
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Figure 3.55 Residual Fn-F’n−1 : no motion compensation

Motion estimation is carried out with a 16 × 16 block size and half-pixel accuracy, producing

the set of vectors shown in Figure 3.56, superimposed on the current frame for clarity. Many

of the vectors are zero and are shown as dots, which means that the best match for the current

macroblock is in the same position in the reference frame. Around moving areas, the vectors

point in the direction that blocks have moved from. E.g. the man on the left is walking to the

left; the vectors therefore point to the right, i.e. where he has come from. Some of the vectors

do not appear to correspond to ‘real’ movement, e.g. on the surface of the table, but indicate

simply that the best match is not at the same position in the reference frame. ‘Noisy’ vectors

like these often occur in homogeneous regions of the picture, where there are no clear object

features in the reference frame.

The motion-compensated reference frame (Figure 3.57) is the reference frame ‘reorganized’

according to the motion vectors. For example, note that the walking person has been moved to

the left to provide a better match for the same person in the current frame and that the hand of the

left-most person has been moved down to provide an improved match. Subtracting the motion

compensated reference frame from the current frame gives the motion-compensated residual

in Figure 3.58 in which the energy has clearly been reduced, particularly around moving areas.

Figure 3.59 shows a macroblock from the original frame, taken from around the head

of the figure on the right, and Figure 3.60 the luminance residual after motion compensa-

tion. Applying a 2D DCT to the top-right 8 × 8 block of luminance samples (Table 3.9)

produces the DCT coefficients listed in Table 3.10. The magnitude of each coefficient is

plotted in Figure 3.61; note that the larger coefficients are clustered around the top-left (DC)

coefficient.
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Figure 3.56 16 × 16 motion vectors superimposed on frame

Figure 3.57 Motion compensated reference frame
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Figure 3.58 Motion compensated residual frame

Figure 3.59 Original macroblock : luminance
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Figure 3.60 Residual macroblock : luminance

Table 3.9 Residual luminance samples : top-right 8 × 8 block

−4 −4 −1 0 1 1 0 −2

1 2 3 2 −1 −3 −6 −3

6 6 4 −4 −9 −5 −6 −5

10 8 −1 −4 −6 −1 2 4

7 9 −5 −9 −3 0 8 13

0 3 −9 −12 −8 −9 −4 1

−1 4 −9 −13 −8 −16 −18 −13

14 13 −1 −6 3 −5 −12 −7

Table 3.10 DCT coefficients

−13.50 20.47 20.20 2.14 −0.50 −10.48 −3.50 −0.62

10.93 −11.58 −10.29 −5.17 −2.96 10.44 4.96 −1.26

−8.75 9.22 −17.19 2.26 3.83 −2.45 1.77 1.89

−7.10 −17.54 1.24 −0.91 0.47 −0.37 −3.55 0.88

19.00 −7.20 4.08 5.31 0.50 0.18 −0.61 0.40

−13.06 3.12 −2.04 −0.17 −1.19 1.57 −0.08 −0.51

1.73 −0.69 1.77 0.78 −1.86 1.47 1.19 0.42

−1.99 −0.05 1.24 −0.48 −1.86 −1.17 −0.21 0.92
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Figure 3.61 DCT coefficient magnitudes : top-right 8 × 8 block

A simple forward quantizer is applied:

Qcoeff = round(coeff/Qstep)

where Qstep is the quantizer step size, 12 in this example. Small-valued coefficients become

zero in the quantized block (Table 3.11) and the non-zero outputs are clustered around the

top-left (DC) coefficient.

The quantized block is re-ordered in a zigzag scan starting at the top-left to produce a linear

array:

−1, 2, 1, −1, −1, 2, 0, −1, 1, −1, 2, −1, −1, 0,

0, −1, 0, 0, 0, −1, −1, 0, 0, 0, 0, 0, 1, 0, . . .

Table 3.11 Quantized coefficients

−1 2 2 0 0 −1 0 0

1 −1 −1 0 0 1 0 0

−1 1 −1 0 0 0 0 0

−1 −1 0 0 0 0 0 0

2 −1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
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Table 3.12 Variable length coding example

Run, Level, Last VLC including sign bit

(0,−1, 0) 101

(0,2, 0) 11100

(0,1, 0) 100

(0,−1, 0) 101

(0,−1, 0) 101

(0,2, 0) 11100

(1,−1, 0) 1101

. . . . . .

(5,1, 1) 00100110

This array is processed to produce a series of (zero run, level) pairs:

(0, −1)(0, 2)(0, 1)(0, −1)(0, −1)(0, 2)(1, −1)(0, 1)(0, −1)

(0, 2)(0, −1)(0, −1)(2, −1)(3, −1)(0, −1)(5, 1)(EOB)

‘EOB’ (End Of Block) indicates that the remainder of the coefficients are zero.

Each (run, level) pair is encoded as a VLC. Using the MPEG-4 Visual TCOEF table (Table

3.6), the VLCs shown in Table 3.12 are produced.

The final VLC signals that LAST=1, indicating that this is the end of the block. The motion

vector for this macroblock is (0, 1), i.e. the vector points downwards. The predicted vector

based on neighbouring macroblocks is (0,0) and so the motion vector difference values are

MVDx=0, MVDy=+1. Using the MPEG4 MVD table (Table 3.7), these are coded as (1) and

(0010) respectively.

The macroblock is transmitted as a series of VLCs, including a macroblock header, motion

vector difference (X, Y) and transform coefficients (TCOEF) for each 8 × 8 block.

At the decoder, the VLC sequence is decoded to extract header parameters, MVDx and

MVDy and (run,level) pairs for each block. The 64-element array of reordered coefficients

is reconstructed by inserting (run) zeros before every (level). The array is then ordered to

produce an 8 × 8 block identical to Table 3.11. The quantized coefficients are rescaled using:

Rcoeff = Qstep.Qcoeff

Where Qstep=12 as before, to produce the block of coefficients shown in Table 3.13. Note

that the block is significantly different from the original DCT coefficients (Table 3.10) due to

Table 3.13 Rescaled coefficients

−12 24 24 0 0 −12 0 0

12 −12 −12 0 0 12 0 0

−12 12 −12 0 0 0 0 0

−12 −12 0 0 0 0 0 0

24 −12 0 0 0 0 0 0

−12 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
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Table 3.14 Decoded residual luminance samples

−3 −3 −1 1 −1 −1 −1 −3

5 3 2 0 −3 −4 −5 −6

9 6 1 −3 −5 −6 −5 −4

9 8 1 −4 −1 1 4 10

7 8 −1 −6 −1 2 5 14

2 3 −8 −15 −11 −11 −11 −2

2 5 −7 −17 −13 −16 −20 −11

12 16 3 −6 −1 −6 −11 −3

the quantization process. An Inverse DCT is applied to create a decoded residual block (Table

3.14) which is similar but not identical to the original residual block (Table 3.9). The original

and decoded residual blocks are plotted side by side in Figure 3.62 and it is clear that the

decoded block has less high-frequency variation because of the loss of high-frequency DCT

coefficients through quantization.

The decoder forms its own predicted motion vector based on previously decoded vectors

and recreates the original motion vector (0, 1). Using this vector, together with its own copy of

the previously decoded frame F’n−1, the decoder reconstructs the macroblock. The complete

decoded frame is shown in Figure 3.63. Because of the quantization process, some distortion

has been introduced, for example around detailed areas such as the faces and the equations on

the whiteboard and there are some obvious edges along 8 × 8 block boundaries. The complete

sequence was compressed by around 300 times, i.e. the coded sequence occupies less than

1/300 the size of the uncompressed video, and so significant compression was achieved at the

expense of relatively poor image quality.
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Figure 3.62 Comparison of original and decoded residual blocks
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Figure 3.63 Decoded frame F’n

3.7 Summary

The video coding tools described in this chapter, motion compensated prediction, transform

coding, quantization and entropy coding, form the basis of the reliable and effective coding

model that has dominated the field of video compression for over 10 years. This coding model

is at the heart of the H.264/AVC standard. The next chapter introduces the main features of

H.264/AVC and the standard is discussed in detail in following chapters.
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4

What is H.264?

4.1 Introduction

This chapter introduces H.264 from a number of perspectives. First, we address the question –

what is H.264? H.264 can mean different things from different viewpoints. It is an industry

standard; it defines a format for compressed video data; it provides a set of tools that can

be used in a variety of ways to compress and communicate visual information; it is a stage

in an evolving series of standardized methods for video compression. We look at the basic

operations carried out within an H.264 encoder (compressor) and decoder (decompressor). We

look in more depth inside H.264, examining what is contained within the H.264 standard, what

are the main sets of tools and components, presenting an outline of the H.264 compression

syntax or format and looking in more detail at the flow of data through a typical H.264 codec.

Finally we discuss some of the practical issues – just how good is H.264 at doing its job; how

is H.264 used in ‘real’ applications.

4.2 What is H.264?

H.264 Advanced Video Coding is an industry standard for video coding, but it is also a popular

format for coded video, a set of tools for video compression and a stage in a continuously

evolving digital video communication landscape. This section introduces some of these ‘views’

of H.264/AVC.

4.2.1 A video compression format

H.264 is a method and format for video compression, the process of converting digital video

into a format that takes up less capacity when it is stored or transmitted. Video compression or

video coding is an essential technology for applications such as digital television, DVD-Video,

mobile TV, videoconferencing and internet video streaming. Standardizing video compression

makes it possible for products from different manufacturers such as encoders, decoders and

storage media to inter-operate. An encoder converts video into a compressed format and a

decoder converts compressed video back into an uncompressed format.

The H.264 Advanced Video Compression Standard, Second Edition Iain E. Richardson
C© 2010 John Wiley & Sons, Ltd
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In a typical application of H.264 such as remote surveillance, video from a camera is

encoded or compressed using H.264 to produce an H.264 bitstream. This is sent across a

network to a decoder which reconstructs a version of the source video, Figure 1.1. Figure 1.1

shows how source video, uncompressed video material, is encoded by an encoder and stored

on a server. The compressed video, a sequence of bits, is transmitted to one or more clients.

This example shows clients with widely varying display capabilities from a full-sized TV

display to a mobile screen and this highlights a current challenge in video coding – how to

cater for receivers with different capabilities. In a two-way ‘conversational’ video application

such as videoconferencing, Apple iChat, Skype Video, etc, both ends of the system require an

encoder to compress video from the local camera and a decoder to decompress video from the

remote camera, Figure 1.2.

4.2.2 An industry standard

Recommendation H.264: Advanced Video Coding is a document co-published by two interna-

tional standards bodies, the ITU-T (International Telecommunication Union) and the ISO/IEC

(International Organisation for Standardisation/International Electrotechnical Commission)

[i]. It defines a format or syntax for compressed video and a method for decoding this syntax

to produce a displayable video sequence. The standard document does not actually specify

how to encode digital video – this is left to the manufacturer of a video encoder – but in

practice the encoder is likely to mirror the steps of the decoding process. Figure 4.1 shows

the encoding and decoding processes and highlights the parts that are covered by the H.264

standard.

The H.264/AVC standard was first published in 2003, with several revisions and updates

published since then. It builds on the concepts of earlier standards such as MPEG-2 and

MPEG-4 Visual and offers the potential for better compression efficiency, i.e. better-quality

compressed video, and greater flexibility in compressing, transmitting and storing video.

video
source prediction transform

entropy
encode

reconstruct
inverse

transform
entropy
decode

compressed
H.264
syntax

video
output

VIDEO ENCODER

VIDEO DECODER

scope of the H.264 standard

Figure 4.1 The H.264 video coding and decoding process
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4.2.3 A toolkit for video compression

H.264/AVC describes a set of tools or methods for video compression. The standard specifies

how video coded with these tools should be represented and decoded. A video encoder may

choose which tools to use and how to apply them to the current video sequence, with some

constraints. An H.264-compliant decoder must be capable of using a defined sub-set of tools,

known as a profile.

4.2.4 Better video compression

One of the most important drivers for the standardization of H.264 and its subsequent adoption

by industry is its improved performance compared with earlier standards. The benchmark for

mass-market applications such as digital TV and consumer video storage on DVD-Video is the

earlier MPEG-2 standard [ii]. H.264 offers significantly better compression performance than

MPEG-2 Visual. Using H.264 it is possible to compress video into a much smaller number

of bits than using MPEG-2, for the same video resolution and image quality. This means, for

example, that much more video material can be stored on a disk or transmitted over a broadcast

channel by using the H.264 format.

4.3 How does an H.264 codec work?

An H.264 video encoder carries out prediction, transforming and encoding processes (Figure

4.1) to produce a compressed H.264 bitstream. An H.264 video decoder carries out the

complementary processes of decoding, inverse transform and reconstruction to produce a

decoded video sequence. As Figure 4.2 shows, a sequence of original video frames or fields is

........ ........

source frames

decoded frames

H.264 bitstream

ENCODE

DECODE

Figure 4.2 Video coding: source frames, encoded bitstream, decoded frames
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Figure 4.3 Video codec: high level view

encoded into the H.264 format, a series of bits that represents the video in compressed form.

This compressed bitstream is stored or transmitted and can be decoded to reconstruct the video

sequence. The decoded version is, in general, not identical to the original sequence because

H.264 is a lossy compression format, i.e. some picture quality is lost during compression.

A frame or field to be coded, e.g. Frame A in Figure 4.3, is processed by an H.264-compatible

video encoder. As well as coding and sending the frame as part of the coded bitstream or coded

file, the encoder reconstructs the frame, i.e. creates a copy of the decoded frame A’ that will

eventually be produced by the decoder. This reconstructed copy may be stored in a coded

picture buffer, CPB, and used during the encoding of further frames. The decoder receives the

coded bitstream and decodes frame A’ for display or further processing. At the same time,

the decoder may store a copy of frame A’ in a decoded picture buffer, DPB, to be used during

the decoding of further frames.

The structure of a typical H.264 codec is shown in Figure 4.4 (encoder) and Figure 4.5

(decoder) in slightly more detail. Data is processed in units of a macroblock (MB) corre-

sponding to 16 × 16 displayed pixels. In the encoder, a prediction macroblock is generated

and subtracted from the current macroblock to form a residual macroblock; this is transformed,

quantized and encoded. In parallel, the quantized data are re-scaled and inverse transformed

and added to the prediction macroblock to reconstruct a coded version of the frame which

is stored for later predictions. In the decoder, a macroblock is decoded, re-scaled and in-

verse transformed to form a decoded residual macroblock. The decoder generates the same

Form
prediction

Transform
+ quantize

Inverse
transform
+ quantize

Entropy
encoder

Current MB

Prediction MB

Residual MB

Decoded
Residual MB

Intra

Inter

....

Current frame or field

Previously coded 
frames or fields

Coded bitstream+

-

+

+

Figure 4.4 Typical H.264 encoder
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Figure 4.5 Typical H.264 decoder

prediction that was created at the encoder and adds this to the residual to produce a decoded

macroblock.

4.3.1 Encoder processes

4.3.1.1 Prediction

The encoder forms a prediction of the current macroblock based on previously-coded data,

either from the current frame using intra prediction or from other frames that have already

been coded and transmitted using inter prediction. The encoder subtracts the prediction from

the current macroblock to form a residual1 (Figure 4.6).

The prediction methods supported by H.264 are more flexible than those in previous stan-

dards, enabling accurate predictions and hence efficient video compression. Intra prediction

uses 16 × 16 and 4 × 4 block sizes to predict the macroblock from surrounding, previously

coded pixels within the same frame (Figure 4.7).

The values of the previously-coded neighbouring pixels are extrapolated to form a prediction

of the current macroblock. Figure 4.8 shows an example. A 16 × 16 prediction block is formed,

an approximation of the original macroblock. Subtracting the prediction from the original

macroblock produces a residual block (also containing 16 × 16 samples).

Inter prediction uses a range of block sizes from 16 × 16 down to 4 × 4 to predict pixels

in the current frame from similar regions in previously coded frames (Figure 4.9). These

previously coded frames may occur before or after the current frame in display order. In the

example shown in Figure 4.9, macroblock 1 (MB1) in the current frame is predicted from a

16 × 16 region in the most recent ‘past’ frame. MB2 is predicted from two previously coded

frames. The upper 8 × 16 block of samples, a ‘partition’, is predicted from a past frame and

the lower 8 × 16 partition is predicted from a future frame.

1 Finding a suitable inter prediction is often described as motion estimation. Subtracting an inter prediction from

the current macroblock is motion compensation.
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Figure 4.6 Prediction: flow diagram

Previously coded pixels

Current

Block

P
re

v
io

u
s
ly

 c
o
d
e
d
 p

ix
e
ls

Figure 4.7 Intra prediction
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Figure 4.8 Original macroblock, intra prediction and residual
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MB1

MB2

past frames future frame

current frame

Figure 4.9 Inter prediction

Figure 4.10 shows an example of an original macroblock and its prediction from the previous

frame. In this example, the 16 × 16 prediction block is a good match for the current macroblock.

The values in the residual macroblock are mostly near zero.

4.3.1.2 Transform and quantization

A block of residual samples is transformed using a 4 × 4 or 8 × 8 integer transform, an

approximate form of the Discrete Cosine Transform (DCT). The transform outputs a set of

coefficients, each of which is a weighting value for a standard basis pattern. When combined,

the weighted basis patterns re-create the block of residual samples (Figure 4.11).

The output of the transform, a block of transform coefficients, is quantized, i.e. each

coefficient is divided by an integer value. Quantization reduces the precision of the transform

coefficients according to a quantization parameter (QP). For example, the original coefficient

values in Figure 4.12 are divided by a QP or step size of 8 and rounded to the nearest integer.

Typically, the result is a block in which most or all of the coefficients are zero, with a few

non-zero coefficients. Setting QP to a high value means that more coefficients are set to zero,

resulting in high compression at the expense of poor decoded image quality. Setting QP to a

low value means that more non-zero coefficients remain after quantization, resulting in better

image quality at the decoder but also in lower compression (Figure 4.13).

Original MB Residual MBInter Prediction

Figure 4.10 Original macroblock, inter prediction and residual
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Figure 4.12 Quantization example

 73 87 64 13

 40 63 23 2

 36 24 68 26

 29 98 67 12

Original block (4x4) 

 181.3 47.4 –65.8 4.0

5.7 29.6 16.4 –2.2

40.3 18.3 –28.8 –13.8

13.1 –20.2 13.8 33.9

Forward transform coefficients 

 18 5 –7 0

1 3 2 0

 4 2 –3 –1

 1 –2 1 3

Quantized coefficients (step size = 10) 

9 2 –3 0

0 1 1 0

2 1 –1 –1

1 –1 1 2

Quantized coefficients (step size = 20) 

Figure 4.13 Example: Block, transform coefficients, quantized coefficients
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4.3.1.3 Bitstream encoding

The video coding process produces a number of values that must be encoded to form the

compressed bitstream. These values include:

r Quantized transform coefficients
r Information to enable the decoder to re-create the prediction
r Information about the structure of the compressed data and the compression tools used

during encoding
r Information about the complete video sequence.

These values and parameters, syntax elements, are converted into binary codes using vari-

able length coding and/or arithmetic coding. Each of these encoding methods produces an

efficient, compact binary representation of the information. The encoded bitstream can then

be stored and/or transmitted.

4.3.2 Decoder processes

4.3.2.1 Bitstream decoding

A video decoder receives the compressed H.264 bitstream, decodes each of the syntax elements

and extracts the information described above, i.e. quantized transform coefficients, prediction

information, etc. This information is then used to reverse the coding process and recreate a

sequence of video images.

4.3.2.2 Rescaling and inverse transform

The quantized transform coefficients are re-scaled. Each coefficient is multiplied by an integer

value to restore its original scale.2 In the example of Figure 4.14, the quantized coefficients

are each multiplied by a QP or step size of 8. The re-scaled coefficients are similar but not

identical to the originals (Figure 4.12).

rescaled coefficients

24

8

0

3
1 10 rescale

quantized coefficients

8

Figure 4.14 Rescaling example

2 This is often described as inverse quantization but it is important to note that quantization is not a fully reversible

process. Information removed during quantization cannot be restored during re-scaling.
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Figure 4.15 Inverse transform: combining weighted basis patterns to create a 4 × 4 image block

An inverse transform combines the standard basis patterns, weighted by the re-scaled co-

efficients, to re-create each block of residual data. Figure 4.15 shows how the inverse DCT

or integer transform creates an image block by weighting each basis pattern according to

a coefficient value and combining the weighted basis patterns. These blocks are combined

together to form a residual macroblock. In Figure 4.16, the quantized coefficients of Fig-

ure 4.13 are rescaled using a quantization step size of 10 or 20 and inverse transformed.

The reconstructed blocks are similar but not identical to the original block of Figure 4.13.

The difference or loss is due to the forward quantization process. A larger quantization step

size tends to produce a larger difference between original and reconstructed blocks.

 180.0 50.0 –70.0 0.0

10.0 30.0 20.0 0.0

40.0 20.0 –30.0 –10.0

10.0 –20.0 10.0 30.0

Rescaled coefficients (QStep=10) 

 180.0 40.0 –60.0 0.0

0.0 20.0 20.0 0.0

40.0 20.0 –20.0 –20.0

20.0 –20.0 20.0 40.0

Rescaled coefficients (QStep=20)

74 89 65 11

42 64 23 4

30 29 64 24

27 99 67 8

Inverse transform output (QStep=10) 

71 78 59 24

29 61 23 2

40 23 73 29

30 103 60 15

Inverse transform output (QStep=20)

Figure 4.16 Rescaled coefficients and inverse transform output
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Figure 4.17 Reconstruction flow diagram

4.3.2.3 Reconstruction

For each macroblock, the decoder forms an identical prediction to the one created by the 
encoder using inter prediction from previously-decoded frames or intra prediction from 
previously-decoded samples in the current frame. The decoder adds the prediction to the 
decoded residual to reconstruct a decoded macroblock which can then be displayed as part 
of a video frame (Figure 4.17).

4.4 The H.264/AVC Standard

The current version of Recommendation H.264 [i] is a document of over 550 pages. It 
contains normative content, essential instructions that must be observed by H.264 codecs, 
and informative content, guidance that is not mandatory, and is organised as shown in Table 
4.1. Note that as amendments or updated versions of the standard are published, further sections 
or Annexes may be added.

An H.264-compliant bitstream, a coded video sequence, should conform to the syntax 
definition, with syntax elements constructed according to the semantics described in Chapter 
7 of the standard. An H.264 decoder should follow the parsing process in Chapter 9 of the 
standard to extract syntax elements from the bitstream and these should be decoded according 
to the decoding processes described in Chapter 8 of the standard in order to create a decoded 
video sequence.
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Table 4.1 Overview of the H.264 standard document

Section What it describes

0. Introduction A brief overview of the purpose and main features of the

standard.

1–5. Scope, References,

Definitions,

Abbreviations,

Conventions

How H.264 fits with other published standards; terminology and

conventions used throughout the document.

6. Data formats and

relationships

Defines the basic formats assumed for video and coded data;

principles of deriving relationships between coded units.

7. Syntax and semantics A series of tables describing the syntax or bitstream format and

an explanation of the meaning and allowed values of each

syntax element (semantics)

8. Decoding process Details of all the stages of processing required to decode a video

sequence from H.264 syntax elements.

9. Parsing process The processes required to extract syntax elements from a coded

H.264 bitstream.

A. Profiles and levels Profiles define subsets of video coding tools; levels define limits

of decoder capabilities.

B. Byte stream format Syntax and semantics of a stream of coded NAL units.

C. Hypothetical reference

decoder

A hypothetical decoder ‘model’ that is used to determine

performance limits.

D. Supplemental

enhancement

information

Information that may be sent in an H.264 bitstream that is not

essential for decoding. Examples include user-generated data,

buffering control, etc.

E. Video usability

information

Non-essential information about display of the coded video.

G. Scalable Video Coding A self-contained extension to the H.264/AVC standard that

supports Scalable Video Coding (SVC). SVC supports

efficient transmission of video at multiple spatial resolutions,

frame rates and/or quality levels.

4.5 H.264 Profiles and Levels

H.264 supports a portfolio of ‘tools’. These are algorithms or processes for coding and

decoding video and related operations. These include tools essential to any implementation of

H.264 such as the basic 4 × 4 transform, optional or interchangeable tools such as CABAC

or CAVLC entropy coding, tools for specific applications or scenarios such as the SI/SP tools

which can support streaming video and tools not directly related to video coding such as VUI

and SEI messages.

An encoder has considerable flexibility in choosing and using tools defined in the standard.

A decoder may be capable of operating with a very limited set of tools, for example if it is only

required to decode bitstreams that use a subset of tools. H.264 profiles each define a specific

subset of tools. An H.264 bitstream that conforms to a particular profile can only contain video

coded using some or all of the tools within the profile; a profile-compliant decoder must be

capable of decoding with every tool in the profile. The profiles therefore act as constraints on
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Figure 4.18 Profiles and Levels: example

the capabilities required by a decoder. The Main Profile is perhaps the most widely used at the

present time, with tools that offer a good compromise between compression performance and

computational complexity. The Constrained Baseline Profile is a subset of the Main Profile

that is popular for low-complexity, low-delay applications such as mobile video.

A second constraint is the amount of data that a decoder can handle, which is likely to

be limited by the processing speed, memory capacity and display size at the decoder. An

H.264/AVC level specifies an upper limit on the frame size, processing rate (number of frames

or blocks can be decoded per second) and working memory required to decode a video

sequence. A particular decoder can only decode H.264 bitstreams up to a certain combination

of Profile and Level.

Example

The decoder shown in Figure 4.18 can decode Main Profile bitstreams, up to Level 2.2 which

corresponds to Standard Definition video coded at bitrates of 4Mbps or less. The figure shows

three potential input bitstreams. The first is coded at CIF resolution with a maximum bitrate of

2Mbps (Level 2) using the tools in the Constrained Baseline Profile. Constrained Baseline is a

subset of Main Profile and Level 2 is lower than Level 2.2, so the Main Profile/Level 2.2 decoder

can decode this bitstream.

The second is coded at Standard Definition resolution, 720 × 576 displayed pixels, at a bitrate

of less than 4Mbps (Level 2.2) by a Main Profile encoder. The decoder can decode this bitstream.

The third is coded at 720p High Definition resolution, 1280 × 720 displayed pixels, and

is coded with a Main Profile encoder at Level 3.1. This is higher than the maximum Level

supported by the decoder and so it cannot be decoded.

This example shows that Profiles and Levels are a useful mechanism for ensuring that a

decoder’s capabilities are not exceeded. The Profile and Level of an H.264 bitstream are

signalled in the Sequence Parameter Set (Chapters 5 and 8).
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4.6 The H.264 Syntax

H.264 provides a clearly defined format or syntax for representing compressed video and

related information. Figure 4.19 shows an overview of the structure of the H.264 syntax.

At the top level, an H.264 sequence consists of a series of ‘packets’ or Network Adapta-

tion Layer Units, NAL Units or NALUs. These can include parameter sets containing key

parameters that are used by the decoder to correctly decode the video data and slices, which

are coded video frames or parts of video frames.

At the next level, a slice represents all or part of a coded video frame and consists of a number

of coded macroblocks, each containing compressed data corresponding to a 16 × 16 block of

displayed pixels in a video frame. At the lowest level of Figure 4.19, a macroblock contains

type information describing the particular choice of methods used to code the macroblock,

parametersets

slice

slice

slice

frame

frame

slice
header

mb mb

mb

luma

chroma

header + vectors

coefficients

mb

frame

sequence

macroblock

SOURCE VIDEO H.264 SYNTAX

Figure 4.19 H.264 syntax: overview
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prediction information such as coded motion vectors or intra prediction mode information and

coded residual data.

Example

An H.264 decoder receives the following series of bits, describing an inter-coded macroblock

or P MB coded using context-adaptive VLCs:

110111110001110001110010 (alternate syntax elements highlighted).

Figure 4.20 shows the syntax elements in this sequence of bits. The header elements, the

first eight bits and six syntax elements, indicate the macroblock type (P, one motion vector),

1

1

0

1
1

1

1

1

0
0
0
1
1

1

0

0

0
1
1

1

0
0

1

0

mb_skip_run: no uncoded macroblocks before this one

mb_type: this macroblock has a single partition, i.e. one motion vector

mvd_l0(0): x-component of motion vector, differentially coded, is 0

mvd_l0(1): y-component of motion vector, differentially coded, is -1

cbp: only the first (top-left) luma block has non-zero coefficient data

delta QP: this macroblock has the same quantizer parameter
as the previous macroblock

coeff_token: this block contains 3 coefficients, all +/-1

trailing_ones_sign: the coefficient signs are -, +, + (reverse order)

total_zeros: there are 7 zeros in the block
(up to the final non-zero coefficient)

run_before: a sequence of 3 zeros

run_before: a sequence of 1 zero

first
(and only)
coefficient

block

Figure 4.20 Syntax example: P-macroblock
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Figure 4.21 P-macroblock decoding process

the prediction parameters, in this case the x and y components of the motion vector, coded

differentially from previously-received vectors, the coded block pattern which indicates that

only one of the 4 × 4 blocks in the MB actually contains residual data and the quantization

parameter, coded differentially from the previous macroblock. The next 16 bits represent 5 syntax

elements that specify the contents of the first and only non-zero coefficient block. Decoding the

macroblock proceeds as follows (Figure 4.21):

r Extract the residual luma and chroma coefficient blocks (Figure 4.22, also Chapter 7)
r Calculate the actual quantization parameter QP
r Carry out the inverse quantization and inverse transform processes to produce the residual

sample blocks (Chapter 7)
r Calculate the actual motion vector
r Produce a prediction macroblock (Chapter 6)
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Residual (luma)
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Figure 4.22 Residual luma and chroma coefficient blocks

r Add the prediction macroblock to the residual samples to reconstruct the decoded macroblock
r Store as part of the decoded frame for display and/or for further prediction (Chapters 5

and 6).

4.7 H.264 in practice

4.7.1 Performance

Perhaps the biggest advantage of H.264 over previous standards is its compression perfor-

mance. Compared with standards such as MPEG-2 and MPEG-4 Visual, H.264 can deliver:

r Better image quality at the same compressed bitrate, or
r A lower compressed bitrate for the same image quality.

For example, a single-layer DVD can store a movie of around two hours’ length in MPEG-2

format. Using H.264, it should be possible to store four hours or more of movie-quality video

on the same disk, i.e. a lower bitrate for the same quality. Alternatively, the H.264 compression

format can deliver better quality at the same bitrate compared with MPEG-2 and MPEG-4

Visual (Figure 4.23).

Figure 4.23 A video frame compressed at the same bitrate using MPEG-2 (left), MPEG-4 Visual

(centre) and H.264 compression (right)
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The improved compression performance of H.264 comes at the price of greater computa-

tional cost. H.264 is more sophisticated than earlier compression methods and this means that

it can take significantly more processing power to compress and decompress H.264 video.

4.7.2 Applications

As well as its improved compression performance, H.264 offers greater flexibility in terms

of compression options and transmission support. An H.264 encoder can select from a wide

variety of compression tools, making it suitable for applications ranging from low-bitrate,

low-delay mobile transmission through high definition consumer TV to professional television

production. The standard provides integrated support for transmission or storage, including a

packetized compressed format and features that help to minimize the effect of transmission

errors.

H.264/AVC has been adopted for an increasing range of applications, including:

r High Definition DVDs (Blu-Ray)
r High Definition TV broadcasting in Europe
r Apple products including iTunes video downloads, iPod video and MacOS
r NATO and US DoD video applications
r Mobile TV broadcasting
r Many mobile video services
r Many internet video services
r Videoconferencing
r Consumer camcorders.

4.8 Summary

H.264 Advanced Video Compression is an industry standard for video coding that defines

a format or syntax for compressed video and a method of decoding this syntax. It provides

a set of tools or algorithms that can be used to deliver efficient, flexible and robust video

compression for a wide range of applications, from low-complexity, low bitrate mobile video

applications to high-definition broadcast services. The following chapters examine H.264’s

tools, features and performance in detail.

4.9 References

i. Recommendation ITU-T H.264 | ISO/IEC 14496-10:2009, ‘Advanced Video Coding for generic audio-visual
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ii. ISO/IEC 14496-2:2000, ‘Information technology – Generic coding of moving pictures and associated audio

information: Video’, 2000.
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H.264 syntax

5.1 Introduction

An ‘H.264 video’ is a video sequence that is represented in a particular format, the H.264/AVC

syntax. This syntax is defined in the H.264 industry standard and specifies the exact structure

of an H.264-compliant video sequence, in terms of syntax elements, parameters describing

different aspects of the coded sequence, and the way in which each element is represented as a

binary code. The syntax is hierarchical, from the highest level, the video sequence level, down

through individual coded frames or fields (access units) and subsets of access units (slices)

to macroblocks and blocks. Control parameters are stored as separate syntax sections such as

Parameter Sets or as part of sections such as the macroblock layer. This chapter examines the

H.264/AVC syntax in detail, beginning with an overview of frame and picture structures and

handling, followed by each of the main layers of the syntax hierarchy.

5.1.1 A note about syntax examples

The various syntax sections in the H.264/AVC standard are illustrated later in the chapter with

extracts from coded video sequences. These were generated using the Joint Model software

video codec [i] using the ‘Trace’ mode which is described further in Chapter 9. Each syntax

example is presented in the following way, Table 5.1:

Table 5.1 Syntax examples: format

Parameter Binary code Symbol Discussion

profile idc 1000010 66 Baseline Profile

↑ The name of the syntax

parameter, listed in the

H.264/AVC standard

↑ The binary code ↑ The value decoded

from this code

↑ What the value indicates.

Selected sections of the H.264 syntax are presented as syntax diagrams such as Figure 5.13.

The H.264 Advanced Video Compression Standard, Second Edition Iain E. Richardson
C© 2010 John Wiley & Sons, Ltd
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It should be emphasized that the syntax examples, diagrams and explanations in this chapter

are for illustration only. Complete and accurate explanations of the syntax and the semantics

or meaning of each syntax element are given in the H.264/AVC standard.

5.2 H.264 syntax

The hierarchical organization of the H.264/AVC syntax can be seen in Figure 5.1 [ii]. The

Network Abstraction Layer (NAL) consists of a series of NAL Units (section 5.4). Sequence

Parameter Sets (SPS) and Picture Parameter Sets (PPS) are NAL units that signal certain

common control parameters to the decoder (section 5.5). Coded video data is communicated

in Video Coding Layer (VCL) NAL units, known as coded slices. An access unit, a coded

SPS PPS IDR Slice Slice Slice PPS Slice .........Network Abstraction Layer

VCL NAL Units

Slice
Header Slice Data

MB MB MB MB MB .........

Type Prediction
Coded Block

Pattern
ResidualQP

Intra mode(s)
Reference

frames Motion vectors

Luma blocks
Cb

blocks
Cr blocks

MB MB

INTRA INTER

Slice layer

Macroblock layer

Skip indication

Figure 5.1 Syntax overview
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frame or field, is made up of one or more slices. At the slice layer (section 5.6), each slice

consists of a Slice Header and Slice Data. The Slice Data is a series of coded macroblocks

(MB) and skip macroblock indicators which signal that certain macroblock positions contain

no data. Each coded macroblock (section 5.7) contains the following syntax elements:

r MB type : I/intra coded, P/inter coded from one reference frame, B/inter coded from one or

two reference frames.
r Prediction information : prediction mode(s) for an I macroblock, choice of reference frame(s)

and motion vectors for a P or B macroblock.
r Coded Block Pattern CBP : indicates which luma and chroma blocks contain non-zero

residual coefficients.
r Quantization Parameter QP, for macroblocks with CBP 6= 0.
r Residual data, for blocks containing non-zero residual coefficients.

A coded video sequence begins with an Instantaneous Decoder Refresh (IDR) Access 
Unit, made up of one or more IDR slices, a special type of Intra coded slice. Subsequent video 
frames or fields, described as Access Units, are coded as slices. The video sequence ends when 
a new IDR slice is received, signalling a new coded sequence, or when the transmission is 
complete.

A list of all the main sections of the syntax is given in Table 5.2. A NAL unit contains a 
Raw Byte Sequence Payload (RBSP), a sequence of bytes containing syntax elements. H.264 
syntax elements are binary codes with varying length and so a sequence of syntax elements 
within a NAL unit will not necessarily fit into an integral number of bytes. Zero-valued bits 
are added to the end of the RBSP contents in order to ensure that the length is an integral 
number of bytes (RBSP trailing bits). An RBSP syntax element can be transmitted or stored 
as a complete packet. Some syntax sections contain sub-sections, e.g. the Sequence Parameter 
Set may contain the sections scaling list and vui parameters and always contains the section 
rbsp trailing bits. Other sections, e.g. scaling list, do not contain any sub-sections.

Before discussing the syntax sections in detail, it is necessary to examine the way in which 
H.264/AVC handles frames, fields and pictures.

5.3 Frames, fields and pictures

Chapter 2 introduced the concept of digital video and typical formats for storing and handling 
digital video information. An H.264 encoder converts video frames into compressed or coded 
picures. H.264/AVC defines a frame as an array of luma samples and two corresponding 
arrays of chroma samples. The two fields, top field and bottom field, that make up a frame may 
be sampled at the same time instant, progressive scan, or at different time instants, interlaced 
scan. The term picture refers collectively to a frame or a field. Figure 5.2 is an overview of the 
way pictures are handled during H.264 encoding and decoding. Frames or fields are encoded 
to form coded pictures, each of which is composed of one or more slices. Slices are decoded 
to produce decoded pictures which are stored in a Decoded Picture Buffer (DPB). Pictures in 
the DPB may be used for inter prediction of further coded pictures and/or output for display.

It is important to distinguish between three different orders of pictures: decoding order, 
the order in which pictures are decoded from the bitstream, display order, the order in which 
pictures are output for display, and reference order, the order in which pictures are arranged 
for inter prediction of other pictures (Figure 5.3).
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Table 5.2 H.264 Syntax Sections

Syntax section Description Contains section(s)

NAL unit Network abstraction layer unit. Raw Byte Sequence Payload (RBSP)

Sequence Parameter

Set (RBSP)

Parameters common to a video

sequence.

Scaling List (optional)

VUI Parameters (optional)

RBSP trailing bits

Scaling List Encoder-specified scaling matrix

for inverse quantization.

None

SPS extension (RBSP) Auxiliary picture information for

alpha blending.

RBSP trailing bits

Picture Parameter Set

(RBSP)

Parameters common to one or more

coded pictures.

Scaling List (optional)

RBSP trailing bits

Supplement

Enhancement

Information (RBSP)

Container for SEI message, see

below.

SEI message

RBSP trailing bits

Supplemental

Enhancement

Information

Message

SEI messages contain information

that may assist decoding or

display but is not essential for

constructing decoded video

frames.

SEI payload

Access Unit Delimiter

(RBSP)

Optional delimiter that indicates the

slice type in the next coded

picure.

RBSP trailing bits

End of Sequence

(RBSP)

Optional delimiter that indicates the

next slice is an IDR.

None

End of Stream (RBSP) Optional delimiter that indicates the

end of the coded bitstream.

None

Filler Data (RBSP) Optional series of filler bytes. RBSP trailing bits

Slice layer without

partitioning (RBSP)

Coded slice that does not use data

partitioning.

Slice header

Slice data

RBSP slice trailing bits

Slice data partition A

layer (RBSP)

Partition A of a Data Partitioned

Slice, see Chapter 8.

Slice header

Slice data

RBSP slice trailing bits

Slice data partition B

layer (RBSP)

Partition B of a Data Partitioned

Slice, see Chapter 8.

Slice header

Slice data

RBSP slice trailing bits

Slice data partition C

layer (RBSP)

Partition C of a Data Partitioned

Slice, see Chapter 8.

Slice header

Slice data

RBSP slice trailing bits

RBSP slice trailing bits Contains RBSP trailing bits and

occurs at end of coded slice or

slice data partition.

RBSP trailing bits

RBSP trailing bits Padding bits to ensure RBSP is byte

aligned.

None

Slice header Parameters common to a coded

slice.

Reference picture list reordering

Prediction weight table (optional)

Decoded reference picture marking

(optional)
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Table 5.2 (Continued)

Syntax section Description Contains section(s)

Reference picture list

reordering

Series of commands to change

default reference picture list

order(s).

None

Prediction weight table Luma and chroma weight offsets

to change effect of motion

compensated prediction.

None

Decoded reference picture

marking

Series of commands to mark

reference pictures as long term

references, etc.

None

Slice data Contains series of coded

macroblocks.

Macroblock layer

Macroblock layer PCM samples or macroblock

headers, prediction and

transform coefficients.

Macroblock prediction (optional)

Sub-macroblock prediction

(optional)

Residual data (optional)

Macroblock prediction Intra prediction modes or

reference indices and motion

vectors.

None

Sub-macroblock prediction Reference indices and motion

vectors.

None

Residual data Contains series of residual

blocks, as indicated by Coded

Block Pattern.

Residual block CAVLC or

residual block CABAC

Residual block CAVLC Block of transform coefficients

coded using CAVLC.

None

Residual block CABAC Block of transform coefficients

coded using CABAC.

None

H.264 Decoder

Frames or Fields ("Pictures")

H.264 Encoder Decoding

processes
Coded Pictures

(one or more slices
per picture)

Output for

Display

Prediction

Decoded Picture

Buffer (DPB)

Figure 5.2 Picture handling in H.264, overview
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Decoded Picture
(decoded in order 

of frame_num)

Decoded Picture Buffer (DPB)

Display
(in order 
of POC)

List 0
-----
-----
-----
-----
-----

List 1
-----
-----
-----
-----
-----

Lists of pictures for inter prediction

Figure 5.3 Decoded Picture Buffer and picture orders

As shown in Figure 5.3, the decoding order of pictures, i.e. the order in which a video

decoder should process the coded pictures, is indicated by the parameter frame num.

The display order of pictures is determined by the parameters TopFieldOrderCount and

BottomFieldOrderCount, collectively described as Picture Order Count, POC.

The reference order of pictures is determined by one or two lists, each of which is an

ordered list of all the available decoded pictures. A P slice uses a single list, list0, and a B slice

uses two lists, list0 and list1, each containing available reference pictures in different orders.

5.3.1 Decoding order

The parameter frame num, decoded from the slice header, determines the decoding order of

pictures, coded frames or fields. Except in certain special cases, frame num for each decoded

picture increases by one compared with the previous reference frame in decoding order.

5.3.2 Display order

Display order is determined by the POC parameters TopFieldOrderCount and BottomFiel-

dOrderCount which are derived from the slice header using one of three methods:

r Type 0: The least significant bits of POC are sent in every slice header. This allows maximum

flexibility but typically requires more bits than the other methods.
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I B P B P B P

Transmission order:

Display order:

0 12 4 3 6 5

0 21 3 4 5 6

Figure 5.4 Display order: Type 0 example

r Type 1: A ‘cycle’ of POC increments is set up in the sequence parameter set and POC

changes according to this cycle unless otherwise signalled in the slice header using a Delta

offset. The cycle defines the interval between frames used for reference, plus a POC offset

to frames not used for reference.
r Type 2: POC is derived directly from frame num and display order is the same as decoding

order.

Display Order Example, Type 0:

Frame pictures, one frame per slice, display order IBPBPBPBPB. . . (Figure 5.4).

In this example, the B slices, bipredicted slices in which each macroblock or partition can be

predicted from up to two reference pictures, are not used for reference prediction of any other

pictures. POC increments by two for every complete frame, i.e. every two fields. Note that

frame num increments after each reference picture is transmitted. In this example, only the I

and P pictures are reference pictures. Increments in frame num are indicated in bold type.

Slice Type Used for reference frame num POC LSBs Display order

1st I Yes 0 0 0

2nd P Yes 1 4 2

3rd B No 2 2 1

4th P Yes 2 8 4

5th B No 3 6 3

6th P Yes 3 12 6

7th B No 4 10 5

8th P Yes 4 16 8

. . . . . .

Display Order Example, Type 1:

Frame pictures, one frame per slice, display order: IBBPBBPBBPB. . . (Figure 5.4)
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In this example, the B slices are not used for reference. The POC cycle consists of one reference

frame, with an offset from the previous reference frame to the next reference frame of +6 and

an offset from the previous reference frame to the next non-reference frame of −4.

Slice Type Used for reference frame num Delta POC Offset POC Display order

1st I Yes 0 0 0 0 0

2nd P Yes 1 0 +6 6 3

3rd B No 2 0 −4 2 1

4th B No 2 2 −4+2 4 2

5th P Yes 2 0 +6 12 6

6th B No 3 0 −4 8 4

7th B No 3 2 −4+2 10 5

8th P Yes 3 0 +6 18 9

. . . . . .

The 4th and 7th slices have a delta POC, signalled in the slice header, of +2. The POC for

these slices is calculated as: POC = expected POC + 2.

5.3.3 Reference picture lists

A picture that is coded and available for reference is stored in the Decoded Picture Buffer

(DPB) and marked as one of the following:

(a) a short term reference picture, indexed according to frame num or POC or,

(b) a long term reference picture, indexed according to LongTermPicNum, a reference number

derived from the parameter LongTermFrameIdx which is assigned when a picture is marked

as a long term reference picture.

Short term reference pictures may be assigned a LongTermFrameIdx, i.e. changed to a long

term reference picture, at a later time.

I B P

Transmission order:

Display order:

0 32 1 5 6 4

0 21 3 4 5 6

B B PB

Figure 5.5 Display order: Type 1 example
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Short term reference pictures are removed from the DPB (a) by an explicit command in the

bitstream or (b) when the DPB is full and an automatic mode of DPB handling is in use, in

which case the oldest short term picture is removed. Long term pictures are removed by an

explicit command in the bitstream.

5.3.3.1 Default reference picture list order

Reference pictures are ordered in one or two lists prior to encoding or decoding a slice. A

P slice uses a single list of reference pictures, list0 and a B slice uses two lists, list0 and

list1. In each list, short term reference pictures are listed first followed by long term reference

pictures, in increasing order of LongTermPicNum. The default short term reference picture

order depends on decoding order when the current slice is a P slice and on display order

when the current slice is a B slice. The list orders are important, since indices to reference

pictures earlier in the list require fewer bits to signal. Hence the default orders are organized

so that reference pictures temporally ‘nearer’ to the current picture occur earlier in the list,

since these are likely to contain the best prediction match for the current picture.

List0 (P slice) : The default order is in decreasing order of PicNum. PicNum is a version of

frame num, ‘wrapped around’ modulo MaxFrameNum.

List0 (B slice) : The default order is (1) in decreasing order of POC, for pictures with POC

earlier than current picture, then (2) in increasing order of POC, for pictures with POC later

than the current picture.

List1 (B slice) : The default order is (1) in increasing order of POC, for pictures with POC

later than the current picture, then (2) in decreasing order of POC, for pictures with POC

earlier than current picture.

Reference Picture Order Example: P slices (list0)

The reference picture list is initially empty. The current frame num is 150 and the maximum

size of the DPB is 5 frames. Italics indicate a LongTermPicNum. Notice that by default, the

first entry in list0 is the most recently coded frame. This is likely to be the ‘best’ prediction

reference for the majority of macroblocks.

Operation list0(0) list0(1) list0(2) list0(3) list0(4)

Initial state - - - - -

Encode frame 150 150 - - - -

Encode 151 151 150 - - -

Encode 152 152 151 150 - -

Encode 153 153 152 151 150 -

Encode 154 154 153 152 151 150

Encode 155 155 154 153 152 151

Assign 154 to LongTermPicNum 3 155 153 152 151 3

Encode 156 and mark it as LongTermPicNum 1 155 153 152 1 3

Encode 157 157 155 153 1 3

. . ...
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60

62

70

72

78

1

3

Decoded Picture
Buffer

Short Term

Long Term

62

60

70

72

78

1

3

70

72

78

62

60

1

3

List 0 List 1

Figure 5.6 List 0 and List 1 ordering: example

Reference Picture Order Example: B slice (list0 and list1)

The DPB contains short term reference pictures with POC 60, 62, 70, 72 and 78 and long term

reference pictures with LongTermFrameIdx 1 and 3. The current POC is 68. The default order

of list0 is:

62, 60, 70, 72, 78, 1, 3

The default order of list1 is:

70, 72, 78, 62, 60, 1, 3

Figure 5.6 shows how the two lists are created from the sequence of pictures in the DPB.

List0 defaults to prediction from ‘past’ pictures in display order whilst List1 defaults to ‘future’

pictures in display order. This is shown graphically in Figure 5.7. Note that the first entry in

68

60 62 70 72

1st ref
(List0)

2nd ref
(List0)

1st ref
(List1)

2nd ref
(List1)

Current B slice

Reference
pictures

Figure 5.7 Default reference pictures: example
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ref_pic_list_reordering_flag

reordering_of_pic_nums_idc

abs_diff_pic_nums_minus1

long_term_pic_num

01

32
0,1

Figure 5.8 Reference picture re-ordering syntax, simplified overview

list0 is the most recent past picture (62) and the first entry in list1 is the nearest future picture

(70). These are likely to be the best ‘past’ and ‘future’ prediction references respectively.

5.3.3.2 Changing the reference picture list order

The default order of list0, and of list1 in the case of a B slice, may be modified by ex-

plicit commands in the slice header. These commands are initiated by the syntax element

ref pic list reordering flag and change the list order for the current slice only. This may be

used, for example, to enable an encoder to place a particularly useful reference frame earlier

in the list than its usual position, since earlier reference indices cost fewer bits to signal.

The reference picture list re-ordering process is illustrated in Figure 5.8 and proceeds as

follows for list 0. This is a simplified overview.

- Initialize a pointer (refIdxL0) to point to the first reference picture index in the list (0)

- While reordering of pic nums idc 6= 3

◦ Select a reference picture, either short term, indicated by abs diff pic num minus1, or long

term, indicated by long term pic num

◦ Move all other pictures from position refIdxL0 onwards in the list to one position later

◦ Put this picture in the list at the position indicated by refIdxL0

◦ Increment pointer refIdxL0.
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Table 5.3 Selecting a reference picture to re-map

reordering of pic nums idc remappedPicNum is calculated as:

0 predictedPicNum – (abs diff pic num minus 1 +1)

1 predictedPicNum + (abs diff pic num minus 1 +1)

2 long term pic num

3 (Exit the re-ordering process)

The value abs diff pic num minus1+1 signals a positive or negative offset from a predicted

reference picture number. For the first reordering or remapping instruction, the predicted

picture number predictedPicNum is the current picture number. For subsequent reordering

instructions, the predicted picture number is the picture number of the last remapped picture.

The picture to be remapped or moved, remappedPicNum, is selected according to the following

rules shown in Table 5.3.

Reference Picture Re-Ordering Example:

The current slice is a P slice. The DPB contains five reference frames, indexed in list0. Three

of these are short-term frames with PicNum equal to 153, 155, and 157, respectively. The other

two are long-term frames with LongTermPicNum equal to 1 and 3, respectively. The current

frame num is 158. The default reference list order (list0) is as follows (Table 5.4).

Table 5.4 Initial reference picture list

Index 0 1 2 3 4

Picture 157 155 153 1 3

The following series of four reference picture reordering commands are received.

Initial predictedPicNum = 158, the current picture; initial refIdxL0 = 0

1. reordering of pic nums idc = 0, abs diff pic num minus 1 = 4

remappedPicNum = 158 – 5 = 153

Put picture 153 at position refIdxL0=0 (the start of the list).

New list: 153, 157, 155, 1, 3

New predictedPicNum = 153; new refIdxL0 = 1.

2. reordering of pic nums idc = 1, abs diff pic num minus 1 = 1

remappedPicNum = 153 + 2 = 155

Put picture 155 at position refIdxL0=1, second in the list.

New list: 153, 155, 157, 1, 3

New predictedPicNum = 155; new refIdxL0 = 2.

3. reordering of pic nums idc = 2, long term pic num = 3

remappedPicNum= 3

Put long term picture 3 at position refIdxL0=2, third in the list.

New list: 153, 155, 3, 157, 1

4. reordering of pic nums idc = 3

End of reordering process.
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The final list0 order is as follows (Table 5.5).

Table 5.5 Final reference picture list

Index 0 1 2 3 4

Picture 153 155 3 157 1

5.3.4 Frame and field coding

A video sequence may be coded in Frame mode only, with no special coding of fields or

interlaced video, or in Frame/Field mode, using special coding tools for interlaced video,

signalled by the syntax element frame mbs only flag in the Sequence Parameter Set (section

5.5). If this flag is set to zero, special coding of fields or interlaced video is enabled.

5.3.4.1 Coding pictures in frame or field mode

If frame/field coding is enabled, each frame of video, a pair of fields, may be coded as a

complete frame, i.e. one picture = one frame, or as two separate fields, i.e. one picture = one

field. The syntax element field pic flag is signalled in each Slice Header (section 5.6.2) and

indicates whether the current coded picture is a frame or a field. This gives rise to the following

two cases:

1. Picture is coded as a complete frame: The complete frame, which happens to include two

fields, is coded as one or more slices, each containing an integral number of macroblocks.

Reference picture list(s), used for motion compensated prediction of P- or B-macroblocks,

are constructed from previously coded frames, i.e. each reference picture is a complete

coded frame. Block coefficients are scanned in a zig-zag order (Chapter 7). Macroblocks

are optionally coded as macroblock pairs in Macroblock Adaptive Frame Field Mode.

2. Picture contains one field: The current top or bottom field is coded as one or more slices,

each containing a number of macroblocks. Reference picture list(s) are constructed from

previously coded fields, i.e. each reference picture is a coded field. Each field of a stored

reference frame is identified as a separate reference picture with a unique index1. An

inter-coded macroblock is predicted from region(s) in previously coded field(s). Block

coefficients are coded in a modified or field scan order (Chapter 7).

The coded frames in the Decoded Picture Buffer (DPB) may therefore be accessed as

complete frames, containing top + bottom field, or as individual fields, depending on whether

the current picture is coded in frame or field mode.

An encoder may choose to switch adaptively between frame and field coding during a

sequence, for example to improve the compression performance for interlaced video or for

progressive video that was converted from an interlaced source. For an interlaced video

1 When decoding a field, there are effectively twice as many reference pictures available as there would be when

decoding a frame at the same position.
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TOP FIELD
TOP FIELD

TOP FIELDBOTTOM FIELD
BOTTOM FIELD

BOTTOM FIELD

FAST MOTION SLOWER MOTION

Code as individual fields Code as frame

Figure 5.9 Picture Adaptive Frame Field Coding example

sequence, field coding tends to be more efficient when there is significant motion in the scene

which tends to give larger changes between successive fields, whereas frame coding tends

to be more efficient in more static areas of the scene where there is less change between

successive fields. Switching between frame and field coding at the picture level is known as

Picture Adaptive Frame Field Coding (PAFF).

Example:

Figure 5.9 shows a sequence of six fields from an interlaced sequence or from a progressive

sequence that was converted from interlaced content. The first four contain rapid motion,

a fast-moving ball, and so the encoder chooses to code each field as an individual picture

using field coding mode. Each field is coded as a unit; reference picture list(s) consist of

previously-coded fields; block scanning uses the modified field scan described in Chapter 7.

The last two fields contain slower motion and the encoder chooses to code these as a complete

frame. The combined frame is coded as a single picture; reference picture list(s) consist

of previously-coded frames; block scanning uses the zig-zag progressive scan described in

Chapter 7.

5.3.4.2 Coding macroblocks in frame or field mode (MBAFF)

Macroblock Adaptive Frame Field Coding (MBAFF) [iii] is a coding mode that is enabled

in the Sequence Parameter Set (section 5.5) and is available thereafter in any slice coded in

Frame mode. MBAFF makes it possible to adaptively switch between frame and field coding

within a single frame, for example to maximise coding efficiency. Macroblocks are handled

in pairs consisting of two vertically adjacent macroblocks (Figure 5.10).

For each macroblock pair, mb field decoding flag, signaled in the header of the upper mac-

roblock, indicates whether the pair is coded as a frame macroblock pair or a field macroblock

pair (Figure 5.11). If it is a frame MB pair, then the top and bottom macroblocks are coded

separately as frame macroblocks. Blocks are scanned using zig-zag scan (Chapter 7). If it is a

field MB pair, alternate lines of the MB pair are mapped to top and bottom field macroblocks

as shown in the figure. Each field macroblock is predicted from the corresponding field in

reference picture(s) (Chapter 6). Blocks in a field MB are scanned using field scan (Chapter 7).
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Frame

MB pairs

Figure 5.10 Frame with macroblock pairs

MB Pair

Frame
MB pair

Field
MB pair

32

16
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Top

Field
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Figure 5.11 MB pair coded using Macroblock Adaptive Frame Field Coding
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5.4 NAL unit

Coded H.264 data is stored or transmitted as a series of packets known as Network Abstraction

Layer Units, NAL Units or NALUs. Each NAL Unit consists of a 1-byte NALU header

followed by a byte stream containing control information or coded video data. The header

indicates the NALU type, some of which are listed in Table 5.6, and the ‘importance’ of

the NALU. Parameter Sets and slices that are used for reference, i.e. used to predict further

frames, are considered important or high priority, since their loss could make it difficult to

decode subsequent coded slices. Non-reference slices are considered to be less important to the

decoder, since their loss will not affect any further decoding. This information can optionally

be used to prioritise certain NALUs during transmission (Chapter 8).

Coded slices are described as Video Coding Layer (VCL) NAL units. A coded sequence

begins with an Instantaneous Decoder Refresh (IDR) Access Unit, made up of one or more

IDR slices, each of which is an Intra coded slice. This is followed by the default slice type,

i.e. a non-IDR coded slice, and/or by Data Partitioned slices. Data Partitioned slices carry

different components of coded video data in separate NAL units, which may be useful in

error-prone transport situations. Non-VCL NAL units include Parameter Sets, Supplemental

Enhancement Information parameters that may be useful for decoding and displaying video

data, but are not essential for correct decoding, and delimiters that define boundaries between

coded sections.

Each NALU may be transported in one or more network packets, streamed sequentially as

a byte stream or encapsulated in a media file (Chapter 8).

Table 5.6 Selected NAL unit types

NAL Unit Description VCL

Coded slice, non-IDR A typical coded slice, see section 5.6 Yes

Coded slice data partition A Part of a data partitioned slice, see Chapter 8 Yes

Coded slice data partition B Part of a data partitioned slice, see Chapter 8 Yes

Coded slice data partition C Part of a data partitioned slice, see Chapter 8 Yes

Coded slice, IDR Part of the Access Unit at the start of a coded video

sequence

Yes

SEI Supplemental Enhancement Information, see Chapter 8 No

SPS Sequence Parameter Set, one per sequence, see section

5.5

No

PPS Picture Parameter Set, see section 5.5 No

Access unit delimiter Indicates type of the slices in the next coded picture

(optional)

No

End of sequence Indicates that the next access unit is IDR, i.e. the start

of a new coded video sequence (optional)

No

End of stream Indicates the end of the coded bitstream (optional) No

Filler Filler bytes (optional), e.g. to prevent buffer under-run,

see Chapter 8.

No

. . .. . ..
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5.5 Parameter Sets

Parameter Sets are NAL units that carry decoding parameters common to a number of coded

slices. Sending these parameters independently of coded slices can improve efficiency, since

common parameters need only be sent once. Parameter Sets are essential to the correct decoding

of a sequence. In a lossy transmission scenario, where bits or packets may be lost or corrupted

during transmission, Parameter Sets may be sent with a higher quality of service using e.g.

Forward Error Correction or a priority mechanism.

A Sequence Parameter Set (SPS) contains parameters common to an entire video sequence

or programme, such as the Profile and Level (Chapter 8), the size of a video frame and certain

decoder constraints such as the maximum number of reference frames (section 5.3.3). Table

5.7 shows an example of a SPS for a Baseline Profile, QCIF coded sequence. Note that each

SPS has a unique identifier, seq parameter set id, which is 0 in this case.

A Picture Parameter Set (PPS) contains common parameters that may apply to a sequence

or subset of coded frames, such as entropy coding type, number of active reference pictures

and initialization parameters. See Table 5.8 for an example. The PPS has its own identifier,

pic parameter set id, and ‘points’ to a SPS identifier. In this example, the PPS ‘inherits’ the

parameters of SPS 0. Each coded slice ‘points’ to a PPS and inherits its parameters. In this

way, there is considerable flexibility to set up common coding parameters via SPS and PPS

NAL units and then to refer to these in subsequent coded slices.

Table 5.7 Sequence Parameter Set example

Parameter

Binary

code Symbol Discussion

profile idc 1000010 66 Baseline Profile

constrained set0 flag 0 0 Bistream might not obey all the

constraints of the Baseline Profile

constrained set1 flag 0 0 As above, Main Profile

constrained set2 flag 0 0 As above, Extended Profile

constrained set3 flag 0 0 Used to specify the special case of

Level 1b

reserved zero 4bits 0 0 Not used

level idc 11110 30 Level 3

seq parameter set id 1 0 Sequence Parameter Set 0

log2 max frame num minus4 1 0 frame num will not exceed 16.

pic order cnt type 1 0 Default POC

log2 max pic order cnt lsb minus4 1 0 LSB of POC will not exceed 16.

num ref frames 1011 10 Up to 10 reference frames.

gaps in frame num value allowed flag 0 0 No gaps in frame num.

pic width in mbs minus1 1011 10 11 macroblocks wide = QCIF

pic height in map units minus1 1001 8 9 MBs high = QCIF

frame mbs only flag 1 1 No field slices or field MBs

direct 8 × 8 inference flag 1 1 Specifies how certain B macroblock

motion vectors are derived

frame cropping flag 0 0 Frames are not cropped

vui parameters present flag 0 0 VUI parameters not present
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Table 5.8 Picture Parameter Set example

Parameter Binary code Symbol Discussion

pic parameter set id 1 0 Picture Parameter Set 0

seq parameter set id 1 0 Use SPS 0

entropy coding mode flag 0 0 CAVLC entropy coding

pic order present flag 0 0 POC not present

num slice groups minus1 1 0 One slice group

num ref idx l0 active minus1 1010 9 10 reference pictures in list0

num ref idx l1 active minus1 1010 9 10 reference pictures in list1

weighted pred flag 0 0 Weighted prediction not used

weighted bipred idc 0 0 Weighted biprediction not used

pic init qp minus26 1 0 Initial QP (luma) = 26

pic init qs minus26 1 0 Initial SI/SP QP=26

chroma qp index offset 1 0 No chroma QP offset

deblocking filter control present flag 0 0 Use default filter parameters

constrained intra pred flag 0 0 Intra prediction is not constrained

redundant pic cnt present flag 0 0 Redundant picture count parameter is

not used

Activation of Parameter Sets

A Parameter Set is ‘inactive’ until it is activated, i.e. its parameters are not used by the decoder.

A PPS, previously transmitted to the decoder, is activated when it is referred to in a slice header

and remains active until a different PPS is activated. A SPS is activated when a PPS that refers

to it, e.g. the PPS in Table 5.8, is activated. A single SPS remains active for an entire coded

video sequence, which must start with an IDR Access Unit, hence a SPS is effectively activated

by an IDR slice. Each coded slice in a video sequence may refer to one of a number of Picture

Parameter Sets.

Using parameter sets: Example

SPS0 is sent at the start of a sequence, followed by PPS0 and PPS1, both of which ‘inherit’

SPS0 (Figure 5.12). PPS0 is activated by IDR slice 0, which means that SPS0 becomes active at

the same time. Slices 1 and 2 use the parameters of PPS0 and SPS0. PPS1 is activated by slice 3,

making PPS0 inactive, hence slice 3 uses the parameters of PPS1 and SPS0; PPS0 is activated

again by slice 4, making PPS1 inactive.

SPS0
PPS0

SPS0

PPS1

SPS0

IDR 0

PPS0

Slice 1

PPS0

Slice 2

PPS0

Slice 3

PPS1

Slice 4

PPS0

SPS1
PPS2

SPS1

IDR

PPS2

Slice

PPS2

Figure 5.12 Example: Sequence and Picture Parameter Sets
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At a later point, SPS1 and PPS2 are sent; PPS2 inherits SPS1. Both SPS1 and PPS2 are

inactive until a new IDR slice is sent, activating both SPS1 and PPS2 and signalling the start of

a new coded video sequence. Subsequent slices use the parameters of SPS1 and PPS2.

5.6 Slice layer

5.6.1 Slice types

Each coded picture, a coded frame or field, is composed of one or more slices, each containing

a slice header followed an integral number of macroblocks. The number of macroblocks

in a slice need not be constant. There are minimal data inter-dependencies between coded

slices, which can help to limit the propagation of errors between slices. Possible scenarios for

choosing slice sizes include:

r One slice per coded picture, common practice in many H.264 encoding applications.
r N slices per picture, each containing M macroblocks, N and M integer. The number of bytes

in each coded slice will tend to vary depending on the amount of motion and detail in the

picture area.
r N slices per picture, containing a varying number of macroblocks, chosen to keep the number

of bytes per slice roughly constant. This may be useful if, for example, each slice is mapped

to a fixed-size network packet.

The available slice types are listed in Table 5.9, together with the macroblock types that

may be present in each slice. Note that a B slice (for example) may contain B, P and/or I

macroblock types and an encoder may choose between these types depending on the content

of the sequence. Macroblock types are explained further in section 5.7.1.

5.6.2 Slice header

The slice header conveys information common to all macroblocks in the slice, such as the slice

type which determines which macroblock types are allowed, the frame number that the slice

corresponds to, reference picture settings and default quantization parameter (QP). Table 5.10

Table 5.9 Slice types in H.264

Slice type Contains macroblock types Notes

I (including IDR) I only Intra prediction only.

P I and/or P Intra prediction (I) and/or prediction from

one reference per macroblock partition

(P).

B I, P and/or B Intra prediction (I), prediction from one

reference (P) or biprediction, i.e.

prediction from two references (B)

SP P and/or I Switching P slice, see Chapter 8

SI SI Switching I slice, see Chapter 8
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Table 5.10 Slice Header, IDR/Intra, Frame 0

Parameter Binary code Symbol Discussion

first mb in slice 1 0 First MB is at position 0, the top-left

position in the slice.

slice type 1000 7 I slice, contains only I MBs

pic parameter set id 1 0 Use PPS 0

frame num 0 0 Slice is in frame 0

idr pic id 1 0 IDR #0 : only present in IDR picture

pic order cnt lsb 0 0 Picture order count = 0

no output of prior pics flag 0 0 Not used

long term reference flag 0 0 Not used

slice qp delta 1000 4 QP = initial QP + 4 = 30

shows an example of a slice header from an I slice with frame mbs only flag set, i.e. no field

coding. This is the first I slice and is therefore an IDR slice. The default QP is set to the initial

sequence value (26) plus 4.

The header of a P slice is shown in Table 5.11. This is frame 1; the picture order count

(POC) is 2. Note that POC increases by 2 for every complete frame, see section 5.3.2. There

is one active reference picture which happens to be frame 0.

5.6.3 Slice data

The slice data section consists of a series of macroblocks that make up a slice. A macroblock

containing no data, a skip macroblock, is a very common occurrence in many coded

sequences. It is signalled by the parameters mb skip run, a count of a sequence of skipped

macroblocks, used with CAVLC entropy coding mode, or mb skip flag, indicating a single

skipped macroblock, used with CABAC entropy coding mode. A skip macroblock can only

Table 5.11 Slice Header, Inter, Frame 1

Parameter Binary code Symbol Discussion

first mb in slice 1 0 First MB at position 0

slice type 110 5 P slice, can contain I or P MBs

pic parameter set id 1 0 Use PPS 0

frame num 1 1 Frame 1

pic order cnt lsb 10 2 Picture 2

num ref idx active override flag 1 1 Default number of reference pictures

overridden by following parameter

num ref idx l0 active minus1 1 0 One reference picture in List 0

ref pic list reordering flag l0 0 0 No re-ordering of reference pictures

adaptive ref pic buffering flag 0 0 Reference pictures handled as ‘first

in / first out’ (default)

slice qp delta 1000 4 QP = 26 + 4 = 30
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occur in a P, SP or B slice. A complete slice data section consists of coded and skipped

macroblocks that comprise a single coded slice (Figure 5.1).

5.7 Macroblock layer

5.7.1 Overview

The Macroblock Layer contains all the syntax elements necessary to decode a single mac-

roblock (Figure 5.13).

mb type indicates the macroblock coding type, I, SI, P or B, and further information about

macroblock prediction and coding. An I macroblock (Intra) can occur in any slice type and is

coded without reference to any other slices. An SIntra MB (SI) occurs only in switching or SI

mb_type

mb_pred

sub_mb_pred

coded_block_pattern

delta_qp

residual

transform_size_
8x8_flag

High Profile
only

High Profile
only

transform_size_
8x8_flag

Figure 5.13 Macroblock layer syntax overview
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Table 5.12 Macroblock types

Macroblock

coding type Further information signalled in mb type codeword

I 4 × 4 : indicates 4 × 4 Intra prediction mode.

8 × 8 : indicates 8 × 8 Intra prediction mode.

16 × 16 : indicates 16 × 16 Intra prediction mode; luma and chroma coded block

pattern is also indicated by mb type.

PCM: indicates that the special PCM mode is used (section 5.7.2).

SI None.

P 16 × 16, 16 × 8, 8 × 16: indicates partition size.

8 × 8: indicates 8 × 8 partition size, a further syntax element sub mb type and

optionally a reference index are also transmitted.

P Skip (inferred): indicates Skip mode, no further data transmitted.

B 16 × 16: indicates 16 × 16 partition size. Prediction mode may be Direct, no

motion vectors or references transmitted, Pred, prediction from one reference

picture in list 0 or list 1, or BiPred, prediction from two references, one from

list 0 and one from list 1.

16 × 8: indicates 16 × 8 partition size plus prediction modes of each partition,

either Pred from L0, Pred from L1 or BiPred.

8 × 16: indicates 8 × 16 partition size plus prediction modes of each partition,

Pred from L0 or L1, or BiPred.

8 × 8: indicates 8 × 8 partition size. A further syntax element sub mb type is

sent for each 8 × 8 partition.

B Skip (inferred): indicates Skip mode, no further data transmitted.

slices (Chapter 8). A P macroblock (Predicted) can occur in P or SP slices and is inter-coded

with one prediction reference. A B macroblock (BiPredicted) can occur in B slices and is

inter-coded with one or two prediction references. Table 5.12 summarizes the information

signalled by the codeword mb type. Note that mb type is not actually transmitted for skip

MBs in P or B slices – these macroblock types are inferred whenever mb skip is signalled in

the slice data layer.

transform size 8 × 8 flag is only present in High Profile bitstreams. It occurs in one of

two places (Figure 5.13) depending on the macroblock type and does not occur in an Intra

16 × 16 macroblock. This flag indicates that an optional 8 × 8 integer transform is used for

luma blocks, instead of the default 4 × 4 integer transform (Chapter 7).

mb pred, for all macroblock types except P/B with 8 × 8 partition size, or sub mb pred,

for P/B macroblocks with 8 × 8 partition size, indicates the type of intra or inter prediction

used for the macroblock (section 5.7.3 and Chapter 6).

coded block pattern is a separate syntax element for macroblocks other than Intra 16 × 16

types. It can take values between 0 and 47 and is constructed as follows:

(i) The four LSBs of coded block pattern, b3b2b1b0, indicate whether there are one or more

non-zero transform coefficients within each of the four 8 × 8 luma blocks. A 1 = non-zero

coefficient(s) present, 0 = no coefficients present.
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Table 5.13 coded block pattern examples.

(ii) The two MSBs, b5b4, can take the values 002, indicating no chroma coefficients present,

012, indicating chroma DC coefficients are present, no chroma AC coefficients, or 102,

indicating chroma DC coefficients may be present, chroma AC coefficients are present.

Table 5.13 shows three examples; a tick indicates that coefficients may be present in the 
block, a 0 indicates that no non-zero coefficients are present.

delta qp indicates a change in quantization parameter (QP), either positive or negative, 
from its previous value. If there is no change in QP from the previous value, delta qp = 0.

If residual coefficient data is present, i.e. if there are non-zero coefficients in the macroblock, 
as indicated by a non-zero CBP, residual data is then transmitted (section 5.7.4).

5.7.2 The Intra PCM mode

The Intra PCM (Pulse Code Modulation) mode is an optional mode of coding a macroblock, 
signalled by mb type I PCM. If I PCM mode is chosen, the usual prediction, transform and
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coding processes are bypassed. Instead, each luma and chroma sample is transmitted directly

as follows:

1. Send zero bits until the current position in the bitstream is byte aligned.

2. Send every luma sample, 256 samples in total, as an individual BitDepthY-bit value.

3. Send every chroma sample, 64 samples for 4:2:0 format, as an individual BitDepthc-bit

value.

BitDepthY and BitDepthC are the number of bits used to represent an uncompressed luma

or chroma sample respectively. Each BitDepth parameter defaults to 8, i.e. 1 byte per sample,

but higher bit depths may be set in the SPS for certain Profiles (Chapter 8).

Clearly, I PCM mode does not provide compression, as the ‘raw’ luma and chroma samples

are simply inserted into the H.264/AVC bitstream. However, there are situations when I PCM

mode may be useful, for example:

1. When video is coded at a very high perceived quality / very low QP setting, for example,

for applications such as content archiving or distribution where high quality is required,

there may occasionally be macroblocks which, when coded using the usual processes

of prediction, transform and entropy coding, generate more bits than the original ‘raw’

data.

2. If I PCM mode is selected for every macroblock, the H.264/AVC bitstream becomes a

‘container’ for uncompressed video. This makes it possible for an application to make

use of all the other features of H.264/AVC such as packet handling, frame numbering and

transport support, whilst retaining the original video samples.

5.7.3 Macroblock prediction

The macroblock prediction syntax elements indicate how intra or inter prediction is carried

out for the current macroblock. Sub mb pred is used for P or B macroblocks coded with 8 × 8

partition size and mb pred is used for all other cases (Figure 5.14). For a detailed description

of intra and inter prediction, see Chapter 6.

I macroblock: If the prediction type is 4 × 4 or 8 × 8, the prediction modes for each 4 × 4

or 8 × 8 luma block are signalled. Note that if the prediction type is 16 × 16, the mode has

already been signalled as part of mb type (section 5.7.1). The chroma prediction mode is

signalled. Section 5.2.5 explains how these modes are coded.

B macroblock, Direct 16 × 16 mode: No further prediction information is sent; List0 and

List1 reference frame indices and List 0 and List 1 motion vectors are derived from previously

coded macroblocks (Chapter 6).

P or B macroblock, 8 × 8 partition size: For each of the four 8 × 8 partitions or sub-

macroblocks, sub mb type is sent indicating for the sub-macroblock:

(a) Direct mode or

(b) Sub-macroblock partition size, 8 × 8, 8 × 4, 4 × 8 or 4 × 4, and prediction sources, List

0, List 1 and/or BiPredicted. This is followed by some or all of the following elements,

depending on sub mb type:
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intra_pred_mode
(prev / rem)

intra_chroma_pred_mode

ref_idx_l0

ref_idx_l1

mvd_l0

mvd_l1

for all 
partitions

if not
present

if not
present

if not
present

if not
present

for all 
partitions

for all 
partitions

for all 
partitions

intra
16x16

intra

inter
(not direct 16x16) direct

16x16

ref_idx_l0

ref_idx_l1

mvd_l0

mvd_l1

for all
sub_mbs

if not
present

if not
present

if not
present

if not
present

for all 
sub_mbs

for all 
sub_mbs + all 

sub_mb partitions

for all 
sub_mbs + all 

sub_mb partitions

sub_mb_type
for all

sub_mbs

mb_pred sub_mb_pred

Figure 5.14 mb pred and sub mb pred syntax overview

(i) Reference picture index/indices for List 0 and/or List 1, one index or one pair of indices

for each sub-macroblock

(ii) Motion vector differences (mvd) for List 0 and/or List 1.

Note that all sub-macroblock partitions in a sub-macroblock share the same reference 
picture(s), whereas each sub-macroblock partition has its own motion vector (x,y) pair.

All other P or B macroblocks: Some or all of the following are sent for each macroblock 
partition, i.e. one 16 × 16 partition, two 8 × 16 partitions or two 16 × 8 partitions:

(a) Reference picture index/indices for List 0 and/or List 1
(b) Motion vector differences for List 0 and/or List 1.
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Table 5.14 Type and prediction elements for B macroblocks, excluding Direct or 8 × 8 partitions

Partition Type (part 0) Type (part 1) Number of reference indices

Number of mvd

(x,y) pairs

16 × 16 L0 or L1 N/A 1 1

16 × 16 Bipred N/A 2 : one for each List 2

16 × 8 L0 or L1 L0 or L1 2 : one for each partition 2

‘ L0 or L1 Bipred 3 : one for partition 0, two for partition 1 3

‘ Bipred L0 or L1 3 : two for partition 0, one for partition 1 3

‘ Bipred Bipred 4 : two for each partition 4

8 × 16 Same options

as for

16 × 8

The motion vector differences (mvd) are added to a predicted motion vector to create the x

and y components of each motion vector (Chapter 6).

As an example, Table 5.14 lists the type and prediction elements, reference indices and

motion vector difference (mvd) pairs, for B macroblocks excluding the special cases of Direct

and 8 × 8 partition types. Each partition has one or two reference frames, one from List 0, one

from List 1 or one from each List, i.e. biprediction, and a corresponding number of mvd(x,y)

pairs signalled in the bitstream.

Note that each syntax element is only sent if it is needed. For example, if there is only one

reference frame in a List, it is not necessary to send a reference index for that List and so the

decoder does not expect to receive one.

5.7.4 Residual data

Residual data for a complete macroblock, if present, is sent according to the syntax summarised

in Figure 5.15. Figure 5.16 shows the sequence in which residual blocks are coded. First, a

4 × 4 block of transformed luma DC coefficients is sent if Intra 16 × 16 mode was chosen

for this macroblock. This optional first block is labelled ‘-1’ in the Figure 5.16. Then, the

luma component is sent in 8 × 8 block order. If coded block pattern indicates the 8 × 8 block

contains no coefficients (section 5.7.1), that block is bypassed. Each 8 × 8 luma block is

processed using four 4 × 4 transforms (Figure 5.16) or one 8 × 8 transform (Figure 5.17, High

Profiles only).

After all the coded luma transform coefficients are sent, two blocks of transformed chroma

DC coefficients are transmitted, if coded block pattern indicates they are present, e.g. for

blocks 16 and 17 in Figure 5.16, blocks 4 and 5 in Figure 5.17. Finally, the chroma AC blocks

are transmitted if present. If the sampling format is 4:2:0 (Chapter 2), each chroma DC block

contains 2 × 2 samples and each chroma AC block contains 8 × 8 samples. These sizes change

if 4:2:2 or 4:4:4 sampling is employed (Chapter 7).

Each residual block is coded using CAVLC or CABAC. The CAVLC and CABAC block

syntax is summarized in Figure 5.18 and Figure 5.19 and described in detail in Chapter 7.
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residual_block
(Intra16x16 DC)

if not Intra
16x16

residual_block
(luma 4x4) residual_block

(luma 8x8) CBP = 0 for
this 8x8 block

for each 
4x4 block

4x4 transform

8x8 transform

for each 
8x8 luma

block

residual_block
(chroma DC)

residual_block
(chroma AC)

chroma DC
not present

chroma AC
not present

for each 
chroma DC

block

for each 
chroma AC

block

Figure 5.15 Residual data syntax overview

Cb (AC)

0 1

32

4 5

76

8 9

1110

12 13

1514

18 19

2120

22 23

2524

Cr (AC)

Luma

16 17

Cb (DC) Cr (DC)

-1

16x16 Intra mode only

Figure 5.16 Block scanning order, 4 × 4 transform, 4:2:0 sampling
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Cb (AC)

6 7

98

10 11

1312

Cr (AC)

4 5

Cb (DC) Cr (DC)

0 1

2 3

Luma

Figure 5.17 Block scanning order, 8 × 8 luma transform, 4:2:0 sampling

coeff_token

trailing_ones_sign_flag

level_prefix

level_suffix

total_zeros

run_before

all zero
coefficients

no trailing
ones

no further
coefficients

no zero
coefficients

for all
trailing
ones

no
suffix

for all
levels

for all
zero runs

Figure 5.18 Residual CAVLC block syntax overview
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coded_block_flag

significant_coeff_flag

last_significant_coeff_flag

all zero
coefficients

(coded_block_flag == 0)

8x8 residual 
block

for all
coefficients

significant_coeff_flag
== 0

coeff_abs_level_minus1

coeff_sign_flag

for all
non-zero

coefficients

Figure 5.19 Residual CABAC block syntax overview

5.7.5 Macroblock syntax examples

The following examples are taken from trace files generated with the JM H.264 reference

software codec [i].

1. Intra coded macroblock

Table 5.15 shows the first part of a trace for an Intra coded macroblock. The first element,

mb type, indicates that this is an Intra macroblock using 4 × 4 prediction. The prediction

modes of each 4 × 4 block are signalled, followed by the prediction mode of the chroma

blocks. See Chapter 6 for a detailed description of how the intra mode is signalled using

Most Probable and Rem parameters. Coded block pattern is 3110 = 0111112, i.e. all luma

blocks and the chroma DC blocks contain non-zero coefficients, but there are no coefficients

present for chroma AC.

2. P macroblock, one reference frame

In this example, illustrated in Table 5.16 and Figure 5.20, a P macroblock is coded using

16 × 16 mode, i.e. one motion vector per macroblock. There is only one reference frame

and so the choice of reference is not signalled. MVDx = 0 and MVDy = −1, indicating
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Table 5.15 I macroblock, example 1

Parameter Binary code Symbol Discussion

mb type (I SLICE) (0, 1) = 9 1 0 Intra coding, 4 × 4 prediction of

each luma block.

Intra mode = 3 0 0011 0,3 Rem = 3

Intra mode = −1 1 1 1 Most probable (MP)

Intra mode = 2 2 0010 0,2 Rem = 2

Intra mode = −1 3 1 1 MP

Intra mode = −1 4 1 1 MP

Intra mode = 2 5 0010 0,2 Rem = 2

Intra mode = 5 6 0101 0,5 Rem = 5

Intra mode = 5 7 0101 0,5 Rem = 5

Intra mode = 5 8 0101 0,5 Rem = 5

Intra mode = −1 9 1 1 MP

Intra mode = −1 10 1 1 MP

Intra mode = 1 11 0001 0,1 Rem = 1

Intra mode = −1 12 1 1 MP

Intra mode = 2 13 0010 0,2 Rem = 2

Intra mode = −1 14 1 1 MP

Intra mode = 3 15 0011 0,3 Rem = 3

Chroma intra pred mode 01 0 Mode 0

CBP (0, 1) = 31 10 31 Coefficients present for all luma

blocks and for chroma

DC blocks.

Delta QP (0, 1) = 0 1 0 No change in QP

Luma # c & tr.1s(0,0) vlc=2 #c=8

#t1=3

1101 8 Coefficient token (see Chapter 7)

Luma trailing ones sign (0,0) 0 0 Trailing ones

Luma lev (0,0) k=4 vlc=0 lev= 1 1 1 Level

Luma lev (0,0) k=3 vlc=1 lev= −1 11 −1 Level

Luma lev (0,0) k=2 vlc=1 lev= −2 11 −2 Level

Luma lev (0,0) k=1 vlc=1 lev= −4 11 −4 Level

Luma lev (0,0) k=0 vlc=2 lev= 3 100 3 Level

Luma totalrun (0,0) vlc=7 totzeros= 1 1 1 Total number of zeros

Luma run (0,0) k=7 vlc=0 run= 0 1 0 Zero run

Luma run (0,0) k=6 vlc=0 run= 1 0 1 Zero run

. . . (etc)
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Table 5.16 P macroblock, example 2

Parameter Binary code Symbol Discussion

mb skip run 1 0 No preceding skip

mb type (P SLICE) (0, 2) = 1 1 0 16 × 16 mode

mvd l0 (0) = 0 (org mv 0 pred mv 0) 1 0 X vector difference

mvd l0 (1) = −1 (org mv 0 pred mv 1) 11 −1 Y vector difference

CBP (0, 2) = 1 11 1 0000012: Only first block has

coefficient data

Delta QP (0, 2) = 0 1 0 No change in QP

Luma # c & tr.1s(0,0) vlc=0 #c=3 #t1=2 101 3 Coefficient token

Luma trailing ones sign (0,0) 10 2 Trailing ones

Luma lev (0,0) k=0 vlc=0 lev= −2 1 −1 Level

Luma totalrun (0,0) vlc=2 totzeros= 2 110 2 Total zeros

Luma run (0,0) k=2 vlc=1 run= 1 1 1 Zero run

Luma run (0,0) k=1 vlc=0 run= 0 1 0 Zero run

Luma # c & tr.1s(1,0) vlc=1 #c=0 #t1=0 11 0 Zero 4 × 4 block

Luma # c & tr.1s(0,1) vlc=1 #c=0 #t1=0 11 0 ‘

Luma # c & tr.1s(1,1) vlc=0 #c=0 #t1=0 1 0 ‘

an offset of −1/4 sample in the y direction from the predicted motion vector (Chapter 6).

The predicted vector is (0,+1/4) so the actual motion vector is (0, 0). Only one 8 × 8 block,

the top-left, contains non-zero coefficients. Within this 8 × 8 block, only the top-left 4 × 4

block contains non-zero coefficients. CBP indicates that coefficient information is only

sent for the first 8 × 8 luma quadrant; non-zero coefficients are signalled for the first 4 × 4

block in this quadrant. The decoder fills the remaining 4 × 4 blocks with zeros.

3. P macroblock, one reference frame

Another P macroblock example is shown in Table 5.17. The two preceding macroblocks

are skipped. The macroblock uses 8 × 16 prediction mode with one reference frame. The

MVD for the first or left-hand partition is (0, 1/4) and MVD for the second or right-hand

0

0 0
0 0

Luma 8x8 blocks
Chroma DC

Chroma AC

MVD

0

0 0

0, -1/4

0

Figure 5.20 P macroblock, example 2
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Table 5.17 P macroblock, example 3

Parameter Binary code Symbol Discussion

mb skip run 11 2 Two previous MBs are

skipped

mb type (P SLICE) (0, 3) = 3 11 2 8 × 16 mode

mvd l0 (0) = 0 1 0 Partition 0 MVDx

mvd l0 (1) = 1 10 1 Partition 0 MVDy

mvd l0 (0) = −1 11 −1 Partition 1 MVDx

mvd l0 (1) = 0 1 0 Partition 1 MVDy

CBP (0, 3) = 1 11 1 0000012: Only first 8 × 8

block non zero

Delta QP (0, 3) = 0 1 0 No change in QP

Luma # c & tr.1s(0,0) vlc=0 #c=0 #t1=0 1 0 Zero 4 × 4 block

Luma # c & tr.1s(1,0) vlc=0 #c=1 #t1=1 1 1 Coefficient token

Luma trailing ones sign (1,0) 1 1 Trailing ones

Luma totalrun (1,0) vlc=0 totzeros= 1 11 1 Total zeros

Luma # c & tr.1s(0,1) vlc=0 #c=2 #t1=2 1 2 Coefficient token

Luma trailing ones sign (0,1) 10 2 Trailing ones

Luma totalrun (0,1) vlc=1 totzeros= 3 100 3 Total zeros

Luma run (0,1) k=1 vlc=2 run= 1 10 1 Zero run

Luma # c & tr.1s(1,1) vlc=1 #c=0 #t1=0 11 0 Zero 4 × 4 block

partition is (−1/4, 0). Only the first, top-left 8 × 8 luma quadrant contains non-zero co-

efficients and the second and third 4 × 4 blocks within this quadrant contain non-zero

coefficients.

4. P macroblock, multiple reference frames

In this example (Table 5.18, Figure 5.21) the macroblock is coded using 8 × 8 partitions.

A further syntax element sub mb type is sent for each of the four 8 × 8 luma partitions

to indicate the sub-macroblock partition types. Next, the reference frame for each mac-

roblock partition is signalled. Note that all sub-macroblock partitions in a partition share

the same reference frame. Partition 0 uses reference index 2, three frames in the past,

partition 1 uses reference index 1, two frames in the past, and partitions 2 and 3 use

reference index 0, one frame in the past, the default case. MVDx and MVDy are sent

for each partition or sub-macroblock partition; the only non-zero values are (−3, 0) and

(−3, 1). Note that these are signalled as (−12,0) and (−12, 4) respectively, in units of
1/4 sample. CBP indicates that the only non-zero coefficients occur in the Chroma DC

blocks.

5. B macroblock

This B macroblock is coded using two 8 × 16 partitions (Table 5.19, Figure 5.22). Par-

tition 0 is predicted from the first picture in List 1, the next frame in display order,

and partition 1 is bi-predicted from the first pictures in List 0 and List 1, the previous
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Table 5.18 P macroblock, example 4

Parameter Binary code Symbol Discussion

mb skip run 1 0 No preceding skipped MBs

mb type (P SLICE) (5, 2) = 8 100 3 8 × 8 partitions with multiple

reference frames

sub mb type(0) 1 0 Partition 0 mode = 8 × 8

sub mb type(1) 1 0 Partition 1 mode = 8 × 8

sub mb type(2) 10 1 Partition 2 mode = 8 × 4

sub mb type(3) 10 1 Partition 3 mode = 8 × 4

ref idx l0 = 2 11 2 Part 0 L0 ref = 2 (3 prev)

ref idx l0 = 1 10 1 Part 1 L0 ref = 1 (2 prev)

ref idx l0 = 0 1 0 Part 2 L0 ref = 0 (prev)

ref idx l0 = 0 1 0 Part 3 L0 ref = 0 (prev)

mvd l0 (0) = 0 1 0 Part 0 MVDx

mvd l0 (1) = 0 1 0 Part 0 MVDy

mvd l0 (0) = 0 1 0 Part 1 MVDx

mvd l0 (1) = 0 1 0 Part 1 MVDy

mvd l0 (0) = −12 11001 −12 Part 2 sub 0 MVDx

mvd l0 (1) = 0 1 0 Part 2 sub 0 MVDy

mvd l0 (0) = 0 1 0 Part 2 sub 1 MVDx

mvd l0 (1) = 0 1 0 Part 2 sub 1 MVDy

mvd l0 (0) = 0 1 0 Part 3 sub 0 MVDx

mvd l0 (1) = 0 1 0 Part 3 sub 0 MVDy

mvd l0 (0) = −12 11001 −12 Part 3 sub 1 MVDx

mvd l0 (1) = 4 1000 4 Part 3 sub 1 MVDy

CBP (5, 2) = 16 10 16 0100002 : Only Chroma DC

present

Delta QP (5, 2) = 0 1 0 No change in QP

ChrDC # c & tr.1s(0,0) vlc=0 #c=1 #t1=1 1 1 Cb DC coefficients

ChrDC trailing ones sign (0,0) 0 0 Just a single trailing one

ChrDC totalrun (0,0) vlc=0 totzeros= 2 1 2 Zero run

ChrDC # c & tr.1s(1,1) vlc=0 #c=0 #t1=0 1 0 No Cr DC coefficients

0

0 0
0 0

Luma 8x8 blocks
Chroma DC

Chroma AC

MVD

00,00,0

0,0 0,0

-3,0 -3,1

1

0 0

Reference indices

2

Figure 5.21 P macroblock example 4

163



132 The H.264 Advanced Video Compression Standard

Table 5.19 B macroblock, example 5

Parameter Binary code Symbol Discussion

mb skip run 1 0 No preceding skipped MBs

mb type (B SLICE) (5, 4) = 3 10000 15 B L1 Bi 8 × 16 : partition 0

from L1, partition 1 is bipred

ref idx l0 = 0 1 0 Part 1 L0 ref, order: all L0s then

all L1s in partition order

ref idx l1 = 0 1 0 Part 0 L1 ref

ref idx l1 = 0 1 0 Part 1 L1 ref

mvd l0 (0) = 11 10110 11 Part 1 L0 MVDx

mvd l0 (1) = 2 100 2 Part 1 L0 MVDy

mvd l1 (0) = −3 111 −3 Part 0 L1 MVDx

mvd l1 (1) = 0 1 0 Part 0 L1 MVDy

mvd l1 (0) = 1 10 1 Part 1 L1 MVDx

mvd l1 (1) = −2 101 −2 Part 1 L1 MVDy

CBP (5, 4) = 0 1 0 0000002: No coefficient data

+ next frames in display order. Partition 0 has MVD = (−3/4, 0) which, when added to the

predicted vector, indicates an offset of (73/4, -11/4) from the reference frame, the next frame

in display order. Partition 1 has two MVD pairs, (23/4,1/2) with respect to the previous frame

and (1/4,-1/2) with respect to the next frame in display order. The final motion vectors and

reference regions are shown in Figure 5.22. There are no coded coefficients; this is quite

common for B macroblocks, especially at lower bitrates, because inter prediction in a B

macroblock tends to be very efficient, leading to minimal or zero energy in the quantized

residual.

6. B macroblock

Another B macroblock example is shown in Table 5.20. Similarly to the previous example,

there are two 8 × 16 partitions. This time, the first is predicted from L0, the previous

frame, and the second is bipredicted using L0, the previous frame, and L1, the next frame.

Compare the order of the reference indices and motion vector differences with the previous

example.

7. B macroblock

This macroblock (Table 5.21) has a single 16 × 16 partition, bipredicted from the previous

(L0) and next (L1) reference frames. One MVD pair (MVDx, MVDy) is sent for each

prediction reference.

8. B macroblock

This example is a macroblock coded using four 8 × 8 macroblock partitions (Table 5.22).

Partitions 0 and 2 are predicted using Direct Prediction (Chapter 6) and so no MVD or

reference index is sent for these partitions. Partition 1 is a single 8 × 8 sub-macroblock

partition, predicted from L1, the next reference frame. Partition 3 contains four 4 × 4 sub-

macroblock partitions, all predicted from L1. Each of these 4 × 4 sub MB partitions has a

separate MVDx, MVDy pair.
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0

Frame n-1 = List0(0)

Frame n (current)

1

1

Frame n+1 = List1(0)

1
0

Figure 5.22 B macroblock, example 5
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Table 5.20 B macroblock, example 6

Parameter Binary code Symbol Discussion

mb skip run 1 0 No previous skip

mb type (B SLICE) (7, 2) = 3 1110 13 B L0 Bi 8 × 16 : part 0 from L0,

part 1 is bipred

ref idx l0 = 0 1 0 Part 0, L0 reference

ref idx l0 = 0 1 0 Part 1, L0 reference

ref idx l1 = 0 1 0 Part 1, L1 reference

mvd l0 (0) = −22 101101 −22 Part 0, L0 MVDx

mvd l0 (1) = 4 1000 4 Part 0, L0 MVDy

mvd l0 (0) = 10 10100 10 Part 1, L0 MVDx

mvd l0 (1) = 0 1 0 Part 1, L0 MVDy

mvd l1 (0) = 11 10110 11 Part 1, L1 MVDx

mvd l1 (1) = −1 11 −1 Part 1, L1 MVDy

CBP (7, 2) = 0 1 0 0000002 : No coefficient data

5.8 Summary

At the heart of the H.264/AVC standard is the syntax, a specific format for representing a coded

video sequence, together with ancillary information. A decoder parses the syntax, extracts the

parameters and data elements and can then proceed to decode and display video. The syntax

is organized hierarchically, from a complete video sequence at the highest level, down to

coded macroblocks and blocks. A key feature of H.264/AVC is its highly flexible handling

of pictures and predictions. Picture management procedures make it possible to construct and

use a very large variety of prediction structures for intra and inter prediction. This flexibility

makes it possible to accurately predict or estimate the current section of an image, which

in turn leads to high compression efficiency. In the following chapters we will examine the

prediction of macroblocks, transform and quantization of residuals and coding of syntax

elements.

Table 5.21 B macroblock, example 7

Parameter Binary code Symbol Discussion

mb skip run 110 5 5 previous MBs are skipped.

mb type (B SLICE) (7, 2) = 1 100 3 B Bi 16 × 16 : one partition,

bipredicted

ref idx l0 = 0 1 0 L0 reference

ref idx l1 = 0 1 0 L1 reference

mvd l0 (0) = −1 11 −1 L0 MVDx

mvd l0 (1) = 0 1 0 L0 MVDy

mvd l1 (0) = −1 11 −1 L1 MVDx

mvd l1 (1) = −1 11 −1 L1 MVDy

CBP (7, 2) = 0 1 0 No coefficient data
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Table 5.22 B macroblock, example 8

Parameter Binary code Symbol Discussion

mb skip run 10 1 1 previous MB is skipped

mb type (B SLICE) (6, 6) = 8 10111 22 B 8 × 8

sub mb pred(0) 1 0 Direct, no MVD or ref ix

sub mb pred(1) 11 2 B L1 8 × 8, 8 × 8 predicted from L1

sub mb pred(2) 1 0 Direct, no MVD or ref ix

sub mb pred(3) 1100 11 B L1 4 × 4, 4 × 4 predicted from L1

ref idx l1 = 0 1 0 L1 reference for 8 × 8 block 1

ref idx l1 = 0 1 0 L1 reference for 8 × 8 block 3

mvd l1 (0) = −6 1101 −6 Block 1 MVDx

mvd l1 (1) = 1 10 1 Block 1 MVDy

mvd l1 (0) = 0 1 0 Block 3, subblock 0, MVDx

mvd l1 (1) = 0 1 0 Block 3, subblock 0, MVDy

mvd l1 (0) = 0 1 0 Block 3, subblock 1, MVDx

mvd l1 (1) = 0 1 0 Block 3, subblock 1, MVDy

mvd l1 (0) = 0 1 0 Block 3, subblock 2, MVDx

mvd l1 (1) = −3 111 −3 Block 3, subblock 2, MVDy

mvd l1 (0) = 0 1 0 Block 3, subblock 3, MVDx

mvd l1 (1) = 0 1 0 Block 3, subblock 3, MVDy

CBP (6, 6) = 22 101101 22 0101102 : Luma coefficients in 8 × 8

blocks 1 and 2. Chroma DC

coefficients present, no chroma AC

coefficients.

Delta QP (6, 6) = 0 1 0 No change in QP.

Luma # c & tr.1s(2,0) vlc=0

#c=0 #t1=0

1 0 First 4 × 4 block of luma 8 × 8 block

1. . .

. . ...further data for luma 8 × 8

blocks 1 and 2 and chroma

DC coefficients.
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6

H.264 Prediction

6.1 Introduction

Perhaps the most important reason for the widespread adoption of H.264/AVC is its compres-

sion performance. An H.264 codec, if properly designed and used, can out-perform many other

video codecs in terms of compression ratio for a given image quality. Much of the performance

gain compared with previous standards is due to H.264/AVC’s efficient prediction methods.

For every macroblock, a prediction is created, an attempt to duplicate the information con-

tained in the macroblock using previously coded data, and subtracted from the macroblock to

form a residual. The efficiency or accuracy of this prediction process has a significant impact

on compression performance. An accurate prediction means that the residual contains very

little data and this in turn leads to good compression performance.

H.264/AVC supports a wide range of prediction options – intra prediction using data within

the current frame, inter prediction using motion compensated prediction from previously

coded frames, multiple prediction block sizes, multiple reference frames and special modes

such as Direct and Weighted prediction. Together with sub-pixel interpolation and a built-in

filter to reduce compression artefacts, these features give an H.264 encoder a great deal of

flexibility in the prediction process. By selecting the best prediction options for an individual

macroblock, an encoder can minimize the residual size to produce a highly compressed

bitstream.

We start with an overview of macroblock prediction, followed by a detailed look at intra

and inter prediction in H.264/AVC.

6.2 Macroblock prediction

Figure 6.1 shows the prediction sources for three macroblocks, an I Macroblock, a P Mac-

roblock and a B Macroblock. An I Macroblock (I MB) is predicted using intra prediction from

neighbouring samples in the current frame. A P Macroblock (P MB) is predicted from samples

in a previously-coded frame which may be before or after the current picture in display order,

i.e. a ‘past’ or a ‘future’ frame. Different rectangular sections (partitions) in a P MB may

The H.264 Advanced Video Compression Standard, Second Edition Iain E. Richardson
C© 2010 John Wiley & Sons, Ltd
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Figure 6.1 Example of macroblock types and prediction sources

be predicted from different reference frames. Each partition in a B Macroblock (B MB) is

predicted from samples in one or two previously-coded frames, for example, one ‘past’ and

one ‘future’ as shown in the figure.

6.3 Intra prediction

An intra (I) macroblock is coded without referring to any data outside the current slice. I

macroblocks may occur in any slice type. Every macroblock in an I slice is an I macroblock. I

macroblocks are coded using intra prediction, i.e. prediction from previously-coded data in the

same slice. For a typical block of luma or chroma samples, there is a relatively high correlation

between samples in the block and samples that are immediately adjacent to the block. Intra

prediction therefore uses samples from adjacent, previously coded blocks to predict the values

in the current block.
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Example

Figure 6.2 shows 4 × 4 blocks in the luma component of a macroblock. The current block is

number 10 in the figure. Blocks 0-9 have already been coded and transmitted and are therefore

available to the decoder by the time block 10 is decoded. This means that any of the samples in

blocks 0 to 9 are potential candidates for intra prediction. However, an H.264 encoder may only

choose certain samples in blocks 1, 3, 5 and 8 to generate a 4 × 4 intra prediction.

0

4x4 luma blocks in a macroblock

2

1 3

4 6

5 7

8

9

10

Figure 6.2 Intra prediction: adjacent blocks example

In an intra macroblock, there are three choices of intra prediction block size for the luma

component, namely 16 × 16, 8 × 8 or 4 × 4. A single prediction block is generated for each

chroma component. Each prediction block is generated using one of a number of possible

prediction modes (Table 6.1).

Table 6.1 Intra prediction types

Intra prediction block size Notes

16 × 16 (luma) A single 16 × 16 prediction block P is generated. Four possible

prediction modes.

8 × 8 (luma) An 8 × 8 prediction block P is generated for each 8 × 8 luma block.

Nine possible prediction modes. ‘High’ Profiles only.

4 × 4 (luma) A 4 × 4 prediction block P is generated for each 4 × 4 luma block.

Nine possible prediction modes.

Chroma One prediction block P is generated for each chroma component.

Four possible prediction modes. The same prediction mode is used

for both chroma components.
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Current block

Figure 6.3 Intra prediction source samples, 4 × 4 or 8 × 8 luma blocks

When 4 × 4 or 8 × 8 block size is chosen for the luma component, the intra prediction is

created from samples directly above the current block; directly to the left; above and to the

left; above and to the right; or a combination of these depending on the current prediction

mode and on whether the required samples have already been coded (Figure 6.3). For a 16 ×

16 luma block or a chroma block, the prediction is created from samples directly to the left or

above the current block or from a combination of these (Figure 6.4).

Only those samples that are actually available may be used to form a prediction. For example,

a block on the left margin of the picture or slice has no neighbouring samples on the left side

and so certain intra prediction modes are not available to the encoder. The encoder chooses

an intra mode for the current block from the available prediction modes. The choice of intra

mode is communicated to the decoder as part of the coded macroblock.

The choice of intra prediction block size for the luma component, 16 × 16, 4 × 4 or

8 × 8 when available, tends to be a trade-off between (i) prediction efficiency and (ii) cost of

signalling the prediction mode.

(a) Smaller blocks: A smaller prediction block size (4 × 4) tends to give a more accurate

prediction, i.e. the intra prediction for each block is a good match to the actual data in

Current block

Figure 6.4 Intra prediction source samples, chroma or 16 × 16 luma blocks
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the block. This in turn means a smaller coded residual, so that fewer bits are required to

code the quantized transform coefficients for the residual blocks. However, the choice of

prediction for every 4 × 4 block must be signalled to the decoder, which means that more

bits tend to be required to code the prediction choices.

(b) Larger blocks: A larger prediction block size (16 × 16) tends to give a less accurate

prediction, hence more residual data, but fewer bits are required to code the prediction

choice itself.

An encoder will typically choose the appropriate intra prediction mode to minimize the total

number of bits in the prediction and the residual.

Example 1:

Figure 6.5 shows a typical I picture from a CIF sequence coded using the Baseline profile, with

the prediction block sizes superimposed. In homogeneous regions of the frame, where the texture

is largely uniform, 16 × 16 prediction mode tends to be more efficient since the prediction is

reasonably accurate and the prediction mode overhead is low. In more complex regions of the

frame, 4 × 4 mode is often selected because the increased rate required to signal the prediction

mode is offset by the reduced residual size.

Figure 6.5 Example of intra block size choices, CIF, Baseline Profile. Reproduced by permis-

sion of Elecard.

Example 2:

A QCIF video frame (Figure 6.6) is encoded in intra mode and each block or macroblock 
is predicted from neighbouring, previously-encoded samples. Figure 6.7 shows the predicted
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Figure 6.6 QCIF frame with highlighted macroblock

Figure 6.7 Predicted luma frame formed using H.264 intra prediction
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luma frame P formed by choosing the best 4 × 4 or 16 × 16 prediction mode for each region.

The predicted macroblocks (Figure 6.7) are not an accurate match for the original macroblocks

(Figure 6.6). However, the predicted frame provides a rough approximation of the original. When

the prediction is subtracted from the original, the residual (Figure 6.8) contains less information

than the original frame and is therefore ‘easier’ to compress.

Figure 6.8 Residual after subtracting intra prediction

6.3.1 4 × 4 luma prediction modes

Figure 6.9 shows a 4 × 4 luma block, part of the highlighted macroblock in Figure 6.6, that 
is required to be predicted. The samples above and to the left, labelled A-M in Figure 6.10, 
have previously been encoded and reconstructed and are therefore available in the encoder 
and decoder to form a prediction reference. The samples a, b, c, . . ., p of the prediction 
block P (Figure 6.10) are calculated based on the samples A-M as follows. The method of 
forming a DC prediction, mode 2, is modified depending on which samples A-M are available 
and each of the other modes may only be used if all of the required prediction samples are 
available. However, note that if samples E, F, G and H are not available, the value of sample 
D is copied to these positions and they are marked as ‘available’.

The arrows in Figure 6.11 indicate the direction of prediction in each mode. For modes 3-8, 
the predicted samples are formed from a weighted average of the prediction samples A-M. 
For example, if mode 4 is selected, the top-right sample of P, labelled ‘d’ in Figure 6.10, is 
predicted by: d = round(B/4 + C/2 + D/4).
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4x4 luma block to be predicted

Figure 6.9 4 × 4 luma block to be predicted

M A B C D E F G H
I
J
K
L

a b c d
e f g h
i j k l
m n o p

Mode 0 (Vertical) The upper samples A,B,C,D are extrapolated vertically.

Mode 1 (Horizontal) The left samples I,J,K,L are extrapolated horizontally.

Mode 2 (DC) All samples in P are predicted by the mean of samples A..D and I..L.

Mode 3 (Diagonal Down-Left) The samples are interpolated at a 45◦ angle between lower-left and

upper-right.

Mode 4 (Diagonal Down-Right) The samples are extrapolated at a 45◦ angle down and to the right.

Mode 5 (Vertical-Left) Extrapolation at an angle of approximately 26.6◦ to the left of

vertical, i.e. width/height = 1/2.

Mode 6 (Horizontal-Down) Extrapolation at an angle of approximately 26.6◦ below horizontal.

Mode 7 (Vertical-Right) Extrapolation or interpolation at an angle of approximately 26.6◦ to

the right of vertical.

Mode 8 (Horizontal-Up) Interpolation at an angle of approximately 26.6◦ above horizontal.

Figure 6.10 Labelling of prediction samples, 4 × 4 prediction

Mean

(A..D,

I..L)

M A B C D E F G H
I
J
K
L

M A B C D E F G H
I
J
K
L

M A B C D E F G H
I
J
K
L

M A B C D E F G H
I
J
K
L

M A B C D E F G H
I
J
K
L

M A B C D E F G H
I
J
K
L

M A B C D E F G H
I
J
K
L

M A B C D E F G H
I
J
K
L

M A B C D E F G H
I
J
K
L

2 (DC)0 (vertical) 1 (horizontal) 4 (diagonal down-right)3 (diagonal down-left)

5 (vertical-right) 7 (vertical-left) 8 (horizontal-up)6 (horizontal-down)

Figure 6.11 4 × 4 intra prediction modes
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Example

The 9 prediction modes 0-8 are calculated for the 4 × 4 block shown in Figure 6.9 and the

resulting prediction blocks P are shown in Figure 6.12. The Sum of Absolute Errors (SAE) for

each prediction indicates the magnitude of the prediction error. In this case, the best match to

0 (vertical), SAE=317

A B C D

2 (DC), SAE=317

A B C D

I

J

K

L

3 (diag down/left), SAE=350

A B C D E F G H

I

J

K

L

4 (diag down/right), SAE=466
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Figure 6.12 Prediction blocks, 4 × 4 modes 0−8

the actual current block is given by mode 8, horizontal-up, because this mode gives the smallest

SAE. A visual comparison shows that the mode 8 P block appears quite similar to the original

4 × 4 block.
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Figure 6.13 Intra 16 × 16 prediction modes

6.3.2 16 × 16 luma prediction modes

As an alternative to the 4 × 4 luma modes described above, the entire 16 × 16 luma component

of a macroblock may be predicted in one operation. Four modes are available, shown in diagram

form in Figure 6.13:

Mode 0 (vertical) Extrapolation from upper samples (H)

Mode 1 (horizontal) Extrapolation from left samples (V)

Mode 2 (DC) Mean of upper and left-hand samples (H+V).

Mode 4 (Plane) A linear ‘plane’ function is fitted to the upper and left-hand samples H and V.

This works well in areas of smoothly-varying luminance.

Example

Figure 6.14 shows a luma macroblock with previously-encoded samples at the upper and left-

hand edges. The results of the four prediction modes, shown in Figure 6.15, indicate that the

best match is given by mode 3 which in this case produces a plane with a luminance gradient

16x16 luminance block to be predicted

Figure 6.14 16 × 16 macroblock
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from light at the upper-left to dark at the lower-right. Intra 16 × 16 mode tends to work best in

homogeneous areas of an image.

0 (vertical), SAE=3985 1 (horizontal), SAE=5097

3 (plane), SAE=25392 (DC), SAE=4991

Figure 6.15 Prediction blocks, intra 16 × 16 modes 0−3

6.3.3 Chroma prediction modes

Each chroma component of a macroblock is predicted from previously encoded chroma 
samples above and/or to the left, with both chroma components always using the same 
prediction mode. The four prediction modes are very similar to the 16 × 16 luma prediction 
modes described in section 6.3.2 and illustrated in Figure 6.13, except that the numbering of
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the modes is different. The modes are DC (mode 0), horizontal (mode 1), vertical (mode 2)

and plane (mode 3).

6.3.4 8 × 8 luma prediction, High profiles

Intra prediction of the luma component with an 8 × 8 block size is only available in the High

profiles (Chapter 8). Each 8 × 8 luma block in a macroblock is predicted using one of nine

prediction modes which are very similar to the nine modes described in section 6.3.1 and

illustrated in Figure 6.11.

6.3.5 Signalling intra prediction modes

6.3.5.1 4 × 4 or 8 × 8 luma prediction

The choice of intra prediction mode for each 4 × 4 or 8 × 8 luma block must be signalled to

the decoder and this could potentially require a large number of bits. However, intra modes

for neighbouring 4 × 4 or 8 × 8 blocks are highly correlated. For example, let A, B and E be

the left, upper and current 4 × 4 blocks respectively (Figure 6.16). If previously-encoded 4 ×

4 blocks A and B are predicted using mode 2, it is probable that the best mode for block E,

the current block, is also mode 2. To take advantage of this correlation, predictive coding is

used to signal 4 × 4 or 8 × 8 intra modes. This will be described for 4 × 4 intra modes; the

method is similar for 8 × 8 intra modes.

For each current block E, the encoder and decoder calculate the most probable prediction

mode, defined as the smaller of the prediction modes of A and B. If either of these neighbouring

blocks is not available, i.e. outside the current slice or not coded in Intra4 × 4 mode, the

corresponding value A or B is set to 2, indicating DC prediction mode.

The encoder sends a flag for each 4 × 4 block, prev intra4×4 pred mode. If the flag

is ‘1’, the most probable prediction mode is used. If the flag is ‘0’, another parameter

rem intra4×4 pred mode is sent to indicate a change of mode. If rem intra4×4 pred mode

is smaller than the current most probable mode then the prediction mode is set to

rem intra4×4 pred mode, otherwise the prediction mode is set to (rem intra4×4 pred mode

+1). In this way, only eight values of rem intra4×4 pred mode are required, 0 to 7, to signal

nine possible intra modes, 0 to 8.

Block B
Mode 2

Block A
Mode 2

Block E
Mode ??

Figure 6.16 Intra mode prediction example
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Example

Blocks A and B were predicted using modes 3, diagonal down-left, and 1, horizontal, respec-

tively. The most probable mode for block E is therefore 1, horizontal. prev intra4×4 pred mode

is set to ‘0’ and so rem intra4×4 pred mode is sent. Depending on the value of

rem intra4×4 pred mode, one of the eight remaining prediction modes listed in Table 6.2

may be chosen.

Table 6.2 Choice of prediction mode, most probable mode = 1

rem intra4×4 pred mode Prediction mode for block E

0 0

1 2

2 3

3 4

4 5

5 6

6 7

7 8

16 × 16 luma prediction or chroma prediction
The prediction mode is signalled as part of the macroblock syntax and predictive mode coding 
is not used.

6.4 Inter prediction

Inter prediction is the process of predicting a block of luma and chroma samples from a picture 
that has previously been coded and transmitted, a reference picture. This involves selecting a 
prediction region, generating a prediction block and subtracting this from the original block 
of samples to form a residual that is then coded and transmitted. The block of samples to 
be predicted, a macroblock partition or sub-macroblock partition, can range in size from a 
complete macroblock, i.e. 16 × 16 luma samples and corresponding chroma samples, down 
to a 4 × 4 block of luma samples and corresponding chroma samples.

The reference picture is chosen from a list of previously coded pictures, stored in a Decoded 
Picture Buffer, which may include pictures before and after the current picture in display 
order (Chapter 5). The offset between the position of the current partition and the prediction 
region in the reference picture is a motion vector. The motion vector may point to integer, 
half- or quarter-sample positions in the luma component of the reference picture. Half- or 
quarter-sample positions are generated by interpolating the samples of the reference picture. 
Each motion vector is differentially coded from the motion vectors of neighbouring blocks.

The prediction block may be generated from a single prediction region in a reference pic-

ture, for a P or B macroblock, or from two prediction regions in reference pictures, for a B 
macroblock [i]. Optionally, the prediction block may be weighted according to the temporal 
distance between the current and reference picture(s), known as weighted prediction. In a B 
macroblock, a block may be predicted in direct mode, in which case no residual samples or mo-

tion vectors are sent and the decoder infers the motion vector from previously received vectors.
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Example

A macroblock in frame n is shown in Figure 6.17. The macroblock is divided into two partitions,

each consisting of 8 × 16 luma samples and corresponding chroma samples. The left partition (A)

B

Frame n-1

Frame n-2

A

B

Frame n (current)

A

Figure 6.17 P macroblock prediction example

is predicted from a region in the previous frame, frame n−1, and the right partition (B) is

predicted from a region in frame n−2. Partition A has a motion vector (−6.5, −5.75), i.e. the

reference region is offset by −6.5 samples in the x direction (left) and −5.75 samples in the y

direction (up). Partition B has motion vector (−1.25, −4), i.e. −1.25 samples in the x direction

(left) and −4 samples in the y direction (up).

To summarize the process of coding an inter-predicted macroblock (note that the steps need

not occur in this exact order):

1. Interpolate the picture(s) in the Decoded Picture Buffer to generate 1/4-sample positions

in the luma component and 1/8-sample positions in the chroma components. (section

6.4.2).

2. Choose an inter prediction mode from the following options:

(a) Choice of reference picture(s), previously-coded pictures available as sources for pre-

diction. (section 6.4.1).

(b) Choice of macroblock partitions and sub-macroblock partitions, i.e. prediction block

sizes. (section 6.4.3).
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(c) Choice of prediction types:

(i) prediction from one reference picture in list 0 for P or B macroblocks or list 1 for

B macroblocks only (section 6.4.5.1).

(ii) bi-prediction from two reference pictures, one in list 0 and one in list 1, B mac-

roblocks only, optionally using weighted prediction (section 6.4.5.2).

3. Choose motion vector(s) for each macroblock partition or sub-macroblock partition, one

or two vectors depending on whether one or two reference pictures are used.

4. Predict the motion vector(s) from previously-transmitted vector(s) and generate motion

vector difference(s). Optionally, use Direct Mode prediction, B macroblocks only. (section

6.4.4).

5. Code the macroblock type, choice of prediction reference(s), motion vector difference(s)

and residual. (Chapters 5 and 7).

6. Apply a deblocking filter prior to storing the reconstructed picture as a prediction reference

for further coded pictures. (section 6.5).

6.4.1 Reference pictures

Inter prediction makes use of previously coded pictures that are available to the decoder. Slices

are received, decoded to produce pictures and displayed. They are also stored in the Decoded

Picture Buffer (DPB), in which case they may be used as reference pictures for inter prediction.

See Chapter 5 for a more detailed discussion of the DPB and reference picture lists.

The pictures in the DPB are indexed, i.e. listed in a particular order, in the following Lists,

depending on whether the current MB is in a P or a B slice.

List0 (P slice): A single list of all the reference pictures. By default, the first picture in

the List is the most recently decoded picture.

List0 (B slice): A list of all the reference pictures. By default, the first picture in the List

is the picture before the current picture in display order.

List1 (B slice): A list of all the reference pictures. By default, the first picture in the List

is the picture after the current picture in display order.

Hence the construction of List 0 is different depending on whether the current MB occurs

in a P or B slice. A P or B macroblock uses reference pictures in one or two of these Lists to

form a macroblock prediction (Table 6.3).

Table 6.3 Reference picture sources

Slice type MB type Reference picture sources

P P List0 (P slice)

B P List0 (B slice)

B B List0 (B slice) and List1 (B slice)
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(a) 4x4 block in current frame (b) Reference block: vector (1, -1) (c) Reference block: vector (0.75, -0.5)

Figure 6.18 Example of integer and sub-pixel prediction

6.4.2 Interpolating reference pictures

Each partition in an inter-coded macroblock is predicted from an area of the same size in a

reference picture. The offset between the two areas, the motion vector, has 1/4-pixel resolution

for the luma component and 1/8-pixel resolution for the chroma components. The luma

and chroma samples at sub-pixel positions do not exist in the reference picture and so it is

necessary to create them using interpolation from nearby image samples [ii]. In Figure 6.18, a

4 × 4 block in the current frame (a) is predicted from a neighbouring region of the reference

picture. If the horizontal and vertical components of the motion vector are integers (b), the

relevant samples in the reference block actually exist, shown as grey dots. If one or both

vector components are fractional values (c), the prediction samples, shown as grey dots, are

generated by interpolation between adjacent samples in the reference frame, shown as white

dots.

Example

Figure 6.19 shows a small region of the current frame, containing a vertical object on a white back-

ground. We want to find a match for the 4 × 4 block shown in Figure 6.20, marked with small stars.

The corresponding region of the reference frame is shown in Figure 6.21. Note that the vertical ob-

ject is not aligned with the sample positions in Figure 6.21; the object has moved by a non-integer

number of pixels between frames. Without any interpolation, it is not possible to find a good match

in the reference region. The best match will be something like the one shown in Figure 6.22. We

may be able to do better by interpolating between the samples of the reference frame to generate

half-pixel positions (Figure 6.23). Searching the interpolated reference frame gives a better match

(Figure 6.24), best match indicated by stars. The match is not perfect – the luminance levels are

not quite the same as those of the original 4 × 4 block (Figure 6.20) – but the prediction is better

than the integer-pixel match. A better prediction gives a smaller residual and hence better com-

pression. In general, ‘finer’ interpolation, i.e. increasing the number of interpolation stages, re-

duces the residual, at the expense of increased computation and more bits required to send motion

vectors.
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Figure 6.19 Current region

Figure 6.20 4 × 4 block to be predicted

Figure 6.21 Reference region
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Figure 6.22 Prediction from integer samples

Figure 6.23 Reference region, half-pixel interpolated

Figure 6.24 Prediction from interpolated samples

186



H.264 Prediction 155

6.4.2.1 Generating interpolated sub-pixel samples

Luma component

The half-pel samples in the luma component of the reference picture are generated first, Figure

6.25, grey markers. Each half-pel sample that is adjacent to two integer samples, e.g. b, h, m, s

in Figure 6.25, is interpolated from integer-pel samples using a 6 tap Finite Impulse Response

(FIR) filter with weights (1/32, −5/32, 5/8, 5/8, −5/32, 1/32). For example, half-pel sample b

is calculated from the 6 horizontal integer samples E, F, G, H, I and J using a process equivalent

to:

b = round((E − 5F + 20G + 20H − 5I + J)/32)

Similarly, h is interpolated by filtering A, C, G, M, R and T. Once all of the samples adjacent

to integer samples have been calculated, the remaining half-pel positions are calculated by

interpolating between six horizontal or vertical half-pel samples from the first set of operations.

For example, j is generated by filtering cc, dd, h, m, ee and ff. Note that the result is the same

whether j is interpolated horizontally or vertically. The 6-tap interpolation filter is relatively

complex but produces an accurate fit to the integer-sample data and hence good motion

compensation performance.

Once all the half-pixel samples are available, the quarter-pixel positions are produced by

linear interpolation Figure 6.26. Quarter-pixel positions with two horizontally or vertically

adjacent half- or integer-pixel samples, e.g. a, c, i, k and d, f, n, q in Figure 6.26, are linearly

interpolated between these adjacent samples, for example:

a = round((G + b)/2)

ddcc

A B

C D

E F G H I J

K L M N P Q

R S

T U

bb

b

s

gg

hh

h

aa

ffeemj

Figure 6.25 Interpolation of luma half-pel positions
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Figure 6.26 Interpolation of luma quarter-pel positions

The remaining quarter-pixel positions, e, g, p and r in the figure, are linearly interpolated

between a pair of diagonally opposite half-pixel samples. For example, e is interpolated

between b and h.

Figure 6.27 shows the result of interpolating the reference region shown in Figure 3.16 with

quarter-pixel resolution.

Chroma components

Quarter-pel resolution motion vectors in the luma component require eighth-pel resolu-

tion vectors in the chroma components, assuming 4:2:0 sampling. Interpolated samples are

10 20 30 40 50 60
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20

30

40

50

60

Figure 6.27 Luma region interpolated to quarter-pel positions
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dx

A B

C D

a 8-dx

dy

8-dy

Figure 6.28 Interpolation of chroma eighth-pel positions

generated at 1/8-pel intervals between integer samples in each chroma component using linear 
interpolation (Figure 6.28). Each sub-pel position a is a linear combination of the neighbouring 
integer pel positions A, B, C and D:

a = round([(8 − dx).(8 − dy)A + dx.(8 − dy)B + (8 − dx).dyC + dx.dyD]/64)

In Figure 6.28, dx is 2 and dy is 3, so that:

a = round([30A + 10B + 18C + 6D]/64)

6.4.3 Macroblock partitions

Each 16 × 16 P or B macroblock may be predicted using a range of block sizes. The macroblock 
is split into one, two or four macroblock partitions: either

(a) one 16 × 16 macroblock partition (covering the whole MB),

(b) two 8 × 16 partitions,

(c) two 16 × 8 partitions or

(d) four 8 × 8 partitions.

If 8 × 8 partition size is chosen, then each 8 × 8 block of luma samples and associated chroma 
samples, a sub-macroblock, is split into one, two or four sub-macroblock partitions): one 
8 × 8, two 4 × 8, two 8 × 4 or four 4 × 4 sub-MB partitions (Figure 6.29).

Each macroblock partition and sub-macroblock partition has one or two motion vectors 
(x, y), each pointing to an area of the same size in a reference frame that is used to predict the 
current partition. A partition in a P macroblock has one reference frame and one motion vector; 
a partition in a B macroblock has one or two reference frames and one or two corresponding 
motion vectors. Each macroblock partition may be predicted from different reference frame(s).
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Figure 6.29 Macroblock partitions and sub-macroblock partitions

However, the sub-macroblock partitions within an 8 × 8 sub-macroblock share the same

reference frame(s). Table 6.4 summarizes the information sent with each macroblock.

6.4.4 Motion vector prediction

Encoding a motion vector for each partition can cost a significant number of bits, especially if

small partition sizes are chosen. Motion vectors for neighbouring partitions are often highly

correlated and so each motion vector is predicted from vectors of nearby, previously coded

partitions. A predicted vector, MVp, is formed based on previously calculated motion vectors

and MVD, the difference between the current vector and the predicted vector, is encoded and

Table 6.4 Reference frames and motion vectors for P and B macroblocks

Macroblock type: P B

Reference frame indices: One per macroblock partition,

from list 0

One or two per macroblock partition,

from list 0, list 1 or both lists.

Motion vector pairs (x,y): One per macroblock partition

or sub-macroblock partition

One or two per macroblock or

sub-macroblock partition
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B

E

C

A

Figure 6.30 Current and neighbouring partitions : same partition sizes

transmitted. The method of forming the prediction MVp depends on the motion compensation

partition size and on the availability of nearby vectors.

Let E be the current macroblock, macroblock partition or sub-macroblock partition, let A

be the partition or sub-macroblock partition immediately to the left of E, let B be the partition

or sub-macroblock partition immediately above E and let C be the partition or sub-macroblock

partition above and to the right of E. If there is more than one partition immediately to the

left of E, the topmost of these partitions is chosen as A. If there is more than one partition

immediately above E, the leftmost of these is chosen as B. Figure 6.30 illustrates the choice of

neighbouring partitions when all the partitions have the same size, 16 × 16 in this case, and

Figure 6.31 shows an example of the choice of prediction partitions when the neighbouring

partitions have different sizes from the current partition E.

1. For transmitted partitions excluding 16 × 8 and 8 × 16 partition sizes, MVp is the median

of the motion vectors for partitions A, B and C.

2. For 16 × 8 partitions, MVp for the upper 16 × 8 partition is predicted from B and MVp

for the lower 16 × 8 partition is predicted from A.

E
16x16

B
4X8

C
16X8

A
8X4

Figure 6.31 Current and neighbouring partitions : different partition sizes
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3. For 8 × 16 partitions, MVp for the left 8 × 16 partition is predicted from A and MVp for

the right 8 × 16 partition is predicted from C.

4. For skipped macroblocks, a 16 × 16 vector MVp is generated as in case (1) above, as if the

block were encoded in 16 × 16 Inter mode.

If one or more of the previously transmitted blocks shown in the figure is not available, e.g.

if it is outside the current picture or slice, the choice of MVp is modified accordingly. At

the decoder, the predicted vector MVp is formed in the same way and added to the decoded

vector difference MVD. In the case of a skipped macroblock, there is no decoded vector and

a motion-compensated macroblock is produced using MVp as the motion vector.

6.4.4.1 Bipredicted macroblock motion vector prediction

A bipredicted macroblock in a B slice has two motion vectors. If one reference frame is a past

frame and the other is a future frame, each of the two vectors is predicted from neighbouring

motion vectors that have the same temporal direction, i.e. a vector for the current macroblock

pointing to a past frame is predicted from other neighbouring vectors that also point to past

frames.

If both reference frames are past frames, relative to the current frame, or both are future

frames, then one of the vectors is encoded as a scaled motion vector. The vector pointing to

the list 0 reference (MV0) is encoded as described above and a motion vector is calculated by

scaling MV0 based on the temporal distances between the current frame, the list 0 frame and

the list 1 frame. The list 1 vector (MV1) is then encoded differentially from the scaled motion

vector.

Example

Current frame number 86 is predicted from list 0 frame 85 and list 1 frame 83. The list 0

vector (Figure 6.32a) is calculated as (+1, −1) and the list 1 vector (Figure 6.32b) is calculated

as (+1.5, −2.5).

The temporal distance to the list 0 frame is 1 and the distance to the list 1 frame is 3.

The list 0 vector is therefore scaled by (3/1 = 3) to produce a scaled motion vector (smv) of

(+3, −3) (Figure 6.32b). The difference between the actual list 1 vector and smv is (−1.5, +0.5)

(Figure 6.32c) and this is encoded and transmitted.

(a) MV0: (+1, -1) (b) MV1: (+1.5, -2.5)

smv: (+3, -3)

(c) Differential:

(-1.5, +0.5)

Figure 6.32 Scaled motion vector example
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6.4.4.2 Direct mode motion vector prediction

No motion vector is transmitted for a B slice macroblock or partition encoded in direct mode.

Instead, the decoder calculates list 0 and list 1 vectors based on previously coded vectors

and uses these to carry out bipredicted motion compensation of the decoded residual samples

(section 6.4.5).

A flag in the slice header indicates whether a spatial or temporal method shall be used to

calculate the vectors for direct mode macroblocks or partitions. In spatial direct mode, list 0

and list 1 vectors of neighbouring previously coded macroblocks or partitions in the same slice

are used to calculate the list 0 and list 1 vectors of the current MB or partition. In temporal

direct mode, the decoder carries out the following steps:

1. Find the list 0 reference frame for the co-located MB or partition in the list 1 frame. This

list 0 reference becomes the list 0 reference of the current MB or partition.

2. Find the list 0 vector, MV, for the co-located MB or partition in the list 1 frame.

3. Scale vector MV based on the temporal distance between the current and list 1 frames:

this is the new list 1 vector MV1.

4. Scale vector MV based on the temporal distance between the current and list 0 frames:

this is the new list 0 vector MV0.

Example: Temporal Direct mode

The list 1 reference for the current macroblock occurs two frames after the current frame

(Figure 6.33). The co-located MB in the list 1 reference has a vector MV(+2.5, +5) pointing to

a list 0 reference frame that occurs three frames before the current frame. The decoder calculates

MV1(−1, −2) and MV0(+1.5, +3) pointing to the list 1 and list 0 frames respectively. These

vectors are derived from MV and have magnitudes proportional to the temporal distance to the

list 0 and list 1 reference frames.

MV(2.5, 5)

MV1(-1, -2)

(a) MV from list 1 (b) Calculated MV0 and MV1

MV0(1.5, 3)

list 1 reference

list 0 reference

list 1 reference

list 0 reference

current

Figure 6.33 Temporal direct motion vector example
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6.4.5 Motion compensated prediction

An H.264 encoder or decoder creates a motion-compensated prediction from reference pic-

ture(s) in the DPB using the motion vectors and reference list indices signalled in a P or B

macroblock (Figure 6.34). Reference list indices identify the reference picture(s) used to form

the prediction; motion vectors indicate the offset from the current macroblock or partition to

corresponding reference area(s) in the reference picture(s).

Each macroblock partition in a P macroblock is predicted from one reference, from list0.

Each macroblock partition in a B macroblock is predicted from one reference from list0 or

list1 or bi-predicted from two references, one from list0, one from list1.

6.4.5.1 One reference

A motion vector is signalled for each macroblock partition or sub-macroblock partition. The

vector is an offset (x, y) to a region in a reference picture of the same size as the current

macroblock partition or sub-macroblock partition. This region forms the prediction for the

current partition.

6.4.5.2 Two references : biprediction

Two motion vectors are signalled for the macroblock partition or sub-macroblock partition,

each pointing to a region of the same size in a reference picture, one from list0, one from list1.

Decoded Picture Buffer Motion Vectors Reference Frame Indices

list0(2)
list1(0)

form prediction

Y

Macroblock Prediction

Cb Cr

Figure 6.34 Forming a motion compensated prediction
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Each sample of the prediction is calculated as an average of the samples in the list0 and list1

regions (biprediction).

Example

A macroblock is predicted in B Bi 16 × 16 mode, i.e. a single bipredicted 16 × 16 region. The

reference areas indicated by the list0 and list1 vectors and the 16 × 16 prediction block are

shown in Figure 6.35.

List0 reference area List1 reference area

Prediction block

Figure 6.35 Biprediction example

6.4.5.3 Weighted prediction

Weighted prediction is a method of scaling the samples of motion-compensated prediction

data in a P or B slice macroblock. There are three types of weighted prediction in H.264:

(a) P slice macroblock, ‘explicit’ weighted prediction

(b) B slice macroblock, ‘explicit’ weighted prediction

(c) B slice macroblock, ‘implicit’ weighted prediction.

Each prediction sample pred0(i,j) or pred1(i,j) is scaled by a weighting factor W0 or W1 prior to 
motion-compensated prediction. In the ‘explicit’ types, the weighting factor(s) are determined 
by the encoder and transmitted in the slice header. If ‘implicit’ prediction is used, W0 and W1 
are calculated based on the relative temporal positions of the list 0 and list 1 reference frames. 
A larger weighting factor is applied if the reference frame is temporally close to the current 
frame and a smaller factor is applied if the reference frame is temporally further away from 
the current frame.
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Figure 6.36 MBAFF: prediction from corresponding field

One application of weighted prediction is to allow explicit or implicit control of the relative

contributions of reference frames to the motion-compensated prediction process. For example,

weighted prediction may be particularly effective in coding of ‘fade’ transitions where one

scene fades into another.

6.4.5.4 Frame / field prediction

Chapter 5 described how an H.264 encoder can choose between Frame and Field coding at the

picture level, i.e. coding the complete picture as a frame or as a field, and/or at the macroblock

level, coding a vertically adjacent pair of macroblocks as two frame macroblocks or two field

macroblocks, Macroblock Adaptive Frame Field Coding or MBAFF.

Prediction of a Frame picture proceeds as described in the previous sections. Each MB is

predicted from previously-coded frame(s) stored in the DPB. Prediction of a Field picture

proceeds in essentially the same way, except that each MB is predicted from previously-coded

field(s) in the DPB. As discussed in Chapter 5, the stored pictures in the DPB are organized

as a series of frames or fields depending on the mode of the current picture, whether frame or

field coding.

If MBAFF is enabled, prediction proceeds as follows. If the current MB is a frame MB, each

partition is predicted from a region in a reference frame. If the current MB is a field MB, each

partition is predicted from a region in the corresponding field, top or bottom, in a reference

frame. In the example in Figure 6.36, a 4 × 4 sub macroblock partition in the top field MB of a

macroblock pair is predicted from a 4 × 4 region in the top field of the chosen reference frame.

6.4.6 Inter prediction examples

H.264/AVC offers many possible options for inter prediction. Selection of appropriate inter

prediction modes has a significant influence on the compression efficiency of an H.264 codec.

The following examples will help illustrate the factors that affect inter prediction choices.
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Figure 6.37 P slice showing partition choices. Reproduced by permission of Elecard

Motion compensated prediction tends to be more accurate when small partition sizes are 
used, especially when motion is relatively complex. However, more partitions in a macroblock 
mean that more bits must be sent to indicate the motion vectors and choice of partitions. 
Typically, an encoder will choose larger partitions in homogeneous areas of a frame with 
less texture / movement and smaller partitions in areas of more complex motion. Figure 6.37 
shows a frame coded as a P slice, with the choice of partitions overlaid on the frame. Many 
macroblocks are coded using a single 16 × 16 partition and hence a single motion vector. 
Around complicated areas of movement such as the mouth, smaller partitions and more vectors 
are chosen.

In a typical B slice, some of the macroblocks can be skipped, B-skip mode, i.e. the mac-

roblock is reconstructed using motion compensated prediction from two reference frames, 
with no motion vectors or residual data being sent. An example of a B slice is shown in 
Figure 6.38. This is a B picture from a 30 frames per second CIF-resolution sequence coded 
at 200kbits/second. The light circles indicate macroblocks coded in B-skip mode. It is clear 
that most of the macroblocks are skipped. Only a few macroblocks – typically around edges 
or features of moving objects such as the face – contain transmitted motion vectors and/or 
residual data.

Making the ‘best’ choice of motion compensation partitions can have a significant impact 
on the compression efficiency of an H.264 sequence. The trade-off between partition choices
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Figure 6.38 B slice showing macroblock modes. Light-shaded circles are skipped macroblocks. Re-

produced by permission of Elecard.

and residual compression can be optimized using Rate Distortion Optimized (RDO) mode

selection (Chapter 9).

Example 1: P slice

Figure 6.39 shows an example of the inter prediction of a macroblock in a P slice. The macroblock

in frame n uses the following combination of 8 × 8 partitions and sub-macroblock partitions:

Partition 0

One 8 × 8 partition

Prediction reference: List0(2)

Motion vector: (0,0)

Partition 1

One 8 × 8 partition

Prediction reference: List0(1)

Motion vector: (+9.5, +3.75)

Partition 2

Two 8 × 4 sub-macroblock partitions

Prediction reference: List0(0)

Motion vectors: (−7.25, 0) and (0,0)

Partition 3

Two 8 × 4 sub-macroblock partitions

Prediction reference: List0(0)

Motion vectors: (5.5, −2) and (0,0)
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Frame n-3 = List0(2)

Frame n-2 = List0(1)

Frame n-1 = List0(0)

Frame n (current)

Figure 6.39 Inter prediction example, P slice

List0(0) points to the previous frame in display order, frame n−1, List0(1) is frame n−2 
and List0(2) is frame n−3. This is the default order for P-slice reference frames, i.e. frames 
are referenced in increasing temporal distance from the current frame (Chapter 5). Note that all 
sub-macroblocks in each 8 × 8 partition use the same reference frame (section 6.4.3). Figure 
6.39 shows the corresponding regions in the reference frames, shown as dark grey areas, used 
to form predictions of each block in the current macroblock.

Example 2: B slice

In a B macroblock (Figure 6.40) each partition may have one or two prediction references. In 
this example, a macroblock in the current frame (n) has two 8 × 16 partitions:
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Figure 6.40 Inter prediction example, B slice

Partition 0

Prediction reference: List1(0), which points to frame n + 1, the next frame in display order.

Motion vector: (−10, −9.5)

Partition 1

Prediction references: List0(0), which points to frame n−1, the previous frame in display

order, and List1(0), which points to frame n + 1.

Motion vectors: (+7.25, −9) (List0) and (+6, +8.25) (List1).

Hence Partition 0 is predicted from a corresponding area in frame (n + 1) whereas Partition 1 is

bipredicted or interpolated between areas in frame (n−1) and frame (n + 1).
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I P P P P P P P I P............ ............P
0 1 2 3 4 5 6 7

Figure 6.41 Low delay prediction structure

6.4.7 Prediction structures

H.264 offers many different options for choosing reference pictures for inter prediction. An

encoder will typically use reference pictures in a structured way. Some examples of reference

picture structures are presented here.

6.4.7.1 Low delay, minimal storage

The prediction structure shown in Figure 6.41 uses only I and P slices. It is compatible with

the Baseline Profile or Constrained Baseline Profile of H.264, which do not allow B slices,

and would be suitable for an application requiring low delay and/or minimal storage memory

at the decoder. The first frame is coded as an I slice and subsequent frames are coded as P

slices, predicted from the previous frame. Prediction efficiency is relatively low, because only

one prediction direction and one reference is allowed for each frame. However, the decoder

can display each frame as soon as it is decoded, minimising delay, and the decoder only

needs to store one reference frame, minimising storage requirements. This type of structure

would be suitable for applications such as videoconferencing where latency must be kept to a

minimum. Note that I slices may be inserted in the stream at intervals to limit the propagation

of transmission errors and to enable random access to the coded sequence.

6.4.7.2 ‘Classic’ Group of Pictures structure

Earlier standards such as MPEG-1 and MPEG-2 supported the Group of Pictures structure

shown in Figure 6.42. The Group of Pictures (GOP) starts with an I slice. P slices are inserted

at intervals, with B slices between the I and P slices. The I and P slices are used for reference;

I B B P B B P B B P B B I
0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 6.42 ‘Classic’ Group of Pictures prediction structure
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I P P P P
0 1 2 3 4

Figure 6.43 IPPP . . . with multiple reference pictures

the B slices are not used for reference, i.e. all pictures are predicted from I or P slices. Each P

slice is predicted from the preceding I or P slice and each B slice is predicted from the I and/or

P slices on either side of it.

This structure provides higher compression efficiency than the structure shown in Figure 6.41

because prediction in a B slice tends to be more efficient than in a P slice due to the availability

of two reference pictures. The disadvantage is increased delay and larger frame storage

requirements. The decoder must receive slices I0 and P3 before slices 1 and 2 can be decoded,

i.e. the delay is a minimum of three frames in this example. Slices 0 and 3 must be stored by

the decoder because they are reference frames for slices 1 and 2.

6.4.7.3 Multiple reference frames

H.264 makes it possible to create other prediction structures, for example using multiple

reference frames for prediction. Figure 6.43 shows an IPPP . . . prediction structure in which

all the previously coded slices are available as reference frames. Slice P1 is predicted from

slice I0; slice P2 is predicted from slices I0 and P1; slice P3 is predicted from slices I0, P1 and

P2; and so on. This means that the encoder can search up to N reference frames to find the

best match for each P macroblock. This can improve compression efficiency at the expense of

(a) increased computational expense at the encoder and (b) increased storage at encoder and

decoder, since N reference frames must be stored.

6.4.7.4 Hierarchical prediction structures

Figure 6.44 shows an example of a hierarchical GOP structure. This type of structure is made

possible by H.264’s flexible prediction options. The GOP starts and finishes with I slices 0

and 12. Next, slice B6 is predicted using I0 and I12 as references; note that B6 is halfway

between I0 and I12 in display order. B3 is predicted from I0 and B6; B9 is predicted from

B6 and I12. B1 and B2 are predicted from I0 and B3 and so on. The GOP is composed of

a series of layers, a dyadic or pyramid decomposition, see Table 6.5. This type of structure

can give improved compression performance [iii] if the quantization parameters of the layers

are carefully controlled such that the QP increases as the layer number increases. Hierarchical

or pyramid GOP structures were first proposed as a method of providing temporal scalability

(Chapter 10) but they may be used in any H.264 codec that supports B slices.

Chapter 9 compares the compression performance of several prediction structures.
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I B B B B B B B B B B B I
0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 6.44 Hierarchical GOP structure

6.5 Loop filter

A filter is applied to every decoded macroblock to reduce blocking distortion [iv]. The de-

blocking filter is applied after the inverse transform in the encoder before reconstructing and

storing the macroblock for future predictions and in the decoder before reconstructing and

displaying the macroblock. The filter smooths block edges, improving the appearance of de-

coded frames. The filtered image is used for motion-compensated of future frames and this

generally improves compression performance because the filtered image is a more faithful

reproduction of the original frame than a blocky, unfiltered image.1

Filtering is applied to vertical or horizontal edges of 4 × 4 blocks in a macroblock excluding

edges on slice boundaries, in the following order:

1. Filter 4 vertical boundaries of the luma component in order a,b,c,d in Figure 6.45

2. Filter 4 horizontal boundaries of the luma component in order e,f,g,h, Figure 6.45

3. Filter 2 vertical boundaries of each chroma component (i,j)

4. Filter 2 horizontal boundaries of each chroma component (k,l)

Each filtering operation affects up to three pixels on either side of the boundary.

Figure 6.46 shows four pixels on either side of a vertical or horizontal boundary in adja-

cent blocks p and q, p0,p1,p2,p3 and q0,q1,q2,q3. The ‘strength’ of the filter, i.e. the amount

Table 6.5 Layers in hierarchical GOP example

Layer Slices

0 I0, I12

1 B6

2 B3, B9

3 B1, B2, B4, B5, B7, B8, B10, B11

1 Intra-coded macroblocks are filtered, but intra prediction (section 6.3) is carried out using unfiltered reconstructed

macroblocks to form the prediction.
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a b c d

e

f

g

h

i j

k

l

16x16 luma 8x8 chroma

Figure 6.45 Edge filtering order in a macroblock

of filtering, depends on the current quantizer parameter QP, the coding modes of neighbouring

blocks and the gradient of image samples across the boundary.

6.5.1 Boundary strength

The choice of filtering outcome depends on the boundary strength and on the gradient of

image samples across the boundary. The boundary strength parameter Bs is chosen according

to the following rules:

p or q is intra coded and boundary is a macroblock boundary Bs = 4, strongest filtering

p or q is intra coded and boundary is not a macroblock boundary Bs = 3

neither p or q is intra coded; p or q contain coded coefficients Bs = 2

neither p or q is intra coded; neither p or q contain coded coefficients;

p and q have different reference frames or a different number of

reference frames or different motion vector values

Bs = 1

neither p or q is intra coded; neither p or q contain coded coefficients;

p and q have same reference frame and identical motion vectors

Bs = 0, no filtering

p3 p2 p1

p0

q0 q1 q2 q3

Vertical boundary

p0

p1

p2

p3

q0

q1

q2

q3

Horizontal

boundary

Figure 6.46 Pixels adjacent to vertical and horizontal boundaries
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The filter is stronger at places where there is likely to be significant blocking distortion, such as

the boundary of an intra coded macroblock or a boundary between blocks that contain coded

coefficients.

6.5.2 Filter decision

A group of samples from the set (p2,p1,p0,q0,q1,q2) is filtered only if:

(a) Bs > 0 and

(b) |p0-q0|, |p1-p0| and |q1-q0| are each less than a threshold α or β, where α and β are defined

in the standard.

The thresholds α and β increase with the average quantizer parameter QP of the two blocks p

and q. The purpose of the filter decision is to ‘switch off’ the filter when there is a significant

change or gradient across the block boundary in the original image. When QP is small, anything

other than a very small gradient across the boundary is likely to be due to image features that

should be preserved and not due to blocking effects and so the thresholds α and β are low.

When QP is larger, blocking distortion is likely to be more significant and α, β are higher so

that more boundary pixels are filtered.

Example

Figure 6.47 shows the 16 × 16 luma component of a macroblock without any blocking distortion

with four 4 × 4 blocks a,b,c and d highlighted. Assuming a medium to large value of QP, the

block boundary between a and b is likely to be filtered because the gradient across this boundary

is small. There are no significant image features to preserve and blocking distortion will be

quite obvious on this boundary. However, there is a significant change in luminance across the

boundary between c and d due to a horizontal image feature and so the filter is switched off to

preserve this strong filter.

Figure 6.47 16 × 16 luma macroblock showing block edges
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6.5.3 Filter implementation

(a) Bs ∈ {1,2,3}:

A 4-tap linear filter is applied with inputs p1, p0, q0 and q1, producing filtered outputs

P0 and Q0 (0<Bs<4). If |p2-p0| is less than a threshold β, another 4-tap linear filter is

applied with inputs p2, p1, p0 and q0, producing filtered output P1. If |q2-q0| is less than

the threshold β, a 4-tap linear filter is applied with inputs q2, q1, q0 and p0, producing

filtered output Q1. p1 and q1 are never filtered for chroma, only for luma data.

(b) Bs = 4:

If |p2-p0|<β and |p0-q0|<round(α/4):

P0 is produced by 5-tap filtering of p2, p1, p0, q0 and q1

P1 is produced by 4-tap filtering of p2, p1, p0 and q0

Luma only: P2 is produced by 5-tap filtering of p3, p2, p1, p0 and q0.

else:

P0 is produced by 3-tap filtering of p1, p0 and q1.

If |q2-q0|<β and |p0-q0|<round(α/4):

Q0 is produced by 5-tap filtering of q2, q1, q0, p0 and p1

Q1 is produced by 4-tap filtering of q2, q1, q0 and p0

Luma only: Q2 is produced by 5-tap filtering of q3, q2, q1, q0 and p0.

else:

Q0 is produced by 3-tap filtering of q1, q0 and p1.

6.5.4 Loop filter example

A video clip is encoded with a fixed Quantization Parameter of 36, i.e. relatively high quan-

tization. Figure 6.48 shows an original frame from the clip and Figure 6.49 shows the same

Figure 6.48 Original frame, ‘violin’ frame 2
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Figure 6.49 Reconstructed, QP = 36, no filter

frame after inter coding and decoding, with the loop filter disabled. Note the obvious blocking

artefacts and note also the effect of varying motion-compensation block sizes for example,

16 × 16 blocks in the background to the left of the picture; 4 × 4 blocks around the arm.

With the loop filter enabled (Figure 6.50) there is still some obvious distortion but most of the

block edges have disappeared or faded. Note that sharp contrast boundaries such as the line

of the arm against the dark piano are preserved by the filter whilst block edges in smoother

regions of the picture such as the background to the left are smoothed. In this example the

Figure 6.50 Reconstructed, QP = 36, with filter
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Figure 6.51 Reconstructed, QP = 32, no filter

loop filter makes only a small contribution to compression efficiency: the encoded bitrate is

around 1.5 per cent smaller and the PSNR around 1 per cent larger for the sequence with

the filter. However, the subjective quality of the filtered sequence is significantly better. The

coding performance gain provided by the filter depends on the bitrate and sequence content.

Figure 6.51 and Figure 6.52 show the un-filtered and filtered frame respectively, this time

with a lower quantizer parameter (QP = 32).

Figure 6.52 Reconstructed, QP = 32, with filter
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6.6 Summary

The first stage of redundancy removal in an H.264/AVC encoder is the prediction process.

Prediction involves creating an estimate of the current block of data from previously-coded

image samples which is then subtracted from the current block to reduce its information

content. An H.264/AVC decoder generates the same prediction and adds it to the decoded

residual data.

Every macroblock is predicted, using intra prediction, in which the estimate is created from

samples within the same frame or field, or inter prediction, in which the estimate is created

from samples in a previously coded frame or field. An H.264/AVC encoder has many choices

of different intra- or inter-prediction modes. Making the ‘right’ choice will result in an efficient

prediction and a minimal residual.

After prediction, the residual data is transformed, quantized and coded prior to transmission

or storage. The next chapter examines these stages.
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7

H.264 transform and coding

7.1 Introduction

Chapter 6 described the ‘front end’ of an H.264 encoder, the prediction processes that remove

some redundancy by creating and subtracting an estimate of the current block of image data.

This ‘front end’ prediction stage is lossless, i.e. it is a process that is fully reversible without

loss of data. However, H.264 is fundamentally a lossy compression format, in which a degree

of visual distortion is introduced into the video signal as a trade-off for higher compression

performance. This distortion occurs in the transform/quantization process. In earlier standards

there was an obvious boundary between the transform, converting a block of image samples

into a different domain, and quantization, reducing the precision of transform coefficients.

As will become clear, this boundary is less obvious in an H.264 codec, with an overlap

of the transform and quantization stages. This, together with the new approach of exactly

specifying a reversible integer transform ‘core’, makes the H.264 transform and quantization

stage significantly different from earlier compression standards.

After prediction, transform and quantization, the video signal is represented as a series

of quantized transform coefficients together with prediction parameters. These values must

be coded into a bitstream that can be efficiently transmitted or stored and can be decoded to

reconstruct the video signal. H.264/AVC provides several different mechanisms for converting

parameters into a compressed bitstream, namely: fixed length binary codes, variable length

Exponential-Golomb codes, context adaptive variable length codes (CAVLC) and context

adaptive binary arithmetic coding (CABAC).

In this chapter we develop the H.264 transform and quantization processes and show how

binary coding completes the process of converting a source video signal into an H.264/AVC

compressed bitstream.

7.2 Transform and quantization

7.2.1 The H.264 transforms

H.264/AVC specifies transform and quantization processes that are designed to provide effi-

cient coding of video data, to eliminate mismatch or ‘drift’ between encoders and decoders

and to facilitate low complexity implementations.

The H.264 Advanced Video Compression Standard, Second Edition Iain E. Richardson
C© 2010 John Wiley & Sons, Ltd
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Earlier standards for image and video compression such as JPEG [i], MPEG-2 Video

[ii] and MPEG-4 Visual [iii] specify a two-dimensional Discrete Cosine Transform (2-D

DCT) to be applied to source or residual image data. In these standards, the transform

is defined as an equation. For example, (7.1) defines a two-dimensional inverse DCT for

blocks of size N × N, where Yxy are input coefficients and Xij are output image or residual

samples.

X i j =
N−1
∑

x=0

N−1
∑

y=0

Cx CyYxy cos
(2 j + 1)yπ

2N
cos

(2i + 1)xπ

2N
(7.1)

Implementation of (7.1) for N>2 on a practical processor requires approximations to certain

irrational multiplication factors, cos aπ
2N

. Different approximations can significantly change

the output of the forward or inverse transform, leading to mismatch between different imple-

mentations of encoders and decoders. To limit the magnitude of this mismatch, the earlier

standards specify that the inverse transform must meet accuracy criteria based on IEEE Stan-

dard 1180-1990 [iv]. Nevertheless, there is still likely to be a mismatch between inverse DCTs

in an encoder, which must carry out the inverse DCT to reconstruct frames for inter prediction,

and a decoder. This leads to discrepancies between the prediction references in encoder and

decoder and to ‘drift’ or cumulative distortion in the decoder output. In MPEG-2 Video and

MPEG-4 Visual, this is mitigated by ensuring that coded blocks are periodically refreshed by

intra coding.

In H.264/AVC and in other recent standards such as VC-1 [v], the transform and quantization

processes are designed to minimize computational complexity, to be suitable for implementa-

tion using limited-precision integer arithmetic and to avoid encoder/decoder mismatch [vi, vii].

This is achieved by:

r using a core transform, an integer transform, that can be carried out using integer or fixed-

point arithmetic and,
r integrating a normalization step with the quantization process to minimize the number of

multiplications required to process a block of residual data.

The scaling and inverse transform processes carried out by a decoder are exactly specified in

the standard so that every H.264 implementation should produce identical results, eliminating

mismatch between different transform implementations.

7.2.2 Transform processes

The following sections describe the forward and inverse transform/quantization processes for

luma and chroma coefficients.

7.2.2.1 Overview of transform processes

The inverse transform and re-scaling or ‘inverse quantization’ processes shown in Figure

7.1, are defined in the H.264/AVC standard. These processes or their equivalents must be
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Inverse
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transform
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Inverse
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Quantized
coefficients

Figure 7.1 Re-scaling and inverse transform

implemented in every H.264-compliant decoder. The corresponding forward transform and

quantization processes are not standardized but equivalent processes can be derived from the

inverse transform / rescaling processes (Figure 7.2).

In an H.264 encoder, a block of residual coefficients is transformed and quantized (Figure

7.2). The basic transform, ‘core transform’, is a 4 × 4 or 8 × 8 integer transform, a scaled

approximation to the Discrete Cosine Transform, DCT. In certain cases, part of the output of

this integer transform is further transformed, ‘DC transform’, using a Hadamard Transform.

The transform coefficients are scaled and quantized.

The corresponding inverse processes are shown in Figure 7.1. The DC inverse transform, if

present, is carried out before rescaling. The rescaled coefficients are inverse transformed with

a 4 × 4 or 8 × 8 inverse integer transform.

7.2.2.2 Luma transform processes

The default forward processes for luma samples shown in Figure 7.3 are applied except where

(a) the macroblock is coded using 16 × 16 Intra Prediction (Chapter 6) or (b) an 8 × 8

integer transform is selected for the macroblock, in the High profiles only, see Chapter 8. In

the default process, each 4 × 4 block within the 16 × 16 luma region of the macroblock is

transformed (Cf4), scaled and quantized (Mf4) to produce a block of 4 × 4 quantized transform

coefficients. The coefficient blocks are coded and transmitted in the order shown, from 0 to

15. The corresponding inverse processes are shown in Figure 7.4.

If the macroblock is predicted using 16 × 16 Intra Prediction (Figure 7.5), a second transform

is applied to the lowest or ‘DC’ frequency coefficients of the first transform. These DC values

tend to be highly correlated and this second transform improves the coding performance. First,

Cf4 is applied to each 4 × 4 block of samples. Next, the DC coefficients of every 4 × 4 block

of coefficients are collected to form a 4 × 4 DC coefficient block. This DC coefficient block

Forward
transform Cf

DC coefficient 
forward

transform
(optional)

Scaling and 
quantization

Luma and
chroma blocks

Quantized
coefficients

Figure 7.2 Forward transform and quantization
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Figure 7.3 Luma forward transform : default

is further transformed using a 4 × 4 Hadamard transform. The transformed DC coefficient

block and the remaining 15 AC coefficients in each block are scaled and quantized (Mf4) and

transmitted in the order shown in Figure 7.5. The inverse processes carried out at the decoder

are shown in Figure 7.6. Note that the inverse 4 × 4 DC transform occurs before scaling and

inverse quantization – this is done in order to optimize the dynamic range during the inverse

transform process [vi].

If the optional 8 × 8 transform is enabled for this macroblock, only available in High profiles,

for macroblocks that are coded using Intra 8 × 8 prediction or any Inter prediction mode, the

processes shown in Figure 7.7 are applied. Each 8 × 8 block of luma samples is transformed

(Cf8), scaled and quantized (Mf8) and transmitted as shown, with the corresponding inverse

processes in Figure 7.8.

7.2.2.3 Chroma transform processes

The chroma components of a macroblock in 4:2:0 format, 16 × 16 luma samples with 8 × Cr

and 8 × 8 Cb samples, are processed as shown in Figure 7.9. Each 4 × 4 block of Cb or Cr

samples is transformed (Cf4). The four DC coefficients of each block are further transformed

with a 2 × 2 Hadamard or DCT transform. The two DC blocks, labelled 0 and 1, followed by

the AC blocks 2 to 9 are scaled, quantized and transmitted. Note that the inverse DC transform

is applied before scaling and inverse quantizing during the inverse processes (Figure 7.10).

A macroblock in 4:2:2 format contains 8 × 16 Cb and Cr samples (Figure 7.11). Each

4 × block is transformed (Cf4) and the eight DC coefficients are further transformed with a

2 × 4 Hadamard transform. The two DC blocks 0 and 1 followed by the AC blocks 2 to 17

are scaled, quantized and transmitted. The inverse processes are shown in Figure 7.12 – again,

note the order of the DC inverse transform and scaling/inverse quantization.

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

Quantized coefficients

Scaling and 
inverse

quantization
Vi4

Transform coefficients

Core 4x4 
transform

Ci4

16x16 luma samples

Figure 7.4 Luma inverse transform : default
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Figure 7.5 Luma forward transform : Intra 16 × 16 mode
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Figure 7.8 Luma inverse transform : 8 × 8 transform
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Figure 7.9 Chroma forward transform : 4:2:0 macroblock
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Figure 7.10 Chroma inverse transform : 4:2:0 macroblock

Core 4x4 
transform

Cf4

Transform coefficients

DC 2x4 
transform

Scaling and 
quantization

Mf4

3

4 5

2

0

DC

AC

DC

7

8 9

6

12

10

1

16

14

Cb

8x16 Cb, Cr samples

11

12 13

10

15

16 17

14

Cr

Figure 7.11 Chroma forward transform : 4:2:2 macroblock
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Figure 7.12 Chroma inverse transform : 4:2:2 macroblock
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The chroma components in a 4:4:4-format macroblock are the same size as the luma

component, with 16 × 16 samples each in Cb and Cr. Each chroma component is processed

as shown in Figure 7.3 (default), Figure 7.5 if the macroblock is coded using 16 × 16 Intra

prediction or Figure 7.7 if the 8 × 8 transform is selected and/or the macroblock is coded

using 8 × 8 Intra prediction.

7.2.3 Integer transform and quantization : 4 × 4 blocks

The forward and inverse integer transform processes for 4 × 4 blocks are developed as follows.

r Starting from a 4 × 4 DCT, derive a scaled, rounded integer approximation to the DCT.
r Add a normalization step to maintain the orthonormal property of the DCT.
r Integrate the normalization step with a quantization process.
r Specify the inverse scaling and quantization process, defined in the standard. Derive an

equivalent forward scaling and quantization process.

7.2.3.1 Developing the forward transform and quantization process

(a) Consider a block of pixel data that is processed by a two-dimensional Discrete Cosine

Transform (DCT) followed by quantization, i.e. rounded division by a quantization step

size, Qstep (Figure 7.13a).

DCTX round(1/Qstep) Y

CfX round(1/Qstep) YSf

CfX YSf
215

Qstep

1

215

CfX YMf
1

215

(a)

(b)

(c)

(d)

Figure 7.13 Development of the forward transform and quantization process
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(b) Rearrange the DCT process into a core transform (Cf4) and a scaling matrix (Sf4) (Figure

7.13b).

(c) Scale the quantization process by a constant (215) and compensate by dividing and rounding

the final result (Figure 7.13c). The constant factor 215 is chosen as a compromise between

higher accuracy and limited arithmetic precision.

(d) Combine Sf4 and the quantization process into Mf4 (Figure 7.13d), where:

M f ≈
S f · 215

Qstep

(7.2)

Note that Mf is actually derived from parameter Vi (see next section), as described in section

7.2.3.7.

7.2.3.2 Developing the rescaling and inverse transform process

(a) Consider a re-scaling or ‘inverse quantization’ operation followed by a two-dimensional

inverse DCT (IDCT) (Figure 7.14a).

(b) Rearrange the IDCT process into a core transform (Ci) and a scaling matrix (Si) (Figure

7.14b).

(c) Scale the re-scaling process by a constant (26) and compensate by dividing and rounding

the final result (Figure 7.14c). Note that rounding need not be to the nearest integer.

(d) Combine the re-scaling process and Si into Vi (Figure 7.14d), where:

Vi ≈ Si · 26 · Qstep (7.3)

IDCTY Z

SiY ZCi

Qstep

Qstep

SiY ZCiQstep 2. 6 1/26

Y ZCiVi 1/26

(a)

(b)

(c)

(d)

Figure 7.14 Development of the rescaling and inverse transform process

Amazon.com, Inc., Amazon.com Services LLC - Ex. 1012, Page 000218
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7.2.3.3 Developing Cf4 and Sf4 : 4 × 4 blocks

Consider a 4 × 4 two-dimensional DCT of a block X:

Y = A · X · AT (7.4)

Where · indicates matrix multiplication and:

A =









a a a a

b c −c −b

a −a −a a

c −b b −c









,

a = 1/2

b =
√

1/2 cos π/8 = 0.6532 . . .

c =
√

1/2 cos 3π/8 = 0.2706 . . .

Note that the rows of A are orthogonal and have unit norms, i.e. the rows are orthonormal, a

necessary condition for an orthogonal block transform.

Calculation of [set as equation] (7.4 on a practical processor requires approximation of the

irrational numbers b and c. A fixed-point approximation is equivalent to scaling each row of

A and rounding to the nearest integer. Choosing a particular approximation, namely multiply

by ∼2.5 and round, gives Cf4:

C f 4 =









1 1 1 1

2 1 −1 −2

1 −1 −1 1

1 −2 2 −1









(7.5)

This approximation is chosen to minimize the complexity of implementing the transform,

since multiplication by Cf4 requires only additions and binary shifts, whilst maintaining good

compression performance [vi].

The row norms of Cf4 are 6= 1. To restore the orthonormal property of the original matrix

A, multiply all the values cij in row r by 1
√

∑

j

c2
r j

:

A1 = Cf4 • Rf4 where R f 4 =









1/2 1/2 1/2 1/2

1/
√

10 1/
√

10 1/
√

10 1/
√

10

1/2 1/2 1/2 1/2

1/
√

10 1/
√

10 1/
√

10 1/
√

10









(7.6)

• denotes element-by-element multiplication, the Hadamard or Schur product, where P = Q•R

means that each element pij = qij·rij. Note that the new matrix A1 is orthonormal.

The two-dimensional transform (7.4) becomes:

Y = A1 · X · AT
1 = [Cf4 • Rf4] · X · [CT

f4 • RT
f4] (7.7)

Rearranging to extract the scaling arrays Rf4:

Y = [Cf4 · X · CT
f4] • [Rf4 • RT

f4]

= [Cf4 · X · CT
f4] • Sf4 (7.8)
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Where

S f 4 = R f 4 • RT
f 4 =









1/4 1/2
√

10 1/4 1/2
√

10

1/2
√

10 1/10 1/2
√

10 1/10

1/4 1/2
√

10 1/4 1/2
√

10

1/2
√

10 1/10 1/2
√

10 1/10









7.2.3.4 Developing Ci4 and Si4 : 4 × 4 blocks

Consider a 4 × 4 two-dimensional IDCT of a block Y:

Z = AT · Y · A (7.9)

Where

A =









a a a a

b c −c −b

a −a −a a

c −b b −c









,

a = 1/2

b =
√

1/2 cos π/8 = 0.6532 . . .

c =
√

1/2 cos 3π/8 = 0.2706 . . .

as before.

Choose a particular approximation by scaling each row of A and rounding to the nearest 0.5,

giving Ci:

Ci4 =









1 1 1 1

1 1/2 −1/2 −1

1 −1 −1 1

1/2 −1 1 −1/2









(7.10)

Again, this approximation is chosen as a trade-off between computational simplicity and

compression performance. The dynamic range of the inputs to Ci4 is greater than that of the

corresponding inputs to Cf4 and so a smaller scaling factor is used for the second and fourth

rows of Ci4. Compare with Cf4 in section 7.2.3.3 [vi]. To restore orthonormality, multiply all

the values cij in row r by 1
√

∑

j

c2
r j

:

A2 = Ci4 • Ri4 where Ri4 =









1/2 1/2 1/2 1/2
√

2/5
√

2/5
√

2/5
√

2/5

1/2 1/2 1/2 1/2
√

2/5
√

2/5
√

2/5
√

2/5









(7.11)

The two-dimensional inverse transform (7.9) becomes:

Z = AT
2 · Y · A2 = [CT

i4 • RT
i4] · Y · [Ci4 • Ri4] (7.12)
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Rearranging:

Z = [CT
i4] · [Y • RT

i4 • Ri4] · [Ci4]

= [CT
i4] · [Y • Si4] · [Ci4] (7.13)

Where

Si4 = RT
i4 • Ri4 =









1/4 1/
√

10 1/4 1/
√

10

1/
√

10 2/5 1/
√

10 2/5

1/4 1/
√

10 1/4 1/
√

10

1/
√

10 2/5 1/
√

10 2/5









The core inverse transform Ci4 and the rescaling matrix Vi4 are defined in the H.264 standard.

We now develop Vi4 and will then derive the forward scaling matrix Mf4 from Vi4.

7.2.3.5 Developing Vi4

From (7.3),

Vi4 ≈ Si4 · Qstep · 26 (7.14)

H.264 supports a range of ‘effective’ quantization step sizes Qstep. The actual step sizes are

not defined in the standard, rather the scaling matrix Vi4 is specified as a function of QP. An

optional scaling matrix may be used to weight the quantization operation depending on the

transform coefficient position, see section 7.2.6.

The values in the matrix Vi4 depend on Qstep and hence QP and on the scaling factor matrix

Si 4. These are shown for QP 0 to 5 in Table 7.1.

For higher values of QP, the corresponding values in Vi4 are doubled, i.e. Vi4 (QP = 6) =
2Vi4(QP = 0), etc.

Note from Table 7.1 that there are only three unique values in each matrix Vi4. These

three values are defined as a table of values v in the H.264 standard, for QP = 0 to QP = 5

(Table 7.2).

Hence for QP values from 0 to 5, Vi4 is obtained as:

Vi4 =









v(Q P, 0) v(Q P, 2) v(Q P, 0) v(Q P, 2)

v(Q P, 2) v(Q P, 1) v(Q P, 2) v(Q P, 1)

v(Q P, 0) v(Q P, 2) v(Q P, 0) v(Q P, 2)

v(Q P, 2) v(Q P, 1) v(Q P, 2) v(Q P, 1)









(7.15)

Denote this as:

Vi4 = v(Q P, n)

Where v (r,n) is row r, column n of v.
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Table 7.1 Vi 4values, 4 × 4 blocks

QP Vi4 ≈ round (Si4 · Qstep · 26)

0








10 13 10 13

13 16 13 16

10 13 10 13

13 16 13 16









1








11 14 11 14

14 18 14 18

11 14 11 14

14 18 14 18









2








13 16 13 16

16 20 16 20

13 16 13 16

16 20 16 20









3








14 18 14 18

18 23 18 23

14 18 14 18

18 23 18 23









4








16 20 16 20

20 25 20 25

16 20 16 20

20 25 20 25









5








18 23 18 23

23 29 23 29

18 23 18 23

23 29 23 29









Table 7.2 Table v defined in H.264 standard

QP

v (r, 0):

Vi4 positions (0,0),

(0,2), (2,0), (2,2)

v (r, 1):

Vi4 positions (1,1),

(1,3), (3,1), (3,3)

v (r, 2):

Remaining

Vi4 positions

0 10 16 13

1 11 18 14

2 13 20 16

3 14 23 18

4 16 25 20

5 18 29 23
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Table 7.3 Estimated Qstep (4 × 4 blocks) = Vi4 / (Si · 26), element-by-element

division

QP ∼Qstep (n = 0) ∼Qstep (n = 1) ∼Qstep (n = 2)

0 0.625 0.625 0.6423

1 0.6875 0.7031 0.6917

2 0.8125 0.7812 0.7906

3 0.875 0.8984 0.8894

4 1.0 0.9766 0.9882

5 1.125 1.1328 1.1364

6 1.25 1.25 1.2847

. . . . . .

12 2.5 2.5 2.5694

. . . . . .

18 5.0 5.0 5.1387

. . . . . .

48 160 160 164.4384

. . . . . .

51 224 230 227.6840

For values of QP>5, index the row of array v by QP%6 and then multiply by 2floor(QP/6). In

general:

Vi4 = v(QP%6, n) · 2floor(QP/6) (7.16)

Working back from Vi4, the equivalent quantizer step size Qstep can be estimated (Table 7.3).

Note that different estimated values, ∼Qstep are obtained for the three distinct columns n of

array v.

The ratio between successive Qstep values in Table 7.3 is approximately
6
√

2 = 1.2246 · · ·
so that Qstep doubles in size when QP increases by 6. Any value of Qstep can be derived from

the first 6 values in the table, QP0 − QP5, as follows:

Qstep(QP) = Qstep(QP%6) · 2floor(QP/6) (7.17)

Figure 7.15 plots the relationship between QP (x-axis) and effective Qstep for array positions

corresponding to column 0 of v (y-axis). Note the logarithmic scale on the y-axis. The circles

are plotted at QPs of 0, 6, 12, . . ., 48.

7.2.3.6 The complete 4 × 4 inverse transform and scaling process

The complete inverse transform and scaling process for 4 × 4 blocks in macroblocks excluding

16 × 16-Intra mode, is:

Z = round

(

[CT
i4] · [Y • v(QP%6, n) · 2floor(QP/6)] · [Ci4] ·

1

26

)

(7.18)
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Figure 7.15 Quantization parameter QP vs. effective quantizer step size, logarithmic y-axis

In the H.264 standard, this process is described as follows:

1. Calculate a matrix LevelScale:

LevelScale(QP%6, i, j) = weightScale(i, j) ∗ v(QP%6, n)

Where weightScale is a quantization scaling matrix, weightScale(i,j) = 24 = 16 by default1.

2. Scale the input samples cij:

if QP > = 24:

dij = (cij ∗ LevelScale(QP%6, i, j)) ≪ (QP/6 − 4)

if QP < 24:

dij = (cij ∗ LevelScale(QP%6, i, j) + 23−QP/6) ≫ (4 − QP/6)

1 The default value of weightScale (16) is cancelled out by step 2 (≫4 or ≪ − 4) and is therefore redundant. Other

weightScale tables may be used to weight the quantization parameter by different amounts depending on the matrix

position (i,j). See section 7.2.6.
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In this step, ≪ n means ‘left shift by n bits’ and division is rounded down. Steps 1 and 2

are equivalent to calculating:

D = Y • v(QP%6, n) · 2floor(QP/6)

The pre-scaling by 24 = 16 in step 1 is cancelled out in step 2 by effectively right-shifting

each sample by 4 bit positions.

3. Compute the core transform:

H = [CT
i4] · D · [Ci4]

In the standard, the core transform is described as a series of arithmetic operations, additions,

subtractions and bit shifts.

4. Divide each sample hij by 26:

rij = (hij + 25) ≫ 6

This is equivalent to division by 26 and rounding towards zero.

The final array of residual samples rij is R, equivalent to Z in (7.18).

7.2.3.7 Deriving Mf4

Combining (7.2) and (7.3):

M f 4 ≈
Si4 • S f 4 · 221

Vi4

(7.19)

Si4, Sf4 are known and Vi4 is defined in the standard, see section 7.2.3.5. Define Mf4 exactly

as:

M f 4 = round

(

Si4 • S f 4 · 221

Vi4

)

(7.20)

The numerator of Mf4 is:

Si4 • S f 4 · 221 =









131072 104857.6 131072 104857.6

104857.6 83886.1 104857.6 83886.1

131072 104857.6 131072 104857.6

104857.6 83886.1 104857.6 83886.1









(7.21)

The entries in matrix Mf4 may be listed as follows (Table 7.4):
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Table 7.4 Tables v and m

QP

v (r, 0):

Vi4 positions

(0,0), (0,2),

(2,0), (2,2)

v (r, 1):

Vi4 positions

(1,1), (1,3),

(3,1), (3,3)

v (r, 2):

Remaining

Vi4 positions

m (r, 0):

Mf4 positions

(0,0), (0,2),

(2,0), (2,2)

m (r, 1):

Mf4 positions

(1,1), (1,3),

(3,1), (3,3)

m (r,2):

Remaining

Mf4 positions

0 10 16 13 13107 5243 8066

1 11 18 14 11916 4660 7490

2 13 20 16 10082 4194 6554

3 14 23 18 9362 3647 5825

4 16 25 20 8192 3355 5243

5 18 29 23 7282 2893 4559

Hence for QP values from 0 to 5, Mf4 can be obtained from m, the last three columns of

Table 7.4:

M f 4 =









m(Q P, 0) m(Q P, 2) m(Q P, 0) m(Q P, 2)

m(Q P, 2) m(Q P, 1) m(Q P, 2) m(Q P, 1)

m(Q P, 0) m(Q P, 2) m(Q P, 0) m(Q P, 2)

m(Q P, 2) m(Q P, 1) m(Q P, 2) m(Q P, 1)









(7.22)

Denote this as:

Mf4 = m(QP, n)

Where m (r,n) is row r, column n of m.

For QP>5, index the row of array m by QP%6 and then divide by 2floor(QP/6). In general:

Mf4 = m(QP%6, n)/2floor(QP/6) (7.23)

Where m (r,n) is row r, column n of m.

7.2.3.8 The complete 4 × 4 forward transform and scaling process

The complete forward transform, scaling and quantization process for 4 × 4 blocks and for

modes excluding 16 × 16-Intra, becomes:

Y = round

(

[Cf4] · [X] · [CT
f4] • m(QP%6, n)/2floor(QP/6)] ·

1

215

)

= round

(

[Cf4] · [X] · [CT
f4] • m(QP%6, n)] ·

1

215+ f loor (Q P/6)

)

(7.24)

Rounded division by 2p may be carried out by adding an offset and right-shifting by p bit

positions.
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7.2.3.9 4 × 4 Transform and quantization: Examples

The forward and inverse transform and quantization processes are illustrated in the following

examples. Note that all of the operations are calculated using integer arithmetic.

Core transform

Consider a block of luma or chroma samples, X:

58 64 51 58

52 64 56 66

62 63 61 64

59 51 63 69

Calculate Cf4·X, a one-dimensional transform in the vertical direction:

231 242 231 257

−12 27 −29 −20

3 −12 −3 −3

19 11 −2 −15

Calculate Cf4·X·Cf4
T, the complete two-dimensional ‘core’ transform:

961 −41 15 −48

−34 72 −30 −104

−15 3 15 24

13 81 −5 8

Scaling and quantization, QP = 6

m (QP%6 = 0):

13107 8066 13107 8066

8066 5243 8066 5243

13107 8066 13107 8066

8066 5243 8066 5243

[Cf4]·[X]·[Cf4
T] • m:

12595827 −330706 196605 −387168

−274244 377496 −241980 −545272

−196605 24198 196605 193584

104858 424683 −40330 41944
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Quantized and scaled output Y, QP = 6, equivalent to qstep ≈ 1.25). The Y arrays are

calculated using the rounding formula specified in the H.264 JM reference software model.

Y = round

(

[Cf4] · [X] · [CT
f4] • m(QP%6, n)] ·

1

215+ f loor(Q P/6)

)

192 −5 3 −6

−4 5 −3 −8

−3 0 3 3

1 6 0 0

Decoded output Z using H.264 rescaling and inverse transform:

Z = round

(

[CT
i4] · [Y • v(QP%6, n) · 2floor(QP/6)] · [Ci4] ·

1

26

)

58 63 51 59

53 64 57 66

62 63 60 64

59 52 63 68

Scaling and quantization, QP = 12

Quantized and scaled output Y, QP = 12, qstep ≈ 2.5. Note that the coefficients are approxi-

mately half the size of the QP = 6 outputs.

96 −2 1 −3

−2 3 −2 −4

−1 0 1 1

0 3 0 0

Decoded output Z:

57 65 51 57

53 64 57 65

62 62 59 63

59 53 64 69
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Scaling and quantization, QP = 18

Quantized and scaled output Y, QP = 18, qstep ≈ 5. Coefficients are half the magnitude of the

QP = 12 outputs.

48 −1 0 −1

−1 1 −1 −2

0 0 0 0

0 1 0 0

Decoded output Z:

55 66 54 58

54 62 58 63

61 59 61 62

60 55 65 67

Scaling and quantization, QP = 30

Quantized and scaled output Y, QP = 30, qstep ≈ 20.

12 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Decoded output Z:

60 60 60 60

60 60 60 60

60 60 60 60

60 60 60 60

Note that all the AC coefficients are quantized to zero and so all the decoded block samples 
are identical.

Comparison with 4 × 4 DCT using floating-point arithmetic
A floating-point DCT such as Matlab’s dct2 uses approximations to the DCT coefficients which 
should be more accurate than the integer approximations in the H.264 core transform. Here, 
we compare the output of the H.264 transform and quantization process with the equivalent 
floating point DCT and quantization process.
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Calculate the 4 × 4 DCT of X, using Matlab’s floating point DCT function dct2:

240.250 −7.004 3.750 −7.111

−5.217 7.005 −4.788 −10.841

−3.750 0.742 3.750 3.752

2.431 7.659 −0.452 0.995

For comparison with the QP = 18 result, calculate the quantized coefficients using a

quantizer step size of 5:

Y = round(dct2(X)/5) =

48 −1 1 −1

−1 1 −1 −2

−1 0 1 1

0 2 0 0

Decoded output Z1, using rescaling or multiplication by 5 followed by Matlab’s floating

point idct2:

Z1 = round(idct2(Y × 5)) =

58 61 51 57

53 64 58 67

64 63 59 61

61 50 63 68

It is clear that the H.264 transform and quantization process, which uses a scaled integer DCT

approximation, gives a similar but not identical result to a floating-point DCT approximation

followed by quantization. The authors of [vi] show that in the context of a complete video

codec, the performance of the H.264 transform and quantization is almost identical to that of

higher-precision DCT implementations.

7.2.4 Integer transform and quantization : 8 × 8 blocks

The forward and inverse 8 × 8 transforms [viii] are developed in a similar way to the 4 × 4

integer transforms (section 7.2.3.1) but with the following differences:

1. The core transform Cf8, Ci8 is an 8-point integer transform that is numerically similar

to an 8-point scaled DCT but cannot be produced exactly by scaling and rounding an

8-point DCT matrix, whereas the 4-point integer transform can be produced by scaling and

rounding a 4-point DCT matrix.
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Table 7.5 8-point Integer Transform Basis Cf8

8 8 8 8 8 8 8 8

12 10 6 3 −3 −6 −10 −12

8 4 −4 −8 −8 −4 4 8

10 −3 −12 −6 6 12 3 −10

8 −8 −8 8 8 −8 −8 8

6 −12 3 10 −10 −3 12 −6

4 −8 8 −4 −4 8 −8 4

3 −6 10 −12 12 −10 6 −3

2. The 8 × 8 transform processes have a larger dynamic range than the 4 × 4 processes. The

forward scaling factor is 1/222 and the inverse scaling factor is 1/28. Compare with Figure

7.13 and Figure 7.14.

7.2.4.1 Forward transform Cf8 : 8 × 8 blocks

The ‘core’ forward transform basis Cf8 is shown in Table 7.5.

Normalise each row through multiplication by 1
√

∑

j

c2
r j

, i.e. multiply by Rf8:

1/
√

512 1/
√

512 . . .

1/
√

578 1/
√

578 . . .

1/
√

320 1/
√

320 . . .

1/
√

578 1/
√

578 . . .

1/
√

512 1/
√

512 . . .

1/
√

578 1/
√

578 . . .

1/
√

320 1/
√

320 . . .

1/
√

578 1/
√

578 . . .

Other columns are identical.

The two-dimensional forward transform is obtained by applying Cf8 to the rows and the

columns of the 8 × 8 input block. Hence the combined scaling matrix Sf8 = Rf8 • Rf8
T =

1/512 1/544 1/128
√

10 1/544 . . .

1/544 1/578 1/136
√

10 1/578

1/128
√

10 1/136
√

10 1/320 1/136
√

10

1/544 1/578 1/136
√

10 1/578

. . . . . .

One quadrant shown, the other four quadrants are identical.
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Table 7.6 8-point Integer Transform Basis CI8

1 1 1 1 1 1 1 1

12/8 10/8 6/8 3/8 −3/8 −6/8 −10/8 −12/8

1 1/2 −1/2 −1 −1 −1/2 1/2 1

10/8 −3/8 −12/8 −6/8 6/8 12/8 3/8 −10/8

1 −1 −1 1 1 −1 −1 1

6/8 −12/8 3/8 10/8 −10/8 −3/8 12/8 −6/8

1/2 −1 1 −1/2 −1/2 1 −1 1/2

3/8 −6/8 10/8 −12/8 12/8 −10/8 6/8 −3/8

7.2.4.2 Inverse transform Ci8: 8 × 8 blocks

The core inverse transform Ci8 is shown in Table 7.6. Note that Ci8 = Cf8 / 8.

Normalize rows:

Ri8 =

1/
√

8 1/
√

8 . . .

8/
√

578 8/
√

578 . . .

1/
√

5 1/
√

5 . . .

8/
√

578 8/
√

578 . . .

1/
√

8 1/
√

8 . . .

8/
√

578 8/
√

578 . . .

1/
√

5 1/
√

5 . . .

8/
√

578 8/
√

578 . . .

Si8 = Ri8 • RT
i8 =

1/8 2/17 1/
√

40 2/17 . . .

2/17 32/289 8/17
√

10 32/289

1/
√

40 8/17
√

10 1/5 8/17
√

10

2/17 32/289 8/17
√

10 32/289

. . . . . .

Remaining three quadrants are identical.

7.2.4.3 Inverse quantization and scaling: 8 × 8 blocks

The rescaling matrix Vi8, specified in the standard, incorporates transform normalization Si8

and inverse quantization or rescaling. Vi8 is approximately related to Si8 and Qstep, the quantizer
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step size, as follows:

Vi8 ≈ Si8 · 28 · Qstep (7.25)

To ensure consistent decoding behaviour, Vi8 is defined by the standard as a function of QP.

The following Table lists Vi8 for the first six values of QP. Only the top-left quadrant of V is

shown, the remaining three quadrants are identical.

QP Vi8

0













20 19 25 19

19 18 24 18

25 24 32 24 . . . .

19 18 24 18

. . . . . . . .













1













22 21 28 21

21 19 26 19

28 26 35 26 . . . .

21 19 26 19

. . . . . . . .













2













26 24 33 24

24 23 31 23

33 31 42 31 . . . .

24 23 31 23

. . . . . . . .













3













28 26 35 26

26 25 33 25

35 33 45 33 . . . .

26 25 33 25

. . . . . . . .













4













32 30 40 30

30 28 38 28

40 38 51 38 . . . .

30 28 38 28

. . . . . . . .













5













36 34 46 34

34 32 43 32

46 43 58 43 . . . .

34 32 43 32

. . . . . . . .













There are six unique values in each matrix Vi8. These are defined as a table v in the standard,

for QP = 0 to QP = 5:
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QP vm0 vm1 vm2 vm3 vm4 vm5

0 20 18 32 19 25 24

1 22 19 35 21 28 26

2 26 23 42 24 33 31

3 28 25 45 26 35 33

4 32 28 51 30 40 38

5 36 32 58 34 46 43

The positions vmr map to the following positions in the matrix Vi8:

vm0 vm3 vm4 vm3 vm0 vm3 vm4 vm3

vm3 vm1 vm5 vm1 vm3 vm1 vm5 vm1

vm4 vm5 vm2 vm5 vm4 vm5 vm2 vm5

vm3 vm1 vm5 vm1 vm3 vm1 vm5 vm1

vm0 vm3 vm4 vm3 vm0 vm3 vm4 vm3

vm3 vm1 vm5 vm1 vm3 vm1 vm5 vm1

vm4 vm5 vm2 vm5 vm4 vm5 vm2 vm5

vm3 vm1 vm5 vm1 vm3 vm1 vm5 vm1

For a given QP, Vi8 is obtained as:

Vi8 = v(QP%6, n) · 2floor(QP/6) (7.26)

Where v (r,n) is row r, column n of v. Vi8 and hence effective Qstep doubles as QP increases

by 6.

The effective quantizer step size Qstep can be estimated as follows:

7.2.4.4 Forward quantization and scaling : 8 × 8 blocks

The forward quantization and scaling matrix Mf8 is derived from Sf8, Si8 and Vi8 as follows:

M f 8 = round

(

Si8 • S f 8 · 230

Vi8

)

(7.27)

Table 7.7 Estimated Qstep (8 × 8 blocks)

QP Estimated Qstep = Vi8 / (Si · 28), element by element division

0 0.625

1 0.6875

2 0.8125

3 0.875

4 1.0

5 1.125
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For example, Mf8 for QP = 0 is:













13107 12222 16777 12222

12222 11428 15481 11428

16777 15481 20972 15481 . . . .

12222 11428 15481 11428

. . . . . . . .













Only the top-left quadrant is shown, other quadrants are identical. Mf8 arrays for other QP

values can be obtained in a similar way as before.

7.2.5 DC transforms

If the macroblock is encoded in 16 × 16 Intra prediction mode, in which the entire 16 × 16

luminance component is predicted from neighbouring pixels, each 4 × 4 residual block is first

transformed using the ‘core’ transform described above. The DC coefficient of each 4 × 4

block is then transformed again using a 4 × 4 Hadamard transform (Figure 7.5):

YD =

















1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1

















WD

















1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1

















/2 (7.28)

Where WD is the block of 4 × 4 DC coefficients and YD is the block after transformation. The

output block YD is scaled and quantized as described in section 7.2.3.7. Applying this extra

transform to the DC coefficients may further compact the data prior to encoding.

The corresponding 4 × 4 DC inverse transform (Figure 7.6) is as follows:

WQ D =

















1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1

















Z D

















1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1

















(7.29)

Where ZD is the input and WQD is the output block.

Similarly, the DC coefficients of each transformed 4 × 4 chroma block are grouped and

transformed for a second time. If the video format is 4:2:0, there are four 4 × 4 blocks in each

chroma coefficient and hence the DC coefficients form a 2 × 2 block (Figure 7.9). A 2 × 2

transform is applied. This is a 2 × 2 Hadamard Transform or 2 × 2 DCT: these transforms are

identical for N = 2.

YD =
[

1 1

1 −1

] [

WD

] [

1 1

1 −1

]

(7.30)
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The corresponding inverse transform (Figure 7.10) is given by:

WQ D =
[

1 1

1 −1

] [

Z D

] [

1 1

1 −1

]

(7.31)

For 4:2:2 format video, there are eight 4 × 4 blocks in each chroma component and so a

2 × 4 transform is applied to the DC coefficients:

YD =

















1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1

















WD









[

1 1

1 −1

]









(7.32)

With the equivalent inverse transform at the decoder:

WQ D =

















1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1

















Z D









[

1 1

1 −1

]









(7.33)

In each case a normalization step is required.

7.2.6 Transform and quantization extensions in the High profiles

Frequency dependent quantization, High profiles

The default quantization process in H.264/AVC applies a uniform quantizer step size to every

coefficient in a 4 × 4 or 8 × 8 block. However, it has been shown that the human visual

system’s sensitivity to quantization artefacts, i.e. distortions due to quantization, can vary

with coefficient frequency [ix]. Frequency-dependent quantization is an optional tool, only

available in the High profiles, that makes it possible to vary the quantizer step size within

a block of coefficients. A typical usage might be to reduce the quantizer step size for low

frequency coefficients and increase the step size for high frequencies (Figure 7.16). This may

have the effect of improving the subjective quality of the decoded video image, since the more

sensitive low-frequency coefficients are quantized less and the less sensitive high frequencies

are quantized more.

DC
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Figure 7.16 Frequency dependent quantization, 4 × 4 block
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Table 7.8 Scaling matrices

Scaling list index Applies to blocks:

0 4 × 4 intra Y

1 4 × 4 intra Cb

2 4 × 4 intra Cr

3 4 × 4 inter Y

4 4 × 4 inter Cb

5 4 × 4 inter Cr

6 8 × 8 intra Y

7 8 × 8 inter Y

Frequency dependent quantization is achieved by transmitting or activating a scaling matrix,

a matrix of scaling factors to be applied to the inverse quantization process in the decoder. A

flag in the Sequence or Picture Parameter Set indicates whether a scaling matrix is present. If

present, one or more scaling matrices are transmitted to the decoder and can then be activated

for decoding pictures that refer to the SPS or PPS. Eight scaling matrices are available, each

applied to a different block type (Table 7.8).

A specific scaling matrix may be transmitted for each of the eight scaling list indices, or

the default scaling matrix may be used. These default scaling matrices are specified in the

standard. For example, the default 4 × 4 Intra scaling matrix for Y, Cr or Cb is given by:

6 13 20 28

13 20 28 32

20 28 32 37

28 32 37 42

Recall that ‘flat’ scaling, i.e. no scaling of the quantizer, is indicated by a scaling factor of 16

(section 7.2.3.6). Hence the 4 × 4 Intra scaling matrix corresponds to the following weighting,

after dividing by the ‘flat’ factor of 16:

0.375 0.8125 1.25 1.75

0.8125 1.25 1.75 2

1.25 1.75 2 2.3125

1.75 2 2.3125 2.625

Hence the DC and two lowest AC coefficients are quantized less than the norm and the higher 
AC coefficients are quantized more than the norm.

Lossless predictive coding, High 4:4:4 profiles

This is an alternative to the lossless I PCM mode described in Chapter 5. A flag in the 
SPS, qpprime y zero transform bypass flag, signals that the rescaling and inverse transform 
processes are not used, i.e. bypassed. Hence residual samples are directly extracted from the 
bitstream. With no rescaling and therefore no quantization in the encoder, there is no loss or
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distortion introduced by the coding and decoding algorithms. This mode is only available in

the High 444, High444Intra and CAVLC444Intra profiles (Chapter 8).

Colour plane coding, High 4:4:4 profiles

A flag in the Sequence Parameter Set indicates that Cr and Cb are each processed in the same

way as Y, with independent predictions, motion vectors, etc. Hence each colour component is

treated as if it were a separate monochrome Y component. This may be useful for:

(a) parallel processing in the encoder and/or decoder, by handling each colour component

independently; and/or

(b) applying the more sophisticated Luma intra prediction tools (Chapter 6) to the chroma

components.

7.3 Block scan orders

Blocks of transform coefficients are scanned, i.e. converted to a linear array, prior to entropy

coding. The scan order is intended to group together significant coefficients, i.e. non-zero

quantized coefficients. In a typical block in a progressive frame, non-zero coefficients tend to

be clustered around the top left ‘DC’ coefficient (Chapter 3). In this case, a zigzag scan order

may be the most efficient, shown in Figure 7.17, 4 × 4 and 8 × 8 blocks. After scanning

start

end

start

end

Figure 7.17 Progressive scan orders for 4 × 4 and 8 × 8 blocks
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start

end

start

end

Figure 7.18 Field scan orders for 4 × 4 and 8 × 8 blocks

the block in a zigzag order, the coefficients are placed in a linear array in which most of the

non-zero coefficients tend to occur near the start of the array.

However, in an interlaced field or a field of a progressive frame converted from interlaced

content, vertical frequencies in each block tend to dominate because the field is vertically

sub-sampled from the original scene (Chapter 3). This means that non-zero coefficients tend

to occur at the top and towards the left side of the block. A block in a field macroblock is

therefore scanned in a modified field scan order (Figure 7.18).

7.4 Coding

A coded H.264 stream or an H.264 file consists of a series of coded symbols. These symbols

make up the syntax described in Chapter 5 and include parameters, identifiers and delimiting

codes, prediction types, differentially coded motion vectors and transform coefficients. The

H.264/AVC standard specifies several methods for coding the symbols, i.e. converting each

symbol into a binary pattern that is transmitted or stored as part of the bitstream. These methods

are as follows:

Fixed length code: A symbol is converted into a binary code with a specified

length (n bits).
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Exponential-Golomb variable length code: The symbol is represented as an

Exp-Golomb codeword with a varying number of bits (v bits). In general, shorter

Exp-Golomb codewords are assigned to symbols that occur more frequently.

CAVLC: Context-Adaptive Variable Length Coding, a specially-designed method

of coding transform coefficients in which different sets of variable-length codes

are chosen depending on the statistics of recently-coded coefficients, using context

adaptation.

CABAC: Context-Adaptive Binary Arithmetic Coding, a method of arithmetic

coding in which the probability models are updated based on previous coding

statistics.

Symbols occurring in the syntax above the slice data level (Chapter 5) are coded using Fixed

Length Codes or Exp-Golomb codes. Symbols at the slice data level and below are coded in

one of two ways. If CABAC mode is selected, all of these symbols are coded using CABAC;

otherwise, coefficient values are coded using CAVLC and other symbols are coded using fixed

length or Exp-Golomb codes.

7.4.1 Exp-Golomb Coding

Exponential Golomb codes, Exp Golomb or ExpG, are binary codes with varying lengths

constructed according to a regular pattern [x, xi]. Variable length binary codes such as ExpG

codes may be used as an efficient way of representing data symbols with varying probabilities

(Chapter 3). By assigning short codewords to frequently-occurring data symbols and long

codewords to less common data symbols, the data may be represented in a compressed

form.

Table 7.9 lists the first few Exp-Golomb codewords, indexed by a parameter code num. It is

clear from the table that these codes have a regular, logical construction. Exponential-Golomb

codes are variable length codes with the folliowing properties:

Table 7.9 Exp-Golomb Codewords

code num Codeword

0 1

1 010

2 011

3 00100

4 00101

5 00110

6 00111

7 0001000

8 0001001

. . . . . .
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(i) Code length increases with the index code num and

(ii) Each code can be constructed logically and decoded algorithmically without the need for

look-up tables.

An Exp-Golomb codeword has the following structure:

[Zero prefix][1][INFO]

The codeword consists of a prefix of M zeros, where M is 0 or a positive integer, a 1 and an

M-bit information field, INFO. Each codeword may be generated algorithmically from the

parameter code num:

M = floor(log 2 [code num + 1])

INFO = code num + 1 − 2M

Conversely, code num may be decoded as follows:

1. Read a series of consecutive zeros until a 1 is detected. Count the number of zeros (M).

2. Read a 1 (ignore).

3. Read M bits = INFO.

4. Code num = 2M + INFO – 1.

Note that the length of the codeword is 2M + 1 bits.

Examples:

(a) code num = 107 : log2 [108] = 6.754. . ., M = 6

INFO = 107 + 1 – 26 = 4410 = 1011002

Codeword = 0000001101100

(b) codeword = 000000011100011 : Count leading zeros: M = 7

INFO = 11000112 = 9910

Code num = 27 + 99 – 1 = 226

Coding a parameter k proceeds as follows. k is mapped to code num in one of the ways listed 
in Table 7.10. The value code num is converted to an Exp-Golomb binary codeword (Table 
7.9) which is inserted in the H.264 bitstream. Decoding proceeds as follows. The decoder

reads M consecutive zeros and calculates the total length of the next Exp-Golomb codeword as

2M + 1 bits. It reads the remaining M + 1 bits and calculates code num which is then mapped

to k.
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Table 7.10 Mappings to code num

Mapping type Description

ue Unsigned direct mapping, code num = k. Used for macroblock type, reference

frame index and others.

te Truncated mapping: if the largest possible value of k is 1, then a single bit b is sent

where b = !code num, otherwise ue mapping is used.

se Signed mapping, used for motion vector difference, delta QP and others.

k is mapped to code num as follows:

code num = 2|k| (k ≤ 0)

code num = 2|k| − 1 (k > 0)

code num is mapped to k as follows:

k = (−1)code num+1ceil(code num / 2)

me Mapped symbols, k is mapped to code num according to a table specified in the

standard.

Example

An inter-coded macroblock in a Baseline Profile bitstream is coded as follows:

Symbol name Mapping Notes

mb type ue(v) Macroblock type; unsigned mapping to Exp-Golomb

code with variable number of bits.

ref index l0 te(v) Reference picture index, one per macroblock

partition; truncated unsigned mapping to

Exp-Golomb code.

mvd l0 se(v) Motion vector difference, two per macroblock

partition; signed mapping to Exp-Golomb code.

coded block pattern me(v) Identifies 8 × 8 blocks containing non-zero

coefficients; mapping to Exp-Golomb code

according to specific table(s) in H.264 standard.

mb qp delta se(v) Differentially coded quantizer parameter; signed

mapping to Exp-Golomb code

Residual. . . Residual data coded using CAVLC.

7.4.2 Context Adaptive Variable Length Coding, CAVLC

Context Adaptive Variable Length Coding (CAVLC) is used to encode residual, scan or-

dered blocks of transform coefficients. CAVLC [xii] is designed to take advantage of several

characteristics of quantized coefficient blocks:

1. After prediction, transformation and quantization, blocks are typically sparse, often con-

taining mostly zeros. CAVLC uses run-level coding to compactly represent strings of zeros.
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coded bitstream

Figure 7.19 CAVLC encoder overview

2. The highest non-zero coefficients after the block scan are often sequences of +/−1 and

CAVLC signals the number of high-frequency +/−1 coefficients, ‘Trailing 1s’ or ‘T1s’, in

a compact way.

3. The number of non-zero coefficients in neighbouring blocks is correlated. The number of

coefficients is encoded using a look-up table (coeff token) and the choice of look-up table

depends on the number of non-zero coefficients in neighbouring blocks.

4. The level or magnitude of non-zero coefficients tends to be larger at the start of the scanned

array, near the DC coefficient, and smaller towards the higher frequencies. CAVLC takes

advantage of this by adapting the choice of VLC look-up table for the level parameter

depending on recently coded level magnitudes.

If CAVLC is used together with the 8 × 8 integer transform, each 8 × 8 block of quantized

transform coefficients is processed as four 4 × 4 blocks for the purposes of CAVLC encoding

and decoding.

Figure 7.19 shows a simplified overview of the CAVLC encoding process. A block of

coefficients is scanned using zigzag or field scan and converted into a series of variable length

codes (VLCs). Certain VLC tables are chosen based on local statistics, i.e. the number of non-

zero coefficients in neighbouring blocks and the magnitude of recently-coded coefficients.

CAVLC encoding of a 4 × 4 block of transform coefficients proceeds as follows.

1. Encode the number of coefficients and trailing ones (coeff token).

The first VLC, coeff token, encodes both the total number of non-zero coefficients (Total-

Coeffs) and the number of trailing +/−1 values (T1). TotalCoeffs can be anything from 0,

Amazon.com, Inc., Amazon.com Services LLC - Ex. 1012, Page 000243
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Table 7.11 Choice of look-up table for coeff token

nC Table for coeff token

0, 1 VLC table 1

2, 3 VLC table 2

4, 5, 6, 7 VLC table 3

8 or above FLC

i.e. no coefficients in the 4 × 4 block 2, to 16, i.e. 16 non-zero coefficients, and T1 can take

values from 0 to 3. If there are more than three trailing +/−1s, only the last three are treated

as ‘special cases’ and any others are coded as normal coefficients.

For a luma block, there are four choices of look-up table to use for encoding coeff token,

three variable-length code tables and a fixed-length code table. The choice of table depends

on the number of non-zero coefficients in the left and upper previously coded blocks, nA and

nB respectively. A parameter nC is calculated as follows:

(i) If upper and left blocks are both available, i.e. in the same coded slice, nC = (nA + nB

+ 1) ≫ 1, where ≫ indicates binary right shift.

(ii) If only the upper is available, nC = nB.

(iii) If only the left block is available, nC = nA.

(iv) If neither neighbouring block is available, nC = 0.

nC selects the look-up table (Table 7.11) so that the choice of VLC adapts to the number of

coded coefficients in neighbouring blocks, context adaptive. VLC table 1 is biased towards

small numbers of coefficients such that low values of TotalCoeffs, 0 and 1, are assigned

particularly short codes and high values of TotalCoeff particularly long codes. VLC table 2

is biased towards medium numbers of coefficients, so that TotalCoeff values around 2–4

are assigned relatively short codes, VLC table 3 is biased towards higher numbers of coef-

ficients and a FLC (Fixed Length Code) table assigns a fixed 6-bit code to every value of

TotalCoeff.

2. Encode the sign of each T1.

For each trailing +/−1 T1 signalled by coeff token, the sign is encoded with a single bit, 0

= +, 1 = −, in reverse order, starting with the highest-frequency T1.

3. Encode the levels of the remaining non-zero coefficients.

The level, i.e. the sign and magnitude, of each remaining non-zero coefficient in the block

is encoded in reverse order, starting with the highest frequency and working back towards

the DC coefficient. The choice of VLC to encode each successive level is context adaptive and

depends on the magnitude of the previous coded level.

2 Note: coded block pattern, described in Chapter 5, indicates which 8 × 8 blocks in the macroblock contain non-

zero coefficients but, within a coded 8 × 8 block, there may be 4 × 4 sub-blocks that do not contain any coefficients,

hence TotalCoeff may be 0 in any 4 × 4 sub-block. In fact, this value of TotalCoeff occurs most often and is assigned

the shortest VLC.
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Table 7.12 Thresholds for determining whether to increment suffixLength

Current suffixLength Threshold to increment suffixLength

0 0

1 3

2 6

3 12

4 24

5 48

6 N/A, highest value reached

The level VLC is composed of level prefix, b leading zeros followed by a 1, and level suffix,

an integer code of size suffixLength bits. If suffixLength is small, the composite VLC,

level prefix + level suffix, is more efficient for coding small-magnitude coefficients. If suf-

fixLength is large, the composite VLC is more efficient for coding large-magnitude coefficients.

The choice of suffixLength adapts as follows:

1. Start coding the 4 × 4 luma block. Initialise suffixLength to 0, unless there are more than

10 non-zero coefficients and less than 3 trailing ones, in which case initialise suffixLength

to 1.

2. Encode the highest-frequency non zero coefficient.

3. If the magnitude of this coefficient is larger than a threshold, increment suffixLength, up to

a maximum suffixLength = 6.

In this way, the choice of VLC is matched to the magnitude of the recently-encoded co-

efficients. Typically, the higher-frequency coefficients, coded first, have smaller magnitudes

and the magnitude tends to increase with lower frequency. The level VLC adapts to fol-

low this trend. The thresholds are listed in Table 7.12; the first threshold is zero which

means that suffixLength is always incremented after the first coefficient level has been

encoded.

4. Encode the total number of zeros before the last coefficient.

TotalZeros is the sum of all zeros preceding the highest non-zero coefficient in the re-

ordered array and is coded with a VLC. The reason for sending a separate VLC to indicate

TotalZeros is that many blocks contain zero coefficients at the start of the array and, as

will be seen later, this approach means that zero-runs at the start of the array need not be

encoded.

5. Encode each run of zeros.

The number of zeros preceding each non-zero coefficient (run before) is encoded in reverse

order. A run before parameter is encoded for each non-zero coefficient, starting with the

highest frequency, with two exceptions:

1. If there are no more zeros left to encode, i.e. 6[run before] = TotalZeros, it is not necessary

to encode any more run before values.
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2. It is not necessary to encode run before for the final or lowest frequency non-zero

coefficient.

The VLC for each run of zeros is chosen depending on (a) the number of zeros that have not

yet been encoded (ZerosLeft) and (b) run before. For example, if there are only two zeros left

to encode, run before can only take 3 values, 0,1 or 2, and so the VLC need not be more than

two bits long. If there are six zeros still to encode then run before can take seven values, 0 to

6, and the VLC table needs to be correspondingly larger.

Example 1

4 × 4 block:

0 3 −1 0

0 −1 1 0

1 0 0 0

0 0 0 0

Reordered block:

0,3,0,1,−1,−1,0,1,0. . .

TotalCoeffs = 5, indexed from highest frequency, 4, to lowest frequency, 0

TotalZeros = 3

T1s = 3. In fact there are four trailing ones but only three can be encoded as a ‘special case’.

Encoding:

Element Value Code

coeff token TotalCoeffs = 5, T1s = 3 (use Num VLC0) 0000100

T1 sign (4) + 0

T1 sign (3) − 1

T1 sign (2) − 1

Level (1) +1 (level prefix = 1; suffixLength = 0) 1

Level (0) +3 (level prefix = 001, suffixLength = 1) 0010

TotalZeros 3 111

run before(4) ZerosLeft = 3; run before = 1 10

run before(3) ZerosLeft = 2; run before = 0 1

run before(2) ZerosLeft = 2; run before = 0 1

run before(1) ZerosLeft = 2; run before = 1 01

run before(0) ZerosLeft = 1; run before = 1 No code required; last coefficient.

The transmitted bitstream for this block is 000010001110010111101101.

Decoding:

The output array is ‘built up’ from the decoded values as shown below. Values added to the

output array at each stage are underlined.
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Code Element Value Output array

0000100 coeff token TotalCoeffs = 5, T1s = 3 Empty

0 T1 sign + 1

1 T1 sign − −1, 1

1 T1 sign − −1, −1, 1

1 Level +1 (suffixLength = 0; increment suffixLength) 1, −1, −1, 1

0010 Level +3 (suffixLength = 1) 3, 1, −1, −1, 1

111 TotalZeros 3 3, 1, −1, −1, 1

10 run before 1 3, 1, −1, −1, 0, 1

1 run before 0 3, 1, −1, −1, 0, 1

1 run before 0 3, 1, −1, −1, 0, 1

01 run before 1 3, 0, 1, −1, −1, 0, 1

The decoder has already inserted two zeros, TotalZeros is equal to 3 and so another 1 zero is

inserted before the lowest coefficient, making the final output array:

0, 3, 0, 1, −1, −1, 0, 1

Example 2

4 × 4 block:

−2 4 0 −1

3 0 0 0

−3 0 0 0

0 0 0 0

Reordered block:

−2, 4, 3, −3, 0, 0, −1, . . .

TotalCoeffs = 5, indexed from highest frequency (4) to lowest frequency (0)

TotalZeros = 2

T1s = 1

Encoding:

Element Value Code

coeff token TotalCoeffs = 5, T1s = 1 (use Num VLC0) 0000000110

T1 sign (4) – 1

Level (3) Sent as –2 (see note 1) (suffixLength = 0) 0001

Level (2) 3 (suffixLength = 1) 0010

Level (1) 4 (suffixLength = 1) 00010

Level (0) −2 (suffixLength = 2) 111

TotalZeros 2 0011

run before(4) ZerosLeft = 2; run before = 2 00

run before(3..0) 0 No code required

The transmitted bitstream for this block is 000000011010001001000010111001100.
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Note 1: Level (3), with a value of −3, is encoded as a special case. If there are less

than 3 T1s, then the first non-T1 level cannot have a value of +/−1, otherwise it

would have been encoded as a T1. To save bits, this level is incremented if negative,

decremented if positive, so that +/−2 maps to +/−1, +/−3 maps to +/−2, and so

on. In this way, shorter VLCs are used.

Note 2: After encoding level (3), suffixLength is incremented because the mag-

nitude of this level is greater than the first threshold, which is 0. After encoding

level (1), with a magnitude of 4, suffixLength is incremented again because level

(1) is greater than the second threshold of 3. Note that the final level (−2) uses a

different code from the first encoded level, also −2.

Decoding:

Code Element Value Output array

0000000110 coeff token TotalCoeffs = 5, T1s = 1 Empty

1 T1 sign − −1

0001 Level −2 decoded as −3 −3, −1

0010 Level +3 +3, −3, −1

00010 Level +4 +4, 3, −3, −1

111 Level −2 −2, 4, 3, −3, −1

0011 TotalZeros 2 −2, 4, 3, −3, −1

00 run before 2 −2, 4, 3, −3, 0, 0, −1

All zeros have now been decoded and so the output array is:

−2, 4, 3, −3, 0, 0, −1

This example illustrates how bits are saved by encoding TotalZeros: only a single zero run

needs to be coded even though there are five non-zero coefficients.

Example 3

4 × 4 block:

0 0 1 0

0 0 0 0

1 0 0 0

−1 0 0 0

Reordered block:

0,0,0,1,0,1,0,0,0,−1

TotalCoeffs = 3, indexed from highest frequency (2) to lowest frequency (0)

TotalZeros = 7

T1s = 3
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Encoding:

Element Value Code

coeff token TotalCoeffs = 3, T1s = 3 (use Num VLC0) 00011

T1 sign (2) − 1

T1 sign (1) + 0

T1 sign (0) + 0

TotalZeros 7 011

run before(2) ZerosLeft = 7; run before = 3 100

run before(1) ZerosLeft = 4; run before = 1 10

run before(0) ZerosLeft = 3; run before = 3 No code required; last coefficient.

The transmitted bitstream for this block is 0001110001110010.

Decoding:

Code Element Value Output array

00011 coeff token TotalCoeffs = 3, T1s = 3 Empty

1 T1 sign − −1

0 T1 sign + 1, −1

0 T1 sign + 1, 1, −1

011 TotalZeros 7 1, 1, −1

100 run before 3 1, 1, 0, 0, 0, −1

10 run before 1 1, 0, 1, 0, 0, 0, −1

The decoder has inserted four zeros. TotalZeros is equal to 7 and so another three zeros are

inserted before the lowest coefficient:

0, 0, 0, 1, 0, 1, 0, 0, 0, −1

7.4.3 Context Adaptive Binary Arithmetic Coding, CABAC

Context-based Adaptive Binary Arithmetic Coding (CABAC) [xiii, xiv] is an optional en-

tropy coding mode available in Main and High profiles. CABAC achieves good compression 
performance through:

(a) selecting probability models for each syntax element according to the element’s context,

(b) adapting probability estimates based on local statistics and

(c) using arithmetic coding rather than variable-length coding.

Coding a data symbol involves the following stages.

1. Binarization: CABAC uses Binary Arithmetic Coding which means that only binary de-

cisions (1 or 0) are encoded. A non-binary-valued symbol, e.g. a transform coefficient or 
motion vector, is ‘binarized’ or converted into a binary code prior to arithmetic coding. 

This process is similar to the process of converting a data symbol into a variable length
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code (section 7.4.1) but the binary code is further encoded by the arithmetic coder prior to

transmission.

Stages 2, 3 and 4 are repeated for each bit or ‘bin’ of the binarized symbol:

2. Context model selection. A ‘context model’ is a probability model for one or more bins of

the binarized symbol and is chosen from a selection of available models depending on the

statistics of recently-coded data symbols. The context model stores the probability of each

bin being ‘1’ or ‘0’.

3. Arithmetic encoding: An arithmetic coder encodes each bin according to the selected proba-

bility model (Chapter 3). Note that there are just two sub-ranges for each bin, corresponding

to the possible values of ‘0’ and ‘1’.

4. Probability update: The selected context model is updated based on the actual coded value.

E.g. if the bin value was ‘1’, the frequency count of ‘1’s is increased.

The coding process

The CABAC coding process is illustrated in Figure 7.20. A syntax element is binarized,

converted to a series of bits, each of which corresponds to a single binary decision or bin. If

the probability of the bin contents being 1 or 0 is likely to remain at 0.5, e.g. for a +/− sign

bit, a simple bypass coding process occurs. Otherwise, the probability of the bin containing a

1 or a 0 is modelled based on (a) previous counts of 1 or 0 and (b) values of the same syntax

element in the immediate neighbourhood. The chosen probabilities are passed to an arithmetic

coder which codes the bin. The context model is updated based on the actual bin contents

(1 or 0).

We will illustrate the coding process for one example, MVDx, motion vector difference in

the x-direction.

1. Binarize the value MVDx. MVDx is mapped to the following table (Table 7.13) of uniquely-

decodeable codewords for |MVDx|<9. Larger values of MVDx are binarized using an

Exp-Golomb codeword.

The first bit of the binarized codeword is bin 1, the second bit is bin 2 and so on.

syntax
element binarize

context
model

arithmetic
coder

X

local statistics
update

regular
bin

bypass
bin

bypass
coder

output
bitstream

Figure 7.20 CABAC coding process overview
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Table 7.13 Binarization of MVD magnitude

|MVDx| Binarization

0 0

1 1 0

2 1 1 0

3 1 1 1 0

4 1 1 1 1 0

5 1 1 1 1 1 0

6 1 1 1 1 1 1 0

7 1 1 1 1 1 1 1 0

8 1 1 1 1 1 1 1 1 0

Bin number 1 2 3 4 5 6 7 8 9

2. Choose a context model for each bin. One of three models is selected for bin 1 (Table

7.14), based the L1 norm of two previously-coded MVD values, ek:

ek = |MVDA | + | MVDB | where A and B are the blocks immediately to the left and

above the current block respectively.

If ek is small, then there is a high probability that the current MVD will have a small

magnitude and conversely, if ek is large then it is more likely that the current MVD

will have a large magnitude. A probability table or context model is selected accord-

ingly. The remaining bins are coded using one of four further context models (Table

7.15).

3. Encode each bin. The selected context model supplies two probability estimates, the proba-

bility that the bin contains ‘1’ and the probability that the bin contains ‘0’, that determine the

two sub-ranges used by the arithmetic coder to encode the bin. The sign of MVD (+ or −)

is coded using the Bypass routine, assuming that + and – are equally probable.

4. Update the context models. For example, if context model 2 is selected for bin 1 and the

value of bin 1 is ‘0’, the frequency count of ‘0’s is incremented so that the next time this

model is selected, the probability of an ‘0’ will be slightly higher. When the total number

of occurrences of a model exceeds a threshold value, the frequency counts for ‘0’ and ‘1’

will be scaled down, which in effect gives higher priority to recent observations.

Table 7.14 Context models for bin 1

ek Context model for bin 1

0 ≤ ek < 3 Model 0

3 ≤ ek < 33 Model 1

33 ≤ ek Model 2
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Table 7.15 Context models

Bin Context model

1 0, 1 or 2 depending on ek

2 3

3 4

4 5

5 6

6 and higher 6

The context models

Context models and binarization schemes for each syntax element are defined in the standard.

There are nearly 300 separate context models for the various syntax elements. Some models

have different uses depending on the slice type, for example, skipped macroblocks are not

permitted in an I-slice and so context models 0-2 are used to code bins of mb skip or mb type

depending on whether the current slice is Intra coded. At the beginning of each coded slice, the

context models are initialised depending on the initial value of the Quantization Parameter QP,

since this has a significant effect on the probability of occurrence of the various data symbols.

The arithmetic coding engine

The arithmetic decoder is described in detail in the Standard and has three distinct properties:

1. Probability estimation is performed by a transition process between 64 separate probability

states for ‘Least Probable Symbol’, LPS, the least probable of the two binary decisions ‘0’

or ‘1’.

2. The range R representing the current state of the arithmetic coder (Chapter 3) is quantized

to a small range of pre-set values before calculating the new range at each step, making it

possible to calculate the new range using a look-up table, without the use of multiplications.

3. A simplified encoding and decoding process is defined for data symbols with a near-uniform

probability distribution.

The definition of the decoding process is designed to facilitate low-complexity implementa-

tions of arithmetic encoding and decoding. Overall, CABAC can provide improved coding

efficiency compared with CAVLC at the expense of greater computational complexity on some

processing platforms. Chapter 9 compares the performance of CAVLC and CABAC.

7.5 Summary

After intra or inter prediction, blocks of residual data in a macroblock are transformed,

quantized, scanned and coded. An H.264/AVC codec uses a number of transforms that are

based on the well known DCT and Hadamard Transforms but with certain novel aspects.

In contrast with previous standards, each inverse transform is exactly specified using integer
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arithmetic. Efficient implementation of the transform and quantization is made possible by

‘absorbing’ part of the transform into the quantizer process.

An H.264 encoder converts a video signal into a set of quantized transform coefficients,

motion vectors, prediction parameters and header parameters. These values are coded to

produce a compressed bitstream. An encoder may choose between variable-length coding,

using Exponential Golomb codes for some syntax elements and a custom-designed Context

Adaptive Variable Length Coding algorithm for residual blocks, or a Context Adaptive Binary

Arithmetic Coder.
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8

H.264 conformance, transport
and licensing

8.1 Introduction

Chapters 4,5,6 and 7 covered the basic concepts of H.264 Advanced Video Compression and

the key algorithms that enable an H.264 codec to efficiently code and decode video. The

purpose of an industry standard is to enable interoperability between encoders, bitstreams and

decoders; i.e. the standard makes it possible for a bitstream encoded by one manufacturer’s

encoder to be decoded by a different manufacturer’s decoder. H.264/AVC defines Profiles and

Levels to place operational limits on (a) the particular coding tools and (b) the computational

capacity and storage required to decode a sequence. Conformance is verified using a theoretical

‘model’, a Hypothetical Reference Decoder.

Practical applications of H.264/AVC involve transmitting and/or storing coded video in-

formation. The standard includes a number of features designed to support efficient, robust

transport of the coded bitstream, including Parameter Sets and NAL Units, described in Chap-

ter 5, and specific transport tools, described in this chapter. To help support an increasingly

diverse range of video content and display types, ‘side’ information including Supplemental

Enhancement Information and Video Usability Information may be transmitted along with the

coded video data.

Video coding is big business, with many worldwide industries relying on video compression

to enable digital media products and services. With many thousands of published patents in

the field of video coding, licensing of H.264/AVC implementations is an important issue for

commercial digital video applications.

8.2 Conforming to the Standard

H.264/AVC specifies many syntax options and decoding algorithms [i] which cover a wide

range of potential video coding scenarios. The standard is designed to support video coding

for applications such as small hand-held devices with limited display resolution and minimal

computational capacity, through to high-definition decoders with large amounts of memory

The H.264 Advanced Video Compression Standard, Second Edition Iain E. Richardson
C© 2010 John Wiley & Sons, Ltd
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and computing resources. The standard describes the various syntax elements that may occur

in a bitstream and specifies exactly how each syntax element should be processed and decoded

in order to produce an output video sequence.

It is important to know whether a particular decoder can handle a particular coded sequence,

i.e. whether the decoding and display operations are within the decoder’s capabilities. This

is achieved by specifying a profile and level for every coded sequence. The profile places

algorithmic constraints on the decoder, determining which decoding tools the decoder should

be capable of handling, whilst the level places data processing and storage constraints on the

decoder, determining how much data the decoder should be capable of storing, processing and

outputting to a display. An H.264 decoder can immediately determine whether it is capable of

decoding a particular bitstream by extracting the Profile and Level parameters and determining

whether these are supported by the decoder’s capabilities.

8.2.1 Profiles

The H.264/AVC standard specifies a number of Profiles, each specifying a subset of the coding

tools available in the H.264 standard. A Profile places limits on the algorithmic capabilities

required of an H.264 decoder. Hence a decoder conforming to the Main Profile of H.264 only

needs to support the tools contained within the Main Profile; a High Profile decoder needs

to support further coding tools; and so on. Each Profile is intended to be useful to a class of

applications. For example, the Baseline Profile may be useful for low-delay, ‘conversational’

applications such as video conferencing, with relatively low computational requirements. The

Main Profile may be suitable for basic television/entertainment applications such as Standard

Definition TV services. The High Profiles add tools to the Main Profile which can improve com-

pression efficiency especially for higher spatial resolution services, e.g. High Definition TV.

8.2.1.1 Baseline, Constrained Baseline, Extended and Main Profiles

Figure 8.1 shows the tools supported by the Baseline, Constrained Baseline, Extended and

Main Profiles. The Baseline Profile was originally intended to be suitable for low complexity,

low delay applications such as conversational or mobile video transmission. It includes I and

P slice types, allowing intra prediction and motion compensated prediction from a single

reference, the basic 4 × 4 integer transform and CAVLC entropy coding. It also supports

three tools for improved transport efficiency, FMO, ASO and Redundant Slices (section 8.3).

However, these last three tools have not tended to be popular with codec manufacturers and

most implementations of H.264/AVC do not support FMO, ASO or Redundant Slices. In

recognition of this, a recent amendment to the standard includes the Constrained Baseline

Profile which excludes these tools [ii].

The Extended Profile is a superset of the Baseline Profile, adding further tools that may

be useful for efficient network streaming of H.264 data (section 8.3). The Main Profile is

a superset of the Constrained Baseline Profile and adds coding tools that may be suitable

for broadcast and entertainment applications such as digital TV and DVD playback, namely

CABAC entropy coding and bipredicted B slices with prediction modes such as Weighted

Prediction for better coding efficiency and frame/field coding support for interlaced video

content.
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B slice
Interlace

FMO
ASO
Redundant slices

SI slice
SP slice
Data partitioning

CABAC

MAIN

EXTENDED
BASELINE

P slice

8 bits per sample
4:2:0 format
4x4 transform
CAVLC
I slice

CONSTRAINED

BASELINE

Figure 8.1 Baseline, Constrained Baseline, Extended and Main Profiles

8.2.1.2 High Profiles

Four High Profiles are shown in Figure 8.2, together with the Main Profile for comparison. Each 
of these Profiles adds coding tools that support higher-quality applications – High Definition, 
extended bit depths, higher colour depths – at the expense of greater decoding complexity. The 
High Profile is a superset of the Main Profile and adds the following tools: 8 × 8 transform and 
8 × 8 inter prediction for better coding performance, especially at higher spatial resolutions, 
quantizer scale matrices which support frequency-dependent quantizer weightings, separate 
quantizer parameters for Cr and Cb and support for monochrome video (4:0:0 format). The 
High Profile makes it possible to use a higher coded data rate for the same Level (see section 
8.2.2). The High Profile may be particularly useful for High Definition applications.

Further profiles add more sophisticated tools that may be necessary or useful for ‘profes-

sional’ applications such as content distribution, archiving, etc. The maximum number of bits 
per sample is extended to 10 bits in the High10 profile and to 14 bits in the High444Pred pro-

file. High422 Profile adds support for 4:2:2 video, i.e. higher Chroma resolution, and High444 
Profile extends this to 4:4:4 video giving equal resolution in Luma and Chroma components 
and adds separate coding for each colour component and a further lossless coding mode that 
uses predictive coding (Chapter 7).
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Figure 8.2 Main and High Profiles

8.2.1.3 Intra Profiles

Figure 8.3 shows the Main Profile together with four Intra Profiles. Each of these includes

selected tools contained in the High Profiles of Figure 8.2, but without Inter coding support, i.e.

no P or B slices, or Interlace support. These Intra Profiles may be useful for applications such

as video editing which require efficient coding of individual frames but also require complete

random access to coded frames and hence do not require inter coding.

8.2.2 Levels

The Sequence Parameter Set defines a Level for the coded bitstream, a set of constraints

imposed on values of the syntax elements in the H.264/AVC bitstream. The combination of

Profile and Level constrains the maximum computational and memory requirements that will

be placed on the decoder. The main Level constraints are as follows:

r Maximum macroblock processing rate (MaxMBPS): the maximum number of macroblocks,

16 × 16 luma and associated chroma, that a decoder must handle per second.
r Maximum frame size (MaxFS): the maximum number of macroblocks in a decoded frame.
r Maximum Decoded Picture Buffer size (MaxDPB): the maximum memory space required

to store decoded pictures at the decoder.
r Maximum video bit rate (MaxBR): the maximum coded video bitrate.
r Maximum Coded Picture Buffer size (MaxCBP): the maximum memory space required to

store (buffer) coded data prior to decoding.
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Figure 8.3 Main and Intra Profiles

r Vertical motion vector range (MaxVmvR): the maximum range (+/−) of a vertical motion

vector.
r Minimum Compression Ratio (MinCR): the minimum ratio between uncompressed video

frames and compressed or coded data size.
r Maximum motion vectors per two consecutive macroblocks (MaxMvsPer2Mb): specified

for levels above 3, a constraint on the number of motion vectors (MVx, MVy) that may

occur in any two consecutive decoded macroblocks.

In the present version of the standard [i] level numbers range from 1 to 5 with intermediate 
steps 1.1, 1.2, 1.3, 2.1, etc. A decoder operating at a particular level is expected to be able to 
handle any of the level constraints at or below that level. For example, a Level 2.1 decoder 
can handle levels 1, 1.1, 1.2, 1.3, 2 and 2.1. Selected level constraints are shown graphi-

cally in Figure 8.4. It is clear that these range from very low, suitable for low-complexity 
decoders with limited display resolutions, e.g. handheld devices, to very high, suitable 
for Full High Definition decoders with high resolution displays and significant processing 
resources.

The parameter MaxFS defines the maximum decoded picture size in macroblocks. This 
implies certain maximum display resolutions, depending on the aspect ratio. Figure 8.5 shows 
some examples. For example, MaxFS at Level 1 is equal to 99 macroblocks, which can 
correspond to 11 × 9 MB or 176 × 144 luma samples, i.e. QCIF resolution. At Levels 
2.2 and 3, MaxFS is 1620 macroblocks which can correspond to 45 × 36 MB or 720 × 
576 luma samples, ‘625’ Standard Definition. At Levels 4 and 4.1, MaxFS is 8192 mac-

roblocks, which corresponds to approximately 120 × 68 MB or 1920 × 1080 luma sam-

ples, ‘1080p’ High Definition. Note that many other aspect ratios are possible within these 
constraints.
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Figure 8.4 Selected Level constraints

The combination of MaxFS, the frame size in macroblocks, and MaxMBPS, the number

of macroblocks per second, places a constraint on the maximum frame rate at a particular

frame resolution. Table 8.1 lists some examples. Level 1.2 corresponds to CIF resolution at a

maximum of 15 frames per second or QCIF at a maximum of 60 frames per second. Level 4

corresponds to 1080p High Definition at a maximum of 30 frames per second, or 720p High

Definition at a maximum of 68 frames per second, and so on.
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1, 1b
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11x9 MB

Figure 8.5 Selected display resolutions

Table 8.1 Selected formats, frame rates and levels

Format (luma resolution) Max frames per second Level

QCIF (176x144) 15

30

1, 1b

1.1

CIF (352x288) 15

30

1.2

1.3, 2

525 SD (720x480) 30 3

625 SD (720x576) 25 3

720p HD (1280x720) 30 3.1

1080p HD (1920x1080) 30

60

4, 4.1

4.2

4Kx2K (4096x2048) 30 5.1
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Figure 8.6 H.264 encoder and decoder buffers

8.2.3 Hypothetical Reference Decoder

As well as ensuring that a decoder can handle the syntax elements and sequence parameters

in an H.264 stream, it is important to make sure that the coded sequence ‘fits’ within the

limitations of the decoder buffering and processing capacity. This is handled by defining a

Hypothetical Reference Decoder (HRD), a virtual buffering algorithm that can be used to test

the behaviour of the coded bitstream and its effect on a real decoder. Annex C of the H.264

standard specifies the Hypothetical Reference Decoder [iii].

Figure 8.6 shows a typical H.264 codec. Video frames are encoded to produce an H.264

bitstream which is buffered prior to transmission. When a frame n is coded, the encoder buffer

is filled with bn coded bits. The encoder buffer is emptied at the rate of the transmission

channel, rc bits per second. The dual situation occurs at the decoder, where bits arrive from the

channel and fill the Coded Picture Buffer (CPB) at a rate of rc bits per second. The decoder

decodes frame n, removing bn bits from the CPB, and places decoded frames in the Decoded

Picture Buffer (DPB). These are then output – displayed – and/or used for prediction to decode

further frames.

The HRD (Figure 8.7) is a model of the decoding side of Figure 8.6. In this conceptual

model, the H.264 bitstream is output by a Hypothetical Stream Scheduler (HSS) at a constant or

varying channel rate into the CPB. Access units, coded pictures, are removed from the CPB and

decoded instantaneously, i.e. they are assumed to be instantly decoded and placed in the DPB.

The H.264/AVC standard specifies two types of HRD conformance, one for essential Video

Coding Layer (VCL) units and a second for all video coding elements in the stream . In most

scenarios a compliant decoder must satisfy both types. The following conditions must be met

(among others, simplified from the conditions in the standard):

1. The CPB must never overflow, i.e. the contents must not exceed the maximum CPB size.

2. The CPB must never underflow, i.e. the contents must not reach zero.

3. The DPB must never exceed its maximum size.

The maximum size of the CPB and DPB are specified as part of the Level limits and so the

HRD provides a mechanism for checking and enforcing the Level constraints. The operation

of the HRD can be illustrated with some examples.

Hypothetical
Stream Scheduler

Instantaneous
Decoder

Coded Picture Buffer Decoded Picture Buffer

Bitstream Access
Units

Figure 8.7 Hypothetical Reference Decoder (HRD)
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Example 1: Typical HRD operation

Video frame rate: 5 frames per second

Channel bit rate: 5000 bits per second : constant bit rate

Initial removal delay: 0.8 seconds : see below

Maximum CPB size: 6000 bits

The bitstream consists of a series of access units with the following coded sizes (Table 8.2).

Figure 8.8 shows the behaviour of the encoder output buffer. Frame 0 is encoded and added

to the buffer at time 0 and each subsequent frame is added at intervals of 0.2 seconds. At the

same time, the channel empties the buffer at a constant rate of 5000 bits per second. Frames

larger than (bitrate/frame rate) = 1000 bits cause the buffer to fill up; frames smaller than

1000 bits cause the buffer to empty.

The encoder buffer behaves like a ‘leaky bucket’ : filling at a variable rate depending on

the coded size of each access unit and emptying or leaking at a constant rate, the bitrate of the

channel.

The corresponding decoder CPB behaviour is shown in Figure 8.9. The initial CPB removal

delay is necessary to allow enough data to be received before frames are decoded, 0.8 seconds

in this example. The CPB fills at the constant channel rate during this initial delay period

before frame 0 is decoded and instantly removed from the buffer. As the first five frames are

decoded, the CPB comes close to the underflow condition. Referring back to Figure 8.8, this

Table 8.2 HRD example 1: access unit sizes

Frame Coded size (bits)

0 3000

1 1200

2 1200

3 1200

4 1200

5 500

6 500

7 500

8 500

9 1000

10 1000

11 1000

12 1000

13 1000

14 400

15 400

16 400

17 1500

18 1500

19 1500

20 1500

21 1500
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Figure 8.8 HRD example 1: encoder buffer
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Table 8.3 HRD example 2: frame sizes

Frame Coded size (bits)

. . .. . . ..

10 1000

11 1000

12 1000

13 1000

14 1500

15 1500

16 1500

17 1500

18 1500

19 1500

20 1500

21 1500

corresponds to the initial increasing buffer level at the encoder. In fact, should the encoder

buffer occupancy exceed (CPB initial removal delay ∗ bitrate) = 4000 bits, the CPB will

underflow. The CPB exhibits the opposite behaviour to the encoder buffer – large frames

(>1000 bits) cause the CPB level to decrease, small frames (<1000 bits) cause it to increase.

Example 2: Frame Sizes: CPB underflow

Parameters: Same initial parameters as Example 1.

Frame sizes: Same initial frame sizes, larger frames from frame 14 onwards (Table 8.3).

In the latter part of the sequence, the encoder buffer level exceeds (CPB initial removal

delay ∗ bitrate) = 4000 bits (Figure 8.10) after frame 18 is coded. When frame 18 is removed

from the CPB (Figure 8.11), the CPB level is below 0 and the HRD has violated the underflow

condition. This particular bitstream is therefore not a conforming H.264/AVC bitstream.

Example 3: Frame Sizes: CPB overflow

Parameters: Same initial parameters as Example 1.

Frame sizes: Same initial frame sizes, smaller frames from frame 14 onwards (Table 8.4).

The encoder buffer is consistently ‘drained’ to zero (Figure 8.12) due to the series of small 
frames at the end of the sequence. At the decoder, the CPB increases as the channel continues 
to deliver 5000 bits per second whilst small frames are being decoded and removed from the 
buffer (Figure 8.13). Eventually, the CPB overflows. Once again, this combination of bitstream 
and HRD parameters does not conform.
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Figure 8.10 HRD Example 2: encoder buffer
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Figure 8.11 HRD Example 2: decoder CPB
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Table 8.4 HRD example 3: frame sizes

Frame Coded size (bits)

. . .. . . ..

10 1000

11 1000

12 1000

13 1000

14 200

15 200

16 200

17 400

18 400

19 300

20 300

21 300

The HRD as specified in H.264/AVC Annex C is very flexible and can handle situations

such as variable bit rate channels, where the delivery rate changes with respect to time, varying

CPB removal times corresponding to a decoder that does not operate at a constant frame rate,

etc. An H.264 encoder operating at a particular Level is required to produce a bitstream that

will not violate the HRD conformance rules.
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Figure 8.12 HRD Example 3: encoder buffer
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Figure 8.13 HRD Example 3: decoder CPB

8.2.4 Conformance testing

Annex C of H.264/AVC describes how the HRD is used to test conformance. Conformance

testing methods are specified in H.264.1 [iv]. This Recommendation describes a series of

tests that are intended to verify whether coded bitstreams and video decoders conform to the

requirements of H.264/AVC.

8.2.4.1 Testing a bitstream

Bitstream conformance, i.e. whether a coded video bitstream actually conforms to H.264/AVC,

may be tested using the Joint Model reference software decoder [v] (Figure 8.14). The bitstream

to be tested is decoded by the reference decoder to produce an output video sequence. If there

is a problem with the syntax, the HRD behaviour, etc., the reference decoder should indicate

this with an error message. Error-free operation implies but does not guarantee conformance.

Bitstream under test JM reference
decoder

Decoded
video sequence

No conformance
error messages

Figure 8.14 Bitstream conformance testing
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Figure 8.15 Decoder conformance testing

8.2.4.2 Testing a decoder

A decoder should be capable of decoding any bitstream up to its Profile and Level limits 
(section 8.2.1). Checking that a decoder conforms to H.264/AVC may be carried out by 
decoding a set of Conformance Test Bitstreams (Figure 8.15). A conforming decoder should 
produce a correct video sequence, with the frames/fields in the correct order and with the 
necessary timing relationships between output frames. Conformance bitstreams are available 
for each of the H.264/AVC Profiles at a range of Levels and may be obtained from the ITU-T 
[vi] or in draft form from the Joint Video Team archive [vii].

8.2.4.3 Testing an encoder

There is no specific method of testing encoder conformance, since strictly speaking H.264/AVC 
does not define or specify a video encoder. However, an encoder that is claimed to conform to 
H.264/AVC should always produce coded bitstreams that meet the conformance requirements 
of H.264/AVC Annex C and the testing procedures defined in [iv].

8.3 H.264 coding tools for transport support

H.264/AVC is probably best known as a format for efficient video compression. However, 
in recognition of the fact that most applications of H.264 involve communication or storage 
of the compressed bitstream, the standard specifies a number of features or tools that are 
intended to support efficient and robust transport. Redundant slices, Arbitrary Slice Order 
and Flexible Macroblock Order are supported by the Baseline and Extended Profiles; Data 
Partitioned Slices, SI Slices and SP Slices are supported by the Extended Profile. It is worth 
noting that these features have not been widely adopted by commercial H.264/AVC codecs, 
most of which tend to use the Constrained Baseline, Main and High Profiles.

8.3.1 Redundant slices

A slice marked as ‘redundant’ contains a redundant representation of part or all of a coded 
frame. In normal operation, the decoder reconstructs the frame from ‘non-redundant’ slices 
and discards any redundant slices. However, if the primary decoded frame is damaged, e.g. 
due to a transmission error, the decoder may replace the damaged area with decoded data from 
a redundant slice if available. Adding redundant slices to a coded bitstream may therefore 
improve performance in the presence of transmission errors or losses, at the expense of an 
increase in the number of transmitted bits and hence a loss of compression performance.
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Figure 8.16 Arbitrary Slice Order: Example

8.3.2 Arbitrary Slice Order (ASO)

Arbitrary Slice Order makes it possible for slices in a coded frame to be arranged in any

decoding order. ASO is defined to be in use if the first macroblock in any slice in a decoded

frame has a smaller macroblock address than the first macroblock in a previously decoded

slice in the same frame; hence the slices are transmitted in a non-raster order. This may be

useful as an aid to decoder error concealment. Figure 8.16 shows an example. Slices are coded

in the bitstream in order 0, 1, 2, 3. However, the first macroblock in Slice 2 occurs immediately

after the last MB in Slice 0 and has a smaller address, i.e. occurs earlier in the displayed frame,

than the first macroblock in Slice 1. For example, if an error or packet loss affects slices 0 and

1, it may be easier for a decoder to conceal the effect of the error using the correctly decoded

slices 2 and 3.

8.3.3 Slice Groups / Flexible Macroblock Order (FMO)

Flexible Macroblock Ordering enables macroblocks in a coded frame to be allocated to one

of several slice groups, each containing a subset of the macroblocks that make up a frame

and each containing one or more slices. Within a slice group, MBs are coded in raster order

but successive MBs in a slice group are not necessarily adjacent. If a coded frame contains

more than one slice group, then Flexible Macroblock Ordering is in use. The allocation of

macroblocks is determined by a macroblock allocation map that indicates which slice group

each MB belongs to. Table 8.5 lists the different types of macroblock allocation maps.

FMO can improve error resilience because each slice can be decoded independently of other

slices. For example, if one slice or slice group is lost in a picture using Interleaved ordering,

the damaged region may be concealed reasonably effectively using spatial error concealment

by interpolating vertically between the decoded macroblocks in the remaining slice group(s).
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Table 8.5 Macroblock allocation map types

Type Name Description

0 Interleaved run length MBs are assigned to each slice group in turn (Figure 8.17).

1 Dispersed MBs in each slice group are dispersed throughout the frame (Figure

8.18).

2 Explicit A parameter, slice group id, is sent for each MB to indicate its slice

group, i.e. the macroblock map is entirely user-defined.

3 Foreground and

background

All but the last slice group are defined as rectangular regions within

the frame. The last slice group contains all MBs not contained in

any other slice group, the ‘background’. In the example in Figure

8.19, group 1 overlaps group 0 and so MBs not already allocated to

group 0 are allocated to group 1.

4 Box-out A rectangular area or box is created starting from the centre of the

frame, with the size controlled by encoder parameters and

containing group 0; all other MBs are in group 1 (Figure 8.20).

5 Raster scan Group 0 contains MBs in raster scan order from the top-left and all

other MBs are in group 1 (Figure 8.20).

6 Wipe Group 0 contains MBs in vertical scan order from the top-left and all

other MBs are in group 1 (Figure 8.20).
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1
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1
2

Figure 8.17 FMO: Interleaved map, QCIF, 3 slice groups
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Figure 8.18 FMO: Dispersed macroblock map, QCIF, 4 slice groups
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Figure 8.19 FMO: Foreground and Background map, 4 slice groups

Box-out

0

1

Raster

1

0

Wipe

1

0

Figure 8.20 FMO: Box-out, Raster and Wipe maps

8.3.4 SP and SI slices

SP and SI slices are specially-coded slices that enable, among other things, efficient switching

between video streams and efficient random access for video decoders [viii]. A common

requirement is for a video decoder to switch between one of several encoded streams. For

example, the same video material is coded at multiple bitrates for transmission across the

Internet and a decoder attempts to decode the highest-bitrate stream it can receive but may

require to switch automatically to a lower-bitrate stream if the data throughput drops.

Example:

A decoder is decoding Stream A and wants to switch to decoding Stream B (Figure 8.21). For

simplicity, assume that each frame is encoded as a single slice and predicted from one reference,

the previous decoded frame. After decoding P-slices A0 and A1, the decoder wants to switch to

Stream B and decode B2, B3 and so on. If all the slices in Stream B are coded as P-slices, then the

decoder will not have the correct decoded reference frame(s) required to reconstruct B2, since

B2 is predicted from the decoded frame B1 which does not exist in stream A. One solution is to

code frame B2 as an I-slice. Because it is coded without prediction from any other frame, it can

be decoded independently of preceding frames in stream B and the decoder can therefore switch

between stream A and stream B as shown in Figure 8.21. Switching can be accommodated

by inserting an I-slice at regular intervals in the coded sequence to create ‘switching points’.

However, an I-slice is likely to contain much more coded data than a P-slice and the result is an

undesirable peak in the coded bitrate at each switching point.
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Figure 8.21 Switching streams using I-slices

SP-slices are designed to support switching between similar coded sequences, for example,

the same source sequence encoded at various bitrates, without the increased bitrate penalty of

I-slices (Figure 8.22). At the switching point, frame 2 in each sequence, there are 3 SP-slices,

each coded using motion compensated prediction, making them more efficient than I-slices.

SP-slice A2 can be decoded using reference frame A1 and SP-slice B2 can be decoded using

reference frame B2. The key to the switching process is SP-slice AB2 known as a switching

SP-slice, created in such a way that it can be decoded using motion-compensated reference

frame A1, to produce decoded frame B2. This means that the decoder output frame B2 is

identical whether decoding B1 followed by B2 or A1 followed by AB2. An extra SP-slice is

required at each switching point and in fact another SP-slice, BA2, would be required to switch

in the other direction, but this is usually more efficient than encoding frames A2 and B2 as

I-slices. Table 8.6 lists the steps involved when a decoder switches from stream A to stream B.

Figure 8.23 shows a simplified diagram of the encoding process for SP-slice A2, produced

by subtracting a motion-compensated version of A1
′

, decoded frame A1, from frame A2 and

then coding the residual. Unlike a ‘normal’ P-slice, the subtraction occurs in the transform

domain after the block transform. SP-slice B2 is encoded in the same way (Figure 8.24). A

decoder that has previously decoded frame A1 can decode SP-slice A2 as shown in Figure

8.25. Note that this is a simplified diagram for clarity; in practice further quantization and

rescaling steps are required to avoid mismatch.

SP-slice AB2 is encoded as shown in Figure 8.26 (simplified). Frame B2, the frame we are

switching to, is transformed and quantized and a motion-compensated prediction is formed

from A1
′

, the frame we are switching from. The ‘MC’ block in this diagram attempts to find

the best match for each MB of frame B2 using decoded frame A1 as a reference. The motion-

compensated prediction is transformed and quantized, then subtracted from the transformed
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Table 8.6 Switching from stream A to stream B using SP-slices

Input to decoder MC reference Output of decoder

P-slice A0 [earlier frame] Decoded frame A0

P-slice A1 Decoded frame A0 Decoded frame A1

SP-slice AB2 Decoded frame A1 Decoded frame B2

P-slice B3 Decoded frame B2 Decoded frame B3

. . .. . . .. . . ..

A0 A1 A2 A3 A4

AB
2

B0 B1 B2 B3 B4

P slices P slicesSP slices

Stream A

Stream B

Figure 8.22 Switching streams using SP-slices

Frame A2

Frame A1' MC T

T Q VLE
+

-
SP A2

Figure 8.23 Encoding SP-slice A2 (simplified)

Frame B2

Frame B1' MC T

T Q VLE
+

-
SP B2

Figure 8.24 Encoding SP-slice B2 (simplified)
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SP A2
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Q-1VLD
+

Frame A '2T-1

+

Figure 8.25 Decoding SP-slice A2 (simplified)

and quantized B2. Hence in the case of a switching SP slice, subtraction takes place in the

quantized transform domain. The residual after subtraction is encoded and transmitted.

A decoder that has previously decoded A1
′

can decode SP-slice AB2 to produce frame B2
′

(Figure 8.27). Frame A1
′

is motion compensated using the motion vector data encoded as part

of AB2, transformed, quantized and added to the decoded residual, then the result is rescaled

and inverse transformed to produce B2
′

.

If streams A and B are versions of the same original sequence coded at different bitrates,

the motion-compensated prediction of B2 from A1
′

, SP-slice AB2, should be quite efficient.

Results show that using SP-slices to switch between different versions of the same sequence

is significantly more efficient than inserting I-slices at switching points. Another application

of SP-slices is to provide random access and ‘VCR-like’ functionalities. For example, an

SP-slice and a switching SP-slice are placed at the position of frame 10 (Figure 8.28). A

decoder can fast-forward from frame A0 directly to frame A10 by first decoding A0, then

decoding switching SP-slice A0-10 which can be decoded to produce frame A10 by prediction

from A0.

A further type of switching slice, the SI-slice, is also supported in the Extended Profile. This

is used in a similar way to a switching SP-slice, except that the prediction is formed using the 4

× 4 Intra Prediction modes (Chapter 6) from previously-decoded samples of the reconstructed

frame. This slice mode may be used, for example, to switch from one sequence to a completely

different sequence, in which case it will not be efficient to use motion compensated prediction

because there is no correlation between the two sequences.

8.3.5 Data partitioned slices

The coded data that makes up a slice is placed in three separate Data Partitions A, B and

C, each containing a subset of the coded slice. Partition A contains the slice header and

header data for each macroblock in the slice, Partition B contains coded residual data for Intra

and SI slice macroblocks and Partition C contains coded residual data for P, B and SP slice

Frame B2

Frame A1' MC T

T Q VLE
+

-

Q

SP AB2

Figure 8.26 Encoding SP-slice AB2 (simplified)
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SP AB2

Frame A1' MC T
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+

Frame B '2T-1

+

Q

Figure 8.27 Decoding SP-slice AB2

macroblocks. Each Partition is placed in a separate NAL unit and may therefore be transported

separately.

If Partition A data is lost, it is likely to be difficult or impossible to reconstruct the slice, i.e.

Partition A is highly intolerant to errors. Partition B is more tolerant to errors, since errors in the

intra residual may be concealed at the decoder and Partition C is likely to be the most tolerant

to errors, i.e. it contains the least sensitive data, since concealment of errors in inter-coded

data is relatively easy. Strategies for improving performance in an error-prone environment

include applying unequal error protection to the three partition types, e.g. by applying Forward

Error Correction to Partition A and perhaps B, or transporting the partition types over different

channels, selecting the most reliable channel for Partition A.

8.4 Transport of H.264 data

8.4.1 Encapsulation in RBSPs, NALUs and packets

H.264 syntax elements are encapsulated into Raw Byte Sequence Payloads (RBSP) and

subsequently into Network Abstraction Layer Units (NALU) (Figure 8.29). A sequence of

syntax elements such as a coded slice, sequence parameter set or picture parameter set is

shown at the top of the figure (Chapter 5). Syntax elements are represented as binary codes

with varying lengths (see Chapter 5) and so the sequence of syntax elements may or may not

A8 A9 A10 A11

P slices SP slices

A0

A0-10

....

Figure 8.28 Fast-forward using SP-slices
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Network Abstraction
Layer Unit (NALU)

NALU NALU

Start code
prefix

Packet
header

Packet
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Figure 8.29 Encapsulation of H.264 syntax elements

consist of an integral number of bytes. RBSP trailing bits, a series of zero bits, are added as 
necessary to create a RBSP that is byte aligned, i.e. contains an integral number of bytes.

A RBSP is encapsulated in a NAL Unit by (i) adding a one-byte NALU header and (ii) 
inserting Emulation Prevention byte(s) as necessary, in order to prevent a Start Code Prefix 
occurring in the body of a NAL Unit. An Emulation Prevention byte (00000011 in binary) 
is inserted by an encoder whenever a 3-byte pattern that is the same as a Start Code Prefix 
happens to occur within the sequence of syntax elements. The Emulation Prevention byte is 
detected and removed by a decoder and prevents the decoder from finding an erroneous Start 
Code in the sequence.

A NALU may be transmitted using a transport protocol in which the NALU forms the 
payload of a packet or in a byte stream in which NALUs are sent sequentially in a series of 
bytes (Annex B of the standard). In the case of a byte stream, each NALU is preceded by a 
Start Code Prefix, a unique 3-byte pattern that cannot occur inside a NALU (see above). A 
decoder can search for Start Code Prefixes to find the boundaries between NALUs. Extraction 
of a decodeable H.264 bitstream from a transport packet stream requires the insertion of Start 
Code Prefixes so that the extracted bitstream can be decoded.

8.4.2 Transport protocols

H.264/AVC does not define a transport mechanism for coded visual data. However, there are 
a number of possible transport solutions depending on the method of transmission, including 
the following:
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... ...elementary stream (e.g. video, audio)

packetize

Multiplex
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from

multiple
streams

Transport Stream

Figure 8.30 MPEG-2 Transport Stream

MPEG-2 Systems: Part 1 of the MPEG-2 standard [ix] defines two methods of multiplex-

ing audio, video and associated information into streams suitable for transmission, Program

Streams or Transport Streams. Each data source or elementary stream such as a coded video

or audio sequence is packetized into Packetized Elementary Stream (PES) packets and PES

packets from the different elementary streams are multiplexed together to form a Program

Stream, typically carrying a single set of audio/visual data such as a single TV channel, or a

Transport Stream which may contain multiple channels (Figure 8.30). The Transport Stream

adds both Reed-Solomon and convolutional error control coding and so provides protection

from transmission errors. Timing and synchronisation is supported by a system of clock refer-

ences and time stamps in the sequence of packets. Carriage of an H.264 stream over MPEG-2

Systems is covered by Amendment 3 to MPEG-2 Systems.

Real-Time Protocol: RTP [x] is a packetization protocol that may be used in conjunction

with the User Datagram Protocol (UDP) to transport real-time multimedia data across networks

that use the Internet Protocol (IP). UDP is preferable to the Transmission Control Protocol

(TCP) for real-time applications because it offers low-latency transport across IP networks.

However, it has no mechanisms for packet loss recovery or synchronisation. RTP defines a

packet structure for real-time data (Figure 8.31) that includes a type identifier to signal the type

of CODEC used to generate the data, a sequence number, essential for re-ordering packets that

are received out of order, and a time stamp, necessary to determine the correct presentation time

for the decoded data. Transporting a coded audio-visual stream via RTP involves packetizing

each elementary stream into a series of RTP packets, interleaving these and transmitting them

across an IP network using UDP as the basic transport protocol. RTP payload formats are

defined for various standard video and audio CODECs, including H.264. The NAL structure

Payload
Type

Sequence
Number

Timestamp
Unique

Identifier
Payload (e.g. Video Packet)

Figure 8.31 RTP packet structure (simplified)
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Figure 8.32 ISO Media File

of H.264 (section 8.4.1) has been designed with efficient packetisation in mind, since each 
NAL unit can be placed in its own RTP packet.

8.4.3 File formats

It is common for single compressed video sequences to be stored in files, simply by mapping 
the encoded stream to a sequence of bytes in a file. However, storing and playing back 
combined audio-visual data requires a more sophisticated file structure, especially when, for 
example, the stored data is to be streamed across a network or when the file is required to store 
multiple audio-visual objects. The H.264 File Format is designed to store H.264 Video data. It 
is derived from the ISO Base Media File Format which in turn is based on Apple Computer’s 
QuickTime format.

In the ISO Media File Format, a coded stream such as an H.264 video sequence or an audio 
stream is stored as a track, representing a sequence of coded data items or samples, e.g. a 
coded VOP or coded slice, with time stamps (Figure 8.32). The file formats deal with issues 
such as synchronisation between tracks, random access indices and carriage of the file on a 
network transport mechanism.

8.4.4 Coding and transport issues

It has long been recognized that it is necessary to take into account practical transport issues 
in a video communication system and a number of tools in each standard are specifically 
designed to address these issues.

Scaling a delivered video stream to support decoders with different capabilities and/or deliv-

ery bitrates is addressed by the Scalable Video Coding extension of H.264/AVC (Chapter 10).

Latency is a particular issue for two-way real time applications such as videoconferencing. 
Tools such as B-slices, coded pictures that use motion-compensated prediction from earlier and 
later pictures in temporal order, can improve compression efficiency but typically introduce a 
delay of several frame periods into the coding and decoding ‘chain’ which may be unacceptable 
for low-latency two way applications. Latency requirements also have an influence on rate 
control algorithms since post-encoder and pre-decoder buffers, useful for smoothing out rate 
variations, lead to increased latency.

Each standard includes a number of features to aid the handling of transmission errors. 
Bit errors are a characteristic of circuit-switched channels; packet-switched networks tend to 
suffer from packet losses, since a bit error in a packet typically results in the packet being
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dropped during transit. Errors can have a serious impact on decoded quality [xi] because

the effect of an error may propagate spatially, distorting an area within the current decoded

frame, and temporally, propagating to successive decoded frames that are temporally predicted

from the errored frame. Section 8.3 discusses tools that are specifically intended to reduce

the damage caused by errors, including data partitioning, designed to limit error propagation

by localizing the effect of an error, redundant slices, sending extra copies of coded data, and

flexible ordering of macroblocks and slices to make it easier for a decoder to ‘conceal’ the

effect of an error by interpolating from neighbouring error-free data.

8.5 Supplemental Information

Supplemental Enhancement Information (SEI) and Video Usability Information (VUI) are

parameters that may be transmitted as part of an H.264 bitstream. SEI and VUI parameters

may be useful to a decoder but are not essential to the basic decoding process.

8.5.1 Supplemental Enhancement Information (SEI)

A Supplemental Enhancement Information Message (Table 8.7) is transmitted in an SEI Raw

Byte Sequence Payload. Each SEI message is sent as a separate NAL Unit.

8.5.2 Video Usability Information (VUI)

Video Usability Information is transmitted in an optional structure within a Sequence Parameter

Set. The VUI parameters syntax structure contains flags and parameters including those

summarised in Table 8.8.

8.6 Licensing H.264/AVC

In early 2007, semiconductor giants Qualcomm and Broadcom faced each other in a San Diego

courtroom, the culmination of a year-long patent dispute. The questions at issue were whether

two Qualcomm patents were essential to the practice of the H.264 video compression standard;

whether Broadcom’s products had infringed these patents; and whether Qualcomm actually

had the right to try and enforce its patents in this context. Why were both firms prepared to

commit to millions of dollars of legal costs and to go to the wire in a high-profile court case

to fight their respective positions?

Intellectual property, patents and licensing have played an increasingly important part in the

recent history of video compression. Video coding is a highly active research and development

area and a core technology for a number of billion-dollar industries and so it is perhaps not

surprising that there is a high level of patent activity, with a growing number of patents related

to video coding. A strong patent on an important video coding concept has the potential

to be very lucrative, particularly if the patented technology is adopted in a video coding

standard.
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Table 8.7 SEI messages

SEI Message Description

Buffering Period Controls the operation of the Hypothetical Reference Decoder (HRD)

(section 8.2.3).

Picture Timing Controls the timing of the HRD.

Pan Scan Rectangle Specifies the location of a rectangle that may be used to implement

‘pan-scan’ in a display device, i.e. where only part of the decoded

picture can be displayed on the device.

Filler Payload ‘Dummy’ bytes that may be discarded by a decoder. Useful for e.g.

avoiding buffer under-run at the decoder.

User Data (Registered) User data, i.e. data that are not part of the standard, preceded by a code

that is registered with the ITU-T.

User Data (Unregistered) As above, but without any registered code.

Recovery Point Indicator to help a decoder determine where to start displaying pictures

after a transmission error or during random access to a sequence.

Decoded Reference Picture

Marking Repetition

Repeats a reference picture marking process signalled earlier (Chapter 5).

Spare Picture Contains extra, redundant slice group maps (section 8.3.3).

Scene Information Identifies a sequence of pictures as a video scene. May signal scene

transition types such as fade, dissolve, wipe, etc.

Sub-sequence Information Indicates data dependence hierarchy in terms of a series of layers of

coded pictures. Higher-layer pictures are predicted from lower-layer

pictures, but not vice versa.

Sub-sequence

Characteristics

Indicates characteristics of sub-sequences e.g. target bit rate, frame rate

and sub-sequence prediction characteristics.

Full Frame Freeze Hold or freeze the previously decoded frame.

Full Frame Freeze Release Cancel the effect of a Full Frame Freeze.

Full Frame Snapshot Label a frame as a still image ‘snapshot’ of the video sequence content.

Progressive Refinement

Segment Start

Beginning of a set of coded pictures that progressively refine the quality

of a single picture, i.e. each decoded residual is an incremental

improvement to a single decoded frame.

Progressive Refinement

Segment End

Terminates a progressive refinement segment.

Motion Constrained Slice

Group

Limit prediction such that there is no motion-compensated prediction

from outside a slice group. This may be useful to limit error

propagation, for example.

Film Grain Characteristics Indicates to a decoder a film grain model to apply to the decoded video.

Film grain effects or ‘graininess’ can reduce the performance of a

video codec and so it may be useful to apply these after decoding.

Deblocking Filter Display

Preference

Indicates whether a decoder should display pictures before or after

deblocking filter is applied. The deblocking filter is specified in the

standard in order to improve compression performance. It may or may

not be preferred to actually show the filtered decoded frames.

Stereo Information Indicates that the video sequence consists of stereo view pairs of pictures

and gives information about the display of these pictures.

Reserved To be discarded by a decoder, unless specified to have a particular use in

future standards.
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Table 8.8 Video Usability Information: selected parameters

VUI Parameter(s) Description

Aspect ratio Indicates the aspect ratio of the displayed video sequence. This

parameter indicates the luma sample aspect ratio which translates

into specific display ratios such as 16:9, 4:3, etc.

Overscan Indicates that the decoded pictures are suitable for overscan, i.e.

important content will not be lost if the picture is cropped to fit

within a display area.

Video format Indicates PAL, NTSC, SECAM, MAC or component video formats.

Colour primaries Indicates the ‘chromaticity’ of the green, blue, red and white

components of the displayed image.

Transfer characteristics The opto-electronic transfer characteristic of the source picture,

characteristics such as display ‘Gamma’ etc.

Matrix coefficients Specifies the transform used to derive luma and chroma from red,

green and blue colour primaries (Chapter 2).

Chroma sample location Indicates the location of chroma samples relative to luma samples,

if different from the default sampling locations (Chapter 2).

Timing information Defines the basic units of timing; a ‘master clock’ for the video

decoding processes.

Motion vector range Specifies maximum motion vector lengths and whether motion

vectors may point outside picture boundaries.

Maximum bytes/bits Places a limit on the number of bytes per coded picture and/or the

number of bits per coded macroblock.

HRD parameters Sets initial parameters for the Hypothetical Reference Decoder

(section 8.2.3), other than the default parameter values.

8.6.1 Video coding patents

The popular international standards for video compression such as MPEG-2, MPEG-4 and

H.264/AVC make use of the well-known ‘hybrid’ video encoder model in which a prediction,

formed from previously-transmitted frames, is subtracted from the current frame to form a

residual which is then transformed using a block transform such as the DCT, quantized and

coded for transmission. In parallel, the coded frame is reconstructed and stored for future

predictions.

This concept has been in existence for some time. For example, US patent 3679821 [xii],

filed April 1970 and issued July 1972, describes an apparatus that ‘determines the difference

between the momentary value of an incoming frame of video signals and a predicted value of

the frame of signals, i.e. the error in prediction, and disperses the difference by transforming

it into a spatially homogeneous signal. This transformed signal is then quantized for efficient

transmission’. Figure 1 from this patent, redrawn in Figure 8.33, shows an encoder structure

that still commonly used in present-day video compression systems. A predicted frame, formed

from previously coded data, is subtracted from a video frame S. The difference or residual is

transform coded, quantized and transmitted (Sq). The quantized output is inverse transformed

and added to the prediction to form a ‘Reconstituted Signal’ which is used to form further

predicted frame(s).
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Figure 8.33 Block diagram from US patent 3679821 (redrawn)

By the 1990s, improvements in processing and storage capabilities of integrated circuits and

the development of international standards for image and video compression led to a growing

market for video compression products and an increased level of research and development

activity. This is reflected by a sharp rise in the number of published patents from the early

1990s when the H.261 and MPEG-1 standards were published, peaking around 1998 by which

time MPEG-2 products were becoming firmly established in the market and continuing at a

steady level thereafter (Figure 8.34). To date (early 2010), the US Patent Database records

over 7000 patents featuring the terms ‘video compression’ or ‘video coding’.
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Figure 8.34 Issued US patents including the terms ‘video coding’ or ‘video compression’, 1990–2007.

Source: USPTO patent database.
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8.6.2 Video coding standards and patents

Given the number of published patents in the field of video compression, it is likely that an

implementation of a video compression system, particularly one that uses the popular hybrid

model of motion compensated prediction, transform and entropy coding, may fall into the

scope of one or more patents. This is a concern for manufacturers of products that incorporate

video coding technology, since the grant of a US patent confers ‘the right to exclude others

from making, using, offering for sale, or selling the invention throughout the United States or

importing the invention into the United States’ (source: USPTO, www.uspto.gov) and similar

rights are conferred by patents granted in other jurisdictions. It may therefore be necessary to

license the right to use the technology covered by the patent. A complex video coding standard

such as H.264/AVC may fall within the scope of a large number of patents held by different

parties, raising the prospect of a ‘patent thicket’ in which it is difficult and costly to negotiate

licenses to all the necessary patents.

This problem has been addressed in recent video coding standards in a number of ways.

First, the standard-setting bodies such as ITU-T attempt to avoid including IPR (Intellectual

Property Rights) in a published standard unless the IPR is licensable on RAND (Reasonable

And Non Discriminatory) terms. Second, the group responsible for preparing a draft standard

for publication, e.g. the MPEG, VCEG or JVT committees, requests a party proposing technical

elements of the draft standard to disclose whether it holds IPR relating to the proposal and

whether it is prepared to license this on RAND terms. Third, any party holding IPR believed

to be necessary to a published standard is encouraged to declare to the standards-setting body

whether it is prepared to license this IPR on RAND terms. The aim is to clarify the IPR

position prior to publication of a new standard as far as is possible.

A trend in recent years has been the emergence of ‘pool’ licenses for IPR relating to a

published video coding standard. A third party representing the interests of a number of patent

holders sets out terms for licensing the right to use the patented technology in implementations

of a published standard. This is intended to provide a ‘one stop shop’, a single license agreement

that covers a large number of patents claimed to be essential to practicing the standard.

8.6.3 Licensing H.264/AVC patents

An H.264 decoder has to implement decoding algorithms specified in the H.264/AVC standard.

Whilst the standard does not define encoder operation, in practice an H.264 encoder is likely

to implement specific coding algorithms to meet the requirements of the standard. Certain

encoding and decoding algorithms implemented in H.264 codecs may fall within the scope of

some of the many published video coding patents.

Initially there were two separate patent pools in operation, one managed by Via Licensing

and the other by MPEG-LA, each representing some but not all of the organizations claiming

to hold patents essential to H.264. Via Licensing later withdrew its ‘pool’ license leaving

MPEG-LA to offer a license to its pool of patents. MPEG-LA’s website states that its goal is

‘to provide worldwide access to as much AVC essential intellectual property as possible’, i.e.

it does not claim to include all essential IPR in its license. Any party may submit patents for

evaluation and possible inclusion in the MPEG-LA license pool.
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MPEG-LA provides a license to several hundred patents owned by over 20 organizations,

claimed to be essential to H.264/AVC implementations.

Under MPEG-LA’s published terms, license fees are required to be paid by manufacturers

of encoders and decoders and by suppliers of H.264 coded content, e.g. discs and other media,

pay-per-view and subscription services, broadcasting services. No distinction is made between

implementations that use different subsets of H.264 functionality, e.g. decoding only; Profiles

that are subsets of the available tools; etc.

8.7 Summary

Many of the features of H.264/AVC go beyond basic video compression, covering aspects

such as encoder/decoder interoperability, decoder computational capacity, robust transport

and storage and display parameters. Interoperability is supported through the use of Profiles,

defined sub-sets of coding tools that may be useful for particular classes of application, and

Levels, limits on the computational and storage requirements of a decoder and is checked by

conformance tests using a Hypothetical Reference Decoder. Reliable transport and storage

is inherent in the packet-based structure of an H.264 bitstream and the signalling of key

parameters in separate Parameter Sets. Optional coding tools make it possible to further

increase reliability of transmission, though many of these tools have not been widely adopted

in commercial H.264 codecs. The definition of methods for transporting and storing H.264

content using common transport protocols and file formats has helped the rapid and widespread

adoption of the standard. Similarly, the early publication of license terms by key patent holders

has helped ease the adoption of H.264/AVC in commercial, large scale consumer applications.
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9

H.264 performance

9.1 Introduction

The driving force behind the widespread adoption of H.264/AVC is its potential for signif-

icantly better compression performance than older formats such as MPEG-2 and MPEG-4

Visual. However, getting the best possible performance from an H.264 codec is not a straight-

forward task. First, despite the fact that H.264/AVC is an industry standard, there is a wide

variation between practical implementations of H.264 codecs, with a corresponding variation

in coding performance. Second, the large number of coding options supported by H.264 in-

troduces a problematic trade-off between compression and computation. Achieving the best

possible compression performance from an H.264 codec can result in a computational cost

that is prohibitive for practical applications.

Probably the best way to understand the performance trade-offs and the capabilities of

H.264/AVC is to experiment. Fortunately, a number of public-domain implementations are

available that make this possible. The Joint Video Team, responsible for developing and

maintaining the standard, publish a reference software implementation of H.264/AVC, the

Joint Model (JM) codec. The JM is intended to be a complete and accurate implementation of

all the features of H.264. It is not suitable for a practical, real-time coding application but is a

useful reference tool to test the potential of H.264 and to check inter-operability between codecs

and bitstreams. Using the JM and/or other H.264 implementations, it is possible to code and

decode video sequences and to test the effect of the various tools and features of the standard.

Most applications of H.264 place constraints on the bitrate of the coded video sequence.

For example, broadcast channels have a fixed capacity in terms of bits per second; internet

streaming can handle a variable bitrate, but only within certain upper and lower limits; conver-

sational applications such as video calling require minimal end-to-end delays; and so on. For

these reasons, practical implementations of H.264 generally require a rate control algorithm

to constrain the coded bitrate within certain limits.

Getting the best performance from an H.264/AVC codec generally involves selecting the

best coding options or coding mode for each unit of data in the video bitstream. This process

of mode selection is fundamental to achieving good compression performance. Because of

The H.264 Advanced Video Compression Standard, Second Edition Iain E. Richardson
C© 2010 John Wiley & Sons, Ltd
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this, there has been a significant amount of research in finding good compromises between (a)

effective mode selection, and hence good rate-distortion performance and (b) realistic levels

of computational complexity.

9.2 Experimenting with H.264

9.2.1 The JM Reference Software

9.2.1.1 Overview

The Joint Video Team (JVT), the group responsible for developing and maintaining H.264/

AVC, publishes a reference implementation of the standard as a C software program, known

as the Joint Model (JM). At the time of writing, the latest version (16.0) can be downloaded

from http://iphome.hhi.de/suehring/tml/ [i]. An older version of the software is published as

ITU-T standard H.264.2 [ii]. The JM software manual describes the operation and parameters

of the software in detail [iii] and a detailed description of many of the coding algorithms

incorporated into the JM software can be found in a JVT document published in 2005 [iv].

The JM software consists of an encoder (lencod) that encodes a source video file into a coded

H.264 file and a decoder (ldecod) that decodes an H.264 file into a decoded video file. The

encoder and decoder are each controlled by a parameter file with default names encoder.cfg

and decoder.cfg. The encoder creates a reconstructed video file, a copy of the decoded video

file, and can optionally generate a trace file that records every syntax element of the coded

sequence (Figure 9.1).

coded.264

encoder.cfg

Source video file

Reconstructed
 video file

lencod

Configuration
parameter file

Coded video
file

ldecod

decoder.cfg

Configuration
parameter file

Decoded
 video file

trace_enc.txt

Trace file
(optional)

Figure 9.1 JM software operation

289



H.264 performance 257

Table 9.1 JM software directory structure

Directory Description

bin or build Executable files lencod, ldecod

doc Documentation

lcommon Source (C) and object code files common to encoder and decoder

ldecod Decoder source and object code files

lencod Encoder source and object code files

Y0

Cb0 Cr0

Y1

Cb1 Cr1

..........

Figure 9.2 Planar YCbCr file format, 4:2:0 sampling

9.2.1.2 File formats

Source, reconstructed and decoded video files are in ‘raw’ YCbCr format, in which the luma,

Cb and Cr samples are stored in the video file with no header or other information. Various

sample orders are supported but the default is planar order, with each component of a frame

stored in raster scan order, starting with frame 0 (Figure 9.2).

9.2.1.3 Basic operation

The JM software ‘unpacks’ and compiles into the directory structure shown in Table 9.1.

Example

Use the JM software to code 60 frames of a QCIF video sequence.

1. Download and unpack the JM software. Follow the instructions in readme.txt to compile

lencod and ldecod.

2. Copy a QCIF source file into the bin directory. Various test video files are widely available:

for example, container.qcif .

3. Create a configuration file. Start with one of the example files in the bin directory, e.g.

encoder baseline.cfg. Copy it and give it a new name, e.g. encoder 1.cfg.

4. Edit the new configuration file encoder 1.cfg (Figure 9.3). Changes are shaded; change the

input and output file names, the number of frames to be encoded and set the quantizer

parameter to 32.

5. Open a command prompt in the bin directory.

6. Run the encoder by typing:

lencod –d encoder 1.cfg
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#################################################

# Files

#################################################

InputFile = "container.qcif " # Input sequence

InputHeaderLength = 0 # If the inputfile has a header, state…

StartFrame = 0 # Start frame for encoding. (0-N)

FramesToBeEncoded = 60 # Number of frames to be coded

FrameRate = 30.0 # Frame Rate per second (0.1-100.0)

SourceWidth = 176 # Source frame width

SourceHeight = 144 # Source frame height

SourceResize = 0 # Resize source size for output

OutputWidth = 176 # Output frame width

OutputHeight = 144 # Output frame height

TraceFile = "trace_enc.txt" # Trace file

ReconFile = "container_rec.qcif"

OutputFile = "container.264"

StatsFile = "stats.dat" # Coding statistics file

#################################################

# Encoder Control

#################################################

ProfileIDC = 66 # Profile IDC (66=baseline, 77=main, 88=extended…

IntraProfile = 0 # Activate Intra Profile for FRExt (0: false, 1: true)

LevelIDC = 40 # Level IDC (e.g. 20 = level 2.0)

IntraPeriod = 0 # Period of I-pictures (0=only first)

IDRPeriod = 0 # Period of IDR pictures (0=only first)

AdaptiveIntraPeriod = 1 # Adaptive intra period

AdaptiveIDRPeriod = 0 # Adaptive IDR period

IntraDelay = 0 # Intra (IDR) picture delay (i.e. coding structure of PPIPPP... )

EnableIDRGOP = 0 # Support for IDR closed GOPs (0: disabled, 1: enabled)

EnableOpenGOP = 0 # Support for open GOPs (0: disabled, 1: enabled)

QPISlice = 32 # Quant. param for I Slices (0-51)

QPPSlice = 32 # Quant. param for P Slices (0-51)

FrameSkip = 0 # Number of frames to be skipped in input

…

…

Figure 9.3 JM encoder configuration file

------------------------------- JM 16.0 (FRExt) -------------------------------

Input YUV file : container.qcif

Output H.264 bitstream : container1.264

Output YUV file : container_rec.qcif

YUV Format : YUV 4:2:0

Frames to be encoded I-P/B : 60/0

Freq. for encoded bitstream : 30.00

…

…

-------------------------------------------------------------------------------

Frame Bit/pic QP SnrY SnrU SnrV Time(ms) MET(ms) Frm/Fld Ref

-------------------------------------------------------------------------------

00000(NVB) 160

00000(IDR) 17896 32 34.357 39.507 39.009 26 0 FRM 1

00001( P ) 304 32 34.123 39.594 39.083 46 21 FRM 1

00002( P ) 512 32 34.218 39.565 39.116 63 36 FRM 1

00003( P ) 240 32 34.023 39.566 39.108 52 25 FRM 1

00004( P ) 480 32 34.052 39.632 39.120 53 27 FRM 1

…

…

------------------ Average data all frames -----------------------------------

Total encoding time for the seq. : 2.953 sec (20.32 fps)

Total ME time for sequence : 1.383 sec

Y { PSNR (dB), cSNR (dB), MSE } : { 33.578, 33.573, 28.56274 }

U { PSNR (dB), cSNR (dB), MSE } : { 39.404, 39.402, 7.46286 }

V { PSNR (dB), cSNR (dB), MSE } : { 38.910, 38.908, 8.36233 }

Total bits : 50712 (I 17896, P 32656, NVB 160)

Bit rate (kbit/s) @ 30.00 Hz : 25.36

Bits to avoid Startcode Emulation : 0

Bits for parameter sets : 160

Bits for filler data : 0

-------------------------------------------------------------------------------

Exit JM 16 (FRExt) encoder ver 16.0

Figure 9.4 JM encoder output display

This will produce an output listing similar to that shown in Figure 9.4.

Only selected lines are shown.
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For each coded frame, the frame type, IDR/I or P in this case, number of coded bits,

quantization parameter (QP), PSNR or ‘Snr’ for the components Y, U and V or Y, Cb, Cr and

coding time are listed. Average PSNR and bitrate are listed at the end of the coded sequence.

This is a relatively low-bitrate coded sequence at 21.85 kbps.

7. Run the decoder by typing:

ldecod –i container1.264 –o container dec.qcif –r container.qcif

Input is container1.264; output is container dec.qcif; use the original container.qcif as a

reference for PSNR calculations.

The visual quality of the decoded QCIF file can be examined using a YUV viewer, a program

that plays back a YUV file. A number of YUV viewers are available for download. Note that

the Reconstructed file, container rec.qcif in this case, and the Decoded file container dec.qcif

are identical. Figure 9.5 shows frame 56 from each QCIF file. Note that:

(i) The decoded/reconstructed frames have less detail due to quantization during encoding.

A lower QP would improve decoded quality at the expense of a higher bitrate.

(ii) The decoded and reconstructed frames are identical.

Hence it is not actually necessary to run the decoder (ldecod) to view the decoded quality,

since the encoder generates a decoded video file as well as all the necessary statistics such as

bitrate and PSNR required to analyze coding performance.

9.2.1.4 Advanced operation

The large number of optional parameters in encoder.cfg give the user detailed control over

the operation of the JM encoder. The main sections and their effect on encoder operation are

as follows (Table 9.2). Note that some sections e.g. B slice parameters are not present in the

Baseline configuration file and that the JM software continues to be developed and so these

sections and their content may change.

Figure 9.5 Original, reconstructed and decoded frames, container.qcif, QP=32
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Table 9.2 Selected parameter sections in the JM encoder configuration file

Section Description

Files Input and output file names; frame size (Y component);

number of frames to be encoded; source frame rate,

necessary to correctly set rate control parameters.

Encoder control Basic control parameters. Profile and Level (Chapter 8); I-slice

control; I and P slice quantization parameters (QP); motion

estimation control: search range, reference frames, partition

sizes.

B slices Frequency of B slices; quantization parameter; Direct Mode

and reference control; hierarchical B slices

(‘PyramidCoding’); bi-predictive motion estimation. See

Chapter 6.

Output control CAVLC (‘UVLC’) or CABAC entropy coding (Chapter 7);

output file mode.

CABAC context initialization Controls CABAC context models (Chapter 7).

Interlace handling Coding of interlaced fields: Picture and Macroblock Adaptive

Frame/Field Coding (Chapter 5).

Weighted prediction Controls weighted prediction (Chapter 6).

Picture based multi-pass encoding Enables multiple coding of each picture e.g. using different

QPs, encoder chooses optimum ‘pass’.

Deblocking filter parameters ‘DFParametersFlag’ determines whether any of the following

parameters are sent, to control the operation of the

deblocking or loop filter (Chapter 6). The default is for the

loop filter to be enabled.

Error resilience/slices SliceMode controls the distribution of slices in each frame;

other parameters control Slice Groups and Redundant Slices

(Chapter 8).

Search Range/RD Optimization The most useful parameter here is RDOptimization which

controls the use of rate-distortion-optimized (RDOpt) mode

selection.

Explicit Lambda Usage Modify Lambda (λ) parameter, used in Rate Distortion

Optiimized mode selection.

Additional Stuff These parameters are not likely to be of general use.

Rate Control Enable of disable rate control. If enabled, the encoder attempts

to maintain a constant bitrate through automatically varying

the quantization parameter (QP).

Fast Mode Decision Optional algorithms for speeding up coding mode decisions.

Rounding Offset control Implements adaptive rounding during encoder quantization, i.e.

adaptive adjustment of the quantizer thresholds. See [v].

Fast Motion Estimation parameters Control parameters for the various motion estimation search

modes supported by the JM encoder.

SEI Parameters Generate SEI messages. See Chapter 8.

VUI Parameters Insert VUI parameters. See Chapter 8.
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Parameter examples:

1. Fast encoding:

To speed up the encoding of a sequence, limit the number of reference frames (Number-

ReferenceFrames) and the motion search area (SearchRange); use fast motion estimation

(e.g. SearchMode = 1); disable rate-distortion optimized mode selection (RDOptimization

= 0) or use ‘fast’ mode (RDOptimization = 2).

2. High quality encoding:

To maximize the quality of a coded sequence, copy and edit a Main Profile configuration

file; use B slices; use a large number of reference frames, a large SearchRange and enable

all partition sizes (InterSearchNxN); disable fast motion estimation (SearchMode = 0

or −1); enable CABAC (SymbolMode = 1); use High Complexity rate-distortion optimized

mode selection (RDOptimization = 1). Note that Main Profile must be selected if CABAC

is enabled or if B slices are used (ProfileIDC = 77).

3. B slices:

To insert two B slices between successive I or P slices, creating an IBBPBBP. . . predic-

tion structure, see example in Chapter 6, copy and edit a Main Profile configuration file

(ProfileIDC = 77); set NumberBFrames = 2 and set the QP for B slices (QPBSlice).

9.2.1.5 Trace file

It is possible to generate a ‘trace’ file during encoding, default name trace enc.txt, by changing

the following line in header file defines.h :

#define TRACE 1

prior to compiling the encoder.

Every syntax element produced by the encoder is listed in trace enc.txt. This is a useful

analysis tool but note that the trace enc.txt file tends to be very large and will considerably

slow down the speed of encoding. A sample trace file section is shown in Table 9.3 and more

examples can be found in Chapter 5. Each line indicates the current bit count, the current

NAL Unit type, SPS in this case, the parameter to be coded, the binary code of the parameter

and the numerical value. For example, num ref frames has the value 5 and is coded as the

Exp-Golomb codeword 00110 (Chapter 7).

9.2.2 Other software encoders/decoders

H.264/AVC encoders and decoders are available for a range of platforms including Win-

dows/Linux/Mac, DSP and embedded, ASIC cores and hardware ICs. The JM reference codec

runs very slowly on most platforms and is intended for conformance testing and research rather

than as a practical real-time codec. The public-domain ×264 codec1 is used in a number of

practical coding applications and performs well in terms of bitrate, picture quality and speed of

processing [vi]. For example, Figure 9.6 shows a section of a coded frame from two sequences.

The left-hand version was coded using the JM reference encoder, Baseline profile, CIF source,

1 Note that whilst ×264 may be freely downloaded, commercial usage of any H.264 codec may be subject to license

fee claims, see Chapter 8.
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Table 9.3 Section of trace file showing Sequence Parameter Set

@0 SPS: profile idc 01001101 ( 77)

@8 SPS: constrained set0 flag 0 ( 0)

@9 SPS: constrained set1 flag 0 ( 0)

@10 SPS: constrained set2 flag 0 ( 0)

@11 SPS: constrained set3 flag 0 ( 0)

@12 SPS: reserved zero 4bits 0000 ( 0)

@16 SPS: level idc 00011110 ( 30)

@24 SPS: seq parameter set id 1 ( 0)

@25 SPS: log2 max frame num minus4 1 ( 0)

@26 SPS: pic order cnt type 1 ( 0)

@27 SPS: log2 max pic order cnt lsb minus4 00101 ( 4)

@32 SPS: num ref frames 00110 ( 5)

@37 SPS: gaps in frame num value allowed flag 0 ( 0)

@38 SPS: pic width in mbs minus1 000010110 ( 21)

@47 SPS: pic height in map units minus1 000010010 ( 17)

@56 SPS: frame mbs only flag 1 ( 1)

@57 SPS: direct 8x8 inference flag 1 ( 1)

@58 SPS: frame cropping flag 0 ( 0)

@59 SPS: vui parameters present flag 0 ( 0)

QP = 26. The right-hand version was coded using ×264 with the same settings. The file sizes

and image quality are almost identical; in fact ×264 produces a slightly smaller file. For this

sequence, the JM encoder runs at 5 frames per second, much slower than real-time, and the

×264 encoder runs at 42 frames per second, i.e. faster than real-time, on the same computer.

In this example, ×264 gives good compression performance at a much faster encoding speed

than the JM.

Independent evaluation tests are a good source of comparisons between video coding

solutions. Doom9’s 2005 codec comparison was ‘won’ by ×264, closely followed by Ateme’s

H.264 codec [vii]. Moscow State University has carried out a series of evaluation competitions

Figure 9.6 Section of coded frame, JM encoder (left), ×264 encoder (right)
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for H.264 and MPEG-4 video codecs, the most recent of which concludes that ×264 and

Mainconcept’s H.264 codec2 were the best of the codecs tested [viii].

9.2.3 H.264 stream analysis

A syntax or stream analyzer reads an H.264/AVC bitstream and extracts and displays infor-

mation about the coding choices, etc. Using the JM encoder in TRACE mode (section 9.2.1)

extracts this type of information at a very low level but the amount of information generated

makes it difficult to interpret. Commercially available stream analysers can provide useful in-

formation in a graphical form and can extract higher-level performance indicators. At the time

of writing, companies offering H.264/AVC analysis tools include Elecard, Mindego, Sencore

and Thomson Grass Valley.

Example 1: Baseline Profile

Figure 9.7 shows a screenshot of Elecard’s StreamEye analyzer software. The main (top) window

shows a profile of the bitstream, in this case, a Baseline Profile sequence that starts with an I/IDR

slice followed by P slices. A single frame is displayed in the lower-left window with overlays

such as partition sizes, motion vectors and macroblock types. In this example, a Macroblock

Info window (lower-right) displays coding information about a selected macroblock.

Figure 9.7 Screenshot of an H.264 stream analyzer: Baseline Profile frame. Reproduced by

permission of Elecard

2 Mainconcept is now owned by DivX.
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Note that the first frame of the sequence, the I slice, contains a large number of coded

bits; subsequent P slices are coded with a much lower number of bits. This is because motion

compensated inter prediction is much more efficient than Intra prediction. Note also that the

number of bits in each P slice varies. In general, a frame containing more motion and/or detail

will require more bits than a frame containing less motion or detail.

The selected macroblock near the lower-right of the frame is coded in P Skip mode, i.e. no

transform coefficients or motion vector differences are sent and the macroblock is reconstructed

using motion compensated prediction with a motion vector (mvL0) predicted from previously-

sent vectors (Chapter 6).

Example 2: Main Profile

The same sequence, CIF, 30 frames per second, is coded using Main Profile tools (Figure 9.8).

The first frame is coded as an I slice and subsequent frames are coded as P or B slices.

Figure 9.8 Screenshot of stream analyzer: Main Profile frame. Courtesy of Elecard

The top window shows the number of bits per frame; the first frame is not shown on this graph.

The coded P slices, every second frame, are significantly larger than the B slices, demonstrating

that bi-predicted inter prediction is more efficient than prediction from a single reference. In

fact, most of the macroblocks in the B slice shown in the figure are skipped, i.e. no data is sent

and instead they are interpolated from the reference frames either side of the B slice (Chapter 6).

One macroblock is selected near the centre of the frame. This is coded in B 8 × 8 mode, i.e. as

four 8 × 8 macroblock partitions. Each partition is coded using Direct prediction (Chapter 6).

The CBP (coded block pattern) map indicates that 5 of the 4 × 4 luma blocks contain coded

coefficients, the other blocks being all zero.
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9.3 Performance comparisons

9.3.1 Performance criteria

The H.264 standard defines a syntax and decoding method for video but does not specify how

video should be encoded. In practice the constraints of the standard place certain limitations

on encoder design and so most H.264 encoders share a common basic design (Chapter 4).

However, there is scope for a wide range of performance, especially in terms of the following

performance criteria:

Criterion Description Desirable

Total bitrate Bitrate of complete compressed

video sequence, bits per second.

Low bitrate at a given image

quality, image resolution and

frame rate.

Quality Decoded image quality or

distortion.

High quality/low distortion at a

given bitrate, resolution and

frame rate.

Processing rate Speed of encoding or time taken to

encode a sequence.

High processing rate, i.e. rapid

encoding of a video sequence.

Bitrate control Bitrate of coded sequence at a

particular point in time.

9.3.2 Performance examples: Foreman sequence, QCIF resolution

The following performance results were obtained by encoding 100 frames of the ‘Foreman’

video clip (Figure 9.6), QCIF resolution, 30 frames per second, using the JM reference encoder.

By encoding the same sequence using a range of coding parameters, it is possible to explore

the trade-offs between bitrate, quality and computational complexity. Each sequence is coded

starting with an I slice, followed by P and optionally B slices. Note that a different H.264

encoder would be expected to produce different results, unless the algorithms by which the

encoder selects coding options are identical.

9.3.2.1 ‘Low complexity’ and ‘Basic’

First we compare two configurations that may be suitable for devices with limited computa-

tional and storage capacity (Table 9.4). The parameters to be varied are as follows:

r Number of reference frames, previously coded frames used for inter prediction
r Minimum motion compensation block size, e.g. ‘8 × 8’ means that the encoder may use

any MC block size of 8 × 8 or larger
r Entropy coding, CAVLC or CABAC
r Loop filter, the built-in deblocking filter, switched on or off
r B slices, bipredicted slices between pairs of P slices
r Rate distortion optimization, i.e. repeatedly coding the macroblock in different modes and

choosing the ‘best’ mode
r Rate control, i.e. varying the QP dynamically to meet a target bitrate.
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Table 9.4 ‘Low Complexity’ and ‘Basic’ configurations

Configuration Low complexity Basic

Number of reference frames 1 1

Smallest motion compensation block size 8 × 8 8 × 8

Entropy coding CAVLC CAVLC

Loop filter Off On

B slices None None

Rate Distortion Optimization Off Off

Rate control Off Off

Figure 9.9 shows the rate-distortion performance of these two configurations. To generate each

graph, the sequence is coded at a range of QP values, in this case QP24, the top-right point on

the graph, to QP36, the lower-left point, and the coded bitrate (kilo bits per second), luma PSNR

(dB) and coding time (seconds) are recorded. Figure 9.9 shows that the ‘Basic’ configuration

delivers better rate-distortion performance than the ‘Low complexity’ configuration, i.e. a

higher quality at the same bitrate. Figure 9.13 charts the coding time of each sequence at one

QP setting. The ‘Basic’ configuration takes only slightly longer to code, implying that the

rate-distortion improvement comes at a small penalty in computational complexity.

9.3.2.2 ‘Basic’ configuration plus options

Starting with the ‘Basic’ configuration described earlier, we add a number of individual coding

options (Table 9.5) and measure the performance of (i) Basic + 1 option and (ii) Basic + the

Figure 9.9 Foreman / QCIF / Basic complexity
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Table 9.5 ‘Basic’ plus options

Configuration Basic

Basic

+4 × 4

Basic +

5 ref

Basic

+CABAC

Basic +

1B

Basic +

RDO

Best

Baseline

Number of

reference frames

1 1 5 1 1 1 5

Smallest motion

compensation

block size

8 × 8 4 × 4 8 × 8 8 × 8 8 × 8 8 × 8 4 × 4

Entropy coding CAVLC CAVLC CAVLC CABAC CAVLC CAVLC CAVLC

Loop filter On On On On On On On

B slices None None None None One None None

Rate Distortion

Optimization

Off Off Off Off Off On On

Rate control Off Off Off Off Off Off Off

‘best’ selection of options that are compatible with Baseline profile. Note that CABAC and B

slices are not allowed in a Baseline Profile bitstream.

Comparing the performance of these options (Figure 9.10), it is clear that each individual

option makes a small improvement to rate-distortion performance. Combining several options -

multiple reference frames, 4 × 4 minimum block size and Rate Distortion Optimization -

gives a more significant improvement in performance compared with the Basic configuration.

However, this comes at a cost of a 4× increase in coding time (Figure 9.13).

Figure 9.10 Foreman / QCIF / Basic complexity and options
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Table 9.6 ‘Basic’, ‘Best Baseline’, ‘Medium’

Configuration Basic Best Baseline

Medium

(1 ref) Medium

Medium

(rate control)

Number of reference frames 1 5 1 5 5

Smallest motion compensation

block size

8 × 8 4 × 4 4 × 4 4 × 4 4 × 4

Entropy coding CAVLC CAVLC CABAC CABAC CABAC

Loop filter On On On On On

B slices None None 1 1 1

Rate Distortion Optimization Off On On On On

Rate control Off Off Off Off On

9.3.2.3 Baseline and Main Profile

Adding a selection of Main Profile tools gives the ‘Medium Complexity’ sequence. The new

configuration is compared (Table 9.6) with the ‘Basic’ and ‘Best Baseline’ configurations.

Adding CABAC and one B-slice between every two P-slices increases the performance of the

‘Medium’ sequence significantly (Figure 9.11). The coding time for the ‘Medium’ sequence

is 28 seconds, compared with 21 seconds for the ‘Best Baseline’ sequence (Figure 9.13). For

comparison, the ‘Medium’ sequence with only one reference frame is faster to encode but the

performance drops as a result.

Many applications of video coding require a constant, or at least a constrained, bitrate. A

rate control algorithm controls the QP in order to maintain an approximately constant coded
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Figure 9.11 Foreman / QCIF / Basic and Medium Complexity
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Figure 9.12 Foreman / QCIF / Medium complexity with rate control

bitrate, at least across a number of frames. Adding rate control increases the coding time

slightly but does not significantly affect rate-distortion performance (Figure 9.12).

9.3.3 Performance examples: Foreman and Container sequences

An H.264 codec will perform differently depending on the content of the video sequence.

For example, a sequence containing more motion and detail will tend to generate a larger

number of bits than a sequence containing less motion and detail at a similar quality level.
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Basic + 5 ref

Basic + CABAC

Basic + 1B
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Medium
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Figure 9.13 Foreman, QCIF sequences: coding time
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Figure 9.14 QCIF sequences: rate vs. PSNR

Figure 9.14 compares the rate-distortion performance of the Foreman and Container QCIF

sequences using selected configuration settings. ‘Container’ (Figure 9.5) has less detail and

less complex motion than ‘Foreman’. At the same PSNR level and using the same configuration

settings, ‘Foreman’ requires a bitrate three to four times higher than ‘Container’.

The same sequences, Foreman and Container, are coded in CIF resolution. The larger source

image size results in higher bitrates (Figure 9.15). Once again, Foreman requires more bits

to code than Container at the same quality level, but the separation between the sequences is

Figure 9.15 CIF sequences: rate vs. PSNR
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Figure 9.16 CIF sequences: coding time

smaller at CIF resolution than at QCIF resolution. The more complex Foreman sequence tends

to take longer to encode (Figure 9.16) than Container.

9.3.4 Performance examples: Inter prediction structures

Figure 9.17 compares the compression performance of ‘Foreman’ coded using the four pre-

diction structures described in Chapter 6. Each sequence is coded with the following common

parameters:

r 61 frames of the ‘Foreman’ CIF test sequence
r Encoded using the JM reference software encoder, version 16.0
r Every 12th frame is coded as an I slice
r Main Profile, CABAC entropy coding
r Rate Distortion Optimised mode selection enabled
r No rate control.
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Figure 9.17 Rate-distortion comparison of prediction structures
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Figure 9.18 Sample frames from sequences using different prediction structures, coded at 280kbps

The prediction structures are as follows (see Chapter 6):

(i) IPPPPPPPPPPPIPP. . ., i.e. one I-slice followed by 11 P-slices, with one reference frame

(ii) As (i) but with five reference frames
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(iii) IBBPBBPBBPBBIBBP. . ., i.e. 12-frame GOP with one I-slice, three P-slices and eight

B-slices in each GOP.

(iv) IBBBBBBBBBBBIBB.., 12-frame GOP, hierarchical prediction.

The basic IPPPP. . . structure with one reference frame has the worst performance, i.e. the

lowest rate-distortion curve. Enabling five reference frames with the same structure improves

the performance slightly. The ‘Classic’ IBBPBBP. . . GOP structure, with 12 pictures in

a GOP, improves the compression performance further and a Hierarchical GOP structure,

with 12 pictures, gives the best performance. Sample frames from IPPP. . . and Hierarchical

structures are shown in Figure 9.18, each coded at the same bitrate (280kbps). The luminance

PSNR of the Hierarchical sequence is around 0.8dB higher than that of the IPPP. . . sequence;

note that there is only a slight subjective difference in the frames. The Hierarchical sequence

takes approximately 50 per cent longer to encode using the JM software.

9.3.5 Performance example: H.264 vs. MPEG-4 Visual

Figure 9.19 compares the rate-distortion performance of H.264 and the earlier MPEG-4 Part

2 (‘Visual’) standard. Similarly to H.264, MPEG-4 Visual has Profiles that define subsets of

coding tools. Results for the ‘Carphone’ QCIF sequence coded using Simple Profile (SP) and

Advanced Simple Profile (ASP) are shown. The SP encoder uses I- and P-frame coding and the

ASP encoder adds B-frame coding for better performance. An H.264 Baseline Profile encoder

using UVLC/CAVLC and one reference frame performs considerably better than MPEG-4

Visual ASP and H.264 Main Profile with CABAC and five reference frames performs better
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Figure 9.19 Carphone, QCIF: H.264 vs. MPEG-4 Visual
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Figure 9.20 Frame from ‘Foreman’ sequence showing macroblock sizes

still, with a bitrate reduction of around 30-40 per cent compared with MPEG-4 ASP at a

similar bitrate.

9.4 Rate control

The number of bits produced when an encoder codes a macroblock is not constant. For

example, Figure 9.20 plots the number of bits per macroblock in a frame of ‘Foreman’ coded

as a P slice. Lighter blocks are MBs with more bits, darker blocks contain fewer bits. Typically,

more bits are required to code MBs that contain significant movement and/or detail, since these

contain non-zero motion vector differences and non-zero transform coefficients.

In a similar way, the number of bits per coded frame is not constant. If all encoding

parameters are kept constant, variations in motion and detail cause the bitrate to vary; for

example, see the bitrate graph in Figure 9.7.

Practical applications of H.264/AVC require a constant bitrate output, or at least a con-

strained bitrate output. Some examples are listed in Table 9.7.

A typical coding scenario is shown in Figure 8.6 (Chapter 8). The encoder output buffer has

a ‘smoothing’ or averaging effect on the coded bitrate. However, the constraints of the HRD

(Chapter 8) mean that it is always necessary to control or manage the coded bitrate, unless the

decoder can cope with an arbitrarily long decoding delay.

Table 9.7 Bitrate and delay constraints

Application Bitrate and delay constraints

Video broadcast over fixed

bitrate channel

Constant bitrate, medium delay

IP video streaming Variable bitrate within limits, medium delay

IP videoconferencing Variable bitrate within limits, low delay

DVD recording Variable bitrate within limits, medium delay, fixed maximum file size
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H.264 sequence Decoder

Coded Picture Buffer Decoded Picture BufferEncoder Buffer

Encoder

Video Frames

Encoder Control

Figure 9.21 Encoder with rate feedback

Controlling the output bitrate is typically achieved by measuring the rate and/or the encoder

buffer fullness level and feeding this back to control the encoder (Figure 9.21). Many of the en-

coder parameters can affect output bitrate e.g. type of slice, motion search range, mode selection

algorithm, but the most useful parameter for bitrate control is the Quantizer Parameter (QP).

One way of controlling bitrate is simply to try and enforce a constant number of bits per

coded frame, by measuring the output bitrate and feeding it back to control QP. Increasing

QP reduces coded bitrate and decreasing QP increases coded bitrate. However, this approach

is problematic because (i) it does not take into account the fact that coded I, P and B slices

generate significantly different numbers of bits (Figure 9.8) and (ii) it will tend to lead to

‘unpleasant’ variations in image quality as the encoder increases or decreases QP rapidly to

try and maintain bitrate.

A more flexible approach is outlined in Figure 9.22. The available channel bitrate, in bits per

second, is used to determine a target number of bits for a Group of Pictures (GOP), typically

an I slice followed a number of P and/or B slices. The bits available for the GOP are then

Bitrate available per second of video

Bits allocated to GOP

.......................

Bits allocated 
to I slice

Bits allocated 
to P slices

Bits allocated 
to B slices

Bits allocated 
to macroblocks

Figure 9.22 Bitrate allocation for rate control
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allocated to I, P and B slices, with the allocation changing depending on the slice type. An I

slice would typically be allocated most bits because intra prediction tends to be less efficient

than inter prediction, followed by P slices and then B slices. Within each slice, a certain number

of bits are allocated to each macroblock. The rate control algorithm then attempts to control

the encoder to produce the target number of bits.

9.4.1 Rate control in the JM reference encoder

The rate control algorithm adopted in the JM reference encoder is described in its basic form in

[iv] and [ix]. Various modifications have been proposed, some of which have been incorporated

in later versions of the reference software [x]. The rate control algorithm attempts to (i)

maintain a target coded bitrate during encoding and (ii) minimize obvious quality variations

in the decoded video sequence. It operates with the following constraints:

Available bitrate R: The number of bits per second, may be constant or variable.

Buffer size: The size of the encoder output buffer and the decoder input buffer

(CPB).

Video statistics: The amount of motion and detail in the input video signal, typically

varying.

The general approach is as follows.

1. Allocate a target number of bits for a coded unit based on:

a. The available bitrate, taking into account the target bitrate and the actual bitrate produced

up to this point.

b. The buffer contents.

c. The importance of the coded unit to future coding decisions, e.g. is it part of a slice that

is used as a reference for further predicted frames.

2. Control the QP to match the target number of bits as closely as possible.

3. Update the parameters of the rate control algorithm based on the actual statistics of the

input and coded sequences.

This approach is applied at various levels from GOP to coded picture and optionally down

to the level of individual macroblocks or sequences of macroblocks. The minimum level at

which rate is controlled is described as a basic unit and may be a single macroblock, a number

of consecutive macroblocks or an entire coded frame.

9.4.1.1 GOP level rate control

Assume that the GOP structure consists of an I slice followed by P and/or B slices.

1. Calculate the number of bits available to code the GOP, based on:

a. Available bitrate, constant or variable across the sequence, u

b. Frame rate, F

c. Number of frames in the GOP, N

d. Size and occupancy of the encoder output buffer, B
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2. Calculate the starting QP of the GOP based on:

a. QPs allocated to frames in the previous GOP

b. Target bitrate for previous and current GOPs.

The QP should not vary too much between GOPs in order to preserve reasonably consistent

frame quality.

9.4.1.2 Frame and/or basic unit rate control

The following steps are applied once per frame if the basic unit is a complete coded frame, or

multiple times if the basic unit is smaller than a frame.

1. Calculate a target number of bits for the coded frame.

2. Divide this number of bits equally amongst the basic units in the frame, may just be one

basic unit.

3. Predict the Mean Absolute Difference (MAD) of the next basic unit.

4. Use a Rate-Distortion (R-D) model to estimate the QP required to produce the target number

of bits for the basic unit, based on the estimated MAD of the basic unit.

5. Code the basic unit using this QP.

6. Update the parameters: number of bits available, MAD estimate, R-D model coefficients,

based on the actual statistics of the coded basic unit.

Steps (3) and (4) require further explanation. The Mean Absolute Difference (MAD) is an

estimate of the amount of ‘activity’, motion and/or detail, and therefore the likely size of the

basic unit after coding. The relationship between MAD, QP and coded size of basic unit i can

be modelled by the following quadratic expression (9.1):

Ti = c1

MADi

Qstepi

+ c2

MADi

Qstep2
i

− hi (9.1)

Where T is the number of coded bits for the current basic unit, Qstep is the quantizer step size

(related to QP, see Chapter 7), h is the number of bits required to code the header and motion

vectors and c1, c2 are model coefficients, updated after coding each unit. Based on (9.1),

the QP required to produce the correct number of coded bits Ti can be calculated. However,

MAD is not known prior to coding the current basic unit. To get round this problem, MAD

of the current basic unit i is estimated from the MAD of the basic unit in the same position

(co-located) in the previous code frame (9.2). Coefficients a1 and a2 are updated after coding

each basic unit.

MADi = a1MADco-located + a2 (9.2)

In this way, the encoder estimates the activity in the current basic unit and hence the quantizer 
parameter that is likely to produce the target number of bits Ti. The actual number of bits 
will vary from this, due to inaccuracies in the models. Based on the actual performance of the 
algorithm, the model parameters are updated in order to minimize the model error.
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Example: Foreman, QCIF, 100 frames

100 frames of the Foreman QCIF sequence were encoded at a frame rate of 10 frames per second

using Baseline profile, coded as one I-slice followed by P-slices. The rate control algorithm

described in [ix] was used, with a target bit rate of 26 kbps. Figure 9.23 shows the coded bitrate.

After the first (I) slice, the encoder maintains a roughly constant number of bits per frame.
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Figure 9.23 Foreman, QCIF, 100 frames: coded bitrate

‘Foreman’ is a ten-second clip that contains a relatively high amount of motion, particularly

in the last 2–3 seconds. Figure 9.24 plots the variation of QP throughout the sequence. The large

variation, particularly in the final seconds, is necessary in order to compensate for the changing

motion and detail. This variation in QP leads to a variation in per-frame quality, measured as

PSNR (Y) in Figure 9.25. As the QP increases, PSNR decreases and vice versa.

This example illustrates the classic trade-off of video codec rate control : a constant or

near-constant bitrate typically is achieved at the expense of varying decoded quality.
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Figure 9.24 Foreman, QCIF, 100 frames: QP per frame
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Figure 9.25 Foreman, QCIF, 100 frames: Luma PSNR per frame

9.5 Mode selection

An H.264/AVC encoder can choose from many different options or modes when it codes a

macroblock. Figure 9.26 shows the main prediction choices for a macroblock; see Chapters 5

and 6 for more details. These include:

r ‘Skip’ mode: don’t send any information for this macroblock
r Four intra-16 × 16 modes
r Nine intra-4 × 4 modes, with a different choice possible for each 4 × 4 block
r 16 × 16 inter mode with prediction from reference picture(s) from one (P, B MB) or two (B

MB) lists
r 8 × 16 inter mode: prediction from multiple reference pictures as above, with the option of

different reference picture(s) for each partition
r 16 × 8 inter mode with reference picture choices as above
r 8 × 8 inter mode with reference picture choices as above, with further sub-division of each

8 × 8 partition into 8 × 4, 4 × 8 or 4 × 4 sub macroblock partitions.

As well as the choice of prediction mode, the encoder can choose to change the quantization 
parameter (QP); within each inter mode the encoder has a wide choice of possible motion 
vectors; and so on. There are a huge number of options for coding each macroblock. Each 
coding mode, i.e. each combination of coding parameters, will tend to generate a different 
number of coded bits, ranging from very low (P-Skip or B-Skip) to high (Intra) and a different 
distortion or reconstructed quality.

A video encoder aims to minimize coded bitrate and maximise decoded quality or minimize 
decoded distortion. However, choosing the coding mode of a macroblock to achieve this is 
a difficult problem, because of (a) the large number of possible combinations of encoding 
parameters and (b) the question of deciding the ‘best’ tradeoff between minimizing bitrate and 
minimizing distortion.
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Figure 9.26 Available macroblock prediction modes

Example: ‘Cost’ of coding a macroblock

Figure 9.27 compares the rate and distortion costs of coding a particular macroblock in different

modes. The three measurements are:

Header bits: The number of bits required to signal the macroblock mode,

plus any prediction parameters such as intra mode, reference

choices and/or motion vector differences.

Coefficient bits: The number of bits required to code the quantized transform

coefficients.

MSE: Distortion of the decoded, reconstructed macroblock,

measured as Mean Squared Error.

‘Skip’ mode sends only a single bit to indicate that no further data is coded for this macroblock.

The rate cost is negligible. However, the decoder must reconstruct the MB based on previously-

coded data. If there are any significant changes from the previous decoded frame, the MSE is

likely to be very high as in this case.
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Figure 9.27 Rate and MSE costs for different coding options

The two Intra modes (16 × 16 and 4 × 4) give a lower MSE at the expense of a higher rate

cost, particularly to signal the residual coefficients. Inter modes with larger block sizes e.g. 16 ×

16 tend to have a low header cost but more coefficient bits, because the motion compensated

prediction is not entirely accurate. Inter modes with smaller block sizes tend to have a larger

header cost to signal mode and multiple motion vectors and fewer coefficient bits due to more

accurate prediction.

The ‘best’ choice of mode depends on (i) the particular characteristics of the macroblock and

(ii) the chosen weighting between distortion and rate. In this example, an encoder that is biased

towards minimizing distortion, will tend to choose one of the Intra modes; an encoder that is

biased towards minimizing rate, will tend to choose Skip mode.

9.5.1 Rate Distortion Optimized mode selection

Rate Distortion Optimized (RDO) mode selection is a technique for choosing the coding mode

of a macroblock based on the rate and distortion cost. In its most popular formulation, the

bitrate cost R and distortion cost D are combined into a single cost J (9.3):

J = D + λR (9.3)

The RDO mode selection algorithm attempts to find a mode that minimizes the joint cost J. The 
trade-off between Rate and Distortion is controlled by the Lagrange multiplier λ. A smaller 
λ will give more emphasis to minimizing D, allowing a higher rate, whereas a larger λ will 
tend to minimize R at the expense of a higher distortion. Selecting the best λ for a particular 
sequence is a highly complex problem [xi]. Fortunately, empirical approximations have been 
developed that provide an effective choice of λ in a practical mode selection scenario [xii].
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Good results can be obtained by calculating λ as a function of QP (9.4, from [iv]).

λ = 0.852(QP−12)/3 (9.4)

Distortion (D) is calculated as the Sum of Squared Distortion (SSD, (9.5):

DSSD =
∑

x,y

(

b(x, y) − b′(x, y)
)2

(9.5)

Where x,y are the sample positions in a block, b(x,y) are the original sample values and b’(x,y)

are the decoded sample values at each sample position. Other distortion metrics, such as Sum

of Absolute Differences or Sum of Absolute Transformed Differences, SAD and SATD, may

be used in processes such as selecting the best motion vector for a block [iv]. A different

distortion metric typically requires a different λ calculation.

A typical mode selection algorithm might proceed as follows:

r For every macroblock

◦ For every available coding mode m
¥ Code the macroblock using mode m and calculate R, the number of bits required to code

the macroblock
¥ Reconstruct the macroblock and calculate D, the distortion between the original and

decoded macroblocks
¥ Calculate the mode cost Jm using (9.3), with appropriate choice of λ

◦ Choose the mode that gives the minimum Jm

This is clearly a computationally intensive process, since there are hundreds of possible mode

combinations and therefore it is necessary to code the macroblock hundreds of times to find

the ‘best’ mode in a rate-distortion sense. The problem becomes larger when considering the

choice of prediction, for example:

1. Each 4 × 4 block in an Intra-4 × 4 macroblock can be coded using one of nine modes.

The choice of mode for one 4 × 4 block affects the coding cost and therefore the choice of

mode for all the other 4 × 4 blocks (see Chapter 6, Intra mode signalling).

2. Each partition in an Inter macroblock may be predicted from any one of the available

reference frames or from one or two reference frames in a B macroblock.

3. Each partition or sub-macroblock partition in an Inter macroblock has a separate motion

vector or two in the case of a bi-predicted partition in a B macroblock; each motion vector

may point to any of hundreds of positions within a defined search window.

4. The choice of motion vector or prediction is further complicated by the fact that more likely

predictions, e.g. small motion vectors or intra modes similar to recently-selected modes,

generally require fewer bits to code than predictions such as large motion vectors that are

less likely to generate the best result.

In the case of a B macroblock, for example, an encoder has a huge potential ‘space’ of coding

options, including all the intra modes, all the inter partition sizes, all the possible motion

vectors, all the available reference frames and the choice of one-directional or bi-predicted
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Figure 9.28 Rate, quality and complexity

motion compensation. Exhaustively searching this space to find the best combination of mode

and prediction type is a highly computationally intensive task.

9.6 Low complexity coding

Many practical H.264/AVC codecs simply do not have the computational resources to carry

out the full rate-distortion optimized mode selection process described above. This practical

constraint, together with the desire to maximize compression performance, has led the de-

velopment and proposal of hundreds of low complexity coding algorithms and approaches.

The general goal is to maximize performance in the rate-distortion-complexity space (Figure

9.28). A low-complexity encoder will tend to have poor or average rate-distortion perfor-

mance; applying more computation to the problem of choosing the best coding mode, hence

moving along the complexity axis, will tend to increase rate-distortion performance. Hence

compressed bitrate, decoded quality and codec complexity can be traded off. The goal of

a good low-complexity coding method is to achieve good rate-distortion performance at a

reduced computational cost. A suitable comparison point is a ‘full complexity’ H.264 encoder,

which evaluates every possible coding mode, every prediction type and every motion vector

when coding each macroblock.

In general, every low-complexity coding algorithm has a similar effect on performance,

i.e. rate-distortion performance tends to be lower than the benchmark ‘full complexity’ codec

and computational complexity is also lower. Some of the more sophisticated low-complexity

algorithms, however, are capable of delivering coding performance very close to the benchmark

with a significant reduction in computational complexity.

9.6.1 Approximating the cost function

The basic cost function (9.3) requires calculation of D and R. In a ‘full’ implementation this

means it is necessary to:

(i) Code the block B to obtain R

(ii) Decode the block to obtain B’, the reconstructed block

(iii) Calculate the distortion (e.g. SSD) between B and B’
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A number of approximations to SSD have been proposed, with the aim of reducing the

number of processing steps required to calculate distortion. For example, Sum of Absolute

Differences (SAD) calculates the absolute difference between pairs of samples b and b’ (9.6).

SAD increases monotonically with SSD but is less computationally intensive to calculate.

Calculating the absolute difference in the transform domain can improve the accuracy of the

cost function approximation. (9.7) describes the transform-domain metric Sum of Absolute

Transformed Differences (SATD), where T is a transform such as the Hadamard Transform

and α is a normalization factor) [iv].

DSAD =
∑

x,y

∣

∣b(x, y) − b′(x, y)
∣

∣ (9.6)

DSATD = α
∑

x,y

∣

∣T
(

b(x, y) − b′(x, y)
)∣

∣ (9.7)

Further fast approximations to these and other distortion metrics have been proposed in the

literature, e.g. [xiii, xiv]. An alternative is to sub-sample the block, i.e. reduce the number of

sample positions (x, y) to be evaluated [xvi, xv].

A simple approach to approximating the rate of a coded block is to predict blocks with zero

rate, i.e. all-zero coefficients [xvii]. As all-zero blocks occur very frequently in a typical coded

sequence, predicting the occurrence of these blocks without actually coding the data can save

a significant amount of computation. A more sophisticated rate estimation model is presented

in [xviii].

Finally, the entire cost function (9.3) may be estimated, for example based on the R-D cost

of the same macroblock position in a previously coded frame [xix, xx].

9.6.2 Reducing the set of tested modes

A second approach to reducing the complexity of mode selection is to cut the number of modes

that are tested for a given macroblock or block.

The ‘Skip’ mode tends to occur very frequently in P and B slices, especially when (i)

the scene activity is relatively low and/or (ii) the quantization parameter is relatively high.

Many methods have been developed that incorporate early skip detection based on modelling

previous macroblock statistics, for example [xix, xxi, xx].

More generally, a number of algorithms attempt to reduce the cost of inter mode selection

by grouping modes and only evaluating or coding certain groups of inter modes. Groupings

can be determined by the statistics of previously coded macroblocks and/or according to

homogeneity or features of the current macroblock [xxii, xxiii].

The number of intra modes tested for a MB / block may be reduced by examining the

structure of the image data. The best intra mode tends to depend on the characteristics of

the block or macroblock. For example, a macroblock containing smooth texture is likely to

be effectively predicted using an Intra-16 × 16 mode (see Chapter 6) [xxiv]. Alternatively,

the best Intra-4 × 4 mode for a particular 4 × 4 block is likely to be closely correlated to

the block texture. For example, the dominant edge direction in a 4 × 4 block may be used to

predict the most likely prediction direction [xxv].
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9.6.3 Early termination

Related to the strategy of reducing the number of modes is the concept of early termination,

which involves (i) evaluating coding modes in a certain order, which may be fixed or variable,

and (ii) terminating the process when certain criteria are reached. For example, a number

of algorithms assume that the costs of certain inter modes are monotonically increasing or

decreasing, i.e.:

J16 ×16 > J8 × 8 > J4 × 4

or

J16 × 16 < J8 × 8 < J4 × 4

Evaluating the modes in order of expected monotonicity, the encoder terminates the mode

selection process if a particular mode cost is not monotonic [xxvi, xxvii].

9.7 Summary

A good way to understand and evaluate the capabilities of a video coding method such as

H.264/AVC is to experiment with it. The availability of public-domain encoders and decoders

such as the ‘official’ Joint Model (JM) and the open-source ×264, makes it possible to test

out every aspect of the standard. H.264/AVC has the potential to deliver coding performance

as good as, or better than, other standards-based and proprietary codecs that are currently

available. However, the performance of an H.264 codec depends very much on the coding

parameters and the source video material. There is a fundamental trade-off between good

coding performance - high quality and low bitrate - and computational complexity, particularly

in a video encoder. A key aspect of this trade-off is the challenge of selecting the best coding

mode for a macroblock, out of a very large number of possible options. Practical H.264/AVC

encoders typically simplify this process using fast, low-complexity approximations to the full

mode selection process.
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Extensions and directions

10.1 Introduction

Since the first version of H.264/AVC was published in 2003, the video coding industry has

continued to evolve. The range of platforms and delivery mechanisms for video continues to

grow, with an increasing expectation that video content should be available on any platform

from mobile to HD and 3D displays, over any network including broadcast, internet, mobile,

etc. The standard itself has evolved since 2003. This chapter summarizes recent extensions to

the standard and looks at what might come after H.264.

The so-called ‘Professional’ or ‘Fidelity Range’ extensions became the High Profiles of

H.264, tools for coding High Definition and studio content with very high reproduction

fidelity, described in earlier chapters.

The increasing need for coding the same original content at different bandwidths and display

resolutions led to the development of the Scalable Video Coding (SVC) extension to H.264,

standardised as H.264 SVC. SVC supports efficient coding of video in such a way that multiple

versions of the video signal can be decoded at a range of bitrates, spatial resolutions and/or

temporal resolutions or frame rates. By jointly coding multiple versions, it should be possible

to deliver them in a more efficient way than the alternative of coding and transmitting each

version separately.

There is a trend towards creating and delivering multiple views of the same video

scene. Stereoscopic video, with suitable display technology, gives the impression of a three-

dimensional (3D) image. Multiple views of a scene can give the user the option of choosing

their viewpoint. ‘Free viewpoint’ video can potentially deliver any view of a scene, by syn-

thesising intermediate views between actual camera positions. These ‘multiview’ applications

generally require coding of multiple, closely related video signals or views. Similarly to

SVC, Multiview Video Coding (MVC) exploits the correlation between these views to deliver

efficient compression. Tools for multiview video coding have been standardized as H.264

MVC.

The number of video compression formats continues to increase, with more and more

content being produced and coded into many different, incompatible compression formats.

Recent initiatives in configurable video coding address the problem of efficiently supporting

an increasing range of compression formats. MPEG’s Reconfigurable Video Coding (RVC)

The H.264 Advanced Video Compression Standard, Second Edition Iain E. Richardson
C© 2010 John Wiley Sons, Ltd
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sub-group has defined a Video Tool Library, a set of standard Functional Units, building

blocks for video compression. A particular video codec may be specified by defining a

subset of Functional Units together with their parameters and interconnections. This should

make it possible to flexibly re-configure a video codec to support multiple standard and

proprietary formats. Going further, Fully Configurable Video Coding (FCVC) makes it possible

to completely define and implement an arbitrary video codec using a set of low-level primitive

operations and to change this definition during a video communication session. Potential

benefits of this approach include the ability to rapidly implement any new video coding

algorithm and to adapt the compression algorithm dynamically to suit the characteristics of

the current video scene.

H.264 has proved to be a useful and successful technical standard and continues to increase

its share of the video coding market. As processor capabilities continue to develop, the stan-

dards community are considering what should come after H.264/AVC. At the time of writing

(early 2010), the MPEG and VCEG groups are examining proposals for a next generation

video coding standard that is expected to offer better performance than H.264, probably at a

higher computational cost.

10.2 Scalable Video Coding

10.2.1 Simulcast transmission

A challenge for many video compression applications is to deliver multiple versions of a

video sequence at different operational points, i.e. different qualities, spatial resolutions and

frame rates. This can be done using conventional video codecs such as H.264/AVC by coding

each stream independently. This is simulcast. In a typical scenario (Figure 10.1), a single

source video is required to be transmitted to multiple decoders or clients, each with different

capabilities. In this example, the original video clip is coded three times to produce three

independent AVC streams, each of which is transmitted and decoded. The problem with the

simulcast scenario is that the three bitstreams contain significant redundancy, since the same

video sequence is coded in each bitstream at different resolutions and/or qualities. In theory, a

Figure 10.1 Multiple streams / simulcast

321



Extensions and directions 289

Figure 10.2 Multiple streams / scalable

smaller transmission bandwidth could be utilized by exploiting this redundancy between the 
three streams.

10.2.2 Scalable transmission

Scalable Video Coding (SVC) attempts to deliver multiple coded versions of a sequence 
using a lower overall bitrate than the simulcast scenario above. It does this by exploiting the 
redundancies between the different versions, i.e. the correlation between different versions of 
the same sequence coded at different operating points.

The same three sequences delivered using SVC are shown in Figure 10.2. A single SVC 
encoder produces three coded bitstreams, described as layers. The lowest or base layer, layer 
0 in the figure, is a stream decodeable using a standard single-layer decoder, e.g. an H.264 
decoder, to produce a video sequence at the lowest of the available quality/resolution operating 
points. One or more enhancement layers, layers 1 and 2 in this example, are coded as SVC 
bitstreams. To decode a sequence at a higher quality or resolution, an SVC decoder decodes 
the base layer and one or more enhancement layers. In this example, decoding layer 0 using 
a standard AVC decoder produces the lowest quality output; decoding layers 0 and 1 using an 
SVC decoder produces a higher quality output; decoding layers 0, 1 and 2 using an SVC decoder 
produces the highest-quality output. The SVC coding process exploits redundancy between 
sequences coded at different resolutions or qualities, by predicting successive enhancement 
layers from the base layer and lower enhancement layers. In this way, it should be possible to 
achieve the same displayed result as the simulcast system (Figure 10.1) at a reduced bandwidth 
cost.

The general concept of a scalable coded bitstream is that ‘parts of the stream can be 
removed in such a way that the resulting sub-stream forms another valid bit stream for some 
target decoder’ [i]. Considering Figure 10.2, the scalable bitstream consists of the coded Layer 
0, Layer 1 and Layer 2 streams. Decoding all three streams produces a high-quality output; 
removing Layer 2 and decoding layers 0 and 1 produces a medium-quality output; removing 
layers 1 and 2 and decoding just the base layer produces a low-quality output.

322



290 The H.264 Advanced Video Compression Standard

10.2.3 Applications of Scalable Video Coding

Scalable video coding has been proposed for a number of application scenarios.

Multiple decoders: Increasingly, the same original video content is coded, transmitted and

viewed by multiple devices, each with different capabilities. For example, a movie trailer is

streamed to clients ranging from a handheld device with a low bitrate network connection

and a low-resolution display, to a PC with a high bitrate connection and a High Definition

display. A range of factors may limit the capabilities of a particular decoding device, in-

cluding connection bitrate, screen resolution and processing capacity. A scalable bitstream

should make it possible to support a wide range of decoding capabilities as efficiently as

possible.

Graceful degradation / enhancement: Whilst some applications such as broadcast television

tend to have a clearly-defined and consistent channel for video transmission, many other

applications use a channel that may change significantly during a communication session.

For example, IP-based applications such as video streaming or internet conferencing will

experience a varying channel throughput that depends on factors such as the amount of

traffic and congestion in the network. Scalable coding offers a mechanism for maximising

the quality at a particular point in time for a specific decoder. For example, a streaming server

transmits base and enhancement layers for a video source. A decoder attempts to receive each

of the available layers. If all layers are successfully received, the decoder extracts a sequence

at the maximum available quality. If the connection throughput drops, the decoder ‘drops

back’ to a lower-quality sequence by only receiving selected layers. As long as the base

layer is successfully decoded, a basic-quality video sequence can be displayed at all times.

This implies that the base layer is very important, i.e. a higher priority than the enhancement

layer(s).

Archiving: Storing a video sequence as a scalable coded bitstream can make it possi-

ble to rapidly decode a low-quality ‘preview’ of the video sequence. For example, a HD

sequence is coded as a number of scalable layers. Extracting only the base layer gives a

low quality version that is quick to decode and display, suitable as a preview of the entire

sequence.

10.2.4 Scalable video coding in H.264

Scalable Video Coding (SVC) is incorporated as Annex G of recent versions of the H.264/AVC

standard [i,ii] and extends the capabilities of the original standard. A software implementation,

the Joint Scalable Video Model, JSVM, is available for download and experimentation [iii].

H.264 SVC supports three main types or classes of scalability (Figure 10.3):

1. Temporal scalability: The base layer is coded at a low temporal resolution or low frame

rate; adding enhancement layers increases the frame rate of the decoded sequence.

2. Spatial scalability: The base layer is coded at a low spatial resolution; adding enhancement

layers increases the spatial resolution of the decoded sequence.

3. Quality scalability: The base layer is coded at a low visual quality using a high QP; adding

enhancement layers increases the visual quality of the decoded sequence.
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Figure 10.3 Overview of scalability types

Example 1 – Quality Scalability:

Layer 0, base layer, is coded at a bit rate of 200kbps, at CIF resolution, 352 × 288 luma samples

per frame, and at 30 frames per second. Enhancement layer 1 is coded at a bit rate of 520 kbps

using quality scalability, i.e. the frame rate and resolution stay the same. A low-quality sequence

is obtained by sending the base layer over a 200kbps channel and decoding it. A high-quality

sequence is obtained by sending base + enhancement layers over a 720kbps channel. (See Table

10.1).

Table 10.1 Example: Quality Scalability

Encoder Decoder

Base Enhancement Base Base + Enhancement

Resolution 352 × 288 352 × 288 352 × 288 352 × 288

Frames per second 30 30 30 30

Bitrate 200kbps 520kbps 200kbps 720kbps
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Example 2 – Spatial and Temporal Scalability:

Base Layer 0 is coded at a bit rate of 400kbps, with spatial resolution 320 × 240 luma samples

and at 15 frames per second. Enhancement Layer 1 is coded at a bit rate of 800kbps, a spatial

resolution of 640 × 480 samples and at 30 frames per second. In this example, spatial and

temporal scalability are used simultaneously. Decoding Layer 0 only (400kbps) gives a low-

resolution, low frame rate sequence; decoding layers 0 and 1 (a total of 1200kbps) gives a higher

resolution, higher frame rate output sequence. See Table 10.2.

Table 10.2 Example: Spatial + Temporal Scalability

Encoder Decoder

Base Enhancement Base Base + Enhancement

Resolution 320 × 240 640 × 480 320 × 240 640 × 480

Frames per second 15 30 15 30

Bitrate 400kbps 800kbps 400kbps 1200kbps

10.2.5 Temporal scalability

In a sequence coded with temporal scalability, the base layer 0 is coded at the lowest temporal

resolution, i.e. the lowest frame rate. Successive enhancement layer(s), when decoded with the

base layer, provide progressively higher decoded frame rates. Figure 10.4 shows a sequence

encoded as three temporally scalable layers. Layer 0 is coded at a frame rate F0 and consists

of coded frames 0, 6, 12, etc. An H.264/AVC decoder can decode layer 0 in isolation.

Layer 1 consists of frames 3, 9, 15, . . . etc. A decoder may decode layers 0 and 1 to produce

a higher-rate sequence (Figure 10.5) at 2F0 frames per second. Layer 2 consists of frames 1, 2,

4, 5, 7, 8, . . . etc and a decoder that decodes layers 0, 1 and 2 can deliver an output sequence

(Figure 10.5) at 6F0 frames per second.

Temporal scalability can be achieved using the P- and/or B-slice coding tools available in

H.264/AVC. The examples in Figure 10.4 and Figure 10.5 are developed using the ‘Hierar-

chical’ or ‘Pyramid’ Group of Pictures structure discussed in Chapter 6 (section 6.4.7). For

Figure 10.4 Temporally scalable sequence, 3 layers
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Figure 10.5 Decoding a temporally scalable sequence

completeness, Figure 10.6 shows the prediction directions for this hierarchical structure. The

base layer consists of the I-slices every 12 slices and the first set of B-slices, B6, etc. Layer 1

consists of the second set of B-slices (3, 9, 15, etc) which are predicted from the base layer.

Layer 2 consists of the remaining B-slices which are predicted from layers 0 and 1. Hence the

following sub-sets may be independently decoded:

Layer 0, I0, B6, I12, etc

Layer 0 + Layer 1, I0, B3, B6, B9, etc.

Layer 0 + Layer 1 + Layer 2, I0, B1, B2, B3, etc.

Because the necessary prediction tools, i.e. P or B pictures used for reference, are supported

in the Main and High Profiles of H.264/AVC, temporal scalability can be achieved without

the need for any extensions to the core H.264/AVC standard.

Figure 10.6 Hierarchical prediction structure
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10.2.6 Quality scalability: overview

The base layer is coded using a particular quantizer parameter QP to produce the Layer 0

bitstream (Figure 10.7). Consider a single video frame A. At the encoder, this coded frame is

decoded from the base layer and reconstructed (frame A’0). Frame A is re-coded at a lower

QP and hence a higher quality, with decoded frame A’0 available as a prediction reference,

to produce the enhancement layer bitstream Layer 1. Note that A’0 will typically be a very

effective prediction reference as it is identical to frame A except for distortion introduced by

compression. Note that the ‘usual’ prediction sources, previously-coded frames in the decoded

picture buffer, are also available for prediction of each macroblock.

A base layer decoder simply decodes frame A0. An enhancement layer decoder requires

the decoded A, a prediction reference, to reconstruct the higher-quality frame A1.

This process may be repeated to form a ‘cascade’ of layers 0, 1, 2, etc, each layer (a) using the

reconstructed frame from the layer below as a prediction reference and (b) using a progressively

lower QP. Note that SVC provides tools that make it possible to reconstruct the enhancement

layers without fully decoding the base layer information (constrained inter-layer prediction).

10.2.7 Spatial scalability: overview

In the case of Spatial Scalability (Figure 10.8), the base layer has the lowest resolution and

successive enhancement layers can be decoded to provide higher resolution decoded frames

or fields.

An input video frame A is downsampled at the encoder to produce a low-resolution version

A’. Frame A’ is coded to produce the base Layer 0 and can be decoded to give low-resolution

output frame A0. The encoder reconstructs A0 and upsamples it to produce a reference frame

that has the same effective resolution as the original (A). This reference frame is used as

a prediction reference, enabling the encoder to produce the enhancement Layer 1. The up-

sampled A0 will typically be a good prediction reference for frame A because it is the same

frame, with distortions due to downsampling, coding and up-sampling.

An enhancement layer decoder upsamples A0 and uses it to reconstruct the decoded en-

hancement frame A1. As with Quality scalability, this process may be repeated to give a

cascade of layers 0, 1, 2, etc. The highest-resolution layer has the same resolution as the

original sequence; lower layers are coded at progressively smaller resolutions.

10.2.8 Spatial scalability in detail

As discussed above, the base layer of a spatially scalable bitstream is encoded using the

usual H.264/AVC tools described in earlier chapters. Coding a macroblock in an enhancement

layer requires a number of changes depending on the type of prediction from the lower layer.

H.264 SVC goes beyond the basic approach of up-sampling the lower layer (section 10.2.7)

and provides several new prediction modes that improve the coding performance of spatially

scalable compression.

In an enhancement layer coder, e.g. Encoder 1 in Figure 10.8, there are a number of options

for predicting the current macroblock. First, all of the usual prediction options are available:

intra modes using samples from the current frame at the enhancement layer resolution, inter
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modes using samples from previously coded and reconstructed frames at the enhancement

layer resolution. Second, the following further options are available, using the upsampled

lower layer, the base layer in Figure 10.8, or the next lower-resolution enhancement layer, as a

reference layer. Note that the current MB position corresponds to a smaller block in the lower-

resolution layer. The following discussion assumes an 8 × 8 corresponding block in the lower,

reference layer, so-called dyadic scaling, or 2 × horizontal and vertical resolution in the

enhancement layer. However, arbitrary inter-layer scaling factors are supported by H.264/SVC.

Prediction options:

1. Upscale the reference layer.

For Intra blocks, scale the reference layer to the same resolution as the current layer (Figure

10.8) and use the reference layer as an extra prediction reference.

2. Base Mode: Use the prediction choices from the reference layer block.

When a Base Mode Flag is set to 1, only a residual is sent in the enhancement layer, with

no extra prediction choices, i.e. no intra prediction modes or inter partitions, references and

motion vectors.

If the co-located block in the reference layer was coded in Intra mode, the reconstructed

intra block from the reference layer is up-sampled using a 4-tap Finite Impulse Response

filter to produce a prediction for the current MB. This prediction is subtracted from the MB

to produce the enhancement layer residual.

If the co-located block in the reference layer was coded in Inter mode, the enhancement

layer block is predicted using Inter prediction, with (a) the same reference picture indices,

(b) partition choices that are up-sampled from the partitions in the reference layer and (c)

motion vectors scaled up from the reference layer motion vectors.

3. Motion vector prediction from the reference layer.

If a Motion Prediction Flag is set to 1, the current enhancement layer macroblock partition

is predicted using Inter prediction with (a) the same reference picture indices as the corre-

sponding reference layer block and (b) motion vector differences (MVD) created using the

up-scaled motion vectors of the reference layer as predictors (Chapter 6).

4. Residual prediction.

When a Residual Prediction Flag is set to 1, the enhancement layer residual is predicted

from the reference layer residual. First, the reference layer residual is up-sampled using

bi-linear interpolation and this up-sampled residual is subtracted from the original en-

hancement layer block. Then, the enhancement layer residual is formed using any of the

methods described above, i.e. conventional intra/inter prediction or base mode prediction.

The resulting difference signal is transformed, coded and transmitted as usual (Chapter 7).

Note that inter-layer prediction is constrained as follows. First, the only enhancement layer 
macroblocks which may be coded with inter-layer intra prediction are those for which the co-

located reference samples are intra coded (constrained intra prediction). Second, constrained 
intra prediction is mandatory for inter-layer prediction of higher layers. This means that intra 
coded macroblocks in reference layers can be constructed without having to reconstruct any 
inter coded macroblocks. Hence each layer may be decoded using a single motion compen-

sation loop (single loop decoding), resulting in significantly lower decoder complexity than 
scalable video coding in earlier standards [i].
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10.2.9 Quality scalability in detail

H.264/SVC supports Coarse Grain and Medium Grain quality scalability. Coarse Grain Quality

Scalability (CGS) is effectively a special case of Spatial Scalability in which the upsampling /

downsampling factor is 1. This means that the enhancement layer resolution is the same as the

reference layer resolution (Figure 10.7). The enhancement layer is coded at a lower QP and

hence a higher quality than the lower, reference layer. All the ‘spatial’ scalable coding tools

described above may be use to predict the enhancement layer frame from the reference layer

reconstructed frame.

A typical application of quality scalability is to provide versions of the sequence coded at

different bitrates and quality levels, so that, for example, lower bitrate sub-sequences may be

extracted for transmission over channels with different capacities. With CGS, the number of

sub-sequence bitrates is limited by the number of layers. Providing a large number of bitrate

options using CGS requires a large number of layers, which tends to be complex and inefficient

to code.

Medium Grain Quality Scalability (MGS) addresses this limitation and makes it possible to

extract substreams at a wide range of bitrates from a scalable bitstream with a small number of

quality layers. Using MGS, any NAL unit in an enhancement layer may be discarded to leave

a fully decodeable bitstream. This makes it possible to produce a variety of output bitrates. For

example, discarding an arbitrary number of enhancement layer NAL units makes it possible

to meet an arbitrary bit rate target, within a certain margin of error. Figure 10.9 shows an

example. The complete scalable bitstream consists of Base Layer NALUs and enhancement

Base Enh Enh Base Enh Enh Enh Enh Base Enh

Base Enh Base Enh Enh Base Enh

Base Enh Base Enh Base Enh

Base Base Base

High bitrate /
high quality

Low bitrate /
low quality

Discard a small number of Enhancement NALUs

Discard a large number of Enhancement NALUs

Discard all Enhancement NALUs

Figure 10.9 Medium Grain Quality Scalability
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Figure 10.10 Combined Spatial, Temporal and Quality scalability

layer NALUs as shown. Using MGS, selected Enhancement Layer NALUs may be discarded 
to provide sub-streams at a progressively lower bitrate. The lowest bitrate / quality point 
is provided by the Base Layer stream, which consists only of Base Layer NALUs. SVC 
specifies that motion compensated prediction parameters must not change between Base and 
Enhancement layer representations of certain so-called Key Pictures. This prevents “drift” 
between the motion compensated reconstruction of these Key Pictures at the encoder and 
decoder. Drift is therefore restricted to non-Key Pictures.

10.2.10 Combined scalability

H.264/SVC provides considerable flexibility in the construction of a scalable bitstream, making 
it possible to mix Spatial, Temporal and Quality scalability. For example, in Figure 10.10, the 
base layer is up-sampled spatially and the up-sampled frames are used as references for B-

slices to produce a layer with spatial and temporal scalability. This is then used to predict a 
further layer at the same spatio-temporal resolution but at a higher bitrate and quality.

10.2.11 SVC performance

For a given sequence that is required to be delivered at a range of bitrates, a key performance 
question is as follows – does scalable coding give a smaller or larger bitrate than simulcast 
coding?
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Example:

Two coded versions of a sequence are required to be delivered across a network. The choices

are (a) code low quality and high quality versions independently using AVC and deliver each

sequence (simulcast) or (b) code a low quality Base Layer and an Enhancement Layer that

can be decoded with the Base Layer to give the high quality version using scalable decoding.

Figure 10.11 illustrates the total bitrates of the two choices. In this case, the base layer of the

scalable version is coded at a higher bitrate than the corresponding simulcast version. This is

generally advisable in order to provide a good reference for predictions of the enhancement

layer. However, the total bitrate of the scalable version is lower than the combined simulcast

bitrate. In this example, scalable coding is more efficient in terms of total bitrate.

Figure 10.11 Simulcast vs. scalable bitrates

MPEG Technical Report N9577 [iv] compares the performance of SVC and AVC. This

report describes a series of tests in which the same video clips were coded using (a) AVC and

(b) SVC. The clips were coded at a number of quality levels and resolutions. In each case, a

low-rate clip and a high-rate clip were produced. The low-rate clip was coded (a) using AVC

and (b) as the base layer of a scalable stream. The high-rate clip was coded (a) as a separate

AVC stream and (b) as the enhancement layer of a scalable stream. The operating bitrates were

chosen such that the visual quality of the decoded sequences were approximately the same at

each rate point, low and high. The perceived quality of each clip was measured by combining

the opinion scores of a number of viewers (Mean Opinion Score, see Chapter 2).

Selected results from [iv] are shown in Figure 10.12, Figure 10.13 and Figure 10.14. Quality

scalability with two layers is tested in Figure 10.12 for the sequences ‘Ofer’ and ‘Paris’. The

lower rate point represents a 30fps CIF sequence coded at a low bitrate. The SVC base layer

rate and subjective quality, denoted as ‘Quality of the Highest Layer’, is slightly higher than

the AVC low rate stream. The upper rate point represents the total bitrate of (a) both the AVC

simulcast streams or (b) both the SVC layers. Note that the x-axis is cumulative bitrate. It is

clear that in this case, SVC achieves the same quality as AVC with a lower combined bitrate.
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Figure 10.12 Quality scalability at CIF resolution

As illustrated in Figure 10.11, the total rate for two simulcast streams is higher than the total

rate for two SVC layers.

Figure 10.13 shows similar results for combined spatial and temporal scalability. The lower

rate point represents 15fps, 320 × 240 video and the upper rate point represents 30fps, 640 ×

480 video, coded as (a) two simulcast streams or (b) base and enhancement SVC layers. Once

again, the combined rate of the SVC layers is lower than the combined rate of the AVC streams,

for the same or better visual quality. It is interesting to note that ‘Crew’ SVC base layer is

actually given a very high quality score by the viewers. This may be due to the fact that the

low-resolution sequence (320 × 240 × 15fps) has fewer distortion artefacts than the high-

resolution sequence (640 × 480 × 30fps) and so is ranked approximately the same.

Finally, Figure 10.14 shows the results for the high-definition sequence ‘AlohaWave’ with

spatial scalability or AVC simulcast delivering 720p / 50fps and 1080p / 50fps streams. Once

again, SVC delivers the same or better quality at a lower combined rate than AVC. Note that

subjective quality appears to drop as the rate and resolution increase. Again, this is probably

due to the fact that more obvious coding distortion appears in the higher-resolution sequence.

The results presented in [iv] show a clear, if relatively modest, benefit from using SVC

to deliver multiple versions of a sequence at different rate, quality and resolution points.
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Despite the fact that scalable coding has been an active research topic since the early 1990s

and has been incorporated into earlier standards such as MPEG-2 Video and MPEG-4 Visual,

it has not been widely adopted by the video coding industry, perhaps because the cost and

complexity outweighs the technical advantages. However, there are some indications that

H.264 SVC is a more attractive commercial proposition, with recent product announcements

in the videoconferencing market [v,vi].

10.3 Multiview Video Coding

Multiview video is video data that incorporates multiple concurrent versions of a particular

scene. An example is shown in Figure 10.15; these three images are three simultaneous views

of the same real-world scene, taken from different viewpoints. Potential implementations of

multiview video include:

(a) Stereoscopic video. A stereo pair of views of the scene are combined, e.g. using data glasses

or autostereoscopic displays, giving the illusion of a three-dimensional view, albeit with a

limited viewing angle (Figure 10.16).

(b) 3D video. Multiple actual or rendered views of the scene are presented to the viewer e.g.

using ‘virtual reality’ glasses or an advanced autostereoscopic display, so that the view

Figure 10.15 Three views of the same scene
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Figure 10.16 Multiview video : view examples

changes with head movements and the viewer has the feeling of ‘immersion’ in the 3D

scene (Figure 10.16).

(c) Free-viewpoint video. A limited number of views of the scene are available, e.g. from

multiple cameras at a sports game or multiple surveillance cameras. The viewer may

select an arbitrary viewing angle. If this view does not exist, it is rendered or created from

the available ‘real’ views (Figure 10.16).

Applications of multiview video include 3D television, advanced surveillance systems,

immersive teleconferencing and gaming.

In a similar way to scalable video, multiview video content has inherent redundancy and the

purpose of Multiview Video Coding (MVC) is to capitalise on this redundancy and efficiently

code a multiview video scene. Figure 10.17 shows sequences of video frames corresponding

0 1 2 3 4 5 6 7 8 9

TIME

V
IE

W
S

View 0

View 1

View 2

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

..................

Figure 10.17 Multiview video : views and frames
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to a series of views of a multiview scene. Each view consists of a series of frames or fields that

may be coded as a separate H.264/AVC stream, i.e. simulcast coding of each view. However,

there is likely to be a correlation between views, particularly if the camera positions are close

together. Hence frame 0 of view 0 may be strongly correlated with frame 0 of view 1, if the

camera positions are close; frame 0 of view 1 may be correlated with frame 0 of view 2; and

so on.

10.3.1 H.264 Multiview Video Coding

The inherent redundancies in a multiview scene can be exploited by introducing predic-

tions between views, i.e. inter-view prediction structures. This has required an extension to

H.264/AVC, known as H.264 Multiview Video Coding (H.264 MVC). H.264 Multiview Video

Coding is incorporated as Annex H into a draft revision of H.264/AVC [vii, viii]. Reference

software is available at [ix].

An example of interview prediction is shown in Figure 10.18. View 0 (top) is predicted

using a hierarchical GOP structure (Chapter 6) using conventional H.264/AVC tools. Each

GOP consists of an I slice or ‘key picture’ followed by seven B slices. This means that View 0

can be decoded by an AVC or MVC decoder and can be considered as the Base layer or Base

view. Each of the other views uses a similar prediction structure, except that the key pictures

are now P slices, predicted from an I or P slice in the previous view. Inter-view correlation

Figure 10.18 Interview prediction of key frames
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Figure 10.19 Inter-view prediction of all frames

means that the P slices in views 1, 2, 3 . . . are likely to be more efficiently coded than I slices

in the same positions.

A more complex prediction structure includes interview prediction for every picture (Figure

10.19). Hence any B- or P-slice in views 1, 2, 3, . . . has a picture in another view available as

a reference for prediction.

Annex H to H.264/AVC specifies a number of additions to the basic H.264 syntax to support

MVC, including:

r Sequence Parameter Set: specify views and anchor or key picture references.
r Reference Picture List: structured to include support for inter-view prediction.
r NAL Unit order: modified to allow the use of a Prefix NALU, containing extra information

about the Base view. This special Prefix NAL Unit may be discarded by an AVC decoder

that is not MVC-compatible, so that the base view may still be decoded.
r Picture numbering and reference indices: modified to support multiple views.

MVC has to face the same challenge as SVC, namely, are the benefits of MVC worth the 
extra complexity compared with conventional simulcast coding of multiple views? Multiview 
video applications are still at a relatively early stage and there is not yet evidence that H.264 
MVC will become popular in the industry as a coding technology. However, the popularity of 
stereoscopic (“3D”) films such as “Avatar” is leading manufacturers to develop stereoscopic 
TV and Blu-Ray solutions.
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Figure 10.20 Overview of configurable video codec

10.4 Configurable Video Coding

H.264/AVC is a relatively recent addition to a series of popular video coding formats, starting

with the early standards ITU-T Recommendation H.261 and ISO/IEC MPEG-1 and including

an increasing number of standard and non-standard formats. Coding formats such as MPEG-2

Video, MPEG-4 Visual, VC-1 and H.264/AVC are widely used in current devices and systems.

None of these formats or standards is inter-operable, i.e. video coded in one format can only

be decoded by a decoder supporting the same format. As the digital video market continues to

grow, this presents an increasing problem for device and codec manufacturers as they are faced

with the need to support multiple, incompatible coding standards [x] leading to over-designed

decoding products. The challenge of efficiently supporting multiple coding formats has led

to increased interest in configurable video coding solutions. All of the current formats have

certain aspects in common, such as block-based operation, inter-frame prediction and various

forms of transform and entropy coding. Finding a way to exploit these commonalities may

make it possible to efficiently and flexibly support multiple video coding formats.

The general concept of a configurable video codec is illustrated in Figure 10.20. At the

encoder side, video is compressed using a particular configuration of video encoder, e.g. using

a standard or non-standard coding format. Configuration information and coded video data

are sent to the decoder. The configuration information is used to generate or configure a video

decoding algorithm. The configured video decoder then proceeds to decompress the coded

video sequence.

A configurable coding system has the potential to greatly increase the flexibility of a video

codec, making it possible to re-configure the codec to handle multiple existing video formats,

or ‘upgrading’ the decoder to handle a new coding format. Key questions for the design of

such a system include:

r Should the configuration be completely flexible, or should it be limited to a number of

pre-defined options?
r When should configuration occur – at the start of a communication session, during a com-

munication session or both?
r Can a re-configurable codec achieve the same computational performance as a ‘hard-wired’

or fixed software or hardware codec?
r What impact does this approach have on issues such as inter-operability with existing codecs,

random access to video streams and intellectual property questions such as license rights to

coding algorithms?

Amazon.com, Inc., Amazon.com Services LLC - Ex. 1012, Page 000339
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Figure 10.21 Reconfigurable Video Coding scenario

10.4.1 MPEG Reconfigurable Video Coding

MPEG’s Reconfigurable Video Coding (RVC) initiative builds on concepts originally proposed 
over ten years ago [xi] and aims ‘to provide a framework allowing a dynamic development, 
implementation and adoption of standardized video coding solutions with features of higher 
flexibility and reusability’ [xii].

The RVC sub-group of MPEG has developed two standards that enable flexible re-

configuration of video codecs to support a number of coding formats in an efficient way. 
In the RVC model, a decoder is specified as an interconnected set of Functional Units (FUs) 
which are decoding tools such as inverse transforms and entropy decoders. The available FUs 
are specified in the Video Tool Library (VTL) standard [xiii]. A particular decoder is defined 
by a Codec Configuration Representation [xiv], which describes a bit stream format and a set 
of FU interconnections and parameters. The Codec Configuration Representation is specified 
prior to starting a decoding session. Hence, an RVC video decoder is constructed from a set of 
pre-defined decoding tools. An existing or new video format can be supported by reconfiguring 
the RVC decoder, provided the format uses standard FUs from the Video Tool Library.

Figure 10.21 illustrates a typical RVC decoding scenario. In order to decode a video 
bitstream, the decoder needs to know (a) how to parse the bitstream and extract the coded data 
elements and (b) how to decode these elements. The RVC decoding engine receives BSDL 
and DDL specifications in compressed form. The decoder composition module generates a 
decoding solution, an actual video decoder, based on the BSDL and DDL specifications. It 
makes use of selected FUs from the Video Tool Library and connects these according to the 
DDL. Once the decoding solution has been generated, it can then decode the video bitstream.
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The MPEG RVC approach has a number of potential benefits. A decoder can be modified to

decode a different format by sending new BSDL/DDL descriptions, enabling efficient support

for multiple coding formats. A non-standard coding format can be supported provided it uses

FUs available to the decoder, i.e. FUs in the decoder’s VTL. In practical terms this means that

a new format should use FUs standardized by MPEG. A new coding tool can be proposed to

MPEG for standardization as a new FU – a potentially faster, simpler route than creating a

complete new video coding standard.

Two key constraints deliberately selected for the RVC model are:

1. A coding format must use combinations of coding tools (FUs) that are specified in the

VTL. Introducing a new tool that is not in the VTL is likely to require a lengthy process of

standardizing and disseminating a new version of the VTL.

2. The decoder configuration is fixed for the duration of a communication session, i.e. there is

limited potential to change the coding algorithm if and when the characteristics of a video

sequence change.

10.4.2 Fully Configurable Video Coding

Fully Configurable Video Coding (FCVC) has been proposed as an alternative to, or an

evolution of, the RVC approach. FCVC differs from RVC in two ways:

1. The transmitted configuration information completely describes the video decoding algo-

rithm. This means that (a) a library of pre-defined video coding tools is not necessary at

the decoder and (b) any existing or new video coding algorithm can be configured.

2. Re-configuration can occur at any point during a video communication session. This makes

it possible to adapt the video coding algorithm dynamically, for example changing aspects

of the algorithm based on the statistics of the video sequence.

In the FCVC framework (Figure 10.22) a common decoding engine, the Universal Video

Decoder (UVD), can be configured to decode any video sequence or syntax [xv]. In a typical

application, the UVD initially has limited or no knowledge of the decoding methods required

for a particular video bitstream. The encoder sends a set of configuration commands, the

Decoder Description Syntax (DDS) which define the decoder design in terms of a set of

primitive operations and interconnections. The UVD generates and connects new functional

processing units according to these commands and can then proceed to decode the video

bitstream. At a later point, the encoder may signal a change in configuration by sending

new Decoder Description Syntax; the UVD implements the change and continues to decode

the bitstream using the changed syntax or functionality. FCVC has the following benefits

compared with conventional approaches:

(i) Any video decoding processes may be defined and created using a set of low-level con-

figuration commands, or primitives for describing decoding operations. New algorithms

can be implemented in decoders in a very short timescale which implies a short time-to-

market.
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(ii) Re-configuration can be carried out dynamically, enabling on-the-fly adaptation. This

allows the codec to change its configuration to suit the video sequence, delivering optimal

or near-optimal compression efficiency.

(iii) A single Universal Video Decoder can be re-configured to support any existing or new

coded video format.

(iv) The Universal Video Decoder is programmed with only the tools it needs.

Recent efforts have focussed on developing and optimizing a prototype FCVC system [xvi]

and on investigating the potential for combining aspects of FCVC and RVC [xvii].

10.5 Beyond H.264/AVC

First standardized in 2003, H.264/AVC is now a relatively mature technology. Other formats

such as VC-1 and AVS can arguably offer similar performance but H.264 is certainly one of

the leading formats in terms of compression efficiency at the time of writing (early 2010).

The Moving Picture Experts Group (MPEG) and Video Coding Experts Group (VCEG) are

examining the need for a new video compression standard. Following a Call for Evidence [xviii]

several proposals for improved video compression were presented at an MPEG meeting in July

2009. The consensus was that (a) there is likely to be a need for a new compression format, as

consumers demand higher-quality video and as processing capacity improves and (b) there is

potential to deliver better performance than the current state-of-the art. A number of different

techniques were proposed, including decoder-side motion estimation, larger macroblock sizes

(up to 32 × 32), more sophisticated in-loop deblocking filters, adaptive transform sizes and

improved intra prediction. In general, all of these proposed algorithms offer the potential for

better compression performance at the expense of increased computational complexity.

Results of subjective comparison tests of the new proposals led the committee to conclude

that ‘for a considerable number of test cases significant gain over AVC High Profile could be

achieved’ [xix]. For many of the tested video sequences, the proposed new algorithms led to

improvements in subjective quality of one point or more on the MOS scale (Chapter 2). This

implies that there is scope for a new coding format that significantly out-performs H.264/AVC.

The current plan is to set up a Joint Collaborative Team (JCT) of MPEG and VCEG

representatives to work on a new video coding standard. Proposals for the new standard will

be reviewed in 2010 and a new standard could be finalized around 2012/2013. It will aim to

deliver significantly better compression performance than H.264/AVC, probably at a higher

computational cost. A working title for the new standard is still under discussion.

10.6 Summary

H.264/AVC was always conceived as a toolkit of coding algorithms that could be extended

to meet future needs. Recent extensions have included the Scalable Video Coding (SVC) and

Multiview Video Coding (MVC) Annexes, which build on the basic standard to add support

for efficient coding of multiple, correlated video streams. SVC is designed to accommodate

multiple versions of the same video scene, at different spatial and temporal resolutions and

at different bitrates, whereas MVC is intended to handle multiple closely-related views of a

scene. For both SVC and MVC, better compression efficiency is achieved at the expense of
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increased complexity. Despite some market interest in SVC, it remains to be seen whether

either of these extensions will be widely adopted.

Looking beyond H.264/AVC, two trends considered in this chapter are to (a) ‘open up’ video

coding by allowing flexible re-configuration of coding tools and to (b) develop a new, higher-

performance standard that improves compression efficiency. These trends are not necessarily

mutually exclusive. There is likely to be a continued need for better compression efficiency, as

video content becomes increasingly ubiquitous and places unprecedented pressure on restricted

network connections. At the same time, the challenge of handling ever more diverse content

coded in a wide variety of formats makes reconfigurable coding a potentially useful prospect.
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