
- 1 -

Introduction to H.264 Advanced Video Coding 

Abstract - We give a tutorial on video coding principles and 
standards with emphasis on the latest technology called H.264 or 
MPEG-4 Part 10. We describe a basic method called block-based 
hybrid coding employed by most video coding standards. We use 
graphical illustration to show the functionality. This paper is 
suitable for those who are interested in implementing video codec 
in embedded software, pure hardwired, or a combination of both. 

I. Introduction

Digitized video has played an important role in many 
consumer electronics applications including VCD, DVD, 
video phone, portable media player, video conferencing, 
video recording, e-learning etc.  In order to provide 
solutions of high quality (high frame resolution, high frame 
rate, and low distortion) or low cost (low bit rate for storage 
or transmission) or both, video compression is indispensable. 
Advancement in semiconductor technology makes possible 
efficient implementation of effective but computationally 
complicated compression methods. 

Because there are a wide range of target applications 
from low-end to high-end under various constraints such as 
power consumption and area cost, an application-specific 
implementation may be pure software, pure hardwired, or 
something in between. In order to do an optimal 
implementation, it is essential to fully understand the 
principles behind and algorithms employed in video coding. 
Starting with MPEG-1[1] and H.261 [2], video coding 
techniques/standards have gone through several generations. 

The latest standard is called H.264 (also called 
MPEG-4 AVC, Advanced Video Coding defined in MPEG-4 
Part 10) [3][4][5]. Compared with previous standards, H.264 
achieves up to 50% improvement in bit-rate efficiency. It has 
been adopted by many application standards such as HD 
DVD [6], DVB-H [7], HD-DTV [8], etc. Therefore, its 
implementation is a very popular research topic to date. In 
this tutorial paper, we introduce the essential features of 
H.264.

The rest of this paper is organized as following. In
Section II, we give an outline of the block-based hybrid 
video coding method. In Section III, we describe in more 
detail each basic coding function. Finally, in Section IV, we 
draw some conclusions. 

II. Block-Based Hybrid Video Coding

A digitized video signal consists of a periodical 

sequence of images called frame. Each frame consists of a 
two dimensional array of pixels. Each pixel consists of three 
color components, R, G and B. Usually, pixel data is 
converted from RGB to another color space called YUV in 
which U and V components can be sub-sampled. A 
block-based coding approach divides a frame into 
macroblocks each consisting of say 16x16 pixels. In a 4:2:0 
format, each MB consists of 16x16 = 256 Y components and 
8x8 = 64 U and 64 V components. Each of three components 
of an MB is processed separately.  

Fig. 1 shows a pseudo-code description of how to 
compress a frame MB by MB. To compress an MB, we use a 
hybrid of three techniques: prediction, transformation & 
quantization, and entropy coding. The procedure works on a 
frame of video. For video sequence level, we need a top 
level handler, which is not covered in this paper. In the 
pseudo code, ft denotes the current frame to be compressed 
and mode could be I, P, or B. 

Prediction tries to find a reference MB that is similar to 
the current MB under processing so that, instead of the 
whole current MB, only their (hopefully small) difference 
needs to be coded. Depending on where the reference MB 
comes from, prediction is classified into inter-frame 
prediction and intra-frame prediction. In an inter-predict (P 
or B) mode, the reference MB is somewhere in a frame 
before or after the current frame, where the current MB 
resides. It could also be some weighted function of MBs 

procedure encode_a_frame (ft, mode) 

for I = 1, N      //** N: #rows of MBs per frame 
for J = 1, M  //** M: #columns of MBs per frame 

Curr_MB = MB(ft, I, J); 
case (mode) 

I: Pred_MB = Intra_Pred (f’t, I, J); 
P: Pred_MB = ME (f’t-1, I, J);  
B: Pred_MB = ME (f’t-1, f’t+1, I, J); 

Res_MB = Curr_MB – Pred_MB;  
Res_Coef = Quant(Transform(Res_MB)); 
Output(Entropy_code(Res_Coef)); 

Reconst_res = ITransform(IQuant(Res_Coef)) ;
Reconst_MB = Reconst_res + Pred_MB; 
Insert(Reconst_MB, f’t) ; 

end encode_a_frame; 

Fig. 1. Pseudo Code for Block-Based Hybrid Coding 
a Video Frame 
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from multiple frames. In an intra-predict (I) mode, the 
reference MB is usually calculated with mathematical 
functions of neighboring pixels of the current MB.  

The difference between the current MB and its 
prediction is called residual error data (residual). It is 
transformed from spatial domain to frequency domain by 
means of discrete cosine transform. Because human visual 
system is more sensitive to low frequency image and less 
sensitive to high frequency ones, quantization is applied 
such that more low frequency information is retained while 
more high frequency information discarded.  

The third and final type of compression is entropy 
coding. A variable-length coding gives shorter codes to more 
probable symbols and longer codes to less probable ones 
such that the total bit count is minimized. After this phase, 
the output bit stream is ready for transmission or storage. 

There is also a decoding path in the encoder. Because in 
the decoder side only the reconstructed frame instead of the 
original frame is available, we have to use a reconstructed 
frame as the reference for prediction. Therefore, in the 
bottom part of Fig. 1, we obtain the restored residual data by 
performing inverse quantization and then inverse 
transformation. Adding the restored residual to the predicted 
MB, we get the reconstructed MB that is then inserted to the 
reconstructed frame f’t. Now, the reconstructed frame can be 
referred to by either the current I-type compression or future 
P-type or B-type prediction.

In the next section, we explain in more detail each of 
the video coding functions invoked in the pseudo code. 

III. Basic Video Coding Functions

A. Prediction 

Prediction exploits the spatial or the temporal 
redundancy of a video sequence so that only the difference 
between actual and predict instead of the whole image data 
need to be encoded. There are two types of prediction: intra 
prediction for I-type frame and inter prediction for P-type 
(Predictive) and B-type (Bidirectional Predictive) frame. 

Intra Prediction -- There exists high similarity among 
neighboring blocks in a video frame. Consequently, a block 
can be predicted from its neighboring pixels of already 
coded and reconstructed blocks. The prediction is carried out 
by means of a set of mathematical functions.  

In H.264/AVC, an I-type 16x16 4:2:0 MB has its 
luminance component (one 16x16) and chrominance 
components (two 8x8 blocks) separately predicted. There are 
many ways to predict a macroblock as illustrated in Fig. 2. 
The luminance component may be intra-predicted as one 
single INTRA16x16 block or 16 INTRA4x4 blocks. When 
using the INTRA4 4 case, each 4 4 block utilizes one of 

nine prediction modes (one DC prediction mode and eight 
directional prediction modes). When using the INTRA16 16 

case, which is well suited for smooth image area, a uniform 

prediction is performed for the whole luminance component 
of a macroblock. Four prediction modes are defined. Each 
chrominance component is predicted as a single 8x8 block 
using one of four modes.  

Fig. 2. Overview of H.264 intra prediction modes 

Inter Prediction (Motion Estimation) -- High quality 
video sequences usually have high frame rate at 30 or 60 
frames per second (fps). Therefore, two successive frames in 
a video sequence are very likely to be similar. The goal of 
inter prediction is to utilize this temporal redundancy to 
reduce data need to be encoded. In Fig. 3, for example, when 
encoding frame t, we only need to encode the difference 
between frame t-1 and frame t (i.e., the airplane) instead of 
the whole frame t. This is called motion estimated 
inter-frame prediction. 

Fig. 3. Successive video frames

In most video coding standards, the block-based motion 
estimation (BME) [9] is used to estimate for movement of a 
rectangular block from the current frame. For each M x 
N-pixel current block in the current frame, BME compares it
with some or all of possible M x N candidate blocks in the
search area in the reference frame for the best match, as
shown in Fig. 4. The reference frame may be a previous
frame or a next frame in P-type coding, or both in B-type
coding. A popular matching criterion is to measure the
residual calculated by subtracting the current block from the
candidate block, so that the candidate block that minimizes

t-1 t
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the residual is chosen as the best match. The cost function is 
called sum of absolute difference (SAD), which is the sum 
of pixel by pixel absolute difference between predicted and 
actual image. 

Fig. 4. Block-based motion estimation 

There are three new features of motion estimation in 
H.264: variable block-size, multiple reference frames and
quarter-pixel accuracy.

Variable block-size – Block size determines tradeoff 
between the residual error and the number of motion vectors 
transmitted. In the previous video coding standards, the 
block-size of motion estimation is fixed, such as 8 x 8 
(MPEG-1, MPEG-2) or 16 x 16 (MPEG-4).  Fixed 
block-size motion estimation (FBSME) spends the same 
efforts when estimating the motion of moving objects and 
background (no motion). This method causes low coding 
efficiency. In H.264, each macroblock (16 x16 pixels) may 
be split into sub-macroblocks in four ways: one 16 x 16 
sub-macroblock, two 16 x 8 sub-macroblocks, two 8 x 16 
sub-macroblocks, or four 8 x 8 sub-macroblocks. If the 8 x 8 
mode is chosen, each of the four 8 x 8 sub-macroblocks may 
be split further in four ways: one 8 x 8 partition, two 8 x 4 
partitions, two 4 x 8 partitions or four 4 x 4 partitions. 
Therefore, variable block-size motion estimation (VBSME) 
uses smaller block size for moving objects and larger block 
size for background, as shown in Fig. 5, to increase the 
video quality and the coding efficiency. 

Fig. 5. Comparisons between FBSME and VBSME 

Multiple reference frames -- In previous video coding 
standards, there is only one reference frame for motion 
estimation. In H.264, the number of reference frames 
increases to 5, as shown in Fig. 6, for P frame and to 10 (5 
previous frames and 5 next frames) for B frame [10]. More 

reference frames result in smaller residual data and, 
therefore, lower bit rate. Nevertheless, it requires more 
computation and more memory traffic. 

Fig. 6. Multiple reference frames for motion estimation 

Quarter-pixel accuracy -- In previous video coding 
standards, motion vector accuracy is half-pixel at most. In 
H.264, motion vector accuracy is down to quarter-pixel and
results in smaller residual data.

B. Compensation 

Corresponding to prediction, there is also two kinds of 
compensation, intra compensation for I-type frame and inter 
compensation for P-type and B-type frame. 

Intra Compensation – According to the encoding 
process, intra compensation regenerates the current block 
pixels by one of 13 modes (9 for Intra4x4 and 4 for 
Intra16x16) for luminance component and one of 4 modes 
for chrominance components. 

Inter Compensation (Motion Compensation) -- Inter 
compensation is used in a decoding path to generate the 
inter-frame motion predicted (estimated) pixels by using 
motion vectors, reference index and reference pixel from 
inter prediction, as shown in Fig. 7. In H.264, inter 
compensation [11] also allows variable block-size, multiple 
reference frames and quarter-pixel accurate motion vector. 
Its luminance interpolation uses a 6-tap filter for half-pixel 
and a 2-tap filter for quarter pixel while the chrominance one 
uses neighboring four integer pixels to predict pixels up to 
accuracy of 1/8 pixel. It can refer to forward frames for P 
macroblocks and both forward and backward frames for B 
macroblocks. It allows arbitrary weighting factors for 
bidirectional weighted prediction. 

C. Transformation and Quantization 

The difference between the actual and predicted data is 
called residual error data. Discrete Cosine Transform (DCT) 
is a popular block-based transform for image and video 
compression. It transforms the residual data from time 
domain representation to frequency domain representation. 
Because most image and video are low frequency data, 

t t-1
t-2

t-3
t-4

t-5

FBSME VBSME 
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DCT can centralize the coding information. 

The main functionality of quantization is to scale down 
the transformed coefficients and to reduce the coding 
information. Because human visual system is less sensitive 
to high frequency image component, some video and image 
compression standards may use higher scaling-value 
(quantization parameter) for high frequency data.  

The H.264 standard employs a 4x4 integer DCT [12]. 
Fig. 8 illustrates transformation and quantization in H.264 
with an example. 
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Fig. 8. Illustrating Transformation and Quantization 

In Fig. 8, X is a 4x4 block of residual data. After 
integer DCT, we get W, a 4x4 coefficient matrix. Its upper 
left portion represents lower frequency components of X 
while its lower right portion gives higher frequency 

components. Z is the quantized version of W. We can see 
that the amount of data is much smaller than that of X, the 
original residual data. Z is the information to be 
entropy-coded and passed to the decoder part. W’ is the 
scale-up (inversely quantized) version of Z. After applying 
inverse integer DCT (IDCT) on W’, we get X’, which is the 
decoded residual. Note that X’ is not exactly identical to X. 
That is, this process is lossy due to the irreversibility of 
quantization. 

D. In-loop filter 

One of the disadvantages of block-based video coding 
is that discontinuity is likely to appear at the block edge. In 
order to reduce this effect, the H.264 standard employs the 
deblocking filter [13] to eliminate blocking artifact and thus 
generate a smooth picture. 

In the encoder side, deblocking filter can reduce the 
difference between the reconstructed block and the original 
block. According to some experiments, it can not only 
improve PSNR, but also achieve up to 9% bit-rate saving. 
Fig. 9 depicts the input and output of deblocking filter. 

p1 p0  q0 q1 q2 

p3 p2 p1 p0  q0 q1 q2 q3 

p3 p2 p1 p0  q0 q1 q2 q3

Reconstructed Picture

Input Luma Pixels

Coding Information 

Get bS 

Edge Filter 

Filtered Pixels 

Boundary Strength 

QP 

Get Threshold

, , indexA

p1 p0  q0 q1 q2

Chroma Pixels 

Fig. 9. Deblocking Filter Illustration 

  The deblocking filter works on one 16x16 MB at a time. 
It filters every boundary defined by 4x4 blocks within the 
MB. The deblocking filter consists of a horizontal filtering 
across all vertical edges and a vertical filtering across all 
horizontal edges. Therefore, for the luma component, it goes 
through 4 vertical boundaries and 4 horizontal boundaries 
with each boundary requiring 16 filtering operations. For 
both chroma components, it goes through 2 vertical 
boundaries and 2 horizontal boundaries with each boundary 
consisting of 8 filtering operations. As depicted in Fig. 9, 
inputs to a filtering operation includes eight luma pixels (p3, 

Current
frame

Previously-decoded 
frames as reference

Fig. 7. Inter Compensation 
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p2, p1, p0, q0, q1, q2, q3) or five chroma pixels (p0, q0, q1, 
q2, q3), boundary strength, and threshold variables. At most 
six luma pixels (p2, p1, p0, q0, q1, q2) or two chroma pixels 
(q0, q1) will be modified by the filter. After the whole 
reconstructed frame is filtered, it is ready for display as well 
as being a reference picture. 

  The boundary strength (bS) is used to set the filter 
strength. As the boundary strength increasing, it eliminate 
more blocking artifact. The threshold variables are used to 
distinguish the true edge from the false edge. 

E. Entropy Coding 

  The entropy encoder is responsible of converting the 
syntax elements (quantized coefficients and other 
information such as motion vectors, prediction modes, etc) 
to bit stream and then the entropy decoder can recover 
syntax elements from bit stream. Its function is similar to 
that of WinZip, which is commonly used for compressing 
files in the Windows Operating System. 

  There are two popular entropy coding methods, 
variable length coding and arithmetic coding. The former 
encodes symbol by looking up a Huffman table. Therefore, it 
must represent a symbol with one or more integer number of 
bits. On the other hand, arithmetic coding encodes a symbol 
by its appearance probability. So, it can represent a symbol 
with fractional number of bits and, thus, achieve higher 
compression efficiency than variable length coding does. 

  The H.264 standard defines two entropy coding 
methods: context adaptive variable length coding (CAVLC) 
and context based adaptive arithmetic coding (CABAC) [14]. 
For baseline profile, only CAVLC is employed. For main 
profile, both CAVLC and CABAC must be supported. 
According to our experiments, CABAC can achieve up to 
7% bit rate saving at the expense of more computation 
complexity in comparison with CAVLC. Fig. 10 shows the 
coding flow of CABAC.  

Fig. 9. The CABAC decoding flow 

When the CABAC circuit processes a new slice, it first 
builds the context table before processing the first 
macroblock of the current slice. The basic information unit 
is called syntax element. For encoding, it will binarize these 
syntax elements before calculating the context value and 
then goes on to arithmetic coding. CABAC defines three 
arithmetic coding methods: normal decoding, bypass 
decoding and terminal decoding. After arithmetic coding, it 
proceeds to decode the next syntax element. For CABAC 
decoding, we have to convert the decoding result back to 
real syntax element value. 

Most syntax elements go through the normal decoding 
process as shown in Fig. 11. Before decoding we get the 
context value through context modeling. Then, the decoder 
can look up the context table and get MPS value and pState. 
With these variable value, it goes to arithmetic coding. After 
arithmetic coding, it will update the context table by looking 
up TransIdxLPS table or TransIdxMPS table depending on 
whether the decoding result is equivalent to the MPS value. 
After entropy encoding, the bit stream is ready for output to 
a storage media or transmission medium. 
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Fig. 11. Normal Decoding Process in CABAC 

IV. Summary and Conclusions

We have given a brief introduction to video coding with 
emphasis on H.264, the latest international video coding 
standards. Starting from MPEG-1 and H.261, most video 
coding standards follow the block-based hybrid coding 
approach. Great impact has been achieved with early 
generations of standards such as MPEG-1 for VCD and 
MPEG-2 for DVD and Digital TV.  

Requirement for high quality applications drives 
continue development of the next generation standards. As 
shown in Table 1, compared with MPEG-4, H.264 calls for 
more sophisticated implementation of every part of the 
coding process. Fortunately, advancement in semiconductor 
manufacturing technology has made their low cost 
implementation possible. 
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Because H.264 was defined targeted towards a wide 
range of applications from low bit-rate low-resolution such 
mobile video conferencing to high-rate high-definition such 
as Ultra HDTV, there will not be a single implementation 
method that fits all. One can implement a baseline version 
for low end application with software running on an 
embedded microprocessor or a DSP core with possible 
video-specific instruction extension. For very high end 
application, hardwired acceleration of critical functions such 
as motion estimation/compensation and deblocking filter, or 
even the whole system, might be necessary. There is yet 
another approach called application-specific instruction set 
processor (ASIP) that defines custom instructions based on 
the function of video coding. 

No matter which method is employed, there is yet 
another tradeoff between implementation completeness and 
coding efficiency. Quite often we see an implementation that 
trade quality for simplification of implementation. For 
example, a deblocking filter may treat all variable-size 
blocks as composition of 4x4 blocks or a simple bilinear 
interpolation is substituted for the standard 6-tap filter 
during sub-pixel motion estimation. This is not encouraged 
because it will lose the original spirit of H.264. That is, 
achieving big gain by accumulating small gain in every part 
of the coding process. 
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Table 1. Comparison between MPEG-4 and H.264 

Standard MPEG-4 H.264

Block size 16*16 or 8*8 16*16 to 4*4 

Transform 8*8 DCT 4*4 integer DCT 

Entropy 
coding 

VLC VLC,CAVLC, CABAC

Ref frame 1 frame Multiple (5) frames 

Picture type I, P, B I, P, B, SI, SP 

Coding 
efficiency 

1 2 

Decoder 
complexity

1 2.6 

Target 
applications

Mobile devices 
DTV, HD-DVD, Mobile 

devices 




