
Over-the-air Deployment of Applications in Multi-Platform Environments

Tore Fjellheim
Queensland University of Technology,

126 Margaret St. Brisbane, Queensland, 4000,
t.fjellheim@qut.edu.au

Abstract

Over-the-air (OTA) delivery of applications is im-
portant to support as it enables easy deployment and
upgrades to applications, thereby reducing the disrupt-
ing effect which installations may have on mobile users.
The mobile environment is highly heterogeneous, hence
OTA servers must be able to deliver customised appli-
cations and also adapt their delivery mechanism to var-
ious protocols. This paper outlines our experience in
designing an adaptive platform to enable heterogeneous
OTA delivery. We have utilised the 3DMA architecture
which includes features such as changing interactions,
disconnection support and dynamic delivery of applica-
tions. We have extended previous work on this archi-
tecture by using it for implementing an adaptable web-
server to support OTA over HTTP. A simple case study
found that by allowing JIT packaging of data and be-
haviour, delivery of both content and behaviour can be
tailored to the current context. This eliminates the need
for pre-packaged deployment solutions that are difficult
to employ in environments with dynamic variations in
resources and context.

1. Introduction

It is becoming increasingly important to support
over-the-air (OTA) delivery of applications . This is es-
pecially true for mobile devices, where delivering new
applications to support changing context, or upgrading
existing applications should be done as easily as possi-
ble. Users should not have to surrender their devices to
computer specialists, or have to connect to a powerful
desktop computer, in order to receive new application
updates. OTA delivery allows users to receive new ap-
plications and updates anytime and anywhere, enabling
users to easily continue with their work. The hetero-
geneity of devices is, however, is a major problem for
application providers. There are an increasing number

of different types of devices being used, with each sup-
porting different protocols and platforms. Mobile device
support for Java, may for example vary from very lim-
ited support in case of the CLDC to very powerful J2EE
devices. Even for Java, the write-once run-anywhere
paradigm is therefore no longer true. Because of this
heterogeneity, the protocols for delivery to various de-
vices vary, and application servers must be able to sup-
port a wide variety of middleware, protocols, and plat-
forms. Nevertheless. changing between protocols and
adding new protocols should not require rewriting exist-
ing protocols or applications.

OTA delivery protocols can provide applications
which are tailored according to the context of the device
and the user. Limited memory, processing power, and
bandwidth may restrict what functionality can be deliv-
ered, and the user’s situation may determine what parts
are selected for delivery. In order to support this type
of delivery, applications must be component based and
have appropriate metadata to enable the system to locate
the correct components for deployment.

The first contribution of this paper is an outline of
important design decisions in designing mobile applica-
tions for OTA deployment. We also outline what type
of meta-data is required of components to enable easy
selection of correct components for deployment. Our
second contribution is, extending existing work on the
3DMA architecture [7], by desinging and implementing
an OTA server capable of multi-platform delivery. This
OTA server allows us to change the delivery protocol ac-
cording to device and user context. As a more general
principle, we argue that the same techniques can be used
to facilitate many types of context aware service execu-
tion. This paper discusses deployment of applications,
however the 3DMA architecture aims at supporting the
full lifecycle of mobile applications including, offload-
ing, disconnection support and composition. These is-
sues are however outside the scope of this paper.

This paper will firstly outline related work in the
area of mobile programming and delivery before we out-

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

IPR2025-01147
Apple EX1035 Page 1

line how to develop mobile applications, and describe
them using appropriate metadata. Then we show exam-
ples of protocols for delivery of applications and how
our architecture adapts to different user and device con-
text. We then give a case example, and evaluate the sys-
tem. Finally our our future work will be summarised
before concluding.

2. Related Work

Several standards for how applications can be de-
livered to the mobile devices currently exist. The MIDP
2.01 specification describes a HTTP protocol for deliv-
ery, as does the WAP OTA and OSGi2 standard. The
problem with current implementations of these systems
is that they only allow full application deployment. An
application is delivered as a stand-alone Java JAR file.
Upgrading or incremental delivery is difficult, as these
are not component based. Programs are always deliv-
ered in their entirety. In addition, programs are typically
legacy type Java programs which use synchronous com-
munication for interactions, that complicates swapping
components.

Research projects described by Gu et.al [10] and
the Spectre project [8] only consider legacy applications
which are typically very static. These projects do not
consider the delivery of applications to the device, but
rather the offloading of applications already on the de-
vice.

Taconet et.al [13] outlined how context aware deliv-
ery could be done to devices, and the Sparkle project [1]
also outlined a mechanism for composing such appli-
cations by selecting the most appropriate components.
Both of these projects considered delivery only within
one platform, and assumed only one protocol for de-
livery. There is little decoupling between components,
again making the process of changing an application
after assembly very difficult. These projects mainly
addresses more the actual selection algorithms, which
compliment our work in that we are able to plug in any
selection algorithm to our protocols.

Several research projects exist which consider de-
coupled communication in mobile devices, such as Lime
[12] and Limbo [5]. These systems also only support
one protocol, and therefore fail to interact with outside
systems. Assumptions are made that all devices and
users run the same system, and therefore the same pro-
tocols.

Although previous work has looked at how to
deploy functionality depending on data, no previous

1java.sun.com/products/midp/
2www.osgi.org

project, to our knowledge, has looked at varying the de-
livery protocol according to the context. Thus we will
show how we can build programs which use decoupled
communication, thereby making it easier to deploy com-
ponents (including upgrades), rather than entire applica-
tions. We will then show how we can assemble such
programs and change the delivery protocol according to
the context of the device.

3. Programming for Dynamic Deployment

In this section we consider three important aspects
when programming applications for dynamic deploy-
ment on multiple platforms. Firstly, they should be com-
ponent based, secondly we require an appropriate meta-
data description, and finally, interactions should be de-
coupled. Each of these issues are detailed in the follow-
ing sub-sections.

3.1. Components

To enable incremental delivery of applications and
upgrades to occur, applications must be built from com-
ponents. Components in our system are an aggregation
of objects, similar to FarGo [14]. As the first step in
creating the components we encourage the separation of
data and behaviour. Keeping data and state separated
from behaviour makes replacement easier, as we need
not move state between components. Behaviour can be
deleted and replaced easily, if necessary, without affect-
ing the current state of the application.

One main problem in component design is deter-
mining the granularity. Our approach is based around
the notion of activities. Mobile applications are oriented
around the user and his activities, and aim to support
the user in performing a set of activities. Components
should therefore be separated according to the activity
they perform on behalf of the user.

The object oriented approach defines objects around
the notion of real world entities, encapsulating the data
within an object, which also contains all the required
behaviour to modify that data. We call this a horizontal
partitioning strategy. A single user activity may use sev-
eral objects, but only a little of the available behaviour
or data in the objects. This has the disadvantage of users
having to load in code which may remain unused. Load-
ing in unnecessary code increases the load on the net-
work, drains unnecessary battery and wastes memory
space. We, therefore suggest a vertical partitioning strat-
egy, based around the notion of a program slice [11]. A
program slice is a subset of an application which con-
tains only the code which affects a certain variable. A
component is therefore a slice containing only what is

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

IPR2025-01147
Apple EX1035 Page 2

relevant for a given activity. The basic strategy in de-
signing components can be divided into four steps:

• Define user activities

• Define application activities

• Create initial components

• Aggregate components

Firstly, we define the user activities. These are often
very high level descriptions of what a user wants to do
with the application, such as “Write a Document” or
“Draw a Picture”. We take these activities and decom-
pose them into application activities. These are either,
(1) activities which the application performs when the
user executes the activity, or (2) activities that the appli-
cation must perform before the user performs the activ-
ity. Data distribution is a typical example of the latter,
where the user must have available data before any ac-
tivities can be performed. The next step is to determine
which of the following categories each application ac-
tivity belongs to:

• User Interface (GUI)

• Processing (Proc)

• Communication (Coms)

If an activity fits into several of these categories, it
should be separated into finer grained activities. After
this process each activity is mapped to exactly one com-
ponent, and each component contains only one activity.
When loading the components we can now load exactly
the application activities required for a given user ac-
tivity. However, these components may be very fine
grained, which may lead to unnecessary communica-
tions overhead. As components can not be decomposed
during runtime, the next part consists of aggregating the
components. Before detailing this process, we discuss
the component metadata required.

3.2. Metadata

To enable the system to locate the correct compo-
nents for deployment, a metadata description must be
attached. When performing intelligent delivery of mo-
bile applications, the component descriptions must be
matched with user and device context. To enable this,
we define metadata based around the notion of Context
Validity, where each component is described in terms of
the context it can operate under, or in other words, which
context it is valid in [3]. As an example, we consider the
following context elements:

• Activity

• Java Platform

• Code-Size

The activity element specifies the functionality of this
component. If one component implements two very dif-
ferent activities, the programmer may consider creating
two components instead. We have currently adopted a
simplified view of the “activity” element, and describe
it using a tuple consisting of {activity,type}. For exam-
ple a user interface component may be described using
“View GIF”, or “Edit Text”. More advanced descrip-
tions can be plugged into the architecture, and a potential
future direction is to look at more elaborate descriptions
of activity, if required.

To cater for various devices, sometimes it is re-
quired to create several components for various differ-
ent platforms. The Java Platform element, specifies
which platform(s) a component runs under. A compo-
nent which implements an Activity “View GIF” and Java
Platform “MIDP CDC”, could be replicated so that other
devices which has other platforms can run the compo-
nent as well.

The Code-Size element, specifies an approximate
size of a component. Because of runtime variations, the
size may sometimes be difficult to determine accurately.
This element is used to estimate the memory require-
ments of the device, and thereby to deploy only the com-
ponents suitable for the current constraints.

Alternatively other context elements can be used to
determine the validity of components. For example data
components may not require the activity field, but could
for example be described in terms of which location it
is valid in, or which user is allowed to access it. Be-
havior components can be described using context ele-
ments such as screen size, or bandwidth requirements.
All these elements aid the selection algorithm in finding
the most appropriate component for a given context and
assist the programmer in determining the granularity of
components.

The final decision of the granularity of components
is up to the developer, however context validity can be
a useful way of outlining how components should be
decomposed. For example. sometimes increasing the
validity of components will increase their resource con-
sumption. To use the context validity to determine gran-
ularity, the general rule-of-thumb is that components
should have a large context validity (useful in many con-
texts), but should take up little resources on the device.

As mentioned, a component can not be decomposed
during runtime, yet components can be assembled from
a set of component parts before deployment. Each of

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

IPR2025-01147
Apple EX1035 Page 3

these component parts can implement a certain part of
the component. Thus several versions of a component
part may exist. When a component is assembled for
delivery, the part which implements the correct version
of the required functionality is selected. After this, the
component is assembled, and can be instantiated. An
example of a component part could be an object which
communicates with native code on the desired platform.
This part would be selected based on which context va-
lidity is required.

For most current deployment systems, it is typically
up to the user to find the correct application to perform
the required task. It is often impossible to find the cor-
rect components based on the data the user wishes to,
for example, process or display. To enable this in our
system, data components are described to fit with the ac-
tivity descriptions of behaviour components. Part of the
data is described as a tuple {type, name}. If a behaviour
component requests certain processing to take place on
a data component, and the local system can not handle
this request, another request may be sent remotely for
deployment (or potentially remote execution) of a com-
ponent which can handle the specified activity and data
type.

3.3. Aggregating Components

This section describes three simple rules for aggre-
gating components. This aggregation is performed man-
ually by the developer. Firstly, the developer need to
look for activities which are identical. This could occur
if two user activities performed the same processing as
part of their application activities. Identical application
activities can be reused by multiple user activities. If
there are two components with the exact same validity
for all elements, one can be removed and need not be
considered during component selection.

The second step in determining granularity is to use
the context validity of components. If two components
have very different validity, they are best kept separately.
If the components are similar, they may be aggregated
into a component which performs two application ac-
tivities provided this aggregation does not significantly
reduce the context validity for each of the supported ac-
tivities. The definition of significant will depend on the
type of context element which changes. For example, if
one component with activity a1 is platform dependent,
and another with activity a2 is not platform dependent,
combining them into one component would cause a2 to
be platform dependent as well, and would result in a sig-
nificant change. If neither were platform dependent, and
combining them would only cause a very slight memory
consumption increase then the aggregation could be jus-

tified. In some cases the creation of several components
with the same activity may be required. Each compo-
nent should then have a distinct context validity. This
means that different devices could perform the activity
by using a different component suitable for their context.

The final method we use to determine granularity, is
the way the activity is accessed, and its relation to other
activities. For this, we outline three structures which aid
in allowing incremental deployment. (Figure 1)

The first structure can be used where each compo-
nent adds extra value to a user activity, however, only the
first component is required. By delivering more com-
ponents, we enhance the activity but consume more re-
sources. If remote processing is available, then the lo-
cal components could access the remote components to
achieve the same result as having all components locally.
A disconnection would result in a lower quality, but the
user would not completely lose the desired functional-
ity. An example of this is a word processor which has
three activities, text editing, spell checking and gram-
mar checking. The text editor component calls the spell
checker component, which in turn calls the grammar
component. Depending on the resources on the device,
the device can support all activities, or only a subset of
these activities.

The second structure is similar to the first in that the
first component is required. However in this case there
is no priority between the components which the initial
component calls. A subset of the components can be
chosen according to the preferences of the user or the
device context. For example, if each of the subsets per-
form a different aspect to rendering of a page to be dis-
played on the device, and the device has little resource,
the device can select to only render a few aspects. The
picture would still be shown, but not in full detail.

The final structure is used where the data that the
components modify is very tightly integrated with the
behaviour. For example a graphics editor user interface
component may have several activities such as “draw
line”, “draw square” or “draw circle”. These activities
can not be separated into different components as this
would make it difficult for the user to change between
the activities, since the user would also have to change
between user interfaces. To allow for variable deliv-
ery we can therefore create several versions, ranging
from components with few activities and little resource
consumption, to many activities and high resource con-
sumption. The appropriate version can be delivered to
the device upon request, and can later be upgraded if de-
sired. If the activities do not have to run locally, then
a component with the full functionality can be accessed
remotely to allow the user to use all activities provided
a connection is available.

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

IPR2025-01147
Apple EX1035 Page 4

A1

A2

A3
A1

A2

A3
A1 A2

A1

A2

A1

A3

1) 2) 3)

Figure 1. Structures for incremental functionality deployment

3.4. Interactions

To enable incremental delivery of components,
communication between components should be sepa-
rated from the actual processing performed. Compo-
nents should be able to change what other components
they interact with, so that we can easily select various
components depending on context. This would allow
delivery of applications where, depending on context,
certain components would run locally and others would
run remotely. For this reason, components should use
event-based, decoupled communication.

Decoupled interactions can be supported in various
ways depending on the capabilities of the platform. To
support such execution on the server, and on certain ca-
pable devices we use a space based approach, this is fur-
ther discussed in Section 4.1. In order to support decou-
pled interactions on limited mobile devices, the devel-
oper must implement several component parts, as dis-
cussed in Section 3.2. This includes component prox-
ies. These proxies implement the communication be-
tween the components. When a component call is per-
formed, the proxy object starts a separate thread which
calls the component, thereby allowing control to return
to the caller immediately.

Each component which can potentially run on the
server, requires that a remote-access caller is specified.
A remote-access caller is another proxy component part
which runs on the device and sends messages to the
server space. The component running remotely (in the
AOS) can then read this message and execute. Alter-
natively the remote-access caller may instead of execut-
ing the component remotely, send a request for it to be
deployed as a new component/application. The proxy
object mentioned in the previous paragraph, links to the
standard implementation of the component if it is run-
ning locally, or links to the remote-access caller if the
component is installed remotely. This requires the gen-
eration of an extra connector in the space. This con-
nector receives calls from the remote-access callers and
translates them into objects which are put in the space.
If the remote components require the ability to send data
to a local component, another local “incoming message
handler” component part can be created. This compo-
nent part accepts all incoming requests and notifies the

local component.

4. Dynamic Protocols for Deployment

After programming the application, a series of steps
will have to be taken to select the appropriate compo-
nents and to package them correctly for delivery. The
packaging or selection algorithms are based on matching
of the capabilities of the device with the context validity
of the components. In this section we focus on how we
can change between different algorithms dynamically
during runtime. As all services used in the protocols are
decoupled, and have no knowledge of each other, the al-
gorithms can be easily changed during runtime if more
advanced searching is required. The 3DMA architecture
aims to be able to change interactions dynamically, and
thereby allow more general context aware and person-
alised execution of services. This article uses dynamic
delivery protocols as a case example of how changing
interaction can allow context aware service execution.

This article will firstly present the architecture.
Then we will give examples of how we extend the ar-
chitecture by implementing two OTA delivery protocols,
before finally showing how the system can change be-
tween these protocols depending on the user context.

4.1. The 3DMA Architecture

The 3DMA architecture is based around an object
space based system called Active Object Spaces (AOS).
Each entity which communicates with the space uses a
variation of the standard tuple space operations defined
by Gelernter [9]. These are read, write, take and notify.
The 3DMA architecture extends the AOS by defining
another set of entities called workers. Workers function
as a rule base, and can react to the existence or entry
of new objects in the space by writing new objects to
the AOS, by creating new workers, or by transforming
the objects. Workers can be enabled or disabled during
runtime. Each worker has its own thread of control and
therefore runs autonomously and can be changed inde-
pendently of each other.

In the 3DMA architecture, each entity which com-
municates with the space has a set of post-conditions

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

IPR2025-01147
Apple EX1035 Page 5

and a set of pre-conditions. The post-conditions edit the
output of the entity, according to a specified rule. This
rule can be created by users according to user prefer-
ences, or the system to enforce a system policy. The
pre-conditions will notify the entity of when it can exe-
cute. The notification can be triggered by a certain re-
quest, a change in context, or a combination of these.
The decision to execute is not taken by the service itself,
but by the worker. The separation of the actual process-
ing from the decision of when to start processing is a key
to enabling context aware service selection. The work-
ers can furthermore be enabled or disabled depending
on the client context or capabilities. Through disabling
a pre-condition a certain functionality of an entity can be
inhibited. This is similar to the notion of inhibitors taken
by Braione [2], which can be used to enable or disable
component behaviour. We apply this to context aware
service execution, previously proposed by Cole et.al [4].
We extend their work by allowing service execution to
vary depending on any type of context, not just location.

Another important entity in the 3DMA system are
the connectors. Connectors allow systems which do not
have the correct capabilities to connect to the space. The
connector translates incoming messages to an AOS mes-
sage which can be stored in the space. A connector may
for example implement a connection to a MIDP device
which does not have the capabilities to use the libraries
required for a direct connection with the AOS, or it can
be used to implement a Bluetooth connection to a remote
system with a different protocol.

Internally in the AOS, objects are packaged with
their class files in Augmented Objects. A connector im-
plementing a connection to a device that is running the
mobile AOS, will read the Augmented Object and trans-
late it into a Mobile Augmented Object (MAO). The
MAO contains both the serialised object and the class
files. This object can then be received by the mobile
device, which installs the application.

4.2. Example Protocols

Two alternative delivery protocols are described in
this section. It is assumed that there is a way to retrieve
the context (capabilities) of the local device through
a well known query address. Although currently not
all devices supports this ability, several industry stan-
dards (WAP, CC/PP) have been proposed to enable this.
In addition, the space, loaded on the device, supports
capability queries. This assumption can therefore be
made without loss of generality. The protocols illustrate
how our architecture can, through changing interactions,
swap between protocols according to client capabilities.
The protocols will both analyse the clients capabilities,

s1 cq

ws

Analyse

Package
JAR

Package
MAO

R
CA

Meta-
Data

SC

Comp
Storage

JAR

URI

MAO

1

2

3

4

5

Figure 2. A protocol for OTA delivery to a
MIDP CLDC device

and package the application accordingly. The two pro-
tocols outlined below are for:

• The MIDP CDC platform OTA delivery protocol
with a simple communication space. Delivery and
installation must occur via the MIDP OTA proto-
col.

• Standard 3DMA delivery protocol with a more
elaborate class-loading space. Delivery and instal-
lation occurs directly in the space.

Protocol 1 The first protocol provides context aware
delivery to a MIDP CLDC device running a simple
space with only basic communication facilities. This is
illustrated in Figure 2.

The device will start by calling a GET on the adap-
tive web-server connector (S1) with the URI of the ap-
plication it wants (R). The URI is given to the capability
query connector (CQ), which queries the device’s capa-
bilities and stores them in the space (CA). This causes
a request description to be created, and a session id
is attached to this description. This session id is not
changed by the various services in the request, and so
the session remains throughout processing to distinguish
it from other concurrent requests by other devices.

After the request has been created, the server stores
the capabilities for future lookup. The capabilities and
the requested URI are picked up by a service which anal-
yses the context and the application (Analyse). The ser-
vice then selects the correct subset of components for

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

IPR2025-01147
Apple EX1035 Page 6

s1 cq

ws

Analyse

Package
JAR

Package
MAO

R
CA

Meta-
Data

SC

Comp
Storage

JAR

URI

MAO

1

2

3

4

Figure 3. A protocol for OTA delivery to a
Personal Java device

delivery. The output is a list of selected components
(SC). The packaging service (Package JAR) reads the
class files and assembles them into a JAR file. The se-
lection and packaging process is done without human
intervention. This JAR is stored as a temporary object in
the space. The URI for this JAR is returned to the device.
The device can use this URI to retrieve the assembled
application through the Web Server connector (WS). If
the application requires state transfer, then the remote
space will assign the data to a particular URI, which the
application, upon startup, can use for retreival.

Protocol 2 The second protocol is outlined in Figure
3. It is similar to the first protocol until after the Analyse
process. When the list of selected components has been
produced the components are taken from the space and
serialised. They are packaged with their class files, in a
AOS format, and sent to the mobile device through the
initial connector (S1). The mobile device can then sim-
ply unserialise and define the class files, before restart-
ing the application.

4.3. Changing between the protocols

The difference between the abovementioned proto-
cols is in the way the program is packaged and delivered.
Also, the application in protocol 1 will itself have to re-
trieve its state after deployment, whereas in protocol 2,
the state is transported with the application. If protocols
require different transport mechanisms (e.g. bluetooth),

we can easily change between connectors.
In these protocols, workers are used as a type of

session information specific to a user, or potentially a
group of users with the same device types. One worker
will only listen to requests regarding a particular user.
When the capabilities of a device are sent to the space,
the workers for the user associated with these capabili-
ties will react accordingly. This may cause certain work-
ers to be enabled, or disabled based on the description of
the capabilities.

When the capability description and current context
is delivered in the space, the workers will be notified and
react accordingly. If the platform capabilities of the de-
vice are specified to be of type MIDP, the pre-condition
of the Package MAO service will be disabled, because it
is not valid in the current context of the device. This
results in the final delivery being a URI. The second
protocol, is activated when the platform on the device
is specified to be of type AOS. In this case the Package
JAR will be disabled, and a Mobile Augmented Object
will be delivered. Again, since workers in this case are
specific to one user, the service will only be disabled for
this user. Other users may have other services activated.

The workers in this example is created by the pro-
grammer, deployed with the services, and remain un-
changed throughout the system execution. However, it
is possible to deploy workers during runtime and even
change existing workers. This can be used to allow
users themselves to choose how to orchestrate services
depending on changes in context. We are currently in-
vestigating interfaces to the workers, to allow insertion,
removal and editing.

The outlined protocols are examples of pull by the
user, however push protocols are possible as well. In a
push protocol, a data item, or a behaviour component is
selected to be sent to the device by a service outside the
mobile device. In case of a data item, a query is sent to
the device to find out if the device has the capabilities to
process the data. If no such behaviour is found, then the
appropriate behaviour is selected remotely and deployed
according to the capabilities of the device, as discussed
above. If the remote system simply seeks to push be-
haviour to the device, it is packaged and sent according
to the mentioned protocols.

In the outlined case we changed the delivery mech-
anism depending on the device platform. These con-
text elements change fairly infrequently. It is possible
that workers can be used similarly to adapt interaction
and protocols to changes in location or bandwidth. For
example, we can introduce a new service which com-
presses state and data before sending it to the device.
This service could be defined valid only when the band-
width drops below a certain threshold. When the band-

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

IPR2025-01147
Apple EX1035 Page 7

width increases, no compression is done. This service
could also be valid only if the remote device had a re-
mote space with the capabilities to uncompress the data.

5. Case Study: Delivery of Surveys

The outlined system is advantageous in case char-
acterised by a high level of heterogenity, where device
characteristics can not be predicted, or where the fre-
quency of deployment is almost as high as the frequency
of use. Such as where each application is only used once
or twice before being discarded. One example of such a
case include surveys. Surveys are a popular way of ac-
quiring useful information to achieve improvements in
software design or enterprise processes as well as to get
user feedback. Typically surveys are sent to many inde-
pendent users. To start the survey, the system will push
the surveys to potentially mobile users. The users can
instantly fill in the survey and return the results. This al-
lows the persons conducting the survey to retrieve data
in real-time and analyse the data quicker than in tradi-
tional paper surveys.

Survey users may be employees in a corporation
or students at a university. Such users are usually not
equipped with mobile devices by the corporation they
are involved with, but instead carry their own personal
devices. This causes the environment to become very
heterogeneous. When delivering the surveys to many
users, it is therefore important that a heterogeneous net-
work is supported through multiple protocols.

A survey application contains forms to be filled out,
tasks to be performed, and the behaviour to support the
forms and tasks. As an example, two types of users are
considered. One user has a mobile phone with J2ME,
and the other user has a PDA with direct connection to
the AOS. Each of these users require different deploy-
ment strategies, but the same application.

5.1. Architecture of Application

There is only one user activity for this application,
which is “fill in survey”. This user activity requires four
application activities. These are:

• display survey

• submit survey

• validate survey

• store survey

The “store survey” and “validate survey” activities are in
separate components. The activities of display and sub-
mit are done by a single GUI viewer component. There

is only one data component, and that is the survey itself.
One viewer exists for each type of device which needs
to be supported. The viewer components are annotated
with metadata to show which platform it supports. There
is only one generic Java validation component, thus the
validation is kept separate from the viewer component
to maximise the context validity of the validation com-
ponent. If the mobile device can not run the validation
component, this activity is performed remotely instead,
and is therefore not packaged in the JAR or Augmented
Object delivered to the device. Instead, a remote-access
caller is delivered, which performs the required call to
the validation component. Also an “incoming message
handler” is delivered in case the validation component
sends a failure message back to the viewer. The de-
cision of whether to do validation locally or remotely
would then also depend on factors such as the size of the
remote-caller and the message handler component parts.

The survey application uses the first structure de-
scribed in Figure 1 between the viewer and the valida-
tion, and the third structure between the display and sub-
mit activities. The data-flow of the application is shown
in Figure 4. The application is activated upon deploy-
ment, and the survey viewer component reads the survey
form and displays it. When the survey is completed, the
viewer component sends it further for validation. This
interaction occurs through the local space. If there is no
local component which can handle the validation, vali-
dation is performed remotely. If the validation compo-
nent finds that all inserted data is valid, the data is sent
further to the database. If the data is not valid, then the
survey is returned to the viewer to allow the user to enter
different data.

5.2. Evaluation

An advantage of the AOS system, is the ease of
which push-deployment is possible. When the system
detects a user with an AOS installation, the application
is packaged accordingly using the protocol described in
Section 4.2. The survey data is selected with the rele-
vant viewer and validation component, and the applica-
tion is then pushed along with the survey to the device
as a Mobile Augmented Object. The viewer and val-
idation component are installed separately, and can be
upgraded or removed separately of each other at a later
stage. If the system detects that the remote device is low
on memory, only the viewer component will be installed
with the survey.

The basic protocol used in J2ME OTA, relies on an
application management system (AMS) to install appli-
cations dynamically. This AMS takes as input, a JAD
or JAR file which is then loaded and installed after user

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

IPR2025-01147
Apple EX1035 Page 8

 UI
 Platform

Survey Viewer
{display survey,
submit survey}

Survey

Completed
Survey

 Processing

Survey Validation
{validate survey}

Valid
Survey

Invalid
Survey

Survey
DB

{Store survey}

Figure 4. The application components and data-flow

a confirmation is given by the user. In a standard in-
stallation, the user will use the AMS or a web-browser
to view a web-page containing links to available appli-
cations (JAD or JAR file). When the user selects one
such file, the AMS will install the selected application.
During execution of our protocol, the initial request for
the application is interrupted by a capability query. This
caused problems because it was only possible to have
one open connection at a time. This thereby caused the
web-browser request to be aborted. To overcome this
issue, the protocol gives no reply to the HTTP request
(unless in case of a failure), and the final result is pushed
to the device to the local space (assumed installed). The
space would then call the AMS which installed the ap-
plication. The space would run on a dedicated known
port, and the device would start up the application us-
ing the J2ME push-registry which initiates applications
automatically when data is available on their port.

The amount of reuse acheived between platforms
were limited in this application. The actual validation
processing could be replicated, however it would only
be worthwhile, for example if this processing was com-
plex to re-implement. The increased complexity of the
mobile application renders the question of whether it
is worth the extra effort. In addition to the standard
programming, the developer must create proxy objects,
remote-access objects, and an extra connector. In future
work we will be examining if it is possible to generate
these objects automatically (or parts of them) based on a
UML specification [6]. This would lessen the develop-
ment burden, and make it easier to develop flexible mo-
bile applications for multiple platforms. Design reuse is
more likely achievable than code reuse.

6. Future Work and Conclusion

This paper has outlined an architecture for mobile
devices, and shown how it can be used to support de-
ployment in heterogeneous networks. The aim of the

3DMA project is to find requirements for how mobile
applications should be built, propose an architecture for
handling such applications and outline a methodology
for development. Our methodology aims at providing
developers with a way to design applications for mobile
applications, in such a way that as must as possible of the
same application can be utilized by devices regardless of
current resource constraints and resource availability.

Mobile device developers, lack design guidelines
for how such mobile applications are to be built. In this
paper we have outlined initial steps towards a method-
ology for mobile applications. In our future work we
will continue to investigate how to create applications
in mobile environments, and we will aim at providing
a more detailed methodology and libraries which devel-
opers can use for rapid development of adaptable mobile
applications. Another future direction is to include the
notion of personalisation into the mobile applications.
This paper did not consider policies or user preferences
during selection of services, however this is also part of
future work. Our methodology will enable developers to
easily incorporate workers into their applications to al-
low for context aware coordination and reconfiguration
of both the remote and local services. We are designing a
toolkit which will create pre- and post-conditions based
on a UML specification and allow for context aware re-
configuration of the application.

There are several important aspects which have not
yet been addressed properly in systems for over-the-air
deployment of mobile applications. These systems
mainly lack the ability to deliver stateful applications to
various platforms by changing the protocol according
to the given capabilities of the device. Typical systems
assume that the remote device supports the correct
protocol. Supporting dynamic deployment is vital in
mobile environments. As new standards and platforms
are being introduced, and users wield many different
types of devices, the ability of OTA application servers
to adjust protocols and content according to the capabil-

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

IPR2025-01147
Apple EX1035 Page 9

ities for the device and the context of the user becomes
critical.

Acknowledgments The author is funded by an SAP-
sponsored scholarship. This work is also funded by
ARC Linkage Project LP0455394.

References

[1] N. M. Belaramani, C. Wang, and F. C. M. Lau. Dynamic
component composition for functionality adaption in per-
vasive environments. In Proceedings of The 9th IEEE
Workshop on Future Trends of Distributed Computing
Systems, San Juan, Puerto Rico, May 2003.

[2] P. Braione and G.P. Picco. On calculi for context-
aware coordination. In Proceedings of the 6th Inter-
national Conference on Coordination Models and Lan-
guages, 2004.

[3] Felix Bübl. Introducing context-based constraints. In
Fundamental Approaches to Software Engineering, 5th
International Conference, pages 249–263, April 2002.

[4] A. Cole, S. Duri, J. Munson, J. Murdock, and D. Wood.
Adaptive service binding middleware to support mobil-
ity. In Proceedings of The 23rd International Conference
on Distributed Computing Systems Workshops, Provi-
dence, Rhode Island, May 2003.

[5] N. Davies, S. P. Wade, A. Friday, and G.S. Blair. Limbo:
A tuple space based platform for adaptive mobile ap-
plications. In Proceedings of The 23rd International
Conference on Open Distributed Processing/Distributed
Platforms, 1997.

[6] M. Dumas, T. Fjellheim, S. Milliner, and J. Vayssiere.
Event-based coordination of process-oriented composite
applications. In Third International Conference on Busi-
ness Process Management, September 2005.

[7] T. Fjellheim, S. Milliner, and M. Dumas. The 3dma mid-
dleware infrastructure for mobile applications. In Pro-
ceedings of the 2004 International Conference on Em-
bedded and Ubiquitous Computing, 2004.

[8] J. Flinn, S. Park, and M. Satyanarayanan. Balancing
performance, energy and quality in pervasive computing.
In Proceedings of The 22rd International Conference on
Distributed Computing, 2002.

[9] D. Gelernter. Generative communication in linda. ACM
Transactions on Programming, 2(1):80–112, January
1985.

[10] X. Gu, K. Nahrstedt, A. Messer, I. Greenberg, and
D. Milojicic. Adaptive offloading inference for deliv-
ering applications in pervasive computing environments.
In Proceedings of The 1st International Conference on
Pervasive Computing and Communications, Fort Worth,
Texas, March 2003.

[11] Andrea De Lucia. Program slicing: Methods and appli-
cations. In First IEEE International Workshop on Source
Code Analysis and Manipulation, pages 142–149. IEEE
Computer Society Press, Los Alamitos, California, USA,
November 2001.

[12] G. P. Picco, A. L. Murphy, and G.-C. Roman. Lime:
Linda meets mobility. In Proceedings of The 21st Inter-
national Conference on Software Engineering, Los An-
geles, California, May 1999.

[13] C. Taconet, E. Putrycz, and G. Bernard. Context aware
deployment for mobile users. In Proceedings of the 7th
International Computer Software and Applications Con-
ference, 2003.

[14] Y. Weinsberg and I. Ben-Shaul. A programming model
and system support for disconnected-aware applications
on resource-constrained devices. In Proceedings of the
24th international conference on Software engineering,
2002.

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

IPR2025-01147
Apple EX1035 Page 10

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

