
Foundations and TrendsR© in
Computer Graphics and Vision
Vol. 2, No 3 (2006) 173–258
c© 2007 S. B. Kang, Y. Li, X. Tong and H.-Y. Shum
DOI: 10.1561/0600000012

Image-Based Rendering

Sing Bing Kang1, Yin Li2, Xin Tong3 and
Heung-Yeung Shum4

1 Microsoft Research, USA, sbkang@microsoft.com
2 Microsoft Corporation, USA, yl@microsoft.com
3 Microsoft Research Asia, China, xtong@microsoft.com
4 Microsoft Research Asia, China, hshum@microsoft.com

Abstract

Image-based rendering (IBR) is unique in that it requires computer
graphics, computer vision, and image processing to join forces to solve
a common goal, namely photorealistic rendering through the use of
images. IBR as an area of research has been around for about ten
years, and substantial progress has been achieved in effectively captur-
ing, representing, and rendering scenes. In this article, we survey the
techniques used in IBR. Our survey shows that representations and
rendering techniques can differ radically, depending on design deci-
sions related to ease of capture, use of geometry, accuracy of geometry
(if used), number and distribution of source images, degrees of freedom
for virtual navigation, and expected scene complexity.

Perfect Corp.
Ex. 1025

1
Introduction

One of the primary goals in computer graphics is photorealistic ren-
dering. Much progress has been made over the years in graphics in a
bid to attain this goal, with significant advancements in 3D represen-
tations and model acquisition, measurement and modeling of object
surface properties such as the bidirectional reflectance distribution
function (BRDF) and surface subscattering, illumination modeling,
natural objects such as plants, and natural phenomena such as water,
fog, smoke, snow, and fire. More sophisticated graphics hardware that
permit very fast rendering, programmable vertex and pixel shading,
larger caches and memory footprints, and floating-point pixel formats
also help in the cause. In other words, a variety of well-established
approaches and systems are available for rendering models. See the
surveys on physically based rendering [78], global illumination meth-
ods [26], and photon mapping (an extension of ray tracing) [44].

Despite all the advancements in the more classical areas of computer
graphics, it is still hard to compete with images of real scenes. The
rendering quality of environments in animated movies such as Shrek 2
and even games such as Ghost Recon for Xbox 360TM is excellent, but
there are hints that these environments are synthetic. Websites such

173

174 Introduction

as http://www.ignorancia.org/ showcase highly photorealistic images
that were generated through ray tracing, which is computationally
expensive. The special effects in high-budget movies blend seamlessly in
real environments, but they typically involved many man-hours to cre-
ate and refine. The observation that full photorealism is really hard
to achieve with conventional 3D and model-based graphics has led
researchers to take a “short-cut” by working directly with real images.
This approach is called image-based modeling and rendering. Some of
the special effects used in the movie industry were created using image-
based rendering techniques described in this article.

Image-based modeling and rendering techniques have received a lot
of attention as a powerful alternative to traditional geometry-based
techniques for image synthesis. These techniques use images rather
than geometry as the main primitives for rendering novel views. Pre-
vious surveys related to image-based rendering (IBR) have suggested
characterizing a technique based on how image-centric or geometry-
centric it is. This has resulted in the image-geometry continuum (or
IBR continuum) of image-based representations [46,52].

2
Representations and Rendering

All IBR techniques have the same goal: to establish a mapping rela-
tionship between parts of the representation and the screen pixels, and
composite these parts to produce the virtual view (Figure 2.1). One
way to characterize IBR techniques is through the amount of geometry
required, producing what we call the IBR continuum.

2.1 IBR Continuum

For didactic purposes, we classify the various rendering techniques
(and their associated representations) into three categories, namely

Fig. 2.1 Goals of rendering: establish mapping between representation and image screen,
and blend.

175

176 Representations and Rendering

Fig. 2.2 IBR continuum. Categories used in this article are based on this continuum, with
representative members shown. Note that the Lumigraph [32] is a bit of an anomaly in this
continuum, since it uses explicit geometry and a relatively dense set of images.

rendering with no geometry, rendering with implicit geometry, and ren-
dering with explicit geometry. These categories, depicted in Figure 2.2,
should actually be viewed as a continuum rather than absolute discrete
ones, since there are techniques that defy strict categorization.

At one end of the IBR continuum, traditional texture mapping relies
on very accurate geometric models but only a few images. In an image-
based rendering system with depth maps (such as 3D warping [63], and
layered-depth images (LDI) [93], and LDI tree [15]), the model consists
of a set of images of a scene and their associated depth maps. The
surface light field [112] is another geometry-based IBR representation
which uses images and Cyberware scanned range data. When depth is
available for every point in an image, the image can be rendered from
any nearby point of view by projecting the pixels of the image to their
proper 3D locations and re-projecting them onto a new picture. For
many synthetic environments or objects, depth is available. However,
obtaining depth information from real images is hard even with state-
of-art vision algorithms.

Some image-based rendering systems do not require explicit geo-
metric models. Rather, they require feature correspondence between
images. For example, view interpolation techniques [17] generate novel
views by interpolating optical flow between corresponding points. On
the other hand, view morphing [91] results in-between camera matri-
ces along the line of two original camera centers, based on point

2.2. Geometry-Rendering Matrix 177

correspondences. Computer vision techniques are usually used to gen-
erate such correspondences.

At the other extreme, light field rendering uses many images but
does not require any geometric information or correspondence. Light
field rendering [53] produces a new image of a scene by appropri-
ately filtering and interpolating a pre-acquired set of samples. The
Lumigraph [32] is similar to light field rendering but it uses approx-
imate geometry to compensate for non-uniform sampling in order to
improve rendering performance. Unlike the light field and Lumigraph
where cameras are placed on a two-dimensional grid, the Concentric
Mosaics representation [95] reduces the amount of data by capturing a
sequence of images along a circle path. In addition, it uses a very prim-
itive form of a geometric impostor, whose radial distance is a function
of the panning angle. (A geometric impostor is basically a 3D shape
used in IBR techniques to improve appearance prediction by depth
correction. It is also known as geometric proxy.)

Because light field rendering does not rely on any geometric impos-
tors, it has a tendency to rely on oversampling to counter undesirable
aliasing effects in output display. Oversampling means more intensive
data acquisition, more storage, and higher redundancy.

2.2 Geometry-Rendering Matrix

Of course, the true picture is appreciably more complicated. The IBR
continuum is a simplified version where rendering depends on the
amount of geometry. We can expand on this by further categorizing
rendering as either point-based, layer-based, or monolithic. Figure 2.3
shows this expanded version for IBR categorization, which we call the
geometry-rendering matrix.

Point-based rendering is applied to 3D point clouds (such as lay-
ered depth image [93] and relief texture mapping [72]), or point cor-
respondences (used in techniques such as view interpolation [17] and
view morphing [91]). Typically, each point is rendered independently.
In point-based rendering, the target view is typically restricted to be
near to the reference view. The point on the reference view is usually
directly mapped to the target view with no compositing operation.

178 Representations and Rendering

Fig. 2.3 Geometry-rendering matrix. This matrix shows the types of representations (along
horizontal axis) and rendering (along vertical axis) in IBR.

Layer-based rendering is performed on a layer-by-layer basis, i.e.,
each layer is rendered independently and then composed to produce
the final view. A planar geometry is usually assumed for each layer,
which can be easily rendered as monolithic geometry. This category
of techniques include layered imposters [89], sprites with depth [93],
and pop-up light field [96]. Sprites with depth [93] use a view-aligned

2.2. Geometry-Rendering Matrix 179

height map to represent the geometry details; they are rendered using
techniques as discussed in the point-based category.

Monolithic rendering is done on single pieces of geometry, each of
which usually being a contiguous triangular mesh. We refer to such
geometry as monolithic geometry. The monolithic geometry is ren-
dered as an entire object using texture mapping techniques. There-
fore, the mapping between the geometry and the target view can be
easily determined through view projection. Since the global geome-
try is reconstructed from multiple images, the final rendering result is
composited from multiple reference colors mapped on the same surface
point. This category of techniques include view-dependent texture map-
ping [24], image-based visual hulls [64], opacity hulls [65], surface light
field [112], Lumigraph [32], and unstructured Lumigraph [8]. Note that
the joint view interpolation [55] also falls into this rendering category
because it divides each reference view by triangles and rendered as an
entire mesh.

These three rendering types operate on representations that range
from being continuous (triangle meshes) to fragmented (point clouds).
The rendering of continuous representations has been well exploited
using the conventional graphics pipeline. However, it is difficult recon-
structing such continuous representations directly from image samples.
On the other hand, more fragmented representations are significantly
easier to reconstruct, using 3D scanners or vision techniques such as
stereo and structure from motion. Unfortunately, fragmented repre-
sentations tend to be view-dependent and limited by the input image
resolution; occlusion and holes are particularly difficult problems to
handle.

Note that there is one category of rendering techniques that do
not require geometry information. This category includes QuickTime
VR [18], light field [53], Concentric Mosaics (CMs) [95], and manifold
hopping [98]. (Strictly speaking, both the 4D light field and CMs do
have a geometric proxy, namely the focal plane and cylinder, respec-
tively, but they do not require any geometric reconstruction.)

3
Static Scene Representations

In the previous section, we introduced the IBR continuum that spans
a variety of representations (Figure 2.2). We also introduced the
geometry-rendering matrix as a more detailed version. For clarity, we
structure this article based on the simplier IBR continuum: repre-
sentations that rely on no geometry are described first, followed by
those using implicit geometry (i.e., relationships expressed through
image correspondences), and finally those with explicit 3D geome-
try. Where appropriate, we discuss rendering mechanisms (point-based,
layer-based, and monolithic rendering) that predominate in the respec-
tive geometry-based categories.

180

4
Rendering with no Geometry

We start with representative techniques for rendering with unknown
scene geometry. These techniques typically rely on many input images;
they also rely on the characterization of the plenoptic function.

4.1 Plenoptic Modeling

The original 7D plenoptic function [1] is defined as the intensity of light
rays passing through the camera center at every 3D location (Vx,Vy,Vz)
at every possible angle (θ,φ), for every wavelength λ, at every time t,
i.e., P7(Vx,Vy,Vz,θ,φ,λ, t).

Adelson and Bergen [1] considered one of the tasks of early vision as
extracting a compact and useful description of the plenoptic function’s
local properties (e.g., low order derivatives). It has also been shown
by Wong et al. [111] that light source directions can be incorporated
into the plenoptic function for illumination control. By removing two
variables, time t (therefore static environment) and light wavelength λ,
McMillan and Bishop [68] introduced the notion of plenoptic modeling
with the 5D complete plenoptic function of the form P5(Vx,Vy,Vz,θ,φ).

181

182 Rendering with no Geometry

Fig. 4.1 Plenoptic functions: (a) full 7-parameter (Vx,Vy ,Vz ,θ,φ,λ, t), (b) 5-parameter
(Vx,Vy ,Vz ,θ,φ), and (c) 2-parameter (θ,φ).

Table 4.1 A taxonomy of plenoptic functions.

Dimension Year View space Name
7 1991 Free Plenoptic function
5 1995 Free Plenoptic modeling
4 1996 Bounding box Lightfield/Lumigraph
3 1999 Bounding circle Concentric mosaics
2 1994 Fixed point Cylindrical/Spherical panorama

The simplest plenoptic function is a 2D panorama (cylindrical [18]
or spherical [104]) when the viewpoint is fixed, namely P2(θ,φ). A reg-
ular rectilinear image with a limited field of view can be regarded as
an incomplete plenoptic sample at a fixed viewpoint (Figure 4.1).

Image-based rendering, or IBR, can be viewed as a set of techniques
to reconstruct a continuous representation of the plenoptic function
from observed discrete samples. The issues of sampling the plenoptic
function and reconstructing a continuous function from discrete sam-
ples are important research topics in IBR. As a preview, a taxonomy
of plenoptic functions is shown in Table 4.1.

The cylindrical panoramas used in [68] are two-dimensional samples
of the plenoptic function in two viewing directions. The two viewing
directions for each panorama are panning and tilting about its cen-
ter. This restriction can be relaxed if geometric information about the
scene is known. In [68], stereo techniques are applied on multiple cylin-
drical panoramas in order to extract disparity (or inverse depth) dis-
tributions. These distributions can then be used to predict appearance
(i.e., plenoptic function) at arbitrary locations. Similar work on regular
stereo pairs can be found in [51], where correspondences constrained
along epipolar geometry are directly used for view transfer.

4.2. Light Field and Lumigraph 183

4.2 Light Field and Lumigraph

It was observed in both light field rendering [53] and Lumigraph [32]
systems that as long as we stay outside the convex hull (or simply a
bounding box) of an object1 and the medium is non-dispersive, we can
simplify the 5D complete plenoptic function to a 4D light field plenoptic
function,

P4(u,v,s, t), (4.1)

where (u,v) and (s, t) are parameters of two planes of the bounding
box, as shown in Figure 4.2.

The (u,v) plane is the camera plane, where the sampling cameras
are located. Figure 4.3(a) shows a visualization of the light field from
the camera plane. From a point corresponding to a sampling camera
location, the view is the original sampled view.

For the light field system of Levoy and Hanrahan, the (s, t) plane
is the focal plane, where the scene is assumed to be located. A visual-
ization of the light field from the focal plane is shown in Figure 4.3(b).
Assuming that the surface of the scene is approximately at the focal
plane, all the rays passing through a point in the focal plane are appear-
ance samples of the same surface point from different views. This is

Fig. 4.2 Representation of a light field.

1 The reverse is also true if camera views are restricted inside a convex hull.

184 Rendering with no Geometry

Fig. 4.3 The light field seen from (a) camera plane and (b) focal plane. The boxed subimage
is observed from a single point in the parameter plane. (Images courtesy of Marc Levoy;
c©1996 ACM, Inc. Included here by permission.)

akin to capturing the local radiance function associated with the scene
surface for a fixed lighting condition. Rays are interpolated based on
this assumption that the scene surface is close to the focal plane. More
specifically, as shown in Figure 4.2, any ray passing through two planes
can be indexed by the two intersection points and subsequently ren-
dered using quadratic linear interpolation of the neighboring 16 rays.
Object surfaces that are located far away from the focal plane will
appear blurred at interpolated views (this will be explained in the next
section). On the other hand, the Lumigraph uses an approximated 3D
object surface for view interpolation, which reduces the blur problem.
Note that for the Lumigraph, the (u,v) plane is the focal plane while

4.2. Light Field and Lumigraph 185

Fig. 4.4 An (s,u,v) slice of a Lumigraph. Note that the (u,v) and (s, t) parameterizations
are reversed versions for the light field. (Image courtesy of Michael Cohen; c©1996 ACM,
Inc. Included here by permission.)

the (s, t) is the camera plane. A visualization of a subset of the full
(u,v,s, t) space for the Lumigraph is shown in Figure 4.4.

In the rest of this article, we will follow the notation of Lumigraph
where (s, t) is the camera plane and (u,v) is the focal plane.

4.2.1 Sampling

A 2D subspace given by fixed values of s and t resembles an image,
whereas fixed values of u and v give a hypothetical radiance function.
Fixing t and v gives rise to an epipolar image, or EPI [6]. An example
of a 2D light field or EPI is shown in Figure 4.5.

Let the sample intervals along s and t directions be ∆s and ∆t,
respectively. As a result, the horizontal and vertical disparities between
two grid cameras in the (s, t) plane are given by k1∆sf/z and k2∆tf/z,
respectively. Here f is the focal length of the camera, z is the depth
value and (k1∆s,k2∆t) is the sample interval between two grid points
(s, t).

Similarly, the sample intervals along u and v directions are assumed
to be ∆u and ∆v, respectively. A pinhole camera model is adopted to
capture the light field. What a camera sees is a blurred version of the
plenoptic function because of finite camera resolution. A pixel value

186 Rendering with no Geometry

t

Z

t 0

v
f

z(v,t)

),(tvz
ft

v v′′′′

v

t0 t

v

v′′′′

Fig. 4.5 An illustration of 2D light field or EPI. (a) a point is observed by two cameras 0
and t. (b) two lines are formed by stacking pixels captured along the camera path. Each
line has a uniform color because of Lambertian assumption on object surfaces.

is a weighted integral of the illumination of the light arriving at the
camera plane, or the convolution of the plenoptic function with a low-
pass filter.

Let l(u,v,s, t) represent the continuous light field, p(u,v,s, t) the
sampling pattern in light field, r(u,v,s, t) the combined filtering and
interpolating low-pass filter, and i(u,v,s, t) the output image after
reconstruction. Let L,P,R and I represent their corresponding spec-
tra, respectively. In the spatial domain, the light field reconstruction
can be computed as

i(u,v,s, t) = r(u,v,s, t) ∗ [l(u,v,s, t)p(u,v,s, t)], (4.2)

where ∗ represents the convolution operation.
In the frequency domain, we have

I(Ωu,Ωv,Ωs,Ωt) = R(Ωu,Ωv,Ωs,Ωt)(L(Ωu,Ωv,Ωs,Ωt)

∗P (Ωu,Ωv,Ωs,Ωt)). (4.3)

The problem of light field reconstruction is to find a reconstruction
filter r(u,v,s, t) for anti-aliased light field rendering, given the sampled
light field signals.

The depth function of the scene is assumed to be equal to z(u,v,s, t).
As shown on the left of Figure 4.5, the same 3D point is observed at v′

and v in the local coordinate systems of cameras 0 and t, respectively.
The disparity between the two image coordinates can be computed

4.2. Light Field and Lumigraph 187

easily as v − v′ = ft/z. The right of Figure 4.5 shows an EPI image
where each line represents the radiance observed from different cameras.
For simplicity of analysis, the BRDF model of a real scene is assumed
to be Lambertian. As a result, each line in Figure 4.5(b) has a uniform
color.

Suppose the sampling is that of a rectangular lattice, and that
Ls(Ωu,Ωv,Ωs,Ωt) is the Fourier transform of the resulting sampled
light field ls(u,v,s, t). From basic principles, Ls(Ωu,Ωv,Ωs,Ωt) consists
of replicas of L(Ωu,Ωv,Ωs,Ωt), shifted to the 4D grid points.

These shifted spectra, or replicas, except the original one at
(0,0,0,0), are called the alias components. If L is not bandlimited out-
side the Nyquist frequencies, some replicas will overlap with the others,
creating aliasing artifacts.

In general, there are two ways to combat aliasing effects in output
display when we render a novel image. First, we can increase the sam-
pling rate. The higher the sampling rate, the less the aliasing effects.
Indeed, uniform oversampling has been consistently employed in many
IBR systems to avoid undesirable aliasing effects. However, oversam-
pling means more effort in data acquisition and requires more storage.
Though redundancy in the oversampled image database can be par-
tially eliminated by compression, excessive samples are always wasteful.

Second, light field signals can also be made bandlimited by filtering
with an appropriate filter kernel. Similar filtering has to be performed
to remove the overlapping of alias components during reconstruction or
rendering. The design of such a kernel is, however, related to the depth
of the scene. Previous work on Lumigraph shows that approximate
depth correction can significantly improve the interpolation results. The
questions are: is there an optimal filter? Given the number of samples
captured, how accurately should the depth be recovered? Similarly,
given the depth information one can recover, how many samples can
be removed from the original input?

Such questions were addressed by Chai et al. [14] (ignoring occlu-
sion effects). One key observation made is that the spectral support
(in frequency domain) of a light field signal is bounded by only the
minimum and maximum depths, irrespective of how complicated the
spectral support might be because of depth variations in the scene

188 Rendering with no Geometry

tΩΩΩΩ

vΩΩΩΩ

0
0

====ΩΩΩΩ++++ΩΩΩΩ tvZ
f

v∆∆∆∆
ππππ

v∆∆∆∆−−−−
ππππ

0
min

====ΩΩΩΩ++++ΩΩΩΩ tvZ

f

0
max

====ΩΩΩΩ++++ΩΩΩΩ tvZ

f

v

Z

Zmax

Zmin

Z0 tΩΩΩΩ

vΩΩΩΩ

Fig. 4.6 Spectral support for light field signal with spatially varying depths: (a) a local
constant depth model bounded by zmin and zmax is augmented with another depth value
z0; (b) spectral support is now bounded by two smaller regions, with the introduction of
the new line of z0; and (c) optimal depth at z0.

(see Figures 4.6(a) and 4.6(b)). Given the minimum and maximum
depths, a reconstruction filter with an optimal and constant depth can
be designed to achieve anti-aliased light field rendering. More specifi-
cally, anti-aliased light field rendering can be achieved by applying the
optimal filter as shown in Figure 4.6(c), where the optimal constant
depth is defined as the inverse of average disparity d0, i.e.,

d0 =
1
z0

=

(
1

zmin
+ 1

zmax

)

2
. (4.4)

4.2.2 Extensions

Note that in general, the (u,v) and (s, t) planes need not be parallel.
There is also an implicit and important assumption that the strength
of a light ray does not change along its path. For a complete description
of the plenoptic function for the bounding box, six sets of such two-
planes would be needed. More restricted versions of Lumigraph have
also been developed by Sloan et al. [99] and Katayama et al. [49]. Here,
the camera motion is restricted to a straight line.

The principles of light field rendering and Lumigraph are sim-
ilar, except that the Lumigraph has the additional (approximate)
object geometry for better compression and appearance prediction. For
this reason, the Lumigraph belongs to the “explicit geometry” camp

4.3. Concentric Mosaics 189

(Section 7). It is discussed here because of its strong similarity with the
light field.

In the light field system, a capturing rig is designed to obtain uni-
formly sampled images. To reduce aliasing effect, the light field is pre-
filtered before rendering. A vector quantization scheme is used to reduce
the amount of data used in light field rendering, while achieving random
access and selective decoding. On the other hand, the Lumigraph can
be constructed from a set of images taken from arbitrarily placed view-
points. A re-binning process (in this case, resampling to a regular grid
using a hierarchical interpolation scheme) is therefore required. Geo-
metric information is used to guide the choices of the basis functions.
Because of the use of geometric information, the sampling density can
be reduced.

The P4(u,v,s, t) two-plane parameterization is just one of many for
light fields. Other types of light fields include spherical or isotropic
light fields [10, 41], sphere-plane light fields [10], and hemispherically
arranged light fields with geometry [59]. The issue of uniformly sam-
pling the light field was investigated by Camahort [9]. He introduced
an isotropic parameterization he calls the direction-and-point parame-
terization (DPP), and showed that while no parameterization is view-
independent, only the DPP introduces a single bias.

Buehler et al. [8] extended the light field concept through a tech-
nique that uses geometric proxies (if available), handles unstructured
input, and blends textures based on relative angular position, resolu-
tion, and field-of-view. They achieve real-time rendering by interpolat-
ing the blending field using a sparse set of locations.

4.3 Concentric Mosaics

Obviously, the more constraints we have on the camera location
(Vx,Vy,Vz), the simpler the plenoptic function becomes. If we want
to capture all viewpoints, we need a complete 5D plenoptic function.
As soon as we stay in a convex hull (or conversely viewing from a
convex hull) free of occluders, we have a 4D light field. If we do not
translate at all, we have a 2D panorama. An interesting 3D parameter-
ization of the plenoptic function, called Concentric Mosaics (CMs) [95],

190 Rendering with no Geometry

was proposed by Shum and He; here, the sampling camera motion is
constrained along concentric circles on a plane.

By constraining camera motion to planar concentric circles, CMs
can be created by compositing slit images taken at different locations
of each circle, as shown in Figure 4.7. Two types of CMs are shown in
Figure 4.8; in the first type, rays are arranged in the tangential direction

Fig. 4.7 Creation of CMs from source images. If the images are captured at regular intervals
while rotated at a constant angular speed, each CM is created by just stacking the same
columns from all the images in the order they are acquired. Note that the CM that consists
of rays passing through the central axis of rotation is actually a (parallax-free) panorama.
The left part of the figure is adapted from Figure 2.3 in [84].

P'

P

Fig. 4.8 Types of Concentric Mosaics (CMs): a plan view. A CM is assembled by unit width
slit images (a) tangent to the circle; and (b) normal to the circle. We call (a) tangent CMs
and (b) normal CMs. The CMs in [95] are actually tangent CMs.

4.3. Concentric Mosaics 191

(Figure 4.8(a)), and in the second type, rays are arranged in normal
direction (Figure 4.8(b)). CMs define a 3D plenoptic function because
they are sampled naturally by three parameters: rotation angle, radius,
and vertical elevation. Clearly there is a one-to-one mapping between
pixels in a CM and their corresponding scene points. The CMs used
in [95] are actually tangent CMs; unless otherwise specified, we meant
tangent CMs when we mention CMs.

Novel views are rendered by combining the appropriate captured
rays in an efficient manner at rendering time. Although vertical dis-
tortions exist in the rendered images, they can be alleviated by depth
correction. CMs have good space and computational efficiency. Com-
pared with a light field or Lumigraph, CMs have much smaller file size
because only a 3D plenoptic function is constructed.

Capturing CMs is almost as easy as capturing a traditional
panorama except that CMs require more images. By simply spinning an
off-centered camera on a rig shown in Figure 4.9, Shum and He [95] were
able to construct CMs for a real scene in about 10 min. Like panoramas,
CMs do not require the difficult modeling process of recovering geomet-
ric and photometric scene models. Yet CMs provide a much richer user
experience by allowing the user to move freely in a circular region and
observe significant parallax and lighting changes. (Parallax refers to
the apparent relative change in object location within a scene due to

Fig. 4.9 Camera setup for acquiring Concentric Mosaics (CMs). The camera is counterbal-
anced by a weight; during image acquisition, it is rotated by a motor at a constant rotational
speed.

192 Rendering with no Geometry

a change in the camera viewpoint.) The ease of capturing makes CMs
very attractive for many virtual reality applications.

It has been shown [95] that a novel view inside the capturing cir-
cle can be rendered from the CMs without any knowledge about the
depth of the scene. Three possible techniques for resampling CMs are
shown in Figure 4.10. From densely sampled CMs, a novel view image

Constant depth

A

B

CD C

B

A

O

Fig. 4.10 Rendering CMs with (a) infinite depth, and (b,c) constant finite depth. (a) Rebin-
ning: For a given ray in virtual view P (say vj), the CM (CMl) that is tangent to it is used.
The column of pixels in CMl that corresponds to the line of tangency with vj is used to
construct part of the new view. (b) View interpolation: A ray from viewpoint A is projected
to the constant depth surface (represented as a dotted circle) at B, and interpolated by two
rays BC and BD that are retrieved from neighboring CMs. (c) Local warping: A ray from
viewpoint A is projected to the constant depth surface at B, and reprojected to the nearest
CM by the ray BC.

4.3. Concentric Mosaics 193

can be rendered by linearly interpolating nearby rays from two neigh-
boring CMs. In addition, a constant depth is assumed to find the best
“nearby” rays for optimal rendering quality [14]. Figure 4.10(b) illus-
trates a rendering ray that is interpolated by two rays captured in
nearby CMs. Despite the inevitable vertical distortion, CMs are very
useful for wandering around (on a plane) in a virtual environment.

Rendered views of a lobby scene from captured CMs are shown in
Figure 4.11. A rebinned CM at the rotation center is shown in Fig-
ure 4.11(a), while two rebinned CMs taken at exactly opposite direc-
tions are shown in Figures 4.11(b) and 4.11(c), respectively. It has also
been shown in [74] that such two mosaics taken from a single rotating
camera can simulate a stereo panorama. In Figure 4.11(d), strong paral-
lax can be seen between the plant and the poster in the rendered images.
More specifically, in the left image, the poster is partially obscured by
the plant, while the poster and the plant do not visually overlap in the
right image. This is a significant visual cue that the camera viewpoint
has shifted.

Fig. 4.11 Rendering a lobby [95]: rebinned Concentric Mosaic (a) at the rotation center;
(b) at the outermost circle; (c) at the outermost circle but looking at the opposite direction
of (b); and (d) parallax change between the plant and the poster.

194 Rendering with no Geometry

Based on a similar representation, manifold hopping [98] can be
regarded as a 2.5D representation since it restricts the viewpoint on a
set of discrete concentric circles. It provides user experience of compa-
rable quality to CMs, while using significantly less data. The rendering
of manifold hopping is also simplified to 2D image warping.

4.4 Multiperspective Images and Manifold Mosaics

A multiperspective image is assembled from rays captured from mul-
tiple viewpoints (e.g., [118]). Multiperspective images have also been
called MCOP images [83], multiperspective panoramas [113], pushb-
room images [35], and manifold mosaics [76], among other names. Let
us consider the case of Peleg et al.’s notion of manifold mosaics. The
manifold mosaic is created by projecting thin strips from images; the
shape of these thin strips depend on the camera motion. More specifi-
cally, for each strip, the boundaries are perpendicular to the optic flow,
and the width is proportional to the amount of motion. The basic idea
is depicted in Figure 4.12, which also shows an example mosaic.

In this article, we define a manifold mosaic as a multiperspective
image where each pixel has a one-to-one mapping with a scene point.2

Therefore, a conventional perspective image, or a single perspective
panorama, can be regarded as a degenerate manifold mosaic in which
all rays are captured at the same viewpoint.

Camera path

Manifold mosaic

Fig. 4.12 Manifold mosaic [76]. Top: Graphical depiction of general camera motion. The
wedges indicate representative parts of images used to create the manifold mosaic. Bottom:
An actual manifold mosaic created using a hand-held camera. (Image (courtesy of Shmuel
Peleg) is from S. Peleg and J. Herman, “Panoramic mosaics by manifold projection,” in
IEEE Conference on Computer Vision and Pattern Recognition, pp. 338–343, June 1997.
c©1997 IEEE.)

2 By this definition, MCOP images are not manifold mosaics.

4.5. Image Mosaicing 195

We adopt the term manifold mosaic from [75] because the view-
points are generally taken along a continuous path or a manifold (sur-
face or curve). For example, CMs are manifold mosaics constructed
from rays taken along concentric circles [95]. Note that the concept of
the manifold mosaic is widely used in Manifold hopping [98].

Although many previous image-based rendering techniques (such
as view interpolation and 3D warping) were developed for perspective
images, they can be applied to manifold mosaics as well. For example,
3D warping has been used to reproject a multiple-center-of-projection
(MCOP) image in [72,83] where each pixel of an MCOP image has an
associated depth.

4.5 Image Mosaicing

A complete plenoptic function at a fixed viewpoint can be constructed
from incomplete samples. Specifically, a panoramic mosaic is con-
structed by registering multiple regular images. For example, if the
camera focal length is known and fixed, one can project each image to
its cylindrical map and the relationship between the cylindrical images
becomes a simple translation. For arbitrary camera rotation, one can
first register the images by recovering the camera movement, before
converting to a final cylindrical/spherical map.

Many systems have been built to construct cylindrical and spherical
panoramas by stitching multiple images together, e.g., [18, 62, 68, 101,
104] among others. When the camera motion is very small, it is pos-
sible to put together only small strips from registered images, i.e., slit
images (e.g., [75, 118]), to form a large panoramic mosaic. Capturing
panoramas is even easier if omnidirectional cameras (e.g., [69, 70]) or
fisheye lens [115] are used.

Szeliski and Shum [104] presented a complete system for con-
structing panoramic image mosaics from sequences of images. Their
mosaic representation associates a transformation matrix with each
input image, rather than explicitly projecting all of the images onto
a common surface, such as a cylinder. In particular, to construct a
full view panorama, a rotational mosaic representation associates a
rotation matrix (and optionally a focal length) with each input image.

196 Rendering with no Geometry

A patch-based alignment algorithm is developed to quickly align two
images given motion models. Techniques for estimating and refining
camera focal lengths are also presented.

In order to reduce accumulated registration errors, global alignment
through block adjustment is applied to the whole sequence of images,
which results in an optimally registered image mosaic. To compensate
for small amounts of motion parallax introduced by translations of the
camera and other unmodeled distortions, a local alignment (deghost-
ing) technique [97] warps each image-based on the results of pairwise
local image registrations. Combining both global and local alignment
significantly improves the quality of image mosaics, thereby enabling
the creation of full view panoramic mosaics with hand-held cameras.

A tessellated spherical map of the full view panorama is shown
in Figure 4.13. Three panoramic image sequences of a building lobby
were taken with the camera on a tripod tilted at three different angles.
Twenty two images were taken for the middle sequence, 22 images for
the upper sequence, and 10 images for the top sequence. The camera
motion covers more than two-thirds of the viewing sphere, including
the top.

Apart from blending images to directly produce wider fields of view,
one can use the multiple images to generate higher resolution panora-
mas as well (e.g., using maximum likelihood algorithms [42] or learnt
image models [12]). There are also techniques to handle the exposure
differences in the source image. For example, Uyttendaele et al. [107]
perform block-based intensity adjustment to compensate for differences

Fig. 4.13 Tessellated spherical panorama covering the north pole (constructed from
54 images) [104].

4.5. Image Mosaicing 197

in exposures. More principled techniques have been used to compensate
for the exposure through radiometric self-calibration (e.g., [11,31,61]).

To produce high-quality navigation in a large environment (along a
constrained set of paths), Uyttendaele et al. [106] capture panoramic
video using Point Grey’s LadybugTM 6-camera system. The resolution
of each camera is 1024 × 768, and the capture rate was 15 fps. They
mounted the LadybugTM on a tripod stand and dolly that can then
be manually moved, as well as on a flattop skydiving helmet (Fig-
ures 4.14(a) and 4.14(b)). Once the images were processed to remove
radial distortion and vignetting effects, they were then stitched frame
by frame. The resulting panoramic video was stabilized using tracked
features to provide smooth virtual navigation.

Zomet et al. [119] recently introduced a different way of produc-
ing mosaics called crossed-slits projection, or X-slits projection. What
is interesting about this rendering technique is that the sampled rays
passes two non-parallel slits, an example of which is shown at the top of
Figure 4.15 (where the slits are perpendicular). The benefits are two-
fold: the generated mosaics appear closer to being perspective, and
interesting virtual navigation can be obtained merely by changing the
location of one slit. The bottom of Figure 4.15 shows examples of visu-
alization that can be obtained through X-slits.

Fig. 4.14 Panoramic video [106]. (a), (b) Two versions of the capture system with Point
Grey’s LadybugTM 6-camera system, (c) screen shot of user interface for navigation, and
(d) sample panoramas along camera path network.

198 Rendering with no Geometry

Fig. 4.15 Rendering using crossed-slits projection [119]. Top: A depiction of the idea with
perpendicular slits. Bottom: The two left images are example source images of a rotating
object, and the right two images are synthesized views of a virtual looming camera. (Images
(courtesy of Assaf Zomet, Doron Feldman, Shmuel Peleg, and Daphna Weinshall) are from
A. Zomet, D. Feldman, S. Peleg, and D. Weinshall, “Mosaicing new views: The crossed-slits
projection,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 25,
no. 6, pp. 741–754, June 2003. c©2003 IEEE.)

4.6 Other Forms of Interpolation

It is worth noting that interpolation in ray space does not necessarily
involve sampling only the nearest rays. It is possible to avoid artifacts
such as blurring, ghosting, and pixelation due to insufficient image sam-
ples or incorrectly placed geometric proxy, by using image priors [30].
In this technique, the output texture is constrained by local statistics
of the input images – in other words, each local patch of the output
must be similar to some patch in the input image. It is formulated in
a Bayesian framework where the prior is a collection of 5 × 5 patch
samples. Unfortunately, the (iterative) energy minimization process is
computationally expensive, since it requires computing similarity with
all sampled patches at every step. A faster version using a coarse-to-
fine strategy was later proposed [114]. However, despite the two orders
of magnitude rendering speed-up, it still takes seconds to render an
800 × 600 frame.

4.7. Hardware Rendering 199

In the dynamically reparameterized light field [43], rendering can
take place with a larger support around the target ray to emulate a large
aperture optical lens. By using this technique of synthetic aperture,
varying depths of field appearance can be simulated. Objects at the
desired depth can be rendered sharply with objects at other depths
appearing defocused. In addition, variable focus can also be simulated
by varying the focal plane. For a constant number of cameras, the
rendering complexity is related to aperture size and generally is O(N4),
where N is the image width in pixels. Ng [71] proposed a method to
decrease the rendering complexity into O(N2 logN) by Fourier slicing
in 4D frequency space.

4.7 Hardware Rendering

Current commodity graphics hardware does not support 4D textures
and quadratic interpolation. However, they usually support bilinear
interpolation of 2D textures. Approaches such as [85] have been devised
to exploit ways for rendering the light field using conventional graphics
hardware. They typically decompose the 4D light field into a set of 2D
textures, each of which represents a reference view. Multiple texture
mapping is then used for interpolation. As shown in Figure 4.16, for
a virtual viewpoint C, all reference view centers are projected onto
the image plane of C and triangulated. The pixels inside a triangle T

Fig. 4.16 Light field/Lumigraph rendering. Note that we used the Lumigraph (u,v,s, t)
parameterization here.

200 Rendering with no Geometry

are rendered using the textures of three reference views corresponding
to the three vertices of the triangle. Since the blending weight can be
computed using barycentric distance, it is possible to use pixel shader to
composite the three textures with proper weights in a single rendering
pass [96]. The composition can be done using conventional graphics
hardware through multi-pass rendering [99].

Barycentric coordinates In computer graphics, barycentric coor-
dinates are commonly used to characterize points within convex poly-
gons. Consider a set of N points S = {P1, . . . ,PN} and consider the
set of all affine combinations taken from these points, i.e., P = a1P1 +
· · · + aNPN . P is inside the convex hull of S if a1 + · · · + aN = 1, with
ai ≥ 0 for all i = 1, . . . ,N . The N -tuple (a1, . . . ,aN) is the barycentric
coordinates with respect to S. The barycentric weight or distance asso-
ciated with Pi is ai. More properties of the barycentric coordinates can
be found in Section 13.7 (pages 216–221) in [21].

Fixed function vs. programmable The graphics pipeline typically
consists of two stages: the vertex processing stage and pixel (fragment)
processing stage. In conventional fixed-function graphics hardware, the
operations in both the vertex processing stage and the pixel processing
stage are fixed. The user can only change the parameters of the ren-
dering operations. More specifically, in the vertex processing stage, the
triangle vertices are first transformed into camera space before lighting
is applied to the vertices. These triangles are then projected to screen
space and rasterized to pixels. In the pixel processing stage, for each
rasterized pixel, the color is interpolated from the colors on the tri-
angle vertices. Texture mapping is applied to each pixel; using depth
comparison to remove occluded colors, the final color is obtained by
compositing unoccluded colors in the color buffer.

Recent advances in graphics hardware have enabled it to be pro-
grammable, giving rise to vertex and pixel shaders. The programmable
graphics hardware allows the user to customize the rendering pro-
cess at different stages of the pipeline. Vertex shaders manipulate
the vertex data values, such as 3D coordinates, normals, and colors.
Three-dimensional mesh deformation can be done using vertex shaders,

4.8. Handling Dynamic Elements in Panoramas 201

for example. On the other hand, pixel shaders (also known as frag-
ment shader), affect the pixel processing stage of the graphics pipeline.
They calculate effects on a per-pixel basis, e.g., texturing pixels and
adding atmospheric effects. Pixel shaders often require data from ver-
tex shaders (such as orientation at vertices or light vector) to work.

4.8 Handling Dynamic Elements in Panoramas

Early approaches for generating panoramas from rotated images do not
compensate for exposure changes or moving elements in the scene. Once
the relative transforms for the images have been computed, Davis [22]
handles moving elements in the scene by segmenting the panorama
into disjoint regions and sampling pixels in each region from a single
input image. Uyttendaele et al. [107] cast the moving element problem
as a graph, with nodes representing moving objects (i.e., objects that
appear in one image but not in another). A vertex cover algorithm is
then used to remove all but one instance of each object. A result of their
technique can be seen in Figure 4.17; notice the dramatic improvement
in the final panorama.

If the image sampling is reasonably dense enough (e.g., slowly
panning a camera on a scene with quasi-repetitive motion), manifold
mosaics may be used (as described in Section 4.4). However, an inter-
esting effect may be obtained by globally stabilizing the images in time
and considering slices of the resulting space–time volume as mosaics.

Fig. 4.17 Graph-based deghosting [107]. Left: Without deghosting. Right: With deghost-
ing. (Images (courtesy of Matthew Uyttendaele) are from M. Uyttendaele, A. Eden, and
R. Szeliski, “Eliminating ghosting and exposure artifacts in image mosaics,” in IEEE Con-
ference on Computer Vision and Pattern Recognition, vol. 1, pp. 2–9, Dec. 2001. c©2001
IEEE.)

202 Rendering with no Geometry

Fig. 4.18 Dynamosaic [84]. (Images (courtesy of Alex Rav-Acha and Shmuel Peleg) are from
A. Rav-Acha, Y. Pritch, D. Lischinski, and S. Peleg, “Dynamosaics: Video mosaics with
non-chronological time,” in IEEE Conference on Computer Vision and Pattern Recognition,
pp. 58–65, June 2005. c©2005 IEEE.)

Rav-Acha et al. [84] refer to such a sequence of mosaics as a dynamo-
saic. As a simple example shown in Figure 4.18, the camera pans from
left to right. The first mosaic is constructed by taking the “appearance
strip” of every image, and the last constructed using the “disappear-
ance strip” of every image. One such mosaic is shown at the bottom of
Figure 4.18. As the mosaic is played in sequence using strips shifting
from “appearance strip” to “disappearance strip,” the video shows a
panoramic movie of the falls, with the water flowing down. The slicing
scheme can be arbitrary, creating specific effects as desired. (Given a
video of a swimming meet, for example, by manipulating the spatial
temporal slice shapes, a swimmer can be made to appear to swim faster
or slower.)

Agarwala et al. [2] use a different approach to produce a video
panorama from similar input. Their technique is based on video tex-
tures [90], where similar frames at different times are found and used
to produce new seamless video. To produce a video panorama from
just a panning video, they globally register the frames and manually
tag regions as static and dynamic. The basic concept of video texture
is applied to the dynamic regions to ensure that the video panorama
can be played indefinitely. They construct the objective function to
minimize difference between static and dynamic areas that overlap and
ensure local spatial consistency for hypothesized time offsets. This func-
tion is set up as an MRF and solved.

5
Rendering with Implicit Geometry

The techniques described in the previous section sample directly
from the source images to produce virtual views. Relative transforms
between cameras or optic flow fields are computed mainly for stabi-
lization for panorama creation. In this section, we describe a class of
techniques that relies on positional correspondences (typically across a
small number of images) to render new views. This class has the term
implicit to express the fact that geometry is not directly available; 3D
information is computed only using the usual projection calculations. In
certain cases where the cameras are only weakly calibrated, Euclidean
3D information is not available even with correspondence information.
New views are computed based on direct manipulation of these posi-
tional correspondences, which are usually point features.

The approaches under this class are view interpolation, view mor-
phing, joint view interpolation, and transfer methods with fundamen-
tal matrices and trifocal (or trilinear) tensors. View interpolation uses
general dense optic flow to directly generate intermediate views. The
intermediate view may not necessarily be geometrically correct. View
morphing is a specialized version of view interpolation, except that
the interpolated views are always geometrically correct. The geometric

203

204 Rendering with Implicit Geometry

correctness is ensured because of the linear camera motion. Transfer
methods also produce geometrically correct views, except that the cam-
era viewpoints can be arbitrarily positioned.

5.1 View Interpolation

Chen and Williams’ view interpolation method [17] is capable of recon-
structing arbitrary viewpoints given two input images and dense optical
flow between them. This method works well when two input views are
close by, so that visibility ambiguity does not pose a serious problem.
Otherwise, flow fields have to be constrained so as to prevent foldovers.
In addition, when two views are far apart, the overlapping parts of two
images may become too small. Chen and Williams’ approach works
particularly well when all the input images share a common gaze direc-
tion, and the output images are restricted to have a gaze angle less
than 90◦.

Establishing flow fields for view interpolation can be difficult, in
particular for real images. Computer vision techniques such as feature
correspondence or stereo must be employed. For synthetic images, flow
fields can be obtained from the known depth values (Figure 5.1).

5.2 View Morphing

From two input images, Seitz and Dyer’s view morphing technique [91]
reconstructs any viewpoint on the line linking two optical centers of the
original cameras. Intermediate views are exactly linear combinations of
two views only if the camera motion associated with the intermediate
views are perpendicular to the camera viewing direction. To see this,
let us assume the projection matrices for the two sampled viewpoints
are Π1 and Π2. Without loss of generality, we can set Π0 = M0(I3×3|0)
and Π1 = M1(I3×3|p). I3×3 is the 3 × 3 identity matrix, M0 and M1

are the intrinsic matrices, with

Mi =

fi si qxi

0 aifi qyi

0 0 1

 .

5.2. View Morphing 205

Fig. 5.1 Video panorama [2]. Top: representative input frames. Bottom: A frame (cropped)
of the extracted video panorama. (Images courtesy of Aseem Agarwala and Colin Zheng.)
c©2005 ACM, Inc. Included here by permission.

fi, ai, si, (qxi, qyi) are the focal length, aspect ratio, skew, and principal
point, respectively. p = (px py 0)T is the relative camera motion. Note
that the z component of p is zero, which is the key to image linearity.

A given 3D point x = (X,Y,Z,1)T is projected to u0 = 1
Z Π0x in

view 0 and u1 = 1
Z Π1x in view 1. Suppose we linearly interpolate the

2D position in virtual view Ît as ut = (1 − t)u0 + tu1, with 0 ≤ t ≤ 1.
Interestingly, we have ut = 1

Z Πtx, with Πt = (1 − t)Π0 + tΠ1 being a
valid (but virtual) intermediate intrinsic matrix. As a result, for parallel
source views, it is physically correct to just linearly interpolate point
positions (assuming the point correspondences are valid).

If the two source images are not parallel, a pre-warp stage can be
employed to rectify two input images so that corresponding scan lines
are parallel. Accordingly, a post-warp stage can be used to un-rectify
the intermediate images. Note that this is possible without fully cali-
brating the camera. Scharstein [88] extends this framework to camera
motion in a plane. He assumes, however, that the camera parameters
are known (Figure 5.2).

206 Rendering with Implicit Geometry

Fig. 5.2 View morphing [91]. I0 and I1 are the two source views at C0 and C1, respectively,
and It is the synthesized view. The idea of view morphing is to rectify the source views
(yielding Î0 and Î1), linearly interpolate (producing Ît), and transform back to unrectified
state (It). c©1996 ACM, Inc. Included here by permission.

In a more recent work, Aliaga and Carlbom [3] describe an inter-
active virtual walkthrough system that uses a large network of omni-
directional images taken within a 2D plane. To construct a view, the
system uses the closest set of images, warps them using precomputed
corresponding features, and blends the results (Figure 5.3).

5.3 Joint View Triangulation

The biggest problems associated with view interpolation are pixel
matching and visibility reasoning. Visibility reasoning is especially dif-
ficult in cases where the source images are uncalibrated; as a result,
there is no relative depth information to predict occlusion in new views.
Lhuillier and Quan [55] proposed the idea of joint view triangulation
(JVT) to handle these problems.

5.3. Joint View Triangulation 207

Fig. 5.3 Two examples of view morphing. Top row: Interpolation result (middle image) for
two images of the same face. Bottom row: Morphing between two different faces. In both
cases, point correspondences were manually established. (Images courtesy of Steve Seitz;
c©1996 ACM, Inc. Included here by permission.)

There are two pre-processing steps to JVT: quasi-dense matching
and planar patch construction. Quasi-dense matching consists of inter-
est point extraction and matching (using zero-mean normalized cross-
correlation). This step produces an initial list of correspondences sorted
by the correlation score. This list is traversed in order, beginning with
the best score, to search within the neighborhood of the point cor-
respondence for more matches. The uniqueness constraint is used to
ensure the final list consists of non-replicated points. The second step of
planar patch construction assumes that the scene is piecewise smooth.
It is also performed to remove possible mismatches. One of the images is
subdivided into a regular patch grid; RANSAC (Random Sample Con-
sensus) [29] is then applied to each patch to extract its homography.

Quasi-dense matching and planar patch construction are followed
by the actual JVT algorithm. The basic idea of JVT is to generate
Delaunay triangulations on both source images such that there is one-
to-one correspondence in vertices and edges. The vertices and edges
correspond to those of the precomputed patches. The patches are added
raster style; they are labeled as matched or unmatched as appropriate.

208 Rendering with Implicit Geometry

Patches that have no matches are given hypothesized transforms to
preserve continuity with those that have matches. View interpolation
is then done by rendering unmatched patches, followed by matched
patches.

Lhuillier and Quan [56] later extended their work to using epipo-
lar geometry for more robust correspondence extraction. To overcome
the restrictions of using coarse preset patches, they added edge-based
partitions to better fit object boundaries. Results for an outdoor scene
using their JVT algorithm can be seen in Figure 5.4.

5.4 Transfer Methods

Transfer methods (a term used within the photogrammetric commu-
nity) are characterized by the use of a relatively small number of
images with the application of geometric constraints (either recovered
at some stage or known a priori) to reproject image pixels appropri-
ately at a given virtual camera viewpoint. The geometric constraints
can be of the form of known depth values at each pixel, epipolar con-
straints between pairs of images, or trifocal/trilinear tensors that link
correspondences between triplets of images. The view interpolation
and view morphing methods above are actually specific instances of
transfer methods.

Using fundamental matrix Laveau and Faugeras [51] use a col-
lection of images called reference views and the principle of the
fundamental matrix [27] to produce virtual views. The fundamental
matrix F is a 3 × 3 matrix of rank 2. More specifically, if u1 and
u2 are two corresponding points in views 1 and 2, respectively, we
have uT

2 F12u1 = 0. Also, u2 lies in the epipolar line given by F12u1.
Another important concept is the epipole: All epipolar lines intersect
at the epipole, and the epipole is the projection of the other camera
projection center. The epipole e12 in view 2 is the null space of F12,
i.e., F12e12 = 0.

Suppose the point correspondences and fundamental matrix for
a pair of images have been extracted. The virtual camera viewpoint
(view 3) is specified by the user choosing two points e13 (in image 1)

5.4. Transfer Methods 209

Fig. 5.4 Joint view triangulation. (a) Source views with extracted point matches. (b) Com-
puted disparity at points with correspondence. The darker the pixel, the smaller the dis-
parity. White pixels represent those without any correspondence. Epipolar lines (shown as
dark lines) are superimposed. (c) Resulting meshes with constraint edges (in red). (d) Inter-
polated views. Images courtesy of Maxime Lhuillier.

and e23 (in image 2) such that eT
23F12e13 = 0. The image plane associ-

ated with view 3 is then interactively choosen by specifying three pairs
of corresponding points plus one point in one of the images. It is not
necessary to manually pick the last corresponding point in the other

210 Rendering with Implicit Geometry

View 3 (virtual)

View 1 (source)
View 2 (source)

F m
31 3

F m
32 3

cor(F m)
31 3

m 3

Fig. 5.5 View synthesis using the fundamental matrix [51]. Top: Process of finding the
corresponding points in source views 1 and 2 that projects to point m3 in virtual view 3.
Bottom, from left to right: two source images, and novel oblique view. (Images (courtesy of
Stephane Laveau and Olivier Faugeras) are from S. Laveau and O.D. Faugeras, “3-D scene
representation as a collection of images,” International Conference on Pattern Recognition,
vol. A, pp. 689–691, October 1994. c©1994 IEEE.)

image because it can be automatically obtained using the collinearity
and epipolar constraints.

To avoid holes, the new view is computed using a reverse mapping
or raytracing process, as shown at the top of Figure 5.5. For every
pixel m3 in the new target image, a search is performed to locate the
pair of image correspondences in two reference views. More specifi-
cally, for the i-th pixel m1i along the epipolar line in view 1 (given by
F31m3), we check if its corresponding point m2i (part of cor(F31m3)) in

5.4. Transfer Methods 211

view 2 satisfies the epipolar constraint mT
2iF32m3 = 0. In other words,

we search along F31m3 until the curve cor(F31m3) and epipolar line
F32m3 intersects. The pixel is transferred if such a point of intersection
is found. Cases where no such point exists or multiple locations exist
are discussed in [51]. An example result of using this technique is shown
in Figure 5.5.

Note that if the camera is only weakly calibrated, the recovered
viewpoint will be that of a projective structure (see [27] for more
details). This is because there is a class of 3D projections and structures
that will result in exactly the same source images. Since angles and
areas are not preserved, the resulting viewpoint may appear warped.
Knowing the internal parameters of the camera removes this problem.
In a later work, Faugeras et al. [28] use geometric information of the
scene (such as line orthogonality) to recover Euclidean structure from
uncalibrated images.

Using trifocal tensor While the fundamental matrix establishes
projective relationship between two rectilinear views without any
knowledge of scene structure, the trifocal (or trilinear) tensor estab-
lishes a projective relationship across three views. The trifocal tensor is
a 3 × 3 × 3 matrix with a number of properties related to relationships
of points and lines across three views and extraction of fundamental
and projection matrices [37].

One particularly interesting property is that given a pair of point
correspondences in two source images, the trifocal tensor can be used to
compute the corresponding point in the third image without resorting
to explicit 3D computation. Note that the 2-image epipolar search tech-
nique of [51] fails when the two epipolar lines in the virtual image are
coincident (or becomes numerically unstable and sensitive to noise near-
ing this condition). Fortunately, the trifocal tensor avoids this degener-
ate case because of the flexible nature of relationships between points
and lines across the three views. For example, suppose we wish to com-
pute point m3 in the third view given corresponding points m1 and
m2 in the first and second views, respectively, and trifocal tensor T ,
with the (i, j,k)-th element indexed as T jk

i (using the terminology

212 Rendering with Implicit Geometry

in [37]). We can find line l2 perpendicular to the epipolar line given
by F21m2, after which m3 can be determined from the relationship
(m3)k = (m1)i(l2)jT jk

i . (m)k refers to the k-th element of point m
and (l)j refers to the j-th element of line l.

The point transfer property of the trifocal tensor has been used to
generate novel views from either two or three source images [4]. Here,
the idea of generating novel views from two or three source images is
rather straightforward. First, the “reference” trilinear tensor is com-
puted from the point correspondences between the source images. In
the case of only two source images, one of the images is replicated and
regarded as the “third” image. In [4], the camera’s intrinsic parame-
ters are assumed known, which simplifies the specification of the new
view. The trifocal tensor associated with the new view can be computed
from the known pose change (i.e., changes in rotation and translation)
with respect to the third camera location. With the trifocal tensor
and correspondences across two source views known, points can then
be transferred through forward mapping (i.e., transferring pixels from
source to virtual views). It is not clear how visibility is handled in [4],
but the modified painter’s algorithm can be used without explicit depth
reasoning. In addition, splatting, where a pixel in the source image is
mapped to multiple pixels, can be used to remove holes in the new

Fig. 5.6 Example of visualizing using the trilinear tensor. The left-most column are the
source images, with the rest synthesized at arbitrary viewpoints.

5.4. Transfer Methods 213

view. A set of novel views created using this approach can be seen in
Figure 5.6.

Transfer methods rely on techniques such as forward mapping, mod-
ified painter’s algorithm, and splatting for effective rendering. All these
techniques are part of point-based rendering, which we now describe.

6
Point-Based Rendering

Point-based rendering is applied to representations that are created
from 3D point clouds or 2D correspondences between reference images.
Each point is usually mapped independently. Because of this flexibility,
object details can be captured well. More importantly, point-based ren-
dering is a more natural choice for data extracted using certain geom-
etry acquisition methods such as a 3D scanner or active rangefinder,
stereo reconstruction, and structure from motion techniques. Excellent
surveys on point-based rendering can be found in [50,87].

Points are mapped to the target screen through forward mapping
or backward mapping (also referred to as inverse mapping). Referring
to Figure 6.1, the mapping can be written as

X = Cr + ρrPrxr = Ct + ρtPtxt. (6.1)

Here, xt and xr are homogeneous coordinates of the projection of 3D
point X on target screen and reference images, respectively. C and
P are camera center and projection matrix, respectively. ρ is a scale
factor. Point-based rendering is based on (6.1); the direction of mapping
depends on which 2D coordinates are evaluated.

214

6.1. Forward Mapping 215

Fig. 6.1 Relationship between 2D points xr and xt in the reference and target images,
respectively, and 3D point X. On the left shows an arbitrary virtual view while the right
shows a lateral motion (with rectified geometry).

6.1 Forward Mapping

Forward mapping techniques map each pixel on the reference view(s)
to the target view using some form of geometry, e.g., depth map
(explicit geometry) or correspondences between views (implicit geom-
etry). Using (6.1), we evaluate xt:

ρtxt = P−1
t (Cr − Ct) + ρrP

−1
t Prxr. (6.2)

Since Pt and Ct are known, ρt can be computed using the depth of X

with respect to target camera Ct and focus length ft: ρt = (0,0,1/ft)T ·
P−1

t (X − Ct). Therefore, given xr and ρr, we can compute the exact
position of xt on the target screen and transfer the color from xr to xt.
This process is called forward mapping.

xt is almost always at a subpixel location. If we map pixels from
reference images to the target screen using the nearest neighbor scheme,
gaps may appear. Unfortunately, even if xt is exactly at a pixel location,
gaps may still appear. There are two other possible reasons for the gaps
or holes in the target screen: magnification and disocclusion.

A straightforward reason for the occurrence of gaps is magnification
due to the virtual camera moving closer to the scene. An example of
holes created this way can be seen in Figure 6.2(b).

Splatting techniques [33,54] have been proposed to handle the sub-
pixel target location and alleviate the gap problem caused by the larger

216 Point-Based Rendering

Fig. 6.2 Hole creation with forward mapping. (a) A viewpoint with no holes, (b) zoomed
viewpoint with holes caused by significant changes in spatial footprint, and (c) viewpoint
with holes caused mostly by depth discontinuities (and missing data).

target footprint. A filter kernel is used to cover an area larger than a
pixel to make up for the expected larger image footprint for the ren-
dered scene. The shape and size of the kernel depend on the spatial
relationship between the reference and target cameras and the distance
of X to the target screen. The Gaussian filter kernel is the most com-
monly used, and the corresponding technique is called the Elliptical
Weighted Average [33].

Splatting requires a post-processing stage to normalize contribut-
ing colors and opacities at each pixel. While this can be slow using
pure software implementation, a recent effort has shown that hardware
acceleration is possible [7, 86], speeding up rendering by at least an
order of magnitude. Unfortunately, splatting tends to blur the target
image. The work on surfel rendering [77] showed how to choose the
kernel to achieve necessary hole filling yet avoid over-blurring of the
target image.

Gaps can also occur in the target screen if there is disocclusion
caused by depth discontinuity in the scene (see Figure 6.2(c)). Such
gaps cannot be filled merely by splatting because the missing pixels
on the target screen are not visible from the reference view. A typical
solution is to rely on other reference views to fill in the missing informa-
tion. The multi-view technique of Pulli et al. [82] shows how multiple
textured range data sets are used to generate complete views of objects.

Apart from the gap or hole problem, we also have to contend with
the issue of multiple pixels from the reference view landing on the same

6.1. Forward Mapping 217

pixel in the target view. In this case, we need to decide which pixel or
pixels to use in the final rendering. The most straightforward solution
is to use the Z-buffer to make this decision. In [82], depth thresholds
are used to pick the frontmost mapped pixels (whose colors are then
linearly combined).

There is a more efficient rendering algorithm that obviates the need
for the Z-buffer, namely the modified painter’s algorithm [67]. The
modified painter’s algorithm uses the epipolar geometry to find the
order in which pixels are scanned (Figure 6.3). This order, interest-
ingly, is independent of the depth of the scene. To find the order, the
epipole [27] e is first computed by projecting the camera center of
the virtual view Ct onto the reference camera. If the virtual camera is
behind the reference camera, we render the pixels away from e; other-
wise, we render toward e.

In some cases, forward mapping can be simplified. For example,
as shown in Figure 6.1(b), the target camera is a laterally translated
version of the reference camera, so that scanlines are parallel to the
camera offset Ct − Cr. In computer vision, the images are considered
rectified. Here, ρt = ρr = ρ = (0,0,1/f)T · (X − Cr) and Pt = Pr = P .

Fig. 6.3 The modified painter’s algorithm can be used for forward mapping without requir-
ing the Z-buffer. Left: Target camera is in front of reference (source) camera. Right: Target
camera is behind the source camera.

218 Point-Based Rendering

As a result, (6.1) can be simplified to

xt = xr +
1
ρ
P−1(Ct − Cr) = xr + u(xr). (6.3)

Here, u(xr) is the disparity associated with pixel xr, which is propor-
tional to the depth of 3D point X. We can then easily determine the
position of xt given xr and its depth on reference image.

Another interesting feature of this lateral-translate configuration
is that only disparity u(xr) is needed for view transfer. This prop-
erty is capitalized in techniques based on implicit geometry (i.e., point
correspondences), such as Chen and Williams’s view interpolation
approach [17] and view morphing [91]. Rendering involves computing
2D pixel correspondences in the form of xt = xr + u(xr), without know-
ing any explicit 3D information. Since mapping occurs along the same
scanline, rendering can also be simplified to 1D splatting. Szeliski and
Cohen [103] suggested line drawing instead of splatting to fill the gaps.
They also introduced a two-pass rendering method to reduce the gap
filling operation; we describe this method later in this section.

6.2 Backward Mapping

In backward mapping, also known as inverse mapping, the pixel map-
ping relationship is found by tracing the ray from the target view back
to the reference view(s). Given a pixel on the target screen xt, we can
rewrite (6.1) as

ρrxr = P−1
r (Ct − Cr) + ρtP

−1
r Ptxt, (6.4)

which can be further simplified to

xr ≡ Hxt + de. (6.5)

Here, H = P−1
r Pt defines the 2D planar perspective transformation (also

known as a homography) from target screen plane to reference camera
plane. e is the epipole [27], and can be obtained by intersecting the line
Ct − Cr with the reference view image plane. d is a scale factor and de
defines a line called the epipolar line (shown as lr in Figure 6.4). This line
can be obtained by intersecting the reference camera plane with the plane
defined by Cr, X, and Ct (also called the epipolar plane).

6.3. Hybrid Methods 219

Fig. 6.4 Backward mapping from target screen to reference view.

Consequently, given xt, xr can be obtained by searching along the
epipolar line for the pixel that fulfills (6.5) with minimum depth to
target camera Ct. This process is called backward mapping or inverse
mapping. Each pixel on target screen can be mapped to an unambigu-
ous location xr in the reference view, and can be rendered through
resampling. This ensures that there are no gaps or holes in the target
view. However, the search yields an invalid result if the pixel at xt is
occluded in the reference view.

In the special case where all 3D pixels are located on a 3D plane, the
backward mapping process can be implemented as perspective texture
mapping. Here, the mapping reduces to xr = H′xt, where H′ is defined
by Pt, Pr and the location of the 3D plane. This is supported by current
commodity graphics hardware and hence performed very efficiently.

In general, however, the 3D points do not lie on a plane. As a result,
backward mapping involves a search for d, and is therefore typically
slow. In the next section, we discuss a special case when the 3D points
are reasonably close to a 3D plane, enabling a hybrid approach that
uses forward mapping followed by backward mapping.

6.3 Hybrid Methods

Backward mapping involves searching and is typically slower than for-
ward mapping, unless the 3D object is a plane, in which case backward

220 Point-Based Rendering

mapping degenerates into a perspective mapping (which is fast). On
the other hand, forward mapping may be slowed down by the splat-
ting process necessary for filling gaps and holes. When the geometry is
represented as a depth field on the reference camera, forward mapping
can be performed quickly with simple pixel offset and scanline-based
splatting as described earlier.

The approaches in [93,103] reformulated (6.5) as

xt = H′(xr + de′) = H′x′
t. (6.6)

As shown in Figure 6.4(b), rendering can be decomposed into two
stages (referred to as the pre-warp stage and texture mapping
stage [72]). In the pre-warp stage, x′ is rendered using forward map-
ping from the reference view to an intermediate plane that is parallel
to the reference camera plane. Since the geometry can be represented
as a depth field, x′

t can be rendered quickly using 1D splatting and
modified painter’s algorithm as discussed above. Moreover, in order
to make full use of scanline-based splatting, Oliviera et al. [72] pro-
posed a two-pass pre-warp process, which forward maps from xr to
x′

t vertically and horizontally. After the pre-warp stage, the reference
image is then warped to a 3D plane – which can then be very quickly
mapped to the target screen using perspective mapping in the sec-
ond (texture-mapping) stage. The overall performance of the hybrid
two-pass technique is significantly better than traditional backward
mapping.

There is a cost associated with the hybrid two-pass method: the
reference images are resampled multiple times before finally rendered
on the target screen. This causes the rendering result to look slightly
blurrier; because of the multiple resampling, the filters used need to be
more carefully designed.

6.4 Hardware Acceleration

As described above, if the 3D geometry is just a 3D plane, backward
mapping reduces to perspective texture mapping, which can capital-
ize on the conventional graphics pipeline. In general, however, hard-
ware acceleration is not trivial to implement for point-based render-

6.4. Hardware Acceleration 221

ing on graphics hardware. The conventional graphics pipeline can be
easily used for forward mapping, except for the hole filling process.
In order to fill in the gaps caused by an increase in the object foot-
print, each pixel from the reference image is typically rendered using
a micro facet larger than a pixel’s area. Some techniques [63] build
tiny triangular meshes on the reference image before rendering and
allow the texture mapping engine to resample the texture and subse-
quently fill in the gaps. However, this usually involves a large num-
ber of vertices and is not practical unless top-of-the-line accelerators
are used.

Approaches to hardware-accelerated surface splatting (for general
non-planar points) are similar in that they involve three rendering
passes. The first pass is visibility splatting; here, the object is ren-
dered without lighting to fill the depth buffer only. This is followed
by the blending pass where colors and weights (alphas) of pixels with
small depth differentials are accummulated. The final normalization
pass involves division of the weighted sum of colors by the sum of
weights, which can be implemented on the GPU (e.g., [34]).

Coconu and Hege [19] implemented a version of hardware-
accelerated splatting with restricted shape and size of filter kernels.
Ren et al. [86] implemented a hardware-accelerated version of Ellip-
tical Weighted Average (EWA) [33] surface splatting; they represent
each splat by an alpha-textured quad in the splat rasterization stage.
On the other hand, Botsch et al. [7] use per-pixel Phong shading and
a simple approximation to the EWA.

If the geometry can be represented as a 3D plane plus a small
amount of depth variation (e.g., sprites with depth [93] and relief tex-
ture [72]), the hybrid mapping methods discussed in Section 6.3 can
be used to take advantage of conventional hardware acceleration of the
projective texture mapping. As shown in Figure 6.5, the source image is
forward mapped using the depth map to an intermediate texture, which
can then be fed to a conventional graphics pipeline for final backward
mapping (traditional texture mapping).

With programmable graphics hardware, backward mapping using
view-aligned depth fields can also be accelerated (e.g., real-time relief
mapping [79]). In this approach, the points are represented as a depth

222 Point-Based Rendering

(a) (b)

(d) (c)

Fig. 6.5 Relief textures. (Images courtesy of Manuel Oliveira; c©2000 ACM, Inc. Included
here by permission.)

map and stored as texture. For each pixel on target screen, the search
along the EPI is executed in the pixel shader. After finding the point
that is projected to this pixel, its texture coordinate is then used
to index the point color (which is stored in color texture) for final
rendering.

7
Representations with Explicit Geometry

Representations that do not rely on geometry typically require a lot of
images for rendering, and representations that rely on implicit geome-
try require accurate image registration for high-quality view synthesis.
In this section, we describe IBR representations that use explicit geom-
etry. Such representations have direct 3D information encoded in them,
either in the form of depth along known lines-of-sight, or 3D coordi-
nates. The more traditional 3D model with a single texture map is a
special case in this category (not described here, since its rendering
directly uses the conventional graphics pipeline).

Representations with explicit geometry include billboards, sprites,
relief textures, Layered Depth Images (LDIs), and view-dependent tex-
tures and geometry. Sprites can be planar or have arbitrary depth
distributions; new views are generated through 3D warping. LDIs are
extensions of depth per-pixel representations, since they can encode
multiple depths along a given ray. View-dependent texture mapping
refers to mapping multiple texture maps to the same 3D surface, with
their colors averaged using weights based on proximity of the virtual
viewpoint relative to the source viewpoints.

223

224 Representations with Explicit Geometry

7.1 Billboards

In games, billboards are often used to represent complex objects such as
trees. They are either single texture-mapped rectangles that are kept
fronto-parallel with respect to the viewing camera (i.e., view aligned),
or sets of two rectangles arranged in a cross. Their popularity stems
from the low footprint and ease of rendering (directly using the tradi-
tional graphics pipeline), but they typically work well only when viewed
at a distance. The flat appearance is very pronounced when seen close
up; very complex objects may appear unsatisfactory even at a reason-
able distance.

To reduce these problems, Decoret et al. [25] proposed the use of
billboard clouds (see Figure 7.1). A billboard cloud is just a set of tex-
tured, partially transparent billboards, with each billboard having an
independent size, orientation, and texture resolution. Because a bill-
board cloud does not require topological information such as polygon
connectivity, its format is easy to create, store, and read. Starting with
a 3D model, Decoret et al. use an optimization approach to produce
a set of representative textured planes that produce geometric errors
within a specified threshold. To simplify the search, plane parameters
are discretized into bins; planes are extracted sequentially by iteratively
picking the bin with the minimum error. (There is the subsequent adap-
tive refinement in plane space – details can be found in [25].) Despite the
improvements over regular billboards, billboard clouds are not intended
for extreme close-ups.

Fig. 7.1 Example of billboard cloud [25]. (a) Original 3D model, (b) locations of billboards,
(c) textured billboards, and (d) view of combined billboards. (Images courtesy of Xavier
Décoret; c©2003 ACM, Inc. Included here by permission.)

7.2. 3D Warping 225

7.2 3D Warping

When the depth information is available for every point in one or more
images, 3D warping techniques (e.g., [66]) can be used to render nearly
all viewpoints. An image can be rendered from any nearby point of
view by projecting the pixels of the original image to their proper 3D
locations and re-projecting them onto the new picture. The most signif-
icant problem in 3D warping is how to deal with holes generated in the
warped image. Holes are due to the difference of sampling resolution
between the input and output images, and the disocclusion where part
of the scene is seen by the output image but not by the input images.
To fill in holes, splatting is used.

To improve the rendering speed of 3D warping, the warping process
can be factored into a relatively simple pre-warping step and a tra-
ditional texture mapping step. The texture mapping step can be per-
formed by standard graphics hardware. This is the idea behind relief
texture, a rendering technique proposed by Oliveira and Bishop [72].
A similar factoring approach has been proposed by Shade et al. in a
two-step algorithm [93], where the depth is first forward warped before
the pixel is backward mapped onto the output image.

The 3D warping techniques can be applied not only to the tradi-
tional perspective images, but also multi-perspective images as well. For
example, Rademacher and Bishop [83] proposed to render novel views
by warping multiple-center-of-projection images, or MCOP images.

7.3 Layered Depth Images

To deal with the disocclusion artifacts in 3D warping, Shade et al.
proposed Layered Depth Images, or LDIs [93], to store not only what
is visible in the input image, but also what is behind the visible surface.
In their paper, the LDI is constructed either using stereo on a sequence
of images with known camera motion (to extract multiple overlapping
layers, see Figure 7.2) or directly from synthetic environments with
known geometries. In an LDI, each pixel in the input image contains
a list of depth and color values where the ray from the pixel intersects
with the environment.

226 Representations with Explicit Geometry

Fig. 7.2 Layered depth image example [93]. Five source images were used to generate the
layered representation of the scene using the technique in [5]. Left: Extracted layers. Mid-
dle and Right: Reconstructed views. (Images (courtesy of Richard Szeliski) from S. Baker,
R. Szeliski, and P. Anandan, “A layered approach to stereo reconstruction,” in IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition, pp. 434–441, June
1998. c©1998 IEEE.)

Though an LDI has the simplicity of warping a single image, it does
not consider the issue of sampling density. Chang et al. [15] proposed
LDI trees so that the sampling rates of the source images are preserved
by adaptively selecting an LDI in the LDI tree for each pixel. While
rendering the LDI tree, only the level of LDI tree that is comparable
to the sampling rate of the output image need to be traversed.

The LDI is an example of layer representation. Before we discuss
the issue of view-dependent texture mapping in Section 7.5, we describe
the more general technique of rendering layers.

7.4 Layer-Based Rendering

Layered techniques usually discretize the scene into a collection of pla-
nar layers, with each layer consisting of a 3D plane with texture and
optionally a transparency map. One version, the LDI, was described in
the previous subsection. Two additional versions of such a representa-
tion are shown in Figure 7.3.

Compared to point-based rendering (Section 6), layer-based render-
ing is easier to implement using the GPU. The layers can be thought of
as a discontinuous set of polygonal models, and as such, very amenable
to conventional texture mapping (and to view-dependent texture map-
ping as well). In addition, compared to monolithic representations (Sec-
tion 8), a layer-based representation is usually easier to construct since
no connectivity between layers is required. The lack of connectivity

7.4. Layer-Based Rendering 227

Fig. 7.3 Planar layers to approximate scene geometry. (a) Planar impostors [45] (courtesy
of Stefan Jeschke), (b) pop-up light field [96].

information is also a disadvantage: it can severely limit where the scene
can be viewed.

Jeschke et al. [45] overcome the limitation in viewpoint range in two
ways: use layers to represent only far-away portions of the scene (with
the nearby parts being regular polygon meshes), and make the sets of
layers location dependent (with the viewspace discretized into separate
view cells). The layer representation described in [89] also adopts a
view-dependent geometry solution; more specifically, when target view
is too far from the current source views, it automatically generates a
new set of source views with new layers. Other representations such
as the pop-up light field [96] use texture synthesis to fill holes in the
background layers.

Layer-based rendering usually consists of two phases. First, each layer
is rendered using either point-based or monolithic rendering techniques
as discussed in Sections 6 and 8, respectively. Subsequently, all rendered
layers are composed in back-to-front order to produce the final view.

The painter’s algorithm is often used to combine the layers, i.e., the
layers are rendered from back to front relative to the target image plane.
Occlusions are automatically handled this way. As with point splatting,
the layers can also be rendered in an arbitrary order, with the help of
the Z-buffer and A-buffer as described in [65]. This technique can be
used when the order of layers relative to the target view is unknown.

228 Representations with Explicit Geometry

The layers are rendered to the color buffer with the Z-buffer dictat-
ing occlusion between layers; meanwhile, the A-buffer accumulates the
alpha weights used for normalization in the final stage.

It is worth noting that when rendering a layer with semi-
transparency using multiple textures from different source views [96],
the colors should be pre-multiplied by the alpha value before blending
for higher computational efficiency. Wallace [108] derived a recursive
blending equation in which two semi-transparent images are combined
to produce another semi-transparent image. Porter and Duff [81] later
simplified the recursive blending equation by substituting the original
colors with colors with pre-multiplied alpha. This recursive blending
equation is significant for compositing three or more layers, because it
preserves associativity. In other words,

layer1 ⊕ (layer2 ⊕ layer3) = (layer1 ⊕ layer2) ⊕ layer3,

with ⊕ being the compositing operator. Rather than applying a linear
operation (e.g., scaling) to each of the layers prior to compositing, it
is more efficient to composite the layers first, followed by applying the
linear operation on the composited result.

7.5 View-Dependent Texture Mapping

Texture maps are widely used in computer graphics for generating
photo-realistic environments. Texture-mapped models can be created
using a CAD modeler for a synthetic environment. For real environ-
ments, these models can be generated using a 3D scanner or applying
computer vision techniques to captured images. Unfortunately, vision
techniques are not robust enough to recover accurate 3D models. In
addition, it is difficult to capture visual effects such as highlights, reflec-
tions, and transparency using a single texture-mapped model.

To obtain these visual effects of a reconstructed architectural envi-
ronment, Debevec et al. in their Façade [24] work, used view-dependent
texture mapping to render new views by warping and compositing
several input images of an environment. This is the same as conven-
tional texture mapping, except that multiple textures from different
sampled viewpoints are warped to the same surface and averaged,

7.5. View-Dependent Texture Mapping 229

with weights computed based on proximity of the current viewpoint
to the sampled viewpoints. A three-step view-dependent texture map-
ping method was also proposed later by Debevec et al. [23] to further
reduce the computational cost and to have smoother blending. This
method employs visibility preprocessing, polygon-view maps, and pro-
jective texture mapping. Porquet et al. [80] achieved real-time render-
ing by precomputing textures of three nearest viewpoints and applying
pixel shading on a decimated mesh.

For the unstructured Lumigraph work, Buehler et al. [8] apply a
more principled way of blending textures based on relative angular posi-
tion, resolution, and field-of-view. Kang and Szeliski [47] use not just
view-dependent textures, but view-dependent geometries as well. This
is to account for the fact that stereo is only locally valid for scenes with
non-Lambertian properties. They blend warped depth images (depth
maps and textures) to produce new views, as shown in Figure 7.4.

If an object has a complex appearance (such as specular, glossy,
or furry), having an accurate geometry but few images will typically
be inadequate. To handle specular or glossy objects, Wood et al. [112]
scanned highly accurate range data and acquired hundreds of images

Fig. 7.4 Importance of view-dependent texture and geometry. Depth maps were extracted
with the source images as reference views using the multi-view stereo technique described
in [48]. (a) Source images. Notice the significant changes in the highlights. (b,c) Interpolated
and actual views, respectively, with close-ups of the highlights. The highlights are a little
blurred in the virtual view but resemble the actual version.

230 Representations with Explicit Geometry

at a fixed lighting condition to create the surface light field. They used
vector quantization and principal component analysis (PCA) to com-
press the data and represent its representation in a piecewise linear
fashion. The result is a remarkably accurate visualization of the com-
plicated object at interactive rates. Matusik et al. [65] model objects
that cannot be scanned accurately, such as objects with fur and feath-
ers. They take thousands of images of the object at various poses and
lighting directions against a plasma display, which acts as a green screen
for matting. The estimated visual hull (with opacity) is used for ren-
dering. They also compress the data by applying PCA on each set of
common viewpoints (each set with varying illumination). Interpolation
is performed over the four closest views.

There are other approaches designed to handle layered reflection
effects for IBR (mostly for synthetic scenes). For example, Heidrich
et al. [39] handle reflections and refractions by decoupling geometry
and illumination. This is accomplished by replacing the usual ray-color
mapping with ray–ray mapping. Rendering is done by constructing this
geometry light field and using it to look up the illumination from an
environment map. On the other hand, Lischinski and Rappoport’s [58]
idea for handling non-diffuse scenes is based on layered depth images
(LDIs) [5,93]. They partition the scene into diffuse (view-independent)
and non-diffuse parts. The view-independent parts are represented
as three orthogonal high-resolution LDIs while the non-diffuse parts
are represented as view-dependent lower-resolution LDIs. Rendering is
done by warping the appropriate LDIs.

In Section 9, we detail an IBR representation which we designed to
handle some layered reflection effects without the use of detailed geom-
etry. Issues associated with the difficulty of modeling layered reflection
effects are also discussed. First, we discuss issues associated with ren-
dering structures that are neither point-based nor layer-based, namely
structures that are single entities, which we refer to as “monolithic
geometries.”

8
Monolithic Rendering

A monolithic geometry is usually represented as continuous polygon
meshes with textures, which can be readily rendered using graphics
hardware. This geometry can be obtained from 3D scanners, such as
in those featured in the surface light field [112] work. Other sources
include geometric proxies produced by interactive modeling systems
(such as Façade [24]), convex hulls (e.g., visual hulls [64] and opac-
ity hulls [65]), and reconstructed by stereo algorithms (such as joint
view interpolation [55], structure from motion algorithms as used in
the Lumigraph [32], unstructured Lumigraph [8], and plenoptic mod-
eling with a hand-held camera [40]).

Rendering polygonal mesh model with textures has been well-
explored. (For an excellent survey on texture mapping, see [38].) In
IBR, view-dependent texture mapping (Figure 8.2) is usually neces-
sary for photorealism. The major challenge for IBR with 3D polygonal
models is in designing the compositing stage where the reference views
and their blending weights have to be computed. We now describe the
compositing stage for representations with implicit geometry, followed
by the compositing stage for representations with explicit geometry.

231

232 Monolithic Rendering

IBR techniques which use explicit geometry (such as 3D surface
mesh and depth maps) operate in Euclidean space. This makes spatial
reasoning about rays easier: reasoning about ray and viewpoint prox-
imity and ray-object interaction is more intuitive. As mentioned in Sec-
tion 3, having explicit geometry reduces the number of input images
required for high-quality view reconstruction. This explicit geometry
is also known as a geometric proxy or impostor. The simplest case is
when high precision geometry is available with only a limited num-
ber of input images; this is where view-dependent texture mapping is
appropriate.

In general, however, the geometry used is not always accurate. As
Figure 8.1(b) shows, the geometric proxy may just be a rough approx-
imation. Chai et al. [14] showed that there is an inverse relationship
between how accurate the geometric proxy is and how densely sampled
the input images should be for alias-free view reconstruction.

Choosing the rays from the input images to render at a virtual
viewpoint is based on the notion of ray proximity – we ideally want to
choose rays that are “close” to the virtual ray. The proximity of rays
is not only related to the input viewpoints, but also determined by the
geometric proxy itself. As shown in Figure 8.1(a), a natural strategy is

Reference views

Target view

Reference views

Target view

Fig. 8.1 Geometric proxy, and proximity of rays being based on angular distance at the
surface of the geometric proxy.

233

to choose rays with smaller angle deviations with respect to the virtual
ray on the geometry surface.

Other strategies for ray selection have been used. In the work of
Debevec et al. [24], the same set of views are used to render a polygon.
For each polygon, the weights are computed using the angles between
the polygon normal and the viewing directions of the sampled views
(the smaller the angle, the larger the weight, with a maximum of 1).

In [40], the images were obtained by moving the camera approx-
imately within a 2D plane in a serpentine manner. Their technique
for ray/view selection is to project all reference camera centers to the
target camera and triangulate these points on the target screen (Fig-
ure 8.2(b)). For each pixel, the “nearest” three input views correspond
to the vertices of the triangle that contains it. The blending weights
assigned to these input views correspond the barycentric coordinates
(see Section 4.7). View synthesis results can be seen in Figure 8.3.

The ray selection strategy of the unstructured Lumigraph [8] com-
bines a number of properties: use of geometric proxies, epipole consis-
tency (i.e., if a ray passes through the center of a source camera, the
virtual ray can be trivially constructed), matching of resolution, virtual
ray consistency (the same ray, regardless of the location of the virtual

Polygon

Target view

Reference views

Target view

Reference views

Fig. 8.2 Input view selection strategies. (a) In the work of [24], the weights associated with
the input (reference) views are inversely proportional to the angle deviation. (b) In the work
of [40], all the input camera centers are first projected to the target image, followed by 2D
triangulation. Each triangle is associated with three input viewpoints corresponding to its
vertices. These input viewpoints are the “nearest” three cameras for all the pixels that are
contained within the triangle.

234 Monolithic Rendering

Fig. 8.3 Plenoptic modeling using a hand-held camera. Top left: Sample image of the scene
and depiction of recovered camera poses and 3D points. Top right: View rendered using
adaptive subdivision. A triangle that is considered too large is split into four triangles;
the 3D locations of the mid-points of the original triangle are obtained using local depth
maps. Middle row: Reduction of ghosting with refined geometry. Bottom row: Illustration
of view-dependent effect. (Images courtesy of Marc Pollefeys.)

235

camera, should have the same set of “nearest” source cameras), and
minimum angular deviation. To enable real-time rendering, Buehler
et al. [8] compute the camera blending only at a discrete set of points
in the image plane. These points are triangulated, and the dense blend
weight distribution is subsequently computed through interpolation.

9
Handling Layered Reflection Effects

In this section, we describe an IBR representation to handle layered
reflection effects compactly, which we call locally reparameterized
Lumigraph (LRL).1 The LRL is based on the use of local and separate
diffuse and non-diffuse geometries. The diffuse geometry is associated
with true or approximately true depth while the non-diffuse geometry
has virtual depth that provide local photoconsistency with respect
to its neighbors. This is similar to [58] in that there is the notion
of using layers. In contrast to [58], however: (1) all local geometries
are view-dependent, and (2) the rendering mechanism is different.
The local geometries are used for depth correction, and do not
contain radiance information. In [58], rendering is accomplished by
warping LDIs. The LRL was designed to handle two common layered
reflection effects: planar reflection and transparency, and specularity
of low-curvature surfaces.

The concept of the LRL can be explained by first analyzing the dif-
fuse and non-diffuse effects using the Epipolar Plane Image (EPI) [6]
as a visualization tool. An EPI is basically a 3D representation (u,v, t)

1 This name is actually inspired by the term “dynamically reparameterized Light Field”
used in [43].

236

9.1. Analysis Using the EPI 237

of a stacked sequence of camera images taken along a path, with (u,v)
being the image coordinates and t being the frame index, and is there-
fore a 3D slice through a 4D Light Field. It has been used for stereo
and multiview rendering (e.g., [36]).

9.1 Analysis Using the EPI

For the case of a laterally translated camera (along the x-direction) as
shown in Figure 9.1(a), a typical EPI slice parallel to the u − t plane
is shown in Figure 9.1(b). In the EPI slice, we observe multiple trails
corresponding to points similar in color and brightness moving across
the EPI image. Trails that correspond to diffuse parts of the scene track
the same points, and thus are straight. In fact, the slope of a diffuse
trail k is proportional to the depth of its corresponding point. On the
other hand, a specular trail does not necessarily track the same scene
point; as a result, it is often curved.

Figure 9.2 shows a different common phenomenon, that of planar
reflection. The flower painting is being reflected off the glass covering
the Mona Lisa painting. The corresponding EPI slice shows two over-
lapping sets of trails. The first set corresponds to those in the Mona
Lisa painting, while the second corresponds to the flower painting. The
slopes for the Mona Lisa trails are linked to their depths. The slopes
for the flower trails are linked to their virtual depths, by considering

Fig. 9.1 EPI. (a) Camera configuration, (b) An EPI slice with highlights.

238 Handling Layered Reflection Effects

Fig. 9.2 Visualizing the planar reflection effect for an object moving from right to left. (a–c)
Three snapshots of the sequence, (d) EPI of a highlight constructed by stacking middle rows
of images.

the principles of optical reflection. Note that the flower trail slopes are
less steep than those of the Mona Lisa counterparts, indicating that the
flower painting is (at least virtually) behind the Mona Lisa painting.

It is thus easy to see why using a single global or even multiple view-
dependent local geometries may not be adequate to handle such effects.
The easiest recourse would be to sample the images more densely. How-
ever, there is a much better way: we model diffuse and non-diffuse scene
components separately using what we call local diffuse and non-diffuse
geometries.

9.2 Local Diffuse and Non-Diffuse Geometries

If we look within the vicinity of where a highlight or reflection occurs
within an EPI slice, we notice two local slopes: one corresponding to the
diffuse component, the other the non-diffuse component. We propose to
represent both of them with the appropriately named local geometries
to provide depth compensation for Light Field rendering. (In general,
the non-diffuse trail may not stay within an EPI slice, but rather jump
from slice to slice. It is more proper to say that we are tracking 3D EPI
trails, and the argument of local geometries still applies. This simple
scenario is used for illustrative purposes.)

We define local geometry to be view-dependent geometry used for
depth compensation only within the neighborhood of the viewing cam-
era location. The tighter the sampling camera configuration, the smaller
this neighborhood is. This is in the same spirit as [82], for example. Note
that the local geometry associated with a non-diffuse area is virtual,

9.2. Local Diffuse and Non-Diffuse Geometries 239

i.e., there may be no physical entity in the scene that corresponds to
that area, as shown by the reflection phenomenon. The function of local
geometry, real or virtual, is to approximate the EPI trail as much as
possible. In our work, we use a fronto-parallel plane to represent our
local geometry. We chose not to use stereo data of real scenes because
such data tend to be unreliable in the presence of occlusions, layered
reflection effects, and untextured surfaces, all of which are prevalent in
our image sets. In addition, the analysis detailed in [14] showed that it
is not necessary to use exact geometry for anti-aliased rendering.

In synthetic environments where the geometry, diffuse, and non-
diffuse parts are known, using a single global diffuse geometry is ade-
quate. However, for images of real scenes, it is very likely that multiple
local diffuse geometries will be needed. This is to compensate for errors
in camera parameters and shape, or incorrect separation of diffuse and
non-diffuse components. However, it is expected that the local diffuse
geometry would change much more slowly than its non-diffuse counter-
part.

The implications for using two different “layers” in the form of
these geometries can be seen in Figure 9.3. The analysis shown by
Chai et al. [14] indicates that it is the depth variation and not abso-
lute depth in the scene that dictates the sampling rate. The bigger the

Fig. 9.3 Benefit of using separate layers. (a) Closeup view of vicinity of non-diffuse trail,
(b) Depth variation (shaded regions) required to represent both diffuse and non-diffuse
component using 1 and 2 layers. The dotted lines in (a) are the bounding slopes for the
non-diffuse trail at the point of intersection between the diffuse and non-diffuse trails.

240 Handling Layered Reflection Effects

depth variation, the larger the sampling rate required for anti-aliased
rendering. The presence of the non-diffuse component has the effect of
expanding the perceived depth variation, as can be seen in Figure 9.3.
If we use just a single geometry (be it view-dependent or global), then
the sampling rate has to be high to accommodate the non-diffuse effect.
However, if we are able to separate the non-diffuse from the diffuse,
we can then compensate them separately, yielding a tighter perceived
depth variation, as seen to the right of Figure 9.3(b). As a result, we
can get away with a lower sampling rate for anti-aliased rendering.

9.3 Implementation

To separate the non-diffuse from the diffuse in our real scene experiment
with planar reflection, we did the following:

(1) Choose the image with little or no reflection as the reference.
(2) Perform dominant motion estimation between the reference

and the others. In principle, a 2D perspective or homogra-
phy motion should be used. We used an affine transforma-
tion because it was adequate and had fewer parameters to
estimate.

(3) Compute a min-composite of the registered images, since this
in principle optimally removes the reflection [102]. A min-
composite is extracted by taking the color associated with
the minimum luminance (across all registered images) at each
pixel.

(4) For each image, perform image difference between it and the
motion-compensated min-composite to estimate the reflec-
tive components of the scene.

A big assumption here is that the reflective components are additive
and that the surface is uniformly reflective. This is reasonable as long
as there is no pixel intensity saturation. Portions of the reflected image
do, of course, get “trimmed” (e.g., by the borders of the picture frame
shown in Figure 9.4). This is one reason why a single global view of
the reflection layer is inadequate, and a local view-based representation

9.4. Results with Two Real Scenes 241

Fig. 9.4 Results for a real scene with reflection: (a) An original image, (b) Same image with
only diffuse component, (c) Same image with only non-diffuse (reflection) component, (d,e)
Rendering with single local depth at two different virtual camera poses, (f,g) Rendering
with two local depths at the same virtual camera poses.

is preferable. For details on a more accurate means for separating the
reflection component from the diffuse component, see the work of [102].

Our renderer is similar to the one described for the Lumigraph [32],
i.e., it uses the two-slab, 4D parameterization of light rays. As with
the Lumigraph, each rendering ray is computed based on quadrilinear
interpolation of rays from the nearest four sampling cameras using
the local geometry for depth compensation. After rendering each layer
separately, the results are then directly added to produce the output
view.

9.4 Results with Two Real Scenes

We performed two experiments involving real scenes, the first with
strong reflection components and the second with highlights. Both
sets are acquired using a camera attached to a vertical precision X–Y
table that can accurately translate the camera to programmed posi-
tions. The first scene consists of a picture frame with a toy dog placed
at an angle to it on the same side as the camera. A grid of 9 × 9
images, each of resolution 384 × 288, were captured. Figure 9.4 shows
our rendering results for this image set. The rendering resolution is
also 384 × 288. The layers are separated using the dominant motion
estimation technique as descibed earlier. The rendering mechanism is
exactly the same as in the previous synthetic experiment, with local

242 Handling Layered Reflection Effects

fronto-parallel planes as local geometries. These planes are prespecified
in our experiments.

As can be seen from Figure 9.4(a–c), the layers have mostly been
separated, with some residual errors. Despite these errors, the render-
ing results using the LRL representation look markedly better than
using just a single geometry. The rendered reflections shown in Fig-
ure 9.4(f,g), which are the result of using two local geometries (LRL),
are much sharper than those shown in Figure 9.4(d,e), which are the
result of using only one local geometry. The slightly blurred frame and
picture in Figure 9.4(f,g) are caused by errors in separating the layers.

In the second set, the scene captured was that of a collection of
household articles, including a cup and a plate. The images were taken
at positions in a 65 × 5 grid, and both the original and rendering res-
olutions are 768 × 576. In this case, we took two sets of images at the
same camera locations; one set with the lamp switched off and another
with the lamp on. The highlights are computed based on the difference
between these two sets. Even with this crude means of extracting layers,
we are able to generate good rendering results, as shown in Figure 9.5.
The highlights as shown in Figure 9.5(f,g), which are the result of using
two local geometries (LRL), are visibly crisper than those shown in Fig-
ure 9.5(d,e), which are the result of using only one local geometry.

9.5 Issues with LRL

In addition to handling the diffuse and non-diffuse components sepa-
rately, another important feature of our representation is that it can
handle negative depths to account for possible negative slopes in the EPI
trail. On the other hand, the system of Lischinski and Rappoport [58],
which is based on warping of LDIs, cannot accommodate negative
depths explicitly.

Our current version of the LRL uses only two local “layers” or
geometries. It would be reasonably straightforward to extend this repre-
sentation to accommodate multiple local geometries (diffuse and multi-
ple non-diffuse). This would be useful in handling cases where multiple
non-diffuse components overlap within the captured images.

9.5. Issues with LRL 243

Fig. 9.5 Results for a real scene with highlights: (a) An original image, (b) Same image with
only diffuse component, (c) Same image with only non-diffuse (specular) component, (d,e)
Rendering with single local depth at two different virtual camera poses, (f,g) Rendering
with two local depths at the same virtual camera poses. The right subimages in (d–g) are
closeups of one of the highlight areas.

In practice, it is difficult to separate the diffuse and non-diffuse
components completely for images of real scenes. However, we believe
that partial separation is better than none at all. We have seen this
to a certain extent in our experiments involving real scenes, since our
separation was not perfect.

One limitation of our representation is that it is not able to ade-
quately account for complex BRDF behavior, such as rapidly changing
BRDF over the scene surface. An example would be the shimmering
surface of satin. In addition, occlusions cannot be handled perfectly, as
geometry within the vicinity of scene discontinuity cannot be extracted
and hence represented exactly for real scenes. Furthermore, human eyes
are very sensitive to edges and can detect anomalies very easily, which
compounds the problem.

10
Software and Hardware Issues

Geometry is often extracted as a means for reducing the number of
source images required for high-quality rendering. In addition, explicit
geometry models can be efficiently rendered by conventional graphics
hardware. However, the process of recovering geometry is often per-
formed on the CPU side, which is slow.

There is an emerging field on using the GPU to perform non-
graphics related computation. This field is called “general-purpose com-
putation using graphics hardware,” otherwise referred to as GPGPU
(see [73] and http://gpgpu.org/). As an example, Yang et al. developed
a hardware-accelerated version (using pixel shaders) of the plane-sweep
algorithm [20] to compute depth at interactive rates with multiple cam-
eras [116]. Woetzel and Koch [110] later extended the multi-camera
stereo system to incorporate shiftable windows and view selection for
occlusion handling. The technique of [116] uses a winner-take-all strat-
egy to select the depths, which is prone to noise. Another attempt on
porting stereo algorithms to the GPU is [60] where binocular stereo
based on a variational deformable model has been shown to run in
interactive rates.

244

245

The conventional graphics pipeline supports IBR through texture
mapping, especially with multi-texture extensions. However, this sup-
port is applicable to only a subset of IBR representations, and a fair
amount of work is required to fully capitalize on the capabilities of the
GPU. Why do not we merely rely on the CPU? While CPU speeds are
getting faster, memory access speeds remain about the same. Unfortu-
nately, IBR techniques tend to be memory intensive – as a result, it is
critical for IBR systems to have fast memory access. In addition, for
a hardware system to be more “IBR-compliant,” it must be capable
of forward mapping. Whitted [109] discussed various IBR-related soft-
ware and hardware issues, and provided an outline of a generic forward
mapping processor.

11
Which Representation to Choose?

There are many factors influencing the choice of the representation to
use: ease of data capture, ease of processing, rendering speed, mem-
ory footprint, database size, degrees of freedom and spatial extents of
navigation, and quality of reconstruction. We discuss a subset of these
factors here. (Sampling and compression issues are discussed in detail
elsewhere [94].)

By definition, for IBR representations, only images are required. As
we have seen, most IBR representations require additional data, be it
image correspondence or geometry. In IBR approaches such as those
described in [82, 112], geometry captured using a 3D scanner is used.
In others (e.g., [40, 47]), stereo is used to automatically extract depth
maps. Manual assistance has also been used to produce the desired
morphing results (e.g., [91]) or geometry for rendering (e.g., [8, 24]).

The image capture process varies substantially from one represen-
tation to another. Custom equipment is required for light fields [53]
and Concentric Mosaics (CMs) [95]. Such a requirement is relaxed for
the Lumigraph [32] and the plenoptic modeling work of [40], where
a hand-held camera is used. Similarly, Chai et al. [13] demonstrated
visualizations with similar quality to CMs using images taken with
only approximate circular trajectories.

246

247

View-dependent textures on global geometry are used to account
for view-dependent appearance changes such as highlights and non-
Lambertian behavior (e.g., [24]). However, this assumes that such a
consistent global geometry can be extracted easily. This is not true
for a general real scene with unknown surface properties and lighting
conditions. To reduce the severity of this problem, Pulli et al. [82] and
Kang and Szeliski [47] use view-dependent geometry as well.

For representations that are based on implicit geometry, correspon-
dence between the source images has to be somehow obtained for view
transfer. Ideally, establishing correspondence should be automatic, and
indeed, techniques for this do exist [37] (though for sparse correspon-
dence). In addition, to facilitate novel viewpoint specification, full cam-
era calibration is required to ensure Euclidean view reconstruction. It
is much less intuitive to specify a new viewpoint if cameras are only
weakly calibrated; in addition, view reconstruction is only up to a
projective transform. This may result in an unnatural-looking skewed
scene. However, if the centers of the source cameras lie in a line (or in
general within a plane), it can be shown that the disparities are linear
with camera motion once the images have been rectified [91]. Regard-
less, full frame correspondence is in general a very difficult problem,
especially in the presence of occlusion and non-linear effects such as
highlights and transparency.

For a representation to be compelling, it has to allow a reasonably
wide range of viewpoints to be selected. While most representations
allow a wide selection of viewpoints, they require a substantial amount
of data to be captured – this is not attractive from a practical stand-
point. In addition, a certain amount of specialized knowledge about
cameras is required to minimize the number of images captured. Con-
tent creators need to have some measure of understanding of complex
issues such as trade-offs between field of view and resolution, type of
scenes to avoid, relative placement of the camera to the scene (to avoid
degenerate camera motions), and density of sampling. It is thus not
surprising that despite IBR as a field having been around for some
number of years, most of its representations have not been adopted for
widespread commercial use. The notable exceptions are the simplest
ones such as panoramas.

12
Challenges

As this article shows, IBR techniques differ in many ways, from cap-
ture and representation to rendering mechanism. Their design is highly
dependent on factors such as ease of capture, number and density of
source images, availability of geometry, expected accuracy of geometry,
and expected scene complexity. While substantial progress has been
achieved in effectively capturing, representing, and rendering scenes,
many challenges remain.

The ability to handle general complex scenes remains a big issue for
IBR. The easiest scenes to render remain those with mostly Lamber-
tian surfaces. While there are techniques that can handle reflection or
translucency and highlights to a certain extent (e.g., [47, 57, 100, 105]
and the LRL described in Section 9), a substantial amount of work is
still required to ensure robustness. The surface light field [112] handles
such effects, but it requires accurate geometry and many source images.
What if the scene is highly complicated, like a bush or a very cluttered
office? How can we capture the surface subscattering or inter-reflection
effect of an object with just images? How many images are enough?
Should the new representation be view-dependent and multi-layered to
account for depth, matting, and non-linear effects?

248

249

Since IBR, by definition, uses source images for rendering, interact-
ing with IBR representations remains a challenging issue. Various lim-
ited operations were proposed: direct image editing [92] (where changes
in one image are propagated to the other source images), light field
morphing [117], and light field deformation [16]. Operations such as
object removal and insertion are simple to implement for 3D models,
but remain challenging for image-intensive representations such as the
light field and Lumigraph. There is also the difficult problem of relight-
ing real scenes using IBR representations.

IBR techniques that use transfer methods for generating virtual
views tend to use a relatively small number of source images. The
issues associated with the standard computer vision problems of feature
selection and correspondence, occlusion handling, and structure from
motion apply. Again, most techniques assume Lambertian surfaces.

There are two other important issues: rendering speed and com-
pression. Even if all other problems associated with capturing and con-
structing the representation are adequately handled, the representation
would still not be considered practical if it is slow to render or cannot
be efficiently compressed. Realistically, the representation would need
to capitalize on off-the-shelf graphics hardware for accelerated perfor-
mance; in the short run, there is little commercial incentive for using
specialized hardware accelerators.

Most of the IBR techniques described in this article are designed for
static scenes. While photorealistic visualization of static scenes can be
compelling, there is a limit on the amount of information that can be
conveyed from an appearance frozen in time. The ability to rendering
dynamic scenes seems more appealing. A survey on systems for captur-
ing and rendering dynamic scenes is beyond the scope of this article,
and can be found in [94].

Acknowledgments

We would like to thank Rick Szeliski for his constructive comments on
this article.

250

References

[1] E. H. Adelson and J. R. Bergen, “The plenoptic function and elements of early
vision,” Computational Models of Visual Processing, pp. 3–20, 1991.

[2] A. Agarwala, C. Zheng, C. Pal, M. Agrawala, M. Cohen, B. Curless, D. Salesin,
and R. Szeliski, “Panoramic video textures,” in Proceedings of SIGGRAPH
(ACM Transactions on Graphics), August 2005.

[3] D. G. Aliaga and I. Carlbom, “Plenoptic stitching: A scalable method
for reconstructing 3D interactive walkthroughs,” Computer Graphics (SIG-
GRAPH), pp. 443–450, August 2001.

[4] S. Avidan and A. Shashua, “Novel view synthesis in tensor space,” in IEEE
Conference on Computer Vision and Pattern Recognition, (San Juan, Puerto
Rico), pp. 1034–1040, June 1997.

[5] S. Baker, R. Szeliski, and P. Anandan, “A layered approach to stereo recon-
struction,” in IEEE Conference on Computer Vision and Pattern Recognition,
(Santa Barbara), pp. 434–441, June 1998.

[6] R. C. Bolles, H. H. Baker, and D. H. Marimont, “Epipolar-plane image analy-
sis: An approach to determining structure from motion,” International Journal
of Computer Vision, vol. 1, pp. 7–55, 1987.

[7] M. Botsch, A. Hornung, M. Zwicker, and L. Kobbelt, “High-quality surface
splatting on today’s GPUs,” in Proceedings of the Eurographics Symposium
on Point-Based Graphics, pp. 17–24, 2005.

[8] C. Buehler, M. Bosse, L. McMillan, S. Gortler, and M. Cohen, “Unstructured
lumigraph rendering,” in Computer Graphics (SIGGRAPH), (Los Angeles,
CA), pp. 425–432, August 2001.

[9] E. Camahort, “4D light-field modeling and rendering,” Tech. Rep. TR01-52,
The University of Texas at Austin, May 2001.

251

252 References

[10] E. Camahort, A. Lerios, and D. Fussell, “Uniformly sampled light fields,” in
9th Eurographics Workshop on Rendering, (Vienna, Austria), pp. 117–130,
June/July 1998.

[11] F. M. Candocia, “Simultaneous homographic and comparametric alignment
of multiple exposure-adjusted pictures of the same scene,” IEEE Transactions
on Image Processing, vol. 12, no. 12, pp. 1485–1494, December 2003.

[12] D. Capel and A. Zisserman, “Super-resolution from multiple views using learnt
image models,” in Conference on Computer Vision and Pattern Recognition,
(Kauai, HI), vol. 2, pp. 627–634, December 2001.

[13] J.-X. Chai, S. B. Kang, and H.-Y. Shum, “Rendering with non-uniform
approximate concentric mosaics,” in 3D Structure from Multiple Images of
Large-Scale Environments (SMILE), (Dublin, Ireland), pp. 94–108, July 2000.

[14] J.-X. Chai, X. Tong, S.-C. Chan, and H.-Y. Shum, “Plenoptic sampling,”
Computer Graphics (SIGGRAPH), pp. 307–318, July 2000.

[15] C. Chang, G. Bishop, and A. Lastra, “LDI tree: A hierarchical representation
for image-based rendering,” Computer Graphics (SIGGRAPH), pp. 291–298,
August 1999.

[16] B. Chen, E. Ofek, H.-Y. Shum, and M. Levoy, “Interactive deformation of
light fields,” in Symposium on Interactive 3D Graphics and Games (I3D),
(Washington, D.C.), pp. 139–146, 2005.

[17] S. Chen and L. Williams, “View interpolation for image synthesis,” Computer
Graphics (SIGGRAPH), pp. 279–288, August 1993.

[18] S. E. Chen, “QuickTime VR – An image-based approach to virtual envi-
ronment navigation,” Computer Graphics (SIGGRAPH), pp. 29–38, August
1995.

[19] L. Coconu and H.-C. Hege, “Hardware-accelerated point-based rendering
of complex scenes,” in Eurographics Workshop on Rendering, (Aire-la-Ville,
Switzerland), pp. 43–52, 2002.

[20] R. T. Collins, “A space-sweep approach to true multi-image matching,” in
IEEE Conference on Computer Vision and Pattern Recognition, (San Fran-
cisco), pp. 358–363, June 1996.

[21] H. S. M. Coxeter, Introduction to Geometry. John Wiley and Sons, 1969.
[22] J. Davis, “Mosaics of scenes with moving objects,” in IEEE Conference on

Computer Vision and Pattern Recognition, (Santa Barbara, CA), pp. 354–
360, June 1998.

[23] P. Debevec, Y. Yu, and G. Borshukov, “Efficient view-dependent image-based
rendering with projective texture-mapping,” in Eurographics Workshop on
Rendering, pp. 105–116, 1998.

[24] P. E. Debevec, C. J. Taylor, and J. Malik, “Modeling and Rendering Archi-
tecture from photographs: A hybrid geometry- and image-based approach,”
Computer Graphics (SIGGRAPH), pp. 11–20, August 1996.

[25] X. Decoret, F. Durand, F. X. Sillion, and J. Dorsey, “Billboard clouds for
extreme model simplification,” Proceedings of SIGGRAPH (ACM Transac-
tions on Graphics), pp. 689–696, July 2003.

[26] P. Dutré, P. Bekaert, and K. Bala, Advanced Global Illumination. Natick, MA:
AK Peters, 2003.

References 253

[27] O. Faugeras, Three-dimensional Computer Vision: A Geometric Viewpoint.
Cambridge, MA: MIT Press, 1993.

[28] O. Faugeras, L. Robert, S. Laveau, G. Csurka, C. Zeller, C. Gauclin, and
I. Zoghlami, “3-D reconstruction of urban scenes from image sequences,” Com-
puter Vision and Image Understanding, vol. 69, no. 3, pp. 292–309, March
1998.

[29] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography,”
Communications of the ACM, vol. 24, no. 6, pp. 381–395, June 1981.

[30] A. Fitzgibbon, Y. Wexler, and A. Zisserman, “Image-based rendering using
image-based priors,” in International Conference on Computer Vision, vol. 2,
pp. 1176–1183, 2003.

[31] D. B. Goldman and J.-H. Chen, “Vignette and exposure calibration and
compensation,” in International Conference on Computer Vision, (Beijing,
China), pp. 899–906, October 2005.

[32] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The lumigraph,”
in Computer Graphics (SIGGRAPH), (New Orleans), pp. 43–54, August 1996.

[33] N. Greene and P. S. Heckbert, “Creating raster Omnimax images from mul-
tiple perspective views using the Elliptical Weighted Average filter,” IEEE
Computer Graphics and Applications, vol. 6, no. 6, pp. 21–27, June 1986.

[34] G. Guennebaud and M. Paulin, “Efficient screen space approach for hardware
accelerated surfel rendering,” in Workshop on Vision, Modeling, and Visual-
ization, pp. 1–10, 2003.

[35] R. Gupta and R. Hartley, “Linear pushbroom cameras,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 19, no. 9, pp. 963–975,
September 1997.

[36] M. Halle, “Multiple viewpoint rendering,” Computer Graphics (SIGGRAPH),
pp. 243–254, July 1998.

[37] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision.
Cambridge University Press, Second Edition, 2004.

[38] P. S. Heckbert, “Survey of texture mapping,” IEEE Computer Graphics and
Applications, vol. 11, no. 6, pp. 56–67, November 1986.

[39] W. Heidrich, H. Lensch, M. F. Cohen, and H.-P. Seidel, “Light field techniques
for reflections and refractions,” in Eurographics Rendering Workshop, pp. 195–
375, June 1999.

[40] B. Heigl, R. Koch, M. Pollefeys, J. Denzler, and L. Van Gool, “Plenoptic
modeling and rendering from image sequences taken by hand-held camera,”
in DAGM, pp. 94–101, 1999.

[41] I. Ihm, S. Park, and R. Lee, “Rendering of spherical light fields,” in Pacific
Graphics, (Seoul, Korea), pp. 59–68, October 1997.

[42] M. Irani and S. Peleg, “Improving resolution by image registration,” Graphical
Models and Image Processing, vol. 53, no. 3, pp. 231–239, May 1991.

[43] A. Isaksen, L. McMillan, and S. Gortler, “Dynamically reparameterized light
fields,” Computer Graphics (SIGGRAPH), pp. 297–306, July 2000.

[44] H. W. Jensen, Realistic Image Synthesis Using Photon Mapping. A K Peters
Ltd., 2001.

254 References

[45] S. Jeschke, M. Wimmer, and H. Schumann, “Layered environment-map impos-
tors for arbitrary scenes,” in Proceedings of Graphics Interface, pp. 1–8, May
2002.

[46] S. B. Kang, “A survey of image-based rendering techniques,” in Videomet-
rics VI (SPIE International Symposium on Electronic Imaging: Science and
Technology), (San Jose, CA), vol. 3641, pp. 2–16, January 1999.

[47] S. B. Kang and R. Szeliski, “Extracting view-dependent depth maps from a
collection of images,” International Journal of Computer Vision, vol. 58, no. 2,
pp. 139–163, July 2004.

[48] S. B. Kang, R. Szeliski, and J. Chai, “Handling occlusions in dense multi-view
stereo,” in IEEE Conference on Computer Vision and Pattern Recognition,
(Kauai, HI), vol. I, pp. 103–110, December 2001.

[49] A. Katayama, K. Tanaka, T. Oshino, and H. Tamura, “A viewpoint dependent
stereoscopic display using interpolation of multi-viewpoint images,” in Stereo-
scopic Displays and Virtual Reality Systems II (SPIE), (S. Fisher, J. Merritt,
and B. Bolas, eds.), vol. 2409, pp. 11–20, 1995.

[50] L. Kobbelt and M. Botsch, “A survey of point-based techniques in computer
graphics,” Computers and Graphics, vol. 28, no. 6, pp. 801–814, 2004.

[51] S. Laveau and O. D. Faugeras, “3-D scene representation as a collection
of images,” in International Conference on Pattern Recognition, (Jerusalem,
Israel), vol. A, pp. 689–691, October 1994.

[52] J. Lengyel, “The convergence of graphics and vision,” IEEE Computer, vol. 31,
no. 7, pp. 46–53, 1998.

[53] M. Levoy and P. Hanrahan, “Light field rendering,” Computer Graphics (SIG-
GRAPH), pp. 31–42, August 1996.

[54] M. Levoy and T. Whitted, “The use of points as a display primitive,” Tech.
Rep., UNC Technical Report 85-022, University of North Carolina, Chapel
Hill, NC, 1985.

[55] M. Lhuillier and L. Quan, “Image interpolation by joint view triangulation,” in
IEEE Conference on Computer Vision and Pattern Recognition, (Fort Collins,
CO), vol. 2, pp. 139–145, June 1999.

[56] M. Lhuillier and L. Quan, “Image-based rendering by joint view triangu-
lation,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 13, no. 11, pp. 1051–1063, November 2003.

[57] S. Lin, Y. Li, S. B. Kang, X. Tong, and H.-Y. Shum, “Simultaneous separa-
tion and depth recovery of specular reflections,” in European Conference on
Computer Vision, (Copenhagen, Denmark), vol. 3, pp. 210–224, May/June
2002.

[58] D. Lischinski and A. Rappoport, “Image-based rendering for non-diffuse syn-
thetic scenes,” in Eurographics Rendering Workshop, pp. 301–314, June 1998.

[59] M. Magnor and B. Girod, “Model-based coding of multi-viewpoint imagery,”
in SPIE Visual Communication and Image Processing, (Perth, Australia),
vol. 4067(2), pp. 14–22, June 2000.

[60] J. Mairal and R. Keriven, “A GPU implementation of variational stereo,”
Tech. Rep. Research Report 05-13, CERTIS, November 2005.

References 255

[61] S. Mann, “Pencigraphy with AGC: Joint parameter estimation in both domain
and range of functions in same orbit of the projective-Wyckoff group,” in
International Conference on Image Processing, (Los Alamitos, CA), vol. 3,
pp. 193–196, 1996.

[62] S. Mann and R. W. Picard, “Virtual bellows: Constructing high-quality images
from video,” in International Conference on Image Processing, (Austin, TX),
vol. I, pp. 363–367, November 1994.

[63] W. Mark, L. McMillan, and G. Bishop, “Post-rendering 3D Warping,” in
Symposium on I3D Graphics, pp. 7–16, April 1997.

[64] W. Matusik, C. Buehler, R. Raskar, S. Gortler, and L. McMillan, “Image-
based visual hulls,” Computer Graphics (SIGGRAPH), pp. 369–374, July
2000.

[65] W. Matusik, H. Pfister, P. Ngan, P. Beardsley, R. Ziegler, and L. McMillan,
“Image-based 3D photography using opacity hulls,” Proceedings of SIG-
GRAPH (ACM Transactions on Graphics), pp. 427–437, July 2002.

[66] L. McMillan, “An image-based approach to three-dimensional computer
graphics,” Tech. Rep., Ph.D. Dissertation, UNC Computer Science TR97-013,
1999.

[67] L. McMillan and G. Bishop, “Head-tracked stereoscopic display using image
warping,” in Stereoscopic Displays and Virtual Reality Systems II (SPIE),
pp. 21–30, February 1995.

[68] L. McMillan and G. Bishop, “Plenoptic modeling: An image-based rendering
system,” Computer Graphics (SIGGRAPH), pp. 39–46, August 1995.

[69] V. S. Nalwa, “A true omnidirectional viewer,” Tech. Rep., Bell Laboratories,
Holmdel, NJ, February 1996.

[70] S. K. Nayar, “Catadioptric omnidirectional camera,” in IEEE Conference on
Computer Vision and Pattern Recognition, (San Juan, Puerto Rico), pp. 482–
488, June 1997.

[71] R. Ng, “Fourier slice photography,” Proceedings of SIGGRAPH (ACM Trans-
actions on Graphics), vol. 24, no. 3, pp. 735–744, July 2005.

[72] M. M. Oliveira, G. Bishop, and D. McAllister, “Relief texture mapping,” in
Computer Graphics (SIGGRAPH), (New Orleans, LA), pp. 359–368, July
2000.

[73] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger, A. E. Lefohn,
and T. J. Purcell, “A survey of general-purpose computation on graphics hard-
ware,” in Eurographics, State of the Art Reports, pp. 21–51, August 2005.

[74] S. Peleg and M. Ben-Ezra, “Stereo panorama with a single camera,” in IEEE
Conference on Computer Vision and Pattern Recognition, (Fort Collins, CO),
pp. 395–401, June 1999.

[75] S. Peleg and J. Herman, “Panoramic mosaics by manifold projection,” in IEEE
Conference on Computer Vision and Pattern Recognition, (San Juan, Puerto
Rico), pp. 338–343, June 1997.

[76] S. Peleg, B. Rousso, A. Rav-Acha, and A. Zomet, “Mosaicing on adaptive
manifolds,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
pp. 1144–1154, October 2000.

256 References

[77] H. Pfister, M. Zwicker, J. van Baar, and M. Gross, “Surfels: Surface elements
as rendering primitives,” in Computer Graphics (SIGGRAPH), pp. 335–342,
July 2000.

[78] M. Pharr and G. Humphreys, Physically Based Rendering. Morgan Kaufmann,
2004.

[79] F. Policarpo, M. M. Oliveira, and J. L. D. Comba, “Real-time relief map-
ping on arbitrary polygonal surfaces,” in ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games, April 2005.

[80] D. Porquet, J.-M. Dischler, and D. Ghazanfarpour, “Real-time high quality
view-dependent texture mapping Using per-pixel visibility,” in International
Conference on Computer Graphics and Interactive Techniques in Australasia
and Southeast Asia (Graphite), November/December 2005.

[81] T. Porter and T. Duff, “Compositing digital images,” in Computer Graphics
(SIGGRAPH), pp. 253–259, July 1984.

[82] K. Pulli, M. Cohen, T. Duchamp, H. Hoppe, J. McDonald, L. Shapiro, and
W. Stuetzle, “View-based rendering: Visualizing real objects from scanned
range and color data,” in Eurographics Workshop on Rendering, (St. Etienne,
France), June 1997.

[83] P. Rademacher and G. Bishop, “Multiple-center-of-projection images,” in
Computer Graphics (SIGGRAPH), (Orlando, FL), pp. 199–206, July 1998.

[84] A. Rav-Acha, Y. Pritch, D. Lischinski, and S. Peleg, “Dynamosaicing: Video
mosaics with non-chronological time,” in IEEE Conference on Computer
Vision and Pattern Recognition, (San Diego, CA), pp. 58–65, June 2005.

[85] M. J. P. Regan, G. S. P. Miller, S. M. Rubin, and C. Kogelnik, “A real-
time low-latency hardware light-field renderer,” in Computer Graphics (SIG-
GRAPH), (Los Angeles, CA), pp. 287–290, August 1999.

[86] L. Ren, H. Pfister, and M. Zwicker, “Object space EWA surface splatting: A
hardware accelerated approach to high quality point rendering,” Eurographics,
Computer Graphics Forum, vol. 21, no. 3, pp. 461–470, 2002.

[87] M. Sainz and R. Pajarola, “Point-based rendering techniques,” Computers
and Graphics, vol. 28, no. 6, pp. 869–879, 2004.

[88] D. Scharstein, “Stereo vision for view synthesis,” in IEEE Conference on Com-
puter Vision and Pattern Recognition, (San Francisco, CA), pp. 852–857, June
1996.

[89] G. Schaufler, “Per-object image warping with layered impostors,” in
Eurographics Workshop on Rendering, pp. 145–156, June/July 1998.

[90] A. Schödl, R. Szeliski, D. H. Salesin, and I. Essa, “Video textures,” in Com-
puter Graphics (SIGGRAPH), (New Orleans, LA), pp. 489–498, July 2000.

[91] S. M. Seitz and C. M. Dyer, “View morphing,” in Computer Graphics (SIG-
GRAPH), (New Orleans, LA), pp. 21–30, August 1996.

[92] S. M. Seitz and K. N. Kutulakos, “Plenoptic image editing,” in International
Conference on Computer Vision, pp. 17–24, 1998.

[93] J. Shade, S. Gortler, L.-W. He, and R. Szeliski, “Layered depth images,” in
Computer Graphics (SIGGRAPH), (Orlando), pp. 231–242, July 1998.

[94] H.-Y. Shum, S.-C. Chan, and S. B. Kang, Image-Based Rendering. Springer,
2006.

References 257

[95] H.-Y. Shum and L.-W. He, “Rendering with concentric mosaics,” in Computer
Graphics (SIGGRAPH), (Los Angeles), pp. 299–306, August 1999.

[96] H.-Y. Shum, J. Sun, S. Yamazaki, Y. Li, and C. K. Tang, “Pop-up light field:
An interactive image-based modeling and rendering system,” ACM Transac-
tions on Graphics, vol. 23, no. 2, pp. 143–162, April 2004.

[97] H.-Y. Shum and R. Szeliski, “Construction and refinement of panoramic
mosaics with global and local alignment,” in International Conference on
Computer Vision, (Bombay, India), pp. 953–958, January 1998.

[98] H.-Y. Shum, L. Wang, J.-X. Chai, and X. Tong, “Rendering by manifold
hopping,” International Journal of Computer Vision, vol. 50, no. 2, pp. 185–
201, 2002.

[99] P. P. Sloan, M. F. Cohen, and S. J. Gortler, “Time critical lumigraph render-
ing,” in Symposium on Interactive 3D Graphics, (Providence, RI), pp. 17–23,
April 1997.

[100] R. Swaminathan, S. B. Kang, R. Szeliski, A. Criminisi, and S. K. Nayar, “On
the motion and appearance of specularities in image sequences,” in European
Conference on Computer Vision, (Copenhagen, Denmark), vol. 1, pp. 508–523,
May/June 2002.

[101] R. Szeliski, “Video mosaics for virtual environments,” IEEE Computer Graph-
ics and Applications, pp. 22–30, March 1996.

[102] R. Szeliski, S. Avidan, and P. Anandan, “Layer extraction from multiple
images containing reflections and transparency,” in IEEE Conference on Com-
puter Vision and Pattern Recognition, (Hilton Head Island, NC), pp. 246–253,
June 2000.

[103] R. Szeliski and M. Cohen, “Sprites with depth–fast rendering techniques for
sprites with depth offsets,” Tech. Rep., Microsoft Research Vision Technology
Group, Technical Note No. 5, 1998.

[104] R. Szeliski and H.-Y. Shum, “Creating full view panoramic image mosaics and
environment maps,” Computer Graphics (SIGGRAPH), pp. 251–258, August
1997.

[105] Y. Tsin, S. B. Kang, and R. Szeliski, “Stereo matching with reflections and
translucency,” in IEEE Conference on Computer Vision and Pattern Recog-
nition, (Madison, WI), vol. 1, pp. 702–709, June 2003.

[106] M. Uyttendaele, A. Criminisi, S. B. Kang, S. Winder, R. Hartley, and
R. Szeliski, “High-quality image-based interactive exploration of real-world
environments,” IEEE Computer Graphics and Applications, vol. 24, no. 3,
pp. 52–63, May/June 2004.

[107] M. Uyttendaele, A. Eden, and R. Szeliski, “Eliminating ghosting and exposure
artifacts in image mosaics,” in IEEE Conference on Computer Vision and
Pattern Recognition, vol. 2, pp. 509–516, December 2001.

[108] B. Wallace, “Merging and transformation of raster images for cartoon ani-
mation,” in Computer Graphics (SIGGRAPH), (Dallas, TX), pp. 253–262,
1981.

[109] T. Whitted, “Overview of IBR: Software and hardware issues,” in Interna-
tional Conference on Image Processing, (Vancouver, Canada), vol. 2, p. 14,
September 2000.

258 References

[110] J. Woetzel and R. Koch, “Real-time multi-stereo depth estimation on GPU
with approximative discontinuity handling,” in 1st European Conference on
Visual Media Production (CVMP), (London, UK), March 2004.

[111] T. Wong, P. Heng, S. Or, and W. Ng, “Image-based rendering with controllable
illumination,” in Eurographics Workshop on Rendering, (St. Etienne, France),
pp. 13–22, June 1997.

[112] D. N. Wood, D. I. Azuma, K. Aldinger, B. Curless, T. Duchamp, D. H.
Salesin, and W. Stuetzle, “Surface light fields for 3D photography,” in Com-
puter Graphics (SIGGRAPH), Annual Conference Series, (New Orleans, LA),
pp. 287–296, July 2000.

[113] D. N. Wood, A. Finkelstein, J. F. Hughes, C. E. Thayer, and D. H. Salesin,
“Multiperspective panoramas for cel animation,” in Computer Graphics (SIG-
GRAPH), (Los Angeles, CA), pp. 243–250, August 1997.

[114] O. Woodford and A. Fitzgibbon, “Fast image-based rendering using hierar-
chical image-based priors,” in British Machine Vision Conference, (Oxford,
UK), September 2005.

[115] Y. Xiong and K. Turkowski, “Creating image-based VR using a self-calibrating
fisheye lens,” in IEEE Conference on Computer Vision and Pattern Recogni-
tion, (San Juan, Puerto Rico), pp. 237–243, June 1997.

[116] R. Yang, G. Welch, and G. Bishop, “Real-time consensus-based scene recon-
struction using commodity graphics hardware,” in Pacific Graphics, (Beijing,
China), pp. 225–234, 2002.

[117] Z. Zhang, L. Wang, B. Guo, and H.-Y. Shum, “Feature-based light field morph-
ing,” Proceedings of SIGGRAPH (ACM Transactions on Graphics), pp. 457–
464, July 2002.

[118] J. Y. Zheng and S. Tsuji, “Panoramic representation for route recognition by
a mobile robot,” International Journal of Computer Vision, vol. 9, pp. 55–76,
1992.

[119] A. Zomet, D. Feldman, S. Peleg, and D. Weinshall, “Mosaicing new views:
The crossed-slits projection,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 25, no. 6, pp. 741–754, June 2003.

