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Preface
At present, development of products and services offering full-motion digital

video is undergoing remarkable progress, and it is almost certain that digital video
will have a significant economic impact on the computer, telecommunications, and
imaging industries in the next decade. Recent advances in digital video hardware
and the emergence of international standards for digital video compression have
already led to various desktop digital video products, which is a sign that the field
is starting to mature. However, much more is yet to come in the form of digital
TV, multimedia communication, and entertainment platforms in the next couple of
years. There is no doubt that digital video processing, which began as a specialized
research area in the 7Os, has played a key role in these developments. Indeed, the
advances in digital video hardware and processing algorithms are intimately related,
in that it is the limitations of the hardware that set the possible level of processing
in real time, and it is the advances in the compression algorithms that have made
full-motion digital video a reality.

The goal of this book is to provide a comprehensive coverage of the principles
of digital video processing, including leading algorithms for various applications, in
a tutorial style. This book is an outcome of an advanced graduate level course in
Digital Video Processing, which I offered for the first time at Bilkent University,
Ankara, Turkey, in Fall 1992 during my sabbatical leave. I am now offering it at
the University of Rochester. Because the subject is still an active research area, the
underlying mathematical framework for the leading algorithms, as well as the new
research directions as the field continues to evolve, are presented together as much
as possible. The advanced results are presented in such a way that the application-
oriented reader can skip them without affecting the continuity of the text.

The book is organized into six parts: i) Representation of Digital Video, includ-
ing modeling of video image formation, spatio-temporal sampling, and sampling
lattice conversion without using motion information; ii) Two-Dimensional (2-D)
Motion Estimation; iii) Three-Dimensional (3-D) Motion Estimation and Segmen-

tation; iv) Video Filtering; v) Still Image Compression; and vi) Video Compression,
each of which is divided into four or five chapters. Detailed treatment of the math-
ematical principles behind representation of digital video as a form of computer
data, and processing of this data for 2-D and 3-D motion estimation, digital video
standards conversion, frame-rate conversion, de-interlacing, noise filtering, resolu-
tion enhancement, and motion-based segmentation are developed. The book also
covers the fundamentals of image and video compression, and the emerging world
standards for various image and video communication applications, including high-
definition TV, multimedia workstations, videoconferencing, videophone, and mobile
image communications. A more detailed description of the organization and the
contents of each chapter is presented in Section 1.3.
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As a textbook, it is well-suited to be used in a one-semester advanced graduate
level course, where most of the chapters can be covered in one 75-minute lecture.
A complete set of visual aids in the form of transparency masters is available from
the author upon request. The instructor may skip Chapters 18-21 on still-image
compression, if they have already been covered in another course. However, it is
recommended that other chapters are followed in a sequential order, as most of
them are closely linked to each other. For example, Section 8.1 provides back-
ground on various optimization methods which are later referred to in Chapter 11.
Chapter 17 provides a unified framework to address all filtering problems discussed
in Chapters 13-16. Chapter 24, “Model-Based Coding,” relies on the discussion of
3-D motion estimation and segmentation techniques in Chapters 9-12. The book
can also be used as a technical reference by research and development engineers
and scientists, or for self-study after completing a standard textbook in image pro-
cessing such as Two-Dimensional Signal and Image Processing by J. S. Lim. The
reader is expected to have some background in linear system analysis, digital sig-
nal processing, and elementary probability theory. Prior exposure to still-frame
image-processing concepts should be helpful but is not required. Upon completion,
the reader should be equipped with an in-depth understanding of the fundamental
concepts, able to follow the growing literature describing new research results in a
timely fashion, and well-prepared to tackle many open problems in the field.

My interactions with several exceptional colleagues had significant impact
on the development of this book. First, my long time collaboration with
Dr. Ibrahim Sezan, Eastman Kodak Company, has shaped my understanding of
the field. My collaboration with Prof. Levent Onural and Dr. Gozde Bozdagi,
a Ph.D. student at the time, during my sabbatical stay at Bilkent University helped
me catch up with very-low-bitrate and object-based coding. The research of sev-
eral excellent graduate students with whom I have worked Dr. Gordana Pavlovic,
Dr. Mehmet Ozkan, Michael Chang, Andrew Patti, and Yucel Altunbasak has made
major contributions to this book. I am thankful to Dr. Tanju Erdem, Eastman Ko-
dak Company, for many helpful discussions on video compression standards, and
to Prof. Joel Trussell for his careful review of the manuscript. Finally, reading
of the entire manuscript by Dr. Gozde Bozdagi, a visiting Research Associate at
Rochester, and her help with the preparation of the pictures in this book are grate-
fully acknowledged. I would also like to extend my thanks to Dr. Michael Kriss,
Carl Schauffele, and Gary Bottger from Eastman Kodak Company, and to several
program directors at the National Science Foundation and the New York State
Science and Technology Foundation for their continuing support of our research;
Prof. Kevin Parker from the University of Rochester and Prof. Abdullah Atalar
from Bilkent University for giving me the opportunity to offer this course; and Chip
Blouin and John Youngquist from the George Washington University Continuing
Education Center for their encouragement to offer the short-course version.

A. Murat Tekalp “tekalp@ee.rochester.edu”
Rochester, NY February 1995
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Time-varying images

Continuous spaGo-temporal image:
s,(xl, x2, t) = sc(x, t), (x, t) E R3 = R x R x R

Image sampled on a la22ife - continuous coordinates:r _I
Sp(%&) = Sp(X,Q ~;J=V~;JElP

Discrete spatio-temporal image:
s(nl,nz,k)=s(n,k), (n,k)EZ3=ZXZXZ.

Still images

Continuous still image:
sk(xl, x2) = sC(x, t)ltzkAt,  x E R’, k fixed integer

Still image sampled on a lattice:
sk(xl, x2) = s,(x,t)lkkAt, k fixed integer

X = [vllnl + VlZn2 $ V13k,  V2lnl + V22n2 + V23klTj
where vij denotes elements of the matrix V,

Discrete still image:
sk(nl, n2) = s(n, Ic), n E Z2, Ic fixed integer

The subscript le may be dropped, and/or subscripts “c’ and
“p” may be added to s(c1, ~2) depending on the context.
sk denotes lexicographic ordering of all pixels in S~(XI,  ~2).

Displacement field from time t to t + eat:

d(zl,xz,t;!At) = [d 1 zl,cz,t;eAt),dz(zl,cz,t;eAt)lT,(
1 E Z, At E R, (XI, 22, t) E R3 or (21, x2, t) E A3

drc,s+e(xl, x2) = d(xl,xz,t;eAt)lt=kat, le, 1 fixed integers

d1 and d2 denote lexicographic ordering of the components of
the motion vector field for a particular (Ic, le + 1) pair.

Instantaneous velocity field

v(xl,xz,q  = [Vl(x1,+2,t),V2(21,C2,t)lT,
(XI, x2, t) E R3 or (II, x2, t) E A3

V&,X2) = v(Xl,Xz,t)lt=kAt t fixed integer

v1 and v2 denote lexicographic ordering of the components of
the motion vector field for a given k.

NOTATION

Chapter 1

BASICS OF VIDEO

Video refers to pictorial (visual) information, including still images and time-varying
images. A still image is a spatial distribution of intensity that is constant with
respect to time. A time-varying image is such that the spatial intensity pattern
changes with time. Hence, a time-varying image is a spatio-temporal intensity
pattern, denoted by sC(xl, 22, t), where x1 and c2 are the spatial variables and t
is the temporal variable. In this book video refers to time-varying images unless
otherwise stated. Another commonly used term for video is “image sequence,”
since a time-varying image is represented by a time sequence of still-frame images
(pictures). The “video signal” usually refers to a one-dimensional analog or digital
signal of time, where the spatio-temporal information is ordered as a function of
time according to a predefined scanning convention.

Video has traditionally been recorded, stored, and transmitted in analog form.
Thus, we start with a brief description of analog video signals and standards in
Section 1.1. We then introduce digital representation of video and digital video
standards, with an emphasis on the applications that drive digital video technology,
in Section 1.2. The advent of digital video opens up a number of opportunities for
interactive video communications and services, which require various amounts of
digital video processing. The chapter concludes with an overview of the digital
video processing problems that will be addressed in this book.

1 .l Analog Video

Today most video recording, storage, and transmission is still in analog form. For
example, images that we see on TV are recorded in the form of analog electrical
signals, transmitted on the air by means of analog amplitude modulation, and stored
on magnetic tape using videocasette recorders as analog signals. Motion pictures
are recorded on photographic film, which is a high-resolution analog medium, or on
laser discs as analog signals using optical technology. We describe the nature of the

1
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analog video signal and the specifications of popular analog video standards in the
following. An understanding of the limitations of certain analog video formats is
important, because video signals digitized from analog sources are usually limited
by the resolution and the artifacts of the respective analog standard.

1.1.1 Analog Video Signal

The analog video signal refers to a one-dimensional (1-D) electrical signal f(t)
of time that is obtained by sampling s,(zli za,t) in the vertical ~2 and temporal
coordinates. This periodic sampling process is called scanning. The signal f(t),
then, captures the time-varying image intensity ~~(21, zz,t) only along the scan
lines, such as those shown in Figure 1.1. It also contains the timing information
and the blanking signals needed to align the pictures correctly.

The most commonly used scanning methods are progressive scanning and in-
terlaced scanning. A progressive scan traces a complete picture, called a frame, at
every At sec. The computer industry uses progressive scanning with At = l/72 see
for high-resolution monitors. On the other hand, the TV industry uses 2:l interlace
where the odd-numbered and even-numbered lines, called the odd field and the even
field, respectively, are traced in turn. A 2:l interlaced scanning raster is shown in
Figure 1.1, where the solid line and the dotted line represent the odd and the even
fields, respectively. The spot snaps back from point B to C, called the horizontal
retrace, and from D to E, and from F to A, called the vertical retrace.

E

Figure 1.1: Scanning raster.

An analog video signal f(t) is shown in Figure 1.2. Blanking pulses (black) are
inserted during the retrace intervals to blank out retrace lines on the receiving CRT.
Sync pulses are added on top of the blanking pulses to synchronize the receiver’s

horizontal and vertical sweep circuits. The sync pulses ensure that the picture starts
at the top left corner of the receiving CRT. The timing of the sync pulses are, of
course, different for progressive and interlaced video.

White

Figure 1.2: Video signal for one full line.

Some important parameters of the video signal are the vertical resolution, aspect
ratio, and frame/field rate. The vertical resolution is related to the number of scan
lines per frame. The aspect ratio is the ratio of the width to the height of a frame.
Psychovisual studies indicate that the human eye does not perceive flicker if the
refresh rate of the display is more than 50 times per second. However, for TV
systems, such a high frame rate, while preserving the vertical resolution, requires a
large transmission bandwidth. Thus, TV systems utilize interlaced scanning, which
trades vertical resolution to reduced flickering within a fixed bandwidth.

An understanding of the spectrum of the video signal is necessary to discuss
the composition of the broadcast TV signal. Let’s start with the simple case of a
still image, Q(z~,Q), where (z~,zz) E R’. We construct a doubly periodic array
of images, &(z~,Q), which is shown in Figure 1.3. The array &(c~~xz) can be
expressed in terms of a 2-D Fourier series,

kl=-co kz=-co

where Sklkz are the 2-D Fourier series coefficients, and L and H denote the horizon-
tal and vertical extents of a frame (including the blanking intervals), respectively.

The analog video signal f(t) is then composed of intensities along the solid line
across the doubly periodic field (w 1c corresponds to the scan line) in Figure 1.3.h’ h
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Assuming that the scanning spot moves with the velocities vi and v2 in the hori-
zontal and vertical directions, respectively, the video signal can be expressed as

(1.2)

where L/VI is the time required to scan one image line and H/v2 is the time required
to scan a complete frame. The still-video signal is periodic with the fundamentals
Fh = vi/L, called the horizontal sweep frequency, and F, = vz/H. The spectrum
of a still-video signal is depicted in Figure 1.4. The horizontal harmonics are spaced
at Fh Hz intervals, and around each harmonic is a collection of vertical harmonics
F, Hz apart.

Figure 1.3: Model for scanning process.

In practice, for a video signal with temporal changes in the intensity pattern,
every frame in the field shown in Figure 1.3 has a distinct intensity pattern, and the
field is not doubly periodic. As a result, we do not have a line spectrum. Instead,
the spectrum shown in Figure 1.4 will be smeared. However, empty spaces still
exist between the horizontal harmonics at multiples of Fh Hz. For further details,
the reader is referred to [Pro 94, Mil 921.

1.1.2 Analog Video Standards

In the previous section, we considered a monochromatic video signal. However, most
video signals of interest are in color, which can be approximated by a superposition
of three primary intensity distributions. The tri-stimulus theory of color states
that almost any color can be reproduced by appropriately mixing the three additive
primaries, red (R), green (G) and blue (B). Since display devices can only generate

nonnegative primaries, and an adequate amount of luminance is required, there is,
in practice, a constraint on the gamut of colors that can be reproduced. An in-depth
discussion of color science is beyond the scope of this book. Interested readers are
referred to [Net 89, Tru 931.

v2 /H
- -

l II I I I ,F
- v  /L-1

Figure 1.4: Spectrum of the scanned video signal for still images.

There exist several analog video signal standards, which have different image
parameters (e.g., spatial and temporal resolution) and differ in the way they handle
color. These can be grouped as:

l Component analog video

l Composite video

l S-video (Y/C video)

In component analog video (CAV), each primary is considered as a separate
monochromatic video signal. The primaries can be either simply the R, G, and
B signals or a luminance-chrominance transformation of them. The luminance
component (Y) corresponds to the gray level representation of the video, given by

Y = 0.30R+ 0.59G+ O.llB (1.3)

The chrominance components contain the color information. Different standards
may use different chrominance representations, such as

1 =  0.60R+ 0.28G - 0 .328
Q  =  0.21R- 0.52G +  0.31B (1.4)

or

C r  = R - Y
C b  = B - Y (1.5)

In practice, these components are subject to normalization and gamma correction.
The CAV representation yields the best color reproduction. However, transmission
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of CAV requires perfect synchronization of the three components and three times
more bandwidth.

Composite video signal formats encode the chrominance components on top of
the luminance signal for distribution as a single signal which has the same band-
width as the luminance signal. There are different composite video formats, such as
NTSC (National Television Systems Committee), PAL (Phase Alternation Line),
and SECAM (Systeme Electronique Color Avec Memoire), being used in different
countries around the world.

N T S C

The NTSC composite video standard, defined in 1952, is currently in use mainly in
North America and Japan. NTSC signal is a 2:l interlaced video signal with 262.5
lines per field (525 lines per frame), 60 fields per second, and 4:3 aspect ratio. As a
result, the horizontal sweep frequency, Fh, is 525 x 30 = 15.75 kHz, which means
it takes l/15,750 set = 63.5 ps to sweep each horizontal line. Then, from (1.2), the
NTSC video signal can be approximately represented as

f ( t )  E e fJ Sklkz exp {j2n(15,7501el+  3Okz)t) (1.6)
kl=-oo kz=-co

Horizontal retrace takes 10 ps, that leaves 53.5 ps for the active video signal per
line. The horizontal sync pulse is placed on top of the horizontal blanking pulse, and
its duration is 5 11s. These parameters were shown in Figure 1.2. Only 485 lines out
of the 525 are active lines, since 20 lines per field are blanked for vertical backtrace
[Mil 921. Although there are 485 active lines per frame, the vertical resolution,
defined as the number of resolvable horizontal lines, is known to be

485 X 0.7 = 339.5 (340) lines/frame,

where 0.7 is known as the Kell factor, defined as

(1.7)

Kell factor =
number of perceived vertical lines
number of total active scan lines

M 0.7

Using the aspect ratio, the horizontal resolution, defined as the number of resolvable
vertical lines, should be

339 x t = 452 elements/line. (1.8)

Then, the bandwidth of the luminance signal can be calculated as

452
2 x 53.5 x 10-s

= 4.2 MHz.

The luminance signal is vestigial sideband modulated (VSB) with a sideband, that
extends to 1.25 MHz below the picture carrier, as depicted in Figure 1.5.

r
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The chrominance signals, I and Q, should also have the same bandwidth. How-
ever, subjective tests indicate that the I and Q channels can be low-pass filtered
to 1.6 and 0.6 MHz, respectively, without affecting the quality of the picture due
to the inability of the human eye to perceive changes in chrominance over small
areas (high frequencies). The I channel is separated into two bands, O-O.6 MHz and
0.6-1.6 MHz. The entire Q channel and the O-O.6 MHz portion of the I channel
are quadrature amplitude modulated (&AM) with a color subcarrier frequency 3.58
MHz above the picture carrier, and the 0.6-1.6 MHz portion of the I channel is lower
side band (SSB-L) modulated with the same color subcarrier. This color subcarrier
frequency falls in midway between 227Fh and 228Fh; thus, the chrominance spectra
shift into the gaps midway between the harmonics of Fh. The audio signal is fre-
quency modulated (FM) with an audio subcarrier frequency that is 4.5 MHz above
the picture carrier. The spectral composition of the NTSC video signal, which has
a total bandwidth of 6 MHz, is depicted in Figure 1.5. The reader is referred to a
communications textbook, e.g., Lathi [Lat 891 or Proakis and Salehi [Pro 941, for a
discussion of various modulation techniques including VSB, &AM, SSB-L, and FM.

1 6 MHz

picture color audio
carrier carrier carrier

Figure 1.5: Spectrum of the NTSC video signal.

PAL and SECAM

PAL and SECAM, developed in the 196Os, are mostly used in Europe today. They
are also 2:l interlaced, but in comparison to NTSC, they have different vertical and
temporal resolution, slightly higher bandwidth (8 MHz), and treat color information
differently. Both PAL and SECAM have 625 lines per frame and 50 fields per second;
thus, they have higher vertical resolution in exchange for lesser temporal resolution
as compared with NTSC. One of the differences between PAL and SECAM is how
they represent color information. They both utilize Cr and Cb components for the
chrominance information. However, the integration of the color components with
the luminance signal in PAL and SECAM are different. Both PAL and SECAM are
said to have better color reproduction than NTSC.
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In PAL, the two chrominance signals are &AM modulated with a color subcar-
rier at 4.43 MHz above the picture carrier. Then the composite signal is filtered
to limit its spectrum to the allocated bandwidth. In order to avoid loss of high-
frequency color information due to this bandlimiting, PAL alternates between +Cr
and -Cr in successive scan lines; hence, the name phase alternation line. The high-
frequency luminance information can then be recovered, under the assumption that
the chrominance components do not change significantly from line to line, by av-
eraging successive demodulated scan lines with the appropriate signs [Net 891. In
SECAM, based on the same assumption, the chrominance signals Cr and Cb are
transmitted alternatively on successive scan lines. They are FM modulated on the
color subcarriers 4.25 MHz and 4.41 MHz for Cb and Cr, respectively. Since only
one chrominance signal is transmitted per line, there is no interference between the
chrominance components.

The composite signal formats usually result in errors in color rendition, known
as hue and saturation errors, because of inaccuracies in the separation of the color
signals. Thus, S-video is a compromise between the composite video and the com-
ponent analog video, where we represent the video with two component signals, a
luminance and a composite chrominance signal, The chrominance signal can be
based upon the (I,&) or (Cr,Cb) representation for NTSC, PAL, or SECAM sys-
tems. S-video is currently being used in consumer-quality videocasette recorders
and camcorders to obtain image quality better than that of the composite video.

1.1.3 Analog Video Equipment

Analog video equipment can be classified as broadcast-quality, professional-quality,
and consumer-quality. Broadcast-quality equipment has the best performance, but
is the most expensive. For consumer-quality equipment, cost and ease of use are
the highest priorities.

Video images may be acquired by electronic live pickup cameras and recorded
on videotape, or by motion picture cameras and recorded on motion picture film
(24 frames/set), or formed by sequential ordering of a set of still-frame images such
as in computer animation. In electronic pickup cameras, the image is optically
focused on a two-dimensional surface of photosensitive material that is able to
collect light from all points of the image all the time. There are two major types of
electronic cameras, which differ in the way they scan out the integrated and stored
charge image. In vacuum-tube cameras (e.g., vidicon), an electron beam scans out
the image. In solid-state imagers (e.g., CCD cameras), the image is scanned out by
a solid-state array. Color cameras can be three-sensor type or single-sensor type.
Three-sensor cameras suffer from synchronicity problems and high cost, while single-
sensor cameras often have to compromise spatial resolution. Solid-state sensors are
particularly suited for single-sensor cameras since the resolution capabilities of CCD
cameras are continuously improving. Cameras specifically designed for television
pickup from motion picture film are called telecine cameras. These cameras usually
employ frame rate conversion from 24 frames/set to 60 fields/set.
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Analog video recording is mostly based on magnetic technology, except for the
laser disc which uses optical technology. In magnetic recording, the video signal
is modulated on top of an FM carrier before recording in order to deal with the
nonlinearity of magnetic media. There exist a variety of devices and standards for
recording the analog video signal on magnetic tapes. The Betacam is a component
analog video recording standard that uses l/2” tape. It is employed in broadcast-
and professional-quality applications. VHS is probably the most commonly used
consumer-quality composite video recording standard around the world. U-matic
is another composite video recording standard that uses 3/4” tape, and is claimed
to result in a better image quality than VHS. U-matic recorders are mostly used in
professional-quality applications. Other consumer-quality composite video record-
ing standards are the Beta and 8 mm formats. S-VHS recorders, which are based
on S-video, recently became widely available, and are relatively inexpensive for
reasonably good performance.

1.2 Digital Video

We have been experiencing a digital revolution in the last couple of decades. Dig-
ital data and voice communications have long been around. Recently, hi-fi digital
audio with CD-quality sound has become readily available in almost any personal
computer and workstation. Now, technology is ready for landing full-motion digi-
tal video on the desktop [Spe 921. Apart from the more robust form of the digital
signal, the main advantage of digital representation and transmission is that they
make it easier to provide a diverse range of services over the same network [Sut 921.
Digital video on the desktop brings computers and communications together in a
truly revolutionary manner. A single workstation may serve as a personal com-
puter, a high-definition TV, a videophone, and a fax machine. With the addition of
a relatively inexpensive board, we can capture live video, apply digital processing,
and/or print still frames at a local printer [Byt 921. This section introduces digital
video as a form of computer data.

1.2.1’ Digital Video Signal

Almost all digital video systems use component representation of the color signal.
Most color video cameras provide RGB outputs which are individually digitized.
Component representation avoids the artifacts that result from composite encoding,
provided that the input RGB signal has not been composite-encoded before. In
digital video, there is no need for blanking or sync pulses, since a computer knows
exactly where a new line starts as long as it knows the number of pixels per line
[Lut 881. Thus, all blanking and sync pulses are removed in the A/D conversion.

Even if the input video is a composite analog signal, e.g., from a videotape, it
is usually first converted to component analog video, and the component signals
are then individually digitized. It is also possible to digitize the composite sig-
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nal directly using one A/D converter with a clock high enough to leave the color
subcarrier components free from aliasing, and then perform digital decoding to ob-
tain the desired RGB or YIQ component signals. This requires sampling at a rate
three or four times the color subcarrier frequency, which can be accomplished by
special-purpose chip sets. Such chips do exist in some advanced TV sets for digital
processing of the received signal for enhanced image quality.

The horizontal and vertical resolution of digital video is related to the number of
pixels per line and the number of lines per frame. The artifacts in digital video due to
lack of resolution are quite different than those in analog video. In analog video the
lack of spatial resolution results in blurring of the image in the respective direction.
In digital video, we have pixellation (aliasing) artifacts due to lack of sufficient
spatial resolution. It manifests itself as jagged edges resulting from individual pixels
becoming visible. The visibility of the pixellation artifacts depends on the size of
the display and the viewing distance [Lut 881.

The arrangement of pixels and lines in a contiguous region of the memory is
called a bitmap. There are five key parameters of a bitmap: the starting address
in memory, the number of pixels per line, the pitch value, the number of lines, and
number of bits per pixel. The pitch value specifies the distance in memory from
the start of one line to the next. The most common use of pitch different from
the number of pixels per line is to set pitch to the next highest power of 2, which
may help certain applications run faster. Also, when dealing with interlaced inputs,
setting the pitch to double the number of pixels per line facilitates writing lines
from each field alternately in memory. This will form a “composite frame” in a
contiguous region of the memory after two vertical scans. Each component signal is
usually represented with 8 bits per pixel to avoid “contouring artifacts.” Contouring
resulm in slowly varying regions of image intensity due to insufficient bit resolution.
Color mapping techniques exist to map 2 24 distinct colors to 256 colors for display
on &bit color monitors without noticeable loss of color resolution. Note that display
devices are driven by analog inputs; therefore, D/A converters are used to generate
component analog video signals from the bitmap for display purposes.

The major bottleneck preventing the widespread use of digital video today has
been the huge storage and transmission bandwidth requirements. For example, digi-
tal video requires much higher data rates and transmission bandwidths as compared
to digital audio. CD-quality digital audio is represented with 16 bits/sample, and
the required sampling rate is 44kHz. Thus, the resulting data rate is approximately
700 kbits/sec (kbps). In comparison, a high-definition TV signal (e.g., the AD-
HDTV proposal) requires 1440 pixels/line and 1050 lines for each luminance frame,
and 720 pixels/line and 525 lines for each chrominance frame. Since we have 30
frames/s and 8 bits/pixel per channel, the resulting data rate is approximately 545
Mbps, which testifies that a picture is indeed worth 1000 words! Thus, the viability
of digital video hinges upon image compression technology [Ang 911. Some digital
video format and compression standards will be introduced in the next subsection.
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1.2.2 Digital Video Standards

Exchange of digital video between different applications and products requires digi-
tal video format standards. Video data needs to be exchanged in compressed form,
which leads to compression standards. In the computer industry, standard display
resolutions; in the TV industry, digital studio standards; and in the communications
industry, standard network protocols ha.ve already been established. Because the
advent of digital video is bringing these three industries ever closer, recently stan-
dardization across the industries has also started. This section briefly introduces
some of these standards and standardization efforts.

Table 1.1: Digital video studio standards

CCIR601 CCIR601 CIF
Parameter 525/60 625/50

NTSC PAL/SECAM
Number of
active pels/line
Lum (Y) 720 720 360
Chroma (U,V) 360 360 180
Number of
active lines/pit
Lum (Y) 480 576 288
Chroma (U,V) 480 576 144Interlacing /

2:l 2:l 1:l
Temporal rate 60 50 30
Aspect ratio 4:3 4:3 4:3

Digital video is not new in the broadcast TV studios, where editing and spe-
cial effects are performed on digital video because it is easier to manipulate digital
images. Working with digital video also avoids artifacts that would be otherwise
caused by repeated analog recording of video on tapes during various production
stages. Another application for digitization of analog video is conversion between
different analog standards, such as from PAL to NTSC. CCIR (International Con-
sultative Committee for Radio) Recommendation 601 defines a digital video format
for TV studios for 525-line and 625-line TV systems. This standard is intended
to permit international exchange of production-quality programs. It is based on
component video with one luminance (Y) and two color difference (Cr and Cb) sig-
nals. The sampling frequency is selected to be an integer multiple of the horizontal
sweep frequencies in both the 525- and 625-line systems. Thus, for the luminance
component,

fs,lurn = 858~4525 = 864fh,s~ = 13.5MHz, (1.10)
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and for the chrominance,

fs,chr =  .fs,iw& =  6.7’5MHz. (1.11)

The parameters of the CCIR 601 standards are tabulated in Table 1.1. Note that
the raw data rate for the CCIR 601 formats is 165 Mbps. Because this rate is too
high for most applications, the CCITT (International Consultative Committee for
Telephone and Telegraph) Specialist Group (SGXV) has proposed a new digital
video format, called the Common Intermediate Format (CIF). The parameters of
the CIF format are also shown in Table 1.1. Note that the CIF format is progressive
(noninterlaced), and requires approximately 37 Mbps. In some cases, the number
of pixels in a line is reduced to 352 and 176 for the luminance and chrominance
channels, respectively, to provide an integer number of 16 x 16 blocks.

In the computer industry, standards for video display resolutions are set by
the Video Electronics Standards Association (VESA). The older personal computer
(PC) standards are the VGA with 640 pixels/line x 480 lines, and TARGA with
512 pixels/line x 480 lines. Many high-resolution workstations conform with the
S-VGA standard, which supports two main modes, 1280 pixels/line x 1024 lines or
1024 pixels/line x 768 lines. The refresh rate for these modes is 72 frames/set. Rec-
ognizing that the present resolution of TV images is well behind today’s technology,
several proposals have been submitted to the Federal Communications Commission
(FCC) for a high-definition TV standard. Although no such standard has been
formally approved yet, all proposals involve doubling the resolution of the CCIR
601 standards in both directions.

Table 1.2: Some network protocols and their bitrate regimes

Network Bitrate
Conventional Telephone 0.3-56 kbps
Fundamental BW Unit of Telephone (DS-0) 56 kbps
ISDN (Integrated Services Digital Network) 64-144 kbps (~~64)
Personal Computer LAN (Local Area Network) 30 kbps
T-l 1.5 Mbps
Ethernet (Packet-Based LAN) 10 Mbps
Broadband ISDN 100-200 Mbps

Various digital video applications, e.g., all-digital HDTV, multimedia services,
videoconferencing, and videophone, have different spatio-temporal resolution re-
quirements, which translate into different bitrate requirements. These applications
will most probably reach potential users over a communications network [Sut 921.
Some of the available network options and their bitrate regimes are listed in Ta-
ble 1.2. The main feature of the ISDN is to support a wide range of applications

1.2. DIGITAL VIDEO 13

over the same network. Two interfaces are defined: basic access at 144 kbps, and
primary rate access at 1.544 Mbps and 2.048 Mbps. As audio-visual telecommu-
nication services expand in the future, the broadband integrated services digital
network (B-ISDN), which will provide higher bitrates, is envisioned to be the uni-
versal information “highway” [Spe 911. Asynchronous transfer mode (ATM) is the
target transfer mode for the B-ISDN [Onv 941.

Investigation of the available bitrates on these networks and the bitrate require-
ments of the applications indicates that the feasibility of digital video depends on
how well we can compress video images. Fortunately, it has been observed that the
quality of reconstructed CCIR 601 images after compression by a factor of 100 is
comparable to analog videotape (VHS) quality. Since video compression is an im-
portant enabling technology for development of various digital video products, three
video compression standards have been developed for various target bitrates, and
efforts for a new standard for very-low-bitrate applications are underway. Stan-
dardization of video compression methods ensures compatibility of digital video
equipment by different vendors, and facilitates market growth. Recall that the
boom in the fax market came after binary image compression standards. Major
world standards for image and video compression are listed in Table 1.3.

Table 1.3: World standards for image compression.

Standard Application
CCITT G3/G4 Binary images (nonadaptive)
J B I G Binary images
JPEG Still-frame gray-scale and color images
H.261 p x 64 kbps
MPEG-1 1.5 Mbps
MPEG-2 lo-20 Mbps
MPEG-4 4.8-32 kbps (underway)

CCITT Group 3 and 4 codes are developed for fax image transmission, and are
presently being used in all fax machines. JBIG has been developed to fix some of
the problems with the CCITT Group 3 and 4 codes, mainly in the transmission of
halftone images. JPEG is a still-image (monochrome and color) compression stan-
dard, but it also finds use in frame-by-frame video compression, mostly because of
its wide availability in VLSI hardware. CCITT Recommendation H.261 is concerned
with the compression of video for videoconferencing applications over ISDN lines.
The target bitrates are p x 64 kbps, which are the ISDN rates. Typically, video-
conferencing using the CIF format requires 384 kbps, which corresponds to p = 6.
MPEG-1 targets 1.5 Mbps for storage of CIF format digital video on CD-ROM and
hard disk. MPEG-2 is developed for the compression of higher-definition video at
lo-20 Mbps with HDTV as one of the intended applications. We will discuss digital
video compression standards in detail in Chapter 23.
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Interoperability of various digital video products requires not only standardiza-
tion of the compression method but also the representation (format) of the data.
There is an abundance of digital video formats/standards, besides the CCITT 601
and CIF standards. Some proprietary format standards are shown in Table 1.4.
A committee under the Society of Motion Picture and Television Engineers
(SMPTE) is working to develop a universal header/descriptor that would make
any digital video stream recognizable by any device. Of course, each device should
have the right hardware/software combination to decode/process this video stream
once it is identified. There also exist digital recording standards such as Dl for
recording component video and D2 for composite video.

Table 1.4: Examples of proprietary video format standards

Video Format C o m p a n y
DVI (Digital Video Interactive), Indeo Intel Corporation
QuickTime Apple Computer
CD-I (Compact Disc Interactive) Philips Consumer Electronics
Photo CD Eastman Kodak Companv
CDTV

_ ”
Commodore Electronics

Rapid advances have taken place in digital video hardware over the last couple
of years. Presently, several vendors provide full-motion video boards for personal
computers and workstations using frame-by-frame JPEG compression. The main
limitations of the state-of-the-art hardware originate from the speed of data transfer
to and from storage media, and available CPU cycles for sophisticated real-time
processing. Today most storage devices are able to transfer approximately 1.5 Mbps,
although 4 Mbps devices are being introduced most recently. These numbers are
much too slow to access uncompressed digital video. In terms of CPU capability,
most advanced single processors are in the range of 70 MIPS today. A review
of the state-of-the-art digital video equipment is not attempted here, since newer
equipment is being introduced at a pace faster than this book can be completed.

1.2.3 Why Digital Video?

In the world of analog video, we deal with TV sets, videocassette recorders (VCR)
and camcorders. For video distribution we rely on TV broadcasts and cable TV
companies, which transmit predetermined programming at a fixed rate. Analog
video, due to its nature, provides a very limited amount of interactivity, e.g., only
channel selection in the TV, and fast-forward search and slow-motion replay in the
VCR. Besides, we have to live with the NTSC signal format. All video captured
on a laser disc or tape has to be NTSC with its well-known artifacts and very low
still-frame image quality. In order to display NTSC signals on computer monitors
or European TV sets, we need expensive transcoders. In order to display a smaller
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version of the NTSC picture in a corner of the monitor, we first need to reconstruct
the whole picture and then digitally reduce its size. Searching a video database
for particular footage may require tedious visual scanning of a whole bunch of
videotapes. Manipulation of analog video is not an easy task. It usually requires
digitization of the analog signal using expensive frame grabbers and expertise for
custom processing of the data.

New developments in digital imaging technology and hardware are bringing to-
gether the TV, computer, and communications industries at an ever-increasing rate.
The days when the local telephone company and the local cable TV company, as well
as TV manufactures and computer manufacturers, will become fierce competitors
are near [Sut 921. The emergence of better image compression algorithms, opti-
cal fiber networks, faster computers, dedicated video boards, and digital recording
promise a variety of digital video and image communication products. Driving the
research and development in the field are consumer and commercial applications
such as:

l All-digital HDTV [Lip 90, Spe 951
@ 20 Mbps over 6 MHz taboo channels

l Multimedia, desktop video [Spe 931
@ 1.5 Mbps CD-ROM or hard disk storage

. Videoconferencing
@ 384 kbps using p x 64 kbps ISDN channels

. Videophone and mobile image communications [Hsi 931
@ 10 kbps using the copper network (POTS)

Other applications include surveillance imaging for military or law enforcement,
intelligent vehicle highway systems, harbor traffic control, tine medical imaging,
aviation and flight control simulation, and motion picture production. We will
overview some of these applications in Chapter 25.

Digital representation of video offers many benefits, including:
i) Open architecture video systems, meaning the existence of video at multiple
spatial, temporal, and SNR resolutions within a single scalable bitstream.
ii) Interactivity, allowing interruption to take alternative paths through a video
database, and retrieval of video.
iii) Variable-rate transmission on demand.
iv) Easy software conversion from one standard to another.
v) Integration of various video applications, such as TV, videophone, and so on, on
a common multimedia platform.
vi) Editing capabilities, such as cutting and pasting, zooming, removal of noise and
blur.
vii) Robustness to channel noise and ease of encryption.
All of these capabilities require digital processing at various levels of complexity,
which is the topic of this book.
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1.3 Digital Video Processing

Digital video processing refers to manipulation of the digital video bitstream. All
known applications of digital video today require digital processing for data com-
pression, In addition, some applications may benefit from additional processing for
motion analysis, standards conversion, enhancement, and restoration in order to
obtain better-quality images or extract some specific information.

Digital processing of still images has found use in military, commercial, and
consumer applications since the early 1960s. Space missions, surveillance imaging,
night vision, computed tomography, magnetic resonance imaging, and fax machines
are just some examples. What makes digital video processing different from still
image processing is that video imagery contains a significant amount of temporal
correlation (redundancy) between the frames. One may attempt to process video
imagery as a sequence of still images, where each frame is processed independently.
However, utilization of existing temporal redundancy by means of multiframe pro-
cessing techniques enables us to develop more effective algorithms, such as motion-
compensated filtering and motion-compensated prediction. In addition, some tasks,
such as motion estimation or the analysis of a time-varying scene, obviously cannot
be performed on the basis of a single image. It is the goal of this book to provide the
reader with the mathematical basis of multiframe and motion-compensated video
processing. Leading algorithms for important applications are also included.

Part 1 is devoted to the representation of full-motion digital video as a form
of computer data. In Chapter 2, we model the formation of time-varying images
as perspective or orthographic projection of 3-D scenes with moving objects. We
are mostly concerned with 3-D rigid motion; however, models can be readily ex-
tended to include 3-D deformable motion. Photometric effects of motion are also
discussed. Chapter 3 addresses spatio-temporal sampling on 3-D lattices, which
covers several practical sampling structures including progressive, interlaced, and
quincunx sampling. Conversion between sampling structures without making use
of motion information is the subject of Chapter 4.

Part 2 covers nonparametric 2-D motion estimation methods. Since motion
compensation is one of the most effective ways to utilize temporal redundancy, 2-D
motion estimation is at the heart of digital video processing. 2-D motion estima-
tion, which refers to optical flow estimation or the correspondence problem, aims
to estimate motion projected onto the image plane in terms of instantaneous pixel
velocities or frame-to-frame pixel correspondences. We can classify nonparametric
2-D motion estimation techniques as methods based on the optical flow equation,
block-based methods, pel-recursive methods, and Bayesian methods, which are pre-
sented in Chapters 5-8, respectively.

Part 3 deals with 3-D motion/structure estimation, segmentation, and tracking.
3-D motion estimation methods are based on parametric modeling of the 2-D optical
flow field in terms of rigid motion and structure parameters. These parametric
models can be used for either 3-D image analysis, such as in object-based image
compression and passive navigation, or improved 2-D motion estimation. Methods
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that use discrete point correspondences are treated in Chapter 9, whereas optical-
flow-based or direct estimation methods are introduced in Chapter 10. Chapter 11
discusses segmentation of the motion field in the presence of multiple motion, using
direct methods, optical flow methods, and simultaneous motion estimation and
segmentation. Two-view motion estimation techniques, discussed in Chapters 9-11,
have been found to be highly sensitive to small inaccuracies in the estimates of point
correspondences or optical flow. To this effect, motion and structure from stereo
pairs and motion tracking over long monocular or stereo sequences are addressed in
Chapter 12 for more robust estimation.

Filtering of digital video for such applications as standards conversion, noise
reduction, and enhancement and restoration is addressed in Part 4. Video filtering
differs from still-image filtering in that it generally employs motion information. To
this effect, the basics of motion-compensated filtering are introduced in Chapter 13.
Video images often suffer from graininess, especially when viewed in freeze-frame
mode. Intraframe, motion-adaptive, and motion-compensated filtering for noise
suppression are discussed in Chapter 14. Restoration of blurred video frames is the
subject of Chapter 15. Here, motion information can be used in the estimation
of the spatial extent of the blurring function. Different digital video applications
have different spatio-temporal resolution requirements. Appropriate standards con-
version is required to ensure interoperability of various applications by decoupling
the spatio-temporal resolution requirements of the source from that of the display.
Standards conversion problems, including frame rate conversion and de-interlacing
(interlaced to progressive conversion), are covered in Chapter 16. One of the lim-
itations of CCIR 601, CIF, or smaller-format video is the lack of sufficient spatial
resolution. In Chapter 17, a comprehensive model for low-resolution video acqui-
sition is presented as well as a novel framework for superresolution which unifies
most video filtering problems.

Compression is fundamental for all digital video applications. Parts 5 and 6
are devoted to image and video compression methods, respectively. It is the emer-
gence of video compression standards, such as JPEG, H.261, and MPEG and their
VLSI implementations, that makes applications such as all-digital TV, multimedia,
and videophone a reality. Chapters 18-21 cover still-image compression methods,
which form the basis for the discussion of video compression in Chapters 22-24,
In particular, we discuss lossless compression in Chapter 18, DPCM and transform
coding in Chapter 19, still-frame compression standards, including binary and gray-
scale/color image compression standards, in Chapter 20, and vector quantization
and subband coding in Chapter 21. Chapter 22 provides a brief overview of in-
terframe compression methods. International video compression standards such as
H.261, MPEG-1, and MPEG-2 are explained in Chapter 23. Chapter 24 addresses
very-low-bitrate coding using object-based methods. Finally, several applications
of digital video are introduced in Chapter 25.
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Chapte,r 2
..u

TIME-VARYING IMAGE
FORMATION MODELS

In this chapter, we present models (in most cases simplistic ones) for temporal
variations of the spatial intensity pattern in the image plane. We represent a time-
varying image by a function of three continuous variables, se(x1,x2,  t), which is
formed by projecting a time-varying three-dimensional (3-D) spatial scene into the
two-dimensional (2-D) image plane. The temporal variations in the 3-D scene are
usually due to movements of objects in the scene. Thus, time-varying images re-
flect a projection of 3-D moving objects into the 2-D image plane as a function of
time. Digital video corresponds to a spatio-temporally sampled version of this time-
varying image. A block diagram representation of the time-varying image formation
model is depicted in Figure 2.1.

Observation
Noise

Figure 2.1: Digital video formation

In Figure 2.1, “3-D scene modeling” refers to modeling the motion and structure
of objects in 3-D, which is addressed in Section 2.1. “Image formation,” which in-
cludes geometric and photometric image formation, refers to mapping the 3-D scene
into an image plane intensity distribution. Geometric image formation, discussed
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in Section 2.2, considers the projection of the 3-D scene into the 2-D image plane.
Photometric image formation, which is the subject of Section 2.3, models variations
in the image plane intensity distribution due to changes in the scene illumination
in time as well as the photometric effects of the 3-D motion. Modeling of the ob-
servation noise is briefly discussed in Section 2.4. The spatio-temporal sampling of
the time-varying image will be addressed in Chapter 3. The image formation model
described in this chapter excludes sudden changes in the scene content.

2.1 Three-Dimensional Motion Models

In this section, we address modeling of the relative 3-D motion between the camera
and the objects in the scene. This includes 3-D motion of the objects in the scene,
such as translation and rotation, as well as the 3-D motion of the camera, such as
zooming and panning. In the following, models are presented to describe the relative
motion of a set of 3-D object points and the camera, in the Cartesian coordinate
system (Xi, Xz, Xs) and in the homogeneous coordinate system (/eXr ) leXz, leXs, lc),
respectively. The depth Xs of each point appears as a free parameter in the resulting
expressions. In practice, a surface model is employed to relate the depth of each
object point to reduce the number of free variables (see Chapter 9).

According to classical kinematics, 3-D motion can be classified as rigid motion
and nonrigid motion. In the case of rigid motion, the relative distances between
the set of 3-D points remain fixed as the object evolves in time. That is, the
3-D structure (shape) of the moving object can be modeled by a nondeformable
surface, e.g., a planar, piecewise planar, or polynomial surface. If the entire field of
view consists of a single 3-D rigid object, then a single set of motion and structure
parameters will be sufficient to model the relative 3-D motion. In the case of
independently moving multiple rigid objects, a different parameter set is required
to describe the motion of each rigid object (see Chapter 11). In nonrigid motion,
a deformable surface model (also known as a deformable template) is utilized in
modeling the 3-D structure. A brief discussion about modeling deformable motion
is provided at the end of this section.

2.1.1 Rigid Motion in the Cartesian Coordinates

It is well known that 3-D displacement of a rigid object in the Cartesian coordinates
can be modeled by an affine transformation of the form [Rog 76, Bal 82, Fol 831

X ’ = R X + T (2.1)

where R is a 3 x 3 rotation matrix, Tl
T= Tz[ 1T3
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is a 3-D translation vector, and
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X= [::I a n d  X’= [l]

denote the coordinates of an object point at times t and t’ with respect to the center
of rotation, respectively. That is, the 3-D displacement can be expressed as the sum
of a 3-D rotation and a 3-D translation. The rotation matrix R can be specified in
various forms [Hor 861. Three of them are discussed next.

Figure 2.2: Eulerian angles of rotation.

The Rotation Matrix

Three-dimensional rotation in the Cartesian coordinates can be characterized either
by the Eulerian angles of rotation about the three coordinate axes, or by an axis
of rotation and an angle about this axis. The two descriptions can be shown to be
equivalent under the assumption of infinitesimal rotation.

l Eulerian angles in the Cartesian coordinates: An arbitrary rotation in the 3-D
space can be represented by the Eulerian angles, 0, $, and 4, of rotation about the
X1, X2, and Xs axes, respectively. They are shown in Figure 2.2.
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The matrices that describe clockwise rotation about the individual axes are given
by

R. =

Rti =

1 0 0
0 cos0 -sin0
0 sin0 cos 0

cos * 0 sin11,
0 1 0

- s i n * 0 cosII, 1
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(2.3)

and

[

cos cp -sin4 0
R$ = sin4 cosq4 0 (2.4)

0 0 1 1
Assuming that rotation from frame to frame is infinitesimal, i.e., 4 = A4, etc.,

and thus approximating cos A4 u 1 and sin A+ m A4, and so on, these matrices
simplify as

and

Ri =

1 -A4 0
Rd =

A$ 1 00 0 1 1
Then the composite rotation matrix R can be found as

1 0 A4
0 1 0

-A$ 0 1

R  =  R6RoRI

1 -A4 AlCl
Z 4 1 -A0 1 (2.5)

-A$ A0 I

Note that the rotation matrices in general do not commute. However, under the
infinitesimal rotation assumption, and neglecting the second and higher-order cross-
terms in the multiplication, the order of multiplication makes no difference.
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l Rotation about an arbitrary axis in the Cartesian coordinates: An alternative
characterization of the rotation matrix results if the 3-D rotation is described by
an angle a about an arbitrary axis through the origin, specified by the directional
cosines n1, n2, and ns, as depicted in Figure 2.3.

Then it was shown, in [Rog 761, that the rotation matrix is given by

n: + (1 - nf)cosCY nlnz(l - cosa) - n3sina nlns(l - cosa) + n~sincu
R = nlna(l - cm(~) + n3sina n$ + (1 - n~)cosa nznz(l - coscx) - nlsina

n~ns(l -cost) - n2sina n2n3(1 - COSCY) + nlsina nz + (1 - 7ai)co.m 1
(2.6)

AX2

Figure 2.3: Rotation about an arbitrary axis.

For an infinitesimal rotation by the angle Aa, R reduces to

[

1 -nsAol nzAa
R = nsAa 1 -nlAa

-nzAcu n,Aa 1

Thus, the two representations are equivalent with

A0 = nlAa
A$ = nzAcr
A4 = nsAa

(2.7)

In video imagery, the assumption of infinitesimal rotation usually holds, since the
time difference between the frames are in the order of l/30 seconds.
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l Representation in terms of quaternions: A quaternion is an extension of a
complex number such that it has four components [Hog 921,

q = m + qli + a$ + q&

where qo, qi, qz, and 4s are real numbers, and

(2.8)

i2 = j2 = k2 = ijk = -1

A unit quaternion, where qi + q: + qz $ qi = 1, can be used to describe the
change in the orientation of a rigid body due to rotation. It has been shown that
the unit quaternion is related to the directional cosines nr, n2, n3 and the solid
angle of rotation cy in (2.6) as [Hor 861

n1 sin(a/2)

q=
n2 sin(cu/2)
123 sin(o/2)
cos(o!/2)

(2.9)

The rotation matrix R can then be expressed as

d - 42 - 4’; -d 2(qon+qzq3) QOP:, - qlP3)

R = 2(qoql - qm) -d +  a :  - 422 + 432 2(q1qa + Q-043) (2.10)
qqoqz + 4143) 2hq2 - qoq3) -d-G+Q;+d

1
The representation (2.10) of the rotation matrix in terms of the unit quaternion
has been found most helpful for temporal tracking of the orientation of a rotating
object (see Chapter 12).

Two observations about the model (2.1) are in order:
i) If we consider the motion of each object point X independent,ly, then the 3-D
displacement vector field resulting from the rigid motion can be characterized by
a different translation vector for each object point. The expression (2.1), however,
describes the 3-D displacement field by a single rotation matrix and a translation
vector. Hence, the assumption of a rigid configuration of a set of 3-D object points
is implicit in this model.
ii) The effects of camera motion, as opposed to object motion, can easily be ex-
pressed using the model (2.1). The camera pan constitutes a special case of this
model, in that it is a rotation around an axis parallel to the image plane. Zooming is
in fact related to the imaging process, and can be modeled by a change of the focal
length of the camera. However, it is possible to incorporate the effect of zooming
into the 3-D motion model if we assume that the camera has fixed parameters but
the object is artificially scaled up or down. Then, (2.1) becomes

X ’ = S R X + T (2.11)

where s1 0 0s= [ 0 s2 00 0 s, 1
is a scaling matrix.
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Modeling 3-D Instantaneous Velocity

The model (2.1) provides an expression for the 3-D displacement between two time
instants. It is also possible to obtain an expression for the 3-D instantaneous velocity
by taking the limit of the 3-D displacement model (2.1) as the interval between the
two time instants At goes to zero. Expressing the rotation matrix R in terms of
infinitesimal Eulerian angles, we have

X; = A4 1 -:,][;y+[;] (2.12)

Xh -A$ A 0

Decomposing the rotation matrix as

[

1 -A4 A$Ad 1 -A@ = A4 0
-A$ AQ 1 1 [ 0 -Ad A$ 1 0 0

-A8 + 0 1 0I[ 1 (2.13)
-A$ At’ 0 0 0 1

substituting (2.13) into (2.12)) and rearranging the terms, we obta.in

[  g!;;]=[ ;$ ?-@’ !fQ] [  :i]+[ ;] (2.14)

Dividing both sides of (2.14) by At and taking the limit as At goes to zero, we
arrive at the 3-D velocity model to represent the instantaneous velocity of a point
(Xl, X2, Xs) in the 3-D space as

Xl[:I [x2 = i, ,%” “I[ %lj+[ ;] (2.15)

x3

where sli and Vi denote the angular and linear velocities in the respective directions,
i = 1,2,3. The model (2.15) can be expressed in compact form as

X=~xX+V (2.16)

where x = [Xi X2 &IT, 0 = [fir Qz Q,#, V = [VI Vz V31T, and x denotes the
cross-product. Note that the instantaneous velocity model assumes that we have a
continuous temporal coordinate since it is defined in terms of temporal derivatives.
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2.1.2 Rigid Motion in the Homogeneous Coordinates

We define the homogeneous coordinate representation of a Cartesian point
X = [X1X2X3]* as

(2.17)

Then the affine transformation (2.11) in the Cartesian coordinates can be ex-
pressed as a linear transformation in the homogeneous coordinates

x’, = AXI, (2.18)

where

A= 1 all a12 a13 TI41 a22 a23 TZ
a31 a32 a33 T3

0 0 0 1 1
and the matrix A

Translation in the Homogeneous Coordinates

Translation can be represented as a matrix multiplication in the homogeneous co-
ordinates given by

where

x; = TXh (2.19)

1 0 0 Tr

T= [ 0 1 0 T2

0 0 1 T3
0 0 0 1 1

is the translation matrix.

Rotation in the Homogeneous Coordinates

Rotation in the homogeneous coordinates is represented by a 4 x 4 matrix multi-
plication in the form

x;, = l%Xh (2.20)
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where
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and rij denotes the elements of the rotation matrix R in the Cartesian coordinates

Zooming in the Homogeneous Coordinates

The effect of zooming can be incorporated into the 3-D motion model as

x; = sx, (2.21)

where

2.1.3 Deformable Motion

Modeling the 3-D structure and motion of nonrigid objects is a complex task. Anal-
ysis and synthesis of nonrigid motion using deformable models is an active research
area today. In theory, according to the mechanics of deformable bodies [Som 501,
the model (2.1) can be extended to include 3-D nonrigid motion as

X ’ = ( D + R ) X + T (2.22)

where D is an arbitrary deformation matrix. Note that the elements of the rotation
matrix are constrained to be related to the sines and cosines of the respective angles,
whereas the deformation matrix is not constrained in any way. The problem with
this seemingly simple model arises in defining the D matrix to represent the desired
deformations.

Some examples of the proposed 3-D nonrigid motion models include those based
on free vibration or deformation modes [Pen 9la] and those based on constraints
induced by intrinsic and extrinsic forces [Ter @a]. Pentland et ~2. [Pen 91a] param-
eterize nonrigid motion in terms of the eigenvalues of a finite-element model of the
deformed object. The recovery of 3-D nonrigid motion using this model requires the
knowledge of the geometry of the undeformed object. Terzopoulos el ab. [Ter SSa]
have exploited two intrinsic constraints to design deformable models: surface coher-
ence and symmetry seeking. The former is inherent in the elastic forces prescribed
by the physics of deformable continua, and the latter is an attribute of many natural
and synthetic objects. Terzopoulos and Fleischer [Ter 88b] also proposed a phys-
ically based modeling scheme using mechanical laws of continuous bodies whose
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shapes vary in time. They included physical features, such as mass and damping,
in their models in order to simulate the dynamics of deformable objects in response
to applied forces. Other models include the deformable superquadrics [Ter 911 and
extensions of the physically based framework [Met 931. The main applications of
these models have been in image synthesis and animation.

A simple case of 3-D nonrigid models is that of flexibly connected rigid patches,
such as a wireframe model where the deformation of the nodes (the so-called local
motion) is allowed. In this book, we will consider only 2-D deformable models that
is, the effect of various deformations in the image plane; except for the simple case
of 3-D flexible wireframe models, that are discussed in Chapter 24.

2.2 Geometric Image Formation

Imaging systems capture 2-D projections of a time-varying 3-D scene. This projec-
tion can be represented by a mapping from a 4-D space to a 3-D space,

f: R4 + R3

(Xl,Xz,X3,q + (Xl,XZ,~) (2.23)

where (Xi,Xz,Xs),  the 3-D world coordinates, (zi, Q), the 2-D image plane co-
ordinates, and t, time, are continuous variables, Here, we consider two types of
projection, perspective (central) and orthographic (parallel), which are described in
the following.

Figure 2.4: Perspective projection model.

2.2.1 Perspective Projection

where f denotes the distance from the center of projection to the image plane.
If we move the center of projection to coincide with the origin of the world

coordinates, a simple change of variables yields the following equivalent expressions:

Perspective projection reflects image formation using an ideal pinhole camera ac-
cording to the principles of geometrical optics. Thus, all the rays from the object
pass through the center of projection, which corresponds to the center of the lens.
For this reason, it is also known as “central projection.” Perspective projection is
illustrated in Figure 2.4 when the center of projection is between the object and the
image plane, and the image plane coincides with the (Xi, X2) plane of the world
coordinate system.

.fXlx1 = 
x3

a n d  22 =  fxz
x3

The algebraic relations that describe the perspective transformation for the con-
figuration shown in Figure 2.4 can be obtained based on similar triangles formed
by drawing perpendicular lines from the object point (Xi, X2, Xs) and the image
point (21) x2,0) to the Xs axis, respectively. This leads to

The configuration and the similar triangles used to obtain these expressions are
shown in Figure 2.5, where the image plane is parallel to the (Xl, X2) plane of the
world coordinate system. Observe that the latter expressions can also be employed
as an approximate model for the configuration in Figure 2.4 when Xs >> f with
the reversal of the sign due to the orientation of the image being the same as the
object, as opposed to being a mirror image as in the actual image formation. The
general form of the perspective projection, when the image plane is not parallel to
the (Xl ) X2) plane of the world coordinate system, is given in [Ver 891.

or

Xl Xl X2 x2-= - - - -
f X3-f and f = X3-f

We note that the perspective projection is nonlinear in the Cartesian coordinates
since it requires division by the Xs coordinate. However, it can be expressed as a
linear mapping in the homogeneous coordinates, as

fX1
x1= f-X3

fX2
and x2 = ,f-x3 (2.24)

29

(2.25)

(2.26)
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Figure 2.5: Simplified perspective projection model.

where

and

lx1

xh = lx2[ 1e
denote the world and image plane points, respectively, in the homogeneous coordi-
nates.

2.2.2 Orthographic Projection

Orthographic projection is an approximation of the actual imaging process where
it is assumed that all the rays from the 3-D object (scene) to the image plane
travel parallel to each other. For this reason it is sometimes called the “parallel
projection.” Orthographic projection is depicted in Figure 2.6 when the image plane
is parallel to the Xr - X2 plane of the world coordinate system.
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Figure 2.6: Orthographic projection model.

Provided that the image plane is parallel to the X1 - Xs plane of the world
coordinate system, the orthographic projection can be described in Cartesian coor-
dinates as

Xl = x1 a n d  x2=X2 (2.27)

or in vector-matrix notation as

[::]=[t Y :I[;;] (2.28)

where x1 and x2 denote the image plane coordinates.
The distance of the object from the camera does not affect the image plane in-

tensity distribution in orthographic projection. That is, the object always yields the
same image no matter how far away it is from the camera. However, orthographic
projection provides good approximation to the actual image formation process when
the distance of the object from the camera is much larger than the relative depth
of points on the object with respect to a coordinate system on the object itself. In
such cases, orthographic projection is usually preferred over more complicated but
realistic models because it is a linear mapping and thus leads to algebraically and
computationally more tractable algorithms.
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2.3 Photometric Image Formation

Image intensities can be modeled as proportional to the amount of light reflected
by the objects in the scene. The scene reflectance function is generally assumed to
contain a Lambertian and a specular component. In this section, we concentrate on
surfaces where the specular component can be neglected. Such surfaces are called
Lambertian surfaces. Modeling of specular reflection is discussed in [Dri 921. More
sophisticated reflectance models can be found in [Hor 86, Lee 901.

s,( ai , x2, t) image intensity

f N(t) surface normal

L

illumination

Figure 2.7: Photometric image formation model

2.3.1 Lambertian Reflectance Model

If a Lambertian surface is illuminated by a single point-source with uniform intensity
(in time), the resulting image intensity is given by [Hor 861

~,(a, xz,t) = pN(t) L (2.29)

where p denotes the surface albedo, i.e., the fraction of the light reflected by the
surface, L = (~51, Lz, ~5s) is the unit vector in the mean illuminant direction, and
N(t) is the unit surface normal of the scene, at spatial location (Xl, Xx, X3(X1, X2))
and time t, given by

N(t) = (-P, -9, l)/(p2 + q2 + 1)1’2 (2.30)

in which p = dXs/dxl and q = &&/?I 22 are the padtial derivatives of depth
X3(x1, za) with respect to the image coordinates x1 and ~2, respectively, under
the orthographic projection. Photometric image formation for a static surface is
illustrated in Figure 2.7.

The illuminant direction can also be expressed in terms of tilt and slant angles
as [Pen 91b]

L = (Ll, L2, L3) = (cos T sin q, sin r sin U, cos u) (2.31)
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where 7, the tilt angle of the illuminant, is the angle between L and the X1 - Xs
plane, and u, the slant angle, is the angle between L and the positive X3 axis.

2.3.2 Photometric Effects of 3-D Motion

As aa object moves in 3-D, the surface normal changes as a function of time; so
do the photometric properties of the surface. Assuming that the mean illuminant
direction L remains constant, we can express the change in the intensity due to
photometric effects of the motion as

(2.32)

The rate of change of the normal vector N at the point (Xl, X2, X3) can be
approximated by

dN AN-GM
dt At

where AN denotes the change in the direction of the normal vector due to the 3-D
motion from the point (Xl, X2, X3) to (Xl, Xi, Xi) within the period At. This
change can be expressed as

A N  =  N(X;,X;,X;)-N(X~,X~,XS)

where p’ and Q’ denote the components of N(X{ ) Xi, X;) given by

ax; ax; ax1
p’ = ad -Kdz;

-&+p
= ~+A$JP

Q’ = ax; M+q
ax, - 

2 l-A@

(2.33)

Pentland [Pen 91b] shows that the photometric effects of motion can dominate the
geometric effects in some cases.

2.4 Observation Noise

Image capture mechanisms are never perfect. As a result, images generally suffer
from graininess due to electronic noise, photon noise, film-grain noise, and quan-
tization noise. In video scanned from motion picture film, streaks due to possible
scratches on film can be modeled as impulsive noise. Speckle noise is common
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in radar image sequences and biomedical tine-ultrasound sequences. The available
signal-to-noise ratio (SNR) varies with the imaging devices and image recording me-
dia. Even if the noise may not be perceived at full-speed video due to the temporal
masking effect of the eye, it often leads to poor-quality “freeze-frames.”

The observation noise in video can be modeled as additive or multiplicative
noise, signal-dependent or signal-independent noise, and white or colored noise. For
example, photon and film-grain noise are signal-dependent, whereas CCD sensor and
quantization noise are usually modeled as white, Gaussian distributed, and signal-
independent. Ghosts in TV images can also be modeled as signal-dependent noise.
In this book, we will assume a simple additive noise model given by

gc(xl,xz,t) = s,(z1,xz,t) + v,(x1,xa,t) (2.35)

where se(xl, x2, t) and u,(xl,x2,t) denote the ideal video and noise at time t,
respectively.

The SNR is an important parameter for most digital video processing applica-
tions, because noise hinders our ability to effectively process the data. For example,
in 2-D and 3-D motion estimation, it is very important to distinguish the variation
of the intensity pattern due to motion from that of the noise. In image resolution
enhancement, noise is the fundamental limitation on our ability to recover high-
frequency information. Furthermore, in video compression, random noise increases
the entropy hindering effective compression. The SNR of video imagery can be en-
hanced by spatio-temporal filtering, also called noise filtering, which is the subject
of Chapter 14.
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Exercises

Suppose a rotation by 45 degrees about the X2 axis is followed by another
rotation by 60 degrees about the X1 axis. Find the directional cosines 121, 712,
ns and the solid angle (Y to represent the composite rotation.

Given a triangle defined by the points (l,l,l), (l,-1,0) and (0,1,-l). Find the
vertices of the triangle after a rotation by 30 degrees about an axis passing
through (O,l,O) which is parallel to the X1 axis.

Show that a rotation matrix is orthonormal.

Derive Equation (2.6).

Show that the two representations of the rotation matrix R given by (2.6)
and (2.10) are equivalent.

Discuss the conditions under which the orthographic projection provides a
good approximation to imaging through an ideal pinhole camera.

Show that the expressions for p’ and q’ in (2.34) are valid under the ortho-
graphic projection.
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Chapter 3

SPATIO-TEMPORAL
SAMPLING

In order to obtain an analog or digital video signal representation, the continuous
time-varying image s,(z~, x2, t) needs to be sampled in both the spatial and tempo-
ral variables. An analog video signal representation requires sampling s,(z~) x2, t)

in the vertical and temporal dimensions. Recall that an analog video signal is a
1-D continuous function, where one of the spatial dimensions is mapped onto time
by means of the scanning process. For a digital video representation, s,(xl s czi t)

is sampled in all three dimensions. The spatio-temporal sampling process is de-
picted in Figure 3.1, where (nl, n2, %) denotes the discrete spatial and temporal
coordinates, respectively.

sJ”1, x,J., 
Spaho-Temporal

S a m p l i n g  --)
shlj nZ k )

Figure 3.1: Block diagram.

Commonly used 2-D and 3-D sampling structures for the representation of ana-
log and digital video are shown in Section 3.1. Next, we turn our attention to the
frequency domain characterization of sampled video. In order to motivate the main
principles, we start with the sampling of still images. Section 3.2 covers the case of
sampling on a 2-D rectangular grid, whereas Section 3.3 treats sampling on arbitrary
2-D periodic grids. In Section 3.4, we address extension of this theory to sampling of
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multidimensional signals on lattices and other periodic sampling structures. How-
ever, the discussion is limited to sampling of spatio-temporal signals s,(x~, ~2, t) on
3-D lattices, considering the scope of the book. Finally, Section 3.5 addresses the
reconstruction of continuous time-varying images from spatio-temporally sampled
representations. The reader is advised to review the remarks about the notation
used in this book on page xxi, before proceeding with this chapter.

3.1 Sampling for Analog and Digital Video

Some of the more popular sampling structures utilized in the representation of
analog and digital video are introduced in this section.

3.1.1 Sampling Structures for Analog Video

An analog video signal is obtained by sampling the time-varying image intensity
distribution in the vertical x2, and temporal t directions by a 2-D sampling process
known as scanning. Continuous intensity information along each horizontal line
is concatenated to form the 1-D analog video signal as a function of time. The
two most commonly used vertical-temporal sampling structures are the orthogonal
sampling structure, shown in Figure 3.2, and the hexagonal sampling structure,
depicted in Figure 3.3.

v =

Figure 3.2: Orthogonal sampling structure for progressive analog video.

In these figures, each dot indicates a continuous line of video perpendicular to
the plane of the page. The matrices V shown in these figures are called the sampling
matrices, and will be defined in Section 3.3. The orthogonal structure is used in
the representation of progressive analog video, such as that shown on workstation
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monitors, and the hexagonal structure is used in the representation of 2:l interlaced
analog video, such as that shown on TV monitors. The spatio-temporal  frequency
content of these signals will be analyzed in Sections 3.2 and 3.3, respectively.

t 0 0 0 0 v =
0 0 0 0

Figure 3.3: Hexagonal sampling structure for 2:l interlaced analog video.

3.1.2 Sampling Structures for Digital Video

Digital video can be obtained by sampling analog video in the horizontal direction
along the scan lines, or by applying an inherently 3-D sampling structure to sample
the time-varying image, as in the case of some solid-state sensors. Examples of the
most popular 3-D sampling structures are shown in Figures 3.4, 3.5, 3.6, and 3.7. In
these figures, each circle indicates a pixel location, and the number inside the circle
indicates the time of sampling. The first three sampling structures are lattices,
whereas the sampling structure in Figure 3.7 is not a lattice, but a union of two
cosets of a lattice. The vector c in Figure 3.7 shows the displacement of one coset
with respect to the other. Other 3-D sampling structures can be found in [Dub 851.

The theory of sampling on lattices and other special M-D structures is presented
in Section 3.4. It will be seen that the most suitable sampling structure for a time-
varying image depends on its spatio-temporal frequency content. The sampling
structures shown here are field- or frame-instantaneous; that is, a complete field or
frame is acquired at one time instant. An alternative strategy is time-sequential
sampling, where individual samples are taken one at a time according to a prescribed
ordering which is repeated after one complete frame. A theoretical analysis of time-
sequential sampling can be found in [Rah 921.
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Figure 3.4: Orthogonal sampling lattice [Dub 851 (01985 IEEE).

Ax1 0 0

v = 0 2Ax2 Ax2

0 0 At/2

Figure 3.5: Vertically aligned 2:l line-interlaced lattice [Dub 851 (01985 IEEE).

Figure 3.6: Field-quincunx sampling lattice [Dub 851 (01985 IEEE).
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r 7

0

i -

l?y12
Art/2

Figure 3.7: Line-quincunx sampling lattice [Dub 851 (01985 IEEE).

3.2 Two-Dimensional Rectangular Sampling

In this section, we discuss 2-D rectangular sampling of a still image, s,(xi,xs) in
the two spatial coordinates. However, the same analysis also applies to vertical-
temporal sampling (as in the representation of progressive analog video). In spatial
rectangular sampling, we sample at the locations

21 = nlAx1
x2 = nzAx2 (3.1)

where AZ, and Ax2 are the sampling distances in the xi and x2 directions, respec-
tively. The 2-D rectangular sampling grid is depicted in Figure 3.8. The sampled
signal can be expressed, in terms of the unitless coordinate variables (nr, nz), as

s(nl,nz) = sc(n~Ax~,nzAxz), (nl,nz) E 2’. (3.2)

In some cases, it is convenient to define an intermediate sampled signal in terms of
the continuous coordinate variables, given by

Sp(Xl,XZ) = sc(xl,x2)yy-)q x1 - nlAxl, x2 - nzAx2)
721 n2

= c Cs,(nlAxl, nzAxc2)6(xl- nlAx:1, x2 - wAxa)
n1 na

= cc s(nl, nz)6(xl - nl Axl, xz - nzAxz) (3.3)
la1 nz

Note that sp(xi, x2) is indeed a sampled signal because of the presence of the 2-D
Dirac delta function S(., .).
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We start by reviewing the 2-D continuous-space Fourier transform (FT) relations.
The 2-D FT S,(Fi, Fs) of a signal with continuous variables s,(xi, x2) is given by

co cc
Sc(~,,Fz)=

J ’ s
5,(x1, x2) exp{-j2n(Fixi + Fzxs)}dxrdx2 (3.4) /

-co --oo

where (FL, Fz) E R2, and the inverse 2-D Fourier transform is given by

00 cc
%(%X2) =

ss
&(FI, Fz) exp{jZ~(Flxl + Fzxz)}~FI~Fz (3.5)

-cc -‘xl

Here, the spatial frequency variables Fi and Fz have the units in cycles/mm and
are related to the radian frequencies by a scale factor of 2n.

In order to evaluate the 2-D FT Sp(Fl, F ) f2 o sp xi, x2), we substitute (3.3) into(
(3.4), and exchange the order of integration and summation, to obt,ain

SdFl, Fz) = cc s,(nlAxl, nbxz)
nl 02

J’s 6(x1 - nlAxl, 22 - nzAxz) exp{-j2n(Frxi + F~x~)}dx~d2~

which simplifies as

S,(FI,FZ) = zxs,(nlAxi, n4Axz)exp{-j2~(Fl’lnlAxl+ FznsAxz)} (3.6)
nl n*

Notice that S,(Fl) Fs) is periodic with the fundamental period given by the region
FI < ]1/(2Axi)] and FZ < ]1/(2Axs)].

Letting fi = FiAxi, i = 1,2, and using (3.2), we obtain the discrete-space
Fourier transform relation, in terms of the unitless frequency variables fi and ~“2,
as

s(fr 1 f2) = .S,(&, &) = 2 5 s(nl, n2) exp{-j2Qinl + fin2)) (3.7)
n1=-cc nz=-cc

The 2-D discrete-space inverse Fourier transform is given by

i

J’s

4
s(nl, n2) = S(fi,f2)exp{.Q~(fin1 -I- finz))GiG2

-4 -+ (3.8)

Recall that the discrete-space Fourier transform S(fi, fs) is periodic with the fun-
damental period fi < ]1/2( and f2 < ]1/2].
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3.2.2 Spectrum of the Sampled Signal

We now relate the Fourier transform, S,(Fi, Fz) or S(fi, fi), of the sampled signal
to that of the continuous signal. The standard approach is to start with (3.3), and
express S,(Fi, Fz) as the 2-D convolution of the Fourier transforms of the continuous
signal and the impulse train [Opp 89, Jai 901, using the modulation property of the
FT,

where ?= denotes 2-D Fourier transformation, which simplifies to yield (3.11).
Here, we follow a different derivation which can be easily extended to other

periodic sampling structures [Dud 84, Dub 851. First, substitute (3.5) into (3.2),
and evaluate zi and x2 at the sampling locations given by (3.1) to obtain

After the change of variables fi = FlAxi and fi = FzAxs, we have

s(n1, n2) = -L
00 cc

ssAxlAxz --oo m-00 .‘4&, #-I ewW%flnl+ fm)) dfldfz

Next, break the integration over the (fl, f2) plane into a sum of integrals each
over a square denoted by SQ(ki) kz),

where SQ(ki ) k2) is defined as

Another change of variables, fi = fi -ICI and f2 = f2 - k2, shifts all the squares
SQ(ki, ka) down to the fundamental period c-f, $) x (-5, f), to yield

exp{.Q~(flnl + fm)} exp{-j2r(klnl + km)}dfidh (3.10)

But exp{-j2z(kini + kznz)} = l‘for ki, k2, ni, n2 integers. Thus, the frequencies
(fl - kl, fz - k2) map onto (fl, fi). Comparing the last expression with (3.8), we
therefore conclude that

S(fl,fi) = -&-& p s&$, G)

1 k2
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0 0 l 0

(W

Figure 3.8: Sampling on a 2-D rectangular grid: a) support of the Fourier spectrum
of the continuous image; b) the sampling grid; c) spectral support of the sampled
image.

or, equivalently,

sp(F~,Fz) = Ax  cc S,(ll;-32-&Ax
2 kl ka

(3.12)

We see that, as a result of sampling, the spectrum of the continuous sig-
nal replicates in the 2-D frequency plane according to (3.11). The case when
the continuous signal is bandlimited with a circular spectral support of radius
B < max{l/(2Azi), 1/(2A22)} is illustrated in Figure 3.8.

3.3 Two-Dimensional Periodic Sampling
In this section we extend the results of the previous section to arbitrary 2-D periodic
sampling grids.
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3.3.1 Sampling Geometry

An arbitrary 2-D periodic sampling geometry can be defined by two basis vectors
vr = (~1 ~21)~ and vz = (U ~zz)~, such that every sampling location can be
expressed as a linear combination of them, given by

x1 = VII~I + v12n2

x2 = v21nl + v22n2 (3.13)

In vector-matrix form, we have

where

and

x=Vn (3.14)

x = (x1 ZZ)~, n = (721 nZ)T

v = [VllV21

is the sampling matrix. The sampling locations for an arbitrary periodic grid are
depicted in Figure 3.9.

Then, analogous to (3.2) and (3.3), the sampled signal can be expressed as

s(n) = se(Vn), n E Z2 (3.15)

or as

SP (4 = se(x) C 6(x-Vn)
neZ2

= C s,(Vn)S(x - Vn) = C s(n)h(x - Vn) (3.16)
n n

3.3.2 2-D Fourier Transform Relations in Vector Form

Here, we restate the 2-D Fourier transform relations given in Section 3.2.1 in a more
compact vector-matrix form as follows:

J’
MS,(F) = se(x) exp{-j2rFTx} dx (3.17)

-cc

J

cc

SC(X) = S,(F) exp{j2rFTx} dF (3.18)
-co
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0 0

“1
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a 0 b 0 0

(b)

Figure 3.9: Sampling on an arbitrary 2-D periodic grid: a) support of the Fourier
spectrum of the continuous image; b) the sampling grid; c) spectral support of the
sampled image.

where x = (21 2~)~ and F = (Fl Fz)~. We also have

S,(F) = 2 s,(Vn) exp{-j2TFTVn}
n=-c0

01

S(f) = 2 s(n) exp{-j2rfTn}
n=--co

(3.19)

(3.20)

J t
s(n) = S(f) exp{j2afTn} df (3.21)

-$

where f = (fr f2)T. Note that the integrations and summations in these relations
are in fact double integrations and summations.
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3.3.3 Spectrum of the Sampled Signal

To derive the relationship between S(f) and Se(F), we follow the same steps as in
Section 3.2. Thus, we start by substituting (3.18) into (3.15) as

s
Ocis(n) = s,(Vn) = Se(F) exp{j2rFTVn}dF

--co

Making the change of variables f = VTF, we have

s
co

s(n) =
-a, ,de:V,

-&(Uf) exp{j2afTn}df

where U = VT-l and df = IdetVldF.
Expressing the integration over the f plane as a sum of integrations over the

squares (-l/2,1/2) x (-l/2, l/2), we obtain

s(n) = LS,(U(f - k)) exp{j2dTn} exp{-j2nkTn}df (3.22)

where exp{-j2nkTn} = 1 for k an integer valued vector.
Thus, comparing this expression with (3.21), we conclude that

S(f) = & c SNf - k))
k

or, equivalently,

s,(F) = & CS,(F - Uk)
k

(3.23)

(3.24)

where the periodicity matrix in the frequency domain U satisfies

UTV=I (3.25)

and I is the identity matrix. The periodicity matrix can be expressed as U = [u~Iu~],
where ~1 and u2 are the basis vectors in the 2-D frequency plane.

Note that this formulation includes rectangular sampling as a special case with
the matrices V and U being diagonal. The replications in the 2-D frequency plane
according to (3.24) are depicted in Figure 3.9.

3.4 Sampling on 3-D Structures
The concepts related to 2-D sampling with an arbitrary periodic geometry can be
readily extended to sampling time-varying images sc(xlt)  = s,(Q, zz)t) on 3-D
sampling structures. In this section, we first elaborate on 3-D lattices, and the
spectrum of 3-D signals sampled on lattices. Some specific non-lattice structures
are also introduced. The theory of sampling on lattices and other structures has
been generalized to M dimensions elsewhere [Dub 851.
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3.4.1 Sampling on a Lattice

We start with the definition of a 3-D lattice. Let ~1, ~2, vs be linearly independent
vectors in the 3-D Euclidean space R3. A lattice A3 in R3 is the set of all linear
combinations of ~1, ~2, and vs with integer coefficients

A3 = {nlvl+ n2vz + kv3 1 nl, 122, !f E Z)

The set of vectors ~1, ~2, and vg is called a basis for h3.
In vector-matrix notation, a lattice can be defined as

(3.26)

h3={V ;I 1 1 n E Z2, k E Z} (3.27)

where V is called a 3 x 3 sampling matrix defined by

v = [Vl I vz I v31 (3.28)

The basis, and thus the sampling matrix? for a given lattice is not unique. In
particular, for every sampling matrix V, V = EV, where E is an integer matrix
with detE = *l, forms another sampling matrix for A3. However, the quantity
d(A3) = IdetVl is unique and denotes the reciprocal of the sampling density.

Then, similar to (3.15) and (3.16), the sampled spatio-temporal signal can be
expressed as

or as

s(n, Ic) = sc(V 1 1z ), (n,k) = (nl,nz,k) E Z3 (3.29)

dx,t) = s,(x;t)(n~Z 6([ 1x1 -v [ ;I)3

The observant reader may already have noticed that the 2-D sampling structures
discussed in Sections 3.2 and 3.3 are also lattices. Hence, Sections 3.2 and 3.3
constitute special cases of the theory presented in this section.

3.4.2 Fourier Transform on a Lattice

Based on (3.19), we can define the spatio-temporal Fourier transform of +(x, t)j
sampled on A3, as follows:

S,(F) = C sc(x,t) exp { -j2aFT [ y I}, F = [FI p2 FtlT E R3
(X,t)EA3

= (
3
4V [ F ]j exp {-%F’V [ F ]}
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In order to quantify some properties of the Fourier transform defined on a lattice,
we next define the reciprocal lattice and the unit cell of a lattice. Given a lattice

A3, the set of all vectors r such that rT 1 1T is an integer for all (x,t) E A3 is

called the reciprocal lattice A3* of A3. A basis for A3* is the set of vectors ur, ~2,
and us determined by

or, equivalently,

u;vj = &j, i,j = 1,2,3

UTV = I3

where Is is a 3 x 3 identity matrix.
The definition of the unit cell of a lattice is not unique. Here we define the

Voronoi cell of a lattice as a unit cell. The Voronoi cell, depicted in Figure 3.10, is
the set of all points that are closer to the origin than to any other sample point.

@

0 0

‘1. m
2’ >

x1

0 0

Figure 3.10: The Voronoi cell of a 2-D lattice.

The Fourier transform of a signal sampled on a lattice is a periodic function over
R3 with periodicity lattice A3*,

S,(F)=S,(F+r), reA3*

This follows from rT 1 1F is an integer for (x, t) E A3 and r E A3*, by definition of

the reciprocal lattice. Because of this periodicity, the Fourier transform need only
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be specified over one unit cell P of the reciprocal lattice A3*. Thus, the inverse
Fourier transform of S,(F) is given by

sp(x, t) = d(A3)
sP

S,(F) exp{j2aFT [  ; ]}dF, (x ,t )  E A3 (3.32)

Note that in terms of the normalized frequency variables, f = VTF, we have

S(f) = SpWf) = cngz s(n, k) exp { -j2rfT [ E ] }
3

(3.33)

where U = VT-l, with the fundamental period given by the unit cell fi < 11/21,
fz < 11/21, and .ft < 11/21.

3.4.3 Spectrum of Signals Sampled on a Lattice

In this section, we relate the Fourier transform S,(F) of the sampled signal to that
of the continuous signal. Suppose that s,(x, t) E L1(R3) has the Fourier transform

Se(F) = S,, sc(x,t) exp { -j2aFT [ T ]} dx dt, F E R3 (3.34)

with the inverse transform

s&t) = J’R3
Sc(F)exp{.i2iTFT  [ ;]}dF; (x,t)ER3 (3.35)

We substitute (3.35) into (3.30), and express this integral as a sum of integrals
over displaced versions of a unit cell P of A3* to obtain

sp(x,t) = J’ S,(F)exp{j2~FT  [ F]>dF, xgA3

= g J’S,(F+r)exp{jZrr(F+r)‘[  ;]}dF
rEh3* p

Since exp(j2mT [ 1; ) = 1 by the property of the reciprocal lattice, exchanging

the order of summation and integration yields

sp(x,t) = [SCp rcA3*
Sc(F+r)]exp{j2rrFT  [  ;]}dF, (x,t)EA3 ( 3 . 3 6 )

Thus, we have

S,(F) = -& c S,(F + r) = q& c SC(~+~~)
rch3* kcZ3

(3.37)
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or, alternatively,

S(f) = %dF)IF=Uf = q& c Sc(U(f +k))
kcZ3

(3.38)

where U is the sampling matrix of the reciprocal lattice A3*. As expected, the
Fourier transform of the sampled signal is the sum of an infinite number of replicas
of the Fourier transform of the continuous signal, shifted according to the reciprocal
lattice A3*.

Example

This example illustrates sampling of a continuous time-varying image,
4x,4, (~4 E R3, using the progressive and the 2:l line interlaced
sampling lattices, shown in Figures 3.4 and 3.5 along with their sampling
matrices V, respectively.

(a) (b)

Figure 3.11: Sampling lattices for a) progressive and b) interlaced video.

The locations of the samples of sp(x,t), [;]=V[i]Er\“,or
s(n, k), (n, Ic) E Z3, for the cases of progressive and interlaced sampling
are depicted in Figure 3.11 (a) and (b), respectively. Observe that the
reciprocal of the sampling density d(A3) = AxlAxxAt is identical for
both lattices. However, the periodicity matrices of the spatio-temporal
Fourier transform of the sampled video, indicating the locations of the
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replications, are different, and are given by

U=V-lT= [ c & !J
and

for the progressive and interlaced cases, respectively.

3.4.4 Other Sampling Structures

In general, the Fourier transform cannot be defined for sampling structures other
than lattices; thus, the theory of sampling does not extend to arbitrary sampling
structures [Dub 851. However, an extension is possible for those sampling structures
which can be expressed as unions of cosets of a lattice.

Unions of Cosets of a Lattice

Let A3 and I3 be two 3-D lattices. A3 is a sublattice of I3 if every site in A3 is also
a site of 13. Then, d(h3) is an integer multiple of d(T3). The quotient d(A3)/d(13)
is called the index of A3 in r3, and is denoted by (A3 : r3). We note that if A3 is a
sublattice of T3, then 13* is a sublattice of A3*.

The set

c+~s= {c+ [  ;] 1 [  ;] EA3andcE13) (3.39)

is called a coset of A3 in r3. Thus, a coset is a shifted version of the lattice A3.
The most general form of a sampling structure Q3 that we can analyze for spatio-

temporal sampling is the union of P cosets of a sublattice A3 in a lattice r3, defined
by

q3 = ij(c, + A3) (3.40)
i=l

where cl, . , cp is a set of vectors in r3 such that

ci - ci 6 A3 for i # j

An example of such a sampling structure is depicted in Figure 3.12. Note that e3
becomes a lattice if we take A3 = T3 and P = 1.
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>

%
xl

Figure 3.12: Union of cosets of a lattice [Dub 851 (01985 IEEE).

Spectrum of Signals on Unions of Cosets of a Lattice

As stated, the Fourier transform is, in general, not defined for a sampling structure
other than a lattice. However, for the special case of the union of cosets of a
sublattice A3 in F3, we can assume that the signal is defined over the parent lattice
F3 with certain sample values set to zero. Then,

SPP’) = 5 C sp(ci + [  F ])rap{-j2rrFT(ei + [  T I)}
i=l XC.43

= eexp {-j2=FTci} c
i=l (X$)EA3

+(ci+ [ ;])exp{-j2sFT[ ;]}(3.41)

The periodicity of this Fourier transform is determined by the reciprocal lattice F3*.
It can be shown that the spectrum of a signal sampled on a structure which is

in the form of the union of cosets of a lattice is given by [Dub 851

S,(F) = -& c drF@+r)l-Eli- (3.42)

where V is the sampling matrix of A3, and the function

g(r) = 5 exp(j2arTci)
i=l

(3.43)

3.5. RECONSTRUCTION FROM SAMPLES
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1

Figure 3.13: Reciprocal structure Q3* [Dub 851 (01985 IEEE).

is constant over cosets of F3* in A3*, and may be equal to zero for some of these
cosets, so the corresponding shifted versions of the basic spectrum are not present.

Example The line-quincunx structure shown in Figure 3.7, which occa-
sionally finds use in practical systems, is in the form of a union of cosets
of a lattice. A 2-D version of this lattice was illustrated in Figure 3.12
where P = 2. The reciprocal structure of the sampling structure Q3
shown in Figure 3.12 is depicted in Fig. 3.13.

3.5 Reconstruction from Samples

Digital video is usually converted back to analog video for display purposes. Fur-
thermore, various digital video systems have different spatio-temporal resolution
requirements which necessitate sampling structure conversion. The sampling struc-
ture conversion problem, which is treated in the next chapter, can alternatively
be posed as the reconstruction of the underlying continuous spatio-temporal video,
followed by its resampling on the desired spatio-temporal lattice. Thus, in the re-
mainder of this chapter, we address the theory of reconstruction of a continuous
video signal from its samples.

3.5.1 Reconstruction from Rectangular Samples

Reconstruction of a continuous signal from its samples is an interpolation problem.
In ideal bandlimited interpolation, the highest frequency that can be represented in
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the analog signal without aliasing, according to the Nyquist sampling theorem, is
equal to one-half of the sampling frequency. Then, a continuous image, s,(zi, zz),
can be reconstructed from its samples taken on a 2-D rectangular grid by ideal
low-pass filtering as follows:

The support of the ideal reconstruction filter in the frequency domain is illustrated
in Figure 3.14.

Figure 3.14: Reconstruction filter.

The reconstruction filter given by (3.44)is sometimes referred to as the ‘(ideal
bandlimited interpolation filter,” since the reconstructed image would be identical
to the original continuous image, that is

s, (Xl, x2) = %(X1, x2) (3.45)

provided that the original continuous image was bandlimited, and Ax, and Ax,
were chosen according to the Nyquist criterion.

The ideal bandlimited interpolation filtering can be expressed in the spatial
domain by taking the inverse Fourier transform of both sides of (3.44)

&(X1, x2) &=J J*-1
A&Ax2 S(FrAxr, FzAzz) exp{j2n(Fixi + F2~2)) dFldF’2

--1i7iq a&q

Substituting the definition of S(FiAxi, FzAxz) into this expression, and rearrang-
ing the terms, we obtain

exp{j2s(Flxl  + Fsa))dFldFz

= AxrAzz cc s(nl, nz)h(xi - niAxr, z2 - nzAx2)
nl na

(3.46)

where h(xi, x2) denotes the impulse response of the ideal interpolation filter for the
case of rectangular sampling, given by

qx1, x2) =
sin (&xi) sin (&x2)

&“I 23
(3.47)

3 . 5 . 2 Reconstruction from Samples on a Lattice

Similar to the case of rectangular sampling, the reconstructed time-varying image
s,(x, t) can be obtained through the ideal low-pass filtering operation

S,(F) =
jdetVIS(VTF) for F E P

0 otherwise.

Here, the passband of the ideal low-pass filter is determined by the unit cell P of
the reciprocal sampling lattice.

Taking the inverse Fourier transform, we have the reconstructed time-varying
image

where

h(x,t) = \detVI k exp { j2rFT [ T ] } dF

(3.48)

(3.49)

is the impulse response of the ideal bandlimited spatio-temporal interpolation filter
for the sampling structure used. Unlike the case of rectangular sampling, this
integral, in general, cannot be reduced to a simple closed-form expression. As
expected, exact reconstruction of a continuous signal from its samples on a lattice
A3 is possible if the signal spectrum is confined to a unit cell P of the reciprocal
lattice.
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3.6 Exercises

1. Derive (3.11) using (3.9).

2. The expression (3.11) assumes impulse sampling; that is, the sampling aper-
ture has no physical size. A practical camera has a finite aperture modeled
by the impulse response &(a~, ~2). How would you incorporate the effect of
the finite aperture size into (3.11)?

3. Suppose a camera samples with 20-micron intervals in both the horizontal and
vertical directions. What is the highest spatial frequency in the sampled image
that can be represented with less than 3 dB attenuation if a) h,(zr, zz) is a
2-D Dirac delta function, and b) h,(~1) ~2) is a uniform circle with diameter
20 microns?

4. Strictly speaking, images with sharp spatial edges are not bandlimited. Dis-
cuss how you would digitize an image that is not bandlimited.

5. Find the locations of the spectral replications for each of the 3-D sampling
lattices depicted in Figures 3.4 through 3.7.

6. Evaluate the impulse response (3.49) if P is the unit sphere.
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Chapter 4

SAMPLING STRUCTURE
CONVERSION

Various digital video systems, ranging from all-digital high-definition TV to video-
phone, have different spatio-temporal resolution requirements leading to the emer-
gence of different format standards to store, transmit, and display digital video.
The task of converting digital video from one format to another is referred to as
the standards conversion problem. Effective standards conversion methods enable
exchange of information among various digital video systems, employing different
format standards, to ensure their interoperability.

Standards conversion is a 3-D sampling structure conversion problem, that is,
a spatio-temporal interpolation/decimation problem. This chapter treats sampling
structure conversion as a multidimensional digital signal processing problem, in-
cluding the characterization of sampling structure conversion in the 3-D frequency
domain and filter design for sampling structure conversion, without attempting to
take advantage of the temporal redundancy present in the video signals. The the-
ory of motion-compensated filtering and practical standards conversion algorithms
specifically designed for digital video, which implicitly or explicitly use interframe
motion information, will be presented in Chapters 13 and 16, respectively.

Sp’“p 3, t) Sampling Structure Y& 2, t)

(x1, 3, t) CA; Conversion 3
(X]’ “2, 0 Eh2

Figure 4.1: Block diagram for sampling structure conversion.
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Chapter 5

OPTICAL FLOW
METHODS

Motion estimation, which may refer to image-plane motion (2-D motion) or object-
motion (3-D motion) estimation, is one of the fundamental problems in digi-
tal video processing. Indeed, it has been the subject of much research effort
[Hua 81, Hua 83, Agg 88, Sin 91, Fle 92, Sez 931. This chapter has two goals: it pro-
vides a general introduction to the 2-D motion estimation problem; it also discusses
specific algorithms based on the optical flow equation. Various other nonpara-
metric approaches for 2-D motion estimation will be covered in Chapters 6-8. In
Section 5.1, we emphasize the distinction between 2-D motion and apparent motion
(optical flow or correspondence). The 2-D motion estimation problem is then formu-
lated as an ill-posed problem in Section 5.2, and a brief overview of a priori motion
field models is presented. Finally, we discuss a number of optical flow estimation
methods based on the optical flow equation (also known as the differential meth-
ods) in Section 5.3. Besides being an integral component of motion-compensated
filtering and compression, 2-D motion estimation is often the first step towards 3-D
motion analysis, which will be studied in Chapters 9-12.

5.1 2-D Motion vs. Apparent Motion

Because time-varying images are 2-D projections of 3-D scenes, as described in
Chapter 2, 2-D motion refers to the projection of the 3-D motion onto the image
plane. We wish to estimate the 2-D motion (instantaneous velocity or displacement)
field from time-varying images sampled on a lattice h3. However, 2-D velocity or
displacement fields may not always be observable for several reasons, which are
cited below. Instead, what we observe is the so-called “apparent” motion (optical
flow or correspondence) field. It is the aim of this section to clarify the distinction
between 2-D velocity and optical flow, and 2-D displacement and correspondence
fields, respectively.

72

5.1. 2-D MOTION VS. APPARENT MOTION 73

5.1.1 2-D Motion

2-D motion, also called “projected motion,” refers to the perspective or the or-
thographic projection of 3-D motion into the image plane. 3-D motion can be
characterized in terms of either 3-D instantaneous velocity (hereafter velocity) or
3-D displacement of the object points. Expressions for the projections of the 3-D
displacement and velocity vectors, under the assumption of rigid motion, into the
image plane are derived in Chapters 9 and 10, respectively.

The concept of a 2-D displacement vector is illustrated in Figure 5.1. Let the
object point P at time t move to P’ at time t’. The perspective projection of the
points P and P’ to the image plane gives the respective image points p and p’.
Figure 5.2 depicts a 2-D view of the motion of the image point p at time t to p’ at
time t’ as the perspective projection of the 3-D motion of the corresponding object
points. Note that because of the projection operation, all 3-D displacement vectors
whose tips lie on the dotted line would give the same 2-D displacement vector.

li “2

I Center of

Figure 5.1: Three-dimensional versus two-dimensional.motion.

The projected displacement between the times t and t’ = t + eAt, where !
is an integer and At is the temporal sampling interval, can be defined for all
(x, t) E R3, resulting in a real-valued 2-D displacement vector function d,(x, t; !At)
of the continuous spatio-temporal variables. The 2-D displacement vector field refers
to a sampled representation of this function, given by

d,(x,t;eAt) = d,(x,t;eAt), (x,t) E h3, (5.1)

or, equivalently,

d(n,k4 = Ux,C~A~)lI,, 12 tlT=~[nl n2 kl~j (n,k) E Z3, (5.2)



74 CHAPTER 5. OPTICAL FLOW METHODS

0
Center of Image

projection plane

Figure 5.2: The projected motion.

where V is the sampling matrix of the lattice h3. Thus, a 2-D displacement field is
a collection of 2-D displacement vectors, d(x, t; iAt), where (x, t) E h3.

The projected velocity function v,(x,t) at time t, and the 2-D velocity vector
field vp(x,t) = v(n, k), for [XI xz tlT = V[nl, n2, lelT E A” and (n, k) E Z3 can be
similarly defined in terms of the 3-D instantaneous velocity (Xi, 22, is), where the
dot denotes a time derivative.

5.1.2 Correspondence and Optical Flow

The displacement of the image-plane coordinates x from time t to t’, based on
the variations of se(x) t), is called a correspondence vector. An optical flow vec-
tor is defined as the temporal rate of change of the image-plane coordinates,
(vi, ~2) = (dxi/dt, dxz/dt), at a particular point (x,t) E R3 as determined by
the spatio-temporal variations of the intensity pattern sc(x,t). That is, it corre-
sponds to the instantaneous pixel velocity vector. (Theoretically, the optical flow
and correspondence vectors are identical in the limit At = t’ -t goes to zero, should
we have access to the continuous video.) In practice, we define the correspondence
(optical flow) field as a vector field of pixel displacements (velocities) based on the
observable variations of the 2-D image intensity pattern on a spatio-temporal lattice
h3. The correspondence field and optical flow field are also known as the “apparent
2-D displacement” field and “apparent 2-D velocity” field, respectively.

The correspondence (optical flow) field is, in general, different from the 2-D
displacement (2-D velocity) field due to [Ver 891:

. Lack of sufficient spatial image gradient: There must be sufficient gray-level
(color) variation within the moving region for the actual motion to be observ-
able. An example of an unobservable motion is shown in Figure 5.3, where
a circle with uniform intensity rotates about its center. This motion generates
no optical flow, and thus is unobservable.
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Figure 5.3: All projected motion does not generate optical flow.

. Changes in external illumination: An observable optical flow may not always
correspond to an actual motion. For example, if the external illumination
varies from frame to frame, as shown in Figure 5.4, then an optical flow will
be observed even though there is no motion. Therefore, changes in the external
illumination impair the estimation of the actual 2-D motion field.

Frame k k-i-1
r \ //

Figure 5.4: All optical flow does not correspond to projected motion.

In some cases, the shading may vary from frame to frame even if there is
no change in the external illumination. For example, if an object rotates its
surface normal changes, which results in a change in the shading. This change
in shading may cause the intensity of the pixels along a motion trajectory to
vary, which needs to be taken into account for 2-D motion estimation.

In conclusion the 2-D displacement and velocity fields are projections of the re-
spective 3-D fields into the image plane, whereas the correspondence and optical flow
fields are the velocity and displacement functions perceived from the time-varying
image intensity pattern. Since we can only observe optical flow and correspondence
fields, we assume they are the same as the 2-D motion field in the remainder of this
book.
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5.2 2-D Motion Estimation

In this section, we first state the pixel correspondence and optical flow estimation
problems. We then discuss the ill-posed nature of these problems, and introduce
some a priori 2-D motion field models.

The 2-D motion estimation problem can be posed as either: i) the estimation
of image-plane correspondence vectors d(x, t; !At) = [dl(x, t; 1At) dz(x, t; !At)lT
between the times t and t + 1At, for all (x, t) E A3 and 1 is an integer, or
ii) the estimation of the optical flow vectors v(x, t) = [vr(x, t) uz(x, t)lT for all
(x, t) E A3. Observe that the subscript “p” has been dropped for notational
simplicity. The correspondence and optical flow vectors usually vary from pixel to
pixel (space-varying motion), e.g., due to rotation of objects in the scene, and as a
function of time, e.g., due to acceleration of objects.

The Correspondence Problem: The correspondence problem can be set up as a
forvlard or backward motion estimation problem, depending on whether the motion
vector is defined from time t to t+!At or from t to t-lAt, as depicted in Figure 5.5.

Forward Estimation: Given the spatio-temporal samples sp(x, t) at times t and
t + eat, which are related by

s~(zI,xz>~)  = s,(q +d~(x,t;lAt),x,+dz(x,t;lAt),t+lAt)

or, equivalently,

(5.3)

sk(xi, x2) = sk+e(zi  + di(x),xz + dz(x)), such that t = kAt

find the real-valued correspondence vector d(x) = [dr(x) d2(x)lT, where the tem-
poral arguments of d(x) are dropped.

time t

time t-1At

time t+lAt

,’.,

Figure 5.5: Forward and backward correspondence estimation

P
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Backward Estimation: If we define the correspondence vectors from time t to
t - eAt then, the 2-D motion model becomes

sk(xi, x2) = sk-e(xi + di(x), x2 $ I&(X)), such that t = EAt

Alternately, the motion vector can be defined from time t - !At to t. Then we have

sk(zi, x2) = sk-e(xr - dr(x), 22 - &(x)), such that t = kAt

Although we discuss both types of motion estimation in this book, backward
motion estimation is more convenient for forward motion compensation, which is
commonly employed in predictive video compression. Observe that because x*d(x)
generally does not correspond to a lattice site, the right-hand sides of the expressions
are given in terms of the continuous video s,(xr, x2, t), which is not available. Hence,
most correspondence estimation methods incorporate some interpolation scheme.
The correspondence problem also arises in stereo disparity estimation (Chapter 12),
where we have a left-right pair instead of a temporal pair of images.

Image Registration: The registration problem is a special case of the correspon-
dence problem, where the two frames are globally shifted with respect to each other,
for example, multiple exposures of a static scene with a translating camera.

Optical Flow Estimation:  Given the samples sp(xr, x2, t) on a 3-D lattice h3,
determine the 2-D velocity v(x, t) for all (xI t) E A3. Of course, estimation of optical
flow and correspondence vectors from two frames are equivalent, with d(x, t; !At) =
v(x, t)eAt, assuming that the velocity remains constant during each time interval
!At. Note that one needs to consider more than two frames at a time to estimate
optical flow in the presence of acceleration.

2-D motion estimation, stated as either a correspondence or optical flow estima-
tion problem, based only on two frames, is an “ill-posed” problem in the absence
of any additional assumptions about the nature of the motion. A problem is called
ill-posed if a unique solution does not exist, and/or solution(s) do(es) not contin-
uously depend on the data [Ber 881. 2-D motion estimation suffers from all of the
existence, uniqueness, and continuity problems:

l Existence of a solution: No correspondence can be established for cov-
ered/uncovered background points. This is known as the occlusion problem.

l Uniqueness of the solution: If the components of the displacement (or ve-
locity) at each pixel are treated as independent variables, then the number
of unknowns is twice the number of observations (the elements of the frame
difference). This leads to the so-called “aperture” problem.

. Continuity of the solution: Motion estimation is highly sensitive to the pres-
ence of observation noise in video images. A small amount of noise may result
in a large deviation in the motion estimates.

The occlusion and aperture problems are described in detail in the following.
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5.2.1 The Occlusion Problem
Occlusion refers to the covering/uncovering of a surface due to 3-D rotation and
translation of an object which occupies only part of the field of view. The covered
and uncovered background concepts are illustrated in Figure 5.6, where the object
indicated by the solid lines translates in the 21 direction from time t to t’. Let the
index of the frames at time t and t’ be Ic and I% + 1, respectively. The dotted region
in the frame le indicates the background to be covered in frame lc + 1. Thus, it is not
possible to find a correspondence for these pixels in frame le + 1. The dotted region
in frame le + 1 indicates the background uncovered by the motion of the object.
There is no correspondence for these pixels in frame I%.

Frame k k+l

 

Background to be covered Uncovered background
(no region in the next frame (no motion vector points into
matches this region) this region)

Figure 5.6: The covered/uncovered background problem.

5.2.2 The Aperture Problem
The aperture problem is a restatement of the fact that the solution to the 2-D motion
estimation problem is not unique. If motion vectors at each pixel are considered
as independent variables, then there are twice as many unknowns as there are
equations, given by (5.3). The number of equations is equal to the number of pixels
in the image, but for each pixel the motion vector has two components.

Theoretical analysis, which will be given in the next section, indicates that we
can only determine motion that is orthogonal to the spatial image gradient, called
the normal flow, at any pixel. The aperture problem is illustrated in Figure 5.7.
Suppose we have a corner of an object moving in the x2 direction (upward). If
we estimate the motion based on a local window, indicated by Aperture 1, then
it is not possible to determine whether the image moves upward or perpendicu-
lar to the edge. The motion in the direction perpendicular to the edge is called
the normal flow.
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Aperture 2

Figure 5.7: The aperture problem.
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However, if we observe Aperture 2, then it is possible to estimate the correct
motion, since the image has gradient in two perpendicular directions within this
aperture. Thus, it is possible to overcome the aperture problem by estimating the
motion based on a block of pixels that contain sufficient gray-level variation. Of
course, implicit here is the assumption that all these pixels translate by the same
motion vector. A less restrictive approach would be to represent the variation of
the motion vectors from pixel to pixel by some parametric or nonparametric 2-D
motion field models.

5.2.3 Two-Dimensional Motion Field Models
Because of the ill-posed nature of the problem, motion estimation algorithms need
additional assumptions (models) about the structure of the 2-D motion field. We
provide a brief overview of these models in the following.

Parametric Models

Parametric models aim to describe the orthographic or perspective projection of
3-D motion (displacement or velocity) of a surface into the image plane. In gen-
eral, parametric 2-D motion field models depend on a representation of the 3-D
surface. For example, a 2-D motion field resulting from 3-D rigid motion of a pla-
nar surface under orthographic projection can be described by a 6-parameter affine
model, while under perspective projection it can be described by an $-parameter
nonlinear model [Ana 931. There also exist more complicated models for quadratic
surfaces [Agg 881. We elaborate on these models in Chapters 9-12, where we discuss
3-D motion estimation.

A subclass of parametric models are the so-called quasi-parametric models,
which treat the depth of each 3-D point as an independent unknown. Then the
six 3-D motion parameters constrain the local image flow vector to lie along a spe-
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cific line, while knowledge of the local depth value is required to determine the
exact value of the motion vector [Ana 931. These models may serve as constraints
to regulate the estimation of the 2-D motion vectors, which lead to simultaneous
2-D and 3-D motion estimation formulations (see Chapter 11).

Nonparametric Models

The main drawback of the parametric models is that they are only applicable in
case of 3-D rigid motion. Alternatively, nonparametric uniformity (smoothness)
constraints can be imposed on the 2-D motion field without employing 3-D rigid
motion models. The nonparametric constraints can be classified as deterministic
versus stochastic smoothness models. The following is a brief preview of the non-
parametric approaches covered in this book.

. Optical flow equation (OFE) bused methods: Methods based on the OFE,
studied in the rest of this chapter, attempt to provide an estimate of the op-
tical flow field in terms of spatio-temporal image intensity gradients. With
monochromatic images, the OFE needs to be used in conjunction with an
appropriate spatio-temporal smoothness constraint, which requires that the
displacement vector vary slowly over a neighborhood. With color images,
the OFE can be imposed at each color band separately, which could possibly
constrain the displacement vector in three different directions [Oht 901. How-
ever, in most cases an appropriate smoothness constraint is still needed to
obtain satisfactory results. Global smoothness constraints cause inaccurate
motion estimation at the occlusion boundaries. More advanced directional
smoothness constraints allow sudden discontinuities in the motion field.

l Block motion model: It is assumed that the image is composed of moving
blocks. We discuss two approaches to determining the displacement of blocks
from frame to frame: the phase-correlation and block-matching methods. In
the phase-correlation approach, the linear term of the Fourier phase differ-
ence between two consecutive frames determines the motion estimate. Block
matching searches for the location of the best-matching block of a fixed size in
the next (and/or previous) frame(s) based on a distance criterion. The basic
form of both methods apply only to translatory motion; however, generalized
block matching can incorporate other spatial transformations. Block-based
motion estimation is covered in Chapter 6.

. Pebrecursive  methods: Pel-recursive methods are predictor-corrector type dis-
placement estimators. The prediction can be taken as the value of the motion
estimate at the previous pixel location or as a linear combination of motion
estimates in a neighborhood of the current pixel. The update is based on
gradient-based minimization of the displaced frame difference (DFD) at that
pixel. The prediction step is generally considered as an implicit smoothness
constraint. .Extension of this approach to block-based estimation results in
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the so-called Wiener-type estimation strategies. Pel-recursive methods are
presented in Chapter 7.

l Bayesian Methods: Bayesian methods utilize probabilistic smoothness con-
straints, usually in the form of a Gibbs random field to estimate the displace-
ment field. Their main drawback is the extensive amount of computation
that is required. A maximum a posteriori probability estimation method is
developed in Chapter 8.

5.3 Methods Using the Optical Flow Equation

In this section, we first derive the optical flow equation (OFE). Then optical flow
estimation methods using the OFE are discussed.

5.3.1 The Optical Flow Equation

Let s,(zr, ~2, t) denote the continuous space-time intensity distribution. If the in-
tensity remains constant along a motion trajectory, we have

d&(X1, mt) = 0
dt

where zr and zz varies by t according to the motion trajectory. Equation (5.4) is
a total derivative expression and denotes the rate of change of intensity along the
motion trajectory. Using the chain rule of dcfferentiation, it can be expressed as

h(x; t)
TV1 (XI t) +

&(x; 4
--$p(x,t) +

h(x; t)7=0 (5.5)

where wr(x, t) = dxl f dt and vz(x, t) = dxz Jdt denote the components of the coordi-
nate velocity vector in terms of the continuous spatial coordinates. The expression
(5.5) is known as the optical flow equation or the optical flow constraint.

It can alternatively be expressed as

( vs,&;t, , v(x,t) ) + +p = 0

where Vsc(x;t) & ,w @d$ and (., .) denotes vector inner product.

Naturally, the OFE (5.5) is not sufficient to uniquely specify the 2-D velocity
(flow) field just like (5.3). The OFE yields one scalar equation in two unknowns,
wr(x, t) and z)z(x, t), at each site (x, t). Inspection of (5.6) reveals that we can only
estimate the component of the flow vector that is in the direction of the spatial
image gradient &$$, called the normal flow ZI~(X, t), because the component
that is orthogonal to the spatial image gradient disappears under the dot product.
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Loci of v satisfying
“‘I< the optical flow equation

Figure 5.8: The normal flow.

This is illustrated in Figure 5.8, where all vectors whose tips lie on the dotted line
satisfy (5.6). The normal flow at each site can be computed from (5.6) as

as,(w)

’ vJ-(x,t) = ,,vs,(r;t),, (5.7)

Thus, the OFE (5.5) imposes a constraint on the component of the flow vector
that is in the direction of the spatial gradient of the image intensity at each site
(pixel), which is consistent with the aperture problem. Observe that the OFE
approach requires that first, the spatio-temporal image intensity be differentiable,
and second, the partial derivatives of the intensity be available. In practice, optical
flow estimation from two views can be shown to be equivalent to correspondence
estimation under certain assumptions (see Exercise 2). In the following we present
several approaches to estimate optical flow from estimates of normal flow.

5.3.2 Second-Order Differential Methods

In search of another constraint to determine both components of the flow vector at
each pixel, several researchers [Nag 87, Ura 881 suggested the conservation of the
spatial image gradient, Vs,(x; t), stated by

d vsL+; t) = 0
dt

An estimate of the flow field, which is obtained from (5.8), is given by

31(x; t)
[ c,(x;t) = $g $g]-l[ -%gJ] (5.9)
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However, the constraint (5.8) does not allow for some common motion such as
rotation and zooming (see Exercise 6). Further, second-order partials cannot always
be estimated with sufficient accuracy. This problem is addressed in Section 5.3.5.
As a result, Equation (5.9) does not always yield reliable flow estimates.

5.3.3 Block Motion Model

Another approach to overcoming the aperture problem is to assume that the motion
vector remains unchanged over a particular block of pixels, denoted by B (suggested
by Lucas and Kanade [Luc 811); that is,

V(X, t) = v(t) = [vi(t) u2(t)lT, for x E B,

Although such a model cannot handle rotational motion, it is possible to estimate
a purely translational motion vector uniquely under this model provided that the
block of pixels contain sufficient gray-level variation.

Let’s define the error in the optical flow equation over the block of pixels B as

E = c v,,(t) + !?d&2(t) I asc($t) 1
2

(5.11)
XEB

Computing the partials of the error E with respect to vi(t) and vg(t), respectively,
and setting them equal to zero, we have

CC

h(x, f) ^

XEB
rz’l(t) +

d&(X, t) * as&t) Wx,t) o
Fvz(t) + ~ ~ =

a t > 8x1

c(

as&t)  ^

XEB
-j-+4 +

a&(x,  4 n dsc(x,t)  as&t)  o
--&vz(t) + ~ ~ =

at > ax2

where ‘Y denotes the estimate of the respective quantity. Solving these equations
simultaneously, we have

(5.12)

It is possible to increase the influence of the constraints towards the center of
the block B by replacing all summations with weighted summations. A suitable
weighting function may be in the form of a 2-D triangular window. Clearly, the
accuracy of the flow estimates depends on the accuracy of the estimated spatial
and temporal partial derivatives (see Section 5.3.5). We next discuss the method
of Horn and Schunck [Hor 811, which imposes a less restrictive global smoothness
constraint on the velocity field.
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5.3.4 Horn and Schunck Method

Horn and Schunck seek a motion field that satisfies the OFE with the minimum
pixel-to-pixel variation among the flow vectors. Let

&,f(v(x,t)) = ( vsJx;t) , v(x,t) ) + (5.13)

denote the error in the optical flow equation. Observe that the OFE is satisfied
when fOf (v(x, t)) is equal to zero. In the presence of occlusion and noise, we aim to
minimize the square of E,f (v(x, t))m order to enforce the optical flow constraint.

The pixel-to-pixel variation of the velocity vectors can be quantified by the sum
of the magnitude squares of the spatial gradients of the components of the velocity
vector, given by

63v(XIt)) = IIWX,~)l12 + IIVm(x,t)l12

= &2+(&)2+(g)2+(g)2 (5.14)

where we assume that the spatial and temporal coordinates are continuous variables.
It can easily be verified that the smoother the velocity field, the smaller &f(v(x, t)).

Then the Horn and Schunck method minimizes a weighted sum of the error in
the OFE and a measure of the pixel-to-pixel variation of the velocity field

$&)  + Q2GYV))dX, J’
(5.15)

to estimate the velocity vector at each point x, where A denotes the continuous im-
age support. The parameter 02, usually selected heuristically, controls the strength
of the smoothness constraint. Larger values of LY 2 increase the influence of the
constraint.

The minimization of the functional (5.15), using the calculus of variations, re-
quires solving the two equations

as as, as,(q2iqX,t) $ --C,(x,t) =8x1 ax1 8x2
a2v2fi1(x,t) - ds,ds,

ax1 at
$$Cl(X, t) t ( +3i2(x, t) = 02V2c2(x,  t) - 2% (5.16)

simultaneously, where V2 denotes the Laplacian and Y denotes the estimate of the
respective quantity. In the implementation of Horn and Schunck [Hor 811, the
Laplacians of the velocity components have been approximated by FIR highpass
filters to arrive at the Gauss-Seidel iteration

as, &p(x, t) t ~~p'(x, t) + !$@+l)(x, t) = $'(x, t) - dzl
a2 t (&)"+ (gy

672+1)(x, t) =
I

p(x, t) _ 2 ~4%~) + $PW) + %
a2 + (gy + (gg2

(5.17)
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where n is the iteration counter, the overbar denotes weighted local averaging (ex-
cluding the present pixel), and all partials are evaluated at the point (x,t). The
reader is referred to [Hor 811 for the derivation of this iterative estimator. The
initial estimates of the velocities ~(1O)(x,t)  and ~~)(x,t) are usually taken as zero.
The above formulation assumes a continuous spatio-temporal intensity distribution.
In computer implementation, all spatial and temporal image gradients need to be
estimated numerically from the observed image samples, which will be discussed in
the next subsection.

5.3.5 Estimation of the Gradients

We discuss two gradient estimation methods. The first method makes use of finite
differences, and the second is based on polynomial fitting.

Gradient Estimation Using Finite Differences

One approach to estimating the partial derivatives from a discrete image s(ni, nz, k)
is to approximate them by the respective forward or backward finite differences. In
order to obtain more robust estimates of the partials, we can compute the average
of the forward and backward finite differences, called the average difference. Fur-
thermore, we can compute a local average of the average differences to eliminate
the effects of observation noise. Horn and Schunck [Hor 811 proposed averaging four
finite differences to obtain

dsc(%xz,t) ~

8x1
$ { s(nl t 1, 122, k) - s(nl, n2, k) t s(nl + Lnz + 1, k)

-s(nl,n2+l,k)+s(n~t1,n2,~t1)-s(nl~nz~~+1)

ts(nl +1,n2tl,kt1) - s(nl,nz+Lkt 1) >

d&(X1, xz,t) M

8x2
ii (s n1, n2 t 1, k) - ~(1~1, n2, k) t s(nl t Ln2 + 1, k)

-s(n~+1,n2,k)ts(nl,n2t1,~t1)-s(nl~n2~let1)

ts(nl t l,n2 t 1, k t 1) - s(nl+ Lnz,k+ 1) 1
ds,(xl,xz,t) M

at ai (s nl,nz,IctI)- s(nl,nz,II-)+s(nl  t l,nz,kt 1)

-s(nl + l,nz, k) t s(nl,nz t l,k t 1) - s(nl,nz t Ilk)
ts(nl+l,n2tl,ktl)-s(nltl,n2+1,k)} ( 5 . 1 8 )

Various other averaging strategies exist for estimating partials using finite differ-
ences [Lim 901. Spatial and temporal presmoothing of video with Gaussian kernels
usually helps gradient estimation.
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Gradient Estimation by Local Polynomial Fitting

An alternative approach is to approximate S,(Q) x2, t) locally by a linear combina-
tion of some low-order polynomials in cl, c2 and t; that is,

i=o

where &(z,, x2, t) are the basis polynomials, N is the number of basis functions
used in the polynomial approximation, and ai are the coefficients of the linear
combination. Here, we will set N equal to 9, with the following choice of the basis
functions:

&(x1, xz,t) = 13x1, xz,t, x;, x;, x1x2, x1t, x2t (5.20)

which are suggested by Lim [Lim 901. Then, Equation (5.19) becomes,

s,(xl,xz,t) ~uo+a~e~+a2~2+ast+a~x~+a~x~+asz~z~+a~;t~t+usx~t (5.21)

The coefficients a;, i = 0,. . ,8, are estimated by using the least squares method,
which minimizes the error function

N - l 2

e2 = 4n1, n2, k) - C WUXI, x2, t)lI,, ra alT_v[,, n2 klT (5.22)
i=o

with respect to these coefficients. The summation over (nl, n2, Ic) is carried within
a local neighborhood of the pixel for which the polynomial approximation is made.
A typical case involves 50 pixels, 5 x 5 spatial windows in two consecutive frames.

Once the coefficients ai are estimated, the components of the gradient can be
found by simple differentiation,

h(n) x2, t)

0x1
x Ul+2U4xl +U6C2+U7tlzI=rz=t=o  = Ul (5.23)

dS,(Xl, x2, t)
8x2

= uz + %iQ + 421 + US&~=~~=~=O = Uz (5.24)

~~c(~l,~z,q
at M U3 + U7xl+ u8x21zl=z2ml  = a3 (5.25)

Similarly, the second-order and mixed partials can be easily estimated in terms of
the coefficients a4 through us.

5.3.6 Adaptive Methods

The Horn-Schunck method imposes the optical flow and smoothness constraints
globally over the entire image, or over a motion estimation window. This has two
undesired effects:
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i) The smoothness constraint does not hold in the direction perpendicular to an
occlusion boundary. Thus, a global smoothness constraint blurs “motion edges.”
For example, if an object moves against a stationary background, there is a sudden
change in the motion field at the boundary of the object. Motion edges can be
preserved by imposing the smoothness constraint only in the directions along which
the pixel intensities do not significantly change. This is the basic concept of the
so-called directional or oriented smoothness constraint.
ii) The nonadaptive method also enforces the optical flow constraint at the occlusion
regions, where it should be turned off. This can be achieved by adaptively varying cy
to control the relative strengths of the optical flow and smoothness constraints. For
example, at occlusion regions, such as the dotted regions shown in Figure 5.6, the
optical flow constraint can be completely turned off, and the smoothness constraint
can be fully on.

Several researchers proposed to impose the smoothness constraint along the
boundaries but not perpendicular to the occlusion boundaries. Hildreth [Hi1 841
minimized the criterion function of Horn and Schunck given by (5.15) along object
contours. Nagel and Enkelman [Nag 86, Enk 881 introduced the concept of direc-
tional smoothness, which suppresses the smoothness constraint in the direction of
the spatial image gradient. Fogel [Fog 911 used directional smoothness constraints
with adaptive weighting in a hierarchical formulation. Note that adaptive weight-
ing methods require strategies to detect moving object (occlusion) boundaries. Re-
cently, Snyder [Sny 911 proposed a general formulation of the smoothness constraint
that includes some of the above as special cases.

Directional-Smoothness Constraint

The directional smoothness constraint can be expressed as

E&(v(x,Q) = (VV1)TW(VVl)+(v~2)TW(v~2) (5.26)

where W is a weight matrix to penalize variations in the motion field depending on
the spatial changes in gray-level content of the video. Various alternatives for the
weight matrix W exist [Nag 86, Nag 87, Enk 881. For example, W can be chosen
as

(5.27)

where I is the identity matrix representing a global smoothness term to ensure a
nonzero weight matrix at spatially uniform regions, 6 is a scalar, and

with b2 a constant.
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Then, the directional-smoothness method minimizes the criterion function

to find an estimate of the motion field, where A denotes the image support and
o2 is the smoothness parameter. Observe that the method of Horn and Schunck
(5.15) is a special case of this formulation with 6 = 1 and F = 0. A Gauss-Seidel
iteration to minimize (5.28) has been described in [Enk 881, where the update term
in each iteration is computed by means of a linear algorithm. The performance of
the directional-smoothness method depends on how accurately the required second
and mixed partials of image intensity can be estimated.

Hierarchical Approach

Fogel [Fog 911 used the concepts of directional smoothness and adaptive weighting
in an elegant hierarchical formulation. A multiresolution representation s:(zi, xz, t)
of the video was defined as

(5.29) *

where (Y is the resolution parameter, A denotes the image support, and

qx1, x2) =

A exp ( -(c2+m

B2 ( C  z12 zfD2z;)} C2xf + D2x; < B2
0 otherwise

(5.30)

denotes a low pass filter with parameters A, B, C and D. It can readily be seen
that the spatial resolution of sF(xi, zs,t) decreases as o increases. Observe that
spatial partial derivatives of sF(~i, x2, t) can be computed by correlating s,(zi, x2, t)
with the partial derivatives of h(~1, ~2) which can be computed analytically. A
nonlinear optimization problem was solved at each resolution level using a Quasi-
Newton method. The estimate obtained at one resolution level was used as the
initial estimate at the next higher resolution level. Interested readers are referred
to [Fog 911 for implementational details.

5.4 Examples

We compare the results of three representative methods of increasing complexity:
a simple Lucas-Kanade (L-K) type estimator given by (5.12) based on the block
motion model, the Horn-Schunck (H-S) method (5.17) imposing a global smooth-
ness constraint, and the directional-smoothness method of Nagel. In all cases,
the spatial and temporal gradients have been approximated by both average finite
differences and polynomial fitting as discussed in Section 5.3.5. The images are
spatially presmoothed by a 5 x 5 Gaussian kernel with the variance 2.5 pixels.
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(b)

Figure 5.9: a) First and b) second frames of the Mobile and Calendar sequence.
(source: CCETT, Cesson Sevigne Cedex, France.)
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Figure 5.10: Absolute value of the frame difference. (Courtesy Gozde Bozdagi)

Our implementation of the L-K method considers 11 x 11 blocks with no weighting.
In the H-S algorithm, we set LY ’ = 625, and allowed for 20 to 150 iterations. The
parameters of the Nagel algorithm were set to LY ’ = 25 and S = 5 with 20 iterations.

These methods have been applied to estimate the motion between the seventh
and eighth frames of a progressive video, known as the “Mobile and Calendar”
sequence, shown in Figure 5.9 (a) and (b), respectively. Figure 5.10 (a) shows
the absolute value of the frame difference (multiplied by 3), without any motion
compensation, to indicate the amount of motion present. The lighter pixels are
those whose intensity has changed with respect to the previous frame due to motion.
Indeed, the scene contains multiple motions: the train is moving forward (from right
to left), pushing the ball in front of it; there is a small ball in the foreground spinning
around a circular ring; the background moves toward the right due to camera pan;
and the calendar moves up and down. The motion fields estimated by the L-K and
the H-S methods are depicted in Figure 5.11 (a) and (b), respectively. It can be
seen that the estimated fields capture most of the actual motion.

We evaluate the goodness of the motion estimates on the basis of the peak signal-
to-noise ratio (PSNR) of the resulting displaced frame difference (DFD) between
the seventh and eighth frames, defined by

PSNR = lOlog,, c[ (
255 x 255

St3 n1, m) S7(n_l + dl(W, Q), m2 + &(w, m))]”
(5.31)

-
_
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where di and dz are the components of the motion estimates at each pixel. We also
computed the entropy of the estimated 2-D motion field, given by

H = - c P(4) hd’(dd - c P(h) logzP(da)
dl &

where P(di) and P(dz) denote the relative frequency of occurence of the horizontal
and vertical components of the motion vector d. The entropy, besides serving as
a measure of smoothness of the motion field, is especially of interest in motion-
compensated video compression, where one wishes to minimize both the entropy of
the motion field (for cheaper transmission) and the energy of the DFD. The PSNR
and the entropy of all methods are listed in Table 5.1 after 20 iterations (for H-S
and Nagel algorithms). In the case of the H-S method, the PSNR increases to 32.23
dB after 150 iterations using average finite differences. Our experiments indicate
that the Nagel algorithm is not as robust as the L-K and H-S algorithms, and may
diverge if some stopping criterion is not employed. This may be due to inaccuracies
in the estimated second and mixed partials of the spatial image intensity.

Table 5.1: Comparison of the differential methods. (Courtesy Gozde Bozdagi)

Polynomial Differences Polynomial Differences

The reader is alerted that the mean absolute DFD provides a measure of the
goodness of the pixel correspondence estimates. However, it does not provide insight
about how well the estimates correlate with the projected 3-D displacement vectors.
Recall that the optical flow equation enables estimation of the normal flow vectors
at each pixel, rather than the actual projected flow vectors.
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Figure 5.11: Motion field obtained by a) the Lucas-Kanade method and b) the
Horn-Schunck method. (Courtesy Gozde Bozdagi and Mehmet Ozkan)
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5.5 Exercises

1. For a color image, the optical flow equation (5.5) can be written for each of
the R, G, and B channels separately. State the conditions on the (R,G,B)
intensities so that we have at least two linearly independent equations at each
pixel. How valid are these conditions for general color images?

2. State the conditions on spatio-temporal image intensity and the velocity un-
der which the optical flow equation can be used for displacement estimation.
Why do we need the small motion assumption?

3. What are the conditions for the existence of normal flow (5.7)? Can we always
recover optical flow from the normal flow? Discuss the relationship between
the spatial image gradients and the aperture problem.

4. Suggest methods to detect occlusion

5. Derive (5.9) from (5.8).

6. Show that the constraint (5.8) does not hold when there is rotation or zoom.

7. Find the least squares estimates of al, u2 and us in (5.23)-(5.25).
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Chapter 6

BLOCK-BASED
METHODS

Block-based motion estimation and compensation are among the most popular
approaches. Block-based motion compensation has been adopted in the inter-
national standards for digital video compression, such as H.261 and MPEG 1-2.
Although these standards do not specify a particular motion estimation method,
block-based motion estimation becomes a natural choice. Block-based motion es-
timation is also widely used in several other digital video applications, including
motion-compensated filtering for standards conversion.

We start with a brief introduction of the block-motion models in Section 6.1.
A simple block-based motion estimation scheme, based on the translatory block
model, was already discussed in Chapter 5, in the context of estimation using the
optical flow equation. In this chapter, we present two other translatory-block-
based motion estimation strategies. The first approach, discussed in Section 6.2,
is a spatial frequency domain technique, called the phase-correlation method. The
second, presented in Section 6.3, is a spatial domain search approach, called the
block-matching method. Both methods can be implemented hierarchically, using
a multiresolution description of the video. Hierarchical block-motion estimation
is addressed in Section 6.4. Finally, in Section 6.5, possible generalizations of the
block-matching framework are discussed, including 2-D deformable block motion
estimation, in order to overcome some shortcomings of the translatory block-motion
model.

6.1 Block-Motion Models
The block-motion model assumes that the image is composed of moving blocks. We
consider two types of block motion: i) simple 2-D translation, and ii) various 2-D
deformations of the blocks.

95



96 CHAPTER 6. BLOCK-BASED METHODS

6.1.1 Translational Block Motion

The simplest form of this model is that of translatory blocks, restricting the motion
of each block to a pure translation. Then an N x N block B in frame lc centered
about the pixel n = (no, n2) is modeled as a globally shifted version of a same-size
block in frame k + !, for an integer 1. That is,

s(nl,nz,k) = S,(XI + dl,x2 +d2,t +lAt)I

[;]=v[ ;]

for all (nr,n2) E B, where dl and dz are the components of the displacement
(translation) vector for block B. Recall from the previous chapter that the right-
hand side of (6.1) is given in terms of the continuous time-varying image s,(xl, x2, t),
because dl and dz are real-valued. Assuming the values of dl and dz are quantized
to the nearest integer, the model (6.1) can be simplified as

s(nl,nz, k) = s(nl +dl,nz +dz,k+e) (6.2)

Observe that it is possible to obtain 1/2L pixel accuracy in the motion estimates,
using either the phase-correlation or the block-matching methods, if the frames k
and k + e in (6.2) are interpolated by a factor of L.

frame k

block B

a)

I ’
EEI

b)

Figure 6.1: Block-motion models: a) nonoverlapping and b) overlapping blocks.

In the model (6.1), the blocks B may be nonoverlapping or overlapping as shown
in Figure 6.1 (a) and (b), respectively. In the nonoverlapping case, the entire block
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is assigned a single motion vector. Hence, motion compensation can be achieved
by copying the gray-scale or color information from the corresponding block in the
frame k + 1 on a pixel-by-pixel basis. In the case of overlapping blocks, we can
either compute the average of the motion vectors within the overlapping regions,
or select one of the estimated motion vectors. Motion compensation in the case of
overlapping blocks was discussed in [Sul 931, where a multihypothesis expectation
approach was proposed.

The popularity of motion compensation and estimation based on the model of
translational blocks originates from:

l low overhead requirements to represent the motion field, since one motion
vector is needed per block., and

. ready availability of low-cost VLSI implementations.

However, motion compensation using translational blocks i) fails for zoom, rota-
tional motion, and under local deformations, and ii) results in serious blocking
artifacts, especially for very-low-bitrate applications, because the boundaries of ob-
jects do not generally agree with block boundaries, and adjacent blocks may be
assigned substantially different motion vectors.

6.1.2 Generalized/Deformable Block Motion

In order to generalize the translational block model (6.1), note that it can be char-
acterized by a simple frame-to-frame pixel coordinate (spatial) transformation of
the form

x; = XI $4
x’z = 22 + dz (6.3)

where (xi,&) denotes the coordinates of a point in the frame k + 1. The spatial
transformation (6.3) can be generalized to include affine coordinate transformations,
given by

x; = ~1x1 + a222 + 4
x; = ~a+ a4xz + dz (6.4)

The affine transformation (6.4) can handle rotation of blocks as well as 2-D defor-
mation of squares (rectangles) into parallelograms, as depicted in Figure 6.2. Other
spatial transformations include the perspective and bilinear coordinate transforma-
tions. The perspective transformation is given by

x; =
alxl + a222 + a3
a721  +%3x2  + 1

x’z =
a4xl + a522 + a6

a7xl + a822 + 1
(6.5)
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whereas the bilinear transformation can be expressed as

x; = alxl + a222 + a32122 + a4

x; = a5xl +&x2 + a7xlx2 + ‘% (6.6)

We will see in Chapter 9 that the affine and perspective coordinate transformations
correspond to the orthographic and perspective projection of the 3-D rigid motion
of a planar surface, respectively. However, the bilinear transformation is not related
to any physical 3-D motion. Relevant algebraic and geometric properties of these
transformations have been developed in [Wol 901.

’
Perspective

Figure 6.2: Examples of spatial transformations.

While the basic phase-correlation and block-matching methods are based on the
translational model (6.3), generalizations of the block-matching method to track
2-D deformable motion based on the spatial transformations depicted in Figure 6.2
will be addressed in Section 6.5. We note that various block-motion models, includ-
ing (6.4) and (6.5), fall under the category of parametric motion models (discussed
in Chapter 5), and may be considered as local regularization constraints on arbi-
trary displacement fields to overcome the aperture problem, in conjunction with the
optical-flow-equation-based methods (see Section 5.3.3), or pel-recursive methods
(which are described in Chapter 7).

6.2. PHASE-CORRELATION METHOD

6.2 Phase-Correlation Method
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Taking the 2-D Fourier transform of both sides of the discrete motion model (6.2),
with ! = 1, over a block B yields

Sk(.fi, .f2) = Sk+l(fi, fi) expL7W~lfi + d2.f~)) (6.7)

where Sk(fi) f2) denotes the 2-D Fourier transform of the frame Ic with respect to
the spatial variables II and ~2. It follows that, in the case of translational motion,
the difference of the 2-D Fourier phases of the respective blocks,

arg{S(fi,fi,  k)) - arg{S(fi, f2,k + 1)) = W&f1 + WZ) (6.8)

defines a plane in the variables (fi, fz). Then the interframe motion vector can
be estimated from the orientation of the plane (6.8). This seemingly straightfor-
ward approach runs into two important problems: i) estimation of the orientation
of the plane in general requires 2-D phase unwrapping, which is not trivial by any
means; and ii) it is not usually easy to identify the motion vectors for more than one
moving object within a block. The phase-correlation method alleviates both prob-
lems [Tho 871. Other frequency-domain motion estimation methods include those
based on 3-D spatio-temporal frequency-domain analysis using Wigner distributions
[Jac 871 or a set of Gabor filters [Hee 871.

The phase-correlation method estimates the relative shift between two image
blocks by means of a normalized cross-correlation function computed in the 2-D
spatial Fourier domain. It is also based on the principle that a relative shift in
the spatial domain results in a linear phase term in the Fourier domain. In the
following, we first show thk derivation of the phase-correlation function, and then
discuss some issues related to its implementation. Although an extension of the
phase-correlation method to include rotational motion was also suggested [Cas 871,
that will not be covered here.

6.2.1 The Phase-Correlation Function

The cross-correlation function between the frames I% and k + 1 is defined as

clc,h+l(nl, m) = s(nl, nz, k + 1) * *s(--nl,  -2, k) (6.9)

where ** denotes the 2-D convolution operation. Taking the Fourier transform of
both sides, we obtain the complex-valued cross-power spectrum expression

G,ktl(fl>.fz) = sk,l(fl,fz)s~(fl,f2) (6.10)

Normalizing C’k,ktl(fi) f2) by its magnitude gives the phase of the cross-power
spectrum

z;,,k,l(fl, fz) =
s~tl(fl,fz)s~(fl,f2)

Is~tl(fl, fd%(fl, f2)l
(6.11)
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Assuming translational motion, we substitute (6.7) into (6.11) to obtain

Ch,k+l(fi, fi) = exp{-Px(fi4 + f2d2)) (6.12)

Taking the inverse 2-D Fourier transform of this expression yields the phase-
correlation function

C”lc,b+l(w  , n2) = S(m - 4, nz - dz) (6.13)

We observe that the phase-correlation function consists of an impulse whose location
yields the displacement vector.

6.2.2 Implementation Issues

Implementation of the phase-correlation method in the computer requires replacing
the 2-D Fourier transforms by the 2-D DFT, resulting in the following algorithm:

1. Compute the 2-D DFT of the respective blocks from the leth and Ic + lth
frames.

2. Compute the phase of the cross-power spectrum as in (6.11).

3. Compute the 2-D inverse DFT of ck,k+,(fl,f2) to obtain the phase-
correlation function Fh,s+l(nl, 7~2).

4. Detect the location of the peak(s) in the phase-correlation function

Ideally, we expect to observe a single impulse in the phase-correlation function
indicating the relative displacement between the two blocks. In practice, a number
of factors contribute to the degeneration of the phase-correlation function to contain
one or more peaks. They are the use of the 2-D DFT instead of the 2-D Fourier
transform, the presence of more than one moving object within the block, and the
presence of observation noise.

The use of the 2-D DFT instead of the 2-D Fourier transform has a number of
consequences:

l Boundary effects: In order to obtain a perfect impulse, the shift must be cyclic.
Since things disappearing at one end of the window generally do not reappear
at the other end, the impulses degenerate into peaks. Further, it is well known
that the 2-D DFT assumes periodicity in both directions. Discontinuities from
left to right boundaries, and from top to bottom, may introduce spurious
peaks.

l Spectral leakage due to noninteger motion vectors: In order to observe a per-
fect impulse, the components of the displacement vector must correspond to
an integer multiple of the fundamental frequency. Otherwise, the impulse will
degenerate into a peak due to the well-known spectral leakage phenomenon.
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l Range of displacement estimates: Since the 2-D DFT is periodic with the
block size (Nl, Nz), the displacement estimates need to be unwrapped as

2 - N. othlrwiseif Id,1 < Ni/2, Ni even, or ldil 5 (Ni - 1)/2, Ni odd (6.14)
2 2

to accommodate negative displacements. Thus, the range of estimates is
[-Ni/2+ 1, Ni/2] for Ni even. For example, to estimate displacements within
a range [-31,321, the block size should be at least 64 x 64.

The block size is one of the most important parameters in any block-based
motion estimation algorithm. Selection of the block size usually involves a tradeoff
between two conflicting requirements. The window must be large enough in order to
be able to estimate large displacement vectors. On the other hand, it should be small
enough so that the displacement vector remains constant within the window. These
two contradicting requirements can usually be addressed by hierarchical methods
[Erk 931. Hierarchical methods will be treated for the case of block matching that
also faces the same tradeoff in window size selection.

The phase-correlation method has some desirable properties:
Frame-to-frame intensity changes: The phase-correlation method is relatively insen-
sitive to changes in illumination, because shifts in the mean value or multiplication
by a constant do not affect the Fourier phase. Since the phase-correlation function
is normalized with the Fourier magnitude, the method is also insensitive to any
other Fourier-magnitude-only degradation.
Mul2iple moving objects: It is of interest to know what happens when multiple
moving objects with different velocities are present within a single window. Exper-
iments indicate that multiple peaks are observed, each indicating the movement of
a particular object [Tho 871. Detection of the significant peaks then generates a list
of candidate displacement vectors for each pixel within the block. An additional
search is required to find which displacement vector belongs to which pixel within
the block. This can be verified by testing the magnitude of the displaced frame
difference with each of the candidate vectors.

6.3 Block-Matching Method

Block matching can be considered as the most popular method for practical motion
estimation due to its lesser hardware complexity [Jai 81, Ghr 901. As a result it is
widely available in VLSI, and almost all H.261 and MPEG l-2 codecs are utilizing
block matching for motion estimation. In block matching, the best motion vector
estimate is found by a pixel-domain search procedure.

The basic idea of block matching is depicted in Figure 6.3, where the displace-
ment for a pixel (121) n2) in frame k (the present frame) is determined by considering
an N1 x Nz block centered about (nl, Q), and searching frame le + 1 (the search
frame) for the location of the best-matching block of the same size. The search is
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k + l

Frame k

Search window

Figure 6.3: Block matching

usually limited to an Ni + 2Mi x Nz + 2A4z region called the search window for
computational reasons.

Block-matching algorithms differ in:

l the matching criteria (e.g., maximum cross-correlation, minimum error)

l the search strategy (e.g., three-step search, cross search), and

l the determination of block size (e.g., hierarchical, adaptive)

We discuss some of the popular options in the following.

6.3.1 Matching Criteria

The matching of the blocks can be quantified according to various criteria including
the maximum cross-correlation (similar to the phase-correlation function), the min-
imum mean square error (MSE), the minimum mean absolute difference (MAD),
and maximum matching pel count (MPC).

In the minimum MSE criterion, we evaluate the MSE, defined as

MSE(ch, &) = & c [S(Q, n2, k) - s(n1 + 4, nz + &I k + 1)l” (6.3
(~l,nz)a

where B denotes an Ni x Nz block, for a set of candidate motion vectors (dr , dz). The
estimate of the motion vector is taken to be the value of (di, dz) which minimizes
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the MSE. That is,
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(6.16)

Minimizing the MSE criterion can be viewed as imposing the optical flow constraint
on all pixels of the block. In fact, expressing the displaced frame difference,

Gb,k+l(nl,nz) = s(w,nz,k) - s(nl +h,nz +h,k+ 1) (6.17)

in terms of a first order Taylor series (see Section 7.1), it can be easily seen that
minimizing the MSE (6.15) is equivalent to minimizing f,f(v(x,t)) given by (5.13)
in the Horn and Schunck method. However, the minimum MSE criterion is not
commonly used in VLSI implementations because it is difficult to realize the square
operation in hardware.

Instead, the minimum MAD criterion, defined as

MAD(&, d2) =
T& c ‘(snl,nz,k)-s(nl+dl,na+dz,k+l)l (6.18)

(nl,%)En

is the most popular choice for VLSI implementations. Then the displacement esti-
mate is given by

[d^l d^ZIT = arg (Fp) IMAD &) (6.19)
I> 2

It is well-known that the performance of the MAD criterion deteriorates as the
search area becomes larger due to the presence of several local minima.

Another alternative is the maximum matching pel count (MPC) criterion. In
this approach, each pel within the block B is classified as either a matching pel or
a mismatching pel according to

T(nl,nz;h,dz)  =
1 ifIs(n~,n2,k)-s(n~+dl,nz+dz,k+l)lIt
0 otherwise (6.20)

where t is a predetermined threshold. Then the number of matching pels within
the block is given by

MPC(d1, d2) = C T(nl, n2; 4, d2) (6.21)
(nlm)a

and

(6.22)

That is, the motion estimate is the value of (dr, ds) which gives the highest num-
ber of matching pels. The MPC criterion requires a threshold comparator, and
a log,(Ni x Nz) counter [Gha 901.
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6.3.2 Search Procedures

Finding the best-matching block requires optimizing the matching criterion over
all possible candidate displacement vectors at each pixel (ni, nz). This can be
accomplished by the so-called “full search,” which evaluates the matching criterion
for all values of (di, dz) at each pixel, and is extremely time-consuming.

As a first measure to reduce the computational burden, we usually limit the
search area to a

“search window” centered about each pixel for which a motion vector will be esti-
mated, where Ml and M2 are predetermined integers. A search window is shown in
Figure 6.3. Another commonly employed practice to lower the computational load
is to estimate motion vectors on a sparse grid of pixels, e.g., once every eight pixels
and eight lines using a 16 x 16 block, and to then interpolate the motion field to
estimate the remaining motion vectors.

In most cases, however, search strategies faster than the full search are uti-
lized, although they lead to suboptimal solutions. Some examples of faster search
algorithms include the

l three-step search and,

l cross-search.

These faster search algorithms evaluate the criterion function only at a predeter-
mined subset of the candidate motion vector locations. Let’s note here that the ex-
pected accuracy of motion estimates varies according to the application. In motion-
compensated compression, all we seek is a matching block, in terms of some metric,
even if the match does not correlate well with the actual projected motion. It is
for this reason that faster search algorithms serve video compression applications
reasonably well.

Three-Step Search

We explain the three-step search procedure with the help of Figure 6.4, where only
the search frame is depicted with the search window parameters Ml = Mz = 7. The
“0” marks the pixel in the search frame that is just behind the present pixel. In the
first step, the criterion function is evaluated at nine points, the pixel “0” and the
pixels marked as “1.” If the lowest MSE or MAD is found at the pixel “0,” then we
have “no motion.” In the second step, the criterion function is evaluated at 8 points
that are marked as “2” centered about the pixel chosen as the best match in the
first stage (denoted by a circled “1”). Note that in the initial step, the search pixels
are the corners of the search window, and then at each step we halve the distance
of the search pixels from the new center to obtain finer-resolution estimates. The
motion estimate is obtained after the third step, where the search pixels are all 1
pixel away from the center.

6.3. BLOCK-MATCHING METHOD 105

Figure 6.4: Three-step search.

Additional steps may be incorporated into the procedure if we wish to obtain
subpixel accuracy in the motion estimates. Note that the search frame needs to be
interpolated to evaluate the criterion function at subpixel locations. Generalization
of this procedure to other search window parameters yields the so-called “n-step
search” or “log-D search” procedures.

Figure 6.5: Cross-search
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Cross-Search

The cross-search method is another logarithmic search strategy, where at each step
there are four search locations which are the end points of an (x)-shape cross or a
(+)-shape cross [Gha 901. The case of a (+)-shape cross is depicted in Figure 6.5.

The distance between the search points is reduced if the best match is at the
center of the cross or at the boundary of the search window. Several variations
of these search strategies exist in the literature [Ghr 901. Recently, more efficient
search algorithms that utilize the spatial and temporal correlations between the
motion vectors across the blocks have been proposed [Liu 931. Block matching has
also been generalized to arbitrary shape matching, such as matching contours and
curvilinear shapes using heuristic search strategies [Cha 91, Dav 831.

The selection of an appropriate block size is essential for any block-based motion
estimation algorithm. There are conflicting requirements on the size of the search
blocks. If the blocks are too small, a match may be established between blocks
containing similar gray-level patterns which are unrelated in the sense of motion.
On the other hand, if the blocks are too large, then actual motion vectors may vary
within a block, violating the assumption of a single motion vector per block. Hi-
erarchical block matching, discussed in the next section, addresses these conflicting
requirements.

6.4 Hierarchical Mot ion Estimation

Hierarchical (multiresolution) representations of images (frames of a sequence) in
the form of a Laplacian pyramid or wavelet transform may be used with both the
phase-correlation and block-matching methods for improved motion estimation. A
pyramid representation of a single frame is depicted in Figure 6.6 where the full-
resolution image (layer-l) is shown at the bottom. The images in the upper levels
are lower and lower resolution images obtained by appropriate low-pass filtering
and subsampling. In the following, we only discuss the hierarchical block-matching
method. A hierarchical implementation of the phase-correlation method follows the
same principles.

The basic idea of hierarchical block-matching is to perform motion estimation
at each level successively, starting with the lowest resolution level [Bie 881. The
lower resolution levels serve to determine a rough estimate of the displacement
using relatively larger blocks. Note that the “relative size of the block” can be
measured as the size of the block normalized by the size of the image at a particular
resolution level. The estimate of the displacement vector at a lower resolution level
is then passed onto the next higher resolution level as an initial estimate. The
higher resolution levels serve to fine-tune the displacement vector estimate. At
higher resolution levels, relatively smaller window sizes can be used since we start
with a good initial estimate.

In practice, we may skip the subsampling step. Then the pyramid contains
images that are all the same size but successively more blurred as we go to the
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Figure 6.6: Hierarchical image representation.

lower resolution levels. Hierarchical block-matching in such a case is illustrated
in Figure 6.7, where the larger blocks are applied to more blurred versions of the
image. For simplicity, the low-pass filtering (blurring) may be performed by a box
filter which replaces each pixel by a local mean. A typical set of parameters for

k+l

Frame k I I

Figure 6.7: Hierarchical block-matching
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Table 6.1: Typical set of parameters for 5-Level hierarchical block-matching.

LEVEL: 5 4 3 2 1
Filter Size 10 10 5 5 3
M a x i m u m  D i s p l a c e m e n t  f31 f15 f7 A3 fl
Block Size 64 32 16 8 4

5-level hierarchical block-matching (with no subsampling) is shown in Table 6.1.
Here, the filter size refers to the size of a square window used in computing the
local mean.

Figure 6.8 illustrates hierarchical block-matching with 2 levels, where the max-
imum allowed displacement M = 7 for level 2 and M = 3 for level 1. The best
estimate at the lower resolution level (level 2) is indicated by the circled “3.” The
center of the search area in level 1 (denoted by “0”) corresponds to the best esti-
mate from the second level. The estimates in the second and first levels are [7, 1lT
and [3, 1lT, respectively, resulting in an overall estimate of [lo, 21T. Hierarchical
block-matching can also be performed with subpixel accuracy by incorporating ap-
propriate interpolation.

Level 1
(higher resolution)

Level 2 (lower resolution)

Figure 6.8: Example of hierarchical block-matching with 2 levels.
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While motion estimation based on the translatory block model is simple, it deals
poorly with rotations and deformations of blocks from frame to frame, as well as
discontinuities in the motion field. We discuss two approaches in the following for
improved motion tracking and compensation using block-based methods: a postpro-
cessing approach, and a generalized block-matching approach using spatial trans-
formations.

6.5.1 Postprocessing for Improved Motion Compensation

Block-based motion representation and compensation have been adopted in inter-
national standards for video compression, such as H.261, MPEG-1, and MPEG-2,
where a single motion vector is estimated for each 16 x 16 square block, in order
to limit the number of motion vectors that need to be transmitted. However, this
low-resolution representation of the motion field results in inaccurate compensation
and visible blocking artifacts, especially at the borders of the blocks.

To this effect) Orchard [Ore 931 proposed a postprocessing method to reconstruct
a higher-resolution motion field based on image segmentation. In this method, a
single motion vector is estimated per block, as usual, in the first pass. Next, image
blocks are segmented into K regions such that each region is represented by a single
motion vector. To avoid storage/transmission of additional motion vectors, the K
candidate motion vectors are selected from a set of already estimated motion vectors
for the neighboring blocks. Then, the motion vector that minimizes the DFD at
each pixel of the block is selected among the set of K candidate vectors. A predic-
tive MAP segmentation scheme has been proposed to avoid transmitting overhead
information about the boundaries of these segments, where the decoder/receiver
can duplicate the segmentation process. As a result, this method allows for motion
compensation using a pixel-resolution motion field, while transmitting the same
amount of motion information as classical block-based methods.

6.5.2 Deformable Block Matching

In deformable (or generalized) block matching, the current frame is divided into
triangular, rectangular, or arbitrary quadrilateral patches. We then search for the
best matching triangle or quadrilateral in the search frame under a given spatial
transformation. This is illustrated in Figure 6.9. The choice of patch shape and
the spatial transformation are mutually related. For example, triangular patches
offer sufficient degrees of freedom (we have two equations per node) with the affine
transformation, which has only six independent parameters. Perspective and bilin-
ear transformations have eight free parameters. Hence, they are suitable for use
with rectangular or quadrilateral patches. Note that using affine transformation
with quadrilateral patches results in an overdetermined motion estimation problem
in that affine transformation preserves parallel lines (see Figure 6.2).
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The spatial transformations (6.4), (6.5), and (6.6) clearly provide superior mo-
tion tracking and rendition, especially in the presence of rotation and zooming,
compared to the translational model (6.3). However, the complexity of the motion
estimation increases significantly. If a search-based motion estimation strategy is
adopted, we now have to perform a search in a 6- or 8-D parameter space (affine or
perspective/bilinear transformation) instead of a 2-D space (the ~1 and xz compo-
nents of the translation vector). Several generalized motion estimation schemes have
been proposed, including a full-search method [Sef 931, a faster hexagonal search
[Nak 941, and a global spline surface-fitting method using a fixed number of point
correspondences [Flu92].

The full-search method can be summarized as follows [Sef 931:

1. Segment the current frame into rectangular (triangular) blocks.

2. Perturb the coordinates of the corners of a matching quadrilateral (triangle)
in the search frame starting from an initial guess.

3. For each quadrilateral (triangle), find the parameters of a prespecified spatial
transformation that maps this quadrilateral (triangle) onto the rectangular
(triangular) block in the current frame using the coordinates of the four (three)
matching corners.

4. Find the coordinates of each corresponding pixel within the quadrilateral (tri-
angle) using the computed spatial transformation, and calculate the MSE
between the given block and the matching patch.

5. Choose the spatial transformation that yields the smallest MSE or MAD.

In order to reduce the computational load imposed by generalized block-matching,
generalized block-matching is only used for those blocks where standard block-
matching is not satisfactory. The displaced frame difference resulting from standard
block matching can be used as a decision criterion. The reader is referred to [Flu921
and [Nak 941 for other generalized motion estimation strategies.

The generalized block-based methods aim to track the motion of all pixels within
a triangular or quadrilateral patch using pixel correspondences established at the
corners of the patch. Thus, it is essential that the current frame is segmented into
triangular or rectangular patches such that each patch contains pixels only from
a single moving object. Otherwise, local motion within these patches cannot be
tracked using a single spatial transformation. This observation leads us to feature-
and/or motion-based segmentation of the current frame into adaptive meshes (also
known as irregular-shaped meshes). Regular and adaptive mesh models are depicted
in Figure 6.10 for comparison.

There are, in general, two segmentation strategies: i) Feature-based segmen-
tation: The edges of the patches are expected to align sufficiently closely with
gray-level and/or motion edges. Ideally, adaptive mesh fitting and motion track-
ing should be performed simultaneously, since it is not generally possible to isolate
motion rendition errors due to adaptive mesh misfit and motion estimation. A si-
multaneous optimization method was recently proposed by Wang et al. [Wan 941.
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I (search frame)

Frame k

Figure 6.9: Generalized block-matching.

ii) Hierarchical segmentation: It is proposed to start with an initial coarse mesh,
and perform a synthesis of the present frame based on this mesh. Then this mesh
is refined by successive partitioning of the patches where the initial synthesis error
is above a threshold. A method based on the hierarchical approach was proposed
by Flusser [Flu92].

Fitting and tracking of adaptive mesh models is an active research area at
present. Alternative strategies for motion-based segmentation (although not nec-
essarily into mesh structures) and parametric motion model estimation will be dis-
cussed in Chapter 11.

a) b)

Figure 6.10: a) Regular and b) adaptive mesh models fitted to frame Ic.
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6.6 Examples

We have evaluated four algorithms, phase correlation, block matching (BM), hier-
archical BM, and the generalized BM, using the same two frames of the Mobile and
Calendar sequence shown in Figure 5.9 (a) and (b).

An example of the phase-correlation function, computed on a 16 x 16 block
on the calendar, using a 32 x 32 DFT with appropriate zero padding, which al-
lows for a maximum of *8 for each component of the motion vector, is plotted in
Figure 6.11 (a). The impulsive nature of the function can be easily observed. Fig-
ure 6.11 (b) depicts the motion estimates obtained by applying the phase-correlation
method with the same parameters centered about each pixel. In our implementa-
tion of the phase-correlation method, the motion vector corresponding to the highest
peak for each block has been retained. We note that improved results could be ob-
tained by postprocessing of the motion estimates. For example, we may consider
two or three highest peaks for each block and then select the vector yielding the
smallest displaced frame difference at each pixel,

The BM and 3-level hierarchical BM (HBM) methods use the mean-squared
error measure and the three-step search algorithm. The resulting motion fields are
shown in Figure 6.12 (a) and (b), respectively. The BM algorithm uses 16 x 16
blocks and 3 x 3 blurring for direct comparison with the phase-correlation method.
In the case of the HBM, the parameter values given in Table 6.1 (for the first three
levels) have been employed, skipping the subsampling step. The generalized BM
algorithm has been applied only to those pixels where the displaced frame difference
(DFD) resulting from the S-level HBM is above a threshold. The PSNR of the DFD
and the entropy of the estimated motion fields are shown in Table 6.2 for all four
methods. The 3-level HBM is prefered over the generalized BM algorithm, since
the latter generally requires an order of magnitude more computation.

Table 6.2: Comparison of the block-based methods. (Courtesy Gozde Bozdagi)
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.s;i 0.6.5
5 0 . 5 .

y-displacement x-displacement

Figure 6.11: a) The phase-correlation function, and b) the motion field obtained by
the phase-correlation method. (Courtesy Gozde Bozdagi)
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Figure 6.12: The motion field obtained by a) the block matching and b) the hier-
archical block-matching methods. (Courtesy Mehmet Ozkan and Gozde Bozdagi)
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6.7 Exercises

1. How do you deal with the boundary effects in the phase-correlation method?
Can we use the discrete cosine transform (DCT) instead of the DFT?

2. Suggest a model to quantify the spectral leakage due to subpixel motion in
the phase-correlation method.

3. State the symmetry properties of the DFT for N even and odd, respectively.
Verify Equation (6.14).

4. Discuss the aperture problem for the cases of i) single pixel matching, ii) line
matching, iii) curve matching, and iv) corner matching.

5. Compare the computational complexity of full search versus i) the three-step
search, and ii) search using integral projections [Kim 921.

6. Propose a method which uses the optical flow equation (5.5) for deformable
block matching with the affine model. (Hint: Review Section 5.3.3.)
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Chapter 7

PEL-RECURSIVE
METHODS
All motion estimation methods, in one form or another, employ the optical flow
constraint accompanied by some smoothness constraint. Pel-recursive methods are
predictor-corrector-type estimators, of the form

&(x, t; At) = &(x, t; At) + u(x,t; At) (7.1)

where 2,(x, t; At) denotes the estimated motion vector at the location x and time t,
da(x, t; At) denotes the predicted motion estimate, and u(x, t; At) is the update
term. The subscripts ‘(a” and “b” denote after and before the update at the pel
location (x)t). The prediction step, at each pixel, imposes a local smoothness
constraint on the estimates, and the update step enforces the optical flow constraint.

The estimator (7.1) is usually employed in a recursive fashion, by performing one
or more iterations at (x, t) and then proceeding to the next pixel in the direction of
the scan; hence the name pel-recursive. Early pel-recursive approaches focused on
ease of hardware implementation and real-time operation, and thus employed simple
prediction and update equations [Rob 831. Generally, the best available estimate
at the previous pel was taken as the predicted estimate for the next pel, followed
by a single gradient-based update to minimize the square of the displaced frame
difference at that pel. Later, more sophisticated prediction and update schemes
that require more computation were proposed [Wal 84, Bie 87, Dri 91, Bor 911.

We start this chapter with a detailed discussion of the relationship between the
minimization of the displaced frame difference and the optical flow constraint in Sec-
tion 7.1. We emphasize that the update step, which minimizes the displaced frame
difference at the particular pixel location, indeed enforces the optical flow equation
(constraint) at that pixel. Section 7.2 provides an overview of some gradient-based
minimization methods that are an integral part of basic pel-recursive methods.
Basic pel-recursive methods are presented in Section 7.3. An extension of these
methods, called Wiener-based estimation, is covered in Section 7.4.

117
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7.1 Displaced Frame Difference
The fundamental principle in almost all motion estimation methods, known as the
optical flow constraint, is that the image intensity remains unchanged from frame
to frame along the true motion path (or changes in a known or predictable fash-
ion). The optical flow constraint may be employed in the form of the optical flow
equation (5.5)) as in Chapter 5, or may be imposed by minimizing the displaced
frame difference (6.15), as in block-matching and pel-recursive methods. This sec-
tion provides a detailed description of the relationship between the minimization of
the displaced frame difference (DFD) and the optical flow equation (OFE).

Let the DFD between the time instances t and t’ = t + At be defined by

dfd(x, d) h s,(x + d(x, t; At), t + At) - s,(x, t)

where s,(zi, x2, t) denotes the time-varying image distribution, and

(7.2)

d(x, t; At) + d(x) = [&(x) &(x)]~

denotes the displacement vector field between the times t and t + At. We observe
that i) if the components of d( )x assume noninteger values, interpolation is required
to compute the DFD at each pixel location; and ii) if d(x) were equal to the true
displacement vector at site x and there were no interpolation errors, the DFD attains
the value of zero at that site under the optical flow constraint.

Next, we expand s,(x + d(x), t + At) tm o a Taylor series about (x;t), for d(x)
and At small. as

Sc(Xl + h(x), xz + h(x); t + At) = s&r; t) + d&$+

+ At ‘dx; t,  + fL.0.t.at (7.3)

Substituting (7.3) into (7.2), and neglecting the higher-order terms (h.o.t.),

dfd(x, d) =  &(x) + %k$ d2(x) + At!%$ (7.4)

We investigate the relationship between the DFD and OFE in two cases:

1. &nit At approaches 0: Setting dfcl(x,d) = 0, dividing both sides of (7.4)
by At, and taking the limit as At approaches 0, we obtain the OFE

as,(x; t)~ ?Jl(x,t) + y$l v2(x,t) + !y = 0
ax1 (7.5)

where v(x, t) = [111(x,  t) vz(x,t)lT denotes the velocity vector at time t. That
is, velocity estimation using the OFE and displacement estimation by setting
the DFD equal to zero are equivalent in the limit At goes to zero.
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2. For At finite: An estimate of the displacement vector d(x) between any two
frames that are At apart can be obtained from (7.4) in a number of ways:

(a) Search for (i( ) h’ hx w ic would set the left-hand side of (7.4), given by
(7.2)) to zero over a block of pixels (block-matching strategy).

(b) Compute a(x) which would set the left-hand side of (7.4) to zero on
a pixel-by-pixel basis using a gradient-based optimization scheme (pel-
recursive strategy).

(c) Set At = 1 and dfd(x, 4) = 0; solve for a(x) using a set of linear equa-
tions obtained from the right-hand side of (7.4) using a block of pixels.

All three approaches can be shown to be identical if i) local variation of the
spatio-temporal image intensity is linear, and ii) velocity is constant within
the time interval At; that is,

dl(x) = 61(x, t)At and I&(X) = 02(x, t)At

In practice, the DFD, djd(x, d), hardly ever becomes exactly zero for any value of
d(x), because: i) there is observation noise, ii) there is occlusion (covered/uncovered
background problem), iii) errors are introduced by the interpolation step in the case
of noninteger displacement vectors, and iv) scene illumination may vary from frame
to frame. Therefore, we generally aim to minimize the absolute value or the square
of the dfd (7.2) or the left-hand side of the OFE (7.5) to estimate the 2-D motion
field. The pel-recursive methods presented in this chapter employ gradient-based
optimization techniques to minimize the square of the dfd (as opposed to a search
method used in block matching) with an implicit smoothness constraint in the
prediction step.

7.2 Gradient-Based Optimization
The most straightforward way to minimize a function f(~i, . . , un) of several un-
knowns is to calculate its partials with respect to each unknown, set them equal to
zero, and solve the resulting equations

afo = 0
au1

simultaneously for Ur, . . , ‘II,. This set of simultaneous equations can be expressed
as a vector equation,

Vuf(u) = 0 (7.7)
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Figure 7.1: An illustration of the gradient descent method

where Vu is the gradient operator with respect to the unknown vector u. Because
it is difficult to define a closed-form criterion function f(ni, ) un) for motion
estimation, and/or to solve the set of equations (7.7) in closed form, we resort
to iterative (numerical) methods. For example, the DFD is a function of pixel
intensities which cannot be expressed in closed form.

7.2.1 Steepest-Descent Method

Steepest descent is probably the simplest numerical optimization method. It up-
dates the present estimate of the location of the minimum in the direction of the
negative gradient, called the steepest-descent direction. Recall that the gradient
vector points in the direction of the maximum. That is, in one dimension (func-
tion of a single variable), its sign will be positive on an “uphill” slope. Thus, the
direction of steepest descent is just the opposite direction, which is illustrated in
Figure 7.1.

In order to get closer to the minimum, we update our current estimate as

dk+l) = dk) - “Vuf+l)IU(k) (7.8)

where a is some positive scalar, known as the step size. The step size is critical
for the convergence of the iterations, because if 01 is too small, we move by a very
small amount each time, and the iterations will take too long to converge. On the
other hand, if it is too large the algorithm may become unstable and oscillate about
the minimum. In the method of steepest descent, the step size is usually chosen
heuristically.

7.2.2 Newton-Raphson Method

The optimum value for the step size (Y can be estimated using the well-known
Newton-Raphson method for root finding. Here, the derivation for the case of
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a function of a single variable is shown for simplicity. In one dimension, we would
like to find a root of f’(n), To this effect, we expand f’(u) in a Taylor series about
the point ~(~1 to obtain

f$(“+l)) = f’(J”‘) + (,(W - “(k))f(&))

Since we wish ~(~~~1 to be a zero of f’(u), we set

f’(J”‘) + (JW _ up))f”(Jk)) = 0

Solving (7.10) for n(‘+r), we have

(7.9)

(7.10)

.(k+l) = ,#I - L@!Y
f”(d”))

This result can be generalized for the case of a function of several unknowns as

u(‘+l) = I&~) - H-lVUf(~)(UrkJ (7.12)

where H is the Hessian matrix @.f(u)Hij = &&[ 1
The Newton-Raphson method finds an analytical expression for the step-size pa-
rameter in terms of the second-order partials of the criterion function. When a
closed-form criterion function is not available, the Hessian matrix can be estimated
by using numerical methods [Fle 871.

7.2.3 Local vs. Global Minima

The gradient descent approach suffers from a serious drawback: the solution de-
pends on the initial point. If we start in a “valley, ” it will be stuck at the bottom
of that valley, even if it is a “local” minimum. Because the gradient vector is zero
or near zero, at or around a local minimum, the updates become too small for the
method to move out of a local minimum. One solution to this problem is to initialize
the algorithm at several different starting points, and then pick the solution that
gives the smallest value of the criterion function.

More sophisticated optimization methods, such as simulated annealing, exist in
the literature to reach the global minimumregardless of the starting point. However,
these methods usually require significantly more processing time. We will discuss
simulated annealing techniques in detail in the next chapter.

7.3 Steepest-Descent-Based Algorithms

Pel-recursive motion estimation is usually preceeded by a change detection stage,
where the frame difference at each pixel is tested against a threshold. Estimation
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is performed only at those pixels belonging to the changed region. The steepest-
descent-based pel-recursive algorithms estimate the update term u(x, t; At) in (7.1),
at each pel in the changed region, by minimizing a positive-definite function E of
the frame difference dfd with respect to d. The function E needs to be positive
definite, such as the square function, so that the minimum occurs when the dfd is
zero. The dfd converges to zero locally, when &(x, t; At) converges to the actual
displacement. Therefore, the update step corresponds to imposing the optical flow
constraint locally. In the following, we present some variations on the basic steepest-
descent-based pel-recursive estimation scheme.

7.3.1 Netravali-Robbins Algorithm

The Netravali-Robbins algorithm finds an estimate of the displacement vector,
which minimizes the square of the DFD at each pixel, using a gradient descent
method. Then the criterion function to be minimized is given by

E(x; d) = [dfd(x, d)]’ (7.13)

From Section 7.2, minimization of E(x; d) with respect to d, at pixel x, by the
steepest descent method yields the iteration

2+‘(x) = %(x) - (1/2)~ Vd[dfd(x, d)ldza,]”

= @(x) - t dfd(x, a) Vddfd(x, d)ldch, (7.14)

where V is the gradient with respect to d, and t is the step size. Recall that the
negative gradient points to the direction of steepest descent.

We now discuss the evaluation of Vddfd(x, d). From (7.2), we can write

dfd(x, d) - dfd(x, a) = s,(x $ d, t $ At) - s,(x + #, t + At) (7.15)

Now, expanding the intensity s,(x + d, t + At) at an arbitrary point x + d into a
Taylor series about x + #, we have

s,(x+d,t+At) = s,(x+&,t+At)+

(d - &?7,sc(x - d; t - At)IdEhZ + o(x, @) (7.16)

where o(x, &) denotes the higher-order terms in the series. Substituting the Taylor
series expansion into (7.15), we obtain the linearized DFD expression

dfd(x, d) = dfd(x, &) + V&(x - 2; t - At)(d - (ii) + o(x, ;li) (7.17)

where Vxse(x - a; t - At) k Vxse(x - d; t - At)],=;1,.
Using (7.17) and ignoring the higher-order terms, we can express the gradient

of the DFD with respect to d in terms of the spatial gradient of image intensity as

V&-d(x, d)ld,;l,  = Vxsc(x - (ii; t - At) (7.18)
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and the pel-recursive estimator becomes

#+l(x) = $(x) - E dfd(x, 2) Vxsc(x - ;li; t - At) (7.19)

In (7.19), the first and second terms are the prediction and update terms, respec-
tively. Note that the evaluation of the frame difference dfd(x, &) and the spatial
gradient vector may require interpolation of the intensity value for noninteger dis-
placement estimates.

The aperture problem is also apparent in the pel-recursive algorithms. The
update term is a vector along the spatial gradient of the image intensity. Clearly,
no correction is performed in the direction perpendicular to the gradient vector.

In an attempt to further simplify the structure of the estimator, Netravali and
Robbins also proposed the modified estimation formula

@+l(x) = 8(x) - E sgn{dfd(x, @)}sgn{&s,(x - 2; t - At)} (7.20)

where the update term takes one of the three values, ft and zero. In this case, the
motion estimates are updated only in 0, 45, 90, 135, degrees directions.

The convergence and the rate of convergence of the Netravali-Robbins algorithm
depend on the choice of the step size parameter t. For example, if E = l/16, then at
least 32 iterations are required to estimate a displacement by 2 pixels. On the other
hand, a large choice for the step size may cause an oscillatory behavior. Several
strategies can be advanced to facilitate faster convergence of the algorithm.

7.3.2 Walker-Rao Algorithm

Walker and Rao [Wal 841 proposed an adaptive step size motivated by the follow-
ing observations: i) In the neighborhood of an edge where ]Vs,(zi) xz, t)I is large,
t should be small if the DFD is small, so that we do not make an unduly large
update. Furthermore, in the neighborhood of an edge, the accuracy of motion esti-
mation is vitally important, which also necessitates a small step size. ii) In uniform
image areas where ]Vs,(~i, xz, t) I is small, we need a large step size when the DFD
is large. Both of these requirements can be met by a step size of the form

1
E=

2 (Ivxse(x - &t - At)]12
(7.21)

. In addition, Walker and Rao have introduced the following heuristic rules:

1. If the DFD is less than a threshold, the update term is set equal to zero.

2. If the DFD exceeds the threshold, but the magnitude of the spatial image
gradient is zero, then the update term is again set equal to zero.

3. If the absolute value of the update term (for each component) is less
than l/16, then it is set equal to &l/16.
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4. If the absolute value of the update term (for each component) is more than 2,
then it is set equal to f2.

Caffario and Rocca have also developed a similar step-size expression [Caf 831

1
E=

]]Vxsc(x - &t - At)]12 + n2
(7.22)

which includes a bias term n2 to avoid division by zero in areas of constant intensity
where the spatial gradient is almost zero. A typical value for $ = 100.

Experimental results indicate that using an adaptive step size greatly improves
the convergence of the Netravali-Robbins algorithm. It has been found that five
iterations were sufficient to achieve satisfactory results in most cases.

7.3.3 Extension to the Block Motion Model

It is possible to impose a stronger regularity constraint on the estimates at each
pixel x, by assuming that the displacement remains constant locally over a sliding
support B about each pixel. We can, then, minimize the DFD over the support B,
defined as

E(x, 4 = c W(XB, d)12
XBEB

(7.23)

as opposed to on a pixel-by-pixel basis. Notice that the support B needs to be
“causal” (in the sense of recursive computability) in order to preserve the pel-
recursive nature of the algorithm. A typical causal support with N = 7 pixels is
shown in Figure 7.2.

Figure 7.2: A causal support 8 for N = 7.

Following steps similar to those in the derivation of the pixel-by-pixel algorithm,
steepest-descent minimization of this criterion function yields the iteration

&+1(x) = ayx) - E c dfd(xB,&(x)) Vx s,(xn - ;li(x);t -At) (7.24)
XBEB

Observe that this formulation is equivalent to that of block matching, except for the
shape of the support 8. Here, the solution is sought for using the steepest-descent
minimization rather than a search strategy.

7.4. WIENER-ESTIMATION-BASED ALGORITHMS

7.4 Wiener-Estimation-Based Algorithms
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The Wiener-estimation-based method is an extension of the Netravali-Robbins al-
gorithm in the case of block motion, where the higher-order terms in the linearized
DFD expression (7.17) are not ignored. Instead, a linear least squares error (LLSE)
or linear minimum mean square error (LMMSE) estimate of the update term

d(x) = d(x) - g(x) (7.25)

where d(x) denotes the true displacement vector, is derived based on a neighborhood
B of a pel x. In the following, we provide the derivation of the Wiener estimator
for the case of N observations with a common displacement vector d(x).

Writing the linearized DFD (7.17), with dfd(x~, d) = 0, at all N pixels xB
within the support B, we have N equations in the two unknowns (the components
of ui) given by

-dfd(X~(l),ai(X)) = VT+&) - ;li(X),t - At)ui + O(XB(l),;la(X))

-&(x&2), 2(x)) = VTs,(xB(2) - 2(x), t - At)ui + o(x~(2), a(x))

: = :

-dfd(xB(N),  8(x)) = VTs,(xB(N) - @(x),t - At)ui + o(xB(N), ;ti(x))

where xg(l), ,xn(N) denote an ordering of the pixels within the support a
(shown in Figure 7.2). These equations can be expressed in vector-matrix form as

z = @u(x) $ n (7.26)

where

as,(x,(l)-&,t-At)  as,(x,(l)-&$-At)
8x1" amzA

as,(x&)-d’,t-at)  %(x,(z)-d’,t-at)
a= 8x1 aza

and

n =

as,(xs(N)-d’,t-At)
ax,
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Assuming that the update term u(x) and the truncation error n are uncorrelated
random vectors, and using the principle of orthogonality, the LMMSE estimate of
the update term is given by [Bie 871

ii(x) = [@R,%@ + R,l]-l@TR,lz (7.27)

Note that the solution requires the knowledge of the covariance matrices of
both the update term R, and the linearization error R,. In the absence of exact
knowledge of these quantities, we will make the simplifying assumptions that both
vectors have zero mean value, and their components are uncorrelated among each
other. That is, we have R, = ~$1 and R, = u:I, where I is a 2 x 2 identity matrix,
and uz and cri are the variances of the components of the two vectors, respectively.
Then the LMMSE estimate (7.27) simplifies to

ii(x) = pT9 + /61]-1@z (7.28)

where p = uf/ut is called the damping parameter. Equation (7.28) gives the least
squares estimate of the update term. The assumptions that are used to arrive at
the simplified estimator are not, in general, true; for example, the linearization
error is not uncorrelated with the update term, and the updates and the lineariza-
tion errors at each pixel are not uncorrelated with each other. However, exper-
imental results indicate improved performance compared with other pel-recursive
estimators [Bie 871.

Having obtained an estimate of the update term, the Wiener-based pel-recursive
estimator can be written as

@+1(x) = 2(x) + [aTa + p1]-wz (7.29)

It has been pointed out that the Wiener-based estimator is related to the Walker-
Rao and Caffario-Rocca algorithms [Bie 871. This can easily be seen by writing
(7.29) for the special case of N = 1 as

2+1(x) = qx) - @-d(x, @VTsc(x - &,t - At)

IVTs,(x - &,t - At)12 + ,u
(7.30)

The so-called simplified Caffario-Rocca algorithm results when p = 100. We obtain
the Walker-Rao algorithm when we set p = 0 and multiply the update term by l/2.
The convergence properties of the Wiener-based estimators have been analyzed
in [Bor 911.

The Wiener-estimation-based scheme presented in this section employs the best
motion vector estimate from the previous iteration as the prediction for the next
iteration. An improved algorithm with a motion-compensated spatio-temporal vec-
tor predictor was proposed in [Dri 911. Pel-recursive algorithms have also been
extended to include rotational motion [Bie 881. As a final remark, we note that all
pel-recursive algorithms can be applied hierarchically, using a multiresolution rep-
resentation of the images to obtain improved results. Pel-recursive algorithms have
recently evolved into Bayesian motion estimation methods, employing stochastic
motion-field models, which will be introduced in the next chapter.

7.5. EXAMPLES

7.5 Examples
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We have applied the Walker-Rao algorithm, given by (7.19), (7.22), and the heuristic
rules stated in Section 7.3.2, and the Wiener-based method given by (7.29) to the
same two frames of the Mobile and Calendar sequence that we used in Chapters 5
and 6. We generated two sets of results with the Walker-Rao algorithm, where we
allowed 2 and 10 iterations at each pixel, respectively. In both cases, we have set
the threshold on the DFD (see heuristic rules 1 and 2) equal to 3, and limited the
maximum displacement to 410 as suggested by [Wal 841. In the Wiener-estimation-
based approach, we employed the support shown in Figure 7.2 with N = 7, allowed
2 iterations at each pixel, and set the damping parameter p = 100.

The effectiveness of the methods is evaluated visually, by inspection of the mo-
tion vector fields shown in Figure 7.3 (for the case of two iterations/pixel, 1=2), and
numerically, by comparing the PSNR and entropy values tabulated in Table 7.1. A
few observations about the estimated motion fields are in order: i) Inspection of
the upper left corner of the Walker-Rao estimate, shown in Figure 7.3 (a) indicates
that the displacement estimates converge to the correct background motion after
processing about 10 pixels. ii) In the Walker-Rao estimate, there are many outlier
vectors in the regions of rapidly changing motion. iii) The Wiener estimate, shown
in Figure 7.3 (b), contains far fewer outliers but gives zero motion vectors in the
uniform areas (see flat areas in the background, the foreground, and the calendar).
This may be overcome by using a larger support a. In pel-recursive estimation,
propagation of erroneous motion estimates may be overcome by resetting the pre-
dicted estimate to the zero vector, if the frame difference is smaller than the DFD
obtained by the actual predicted estimate at that pixel. However, we have not
implemented this option in our software.

In terms of motion compensation, the Wiener-based method is about 0.8 dB
better than the Walker-Rao method if we allow 2 iterations/pixel. However, if we
allow 10 iterations/pixel, the performance of the Wiener-based method remains
about the same, and both methods perform similarly. Observe that the entropy
of the Wiener-based motion field estimate is smaller than half of both Walker-Rao
estimates, for I=2 and I=lO, by virtue of its regularity. The two Walker-Rao motion
field estimates are visually very close, as indicated by their similar entropies.

Table 7.1: Comparison of the pel-recursive methods. (Courtesy Gozde Bozdagi)

Method [ PSNR (dB) 1 Entropy (bits)
Frame-Difference 1 23.45 1
Walker-Rao (1=2) 29.01 8.51

Wiener (1=2) 29.82 4.49
Walker-Rao (I=lO) 29.92 8.54
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Figure 7.3: Motion field obtained by a) the Walker-Rao method and b) the Wiener-
based method. (Courtesy Gozde Bozdagi and Mehmet Ozkan)

7.6. EXERCISES

7.6 Exercises
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1. Derive (7.12). How would you compute the optimal step size for the Netravali-
Robbins  algorithm?

2. Derive an explicit expression for (7.24). Comment on the relationship between
block matching and the algorithm given by (7.24).

3. Comment on the validity of the assumptions made to arrive at the Wiener-
based estimator (7.29).

4. Derive (7.30) from (7.29).
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This minimization is exceedingly difficult due to large dimensionality of the un-
known vector and the presence of local minima. With nonconvex criterion func-
tions, gradient descent methods, discussed in Chapter 7, generally cannot reach the
global minimum, because they get trapped in the nearest local minimum.

In this section, we present two simulated (stochastic) annealing algorithms, the
Metropolis algorithm [Met 531 and the Gibbs sampler [Gem 841, which are capable
of finding the global minimum; and three deterministic algorithms, the iterative
conditional modes (ICM) algorithm [Bes 741, the mean field annealing algorithm
[Bil 91a], and the highest confidence first (HCF) algorithm [Cho 901, to,obtain faster
convergence. For a detailed survey of popular annealing procedures the reader is
referred to [Kir 83, Laa 871.

Chapter 8

BAYESIAN METHODS
8.1.1 Simulated Annealing

In this chapter, 2-D motion estimation is formulated and solved as a Bayesian esti-
mation problem. In the previous chapters, where we presented deterministic formu-
lations of the problem, we minimized either the error in the optical flow equation
or a function of the displaced frame difference (DFD). Here, the deviation of the
DFD from zero is modeled by a random process that is exponentially distributed.
Furthermore, a stochastic smoothness constraint is introduced by modeling the 2-
D motion vector field in terms of a Gibbs distribution. The reader is referred to
Appendix A for a brief review of the definitions and properties of Markov and
Gibbs random fields. The clique potentials of the underlying Gibbsian distribution
are selected to assign a higher a priori probability to slowly varying motion fields.
In order to formulate directional smoothness constraints, more structured Gibbs
random fields (GRF) with line processes are also introduced.

Since Bayesian estimation requires global optimization of a cost function,
we study a number of optimization methods, including simulated annealing (SA),
iterated conditional modes (ICM), mean field annealing (MFA), and highest con-
fidence first (HCF) in Section 8.1. Section 8.2 provides the basic formulation of
the maximum a posteriori probability (MAP) es imation problem. Extensions oft’
the basic formulation to deal with motion discontinuities and occlusion areas are
discussed in Section 8.3. It will be seen that block/pel matching and Horn-Schunck
algorithms form special cases of the MAP estimator under certain assumptions.

8.1 Optimization Methods

Many motion estimation/segmentation problems require the minimization of a non-
convex criterion function E(u), where u is some N-dimensional unknown vector.
Then, the motion estimation/segmentation problem can be posed so as to find

ti = arg {minu E(u)}
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(8.1)

Simulated annealing (SA) refers to a class of stochastic relaxation algorithms known
as Monte Carlo methods. They are essentially prescriptions for a partially random
search of the solution space. At each step of the algorithm, the previous solution is
subjected to a random perturbation. Unlike deterministic gradient-based iterative
algorithms which always move in the direction of decreasing criterion function,
simulated annealing permits, on a random basis, changes that increase the criterion
function. This is because an uphill move is sometimes necessary in order to prevent
the solution from settling in a local minimum.

The probability of accepting uphill moves is controlled by a temperature param-
eter. The simulated annealing process starts by first “melting” the system at a high
enough temperature that almost all random moves are accepted. Then the tem-
perature is lowered slowly according to a “cooling” regime. At each temperature,
the simulation must proceed long enough for the system to reach a “steady-state.”
The sequence of temperatures and the number of perturbations at each temperature
constitute the “annealing schedule.” The convergence of the procedure is strongly
related to the annealing schedule. In their pioneering work, Geman and Geman
[Gem 841 proposed the following temperature schedule:

TX-ln(i.l)’ i=l,...

where r is a constant and i is the iteration cycle. This schedule is overly conservative
but guarantees reaching the global minimum. Schedules that lower the temperature
at a faster rate have also been shown to work (without a proof of convergence).

The process of generating random perturbations is referred to as sampling the
solution space. In the following, we present two algorithms that differ in the way
they sample the solution space.

The Metropolis Algorithm

In Metropolis sampling, at each step of the algorithm a new candidate solution is
generated at random. If this new solution decreases the criterion function, it is
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always accepted; otherwise, it is accepted according to an exponential probability
distribution. The probability P of accepting the new solution is then given by

exp(-AE/T) if AE > 0
ifAE<O

where AE is the change in the criterion function due to the perturbation, and T is
the temperature parameter. If T is relatively large, the probability of accepting a
positive energy change is higher than when T is small for a given AE. We provide
a summary of the Metropolis algorithm in the following [Met 531:

1. Seti=OandT=T,,,. Choose an initial u(O) at random
2. Generate a new candidate solution u(i+l) at random.
3. Compute AE = E(uci+l))  - E(u(~)).
4. Compute P from

P= 1
1

exp(-AE/T) if AE > 0
ifAE<O

5. If P = 1, accept the perturbation; otherwise, draw a random number that is
uniformly distributed between 0 and 1. If the number drawn is less than P, accept
the perturbation. .

6. Set i = i + 1. If i < G,,, where I,,, is predetermined, go to 2.
7. Set i = 0, and u(O) = u(~~G=), Reduce T according to a temperature schedule.

If T > Tmin, go to 2; otherwise, terminate.

Because the candidate solutions are generated by random perturbations, the
algorithm typically requires a large number of iterations for convergence. Thus, the
computational load of simulated annealing is significant, especially when the set of
allowable values r (defined in Appendix A for u discrete) contains a large number
of values or u is a continuous variable. Also, the computational load increases with
the number of components in the unknown vector.

The Gibbs Sampler

Let’s assume that u is a random vector composed of lexicographic ordering of the
elements of a scalar GRF U(X). In Gibbs sampling, the perturbations are generated
according to local conditional probability density functions (pdf) derived from the
given Gibbsian distribution, according to (A.5) in Appendix A, rather than making
totally random perturbations and then deciding whether or not to accept them.
The Gibbs sampler method is summarized in the following.

1. Set T = T,,,. Choose an initial u at random.
2. Visit each site x to perturb the value of u at that site as follows:
a) At site x, first compute the conditional probability of U(X) to take each of,the

allowed values from the set r, given the present values of its neighbors using (A.5)
in Appendix A. This step is illustrated for a scalar U(X) by an example below.
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Example: Computation of local conditional probabilities

Let l? = (0, 1,2,3}. Given a 3 x 3 binary GRF, we wish to compute
the conditional probability of the element marked with “x” in Figure 8.1
being equal to “0,” “1,” ‘Y,” or “3” given the values of its neighbors. If
we define

P(Y) = P(n(xi) = y, u(xj),xj E Nx,), for all y E I‘

to denote the joint probabilities of possible configurations, then, using
(A.4), we have

P(U(Xi) = 0 P(O)
’ u(xj), x.i E jvxJ = P(0) + P(1) + P(2) + P(3)

P(,(x,) = 1 P(l)
’ u(xjLxj E NxJ = P(0) + P(1) + P(2) + P(3)

PC4P(4Xi) = 2 I UC%), x.i E NXJ = p(o) + pcl) + p(2) + p(3)

and

P(3)
p(4xi) = 3 I 4XjLXj E JJX,) = qo) + p(l) + p(2) + p(3)

The evaluation of P(y) for all y E r, using the 4-pixel neighborhood
system shown in Figure A.1 and the 2-pixel clique potential specified
by (8.11), is left as an exercise. You may assume that the a priori
probabilities of a “0” and a “1” are equal.

2 0 2

1 x 0

1 0 3

Figure 8.1: Illustration of local probability computation.

b) Once the probabilities for all elements of the set F are computed, draw the
new value of U(X) from this distribution. To clarify the meaning of “draw,” again
an example is provided.
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Example: Suppose that I = (0, 1,2,3}, and it was found that

P(u(x,) = 0 1 U(Xj), xj E Nx.) = 0.2
P(u(xa) = 1 1 U(Xj), xj ENX,) = 0.1
P(U(Xi) = 2 1 U(Xj), xj E Nx,) = 0.4
P(U(Xi) = 3 1 U(Xj), xj E Nx,) = 0.3

Then a random number R, uniformly distributed between 0 and 1, is
generated, and the value of u(x~) is decided as follows: if 0 5 R 5 0.2
then u(x~) = 0 if 0.2 < R 5 0.3 then u(x~) = 1 if 0.3 < R 5 0.7 then
u(x~) = 2 if 0.7 < R 5 1 then u(x~) = 3.

3. Repeat step 2 a sufficient number of times at a given temperature, then lower
the temperature, and go to 2. Note that the conditional probabilities depend on
the temperature parameter.

Perturbations through Gibbs sampling lead to very interesting properties that
have been shown by Geman and Geman [Gem 841:
(i) For any initial estimate, Gibbs sampling will yield a distribution that is asymp-
totically Gibbsian, with the same properties as the Gibbs distribution used to gen-
erate it. This result can be used to simulate a Gibbs random field.
(ii) For the particular temperature schedule (8.2), the global optimum will be
reached. However, in practice, convergence with this schedule may be too slow.

8.1.2 Iterated Conditional Modes

Iterated conditional modes (ICM), also known as the greedy algorithm, is a deter-
ministic procedure which aims to reduce the computational load of the stochastic
annealing methods. It can be posed as special cases of both the Metropolis and
Gibbs sampler algorithms.

ICM can best be conceptualized as the “instant freezing” case of the Metropolis
algorithm, that is, when the temperature T is set equal to zero for all iterations.
Then the probability of accepting perturbations that increase the value of the cost
function is always 0 (refer to step 4 of the Metropolis algorithm). Alternatively,
it has been shown that ICM converges to the solution that maximizes the local
conditional probabilities given by (A.5) ta each site. Hence, it can be implemented
as in Gibbs sampling, but by choosing the value at each site that gives the maximum
local conditional probability rather than drawing a value based on the conditional
probability distribution.

ICM convergences much faster than the stochastic SA algorithms. However,
because ICM only allows those perturbations yielding negative AE, it is likely to
get trapped in a local minimum, much like gradient-descent algorithms. Thus, it is
critical to initialize ICM with a reasonably good initial estimate. The use of ICM ’
has been reported for image restoration [Bes 741 and image segmentation [Pap 921.
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8.1.3 Mean Field Annealing

Mean field annealing is based on the “mean field approximation” (MFA) idea in
statistical mechanics. MFA allows replacing each random variable (random field
evaluated at a particular site) by the mean of its marginal probability distribution at
a given temperature. Then mean field annealing is concerned about the estimation
of these means at each site. Because the estimation of each mean is dependent on
the means of the neighboring sites, this estimation is performed using an annealing
schedule. The algorithm for annealing the mean field is similar to SA except that
stochastic relaxation at each temperature is replaced by a deterministic relaxatr n to.fi
minimize the so-called mean field error, usually using a gradient-descent algorithm.

Historically, the mean field algorithms were limited to Ising-type models de-
scribed by a criterion function involving a binary vector. However, it has recently
been extended to a wider class of problems, including those with continuous vari-
ables [Bil Sib]. Experiments suggest that the MFA is valid for MRFs with local
interactions over small regions. Thus, computations of the means and the mean field
error are often based on Gibbsian distributions. It has been claimed that mean field
annealing converges to an acceptable solution approximately 50 times faster than
SA. The implementation of MFA is not unique. Covering all seemingly different
implementations of the mean field annealing [Or1 85, Bil 92, Abd 92, Zha 931 is
beyond the scope of this book.

8.1.4 Highest Confidence First

The highest confidence first (HCF) algorithm proposed by Chou and Brown [Cho 901
is a deterministic, noniterative algorithm. It is guaranteed to reach a local minimum
of the potential function after a finite number of steps.

In the case of a discrete-valued GRF, the minimization is performed on a site-
by-site basis according to the following rules: 1) Sites with reliable data can be
labeled without using the prior probability model. 2) Sites where the data is unre-
liable should rely on neighborhood interaction for label assignment. 3) Sites with
unreliable data should not affect sites with reliable data through neighborhood in-
teraction. Guided by these principles, a scheme that determines a particular order
for assigning labels and systematically increases neighborhood interaction is de-
signed. Initially, all sites are labeled “uncommitted.” Once a label is assigned to
an uncommitted site, the site is committed and cannot return to the uncommit-
ted state. However, the label of a committed site can be changed through another
assignment. A “stability” measure is calculated for each site based on the local
conditional a posteriori probability of the labels at that site, to determine the order
in which the sites are to be visited. The procedure terminates when the criterion
function can no longer be decreased by reassignment of the labels.

Among the deterministic methods, HCF is simpler and more robust than MFA,
and more accurate than the ICM. Extensions of HCF for the case of continuous
variables also exist.
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8.2 Basics of MAP Motion Estimation

In this section, 2-D motion estimation is formulated as a maximum a posteriori
probability (MAP) estimation problem. The MAP formulation requires two pdf
models: the conditional pdf of the observed image intensity given the motion field,
called the likelihood model or the observation model, and the a priori pdf of the
motion vectors, called the motion field model. The basic formulation assumes a
Gaussian observation model to impose consistency with the observations, and a
Gibbsian motion field model to impose a probabilistic global smoothness constraint.

In order to use a compact notation, we let the vector sk denote a lexicographic
ordering of the ideal pixel intensities sk(x) in the kth picture (frame or field), such
that (x, t) E A3 for t = kAt. If d(x) = (dl(x),dz(x)) denotes the displacement
vector from frame/field k - 1 to k at the site x = (~1, ~2)~ then we let dl and dz
denote a lexicographic ordering of dl(x) and &(x), respectively. Hence, ignoring
covered/uncovered background regions and intensity variations due to changes in
the illumination and shading, we have

Q(X) = a-1(x - d(x)) - SLI(XI - h(x), xz - b(x)) (8.3)

which is a restatement of the optical flow constraint.
In general, we can only observe video that is corrupted by additive noise, given

by
g?c(x) = Sk(X) + N(X) (8.4)

and need to estimate 2-D motion from the noisy observations. Then the basic MAP
problem can be stated as: given two frames gk and gb-l, find

(4, d2) = arg ma+&,& p(dl, &la, gh-1) (8.5)

where p(dl, dzlgk, gk-1) denotes the a posterior-i pdf of the motion field given the
two frames. Using the Bayes theorem,

p(dl d21gk gk-l) = P(gkldl,dz,gk-1)P(dl,d2lgk-l)
> ,

~(&I&-1)
(8.6)

where p(gk(dl, dz, gk-1) is the cqnditional probability, or the “consistency (likeli-
hood) measure,” that measures how well the motion fields dl and dz explain the
observations gk through (8.3) given gk-1; and p(dl,dzlgk-1) is the a priori pdf
of the motion field that reflects our prior knowledge about the actual motion field.
Since the denominator is not a function of dl and dz, it is a constant for the
purposes of motion estimation. Then the MAP estimate (8.5) can be expressed as

or as

(41, &) = a% maXd,,d, pk-lldl, dz, gk)ddl, &la)

Next, we develop models for the conditional and the prior pdfs.
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8.2.1 The Likelihood Model

Based on the models (8.3) and (8.4), the change in the intensity of a pixel along
the true motion trajectory is due to observation noise. Assuming that the observa-
tion noise is white, Gaussian with zero mean and variance u2, the conditional pdf
p(gkldl, dz,gk-1) can be modeled as

p(gkldl, dz,gk-1) = (2ru2)-* exp - C h(x) - .c-lb - 44)12
2u2 (84

XEA

where d(h) denotes the determinant of A which gives the reciprocal of the sampling
density. The conditional pdf (8.8) gives the likelihood of observing the intensity
gk given the true motion field, dl and d2, and the intensity vector of the previous
frame gk-1.

8.2.2 The Prior Model

The motion field is assumed to be a realization of a continuous-valued GRF, where
the clique potential functions are chosen to impose a local smoothness constraint
on pixel-to-pixel variations of the motion vectors. Thus, the joint a priori pdf of
the motion vector field can be expressed as

p(dl, d&-l) = &exp Wd(dl, &k-l))

where Qd is the partition function, and

Ud(4, dzlgrc-1) = Ad c V,“(dl, d&k-l)
CECd

Here Cd denotes the set of all cliques for the displacement field, Vi(.) represents
the clique potential function for c E Cd, and Xd is a positive constant. The clique
potentials will be chosen to assign smaller probability to configurations where the
motion vector varies significantly from pixel to pixel. This is demonstrated by two
examples in the following.

Example: The case of a continuous-valued GRF

This example demonstrates that a spatial smoothness constraint can
be formulated as an a priori pdf in the form of a Gibbs distribution.
Let us employ a four-point neighborhood system, depicted in Figure A.1,
with two-pixel cliques (see Appendix A). For continuous-valued GRF,
a suitable potential function for the two-pixel cliques may be

V:‘(d(xi), d(q)) = IId - d(q)l12 (8.10)

where xi and xj denote the elements of any two-pixel clique ~2, and II.11
is the Euclidian distance. In Equation 8.9, Vi'(d(xi),d(xj)) needs to
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be summed over all two-pixel cliques. Clearly, a spatial configuration
of motion vectors with larger potential would have a smaller a priori
probability.

Example: The case of a discrete-valued GRF

If the motion vectors are quantized, say, to 0.5 pixel accuracy, then we
have a discrete-valued GRF. The reader is reminded that the definition
of the pdf (8.9) needs to be modified to include a Dirac delta function in
this case (see (A.2)). Suppose that a discrete-valued GRF z is defined
over the 4 x 4 lattice, shown in Figure 8.2 (a). Figure 8.2 (b) and (c)
show two realizations of 4 x 4 binary images.

I I I

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

1 2 1 2

2 1  2 1

1 2 1 2

2 1 2 1

24 two-pixel cliques V= -24 p V=24p

(4 (b) .i (cl

Figure 8.2: Demonstration of a Gibbs model

Let the two-pixel clique potential be defined as

(8.11)

where /3 is a positive number.

There are a total of 24 two-pixel cliques in a 4 x 4 image (shown by dou-
ble arrows). It can be easily verified, by summing all clique potentials,
that the configurations shown in Figures 8.2 (b) and (c) have the Gibbs
potentials -24p and +24,/3, respectively. Clearly, with the choice of the
clique potential function (8.11), the spatially smooth configuration in
Figure 8.2 (b) has a higher a priori probability.

The basic formulation of the MAP motion estimation problem can be obtained
by substituting the likelihood model (8.8) and the a priori model (8.9) into (8.7).
Simplification of the resulting expression indicates that maximization of (8.7) is
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equivalent to minimization of a weighted sum of the square of the displaced frame
difference and a global smoothness constraint term. The MAP estimation is usually
implemented by minimizing the corresponding criterion function using simulated
annealing.

A practical problem with the basic formulation is that it imposes a global
smoothness constraint over the entire motion field, resulting in the blurring of op-
tical flow boundaries. This blurring also adversely affects the motion estimates
elsewhere in the image. Extensions of the basic approach to address this problem
are presented in the following.

8.3 MAP Motion Estimation Algorithms

Three different approaches to account for the presence of optical flow boundaries
and occlusion regions are discussed. First, a formulation which utilizes more struc-
tured motion field models, including an occlusion field and a discontinuity (line)
field, is introduced. While the formulation with the discontinuity models is an el-
egant one, it suffers from a heavy computational burden because the discontinuity
models introduce many more unknowns. To this effect, we also present two other
noteworthy algorithms, namely the Local Outlier Rejection method proposed by Iu
[Iu 931 and the region-labeling method proposed by Stiller [Sti 931.

8.3.1 Formulation with Discontinuity Models

We introduce two binary auxilary MRFs, called the occlusion field o and the line
field 1, to improve the accuracy of motion estimation. The a priori pdf (8.9) penal-
izes any discontinuity in the motion field. In order to avoid oversmoothing actual
optical flow boundaries, the line field is introduced, which marks the location of all
allowed discontinuities in the motion field. The line field, 1, has sites- between every
pair of pixel sites in the horizontal and vertical directions. Figure 8.3 (a) illustrates
a 4-line clique of a line field, composed of horizontal and vertical lines indicating
possible discontinuities in the vertical and horizontal directions, respectively. The
state of each line site can be either ON (1 = 1) or OFF (I = 0), expressing the
presence or absence of a discontinuity in the respective direction. The actual state
of each line field site is a priori unknown and needs to be estimated along with the
motion vector field.

While the line field is defined to improve the a priori motion field model, the
occlusion field, o, is used to improve the likelihood model. The occlusion field, which
occupies the same lattice as the pixel sites, is an indicator function of occlusion pixels
(refer to Section 5.2.1 for a discussion of occlusion) defined by

if d(q) ~2) is well defined
if x = (~1, ~2) is an occlusion point (8.12)

Because the pixels where o(x) is ON are also a priori unknown, the occlusion field
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needs to be estimated along with the motion vector field and the line field.
With the introduction of the occlusion and line fields, the MAP motion estima-

tion problem can be restated as: given the two frames, gk and gb-1, find

{&, b, 6, i) = a% maxdl,d2,0,J P(dl, dz, 0, llglc, &z-l) (8.13)

Using the Bayes rule to factor the a posteriori probability and following the same
steps as in the basic formulation, the MAP estimate can be expressed as

{h, dz,k i} = w maxd,,&o,J & 14, dz, o,l, m-1)

ddl, dzlo,l, gk-&oll, gk-&olgk-1) (8.14)

where the first term is the improved likelihood model, the second, third, and fourth
terms are the displacement field, the occlusion field, and the discontinuity field
models, respectively. Next, we develop expressions for these models.

The Likelihood Model

The conditional probability model (8.8) fails at the occlusion areas, since the dis-
placed frame difference in the occlusion areas cannot be accurately modeled as
white, Gaussian noise. The modeling error at the occlusion points can be avoided
by modifying (8.8) based on the knowledge of the occlusion field as

p(gkldl, ho, 1, gk-1) =

(2Ta2)-& exp _ c (1 - o(x))[sk(x) -%1(x - d(x))12
2u2

(8.15)
XEA

where the contributions of the pixels in the occluded areas are discarded, and N
is the number of sites that do not experience occlusion. Note that this improved
likelihood model does not depend on the line field explicitly. The pdf (8.15) can be
expressed more compactly in terms of a “potential function” as

dg#l,ho,l,g~-l) =exp(-Ug(gl,ldl,dz,o,g~-l))
where

U,Mdl,dr,o,gk-1)  = log( 27rc72)2 N

+& x(1 - +))b&4 - a-1(x - +))I2
XEA

(8.16)

We must assign an appropriate penalty for the use of the occlusion state “ON.”
Otherwise, the displaced frame difference can be made arbitrarily small by using
more occlusion states. This penalty is imposed by the occlusion model discussed
below.
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We incorporate the line field model to the prior motion vector field model (8.9) in
order not to unduly penalize optical flow boundaries. The improved a priori motion
field model can be expressed as

ddl,dzlo,l,gk-1)  = &ew {-Ud(dlldzlo,l,grc-l)lPd)

where &d is the partition function, and

Ud(dl,dzlo,l,gk-1) = c V;(dl,dalo,1,gt-1)
CECd

(8.17)

(8.18)

Here Cd denotes the set of all cliques for the displacement field, and Vi(.) represents
the clique potential function for c E Cd.

Typically, the dependency of the clique potentials on o and gk-1 are omitted.
We present two examples of such potential functions for 2-pixel cliques,

V;‘(d(xi),d(xj)ll)  = IId - d(xj)l12(1 - +i,xj)) (8.19)

or

Vi’(d(x;),d(xj)Il)  = (1 - exp(-ydlld(xi) - d(xj)l12)) (1 - b(xi,xj)) (8.20)

where Y,j is a scalar, xi and xj denote the elements of the two-pixel cliques es,
and l(xi,xj) denotes the line field site that is in between the pixel sites xi and
xj. As can be seen, no penalty is assigned to discontinuities in the motion vector
field, if the line field site between these motion vectors is “ON.” However, we must
assign an appropriate penalty for turning the line field state “ON.” Otherwise, the
smoothness constraint can be effectively turned off by setting all of the line field
sites “ON.” This penalty is introduced by the motion discontinuity model discussed
below.

The Occlusion Field Model

The occlusion field models the spatial distribution of occlusion labels as a discrete-
valued GRF described by

P(4, gk-1) = $ ev {-~o(oll, gh-dlPoI (8.21)
0

where

Uo(oll, !a-1) = c v:/,c(4, !a-1) (8.22)
CECO

Here C, denotes the set of all cliques for the occlusion field, and Vt(.) represents
the clique potential function for c E C,.
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The potential functions Vi(.) for all possible cliques are chosen to provide a
penalty for turning the associated occlusion states “ON.” For example, we will
define the potential for singleton cliques as

iq’(o(x)) = o(x)To (8.23)

which penalizes each “ON” state by an amount To. The quantity To can be viewed
as a threshold on the normalized displaced frame difference,

tz(x) = h(4 - a-l@ - +))I2
2$

(8.24)

That is, the occlusion state should be turned "ON" only when c2(x) is larger than To.
The spatial distribution of the “ON” occlusion states and their interaction with line
field states can be controlled by specifying two or more pixel cliques. Examples for
the choices of occlusion field cliques can be found in Dubois and Konrad [Dub 931.

The Line Field Model

The allowed discontinuities in the motion field are represented by a line field, which
is a binary GRF, modeled by the joint probability distribution

P(h-1) = $exp {-uf(llgk-d//Al (8.25)

where &I is the partition function and

Wb-1) = c y(llgk-1) (8.26)
CCC1

Here Cl denotes the set of all cliques for the line field, and v,“(.) represents the
clique function for c E Cf.

Like the occlusion model, the motion discontinuity model assigns a penalty for
the use of the “ON” state in the line field. The potential function 1/,‘(llgk-l) may
take different forms depending on the desired properties of the motion discontinuity
field. Here, we will consider only singleton and four-pixel cliques; hence,

I/q&-l) =  y(llgk-1) +  v,yl) (8.27)

The singleton cliques assign a suitable penalty for the use of the “ON” state at
each individual site. The motion discontinuities are, in general, correlated with in-
tensity discontinuities; that is, every motion edge should correspond to an intensity
edge, but not vice versa. Thus, a line-field site should only be turned “ON” when
there is a significant gray-level gradient, resulting in the following singleton clique
potential:

I/le'(llgk-l) =
&;Tal(xi, xj) for horizontal cliques
*[(xi, xj) for vertical cliques (8.28)

8.3. MAP MOTION ESTIMATION ALGORITHMS

010

010

4

00

00
v= 0.0

010

00

v= 1.8

00 00
00 00

V=2.7 v= 0.9

010 010
0 0 010

v = 1.8 V=2.7

d
Figure 8.3: Illustration of the line field: a) four-line clique, b) all four-line cliques
on a 4 x 4 image, c) potentials for four-line cliques.

where V,gt and Vhgk denote the vertical and horizontal image gradient operators,
respectively.

An example of potentials assigned to various rotation-invariant four-pixel cliques
is shown in Figure 8.3 (c). More examples can be found in [Kon 921. Next, we
demonstrate the use of the line field.

Example: Demonstration of the line field

The line field model is demonstrated in Figure 8.3 using a 4 x 4 image. As
shown in Figure 8.3 (b), a 4 x 4 image has 24 singleton line cliques and
9 distinct four-line cliques, indicating possible discontinuities between
every pair of horizontal and vertical pixel sites.
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Figure 8.4: Prior probabilities with and without the line field: a) no edges, b) a ver-
tical edge, c) a vertical edge and an isolated pixel.

The potentials shown in Figure 8.3 (c) assign a priori probabilities to
all possible four-pixel discontinuity configurations reflecting our a pri-
ori expectation of their occurence. Note that these configurations are
rotation-invariant; that is, the potential is equal to 2.7 whenever only
one of the four line sites is ON. These potentials slightly penalize straight
lines (V = 0.9), penalize corners (V = 1.8) and “T” junctions (V = 1.8),
and heavily penalize end of a line (V = 2.7) and “crosses” (V = 2.7).

Figure 8.4 shows three pictures where there are no edges, there is a
single vertical edge, and there is a vertical edge and an isolated pixel,
respectively. The potential function V,‘“(l) evaluated for each of these
configurations are 0, 3 x 0.9 = 2.7, and 2.7 + 1.8 x 2 = 6.3, respectively.
Recalling that the a priori probability is inversely proportional to the
value of the potential, we observe that a smooth configuration has a
higher a priori probability.

Konrad-Dubois Method

Given the above models, the MAP estimate of dl, dz, o, and 1 can be expressed
(neglecting the dependency of the partition functions on the unknowns, e.g., Qd
depends on the number of sites at which 1 is “ON”) in terms of the potential
functions as

;11,&,6,i = arg min
d,,d,,o,l

U(dl, dz, o,llgk, gk-1) (8.29)

1 w d $no 1 Vdg~ldl, dz,o, 1, a-1) + Mddl, &lo, 1, g-1)
I, 2, 3

+uJo(oll,gk-1) + Wl(1lgk-l)} (8.30)

where Xd, X,, and XI are positive constants. The minimization of (8.30) is an
exceedingly difficult problem, since there are several hundreds of thousands of un-
knowns for a reasonable size image, and the criterion function is nonconvex. For
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example, for a 256 x 256 image, there are 65,536 motion vectors (131,072 compo-
nents), 65,536 occlusion labels, and 131,072 line field labels for a total of 327,680
unknowns. An additional complication is that the motion vector components are
continuous-valued, and the occlusion and line field labels are discrete-valued.

To address these difficulties, Dubois and Konrad [Dub 931 have proposed the
following three-step iteration:

1. Given the best estimates of the auxilary fields i, and I, update the motion
field dl and dz by minimizing

min
d,,d,

u,(gkldl, dz, 6 a-1) + UJddl, hIi, a-1) (8.31)

The minimization of (8.31) can be done by Gauss-Newton optimization, as
was done in [Kon 911.

2. Given the best estimates of ai, dz, and i, update o by minimizing

m~U~(g,lal~$2,0,gk-l) + hUo(olLgk-l) (8.32)

An exhaustive search or the ICM method can be employed to solve this step.

3. Finally, given the best estimates of Ai, az, and 6, update 1 by minimizing

mFbUd(hl, &ll,gk-1) + X,Uo(~ll,gk-~) + h&(llgk-1) (8.33)

Once all three fields are updated, the process is repeated until a suitable
criterion of convergence is satisfied. This procedure has been reported to give
good results.

In an earlier paper Konrad and Dubois [Kon 921 have derived a solution, using
the Gibbs sampler, for the minimization of

~,(g~ldl, dz,l,grc-1) + kdJ~(4,&14glc-d + WOlg~-~) (8.34)

without taking the occlusion field into account. They have shown that the Horn and
Schunck iteration (5.17) constitutes a special case of this Gibbs sampler solution.
Furthermore, if the motion vector field is assumed discrete-valued, then the Gibbs
sampler solution generalizes the pixel-/block-matching algorithms.

While the MAP formulation proposed by Konrad and Dubois provides an ele-
gant approach with realistic constraints for motion estimation, the implementation
of this algorithm is far from easy. Alternative approaches proposed for Bayesian
motion estimation include those using mean field annealing by Adelqader et al.
[Abd 921 and Zhang et al. [Zha 931 to reduce the computational load of the stochas-
tic relaxation procedure, and the multimodal motion estimation and segmentation
algorithm of Heitz and Bouthemy [Hei 901. Pixel-recursive estimators have been de-
rived by Driessen et al. [Dri 921, and Kalman-type recursive estimators have been
used by Chin et al. [Chi 931. In the following, we discuss two other strategies to
prevent blurring of motion boundaries without using line fields.
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8.3.2 Estimation with Local Outlier Rejection

The local outlier rejection approach proposed by Iu [Iu 931 is an extension of the
basic MAP formulation, given by (8.7), w ic aims at preserving the optical flowh’ h
boundaries without using computationally expensive line field models. At site x,
the basic MAP method clearly favors the estimate d(x) that is closest to all other
motion estimates within the neighborhood of site x. The local outlier rejection
method is based on the observation that if the pixels within the neighborhood of
site x exhibit two different motions, the estimate d(x) is then “pushed” towards
the average of the two, resulting in blurring. To eliminate this undesirable effect,
it is proposed that all the values of the clique potential function, one for each site,
are ranked, and the outlier values are rejected. The outlier rejection procedure is
relatively simple to incorporate into the local Gibbs potential calculation step.

To describe the approach in more detail, we revisit the basic MAP equations
(8.7)-(8.9). While the likelihood model (8.8) remains unchanged, we rewrite the
potential function of the prior distribution (8.9) as

Ud(dl> dzk-1) = Ai c $ c IId - d(xj)l12 (8.35)
X, vnr,,

where the summation xi is over the whole image and the summation xj runs over all
the neighbors of the site xi, and Nh is the number of neighbors of the site xi. The
term IId(d(xj)]]” is the clique potential for the two-pixel clique containing sites
xi and xj. Observe that (8.35) is different than (8.9) because: i) the summation
is not over all cliques, but over all pixels to simplify the outlier rejection process
(it can be easily shown that in (8.35) every clique is counted twice); and ii) the
potential function includes the mean clique potential, rather than the sum of all
clique potentials, for each site (indeed, this corresponds to scaling of Xd).

To incorporate outlier rejection, the potential function (8.35) is further modified
as

U(dl, d&k-l) = Xa c $ c hjlld(xa) - d(xj)l12 (8.36)
X, XJ E.nr,,

6. = 1 if IId - d(q)l12 I TOR
3 0 otherwise

is the indicator function of the rejected cliques, TOE is a threshold, and

Nh = cbj

(8.37)

(8.38)

The expression (8.36) can be used in two ways: i) given a fixed threshold TOR,
in which case the number of cliques hrh varies from pixel to pixel, or ii) given a
fixed number of cliques, in which case the threshold TOR varies from pixel to pixel.
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The selection of the right threshold or number of cliques is a compromise between
two conflicting requirements. A low threshold preserves the optical flow boundaries
better, while a high threshold imposes a more effective smoothness constraint. For
an &pixel neighborhood system, Iu suggests setting hrh = 3. For most neighborhood
systems, the ranking of clique potentials and the outlier rejection procedure only
account for a small computational overhead.

8.3.3 Estimation with Region Labeling

Yet another extension of the basic MAP approach (8.7) to eliminate blurring of
optical flow boundaries can be formulated based on region labeling [Sti 931. In
this approach, each motion vector is assigned a label Z(X) such that the label field z
designates regions where the motion vectors are expected to remain constant or vary
slowly. Region labeling differs from the line-field approach in that here the labels
belong to the motion vectors themselves as opposed to indicating the presence of
discontinuities between them. Clearly, the label field is unknown, and has to be
estimated along with the motion field.

The region-labeling formulation can be expressed as

p(dl,dz,z (gk,gb-1) ccp(gk I dl,dz,z,gk-&(dl,dz ( Z)P(Z) (8.39)

where p(gk I dl,da,z,gk-1) is again the likelihood model and p(dl, d2 ( z)p(z) =
p(dl, d2, z) is the joint prior pdf of the motion and label fields. While the likelihood
model follows straightforwardly from (8.8), we will examine the prior pdf model
in more detail. The prior pdf of the motion field conditioned on the label field
p(di, d2 I z) is modeled by a Gibbs distribution,

p(dl, cl:! I z) = $exp {--U(dl, d2 I z)> (8.40)

where

U(dl, dz I z) = c c Ild(xi) - d(xj)l126(z(xi) - +j)) (8.41)
x, X,E&,

in which xi ranges over all pixel sites, and xj over all neighbors of xi. The function
6(z) is the Kronecker delta function, that is, 1 when z = 0 and 0 otherwise. It
ensures that the local smoothness constraint is imposed only when both pixels in
the clique have the same label, thus avoiding the smoothness constraint across
region boundaries. The other part of this prior pdf, p(z), enforces a connected
configuration of regions (labels) over the image. A suitable prior pdf model is a
discrete-valued Gibbs distribution with the potential function given by (8.11).

The MAP estimate of the triplet dl, d2, and z can be obtained by minimizing
the potential function corresponding to the a posteriori pdf (8.39). An ICM opti-
mization method has been used by Stiller [Sti 931. While this approach provides a
simpler formulation than that of Konrad-Dubois, the performance is dependent on
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the appropriate region assignments. Since the region labels are used only as a token
to limit the motion smoothness constraint, there exists a certain degree of latitude
and arbitrariness in the assignment of labels.

8.4 Examples

We have implemented four Bayesian motion estimation algorithms; namely, the
basic method, the method of Konrad-Dubois (K-D), the outlier-rejection method of
Iu, and the segmentation method of Stiller, on the same two frames of the Mobile
and Calendar sequence that were used in the previous three chapters. The basic
algorithm using a smoothness constraint evaluates (8.7) given the pdf models (8.8)
and (8.9) with the potential function (8.10). In our implementation, the DFD in the
exponent of (8.8) has been smoothed over the 8-neighborhood  of each pixel using the
motion estimate at that pixel. The initial iteration does not impose the smoothness
constraint; that is, it resembles block matching. The optimization is performed
by the ICM method with a temperature schedule of the form T = lOOO(1 - i/l))
where i = 0,. and 1 stand for the iteration index and the maximum number of
iterations, respectively. The algorithm usually converges after I = 5 iterations.

For the K-D, Iu, and Stiller algorithms, the initial motion field is set equal to
the result of the basic algorithm. Our implementation of the K-D algorithm did
not include an occlusion field. Hence, it is a two-step iteration, given by (8.31)
and (8.33). The horizontal and vertical line fields are initialized by simple edge
detection on the initial motion estimates. The method of Iu is a variation of the basic
algorithm, where an outlier-rejection stage is built into the smoothness constraint.
At each site, the distance between the present motion vector and those within the
S-neighborhood of that site are rank-ordered. The smallest third (iVh = 3) are used
in imposing the smoothness constraint. Stiller’s algorithm employs a segmentation
field, which is initialized by a K-means segmentation of the initial motion estimates
with K = 9. In the ICM iterations, we have used an exponential temperature
schedule of the form T = 1000(0.8)i, i = 0,.

,
The motion fields obtained by the K-D and the Iu estimators are shown in

Figure 8.5 (a) and (b), respectively. Observe that Iu’s motion field is slightly more
regular. A numerical comparison of the motion fields is presented in Table 8.1.

Table 8.1: Comparison of the Bayesian methods. (Courtesy Gozde Bozdagi)

8.4.  EXAMPLES

Figure 8.5: Motion field obtained by a) the Konrad-Dubois method and b) Iu’s
method. (Courtesy Gozde Bozdagi and Michael Chang)
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8.5 Exercises

1. How do you define the joint pdf of a discrete-valued GRF?

,I 2. The initial motion field for the MAP estimator is usually computed by a de-

: / terministic estimator such as the Horn-Schunck estimator or block matching.
Suggest methods to initialize the line field and the occlusion field.

3. The MAP estimator (8.30) has been found to be highly sensitive to the values
of the parameters Xd, X,, and XI, which are free parameters. How would you
select them?

4. Discuss the relationship between the MAP estimator and the Horn-Schunck
algorithm. (Hint: see [Kon 921.)

5. Compare modeling motion discontinuities by line fields versus region labeling.
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Chapter 9

METHODS USING POINT
CORRESPONDENCES
3-D motion estimation refers to estimating the actual motion of objects in a scene
from their 2-D projections (images). Clearly, the structure (depth information) of
the objects in the scene affect the projected image. Since the structure of the scene
is generally unknown, 3-D motion and structure estimation need to be addressed
simultaneously. Applications of 3-D motion and structure estimation include robotic
vision, passive navigation, surveillance imaging, intelligent vehicle highway systems,
and harbor traffic control, as well as object-based video compression. In some of
these applications a camera moves with respect to a fixed environment, and in
others the camera is stationary, but the objects in the environment move. In either
case, we wish to determine the 3-D structure and the relative motion parameters
from a time sequence of images.

Needless to say, 3-D motion and structure estimation from 2-D images is an
ill-posed problem, which may not have a unique solution without some simplifying
assumptions, such as rigid motion and a parametric surface. It is well-known that
3-D rigid motion can be modeled by three translation and three rotation parameters
(see Chapter 2). The object surface may be approximated by a piecewise planar or
quadratic model, or represented by a collection of independent 3-D points. Then,
3-D motion estimation refers to the estimation of the six rigid motion parameters,
and structure estimation refers to the estimation of the parameters of the surface
model, or the depth of each individual point from at least two 2-D projections.

The 3-D motion and structure estimation methods can be classified into two
groups: those which require a set of feature point correspondences to be deter-
mined a priori, and those which do not [Agg 881. This chapter is about the former
class. Furthermore, it is assumed in this chapter that the field of view contains a
single moving object. The segmentation problem in the presence of multiple mov-
ing objects will be dealt with in Chapter 11. Section 9.1 introduces parametric
models for the projected displacement field that are based on the orthographic and
perspective projection, respectively. 3-D motion and structure estimation using the

152

9.1. MODELING THE PROJECTED DISPLACEMENT FIELD 153

orthographic displacement field model is covered in Section 9.2, whereas Section 9.3
deals with estimation using the perspective displacement field model.

9.1 Modeling the Projected Displacement Field

We start by deriving parametric models for the 2-D projected displacement field
based on the orthographic and perspective projections of the 3-D rigid motion
model, respectively.

Suppose a point X = [Xl, X2) XslT on a rigid object at time t moves to X’ =
[X{,Xi,XAIT at time t’ subject to a rotation described by the matrix R and a
translation by the vector T. Then, from Chapter 2, we have

[s]=R[;;]+T=[i;;  ;;; :,,][?]+[;]  ( 9 . 1 )

Recall that in the case of small rotation, the composite rotation matrix can be
expressed, in terms of the Eulerian angles, as

R= AC/I 1 -A8 (94
-A$ A0 1 1

where A@, A$, and Ad denote small clockwise angular displacements about the
Xi, X2, and Xs axes, respectively.

[

1 -A4 All,

9.1.1 Orthographic Displacement Field Model

The orthographic displacement field refers to the orthographic projection of the
3-D displacement vectors into the image plane, which is obtained by substituting
Xi and Xi from (9.1) into

x; = x; and z; =  Xi

that define the orthographic projection as discussed in Chapter 2. Since we have
Xi = zi and X2 = 2s under the orthographic projection, the resulting model is
given by

x1 = TllXl + mzz + (7-13X3 + Tl)

x2 = 7-2121 +  c!zx2 +  (7-23X3 + Tz) (9.4)

The model (9.4) is an affine mapping of the pixel (xi, ~2) at frame t to the pixel
(xi, xi) at frame t’ defined in terms of the six parameters ~1, ~12, (~13x3 + Ti),
~21, ~22, and (rssXs+Ts). Thus, it constitutes a parametric 2-D motion field model
(see Section 5.2).
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It should be noted that the actual distance of the object points from the image
plane is not observable in orthographic projection, since it is a parallel projection.
Thus, if we express the actual depth of a point as Xs = Xs + Xs, where Xs is the
depth of a reference point on the object, and Xs is the relative depth of all other
object points with respect to the reference point, we can only expect to estimate
Xs associated with each image point. Further observe that in (9.4), Xs multiplies
r13 and rzs. Obviously, if we scale ~1s and ~23, a new value of X3 can be found for
each pixel that would also satisfy (9.4). Hence, these variables cannot be uniquely
determined for an arbitrary surface from two views, as stated in [Hua 89a].

Orthographic projection is a reasonable approximation to the actual imaging
process described by the perspective projection, when the depth of object points
does not vary significantly. Other approximations, such as weak perspective, para-
perspective, and orthoperspective projections, also exist in the literature [Dem 921.

9.1.2 Perspective Displacement Field Model

The perspective displacement field can be derived by substituting Xi, Xi, and XA
from (9.1) into the perspective projection model given by (from Chapter 2)

X; I f;Y; and x; = fx:

XA xi

to obtain

21 = fmxl + rlzX2 + r13X3 +Tl
T3lxl + f32X2 + T33x3 + T3

I
x2 = f

r21x1 + 7+22X2 + r23X3 + T2
%x1 + ?-32x2 + r33x3  + T3

(9.5)

(9.6)

Letting f = 1, dividing both the numerator and the denominator by Xs, and
expressing the object-space variables in terms of image plane coordinates using the
perspective transform expression, we obtain

x1 =
mxi + r1222 + r13 + 2

p31xi + r32x2 + r33 + 2

,
x2 =

T21xi + r2222 + r23 + 2

r31xl + r3222 + r33 + E
(9.7)

The expressions (9.7) constitute a nonlinear model of the perspective projected
motion field in terms of the image-plane coordinates because of the division by xi
and x2. Notice that this model is valid for arbitrary shaped moving surfaces in 3-D,
since the depth of each point Xs remains as a free parameter. Observe, however,
that X3 always appears in proportion to T3 in (9.7). That is, the depth information
is observable only when Ts # 0. Furthermore, it can only be determined up to
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a scale factor. For example, an object at twice the distance from the image plane
and moving twice as fast yields the same image under the perspective projection.

We develop 3-D motion and structure estimation algorithms based on the affine
model (9.4) and the nonlinear model (9.7) in the next two sections. Because of the
aforementioned limitations of these projections, we can estimate depth only up to
an additive constant at best, using the orthographic displacement field, and only
up to a multiplicative scale factor under the perspective displacement field modt/l.

9.2 Methods Based on the Orthographic Model

It is well known that, from two orthographic views, we can estimate the depth
of a feature point up to a scale factor cr and an additive constant X3. The scale
ambiguity arises because scaling Xi3 by cr, and ris and rzs by l/o results in the
same orthographic projection as can be seen from Equation (9.4). That is, if Xi3
denotes the true depth value, we expect to estimate

Xi3 = 23 + cxifi3, for i = l,...,N (9.8)

from two views. It is not possible to estimate Xs under any scheme, because this
information is lost in the projection. However, the scale ambiguity may be overcome
if more than two views are utilized. In his classical book Ullman [Ull 791 proved that
four point correspondences over three frames, i.e. four points each traced from ti to
tz and then to ts, are sufficient to yield a unique solution to motion and structure
up to a reflection. Later, Huang and Lee [Hua 89a] proposed a linear algorithm to
obtain the solution in this case. Furthermore, they showed that with three point
correspondences over three frames, there are 16 different solutions for motion and
four for the structure plus their reflections.

In this section, we concentrate on the two-view problem, and first discuss a
simple two-step iteration which was proposed by Aizawa et al. [Aiz 891 as part
of the MBASIC algorithm for 3-D model-based compression of video. Two-step
iteration is a simple and effective iterative algorithm for 3-D motion and depth
estimation when the initial depth estimates are relatively accurate. However, it
has been found to be particularly sensitive to random errors in the initial depth
estimates. Thus, after introducing the two-step iteration algorithm, we propose
an improved algorithm which yields significantly better results with only a small
increase in the computational load.

9.2.1 Two-Step Iteration Method from Two Views

The two-step iteration method, proposed by Aizawa et al. [Aiz 891, is based on the
following model of the projected motion field:

,
Xl = x1 - A422 + AtiX3 + TI

I
x2 = Adx, + x2 - ABX3 + T2 (9.9)
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which can be obtained by substituting the Eulerian angles definition of the matrix
R given by (9.2) into (9.4).

In Equation (9.9), there are five unknown global motion parameters AQ, A$, A4,
Ti, and T2, and an unknown depth parameter Xs for each given point correspon-
dence (zi, ~2). This is a bilinear model, since Xs multiplies the unknown motion
parameters. It is thus proposed to solve for the unknowns in two steps: First, deter-
mine the motion parameters given the depth estimates from the previous iteration,
and then update the depth estimates using the new motion parameters. They are
implemented as follows:

1) Given N corresponding coordinate pairs xi = (xii, zia) and x’i = (&, &)
where N > 3, and the associated depth estimates Xis, i = 1,. .) N, estimate the
five global motion parameters.

This can be accomplished by rearranging Equation (9.9) as

r AQ

1 7-z

(9.10)

Then, writing Equation (9.10) for N corresponding point pairs, we obtain 2N equa-
tions in five unknowns, which can be solved for the motion parameters using the
method of least squares.

The initial estimates of the depth parameters can be obtained from an a priori
model of the scene, and the depth estimates are not allowed to vary from these values
by more than a predetermined amount, apparently because of the nonuniqueness of
the solution. For example, in the case of head-and-shoulder type images, they can
be obtained from a scaled wireframe model, as shown in Chapter 24.

2) Once the motion parameters are found, we can estimate the new Xis,
i=l ,...l N, using

x; - XI + A~x, - Ti
x’z - x2 - A~x, - T2 ] = [ !fo ] [ x3 1 (9.11)

which is again obtained by rearranging Equation (9.9). Here, we have an equation
pair, for each given point correspondence in one unknown, the depth. The depth
for each point correspondence can be solved in the least squares sense from the
associated pair (9.11).

The procedure consists of repeating steps 1 and 2 until the estimates no longer
change from iteration to iteration. Although theoretically three point correspon-
dences are sufficient, in practice six to eight point correspondences are necessary
to obtain reasonably good results due to possible fractional errors in finding the
point correspondences. However, as stated even with that many points or more,
the two-step iteration may converge to an erronous solution, unless we have very
good initial depth estimates Xis, i = 1,. , N.
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Suppose that the coordinate system is centered on the object so that Xs = 0,
and we model the initial depth estimates as

xty = pxis + 1zi (9.12)

where p indicates a systematic error corresponding to a global underscaling or
overscaling of the depth, and ni represents the random errors, which are Gaussian
distributed with zero mean. Clearly, it is not possible to estimate the scaling factor
/3 unless the correct depth value of at least one of the N points is known. Assuming \
that 0 = 1, the performance of the MBASIC algorithm has been reported to be
good when the initial depth estimates contain about 10% random error or less.
However, its performance has been observed to degrade with increasing amounts of
random error 1zi in the initial depth estimates [Boz 941.

9.2.2 An Improved Iterative Method

In the two-step iteration there is strong correlation between the errors in the motion
estimates and in the depth estimates. This can be seen from Equations (9.10)
and (9.11), where the random errors in the depth estimates are fed back on the
motion estimates and vice versa, repeatedly. Thus, if the initial depth estimates are
not accurate enough, then the algorithm may converge to an erroneous solution.

To address this problem, we define an error criterion (9.13), and update Xis in
the direction of the gradient of the error with an appropriate step size, instead of
computing from Equation (9.11), ta each iteration. To avoid convergence to a local
minimum, we also add a random perturbation to the depth estimates after each
update, similar to simulated annealing. The update in the direction of the gradient
increases the rate of convergence in comparison to totally random perturbations
of Xis. The motion parameters are still computed from Equation (9.10) at each
iteration. The improved algorithm can be summarized as:

1. Initialize the depth values Xi3 for i = 1,. , N. Set the iteration counter
m = 0.

2. Determine the motion parameters from (9.10) using the given depth values.

3. Compute (Z::“‘, $,“‘), the coordinates of the matching points that are pre-
dicted by the present estimates of motion and depth parameters, using (9.9).
Compute the model prediction error

(9.13)

where

ei = (XI1 - $;‘,2 + (&?‘a2 - i(y))2 (9.14)

Here (x:i,xi2) are the actual coordinates of the matching points which are
known.
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4. If E, < E, stop the iteration. Otherwise, set m = m + 1, and perturb the
depth parameters as

+ $r-‘) - “2 + aAim)
3

w h e r e  Aa-) = Ni(O, gf’“‘)is a zero-mean Gaussian random variable with
Z(m) -variance ui - ei, and Q and /? are constants.

5. Go to step (2)

A comparison of the performance of the improved algorithm and the two-step
iteration is given in [Boz 941, where it was shown that the improved algorithm
converges to the true motion and depth estimates even with 50% error in the initial
depth estimates.

9.3 Methods Based on the Perspective Model

In the case of perspective projection, the equations that relate the motion and struc-
ture parameters to the image-plane coordinates (9.7) are nonlinear in the motion
parameters. Early methods to estimate the motion and structure parameters from
these expressions required an iterative search which might often diverge or con-
verge to a local minimum [Roa 80, Mit 861. Later, it was shown that with eight or
more point correspondences, a two-step linear algorithm can be developed, where we
first estimate some intermediate unknowns called the essential parameters [Hua 861.
The actual motion and structure parameters (for an arbitrary surface) can be sub-
sequently derived from these essential parameters. To this effect, in the following
we first present the epipolar constraint and define the essential parameters. Then, a
linear least squares algorithm will be given for the estimation of the essential param-
eters from at least eight pixel correspondences. Finally, methods will be discussed
for the estimation of the actual motion and structure parameters from the essential
parameters. It should be noted that nonlinear algorithms for motion and structure
estimation exist when the number of available point correspondences is five, six, or
seven. One such algorithm, the homotopy method, is also briefly introduced.

9.3.1 The Epipolar Constraint and Essential Parameters

We begin by observing that the vectors X’, T, and RX are coplanar, since
X’ = RX + T from (9.1). Then, because (T x RX) is orthogonal to this plane, we
have

X’ (T x RX) = 0 (9.16)

where x indicates vector product, and indicates dot product. It follows that

XtTEX = 0 (9.17)
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where

The elements of the matrix E are called the essential parameters [Hua 861. Although
there are nine essential parameters they are not all independent, because E is the
product of a skew-symmetric matrix and a rotation matrix.

We divide both sides of (9.17) by Xs X4 to obtain a relationship in terms of the
image plane coordinates as

Xl1 Xl’ x2’ l]E x2 =0[ 11 (9.18)

which is a linear, homogeneous equation in terms of the nine essential parameters.
Equation (9.18) is known as the epipolar constraint for 3-D motion estimation, and
is the basis of the linear estimation methods.

The epipolar constraint can alternatively be obtained by eliminating Xs from
the two expressions in the model (9.7) to obtain a single equation

(Tl - xiT3) [ ’ (22 r31x1 + r3222 + ~33) - (~ZIXI + 52x2 + 7-23) 1ZZ (Tz - xiT3, [x1’ ( r31x1 + r32xz + r33) - (TllXl + TlZX2 + r13) 1
which can then be expressed as in (9.18).

It is well known that linear homogeneous equations have either no solution or
infinitely many solutions. Thus, we set one of the essential parameters equal to one
in (9.18), and solve for the remaining eight essential parameters, which is equivalent
to using the essential parameter that is set equal to one as a scale factor. Recall that
due to the scale ambiguity problem in the perspective projection, we can estimate
the translation and depth parameters only up to a scale factor.

9.3.2 Estimation of the Essential Parameters

We first present a linear least squares method and an optimization method, which
require that at least eight point correspondences be known. Then we briefly mention
a nonlinear method where only five, six, or seven point correspondences may be
sufficient to estimate the essential parameters.
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Linear Least Squares Method

Setting es = 1 arbitrarily, we can rearrange (9.18) as

[ Xl’Xl 21’22 Xl’ XZ’Xl x2’xz x2’ x1 x2 1

el
e2

e3

e4

e5

e6

e7

e8

ZY- 1

which is a linear equation in the remaining eight essential parameters. Given N > 8
point correspondences, we can set up a system of N 2 8 linear equations in 8
unknowns. Conditions for the coefficient matrix to have full rank were investigated
by Longuet-Higgins [Lon 811. Briefly stated, the coefficient matrix has full rank
if T # 0 and the shape of the 3-D surface satisfies certain conditions, called the
surface constraint [Zhu 891. The solution, then, gives the essential matrix E up to
a scale factor. We note here that any of the essential parameters could have been
chosen as the scale factor. In practice, it is advisable to select the ei, i = 1,. ,9,
which would yield the coefficient matrix with the smallest condition number as the
scale factor.

Optimization Method

Because it is not obvious, in general, which essential parameter should be chosen
as a scale factor, an alternative is to use the norm of the solution as a scale factor.
Then the estimation of the essential parameters can be posed as a constrained
minimization problem [Wen 93a], such that

e = argm@ ]I Ge I], subject to ]I e ]I = 1 (9.19)

where ]I ]I denotes vector or matrix norm,

Xll’Xl2 x11’ Xl2’Xll m!‘~lZ x12’ x11 dl2 1

f (9.20)

xNl’xN2 XNl’ xN2’xNl xN2’xN2 xN2’ XNl xN2 1 1
is the observation matrix (derived from (9.18)), N > 8, and
e = [ei ez es e4 e5 es er es eslT denotes the 9 x 1 essential parameter vector.
It is well-known that the solution of this problem is the unit eigenvector of GTG
associated with its smallest eigenvalue.
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The Homotopy Method

When fewer than eight point correspondences are known, or the rank of the co-
efficient matrix is less than 8, the system of linear equations is underdetermined.
However, the fact that the matrix E can be decomposed into a skew-symmetric’
matrix postmultiplied by a rotation matrix (see Equation 9.21) can be formulated
in the form of additional polynomial equations. In particular, the decomposability
implies that one of the eigenvalues of E is zero, and the other two are equal. Capital-
izing on this observation, Huang and Netravali [Hua 901 introduced the homotopy
method to address the cases where five, six, or seven point correspondences are
available. For example, with five point correspondences, they form five linear equa-
tions and three cubic equations, which are then solved by the homotopy method.
It has been shown that there are at most ten solutions in this case. The interested
reader is referred to [Hua 901.

9.3.3 Decomposition of the E-Matrix

Theoretically, from (9.17), the matrix E can be expressed as

E = [el I e2 I es] = [k+ x r1 ) ki! X r2 I k? x rs 1 (9.21)

where the vectors ri, i = 1,. ,3 denote the columns of the rotation matrix R, k
denotes the length of the translation vector T, and T is the unit vector along T.
In the following, we discuss methods to recover R and !I! given E computed from
noise-free and noisy point correspondence data, respectively.

Noise-Free Point Correspondences

It can easily be observed from (9.21) that each column of E is orthogonal to T.
Then the unit vector along T can be obtained within a sign by taking the cross
product of two of the three columns as

ei x ej
+=*l,eixejlI i+j

(9.22)

Furthermore, it can be shown that [Hua 861

k2 = f(el el + e2 . e2 + e3 e3) (9.23)

Obviously, finding k from (9.23) cannot overcome the scale ambiguity problem, since
es contains an arbitrary parameter. However, it is needed to determine the correct
rotation parameters.

In order to determine the correct sign of the translation vector, we utilize

X;+ x [xi x; llT = X3+ x R[xl x2 llT



162 CHAPTER 9. METHODS USING POINT CORRESPONDENCES

which is obtained by cross-multiplying both sides of (9.1) with +I after applying
the perspective projection. Then, Zhuang [Zhu 891 shows that the vector + with
the correct sign satisfies

c p x [xi x’z 11’1’ E[q x2 llT > 0 (9.24)

where the summation is computed over all observed point correspondences.
Once the sign of the unit translation vector LI? is determined, the correct rotation

matrix can be found uniquely. To this effect, we observe that
^ A

el x e2 = kT(kT ‘1.3) (9.25)

e2 x e3 = leq!ct. rl) (9.26)

e3 x el = !tTqKt .r2) (9.27)

The expressions (9.25)-(9.27) can be derived by employing the vector identity

A x (B x C) = (A. C)B - (A. B)C

In particular,

el x e2 = el x (ki? x r2)
= [(k!i X q) .q]k+ - [(k+ x rl) k+]r,

Using the properties of the cross product, the first term simplifies as

[(q X r2) . k!f]k!F = (r3 k!k)k+

since rl, 12, and r3 are mutually orthogonal and have unity length (recall that
they are the column vectors of a rotation matrix). The second term is zero since
(le’? x q) is orthogonal to le?, yielding the relation (9.25).

Next, observe that we can express the vector q as

q = (+ q)+ + (+ x rl) x + (9.28)

Here, the first term denotes the orthogonal projection of rl onto T) and the second
term gives the orthogonal complement of the projection, since

(T x q) x T = ]]rl]]sinP = sin/3

where /I denotes the angle between rI and f, as depicted in Figure 9.1.
It follows from (9.28) that if we know the cross product and the dot product

of an unknown vector q with a known vector ?‘, we can determine the unknown
through the relation (9.28). Evaluating the dot product of ? with both sides of
(9.26) yields

i?. q = &+. (e2 X es)
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Figure 9.1: Orthogonal projection of rl onto !I?.

Recall that we already have

i? x q = 1 el

from the definition of the E-matrix (9.21). Substituting these dot and cross product
expressions in (9.28), we find

q =
[
$!t. (e2 x es)1 i? + i(el X +)

The other column vectors of the rotation matrix R are given similarly as

r2 =
[
fiY (es X el) 1 + + i(e2 X +)

r3 =
[

iiT. (el x e2)1 Yi + i(e3 X !k)

(9.30)

(9.31)

Noisy Point Correspondences

When feature point correspondences are contaminated by noise, we may obtain
different estimates of the unit translation vector by using different combinations of
the column vectors ei, i = 1,2,3 in (9.22), and the estimate of the rotation matrix
obtained from (9.29)-(9.31)  may no longer satisfy the properties of a rotation matrix.
To address these problems, let

w = [w w2 w31 (9.32)

denote an estimate of the rotation matrix where ~1, wz, and ws are obtained from
(9.29))(9.31). It has been shown that the estimates of T and R, in the case of noisy
point correspondences, are given by [Wen 93a]

+ = argmc I] ET? 11, subject to I] $ (1 = 1 (9.33)
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and

k =  argm$ ]I R - W  I(, subject to R is a rotation matrix (9.34)

respectively.
The solution + of (9.33) is the unit eigenvector of EET associated with its

smallest eigenvalue. Note that the correct sign of + must satisfy (9.24). Let the
solution of (9.34) be expressed in terms of the quaternion representation (2.10).
Then, q = [QO 41 4s qslT is the unit eigenvector of the 4 x 4 matrix

B $B:.Bi
i=l

where

Bi = 1
such that Ii, i = 1,2,3 denote the columns of a 3 x 3 identity matrix, and

The reader is referred to [Wen 93a] for a derivation of this result.

9.3 .4  Algori thm

The method can then be summarized as:
1) Given eight or more point correspondences, estimate E up to a scale factor

using either the least squares or the optimization method.
2) Compute T (up to a scale factor) using (9.33).
3) Find W from (9.29)-(9.31)  and R from (9.34).
Given the rotation matrix R, the axis of rotation in terms of its directional

cosines (nl,nz,ns) and the incremental angle of rotation Acr about this axis can
then be determined, if desired, from

trace(R) = 1+ 2 cos Ao (9.35)

and

R-RT = 2sinAcu (9.36)
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4) Once the motion parameters are estimated, solve for the depth parameter Xs
in the least squares sense (up to a scale factor) from

[;$;I=[
qr31x1 + r32xz + r33) - (TllXl + r12xz + n3)

G(r3121 + r32x2 + ~33) - (~1x1 + r22x2 + ~3) 1hf3) (9.37)

We note that the translation vector T and the depth parameters can only be de-
termined up to a scale factor due to the scale ambiguity inherent in the perspective
projection.

Alternative algorithms for the estimation of the 3-D motion and structure pa-
rameters from feature correspondences exist in the literature. The two-step linear
algorithm presented in this section is favored because it provides an algebraic so-
lution which is simple to compute. However, it is known to be sensitive to noise
in the pixel correspondences [Wen 89, Phi 91, Wen 921. This sensitivity may be
attributed to the fact that the epipolar constraint constrains only one of the two
components of the image plane position of a 3-D point [Wen 931. It is well known
that the matrix E possesses nice properties, such as that two of its eigenvalues must
be equal and the third has to be zero [Hua 89b], which the linear method is unable
to use. To this effect, Weng et al. [Wen 931 proposed maximum likelihood and
minimum variance estimation algorithms which use properties of the matrix E as
constraints in the estimation of the essential parameters to improve the accuracy of
the solution in the presence of noise.

9.4 The Case of 3-D Planar Surfaces

Planar surfaces are an important special case because most real-world surfaces can
be approximated as planar at least on a local basis. This fact leads to representation
of arbitrary surfaces by 3-D mesh models composed of planar patches, such as the
wireframe model widely used in computer graphics. The main reason for treating
planar surfaces as a special case is that they do not satisfy the surface assumption
required in the general case provided above. Fortunately, it is possible to derive
simple linear algorithms for the case of planar surfaces, as described in this section.

9.4.1 The Pure Parameters

We start by deriving a simplified model for the case of planar surfaces. Let the 3-D
points that we observe all lie on a plane described by

UXi+bXz+CX3=l (9.38)

where [ a b c IT denotes the normal vector of this plane. Then, the 3-D displacement
model (9.1) can be rewritten as

[ z]=R[ ;;]+T[ubc][ ;;]
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01

where

A=R+T[abc]

Next, we map the 3-D displacements onto the 2-D image plane using the perspec-
tive transformation, and normalize as = 1 due to the well-known scale ambiguity,
to obtain the image plane mapping from t to t’ given by

x'1 =
a121 + a222 + a3

~721 + a8x2 + 1

x’z =
a421 + a522 + a6

a721 + a80 + 1
(9.40)

The constants al,. . . , us are generally known as the pure parameters [Tsa 811. Next
we present a linear algorithm for the estimation of the pure parameters.

9.4.2 Estimation of the Pure Parameters

By cross-multiplying each equation, we can rearrange (9.40) for each given point
correspondence, as follows:

[ x1 0 x2 0 0 1 x1 0 x2 0 0 1 -21x1’ -21x2’ -22x1’ -xzxz’ 1
a1
a2

a3

a4

a5

a6

a7

R3

= (9.41)

Therefore, given at least four point correspondences, we can set up eight or more
linear equations to solve for the eight pure parameters. It has been shown that the
rank of the coefficient matrix is 8 if and only if no three of the four observed points
are collinear in three dimensions [Hua 861.

9.4.3 Estimation of the Motion and Structure Parameters

Once the matrix A has been determined, the motion parameters R and T, and
the structure parameters, i.e., the normal vector of the plane, can be estimated by
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means of a singular value decomposition (SVD) of the matrix A as described in
[Tsa 821. We start by expressing the matrix A as

(9.42)

where U = [ui ) us ) us] and V = [vi 1 vs 1 ogonal matrices
and Xi 2 X2 2 As 2 0 are the singular values of A. There are three possibilities
depending on the singular values:

Case 1) The singular values are distinct with X1 > X2 > Xs, which indicates that
the motion can be decomposed into a rotation about an axis through the origin
followed by a translation in a direction other than the direction of the normal
vector of the plane. Then two solutions for the motion parameters exist, which can
be expressed as a 0 P

R = U [ 10 10 V7
-sp 0 sa

(
x3T = k -Pul+ (- - m)u3
x2 >

[ a b c IT = t(6vl + v3)

where

s = det(U) det(V)

and I% is an arbitrary scale factor (positive or negative). The sign ambiguity may
be resolved by requiring l/Xs > 0 for all points.

Case 2) If the multiplicity of the singular values is two, e.g., Ai = X2 # A3, then
a unique solution for the motion parameters exist, which is given by

1[a b clT = -vg
k

s = det(U) det(V)
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and le is an arbitrary scale factor, In this case, the motion can be described by a
rotation about an axis through the origin followed by a translation along the normal
vector of the plane.

Case 3) If the multiplicity of the singular values is three, i.e., X1 = X2 = As, then
the motion is a pure rotation around an axis through the origin, and R is uniquely
determined by

R = ($)A

However, it is not possible to determine T and [ a 6 c IT.
As an alternative method, Tsai and Huang [Tsa 811 obtained a sixth-order poly-

nomial equation to solve for one of the unknowns, and then solved for the remaining
unknowns. However, the SVD method provides a closed-form solution.

9.5 Examples
This section provides an experimental evaluation of the performances of some lead-
ing 3-D motion and structure estimation algorithms in order to provide the reader
with a better understanding of their relative strengths and weaknesses. Results are
presented for numerical simulations as well as with two frames of the sequence “Miss
America. ” In each case, we have evaluated methods based on both the orthographic
projection (two-step iteration and the improved method) and the perspective pro-
jection (E-matrix and A-matrix methods).

9.5.1 Numerical Simulations

Simulations have been performed to address the following questions: 1) Under what
conditions can we successfully use the methods based on orthographic projection?
2) Which method, among the four that we compare, performs the best? 3) How
sensitive are these methods to errors in the point correspondences? To this effect, we
have generated two 3-D data sets, each containing 30 points. The first set consists
of 3-D points that are randomly selected within a 100 cm x 100 cm x 0.6 cm
rectangular prism whose center is 51.7 cm away from the center of projection; that
is, we assume Xi and Xz are uniformly distributed in the interval [-50,50] cm, and
Xs is uniformly distributed within [51.4,52] cm. The second set consists of points
such that Xi and X2 are uniformly distributed in the interval [-25,251 cm, and Xs
is uniformly distributed within [70,100] cm. The image-plane points are computed
via the perspective projection, Q = fXi/Xs, i = 1,2, with f = 50 mm. In order
to find the matching points in the next frame, the 3-D data set is rotated and
translated by the “true” motion parameters, and the corresponding image-plane
points are recomputed. Clearly, the orthographic projection model provides a good
approximation for the first data set, where the range of Xs (AXs = 0.6 cm) is small
compared to the average value of Xs (2s = 51.7 cm), since zi = fX,/51.7, i = 1,2,
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Table 9.1: Comparison of the motion parameters. All angles are in radians, and
the translations are in pixels. (Courtesy Gozde Bozdagi)

10% Error 30% Error 50% Error
True

A8 = 0.007
Two-Step Improved Two-Step Improved Two-Step Improved

0.00689 0.00690 0.00626 0.00641 0.00543 0.00591
A$ = 0.010 0.00981 0.00983 0.00898 0.00905 0.00774 0.00803
A$ = 0.025 0.02506 0.02500 0.02515 0.02500 0.02517 0.02501
Tl = 0.100 0.09691 0.09718 0.08181 0.08929 0.06172 0.07156
T2 = 0.180 0.18216 0.18212 0.19240 0.19209 0.20660 0.17011

more-or-less describes all image-plane points. On the contrary, for the second set
A& = 30 cm is not small in comparison to Xs = 85 cm; hence, the orthographic
projection would not be a good approximation.

We have tested the performance of the methods based on the orthographic pro-
jection, the two-step iteration, and the improved algorithm on the first data set.
The true motion parameters that are used in the simulations are listed in Table 9.1.
Recall that both the two-step and the improved iterative algorithms require an ini-
tial estimate of the depth values for each point pair. In order to test the sensitivity
of these algorithms to random errors in the initial depth estimates, *lo%, f30%,
or *50% error has been added to each depth parameter Xi,. The sign of the error
(+ or -) was chosen randomly for each point. The parameter values 01 = 0.95 and
/J = 0.3 have been used to obtain the reported results. In the case of the improved
algorithm, we iterate until E,,, given by (9.13) 1is ess than an acceptable level. In
order to minimize the effect of random choices, the results are repeated three times
using different seed values. The average results are reported.

Table 9.1 provides a comparison of the motion parameter estimates obtained by
the two-step algorithm and the improved algorithm at the conclusion of the itera-
tions. In order to compare the results of depth estimation, we define the following
error measure:

I

Error =
d

where N is the number of matching points, and Xis and Xi3 are the “true” and
estimated depth parameters, respectively. Figures 9.2 (a) and (b) show the error
measure plotted versus the iteration number for the cases of 30% and 50% initial
error, respectively. Note that the scale of the vertical axis is not the same in both
plots. Although the results are depicted for 500 iterations, convergence has resulted
in about 100 iterations in almost all cases.

It can be seen from Table 9.1 that the error in the initial depth estimates directly
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Figure 9.2: Comparisonof depth parameters for a) 30% and b) 50% error. (Courtesy
Gozde Bozdagi)
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affects the accuracy of A8 and A$, which are multiplied by Xs in both equations.
Thus, in the two-step algorithm, the error in A0 and A$ estimates increases as
we increase the error in the initial depth estimates. Furthermore, the error in the
depth estimates (at the convergence) increases with increasing error in the initial
depth parameters (see Figure 9.2). However, in the improved algorithm, as can be
seen from Figure 9.2, the depth estimates converge closer to the correct parameters
even in the case of 50% error in the initial depth estimates. For exampl$n the case
of 50% error in the initial depth estimates, the improved method results in about
10% error after 500 iterations, whereas the two-step algorithm results in 45% error,
demonstrating the robustness of the improved method to errors in the initial depth
estimates.

The maximum difference in the image plane coordinates due to orthographic
versus perspective projection of the 3-D object points is related to the ratio of the
width of the object to the average distance of the points from the center of projec-
tion, which is AXsf2Xs M 1% for the first data set used in the above experiments.
However, this ratio is approximately 18% for the second set, on which our exper-
iments did not yield successful results using either the two-step or the improved
algorithm. To provide the reader with a feeling of when we can use methods based
on the orthographic projection successfully, we have shown the overall error in the
motion and depth estimates given by

Error = (A4 - &)’ + (A$ - A$/a)2(A6’ - A8/# + (Ti - ?1)2

S(T2 - Q2 + 1,N .&Xi, - *X-i,)”
i=l

where Q is a scale factor, as a function of the ratio AXs/2Xs in Figure 9.3. The
results indicate that the orthographic approximation yields acceptable results for
AXs/2Xs < 5%) while methods based on the perspective projection are needed
otherwise.

We have tested two methods based on the perspective projection, namely the
E-matrix and the A-matrix methods, on the second data set. In order to test the
sensitivity of both methods to random errors in the point correspondences, P%
error is added to the coordinates of the matching points according to

Table 9.2 shows the results of estimation with the true point correspondences as well
as with 3% and 10% error in the point correspondences. Recall that the A-matrix
method assumes all selected points lie on a planar surface, which is not the case with
our data set. As a result, when the amount of noise is small, the E-matrix method
outperforms the A-matrix method. Interestingly, the A-matrix method seems to
be more robust in the presence of moderate noise in the coordinates of matching
points, which may be due to use of a surface model.
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Table 9.2: Comparison of the motion parameters. All angles are in radians, and
the translations are in pixels. (Courtesy Yucel Altunbasak)

E-Matrix A-Matrix
True No Error 3% Error 10% Error No Error 3% Error 10% Error

A6’ =0.007 0.00716 0.00703 0.00938 0.00635 0.00587 0.00470
A4 = 0.010 0.00991 0.00920 0.00823 0.01467 0.01450 0.01409
Ad = 0.025 0.02500 0.02440 0.02600 0.02521 0.02513 0.02501

T2/Tl = 1.80 1.80014 1.89782 2.15015 1.05759 1.12336 1.28980
T3fTl = 0.48 0.47971 0.50731 -0.98211 0.25627 0.29159 0.37145
Depth error 0.00298 0.02284 0.15549 0.09689 0.09744 0.09974
Match error 1.73 E-6 2.20 E-4 6.57 E-4 1.15 E-3 1.20 E-3 1.61 E-3

The “depth error” refers to the root mean square (RMS) error in the Xs coordi-
nates of the 30 points selected. We have also calculated the “matching error” which
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Figure 9.3: The performance of methods based on the orthographic projection
(Courtesy Gozde Bozdagi)

is the RMS difference between the coordinates of the matching points calculated
with the true parameter values and those predicted by the estimated 3-D motion
and structure parameters. The matching error with no motion compensation has
been found as 1.97 E - 3. /

9.5.2 Experiments with Two Frames of Miss America

We next tested all four methods on two frames of the “Miss America” sequence,
which are shown in Figure 9.4 (a) and (b), respectively. We note that the ratio of
the maximum depth on a front view of a typical face to the average distance of the
face from the camera falls within the range for which the orthographic projection
is a reasonable approximation. Marked in Figure 9.4 (a) are the coordinates of 20
points (~1, ~2) which are selected as features. The corresponding feature points
(xi, z$) are likewise marked in Figure 9.4 (b). The coordinates of the matching
points have been found by hierarchical block matching to the nearest integer. This
truncation corresponds to adding approximately 15% noise to the matching point
coordinates.

Table 9.3: Comparison of methods on two frames of the Miss America sequence.

Since we have no means of knowing the actual 3-D motion parameters between
the two frames or the actual depth of the selected feature points, we have calculated
the RMS difference between the coordinates of the matching points determined by
hierarchical block matching and those predicted by estimated 3-D motion and the
structure parameters in order to evaluate the performance of the four methods.

Inspection of the RMSE values in Table 9.3 indicates that the improved iterative
algorithm based on the orthographic projection performed best on the head-and-
shoulder-type sequence. The reader is reminded that this sequence can be well
approximated by the orthographic projection. The A-matrix method has been
found to be the second best. We note that in the case of the A-matrix method,
the image-plane points were compensated by the “a-parameters” without actually
decomposing the A-matrix to determine the rotation and translation parameters.
In the case of the E-matrix method, the E-matrix needs to be decomposed to find
the motion parameters in order to be able compensate the image-plane points. We
have observed that in the presence of errors in the coordinates of the matching
points, the decomposition step tends to increase the coordinate RMSE.
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Figure 9.4: a) The first and b) the third frames of Miss America with matching
points marked by white circles. (Courtesy Yucel Altunbasak)

9.6. EXERCISES

9.6 Exercises
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1. Is it possible to estimate A6’, A$, and Xs uniquely fro,m (9.9)? Discuss all
ambiguities that arise from the orthographic projection.

2. Observe from (9.7) that no depth information can be estimated when there is
no translation, i.e., T = 0. What is the minimum number of point correspon-
dences in this case to determine the rotation matrix R uniquely?

3. Discuss the sensitivity of the proposed methods to noise in the point corre-
spondences. Is the sensitivity related to the size of the object within the field
of view? Explain.
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Chapter IO

OPTICAL FLOW AND
DIRECT METHODS

This chapter discusses 3-D motion and structure estimation from two orthographic
or perspective views based on an estimate of the optical flow field (optical flow
methods) or on spatio-temporal image intensity gradients using the optical flow
constraint (direct methods). The main differences between the methods in this
chapter and the previous one are: optical flow methods utilize a projected veloc-
ity model as opposed to a projected displacement model (see Section 10.1.3 for a
comparison of the two models); and optical flow methods require a dense flow field
estimate or estimation of the image intensity gradient everywhere, rather than se-
lecting a set of distinct feature points and matching them in two views. Here, we
assume that the optical flow field is generated by a single object subject to 3-D rigid
motion. The case of multiple moving objects, hence motion segmentation, will be
dealt with in the next chapter.

Section 10.1 introduces 2-D velocity field models under orthographic and per-
spective projections. Estimation of the 3-D structure of the scene from the optical
flow field in the case of pure 3-D translational motion is discussed in Section 10.2.
Motion and structure estimation from the optical flow field in the case of general
3-D rigid motion using algebraic methods and optimization methods are the sub-
jects of Section 10.3 and 10.4, respectively. Finally, in Section 10.5, we cover direct
methods which do not require estimation of the optical flow field or any feature
correspondence, but utilize spatio-temporal image intensity gradients directly.

10.1 Modeling the Projected Velocity Field

In this section, we present models for the 2-D (projected) velocity field starting
with the 3-D velocity expression. Recall from Chapter 2 that, for the case of small

177
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angular rotation, the 3-D velocity vector (Xi, X,, Xs) of a rigid object is given by

Xl

[:I i

x2 =
X3

--L2 rf’ -q [ z]+[ ;]

which can be expressed in vector notation as a cross product

x=nxx+v (10.1)

where fl = [& fiz &,lT is the angular velocity vector and V = [VI Vz V31T
represents the translational velocity vector. In scalar form, we have

Xl = 02x3 - R3Xz + VI

x2 = Q3X1- QlX3 + vz
x3 = n1xz -&X1 + v3 (10.2)

We will present two models for the 2-D velocity field, based on the orthographic
and perspective projections of the model (10.2), respectively, in the following.

10.1.1 Orthographic Velocity Field Model

The orthographic projection of the 3-D velocity field onto the image plane can be
computed from

211 = il = x,

212 = ii, = i,

which results in

Vl = vl + 02x3 - 0322

212 = vz + a321 - RlX3 (10.3)

in terms of the image plane coordinates. The orthographic model can be thought
of as an approximation of the perspective model as the distance of the object from
the image plane gets larger and the field of view becomes narrower.

10.1.2 Perspective Velocity Field Model

In order to obtain the perspective projection of the 3-D velocity field, we first apply
the chain rule of differentiation to the perspective projection expression as

II1 = lil = f x3x1--x1x3 = f$-xlg
x3”

I& = kz = f x3x2 - x2x3 = f 2 _ x2$
x,z (10.4)
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Now, substituting the 3-D velocity model (10.2) in (10.4), and rewriting the
resulting expressions in terms of the image plane coordinat$s, we have

(10.5)

When the projection is normalized, f = 1, the model (10.5) can be rearranged as

-vl + 2lv3Vl =
x3

+ %x1%2 - fi2(l + XT) + a322

-h + 22%v2 =
x3

+ fh(1+ x;, - R2XlX2 - a2321

Note that the perspective velocities in the image plane depend on the Xs coordinate
of the object. The dependency of the model on X3 can be relaxed by assuming a
parametric surface model, at least on a local basis (see Sections 10.3.1 and 10.3.2).

For arbitrary surfaces, the depth X3 of each scene point can be eliminated from
the model (10.6) by solving both expressions for Xs and equating them. This results
in a single nonlinear expression, which relates each measured flow vector to the 3-D
motion and structure parameters, given by

-v2e1 + vle2 - x1(% + R3el) - x2(Q2 + fi3e2) - xlx2(fi2el + Rlez)

+(x2 + ~$03 + (1 + x$Rlel + (1 + xW2e2 = 21122 - 02x1 (10.7)

where ei = Vl/V3 and ez = Vg,/V3 denote the focus of expansion (see Section 10.2).
Recall from the discussion of perspective projection that we can find the transla-
tional velocities and the depth up to a scaling constant, which is set equal to V3
above.

10.1.3 Perspective Velocity vs. Displacement Models

Because optical flow estimation from two views indeed corresponds to approxi-
mate displacement estimation using spatio-temporal image intensity gradients (see
Section 7.1), it is of interest to investigate the relation between the perspective
velocity (10.5) and displacement (9.7) models for finite At. To this effect, let

Substituting (9.7) into (10.8), we can write

xi - x1 xl+Axl Xl- -
 =  At(l+AX3) A tAt
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Ax1 = TI-Aba+A$+-
x3

(10.9)

T3A X 3  =  -A$xl +A$xz+ -
x3

(10.10)

Now, invoking the approximation l/(1 + x) z 1 - z for x << 1, we have

XI + Ax,
ixGg+ (XI + a~)(1 - AX3)

M x1 + AQ - xlAX3 (10.11)

where we assume AXs << 1, and AxlAX is negligible. Substituting (10.11) into
(10.8) we obtain

AXI AX3
v1= at-xlat (10.12)

which yields (10.6) after replacing Az, and AX3 with (10.9) and (lO.lO), respec-
tively. This leads us to two conclusions: the relations (10.5) and (9.7) are equivalent
in the limit as At goes to zero; and second, for At finite, the two relations are equiv-
alent only when the approximation (10.11) is valid.

10.2 Focus of Expansion

Estimation of the structure of a 3-D scene from a set of images is a fundamental
problem in computer vision. There exist various means for structure estimation,
such as structure from stereo, structure from motion, and structure from shading.
In the previous chapter, we were able to estimate the depth (from motion) at only
selected feature points. Recovery of the structure of the moving surface then re-
quires 3-D surface interpolation. In this section, we estimate the structure of a
moving surface by analyzing a dense optical flow field in the special case of 3-D
translational motion. Structure from optical flow in the more general case, with
rotational motion, is treated in the subsequent sections.

For the case of pure 3-D translation, the optical flow vectors (in the image plane)
all appear to either emanate from a single point, called the focus of expansion (FOE),
or converge to a single point, called the focus of contraction. Here, we consider only
the case of expansion. The FOE can be defined as the intersection of the 3-D vector
representing the instantaneous direction of translation and the image plane. More
specifically, if an object is in pure translation, the 3-D coordinates of a point on the
object at time t are
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where [X,(0),X2(0),Xs(0)]T denote the coordinates of the point at time t = 0.
Under perspective projection, the image of this point is given by

Then it appears that all points on the object emanate from a fixed boint e in the
image plane, called the FOE, given by

(10.13)

Observe that the vector [VI/& V2/Vs l] T indicates the instantaneous direction of
the translation. Several approaches exist to calculate the FOE from two or more
frames, either by first estimating the optical flow vectors [Law 831 or by means of
direct search [Law 83, Jai 831.

Given two frames at times t and t’, we can determine the relative depths of
image points in the 3-D scene as follows:

1. Estimate the optical flow vectors from time t to t’, and the location of FOE
at t.

2. The depth Xz,i(t’) of a single image point xi = [xl,i) x:z,ilT at time t’ can be
determined in terms of AXs, called time-until-contact by Lee [Lee 761, as

(10.14)

where d; is the distance of the image point from the FOE at time t, and Adi is
the displacement of this image point from t to t’. Note that (10.14) is derived
by using the similar triangles in the definition of the perspective transform,
and AX3 corresponds to the displacement of the 3-D point from t to t’ along
the Xs axis, which cannot be determined.

3. The relative depths of two image points xi and xj at time t’ is then given by
the ratio

(10.15)

canceling AXs.

10.3 Algebraic Methods Using Optical Flow

Optical flow methods consist of two steps: estimation of the optical flow field, and
recovery of the 3-D motion parameters and the scene structure by analyzing the
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estimated optical flow. Methods to estimate the optical flow were discussed in
Chapter 5. Various approaches exist to perform the second step which differ in the
assumptions they make about the structure of the optical flow field and the criteria
they employ. We can broadly classify these techniques in two groups: algebraic
methods, which seek for a closed-form solution; and optimization methods, which
can be characterized as iterative refinement methods towards optimization of a
criterion function.

This section is devoted to algebraic methods. After a brief discussion about the
uniqueness of the solution, we first assume a planar surface model to eliminate Xs
from (10.2). In this case, the orthographic and perspective projection of the 3-D
velocity field results in an affine flow model and a quadratic flow model, respectively
[Ana 931. A least squares method can then be employed to estimate the affine
and quadratic flow parameters. We then present two linear algebraic methods to
estimate 3-D motion and structure from arbitrary flow fields,

10.3.1 Uniqueness of the Solution

Because 3-D motion from optical flow requires the solution of a nonlinear equation
(10.7), there may, in general, be multiple solutions which yield the same observed
optical flow. Observe that (10.7) has five unknowns, L$, 1;2s, as, ei and es. However,
in the presence of noise-free optical flow data, it has been shown, using algebraic
geometry and homotopy continuation, that [Ho1 931:

l there are at most 10 solutions with five optical flow vectors,
l optical flow at six or more points almost always determines 3-D motion

uniquely,
l if the motion is purely rotational, then it is uniquely determined by two optical

ilow values, and
l in the case of 3-D planar surfaces, optical flow at four points almost always

gives two solutions.
With these uniqueness results in mind, we now present a number of algorithms to
determine 3-D motion and structure from optical flow.

10.3.2 Affine Flow

A planar surface undergoing rigid motion yields an affine flow field under the or-
thographic projection. This can easily be seen by approximating the local surface
structure with the equation of a plane

x3 = 20 + 21x1 + 22x2 (10.16)

Substituting (10.16) into the orthographic velocity expressions (10.3), we obtain the
six-parameter affine flow model

211 = al + a221 + a322

212 = a4 + a521 -t a622 (10 .17 )  ,
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where

a1 =  vl +  2002, a2 = G2, a3 = 22L?2 - Cl3

a4 = V2 - zoR1, ag = 03 - 2101, a6 = -%&21

Observe that, if we know the optical flow at three or more points, we can set up
six or more equations in six unknowns to solve for (al). , us). However, because
of the orthographic projection, it is not possible to determine all eight motion and
structure parameters from (ai, ) as) uniquely. For example, ~0 is not observable
under the orthographic projection. ./

10.3.3 Quadratic Flow

The quadratic flow is the most fundamental flow field model, because it is an exact
model for the case of planar surfaces under perspective projection; otherwise, it is
locally valid under a first-order Taylor series expansion of the surface [Wax 871. In
the case of a planar surface, we observe from (10.16) that

1 1 Zi-=-- -X1 - %2
x3 20 zo 20

(10.18)

Substituting the expression (10.18) into the perspective velocity field model (10.5))
we obtain the eight-parameter quadratic flow field

v1 = al + a221 + a322 + a,xt + as2122
02 = a4 + a521 + a622 + a72122 + asxz (10.19)

where

al=,f(z+f22), a2=-(fF+z), as=-(S%+&)

a4=f ($-al), a5=-(fF-f13), as=-(f%+z)

a7= (%+F), a8= (Jf$-F)

If we know the optical flow on at least four points that lie on a planar patch, we
can set up eight or more equations in eight unknowns to solve for (al,. , as). Note
that ~0, which is the distance between the surface point and the camera, always
appears as a scale factor. Other approaches have also been reported to solve for the
model parameters [Die 91, Ana 931.

In order to recover the 3-D motion and structure parameters using the second-
order flow model, Waxman el al. [Wax 871 defined 12 kinematic deformation pa-
rameters that are related to the first- and second-order partial derivatives of the
optical flow. Although closed-form solutions can be obtained, partials of the flow
estimates are generally sensitive to noise.
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10.3.4 Arbitrary Flow

When the depth of each object point varies arbitrarily, the relationship between
the measured flow vectors and the 3-D motion and structure parameters is given
by (10.6) or (10.7). An important observation about the expressions (10.6) is that
they are bilinear; that is, they are linear in (VI] Vz, V3, al, 02, Qs) for a given value
of Xs. We discuss two met,hods, for the solution of (10.6) and (10.7), respectively,
in the following. The first method obtains a set of linear equations in terms of 8
intermediate unknowns, three of which are redundant, whereas the second method
proposes a two-step least squares solution for the motion parameters.

A Closed-Form Solution

Following Zhuang et al. [Zhu 881 and Heikkonen [Hei 931, the expression (10.7) can
be expressed in vector-matrix form as

1-2 VI - Xl - x2 - zlz2 (XT +x;) (1 +x;) (1 + xT)]H = v1x2 - vzxl (10.20)

where

H - [ hl hz h3 hq h5 h6 h7 hs ]
Z [el e2 al + fi3el 02 $ fi3e2 fi2el + file2 fi3 fhel fi2e21T

Given the optical flow vectors at a minimum of eight image points, we can
set up eight linear equations to solve for H. Usually we need more than eight
image points to alleviate the effects of errors in the optical flow estimates, in which
case the intermediate unknowns hi can be solved in the least squares sense. The
parameters hi can be estimated uniquely as long as the rank of the coefficient matrix
is 8, which is almost always the case provided that not all the selected points are
coplanar. It can be easily seen from (10.20) that when all points are coplanar, we
have a quadratic flow field, and the columns of the coefficient matrix are dependent
on each other.

The five motion parameters, Ql, 02, s/s, el, and e2, can subsequently be recov-
ered from hi, i = 1, ,8. Next, the depth X3 of each point can be estimated from
the model (10.6). We note here, however, that the estimation of the motion param-
eters from hi is not unique in the presence of errors in the optical flow estimates.
This is due to the fact that only five of the eight hi are independent. For example,
motion parameters estimated from h 1, ha, hs, h7, and hs do not necessarily satisfy
ha, hh, and hg. Estimation of the motion parameters to satisfy all hi in the least
squares sense can be considered, though it is not trivial.

Heeger and Jepson Method

Alternatively, Heeger and Jepson [Hee 921 develop a two-step method where no re-
dundant variables are introduced, They express the arbitrary flow equations (10.6)
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in vector-matrix form as

[ :$:r :j ] = p(xl, 22)A(x1, x2)V + B(zl, XZ)~ (10.21)

where

[
f 0 -21

I [
-x122/f f + G/f -22

A(x1,x2) = 0 f -x2 ’ B(xl,4 = -(f + g/f) xIx2,f x1 1
V = [ VI I,5 V, ITI 1(1= [ ill Rz % IT, and P(Q,XZ) = &

Consider stacking (10.21) for flow vectors at N different spatial locations,
(XII, x12), . .) (XNI, XNZ), to obtain

V = A(V)p+BR

= C(% (10.22)

where

A(V) =
A(m,xlz)V

[.x

CP)=[ ;:v! y. cl=[r,]
In order to find the least squares estimates of the motion and structure param-

eters V and q, we minimize the error in (10.22) given by

w, Q) = llv - V)ql12 (10.23)

Evidently, to minimize (10.23) with respect to V and q we need to compute the
partial derivatives of (10.23) with respect to each variable and set them equal to
zero, and solve the resulting equations simultaneously. Each equation would give a
surface in a multidimensional space, and the solution lies at the intersection of all
of these surfaces.

Alternatively, we can compute the partial of (10.23) with respect to q only.
Setting it equal to zero yields

4 = [C(V)TC(V)] -l C(V)% (10.24)

which is a surface in terms of V. Obviously, Equation (10.24) cannot be directly
used to find an estimate of q, since V is also unknown. However, because the
actual solution lies on this surface, it can be substituted back into (10.23) to express
the criterion function (10.23) in terms of V only. Now that we have a nonlinear
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criterion function in terms of V only, the value of V that minimizes (10.23) can
be determined by means of a search procedure. Straightforward implementation
of this strategy suffers from a heavy computational burden, since Equation (10.24)
needs to be solved for every perturbation of V during the sea,rch process. Observe
that the dimensions of the matrix in (10.24) to be inverted is related to the number
of optical flow vectors used.

Fortunately, Heeger and Jepson have proposed an efficient method to search for
the minimum of this index as a function of only V, without evaluating (10.24) at
each step, using some well-known results from linear algebra. Furthermore, since
we can estimate V only up to a scale factor, they have restricted the search space,
without loss of generality, to the unit sphere, which can be described by two angles
in the spherical coordinates. Once the best estimate of V is determined, the least
squares estimate of q can be evaluated from (10.24). Experimental results suggest
that, this method is quite robust to optical flow estimation errors.

10.4 Optimization Methods Using Optical Flow

Optimization methods are based on perturbing the 3-D motion and structure param-
eters independently until the projected velocity field is consistent with the observed
optical flow field. These techniques are most successful for tracking small changes
in the motion and structure parameters from frame to frame in a long sequence of
frames, starting with reasonably good initial estimates, usually obtained by other
means. Some sort of smoothness constraint on the 3-D motion and structure pa-
rameters is usually required to prevent the optimization algorithm from diverging
or converging to a local minimum of the cost function.

Morikawa and Harashima [Mor 911 have proposed an optimization method using
the orthographic velocity field (~1, ~2) given by

211 = i1 = Vl + n,x, - f&x2

II2 = ii’2 = v2 + i-2321 - 021x3 (10.25)

Note that the motion parameters are global parameters assuming there is a sin-
gle rigid object in motion. However, the depth parameters vary spatially. Given
initial estimates of the 3-D motion and depth parameters, we can update them
incrementally using

f&(k) = R1(k - 1) +A&

Q,(k) = O&k- 1) +A&

Q,(k) = R&k - 1) $A03

VI(~) = Vl(k- l)+AK

V2(k) = Vz(k- l)+AV,

&(X,,Q)(~) =  X3(xl,ZZ)(k - 1) +  AXa(m,xz)
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where the problem reduces to finding the incremental parameters from frame to
frame. The smoothness of motion constraint means that the update terms (the
incremental parameters) should be small. Consequently, we introduce a measure of
the smoothness in terms of the functional

where (Y, /3, and y are scale parameters, I].]]  is the La norm, and N is the number
of points considered.

Then the overall cost functional measures the sum of how well the projected
velocity field conforms with the observed flow field, and how smooth the variations
in the 3-D motion and structure parameters are from frame to frame, as f&ows

E(A& AT, AXa) = c [(w - %I)’ + (via - k$] -t llPl/’ (10.26)

where

61 = (VI + Ah) + (G + A%)(&3 + (AX),,) - (a3 + A%)xa

Oi2 = (Vz + Ah) + (03 + AO3)n - (a, + AR1)(Xi3 + (AX),,)

The optimization can be performed by gradient-based methods or simulated
annealing procedures. We note that because this procedure uses the orthographic
velocity field, the depth parameters can be found up to an additive constant and a
scale parameter, while two of the rotation angles can be determined up to the re-
ciprocal of this scaling constant. Other successful methods also exist for estimating
motion and structure under the orthogra,phic model [Kan 861.

10.5 Direct Methods

Direct methods utilize only the spatio-temporal image intensity gradients to esti-
mate the 3-D motion and structure parameters. In this section, we present two
examples of direct methods, one as an extension of optical-flow-based methods, and
another starting from the projected motion field model and the optical flow equa-
tion. For other examples of direct methods, the reader is referred to the literature
[Hor 881.

10.5.1 Extension of Optical Flow-Based Methods

Almost all optical-flow-based estimation methods can be extended as direct methods
by replacing the optical flow vectors with their estimates given in terms of spatio-
temporal image intensity gradients as derived in Chapter 5. Recall that an estimate
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of the flow field was given by (5.12)

Substituting this expression in a.ny optical-flow-based method for the optical
flow vectors, we can obtain an estimate of the 3-D motion and structure parameters
directly in terms of the spatio-temporal image intensity gradients. However, the
reader is alerted that (5.12) may not provide the best possible estimates for the
optical flow field. An alternative approach is presented in the following st,arting
with the projected motion and optical flow equations.

10.5.2 Tsai-Huang Method

Tsai and Huang [Tsa 811 considered the case of planar surfaces, where we can model
the displacement of pixels from frame t to t’ by (9.40)

xi =Tl(al,...,as)= alxl+ a20 + a3
a721 + a822 + 1

xi =Tz(al,...,as) =
a421 +  au2 + a6

a721 +asx2+1
(10.28)

where the pure parameters al, ) a8 are usually represented in vector notation by
a. Note that a = e, where e = (1, 0, O,O, l,O, 0, O)T corresponds to no motion, i.e.,
21 = Tl(e), x2 = Tz(e).

In order to obtain a linear estimation algorithm, the mapping (10.28) will be
linearized by means of a first-order Taylor series expansion about a = e, assuming
small motion, as

TV-l;(e)=Ax,=x-a aT1(a) laze (ai - ei)
i=l aai

* aT2(a)Tz(a) - Tz(e) = Ax2 = c -la=e (ai - ei)
i=l aai

(10.29)

where a = (al,. , as), Ax, = xi - ~1 and Ax2 = X; - x2.
Now, referring to the optical flow equation (5.5) and approximating the partials

by finite differences, we obta$ the discrete expression

Sk(Xl,X2) -sk+l(xl,x2) ZZ ask+l(xl,x2)Axl
At ax1 a t +

where At is the time interval between the frames k and k + 1 at times t and t’,
respectively. After cancelling At, we obtain

/

Sk(Xl,XZ) = sk+l(xl,x%)+
a~ktlhxz)Ax

ax1
1
+ aSktl(xl,x2)

ax2
Ax ,  (10 .31 )

Observe that (10.31) may also be interpreted as the linearization of image in-
tensity function in the vicinity of (21, x2) in frame I% + 1, as

sktl(x;,xB) -skt1(x11x2)=
asktl(xl, x2)

ax1
Ax1 + askt1~xl'x2)Ax

ax2
2

since we have

sk+l(x:,x;) = Sk(Xl,X2)

Substituting the linearized expressions for Ax, and Ax2 from (10.29) into
(10.31)) we can write the frame difference between the frames k and k + 1 as

FD(Xl,XZ) = Sk(Q,X2) - sktl(xl,xz)

ZZ aSktl (xl, x2)
8x1

kF(ai-ei,
i=l z 1+aSktlhx2)ax2 [e F(ai - ei)] (10.32)

i=l

In order to express (10.32) in vector matrix form, we define

H = [HI Hz H3 H4 H5 He H7 H8lT (10.33)

where

Tl(a) ask+1HI = - aSktl-=x1-
aal ax1 ax1 1

Tl(a) dsktlHa=---- aSktl
aa2 ax1

= x2-ax1
Tl(a) dsktl asktlH3=---  ,
aa ax1 ax1

H4 = Tda) asktl ask+1- -  II x1-
aa4 ax2 ax2

H5=T2(a) ask+1 .,aSktl--= ask+1
aa5 ax2 ax2 9

& = T2(a) ask+1--I=-
aa6 ax2 ax2

H7= Tl(a) ask+1 + TZ(a) ask+1__- _ _ ask+1 ask+1
aa 8x1 aa

- = -xf
ax2

- - x1x2-
ax1 ax2

Ha = Tda) asktl + G(a) ask+1-__ ask+1 asktl
aas ax1

- -  = -x1x2- - x;-
aa8 ax2 ax1 ax2
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Then

FD(z1,~2)=H.(a-e) (10.34)

Note that this relation holds for every image point that originates from a single
planar object.

To summarize, the following algorithm is proposed for the estimation of pure
parameters without the need to identify any point correspondences:

1. Select at least eight points (II, ~2) in the lath frame that are on the same
plane.

2. Compute FD(ci, zs) between the frames Ic and Ic + 1 at these points

3. Estimate the image gray level gradients ask+~~l’sz) and ask+~~“2) at these
eight points in the frame le + 1.

4. Compute the vector H.

5. Solve for Aa = a - e in the least squares sense.

Once the pure parameters have been estimated, the corresponding 3-D motion
and structure parameters can be determined by a singular value decomposition of
the matrix A as described in Section 9.4. We note here that the estimator proposed
by Netravali and Salz [Net 851 yields the same results in the case of a planar object.

10.6 Examples

Optical-flow-based and direct methods do not require establishing feature point
correspondences, but they rely on estimated optical flow field and spatio-temporal
image intensity gradients, respectively. Recall that the estimation of the optical flow
and image intensity gradients are themselves ill-posed problems which are highly
sensitive to observation noise.

We compare the performances of four algorithms, three optical flow-based meth-
ods and one direct method. They are: i) Zhuang’s closed-form solution and ii) the
Heeger-Jepson method, which are optical-flow-based methods using a perspective
model; iii) the iterative method of Morikawa, which is based on the orthographic
flow model; and iv) the direct method of Tsai and Huang, using the perspective pro-
jection and a planar surface model. It is also of interest to compare these methods
with the feature-based techniques discussed in Chapter 9 to determine which class
of techniques is more robust in the presence of errors in the point correspondences,
optical flow field, and image intensity values, respectively.

The methods will be assessed on the basis of the accuracy of the resulting 3-D
motion and depth estimates, and the goodness of the motion compensation that can
be achieved by synthesizing the second frame from the first, given the 3-D motion
and depth estimates. We start with some numerical simulations to provide the
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Table 10.1: Comparison of the motion parameters. All angles are in radians, and
the translations are in pixels. (Courtesy Yucel Altunbasak)

Zhuang Heeger-Jepson
True No Error 3% Error No Error 3% Error 10% Error

RI = 0.007 0.0070 0.0133 0.0064 0.0094 0.0036
cc222 = 0.010 0.0099 0.0058 0.0105 0.0066 0.0008
523 = 0.025 0.0250 0.0232 0.0249 0.0251 0.0249

VyK = 1.80 1.7999 2.9571 1.7872 1.9439 2.7814
Vs/Vl = 0.48 0.4799 10.121 0.4693 0.5822 0.8343
Depth Error 1.73 E-5 0.824 1.41 E-3 0.0181 0.0539
Match Error 2.17 E-7 0.0152 2.71 E-5 5.99 E-4 0.0018

reader with a comparison of the true and estimated 3-D motion and depth estimates
obtained by these methods. The accuracy of the resulting motion compensation will
be demonstrated on both simulated and real video sequences.

10.6.1 Numerical Simulations

We have simulated an optical flow field using the perspective flow model (10.5)
and a set of 3-D motion and depth parameters, which are given in Table 10.1
under the “True” column. The flow field has been simulated for 30 points such
that X1 and Xs are uniformly distributed in the interval [-25,251 cm, and Xs is
uniformly distributed within [70,100] cm. The focal length parameter has been set
to f = 50 mm. Indeed, the simulation parameters are identical to those used in
Chapter 9 to facilitate comparison of the results with those of the methods using
point correspondences. In order to test the sensitivity of the methods to the errors
in optical flow estimation, 3% and 10% errors have been added to the synthesized
flow vectors, respectively.

Table 10.1 provides a comparison of the results obtained by the methods of
Zhuang and Heeger-Jepson (H-J). In the table, “Depth Error” corresponds to the
normalized RMS error in the depth estimates given by

I

Depth Error =
J

(10.35)

where N = 30, and the “Match Error” measures the RMS deviation of the flow field
i generated by the estimated 3-D motion and depth parameters from the input flow
field v, given by
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case of Motion 2. To see how well we can compensate for the motion using the
estimated u-parameters, we synthesized the second frame from the first for both
motions, The resulting mean square displaced frame differences (MS-DFD) were
compared with plain frame differences (MS-FD) (i e no motion compensation). In.,
the first case, the MS-DFD was 16.02 compared to MS-FD equal to 19.84. However,
in the second cases the MS-DFD has dropped to 0.24 in comparison to MS-FD equal
to 4.63, Inspection of the results indicates that the Tsai-Huang method performs
better when both the frame difference and the u-parameter values are relatively
small. In fact, this is expected since the method relies on the linearization of
both the frame difference (the discrete optical Ilow equation) and the pixel-to-pixel
mapping in terms of the u-parameters.

10.6.2 Experiments with Two F’rames of Miss America

These methods have also been tested on the same two frames of “Miss America”
that were used in Chapter 9, shown in Figure 9.4 (a) and (b). The optical flow field
between these two frames has been estimated by 3-level hierarchical block matching.
All algorithms have been applied to those pixels, where the Laplacian of the image

intensity is above a predetermined threshold (T=50) to work with reliable optical

Figure 10.1: The map of pixels selected for 3-D motion estimation marked on the
first frame of Miss America. (Courtesy Yucel Altunbasak)

10.6. EXAMPLES -\ 195

flow estimates, In order to exclude points which may exhibit nonrigid motion, only
pixels within the white box depicted in Figure 10.1 have been used. Although
we expect to have reliable optical flow and/or spatio-temporal gradient estimates
at these pixels, some of these pixels may still fall into regions of local motion or
uncovered background, violating the assumption of rigid motion. However) because
we work with at least 500 pixels, it is expected that the effect of such pixels will
be negligible. The results are compared on the basis of how well we can synthesize
the estimated optical flow field at those pixels shown in Figure 10.1 through the
estimated 3-D motion and structure parameters and in some cases how well we can
synthesize the next frame from the first and estimated motion parameters,

We have initialized Morikawa’s algorithm with the 3-D motion estimates ob-
tained from the improved algorithm discussed in Chapter 9. The initial depth
estimates at all selected points have been computed using the optical flow and the
initial motion parameter values. After 100 iterations, the criterion function has
dropped from 1.94 to 1.04. The value of the criterion function with zero motion es-
timation was computed as 6.79. Clearly, Morikawa’s method is suitable to estima,te
small changes in the motion and depth parameters, provided a good set of initial
estimates are available.

Next) the method of Heeger and Jepson (H-J) was used with the same two
frames where the search for the best V was performed with angular increments of
1 degree on the unit sphere. The RMSE difference between the optical flow syn-
thesized using the parameters estimated by the H-J method and the one estimated
by hierarchical block matching was found to be 0.51, which ranks among the best
results. Finally, we have applied the direct method of Tsai-Huang on the same set
of pixels in the two frames and compare the results with those of the A-matrix
method where each optical flow vector is used to determine a point correspondence.
Table 10.4 tabulates the respective velocity and intensity synthesis errors. The re-
sults indicat,e  that the A-matrix method is more successful in compensating for the
motion.

Table 10.4: Comparison of sythesis errors. (Courtesy Yucel Altunbasak)
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10.7 Exercises

1. How do you compare 3-D motion estimation from point correspondences ver-
sus that from optical flow? List the assumptions made in each case. Suppose
we have 3-D motion with constant acceleration and precession; which method
would you employ?

2. Which one can be estimated more accurately, token matching or spatio-
temporal image intensity gradients?

3. Suppose we assume that the change in Xs (AX,) in the time interval between
the two views can be neglected. Can you propose a linear algorithm, similar to
the one in Section 9.3, to estimate the 3-D motion and structure parameters
from optical flow?

4. Show that (10.31) may also be interpreted as the linearization of the image
intensity function in the vicinity of (21, ~2) in frame le + 1.
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Chapter 11

MOTION
SEGMENTATION

Most real image sequences contain multiple moving objects or multiple motions.
For example, the Calendar and Train sequence depicted in Chapter 5 exhibits five
different motions, shown in Figure 11.1. Optical flow fields derived from multiple
motions usually display discontinuities (motion edges). Motion segmentation refers
to labeling pixels that are associated with each independently moving 3-D object
in a sequence featuring multiple motions. A closely related problem is optical flow
segmentation, which refers to grouping together those optical flow vectors that are
associated with the same 3-D motion and/or structure. These two problems are
identical when we have a dense optical flow field with an optical flow vector for
every pixel.

It should not come as a surprise that motion-based segmentation is an inte-
gral part of many image sequence analysis problems, including: i) improved optical
flow estimation, ii) 3-D motion and structure estimation in the presence of multiple
moving objects, and iii) higher-level description of the temporal variations and/or
the content of video imagery. In the first case, the segmentation labels help to
identify optical flow boundaries and occlusion regions where the smoothness con-
straint should be turned off. The approach presented in Section 8.3.3 constitutes
an example of this strategy. Segmentation is required in the second case, because a
distinct parameter set is needed to model the flow vectors associated with each in-
dependently moving 3-D object. Recall that in Chapters 9 and 10, we have assumed
that all feature points or flow vectors belong to a single rigid object. Finally, in the
third case, segmentation information may be considered as a high-level (object-level)
description of the frame-to-frame motion information as opposed to the low-level
(pixel-level) motion information provided by the individual flow vectors.

As with any segmentation problem, proper feature selection facilitates effec-
tive motion segmentation. In general, application of standard image segmentation
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Figure 11.1: Example of optical flow generated by multiple moving objects.

methods (see Appendix B for a brief overview) directly to optical flow data may
not yield meaningful results, since an object moving in 3-D usually generates a spa-
tially varying optical flow field. For example, in the case of a single rotating object,
there is no flow at the center of the rotation, and the magnitude of the flow vectors
grows as we move away from the center of rotation. Therefore, in this chapter, a
parametric model-based approach has been adopted for motion-based video segmen-
tation where the model parameters constitute the features. Examples of parametric
mappings that can be used with direct methods include the &parameter mapping
(10.28), and affine mapping (9.4). Recall, from Chapter 9, that the mapping pa-
rameters depend on: i) the 3-D motion parameters, the rotation matrix R and the
translation vector T, and ii) the model of the object surface, such as the orienta-
tion of the plane in the case of a piecewise planar model. Since each independently
moving object and/or different surface structure will best fit a different paramet-
ric mapping, parameters of a suitably selected mapping will be used as features to
distinguish between different 3-D motions and surface structures.

Direct methods, which utilize spatio-temporal image gradients, are presented
in Section 11.1. These techniques may be considered as extensions of the direct
methods discussed in Chapter 10 to the case of multiple motion. In Section 11.2,
a two-step procedure is followed, where first the optical flow field is estimated us-
ing one of the techniques covered in Chapters 5 through 8. A suitable parametric
motion model has subsequently been used for optical flow segmentation using clus-
tering or maximum a posterior-i (MAP) es imation. The accuracy of segmentationt’
results clearly depends on the accuracy of the estimated optical flow field. As men-
tioned earlier, optical flow estimates are usually not reliable around moving object
boundaries due to occlusion and use of smoothness constraints. Thus, optical flow
estimation and segmentation are mutually interrelated, and should be addressed
simultaneously for best results. We present methods for simultaneous optical flow
estimation and segmentation using parametric flow models in Section 11.3.
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11.1 Direct Methods

In this section, we consider direct methods for segmentation of images into inde-
pendently moving regions based on spatio-temporal image intensity and gradient
information. This is in contrast to first estimating the optical flow field between two
frames and then segmenting the image based on the estimated optical flow field.
We start with a simple thresholding method that segments images into “changed”
and “unchanged regions.” Methods using parametric displacement field models will
be discussed next.

11.1.1 Thresholding for Change Detection

Thresholding is often used to segment a video frame into “changed” versus “un-
changed” regions with respect to the previous frame. The unchanged regions de-
note the stationary background, while the changed regions denote the moving and
occlusion areas.

We define the frame difference FDk,k-i(~i~ ~2) between the frames k and k - 1
as

FLI~+~(x~,  x2) = 5(x1, xz, k) - 4x1, xz, k - 1) (11.1)

which is the pixel-by-pixel difference between the two frames. Assuming that the
illumination remains more or less constant from frame to frame, the pixel loca-
tions where FDk,k+i(xi,  2s) differ from zero indicate “changed” regions. However,
the frame difference hardly ever becomes exactly zero, because of the presence of
observation noise.

In order to distinguish the nonzero differences that are due to noise from those
that are due to a scene change, segmentation can be achieved by thresholding the
difference image as

a+-1(x1, x2) =
1 if IF&+-I(xI, x2)1 > T
0 otherwise

where T is an appropriate threshold. The value of the threshold T can be chosen ac-
cording to one of the threshold determination algorithms described in Appendix B.
Here, zk,k-1(x1,  ~2) is called a segmentation label field, which is equal to “1” for
changed regions and “0” otherwise. In practice, thresholding may still yield isolated
Is in the segmentation mask .zk,k-1(x1, Q), which can be eliminated by postprocess-
ing; for example, forming 4- or &connected regions, and discarding any region(s)
with less than a predetermined number of entries.

Example: Change Detection

The changed region for the same two frames of the Miss America that
were used in Chapters 9 and 10, computed as described above, is de-
picted in Figure 11.2. The threshold was set at 7, and no post-filtering
was performed.
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Figure 11.2: Changed region between the first and third frames of the Miss America
sequence. (Courtesy Gozde Bozdagi)

Another approach to eliminating isolated l’s is to consider accumulative dif-
ferences which add memory to the motion detection process.
4x1, x2, k - 11, ., s(

Let s(zi, x2, k),
xi, ~2, k - N) be a sequence of N frames, and let s(zi) x2, k)

be the reference frame. An accumulative difference image is formed by comparing
this reference image with every subsequent image in the sequence. A counter for
each pixel location in the accumulative image is incremented every time the differ-
ence between the reference image and the next image in the sequence at that pixel
location is bigger than the threshold. Thus, pixels with higher counter values are
more likely to correspond to actual moving regions.

11.1.2 An Algorithm Using Mapping Parameters

The method presented here, based on the works of Hotter and Thoma [Hoe 881
and Diehl [Die 911, can be considered as a hierarchically structured top-down ap-
proach. It starts by fitting a parametric model, in the least squares sense, to the
entire changed region from one frame to the next, and then breaks this region into
successively smaller regions depending on how well a single model fits each region
or subregion. This is in contrast to the clustering and MAP approaches, to be dis-
cussed in the next section, which start with many small subregions and group them
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Background
to be covered

CD(k+l,k)

‘,X

Figure 11.3: Detection of uncovered background [Hoe 881.

together according to some merging criterion to form segments. The hierarchically
structured approach can be summarized through the following steps:

1) In the first step, a change detector, described above, initializes the segmen-
tation mask separating the changed and unchanged regions from frame Ic to Ic + 1.
Median filtering or morphological filtering can be employed to eliminate small re-
gions in the change detection mask. Each spatially connected changed region is
interpreted as a different object.

2) For each object a different parametric model is estimated. The methods
proposed by Hotter and Thoma [Hoe 881 and Diehl [Die 911 differ in the parametric
models employed and in the estimation of the model parameters. Estimation of the
parameters for each region is discussed in the next subsection.

3) The changed region(s) found in step 1 is (are) divided into moving region(s)
and the uncovered background using the mapping parameters computed in step 2.
This is accomplished as follows: All pixels in frame le + 1 that are in the changed
region are traced backwards, with the inverse of the motion vector computed from
the mapping parameters found in step 2. If the inverse of the motion vector points
to a pixel in frame iE that is within the changed region, then the pixel in frame Ic + 1
is classified as a moving pixel; otherwise, it is assigned to the uncovered background.
Figure 11.3 illustrates this process, where CD refers to the change detection mask
between the lines 2(lc) and b(k + 1).

Next, the validity of the model parameters for those pixels within the moving
region is verified by evaluating the displaced frame difference. The regions where
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the respective parameter vector is not valid are marked,& independent objects for
the second hierarchical level. The procedure iterates between steps 2 and 3 until
the parameter vectors for each region are consistent with the region.

11.1.3 Estimation of Model Parameters

Let the leth frame of the observed sequence be expressed as

!a@) = Sk(X) + m(x) (11.3)

where nk(x) denotes the observation noise. Assuming no occlusion effects, we have
sk+l(x) = sk(x’), where

x’ = qx, 0) (11.4)

is a tranformation of pixels from frame Ic to $ + 1, with the parameter vector 6’.
Then

.9rc+1(x) = Sk(X’) +%+1(x) (11.5)

The transformation h(x, 0) must be unique and invertible. Some examples for the
transformation are as follows:

i) Assuming a planar surface and using the perspective projection, we obtain
the eight-parameter mapping

ai’21 + a822 + 1

04x1 + a50 + asx2 =
@xl + a8x2 + 1

(11.6)

where Q = (al) a2, as, ad, as, as, ~7, as)T is the vector of so-called pure parameters.
ii) Alternatively, assuming a planar surface and using the orthographic projec-

tion, we have the affine transform
/

x1 = Cl”%1 + czxz + c3
I

x2 = c421 + c5xZ + c6 (11.7)

where 8 = (cl, ~2, cs, ~4, cg, ~s)~ is the vector of mapping parameters.
iii) Finally, let’s assume a quadratic surface, given by

X3 = allX,2 + a&lx2 + w&i + ~13x1 + 43x2 + a33 (11.8)

Substituting (11.8) into the 3-D motion model, using the orthographic projec-
tion equations, and grouping the terms with the same exponent, we arrive at the
quadratic transform

I
x1 = NIX? + a2.x~ + a32122 + a421 + a5x2 + a6

,
22 = 61~: + bzx; + k,xlxz + b4x1+ bm + bs (11.9)

which has 12 parameters.
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Note that we may not always be able to determine the actual 3-D motion and
surface structure parameters from the mapping parameters. However, for image
coding applications this does not pose a serious problem, since we are mainly in-
terested in predicting the next frame from the current frame. Furthermore, the
approach presented here is not capable of handling occlusion effects.

The method of Hotter and Thoma uses the eight-parameter model (11.6). They
estimated the model parameters for each region using a direct method which is
similar to the method of Tsai and Huang [Tsa 811 that was presented in Chapter 10.
On the other hand, Diehl [Die 911 suggests using the quadratic transform, because
it provides a good approximation to many real-life images. He proposed estimating
the mapping parameters to minimize the error function

m = ;E { ( &+1(x) - Sk(X’, 4) )“}

where E {.} is the expectation operator, and gk(x’, 6) denotes the prediction of
frame Ic + 1 from frame I% using the mapping h(x, 0). A gradient-based minimization
algorithm, the modified Newton’s method, is used to find the best parameter vector
4. The contents of the images gk(x) and gk+i(x) must be sufficiently similar in
order for the error function to have a unique minimum.

11.2 Optical Flow Segmentation

In this section, we treat segmentation of a given flow field using parameters of
a flow field model as features. We assume that there are 1%’ independently moving
objects, and each flow vector corresponds to the projection of a 3-D rigid motion of
a single opaque object. Then each distinct motion can be accurately described by
a set of mapping parameters. Most common examples of parametric models, such
as eight-parameter mapping (10.19) and affine mapping (10.17), implicitly assume
a 3-D planar surface in motion. Approximating the surface of a real object by a
union of a small number of planar patches, the optical flow generated by a real
object can be modeled by a piecewise quadratic flow field, where the parameters
ai,. , as in (10.19) vary in a piecewise fashion. It follows that flow vectors corre-
sponding to the same surface and 3-D motion would have the same set of mapping
parameters, and optical flow segmentation can be achieved by assigning the flow
vectors with the same mapping parameters into the same class.

The underlying principle of parametric, model-based segmentation methods can
be summarized as follows: Suppose we have K sets of parameter vectors, where each
set defines a correspondence or a flow vector at each pixel. Flow vectors defined by
the mapping parameters are called model-based or synthesized flow vectors. Thus,
we have II synthesized flow vectors at each pixel. The segmentation procedure then
assigns the label of the synthesized vector which is closest to the estimated flow vec-
tor at each site. However, there is a small problem with this simple scheme: both
the number of classes, K, and the mapping parameters for each class are not known
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a priori. Assuming a particular value for K, the mapping parameters for each class
could be computed in the least squares sense provided that the estimated optical
flow vectors associated with the respective classes are known. That is, we need to
know the mapping parameters to find the segmentation labels and the segmenta-
tion labels are needed to find the mapping parameters. This suggests an iterative
procedure, similar to the I<-means clustering algorithm where both the segmenta-
tion labels and the class means are unknown (see Appendix B). The modified Hough
transform approach of Adiv [Adi 851, the modified &means approach of Wang and
Adelson [Wan 941, and the MAP method of Murray and Buxton [Mur 871, which
are described in the following, all follow variations of this strategy.

11.2.1 Modified Hough Transform Method

The Hough transform is a well-known clustering technique where the data samples
“vote” for the most representative feature values in a quantized feature space. In a
straightforward application of the Hough transform method to optical flow segmen-
tation using the six-parameter affine flow model (10.17)) the six-dimensional feature
space al). , as would be quantized to certain parameter states after the minimal
and maximal values for each parameter are determined. Then, each flow vector
v(x) = [w(x) Q(X)1 T votes for a set of quantized parameters which minimizes

v2(x) - d(x) + d(x) (11.10)

where Q(X) = VI(X) - ai - az~i - ~3x2 and Q(X) = v~(x) - u4 - ~5x1 - ~~6x2.

The parameter sets that receive at least a predetermined amount of votes are likely
to represent candidate motions. The number of classes I< and the corresponding
parameter sets to be used in labeling individual flow vectors are hence determined.
The drawback of this scheme is the significant amount of computation involved.

In order to keep the computational burden at a reasonable level, Adiv proposed
a two-stage algorithm that involves a modified Hough transform procedure. In the
first stage of his algorithm, connected sets of flow vectors are grouped together to
form components which are consistent with a single parameter set. Several simplifi-
cations were proposed to ease the computational load, including: i) decomposition
of the parameters space into two disjoint subsets {al) ~2, us} x (~4, us, us} to per-
form two 3-D Hough transforms, ii) a multiresolution Hough transform, where at
each resolution level the parameter space is quantized around the estimates obtained
at the previous level, and iii) a multipass Hough technique, where the flow vectors
which are most consistent with the candidate parameters are grouped first. In the
second stage, those components formed in the first stage which are consistent with
the same quadratic flow model (10.19) in the least squares sense are merged to-
gether to form segments. Several merging criteria have been proposed. In the third
and final stage, ungrouped flow vectors are assimilated into one of their neighboring
segments.

In summary, the modified Hough transform approach is based on first clustering
the flow vectors into small groups, each of which is consistent with the flow generated
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by a moving planar facet. The fusion of these small groups into segments is then
performed based on some ad-hoc merging criteria.

11.2.2 Segmentation for Layered Video Representation

A similar optical flow segmentation method using the &means clustering technique
has been employed in the so-called layered video representation strategy. Instead
of trying to capture the motion of multiple overlapping objects in a single motion
field, Wang and Adelson [Wan 941 proposed a layered video representation in which
the image sequence is decomposed into layers by means of an optical-flow-based
image segmentation, and ordered in depth along with associated maps defining their
motions, opacities, and intensities, In the layered representation, the segmentation
labels denote the layer in which a particular pixel resides.

The segmentation method is based on the affine motion model (10.17) and clus-
tering in a six-dimensional parameter space. The image is initially divided into
small blocks. Given an optical flow Geld (e.g.) computed by using (5.12)) a set
of affine parameters are estimated for each block. To determine the reliability of
the parameter estimates, the sum of squared distances between the synthesized and
estimated flow vectors is computed as

17” = c II+) - qx)II” (11.11)

where a refers to a block of pixels. Obviously, if the Row within the block complies
with an affine model, the residual will be small. On the other hand, if the block
falls on the boundary between two distinct motions, the residual will be large.
The motion parameters for blocks with acceptably small residuals are selected as
the candidate layer models. To determine the appropriate number Ii of layers,
the motion parameters of the candidate layers are clustered in the six-dimensional
parameter space. The initial set of affine model parameters are set equal to the
mean of the I< clusters. Then the segmentation label of each pixel site is selected as
the index of the parameter set that yields the closest optical flow vector at that site.
After all sites are labeled, the affine parameters of each layer are recalculated based
on the new segmentation labels. This procedure is repeated until the segmentation
labels no longer change or a fixed number of iterations is reached.

It should be noted that if the smallest difference between an observed vector and
its parameter-based estimate exceeds a threshold, then the site is not labeled in the
above iterative procedure, and the observed flow vector is ignored in the parameter
estimation that follows. After the iterative procedure converges to reliable affine
models, all sites without labels are assigned one according to the motion compen-
sation criterion, which assigns the label of the parameter vector that gives the best
motion compensation at that site. This feature ensures more robust parameter esti-
mation by eliminating the outlier vectors. A possible limitation of this segmentation
method is that it lacks constraints to enforce spatial and temporal continuity of the
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segmentation labels. Thus, rather ad-hoc steps are needed to eliminate small, iso-
lated regions in the segmentation label field. The Bayesian segmentation strategy
promises to impose continuity constraints in an optimization framework.

11.2.3 Bayesian Segmentation

The Bayesian method searches for the maximum of the a posteriori probability of
the segmentation labels given the optical flow data, which is a measure of how well
the current segmentation explains the observed optical flow data and how well it
conforms to our prior expectations. Murray and Buxton [Mur 871 first proposed
a MAP segmentation method where the optical flow data was modeled by a piece-
wise quadratic flow field, and the segmentation field modeled by a Gibbs distri-
bution. The search for the labels that maximize the a posteriori probability was
performed by simulated annealing. Here we briefly present their approach.

Problem Formulation

Let vi, vz, and z denote the lexicographic ordering of the components of the flow
vector v(x) = [vi(x) v~(x)]~ and the segmentation labels Z(X) at each pixel. The
a posteriori probability density function (pdf) p(z vi, ~2) of the segmentation label1
field z given the optical flow data vi and vz can be expressed, using the Bayes
theorem, as

P(ZlVl,VZ) =
P(Vl> VZIZMZ)

P(W) vz)
(11.12)

where p(vr ) valz) is the conditional pdf of the optical flow data given the segmen-
tation z, and p(z) is the a priori pdf of the segmentation. Observe that, i) z is
a discrete-valued random vector with a finite sample space a, and ii) p(vi, ~2) is
constant with respect to the segmentation labels, and hence can be ignored for the
purposes of segmentation. The MAP estimate, then, maximizes the numerator of
(11.12) over all possible realizations of the segmentation field z = w, w E s1.

The conditional probability p(vi, v2 Iz) is a measure of how well the piecewise
quadratic flow model (10.19), where the model parameters al,. , us depend on the
segmentation label z, fits the estimated optical flow field vi and ~2. Assuming that
the mismatch between the observed flow v(x) and the synthesized flow,

i&(x) = ~1x1 +a2x2 -a3+a7xf +asxlxz

t&(x) = a4xl+ a522 - a6 + a7xlzZ+ usxi (11.13)

is modeled by white, Gaussian noise with zero mean and variance u2, the conditional
pdf of the optical flow field given the segmentation labels can be expressed as

$1, v&5) = (2sg~)M,”  exp { - 5$(xi)i2u2}i=l (11.14)
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where M is the number of flow vectors available at the sites xi, and

$(Xi) = (%(Xi) - G(xi))2 + (w(3) - qxi))2 (11.15)

is the norm-squared deviation of the actual flow vectors from what is predicted by
the quadratic flow model. Assuming that the quadratic flow model is more or less
accurate, this deviation is due to segmentation errors and the observation noise.

The prior pdf is modeled by a Gibbs distribution which effectively introduces
local constraints on the interpretation (segmentation). It is given by

p(z) = $ C exp {-U(z)} S(z -U)
wEn

where R denotes the discrete sample space of z, Q is the partition function

Q = c ew-U(w))WErl
(11.17)

and U(w) is the potential function which can be expressed as a sum of local clique
potentials V~(Z(X;), z(xj)). The prior constraints on the structure of the segmenta-
tion labels can be specified in terms of local clique potential functions as discussed
in Chapter 8. For example, a local smoothness constraint on the segmentation la-
bels can be imposed by choosing V~(Z(X~), z(xj)) as in Equation (8.11). Temporal
continuity of the labels can similarly be modeled [Mur 871.

Substituting (11.14) and (11.16) into the criterion (11.12) and taking the log-
arithm of the resulting expression, maximization of the a posteriori probability
distribution can be performed by minimizing the cost function

(11.18)

The first term describes how well the predicted data fit the actual optical flow
measurements (in fact, optical flow is estimated from the image sequence at hand),
and the second term measures how much the segmentation conforms to our prior
expectations.

The Algorithm

Because the model parameters corresponding to each label are not known a priori,
the MAP segmentation alternates between estimation of the model parameters and
assignment of the segmentation labels to optimize the cost function (11.18) based
on a simulated annealing (SA) procedure. Given the flow field v and the number of
independent motions I(, MAP segmentation via the Metropolis algorithm can be
summarized as follows:

\ -
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1. Start with an initial labeling z of the optical flow vectors. Calculate the
mapping parameters a = [ai cr$ for each region using least squares
fitting as in Section 10.3.2. Set the initial temperature for SA.

2. Scan the pixel sites according to a predefined convention. At each site xi:

(a) Perturb the label zi =  randomly.
(b) Decide whether to accept or reject this perturbation, as described in

Section 8.1.1, based on the change AE in the cost function (11.18),

AE = &A?(4 + c Ak(+i), z(y)) (11.19)
x, EM,*

where A&, denotes a neighborhood of the site xi and Vc(z(xi), z(xj)) is
given by Equation (8.11). The first term indicates whether or not the
perturbed label is more consistent with the given flow field determined
by the residual (11.15), and the second term reflects whether or not it is
in agreement with the prior segmentation field model.

3. After all pixel sites are visited once, re-estimate the mapping parameters for
each region in the least squares sense based on the new segmentation label
configuration.

4. Exit if a stopping criterion is satisfied. Otherwise, lower the temperature
according to the temperature schedule, and go to step 2.

The following observations about the MAP segmentation algorithm are in order:
i) The procedure proposed by Murray-Buxton suggests performing step 3, the model
parameter update, after each and every perturbation. Because such a procedure will
be computationally more demanding, the parameter updates are performed only af-
ter all sites have been visited once.
ii) This algorithm can be applied to any parametric model relating to optical flow,
although the original formulation has been developed on the basis of vernier veloc-
ities [Mur 871 and the associated eight-parameter model.
iii) The actual 3-D motion and depth parameters are not needed for segmentation
purposes. If desired, they can be recovered from the parameter vector a for each
segmented flow region at convergence.

We conclude this section by noting that all methods discussed so far are limited
by the accuracy of the available optical flow estimates. Next, we introduce a novel
framework, in which optical flow estimation and segmentation interact in a mutually
beneficial manner.

11.3 Simultaneous Estimation and Segmentation

By now, it should be clear that the success of optical flow segmentation is closely
related to the accuracy of the estimated optical flow field, and vice versa. It follows
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that optical flow estimation and segmentation have to be addressed simultaneously
for best results. Here, we present a simultaneous Bayesian approach based on a rep-
resentation of the motion field as the sum of a parametric field and a residual field.
The interdependence of optical flow and segmentation fields are expressed in terms
of a Gibbs distribution within the MAP framework. The resulting optimization
problem, to find estimates of a dense set of motion vectors, a set of segmentation
labels, and a set of mapping parameters, is solved using the highest confidence first
(HCF) and iterated conditional mode (ICM) algorithms. It will be seen that sev-
eral existing motion estimation and segmentation algorithms can be formulated as
degenerate cases of the algorithm presented here.

11.3.1 Motion Field Model

Suppose that there are K independently moving, opaque objects in a scene, where
the 2-D motion induced by each object can be approximated by a parametric model,
such as (11.13) or a 6-parameter affine model. Then, the optical flow field v(x) can
be represented as the sum of a parametric flow field c(x) and a nonparametric
residual field vr(x), which accounts for local motion and other modeling errors
[Hsu 941; that is,

v(x) = C(x) + VT(X) (11.20)

The parametric component of the motion field clearly depends on the segmentation
label Z(X)) which takes on the values 1,. , K.

11.3.2 Problem Formulation

The simultaneous MAP framework aims at maximizing the a posteriori pdf

p(vl v2 z Igk gk+l) = Pbt1 l&~%v2~zMvl,vz lz,gtMz 1%)
> 1 ,

P(!wl I&)
(11.21)

with respect to the optical flow vi, vs and the segmentation labels z. Through
careful modeling of these pdfs, we can express an interrelated set of constraints
that help to improve the estimates.

The first conditional pdf p(gk+i 1 gk, vi, vs, z) provides a measure of how well
the present displacement and segmentation estimates conform with the observed
frame I% + 1 given frame le. It is modeled by a Gibbs distribution as

dgktl I gk,vl,vz,z) = &expl-Ul(gktl I gk,vl,w,z)l (

where Qi is the partition function (a constant), and

11.22)

UlkWl 1 gk>vl, vz, z) = c [gk(x) - grc+l(x + v(x)At)]’ (11.23)
X
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is called the Gibbs potential. Here, the Gibbs potential corresponds to the norm-
square of the displaced frame difference (DFD) between the frames gk and gk+r.
Thus, maximizationof (11.22) imposes the constraint that v(x) minimizes the DFD.

The second term in the numerator in (11.21) is the conditional pdf of the dis-
placement field given the motion segmentation and the search image. It is modeled
by a Gibbs distribution

p(vl,v2 1 z,gk)=p(h,v2 I z) = ~expl--l:a(v1~~2 Iz)l

where Qs is a constant, and

Vz(v1,vz I z) = ac lIv(x) - qx)ll”

+ PC xC Ii+4 -v(xj)ii2 q+) -4~~)) p.25)
x, X,E&

is the corresponding Gibbs potential, ]I I[ denotes the Euclidian distance, and A’x
is the set of neighbors of site x. The first term in (11.25) enforces a minimum norm
estimate of the residual motion field v?(x); that is, it aims to minimize the deviation
of the motion field v(x) from the parametric motion field c(x) while minimizing
the DFD. Note that the parametric motion field c(x) is calculated from the set of
model parameters ai, i = 1, . , K, which in turn is a function of v(x) and Z(X).
The second term in (11.25) imposes a piecewise local smoothness constraint on the
optical flow estimates without introducing any extra variables such as line fields.
Observe that this term is active only for those pixels in the neighborhood Nx which
share the same segmentation label with the site x. Thus, spatial smoothness is
enforced only on the flow vectors generated by a single object. The parameters cy
and /3 allow for relative scaling of the two terms.

The third term in (11.21) models the a priori probability of the segmentation
field given by

P(Z I gk) = P(Z) = $ C exp{--U3(z)P(z - u)

wa

where fi denotes the sample space of the discrete-valued random vector z, Qs is
given by Equation (11.17),

U3(z) = c c k(eG),4xj)) (11.27)
xt X,EJux;

&, denotes the neighborhood system for the label field, and

V&Xi), Z(Xj)) = { +> ‘; ft;fWs; dxj) (11.28)

The dependence of the labels on the image intensity is usually neglected, although
region boundaries generally coincide with intensity edges.
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11.3.3 The Algorithm

Maximizing the a posteriori pdf (11.21)1s equivalent to minimizing the cost function,

E = Ul(grct1 I .tia>v1,vz,z)  + Wvl,vz I z) + Us(z) (11.29)

that is composed of the potential functions in Equations (11.22), (11.24),
and (11.26). Direct minimization of (11.29) with respect to all unknowns is an
exceedingly difficult problem, because the motion and segmentation fields consti-
tute a large set of unknowns. To this effect, we perform the minimization of (11.29)
through the following two-steps iterations [Cha 941:

1. Given the best available estimates of the parameters ai, i = 1,. , I<, and z,
update the optical flow field ~1, v2. This step involves the minimization of a
modified cost function

El = ~[slc(x) - glc+l(x+v(x)At)]2 + ax IIv(x)- V(x)II"

+;c c IlV(%) - V(Xj)lj” 6(3(x:) - Z(Xj)) (11.30)
x, X,ENx

which is composed of all the terms in (11.29) that contain v(x). While the first
term indicates how well v(x) explains our observations, the second and third terms
impose prior constraints on the motion estimates that they should conform with the
parametric flow model, and that they should vary smoothly within each region. To
minimize this energy function, we employ the HCF method recently proposed by
Chou and Brown [Cho 901. HCF is a deterministic method designed to efficiently
handle the optimization of multivariable problems with neighborhood interactions.

2. Update the segmentation field z, assuming that, the optical flow field v(x) is
known. This step involves the minimization of all the terms in (11.29) which contain
z as well as G(x), given by

Ez = a~~~v(x)-~(x~~"~~ c k(+i),+q)) (11.31)
X ‘x, x,cNx,

The first term in (11.31) quantifies the consistency of c(x) and v(x). The second
term is related to the a priori probability of the present configuration of the seg-
mentation labels. We use an ICM procedure to optimize Ez [Cha 931. The mapping
parameters ai are updated by least squares estimation within each region.

An initial estimate of the optical flow field can be found using the Bayesian ap-
proach with a global smoothness constraint. Given this estimate, the segmentation
labels can be initialized by a procedure similar to Wang and Adelson’s [Wan 941.
The determination of the free parameters a, p, and y is a design problem. One
strategy is to choose them to provide a dynamic range correction so that each term
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Figure 11.4: The block diagram of the simultaneous MAP algorithm

in the cost function (11.29) has equal emphasis. However, because the optimiza-
tion is implemented in two steps, the ratio a/y also becomes of consequence. We
recommend to select 1 5 cy/y 5 5, depending on how well the motion field can
be represented by a piecewise-parametric model and whether we have a sufficient
number of classes.

A hierarchical implementation of this algorithm is also possible by forming suc-
cessive low-pass filtered versions of the images gk and gk+l. Thus, the quantities
~1, ~2, and z can be estimated at different resolutions. The results of each hierarchy
are used to initialize the next lower level. A block diagram of the hierarchical algo-
rithm is depicted in Figure 11.4. Note that the Gibbsian model for the segmentation
labels has been extended to include neighbors in scale by Kato et al. [k-at 931.

11.3.4 Relationship to Other Algorithms

It is important to recognize that this simultaneous estimation and segmentation
framework not only enables 3-D motion and structure estimation in the presence
of multiple moving objects, but also provides improved optical flow estimates. Sev-
eral existing motion analysis algorithms can be formulated as special cases of this
framework. If we retain only the first and the third terms in (11.29), and assume
that all sites possess the same segmentation label, then we have Bayesian motion
estimation with a global smoothness constraint. The motion estimation algorithm
proposed by Iu [Iu 931 utilizes the same two terms, but replaces the S(.) function
by a local outlier rejection function (Section 8.3.2).

The motion estimation and region labeling algorithm proposed by Stiller [Sti 941
(Section 8.3.3) involves all terms in (11.29), except the first term in (11.25). Fur-
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thermore, the segmentation labels in Stiller’s algorithm are used merely as tokens
to allow for a piecewise smoothness constraint on the flow field, and do not attempt
to enforce consistency of the flow vectors with a parametric component. We also
note that the motion estimation algorithms of Konrad and Dubois [Kon 92, Dub 931
and Heitz and Bouthemy [Hei 931 w ic use line fields are fundamentally differenth’ h
in that they model discontinuities in the motion field, rather than modeling regions
that correspond to different physical motions (Section 8.3.1).

On the other hand, the motion segmentation algorithm of Murray and Buxton
[Mm- 871 (Section 11.2.2) employs only the second term in (11.25) and third term
in (11.29) to model the conditional and prior pdf, respectively. Wang and Adelson
[Wan 941 relies on the first term in (11.25) to compute the motion segmentation
(Section 11.2.3). However, they also take the DFD of the parametric motion vectors
into consideration when the closest match between the estimated and parametric
motion vectors, represented by the second term, exceeds a threshold.

11.4 Examples

Examples are provided for optical flow segmentation using the Wang-Adelson (W-A)
and Murray-Buxton (M-B) methods, as well as for simultaneous motion estimation
and segmentation using the proposed MAP algorithm with the same two frames
of the Mobile and Calendar sequence shown in Figure 5.9 (a) and (b). This is
a challenging sequence, since there are several objects with distinct motions as
depicted in Figure 11.1.

The W-A and M-B algorithms use the optical flow estimated by the Horn-
Schunck algorithm, shown in Figure 5.11 (b), as input. We have set the number
of regions to four. In order to find the representative affine motion parameters
in the W-A algorithm, 8 x 8 and 16 x 16 seed blocks have been selected, and
the affine parameters estimated for each of these blocks are clustered using the
K-means algorithm. It is important that the size of the blocks be large enough
to identify rotational motion. The result of the W-A segmentation is depicted in
Figure 11.5 (a). We have initialized the M-B algorithm with the result of the W-A
algorithm, and set the initial temperature equal to 1. The resulting segmentation
after 50 iterations is shown in Figure 11.5 (b). Observe that the M-B algorithm
eliminates small isolated regions on the calendar, and grows the region representing
the rotating ball in the right direction by virtue of the probabilistic smoothness
constraint that it employs.

Next, we initialized the simultaneous MAP estimation and segmentation
method, also by the result of the W-A algorithm. We have set o! = p = 10 and
o/y = 5, since the motion field can be well-represented by a piecewise paramet-
ric model. The estimated optical flow and segmentation label fields are shown in
Figure 11.6 (a) and (b), respectively. Note that the depicted motion field corre-
sponds to the lower right portion of the segmentation field. The results show some
improvement over the M-B method.
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Figure 11.5: The segmentation field obtained by the a) Wang-Adelson method and
b) Murray-Buxton method. (Courtesy Michael Chang)
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Figure 11.6: a) The optical flow field and b) segmentation field estimated by the
simultaneous MAP method after 100 iterations. (Courtesy Michael Chang)
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11.5 Exercises

1. Show that the MAP segmentation reduces to the I(-means algorithm if we
assume the conditional pdf is Gaussian and no a priori information is available.

2. How would you apply the optimum threshold selection method discussed in
Appendix B.l.l to change detection?

3. How would you modify (11.15) considering that (~1, uz) is the measured nor-
mal flow rather than the projected flow?

4. Do you prefer to model the flow discontinuities through a segmentation field
or through line fields? Why?

5. Verify the relationships claimed in Section 11.3.3

6. Discuss how to choose the scale factors 01, X, y, and $ in (11.30) and (11.31).
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Chapter 12

STEREO AND
MOTION TRACKING

Because 3-D motion and structure estimation from two monocular views has been
found to be highly noise-sensitive, this chapter presents two new approaches, stereo
imaging and motion tracking, that offer more robust estimates. They are discussed
in Sections 12.1 and 12.2, respectively. In stereo imaging, we acquire a pair of right
and left images, at each instant. More robust motion and structure estimation from
two stereo pairs is possible, because structure parameters can be estimated using
stereo triangulation, hence decoupling 3-D motion and structure estimation. More-
over, the mutual relationship between stereo disparity and 3-D motion parameters
can be utilized for stereo-motion fusion, thereby improving the accuracy of both
stereo disparity and 3-D motion estimation. In motion tracking, it is assumed that
a long sequence of monocular or stereo video is available. In this case, more robust
estimation is achieved by assuming a temporal dynamics; that is, a model describ-
ing the temporal evolution of the motion. Motion between any pair of frames is
expected to obey this model. Then batch or recursive filtering techniques can be
employed to track the 3-D motion parameters in time. At present, stereo-motion
fusion and motion tracking using Kalman filtering are active research topics of sig-
nificant interest.

12.1 Motion and Structure from Stereo

It is well known that 3-D motion and structure estimation from monocular video
is an ill-posed problem, especially when the object is relatively far away from the
camera. Several researchers have employed stereo sequences for robust 3-D motion
and structure estimation [Dho 89, Hua 941. Stereo imaging also alleviates the scale
ambiguity (between depth and translation) inherent in monocular imaging, since
a properly registered stereo pair contains information about the scene structure.

219
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In the following, we first briefly present the principles of still-frame stereo imaging.
Subsequently, motion and structure estimation from a sequence of stereo pairs will
be discussed.

Epipolar plane

Figure 12.1: The epipolar plane and lines.

12.1.1 Still-Frame Stereo Imaging

Let pi = (zr~, 22~) and pn = (z~R, Z~R) denote the perspective projections of
a point P = (X1,X2, Xs) onto the left and right image planes, respectively. In
general, the point P and the focal points of the left and right cameras, fL and fR,
define the so-called epipolar plane, as depicted in Figure 12.1. The intersection of
the epipolar plane with the left and right image planes is called the epipolar lines.
It follows that the perspective projection of a point anywhere on the epipolar plane
falls on the epipolar lines.

A cross-section of the imaging geometry, as seen in the X1 -Xs plane, is depicted
in Figure 12.2. Here, Cw, CR, and CL denote the world, right camera, and left
camera coordinate systems, respectively, and the focal lengths of both cameras
are assumed to be equal, fR = f~ = f. Let PR = (X~R,X~R,X~R) and PL =
(X~L,X~L,X~L) denote the representation of the point P = (Xl,Xz,X3) in CR
and CL, respectively. Then the coordinates of P in the right and left coordinate
systems are given by

PR=RRP+TR (12.1)

PL=RLP+TL (12.2)

12.1. MOTION AND STRUCTURE FROM STEREO

system

map cw
' xl

World coordinate system
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Figure 12.2: Stereo image formation.

where RR and TR, and Rr, and Tr, are the extrinsic parameters of the camera
model indicating relative positions of CR and CL with respect to Cw) respectively.
Combining equations (12.1) and (12.2), we have

PL = RLR,~PR - RLR,~TR + TL
+ MPR+B (12.3)

where M and B are known as the relative configuration parameters [Wen 921. Then,
based on similar triangles, the perspective projection of the point P into the left
and right image planes. can be expressed as

XlL
XlL = f-,

XZL

X3L
X2L = f-

X3L

XlR
XlR = f ->

X2R

X3R
x2R = f-

X3R

respectively. Substituting (12.4) into (12.3), we have

(12.4)

(12.5)

The structure from stereo problem refers to estimating the coordinates
(X1,X2, X3) of a 3-D point P, given the corresponding points (xr~, x2~) and
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(Z~R,ZZR) in the left and right image planes, and the extrinsic camera calibra-
tion parameters. We first solve for X~L and X~R from (12.5). It can be shown that
only two of the three equations in (12.5) are linearly independent in the event of
noise-free point correspondences. In practice, (12.5) should be solved in the least
squares sense to find X~L and X~R. Next, the 3-D coordinates of the point P in
the left and right camera coordinate systems can be computed from (12.4). Finally,
a least squares estimate of P in the world coordinate system can be obtained from
(12.1) and (12.2). A 1c osed-form expression for P in the world coordinate system
can be written in the special case when the left and right camera coordinates are
parallel and aligned with the Xi - Xz plane of the world coordinates. Then

x
1
= b (zIL+ZlR) 2 b XZL 2.fb

XlL -ZlR '
X2 =

XlL - ZlR’
x3 = (12.6)

XlL - XlR

where b refers to half of the distance between the two cameras (assuming that they
are symmetrically placed on both sides of the origin).

Finding corresponding pairs of image points is known as the stereo matching
problem [Mar 78, Dho 89, Bar 931. We define

+R)- (wl(xR),%(xR))=(xlR - ZlL,ZZR- XZL) (12.7)

as the stereo disparity (taking the right image as the reference). Observe that the
matching problem always involves a 1-D search along one of the epipolar lines.
Suppose we start with the point pi. The object point P must lie along the line
combining pR and fR. Note that the loci of the projection of all points Q along
this line onto the left image plane define the epipolar line for the left image plane
(see Figure 12.1). Thus, it suffices to search for the matching point pi along the
left epipolar line.

12.1.2 3-D Feature Matching for Motion Estimation

The simplest method for motion and structure estimation from stereo would be to
decouple the structure estimation and motion estimation steps by first estimating
the depth at selected image points from the respective stereo pairs at times t and t’
using 2-D feature matching between the left and right pairs, and temporal matching
in one of the left or right channels, independently. Three-D rigid motion param-
eters can then be estimated by 3-D feature matching between the frames t and t’
[Aru 87, Hua 89c]. However, this scheme neglects the obvious relationship between
the estimated disparity fields at times t and t’. Alternatively, more sophisticated
stereo-motion fusion schemes, which aim to enforce the mutual consistency of the
resulting motion and disparity values, have also been proposed [Wax 861. Both
approaches are introduced in the following.

There are, in general, two approaches for the estimation of the 3-D motion
parameters R and T, given two stereo pairs at times t and t’: 3-D to 3-D fea-
ture matching and 3-D to 2-D feature matching. If we start with an arbitrary
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point (ZiR, 22~) in the right image at time t, we can first find the matching point
(zip, zs~) in the left image by still-frame stereo matching, which determines a 3-
D feature point P = (Xi, X2, Xs) in the world coordinate system at time t, as
discussed in the previous section. Next, we locate the corresponding 2-D point
(ziR,xkR) at time t’ that matches (X1& CzR) by 2-D motion estimation. At this
moment, we can estimate the 3-D motion parameters using a 3-D to 2-D point-
matching algorithm based on a set of matching (ziR, g’ZR) and P. Alternatively, we
can determine (z&, xiL) at time t’ again by still-frame stereo matching or by 2-D
motion estimation using the left images at time t and t’, and then use a 3-D to 3-D
point-matching algorithm based on a set of matching P’ and P.

3-D to 3-D Methods

Given N 3-D point correspondences (Pi, Pi) (expressed in the world coordinate
system) at two different times, obtained by still-frame stereo or other range-finding
techniques, which lie on the same rigid object; the rotation matrix R (with respect
to the world coordinate system) and the translation vector T can be found from

P;=RPi+T, i=l,...,N (12.8)

It is well known that, in general, three noncollinear point correspondences are nec-
essary and sufficient to determine R and T uniquely [Hua 941. In practice, point
correspondences are subject to error, and therefore, one prefers to work with more
than the minimum number of point correspondences. In this case, R and T can be
found by minimizing

2 ,,P: - (RPi + T)ll”
i=l

(12.9)

subject to the constraints that R is a valid rotation matrix. Robust estimation
procedures can be employed to eliminate outliers from the set of feature correspon-
dences to improve results. Observe that if the small angle assumption is applicable,
the problem reduces to solving a set of linear equations.

Establishing temporal relationships between 3-D lines and points from a se-
quence of depth maps computed independently from successive still-frame pairs to
estimate 3-D motion was also proposed [Kim 871.

3-D to 2-D Methods

From (9.1) and (12.1), we can express the equation of 3-D motion with respect to
the right camera coordinate system as

XL = RRXR + TR (12.10)
where

RR = RRRR$

TR = RRT + TR - RRTR
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denote the rotation matrix and the translation vector, respectively, with respect to
the right camera coordinate system. Then, substituting (12.10) into (12.4), we have
a computed correspondence in the right image given by

-/
xlR = .Fg and

X’ZiR II f-2
XAR

(12.11)

Given N 3-D to 2-D point correspondence measurements, (PER, p&), where
PR = (X~R~X~R,X~R)  refers to a 3-D point with respect to the right camera
coordinate system at time t, and p ;1 = (xiR1 xiR) denotes the corresponding right
image point at time t’; we can estimate k, and +R by minimizing

(12.12)

where pi, refers to the corresponding image point computed by (12.11) as a function
of kR and !I?,. The minimization of (12.12) can be posed as a nonlinear least
squares problem in the six unknown 3-D motion parameters. Once again, a linear
formulation is possible if the small angle of rotation approximation is applicable.
Assuming that the extrinsic parameters of the camera system RR and TR are
known, the rotation and translation parameters R and T in the world coordinates
can be easily recovered from RR and TR based on (12.10).

The difficulty with both 3-D to 3-D and 2-D to 3-D approaches is in the process of
establishing the matching 3-D and/or 2-D features. Stereo disparity estimation and
estimation of feature correspondences in the temporal direction are, individually,
both ill-posed problems, complicated by the aperture and occlusion problems; hence,
the motivation to treat these problems simultaneously.

12.1.3 Stereo-Motion Fusion

Theoretically, in a time-varying stereo pair, the stereo matching need be performed
only for the initial pair of frames. For subsequent pairs, stereo correspondences can
be predicted by means of the left and right optical flow vectors. Stereo matching
would only be required for those features that newly enter the field of view. How-
ever, because both optical flow estimation and disparity estimation are individually
ill-posed problems, several studies have recently been devoted to fusion of stereo
disparity and 3-D motion estimation in a mutually beneficial way. Stereo-motion
fusion methods impose the constraint that the loop formed by the disparity and
motion correspondence estimates, in Figure 12.3, must be a closed loop. Richards
[Ric 851 and Waxman et al. [Wax 861 derived an analytical expression for the tem-
poral rate of change of the disparity to disparity ratio as a function of the 3-D motion
and structure parameters. They then proposed a simultaneous stereo and motion
estimation method based on this relation. Aloimonos et al. [Alo 901 proposed an al-
gebraic solution which requires no point-to-point correspondence estimation for the
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Figure 12.3: Stereo-motion fusion.

special case of 3-D planar objects. Methods to integrate stereo matching and opti-
cal flow estimation using multiresolution edge matching and dynamic programming
[Liu 931 and constrained optimization [Tam 911 have also been proposed.

In the following, we first develop a maximum a posteriori probability (MAP)
estimation framework (see Chapter 8) for stereo-motion fusion, based on dense
displacement and disparity field models, in the case of a single rigid object in motion.
Note that stereo-motion fusion with a set of isolated feature points (instead of dense
fields) can be posed as a maximum-likelihood problem, which is a special case of
this MAP framework. The MAP framework is extended to the case of multiple
moving objects in the next section.

Dense Fields: Let dR(xR) = (dry, dzR(x~)) and dL(xL) = (dl~(x~), &,(x~))
denote the 2-D displacement fields computed at each pixel XR = (ZrR,ZzR) and
XL = (zr~, QL) of the right and left images, respectively, and w(x~) denote the
disparity field at each pixel XR of the right image. Let dlR, dzfi, dlL, d2L, WI;
and wz denote vectors formed by lexicographic ordering of the scalars dirt
dSR(XR), &L(xL), ~ZL(xL), wl(xR), and wz(xR) at all pixels, respectively. We
wish to estimate dlR, d2R, dlL, d2L, WI, and wz, given IL, In, I/L, I&, the left
and right images at times t and t’, respectively, in order to maximize the joint a
posteriori probability density function (pdf)

p(dm, dm, ch, dx, WI, w211;, I&, IL, IR) a

P(I~,Ik,ILldlR,dzR,dl~,d2~,Wl,W2,IR)

P(dm, &R, da &LIwl, Wz, IR)l+‘l, W21IR) (12.13)

where p(Ii, IL, ILldlR, d2R, dlL, d2L, ~1, ~2, IR) provides a measure of how well
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the present displacement and disparity estimates conform with the observed frames,
p(dlR, d2R, dlL, dztlwl, wz,I~) quantifies the consistency of the 2-D motion field
with the 3-D motion and structure parameters and imposes a local smoothness
constraint on it, and p(wl,wzII~)  enforces a local smoothness constraint on the
disparity field. Given the MAP estimates of dm, dm, dlL, daL, wi, and wz,
the 3-D rotation matrix R, the 3-D translation vector T, and the scene depth X3
at each pixel can be estimated by one of the 3-D to 3-D or 3-D to 2-D matching
techniques discussed in Section 12.1.2.

2. Perturb the displacement dlR, d2R, dlL, d2L and the disparity wi, ws fields in
order to minimize

where yi and yz are some constants.

The three pdfs on the right hand side of (12.13) are assumed to be Gibbsian
with the potential functions Ui(.), Uz(.), and Us(.), respectively, that are given by

The algorithm is initialized with motion and disparity estimates obtained by
existing decoupled methods. A few iterations using the ICM algorithm are usually
sufficient. Observe that VI(.) requires that the 2-D displacement and disparity
estimates be consistent with all four frames, ,while the first term of U2(.) enforces
consistency of the 2-D and 3-D motion estimates. The second term of Uz(.) and
Us(.) impose smoothness constraints on the motion and disparity fields, respectively.Ul(I~,IIR,IzldlR,dzR,dlL,d2L,wl,w2,IR)  = (12.14)

c [ (IdxR +  w(xR)) - lR(XR))’  +  (&(xR +  dR(xR))  - IR(xR))2

XREIR

+ (G,(xz + dL(XZj) - IL(xL))2 ]

U2(dlR,dzR,dlL,dzLIw1,w2,IRj  =

c (  IldR(XR) - aR(xR)112 +  Ildr,(x~)  - h(Xd12 )

XREIR

(12.15)

+ ac c IId&Ri) - d&?il12 + c Ildzh) - ddx~j)112
XR, xwcNxR, XL1 ENX,,

where XL = xR + w(xR) is the corresponding point on the left image,

d&R) - & - xR and dL(xL) - $, - xL (12.16)

denote the projected 3-D displacement field onto the right and left image planes,
respectively, in which %k and 2:. are computed as functions of the 3-D motion and
disparity parameters (step 1 of the algorithm below), o is a constant, NxR, and
Nx,, denote neighborhoods of the sites xRi and x~i = x& + w(xRi), respectively,
and

&(WI,WZIIR)=  c c IIw(xRi)-w(xRj)l12
(12.17)

XR. XR~~NX,,

The maximization of (12.13) can, then, be performed by the following two-step
iteration process:

1. Given the present estimates of dlR, d2R, dlL, daL, wi, and wz:
i) reconstruct a set of 3-D points (Xi, X2, Xs) as described in Section 12.1.1,
ii) estimate R and T by means of 3-D to 2-D point matching or 3-D to 3-D

point matching, and
iii) calculate the projected displacement fields OR and AL from (12.1),

(12.2), and (12.4).

Isolated Feature Points: Because stereo-motion fusion with dense motion and dis-
parity fields may be computationally demanding, the proposed MAP formulation
can be simplified into a maximum-likelihood (ML) estimation problem by using
selected feature points. This is achieved by turning off the smoothness constraints
imposed by the potential (12.17) and the second term of (12.15), which does not ap-
ply in the case of isolated feature points [Alt 951. Results using 14 feature points are
shown in Section 12.3. The methods cited here are mere examples of many possible
approaches. Much work remains for future research in stereo-motion fusion.

12.1.4 Extension to Multiple Motion

The simultaneous MAP estimation and segmentation framework presented in Sec-
tion 11.3 can be easily extended to stereo-motion fusion in the presence of multiple
moving objects. Here, pairs of disparity w(xR) and displacement vectors dR(xR)
are segmented into I< regions, where within each region the displacement vectors
are expected to be consistent with a single set of 3-D motion parameters, and the
disparity is allowed to vary smoothly. The regions are identified by the label field z.

We seek the disparity, motion, and segmentation field configuration that would
maximize the a posteriori probability density function

p(dlR,dzR,dlLtdzL,w1,wz,~IIIL,I~,IL,IR,)  m

p(I~,Ik,Ir.ldl~,dz~,dl~,dz~,~l,w2,Z,  IR)

P(dlR,dzR,dlz,dzLIw1,wz,z,IR)  ~(w1,wzlqIR)  p(z(IR) (12.18)

given IL, IR, IL, IL. We assume that all pdfs on the right-hand side of (12.18) are
Gibbsian with the potential functions

Ul(I~,I~,I~(dl~,d2~,dl~,d2~,  wllw2,z,IR) =

c [ (lL(xR + w(xR)) - IR(XR))~ + (&(XR $ dR(XR)) - IR(xR))~
XREIR

+ ($(xL + d&J) - IL(xL))~ ] (12.19)
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Us(dm, dm, da dzh,wz, z) =

c (Ildn(XR) - aR(xR)i1’+ Ilddw) - ~dxdli2)

XAEIR

+c c IId&%) - dR(Xd2XRI xRicnr,R,
+ c II&hi)  - d&Lj)l12  h(+Ri) - +Rj)) (12.20)

XLiENX,, 1

where a, is the projected 3-D motion given by (12.16)) and XL, Nx,,, and Nx,,
are as defined in the previous section,

u3(wl,w21Z)  = c c b+Ri) -w(xRj)~~2 +(xRi) - +Rj))

XRI XRJ ENX,,

imposes a piecewise smoothness constraint on the disparity field, and

u4(z) = c c vC(+Ri), z(xRj))

XRI XR;CN~,,
(12.21)

where Vc(.z(xRi), z(xRj)) is defined by (11.28). Observe that, in the case of multiple
motion, the smoothness constraints are turned on for motion and disparity vectors
which possess the same segmentation label.

The maximization of (12.18) can be performed in an iterative manner. Each
iteration consists of the following steps:

1. Given the initial estimates of the optical flow, dlfi, d2R, dlL, dzr, the disparity
wi, ~2, and the segmentation z, estimate the 3-D motion parameters R and T for
each segment. (Similar to step 1 of the algorithm in the previous subsection.)

2. Update the optical flow dlR, d2R, dlL, and d2L assuming that the disparity field
and the segmentation labels are given by minimizing

El = Ul(I~,Ik,I~ldlR,dzR,dl~,dz~,wl,wz,Z,IR)

S&(&R, dzR, dx, dzL[wi, wz, z)

3. Update the disparity field, WI, wz assuming that the motion field and the
segmentation labels are given. This step involves minimization of

Ez. = &(I;,I;,IL(~~ dm, dx, da ~1, wz, z, IR) + u3(w1, wzlz)

4. Update the segmentation labels z, assuming that disparity field and motion
estimates are given, This step involves the minimization of all terms that contain z,
given by

E3 = Ul(I~,I~,ILIdlR,d2R,dlL,d2L,w1,w2,z,IR)

+Uz(dlR,dzR,dlL,d2L1wl,~z,z) + ~3(wl,wzIz) + u4(z)
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The initial estimates of the optical flow, disparity, and segmentation fields can
be obtained from existing still-image disparity estimation and monocular motion
estimation and segmentation (see Chapter 11) algorithms, respectively.

12.2 Motion Tracking

Physical objects generally exhibit temporally smooth motion. In motion estimation
from two views, whether monocular or stereo, it is not possible to make use of this
important cue to resolve ambiguities and/or obtain more robust estimates. For
example, acceleration information and the actual location of the center of rotation
cannot be determined from two views. To this effect, here we present some recent
results on motion estimation (tracking) from long sequences of monocular and stereo
video based on an assumed kinematic model of the motion. We first discuss basic
principles of motion tracking. Subsequently, some examples of 2-D and 3-D motion
models and algorithms to track the parameters of these models are presented.

12.2.1 Basic Principles

Fundamental to motion tracking are a set of feature (token) matches or optical
flow estimates over several frames, and a dynamic model describing the evolution of
the motion in time. The feature matches or optical flow estimates, which serve as
observations for the tracking algorithm, are either assumed available or estimated
from pairs of frames by other means. The tracking algorithm in essence determines
the parameters of the assumed motion model that best fit (usually in the least
squares or minimum mean square error sense) the entire set of observations. In the
following, we provide an overview of the main components of a tracking system.

Motion Model

Motion models vary in complexity, ranging from constant velocity models to more
sophisticated local constant angular momentum models [Wen 871 depending upon
the application. The performance of a tracking algorithm is strongly dependent on
the accuracy of the dynamical model it employs. We may classify temporal motion
models as 2-D motion models, to represent image-plane trajectory of 3-D points,
and 3-D motion models, to represent the kinematics of physical motion.

l 2-D Trajectory Models: Temporal trajectory of pixels in the image plane can
be approximated by affine, perspective, or polynomial spatial transformations (see
Sections 6.1.2 and 9.1)) where the parameters ai, i = 1,. . . ,6 or 8, become functions
of time (or the frame index Ic). Such trajectory models can be employed to track the
motion of individual tokens or group of pixels (regions) (see Section 12.2.2 for exam-
ples). The temporal evolution of the transformation parameters can be modeled by
either relating them to some 2-D rotation, translation, and/or dilation dynamics, or
by a low-order Taylor series expansion of an unknown dynamics. Examples of the



230 CHAPTER 12. STEREO AND MOTION TRACKING

former approach include assuming a purely translational constant acceleration tra-
jectory (see the token-tracking example in Section 12.2.2), and assuming a spatially
local simplified afline model given by

z1(lc+l) = Xl@) cosa(k) - ~(k)sinc*(lc) +ti(le)

zz(le + 1) = zi(le)sincu(lc)  + az(le) coso(E) + tz(k)

with some 2-D rotation (denoted by the angle o(k)) and translation (represented by

TV and h(k)) dynamics. An example of the latter approach (see region tracking)
is presented in Section 12.2.2 based on the work of Meyer el al. [Mey 941.

. 3-D Rigid Motion Models: There are some important differences between
3-D rigid motion modeling for two-view problems and for tracking problems. The
models used in two-view problems, discussed in Chapt,ers 2, 9, and 10, do not in-
clude acceleration and precession, since they cannot be estimated from two views.
Anot,her difference is in choosing the center of rotation. There are, in general, two
alternatives:

i) Rotation is defined with respect to a fixed world coordinate system, where it is
assumed that the center of rotation coincides with the origin of the world coordi-
nate system. This approach, which has been adopted in Chapter 2, is generally
unsuitable for tracking problems. To see why, suppose we wish to track a rolling
wheel. The rotation parameters computed with respect to the origin of the world
coordinates are different for each frame (due to the translation of the center of the
wheel), although the wheel rotates with a constant angular velocity about its center
[Sha 901. Thus, it is unnecessarily difficult to model the kinematics of the rotation
in this case.

ii) Rotation is defined about an axis passing through the actual center of rot,ation.
This approach almost always leads to simpler kinematic models for tracking appli-
cations. The coordinates of the center of rotation, which are initially unknown and
translate in time, can only be determined after solving the equations of motion.
It has been shown that the center of rotation can be uniquely determined if there
exists precessional motion [You 901. In the case of rotation with constant angular
velocity, only an axis of rotation can be determined. It follows that one can estimate
at best the axis of rotation in two-view problems.

2-D and 3-D motion models can each be further classified as rigid versus de-
formable motion models. The use of active contour models [Ley 931, such as snakes,
and deformable templates [Ker 941 for tracking 2-D deformable motion, and su-
perquadrics [Met 931 for tracking 3-D deformable motion have recently been pro-
posed. Tracking of 2-D and 3-D deformable motion are active research topics of
current interest.
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Observation Model

231

All tracking algorithms require the knowledge of a set of 2-D or 3-D feature cor-
respondences or optical flow data as observations. In practice, these feature corre-
spondences or optical flow data are not directly available, and need to be estimated
from the observed spatio-temporal image intensity. Feature matching and optical
flow estimation are ill-posed problems themselves (see Chapter 5), because of am-
biguities such as multiple matches (similar features) within the search area or no
matches (occlusion). Several approaches have been proposed for estimating feature
correspondences, including multifeature image matching [Wen 931 and probabilis-
tic data association techniques [Cox 931. These techniques involve a search within
a finite window centered about the location predicted by the tracking algorithm.
It has been shown that the nearest match (to the center of the window) may not
always give the correct correspondence. To this effect, probabilistic criteria have
been proposed to determine the most likely correspondence within the search win-
dow [Cox 931. In optical-flow-based tracking, a multiresolution iterative refinement
algorithm has been proposed to determine the observations [Mey 941. In stereo
imagery, stereo-motion fusion using dynamic programing [Liu 931 or constrained
optimization [Tam 911 have been proposed for more robust correspondence estima-
tion.

Batch vs. Recursive Estimation

Once a dynamical  model and a number of feature correspondences over multiple
frames have been determined, the best motion parameters consistent wit#h the model
and the observations can be computed using either batch or recursive estimation
techniques. Batch estimators, such as the nonlinear least squares estimator, process
the entire data record at once after all data have been collected. On the other
hand, recursive estimators, such as Kalman filters or extended Kalman filters (see
Appendix C), process each observation as it becomes available to update the motion
parameters. It can be easily shown that both batch and recursive estimators are
mathematically equivalent when the observation model is linear in the unknowns
(state variables). Relative advantages and disadvantages of batch versus recursive
estimators are:

1) Batch estimators tend to be numerically more robust than recursive estimators.
Furthermore, when the state-transition or the observation equation is nonlinear, the
performance of batch methods is generally superior to that of recursive methods
(e.g., extended Kalman filtering).
2) Batch methods would require processing of the entire data record every time a
new observation becomes a,vailable. Hence, recursive methods are computationally
more attractive when estimates are needed in real-time (or “almost” real-time).

To combine the benefits of both methods, that is, computational efficiency and
robustness of the results, hybrid methods called recursive-batch estimators have

been proposed [Wen 931.
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12.2.2 2-D Motion Tracking

Two-dimensional motion tracking refers to the ability to follow a set of tokens or
regions over multiple frames based on a polynomial approximation of the image-
plane trajectory of individual points or the temporal dynamics of a collection of
flow vectors. Two examples are presented in the following.

Token Tracking

Several possibilities exist for 2-D tokens, such as points, line segments, and corners.
Here, an example is provided, where 2-D lines, given by

22 = m xl+ 6 or xl = m x2 + b

where m is the slope and b is the intercept, are chosen as tokens. Each such line
segment can be represented by a 4-D feature vector p = [pl p21T consisting of the
two end points, p1 and pz.

Let the 2-D trajectory of each of the endpoints be approximated by a second-
order polynomial model, given by

x(k) = x(k - 1) + v(k - 1)At + ta(k - l)(At)”

v ( k )  =  a(le - l)At and a(lc) = a(le - 1) (12.22)

where x(k), v(k), and a(h) denote the position, velocity, a.nd acceleration of the
pixel at time le, respectively. Note that (12.22) models an image plane motion with
constant acceleration.

Assuming that the tracking will be performed by a Kalman filter, we define the
12-dimensional state of the line segment as

(12.23)

where Ij(k) and fi(!c) denote the velocity and the acceleration of the coordinates,
respectively. Then the state propagation and observation equations can be ex-
pressed as

z(k) = @(k, k - l)z(k - 1) + w(k), lc = 1,. .) N (12.24)

where

[

I4 14At i14(At)2
Q(k,k-- 1) = O4 I4 14At 1 (12.25)

04 04 14

is the state-transition matrix, I4 and 04 are 4 x 4 identity and zero matrices;
respectively, w(k) is a zero-mean, white random sequence, with the covariance
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matrix Q(lc) representing the state model error, and

y(k) = p(h) + v(h), le = 1,. .) N (12.26)

respectively. Note that the observation equation (12.26) simply states that the noisy
coordinates of the end points of the line segment at each frame can be observed. It
is assumed that the observations can be estimated from pairs of frames using some
token-matching algorithm. The application of Kalman filtering follows straightfor-
wardly using (C.5)-(C.9) given the state (12.24) and the observation (12.26) models.

Region Tracking

Tracking regions rather than discrete tokens may yield more robust results and
provide new means to detect occlusion. Meyer et al. [Mey 941 recently proposed
a region-tracking algorithm that is based on motion segmentation and region bound-
ary propagation using affine modeling of a dense flow field within each region. Their
method employs two Kalman filters, a motion filter that tracks the affine flow model
parameters and a geometric filter that tracks boundaries of the regions. A summary
of the state-space formulation for both Kalman filters is provided in the following.

1. Motion Filter: Let the affine flow field within each region be expressed as

[ $j ] = [ $; ] = A(lc) [ :$j ] + b(lc) (12.27)

where the matrix A and the vector b are composed of the six affine parameters
ai, i = 1,. .6.

The temporal dynamics of the affine parameters, ai, i = 1,. ,6, have been
modeled by a second-order Taylor series expansion of unknown temporal dy-
namics, resulting in the state-space model

where [c;i(le) cis(t%)lT, i = 1 ) ,6 are uncorrelated, identically distributed
sequences of zero-mean Gaussian random vectors with the covariance matrix *

Observe that the state-space model (12.28) models the dynamics of each of
the affine parameters separately, assuming that the temporal evolution of the
six parameters are independent. Then, each parameter can be tracked by a
different Kalman filter with a 2-D state vector.

The measurements for the motion filters, &, i = 1, .6 are modeled as noisy
observations of the true parameters, given by

h(k) = ai + Pi(k) (12.29)
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where @i(k) is a sequence of zero-mean, white Gaussian random variables with
the variance ui. As mentioned before, the measurements iii, i = 1, .6 are
estimated from the observed image sequence, two views at a time. Combining
(12.27) with the well-known optical flow equation (5.5), a multiresolution
estimation approach has been proposed by Meyer et al. [Mey 941 using least-
squares fitting and iterative refinement within each region.

2. Geometric Filter: The geometric filter is concerned with tracking each region
process that is identified by a motion segmentation algorithm [Bou 931. The
convex hull (the smallest convex polygon covering the region) of a polygonal
approximation of each region is taken as the region descriptor. The region
descriptor vector consists of 2N components, consisting of the (21, ~2) coor-
dinates of the N vertices of the convex hull.

A state-space model for tracking the evolution of the region descriptor vector
over multiple frames can be written as

where

@(k,k-1) 0 ... 0

Ix [.b 0 i(k, k - 1) 1
u(k) + w(k) (12.30)

Q(k, k - 1) = I2 + AtA

which can be seen by considering a first-order Taylor expansion of
[n(k) m(k)lT given by

about the time k - 1, and substituting the flow field model (12.27) for
h(k) k(k)1 T ,

u ( k )  =  A t  b ( k )

is a deterministic input vector which follows from the above derivation, and
w(k) is a white-noise sequence with the covariance matrix Q(k).

The measurement f:q1iation can be expressed as

h(k) x11(k)
ha(k) m(k)

Z

Em(k), XNl(k)
&w(k) _ _ xm(k)

+ n(k) (12.31)

where n(k) is a sequence of zero-mean, white Gaussian random vectors. An
observation of the region descriptor vector can be estimated by two-view op-
tical flow analysis as described in [Bou 931.

All motion-tracking algorithms should contain provisions for detecting occlusion
and de-occlusion, as moving objects may exit the field of view, or new objects
may appear or reappear in the picture. An occlusion and de-occlusion detection
algorithm based on the divergence of the motion field has been proposed in [Mey 941.
The main idea of the detector is to monitor the difference in the area of the regions
from frame to frame, taking into account any global zooming. The descriptor is
updated after each frame using occlusion/de-occlusion information. The region
tracking algorithm presented in this section has recently been extended to include
active contour models for representation of complex primitives with deformable
B-splines [Bas 941.

12.2.3 3-D Rigid Motion Tracking

Three-dimensional motion tracking refers to the ability to predict and monitor 3-D
motion and structure of moving objects in a scene from long sequences of monocular
or stereo video. In what follows, we present examples of 3-D rigid motion tracking
from monocular and stereo video based on the works of Broida and Chellappa
[Bro 911 and Young and Chellappa [You 901.

From Monocular Video

Suppose we wish to track the 3-D motion of M feature points on a rigid object. We
define two coordinate systems, depicted in Figure 12.4: C,, the object coordinate
system whose origin X, = [X,1(k) Xo2(k) X,,(k)lT, with respect to the camera and
world coordinate systems, coincides with the center of rotation (which is unknown);
and C,, the structure coordinate system, whose origin is located at a known point
on the object. It is assumed that C, and C, are related by an unknown translationI -
T,. Let Xi = [Xii Xi2 zislT denote the known coordinates of a feature point i
with respect to the structure coordinate system. Then the coordinates of the feature
point with respect to the world and camera coordinate systems are given by

Xi(k) = X,(k) + R(k)& - T,), k = 0,. .) N (12.32)
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Figure 12.4: Motion tracking with monocular video.

where N is the number of frames, R(le) is the rotation matrix defined with respect
to the center of rotation (object reference frame), R(0) is taken as the 3 x 3 identity
matrix, the origin of the object coordinate system translates in time with respect
to the camera and world coordinate systems, and the object is assumed rigid; that
is, the coordinates of the feature points xi with respect to the object coordinate
system remains fixed in time.

The translational component of the motion will be represented by a constant
acceleration model given by

X,(b) = X,(k - 1) + V,,(k - l)At + ;A@ - l)(At)” (12.33)

V,(k) = V,(lc - 1) + AO(le - 1)At (12.34)

A&) = A,(k - 1 ) (12.35)

where V,(k) and A,(k) denote 3-D translational velocity and acceleration vectors.
The rotational component of the motion can be represented by a constant preces-

sion (rate of change of angular velocity) model, where n(k) = [fir(k) n,(k) as(k
and P = [PI P2 P31T denote the angular velocity and precession vectors, respec-
tively. Assuming that the rotation matrix R is expressed in terms of the unit
quaternion q(k) = [qe(l%) or qs(le) qs(le)lT, given by (2.10), the evolution of the
rotation matrix in time can be expressed by that of the unit quaternion q(lc). It
has been shown that the temporal dynamics of the unit quaternion, in this case,
can be expressed in closed form as [You 901

q(le) = @[n(lc - l), P; At]q(k - l), le = 1,. . . , N (12.36)
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where q(0) = [0 0 0 llT,
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@[0(/c - l), P; At] = A[P; At]A[n(k - 1) - P; At] (12.37)

A[G; At] = 14 cos  + &I’[G] sin ifG#O

14 ifG=O
(12.38)

and

r[G] = f ! 0 -GB Gz -G1
G3 0 -GI -Gz
-G2 GI 0 -G3
GI G2 G3 0 1 (12.39)

In Equation (12.38), G stands for a 3 x 1 vector, which takes the values of P or
n(k - 1) - P. Observe that this model is also valid for the special case P = 0.

A multiframe batch algorithm, proposed by Broida and Chellappa [Bro 911,
when both translational and rotational motion are with constant velocity is briefly
summarized below. Assuming that all M feature points have the same 3-D motion
parameters, the unknown parameters are

- $yO)
$+p)
g(o)
&)
$0)
fil(O)
WO)
fi3(0)

$p)
s&4
$fp)
$p)
$fy4

+yO)
*c9

+e(O)

(12.40)

Observe that all position and translational motion parameters are scaled by X03,
which is equivalent to setting X03 = 1 to account for the scale ambiguity inherent
in monocular imaging. Furthermore, the X3 component of the first feature point is
left as a free variable, because the origin of the object-coordinate frame (center of
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rotation) cannot be uniquely determined (only the axis of rotation can be computed)
in the absence of precessional motion.

Suppose we have point correspondences measured for these M points over N
frames, given by

&l(k)
m(k) = xis(k) + nil(k)

&z(k)
“a(k) = xi3(k) + m.(k)

(12.41)

(12.42)

where Xii(k), Xiz(k), and Xis(k) can be computed in terms of the unknown pa-
rameters u using (12.32), (12.35), (12.36), and (2.10). Assuming the noise terms
nil(k) and niz(k) are uncorrelated, identically distributed zero-mean Gaussian ran-
dom variables, the maximum-likelihood estimate of the parameter vector u can be
computed by minimizing the summed square residuals

E(u) = F f)ii(k) - %I2 + [m(k) - #I2
k=l i=l

(12.43)

The minimization can be performed by the conjugate-gradient descent or Levenberg-
Marquardt methods. Alternatively, defining the value of the parameter vector u at
each time k, we can define a recursive estimator. However, because of the nonlinear-
ity of the rotational motion model and the observation equation in the unknowns,
this would result in an extended Kalman filter.

From Stereo Video

In stereo imaging, the camera and the world coordinate systems no longer coincide,
as depicted in Figure 12.5. Hence, it is assumed that feature correspondences both
between the right and left images and in the temporal direction are available at each
time k as observations. They can be obtained either separately or simultaneously
using stereo-motion fusion techniques with two stereo-pairs [Tam 91, Liu 931.

Given these feature correspondence data and the kinematics of the 3-D motion
modeled by (12.32), (12.35), (12.36), and (2.10), batch or recursive estimation algo-
rithms can be derived using either 2-D or 3-D measurement equations [You 901. In
the case of 2-D measurements, the corresponding points in the right and left images
are separately expressed in terms of the state vector at each time and included in
the measurement vector. In the case of 3-D measurements, stereo triangularization
is employed at each time k to reconstruct a time sequence of 3-D feature matches,
which are then expressed in terms of the state vector. A comparison of both re-
cursive and batch estimators has been reported in [Wu 941. It has been concluded
that, in the case of recursive estimation, experiments with 2-D measurements have
reached steady-state faster. More recently, simultaneous stereo-motion fusion and
3-D motion tracking have been proposed [Alt 951.
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Figure 12.5: Motion tracking with stereo video.

12.3 Examples

We have experimented with some of the algorithms presented in this section using
a stereo image sequence, known as a static indoor scene, produced at the Computer
Vision Laboratory of Ecole Polytechnique de Montreal. The sequence consists of
10 frame pairs, where each left and right image is 512 pixels x 480 lines with
8 bits/pixel. The calibration parameters of the two cameras were known [Wen 921.
The first and second frame pairs of the sequence are shown in Figure 12.6.

We have interactively marked 14 feature points on the right image of the first
frame (at time ti), which are depicted by white circles in Figure 12.6 (b). The
corresponding points on the other three images are computed by the maximum
likelihood stereo-motion fusion algorithm described in Section 12.1.3. The initial
estimates of the displacement dlR, d2R, dlL, d2L and the disparity ~1, w2 are
computed by three-level hierarchical block matching. Next, we have tracked the
motion of one of these feature points over the 10 frames using a batch algorithm.
Observe that the selected feature point leaves the field of view after nine frames on
the right image and eight frames on the left, as shown in Figure 12.7. We note that
tracking using a temporal trajectory not only improves 3-D motion estimation, but
also disparity and hence depth estimation.
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(4

Figure 12.6: The first and second frame pairs of a stereo indoor scene produced
at the Computer Vision Laboratory of Ecole Polytechnique de Montreal: a) left
image at time tr, b) right image at time tr, c) left image at time tz, and d) right
image at time tz. Fourteen feature points (marked by white circles) have been
selected interactively on the right image at time tr. Point correspondences on the
other images are found by the maximum likelihood stereo-motion fusion algorithm.
(Courtesy Yucel Altunbasak)

(4 (b)
Figure 12.7: Temporal trajectory of a single point marked on the a) left and b) right
images of the first frame. The white marks indicate the position of the feature point
in the successive frames. (Courtesy Yucel Altunbasak)

12.4 Exercises

1. Show that only two of the three equations in (12.5) are linearly independent
if we have exact left-right correspondences.

2. Derive (12.6) given that the left and right camera coordinates are parallel and
aligned with the Xr - X2 plane of the world coordinate system.

3. Derive (12.10).

4. Write the Kalman filter equations for the 2-D token-matching problem dis-
cussed in Section 12.2.2 given the state-transition model (12.24) and the ob-
servation model (12.26).

5. Write the equations of a recursive estimator for the 3-D motion-tracking prob-
lem discussed in Section 12.2.3. Discuss the relationship between this recursive
estimator and the batch solution that was provided.
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