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A hash function is any function that takes arbitrary-length input and has fixed-length

output, so H : {0,1}  → {0,1} . Think of H(m) as a “fingerprint” of m. Calling H(m) a fin‐

gerprint suggests that different messages always have different fingerprints. But we

know that can’t be true — there are infinitely many messages but only 2  possible out‐

puts of H.

Somewhere out there is a pigeonhole with infinitely many pigeons in it.
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Let’s look a little closer. A true “unique fingerprinting function” would have to be injec‐

tive (one-to-one). No hash function can be injective, since there must exist many x and

x’ with x ≠ x’ but H(x) = H(x’). Let us call (x,x’) a collision under H if it has this property.

We know that collisions must exist, but what if the problem of finding a collision was

hard for polynomial-time programs? Recall that in this course we often don’t care

whether something is impossible in principle — it is enough for things to be merely

computationally difficult in this way. A hash function for which collision-finding is

hard would effectively serve as an injective function for our purposes.

Roughly speaking, a hash function H is collision-resistant if no polynomial-time pro‐

gram can find a collision in H. Another good name for such a hash function might be

“pseudo-injective.” In this chapter we discuss definitions and applications of collision

resistance.

12.1: Defining Security

Superficially, it seems like we have already given the formal definition of security: A

hash function H is collision-resistant if no polynomial-time algorithm can output a

collision under H. Unfortunately, this definition is impossible to achieve!

Fix your favorite hash function H. We argued that collisions in H definitely exist in a

mathematical sense. Let x,x’ be one such collision, and consider the adversary ? that

has x,x’ hard-coded and simply outputs them. This adversary runs in constant time

and finds a collision in H. Of course, even though ? exists in a mathematical sense, it

might be hard to write down the code of such an ? given H. But (and this is a subtle

technical point!) security definitions consider only the running time of ?, and not the

effort that goes into finding the source code of ?.2
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The reason we don’t define security this way is that as soon as someone does find the

code of such an ?, the hash function H is “broken” forever. Nothing anyone does (like

choosing a new key) can salvage it.

The way around this problem is to introduce some random choice made by the user of

the hash function, who wants collisions to be hard to find. A hash function family is a

set ℋ of functions, where each function H ∈ ℋ is a hash function with the same output

length. We will require that collisions are hard to find, in a hash function chosen ran‐

domly from the family. This is enough to foil the hard-coded-collision distinguisher

mentioned above. Think of a hash function family as having exponentially many func‐

tions in it — then no polynomial-time program can have a hard-coded collision for all

of them.

Now the difficulty of finding collisions rests in the random choice of functions. An ad‐

versary can know every fact about ℋ, it just doesn’t know which H ∈ ℋ it is going to be

challenged on to find a collision. It’s similar to how the security of other cryptographic

schemes rests in the random choice of key. But in this case there is no secrecy in‐

volved, only unpredictability. The choice of H is made public to the adversary.

Note also that this definition is a mismatch to the way hash functions are typically

used in practice. There, we usually do have a single hash function that we rely on and

standardize. While it is possible to adapt the definitions and results in this lecture to

the setting of fixed hash functions, it’s simpler to consider hash function families. If

you’re having trouble connecting the idea of a hash function family to reality, imagine

taking a standardized hash function like MD5 or SHA3 and considering the family of

functions you get by varying the initialization parameters in those standards.

Towards the Formal Definition

The straight-forward way to define collision resistance of a hash family ℋ is to say that

the following two libraries should be indistinguishable:

2
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IndistinguishableLibraries1

Indeed, this is a fine definition of collision resistance, and it follows in the style of pre‐

vious security definitions. The two libraries give different outputs only when called on

(x,x’) where x ≠ x’ but H(x) = H(x’) — i.e., an H-collision.

However, it turns out to not be a particularly convenient definition to use when prov‐

ing security of a construction that involves a hash function as a building block. To see

why, think back to the security of MACs. The difference between the two ℒ  li‐

braries is in the verification subroutine VER. And indeed, constructions that use MACs

as a building block often perform MAC verification. The libraries — in particular, their

VER subroutine — are a good fit for how MACs are used.

On the other hand, cryptographic constructions don’t usually explicitly test for colli‐

sions when using a hash function. Rather, they typically compute the hash of some val‐

ue and move on with their business under the assumption that a collision has never

been encountered. To model this in a security definition, we use the approach below:

Definition 12.1

Let ℋ be a family of hash functions. Then ℋ is collision-resistant if ℒ  ≋ ℒ ,

where:

mac-*

ℋ
cr-real

ℋ
cr-fake
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CollisionResistantDefinition1

Discussion

The two libraries have identical behavior, except in the event that ℒ  triggers

a “self destruct” statement. Think of this statement as an exception that kills the

entire program, including the distinguisher. In the case that the distinguisher is

killed in this way, we take its output to be 0. Suppose a distinguisher A always out‐

puts 1 under normal, explosion-free execution. Since an explosion happens only in

ℒ , A’s advantage is simply the probability of an explosion. So if the two li‐

braries are supposed to be indistinguishable, then it must be that self destruct

happens with only negligible probability.

In ℒ  we have given the associative array “H ” a somewhat suggestive name.

During normal operation, H  [y] contains the unique value seen by the library

whose hash is y. A collision happens when the library has seen two distinct values

x and x’ that hash to the same y. When the library sees the second of these values

x’, it computes H(x’) = y and discovers that H [y] already exists but is not equal to

x’. This is the situation in which the library self destructs.

Why do we make the library self destruct when it sees a collision, rather than just

returning some error indicator? The reason is simply that it’s easier to just assume

there is no collision than to check the return value of HASH after each call.

Think of ℒ  as a world in which you take hashes of things but you might see a

cr-fake

cr-fake

cr-fake
−1

−1

−1

cr-real
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collision and never notice. Then ℒ  is a kind of thought-experiment in which

some all-seeing judge ends the game immediately if there was ever a collision

among the values that you hashed. The judge’s presence simplifies things a bit.

There’s no real need to explicitly check for collisions yourself; you can just go

about your business knowing that as long as the game is still going, the hash func‐

tion is injective among all the values you’ve seen.

The libraries have no secrets! H is public (the adversary can freely obtain it

through GETH). However, note that the library — not the adversary — chooses H.

This random choice of H is the sole source of security.

Since H is public, the adversary doesn’t really need to call the subroutine HASH(x)

to compute H(x) — he could compute H(x) locally. Intuitively, the library is used in a

security proof to model the actions of the “good guys” who are operating on the

assumption that H is collision-resistant. If an adversary finds a collision but never

causes the “good guys” to evaluate H on it, then the adversary never violates their

security assumption.

Other variants of collision-resistance

There are some other variants of collision-resistance that are often discussed in prac‐

tice. We don’t define them formally, but give the rough idea:

Target Collision Resistance.  Given H and H(x), where H ← ℋ and x ← {0,1}  are chosen

randomly, it should be infeasible to compute a value x’ (possibly equal to x) such that

H(x) = H(x’).

Second preimage resistance.  Given H and x, where H ← ℋ and x ← {0,1}  are chosen

randomly, it should be infeasible to compute a value x’ ≠ x such that H(x) = H(x’).

cr-fake

ℓ

ℓ
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These conditions are weaker than the condition of (plain) collision-resistance, in the

sense that if ℋ is collision-resistant, then ℋ is also target collision-resistant and sec‐

ondpreimage resistant. Hence, we focus on plain collision resistance in this course.

12.2: Hash-Then-MAC

In this section we’ll see a simple application of collision resistance. It is a common

theme in cryptography, that instead of dealing with large data it is often sufficient to

deal with only a hash of that data. This theme is true in particular in the context of

MACs.

One particularly simple way to construct a secure MAC is to use a PRF directly as a

MAC. However, PRFs (and in particular, block ciphers) often have a short fixed input

length, making them suitable only for MACs of such short messages. To extend such a

MAC to longer inputs, it suffices to compute a MAC of the hash of the data. This idea is

formalized in the following construction:

Construction 12.2: Hash-Then-MAC

Let M be a MAC scheme with message space ? = {0,1}  and let ℋ be a hash family with

output length n. Then hash-then-MAC (HtM) refers to the following MAC scheme:

MACSchemeCoinstruction1

n
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Claim 12.3

Construction 12.2 is a secure MAC, if ℋ is collision-resistant and M is a secure MAC.

Proof

We prove the security of HtM using a standard hybrid approach.

Chapter10ProofFix7

The starting point is ℒ , shown here with the details of HtM filled in. Our

goal is to eventually reach ℒ , where the VER subroutine returns false unless

(m,t) was generated by the GETMAC subroutine.

HtM
mac-real

mac-fake
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Chapter10ProofFix8

We have applied the MAC security of M, omitting the usual details (factor out, swap li‐

braries, inline). Now VER returns false unless (H(m),t) ∈ ?.
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Chapter10ProofFix9

Here we have applied the security of the hash family ℋ. We have factored out all calls

to H in terms of ℒ , replaced ℒ  with ℒ , and then inlined.ℋ
cr-real cr-real cr-fake
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Chapter10ProofFix10

Now we have simply added another set ?’ which is never actually used. We point out

two things: First, in GETMAC, (y,t) added to ? if and only if (H  [y],t) is added to ?’.

Second, if the last line of VER is reached, then the library has not self destructed. So

H  [y] = m, and in fact H  [y] has never been defined to be anything else. This means

the last line of VER is equivalent to:

(y,t) ∈ ? ⇔ (H  [y],t) ∈ ?’ ⇔ (m,t) ∈ ?’

−1

−1 −1

−1
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Chapter10ProofFix11

We have replaced the condition (H(m),t) ∈ ? with (m,t) ∈ ?’ . But we just argued that

these statements are logically equivalent within the library
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Chapter10ProofFix12

We remove the variable H  and self destruct statements via a standard sequence of

changes (i.e., factor out in terms of ℒ , replace with ℒ , inline). We also re‐

move the now-unused variable ?. The result is ℒ , as desired.

The next-to-last hybrid is the key step where collision-resistance comes into our rea‐

soning. Indeed, a collision would break down the argument. If the adversary manages

to find a collision y = H(m) = H(m’), then it could be that (y,t) ∈ ? and (m,t) ∈ ?’ but (m’,t)

∉ ?. This corresponds to a forgery of HtM in a natural way: Ask for a MAC of m, which

is t = MAC(k,H(m)); then t is also a valid MAC of m’.

12.3: Merkle-Damgård Construction

Constructing a hash function seems like a challenging task, especially given that it

−1

cr-fake cr-real
HtM

mac-fake
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must accept strings of arbitrary length as input. In this section, we’ll see one approach

for constructing hash functions, called the Merkle-Damgård construction.

Instead of a full-fledged hash function, imagine that we had a collision-resistant func‐

tion (family) whose inputs were of a single fixed length, but longer than its outputs. In

other words, suppose we had a family ℋ of functions h : {0,1}  → {0,1} , where t > 0.

We call such an h a compression function. This is not compression in the usual sense

of data compression — we are not concerned about recovering the input from the out‐

put. We call it a compression function because it “compresses” its input by t bits (anal‐

ogous to how a pseudorandom generator “stretches” its input by some amount).

We can apply the standard definition of collision-resistance to a family of compression

functions, by restricting our interest to inputs of length exactly n + t. The functions in

the family are not defined for any other input length.

The following construction is one way to extend a compression function into a full-

edged hash function accepting arbitrary-length inputs:

Construction 12.4: Merkle-Damgård

Let h : {0,1}  → {0,1}  be a compression function. Then the Merkle-Damgård transfor‐

mation of h is MD  : {0,1}  → {0,1} , where:

n+t n

n + t n

h
∗ n
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MerkleDamgardTransformation

The idea of the Merkle-Damgård construction is to split the input x into blocks of size

t. The end of the string is filled out with 0s if necessary. A final block called the “pad‐

ding block” is added, which encodes the (original) length of x in binary.

We are presenting a simplified version, in which MD  accepts inputs whose maximum

length is 2  − 1 bits (the length of the input must fit into t bits). By using multiple pad‐

ding blocks (when necessary) and a suitable encoding of the original string length, the

construction can be made to accomodate inputs of arbitrary length (see the exercises).

The value y  is called the initialization vector (IV), and it is a hard-coded part of the

algorithm. In practice, a more “random-looking” value is used as the initialization vec‐

tor. Or one can think of the Merkle-Damgård construction as defining a family of hash

functions, corresponding to the different choices of IV.

Claim 12.5

Let ℋ be a family of compression functions, and define MD  = {MD  | h ∈ ℋ} (a family of

hash functions). If ℋ is collision-resistant, then so is MD .

h
t

0

ℋ h

ℋ
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Proof

While the proof can be carried out in the style of our library-based security defini‐

tions, it’s actually much easier to simply show the following: given any collision under

MD , we can efficiently find a collision under h. This means that any successful adver‐

sary violating the collision-resistance of MD  can be transformed into a successful

adversary violating the collision resistance of ℋ. So if ℋ is collision-resistant, then so

is MD .

Suppose that x,x’ are a collision under MD . Define the values x ,. . . ,x  and y ,. . . ,y

 as in the computation of MD  (x). Similarly, define x’ ,. . . ,x’  and y’ ,. . . ,y’  as in

the computation of MD  (x’). Note that, in general, k may not equal k’.

Recall that:

MD  (x) = y  = h(y ‖x )

MDh (x’) = y’  = h(y’ ‖x’ )

Since we are assuming MD (x) = MD (x’), we have y  = y’ . We consider two cases:

Case 1: If |x| ≠ |x’|, then the padding blocks x  and x’  which encode |x| and |x’| are

not equal. Hence we have y ‖x  ≠ y’ ‖x’ , so y ‖x  and y’ ‖x’  are a collision

under h and we are done.

Case 2: : If |x| = |x’|, then x

and x’ are broken into the same number of blocks, so k = k’. Let us work backwards

from the final step in the computations of MD  (x) and MD  (x’). We know that:

ProofCases1

If y ‖x  and y’ ‖x’  are not equal, then they are a collision under h and we are

h

ℋ

ℋ

h 1 k + 1 1 k

+ 1 h 1 k’+1 1 k’ + 1

h

h k + 1 k k + 1

k’ + 1 k’ k’ + 1

h h k + 1 k’ + 1

k + 1 k’ + 1

k k + 1 k’ k’ + 1 k k + 1 k’ k’ + 1

h h

k k + 1 k k + 1
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done. Otherwise, we can apply the same logic again to y  and y’ , which are equal by

our assumption.

More generally, if y  = y’ , then either y ‖x  and y’ ‖x’  are a collision under h (and we

say we are “lucky”), or else y  = y’  (and we say we are “unlucky”). We start with the

premise that y  = y’ . Can we ever get “unlucky” every time, and not encounter a colli‐

sion when propagating this logic back through the computations of MD (x) and

MD (x’)? The answer is no, because encountering the unlucky case every time would

imply that x  = x’  for all i. That is, x = x’. But this contradicts our original assumption

that x ≠ x’. Hence we must encounter some “lucky” case and therefore a collision in h.

12.4: Length-Extension Attacks

We showed that MAC(k,H(m)) is a secure MAC, when MAC is a secure MAC for n-bit

messages, and H is collision-resistant. A very tempting way to construct a MAC from a

hash function is to simply let H(k‖m) be the MAC of m under key k.

Unfortunately, this method turns out to be insecure in general (although in some spe‐

cial cases it may be safe). In particular, the method is insecure when H is public and

constructed using the Merkle-Damgård approach. The key observation is that:

LengthExtensionConstruction1

knowing H(x) allows you to predict the hash of any string that begins with MDPAD(x).

k k

i i i − 1 i i − 1 i

i − 1 i − 1

k k

h

h

i i
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In more detail, suppose H is a Merkle-Damgård hash function with compression func‐

tion h. Imagine computing the hash function on both x and on x’ = MDPAD(x) separate‐

ly. The same sequence of blocks will be sent through the compression function, except

that when computing H(MDPAD(x)) we will also call the compression function on an

additional padding block (encoding the length of x’). To compute the value of H(MD‐

PAD(x)), we don’t need to know anything about x other than H(x)!

The idea applies to any string that begins with MDPAD(x). That is, given H(x) it is pos‐

sible to predict H(z) for any z that begins with MDPAD(x). This property is called

length-extension and it is a side effect of the Merkle-Damgård construction.

Keep in mind several things:

The MD construction is still collision-resistant. Length-extension does not help

find collisions! We are not saying that x and MDPAD(x) have the same hash under

H, only that knowing the hash of one allows you to predict the hash of the other.

Length-extension works as long as the compression function h is public, even

when x is a secret. As long as we know H(x) and |x|, we can compute MDPAD(x)

and predict the output of H on any string that has MDPAD(x) as a prefix.

Going back to the faulty MAC construction, suppose we take t = H(k‖m) to be a MAC of

m. For simplicity, assume that the length of k‖m is a multiple of the block length.

Knowing t, we can predict the MAC of m‖z, where z is the binary encoding of the

length of k‖m (i.e., k‖m‖z = MDPAD(k‖m)). In particular, the MAC of m‖z is h(t‖z’) where

z’ is the binary encoding of the length of k||m‖z.

Importantly, no knowledge of the key k is required to predict the MAC of m‖z given the

MAC of m.

Exercises

12.1: Sometimes when I verify an MD5 hash visually, I just check the first few and the

last few hex digits, and don’t really look at the middle of the hash. Previous: Chapter 11: Message Authentication Codes
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Generate two files with opposite meanings, whose MD5 hashes agree in their first 16

bits (4 hex digits) and in their last 16 bits (4 hex digits). It could be two text files that

say opposite things. It could be an image of Mario and an image of Bowser. I don’t

know, be creative.

As an example, the strings “subtitle illusive planes” and “wantings premises forego” ac‐

tually agree in the first 20 and last 20 bits (first and last 5 hex digits) of their MD5

hashes, but it’s not clear that they’re very meaningful.

MD5StringHashes1

Describe how you generated the files, and how many MD5 evaluations you had to

make.

12.2: Let h : {0,1}  → {0,1}  be a fixed-length compression function. Suppose we for‐

got a few of the important features of the Merkle-Damgård transformation, and con‐

struct a hash function H from h as follows:

Let x be the input

Split x into pieces y ,x ,x ,. . . ,x , where y  is n bits, and each x  is t bits. The

last piece x  should be padded with zeroes if necessary.

For i = 1 to k, set y  = h(y ||x ).

Output y .

Basically, it is similar to the Merkle-Damgård except we lost the IV and we lost the fi‐

nal padding block.

1. Describe an easy way to find two messages that are broken up into the same num‐

ber of pieces, which have the same hash value under H.

2. Describe an easy way to find two messages that are broken up into different num‐

ber of pieces, which have the same hash value under H. Hint: Pick any string of

length n + 2t, then find a shorter string that collides with it.

n + t n

0 1 2 k 0 i

k

i i−1 i

k
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Neither of your collisions above should involve finding a collision in h.

12.3: I’ve designed a hash function H : {0,1}  → {0,1} . One of my ideas is to make H(x) =

x if x is an n-bit string (assume the behavior of H is much more complicated on inputs

of other lengths). That way, we know with certainty that there are no collisions among

n-bit strings. Have I made a good design decision?

12.4: Let H be a hash function and let t be a fixed constant. Define H  as:

Exercise81

Show that if you are given a collision under H  then you can efficiently find a collision

under H.

This means that if ℋ is a collision-resistant hash family then ℋ  = {H |H ∈ ℋ} must

also be collision-resistant.

12.5: In this problem, if x and y are strings of the same length, then we write x ⊆ y if x =

y or x comes before y in standard dictionary ordering.

Suppose a function H : {0,1}  → {0,1}  has the following property. For all strings x and y

of the same length, if x ⊆ y then H(x) ⊆ H(y). Show that H is not collision resistant (de‐

scribe how to efficiently find a collision in such a function).

Hint: Binary search, always recursing on a range that is guaranteed to contain a

collision.

12.6: Suppose a function H : {0,1}  → {0,1}  has the following property. For all strings x

and y of the same length, H(x ⊕ y) = H(x) ⊕ H(y). Show that H is not collision resistant

(describe how to efficiently find a collision in such a function).

∗ n

(t)

(t)

(t) (t)

∗ n

∗ n
 Previous: Chapter 11: Message Authentication Codes

Next: Chapter 13: The RSA Function 

6/26/25, 10:58 PM Chapter 12: Hash Functions – The Joy of Cryptography OE (1st)

https://open.oregonstate.education/cryptographyOEfirst/chapter/chapter-12-hash-functions/ 20/23

IPR2025-01147 
Apple EX1046 Page 20

https://openoregonstate.pressbooks.pub/app/uploads/sites/10/2016/07/Exercise81.png
https://openoregonstate.pressbooks.pub/app/uploads/sites/10/2016/07/Exercise81.png
https://openoregonstate.pressbooks.pub/app/uploads/sites/10/2016/07/Exercise81.png
https://openoregonstate.pressbooks.pub/app/uploads/sites/10/2016/07/Exercise81.png
https://open.oregonstate.education/cryptographyOEfirst/chapter/chapter-11-message-authentication-codes/
https://open.oregonstate.education/cryptographyOEfirst/chapter/chapter-11-message-authentication-codes/
https://open.oregonstate.education/cryptographyOEfirst/chapter/chapter-13-the-rsa-function/
https://open.oregonstate.education/cryptographyOEfirst/chapter/chapter-13-the-rsa-function/


12.7: Generalize the Merkle-Damgård construction so that it works for arbitrary input

lengths (and arbitrary values of t in the compression function).

12.8: Let F be a secure PRF with n-bit inputs, and let ℋ be a collision-resistant hash

function family with n-bit outputs. Define the new function F’((k,H),x) = F(k,H(x)),

where we interpret (k,H) to be its key (H ∈ ℋ). Prove that F’ is a secure PRF with arbi‐

trary-length inputs.

12.9: More exotic issues with the Merkle-Damgård construction:

(a). Let H be a hash function with n-bit output, based on the Merkle-Damgård con‐

struction. Show how to compute (with high probability) 4 messages that all hash to

the same value under H, using only ∼ 2 · 2  calls to H.

Hint: The 4 messages that collide will have the form x‖y, x‖y’, x’‖y and x’‖y’. Use a

length-extension idea and perform 2 birthday attacks.

(b). Show how to construct 2  messages that all hash to the same value under H,

using only O(d · 2 ) evaluations of H.

(c). Suppose H  and H  are (different) hash functions, both with n-bit output.

Consider the function H (x) = H (x)‖H (x). Since H  has 2n-bit output, it is tempting

to think that finding a collision in H  will take 2  = 2  effort.

However, this intuition is not true when H  is a Merkle-Damgård hash. Show that

when H  is Merkle-Damgård, then it is possible to find collisions in H  with only

O(n2 ) effort. The attack should assume nothing about H  (i.e., H  need not be

Merkle-Damgård).

Hint: Applying part (b), first find a set of 2  messages that all have the same hash

under H . Among them, find 2 that also collide under H .

12.10: Let H be a collision-resistant hash function with output length n. Let H  denote

n/2

d

n/2

1 2
∗

1 2
∗

∗ (2n)/2 n

1

1
∗

n/2
2 2

n/2

1 2

∗
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iterating H in a manner similar to CBC-MAC:

Exercise82

Show that H  is not collision-resistant. Describe a successful attack.∗
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