
- 1 -

Introduction to H.264 Advanced Video Coding

Abstract - We give a tutorial on video coding principles and
standards with emphasis on the latest technology called H.264 or
MPEG-4 Part 10. We describe a basic method called block-based
hybrid coding employed by most video coding standards. We use
graphical illustration to show the functionality. This paper is
suitable for those who are interested in implementing video codec
in embedded software, pure hardwired, or a combination of both.

I. Introduction

Digitized video has played an important role in many
consumer electronics applications including VCD, DVD,
video phone, portable media player, video conferencing,
video recording, e-learning etc. In order to provide
solutions of high quality (high frame resolution, high frame
rate, and low distortion) or low cost (low bit rate for storage
or transmission) or both, video compression is indispensable.
Advancement in semiconductor technology makes possible
efficient implementation of effective but computationally
complicated compression methods.

Because there are a wide range of target applications
from low-end to high-end under various constraints such as
power consumption and area cost, an application-specific
implementation may be pure software, pure hardwired, or
something in between. In order to do an optimal
implementation, it is essential to fully understand the
principles behind and algorithms employed in video coding.
Starting with MPEG-1[1] and H.261 [2], video coding
techniques/standards have gone through several generations.

The latest standard is called H.264 (also called
MPEG-4 AVC, Advanced Video Coding defined in MPEG-4
Part 10) [3][4][5]. Compared with previous standards, H.264
achieves up to 50% improvement in bit-rate efficiency. It has
been adopted by many application standards such as HD
DVD [6], DVB-H [7], HD-DTV [8], etc. Therefore, its
implementation is a very popular research topic to date. In
this tutorial paper, we introduce the essential features of
H.264.

The rest of this paper is organized as following. In
Section II, we give an outline of the block-based hybrid
video coding method. In Section III, we describe in more
detail each basic coding function. Finally, in Section IV, we
draw some conclusions.

II. Block-Based Hybrid Video Coding

A digitized video signal consists of a periodical

sequence of images called frame. Each frame consists of a
two dimensional array of pixels. Each pixel consists of three
color components, R, G and B. Usually, pixel data is
converted from RGB to another color space called YUV in
which U and V components can be sub-sampled. A
block-based coding approach divides a frame into
macroblocks each consisting of say 16x16 pixels. In a 4:2:0
format, each MB consists of 16x16 = 256 Y components and
8x8 = 64 U and 64 V components. Each of three components
of an MB is processed separately.

Fig. 1 shows a pseudo-code description of how to
compress a frame MB by MB. To compress an MB, we use a
hybrid of three techniques: prediction, transformation &
quantization, and entropy coding. The procedure works on a
frame of video. For video sequence level, we need a top
level handler, which is not covered in this paper. In the
pseudo code, ft denotes the current frame to be compressed
and mode could be I, P, or B.

Prediction tries to find a reference MB that is similar to
the current MB under processing so that, instead of the
whole current MB, only their (hopefully small) difference
needs to be coded. Depending on where the reference MB
comes from, prediction is classified into inter-frame
prediction and intra-frame prediction. In an inter-predict (P
or B) mode, the reference MB is somewhere in a frame
before or after the current frame, where the current MB
resides. It could also be some weighted function of MBs

procedure encode_a_frame (ft, mode)

for I = 1, N //** N: #rows of MBs per frame
for J = 1, M //** M: #columns of MBs per frame

Curr_MB = MB(ft, I, J);
case (mode)

I: Pred_MB = Intra_Pred (f’t, I, J);
P: Pred_MB = ME (f’t-1, I, J);
B: Pred_MB = ME (f’t-1, f’t+1, I, J);

Res_MB = Curr_MB – Pred_MB;
Res_Coef = Quant(Transform(Res_MB));
Output(Entropy_code(Res_Coef));

Reconst_res = ITransform(IQuant(Res_Coef)) ;
Reconst_MB = Reconst_res + Pred_MB;
Insert(Reconst_MB, f’t) ;

end encode_a_frame;

Fig. 1. Pseudo Code for Block-Based Hybrid Coding
a Video Frame

Jian-Wen Chen Chao-Yang Kao Youn-Long Lin

Department of Computer Science
National Tsing Hua University

Hsin-Chu, TAIWAN 300
Tel : +886-3-573-1072
Fax : +886-3-572-3694

e-mail : ylin@cs.nthu.edu.tw.

- 2 -

from multiple frames. In an intra-predict (I) mode, the
reference MB is usually calculated with mathematical
functions of neighboring pixels of the current MB.

The difference between the current MB and its
prediction is called residual error data (residual). It is
transformed from spatial domain to frequency domain by
means of discrete cosine transform. Because human visual
system is more sensitive to low frequency image and less
sensitive to high frequency ones, quantization is applied
such that more low frequency information is retained while
more high frequency information discarded.

The third and final type of compression is entropy
coding. A variable-length coding gives shorter codes to more
probable symbols and longer codes to less probable ones
such that the total bit count is minimized. After this phase,
the output bit stream is ready for transmission or storage.

There is also a decoding path in the encoder. Because in
the decoder side only the reconstructed frame instead of the
original frame is available, we have to use a reconstructed
frame as the reference for prediction. Therefore, in the
bottom part of Fig. 1, we obtain the restored residual data by
performing inverse quantization and then inverse
transformation. Adding the restored residual to the predicted
MB, we get the reconstructed MB that is then inserted to the
reconstructed frame f’t. Now, the reconstructed frame can be
referred to by either the current I-type compression or future
P-type or B-type prediction.

In the next section, we explain in more detail each of
the video coding functions invoked in the pseudo code.

III. Basic Video Coding Functions

A. Prediction

Prediction exploits the spatial or the temporal
redundancy of a video sequence so that only the difference
between actual and predict instead of the whole image data
need to be encoded. There are two types of prediction: intra
prediction for I-type frame and inter prediction for P-type
(Predictive) and B-type (Bidirectional Predictive) frame.

Intra Prediction -- There exists high similarity among
neighboring blocks in a video frame. Consequently, a block
can be predicted from its neighboring pixels of already
coded and reconstructed blocks. The prediction is carried out
by means of a set of mathematical functions.

In H.264/AVC, an I-type 16x16 4:2:0 MB has its
luminance component (one 16x16) and chrominance
components (two 8x8 blocks) separately predicted. There are
many ways to predict a macroblock as illustrated in Fig. 2.
The luminance component may be intra-predicted as one
single INTRA16x16 block or 16 INTRA4x4 blocks. When
using the INTRA4 4 case, each 4 4 block utilizes one of

nine prediction modes (one DC prediction mode and eight
directional prediction modes). When using the INTRA16 16

case, which is well suited for smooth image area, a uniform

prediction is performed for the whole luminance component
of a macroblock. Four prediction modes are defined. Each
chrominance component is predicted as a single 8x8 block
using one of four modes.

Fig. 2. Overview of H.264 intra prediction modes

Inter Prediction (Motion Estimation) -- High quality
video sequences usually have high frame rate at 30 or 60
frames per second (fps). Therefore, two successive frames in
a video sequence are very likely to be similar. The goal of
inter prediction is to utilize this temporal redundancy to
reduce data need to be encoded. In Fig. 3, for example, when
encoding frame t, we only need to encode the difference
between frame t-1 and frame t (i.e., the airplane) instead of
the whole frame t. This is called motion estimated
inter-frame prediction.

Fig. 3. Successive video frames

In most video coding standards, the block-based motion
estimation (BME) [9] is used to estimate for movement of a
rectangular block from the current frame. For each M x
N-pixel current block in the current frame, BME compares it
with some or all of possible M x N candidate blocks in the
search area in the reference frame for the best match, as
shown in Fig. 4. The reference frame may be a previous
frame or a next frame in P-type coding, or both in B-type
coding. A popular matching criterion is to measure the
residual calculated by subtracting the current block from the
candidate block, so that the candidate block that minimizes

t-1 t

- 3 -

the residual is chosen as the best match. The cost function is
called sum of absolute difference (SAD), which is the sum
of pixel by pixel absolute difference between predicted and
actual image.

Fig. 4. Block-based motion estimation

There are three new features of motion estimation in
H.264: variable block-size, multiple reference frames and
quarter-pixel accuracy.

Variable block-size – Block size determines tradeoff
between the residual error and the number of motion vectors
transmitted. In the previous video coding standards, the
block-size of motion estimation is fixed, such as 8 x 8
(MPEG-1, MPEG-2) or 16 x 16 (MPEG-4). Fixed
block-size motion estimation (FBSME) spends the same
efforts when estimating the motion of moving objects and
background (no motion). This method causes low coding
efficiency. In H.264, each macroblock (16 x16 pixels) may
be split into sub-macroblocks in four ways: one 16 x 16
sub-macroblock, two 16 x 8 sub-macroblocks, two 8 x 16
sub-macroblocks, or four 8 x 8 sub-macroblocks. If the 8 x 8
mode is chosen, each of the four 8 x 8 sub-macroblocks may
be split further in four ways: one 8 x 8 partition, two 8 x 4
partitions, two 4 x 8 partitions or four 4 x 4 partitions.
Therefore, variable block-size motion estimation (VBSME)
uses smaller block size for moving objects and larger block
size for background, as shown in Fig. 5, to increase the
video quality and the coding efficiency.

Fig. 5. Comparisons between FBSME and VBSME

Multiple reference frames -- In previous video coding
standards, there is only one reference frame for motion
estimation. In H.264, the number of reference frames
increases to 5, as shown in Fig. 6, for P frame and to 10 (5
previous frames and 5 next frames) for B frame [10]. More

reference frames result in smaller residual data and,
therefore, lower bit rate. Nevertheless, it requires more
computation and more memory traffic.

Fig. 6. Multiple reference frames for motion estimation

Quarter-pixel accuracy -- In previous video coding
standards, motion vector accuracy is half-pixel at most. In
H.264, motion vector accuracy is down to quarter-pixel and
results in smaller residual data.

B. Compensation

Corresponding to prediction, there is also two kinds of
compensation, intra compensation for I-type frame and inter
compensation for P-type and B-type frame.

Intra Compensation – According to the encoding
process, intra compensation regenerates the current block
pixels by one of 13 modes (9 for Intra4x4 and 4 for
Intra16x16) for luminance component and one of 4 modes
for chrominance components.

Inter Compensation (Motion Compensation) -- Inter
compensation is used in a decoding path to generate the
inter-frame motion predicted (estimated) pixels by using
motion vectors, reference index and reference pixel from
inter prediction, as shown in Fig. 7. In H.264, inter
compensation [11] also allows variable block-size, multiple
reference frames and quarter-pixel accurate motion vector.
Its luminance interpolation uses a 6-tap filter for half-pixel
and a 2-tap filter for quarter pixel while the chrominance one
uses neighboring four integer pixels to predict pixels up to
accuracy of 1/8 pixel. It can refer to forward frames for P
macroblocks and both forward and backward frames for B
macroblocks. It allows arbitrary weighting factors for
bidirectional weighted prediction.

C. Transformation and Quantization

The difference between the actual and predicted data is
called residual error data. Discrete Cosine Transform (DCT)
is a popular block-based transform for image and video
compression. It transforms the residual data from time
domain representation to frequency domain representation.
Because most image and video are low frequency data,

t t-1
t-2

t-3
t-4

t-5

FBSME VBSME

- 4 -

DCT can centralize the coding information.

The main functionality of quantization is to scale down
the transformed coefficients and to reduce the coding
information. Because human visual system is less sensitive
to high frequency image component, some video and image
compression standards may use higher scaling-value
(quantization parameter) for high frequency data.

The H.264 standard employs a 4x4 integer DCT [12].
Fig. 8 illustrates transformation and quantization in H.264
with an example.

5

9

1

19

11

8

10

6

8

4

11

15

10

12

4

7

140

-19

22

-27

-1

-39

18

-32

-6

7

8

-59

7

-92

31

-21

4x4 pixel value

Code transform

W = AXA
t

A=

X

1 1 1 1

2 1 -1 -2

1 -1 -1 1

1 -2 2 -1 W

Post-scaling

Quantization

17

-1

3

-2

0

-2

1

-1

-1

0

1

-5

0

-5

2

-1

Pre-scaling

Inverse quantization

544

-40

96

-80

0

-100

40

-50

-32

0

32

-200

0

-250

80

-50

Z W’

4

8

1

18

13

8

10

5

8

4

10

14

10

12

3

7

X’

Inverse code transform

X’ = BW’B
t

B=

1 1 1 1

1 1/2 -1/2 -1

1 -1 -1 1

1/2 -1 1 -1/2

Fig. 8. Illustrating Transformation and Quantization

In Fig. 8, X is a 4x4 block of residual data. After
integer DCT, we get W, a 4x4 coefficient matrix. Its upper
left portion represents lower frequency components of X
while its lower right portion gives higher frequency

components. Z is the quantized version of W. We can see
that the amount of data is much smaller than that of X, the
original residual data. Z is the information to be
entropy-coded and passed to the decoder part. W’ is the
scale-up (inversely quantized) version of Z. After applying
inverse integer DCT (IDCT) on W’, we get X’, which is the
decoded residual. Note that X’ is not exactly identical to X.
That is, this process is lossy due to the irreversibility of
quantization.

D. In-loop filter

One of the disadvantages of block-based video coding
is that discontinuity is likely to appear at the block edge. In
order to reduce this effect, the H.264 standard employs the
deblocking filter [13] to eliminate blocking artifact and thus
generate a smooth picture.

In the encoder side, deblocking filter can reduce the
difference between the reconstructed block and the original
block. According to some experiments, it can not only
improve PSNR, but also achieve up to 9% bit-rate saving.
Fig. 9 depicts the input and output of deblocking filter.

p1 p0 q0 q1 q2

p3 p2 p1 p0 q0 q1 q2 q3

p3 p2 p1 p0 q0 q1 q2 q3

Reconstructed Picture

Input Luma Pixels

Coding Information

Get bS

Edge Filter

Filtered Pixels

Boundary Strength

QP

Get Threshold

, , indexA

p1 p0 q0 q1 q2

Chroma Pixels

Fig. 9. Deblocking Filter Illustration

 The deblocking filter works on one 16x16 MB at a time.
It filters every boundary defined by 4x4 blocks within the
MB. The deblocking filter consists of a horizontal filtering
across all vertical edges and a vertical filtering across all
horizontal edges. Therefore, for the luma component, it goes
through 4 vertical boundaries and 4 horizontal boundaries
with each boundary requiring 16 filtering operations. For
both chroma components, it goes through 2 vertical
boundaries and 2 horizontal boundaries with each boundary
consisting of 8 filtering operations. As depicted in Fig. 9,
inputs to a filtering operation includes eight luma pixels (p3,

Current
frame

Previously-decoded
frames as reference

Fig. 7. Inter Compensation

- 5 -

p2, p1, p0, q0, q1, q2, q3) or five chroma pixels (p0, q0, q1,
q2, q3), boundary strength, and threshold variables. At most
six luma pixels (p2, p1, p0, q0, q1, q2) or two chroma pixels
(q0, q1) will be modified by the filter. After the whole
reconstructed frame is filtered, it is ready for display as well
as being a reference picture.

 The boundary strength (bS) is used to set the filter
strength. As the boundary strength increasing, it eliminate
more blocking artifact. The threshold variables are used to
distinguish the true edge from the false edge.

E. Entropy Coding

 The entropy encoder is responsible of converting the
syntax elements (quantized coefficients and other
information such as motion vectors, prediction modes, etc)
to bit stream and then the entropy decoder can recover
syntax elements from bit stream. Its function is similar to
that of WinZip, which is commonly used for compressing
files in the Windows Operating System.

 There are two popular entropy coding methods,
variable length coding and arithmetic coding. The former
encodes symbol by looking up a Huffman table. Therefore, it
must represent a symbol with one or more integer number of
bits. On the other hand, arithmetic coding encodes a symbol
by its appearance probability. So, it can represent a symbol
with fractional number of bits and, thus, achieve higher
compression efficiency than variable length coding does.

 The H.264 standard defines two entropy coding
methods: context adaptive variable length coding (CAVLC)
and context based adaptive arithmetic coding (CABAC) [14].
For baseline profile, only CAVLC is employed. For main
profile, both CAVLC and CABAC must be supported.
According to our experiments, CABAC can achieve up to
7% bit rate saving at the expense of more computation
complexity in comparison with CAVLC. Fig. 10 shows the
coding flow of CABAC.

Fig. 9. The CABAC decoding flow

When the CABAC circuit processes a new slice, it first
builds the context table before processing the first
macroblock of the current slice. The basic information unit
is called syntax element. For encoding, it will binarize these
syntax elements before calculating the context value and
then goes on to arithmetic coding. CABAC defines three
arithmetic coding methods: normal decoding, bypass
decoding and terminal decoding. After arithmetic coding, it
proceeds to decode the next syntax element. For CABAC
decoding, we have to convert the decoding result back to
real syntax element value.

Most syntax elements go through the normal decoding
process as shown in Fig. 11. Before decoding we get the
context value through context modeling. Then, the decoder
can look up the context table and get MPS value and pState.
With these variable value, it goes to arithmetic coding. After
arithmetic coding, it will update the context table by looking
up TransIdxLPS table or TransIdxMPS table depending on
whether the decoding result is equivalent to the MPS value.
After entropy encoding, the bit stream is ready for output to
a storage media or transmission medium.

1-632-63

01

00

New
pState

pState

3-632-63

21

10

New
pState

pState

TransIdxLPS Table

TransIdxMPS Table

60 12

32 11

21 00

0-620/12-398

pState MPSContext

Reference
Neighbor data

Context

Modeling

Context Table

Arithmetic
Coding

Fig. 11. Normal Decoding Process in CABAC

IV. Summary and Conclusions

We have given a brief introduction to video coding with
emphasis on H.264, the latest international video coding
standards. Starting from MPEG-1 and H.261, most video
coding standards follow the block-based hybrid coding
approach. Great impact has been achieved with early
generations of standards such as MPEG-1 for VCD and
MPEG-2 for DVD and Digital TV.

Requirement for high quality applications drives
continue development of the next generation standards. As
shown in Table 1, compared with MPEG-4, H.264 calls for
more sophisticated implementation of every part of the
coding process. Fortunately, advancement in semiconductor
manufacturing technology has made their low cost
implementation possible.

Encode Decode

Decode Encode

Init new slice

Build context table

Context modeling

Init new macroblock

Bypass decoding Terminal decoding

End slice

End slice

End MB

Anit-binarization

Next

Normal decoding

Binarization

En. or De.

Syntax element coding

En. or De.Next

- 6 -

Because H.264 was defined targeted towards a wide
range of applications from low bit-rate low-resolution such
mobile video conferencing to high-rate high-definition such
as Ultra HDTV, there will not be a single implementation
method that fits all. One can implement a baseline version
for low end application with software running on an
embedded microprocessor or a DSP core with possible
video-specific instruction extension. For very high end
application, hardwired acceleration of critical functions such
as motion estimation/compensation and deblocking filter, or
even the whole system, might be necessary. There is yet
another approach called application-specific instruction set
processor (ASIP) that defines custom instructions based on
the function of video coding.

No matter which method is employed, there is yet
another tradeoff between implementation completeness and
coding efficiency. Quite often we see an implementation that
trade quality for simplification of implementation. For
example, a deblocking filter may treat all variable-size
blocks as composition of 4x4 blocks or a simple bilinear
interpolation is substituted for the standard 6-tap filter
during sub-pixel motion estimation. This is not encouraged
because it will lose the original spirit of H.264. That is,
achieving big gain by accumulating small gain in every part
of the coding process.

Acknowledgements

This work is supported in part by the National
Science Council of Taiwan under grants no.

the Ministry of Economic

Affairs of Taiwan under grant no. 94-EC-17-A-01-S1-038,
and Taiwan Semiconductor Manufacturing Company
under grant no. NTHU-0416. The authors would like to
thank their colleagues, C. R. Chang, S. Y. Shih, H. C. Tzeng,
C. L. Chiu, and Y. H. Chang, for collaborating in the NTHU
video decoder project.

References

[1] MPEG (Moving Pictures Expert Group), Final Text for
ISO/IEC11172, “Information technology Coding of
moving pictures and associated audio for digital
storage media at up to about 1.5 Mbit/s” , ISO/IEC,
1993.

[2] CCITT Recommendation H.261, International
Telecommunication Union, “Video Codec for
Audiovisual Services at px64 kbit/s”, 1993

[3] “Draft ITU-T recommendation and final draft
international standard of joint video specification
(ITU-T Rec. H.264 | ISO/IEC 14496-10 AVC), “JVT
G050, 2003.

[4] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A.
Luthra, “Overview of the H.264/AVC video coding
standard”, IEEE Transactions on Circuit and System

for Video Technology, pp. 560-576, Jul. 2003.
[5] Iain E. G. Richardson, H.264 and MPEG-4 Video

Compression: Video Coding for Next-generation

Multimedia, John Wiley & Sons, 2003.
[6] Kobota, T.; “HD DVD-overview of next generation

optical disc format”, IT to HD: Visions of
Broadcasting in the 21st Century, The IEE 2-Day
Seminar on (Ref. No. 2004/10760), pp. 213-224, 2004

[7] European Telecommunications Standards Institute
(ETSI) ETS 300 744v1.1.2 (1997-08) : Digital Video
Broadcasting (DVB) ; Framing Structure, Channel
Coding and Modulation for Digital Terrestrial
Television,1997

[8] Code of Federal Regulations. Title 47,
Telecommunications, Parts 70-79 Revised as of Oct.1,
2003

[9] M. Flierl, T. Wiegand, and B. Girod, "A Locally
Optimal Design Algorithm for Block-Based

Multi-Hypothesis Motion-Compensated Prediction"
in Data Compression Conference, pp: 239-248, 1998.

[10] T. Wiegand and B. Girod, “Multi-frame Motion-
Compensated Prediction for Video Transmission”,
Kluwer Academic Publishers, Sept. 2001.

[11] T. Wedi, "Motion Compensation in H.264/AVC", in

IEEE Transactions on Circuits and Systems for Video

Technology.
[12] H. Malvar, A. Hallapuro, M. Karczewicz, and L.

Kerofsky, “Low-Complexity Transform and
Quantization in H.264/AVC”, in IEEE Transactions on

Circuits and Systems for Video Technology, pp:
598-603, Jul. 2003.

[13] D. Marpe, H. Schwarz, T. Wiegand, “Context-based
adaptive binary arithmetic coding in the H.264/AVC
video compression standard”, IEEE Transactions on

Circuits and Systems for Video Technology, pp:
620-636, Jul. 2003.

[14] P. List, A. Joch, J. Lainema, G. Bjntegaard, and M.
Karczewicz, “Adaptive deblocking filter,” IEEE

Transactions on Circuits and Systems for Video

Technology, vol. 13, pp. 614-619, 2003.

Table 1. Comparison between MPEG-4 and H.264

Standard MPEG-4 H.264

Block size 16*16 or 8*8 16*16 to 4*4

Transform 8*8 DCT 4*4 integer DCT

Entropy
coding

VLC VLC,CAVLC, CABAC

Ref frame 1 frame Multiple (5) frames

Picture type I, P, B I, P, B, SI, SP

Coding
efficiency

1 2

Decoder
complexity

1 2.6

Target
applications

Mobile devices
DTV, HD-DVD, Mobile

devices

